2016-08-04 Thomas Preud'homme <thomas.preudhomme@arm.com>
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
1 /* 32-bit ELF support for ARM
2 Copyright (C) 1998-2016 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include <limits.h>
23
24 #include "bfd.h"
25 #include "bfd_stdint.h"
26 #include "libiberty.h"
27 #include "libbfd.h"
28 #include "elf-bfd.h"
29 #include "elf-nacl.h"
30 #include "elf-vxworks.h"
31 #include "elf/arm.h"
32
33 /* Return the relocation section associated with NAME. HTAB is the
34 bfd's elf32_arm_link_hash_entry. */
35 #define RELOC_SECTION(HTAB, NAME) \
36 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
37
38 /* Return size of a relocation entry. HTAB is the bfd's
39 elf32_arm_link_hash_entry. */
40 #define RELOC_SIZE(HTAB) \
41 ((HTAB)->use_rel \
42 ? sizeof (Elf32_External_Rel) \
43 : sizeof (Elf32_External_Rela))
44
45 /* Return function to swap relocations in. HTAB is the bfd's
46 elf32_arm_link_hash_entry. */
47 #define SWAP_RELOC_IN(HTAB) \
48 ((HTAB)->use_rel \
49 ? bfd_elf32_swap_reloc_in \
50 : bfd_elf32_swap_reloca_in)
51
52 /* Return function to swap relocations out. HTAB is the bfd's
53 elf32_arm_link_hash_entry. */
54 #define SWAP_RELOC_OUT(HTAB) \
55 ((HTAB)->use_rel \
56 ? bfd_elf32_swap_reloc_out \
57 : bfd_elf32_swap_reloca_out)
58
59 #define elf_info_to_howto 0
60 #define elf_info_to_howto_rel elf32_arm_info_to_howto
61
62 #define ARM_ELF_ABI_VERSION 0
63 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
64
65 /* The Adjusted Place, as defined by AAELF. */
66 #define Pa(X) ((X) & 0xfffffffc)
67
68 static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
69 struct bfd_link_info *link_info,
70 asection *sec,
71 bfd_byte *contents);
72
73 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
74 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
75 in that slot. */
76
77 static reloc_howto_type elf32_arm_howto_table_1[] =
78 {
79 /* No relocation. */
80 HOWTO (R_ARM_NONE, /* type */
81 0, /* rightshift */
82 3, /* size (0 = byte, 1 = short, 2 = long) */
83 0, /* bitsize */
84 FALSE, /* pc_relative */
85 0, /* bitpos */
86 complain_overflow_dont,/* complain_on_overflow */
87 bfd_elf_generic_reloc, /* special_function */
88 "R_ARM_NONE", /* name */
89 FALSE, /* partial_inplace */
90 0, /* src_mask */
91 0, /* dst_mask */
92 FALSE), /* pcrel_offset */
93
94 HOWTO (R_ARM_PC24, /* type */
95 2, /* rightshift */
96 2, /* size (0 = byte, 1 = short, 2 = long) */
97 24, /* bitsize */
98 TRUE, /* pc_relative */
99 0, /* bitpos */
100 complain_overflow_signed,/* complain_on_overflow */
101 bfd_elf_generic_reloc, /* special_function */
102 "R_ARM_PC24", /* name */
103 FALSE, /* partial_inplace */
104 0x00ffffff, /* src_mask */
105 0x00ffffff, /* dst_mask */
106 TRUE), /* pcrel_offset */
107
108 /* 32 bit absolute */
109 HOWTO (R_ARM_ABS32, /* type */
110 0, /* rightshift */
111 2, /* size (0 = byte, 1 = short, 2 = long) */
112 32, /* bitsize */
113 FALSE, /* pc_relative */
114 0, /* bitpos */
115 complain_overflow_bitfield,/* complain_on_overflow */
116 bfd_elf_generic_reloc, /* special_function */
117 "R_ARM_ABS32", /* name */
118 FALSE, /* partial_inplace */
119 0xffffffff, /* src_mask */
120 0xffffffff, /* dst_mask */
121 FALSE), /* pcrel_offset */
122
123 /* standard 32bit pc-relative reloc */
124 HOWTO (R_ARM_REL32, /* type */
125 0, /* rightshift */
126 2, /* size (0 = byte, 1 = short, 2 = long) */
127 32, /* bitsize */
128 TRUE, /* pc_relative */
129 0, /* bitpos */
130 complain_overflow_bitfield,/* complain_on_overflow */
131 bfd_elf_generic_reloc, /* special_function */
132 "R_ARM_REL32", /* name */
133 FALSE, /* partial_inplace */
134 0xffffffff, /* src_mask */
135 0xffffffff, /* dst_mask */
136 TRUE), /* pcrel_offset */
137
138 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
139 HOWTO (R_ARM_LDR_PC_G0, /* type */
140 0, /* rightshift */
141 0, /* size (0 = byte, 1 = short, 2 = long) */
142 32, /* bitsize */
143 TRUE, /* pc_relative */
144 0, /* bitpos */
145 complain_overflow_dont,/* complain_on_overflow */
146 bfd_elf_generic_reloc, /* special_function */
147 "R_ARM_LDR_PC_G0", /* name */
148 FALSE, /* partial_inplace */
149 0xffffffff, /* src_mask */
150 0xffffffff, /* dst_mask */
151 TRUE), /* pcrel_offset */
152
153 /* 16 bit absolute */
154 HOWTO (R_ARM_ABS16, /* type */
155 0, /* rightshift */
156 1, /* size (0 = byte, 1 = short, 2 = long) */
157 16, /* bitsize */
158 FALSE, /* pc_relative */
159 0, /* bitpos */
160 complain_overflow_bitfield,/* complain_on_overflow */
161 bfd_elf_generic_reloc, /* special_function */
162 "R_ARM_ABS16", /* name */
163 FALSE, /* partial_inplace */
164 0x0000ffff, /* src_mask */
165 0x0000ffff, /* dst_mask */
166 FALSE), /* pcrel_offset */
167
168 /* 12 bit absolute */
169 HOWTO (R_ARM_ABS12, /* type */
170 0, /* rightshift */
171 2, /* size (0 = byte, 1 = short, 2 = long) */
172 12, /* bitsize */
173 FALSE, /* pc_relative */
174 0, /* bitpos */
175 complain_overflow_bitfield,/* complain_on_overflow */
176 bfd_elf_generic_reloc, /* special_function */
177 "R_ARM_ABS12", /* name */
178 FALSE, /* partial_inplace */
179 0x00000fff, /* src_mask */
180 0x00000fff, /* dst_mask */
181 FALSE), /* pcrel_offset */
182
183 HOWTO (R_ARM_THM_ABS5, /* type */
184 6, /* rightshift */
185 1, /* size (0 = byte, 1 = short, 2 = long) */
186 5, /* bitsize */
187 FALSE, /* pc_relative */
188 0, /* bitpos */
189 complain_overflow_bitfield,/* complain_on_overflow */
190 bfd_elf_generic_reloc, /* special_function */
191 "R_ARM_THM_ABS5", /* name */
192 FALSE, /* partial_inplace */
193 0x000007e0, /* src_mask */
194 0x000007e0, /* dst_mask */
195 FALSE), /* pcrel_offset */
196
197 /* 8 bit absolute */
198 HOWTO (R_ARM_ABS8, /* type */
199 0, /* rightshift */
200 0, /* size (0 = byte, 1 = short, 2 = long) */
201 8, /* bitsize */
202 FALSE, /* pc_relative */
203 0, /* bitpos */
204 complain_overflow_bitfield,/* complain_on_overflow */
205 bfd_elf_generic_reloc, /* special_function */
206 "R_ARM_ABS8", /* name */
207 FALSE, /* partial_inplace */
208 0x000000ff, /* src_mask */
209 0x000000ff, /* dst_mask */
210 FALSE), /* pcrel_offset */
211
212 HOWTO (R_ARM_SBREL32, /* type */
213 0, /* rightshift */
214 2, /* size (0 = byte, 1 = short, 2 = long) */
215 32, /* bitsize */
216 FALSE, /* pc_relative */
217 0, /* bitpos */
218 complain_overflow_dont,/* complain_on_overflow */
219 bfd_elf_generic_reloc, /* special_function */
220 "R_ARM_SBREL32", /* name */
221 FALSE, /* partial_inplace */
222 0xffffffff, /* src_mask */
223 0xffffffff, /* dst_mask */
224 FALSE), /* pcrel_offset */
225
226 HOWTO (R_ARM_THM_CALL, /* type */
227 1, /* rightshift */
228 2, /* size (0 = byte, 1 = short, 2 = long) */
229 24, /* bitsize */
230 TRUE, /* pc_relative */
231 0, /* bitpos */
232 complain_overflow_signed,/* complain_on_overflow */
233 bfd_elf_generic_reloc, /* special_function */
234 "R_ARM_THM_CALL", /* name */
235 FALSE, /* partial_inplace */
236 0x07ff2fff, /* src_mask */
237 0x07ff2fff, /* dst_mask */
238 TRUE), /* pcrel_offset */
239
240 HOWTO (R_ARM_THM_PC8, /* type */
241 1, /* rightshift */
242 1, /* size (0 = byte, 1 = short, 2 = long) */
243 8, /* bitsize */
244 TRUE, /* pc_relative */
245 0, /* bitpos */
246 complain_overflow_signed,/* complain_on_overflow */
247 bfd_elf_generic_reloc, /* special_function */
248 "R_ARM_THM_PC8", /* name */
249 FALSE, /* partial_inplace */
250 0x000000ff, /* src_mask */
251 0x000000ff, /* dst_mask */
252 TRUE), /* pcrel_offset */
253
254 HOWTO (R_ARM_BREL_ADJ, /* type */
255 1, /* rightshift */
256 1, /* size (0 = byte, 1 = short, 2 = long) */
257 32, /* bitsize */
258 FALSE, /* pc_relative */
259 0, /* bitpos */
260 complain_overflow_signed,/* complain_on_overflow */
261 bfd_elf_generic_reloc, /* special_function */
262 "R_ARM_BREL_ADJ", /* name */
263 FALSE, /* partial_inplace */
264 0xffffffff, /* src_mask */
265 0xffffffff, /* dst_mask */
266 FALSE), /* pcrel_offset */
267
268 HOWTO (R_ARM_TLS_DESC, /* type */
269 0, /* rightshift */
270 2, /* size (0 = byte, 1 = short, 2 = long) */
271 32, /* bitsize */
272 FALSE, /* pc_relative */
273 0, /* bitpos */
274 complain_overflow_bitfield,/* complain_on_overflow */
275 bfd_elf_generic_reloc, /* special_function */
276 "R_ARM_TLS_DESC", /* name */
277 FALSE, /* partial_inplace */
278 0xffffffff, /* src_mask */
279 0xffffffff, /* dst_mask */
280 FALSE), /* pcrel_offset */
281
282 HOWTO (R_ARM_THM_SWI8, /* type */
283 0, /* rightshift */
284 0, /* size (0 = byte, 1 = short, 2 = long) */
285 0, /* bitsize */
286 FALSE, /* pc_relative */
287 0, /* bitpos */
288 complain_overflow_signed,/* complain_on_overflow */
289 bfd_elf_generic_reloc, /* special_function */
290 "R_ARM_SWI8", /* name */
291 FALSE, /* partial_inplace */
292 0x00000000, /* src_mask */
293 0x00000000, /* dst_mask */
294 FALSE), /* pcrel_offset */
295
296 /* BLX instruction for the ARM. */
297 HOWTO (R_ARM_XPC25, /* type */
298 2, /* rightshift */
299 2, /* size (0 = byte, 1 = short, 2 = long) */
300 24, /* bitsize */
301 TRUE, /* pc_relative */
302 0, /* bitpos */
303 complain_overflow_signed,/* complain_on_overflow */
304 bfd_elf_generic_reloc, /* special_function */
305 "R_ARM_XPC25", /* name */
306 FALSE, /* partial_inplace */
307 0x00ffffff, /* src_mask */
308 0x00ffffff, /* dst_mask */
309 TRUE), /* pcrel_offset */
310
311 /* BLX instruction for the Thumb. */
312 HOWTO (R_ARM_THM_XPC22, /* type */
313 2, /* rightshift */
314 2, /* size (0 = byte, 1 = short, 2 = long) */
315 24, /* bitsize */
316 TRUE, /* pc_relative */
317 0, /* bitpos */
318 complain_overflow_signed,/* complain_on_overflow */
319 bfd_elf_generic_reloc, /* special_function */
320 "R_ARM_THM_XPC22", /* name */
321 FALSE, /* partial_inplace */
322 0x07ff2fff, /* src_mask */
323 0x07ff2fff, /* dst_mask */
324 TRUE), /* pcrel_offset */
325
326 /* Dynamic TLS relocations. */
327
328 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
329 0, /* rightshift */
330 2, /* size (0 = byte, 1 = short, 2 = long) */
331 32, /* bitsize */
332 FALSE, /* pc_relative */
333 0, /* bitpos */
334 complain_overflow_bitfield,/* complain_on_overflow */
335 bfd_elf_generic_reloc, /* special_function */
336 "R_ARM_TLS_DTPMOD32", /* name */
337 TRUE, /* partial_inplace */
338 0xffffffff, /* src_mask */
339 0xffffffff, /* dst_mask */
340 FALSE), /* pcrel_offset */
341
342 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
343 0, /* rightshift */
344 2, /* size (0 = byte, 1 = short, 2 = long) */
345 32, /* bitsize */
346 FALSE, /* pc_relative */
347 0, /* bitpos */
348 complain_overflow_bitfield,/* complain_on_overflow */
349 bfd_elf_generic_reloc, /* special_function */
350 "R_ARM_TLS_DTPOFF32", /* name */
351 TRUE, /* partial_inplace */
352 0xffffffff, /* src_mask */
353 0xffffffff, /* dst_mask */
354 FALSE), /* pcrel_offset */
355
356 HOWTO (R_ARM_TLS_TPOFF32, /* type */
357 0, /* rightshift */
358 2, /* size (0 = byte, 1 = short, 2 = long) */
359 32, /* bitsize */
360 FALSE, /* pc_relative */
361 0, /* bitpos */
362 complain_overflow_bitfield,/* complain_on_overflow */
363 bfd_elf_generic_reloc, /* special_function */
364 "R_ARM_TLS_TPOFF32", /* name */
365 TRUE, /* partial_inplace */
366 0xffffffff, /* src_mask */
367 0xffffffff, /* dst_mask */
368 FALSE), /* pcrel_offset */
369
370 /* Relocs used in ARM Linux */
371
372 HOWTO (R_ARM_COPY, /* type */
373 0, /* rightshift */
374 2, /* size (0 = byte, 1 = short, 2 = long) */
375 32, /* bitsize */
376 FALSE, /* pc_relative */
377 0, /* bitpos */
378 complain_overflow_bitfield,/* complain_on_overflow */
379 bfd_elf_generic_reloc, /* special_function */
380 "R_ARM_COPY", /* name */
381 TRUE, /* partial_inplace */
382 0xffffffff, /* src_mask */
383 0xffffffff, /* dst_mask */
384 FALSE), /* pcrel_offset */
385
386 HOWTO (R_ARM_GLOB_DAT, /* type */
387 0, /* rightshift */
388 2, /* size (0 = byte, 1 = short, 2 = long) */
389 32, /* bitsize */
390 FALSE, /* pc_relative */
391 0, /* bitpos */
392 complain_overflow_bitfield,/* complain_on_overflow */
393 bfd_elf_generic_reloc, /* special_function */
394 "R_ARM_GLOB_DAT", /* name */
395 TRUE, /* partial_inplace */
396 0xffffffff, /* src_mask */
397 0xffffffff, /* dst_mask */
398 FALSE), /* pcrel_offset */
399
400 HOWTO (R_ARM_JUMP_SLOT, /* type */
401 0, /* rightshift */
402 2, /* size (0 = byte, 1 = short, 2 = long) */
403 32, /* bitsize */
404 FALSE, /* pc_relative */
405 0, /* bitpos */
406 complain_overflow_bitfield,/* complain_on_overflow */
407 bfd_elf_generic_reloc, /* special_function */
408 "R_ARM_JUMP_SLOT", /* name */
409 TRUE, /* partial_inplace */
410 0xffffffff, /* src_mask */
411 0xffffffff, /* dst_mask */
412 FALSE), /* pcrel_offset */
413
414 HOWTO (R_ARM_RELATIVE, /* type */
415 0, /* rightshift */
416 2, /* size (0 = byte, 1 = short, 2 = long) */
417 32, /* bitsize */
418 FALSE, /* pc_relative */
419 0, /* bitpos */
420 complain_overflow_bitfield,/* complain_on_overflow */
421 bfd_elf_generic_reloc, /* special_function */
422 "R_ARM_RELATIVE", /* name */
423 TRUE, /* partial_inplace */
424 0xffffffff, /* src_mask */
425 0xffffffff, /* dst_mask */
426 FALSE), /* pcrel_offset */
427
428 HOWTO (R_ARM_GOTOFF32, /* type */
429 0, /* rightshift */
430 2, /* size (0 = byte, 1 = short, 2 = long) */
431 32, /* bitsize */
432 FALSE, /* pc_relative */
433 0, /* bitpos */
434 complain_overflow_bitfield,/* complain_on_overflow */
435 bfd_elf_generic_reloc, /* special_function */
436 "R_ARM_GOTOFF32", /* name */
437 TRUE, /* partial_inplace */
438 0xffffffff, /* src_mask */
439 0xffffffff, /* dst_mask */
440 FALSE), /* pcrel_offset */
441
442 HOWTO (R_ARM_GOTPC, /* type */
443 0, /* rightshift */
444 2, /* size (0 = byte, 1 = short, 2 = long) */
445 32, /* bitsize */
446 TRUE, /* pc_relative */
447 0, /* bitpos */
448 complain_overflow_bitfield,/* complain_on_overflow */
449 bfd_elf_generic_reloc, /* special_function */
450 "R_ARM_GOTPC", /* name */
451 TRUE, /* partial_inplace */
452 0xffffffff, /* src_mask */
453 0xffffffff, /* dst_mask */
454 TRUE), /* pcrel_offset */
455
456 HOWTO (R_ARM_GOT32, /* type */
457 0, /* rightshift */
458 2, /* size (0 = byte, 1 = short, 2 = long) */
459 32, /* bitsize */
460 FALSE, /* pc_relative */
461 0, /* bitpos */
462 complain_overflow_bitfield,/* complain_on_overflow */
463 bfd_elf_generic_reloc, /* special_function */
464 "R_ARM_GOT32", /* name */
465 TRUE, /* partial_inplace */
466 0xffffffff, /* src_mask */
467 0xffffffff, /* dst_mask */
468 FALSE), /* pcrel_offset */
469
470 HOWTO (R_ARM_PLT32, /* type */
471 2, /* rightshift */
472 2, /* size (0 = byte, 1 = short, 2 = long) */
473 24, /* bitsize */
474 TRUE, /* pc_relative */
475 0, /* bitpos */
476 complain_overflow_bitfield,/* complain_on_overflow */
477 bfd_elf_generic_reloc, /* special_function */
478 "R_ARM_PLT32", /* name */
479 FALSE, /* partial_inplace */
480 0x00ffffff, /* src_mask */
481 0x00ffffff, /* dst_mask */
482 TRUE), /* pcrel_offset */
483
484 HOWTO (R_ARM_CALL, /* type */
485 2, /* rightshift */
486 2, /* size (0 = byte, 1 = short, 2 = long) */
487 24, /* bitsize */
488 TRUE, /* pc_relative */
489 0, /* bitpos */
490 complain_overflow_signed,/* complain_on_overflow */
491 bfd_elf_generic_reloc, /* special_function */
492 "R_ARM_CALL", /* name */
493 FALSE, /* partial_inplace */
494 0x00ffffff, /* src_mask */
495 0x00ffffff, /* dst_mask */
496 TRUE), /* pcrel_offset */
497
498 HOWTO (R_ARM_JUMP24, /* type */
499 2, /* rightshift */
500 2, /* size (0 = byte, 1 = short, 2 = long) */
501 24, /* bitsize */
502 TRUE, /* pc_relative */
503 0, /* bitpos */
504 complain_overflow_signed,/* complain_on_overflow */
505 bfd_elf_generic_reloc, /* special_function */
506 "R_ARM_JUMP24", /* name */
507 FALSE, /* partial_inplace */
508 0x00ffffff, /* src_mask */
509 0x00ffffff, /* dst_mask */
510 TRUE), /* pcrel_offset */
511
512 HOWTO (R_ARM_THM_JUMP24, /* type */
513 1, /* rightshift */
514 2, /* size (0 = byte, 1 = short, 2 = long) */
515 24, /* bitsize */
516 TRUE, /* pc_relative */
517 0, /* bitpos */
518 complain_overflow_signed,/* complain_on_overflow */
519 bfd_elf_generic_reloc, /* special_function */
520 "R_ARM_THM_JUMP24", /* name */
521 FALSE, /* partial_inplace */
522 0x07ff2fff, /* src_mask */
523 0x07ff2fff, /* dst_mask */
524 TRUE), /* pcrel_offset */
525
526 HOWTO (R_ARM_BASE_ABS, /* type */
527 0, /* rightshift */
528 2, /* size (0 = byte, 1 = short, 2 = long) */
529 32, /* bitsize */
530 FALSE, /* pc_relative */
531 0, /* bitpos */
532 complain_overflow_dont,/* complain_on_overflow */
533 bfd_elf_generic_reloc, /* special_function */
534 "R_ARM_BASE_ABS", /* name */
535 FALSE, /* partial_inplace */
536 0xffffffff, /* src_mask */
537 0xffffffff, /* dst_mask */
538 FALSE), /* pcrel_offset */
539
540 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
541 0, /* rightshift */
542 2, /* size (0 = byte, 1 = short, 2 = long) */
543 12, /* bitsize */
544 TRUE, /* pc_relative */
545 0, /* bitpos */
546 complain_overflow_dont,/* complain_on_overflow */
547 bfd_elf_generic_reloc, /* special_function */
548 "R_ARM_ALU_PCREL_7_0", /* name */
549 FALSE, /* partial_inplace */
550 0x00000fff, /* src_mask */
551 0x00000fff, /* dst_mask */
552 TRUE), /* pcrel_offset */
553
554 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
555 0, /* rightshift */
556 2, /* size (0 = byte, 1 = short, 2 = long) */
557 12, /* bitsize */
558 TRUE, /* pc_relative */
559 8, /* bitpos */
560 complain_overflow_dont,/* complain_on_overflow */
561 bfd_elf_generic_reloc, /* special_function */
562 "R_ARM_ALU_PCREL_15_8",/* name */
563 FALSE, /* partial_inplace */
564 0x00000fff, /* src_mask */
565 0x00000fff, /* dst_mask */
566 TRUE), /* pcrel_offset */
567
568 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
569 0, /* rightshift */
570 2, /* size (0 = byte, 1 = short, 2 = long) */
571 12, /* bitsize */
572 TRUE, /* pc_relative */
573 16, /* bitpos */
574 complain_overflow_dont,/* complain_on_overflow */
575 bfd_elf_generic_reloc, /* special_function */
576 "R_ARM_ALU_PCREL_23_15",/* name */
577 FALSE, /* partial_inplace */
578 0x00000fff, /* src_mask */
579 0x00000fff, /* dst_mask */
580 TRUE), /* pcrel_offset */
581
582 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
583 0, /* rightshift */
584 2, /* size (0 = byte, 1 = short, 2 = long) */
585 12, /* bitsize */
586 FALSE, /* pc_relative */
587 0, /* bitpos */
588 complain_overflow_dont,/* complain_on_overflow */
589 bfd_elf_generic_reloc, /* special_function */
590 "R_ARM_LDR_SBREL_11_0",/* name */
591 FALSE, /* partial_inplace */
592 0x00000fff, /* src_mask */
593 0x00000fff, /* dst_mask */
594 FALSE), /* pcrel_offset */
595
596 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
597 0, /* rightshift */
598 2, /* size (0 = byte, 1 = short, 2 = long) */
599 8, /* bitsize */
600 FALSE, /* pc_relative */
601 12, /* bitpos */
602 complain_overflow_dont,/* complain_on_overflow */
603 bfd_elf_generic_reloc, /* special_function */
604 "R_ARM_ALU_SBREL_19_12",/* name */
605 FALSE, /* partial_inplace */
606 0x000ff000, /* src_mask */
607 0x000ff000, /* dst_mask */
608 FALSE), /* pcrel_offset */
609
610 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
611 0, /* rightshift */
612 2, /* size (0 = byte, 1 = short, 2 = long) */
613 8, /* bitsize */
614 FALSE, /* pc_relative */
615 20, /* bitpos */
616 complain_overflow_dont,/* complain_on_overflow */
617 bfd_elf_generic_reloc, /* special_function */
618 "R_ARM_ALU_SBREL_27_20",/* name */
619 FALSE, /* partial_inplace */
620 0x0ff00000, /* src_mask */
621 0x0ff00000, /* dst_mask */
622 FALSE), /* pcrel_offset */
623
624 HOWTO (R_ARM_TARGET1, /* type */
625 0, /* rightshift */
626 2, /* size (0 = byte, 1 = short, 2 = long) */
627 32, /* bitsize */
628 FALSE, /* pc_relative */
629 0, /* bitpos */
630 complain_overflow_dont,/* complain_on_overflow */
631 bfd_elf_generic_reloc, /* special_function */
632 "R_ARM_TARGET1", /* name */
633 FALSE, /* partial_inplace */
634 0xffffffff, /* src_mask */
635 0xffffffff, /* dst_mask */
636 FALSE), /* pcrel_offset */
637
638 HOWTO (R_ARM_ROSEGREL32, /* type */
639 0, /* rightshift */
640 2, /* size (0 = byte, 1 = short, 2 = long) */
641 32, /* bitsize */
642 FALSE, /* pc_relative */
643 0, /* bitpos */
644 complain_overflow_dont,/* complain_on_overflow */
645 bfd_elf_generic_reloc, /* special_function */
646 "R_ARM_ROSEGREL32", /* name */
647 FALSE, /* partial_inplace */
648 0xffffffff, /* src_mask */
649 0xffffffff, /* dst_mask */
650 FALSE), /* pcrel_offset */
651
652 HOWTO (R_ARM_V4BX, /* type */
653 0, /* rightshift */
654 2, /* size (0 = byte, 1 = short, 2 = long) */
655 32, /* bitsize */
656 FALSE, /* pc_relative */
657 0, /* bitpos */
658 complain_overflow_dont,/* complain_on_overflow */
659 bfd_elf_generic_reloc, /* special_function */
660 "R_ARM_V4BX", /* name */
661 FALSE, /* partial_inplace */
662 0xffffffff, /* src_mask */
663 0xffffffff, /* dst_mask */
664 FALSE), /* pcrel_offset */
665
666 HOWTO (R_ARM_TARGET2, /* type */
667 0, /* rightshift */
668 2, /* size (0 = byte, 1 = short, 2 = long) */
669 32, /* bitsize */
670 FALSE, /* pc_relative */
671 0, /* bitpos */
672 complain_overflow_signed,/* complain_on_overflow */
673 bfd_elf_generic_reloc, /* special_function */
674 "R_ARM_TARGET2", /* name */
675 FALSE, /* partial_inplace */
676 0xffffffff, /* src_mask */
677 0xffffffff, /* dst_mask */
678 TRUE), /* pcrel_offset */
679
680 HOWTO (R_ARM_PREL31, /* type */
681 0, /* rightshift */
682 2, /* size (0 = byte, 1 = short, 2 = long) */
683 31, /* bitsize */
684 TRUE, /* pc_relative */
685 0, /* bitpos */
686 complain_overflow_signed,/* complain_on_overflow */
687 bfd_elf_generic_reloc, /* special_function */
688 "R_ARM_PREL31", /* name */
689 FALSE, /* partial_inplace */
690 0x7fffffff, /* src_mask */
691 0x7fffffff, /* dst_mask */
692 TRUE), /* pcrel_offset */
693
694 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
695 0, /* rightshift */
696 2, /* size (0 = byte, 1 = short, 2 = long) */
697 16, /* bitsize */
698 FALSE, /* pc_relative */
699 0, /* bitpos */
700 complain_overflow_dont,/* complain_on_overflow */
701 bfd_elf_generic_reloc, /* special_function */
702 "R_ARM_MOVW_ABS_NC", /* name */
703 FALSE, /* partial_inplace */
704 0x000f0fff, /* src_mask */
705 0x000f0fff, /* dst_mask */
706 FALSE), /* pcrel_offset */
707
708 HOWTO (R_ARM_MOVT_ABS, /* type */
709 0, /* rightshift */
710 2, /* size (0 = byte, 1 = short, 2 = long) */
711 16, /* bitsize */
712 FALSE, /* pc_relative */
713 0, /* bitpos */
714 complain_overflow_bitfield,/* complain_on_overflow */
715 bfd_elf_generic_reloc, /* special_function */
716 "R_ARM_MOVT_ABS", /* name */
717 FALSE, /* partial_inplace */
718 0x000f0fff, /* src_mask */
719 0x000f0fff, /* dst_mask */
720 FALSE), /* pcrel_offset */
721
722 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
723 0, /* rightshift */
724 2, /* size (0 = byte, 1 = short, 2 = long) */
725 16, /* bitsize */
726 TRUE, /* pc_relative */
727 0, /* bitpos */
728 complain_overflow_dont,/* complain_on_overflow */
729 bfd_elf_generic_reloc, /* special_function */
730 "R_ARM_MOVW_PREL_NC", /* name */
731 FALSE, /* partial_inplace */
732 0x000f0fff, /* src_mask */
733 0x000f0fff, /* dst_mask */
734 TRUE), /* pcrel_offset */
735
736 HOWTO (R_ARM_MOVT_PREL, /* type */
737 0, /* rightshift */
738 2, /* size (0 = byte, 1 = short, 2 = long) */
739 16, /* bitsize */
740 TRUE, /* pc_relative */
741 0, /* bitpos */
742 complain_overflow_bitfield,/* complain_on_overflow */
743 bfd_elf_generic_reloc, /* special_function */
744 "R_ARM_MOVT_PREL", /* name */
745 FALSE, /* partial_inplace */
746 0x000f0fff, /* src_mask */
747 0x000f0fff, /* dst_mask */
748 TRUE), /* pcrel_offset */
749
750 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
751 0, /* rightshift */
752 2, /* size (0 = byte, 1 = short, 2 = long) */
753 16, /* bitsize */
754 FALSE, /* pc_relative */
755 0, /* bitpos */
756 complain_overflow_dont,/* complain_on_overflow */
757 bfd_elf_generic_reloc, /* special_function */
758 "R_ARM_THM_MOVW_ABS_NC",/* name */
759 FALSE, /* partial_inplace */
760 0x040f70ff, /* src_mask */
761 0x040f70ff, /* dst_mask */
762 FALSE), /* pcrel_offset */
763
764 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
765 0, /* rightshift */
766 2, /* size (0 = byte, 1 = short, 2 = long) */
767 16, /* bitsize */
768 FALSE, /* pc_relative */
769 0, /* bitpos */
770 complain_overflow_bitfield,/* complain_on_overflow */
771 bfd_elf_generic_reloc, /* special_function */
772 "R_ARM_THM_MOVT_ABS", /* name */
773 FALSE, /* partial_inplace */
774 0x040f70ff, /* src_mask */
775 0x040f70ff, /* dst_mask */
776 FALSE), /* pcrel_offset */
777
778 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
779 0, /* rightshift */
780 2, /* size (0 = byte, 1 = short, 2 = long) */
781 16, /* bitsize */
782 TRUE, /* pc_relative */
783 0, /* bitpos */
784 complain_overflow_dont,/* complain_on_overflow */
785 bfd_elf_generic_reloc, /* special_function */
786 "R_ARM_THM_MOVW_PREL_NC",/* name */
787 FALSE, /* partial_inplace */
788 0x040f70ff, /* src_mask */
789 0x040f70ff, /* dst_mask */
790 TRUE), /* pcrel_offset */
791
792 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
793 0, /* rightshift */
794 2, /* size (0 = byte, 1 = short, 2 = long) */
795 16, /* bitsize */
796 TRUE, /* pc_relative */
797 0, /* bitpos */
798 complain_overflow_bitfield,/* complain_on_overflow */
799 bfd_elf_generic_reloc, /* special_function */
800 "R_ARM_THM_MOVT_PREL", /* name */
801 FALSE, /* partial_inplace */
802 0x040f70ff, /* src_mask */
803 0x040f70ff, /* dst_mask */
804 TRUE), /* pcrel_offset */
805
806 HOWTO (R_ARM_THM_JUMP19, /* type */
807 1, /* rightshift */
808 2, /* size (0 = byte, 1 = short, 2 = long) */
809 19, /* bitsize */
810 TRUE, /* pc_relative */
811 0, /* bitpos */
812 complain_overflow_signed,/* complain_on_overflow */
813 bfd_elf_generic_reloc, /* special_function */
814 "R_ARM_THM_JUMP19", /* name */
815 FALSE, /* partial_inplace */
816 0x043f2fff, /* src_mask */
817 0x043f2fff, /* dst_mask */
818 TRUE), /* pcrel_offset */
819
820 HOWTO (R_ARM_THM_JUMP6, /* type */
821 1, /* rightshift */
822 1, /* size (0 = byte, 1 = short, 2 = long) */
823 6, /* bitsize */
824 TRUE, /* pc_relative */
825 0, /* bitpos */
826 complain_overflow_unsigned,/* complain_on_overflow */
827 bfd_elf_generic_reloc, /* special_function */
828 "R_ARM_THM_JUMP6", /* name */
829 FALSE, /* partial_inplace */
830 0x02f8, /* src_mask */
831 0x02f8, /* dst_mask */
832 TRUE), /* pcrel_offset */
833
834 /* These are declared as 13-bit signed relocations because we can
835 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
836 versa. */
837 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
838 0, /* rightshift */
839 2, /* size (0 = byte, 1 = short, 2 = long) */
840 13, /* bitsize */
841 TRUE, /* pc_relative */
842 0, /* bitpos */
843 complain_overflow_dont,/* complain_on_overflow */
844 bfd_elf_generic_reloc, /* special_function */
845 "R_ARM_THM_ALU_PREL_11_0",/* name */
846 FALSE, /* partial_inplace */
847 0xffffffff, /* src_mask */
848 0xffffffff, /* dst_mask */
849 TRUE), /* pcrel_offset */
850
851 HOWTO (R_ARM_THM_PC12, /* type */
852 0, /* rightshift */
853 2, /* size (0 = byte, 1 = short, 2 = long) */
854 13, /* bitsize */
855 TRUE, /* pc_relative */
856 0, /* bitpos */
857 complain_overflow_dont,/* complain_on_overflow */
858 bfd_elf_generic_reloc, /* special_function */
859 "R_ARM_THM_PC12", /* name */
860 FALSE, /* partial_inplace */
861 0xffffffff, /* src_mask */
862 0xffffffff, /* dst_mask */
863 TRUE), /* pcrel_offset */
864
865 HOWTO (R_ARM_ABS32_NOI, /* type */
866 0, /* rightshift */
867 2, /* size (0 = byte, 1 = short, 2 = long) */
868 32, /* bitsize */
869 FALSE, /* pc_relative */
870 0, /* bitpos */
871 complain_overflow_dont,/* complain_on_overflow */
872 bfd_elf_generic_reloc, /* special_function */
873 "R_ARM_ABS32_NOI", /* name */
874 FALSE, /* partial_inplace */
875 0xffffffff, /* src_mask */
876 0xffffffff, /* dst_mask */
877 FALSE), /* pcrel_offset */
878
879 HOWTO (R_ARM_REL32_NOI, /* type */
880 0, /* rightshift */
881 2, /* size (0 = byte, 1 = short, 2 = long) */
882 32, /* bitsize */
883 TRUE, /* pc_relative */
884 0, /* bitpos */
885 complain_overflow_dont,/* complain_on_overflow */
886 bfd_elf_generic_reloc, /* special_function */
887 "R_ARM_REL32_NOI", /* name */
888 FALSE, /* partial_inplace */
889 0xffffffff, /* src_mask */
890 0xffffffff, /* dst_mask */
891 FALSE), /* pcrel_offset */
892
893 /* Group relocations. */
894
895 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
896 0, /* rightshift */
897 2, /* size (0 = byte, 1 = short, 2 = long) */
898 32, /* bitsize */
899 TRUE, /* pc_relative */
900 0, /* bitpos */
901 complain_overflow_dont,/* complain_on_overflow */
902 bfd_elf_generic_reloc, /* special_function */
903 "R_ARM_ALU_PC_G0_NC", /* name */
904 FALSE, /* partial_inplace */
905 0xffffffff, /* src_mask */
906 0xffffffff, /* dst_mask */
907 TRUE), /* pcrel_offset */
908
909 HOWTO (R_ARM_ALU_PC_G0, /* type */
910 0, /* rightshift */
911 2, /* size (0 = byte, 1 = short, 2 = long) */
912 32, /* bitsize */
913 TRUE, /* pc_relative */
914 0, /* bitpos */
915 complain_overflow_dont,/* complain_on_overflow */
916 bfd_elf_generic_reloc, /* special_function */
917 "R_ARM_ALU_PC_G0", /* name */
918 FALSE, /* partial_inplace */
919 0xffffffff, /* src_mask */
920 0xffffffff, /* dst_mask */
921 TRUE), /* pcrel_offset */
922
923 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
924 0, /* rightshift */
925 2, /* size (0 = byte, 1 = short, 2 = long) */
926 32, /* bitsize */
927 TRUE, /* pc_relative */
928 0, /* bitpos */
929 complain_overflow_dont,/* complain_on_overflow */
930 bfd_elf_generic_reloc, /* special_function */
931 "R_ARM_ALU_PC_G1_NC", /* name */
932 FALSE, /* partial_inplace */
933 0xffffffff, /* src_mask */
934 0xffffffff, /* dst_mask */
935 TRUE), /* pcrel_offset */
936
937 HOWTO (R_ARM_ALU_PC_G1, /* type */
938 0, /* rightshift */
939 2, /* size (0 = byte, 1 = short, 2 = long) */
940 32, /* bitsize */
941 TRUE, /* pc_relative */
942 0, /* bitpos */
943 complain_overflow_dont,/* complain_on_overflow */
944 bfd_elf_generic_reloc, /* special_function */
945 "R_ARM_ALU_PC_G1", /* name */
946 FALSE, /* partial_inplace */
947 0xffffffff, /* src_mask */
948 0xffffffff, /* dst_mask */
949 TRUE), /* pcrel_offset */
950
951 HOWTO (R_ARM_ALU_PC_G2, /* type */
952 0, /* rightshift */
953 2, /* size (0 = byte, 1 = short, 2 = long) */
954 32, /* bitsize */
955 TRUE, /* pc_relative */
956 0, /* bitpos */
957 complain_overflow_dont,/* complain_on_overflow */
958 bfd_elf_generic_reloc, /* special_function */
959 "R_ARM_ALU_PC_G2", /* name */
960 FALSE, /* partial_inplace */
961 0xffffffff, /* src_mask */
962 0xffffffff, /* dst_mask */
963 TRUE), /* pcrel_offset */
964
965 HOWTO (R_ARM_LDR_PC_G1, /* type */
966 0, /* rightshift */
967 2, /* size (0 = byte, 1 = short, 2 = long) */
968 32, /* bitsize */
969 TRUE, /* pc_relative */
970 0, /* bitpos */
971 complain_overflow_dont,/* complain_on_overflow */
972 bfd_elf_generic_reloc, /* special_function */
973 "R_ARM_LDR_PC_G1", /* name */
974 FALSE, /* partial_inplace */
975 0xffffffff, /* src_mask */
976 0xffffffff, /* dst_mask */
977 TRUE), /* pcrel_offset */
978
979 HOWTO (R_ARM_LDR_PC_G2, /* type */
980 0, /* rightshift */
981 2, /* size (0 = byte, 1 = short, 2 = long) */
982 32, /* bitsize */
983 TRUE, /* pc_relative */
984 0, /* bitpos */
985 complain_overflow_dont,/* complain_on_overflow */
986 bfd_elf_generic_reloc, /* special_function */
987 "R_ARM_LDR_PC_G2", /* name */
988 FALSE, /* partial_inplace */
989 0xffffffff, /* src_mask */
990 0xffffffff, /* dst_mask */
991 TRUE), /* pcrel_offset */
992
993 HOWTO (R_ARM_LDRS_PC_G0, /* type */
994 0, /* rightshift */
995 2, /* size (0 = byte, 1 = short, 2 = long) */
996 32, /* bitsize */
997 TRUE, /* pc_relative */
998 0, /* bitpos */
999 complain_overflow_dont,/* complain_on_overflow */
1000 bfd_elf_generic_reloc, /* special_function */
1001 "R_ARM_LDRS_PC_G0", /* name */
1002 FALSE, /* partial_inplace */
1003 0xffffffff, /* src_mask */
1004 0xffffffff, /* dst_mask */
1005 TRUE), /* pcrel_offset */
1006
1007 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1008 0, /* rightshift */
1009 2, /* size (0 = byte, 1 = short, 2 = long) */
1010 32, /* bitsize */
1011 TRUE, /* pc_relative */
1012 0, /* bitpos */
1013 complain_overflow_dont,/* complain_on_overflow */
1014 bfd_elf_generic_reloc, /* special_function */
1015 "R_ARM_LDRS_PC_G1", /* name */
1016 FALSE, /* partial_inplace */
1017 0xffffffff, /* src_mask */
1018 0xffffffff, /* dst_mask */
1019 TRUE), /* pcrel_offset */
1020
1021 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1022 0, /* rightshift */
1023 2, /* size (0 = byte, 1 = short, 2 = long) */
1024 32, /* bitsize */
1025 TRUE, /* pc_relative */
1026 0, /* bitpos */
1027 complain_overflow_dont,/* complain_on_overflow */
1028 bfd_elf_generic_reloc, /* special_function */
1029 "R_ARM_LDRS_PC_G2", /* name */
1030 FALSE, /* partial_inplace */
1031 0xffffffff, /* src_mask */
1032 0xffffffff, /* dst_mask */
1033 TRUE), /* pcrel_offset */
1034
1035 HOWTO (R_ARM_LDC_PC_G0, /* type */
1036 0, /* rightshift */
1037 2, /* size (0 = byte, 1 = short, 2 = long) */
1038 32, /* bitsize */
1039 TRUE, /* pc_relative */
1040 0, /* bitpos */
1041 complain_overflow_dont,/* complain_on_overflow */
1042 bfd_elf_generic_reloc, /* special_function */
1043 "R_ARM_LDC_PC_G0", /* name */
1044 FALSE, /* partial_inplace */
1045 0xffffffff, /* src_mask */
1046 0xffffffff, /* dst_mask */
1047 TRUE), /* pcrel_offset */
1048
1049 HOWTO (R_ARM_LDC_PC_G1, /* type */
1050 0, /* rightshift */
1051 2, /* size (0 = byte, 1 = short, 2 = long) */
1052 32, /* bitsize */
1053 TRUE, /* pc_relative */
1054 0, /* bitpos */
1055 complain_overflow_dont,/* complain_on_overflow */
1056 bfd_elf_generic_reloc, /* special_function */
1057 "R_ARM_LDC_PC_G1", /* name */
1058 FALSE, /* partial_inplace */
1059 0xffffffff, /* src_mask */
1060 0xffffffff, /* dst_mask */
1061 TRUE), /* pcrel_offset */
1062
1063 HOWTO (R_ARM_LDC_PC_G2, /* type */
1064 0, /* rightshift */
1065 2, /* size (0 = byte, 1 = short, 2 = long) */
1066 32, /* bitsize */
1067 TRUE, /* pc_relative */
1068 0, /* bitpos */
1069 complain_overflow_dont,/* complain_on_overflow */
1070 bfd_elf_generic_reloc, /* special_function */
1071 "R_ARM_LDC_PC_G2", /* name */
1072 FALSE, /* partial_inplace */
1073 0xffffffff, /* src_mask */
1074 0xffffffff, /* dst_mask */
1075 TRUE), /* pcrel_offset */
1076
1077 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1078 0, /* rightshift */
1079 2, /* size (0 = byte, 1 = short, 2 = long) */
1080 32, /* bitsize */
1081 TRUE, /* pc_relative */
1082 0, /* bitpos */
1083 complain_overflow_dont,/* complain_on_overflow */
1084 bfd_elf_generic_reloc, /* special_function */
1085 "R_ARM_ALU_SB_G0_NC", /* name */
1086 FALSE, /* partial_inplace */
1087 0xffffffff, /* src_mask */
1088 0xffffffff, /* dst_mask */
1089 TRUE), /* pcrel_offset */
1090
1091 HOWTO (R_ARM_ALU_SB_G0, /* type */
1092 0, /* rightshift */
1093 2, /* size (0 = byte, 1 = short, 2 = long) */
1094 32, /* bitsize */
1095 TRUE, /* pc_relative */
1096 0, /* bitpos */
1097 complain_overflow_dont,/* complain_on_overflow */
1098 bfd_elf_generic_reloc, /* special_function */
1099 "R_ARM_ALU_SB_G0", /* name */
1100 FALSE, /* partial_inplace */
1101 0xffffffff, /* src_mask */
1102 0xffffffff, /* dst_mask */
1103 TRUE), /* pcrel_offset */
1104
1105 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1106 0, /* rightshift */
1107 2, /* size (0 = byte, 1 = short, 2 = long) */
1108 32, /* bitsize */
1109 TRUE, /* pc_relative */
1110 0, /* bitpos */
1111 complain_overflow_dont,/* complain_on_overflow */
1112 bfd_elf_generic_reloc, /* special_function */
1113 "R_ARM_ALU_SB_G1_NC", /* name */
1114 FALSE, /* partial_inplace */
1115 0xffffffff, /* src_mask */
1116 0xffffffff, /* dst_mask */
1117 TRUE), /* pcrel_offset */
1118
1119 HOWTO (R_ARM_ALU_SB_G1, /* type */
1120 0, /* rightshift */
1121 2, /* size (0 = byte, 1 = short, 2 = long) */
1122 32, /* bitsize */
1123 TRUE, /* pc_relative */
1124 0, /* bitpos */
1125 complain_overflow_dont,/* complain_on_overflow */
1126 bfd_elf_generic_reloc, /* special_function */
1127 "R_ARM_ALU_SB_G1", /* name */
1128 FALSE, /* partial_inplace */
1129 0xffffffff, /* src_mask */
1130 0xffffffff, /* dst_mask */
1131 TRUE), /* pcrel_offset */
1132
1133 HOWTO (R_ARM_ALU_SB_G2, /* type */
1134 0, /* rightshift */
1135 2, /* size (0 = byte, 1 = short, 2 = long) */
1136 32, /* bitsize */
1137 TRUE, /* pc_relative */
1138 0, /* bitpos */
1139 complain_overflow_dont,/* complain_on_overflow */
1140 bfd_elf_generic_reloc, /* special_function */
1141 "R_ARM_ALU_SB_G2", /* name */
1142 FALSE, /* partial_inplace */
1143 0xffffffff, /* src_mask */
1144 0xffffffff, /* dst_mask */
1145 TRUE), /* pcrel_offset */
1146
1147 HOWTO (R_ARM_LDR_SB_G0, /* type */
1148 0, /* rightshift */
1149 2, /* size (0 = byte, 1 = short, 2 = long) */
1150 32, /* bitsize */
1151 TRUE, /* pc_relative */
1152 0, /* bitpos */
1153 complain_overflow_dont,/* complain_on_overflow */
1154 bfd_elf_generic_reloc, /* special_function */
1155 "R_ARM_LDR_SB_G0", /* name */
1156 FALSE, /* partial_inplace */
1157 0xffffffff, /* src_mask */
1158 0xffffffff, /* dst_mask */
1159 TRUE), /* pcrel_offset */
1160
1161 HOWTO (R_ARM_LDR_SB_G1, /* type */
1162 0, /* rightshift */
1163 2, /* size (0 = byte, 1 = short, 2 = long) */
1164 32, /* bitsize */
1165 TRUE, /* pc_relative */
1166 0, /* bitpos */
1167 complain_overflow_dont,/* complain_on_overflow */
1168 bfd_elf_generic_reloc, /* special_function */
1169 "R_ARM_LDR_SB_G1", /* name */
1170 FALSE, /* partial_inplace */
1171 0xffffffff, /* src_mask */
1172 0xffffffff, /* dst_mask */
1173 TRUE), /* pcrel_offset */
1174
1175 HOWTO (R_ARM_LDR_SB_G2, /* type */
1176 0, /* rightshift */
1177 2, /* size (0 = byte, 1 = short, 2 = long) */
1178 32, /* bitsize */
1179 TRUE, /* pc_relative */
1180 0, /* bitpos */
1181 complain_overflow_dont,/* complain_on_overflow */
1182 bfd_elf_generic_reloc, /* special_function */
1183 "R_ARM_LDR_SB_G2", /* name */
1184 FALSE, /* partial_inplace */
1185 0xffffffff, /* src_mask */
1186 0xffffffff, /* dst_mask */
1187 TRUE), /* pcrel_offset */
1188
1189 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1190 0, /* rightshift */
1191 2, /* size (0 = byte, 1 = short, 2 = long) */
1192 32, /* bitsize */
1193 TRUE, /* pc_relative */
1194 0, /* bitpos */
1195 complain_overflow_dont,/* complain_on_overflow */
1196 bfd_elf_generic_reloc, /* special_function */
1197 "R_ARM_LDRS_SB_G0", /* name */
1198 FALSE, /* partial_inplace */
1199 0xffffffff, /* src_mask */
1200 0xffffffff, /* dst_mask */
1201 TRUE), /* pcrel_offset */
1202
1203 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1204 0, /* rightshift */
1205 2, /* size (0 = byte, 1 = short, 2 = long) */
1206 32, /* bitsize */
1207 TRUE, /* pc_relative */
1208 0, /* bitpos */
1209 complain_overflow_dont,/* complain_on_overflow */
1210 bfd_elf_generic_reloc, /* special_function */
1211 "R_ARM_LDRS_SB_G1", /* name */
1212 FALSE, /* partial_inplace */
1213 0xffffffff, /* src_mask */
1214 0xffffffff, /* dst_mask */
1215 TRUE), /* pcrel_offset */
1216
1217 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1218 0, /* rightshift */
1219 2, /* size (0 = byte, 1 = short, 2 = long) */
1220 32, /* bitsize */
1221 TRUE, /* pc_relative */
1222 0, /* bitpos */
1223 complain_overflow_dont,/* complain_on_overflow */
1224 bfd_elf_generic_reloc, /* special_function */
1225 "R_ARM_LDRS_SB_G2", /* name */
1226 FALSE, /* partial_inplace */
1227 0xffffffff, /* src_mask */
1228 0xffffffff, /* dst_mask */
1229 TRUE), /* pcrel_offset */
1230
1231 HOWTO (R_ARM_LDC_SB_G0, /* type */
1232 0, /* rightshift */
1233 2, /* size (0 = byte, 1 = short, 2 = long) */
1234 32, /* bitsize */
1235 TRUE, /* pc_relative */
1236 0, /* bitpos */
1237 complain_overflow_dont,/* complain_on_overflow */
1238 bfd_elf_generic_reloc, /* special_function */
1239 "R_ARM_LDC_SB_G0", /* name */
1240 FALSE, /* partial_inplace */
1241 0xffffffff, /* src_mask */
1242 0xffffffff, /* dst_mask */
1243 TRUE), /* pcrel_offset */
1244
1245 HOWTO (R_ARM_LDC_SB_G1, /* type */
1246 0, /* rightshift */
1247 2, /* size (0 = byte, 1 = short, 2 = long) */
1248 32, /* bitsize */
1249 TRUE, /* pc_relative */
1250 0, /* bitpos */
1251 complain_overflow_dont,/* complain_on_overflow */
1252 bfd_elf_generic_reloc, /* special_function */
1253 "R_ARM_LDC_SB_G1", /* name */
1254 FALSE, /* partial_inplace */
1255 0xffffffff, /* src_mask */
1256 0xffffffff, /* dst_mask */
1257 TRUE), /* pcrel_offset */
1258
1259 HOWTO (R_ARM_LDC_SB_G2, /* type */
1260 0, /* rightshift */
1261 2, /* size (0 = byte, 1 = short, 2 = long) */
1262 32, /* bitsize */
1263 TRUE, /* pc_relative */
1264 0, /* bitpos */
1265 complain_overflow_dont,/* complain_on_overflow */
1266 bfd_elf_generic_reloc, /* special_function */
1267 "R_ARM_LDC_SB_G2", /* name */
1268 FALSE, /* partial_inplace */
1269 0xffffffff, /* src_mask */
1270 0xffffffff, /* dst_mask */
1271 TRUE), /* pcrel_offset */
1272
1273 /* End of group relocations. */
1274
1275 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1276 0, /* rightshift */
1277 2, /* size (0 = byte, 1 = short, 2 = long) */
1278 16, /* bitsize */
1279 FALSE, /* pc_relative */
1280 0, /* bitpos */
1281 complain_overflow_dont,/* complain_on_overflow */
1282 bfd_elf_generic_reloc, /* special_function */
1283 "R_ARM_MOVW_BREL_NC", /* name */
1284 FALSE, /* partial_inplace */
1285 0x0000ffff, /* src_mask */
1286 0x0000ffff, /* dst_mask */
1287 FALSE), /* pcrel_offset */
1288
1289 HOWTO (R_ARM_MOVT_BREL, /* type */
1290 0, /* rightshift */
1291 2, /* size (0 = byte, 1 = short, 2 = long) */
1292 16, /* bitsize */
1293 FALSE, /* pc_relative */
1294 0, /* bitpos */
1295 complain_overflow_bitfield,/* complain_on_overflow */
1296 bfd_elf_generic_reloc, /* special_function */
1297 "R_ARM_MOVT_BREL", /* name */
1298 FALSE, /* partial_inplace */
1299 0x0000ffff, /* src_mask */
1300 0x0000ffff, /* dst_mask */
1301 FALSE), /* pcrel_offset */
1302
1303 HOWTO (R_ARM_MOVW_BREL, /* type */
1304 0, /* rightshift */
1305 2, /* size (0 = byte, 1 = short, 2 = long) */
1306 16, /* bitsize */
1307 FALSE, /* pc_relative */
1308 0, /* bitpos */
1309 complain_overflow_dont,/* complain_on_overflow */
1310 bfd_elf_generic_reloc, /* special_function */
1311 "R_ARM_MOVW_BREL", /* name */
1312 FALSE, /* partial_inplace */
1313 0x0000ffff, /* src_mask */
1314 0x0000ffff, /* dst_mask */
1315 FALSE), /* pcrel_offset */
1316
1317 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1318 0, /* rightshift */
1319 2, /* size (0 = byte, 1 = short, 2 = long) */
1320 16, /* bitsize */
1321 FALSE, /* pc_relative */
1322 0, /* bitpos */
1323 complain_overflow_dont,/* complain_on_overflow */
1324 bfd_elf_generic_reloc, /* special_function */
1325 "R_ARM_THM_MOVW_BREL_NC",/* name */
1326 FALSE, /* partial_inplace */
1327 0x040f70ff, /* src_mask */
1328 0x040f70ff, /* dst_mask */
1329 FALSE), /* pcrel_offset */
1330
1331 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1332 0, /* rightshift */
1333 2, /* size (0 = byte, 1 = short, 2 = long) */
1334 16, /* bitsize */
1335 FALSE, /* pc_relative */
1336 0, /* bitpos */
1337 complain_overflow_bitfield,/* complain_on_overflow */
1338 bfd_elf_generic_reloc, /* special_function */
1339 "R_ARM_THM_MOVT_BREL", /* name */
1340 FALSE, /* partial_inplace */
1341 0x040f70ff, /* src_mask */
1342 0x040f70ff, /* dst_mask */
1343 FALSE), /* pcrel_offset */
1344
1345 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1346 0, /* rightshift */
1347 2, /* size (0 = byte, 1 = short, 2 = long) */
1348 16, /* bitsize */
1349 FALSE, /* pc_relative */
1350 0, /* bitpos */
1351 complain_overflow_dont,/* complain_on_overflow */
1352 bfd_elf_generic_reloc, /* special_function */
1353 "R_ARM_THM_MOVW_BREL", /* name */
1354 FALSE, /* partial_inplace */
1355 0x040f70ff, /* src_mask */
1356 0x040f70ff, /* dst_mask */
1357 FALSE), /* pcrel_offset */
1358
1359 HOWTO (R_ARM_TLS_GOTDESC, /* type */
1360 0, /* rightshift */
1361 2, /* size (0 = byte, 1 = short, 2 = long) */
1362 32, /* bitsize */
1363 FALSE, /* pc_relative */
1364 0, /* bitpos */
1365 complain_overflow_bitfield,/* complain_on_overflow */
1366 NULL, /* special_function */
1367 "R_ARM_TLS_GOTDESC", /* name */
1368 TRUE, /* partial_inplace */
1369 0xffffffff, /* src_mask */
1370 0xffffffff, /* dst_mask */
1371 FALSE), /* pcrel_offset */
1372
1373 HOWTO (R_ARM_TLS_CALL, /* type */
1374 0, /* rightshift */
1375 2, /* size (0 = byte, 1 = short, 2 = long) */
1376 24, /* bitsize */
1377 FALSE, /* pc_relative */
1378 0, /* bitpos */
1379 complain_overflow_dont,/* complain_on_overflow */
1380 bfd_elf_generic_reloc, /* special_function */
1381 "R_ARM_TLS_CALL", /* name */
1382 FALSE, /* partial_inplace */
1383 0x00ffffff, /* src_mask */
1384 0x00ffffff, /* dst_mask */
1385 FALSE), /* pcrel_offset */
1386
1387 HOWTO (R_ARM_TLS_DESCSEQ, /* type */
1388 0, /* rightshift */
1389 2, /* size (0 = byte, 1 = short, 2 = long) */
1390 0, /* bitsize */
1391 FALSE, /* pc_relative */
1392 0, /* bitpos */
1393 complain_overflow_bitfield,/* complain_on_overflow */
1394 bfd_elf_generic_reloc, /* special_function */
1395 "R_ARM_TLS_DESCSEQ", /* name */
1396 FALSE, /* partial_inplace */
1397 0x00000000, /* src_mask */
1398 0x00000000, /* dst_mask */
1399 FALSE), /* pcrel_offset */
1400
1401 HOWTO (R_ARM_THM_TLS_CALL, /* type */
1402 0, /* rightshift */
1403 2, /* size (0 = byte, 1 = short, 2 = long) */
1404 24, /* bitsize */
1405 FALSE, /* pc_relative */
1406 0, /* bitpos */
1407 complain_overflow_dont,/* complain_on_overflow */
1408 bfd_elf_generic_reloc, /* special_function */
1409 "R_ARM_THM_TLS_CALL", /* name */
1410 FALSE, /* partial_inplace */
1411 0x07ff07ff, /* src_mask */
1412 0x07ff07ff, /* dst_mask */
1413 FALSE), /* pcrel_offset */
1414
1415 HOWTO (R_ARM_PLT32_ABS, /* type */
1416 0, /* rightshift */
1417 2, /* size (0 = byte, 1 = short, 2 = long) */
1418 32, /* bitsize */
1419 FALSE, /* pc_relative */
1420 0, /* bitpos */
1421 complain_overflow_dont,/* complain_on_overflow */
1422 bfd_elf_generic_reloc, /* special_function */
1423 "R_ARM_PLT32_ABS", /* name */
1424 FALSE, /* partial_inplace */
1425 0xffffffff, /* src_mask */
1426 0xffffffff, /* dst_mask */
1427 FALSE), /* pcrel_offset */
1428
1429 HOWTO (R_ARM_GOT_ABS, /* type */
1430 0, /* rightshift */
1431 2, /* size (0 = byte, 1 = short, 2 = long) */
1432 32, /* bitsize */
1433 FALSE, /* pc_relative */
1434 0, /* bitpos */
1435 complain_overflow_dont,/* complain_on_overflow */
1436 bfd_elf_generic_reloc, /* special_function */
1437 "R_ARM_GOT_ABS", /* name */
1438 FALSE, /* partial_inplace */
1439 0xffffffff, /* src_mask */
1440 0xffffffff, /* dst_mask */
1441 FALSE), /* pcrel_offset */
1442
1443 HOWTO (R_ARM_GOT_PREL, /* type */
1444 0, /* rightshift */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1446 32, /* bitsize */
1447 TRUE, /* pc_relative */
1448 0, /* bitpos */
1449 complain_overflow_dont, /* complain_on_overflow */
1450 bfd_elf_generic_reloc, /* special_function */
1451 "R_ARM_GOT_PREL", /* name */
1452 FALSE, /* partial_inplace */
1453 0xffffffff, /* src_mask */
1454 0xffffffff, /* dst_mask */
1455 TRUE), /* pcrel_offset */
1456
1457 HOWTO (R_ARM_GOT_BREL12, /* type */
1458 0, /* rightshift */
1459 2, /* size (0 = byte, 1 = short, 2 = long) */
1460 12, /* bitsize */
1461 FALSE, /* pc_relative */
1462 0, /* bitpos */
1463 complain_overflow_bitfield,/* complain_on_overflow */
1464 bfd_elf_generic_reloc, /* special_function */
1465 "R_ARM_GOT_BREL12", /* name */
1466 FALSE, /* partial_inplace */
1467 0x00000fff, /* src_mask */
1468 0x00000fff, /* dst_mask */
1469 FALSE), /* pcrel_offset */
1470
1471 HOWTO (R_ARM_GOTOFF12, /* type */
1472 0, /* rightshift */
1473 2, /* size (0 = byte, 1 = short, 2 = long) */
1474 12, /* bitsize */
1475 FALSE, /* pc_relative */
1476 0, /* bitpos */
1477 complain_overflow_bitfield,/* complain_on_overflow */
1478 bfd_elf_generic_reloc, /* special_function */
1479 "R_ARM_GOTOFF12", /* name */
1480 FALSE, /* partial_inplace */
1481 0x00000fff, /* src_mask */
1482 0x00000fff, /* dst_mask */
1483 FALSE), /* pcrel_offset */
1484
1485 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1486
1487 /* GNU extension to record C++ vtable member usage */
1488 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1489 0, /* rightshift */
1490 2, /* size (0 = byte, 1 = short, 2 = long) */
1491 0, /* bitsize */
1492 FALSE, /* pc_relative */
1493 0, /* bitpos */
1494 complain_overflow_dont, /* complain_on_overflow */
1495 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1496 "R_ARM_GNU_VTENTRY", /* name */
1497 FALSE, /* partial_inplace */
1498 0, /* src_mask */
1499 0, /* dst_mask */
1500 FALSE), /* pcrel_offset */
1501
1502 /* GNU extension to record C++ vtable hierarchy */
1503 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1504 0, /* rightshift */
1505 2, /* size (0 = byte, 1 = short, 2 = long) */
1506 0, /* bitsize */
1507 FALSE, /* pc_relative */
1508 0, /* bitpos */
1509 complain_overflow_dont, /* complain_on_overflow */
1510 NULL, /* special_function */
1511 "R_ARM_GNU_VTINHERIT", /* name */
1512 FALSE, /* partial_inplace */
1513 0, /* src_mask */
1514 0, /* dst_mask */
1515 FALSE), /* pcrel_offset */
1516
1517 HOWTO (R_ARM_THM_JUMP11, /* type */
1518 1, /* rightshift */
1519 1, /* size (0 = byte, 1 = short, 2 = long) */
1520 11, /* bitsize */
1521 TRUE, /* pc_relative */
1522 0, /* bitpos */
1523 complain_overflow_signed, /* complain_on_overflow */
1524 bfd_elf_generic_reloc, /* special_function */
1525 "R_ARM_THM_JUMP11", /* name */
1526 FALSE, /* partial_inplace */
1527 0x000007ff, /* src_mask */
1528 0x000007ff, /* dst_mask */
1529 TRUE), /* pcrel_offset */
1530
1531 HOWTO (R_ARM_THM_JUMP8, /* type */
1532 1, /* rightshift */
1533 1, /* size (0 = byte, 1 = short, 2 = long) */
1534 8, /* bitsize */
1535 TRUE, /* pc_relative */
1536 0, /* bitpos */
1537 complain_overflow_signed, /* complain_on_overflow */
1538 bfd_elf_generic_reloc, /* special_function */
1539 "R_ARM_THM_JUMP8", /* name */
1540 FALSE, /* partial_inplace */
1541 0x000000ff, /* src_mask */
1542 0x000000ff, /* dst_mask */
1543 TRUE), /* pcrel_offset */
1544
1545 /* TLS relocations */
1546 HOWTO (R_ARM_TLS_GD32, /* type */
1547 0, /* rightshift */
1548 2, /* size (0 = byte, 1 = short, 2 = long) */
1549 32, /* bitsize */
1550 FALSE, /* pc_relative */
1551 0, /* bitpos */
1552 complain_overflow_bitfield,/* complain_on_overflow */
1553 NULL, /* special_function */
1554 "R_ARM_TLS_GD32", /* name */
1555 TRUE, /* partial_inplace */
1556 0xffffffff, /* src_mask */
1557 0xffffffff, /* dst_mask */
1558 FALSE), /* pcrel_offset */
1559
1560 HOWTO (R_ARM_TLS_LDM32, /* type */
1561 0, /* rightshift */
1562 2, /* size (0 = byte, 1 = short, 2 = long) */
1563 32, /* bitsize */
1564 FALSE, /* pc_relative */
1565 0, /* bitpos */
1566 complain_overflow_bitfield,/* complain_on_overflow */
1567 bfd_elf_generic_reloc, /* special_function */
1568 "R_ARM_TLS_LDM32", /* name */
1569 TRUE, /* partial_inplace */
1570 0xffffffff, /* src_mask */
1571 0xffffffff, /* dst_mask */
1572 FALSE), /* pcrel_offset */
1573
1574 HOWTO (R_ARM_TLS_LDO32, /* type */
1575 0, /* rightshift */
1576 2, /* size (0 = byte, 1 = short, 2 = long) */
1577 32, /* bitsize */
1578 FALSE, /* pc_relative */
1579 0, /* bitpos */
1580 complain_overflow_bitfield,/* complain_on_overflow */
1581 bfd_elf_generic_reloc, /* special_function */
1582 "R_ARM_TLS_LDO32", /* name */
1583 TRUE, /* partial_inplace */
1584 0xffffffff, /* src_mask */
1585 0xffffffff, /* dst_mask */
1586 FALSE), /* pcrel_offset */
1587
1588 HOWTO (R_ARM_TLS_IE32, /* type */
1589 0, /* rightshift */
1590 2, /* size (0 = byte, 1 = short, 2 = long) */
1591 32, /* bitsize */
1592 FALSE, /* pc_relative */
1593 0, /* bitpos */
1594 complain_overflow_bitfield,/* complain_on_overflow */
1595 NULL, /* special_function */
1596 "R_ARM_TLS_IE32", /* name */
1597 TRUE, /* partial_inplace */
1598 0xffffffff, /* src_mask */
1599 0xffffffff, /* dst_mask */
1600 FALSE), /* pcrel_offset */
1601
1602 HOWTO (R_ARM_TLS_LE32, /* type */
1603 0, /* rightshift */
1604 2, /* size (0 = byte, 1 = short, 2 = long) */
1605 32, /* bitsize */
1606 FALSE, /* pc_relative */
1607 0, /* bitpos */
1608 complain_overflow_bitfield,/* complain_on_overflow */
1609 NULL, /* special_function */
1610 "R_ARM_TLS_LE32", /* name */
1611 TRUE, /* partial_inplace */
1612 0xffffffff, /* src_mask */
1613 0xffffffff, /* dst_mask */
1614 FALSE), /* pcrel_offset */
1615
1616 HOWTO (R_ARM_TLS_LDO12, /* type */
1617 0, /* rightshift */
1618 2, /* size (0 = byte, 1 = short, 2 = long) */
1619 12, /* bitsize */
1620 FALSE, /* pc_relative */
1621 0, /* bitpos */
1622 complain_overflow_bitfield,/* complain_on_overflow */
1623 bfd_elf_generic_reloc, /* special_function */
1624 "R_ARM_TLS_LDO12", /* name */
1625 FALSE, /* partial_inplace */
1626 0x00000fff, /* src_mask */
1627 0x00000fff, /* dst_mask */
1628 FALSE), /* pcrel_offset */
1629
1630 HOWTO (R_ARM_TLS_LE12, /* type */
1631 0, /* rightshift */
1632 2, /* size (0 = byte, 1 = short, 2 = long) */
1633 12, /* bitsize */
1634 FALSE, /* pc_relative */
1635 0, /* bitpos */
1636 complain_overflow_bitfield,/* complain_on_overflow */
1637 bfd_elf_generic_reloc, /* special_function */
1638 "R_ARM_TLS_LE12", /* name */
1639 FALSE, /* partial_inplace */
1640 0x00000fff, /* src_mask */
1641 0x00000fff, /* dst_mask */
1642 FALSE), /* pcrel_offset */
1643
1644 HOWTO (R_ARM_TLS_IE12GP, /* type */
1645 0, /* rightshift */
1646 2, /* size (0 = byte, 1 = short, 2 = long) */
1647 12, /* bitsize */
1648 FALSE, /* pc_relative */
1649 0, /* bitpos */
1650 complain_overflow_bitfield,/* complain_on_overflow */
1651 bfd_elf_generic_reloc, /* special_function */
1652 "R_ARM_TLS_IE12GP", /* name */
1653 FALSE, /* partial_inplace */
1654 0x00000fff, /* src_mask */
1655 0x00000fff, /* dst_mask */
1656 FALSE), /* pcrel_offset */
1657
1658 /* 112-127 private relocations. */
1659 EMPTY_HOWTO (112),
1660 EMPTY_HOWTO (113),
1661 EMPTY_HOWTO (114),
1662 EMPTY_HOWTO (115),
1663 EMPTY_HOWTO (116),
1664 EMPTY_HOWTO (117),
1665 EMPTY_HOWTO (118),
1666 EMPTY_HOWTO (119),
1667 EMPTY_HOWTO (120),
1668 EMPTY_HOWTO (121),
1669 EMPTY_HOWTO (122),
1670 EMPTY_HOWTO (123),
1671 EMPTY_HOWTO (124),
1672 EMPTY_HOWTO (125),
1673 EMPTY_HOWTO (126),
1674 EMPTY_HOWTO (127),
1675
1676 /* R_ARM_ME_TOO, obsolete. */
1677 EMPTY_HOWTO (128),
1678
1679 HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
1680 0, /* rightshift */
1681 1, /* size (0 = byte, 1 = short, 2 = long) */
1682 0, /* bitsize */
1683 FALSE, /* pc_relative */
1684 0, /* bitpos */
1685 complain_overflow_bitfield,/* complain_on_overflow */
1686 bfd_elf_generic_reloc, /* special_function */
1687 "R_ARM_THM_TLS_DESCSEQ",/* name */
1688 FALSE, /* partial_inplace */
1689 0x00000000, /* src_mask */
1690 0x00000000, /* dst_mask */
1691 FALSE), /* pcrel_offset */
1692 EMPTY_HOWTO (130),
1693 EMPTY_HOWTO (131),
1694 HOWTO (R_ARM_THM_ALU_ABS_G0_NC,/* type. */
1695 0, /* rightshift. */
1696 1, /* size (0 = byte, 1 = short, 2 = long). */
1697 16, /* bitsize. */
1698 FALSE, /* pc_relative. */
1699 0, /* bitpos. */
1700 complain_overflow_bitfield,/* complain_on_overflow. */
1701 bfd_elf_generic_reloc, /* special_function. */
1702 "R_ARM_THM_ALU_ABS_G0_NC",/* name. */
1703 FALSE, /* partial_inplace. */
1704 0x00000000, /* src_mask. */
1705 0x00000000, /* dst_mask. */
1706 FALSE), /* pcrel_offset. */
1707 HOWTO (R_ARM_THM_ALU_ABS_G1_NC,/* type. */
1708 0, /* rightshift. */
1709 1, /* size (0 = byte, 1 = short, 2 = long). */
1710 16, /* bitsize. */
1711 FALSE, /* pc_relative. */
1712 0, /* bitpos. */
1713 complain_overflow_bitfield,/* complain_on_overflow. */
1714 bfd_elf_generic_reloc, /* special_function. */
1715 "R_ARM_THM_ALU_ABS_G1_NC",/* name. */
1716 FALSE, /* partial_inplace. */
1717 0x00000000, /* src_mask. */
1718 0x00000000, /* dst_mask. */
1719 FALSE), /* pcrel_offset. */
1720 HOWTO (R_ARM_THM_ALU_ABS_G2_NC,/* type. */
1721 0, /* rightshift. */
1722 1, /* size (0 = byte, 1 = short, 2 = long). */
1723 16, /* bitsize. */
1724 FALSE, /* pc_relative. */
1725 0, /* bitpos. */
1726 complain_overflow_bitfield,/* complain_on_overflow. */
1727 bfd_elf_generic_reloc, /* special_function. */
1728 "R_ARM_THM_ALU_ABS_G2_NC",/* name. */
1729 FALSE, /* partial_inplace. */
1730 0x00000000, /* src_mask. */
1731 0x00000000, /* dst_mask. */
1732 FALSE), /* pcrel_offset. */
1733 HOWTO (R_ARM_THM_ALU_ABS_G3_NC,/* type. */
1734 0, /* rightshift. */
1735 1, /* size (0 = byte, 1 = short, 2 = long). */
1736 16, /* bitsize. */
1737 FALSE, /* pc_relative. */
1738 0, /* bitpos. */
1739 complain_overflow_bitfield,/* complain_on_overflow. */
1740 bfd_elf_generic_reloc, /* special_function. */
1741 "R_ARM_THM_ALU_ABS_G3_NC",/* name. */
1742 FALSE, /* partial_inplace. */
1743 0x00000000, /* src_mask. */
1744 0x00000000, /* dst_mask. */
1745 FALSE), /* pcrel_offset. */
1746 };
1747
1748 /* 160 onwards: */
1749 static reloc_howto_type elf32_arm_howto_table_2[1] =
1750 {
1751 HOWTO (R_ARM_IRELATIVE, /* type */
1752 0, /* rightshift */
1753 2, /* size (0 = byte, 1 = short, 2 = long) */
1754 32, /* bitsize */
1755 FALSE, /* pc_relative */
1756 0, /* bitpos */
1757 complain_overflow_bitfield,/* complain_on_overflow */
1758 bfd_elf_generic_reloc, /* special_function */
1759 "R_ARM_IRELATIVE", /* name */
1760 TRUE, /* partial_inplace */
1761 0xffffffff, /* src_mask */
1762 0xffffffff, /* dst_mask */
1763 FALSE) /* pcrel_offset */
1764 };
1765
1766 /* 249-255 extended, currently unused, relocations: */
1767 static reloc_howto_type elf32_arm_howto_table_3[4] =
1768 {
1769 HOWTO (R_ARM_RREL32, /* type */
1770 0, /* rightshift */
1771 0, /* size (0 = byte, 1 = short, 2 = long) */
1772 0, /* bitsize */
1773 FALSE, /* pc_relative */
1774 0, /* bitpos */
1775 complain_overflow_dont,/* complain_on_overflow */
1776 bfd_elf_generic_reloc, /* special_function */
1777 "R_ARM_RREL32", /* name */
1778 FALSE, /* partial_inplace */
1779 0, /* src_mask */
1780 0, /* dst_mask */
1781 FALSE), /* pcrel_offset */
1782
1783 HOWTO (R_ARM_RABS32, /* type */
1784 0, /* rightshift */
1785 0, /* size (0 = byte, 1 = short, 2 = long) */
1786 0, /* bitsize */
1787 FALSE, /* pc_relative */
1788 0, /* bitpos */
1789 complain_overflow_dont,/* complain_on_overflow */
1790 bfd_elf_generic_reloc, /* special_function */
1791 "R_ARM_RABS32", /* name */
1792 FALSE, /* partial_inplace */
1793 0, /* src_mask */
1794 0, /* dst_mask */
1795 FALSE), /* pcrel_offset */
1796
1797 HOWTO (R_ARM_RPC24, /* type */
1798 0, /* rightshift */
1799 0, /* size (0 = byte, 1 = short, 2 = long) */
1800 0, /* bitsize */
1801 FALSE, /* pc_relative */
1802 0, /* bitpos */
1803 complain_overflow_dont,/* complain_on_overflow */
1804 bfd_elf_generic_reloc, /* special_function */
1805 "R_ARM_RPC24", /* name */
1806 FALSE, /* partial_inplace */
1807 0, /* src_mask */
1808 0, /* dst_mask */
1809 FALSE), /* pcrel_offset */
1810
1811 HOWTO (R_ARM_RBASE, /* type */
1812 0, /* rightshift */
1813 0, /* size (0 = byte, 1 = short, 2 = long) */
1814 0, /* bitsize */
1815 FALSE, /* pc_relative */
1816 0, /* bitpos */
1817 complain_overflow_dont,/* complain_on_overflow */
1818 bfd_elf_generic_reloc, /* special_function */
1819 "R_ARM_RBASE", /* name */
1820 FALSE, /* partial_inplace */
1821 0, /* src_mask */
1822 0, /* dst_mask */
1823 FALSE) /* pcrel_offset */
1824 };
1825
1826 static reloc_howto_type *
1827 elf32_arm_howto_from_type (unsigned int r_type)
1828 {
1829 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1830 return &elf32_arm_howto_table_1[r_type];
1831
1832 if (r_type == R_ARM_IRELATIVE)
1833 return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
1834
1835 if (r_type >= R_ARM_RREL32
1836 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
1837 return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
1838
1839 return NULL;
1840 }
1841
1842 static void
1843 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1844 Elf_Internal_Rela * elf_reloc)
1845 {
1846 unsigned int r_type;
1847
1848 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1849 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1850 }
1851
1852 struct elf32_arm_reloc_map
1853 {
1854 bfd_reloc_code_real_type bfd_reloc_val;
1855 unsigned char elf_reloc_val;
1856 };
1857
1858 /* All entries in this list must also be present in elf32_arm_howto_table. */
1859 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1860 {
1861 {BFD_RELOC_NONE, R_ARM_NONE},
1862 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1863 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1864 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1865 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1866 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1867 {BFD_RELOC_32, R_ARM_ABS32},
1868 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1869 {BFD_RELOC_8, R_ARM_ABS8},
1870 {BFD_RELOC_16, R_ARM_ABS16},
1871 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1872 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1873 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1874 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1875 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1876 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1877 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1878 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1879 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1880 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1881 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1882 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1883 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1884 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL},
1885 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1886 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1887 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1888 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1889 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1890 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1891 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1892 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1893 {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC},
1894 {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL},
1895 {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL},
1896 {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ},
1897 {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ},
1898 {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC},
1899 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1900 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1901 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1902 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1903 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1904 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1905 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1906 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
1907 {BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE},
1908 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1909 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
1910 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1911 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1912 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1913 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1914 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1915 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1916 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1917 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1918 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1919 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1920 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1921 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1922 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1923 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1924 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1925 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1926 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1927 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1928 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1929 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1930 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1931 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1932 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1933 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1934 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1935 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1936 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1937 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1938 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1939 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1940 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1941 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1942 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1943 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1944 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1945 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1946 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX},
1947 {BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC, R_ARM_THM_ALU_ABS_G3_NC},
1948 {BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC, R_ARM_THM_ALU_ABS_G2_NC},
1949 {BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC, R_ARM_THM_ALU_ABS_G1_NC},
1950 {BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC, R_ARM_THM_ALU_ABS_G0_NC}
1951 };
1952
1953 static reloc_howto_type *
1954 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1955 bfd_reloc_code_real_type code)
1956 {
1957 unsigned int i;
1958
1959 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1960 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1961 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1962
1963 return NULL;
1964 }
1965
1966 static reloc_howto_type *
1967 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1968 const char *r_name)
1969 {
1970 unsigned int i;
1971
1972 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1973 if (elf32_arm_howto_table_1[i].name != NULL
1974 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1975 return &elf32_arm_howto_table_1[i];
1976
1977 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1978 if (elf32_arm_howto_table_2[i].name != NULL
1979 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1980 return &elf32_arm_howto_table_2[i];
1981
1982 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
1983 if (elf32_arm_howto_table_3[i].name != NULL
1984 && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
1985 return &elf32_arm_howto_table_3[i];
1986
1987 return NULL;
1988 }
1989
1990 /* Support for core dump NOTE sections. */
1991
1992 static bfd_boolean
1993 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1994 {
1995 int offset;
1996 size_t size;
1997
1998 switch (note->descsz)
1999 {
2000 default:
2001 return FALSE;
2002
2003 case 148: /* Linux/ARM 32-bit. */
2004 /* pr_cursig */
2005 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2006
2007 /* pr_pid */
2008 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
2009
2010 /* pr_reg */
2011 offset = 72;
2012 size = 72;
2013
2014 break;
2015 }
2016
2017 /* Make a ".reg/999" section. */
2018 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2019 size, note->descpos + offset);
2020 }
2021
2022 static bfd_boolean
2023 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2024 {
2025 switch (note->descsz)
2026 {
2027 default:
2028 return FALSE;
2029
2030 case 124: /* Linux/ARM elf_prpsinfo. */
2031 elf_tdata (abfd)->core->pid
2032 = bfd_get_32 (abfd, note->descdata + 12);
2033 elf_tdata (abfd)->core->program
2034 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
2035 elf_tdata (abfd)->core->command
2036 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
2037 }
2038
2039 /* Note that for some reason, a spurious space is tacked
2040 onto the end of the args in some (at least one anyway)
2041 implementations, so strip it off if it exists. */
2042 {
2043 char *command = elf_tdata (abfd)->core->command;
2044 int n = strlen (command);
2045
2046 if (0 < n && command[n - 1] == ' ')
2047 command[n - 1] = '\0';
2048 }
2049
2050 return TRUE;
2051 }
2052
2053 static char *
2054 elf32_arm_nabi_write_core_note (bfd *abfd, char *buf, int *bufsiz,
2055 int note_type, ...)
2056 {
2057 switch (note_type)
2058 {
2059 default:
2060 return NULL;
2061
2062 case NT_PRPSINFO:
2063 {
2064 char data[124];
2065 va_list ap;
2066
2067 va_start (ap, note_type);
2068 memset (data, 0, sizeof (data));
2069 strncpy (data + 28, va_arg (ap, const char *), 16);
2070 strncpy (data + 44, va_arg (ap, const char *), 80);
2071 va_end (ap);
2072
2073 return elfcore_write_note (abfd, buf, bufsiz,
2074 "CORE", note_type, data, sizeof (data));
2075 }
2076
2077 case NT_PRSTATUS:
2078 {
2079 char data[148];
2080 va_list ap;
2081 long pid;
2082 int cursig;
2083 const void *greg;
2084
2085 va_start (ap, note_type);
2086 memset (data, 0, sizeof (data));
2087 pid = va_arg (ap, long);
2088 bfd_put_32 (abfd, pid, data + 24);
2089 cursig = va_arg (ap, int);
2090 bfd_put_16 (abfd, cursig, data + 12);
2091 greg = va_arg (ap, const void *);
2092 memcpy (data + 72, greg, 72);
2093 va_end (ap);
2094
2095 return elfcore_write_note (abfd, buf, bufsiz,
2096 "CORE", note_type, data, sizeof (data));
2097 }
2098 }
2099 }
2100
2101 #define TARGET_LITTLE_SYM arm_elf32_le_vec
2102 #define TARGET_LITTLE_NAME "elf32-littlearm"
2103 #define TARGET_BIG_SYM arm_elf32_be_vec
2104 #define TARGET_BIG_NAME "elf32-bigarm"
2105
2106 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
2107 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
2108 #define elf_backend_write_core_note elf32_arm_nabi_write_core_note
2109
2110 typedef unsigned long int insn32;
2111 typedef unsigned short int insn16;
2112
2113 /* In lieu of proper flags, assume all EABIv4 or later objects are
2114 interworkable. */
2115 #define INTERWORK_FLAG(abfd) \
2116 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
2117 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2118 || ((abfd)->flags & BFD_LINKER_CREATED))
2119
2120 /* The linker script knows the section names for placement.
2121 The entry_names are used to do simple name mangling on the stubs.
2122 Given a function name, and its type, the stub can be found. The
2123 name can be changed. The only requirement is the %s be present. */
2124 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2125 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2126
2127 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2128 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2129
2130 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2131 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2132
2133 #define STM32L4XX_ERRATUM_VENEER_SECTION_NAME ".text.stm32l4xx_veneer"
2134 #define STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "__stm32l4xx_veneer_%x"
2135
2136 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2137 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2138
2139 #define STUB_ENTRY_NAME "__%s_veneer"
2140
2141 #define CMSE_PREFIX "__acle_se_"
2142
2143 /* The name of the dynamic interpreter. This is put in the .interp
2144 section. */
2145 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2146
2147 static const unsigned long tls_trampoline [] =
2148 {
2149 0xe08e0000, /* add r0, lr, r0 */
2150 0xe5901004, /* ldr r1, [r0,#4] */
2151 0xe12fff11, /* bx r1 */
2152 };
2153
2154 static const unsigned long dl_tlsdesc_lazy_trampoline [] =
2155 {
2156 0xe52d2004, /* push {r2} */
2157 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2158 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2159 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2160 0xe081100f, /* 2: add r1, pc */
2161 0xe12fff12, /* bx r2 */
2162 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
2163 + dl_tlsdesc_lazy_resolver(GOT) */
2164 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2165 };
2166
2167 #ifdef FOUR_WORD_PLT
2168
2169 /* The first entry in a procedure linkage table looks like
2170 this. It is set up so that any shared library function that is
2171 called before the relocation has been set up calls the dynamic
2172 linker first. */
2173 static const bfd_vma elf32_arm_plt0_entry [] =
2174 {
2175 0xe52de004, /* str lr, [sp, #-4]! */
2176 0xe59fe010, /* ldr lr, [pc, #16] */
2177 0xe08fe00e, /* add lr, pc, lr */
2178 0xe5bef008, /* ldr pc, [lr, #8]! */
2179 };
2180
2181 /* Subsequent entries in a procedure linkage table look like
2182 this. */
2183 static const bfd_vma elf32_arm_plt_entry [] =
2184 {
2185 0xe28fc600, /* add ip, pc, #NN */
2186 0xe28cca00, /* add ip, ip, #NN */
2187 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2188 0x00000000, /* unused */
2189 };
2190
2191 #else /* not FOUR_WORD_PLT */
2192
2193 /* The first entry in a procedure linkage table looks like
2194 this. It is set up so that any shared library function that is
2195 called before the relocation has been set up calls the dynamic
2196 linker first. */
2197 static const bfd_vma elf32_arm_plt0_entry [] =
2198 {
2199 0xe52de004, /* str lr, [sp, #-4]! */
2200 0xe59fe004, /* ldr lr, [pc, #4] */
2201 0xe08fe00e, /* add lr, pc, lr */
2202 0xe5bef008, /* ldr pc, [lr, #8]! */
2203 0x00000000, /* &GOT[0] - . */
2204 };
2205
2206 /* By default subsequent entries in a procedure linkage table look like
2207 this. Offsets that don't fit into 28 bits will cause link error. */
2208 static const bfd_vma elf32_arm_plt_entry_short [] =
2209 {
2210 0xe28fc600, /* add ip, pc, #0xNN00000 */
2211 0xe28cca00, /* add ip, ip, #0xNN000 */
2212 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2213 };
2214
2215 /* When explicitly asked, we'll use this "long" entry format
2216 which can cope with arbitrary displacements. */
2217 static const bfd_vma elf32_arm_plt_entry_long [] =
2218 {
2219 0xe28fc200, /* add ip, pc, #0xN0000000 */
2220 0xe28cc600, /* add ip, ip, #0xNN00000 */
2221 0xe28cca00, /* add ip, ip, #0xNN000 */
2222 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2223 };
2224
2225 static bfd_boolean elf32_arm_use_long_plt_entry = FALSE;
2226
2227 #endif /* not FOUR_WORD_PLT */
2228
2229 /* The first entry in a procedure linkage table looks like this.
2230 It is set up so that any shared library function that is called before the
2231 relocation has been set up calls the dynamic linker first. */
2232 static const bfd_vma elf32_thumb2_plt0_entry [] =
2233 {
2234 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2235 an instruction maybe encoded to one or two array elements. */
2236 0xf8dfb500, /* push {lr} */
2237 0x44fee008, /* ldr.w lr, [pc, #8] */
2238 /* add lr, pc */
2239 0xff08f85e, /* ldr.w pc, [lr, #8]! */
2240 0x00000000, /* &GOT[0] - . */
2241 };
2242
2243 /* Subsequent entries in a procedure linkage table for thumb only target
2244 look like this. */
2245 static const bfd_vma elf32_thumb2_plt_entry [] =
2246 {
2247 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2248 an instruction maybe encoded to one or two array elements. */
2249 0x0c00f240, /* movw ip, #0xNNNN */
2250 0x0c00f2c0, /* movt ip, #0xNNNN */
2251 0xf8dc44fc, /* add ip, pc */
2252 0xbf00f000 /* ldr.w pc, [ip] */
2253 /* nop */
2254 };
2255
2256 /* The format of the first entry in the procedure linkage table
2257 for a VxWorks executable. */
2258 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
2259 {
2260 0xe52dc008, /* str ip,[sp,#-8]! */
2261 0xe59fc000, /* ldr ip,[pc] */
2262 0xe59cf008, /* ldr pc,[ip,#8] */
2263 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
2264 };
2265
2266 /* The format of subsequent entries in a VxWorks executable. */
2267 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
2268 {
2269 0xe59fc000, /* ldr ip,[pc] */
2270 0xe59cf000, /* ldr pc,[ip] */
2271 0x00000000, /* .long @got */
2272 0xe59fc000, /* ldr ip,[pc] */
2273 0xea000000, /* b _PLT */
2274 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2275 };
2276
2277 /* The format of entries in a VxWorks shared library. */
2278 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
2279 {
2280 0xe59fc000, /* ldr ip,[pc] */
2281 0xe79cf009, /* ldr pc,[ip,r9] */
2282 0x00000000, /* .long @got */
2283 0xe59fc000, /* ldr ip,[pc] */
2284 0xe599f008, /* ldr pc,[r9,#8] */
2285 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2286 };
2287
2288 /* An initial stub used if the PLT entry is referenced from Thumb code. */
2289 #define PLT_THUMB_STUB_SIZE 4
2290 static const bfd_vma elf32_arm_plt_thumb_stub [] =
2291 {
2292 0x4778, /* bx pc */
2293 0x46c0 /* nop */
2294 };
2295
2296 /* The entries in a PLT when using a DLL-based target with multiple
2297 address spaces. */
2298 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2299 {
2300 0xe51ff004, /* ldr pc, [pc, #-4] */
2301 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2302 };
2303
2304 /* The first entry in a procedure linkage table looks like
2305 this. It is set up so that any shared library function that is
2306 called before the relocation has been set up calls the dynamic
2307 linker first. */
2308 static const bfd_vma elf32_arm_nacl_plt0_entry [] =
2309 {
2310 /* First bundle: */
2311 0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */
2312 0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */
2313 0xe08cc00f, /* add ip, ip, pc */
2314 0xe52dc008, /* str ip, [sp, #-8]! */
2315 /* Second bundle: */
2316 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2317 0xe59cc000, /* ldr ip, [ip] */
2318 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2319 0xe12fff1c, /* bx ip */
2320 /* Third bundle: */
2321 0xe320f000, /* nop */
2322 0xe320f000, /* nop */
2323 0xe320f000, /* nop */
2324 /* .Lplt_tail: */
2325 0xe50dc004, /* str ip, [sp, #-4] */
2326 /* Fourth bundle: */
2327 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2328 0xe59cc000, /* ldr ip, [ip] */
2329 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2330 0xe12fff1c, /* bx ip */
2331 };
2332 #define ARM_NACL_PLT_TAIL_OFFSET (11 * 4)
2333
2334 /* Subsequent entries in a procedure linkage table look like this. */
2335 static const bfd_vma elf32_arm_nacl_plt_entry [] =
2336 {
2337 0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */
2338 0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */
2339 0xe08cc00f, /* add ip, ip, pc */
2340 0xea000000, /* b .Lplt_tail */
2341 };
2342
2343 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2344 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2345 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2346 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2347 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2348 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2349 #define THM2_MAX_FWD_COND_BRANCH_OFFSET (((1 << 20) -2) + 4)
2350 #define THM2_MAX_BWD_COND_BRANCH_OFFSET (-(1 << 20) + 4)
2351
2352 enum stub_insn_type
2353 {
2354 THUMB16_TYPE = 1,
2355 THUMB32_TYPE,
2356 ARM_TYPE,
2357 DATA_TYPE
2358 };
2359
2360 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2361 /* A bit of a hack. A Thumb conditional branch, in which the proper condition
2362 is inserted in arm_build_one_stub(). */
2363 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2364 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2365 #define THUMB32_MOVT(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVT_ABS, 0}
2366 #define THUMB32_MOVW(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVW_ABS_NC, 0}
2367 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2368 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2369 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2370 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2371
2372 typedef struct
2373 {
2374 bfd_vma data;
2375 enum stub_insn_type type;
2376 unsigned int r_type;
2377 int reloc_addend;
2378 } insn_sequence;
2379
2380 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2381 to reach the stub if necessary. */
2382 static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
2383 {
2384 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2385 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2386 };
2387
2388 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2389 available. */
2390 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
2391 {
2392 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2393 ARM_INSN (0xe12fff1c), /* bx ip */
2394 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2395 };
2396
2397 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2398 static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
2399 {
2400 THUMB16_INSN (0xb401), /* push {r0} */
2401 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2402 THUMB16_INSN (0x4684), /* mov ip, r0 */
2403 THUMB16_INSN (0xbc01), /* pop {r0} */
2404 THUMB16_INSN (0x4760), /* bx ip */
2405 THUMB16_INSN (0xbf00), /* nop */
2406 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2407 };
2408
2409 /* Thumb -> Thumb long branch stub in thumb2 encoding. Used on armv7. */
2410 static const insn_sequence elf32_arm_stub_long_branch_thumb2_only[] =
2411 {
2412 THUMB32_INSN (0xf85ff000), /* ldr.w pc, [pc, #-0] */
2413 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(x) */
2414 };
2415
2416 /* Thumb -> Thumb long branch stub. Used for PureCode sections on Thumb2
2417 M-profile architectures. */
2418 static const insn_sequence elf32_arm_stub_long_branch_thumb2_only_pure[] =
2419 {
2420 THUMB32_MOVW (0xf2400c00), /* mov.w ip, R_ARM_MOVW_ABS_NC */
2421 THUMB32_MOVT (0xf2c00c00), /* movt ip, R_ARM_MOVT_ABS << 16 */
2422 THUMB16_INSN (0x4760), /* bx ip */
2423 };
2424
2425 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2426 allowed. */
2427 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2428 {
2429 THUMB16_INSN (0x4778), /* bx pc */
2430 THUMB16_INSN (0x46c0), /* nop */
2431 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2432 ARM_INSN (0xe12fff1c), /* bx ip */
2433 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2434 };
2435
2436 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2437 available. */
2438 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
2439 {
2440 THUMB16_INSN (0x4778), /* bx pc */
2441 THUMB16_INSN (0x46c0), /* nop */
2442 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2443 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2444 };
2445
2446 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2447 one, when the destination is close enough. */
2448 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
2449 {
2450 THUMB16_INSN (0x4778), /* bx pc */
2451 THUMB16_INSN (0x46c0), /* nop */
2452 ARM_REL_INSN (0xea000000, -8), /* b (X-8) */
2453 };
2454
2455 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2456 blx to reach the stub if necessary. */
2457 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
2458 {
2459 ARM_INSN (0xe59fc000), /* ldr ip, [pc] */
2460 ARM_INSN (0xe08ff00c), /* add pc, pc, ip */
2461 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2462 };
2463
2464 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2465 blx to reach the stub if necessary. We can not add into pc;
2466 it is not guaranteed to mode switch (different in ARMv6 and
2467 ARMv7). */
2468 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2469 {
2470 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2471 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2472 ARM_INSN (0xe12fff1c), /* bx ip */
2473 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2474 };
2475
2476 /* V4T ARM -> ARM long branch stub, PIC. */
2477 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2478 {
2479 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2480 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2481 ARM_INSN (0xe12fff1c), /* bx ip */
2482 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2483 };
2484
2485 /* V4T Thumb -> ARM long branch stub, PIC. */
2486 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2487 {
2488 THUMB16_INSN (0x4778), /* bx pc */
2489 THUMB16_INSN (0x46c0), /* nop */
2490 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2491 ARM_INSN (0xe08cf00f), /* add pc, ip, pc */
2492 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2493 };
2494
2495 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2496 architectures. */
2497 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2498 {
2499 THUMB16_INSN (0xb401), /* push {r0} */
2500 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2501 THUMB16_INSN (0x46fc), /* mov ip, pc */
2502 THUMB16_INSN (0x4484), /* add ip, r0 */
2503 THUMB16_INSN (0xbc01), /* pop {r0} */
2504 THUMB16_INSN (0x4760), /* bx ip */
2505 DATA_WORD (0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2506 };
2507
2508 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2509 allowed. */
2510 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2511 {
2512 THUMB16_INSN (0x4778), /* bx pc */
2513 THUMB16_INSN (0x46c0), /* nop */
2514 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2515 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2516 ARM_INSN (0xe12fff1c), /* bx ip */
2517 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2518 };
2519
2520 /* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2521 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2522 static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2523 {
2524 ARM_INSN (0xe59f1000), /* ldr r1, [pc] */
2525 ARM_INSN (0xe08ff001), /* add pc, pc, r1 */
2526 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2527 };
2528
2529 /* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2530 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2531 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2532 {
2533 THUMB16_INSN (0x4778), /* bx pc */
2534 THUMB16_INSN (0x46c0), /* nop */
2535 ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */
2536 ARM_INSN (0xe081f00f), /* add pc, r1, pc */
2537 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2538 };
2539
2540 /* NaCl ARM -> ARM long branch stub. */
2541 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl[] =
2542 {
2543 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2544 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2545 ARM_INSN (0xe12fff1c), /* bx ip */
2546 ARM_INSN (0xe320f000), /* nop */
2547 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2548 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2549 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2550 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2551 };
2552
2553 /* NaCl ARM -> ARM long branch stub, PIC. */
2554 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl_pic[] =
2555 {
2556 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2557 ARM_INSN (0xe08cc00f), /* add ip, ip, pc */
2558 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2559 ARM_INSN (0xe12fff1c), /* bx ip */
2560 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2561 DATA_WORD (0, R_ARM_REL32, 8), /* dcd R_ARM_REL32(X+8) */
2562 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2563 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2564 };
2565
2566 /* Stub used for transition to secure state (aka SG veneer). */
2567 static const insn_sequence elf32_arm_stub_cmse_branch_thumb_only[] =
2568 {
2569 THUMB32_INSN (0xe97fe97f), /* sg. */
2570 THUMB32_B_INSN (0xf000b800, -4), /* b.w original_branch_dest. */
2571 };
2572
2573
2574 /* Cortex-A8 erratum-workaround stubs. */
2575
2576 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2577 can't use a conditional branch to reach this stub). */
2578
2579 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
2580 {
2581 THUMB16_BCOND_INSN (0xd001), /* b<cond>.n true. */
2582 THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */
2583 THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */
2584 };
2585
2586 /* Stub used for b.w and bl.w instructions. */
2587
2588 static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
2589 {
2590 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2591 };
2592
2593 static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
2594 {
2595 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2596 };
2597
2598 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2599 instruction (which switches to ARM mode) to point to this stub. Jump to the
2600 real destination using an ARM-mode branch. */
2601
2602 static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
2603 {
2604 ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */
2605 };
2606
2607 /* For each section group there can be a specially created linker section
2608 to hold the stubs for that group. The name of the stub section is based
2609 upon the name of another section within that group with the suffix below
2610 applied.
2611
2612 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
2613 create what appeared to be a linker stub section when it actually
2614 contained user code/data. For example, consider this fragment:
2615
2616 const char * stubborn_problems[] = { "np" };
2617
2618 If this is compiled with "-fPIC -fdata-sections" then gcc produces a
2619 section called:
2620
2621 .data.rel.local.stubborn_problems
2622
2623 This then causes problems in arm32_arm_build_stubs() as it triggers:
2624
2625 // Ignore non-stub sections.
2626 if (!strstr (stub_sec->name, STUB_SUFFIX))
2627 continue;
2628
2629 And so the section would be ignored instead of being processed. Hence
2630 the change in definition of STUB_SUFFIX to a name that cannot be a valid
2631 C identifier. */
2632 #define STUB_SUFFIX ".__stub"
2633
2634 /* One entry per long/short branch stub defined above. */
2635 #define DEF_STUBS \
2636 DEF_STUB(long_branch_any_any) \
2637 DEF_STUB(long_branch_v4t_arm_thumb) \
2638 DEF_STUB(long_branch_thumb_only) \
2639 DEF_STUB(long_branch_v4t_thumb_thumb) \
2640 DEF_STUB(long_branch_v4t_thumb_arm) \
2641 DEF_STUB(short_branch_v4t_thumb_arm) \
2642 DEF_STUB(long_branch_any_arm_pic) \
2643 DEF_STUB(long_branch_any_thumb_pic) \
2644 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2645 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2646 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2647 DEF_STUB(long_branch_thumb_only_pic) \
2648 DEF_STUB(long_branch_any_tls_pic) \
2649 DEF_STUB(long_branch_v4t_thumb_tls_pic) \
2650 DEF_STUB(long_branch_arm_nacl) \
2651 DEF_STUB(long_branch_arm_nacl_pic) \
2652 DEF_STUB(cmse_branch_thumb_only) \
2653 DEF_STUB(a8_veneer_b_cond) \
2654 DEF_STUB(a8_veneer_b) \
2655 DEF_STUB(a8_veneer_bl) \
2656 DEF_STUB(a8_veneer_blx) \
2657 DEF_STUB(long_branch_thumb2_only) \
2658 DEF_STUB(long_branch_thumb2_only_pure)
2659
2660 #define DEF_STUB(x) arm_stub_##x,
2661 enum elf32_arm_stub_type
2662 {
2663 arm_stub_none,
2664 DEF_STUBS
2665 max_stub_type
2666 };
2667 #undef DEF_STUB
2668
2669 /* Note the first a8_veneer type. */
2670 const unsigned arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond;
2671
2672 typedef struct
2673 {
2674 const insn_sequence* template_sequence;
2675 int template_size;
2676 } stub_def;
2677
2678 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2679 static const stub_def stub_definitions[] =
2680 {
2681 {NULL, 0},
2682 DEF_STUBS
2683 };
2684
2685 struct elf32_arm_stub_hash_entry
2686 {
2687 /* Base hash table entry structure. */
2688 struct bfd_hash_entry root;
2689
2690 /* The stub section. */
2691 asection *stub_sec;
2692
2693 /* Offset within stub_sec of the beginning of this stub. */
2694 bfd_vma stub_offset;
2695
2696 /* Given the symbol's value and its section we can determine its final
2697 value when building the stubs (so the stub knows where to jump). */
2698 bfd_vma target_value;
2699 asection *target_section;
2700
2701 /* Same as above but for the source of the branch to the stub. Used for
2702 Cortex-A8 erratum workaround to patch it to branch to the stub. As
2703 such, source section does not need to be recorded since Cortex-A8 erratum
2704 workaround stubs are only generated when both source and target are in the
2705 same section. */
2706 bfd_vma source_value;
2707
2708 /* The instruction which caused this stub to be generated (only valid for
2709 Cortex-A8 erratum workaround stubs at present). */
2710 unsigned long orig_insn;
2711
2712 /* The stub type. */
2713 enum elf32_arm_stub_type stub_type;
2714 /* Its encoding size in bytes. */
2715 int stub_size;
2716 /* Its template. */
2717 const insn_sequence *stub_template;
2718 /* The size of the template (number of entries). */
2719 int stub_template_size;
2720
2721 /* The symbol table entry, if any, that this was derived from. */
2722 struct elf32_arm_link_hash_entry *h;
2723
2724 /* Type of branch. */
2725 enum arm_st_branch_type branch_type;
2726
2727 /* Where this stub is being called from, or, in the case of combined
2728 stub sections, the first input section in the group. */
2729 asection *id_sec;
2730
2731 /* The name for the local symbol at the start of this stub. The
2732 stub name in the hash table has to be unique; this does not, so
2733 it can be friendlier. */
2734 char *output_name;
2735 };
2736
2737 /* Used to build a map of a section. This is required for mixed-endian
2738 code/data. */
2739
2740 typedef struct elf32_elf_section_map
2741 {
2742 bfd_vma vma;
2743 char type;
2744 }
2745 elf32_arm_section_map;
2746
2747 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2748
2749 typedef enum
2750 {
2751 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2752 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2753 VFP11_ERRATUM_ARM_VENEER,
2754 VFP11_ERRATUM_THUMB_VENEER
2755 }
2756 elf32_vfp11_erratum_type;
2757
2758 typedef struct elf32_vfp11_erratum_list
2759 {
2760 struct elf32_vfp11_erratum_list *next;
2761 bfd_vma vma;
2762 union
2763 {
2764 struct
2765 {
2766 struct elf32_vfp11_erratum_list *veneer;
2767 unsigned int vfp_insn;
2768 } b;
2769 struct
2770 {
2771 struct elf32_vfp11_erratum_list *branch;
2772 unsigned int id;
2773 } v;
2774 } u;
2775 elf32_vfp11_erratum_type type;
2776 }
2777 elf32_vfp11_erratum_list;
2778
2779 /* Information about a STM32L4XX erratum veneer, or a branch to such a
2780 veneer. */
2781 typedef enum
2782 {
2783 STM32L4XX_ERRATUM_BRANCH_TO_VENEER,
2784 STM32L4XX_ERRATUM_VENEER
2785 }
2786 elf32_stm32l4xx_erratum_type;
2787
2788 typedef struct elf32_stm32l4xx_erratum_list
2789 {
2790 struct elf32_stm32l4xx_erratum_list *next;
2791 bfd_vma vma;
2792 union
2793 {
2794 struct
2795 {
2796 struct elf32_stm32l4xx_erratum_list *veneer;
2797 unsigned int insn;
2798 } b;
2799 struct
2800 {
2801 struct elf32_stm32l4xx_erratum_list *branch;
2802 unsigned int id;
2803 } v;
2804 } u;
2805 elf32_stm32l4xx_erratum_type type;
2806 }
2807 elf32_stm32l4xx_erratum_list;
2808
2809 typedef enum
2810 {
2811 DELETE_EXIDX_ENTRY,
2812 INSERT_EXIDX_CANTUNWIND_AT_END
2813 }
2814 arm_unwind_edit_type;
2815
2816 /* A (sorted) list of edits to apply to an unwind table. */
2817 typedef struct arm_unwind_table_edit
2818 {
2819 arm_unwind_edit_type type;
2820 /* Note: we sometimes want to insert an unwind entry corresponding to a
2821 section different from the one we're currently writing out, so record the
2822 (text) section this edit relates to here. */
2823 asection *linked_section;
2824 unsigned int index;
2825 struct arm_unwind_table_edit *next;
2826 }
2827 arm_unwind_table_edit;
2828
2829 typedef struct _arm_elf_section_data
2830 {
2831 /* Information about mapping symbols. */
2832 struct bfd_elf_section_data elf;
2833 unsigned int mapcount;
2834 unsigned int mapsize;
2835 elf32_arm_section_map *map;
2836 /* Information about CPU errata. */
2837 unsigned int erratumcount;
2838 elf32_vfp11_erratum_list *erratumlist;
2839 unsigned int stm32l4xx_erratumcount;
2840 elf32_stm32l4xx_erratum_list *stm32l4xx_erratumlist;
2841 unsigned int additional_reloc_count;
2842 /* Information about unwind tables. */
2843 union
2844 {
2845 /* Unwind info attached to a text section. */
2846 struct
2847 {
2848 asection *arm_exidx_sec;
2849 } text;
2850
2851 /* Unwind info attached to an .ARM.exidx section. */
2852 struct
2853 {
2854 arm_unwind_table_edit *unwind_edit_list;
2855 arm_unwind_table_edit *unwind_edit_tail;
2856 } exidx;
2857 } u;
2858 }
2859 _arm_elf_section_data;
2860
2861 #define elf32_arm_section_data(sec) \
2862 ((_arm_elf_section_data *) elf_section_data (sec))
2863
2864 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2865 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2866 so may be created multiple times: we use an array of these entries whilst
2867 relaxing which we can refresh easily, then create stubs for each potentially
2868 erratum-triggering instruction once we've settled on a solution. */
2869
2870 struct a8_erratum_fix
2871 {
2872 bfd *input_bfd;
2873 asection *section;
2874 bfd_vma offset;
2875 bfd_vma target_offset;
2876 unsigned long orig_insn;
2877 char *stub_name;
2878 enum elf32_arm_stub_type stub_type;
2879 enum arm_st_branch_type branch_type;
2880 };
2881
2882 /* A table of relocs applied to branches which might trigger Cortex-A8
2883 erratum. */
2884
2885 struct a8_erratum_reloc
2886 {
2887 bfd_vma from;
2888 bfd_vma destination;
2889 struct elf32_arm_link_hash_entry *hash;
2890 const char *sym_name;
2891 unsigned int r_type;
2892 enum arm_st_branch_type branch_type;
2893 bfd_boolean non_a8_stub;
2894 };
2895
2896 /* The size of the thread control block. */
2897 #define TCB_SIZE 8
2898
2899 /* ARM-specific information about a PLT entry, over and above the usual
2900 gotplt_union. */
2901 struct arm_plt_info
2902 {
2903 /* We reference count Thumb references to a PLT entry separately,
2904 so that we can emit the Thumb trampoline only if needed. */
2905 bfd_signed_vma thumb_refcount;
2906
2907 /* Some references from Thumb code may be eliminated by BL->BLX
2908 conversion, so record them separately. */
2909 bfd_signed_vma maybe_thumb_refcount;
2910
2911 /* How many of the recorded PLT accesses were from non-call relocations.
2912 This information is useful when deciding whether anything takes the
2913 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
2914 non-call references to the function should resolve directly to the
2915 real runtime target. */
2916 unsigned int noncall_refcount;
2917
2918 /* Since PLT entries have variable size if the Thumb prologue is
2919 used, we need to record the index into .got.plt instead of
2920 recomputing it from the PLT offset. */
2921 bfd_signed_vma got_offset;
2922 };
2923
2924 /* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
2925 struct arm_local_iplt_info
2926 {
2927 /* The information that is usually found in the generic ELF part of
2928 the hash table entry. */
2929 union gotplt_union root;
2930
2931 /* The information that is usually found in the ARM-specific part of
2932 the hash table entry. */
2933 struct arm_plt_info arm;
2934
2935 /* A list of all potential dynamic relocations against this symbol. */
2936 struct elf_dyn_relocs *dyn_relocs;
2937 };
2938
2939 struct elf_arm_obj_tdata
2940 {
2941 struct elf_obj_tdata root;
2942
2943 /* tls_type for each local got entry. */
2944 char *local_got_tls_type;
2945
2946 /* GOTPLT entries for TLS descriptors. */
2947 bfd_vma *local_tlsdesc_gotent;
2948
2949 /* Information for local symbols that need entries in .iplt. */
2950 struct arm_local_iplt_info **local_iplt;
2951
2952 /* Zero to warn when linking objects with incompatible enum sizes. */
2953 int no_enum_size_warning;
2954
2955 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2956 int no_wchar_size_warning;
2957 };
2958
2959 #define elf_arm_tdata(bfd) \
2960 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2961
2962 #define elf32_arm_local_got_tls_type(bfd) \
2963 (elf_arm_tdata (bfd)->local_got_tls_type)
2964
2965 #define elf32_arm_local_tlsdesc_gotent(bfd) \
2966 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
2967
2968 #define elf32_arm_local_iplt(bfd) \
2969 (elf_arm_tdata (bfd)->local_iplt)
2970
2971 #define is_arm_elf(bfd) \
2972 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2973 && elf_tdata (bfd) != NULL \
2974 && elf_object_id (bfd) == ARM_ELF_DATA)
2975
2976 static bfd_boolean
2977 elf32_arm_mkobject (bfd *abfd)
2978 {
2979 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2980 ARM_ELF_DATA);
2981 }
2982
2983 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2984
2985 /* Arm ELF linker hash entry. */
2986 struct elf32_arm_link_hash_entry
2987 {
2988 struct elf_link_hash_entry root;
2989
2990 /* Track dynamic relocs copied for this symbol. */
2991 struct elf_dyn_relocs *dyn_relocs;
2992
2993 /* ARM-specific PLT information. */
2994 struct arm_plt_info plt;
2995
2996 #define GOT_UNKNOWN 0
2997 #define GOT_NORMAL 1
2998 #define GOT_TLS_GD 2
2999 #define GOT_TLS_IE 4
3000 #define GOT_TLS_GDESC 8
3001 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
3002 unsigned int tls_type : 8;
3003
3004 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
3005 unsigned int is_iplt : 1;
3006
3007 unsigned int unused : 23;
3008
3009 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
3010 starting at the end of the jump table. */
3011 bfd_vma tlsdesc_got;
3012
3013 /* The symbol marking the real symbol location for exported thumb
3014 symbols with Arm stubs. */
3015 struct elf_link_hash_entry *export_glue;
3016
3017 /* A pointer to the most recently used stub hash entry against this
3018 symbol. */
3019 struct elf32_arm_stub_hash_entry *stub_cache;
3020 };
3021
3022 /* Traverse an arm ELF linker hash table. */
3023 #define elf32_arm_link_hash_traverse(table, func, info) \
3024 (elf_link_hash_traverse \
3025 (&(table)->root, \
3026 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
3027 (info)))
3028
3029 /* Get the ARM elf linker hash table from a link_info structure. */
3030 #define elf32_arm_hash_table(info) \
3031 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
3032 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
3033
3034 #define arm_stub_hash_lookup(table, string, create, copy) \
3035 ((struct elf32_arm_stub_hash_entry *) \
3036 bfd_hash_lookup ((table), (string), (create), (copy)))
3037
3038 /* Array to keep track of which stub sections have been created, and
3039 information on stub grouping. */
3040 struct map_stub
3041 {
3042 /* This is the section to which stubs in the group will be
3043 attached. */
3044 asection *link_sec;
3045 /* The stub section. */
3046 asection *stub_sec;
3047 };
3048
3049 #define elf32_arm_compute_jump_table_size(htab) \
3050 ((htab)->next_tls_desc_index * 4)
3051
3052 /* ARM ELF linker hash table. */
3053 struct elf32_arm_link_hash_table
3054 {
3055 /* The main hash table. */
3056 struct elf_link_hash_table root;
3057
3058 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
3059 bfd_size_type thumb_glue_size;
3060
3061 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
3062 bfd_size_type arm_glue_size;
3063
3064 /* The size in bytes of section containing the ARMv4 BX veneers. */
3065 bfd_size_type bx_glue_size;
3066
3067 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
3068 veneer has been populated. */
3069 bfd_vma bx_glue_offset[15];
3070
3071 /* The size in bytes of the section containing glue for VFP11 erratum
3072 veneers. */
3073 bfd_size_type vfp11_erratum_glue_size;
3074
3075 /* The size in bytes of the section containing glue for STM32L4XX erratum
3076 veneers. */
3077 bfd_size_type stm32l4xx_erratum_glue_size;
3078
3079 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
3080 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
3081 elf32_arm_write_section(). */
3082 struct a8_erratum_fix *a8_erratum_fixes;
3083 unsigned int num_a8_erratum_fixes;
3084
3085 /* An arbitrary input BFD chosen to hold the glue sections. */
3086 bfd * bfd_of_glue_owner;
3087
3088 /* Nonzero to output a BE8 image. */
3089 int byteswap_code;
3090
3091 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
3092 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
3093 int target1_is_rel;
3094
3095 /* The relocation to use for R_ARM_TARGET2 relocations. */
3096 int target2_reloc;
3097
3098 /* 0 = Ignore R_ARM_V4BX.
3099 1 = Convert BX to MOV PC.
3100 2 = Generate v4 interworing stubs. */
3101 int fix_v4bx;
3102
3103 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
3104 int fix_cortex_a8;
3105
3106 /* Whether we should fix the ARM1176 BLX immediate issue. */
3107 int fix_arm1176;
3108
3109 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
3110 int use_blx;
3111
3112 /* What sort of code sequences we should look for which may trigger the
3113 VFP11 denorm erratum. */
3114 bfd_arm_vfp11_fix vfp11_fix;
3115
3116 /* Global counter for the number of fixes we have emitted. */
3117 int num_vfp11_fixes;
3118
3119 /* What sort of code sequences we should look for which may trigger the
3120 STM32L4XX erratum. */
3121 bfd_arm_stm32l4xx_fix stm32l4xx_fix;
3122
3123 /* Global counter for the number of fixes we have emitted. */
3124 int num_stm32l4xx_fixes;
3125
3126 /* Nonzero to force PIC branch veneers. */
3127 int pic_veneer;
3128
3129 /* The number of bytes in the initial entry in the PLT. */
3130 bfd_size_type plt_header_size;
3131
3132 /* The number of bytes in the subsequent PLT etries. */
3133 bfd_size_type plt_entry_size;
3134
3135 /* True if the target system is VxWorks. */
3136 int vxworks_p;
3137
3138 /* True if the target system is Symbian OS. */
3139 int symbian_p;
3140
3141 /* True if the target system is Native Client. */
3142 int nacl_p;
3143
3144 /* True if the target uses REL relocations. */
3145 int use_rel;
3146
3147 /* Nonzero if import library must be a secure gateway import library
3148 as per ARMv8-M Security Extensions. */
3149 int cmse_implib;
3150
3151 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
3152 bfd_vma next_tls_desc_index;
3153
3154 /* How many R_ARM_TLS_DESC relocations were generated so far. */
3155 bfd_vma num_tls_desc;
3156
3157 /* Short-cuts to get to dynamic linker sections. */
3158 asection *sdynbss;
3159 asection *srelbss;
3160
3161 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
3162 asection *srelplt2;
3163
3164 /* The offset into splt of the PLT entry for the TLS descriptor
3165 resolver. Special values are 0, if not necessary (or not found
3166 to be necessary yet), and -1 if needed but not determined
3167 yet. */
3168 bfd_vma dt_tlsdesc_plt;
3169
3170 /* The offset into sgot of the GOT entry used by the PLT entry
3171 above. */
3172 bfd_vma dt_tlsdesc_got;
3173
3174 /* Offset in .plt section of tls_arm_trampoline. */
3175 bfd_vma tls_trampoline;
3176
3177 /* Data for R_ARM_TLS_LDM32 relocations. */
3178 union
3179 {
3180 bfd_signed_vma refcount;
3181 bfd_vma offset;
3182 } tls_ldm_got;
3183
3184 /* Small local sym cache. */
3185 struct sym_cache sym_cache;
3186
3187 /* For convenience in allocate_dynrelocs. */
3188 bfd * obfd;
3189
3190 /* The amount of space used by the reserved portion of the sgotplt
3191 section, plus whatever space is used by the jump slots. */
3192 bfd_vma sgotplt_jump_table_size;
3193
3194 /* The stub hash table. */
3195 struct bfd_hash_table stub_hash_table;
3196
3197 /* Linker stub bfd. */
3198 bfd *stub_bfd;
3199
3200 /* Linker call-backs. */
3201 asection * (*add_stub_section) (const char *, asection *, asection *,
3202 unsigned int);
3203 void (*layout_sections_again) (void);
3204
3205 /* Array to keep track of which stub sections have been created, and
3206 information on stub grouping. */
3207 struct map_stub *stub_group;
3208
3209 /* Input stub section holding secure gateway veneers. */
3210 asection *cmse_stub_sec;
3211
3212 /* Number of elements in stub_group. */
3213 unsigned int top_id;
3214
3215 /* Assorted information used by elf32_arm_size_stubs. */
3216 unsigned int bfd_count;
3217 unsigned int top_index;
3218 asection **input_list;
3219 };
3220
3221 static inline int
3222 ctz (unsigned int mask)
3223 {
3224 #if GCC_VERSION >= 3004
3225 return __builtin_ctz (mask);
3226 #else
3227 unsigned int i;
3228
3229 for (i = 0; i < 8 * sizeof (mask); i++)
3230 {
3231 if (mask & 0x1)
3232 break;
3233 mask = (mask >> 1);
3234 }
3235 return i;
3236 #endif
3237 }
3238
3239 static inline int
3240 popcount (unsigned int mask)
3241 {
3242 #if GCC_VERSION >= 3004
3243 return __builtin_popcount (mask);
3244 #else
3245 unsigned int i, sum = 0;
3246
3247 for (i = 0; i < 8 * sizeof (mask); i++)
3248 {
3249 if (mask & 0x1)
3250 sum++;
3251 mask = (mask >> 1);
3252 }
3253 return sum;
3254 #endif
3255 }
3256
3257 /* Create an entry in an ARM ELF linker hash table. */
3258
3259 static struct bfd_hash_entry *
3260 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
3261 struct bfd_hash_table * table,
3262 const char * string)
3263 {
3264 struct elf32_arm_link_hash_entry * ret =
3265 (struct elf32_arm_link_hash_entry *) entry;
3266
3267 /* Allocate the structure if it has not already been allocated by a
3268 subclass. */
3269 if (ret == NULL)
3270 ret = (struct elf32_arm_link_hash_entry *)
3271 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
3272 if (ret == NULL)
3273 return (struct bfd_hash_entry *) ret;
3274
3275 /* Call the allocation method of the superclass. */
3276 ret = ((struct elf32_arm_link_hash_entry *)
3277 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3278 table, string));
3279 if (ret != NULL)
3280 {
3281 ret->dyn_relocs = NULL;
3282 ret->tls_type = GOT_UNKNOWN;
3283 ret->tlsdesc_got = (bfd_vma) -1;
3284 ret->plt.thumb_refcount = 0;
3285 ret->plt.maybe_thumb_refcount = 0;
3286 ret->plt.noncall_refcount = 0;
3287 ret->plt.got_offset = -1;
3288 ret->is_iplt = FALSE;
3289 ret->export_glue = NULL;
3290
3291 ret->stub_cache = NULL;
3292 }
3293
3294 return (struct bfd_hash_entry *) ret;
3295 }
3296
3297 /* Ensure that we have allocated bookkeeping structures for ABFD's local
3298 symbols. */
3299
3300 static bfd_boolean
3301 elf32_arm_allocate_local_sym_info (bfd *abfd)
3302 {
3303 if (elf_local_got_refcounts (abfd) == NULL)
3304 {
3305 bfd_size_type num_syms;
3306 bfd_size_type size;
3307 char *data;
3308
3309 num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
3310 size = num_syms * (sizeof (bfd_signed_vma)
3311 + sizeof (struct arm_local_iplt_info *)
3312 + sizeof (bfd_vma)
3313 + sizeof (char));
3314 data = bfd_zalloc (abfd, size);
3315 if (data == NULL)
3316 return FALSE;
3317
3318 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data;
3319 data += num_syms * sizeof (bfd_signed_vma);
3320
3321 elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data;
3322 data += num_syms * sizeof (struct arm_local_iplt_info *);
3323
3324 elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data;
3325 data += num_syms * sizeof (bfd_vma);
3326
3327 elf32_arm_local_got_tls_type (abfd) = data;
3328 }
3329 return TRUE;
3330 }
3331
3332 /* Return the .iplt information for local symbol R_SYMNDX, which belongs
3333 to input bfd ABFD. Create the information if it doesn't already exist.
3334 Return null if an allocation fails. */
3335
3336 static struct arm_local_iplt_info *
3337 elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
3338 {
3339 struct arm_local_iplt_info **ptr;
3340
3341 if (!elf32_arm_allocate_local_sym_info (abfd))
3342 return NULL;
3343
3344 BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
3345 ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
3346 if (*ptr == NULL)
3347 *ptr = bfd_zalloc (abfd, sizeof (**ptr));
3348 return *ptr;
3349 }
3350
3351 /* Try to obtain PLT information for the symbol with index R_SYMNDX
3352 in ABFD's symbol table. If the symbol is global, H points to its
3353 hash table entry, otherwise H is null.
3354
3355 Return true if the symbol does have PLT information. When returning
3356 true, point *ROOT_PLT at the target-independent reference count/offset
3357 union and *ARM_PLT at the ARM-specific information. */
3358
3359 static bfd_boolean
3360 elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_table *globals,
3361 struct elf32_arm_link_hash_entry *h,
3362 unsigned long r_symndx, union gotplt_union **root_plt,
3363 struct arm_plt_info **arm_plt)
3364 {
3365 struct arm_local_iplt_info *local_iplt;
3366
3367 if (globals->root.splt == NULL && globals->root.iplt == NULL)
3368 return FALSE;
3369
3370 if (h != NULL)
3371 {
3372 *root_plt = &h->root.plt;
3373 *arm_plt = &h->plt;
3374 return TRUE;
3375 }
3376
3377 if (elf32_arm_local_iplt (abfd) == NULL)
3378 return FALSE;
3379
3380 local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
3381 if (local_iplt == NULL)
3382 return FALSE;
3383
3384 *root_plt = &local_iplt->root;
3385 *arm_plt = &local_iplt->arm;
3386 return TRUE;
3387 }
3388
3389 /* Return true if the PLT described by ARM_PLT requires a Thumb stub
3390 before it. */
3391
3392 static bfd_boolean
3393 elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
3394 struct arm_plt_info *arm_plt)
3395 {
3396 struct elf32_arm_link_hash_table *htab;
3397
3398 htab = elf32_arm_hash_table (info);
3399 return (arm_plt->thumb_refcount != 0
3400 || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0));
3401 }
3402
3403 /* Return a pointer to the head of the dynamic reloc list that should
3404 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3405 ABFD's symbol table. Return null if an error occurs. */
3406
3407 static struct elf_dyn_relocs **
3408 elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
3409 Elf_Internal_Sym *isym)
3410 {
3411 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
3412 {
3413 struct arm_local_iplt_info *local_iplt;
3414
3415 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
3416 if (local_iplt == NULL)
3417 return NULL;
3418 return &local_iplt->dyn_relocs;
3419 }
3420 else
3421 {
3422 /* Track dynamic relocs needed for local syms too.
3423 We really need local syms available to do this
3424 easily. Oh well. */
3425 asection *s;
3426 void *vpp;
3427
3428 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3429 if (s == NULL)
3430 abort ();
3431
3432 vpp = &elf_section_data (s)->local_dynrel;
3433 return (struct elf_dyn_relocs **) vpp;
3434 }
3435 }
3436
3437 /* Initialize an entry in the stub hash table. */
3438
3439 static struct bfd_hash_entry *
3440 stub_hash_newfunc (struct bfd_hash_entry *entry,
3441 struct bfd_hash_table *table,
3442 const char *string)
3443 {
3444 /* Allocate the structure if it has not already been allocated by a
3445 subclass. */
3446 if (entry == NULL)
3447 {
3448 entry = (struct bfd_hash_entry *)
3449 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
3450 if (entry == NULL)
3451 return entry;
3452 }
3453
3454 /* Call the allocation method of the superclass. */
3455 entry = bfd_hash_newfunc (entry, table, string);
3456 if (entry != NULL)
3457 {
3458 struct elf32_arm_stub_hash_entry *eh;
3459
3460 /* Initialize the local fields. */
3461 eh = (struct elf32_arm_stub_hash_entry *) entry;
3462 eh->stub_sec = NULL;
3463 eh->stub_offset = 0;
3464 eh->source_value = 0;
3465 eh->target_value = 0;
3466 eh->target_section = NULL;
3467 eh->orig_insn = 0;
3468 eh->stub_type = arm_stub_none;
3469 eh->stub_size = 0;
3470 eh->stub_template = NULL;
3471 eh->stub_template_size = 0;
3472 eh->h = NULL;
3473 eh->id_sec = NULL;
3474 eh->output_name = NULL;
3475 }
3476
3477 return entry;
3478 }
3479
3480 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
3481 shortcuts to them in our hash table. */
3482
3483 static bfd_boolean
3484 create_got_section (bfd *dynobj, struct bfd_link_info *info)
3485 {
3486 struct elf32_arm_link_hash_table *htab;
3487
3488 htab = elf32_arm_hash_table (info);
3489 if (htab == NULL)
3490 return FALSE;
3491
3492 /* BPABI objects never have a GOT, or associated sections. */
3493 if (htab->symbian_p)
3494 return TRUE;
3495
3496 if (! _bfd_elf_create_got_section (dynobj, info))
3497 return FALSE;
3498
3499 return TRUE;
3500 }
3501
3502 /* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3503
3504 static bfd_boolean
3505 create_ifunc_sections (struct bfd_link_info *info)
3506 {
3507 struct elf32_arm_link_hash_table *htab;
3508 const struct elf_backend_data *bed;
3509 bfd *dynobj;
3510 asection *s;
3511 flagword flags;
3512
3513 htab = elf32_arm_hash_table (info);
3514 dynobj = htab->root.dynobj;
3515 bed = get_elf_backend_data (dynobj);
3516 flags = bed->dynamic_sec_flags;
3517
3518 if (htab->root.iplt == NULL)
3519 {
3520 s = bfd_make_section_anyway_with_flags (dynobj, ".iplt",
3521 flags | SEC_READONLY | SEC_CODE);
3522 if (s == NULL
3523 || !bfd_set_section_alignment (dynobj, s, bed->plt_alignment))
3524 return FALSE;
3525 htab->root.iplt = s;
3526 }
3527
3528 if (htab->root.irelplt == NULL)
3529 {
3530 s = bfd_make_section_anyway_with_flags (dynobj,
3531 RELOC_SECTION (htab, ".iplt"),
3532 flags | SEC_READONLY);
3533 if (s == NULL
3534 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3535 return FALSE;
3536 htab->root.irelplt = s;
3537 }
3538
3539 if (htab->root.igotplt == NULL)
3540 {
3541 s = bfd_make_section_anyway_with_flags (dynobj, ".igot.plt", flags);
3542 if (s == NULL
3543 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3544 return FALSE;
3545 htab->root.igotplt = s;
3546 }
3547 return TRUE;
3548 }
3549
3550 /* Determine if we're dealing with a Thumb only architecture. */
3551
3552 static bfd_boolean
3553 using_thumb_only (struct elf32_arm_link_hash_table *globals)
3554 {
3555 int arch;
3556 int profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3557 Tag_CPU_arch_profile);
3558
3559 if (profile)
3560 return profile == 'M';
3561
3562 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3563
3564 /* Force return logic to be reviewed for each new architecture. */
3565 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8
3566 || arch == TAG_CPU_ARCH_V8M_BASE
3567 || arch == TAG_CPU_ARCH_V8M_MAIN);
3568
3569 if (arch == TAG_CPU_ARCH_V6_M
3570 || arch == TAG_CPU_ARCH_V6S_M
3571 || arch == TAG_CPU_ARCH_V7E_M
3572 || arch == TAG_CPU_ARCH_V8M_BASE
3573 || arch == TAG_CPU_ARCH_V8M_MAIN)
3574 return TRUE;
3575
3576 return FALSE;
3577 }
3578
3579 /* Determine if we're dealing with a Thumb-2 object. */
3580
3581 static bfd_boolean
3582 using_thumb2 (struct elf32_arm_link_hash_table *globals)
3583 {
3584 int arch;
3585 int thumb_isa = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3586 Tag_THUMB_ISA_use);
3587
3588 if (thumb_isa)
3589 return thumb_isa == 2;
3590
3591 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3592
3593 /* Force return logic to be reviewed for each new architecture. */
3594 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8
3595 || arch == TAG_CPU_ARCH_V8M_BASE
3596 || arch == TAG_CPU_ARCH_V8M_MAIN);
3597
3598 return (arch == TAG_CPU_ARCH_V6T2
3599 || arch == TAG_CPU_ARCH_V7
3600 || arch == TAG_CPU_ARCH_V7E_M
3601 || arch == TAG_CPU_ARCH_V8
3602 || arch == TAG_CPU_ARCH_V8M_MAIN);
3603 }
3604
3605 /* Determine whether Thumb-2 BL instruction is available. */
3606
3607 static bfd_boolean
3608 using_thumb2_bl (struct elf32_arm_link_hash_table *globals)
3609 {
3610 int arch =
3611 bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3612
3613 /* Force return logic to be reviewed for each new architecture. */
3614 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8
3615 || arch == TAG_CPU_ARCH_V8M_BASE
3616 || arch == TAG_CPU_ARCH_V8M_MAIN);
3617
3618 /* Architecture was introduced after ARMv6T2 (eg. ARMv6-M). */
3619 return (arch == TAG_CPU_ARCH_V6T2
3620 || arch >= TAG_CPU_ARCH_V7);
3621 }
3622
3623 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3624 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
3625 hash table. */
3626
3627 static bfd_boolean
3628 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3629 {
3630 struct elf32_arm_link_hash_table *htab;
3631
3632 htab = elf32_arm_hash_table (info);
3633 if (htab == NULL)
3634 return FALSE;
3635
3636 if (!htab->root.sgot && !create_got_section (dynobj, info))
3637 return FALSE;
3638
3639 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3640 return FALSE;
3641
3642 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
3643 if (!bfd_link_pic (info))
3644 htab->srelbss = bfd_get_linker_section (dynobj,
3645 RELOC_SECTION (htab, ".bss"));
3646
3647 if (htab->vxworks_p)
3648 {
3649 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
3650 return FALSE;
3651
3652 if (bfd_link_pic (info))
3653 {
3654 htab->plt_header_size = 0;
3655 htab->plt_entry_size
3656 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
3657 }
3658 else
3659 {
3660 htab->plt_header_size
3661 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
3662 htab->plt_entry_size
3663 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
3664 }
3665
3666 if (elf_elfheader (dynobj))
3667 elf_elfheader (dynobj)->e_ident[EI_CLASS] = ELFCLASS32;
3668 }
3669 else
3670 {
3671 /* PR ld/16017
3672 Test for thumb only architectures. Note - we cannot just call
3673 using_thumb_only() as the attributes in the output bfd have not been
3674 initialised at this point, so instead we use the input bfd. */
3675 bfd * saved_obfd = htab->obfd;
3676
3677 htab->obfd = dynobj;
3678 if (using_thumb_only (htab))
3679 {
3680 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
3681 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
3682 }
3683 htab->obfd = saved_obfd;
3684 }
3685
3686 if (!htab->root.splt
3687 || !htab->root.srelplt
3688 || !htab->sdynbss
3689 || (!bfd_link_pic (info) && !htab->srelbss))
3690 abort ();
3691
3692 return TRUE;
3693 }
3694
3695 /* Copy the extra info we tack onto an elf_link_hash_entry. */
3696
3697 static void
3698 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
3699 struct elf_link_hash_entry *dir,
3700 struct elf_link_hash_entry *ind)
3701 {
3702 struct elf32_arm_link_hash_entry *edir, *eind;
3703
3704 edir = (struct elf32_arm_link_hash_entry *) dir;
3705 eind = (struct elf32_arm_link_hash_entry *) ind;
3706
3707 if (eind->dyn_relocs != NULL)
3708 {
3709 if (edir->dyn_relocs != NULL)
3710 {
3711 struct elf_dyn_relocs **pp;
3712 struct elf_dyn_relocs *p;
3713
3714 /* Add reloc counts against the indirect sym to the direct sym
3715 list. Merge any entries against the same section. */
3716 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
3717 {
3718 struct elf_dyn_relocs *q;
3719
3720 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3721 if (q->sec == p->sec)
3722 {
3723 q->pc_count += p->pc_count;
3724 q->count += p->count;
3725 *pp = p->next;
3726 break;
3727 }
3728 if (q == NULL)
3729 pp = &p->next;
3730 }
3731 *pp = edir->dyn_relocs;
3732 }
3733
3734 edir->dyn_relocs = eind->dyn_relocs;
3735 eind->dyn_relocs = NULL;
3736 }
3737
3738 if (ind->root.type == bfd_link_hash_indirect)
3739 {
3740 /* Copy over PLT info. */
3741 edir->plt.thumb_refcount += eind->plt.thumb_refcount;
3742 eind->plt.thumb_refcount = 0;
3743 edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
3744 eind->plt.maybe_thumb_refcount = 0;
3745 edir->plt.noncall_refcount += eind->plt.noncall_refcount;
3746 eind->plt.noncall_refcount = 0;
3747
3748 /* We should only allocate a function to .iplt once the final
3749 symbol information is known. */
3750 BFD_ASSERT (!eind->is_iplt);
3751
3752 if (dir->got.refcount <= 0)
3753 {
3754 edir->tls_type = eind->tls_type;
3755 eind->tls_type = GOT_UNKNOWN;
3756 }
3757 }
3758
3759 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
3760 }
3761
3762 /* Destroy an ARM elf linker hash table. */
3763
3764 static void
3765 elf32_arm_link_hash_table_free (bfd *obfd)
3766 {
3767 struct elf32_arm_link_hash_table *ret
3768 = (struct elf32_arm_link_hash_table *) obfd->link.hash;
3769
3770 bfd_hash_table_free (&ret->stub_hash_table);
3771 _bfd_elf_link_hash_table_free (obfd);
3772 }
3773
3774 /* Create an ARM elf linker hash table. */
3775
3776 static struct bfd_link_hash_table *
3777 elf32_arm_link_hash_table_create (bfd *abfd)
3778 {
3779 struct elf32_arm_link_hash_table *ret;
3780 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
3781
3782 ret = (struct elf32_arm_link_hash_table *) bfd_zmalloc (amt);
3783 if (ret == NULL)
3784 return NULL;
3785
3786 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
3787 elf32_arm_link_hash_newfunc,
3788 sizeof (struct elf32_arm_link_hash_entry),
3789 ARM_ELF_DATA))
3790 {
3791 free (ret);
3792 return NULL;
3793 }
3794
3795 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
3796 ret->stm32l4xx_fix = BFD_ARM_STM32L4XX_FIX_NONE;
3797 #ifdef FOUR_WORD_PLT
3798 ret->plt_header_size = 16;
3799 ret->plt_entry_size = 16;
3800 #else
3801 ret->plt_header_size = 20;
3802 ret->plt_entry_size = elf32_arm_use_long_plt_entry ? 16 : 12;
3803 #endif
3804 ret->use_rel = 1;
3805 ret->obfd = abfd;
3806
3807 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
3808 sizeof (struct elf32_arm_stub_hash_entry)))
3809 {
3810 _bfd_elf_link_hash_table_free (abfd);
3811 return NULL;
3812 }
3813 ret->root.root.hash_table_free = elf32_arm_link_hash_table_free;
3814
3815 return &ret->root.root;
3816 }
3817
3818 /* Determine what kind of NOPs are available. */
3819
3820 static bfd_boolean
3821 arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
3822 {
3823 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3824 Tag_CPU_arch);
3825
3826 /* Force return logic to be reviewed for each new architecture. */
3827 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8
3828 || arch == TAG_CPU_ARCH_V8M_BASE
3829 || arch == TAG_CPU_ARCH_V8M_MAIN);
3830
3831 return (arch == TAG_CPU_ARCH_V6T2
3832 || arch == TAG_CPU_ARCH_V6K
3833 || arch == TAG_CPU_ARCH_V7
3834 || arch == TAG_CPU_ARCH_V8);
3835 }
3836
3837 static bfd_boolean
3838 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
3839 {
3840 switch (stub_type)
3841 {
3842 case arm_stub_long_branch_thumb_only:
3843 case arm_stub_long_branch_thumb2_only:
3844 case arm_stub_long_branch_thumb2_only_pure:
3845 case arm_stub_long_branch_v4t_thumb_arm:
3846 case arm_stub_short_branch_v4t_thumb_arm:
3847 case arm_stub_long_branch_v4t_thumb_arm_pic:
3848 case arm_stub_long_branch_v4t_thumb_tls_pic:
3849 case arm_stub_long_branch_thumb_only_pic:
3850 case arm_stub_cmse_branch_thumb_only:
3851 return TRUE;
3852 case arm_stub_none:
3853 BFD_FAIL ();
3854 return FALSE;
3855 break;
3856 default:
3857 return FALSE;
3858 }
3859 }
3860
3861 /* Determine the type of stub needed, if any, for a call. */
3862
3863 static enum elf32_arm_stub_type
3864 arm_type_of_stub (struct bfd_link_info *info,
3865 asection *input_sec,
3866 const Elf_Internal_Rela *rel,
3867 unsigned char st_type,
3868 enum arm_st_branch_type *actual_branch_type,
3869 struct elf32_arm_link_hash_entry *hash,
3870 bfd_vma destination,
3871 asection *sym_sec,
3872 bfd *input_bfd,
3873 const char *name)
3874 {
3875 bfd_vma location;
3876 bfd_signed_vma branch_offset;
3877 unsigned int r_type;
3878 struct elf32_arm_link_hash_table * globals;
3879 bfd_boolean thumb2, thumb2_bl, thumb_only;
3880 enum elf32_arm_stub_type stub_type = arm_stub_none;
3881 int use_plt = 0;
3882 enum arm_st_branch_type branch_type = *actual_branch_type;
3883 union gotplt_union *root_plt;
3884 struct arm_plt_info *arm_plt;
3885 int arch;
3886 int thumb2_movw;
3887
3888 if (branch_type == ST_BRANCH_LONG)
3889 return stub_type;
3890
3891 globals = elf32_arm_hash_table (info);
3892 if (globals == NULL)
3893 return stub_type;
3894
3895 thumb_only = using_thumb_only (globals);
3896 thumb2 = using_thumb2 (globals);
3897 thumb2_bl = using_thumb2_bl (globals);
3898
3899 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3900
3901 /* True for architectures that implement the thumb2 movw instruction. */
3902 thumb2_movw = thumb2 || (arch == TAG_CPU_ARCH_V8M_BASE);
3903
3904 /* Determine where the call point is. */
3905 location = (input_sec->output_offset
3906 + input_sec->output_section->vma
3907 + rel->r_offset);
3908
3909 r_type = ELF32_R_TYPE (rel->r_info);
3910
3911 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
3912 are considering a function call relocation. */
3913 if (thumb_only && (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
3914 || r_type == R_ARM_THM_JUMP19)
3915 && branch_type == ST_BRANCH_TO_ARM)
3916 branch_type = ST_BRANCH_TO_THUMB;
3917
3918 /* For TLS call relocs, it is the caller's responsibility to provide
3919 the address of the appropriate trampoline. */
3920 if (r_type != R_ARM_TLS_CALL
3921 && r_type != R_ARM_THM_TLS_CALL
3922 && elf32_arm_get_plt_info (input_bfd, globals, hash,
3923 ELF32_R_SYM (rel->r_info), &root_plt,
3924 &arm_plt)
3925 && root_plt->offset != (bfd_vma) -1)
3926 {
3927 asection *splt;
3928
3929 if (hash == NULL || hash->is_iplt)
3930 splt = globals->root.iplt;
3931 else
3932 splt = globals->root.splt;
3933 if (splt != NULL)
3934 {
3935 use_plt = 1;
3936
3937 /* Note when dealing with PLT entries: the main PLT stub is in
3938 ARM mode, so if the branch is in Thumb mode, another
3939 Thumb->ARM stub will be inserted later just before the ARM
3940 PLT stub. We don't take this extra distance into account
3941 here, because if a long branch stub is needed, we'll add a
3942 Thumb->Arm one and branch directly to the ARM PLT entry
3943 because it avoids spreading offset corrections in several
3944 places. */
3945
3946 destination = (splt->output_section->vma
3947 + splt->output_offset
3948 + root_plt->offset);
3949 st_type = STT_FUNC;
3950 branch_type = ST_BRANCH_TO_ARM;
3951 }
3952 }
3953 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
3954 BFD_ASSERT (st_type != STT_GNU_IFUNC);
3955
3956 branch_offset = (bfd_signed_vma)(destination - location);
3957
3958 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
3959 || r_type == R_ARM_THM_TLS_CALL || r_type == R_ARM_THM_JUMP19)
3960 {
3961 /* Handle cases where:
3962 - this call goes too far (different Thumb/Thumb2 max
3963 distance)
3964 - it's a Thumb->Arm call and blx is not available, or it's a
3965 Thumb->Arm branch (not bl). A stub is needed in this case,
3966 but only if this call is not through a PLT entry. Indeed,
3967 PLT stubs handle mode switching already.
3968 */
3969 if ((!thumb2_bl
3970 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
3971 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
3972 || (thumb2_bl
3973 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
3974 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
3975 || (thumb2
3976 && (branch_offset > THM2_MAX_FWD_COND_BRANCH_OFFSET
3977 || (branch_offset < THM2_MAX_BWD_COND_BRANCH_OFFSET))
3978 && (r_type == R_ARM_THM_JUMP19))
3979 || (branch_type == ST_BRANCH_TO_ARM
3980 && (((r_type == R_ARM_THM_CALL
3981 || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
3982 || (r_type == R_ARM_THM_JUMP24)
3983 || (r_type == R_ARM_THM_JUMP19))
3984 && !use_plt))
3985 {
3986 if (branch_type == ST_BRANCH_TO_THUMB)
3987 {
3988 /* Thumb to thumb. */
3989 if (!thumb_only)
3990 {
3991 if (input_sec->flags & SEC_ELF_PURECODE)
3992 (*_bfd_error_handler) (_("%B(%s): warning: long branch "
3993 " veneers used in section with "
3994 "SHF_ARM_PURECODE section "
3995 "attribute is only supported"
3996 " for M-profile targets that "
3997 "implement the movw "
3998 "instruction."));
3999
4000 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4001 /* PIC stubs. */
4002 ? ((globals->use_blx
4003 && (r_type == R_ARM_THM_CALL))
4004 /* V5T and above. Stub starts with ARM code, so
4005 we must be able to switch mode before
4006 reaching it, which is only possible for 'bl'
4007 (ie R_ARM_THM_CALL relocation). */
4008 ? arm_stub_long_branch_any_thumb_pic
4009 /* On V4T, use Thumb code only. */
4010 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4011
4012 /* non-PIC stubs. */
4013 : ((globals->use_blx
4014 && (r_type == R_ARM_THM_CALL))
4015 /* V5T and above. */
4016 ? arm_stub_long_branch_any_any
4017 /* V4T. */
4018 : arm_stub_long_branch_v4t_thumb_thumb);
4019 }
4020 else
4021 {
4022 if (thumb2_movw && (input_sec->flags & SEC_ELF_PURECODE))
4023 stub_type = arm_stub_long_branch_thumb2_only_pure;
4024 else
4025 {
4026 if (input_sec->flags & SEC_ELF_PURECODE)
4027 (*_bfd_error_handler) (_("%B(%s): warning: long branch "
4028 " veneers used in section with "
4029 "SHF_ARM_PURECODE section "
4030 "attribute is only supported"
4031 " for M-profile targets that "
4032 "implement the movw "
4033 "instruction."));
4034
4035 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4036 /* PIC stub. */
4037 ? arm_stub_long_branch_thumb_only_pic
4038 /* non-PIC stub. */
4039 : (thumb2 ? arm_stub_long_branch_thumb2_only
4040 : arm_stub_long_branch_thumb_only);
4041 }
4042 }
4043 }
4044 else
4045 {
4046 if (input_sec->flags & SEC_ELF_PURECODE)
4047 (*_bfd_error_handler) (_("%B(%s): warning: long branch "
4048 " veneers used in section with "
4049 "SHF_ARM_PURECODE section "
4050 "attribute is only supported"
4051 " for M-profile targets that "
4052 "implement the movw "
4053 "instruction."));
4054
4055 /* Thumb to arm. */
4056 if (sym_sec != NULL
4057 && sym_sec->owner != NULL
4058 && !INTERWORK_FLAG (sym_sec->owner))
4059 {
4060 (*_bfd_error_handler)
4061 (_("%B(%s): warning: interworking not enabled.\n"
4062 " first occurrence: %B: Thumb call to ARM"),
4063 sym_sec->owner, input_bfd, name);
4064 }
4065
4066 stub_type =
4067 (bfd_link_pic (info) | globals->pic_veneer)
4068 /* PIC stubs. */
4069 ? (r_type == R_ARM_THM_TLS_CALL
4070 /* TLS PIC stubs. */
4071 ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
4072 : arm_stub_long_branch_v4t_thumb_tls_pic)
4073 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
4074 /* V5T PIC and above. */
4075 ? arm_stub_long_branch_any_arm_pic
4076 /* V4T PIC stub. */
4077 : arm_stub_long_branch_v4t_thumb_arm_pic))
4078
4079 /* non-PIC stubs. */
4080 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
4081 /* V5T and above. */
4082 ? arm_stub_long_branch_any_any
4083 /* V4T. */
4084 : arm_stub_long_branch_v4t_thumb_arm);
4085
4086 /* Handle v4t short branches. */
4087 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4088 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4089 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4090 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4091 }
4092 }
4093 }
4094 else if (r_type == R_ARM_CALL
4095 || r_type == R_ARM_JUMP24
4096 || r_type == R_ARM_PLT32
4097 || r_type == R_ARM_TLS_CALL)
4098 {
4099 if (input_sec->flags & SEC_ELF_PURECODE)
4100 (*_bfd_error_handler) (_("%B(%s): warning: long branch "
4101 " veneers used in section with "
4102 "SHF_ARM_PURECODE section "
4103 "attribute is only supported"
4104 " for M-profile targets that "
4105 "implement the movw "
4106 "instruction."));
4107 if (branch_type == ST_BRANCH_TO_THUMB)
4108 {
4109 /* Arm to thumb. */
4110
4111 if (sym_sec != NULL
4112 && sym_sec->owner != NULL
4113 && !INTERWORK_FLAG (sym_sec->owner))
4114 {
4115 (*_bfd_error_handler)
4116 (_("%B(%s): warning: interworking not enabled.\n"
4117 " first occurrence: %B: ARM call to Thumb"),
4118 sym_sec->owner, input_bfd, name);
4119 }
4120
4121 /* We have an extra 2-bytes reach because of
4122 the mode change (bit 24 (H) of BLX encoding). */
4123 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4124 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4125 || (r_type == R_ARM_CALL && !globals->use_blx)
4126 || (r_type == R_ARM_JUMP24)
4127 || (r_type == R_ARM_PLT32))
4128 {
4129 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4130 /* PIC stubs. */
4131 ? ((globals->use_blx)
4132 /* V5T and above. */
4133 ? arm_stub_long_branch_any_thumb_pic
4134 /* V4T stub. */
4135 : arm_stub_long_branch_v4t_arm_thumb_pic)
4136
4137 /* non-PIC stubs. */
4138 : ((globals->use_blx)
4139 /* V5T and above. */
4140 ? arm_stub_long_branch_any_any
4141 /* V4T. */
4142 : arm_stub_long_branch_v4t_arm_thumb);
4143 }
4144 }
4145 else
4146 {
4147 /* Arm to arm. */
4148 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4149 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4150 {
4151 stub_type =
4152 (bfd_link_pic (info) | globals->pic_veneer)
4153 /* PIC stubs. */
4154 ? (r_type == R_ARM_TLS_CALL
4155 /* TLS PIC Stub. */
4156 ? arm_stub_long_branch_any_tls_pic
4157 : (globals->nacl_p
4158 ? arm_stub_long_branch_arm_nacl_pic
4159 : arm_stub_long_branch_any_arm_pic))
4160 /* non-PIC stubs. */
4161 : (globals->nacl_p
4162 ? arm_stub_long_branch_arm_nacl
4163 : arm_stub_long_branch_any_any);
4164 }
4165 }
4166 }
4167
4168 /* If a stub is needed, record the actual destination type. */
4169 if (stub_type != arm_stub_none)
4170 *actual_branch_type = branch_type;
4171
4172 return stub_type;
4173 }
4174
4175 /* Build a name for an entry in the stub hash table. */
4176
4177 static char *
4178 elf32_arm_stub_name (const asection *input_section,
4179 const asection *sym_sec,
4180 const struct elf32_arm_link_hash_entry *hash,
4181 const Elf_Internal_Rela *rel,
4182 enum elf32_arm_stub_type stub_type)
4183 {
4184 char *stub_name;
4185 bfd_size_type len;
4186
4187 if (hash)
4188 {
4189 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
4190 stub_name = (char *) bfd_malloc (len);
4191 if (stub_name != NULL)
4192 sprintf (stub_name, "%08x_%s+%x_%d",
4193 input_section->id & 0xffffffff,
4194 hash->root.root.root.string,
4195 (int) rel->r_addend & 0xffffffff,
4196 (int) stub_type);
4197 }
4198 else
4199 {
4200 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
4201 stub_name = (char *) bfd_malloc (len);
4202 if (stub_name != NULL)
4203 sprintf (stub_name, "%08x_%x:%x+%x_%d",
4204 input_section->id & 0xffffffff,
4205 sym_sec->id & 0xffffffff,
4206 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
4207 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
4208 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
4209 (int) rel->r_addend & 0xffffffff,
4210 (int) stub_type);
4211 }
4212
4213 return stub_name;
4214 }
4215
4216 /* Look up an entry in the stub hash. Stub entries are cached because
4217 creating the stub name takes a bit of time. */
4218
4219 static struct elf32_arm_stub_hash_entry *
4220 elf32_arm_get_stub_entry (const asection *input_section,
4221 const asection *sym_sec,
4222 struct elf_link_hash_entry *hash,
4223 const Elf_Internal_Rela *rel,
4224 struct elf32_arm_link_hash_table *htab,
4225 enum elf32_arm_stub_type stub_type)
4226 {
4227 struct elf32_arm_stub_hash_entry *stub_entry;
4228 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
4229 const asection *id_sec;
4230
4231 if ((input_section->flags & SEC_CODE) == 0)
4232 return NULL;
4233
4234 /* If this input section is part of a group of sections sharing one
4235 stub section, then use the id of the first section in the group.
4236 Stub names need to include a section id, as there may well be
4237 more than one stub used to reach say, printf, and we need to
4238 distinguish between them. */
4239 id_sec = htab->stub_group[input_section->id].link_sec;
4240
4241 if (h != NULL && h->stub_cache != NULL
4242 && h->stub_cache->h == h
4243 && h->stub_cache->id_sec == id_sec
4244 && h->stub_cache->stub_type == stub_type)
4245 {
4246 stub_entry = h->stub_cache;
4247 }
4248 else
4249 {
4250 char *stub_name;
4251
4252 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
4253 if (stub_name == NULL)
4254 return NULL;
4255
4256 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
4257 stub_name, FALSE, FALSE);
4258 if (h != NULL)
4259 h->stub_cache = stub_entry;
4260
4261 free (stub_name);
4262 }
4263
4264 return stub_entry;
4265 }
4266
4267 /* Whether veneers of type STUB_TYPE require to be in a dedicated output
4268 section. */
4269
4270 static bfd_boolean
4271 arm_dedicated_stub_output_section_required (enum elf32_arm_stub_type stub_type)
4272 {
4273 if (stub_type >= max_stub_type)
4274 abort (); /* Should be unreachable. */
4275
4276 switch (stub_type)
4277 {
4278 case arm_stub_cmse_branch_thumb_only:
4279 return TRUE;
4280
4281 default:
4282 return FALSE;
4283 }
4284
4285 abort (); /* Should be unreachable. */
4286 }
4287
4288 /* Required alignment (as a power of 2) for the dedicated section holding
4289 veneers of type STUB_TYPE, or 0 if veneers of this type are interspersed
4290 with input sections. */
4291
4292 static int
4293 arm_dedicated_stub_output_section_required_alignment
4294 (enum elf32_arm_stub_type stub_type)
4295 {
4296 if (stub_type >= max_stub_type)
4297 abort (); /* Should be unreachable. */
4298
4299 switch (stub_type)
4300 {
4301 /* Vectors of Secure Gateway veneers must be aligned on 32byte
4302 boundary. */
4303 case arm_stub_cmse_branch_thumb_only:
4304 return 5;
4305
4306 default:
4307 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4308 return 0;
4309 }
4310
4311 abort (); /* Should be unreachable. */
4312 }
4313
4314 /* Name of the dedicated output section to put veneers of type STUB_TYPE, or
4315 NULL if veneers of this type are interspersed with input sections. */
4316
4317 static const char *
4318 arm_dedicated_stub_output_section_name (enum elf32_arm_stub_type stub_type)
4319 {
4320 if (stub_type >= max_stub_type)
4321 abort (); /* Should be unreachable. */
4322
4323 switch (stub_type)
4324 {
4325 case arm_stub_cmse_branch_thumb_only:
4326 return ".gnu.sgstubs";
4327
4328 default:
4329 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4330 return NULL;
4331 }
4332
4333 abort (); /* Should be unreachable. */
4334 }
4335
4336 /* If veneers of type STUB_TYPE should go in a dedicated output section,
4337 returns the address of the hash table field in HTAB holding a pointer to the
4338 corresponding input section. Otherwise, returns NULL. */
4339
4340 static asection **
4341 arm_dedicated_stub_input_section_ptr (struct elf32_arm_link_hash_table *htab,
4342 enum elf32_arm_stub_type stub_type)
4343 {
4344 if (stub_type >= max_stub_type)
4345 abort (); /* Should be unreachable. */
4346
4347 switch (stub_type)
4348 {
4349 case arm_stub_cmse_branch_thumb_only:
4350 return &htab->cmse_stub_sec;
4351
4352 default:
4353 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4354 return NULL;
4355 }
4356
4357 abort (); /* Should be unreachable. */
4358 }
4359
4360 /* Find or create a stub section to contain a stub of type STUB_TYPE. SECTION
4361 is the section that branch into veneer and can be NULL if stub should go in
4362 a dedicated output section. Returns a pointer to the stub section, and the
4363 section to which the stub section will be attached (in *LINK_SEC_P).
4364 LINK_SEC_P may be NULL. */
4365
4366 static asection *
4367 elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
4368 struct elf32_arm_link_hash_table *htab,
4369 enum elf32_arm_stub_type stub_type)
4370 {
4371 asection *link_sec, *out_sec, **stub_sec_p;
4372 const char *stub_sec_prefix;
4373 bfd_boolean dedicated_output_section =
4374 arm_dedicated_stub_output_section_required (stub_type);
4375 int align;
4376
4377 if (dedicated_output_section)
4378 {
4379 bfd *output_bfd = htab->obfd;
4380 const char *out_sec_name =
4381 arm_dedicated_stub_output_section_name (stub_type);
4382 link_sec = NULL;
4383 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
4384 stub_sec_prefix = out_sec_name;
4385 align = arm_dedicated_stub_output_section_required_alignment (stub_type);
4386 out_sec = bfd_get_section_by_name (output_bfd, out_sec_name);
4387 if (out_sec == NULL)
4388 {
4389 (*_bfd_error_handler) (_("No address assigned to the veneers output "
4390 "section %s"), out_sec_name);
4391 return NULL;
4392 }
4393 }
4394 else
4395 {
4396 link_sec = htab->stub_group[section->id].link_sec;
4397 BFD_ASSERT (link_sec != NULL);
4398 stub_sec_p = &htab->stub_group[section->id].stub_sec;
4399 if (*stub_sec_p == NULL)
4400 stub_sec_p = &htab->stub_group[link_sec->id].stub_sec;
4401 stub_sec_prefix = link_sec->name;
4402 out_sec = link_sec->output_section;
4403 align = htab->nacl_p ? 4 : 3;
4404 }
4405
4406 if (*stub_sec_p == NULL)
4407 {
4408 size_t namelen;
4409 bfd_size_type len;
4410 char *s_name;
4411
4412 namelen = strlen (stub_sec_prefix);
4413 len = namelen + sizeof (STUB_SUFFIX);
4414 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
4415 if (s_name == NULL)
4416 return NULL;
4417
4418 memcpy (s_name, stub_sec_prefix, namelen);
4419 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4420 *stub_sec_p = (*htab->add_stub_section) (s_name, out_sec, link_sec,
4421 align);
4422 if (*stub_sec_p == NULL)
4423 return NULL;
4424
4425 out_sec->flags |= SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_CODE
4426 | SEC_HAS_CONTENTS | SEC_RELOC | SEC_IN_MEMORY
4427 | SEC_KEEP;
4428 }
4429
4430 if (!dedicated_output_section)
4431 htab->stub_group[section->id].stub_sec = *stub_sec_p;
4432
4433 if (link_sec_p)
4434 *link_sec_p = link_sec;
4435
4436 return *stub_sec_p;
4437 }
4438
4439 /* Add a new stub entry to the stub hash. Not all fields of the new
4440 stub entry are initialised. */
4441
4442 static struct elf32_arm_stub_hash_entry *
4443 elf32_arm_add_stub (const char *stub_name, asection *section,
4444 struct elf32_arm_link_hash_table *htab,
4445 enum elf32_arm_stub_type stub_type)
4446 {
4447 asection *link_sec;
4448 asection *stub_sec;
4449 struct elf32_arm_stub_hash_entry *stub_entry;
4450
4451 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab,
4452 stub_type);
4453 if (stub_sec == NULL)
4454 return NULL;
4455
4456 /* Enter this entry into the linker stub hash table. */
4457 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4458 TRUE, FALSE);
4459 if (stub_entry == NULL)
4460 {
4461 if (section == NULL)
4462 section = stub_sec;
4463 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
4464 section->owner,
4465 stub_name);
4466 return NULL;
4467 }
4468
4469 stub_entry->stub_sec = stub_sec;
4470 stub_entry->stub_offset = 0;
4471 stub_entry->id_sec = link_sec;
4472
4473 return stub_entry;
4474 }
4475
4476 /* Store an Arm insn into an output section not processed by
4477 elf32_arm_write_section. */
4478
4479 static void
4480 put_arm_insn (struct elf32_arm_link_hash_table * htab,
4481 bfd * output_bfd, bfd_vma val, void * ptr)
4482 {
4483 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4484 bfd_putl32 (val, ptr);
4485 else
4486 bfd_putb32 (val, ptr);
4487 }
4488
4489 /* Store a 16-bit Thumb insn into an output section not processed by
4490 elf32_arm_write_section. */
4491
4492 static void
4493 put_thumb_insn (struct elf32_arm_link_hash_table * htab,
4494 bfd * output_bfd, bfd_vma val, void * ptr)
4495 {
4496 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4497 bfd_putl16 (val, ptr);
4498 else
4499 bfd_putb16 (val, ptr);
4500 }
4501
4502 /* Store a Thumb2 insn into an output section not processed by
4503 elf32_arm_write_section. */
4504
4505 static void
4506 put_thumb2_insn (struct elf32_arm_link_hash_table * htab,
4507 bfd * output_bfd, bfd_vma val, bfd_byte * ptr)
4508 {
4509 /* T2 instructions are 16-bit streamed. */
4510 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4511 {
4512 bfd_putl16 ((val >> 16) & 0xffff, ptr);
4513 bfd_putl16 ((val & 0xffff), ptr + 2);
4514 }
4515 else
4516 {
4517 bfd_putb16 ((val >> 16) & 0xffff, ptr);
4518 bfd_putb16 ((val & 0xffff), ptr + 2);
4519 }
4520 }
4521
4522 /* If it's possible to change R_TYPE to a more efficient access
4523 model, return the new reloc type. */
4524
4525 static unsigned
4526 elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
4527 struct elf_link_hash_entry *h)
4528 {
4529 int is_local = (h == NULL);
4530
4531 if (bfd_link_pic (info)
4532 || (h && h->root.type == bfd_link_hash_undefweak))
4533 return r_type;
4534
4535 /* We do not support relaxations for Old TLS models. */
4536 switch (r_type)
4537 {
4538 case R_ARM_TLS_GOTDESC:
4539 case R_ARM_TLS_CALL:
4540 case R_ARM_THM_TLS_CALL:
4541 case R_ARM_TLS_DESCSEQ:
4542 case R_ARM_THM_TLS_DESCSEQ:
4543 return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
4544 }
4545
4546 return r_type;
4547 }
4548
4549 static bfd_reloc_status_type elf32_arm_final_link_relocate
4550 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
4551 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
4552 const char *, unsigned char, enum arm_st_branch_type,
4553 struct elf_link_hash_entry *, bfd_boolean *, char **);
4554
4555 static unsigned int
4556 arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
4557 {
4558 switch (stub_type)
4559 {
4560 case arm_stub_a8_veneer_b_cond:
4561 case arm_stub_a8_veneer_b:
4562 case arm_stub_a8_veneer_bl:
4563 return 2;
4564
4565 case arm_stub_long_branch_any_any:
4566 case arm_stub_long_branch_v4t_arm_thumb:
4567 case arm_stub_long_branch_thumb_only:
4568 case arm_stub_long_branch_thumb2_only:
4569 case arm_stub_long_branch_thumb2_only_pure:
4570 case arm_stub_long_branch_v4t_thumb_thumb:
4571 case arm_stub_long_branch_v4t_thumb_arm:
4572 case arm_stub_short_branch_v4t_thumb_arm:
4573 case arm_stub_long_branch_any_arm_pic:
4574 case arm_stub_long_branch_any_thumb_pic:
4575 case arm_stub_long_branch_v4t_thumb_thumb_pic:
4576 case arm_stub_long_branch_v4t_arm_thumb_pic:
4577 case arm_stub_long_branch_v4t_thumb_arm_pic:
4578 case arm_stub_long_branch_thumb_only_pic:
4579 case arm_stub_long_branch_any_tls_pic:
4580 case arm_stub_long_branch_v4t_thumb_tls_pic:
4581 case arm_stub_cmse_branch_thumb_only:
4582 case arm_stub_a8_veneer_blx:
4583 return 4;
4584
4585 case arm_stub_long_branch_arm_nacl:
4586 case arm_stub_long_branch_arm_nacl_pic:
4587 return 16;
4588
4589 default:
4590 abort (); /* Should be unreachable. */
4591 }
4592 }
4593
4594 /* Returns whether stubs of type STUB_TYPE take over the symbol they are
4595 veneering (TRUE) or have their own symbol (FALSE). */
4596
4597 static bfd_boolean
4598 arm_stub_sym_claimed (enum elf32_arm_stub_type stub_type)
4599 {
4600 if (stub_type >= max_stub_type)
4601 abort (); /* Should be unreachable. */
4602
4603 switch (stub_type)
4604 {
4605 case arm_stub_cmse_branch_thumb_only:
4606 return TRUE;
4607
4608 default:
4609 return FALSE;
4610 }
4611
4612 abort (); /* Should be unreachable. */
4613 }
4614
4615 /* Returns the padding needed for the dedicated section used stubs of type
4616 STUB_TYPE. */
4617
4618 static int
4619 arm_dedicated_stub_section_padding (enum elf32_arm_stub_type stub_type)
4620 {
4621 if (stub_type >= max_stub_type)
4622 abort (); /* Should be unreachable. */
4623
4624 switch (stub_type)
4625 {
4626 case arm_stub_cmse_branch_thumb_only:
4627 return 32;
4628
4629 default:
4630 return 0;
4631 }
4632
4633 abort (); /* Should be unreachable. */
4634 }
4635
4636 static bfd_boolean
4637 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
4638 void * in_arg)
4639 {
4640 #define MAXRELOCS 3
4641 struct elf32_arm_stub_hash_entry *stub_entry;
4642 struct elf32_arm_link_hash_table *globals;
4643 struct bfd_link_info *info;
4644 asection *stub_sec;
4645 bfd *stub_bfd;
4646 bfd_byte *loc;
4647 bfd_vma sym_value;
4648 int template_size;
4649 int size;
4650 const insn_sequence *template_sequence;
4651 int i;
4652 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
4653 int stub_reloc_offset[MAXRELOCS] = {0, 0};
4654 int nrelocs = 0;
4655
4656 /* Massage our args to the form they really have. */
4657 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4658 info = (struct bfd_link_info *) in_arg;
4659
4660 globals = elf32_arm_hash_table (info);
4661 if (globals == NULL)
4662 return FALSE;
4663
4664 stub_sec = stub_entry->stub_sec;
4665
4666 if ((globals->fix_cortex_a8 < 0)
4667 != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
4668 /* We have to do less-strictly-aligned fixes last. */
4669 return TRUE;
4670
4671 /* Make a note of the offset within the stubs for this entry. */
4672 stub_entry->stub_offset = stub_sec->size;
4673 loc = stub_sec->contents + stub_entry->stub_offset;
4674
4675 stub_bfd = stub_sec->owner;
4676
4677 /* This is the address of the stub destination. */
4678 sym_value = (stub_entry->target_value
4679 + stub_entry->target_section->output_offset
4680 + stub_entry->target_section->output_section->vma);
4681
4682 template_sequence = stub_entry->stub_template;
4683 template_size = stub_entry->stub_template_size;
4684
4685 size = 0;
4686 for (i = 0; i < template_size; i++)
4687 {
4688 switch (template_sequence[i].type)
4689 {
4690 case THUMB16_TYPE:
4691 {
4692 bfd_vma data = (bfd_vma) template_sequence[i].data;
4693 if (template_sequence[i].reloc_addend != 0)
4694 {
4695 /* We've borrowed the reloc_addend field to mean we should
4696 insert a condition code into this (Thumb-1 branch)
4697 instruction. See THUMB16_BCOND_INSN. */
4698 BFD_ASSERT ((data & 0xff00) == 0xd000);
4699 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
4700 }
4701 bfd_put_16 (stub_bfd, data, loc + size);
4702 size += 2;
4703 }
4704 break;
4705
4706 case THUMB32_TYPE:
4707 bfd_put_16 (stub_bfd,
4708 (template_sequence[i].data >> 16) & 0xffff,
4709 loc + size);
4710 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
4711 loc + size + 2);
4712 if (template_sequence[i].r_type != R_ARM_NONE)
4713 {
4714 stub_reloc_idx[nrelocs] = i;
4715 stub_reloc_offset[nrelocs++] = size;
4716 }
4717 size += 4;
4718 break;
4719
4720 case ARM_TYPE:
4721 bfd_put_32 (stub_bfd, template_sequence[i].data,
4722 loc + size);
4723 /* Handle cases where the target is encoded within the
4724 instruction. */
4725 if (template_sequence[i].r_type == R_ARM_JUMP24)
4726 {
4727 stub_reloc_idx[nrelocs] = i;
4728 stub_reloc_offset[nrelocs++] = size;
4729 }
4730 size += 4;
4731 break;
4732
4733 case DATA_TYPE:
4734 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
4735 stub_reloc_idx[nrelocs] = i;
4736 stub_reloc_offset[nrelocs++] = size;
4737 size += 4;
4738 break;
4739
4740 default:
4741 BFD_FAIL ();
4742 return FALSE;
4743 }
4744 }
4745
4746 stub_sec->size += size;
4747
4748 /* Stub size has already been computed in arm_size_one_stub. Check
4749 consistency. */
4750 BFD_ASSERT (size == stub_entry->stub_size);
4751
4752 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
4753 if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
4754 sym_value |= 1;
4755
4756 /* Assume there is at least one and at most MAXRELOCS entries to relocate
4757 in each stub. */
4758 BFD_ASSERT (nrelocs != 0 && nrelocs <= MAXRELOCS);
4759
4760 for (i = 0; i < nrelocs; i++)
4761 {
4762 Elf_Internal_Rela rel;
4763 bfd_boolean unresolved_reloc;
4764 char *error_message;
4765 bfd_vma points_to =
4766 sym_value + template_sequence[stub_reloc_idx[i]].reloc_addend;
4767
4768 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
4769 rel.r_info = ELF32_R_INFO (0,
4770 template_sequence[stub_reloc_idx[i]].r_type);
4771 rel.r_addend = 0;
4772
4773 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
4774 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
4775 template should refer back to the instruction after the original
4776 branch. We use target_section as Cortex-A8 erratum workaround stubs
4777 are only generated when both source and target are in the same
4778 section. */
4779 points_to = stub_entry->target_section->output_section->vma
4780 + stub_entry->target_section->output_offset
4781 + stub_entry->source_value;
4782
4783 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4784 (template_sequence[stub_reloc_idx[i]].r_type),
4785 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
4786 points_to, info, stub_entry->target_section, "", STT_FUNC,
4787 stub_entry->branch_type,
4788 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
4789 &error_message);
4790 }
4791
4792 return TRUE;
4793 #undef MAXRELOCS
4794 }
4795
4796 /* Calculate the template, template size and instruction size for a stub.
4797 Return value is the instruction size. */
4798
4799 static unsigned int
4800 find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
4801 const insn_sequence **stub_template,
4802 int *stub_template_size)
4803 {
4804 const insn_sequence *template_sequence = NULL;
4805 int template_size = 0, i;
4806 unsigned int size;
4807
4808 template_sequence = stub_definitions[stub_type].template_sequence;
4809 if (stub_template)
4810 *stub_template = template_sequence;
4811
4812 template_size = stub_definitions[stub_type].template_size;
4813 if (stub_template_size)
4814 *stub_template_size = template_size;
4815
4816 size = 0;
4817 for (i = 0; i < template_size; i++)
4818 {
4819 switch (template_sequence[i].type)
4820 {
4821 case THUMB16_TYPE:
4822 size += 2;
4823 break;
4824
4825 case ARM_TYPE:
4826 case THUMB32_TYPE:
4827 case DATA_TYPE:
4828 size += 4;
4829 break;
4830
4831 default:
4832 BFD_FAIL ();
4833 return 0;
4834 }
4835 }
4836
4837 return size;
4838 }
4839
4840 /* As above, but don't actually build the stub. Just bump offset so
4841 we know stub section sizes. */
4842
4843 static bfd_boolean
4844 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
4845 void *in_arg ATTRIBUTE_UNUSED)
4846 {
4847 struct elf32_arm_stub_hash_entry *stub_entry;
4848 const insn_sequence *template_sequence;
4849 int template_size, size;
4850
4851 /* Massage our args to the form they really have. */
4852 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4853
4854 BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
4855 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
4856
4857 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
4858 &template_size);
4859
4860 stub_entry->stub_size = size;
4861 stub_entry->stub_template = template_sequence;
4862 stub_entry->stub_template_size = template_size;
4863
4864 size = (size + 7) & ~7;
4865 stub_entry->stub_sec->size += size;
4866
4867 return TRUE;
4868 }
4869
4870 /* External entry points for sizing and building linker stubs. */
4871
4872 /* Set up various things so that we can make a list of input sections
4873 for each output section included in the link. Returns -1 on error,
4874 0 when no stubs will be needed, and 1 on success. */
4875
4876 int
4877 elf32_arm_setup_section_lists (bfd *output_bfd,
4878 struct bfd_link_info *info)
4879 {
4880 bfd *input_bfd;
4881 unsigned int bfd_count;
4882 unsigned int top_id, top_index;
4883 asection *section;
4884 asection **input_list, **list;
4885 bfd_size_type amt;
4886 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4887
4888 if (htab == NULL)
4889 return 0;
4890 if (! is_elf_hash_table (htab))
4891 return 0;
4892
4893 /* Count the number of input BFDs and find the top input section id. */
4894 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
4895 input_bfd != NULL;
4896 input_bfd = input_bfd->link.next)
4897 {
4898 bfd_count += 1;
4899 for (section = input_bfd->sections;
4900 section != NULL;
4901 section = section->next)
4902 {
4903 if (top_id < section->id)
4904 top_id = section->id;
4905 }
4906 }
4907 htab->bfd_count = bfd_count;
4908
4909 amt = sizeof (struct map_stub) * (top_id + 1);
4910 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
4911 if (htab->stub_group == NULL)
4912 return -1;
4913 htab->top_id = top_id;
4914
4915 /* We can't use output_bfd->section_count here to find the top output
4916 section index as some sections may have been removed, and
4917 _bfd_strip_section_from_output doesn't renumber the indices. */
4918 for (section = output_bfd->sections, top_index = 0;
4919 section != NULL;
4920 section = section->next)
4921 {
4922 if (top_index < section->index)
4923 top_index = section->index;
4924 }
4925
4926 htab->top_index = top_index;
4927 amt = sizeof (asection *) * (top_index + 1);
4928 input_list = (asection **) bfd_malloc (amt);
4929 htab->input_list = input_list;
4930 if (input_list == NULL)
4931 return -1;
4932
4933 /* For sections we aren't interested in, mark their entries with a
4934 value we can check later. */
4935 list = input_list + top_index;
4936 do
4937 *list = bfd_abs_section_ptr;
4938 while (list-- != input_list);
4939
4940 for (section = output_bfd->sections;
4941 section != NULL;
4942 section = section->next)
4943 {
4944 if ((section->flags & SEC_CODE) != 0)
4945 input_list[section->index] = NULL;
4946 }
4947
4948 return 1;
4949 }
4950
4951 /* The linker repeatedly calls this function for each input section,
4952 in the order that input sections are linked into output sections.
4953 Build lists of input sections to determine groupings between which
4954 we may insert linker stubs. */
4955
4956 void
4957 elf32_arm_next_input_section (struct bfd_link_info *info,
4958 asection *isec)
4959 {
4960 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4961
4962 if (htab == NULL)
4963 return;
4964
4965 if (isec->output_section->index <= htab->top_index)
4966 {
4967 asection **list = htab->input_list + isec->output_section->index;
4968
4969 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
4970 {
4971 /* Steal the link_sec pointer for our list. */
4972 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
4973 /* This happens to make the list in reverse order,
4974 which we reverse later. */
4975 PREV_SEC (isec) = *list;
4976 *list = isec;
4977 }
4978 }
4979 }
4980
4981 /* See whether we can group stub sections together. Grouping stub
4982 sections may result in fewer stubs. More importantly, we need to
4983 put all .init* and .fini* stubs at the end of the .init or
4984 .fini output sections respectively, because glibc splits the
4985 _init and _fini functions into multiple parts. Putting a stub in
4986 the middle of a function is not a good idea. */
4987
4988 static void
4989 group_sections (struct elf32_arm_link_hash_table *htab,
4990 bfd_size_type stub_group_size,
4991 bfd_boolean stubs_always_after_branch)
4992 {
4993 asection **list = htab->input_list;
4994
4995 do
4996 {
4997 asection *tail = *list;
4998 asection *head;
4999
5000 if (tail == bfd_abs_section_ptr)
5001 continue;
5002
5003 /* Reverse the list: we must avoid placing stubs at the
5004 beginning of the section because the beginning of the text
5005 section may be required for an interrupt vector in bare metal
5006 code. */
5007 #define NEXT_SEC PREV_SEC
5008 head = NULL;
5009 while (tail != NULL)
5010 {
5011 /* Pop from tail. */
5012 asection *item = tail;
5013 tail = PREV_SEC (item);
5014
5015 /* Push on head. */
5016 NEXT_SEC (item) = head;
5017 head = item;
5018 }
5019
5020 while (head != NULL)
5021 {
5022 asection *curr;
5023 asection *next;
5024 bfd_vma stub_group_start = head->output_offset;
5025 bfd_vma end_of_next;
5026
5027 curr = head;
5028 while (NEXT_SEC (curr) != NULL)
5029 {
5030 next = NEXT_SEC (curr);
5031 end_of_next = next->output_offset + next->size;
5032 if (end_of_next - stub_group_start >= stub_group_size)
5033 /* End of NEXT is too far from start, so stop. */
5034 break;
5035 /* Add NEXT to the group. */
5036 curr = next;
5037 }
5038
5039 /* OK, the size from the start to the start of CURR is less
5040 than stub_group_size and thus can be handled by one stub
5041 section. (Or the head section is itself larger than
5042 stub_group_size, in which case we may be toast.)
5043 We should really be keeping track of the total size of
5044 stubs added here, as stubs contribute to the final output
5045 section size. */
5046 do
5047 {
5048 next = NEXT_SEC (head);
5049 /* Set up this stub group. */
5050 htab->stub_group[head->id].link_sec = curr;
5051 }
5052 while (head != curr && (head = next) != NULL);
5053
5054 /* But wait, there's more! Input sections up to stub_group_size
5055 bytes after the stub section can be handled by it too. */
5056 if (!stubs_always_after_branch)
5057 {
5058 stub_group_start = curr->output_offset + curr->size;
5059
5060 while (next != NULL)
5061 {
5062 end_of_next = next->output_offset + next->size;
5063 if (end_of_next - stub_group_start >= stub_group_size)
5064 /* End of NEXT is too far from stubs, so stop. */
5065 break;
5066 /* Add NEXT to the stub group. */
5067 head = next;
5068 next = NEXT_SEC (head);
5069 htab->stub_group[head->id].link_sec = curr;
5070 }
5071 }
5072 head = next;
5073 }
5074 }
5075 while (list++ != htab->input_list + htab->top_index);
5076
5077 free (htab->input_list);
5078 #undef PREV_SEC
5079 #undef NEXT_SEC
5080 }
5081
5082 /* Comparison function for sorting/searching relocations relating to Cortex-A8
5083 erratum fix. */
5084
5085 static int
5086 a8_reloc_compare (const void *a, const void *b)
5087 {
5088 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
5089 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
5090
5091 if (ra->from < rb->from)
5092 return -1;
5093 else if (ra->from > rb->from)
5094 return 1;
5095 else
5096 return 0;
5097 }
5098
5099 static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
5100 const char *, char **);
5101
5102 /* Helper function to scan code for sequences which might trigger the Cortex-A8
5103 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
5104 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
5105 otherwise. */
5106
5107 static bfd_boolean
5108 cortex_a8_erratum_scan (bfd *input_bfd,
5109 struct bfd_link_info *info,
5110 struct a8_erratum_fix **a8_fixes_p,
5111 unsigned int *num_a8_fixes_p,
5112 unsigned int *a8_fix_table_size_p,
5113 struct a8_erratum_reloc *a8_relocs,
5114 unsigned int num_a8_relocs,
5115 unsigned prev_num_a8_fixes,
5116 bfd_boolean *stub_changed_p)
5117 {
5118 asection *section;
5119 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5120 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
5121 unsigned int num_a8_fixes = *num_a8_fixes_p;
5122 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
5123
5124 if (htab == NULL)
5125 return FALSE;
5126
5127 for (section = input_bfd->sections;
5128 section != NULL;
5129 section = section->next)
5130 {
5131 bfd_byte *contents = NULL;
5132 struct _arm_elf_section_data *sec_data;
5133 unsigned int span;
5134 bfd_vma base_vma;
5135
5136 if (elf_section_type (section) != SHT_PROGBITS
5137 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
5138 || (section->flags & SEC_EXCLUDE) != 0
5139 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
5140 || (section->output_section == bfd_abs_section_ptr))
5141 continue;
5142
5143 base_vma = section->output_section->vma + section->output_offset;
5144
5145 if (elf_section_data (section)->this_hdr.contents != NULL)
5146 contents = elf_section_data (section)->this_hdr.contents;
5147 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
5148 return TRUE;
5149
5150 sec_data = elf32_arm_section_data (section);
5151
5152 for (span = 0; span < sec_data->mapcount; span++)
5153 {
5154 unsigned int span_start = sec_data->map[span].vma;
5155 unsigned int span_end = (span == sec_data->mapcount - 1)
5156 ? section->size : sec_data->map[span + 1].vma;
5157 unsigned int i;
5158 char span_type = sec_data->map[span].type;
5159 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
5160
5161 if (span_type != 't')
5162 continue;
5163
5164 /* Span is entirely within a single 4KB region: skip scanning. */
5165 if (((base_vma + span_start) & ~0xfff)
5166 == ((base_vma + span_end) & ~0xfff))
5167 continue;
5168
5169 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
5170
5171 * The opcode is BLX.W, BL.W, B.W, Bcc.W
5172 * The branch target is in the same 4KB region as the
5173 first half of the branch.
5174 * The instruction before the branch is a 32-bit
5175 length non-branch instruction. */
5176 for (i = span_start; i < span_end;)
5177 {
5178 unsigned int insn = bfd_getl16 (&contents[i]);
5179 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
5180 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
5181
5182 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
5183 insn_32bit = TRUE;
5184
5185 if (insn_32bit)
5186 {
5187 /* Load the rest of the insn (in manual-friendly order). */
5188 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
5189
5190 /* Encoding T4: B<c>.W. */
5191 is_b = (insn & 0xf800d000) == 0xf0009000;
5192 /* Encoding T1: BL<c>.W. */
5193 is_bl = (insn & 0xf800d000) == 0xf000d000;
5194 /* Encoding T2: BLX<c>.W. */
5195 is_blx = (insn & 0xf800d000) == 0xf000c000;
5196 /* Encoding T3: B<c>.W (not permitted in IT block). */
5197 is_bcc = (insn & 0xf800d000) == 0xf0008000
5198 && (insn & 0x07f00000) != 0x03800000;
5199 }
5200
5201 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
5202
5203 if (((base_vma + i) & 0xfff) == 0xffe
5204 && insn_32bit
5205 && is_32bit_branch
5206 && last_was_32bit
5207 && ! last_was_branch)
5208 {
5209 bfd_signed_vma offset = 0;
5210 bfd_boolean force_target_arm = FALSE;
5211 bfd_boolean force_target_thumb = FALSE;
5212 bfd_vma target;
5213 enum elf32_arm_stub_type stub_type = arm_stub_none;
5214 struct a8_erratum_reloc key, *found;
5215 bfd_boolean use_plt = FALSE;
5216
5217 key.from = base_vma + i;
5218 found = (struct a8_erratum_reloc *)
5219 bsearch (&key, a8_relocs, num_a8_relocs,
5220 sizeof (struct a8_erratum_reloc),
5221 &a8_reloc_compare);
5222
5223 if (found)
5224 {
5225 char *error_message = NULL;
5226 struct elf_link_hash_entry *entry;
5227
5228 /* We don't care about the error returned from this
5229 function, only if there is glue or not. */
5230 entry = find_thumb_glue (info, found->sym_name,
5231 &error_message);
5232
5233 if (entry)
5234 found->non_a8_stub = TRUE;
5235
5236 /* Keep a simpler condition, for the sake of clarity. */
5237 if (htab->root.splt != NULL && found->hash != NULL
5238 && found->hash->root.plt.offset != (bfd_vma) -1)
5239 use_plt = TRUE;
5240
5241 if (found->r_type == R_ARM_THM_CALL)
5242 {
5243 if (found->branch_type == ST_BRANCH_TO_ARM
5244 || use_plt)
5245 force_target_arm = TRUE;
5246 else
5247 force_target_thumb = TRUE;
5248 }
5249 }
5250
5251 /* Check if we have an offending branch instruction. */
5252
5253 if (found && found->non_a8_stub)
5254 /* We've already made a stub for this instruction, e.g.
5255 it's a long branch or a Thumb->ARM stub. Assume that
5256 stub will suffice to work around the A8 erratum (see
5257 setting of always_after_branch above). */
5258 ;
5259 else if (is_bcc)
5260 {
5261 offset = (insn & 0x7ff) << 1;
5262 offset |= (insn & 0x3f0000) >> 4;
5263 offset |= (insn & 0x2000) ? 0x40000 : 0;
5264 offset |= (insn & 0x800) ? 0x80000 : 0;
5265 offset |= (insn & 0x4000000) ? 0x100000 : 0;
5266 if (offset & 0x100000)
5267 offset |= ~ ((bfd_signed_vma) 0xfffff);
5268 stub_type = arm_stub_a8_veneer_b_cond;
5269 }
5270 else if (is_b || is_bl || is_blx)
5271 {
5272 int s = (insn & 0x4000000) != 0;
5273 int j1 = (insn & 0x2000) != 0;
5274 int j2 = (insn & 0x800) != 0;
5275 int i1 = !(j1 ^ s);
5276 int i2 = !(j2 ^ s);
5277
5278 offset = (insn & 0x7ff) << 1;
5279 offset |= (insn & 0x3ff0000) >> 4;
5280 offset |= i2 << 22;
5281 offset |= i1 << 23;
5282 offset |= s << 24;
5283 if (offset & 0x1000000)
5284 offset |= ~ ((bfd_signed_vma) 0xffffff);
5285
5286 if (is_blx)
5287 offset &= ~ ((bfd_signed_vma) 3);
5288
5289 stub_type = is_blx ? arm_stub_a8_veneer_blx :
5290 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
5291 }
5292
5293 if (stub_type != arm_stub_none)
5294 {
5295 bfd_vma pc_for_insn = base_vma + i + 4;
5296
5297 /* The original instruction is a BL, but the target is
5298 an ARM instruction. If we were not making a stub,
5299 the BL would have been converted to a BLX. Use the
5300 BLX stub instead in that case. */
5301 if (htab->use_blx && force_target_arm
5302 && stub_type == arm_stub_a8_veneer_bl)
5303 {
5304 stub_type = arm_stub_a8_veneer_blx;
5305 is_blx = TRUE;
5306 is_bl = FALSE;
5307 }
5308 /* Conversely, if the original instruction was
5309 BLX but the target is Thumb mode, use the BL
5310 stub. */
5311 else if (force_target_thumb
5312 && stub_type == arm_stub_a8_veneer_blx)
5313 {
5314 stub_type = arm_stub_a8_veneer_bl;
5315 is_blx = FALSE;
5316 is_bl = TRUE;
5317 }
5318
5319 if (is_blx)
5320 pc_for_insn &= ~ ((bfd_vma) 3);
5321
5322 /* If we found a relocation, use the proper destination,
5323 not the offset in the (unrelocated) instruction.
5324 Note this is always done if we switched the stub type
5325 above. */
5326 if (found)
5327 offset =
5328 (bfd_signed_vma) (found->destination - pc_for_insn);
5329
5330 /* If the stub will use a Thumb-mode branch to a
5331 PLT target, redirect it to the preceding Thumb
5332 entry point. */
5333 if (stub_type != arm_stub_a8_veneer_blx && use_plt)
5334 offset -= PLT_THUMB_STUB_SIZE;
5335
5336 target = pc_for_insn + offset;
5337
5338 /* The BLX stub is ARM-mode code. Adjust the offset to
5339 take the different PC value (+8 instead of +4) into
5340 account. */
5341 if (stub_type == arm_stub_a8_veneer_blx)
5342 offset += 4;
5343
5344 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
5345 {
5346 char *stub_name = NULL;
5347
5348 if (num_a8_fixes == a8_fix_table_size)
5349 {
5350 a8_fix_table_size *= 2;
5351 a8_fixes = (struct a8_erratum_fix *)
5352 bfd_realloc (a8_fixes,
5353 sizeof (struct a8_erratum_fix)
5354 * a8_fix_table_size);
5355 }
5356
5357 if (num_a8_fixes < prev_num_a8_fixes)
5358 {
5359 /* If we're doing a subsequent scan,
5360 check if we've found the same fix as
5361 before, and try and reuse the stub
5362 name. */
5363 stub_name = a8_fixes[num_a8_fixes].stub_name;
5364 if ((a8_fixes[num_a8_fixes].section != section)
5365 || (a8_fixes[num_a8_fixes].offset != i))
5366 {
5367 free (stub_name);
5368 stub_name = NULL;
5369 *stub_changed_p = TRUE;
5370 }
5371 }
5372
5373 if (!stub_name)
5374 {
5375 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
5376 if (stub_name != NULL)
5377 sprintf (stub_name, "%x:%x", section->id, i);
5378 }
5379
5380 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
5381 a8_fixes[num_a8_fixes].section = section;
5382 a8_fixes[num_a8_fixes].offset = i;
5383 a8_fixes[num_a8_fixes].target_offset =
5384 target - base_vma;
5385 a8_fixes[num_a8_fixes].orig_insn = insn;
5386 a8_fixes[num_a8_fixes].stub_name = stub_name;
5387 a8_fixes[num_a8_fixes].stub_type = stub_type;
5388 a8_fixes[num_a8_fixes].branch_type =
5389 is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
5390
5391 num_a8_fixes++;
5392 }
5393 }
5394 }
5395
5396 i += insn_32bit ? 4 : 2;
5397 last_was_32bit = insn_32bit;
5398 last_was_branch = is_32bit_branch;
5399 }
5400 }
5401
5402 if (elf_section_data (section)->this_hdr.contents == NULL)
5403 free (contents);
5404 }
5405
5406 *a8_fixes_p = a8_fixes;
5407 *num_a8_fixes_p = num_a8_fixes;
5408 *a8_fix_table_size_p = a8_fix_table_size;
5409
5410 return FALSE;
5411 }
5412
5413 /* Create or update a stub entry depending on whether the stub can already be
5414 found in HTAB. The stub is identified by:
5415 - its type STUB_TYPE
5416 - its source branch (note that several can share the same stub) whose
5417 section and relocation (if any) are given by SECTION and IRELA
5418 respectively
5419 - its target symbol whose input section, hash, name, value and branch type
5420 are given in SYM_SEC, HASH, SYM_NAME, SYM_VALUE and BRANCH_TYPE
5421 respectively
5422
5423 If found, the value of the stub's target symbol is updated from SYM_VALUE
5424 and *NEW_STUB is set to FALSE. Otherwise, *NEW_STUB is set to
5425 TRUE and the stub entry is initialized.
5426
5427 Returns whether the stub could be successfully created or updated, or FALSE
5428 if an error occured. */
5429
5430 static bfd_boolean
5431 elf32_arm_create_stub (struct elf32_arm_link_hash_table *htab,
5432 enum elf32_arm_stub_type stub_type, asection *section,
5433 Elf_Internal_Rela *irela, asection *sym_sec,
5434 struct elf32_arm_link_hash_entry *hash, char *sym_name,
5435 bfd_vma sym_value, enum arm_st_branch_type branch_type,
5436 bfd_boolean *new_stub)
5437 {
5438 const asection *id_sec;
5439 char *stub_name;
5440 struct elf32_arm_stub_hash_entry *stub_entry;
5441 unsigned int r_type;
5442 bfd_boolean sym_claimed = arm_stub_sym_claimed (stub_type);
5443
5444 BFD_ASSERT (stub_type != arm_stub_none);
5445 *new_stub = FALSE;
5446
5447 if (sym_claimed)
5448 stub_name = sym_name;
5449 else
5450 {
5451 BFD_ASSERT (irela);
5452 BFD_ASSERT (section);
5453
5454 /* Support for grouping stub sections. */
5455 id_sec = htab->stub_group[section->id].link_sec;
5456
5457 /* Get the name of this stub. */
5458 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela,
5459 stub_type);
5460 if (!stub_name)
5461 return FALSE;
5462 }
5463
5464 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name, FALSE,
5465 FALSE);
5466 /* The proper stub has already been created, just update its value. */
5467 if (stub_entry != NULL)
5468 {
5469 if (!sym_claimed)
5470 free (stub_name);
5471 stub_entry->target_value = sym_value;
5472 return TRUE;
5473 }
5474
5475 stub_entry = elf32_arm_add_stub (stub_name, section, htab, stub_type);
5476 if (stub_entry == NULL)
5477 {
5478 if (!sym_claimed)
5479 free (stub_name);
5480 return FALSE;
5481 }
5482
5483 stub_entry->target_value = sym_value;
5484 stub_entry->target_section = sym_sec;
5485 stub_entry->stub_type = stub_type;
5486 stub_entry->h = hash;
5487 stub_entry->branch_type = branch_type;
5488
5489 if (sym_claimed)
5490 stub_entry->output_name = sym_name;
5491 else
5492 {
5493 if (sym_name == NULL)
5494 sym_name = "unnamed";
5495 stub_entry->output_name = (char *)
5496 bfd_alloc (htab->stub_bfd, sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
5497 + strlen (sym_name));
5498 if (stub_entry->output_name == NULL)
5499 {
5500 free (stub_name);
5501 return FALSE;
5502 }
5503
5504 /* For historical reasons, use the existing names for ARM-to-Thumb and
5505 Thumb-to-ARM stubs. */
5506 r_type = ELF32_R_TYPE (irela->r_info);
5507 if ((r_type == (unsigned int) R_ARM_THM_CALL
5508 || r_type == (unsigned int) R_ARM_THM_JUMP24
5509 || r_type == (unsigned int) R_ARM_THM_JUMP19)
5510 && branch_type == ST_BRANCH_TO_ARM)
5511 sprintf (stub_entry->output_name, THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
5512 else if ((r_type == (unsigned int) R_ARM_CALL
5513 || r_type == (unsigned int) R_ARM_JUMP24)
5514 && branch_type == ST_BRANCH_TO_THUMB)
5515 sprintf (stub_entry->output_name, ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
5516 else
5517 sprintf (stub_entry->output_name, STUB_ENTRY_NAME, sym_name);
5518 }
5519
5520 *new_stub = TRUE;
5521 return TRUE;
5522 }
5523
5524 /* Scan symbols in INPUT_BFD to identify secure entry functions needing a
5525 gateway veneer to transition from non secure to secure state and create them
5526 accordingly.
5527
5528 "ARMv8-M Security Extensions: Requirements on Development Tools" document
5529 defines the conditions that govern Secure Gateway veneer creation for a
5530 given symbol <SYM> as follows:
5531 - it has function type
5532 - it has non local binding
5533 - a symbol named __acle_se_<SYM> (called special symbol) exists with the
5534 same type, binding and value as <SYM> (called normal symbol).
5535 An entry function can handle secure state transition itself in which case
5536 its special symbol would have a different value from the normal symbol.
5537
5538 OUT_ATTR gives the output attributes, SYM_HASHES the symbol index to hash
5539 entry mapping while HTAB gives the name to hash entry mapping.
5540
5541 If any secure gateway veneer is created, *STUB_CHANGED is set to TRUE. The
5542 return value gives whether a stub failed to be allocated. */
5543
5544 static bfd_boolean
5545 cmse_scan (bfd *input_bfd, struct elf32_arm_link_hash_table *htab,
5546 obj_attribute *out_attr, struct elf_link_hash_entry **sym_hashes,
5547 bfd_boolean *stub_changed)
5548 {
5549 const struct elf_backend_data *bed;
5550 Elf_Internal_Shdr *symtab_hdr;
5551 unsigned i, j, sym_count, ext_start;
5552 Elf_Internal_Sym *cmse_sym, *local_syms;
5553 struct elf32_arm_link_hash_entry *hash, *cmse_hash = NULL;
5554 enum arm_st_branch_type branch_type;
5555 char *sym_name, *lsym_name;
5556 bfd_vma sym_value;
5557 asection *section;
5558 bfd_boolean is_v8m, new_stub, created_stub, cmse_invalid, ret = TRUE;
5559
5560 bed = get_elf_backend_data (input_bfd);
5561 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5562 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
5563 ext_start = symtab_hdr->sh_info;
5564 is_v8m = (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
5565 && out_attr[Tag_CPU_arch_profile].i == 'M');
5566
5567 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
5568 if (local_syms == NULL)
5569 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
5570 symtab_hdr->sh_info, 0, NULL, NULL,
5571 NULL);
5572 if (symtab_hdr->sh_info && local_syms == NULL)
5573 return FALSE;
5574
5575 /* Scan symbols. */
5576 for (i = 0; i < sym_count; i++)
5577 {
5578 cmse_invalid = FALSE;
5579
5580 if (i < ext_start)
5581 {
5582 cmse_sym = &local_syms[i];
5583 /* Not a special symbol. */
5584 if (!ARM_GET_SYM_CMSE_SPCL (cmse_sym->st_target_internal))
5585 continue;
5586 sym_name = bfd_elf_string_from_elf_section (input_bfd,
5587 symtab_hdr->sh_link,
5588 cmse_sym->st_name);
5589 /* Special symbol with local binding. */
5590 cmse_invalid = TRUE;
5591 }
5592 else
5593 {
5594 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
5595 sym_name = (char *) cmse_hash->root.root.root.string;
5596
5597 /* Not a special symbol. */
5598 if (!ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
5599 continue;
5600
5601 /* Special symbol has incorrect binding or type. */
5602 if ((cmse_hash->root.root.type != bfd_link_hash_defined
5603 && cmse_hash->root.root.type != bfd_link_hash_defweak)
5604 || cmse_hash->root.type != STT_FUNC)
5605 cmse_invalid = TRUE;
5606 }
5607
5608 if (!is_v8m)
5609 {
5610 (*_bfd_error_handler) (_("%B: Special symbol `%s' only allowed for "
5611 "ARMv8-M architecture or later."),
5612 input_bfd, sym_name);
5613 is_v8m = TRUE; /* Avoid multiple warning. */
5614 ret = FALSE;
5615 }
5616
5617 if (cmse_invalid)
5618 {
5619 (*_bfd_error_handler) (_("%B: invalid special symbol `%s'."),
5620 input_bfd, sym_name);
5621 (*_bfd_error_handler) (_("It must be a global or weak function "
5622 "symbol."));
5623 ret = FALSE;
5624 if (i < ext_start)
5625 continue;
5626 }
5627
5628 sym_name += strlen (CMSE_PREFIX);
5629 hash = (struct elf32_arm_link_hash_entry *)
5630 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE);
5631
5632 /* No associated normal symbol or it is neither global nor weak. */
5633 if (!hash
5634 || (hash->root.root.type != bfd_link_hash_defined
5635 && hash->root.root.type != bfd_link_hash_defweak)
5636 || hash->root.type != STT_FUNC)
5637 {
5638 /* Initialize here to avoid warning about use of possibly
5639 uninitialized variable. */
5640 j = 0;
5641
5642 if (!hash)
5643 {
5644 /* Searching for a normal symbol with local binding. */
5645 for (; j < ext_start; j++)
5646 {
5647 lsym_name =
5648 bfd_elf_string_from_elf_section (input_bfd,
5649 symtab_hdr->sh_link,
5650 local_syms[j].st_name);
5651 if (!strcmp (sym_name, lsym_name))
5652 break;
5653 }
5654 }
5655
5656 if (hash || j < ext_start)
5657 {
5658 (*_bfd_error_handler)
5659 (_("%B: invalid standard symbol `%s'."), input_bfd, sym_name);
5660 (*_bfd_error_handler)
5661 (_("It must be a global or weak function symbol."));
5662 }
5663 else
5664 (*_bfd_error_handler)
5665 (_("%B: absent standard symbol `%s'."), input_bfd, sym_name);
5666 ret = FALSE;
5667 if (!hash)
5668 continue;
5669 }
5670
5671 sym_value = hash->root.root.u.def.value;
5672 section = hash->root.root.u.def.section;
5673
5674 if (cmse_hash->root.root.u.def.section != section)
5675 {
5676 (*_bfd_error_handler)
5677 (_("%B: `%s' and its special symbol are in different sections."),
5678 input_bfd, sym_name);
5679 ret = FALSE;
5680 }
5681 if (cmse_hash->root.root.u.def.value != sym_value)
5682 continue; /* Ignore: could be an entry function starting with SG. */
5683
5684 /* If this section is a link-once section that will be discarded, then
5685 don't create any stubs. */
5686 if (section->output_section == NULL)
5687 {
5688 (*_bfd_error_handler)
5689 (_("%B: entry function `%s' not output."), input_bfd, sym_name);
5690 continue;
5691 }
5692
5693 if (hash->root.size == 0)
5694 {
5695 (*_bfd_error_handler)
5696 (_("%B: entry function `%s' is empty."), input_bfd, sym_name);
5697 ret = FALSE;
5698 }
5699
5700 if (!ret)
5701 continue;
5702 branch_type = ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
5703 created_stub
5704 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
5705 NULL, NULL, section, hash, sym_name,
5706 sym_value, branch_type, &new_stub);
5707
5708 if (!created_stub)
5709 ret = FALSE;
5710 else
5711 {
5712 BFD_ASSERT (new_stub);
5713 *stub_changed = TRUE;
5714 }
5715 }
5716
5717 if (!symtab_hdr->contents)
5718 free (local_syms);
5719 return ret;
5720 }
5721
5722 /* Determine and set the size of the stub section for a final link.
5723
5724 The basic idea here is to examine all the relocations looking for
5725 PC-relative calls to a target that is unreachable with a "bl"
5726 instruction. */
5727
5728 bfd_boolean
5729 elf32_arm_size_stubs (bfd *output_bfd,
5730 bfd *stub_bfd,
5731 struct bfd_link_info *info,
5732 bfd_signed_vma group_size,
5733 asection * (*add_stub_section) (const char *, asection *,
5734 asection *,
5735 unsigned int),
5736 void (*layout_sections_again) (void))
5737 {
5738 obj_attribute *out_attr;
5739 bfd_size_type stub_group_size;
5740 bfd_boolean m_profile, stubs_always_after_branch, first_veneer_scan = TRUE;
5741 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5742 struct a8_erratum_fix *a8_fixes = NULL;
5743 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
5744 struct a8_erratum_reloc *a8_relocs = NULL;
5745 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
5746
5747 if (htab == NULL)
5748 return FALSE;
5749
5750 if (htab->fix_cortex_a8)
5751 {
5752 a8_fixes = (struct a8_erratum_fix *)
5753 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
5754 a8_relocs = (struct a8_erratum_reloc *)
5755 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
5756 }
5757
5758 /* Propagate mach to stub bfd, because it may not have been
5759 finalized when we created stub_bfd. */
5760 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
5761 bfd_get_mach (output_bfd));
5762
5763 /* Stash our params away. */
5764 htab->stub_bfd = stub_bfd;
5765 htab->add_stub_section = add_stub_section;
5766 htab->layout_sections_again = layout_sections_again;
5767 stubs_always_after_branch = group_size < 0;
5768
5769 out_attr = elf_known_obj_attributes_proc (output_bfd);
5770 m_profile = out_attr[Tag_CPU_arch_profile].i == 'M';
5771 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
5772 as the first half of a 32-bit branch straddling two 4K pages. This is a
5773 crude way of enforcing that. */
5774 if (htab->fix_cortex_a8)
5775 stubs_always_after_branch = 1;
5776
5777 if (group_size < 0)
5778 stub_group_size = -group_size;
5779 else
5780 stub_group_size = group_size;
5781
5782 if (stub_group_size == 1)
5783 {
5784 /* Default values. */
5785 /* Thumb branch range is +-4MB has to be used as the default
5786 maximum size (a given section can contain both ARM and Thumb
5787 code, so the worst case has to be taken into account).
5788
5789 This value is 24K less than that, which allows for 2025
5790 12-byte stubs. If we exceed that, then we will fail to link.
5791 The user will have to relink with an explicit group size
5792 option. */
5793 stub_group_size = 4170000;
5794 }
5795
5796 group_sections (htab, stub_group_size, stubs_always_after_branch);
5797
5798 /* If we're applying the cortex A8 fix, we need to determine the
5799 program header size now, because we cannot change it later --
5800 that could alter section placements. Notice the A8 erratum fix
5801 ends up requiring the section addresses to remain unchanged
5802 modulo the page size. That's something we cannot represent
5803 inside BFD, and we don't want to force the section alignment to
5804 be the page size. */
5805 if (htab->fix_cortex_a8)
5806 (*htab->layout_sections_again) ();
5807
5808 while (1)
5809 {
5810 bfd *input_bfd;
5811 unsigned int bfd_indx;
5812 asection *stub_sec;
5813 enum elf32_arm_stub_type stub_type;
5814 bfd_boolean stub_changed = FALSE;
5815 unsigned prev_num_a8_fixes = num_a8_fixes;
5816
5817 num_a8_fixes = 0;
5818 for (input_bfd = info->input_bfds, bfd_indx = 0;
5819 input_bfd != NULL;
5820 input_bfd = input_bfd->link.next, bfd_indx++)
5821 {
5822 Elf_Internal_Shdr *symtab_hdr;
5823 asection *section;
5824 Elf_Internal_Sym *local_syms = NULL;
5825
5826 if (!is_arm_elf (input_bfd))
5827 continue;
5828
5829 num_a8_relocs = 0;
5830
5831 /* We'll need the symbol table in a second. */
5832 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5833 if (symtab_hdr->sh_info == 0)
5834 continue;
5835
5836 /* Limit scan of symbols to object file whose profile is
5837 Microcontroller to not hinder performance in the general case. */
5838 if (m_profile && first_veneer_scan)
5839 {
5840 struct elf_link_hash_entry **sym_hashes;
5841
5842 sym_hashes = elf_sym_hashes (input_bfd);
5843 if (!cmse_scan (input_bfd, htab, out_attr, sym_hashes,
5844 &stub_changed))
5845 goto error_ret_free_local;
5846 }
5847
5848 /* Walk over each section attached to the input bfd. */
5849 for (section = input_bfd->sections;
5850 section != NULL;
5851 section = section->next)
5852 {
5853 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
5854
5855 /* If there aren't any relocs, then there's nothing more
5856 to do. */
5857 if ((section->flags & SEC_RELOC) == 0
5858 || section->reloc_count == 0
5859 || (section->flags & SEC_CODE) == 0)
5860 continue;
5861
5862 /* If this section is a link-once section that will be
5863 discarded, then don't create any stubs. */
5864 if (section->output_section == NULL
5865 || section->output_section->owner != output_bfd)
5866 continue;
5867
5868 /* Get the relocs. */
5869 internal_relocs
5870 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
5871 NULL, info->keep_memory);
5872 if (internal_relocs == NULL)
5873 goto error_ret_free_local;
5874
5875 /* Now examine each relocation. */
5876 irela = internal_relocs;
5877 irelaend = irela + section->reloc_count;
5878 for (; irela < irelaend; irela++)
5879 {
5880 unsigned int r_type, r_indx;
5881 asection *sym_sec;
5882 bfd_vma sym_value;
5883 bfd_vma destination;
5884 struct elf32_arm_link_hash_entry *hash;
5885 const char *sym_name;
5886 unsigned char st_type;
5887 enum arm_st_branch_type branch_type;
5888 bfd_boolean created_stub = FALSE;
5889
5890 r_type = ELF32_R_TYPE (irela->r_info);
5891 r_indx = ELF32_R_SYM (irela->r_info);
5892
5893 if (r_type >= (unsigned int) R_ARM_max)
5894 {
5895 bfd_set_error (bfd_error_bad_value);
5896 error_ret_free_internal:
5897 if (elf_section_data (section)->relocs == NULL)
5898 free (internal_relocs);
5899 /* Fall through. */
5900 error_ret_free_local:
5901 if (local_syms != NULL
5902 && (symtab_hdr->contents
5903 != (unsigned char *) local_syms))
5904 free (local_syms);
5905 return FALSE;
5906 }
5907
5908 hash = NULL;
5909 if (r_indx >= symtab_hdr->sh_info)
5910 hash = elf32_arm_hash_entry
5911 (elf_sym_hashes (input_bfd)
5912 [r_indx - symtab_hdr->sh_info]);
5913
5914 /* Only look for stubs on branch instructions, or
5915 non-relaxed TLSCALL */
5916 if ((r_type != (unsigned int) R_ARM_CALL)
5917 && (r_type != (unsigned int) R_ARM_THM_CALL)
5918 && (r_type != (unsigned int) R_ARM_JUMP24)
5919 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
5920 && (r_type != (unsigned int) R_ARM_THM_XPC22)
5921 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
5922 && (r_type != (unsigned int) R_ARM_PLT32)
5923 && !((r_type == (unsigned int) R_ARM_TLS_CALL
5924 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
5925 && r_type == elf32_arm_tls_transition
5926 (info, r_type, &hash->root)
5927 && ((hash ? hash->tls_type
5928 : (elf32_arm_local_got_tls_type
5929 (input_bfd)[r_indx]))
5930 & GOT_TLS_GDESC) != 0))
5931 continue;
5932
5933 /* Now determine the call target, its name, value,
5934 section. */
5935 sym_sec = NULL;
5936 sym_value = 0;
5937 destination = 0;
5938 sym_name = NULL;
5939
5940 if (r_type == (unsigned int) R_ARM_TLS_CALL
5941 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
5942 {
5943 /* A non-relaxed TLS call. The target is the
5944 plt-resident trampoline and nothing to do
5945 with the symbol. */
5946 BFD_ASSERT (htab->tls_trampoline > 0);
5947 sym_sec = htab->root.splt;
5948 sym_value = htab->tls_trampoline;
5949 hash = 0;
5950 st_type = STT_FUNC;
5951 branch_type = ST_BRANCH_TO_ARM;
5952 }
5953 else if (!hash)
5954 {
5955 /* It's a local symbol. */
5956 Elf_Internal_Sym *sym;
5957
5958 if (local_syms == NULL)
5959 {
5960 local_syms
5961 = (Elf_Internal_Sym *) symtab_hdr->contents;
5962 if (local_syms == NULL)
5963 local_syms
5964 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
5965 symtab_hdr->sh_info, 0,
5966 NULL, NULL, NULL);
5967 if (local_syms == NULL)
5968 goto error_ret_free_internal;
5969 }
5970
5971 sym = local_syms + r_indx;
5972 if (sym->st_shndx == SHN_UNDEF)
5973 sym_sec = bfd_und_section_ptr;
5974 else if (sym->st_shndx == SHN_ABS)
5975 sym_sec = bfd_abs_section_ptr;
5976 else if (sym->st_shndx == SHN_COMMON)
5977 sym_sec = bfd_com_section_ptr;
5978 else
5979 sym_sec =
5980 bfd_section_from_elf_index (input_bfd, sym->st_shndx);
5981
5982 if (!sym_sec)
5983 /* This is an undefined symbol. It can never
5984 be resolved. */
5985 continue;
5986
5987 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
5988 sym_value = sym->st_value;
5989 destination = (sym_value + irela->r_addend
5990 + sym_sec->output_offset
5991 + sym_sec->output_section->vma);
5992 st_type = ELF_ST_TYPE (sym->st_info);
5993 branch_type =
5994 ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
5995 sym_name
5996 = bfd_elf_string_from_elf_section (input_bfd,
5997 symtab_hdr->sh_link,
5998 sym->st_name);
5999 }
6000 else
6001 {
6002 /* It's an external symbol. */
6003 while (hash->root.root.type == bfd_link_hash_indirect
6004 || hash->root.root.type == bfd_link_hash_warning)
6005 hash = ((struct elf32_arm_link_hash_entry *)
6006 hash->root.root.u.i.link);
6007
6008 if (hash->root.root.type == bfd_link_hash_defined
6009 || hash->root.root.type == bfd_link_hash_defweak)
6010 {
6011 sym_sec = hash->root.root.u.def.section;
6012 sym_value = hash->root.root.u.def.value;
6013
6014 struct elf32_arm_link_hash_table *globals =
6015 elf32_arm_hash_table (info);
6016
6017 /* For a destination in a shared library,
6018 use the PLT stub as target address to
6019 decide whether a branch stub is
6020 needed. */
6021 if (globals != NULL
6022 && globals->root.splt != NULL
6023 && hash != NULL
6024 && hash->root.plt.offset != (bfd_vma) -1)
6025 {
6026 sym_sec = globals->root.splt;
6027 sym_value = hash->root.plt.offset;
6028 if (sym_sec->output_section != NULL)
6029 destination = (sym_value
6030 + sym_sec->output_offset
6031 + sym_sec->output_section->vma);
6032 }
6033 else if (sym_sec->output_section != NULL)
6034 destination = (sym_value + irela->r_addend
6035 + sym_sec->output_offset
6036 + sym_sec->output_section->vma);
6037 }
6038 else if ((hash->root.root.type == bfd_link_hash_undefined)
6039 || (hash->root.root.type == bfd_link_hash_undefweak))
6040 {
6041 /* For a shared library, use the PLT stub as
6042 target address to decide whether a long
6043 branch stub is needed.
6044 For absolute code, they cannot be handled. */
6045 struct elf32_arm_link_hash_table *globals =
6046 elf32_arm_hash_table (info);
6047
6048 if (globals != NULL
6049 && globals->root.splt != NULL
6050 && hash != NULL
6051 && hash->root.plt.offset != (bfd_vma) -1)
6052 {
6053 sym_sec = globals->root.splt;
6054 sym_value = hash->root.plt.offset;
6055 if (sym_sec->output_section != NULL)
6056 destination = (sym_value
6057 + sym_sec->output_offset
6058 + sym_sec->output_section->vma);
6059 }
6060 else
6061 continue;
6062 }
6063 else
6064 {
6065 bfd_set_error (bfd_error_bad_value);
6066 goto error_ret_free_internal;
6067 }
6068 st_type = hash->root.type;
6069 branch_type =
6070 ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
6071 sym_name = hash->root.root.root.string;
6072 }
6073
6074 do
6075 {
6076 bfd_boolean new_stub;
6077
6078 /* Determine what (if any) linker stub is needed. */
6079 stub_type = arm_type_of_stub (info, section, irela,
6080 st_type, &branch_type,
6081 hash, destination, sym_sec,
6082 input_bfd, sym_name);
6083 if (stub_type == arm_stub_none)
6084 break;
6085
6086 /* We've either created a stub for this reloc already,
6087 or we are about to. */
6088 created_stub =
6089 elf32_arm_create_stub (htab, stub_type, section, irela,
6090 sym_sec, hash,
6091 (char *) sym_name, sym_value,
6092 branch_type, &new_stub);
6093
6094 if (!created_stub)
6095 goto error_ret_free_internal;
6096 else if (!new_stub)
6097 break;
6098 else
6099 stub_changed = TRUE;
6100 }
6101 while (0);
6102
6103 /* Look for relocations which might trigger Cortex-A8
6104 erratum. */
6105 if (htab->fix_cortex_a8
6106 && (r_type == (unsigned int) R_ARM_THM_JUMP24
6107 || r_type == (unsigned int) R_ARM_THM_JUMP19
6108 || r_type == (unsigned int) R_ARM_THM_CALL
6109 || r_type == (unsigned int) R_ARM_THM_XPC22))
6110 {
6111 bfd_vma from = section->output_section->vma
6112 + section->output_offset
6113 + irela->r_offset;
6114
6115 if ((from & 0xfff) == 0xffe)
6116 {
6117 /* Found a candidate. Note we haven't checked the
6118 destination is within 4K here: if we do so (and
6119 don't create an entry in a8_relocs) we can't tell
6120 that a branch should have been relocated when
6121 scanning later. */
6122 if (num_a8_relocs == a8_reloc_table_size)
6123 {
6124 a8_reloc_table_size *= 2;
6125 a8_relocs = (struct a8_erratum_reloc *)
6126 bfd_realloc (a8_relocs,
6127 sizeof (struct a8_erratum_reloc)
6128 * a8_reloc_table_size);
6129 }
6130
6131 a8_relocs[num_a8_relocs].from = from;
6132 a8_relocs[num_a8_relocs].destination = destination;
6133 a8_relocs[num_a8_relocs].r_type = r_type;
6134 a8_relocs[num_a8_relocs].branch_type = branch_type;
6135 a8_relocs[num_a8_relocs].sym_name = sym_name;
6136 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
6137 a8_relocs[num_a8_relocs].hash = hash;
6138
6139 num_a8_relocs++;
6140 }
6141 }
6142 }
6143
6144 /* We're done with the internal relocs, free them. */
6145 if (elf_section_data (section)->relocs == NULL)
6146 free (internal_relocs);
6147 }
6148
6149 if (htab->fix_cortex_a8)
6150 {
6151 /* Sort relocs which might apply to Cortex-A8 erratum. */
6152 qsort (a8_relocs, num_a8_relocs,
6153 sizeof (struct a8_erratum_reloc),
6154 &a8_reloc_compare);
6155
6156 /* Scan for branches which might trigger Cortex-A8 erratum. */
6157 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
6158 &num_a8_fixes, &a8_fix_table_size,
6159 a8_relocs, num_a8_relocs,
6160 prev_num_a8_fixes, &stub_changed)
6161 != 0)
6162 goto error_ret_free_local;
6163 }
6164
6165 if (local_syms != NULL
6166 && symtab_hdr->contents != (unsigned char *) local_syms)
6167 {
6168 if (!info->keep_memory)
6169 free (local_syms);
6170 else
6171 symtab_hdr->contents = (unsigned char *) local_syms;
6172 }
6173 }
6174
6175 if (prev_num_a8_fixes != num_a8_fixes)
6176 stub_changed = TRUE;
6177
6178 if (!stub_changed)
6179 break;
6180
6181 /* OK, we've added some stubs. Find out the new size of the
6182 stub sections. */
6183 for (stub_sec = htab->stub_bfd->sections;
6184 stub_sec != NULL;
6185 stub_sec = stub_sec->next)
6186 {
6187 /* Ignore non-stub sections. */
6188 if (!strstr (stub_sec->name, STUB_SUFFIX))
6189 continue;
6190
6191 stub_sec->size = 0;
6192 }
6193
6194 /* Compute stub section size, considering padding. */
6195 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
6196 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6197 stub_type++)
6198 {
6199 int size, padding;
6200 asection **stub_sec_p;
6201
6202 padding = arm_dedicated_stub_section_padding (stub_type);
6203 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6204 /* Skip if no stub input section or no stub section padding
6205 required. */
6206 if ((stub_sec_p != NULL && *stub_sec_p == NULL) || padding == 0)
6207 continue;
6208 /* Stub section padding required but no dedicated section. */
6209 BFD_ASSERT (stub_sec_p);
6210
6211 size = (*stub_sec_p)->size;
6212 size = (size + padding - 1) & ~(padding - 1);
6213 (*stub_sec_p)->size = size;
6214 }
6215
6216 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
6217 if (htab->fix_cortex_a8)
6218 for (i = 0; i < num_a8_fixes; i++)
6219 {
6220 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
6221 a8_fixes[i].section, htab, a8_fixes[i].stub_type);
6222
6223 if (stub_sec == NULL)
6224 return FALSE;
6225
6226 stub_sec->size
6227 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
6228 NULL);
6229 }
6230
6231
6232 /* Ask the linker to do its stuff. */
6233 (*htab->layout_sections_again) ();
6234 first_veneer_scan = FALSE;
6235 }
6236
6237 /* Add stubs for Cortex-A8 erratum fixes now. */
6238 if (htab->fix_cortex_a8)
6239 {
6240 for (i = 0; i < num_a8_fixes; i++)
6241 {
6242 struct elf32_arm_stub_hash_entry *stub_entry;
6243 char *stub_name = a8_fixes[i].stub_name;
6244 asection *section = a8_fixes[i].section;
6245 unsigned int section_id = a8_fixes[i].section->id;
6246 asection *link_sec = htab->stub_group[section_id].link_sec;
6247 asection *stub_sec = htab->stub_group[section_id].stub_sec;
6248 const insn_sequence *template_sequence;
6249 int template_size, size = 0;
6250
6251 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
6252 TRUE, FALSE);
6253 if (stub_entry == NULL)
6254 {
6255 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
6256 section->owner,
6257 stub_name);
6258 return FALSE;
6259 }
6260
6261 stub_entry->stub_sec = stub_sec;
6262 stub_entry->stub_offset = 0;
6263 stub_entry->id_sec = link_sec;
6264 stub_entry->stub_type = a8_fixes[i].stub_type;
6265 stub_entry->source_value = a8_fixes[i].offset;
6266 stub_entry->target_section = a8_fixes[i].section;
6267 stub_entry->target_value = a8_fixes[i].target_offset;
6268 stub_entry->orig_insn = a8_fixes[i].orig_insn;
6269 stub_entry->branch_type = a8_fixes[i].branch_type;
6270
6271 size = find_stub_size_and_template (a8_fixes[i].stub_type,
6272 &template_sequence,
6273 &template_size);
6274
6275 stub_entry->stub_size = size;
6276 stub_entry->stub_template = template_sequence;
6277 stub_entry->stub_template_size = template_size;
6278 }
6279
6280 /* Stash the Cortex-A8 erratum fix array for use later in
6281 elf32_arm_write_section(). */
6282 htab->a8_erratum_fixes = a8_fixes;
6283 htab->num_a8_erratum_fixes = num_a8_fixes;
6284 }
6285 else
6286 {
6287 htab->a8_erratum_fixes = NULL;
6288 htab->num_a8_erratum_fixes = 0;
6289 }
6290 return TRUE;
6291 }
6292
6293 /* Build all the stubs associated with the current output file. The
6294 stubs are kept in a hash table attached to the main linker hash
6295 table. We also set up the .plt entries for statically linked PIC
6296 functions here. This function is called via arm_elf_finish in the
6297 linker. */
6298
6299 bfd_boolean
6300 elf32_arm_build_stubs (struct bfd_link_info *info)
6301 {
6302 asection *stub_sec;
6303 struct bfd_hash_table *table;
6304 struct elf32_arm_link_hash_table *htab;
6305
6306 htab = elf32_arm_hash_table (info);
6307 if (htab == NULL)
6308 return FALSE;
6309
6310 for (stub_sec = htab->stub_bfd->sections;
6311 stub_sec != NULL;
6312 stub_sec = stub_sec->next)
6313 {
6314 bfd_size_type size;
6315
6316 /* Ignore non-stub sections. */
6317 if (!strstr (stub_sec->name, STUB_SUFFIX))
6318 continue;
6319
6320 /* Allocate memory to hold the linker stubs. Zeroing the stub sections
6321 must at least be done for stub section requiring padding. */
6322 size = stub_sec->size;
6323 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
6324 if (stub_sec->contents == NULL && size != 0)
6325 return FALSE;
6326 stub_sec->size = 0;
6327 }
6328
6329 /* Build the stubs as directed by the stub hash table. */
6330 table = &htab->stub_hash_table;
6331 bfd_hash_traverse (table, arm_build_one_stub, info);
6332 if (htab->fix_cortex_a8)
6333 {
6334 /* Place the cortex a8 stubs last. */
6335 htab->fix_cortex_a8 = -1;
6336 bfd_hash_traverse (table, arm_build_one_stub, info);
6337 }
6338
6339 return TRUE;
6340 }
6341
6342 /* Locate the Thumb encoded calling stub for NAME. */
6343
6344 static struct elf_link_hash_entry *
6345 find_thumb_glue (struct bfd_link_info *link_info,
6346 const char *name,
6347 char **error_message)
6348 {
6349 char *tmp_name;
6350 struct elf_link_hash_entry *hash;
6351 struct elf32_arm_link_hash_table *hash_table;
6352
6353 /* We need a pointer to the armelf specific hash table. */
6354 hash_table = elf32_arm_hash_table (link_info);
6355 if (hash_table == NULL)
6356 return NULL;
6357
6358 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
6359 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
6360
6361 BFD_ASSERT (tmp_name);
6362
6363 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
6364
6365 hash = elf_link_hash_lookup
6366 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
6367
6368 if (hash == NULL
6369 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
6370 tmp_name, name) == -1)
6371 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
6372
6373 free (tmp_name);
6374
6375 return hash;
6376 }
6377
6378 /* Locate the ARM encoded calling stub for NAME. */
6379
6380 static struct elf_link_hash_entry *
6381 find_arm_glue (struct bfd_link_info *link_info,
6382 const char *name,
6383 char **error_message)
6384 {
6385 char *tmp_name;
6386 struct elf_link_hash_entry *myh;
6387 struct elf32_arm_link_hash_table *hash_table;
6388
6389 /* We need a pointer to the elfarm specific hash table. */
6390 hash_table = elf32_arm_hash_table (link_info);
6391 if (hash_table == NULL)
6392 return NULL;
6393
6394 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
6395 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
6396
6397 BFD_ASSERT (tmp_name);
6398
6399 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
6400
6401 myh = elf_link_hash_lookup
6402 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
6403
6404 if (myh == NULL
6405 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
6406 tmp_name, name) == -1)
6407 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
6408
6409 free (tmp_name);
6410
6411 return myh;
6412 }
6413
6414 /* ARM->Thumb glue (static images):
6415
6416 .arm
6417 __func_from_arm:
6418 ldr r12, __func_addr
6419 bx r12
6420 __func_addr:
6421 .word func @ behave as if you saw a ARM_32 reloc.
6422
6423 (v5t static images)
6424 .arm
6425 __func_from_arm:
6426 ldr pc, __func_addr
6427 __func_addr:
6428 .word func @ behave as if you saw a ARM_32 reloc.
6429
6430 (relocatable images)
6431 .arm
6432 __func_from_arm:
6433 ldr r12, __func_offset
6434 add r12, r12, pc
6435 bx r12
6436 __func_offset:
6437 .word func - . */
6438
6439 #define ARM2THUMB_STATIC_GLUE_SIZE 12
6440 static const insn32 a2t1_ldr_insn = 0xe59fc000;
6441 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
6442 static const insn32 a2t3_func_addr_insn = 0x00000001;
6443
6444 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
6445 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
6446 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
6447
6448 #define ARM2THUMB_PIC_GLUE_SIZE 16
6449 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
6450 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
6451 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
6452
6453 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
6454
6455 .thumb .thumb
6456 .align 2 .align 2
6457 __func_from_thumb: __func_from_thumb:
6458 bx pc push {r6, lr}
6459 nop ldr r6, __func_addr
6460 .arm mov lr, pc
6461 b func bx r6
6462 .arm
6463 ;; back_to_thumb
6464 ldmia r13! {r6, lr}
6465 bx lr
6466 __func_addr:
6467 .word func */
6468
6469 #define THUMB2ARM_GLUE_SIZE 8
6470 static const insn16 t2a1_bx_pc_insn = 0x4778;
6471 static const insn16 t2a2_noop_insn = 0x46c0;
6472 static const insn32 t2a3_b_insn = 0xea000000;
6473
6474 #define VFP11_ERRATUM_VENEER_SIZE 8
6475 #define STM32L4XX_ERRATUM_LDM_VENEER_SIZE 16
6476 #define STM32L4XX_ERRATUM_VLDM_VENEER_SIZE 24
6477
6478 #define ARM_BX_VENEER_SIZE 12
6479 static const insn32 armbx1_tst_insn = 0xe3100001;
6480 static const insn32 armbx2_moveq_insn = 0x01a0f000;
6481 static const insn32 armbx3_bx_insn = 0xe12fff10;
6482
6483 #ifndef ELFARM_NABI_C_INCLUDED
6484 static void
6485 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
6486 {
6487 asection * s;
6488 bfd_byte * contents;
6489
6490 if (size == 0)
6491 {
6492 /* Do not include empty glue sections in the output. */
6493 if (abfd != NULL)
6494 {
6495 s = bfd_get_linker_section (abfd, name);
6496 if (s != NULL)
6497 s->flags |= SEC_EXCLUDE;
6498 }
6499 return;
6500 }
6501
6502 BFD_ASSERT (abfd != NULL);
6503
6504 s = bfd_get_linker_section (abfd, name);
6505 BFD_ASSERT (s != NULL);
6506
6507 contents = (bfd_byte *) bfd_alloc (abfd, size);
6508
6509 BFD_ASSERT (s->size == size);
6510 s->contents = contents;
6511 }
6512
6513 bfd_boolean
6514 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
6515 {
6516 struct elf32_arm_link_hash_table * globals;
6517
6518 globals = elf32_arm_hash_table (info);
6519 BFD_ASSERT (globals != NULL);
6520
6521 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6522 globals->arm_glue_size,
6523 ARM2THUMB_GLUE_SECTION_NAME);
6524
6525 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6526 globals->thumb_glue_size,
6527 THUMB2ARM_GLUE_SECTION_NAME);
6528
6529 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6530 globals->vfp11_erratum_glue_size,
6531 VFP11_ERRATUM_VENEER_SECTION_NAME);
6532
6533 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6534 globals->stm32l4xx_erratum_glue_size,
6535 STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
6536
6537 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6538 globals->bx_glue_size,
6539 ARM_BX_GLUE_SECTION_NAME);
6540
6541 return TRUE;
6542 }
6543
6544 /* Allocate space and symbols for calling a Thumb function from Arm mode.
6545 returns the symbol identifying the stub. */
6546
6547 static struct elf_link_hash_entry *
6548 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
6549 struct elf_link_hash_entry * h)
6550 {
6551 const char * name = h->root.root.string;
6552 asection * s;
6553 char * tmp_name;
6554 struct elf_link_hash_entry * myh;
6555 struct bfd_link_hash_entry * bh;
6556 struct elf32_arm_link_hash_table * globals;
6557 bfd_vma val;
6558 bfd_size_type size;
6559
6560 globals = elf32_arm_hash_table (link_info);
6561 BFD_ASSERT (globals != NULL);
6562 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6563
6564 s = bfd_get_linker_section
6565 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
6566
6567 BFD_ASSERT (s != NULL);
6568
6569 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
6570 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
6571
6572 BFD_ASSERT (tmp_name);
6573
6574 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
6575
6576 myh = elf_link_hash_lookup
6577 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6578
6579 if (myh != NULL)
6580 {
6581 /* We've already seen this guy. */
6582 free (tmp_name);
6583 return myh;
6584 }
6585
6586 /* The only trick here is using hash_table->arm_glue_size as the value.
6587 Even though the section isn't allocated yet, this is where we will be
6588 putting it. The +1 on the value marks that the stub has not been
6589 output yet - not that it is a Thumb function. */
6590 bh = NULL;
6591 val = globals->arm_glue_size + 1;
6592 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
6593 tmp_name, BSF_GLOBAL, s, val,
6594 NULL, TRUE, FALSE, &bh);
6595
6596 myh = (struct elf_link_hash_entry *) bh;
6597 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
6598 myh->forced_local = 1;
6599
6600 free (tmp_name);
6601
6602 if (bfd_link_pic (link_info)
6603 || globals->root.is_relocatable_executable
6604 || globals->pic_veneer)
6605 size = ARM2THUMB_PIC_GLUE_SIZE;
6606 else if (globals->use_blx)
6607 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
6608 else
6609 size = ARM2THUMB_STATIC_GLUE_SIZE;
6610
6611 s->size += size;
6612 globals->arm_glue_size += size;
6613
6614 return myh;
6615 }
6616
6617 /* Allocate space for ARMv4 BX veneers. */
6618
6619 static void
6620 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
6621 {
6622 asection * s;
6623 struct elf32_arm_link_hash_table *globals;
6624 char *tmp_name;
6625 struct elf_link_hash_entry *myh;
6626 struct bfd_link_hash_entry *bh;
6627 bfd_vma val;
6628
6629 /* BX PC does not need a veneer. */
6630 if (reg == 15)
6631 return;
6632
6633 globals = elf32_arm_hash_table (link_info);
6634 BFD_ASSERT (globals != NULL);
6635 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6636
6637 /* Check if this veneer has already been allocated. */
6638 if (globals->bx_glue_offset[reg])
6639 return;
6640
6641 s = bfd_get_linker_section
6642 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
6643
6644 BFD_ASSERT (s != NULL);
6645
6646 /* Add symbol for veneer. */
6647 tmp_name = (char *)
6648 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
6649
6650 BFD_ASSERT (tmp_name);
6651
6652 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
6653
6654 myh = elf_link_hash_lookup
6655 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
6656
6657 BFD_ASSERT (myh == NULL);
6658
6659 bh = NULL;
6660 val = globals->bx_glue_size;
6661 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
6662 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
6663 NULL, TRUE, FALSE, &bh);
6664
6665 myh = (struct elf_link_hash_entry *) bh;
6666 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
6667 myh->forced_local = 1;
6668
6669 s->size += ARM_BX_VENEER_SIZE;
6670 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
6671 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
6672 }
6673
6674
6675 /* Add an entry to the code/data map for section SEC. */
6676
6677 static void
6678 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
6679 {
6680 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
6681 unsigned int newidx;
6682
6683 if (sec_data->map == NULL)
6684 {
6685 sec_data->map = (elf32_arm_section_map *)
6686 bfd_malloc (sizeof (elf32_arm_section_map));
6687 sec_data->mapcount = 0;
6688 sec_data->mapsize = 1;
6689 }
6690
6691 newidx = sec_data->mapcount++;
6692
6693 if (sec_data->mapcount > sec_data->mapsize)
6694 {
6695 sec_data->mapsize *= 2;
6696 sec_data->map = (elf32_arm_section_map *)
6697 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
6698 * sizeof (elf32_arm_section_map));
6699 }
6700
6701 if (sec_data->map)
6702 {
6703 sec_data->map[newidx].vma = vma;
6704 sec_data->map[newidx].type = type;
6705 }
6706 }
6707
6708
6709 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
6710 veneers are handled for now. */
6711
6712 static bfd_vma
6713 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
6714 elf32_vfp11_erratum_list *branch,
6715 bfd *branch_bfd,
6716 asection *branch_sec,
6717 unsigned int offset)
6718 {
6719 asection *s;
6720 struct elf32_arm_link_hash_table *hash_table;
6721 char *tmp_name;
6722 struct elf_link_hash_entry *myh;
6723 struct bfd_link_hash_entry *bh;
6724 bfd_vma val;
6725 struct _arm_elf_section_data *sec_data;
6726 elf32_vfp11_erratum_list *newerr;
6727
6728 hash_table = elf32_arm_hash_table (link_info);
6729 BFD_ASSERT (hash_table != NULL);
6730 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
6731
6732 s = bfd_get_linker_section
6733 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
6734
6735 sec_data = elf32_arm_section_data (s);
6736
6737 BFD_ASSERT (s != NULL);
6738
6739 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
6740 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
6741
6742 BFD_ASSERT (tmp_name);
6743
6744 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
6745 hash_table->num_vfp11_fixes);
6746
6747 myh = elf_link_hash_lookup
6748 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
6749
6750 BFD_ASSERT (myh == NULL);
6751
6752 bh = NULL;
6753 val = hash_table->vfp11_erratum_glue_size;
6754 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
6755 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
6756 NULL, TRUE, FALSE, &bh);
6757
6758 myh = (struct elf_link_hash_entry *) bh;
6759 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
6760 myh->forced_local = 1;
6761
6762 /* Link veneer back to calling location. */
6763 sec_data->erratumcount += 1;
6764 newerr = (elf32_vfp11_erratum_list *)
6765 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
6766
6767 newerr->type = VFP11_ERRATUM_ARM_VENEER;
6768 newerr->vma = -1;
6769 newerr->u.v.branch = branch;
6770 newerr->u.v.id = hash_table->num_vfp11_fixes;
6771 branch->u.b.veneer = newerr;
6772
6773 newerr->next = sec_data->erratumlist;
6774 sec_data->erratumlist = newerr;
6775
6776 /* A symbol for the return from the veneer. */
6777 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
6778 hash_table->num_vfp11_fixes);
6779
6780 myh = elf_link_hash_lookup
6781 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
6782
6783 if (myh != NULL)
6784 abort ();
6785
6786 bh = NULL;
6787 val = offset + 4;
6788 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
6789 branch_sec, val, NULL, TRUE, FALSE, &bh);
6790
6791 myh = (struct elf_link_hash_entry *) bh;
6792 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
6793 myh->forced_local = 1;
6794
6795 free (tmp_name);
6796
6797 /* Generate a mapping symbol for the veneer section, and explicitly add an
6798 entry for that symbol to the code/data map for the section. */
6799 if (hash_table->vfp11_erratum_glue_size == 0)
6800 {
6801 bh = NULL;
6802 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
6803 ever requires this erratum fix. */
6804 _bfd_generic_link_add_one_symbol (link_info,
6805 hash_table->bfd_of_glue_owner, "$a",
6806 BSF_LOCAL, s, 0, NULL,
6807 TRUE, FALSE, &bh);
6808
6809 myh = (struct elf_link_hash_entry *) bh;
6810 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
6811 myh->forced_local = 1;
6812
6813 /* The elf32_arm_init_maps function only cares about symbols from input
6814 BFDs. We must make a note of this generated mapping symbol
6815 ourselves so that code byteswapping works properly in
6816 elf32_arm_write_section. */
6817 elf32_arm_section_map_add (s, 'a', 0);
6818 }
6819
6820 s->size += VFP11_ERRATUM_VENEER_SIZE;
6821 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
6822 hash_table->num_vfp11_fixes++;
6823
6824 /* The offset of the veneer. */
6825 return val;
6826 }
6827
6828 /* Record information about a STM32L4XX STM erratum veneer. Only THUMB-mode
6829 veneers need to be handled because used only in Cortex-M. */
6830
6831 static bfd_vma
6832 record_stm32l4xx_erratum_veneer (struct bfd_link_info *link_info,
6833 elf32_stm32l4xx_erratum_list *branch,
6834 bfd *branch_bfd,
6835 asection *branch_sec,
6836 unsigned int offset,
6837 bfd_size_type veneer_size)
6838 {
6839 asection *s;
6840 struct elf32_arm_link_hash_table *hash_table;
6841 char *tmp_name;
6842 struct elf_link_hash_entry *myh;
6843 struct bfd_link_hash_entry *bh;
6844 bfd_vma val;
6845 struct _arm_elf_section_data *sec_data;
6846 elf32_stm32l4xx_erratum_list *newerr;
6847
6848 hash_table = elf32_arm_hash_table (link_info);
6849 BFD_ASSERT (hash_table != NULL);
6850 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
6851
6852 s = bfd_get_linker_section
6853 (hash_table->bfd_of_glue_owner, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
6854
6855 BFD_ASSERT (s != NULL);
6856
6857 sec_data = elf32_arm_section_data (s);
6858
6859 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
6860 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
6861
6862 BFD_ASSERT (tmp_name);
6863
6864 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
6865 hash_table->num_stm32l4xx_fixes);
6866
6867 myh = elf_link_hash_lookup
6868 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
6869
6870 BFD_ASSERT (myh == NULL);
6871
6872 bh = NULL;
6873 val = hash_table->stm32l4xx_erratum_glue_size;
6874 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
6875 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
6876 NULL, TRUE, FALSE, &bh);
6877
6878 myh = (struct elf_link_hash_entry *) bh;
6879 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
6880 myh->forced_local = 1;
6881
6882 /* Link veneer back to calling location. */
6883 sec_data->stm32l4xx_erratumcount += 1;
6884 newerr = (elf32_stm32l4xx_erratum_list *)
6885 bfd_zmalloc (sizeof (elf32_stm32l4xx_erratum_list));
6886
6887 newerr->type = STM32L4XX_ERRATUM_VENEER;
6888 newerr->vma = -1;
6889 newerr->u.v.branch = branch;
6890 newerr->u.v.id = hash_table->num_stm32l4xx_fixes;
6891 branch->u.b.veneer = newerr;
6892
6893 newerr->next = sec_data->stm32l4xx_erratumlist;
6894 sec_data->stm32l4xx_erratumlist = newerr;
6895
6896 /* A symbol for the return from the veneer. */
6897 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
6898 hash_table->num_stm32l4xx_fixes);
6899
6900 myh = elf_link_hash_lookup
6901 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
6902
6903 if (myh != NULL)
6904 abort ();
6905
6906 bh = NULL;
6907 val = offset + 4;
6908 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
6909 branch_sec, val, NULL, TRUE, FALSE, &bh);
6910
6911 myh = (struct elf_link_hash_entry *) bh;
6912 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
6913 myh->forced_local = 1;
6914
6915 free (tmp_name);
6916
6917 /* Generate a mapping symbol for the veneer section, and explicitly add an
6918 entry for that symbol to the code/data map for the section. */
6919 if (hash_table->stm32l4xx_erratum_glue_size == 0)
6920 {
6921 bh = NULL;
6922 /* Creates a THUMB symbol since there is no other choice. */
6923 _bfd_generic_link_add_one_symbol (link_info,
6924 hash_table->bfd_of_glue_owner, "$t",
6925 BSF_LOCAL, s, 0, NULL,
6926 TRUE, FALSE, &bh);
6927
6928 myh = (struct elf_link_hash_entry *) bh;
6929 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
6930 myh->forced_local = 1;
6931
6932 /* The elf32_arm_init_maps function only cares about symbols from input
6933 BFDs. We must make a note of this generated mapping symbol
6934 ourselves so that code byteswapping works properly in
6935 elf32_arm_write_section. */
6936 elf32_arm_section_map_add (s, 't', 0);
6937 }
6938
6939 s->size += veneer_size;
6940 hash_table->stm32l4xx_erratum_glue_size += veneer_size;
6941 hash_table->num_stm32l4xx_fixes++;
6942
6943 /* The offset of the veneer. */
6944 return val;
6945 }
6946
6947 #define ARM_GLUE_SECTION_FLAGS \
6948 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
6949 | SEC_READONLY | SEC_LINKER_CREATED)
6950
6951 /* Create a fake section for use by the ARM backend of the linker. */
6952
6953 static bfd_boolean
6954 arm_make_glue_section (bfd * abfd, const char * name)
6955 {
6956 asection * sec;
6957
6958 sec = bfd_get_linker_section (abfd, name);
6959 if (sec != NULL)
6960 /* Already made. */
6961 return TRUE;
6962
6963 sec = bfd_make_section_anyway_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
6964
6965 if (sec == NULL
6966 || !bfd_set_section_alignment (abfd, sec, 2))
6967 return FALSE;
6968
6969 /* Set the gc mark to prevent the section from being removed by garbage
6970 collection, despite the fact that no relocs refer to this section. */
6971 sec->gc_mark = 1;
6972
6973 return TRUE;
6974 }
6975
6976 /* Set size of .plt entries. This function is called from the
6977 linker scripts in ld/emultempl/{armelf}.em. */
6978
6979 void
6980 bfd_elf32_arm_use_long_plt (void)
6981 {
6982 elf32_arm_use_long_plt_entry = TRUE;
6983 }
6984
6985 /* Add the glue sections to ABFD. This function is called from the
6986 linker scripts in ld/emultempl/{armelf}.em. */
6987
6988 bfd_boolean
6989 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
6990 struct bfd_link_info *info)
6991 {
6992 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
6993 bfd_boolean dostm32l4xx = globals
6994 && globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE;
6995 bfd_boolean addglue;
6996
6997 /* If we are only performing a partial
6998 link do not bother adding the glue. */
6999 if (bfd_link_relocatable (info))
7000 return TRUE;
7001
7002 addglue = arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
7003 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
7004 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
7005 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
7006
7007 if (!dostm32l4xx)
7008 return addglue;
7009
7010 return addglue
7011 && arm_make_glue_section (abfd, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7012 }
7013
7014 /* Mark output sections of veneers needing a dedicated one with SEC_KEEP. This
7015 ensures they are not marked for deletion by
7016 strip_excluded_output_sections () when veneers are going to be created
7017 later. Not doing so would trigger assert on empty section size in
7018 lang_size_sections_1 (). */
7019
7020 void
7021 bfd_elf32_arm_keep_private_stub_output_sections (struct bfd_link_info *info)
7022 {
7023 enum elf32_arm_stub_type stub_type;
7024
7025 /* If we are only performing a partial
7026 link do not bother adding the glue. */
7027 if (bfd_link_relocatable (info))
7028 return;
7029
7030 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
7031 {
7032 asection *out_sec;
7033 const char *out_sec_name;
7034
7035 if (!arm_dedicated_stub_output_section_required (stub_type))
7036 continue;
7037
7038 out_sec_name = arm_dedicated_stub_output_section_name (stub_type);
7039 out_sec = bfd_get_section_by_name (info->output_bfd, out_sec_name);
7040 if (out_sec != NULL)
7041 out_sec->flags |= SEC_KEEP;
7042 }
7043 }
7044
7045 /* Select a BFD to be used to hold the sections used by the glue code.
7046 This function is called from the linker scripts in ld/emultempl/
7047 {armelf/pe}.em. */
7048
7049 bfd_boolean
7050 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
7051 {
7052 struct elf32_arm_link_hash_table *globals;
7053
7054 /* If we are only performing a partial link
7055 do not bother getting a bfd to hold the glue. */
7056 if (bfd_link_relocatable (info))
7057 return TRUE;
7058
7059 /* Make sure we don't attach the glue sections to a dynamic object. */
7060 BFD_ASSERT (!(abfd->flags & DYNAMIC));
7061
7062 globals = elf32_arm_hash_table (info);
7063 BFD_ASSERT (globals != NULL);
7064
7065 if (globals->bfd_of_glue_owner != NULL)
7066 return TRUE;
7067
7068 /* Save the bfd for later use. */
7069 globals->bfd_of_glue_owner = abfd;
7070
7071 return TRUE;
7072 }
7073
7074 static void
7075 check_use_blx (struct elf32_arm_link_hash_table *globals)
7076 {
7077 int cpu_arch;
7078
7079 cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
7080 Tag_CPU_arch);
7081
7082 if (globals->fix_arm1176)
7083 {
7084 if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
7085 globals->use_blx = 1;
7086 }
7087 else
7088 {
7089 if (cpu_arch > TAG_CPU_ARCH_V4T)
7090 globals->use_blx = 1;
7091 }
7092 }
7093
7094 bfd_boolean
7095 bfd_elf32_arm_process_before_allocation (bfd *abfd,
7096 struct bfd_link_info *link_info)
7097 {
7098 Elf_Internal_Shdr *symtab_hdr;
7099 Elf_Internal_Rela *internal_relocs = NULL;
7100 Elf_Internal_Rela *irel, *irelend;
7101 bfd_byte *contents = NULL;
7102
7103 asection *sec;
7104 struct elf32_arm_link_hash_table *globals;
7105
7106 /* If we are only performing a partial link do not bother
7107 to construct any glue. */
7108 if (bfd_link_relocatable (link_info))
7109 return TRUE;
7110
7111 /* Here we have a bfd that is to be included on the link. We have a
7112 hook to do reloc rummaging, before section sizes are nailed down. */
7113 globals = elf32_arm_hash_table (link_info);
7114 BFD_ASSERT (globals != NULL);
7115
7116 check_use_blx (globals);
7117
7118 if (globals->byteswap_code && !bfd_big_endian (abfd))
7119 {
7120 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
7121 abfd);
7122 return FALSE;
7123 }
7124
7125 /* PR 5398: If we have not decided to include any loadable sections in
7126 the output then we will not have a glue owner bfd. This is OK, it
7127 just means that there is nothing else for us to do here. */
7128 if (globals->bfd_of_glue_owner == NULL)
7129 return TRUE;
7130
7131 /* Rummage around all the relocs and map the glue vectors. */
7132 sec = abfd->sections;
7133
7134 if (sec == NULL)
7135 return TRUE;
7136
7137 for (; sec != NULL; sec = sec->next)
7138 {
7139 if (sec->reloc_count == 0)
7140 continue;
7141
7142 if ((sec->flags & SEC_EXCLUDE) != 0)
7143 continue;
7144
7145 symtab_hdr = & elf_symtab_hdr (abfd);
7146
7147 /* Load the relocs. */
7148 internal_relocs
7149 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
7150
7151 if (internal_relocs == NULL)
7152 goto error_return;
7153
7154 irelend = internal_relocs + sec->reloc_count;
7155 for (irel = internal_relocs; irel < irelend; irel++)
7156 {
7157 long r_type;
7158 unsigned long r_index;
7159
7160 struct elf_link_hash_entry *h;
7161
7162 r_type = ELF32_R_TYPE (irel->r_info);
7163 r_index = ELF32_R_SYM (irel->r_info);
7164
7165 /* These are the only relocation types we care about. */
7166 if ( r_type != R_ARM_PC24
7167 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
7168 continue;
7169
7170 /* Get the section contents if we haven't done so already. */
7171 if (contents == NULL)
7172 {
7173 /* Get cached copy if it exists. */
7174 if (elf_section_data (sec)->this_hdr.contents != NULL)
7175 contents = elf_section_data (sec)->this_hdr.contents;
7176 else
7177 {
7178 /* Go get them off disk. */
7179 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
7180 goto error_return;
7181 }
7182 }
7183
7184 if (r_type == R_ARM_V4BX)
7185 {
7186 int reg;
7187
7188 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
7189 record_arm_bx_glue (link_info, reg);
7190 continue;
7191 }
7192
7193 /* If the relocation is not against a symbol it cannot concern us. */
7194 h = NULL;
7195
7196 /* We don't care about local symbols. */
7197 if (r_index < symtab_hdr->sh_info)
7198 continue;
7199
7200 /* This is an external symbol. */
7201 r_index -= symtab_hdr->sh_info;
7202 h = (struct elf_link_hash_entry *)
7203 elf_sym_hashes (abfd)[r_index];
7204
7205 /* If the relocation is against a static symbol it must be within
7206 the current section and so cannot be a cross ARM/Thumb relocation. */
7207 if (h == NULL)
7208 continue;
7209
7210 /* If the call will go through a PLT entry then we do not need
7211 glue. */
7212 if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
7213 continue;
7214
7215 switch (r_type)
7216 {
7217 case R_ARM_PC24:
7218 /* This one is a call from arm code. We need to look up
7219 the target of the call. If it is a thumb target, we
7220 insert glue. */
7221 if (ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
7222 == ST_BRANCH_TO_THUMB)
7223 record_arm_to_thumb_glue (link_info, h);
7224 break;
7225
7226 default:
7227 abort ();
7228 }
7229 }
7230
7231 if (contents != NULL
7232 && elf_section_data (sec)->this_hdr.contents != contents)
7233 free (contents);
7234 contents = NULL;
7235
7236 if (internal_relocs != NULL
7237 && elf_section_data (sec)->relocs != internal_relocs)
7238 free (internal_relocs);
7239 internal_relocs = NULL;
7240 }
7241
7242 return TRUE;
7243
7244 error_return:
7245 if (contents != NULL
7246 && elf_section_data (sec)->this_hdr.contents != contents)
7247 free (contents);
7248 if (internal_relocs != NULL
7249 && elf_section_data (sec)->relocs != internal_relocs)
7250 free (internal_relocs);
7251
7252 return FALSE;
7253 }
7254 #endif
7255
7256
7257 /* Initialise maps of ARM/Thumb/data for input BFDs. */
7258
7259 void
7260 bfd_elf32_arm_init_maps (bfd *abfd)
7261 {
7262 Elf_Internal_Sym *isymbuf;
7263 Elf_Internal_Shdr *hdr;
7264 unsigned int i, localsyms;
7265
7266 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
7267 if (! is_arm_elf (abfd))
7268 return;
7269
7270 if ((abfd->flags & DYNAMIC) != 0)
7271 return;
7272
7273 hdr = & elf_symtab_hdr (abfd);
7274 localsyms = hdr->sh_info;
7275
7276 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
7277 should contain the number of local symbols, which should come before any
7278 global symbols. Mapping symbols are always local. */
7279 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
7280 NULL);
7281
7282 /* No internal symbols read? Skip this BFD. */
7283 if (isymbuf == NULL)
7284 return;
7285
7286 for (i = 0; i < localsyms; i++)
7287 {
7288 Elf_Internal_Sym *isym = &isymbuf[i];
7289 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
7290 const char *name;
7291
7292 if (sec != NULL
7293 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
7294 {
7295 name = bfd_elf_string_from_elf_section (abfd,
7296 hdr->sh_link, isym->st_name);
7297
7298 if (bfd_is_arm_special_symbol_name (name,
7299 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
7300 elf32_arm_section_map_add (sec, name[1], isym->st_value);
7301 }
7302 }
7303 }
7304
7305
7306 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
7307 say what they wanted. */
7308
7309 void
7310 bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
7311 {
7312 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
7313 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
7314
7315 if (globals == NULL)
7316 return;
7317
7318 if (globals->fix_cortex_a8 == -1)
7319 {
7320 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
7321 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
7322 && (out_attr[Tag_CPU_arch_profile].i == 'A'
7323 || out_attr[Tag_CPU_arch_profile].i == 0))
7324 globals->fix_cortex_a8 = 1;
7325 else
7326 globals->fix_cortex_a8 = 0;
7327 }
7328 }
7329
7330
7331 void
7332 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
7333 {
7334 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
7335 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
7336
7337 if (globals == NULL)
7338 return;
7339 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
7340 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
7341 {
7342 switch (globals->vfp11_fix)
7343 {
7344 case BFD_ARM_VFP11_FIX_DEFAULT:
7345 case BFD_ARM_VFP11_FIX_NONE:
7346 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
7347 break;
7348
7349 default:
7350 /* Give a warning, but do as the user requests anyway. */
7351 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
7352 "workaround is not necessary for target architecture"), obfd);
7353 }
7354 }
7355 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
7356 /* For earlier architectures, we might need the workaround, but do not
7357 enable it by default. If users is running with broken hardware, they
7358 must enable the erratum fix explicitly. */
7359 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
7360 }
7361
7362 void
7363 bfd_elf32_arm_set_stm32l4xx_fix (bfd *obfd, struct bfd_link_info *link_info)
7364 {
7365 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
7366 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
7367
7368 if (globals == NULL)
7369 return;
7370
7371 /* We assume only Cortex-M4 may require the fix. */
7372 if (out_attr[Tag_CPU_arch].i != TAG_CPU_ARCH_V7E_M
7373 || out_attr[Tag_CPU_arch_profile].i != 'M')
7374 {
7375 if (globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE)
7376 /* Give a warning, but do as the user requests anyway. */
7377 (*_bfd_error_handler)
7378 (_("%B: warning: selected STM32L4XX erratum "
7379 "workaround is not necessary for target architecture"), obfd);
7380 }
7381 }
7382
7383 enum bfd_arm_vfp11_pipe
7384 {
7385 VFP11_FMAC,
7386 VFP11_LS,
7387 VFP11_DS,
7388 VFP11_BAD
7389 };
7390
7391 /* Return a VFP register number. This is encoded as RX:X for single-precision
7392 registers, or X:RX for double-precision registers, where RX is the group of
7393 four bits in the instruction encoding and X is the single extension bit.
7394 RX and X fields are specified using their lowest (starting) bit. The return
7395 value is:
7396
7397 0...31: single-precision registers s0...s31
7398 32...63: double-precision registers d0...d31.
7399
7400 Although X should be zero for VFP11 (encoding d0...d15 only), we might
7401 encounter VFP3 instructions, so we allow the full range for DP registers. */
7402
7403 static unsigned int
7404 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
7405 unsigned int x)
7406 {
7407 if (is_double)
7408 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
7409 else
7410 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
7411 }
7412
7413 /* Set bits in *WMASK according to a register number REG as encoded by
7414 bfd_arm_vfp11_regno(). Ignore d16-d31. */
7415
7416 static void
7417 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
7418 {
7419 if (reg < 32)
7420 *wmask |= 1 << reg;
7421 else if (reg < 48)
7422 *wmask |= 3 << ((reg - 32) * 2);
7423 }
7424
7425 /* Return TRUE if WMASK overwrites anything in REGS. */
7426
7427 static bfd_boolean
7428 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
7429 {
7430 int i;
7431
7432 for (i = 0; i < numregs; i++)
7433 {
7434 unsigned int reg = regs[i];
7435
7436 if (reg < 32 && (wmask & (1 << reg)) != 0)
7437 return TRUE;
7438
7439 reg -= 32;
7440
7441 if (reg >= 16)
7442 continue;
7443
7444 if ((wmask & (3 << (reg * 2))) != 0)
7445 return TRUE;
7446 }
7447
7448 return FALSE;
7449 }
7450
7451 /* In this function, we're interested in two things: finding input registers
7452 for VFP data-processing instructions, and finding the set of registers which
7453 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
7454 hold the written set, so FLDM etc. are easy to deal with (we're only
7455 interested in 32 SP registers or 16 dp registers, due to the VFP version
7456 implemented by the chip in question). DP registers are marked by setting
7457 both SP registers in the write mask). */
7458
7459 static enum bfd_arm_vfp11_pipe
7460 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
7461 int *numregs)
7462 {
7463 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
7464 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
7465
7466 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
7467 {
7468 unsigned int pqrs;
7469 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
7470 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
7471
7472 pqrs = ((insn & 0x00800000) >> 20)
7473 | ((insn & 0x00300000) >> 19)
7474 | ((insn & 0x00000040) >> 6);
7475
7476 switch (pqrs)
7477 {
7478 case 0: /* fmac[sd]. */
7479 case 1: /* fnmac[sd]. */
7480 case 2: /* fmsc[sd]. */
7481 case 3: /* fnmsc[sd]. */
7482 vpipe = VFP11_FMAC;
7483 bfd_arm_vfp11_write_mask (destmask, fd);
7484 regs[0] = fd;
7485 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
7486 regs[2] = fm;
7487 *numregs = 3;
7488 break;
7489
7490 case 4: /* fmul[sd]. */
7491 case 5: /* fnmul[sd]. */
7492 case 6: /* fadd[sd]. */
7493 case 7: /* fsub[sd]. */
7494 vpipe = VFP11_FMAC;
7495 goto vfp_binop;
7496
7497 case 8: /* fdiv[sd]. */
7498 vpipe = VFP11_DS;
7499 vfp_binop:
7500 bfd_arm_vfp11_write_mask (destmask, fd);
7501 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
7502 regs[1] = fm;
7503 *numregs = 2;
7504 break;
7505
7506 case 15: /* extended opcode. */
7507 {
7508 unsigned int extn = ((insn >> 15) & 0x1e)
7509 | ((insn >> 7) & 1);
7510
7511 switch (extn)
7512 {
7513 case 0: /* fcpy[sd]. */
7514 case 1: /* fabs[sd]. */
7515 case 2: /* fneg[sd]. */
7516 case 8: /* fcmp[sd]. */
7517 case 9: /* fcmpe[sd]. */
7518 case 10: /* fcmpz[sd]. */
7519 case 11: /* fcmpez[sd]. */
7520 case 16: /* fuito[sd]. */
7521 case 17: /* fsito[sd]. */
7522 case 24: /* ftoui[sd]. */
7523 case 25: /* ftouiz[sd]. */
7524 case 26: /* ftosi[sd]. */
7525 case 27: /* ftosiz[sd]. */
7526 /* These instructions will not bounce due to underflow. */
7527 *numregs = 0;
7528 vpipe = VFP11_FMAC;
7529 break;
7530
7531 case 3: /* fsqrt[sd]. */
7532 /* fsqrt cannot underflow, but it can (perhaps) overwrite
7533 registers to cause the erratum in previous instructions. */
7534 bfd_arm_vfp11_write_mask (destmask, fd);
7535 vpipe = VFP11_DS;
7536 break;
7537
7538 case 15: /* fcvt{ds,sd}. */
7539 {
7540 int rnum = 0;
7541
7542 bfd_arm_vfp11_write_mask (destmask, fd);
7543
7544 /* Only FCVTSD can underflow. */
7545 if ((insn & 0x100) != 0)
7546 regs[rnum++] = fm;
7547
7548 *numregs = rnum;
7549
7550 vpipe = VFP11_FMAC;
7551 }
7552 break;
7553
7554 default:
7555 return VFP11_BAD;
7556 }
7557 }
7558 break;
7559
7560 default:
7561 return VFP11_BAD;
7562 }
7563 }
7564 /* Two-register transfer. */
7565 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
7566 {
7567 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
7568
7569 if ((insn & 0x100000) == 0)
7570 {
7571 if (is_double)
7572 bfd_arm_vfp11_write_mask (destmask, fm);
7573 else
7574 {
7575 bfd_arm_vfp11_write_mask (destmask, fm);
7576 bfd_arm_vfp11_write_mask (destmask, fm + 1);
7577 }
7578 }
7579
7580 vpipe = VFP11_LS;
7581 }
7582 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
7583 {
7584 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
7585 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
7586
7587 switch (puw)
7588 {
7589 case 0: /* Two-reg transfer. We should catch these above. */
7590 abort ();
7591
7592 case 2: /* fldm[sdx]. */
7593 case 3:
7594 case 5:
7595 {
7596 unsigned int i, offset = insn & 0xff;
7597
7598 if (is_double)
7599 offset >>= 1;
7600
7601 for (i = fd; i < fd + offset; i++)
7602 bfd_arm_vfp11_write_mask (destmask, i);
7603 }
7604 break;
7605
7606 case 4: /* fld[sd]. */
7607 case 6:
7608 bfd_arm_vfp11_write_mask (destmask, fd);
7609 break;
7610
7611 default:
7612 return VFP11_BAD;
7613 }
7614
7615 vpipe = VFP11_LS;
7616 }
7617 /* Single-register transfer. Note L==0. */
7618 else if ((insn & 0x0f100e10) == 0x0e000a10)
7619 {
7620 unsigned int opcode = (insn >> 21) & 7;
7621 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
7622
7623 switch (opcode)
7624 {
7625 case 0: /* fmsr/fmdlr. */
7626 case 1: /* fmdhr. */
7627 /* Mark fmdhr and fmdlr as writing to the whole of the DP
7628 destination register. I don't know if this is exactly right,
7629 but it is the conservative choice. */
7630 bfd_arm_vfp11_write_mask (destmask, fn);
7631 break;
7632
7633 case 7: /* fmxr. */
7634 break;
7635 }
7636
7637 vpipe = VFP11_LS;
7638 }
7639
7640 return vpipe;
7641 }
7642
7643
7644 static int elf32_arm_compare_mapping (const void * a, const void * b);
7645
7646
7647 /* Look for potentially-troublesome code sequences which might trigger the
7648 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
7649 (available from ARM) for details of the erratum. A short version is
7650 described in ld.texinfo. */
7651
7652 bfd_boolean
7653 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
7654 {
7655 asection *sec;
7656 bfd_byte *contents = NULL;
7657 int state = 0;
7658 int regs[3], numregs = 0;
7659 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
7660 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
7661
7662 if (globals == NULL)
7663 return FALSE;
7664
7665 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
7666 The states transition as follows:
7667
7668 0 -> 1 (vector) or 0 -> 2 (scalar)
7669 A VFP FMAC-pipeline instruction has been seen. Fill
7670 regs[0]..regs[numregs-1] with its input operands. Remember this
7671 instruction in 'first_fmac'.
7672
7673 1 -> 2
7674 Any instruction, except for a VFP instruction which overwrites
7675 regs[*].
7676
7677 1 -> 3 [ -> 0 ] or
7678 2 -> 3 [ -> 0 ]
7679 A VFP instruction has been seen which overwrites any of regs[*].
7680 We must make a veneer! Reset state to 0 before examining next
7681 instruction.
7682
7683 2 -> 0
7684 If we fail to match anything in state 2, reset to state 0 and reset
7685 the instruction pointer to the instruction after 'first_fmac'.
7686
7687 If the VFP11 vector mode is in use, there must be at least two unrelated
7688 instructions between anti-dependent VFP11 instructions to properly avoid
7689 triggering the erratum, hence the use of the extra state 1. */
7690
7691 /* If we are only performing a partial link do not bother
7692 to construct any glue. */
7693 if (bfd_link_relocatable (link_info))
7694 return TRUE;
7695
7696 /* Skip if this bfd does not correspond to an ELF image. */
7697 if (! is_arm_elf (abfd))
7698 return TRUE;
7699
7700 /* We should have chosen a fix type by the time we get here. */
7701 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
7702
7703 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
7704 return TRUE;
7705
7706 /* Skip this BFD if it corresponds to an executable or dynamic object. */
7707 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
7708 return TRUE;
7709
7710 for (sec = abfd->sections; sec != NULL; sec = sec->next)
7711 {
7712 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
7713 struct _arm_elf_section_data *sec_data;
7714
7715 /* If we don't have executable progbits, we're not interested in this
7716 section. Also skip if section is to be excluded. */
7717 if (elf_section_type (sec) != SHT_PROGBITS
7718 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
7719 || (sec->flags & SEC_EXCLUDE) != 0
7720 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
7721 || sec->output_section == bfd_abs_section_ptr
7722 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
7723 continue;
7724
7725 sec_data = elf32_arm_section_data (sec);
7726
7727 if (sec_data->mapcount == 0)
7728 continue;
7729
7730 if (elf_section_data (sec)->this_hdr.contents != NULL)
7731 contents = elf_section_data (sec)->this_hdr.contents;
7732 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
7733 goto error_return;
7734
7735 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
7736 elf32_arm_compare_mapping);
7737
7738 for (span = 0; span < sec_data->mapcount; span++)
7739 {
7740 unsigned int span_start = sec_data->map[span].vma;
7741 unsigned int span_end = (span == sec_data->mapcount - 1)
7742 ? sec->size : sec_data->map[span + 1].vma;
7743 char span_type = sec_data->map[span].type;
7744
7745 /* FIXME: Only ARM mode is supported at present. We may need to
7746 support Thumb-2 mode also at some point. */
7747 if (span_type != 'a')
7748 continue;
7749
7750 for (i = span_start; i < span_end;)
7751 {
7752 unsigned int next_i = i + 4;
7753 unsigned int insn = bfd_big_endian (abfd)
7754 ? (contents[i] << 24)
7755 | (contents[i + 1] << 16)
7756 | (contents[i + 2] << 8)
7757 | contents[i + 3]
7758 : (contents[i + 3] << 24)
7759 | (contents[i + 2] << 16)
7760 | (contents[i + 1] << 8)
7761 | contents[i];
7762 unsigned int writemask = 0;
7763 enum bfd_arm_vfp11_pipe vpipe;
7764
7765 switch (state)
7766 {
7767 case 0:
7768 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
7769 &numregs);
7770 /* I'm assuming the VFP11 erratum can trigger with denorm
7771 operands on either the FMAC or the DS pipeline. This might
7772 lead to slightly overenthusiastic veneer insertion. */
7773 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
7774 {
7775 state = use_vector ? 1 : 2;
7776 first_fmac = i;
7777 veneer_of_insn = insn;
7778 }
7779 break;
7780
7781 case 1:
7782 {
7783 int other_regs[3], other_numregs;
7784 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
7785 other_regs,
7786 &other_numregs);
7787 if (vpipe != VFP11_BAD
7788 && bfd_arm_vfp11_antidependency (writemask, regs,
7789 numregs))
7790 state = 3;
7791 else
7792 state = 2;
7793 }
7794 break;
7795
7796 case 2:
7797 {
7798 int other_regs[3], other_numregs;
7799 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
7800 other_regs,
7801 &other_numregs);
7802 if (vpipe != VFP11_BAD
7803 && bfd_arm_vfp11_antidependency (writemask, regs,
7804 numregs))
7805 state = 3;
7806 else
7807 {
7808 state = 0;
7809 next_i = first_fmac + 4;
7810 }
7811 }
7812 break;
7813
7814 case 3:
7815 abort (); /* Should be unreachable. */
7816 }
7817
7818 if (state == 3)
7819 {
7820 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
7821 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
7822
7823 elf32_arm_section_data (sec)->erratumcount += 1;
7824
7825 newerr->u.b.vfp_insn = veneer_of_insn;
7826
7827 switch (span_type)
7828 {
7829 case 'a':
7830 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
7831 break;
7832
7833 default:
7834 abort ();
7835 }
7836
7837 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
7838 first_fmac);
7839
7840 newerr->vma = -1;
7841
7842 newerr->next = sec_data->erratumlist;
7843 sec_data->erratumlist = newerr;
7844
7845 state = 0;
7846 }
7847
7848 i = next_i;
7849 }
7850 }
7851
7852 if (contents != NULL
7853 && elf_section_data (sec)->this_hdr.contents != contents)
7854 free (contents);
7855 contents = NULL;
7856 }
7857
7858 return TRUE;
7859
7860 error_return:
7861 if (contents != NULL
7862 && elf_section_data (sec)->this_hdr.contents != contents)
7863 free (contents);
7864
7865 return FALSE;
7866 }
7867
7868 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
7869 after sections have been laid out, using specially-named symbols. */
7870
7871 void
7872 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
7873 struct bfd_link_info *link_info)
7874 {
7875 asection *sec;
7876 struct elf32_arm_link_hash_table *globals;
7877 char *tmp_name;
7878
7879 if (bfd_link_relocatable (link_info))
7880 return;
7881
7882 /* Skip if this bfd does not correspond to an ELF image. */
7883 if (! is_arm_elf (abfd))
7884 return;
7885
7886 globals = elf32_arm_hash_table (link_info);
7887 if (globals == NULL)
7888 return;
7889
7890 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7891 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
7892
7893 for (sec = abfd->sections; sec != NULL; sec = sec->next)
7894 {
7895 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
7896 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
7897
7898 for (; errnode != NULL; errnode = errnode->next)
7899 {
7900 struct elf_link_hash_entry *myh;
7901 bfd_vma vma;
7902
7903 switch (errnode->type)
7904 {
7905 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
7906 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
7907 /* Find veneer symbol. */
7908 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
7909 errnode->u.b.veneer->u.v.id);
7910
7911 myh = elf_link_hash_lookup
7912 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
7913
7914 if (myh == NULL)
7915 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
7916 "`%s'"), abfd, tmp_name);
7917
7918 vma = myh->root.u.def.section->output_section->vma
7919 + myh->root.u.def.section->output_offset
7920 + myh->root.u.def.value;
7921
7922 errnode->u.b.veneer->vma = vma;
7923 break;
7924
7925 case VFP11_ERRATUM_ARM_VENEER:
7926 case VFP11_ERRATUM_THUMB_VENEER:
7927 /* Find return location. */
7928 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
7929 errnode->u.v.id);
7930
7931 myh = elf_link_hash_lookup
7932 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
7933
7934 if (myh == NULL)
7935 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
7936 "`%s'"), abfd, tmp_name);
7937
7938 vma = myh->root.u.def.section->output_section->vma
7939 + myh->root.u.def.section->output_offset
7940 + myh->root.u.def.value;
7941
7942 errnode->u.v.branch->vma = vma;
7943 break;
7944
7945 default:
7946 abort ();
7947 }
7948 }
7949 }
7950
7951 free (tmp_name);
7952 }
7953
7954 /* Find virtual-memory addresses for STM32L4XX erratum veneers and
7955 return locations after sections have been laid out, using
7956 specially-named symbols. */
7957
7958 void
7959 bfd_elf32_arm_stm32l4xx_fix_veneer_locations (bfd *abfd,
7960 struct bfd_link_info *link_info)
7961 {
7962 asection *sec;
7963 struct elf32_arm_link_hash_table *globals;
7964 char *tmp_name;
7965
7966 if (bfd_link_relocatable (link_info))
7967 return;
7968
7969 /* Skip if this bfd does not correspond to an ELF image. */
7970 if (! is_arm_elf (abfd))
7971 return;
7972
7973 globals = elf32_arm_hash_table (link_info);
7974 if (globals == NULL)
7975 return;
7976
7977 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7978 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
7979
7980 for (sec = abfd->sections; sec != NULL; sec = sec->next)
7981 {
7982 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
7983 elf32_stm32l4xx_erratum_list *errnode = sec_data->stm32l4xx_erratumlist;
7984
7985 for (; errnode != NULL; errnode = errnode->next)
7986 {
7987 struct elf_link_hash_entry *myh;
7988 bfd_vma vma;
7989
7990 switch (errnode->type)
7991 {
7992 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
7993 /* Find veneer symbol. */
7994 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
7995 errnode->u.b.veneer->u.v.id);
7996
7997 myh = elf_link_hash_lookup
7998 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
7999
8000 if (myh == NULL)
8001 (*_bfd_error_handler) (_("%B: unable to find STM32L4XX veneer "
8002 "`%s'"), abfd, tmp_name);
8003
8004 vma = myh->root.u.def.section->output_section->vma
8005 + myh->root.u.def.section->output_offset
8006 + myh->root.u.def.value;
8007
8008 errnode->u.b.veneer->vma = vma;
8009 break;
8010
8011 case STM32L4XX_ERRATUM_VENEER:
8012 /* Find return location. */
8013 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
8014 errnode->u.v.id);
8015
8016 myh = elf_link_hash_lookup
8017 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8018
8019 if (myh == NULL)
8020 (*_bfd_error_handler) (_("%B: unable to find STM32L4XX veneer "
8021 "`%s'"), abfd, tmp_name);
8022
8023 vma = myh->root.u.def.section->output_section->vma
8024 + myh->root.u.def.section->output_offset
8025 + myh->root.u.def.value;
8026
8027 errnode->u.v.branch->vma = vma;
8028 break;
8029
8030 default:
8031 abort ();
8032 }
8033 }
8034 }
8035
8036 free (tmp_name);
8037 }
8038
8039 static inline bfd_boolean
8040 is_thumb2_ldmia (const insn32 insn)
8041 {
8042 /* Encoding T2: LDM<c>.W <Rn>{!},<registers>
8043 1110 - 1000 - 10W1 - rrrr - PM (0) l - llll - llll - llll. */
8044 return (insn & 0xffd02000) == 0xe8900000;
8045 }
8046
8047 static inline bfd_boolean
8048 is_thumb2_ldmdb (const insn32 insn)
8049 {
8050 /* Encoding T1: LDMDB<c> <Rn>{!},<registers>
8051 1110 - 1001 - 00W1 - rrrr - PM (0) l - llll - llll - llll. */
8052 return (insn & 0xffd02000) == 0xe9100000;
8053 }
8054
8055 static inline bfd_boolean
8056 is_thumb2_vldm (const insn32 insn)
8057 {
8058 /* A6.5 Extension register load or store instruction
8059 A7.7.229
8060 We look for SP 32-bit and DP 64-bit registers.
8061 Encoding T1 VLDM{mode}<c> <Rn>{!}, <list>
8062 <list> is consecutive 64-bit registers
8063 1110 - 110P - UDW1 - rrrr - vvvv - 1011 - iiii - iiii
8064 Encoding T2 VLDM{mode}<c> <Rn>{!}, <list>
8065 <list> is consecutive 32-bit registers
8066 1110 - 110P - UDW1 - rrrr - vvvv - 1010 - iiii - iiii
8067 if P==0 && U==1 && W==1 && Rn=1101 VPOP
8068 if PUW=010 || PUW=011 || PUW=101 VLDM. */
8069 return
8070 (((insn & 0xfe100f00) == 0xec100b00) ||
8071 ((insn & 0xfe100f00) == 0xec100a00))
8072 && /* (IA without !). */
8073 (((((insn << 7) >> 28) & 0xd) == 0x4)
8074 /* (IA with !), includes VPOP (when reg number is SP). */
8075 || ((((insn << 7) >> 28) & 0xd) == 0x5)
8076 /* (DB with !). */
8077 || ((((insn << 7) >> 28) & 0xd) == 0x9));
8078 }
8079
8080 /* STM STM32L4XX erratum : This function assumes that it receives an LDM or
8081 VLDM opcode and:
8082 - computes the number and the mode of memory accesses
8083 - decides if the replacement should be done:
8084 . replaces only if > 8-word accesses
8085 . or (testing purposes only) replaces all accesses. */
8086
8087 static bfd_boolean
8088 stm32l4xx_need_create_replacing_stub (const insn32 insn,
8089 bfd_arm_stm32l4xx_fix stm32l4xx_fix)
8090 {
8091 int nb_words = 0;
8092
8093 /* The field encoding the register list is the same for both LDMIA
8094 and LDMDB encodings. */
8095 if (is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn))
8096 nb_words = popcount (insn & 0x0000ffff);
8097 else if (is_thumb2_vldm (insn))
8098 nb_words = (insn & 0xff);
8099
8100 /* DEFAULT mode accounts for the real bug condition situation,
8101 ALL mode inserts stubs for each LDM/VLDM instruction (testing). */
8102 return
8103 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_DEFAULT) ? nb_words > 8 :
8104 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_ALL) ? TRUE : FALSE;
8105 }
8106
8107 /* Look for potentially-troublesome code sequences which might trigger
8108 the STM STM32L4XX erratum. */
8109
8110 bfd_boolean
8111 bfd_elf32_arm_stm32l4xx_erratum_scan (bfd *abfd,
8112 struct bfd_link_info *link_info)
8113 {
8114 asection *sec;
8115 bfd_byte *contents = NULL;
8116 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8117
8118 if (globals == NULL)
8119 return FALSE;
8120
8121 /* If we are only performing a partial link do not bother
8122 to construct any glue. */
8123 if (bfd_link_relocatable (link_info))
8124 return TRUE;
8125
8126 /* Skip if this bfd does not correspond to an ELF image. */
8127 if (! is_arm_elf (abfd))
8128 return TRUE;
8129
8130 if (globals->stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_NONE)
8131 return TRUE;
8132
8133 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8134 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
8135 return TRUE;
8136
8137 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8138 {
8139 unsigned int i, span;
8140 struct _arm_elf_section_data *sec_data;
8141
8142 /* If we don't have executable progbits, we're not interested in this
8143 section. Also skip if section is to be excluded. */
8144 if (elf_section_type (sec) != SHT_PROGBITS
8145 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8146 || (sec->flags & SEC_EXCLUDE) != 0
8147 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8148 || sec->output_section == bfd_abs_section_ptr
8149 || strcmp (sec->name, STM32L4XX_ERRATUM_VENEER_SECTION_NAME) == 0)
8150 continue;
8151
8152 sec_data = elf32_arm_section_data (sec);
8153
8154 if (sec_data->mapcount == 0)
8155 continue;
8156
8157 if (elf_section_data (sec)->this_hdr.contents != NULL)
8158 contents = elf_section_data (sec)->this_hdr.contents;
8159 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8160 goto error_return;
8161
8162 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8163 elf32_arm_compare_mapping);
8164
8165 for (span = 0; span < sec_data->mapcount; span++)
8166 {
8167 unsigned int span_start = sec_data->map[span].vma;
8168 unsigned int span_end = (span == sec_data->mapcount - 1)
8169 ? sec->size : sec_data->map[span + 1].vma;
8170 char span_type = sec_data->map[span].type;
8171 int itblock_current_pos = 0;
8172
8173 /* Only Thumb2 mode need be supported with this CM4 specific
8174 code, we should not encounter any arm mode eg span_type
8175 != 'a'. */
8176 if (span_type != 't')
8177 continue;
8178
8179 for (i = span_start; i < span_end;)
8180 {
8181 unsigned int insn = bfd_get_16 (abfd, &contents[i]);
8182 bfd_boolean insn_32bit = FALSE;
8183 bfd_boolean is_ldm = FALSE;
8184 bfd_boolean is_vldm = FALSE;
8185 bfd_boolean is_not_last_in_it_block = FALSE;
8186
8187 /* The first 16-bits of all 32-bit thumb2 instructions start
8188 with opcode[15..13]=0b111 and the encoded op1 can be anything
8189 except opcode[12..11]!=0b00.
8190 See 32-bit Thumb instruction encoding. */
8191 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
8192 insn_32bit = TRUE;
8193
8194 /* Compute the predicate that tells if the instruction
8195 is concerned by the IT block
8196 - Creates an error if there is a ldm that is not
8197 last in the IT block thus cannot be replaced
8198 - Otherwise we can create a branch at the end of the
8199 IT block, it will be controlled naturally by IT
8200 with the proper pseudo-predicate
8201 - So the only interesting predicate is the one that
8202 tells that we are not on the last item of an IT
8203 block. */
8204 if (itblock_current_pos != 0)
8205 is_not_last_in_it_block = !!--itblock_current_pos;
8206
8207 if (insn_32bit)
8208 {
8209 /* Load the rest of the insn (in manual-friendly order). */
8210 insn = (insn << 16) | bfd_get_16 (abfd, &contents[i + 2]);
8211 is_ldm = is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn);
8212 is_vldm = is_thumb2_vldm (insn);
8213
8214 /* Veneers are created for (v)ldm depending on
8215 option flags and memory accesses conditions; but
8216 if the instruction is not the last instruction of
8217 an IT block, we cannot create a jump there, so we
8218 bail out. */
8219 if ((is_ldm || is_vldm) &&
8220 stm32l4xx_need_create_replacing_stub
8221 (insn, globals->stm32l4xx_fix))
8222 {
8223 if (is_not_last_in_it_block)
8224 {
8225 (*_bfd_error_handler)
8226 /* Note - overlong line used here to allow for translation. */
8227 (_("\
8228 %B(%A+0x%lx): error: multiple load detected in non-last IT block instruction : STM32L4XX veneer cannot be generated.\n"
8229 "Use gcc option -mrestrict-it to generate only one instruction per IT block.\n"),
8230 abfd, sec, (long)i);
8231 }
8232 else
8233 {
8234 elf32_stm32l4xx_erratum_list *newerr =
8235 (elf32_stm32l4xx_erratum_list *)
8236 bfd_zmalloc
8237 (sizeof (elf32_stm32l4xx_erratum_list));
8238
8239 elf32_arm_section_data (sec)
8240 ->stm32l4xx_erratumcount += 1;
8241 newerr->u.b.insn = insn;
8242 /* We create only thumb branches. */
8243 newerr->type =
8244 STM32L4XX_ERRATUM_BRANCH_TO_VENEER;
8245 record_stm32l4xx_erratum_veneer
8246 (link_info, newerr, abfd, sec,
8247 i,
8248 is_ldm ?
8249 STM32L4XX_ERRATUM_LDM_VENEER_SIZE:
8250 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
8251 newerr->vma = -1;
8252 newerr->next = sec_data->stm32l4xx_erratumlist;
8253 sec_data->stm32l4xx_erratumlist = newerr;
8254 }
8255 }
8256 }
8257 else
8258 {
8259 /* A7.7.37 IT p208
8260 IT blocks are only encoded in T1
8261 Encoding T1: IT{x{y{z}}} <firstcond>
8262 1 0 1 1 - 1 1 1 1 - firstcond - mask
8263 if mask = '0000' then see 'related encodings'
8264 We don't deal with UNPREDICTABLE, just ignore these.
8265 There can be no nested IT blocks so an IT block
8266 is naturally a new one for which it is worth
8267 computing its size. */
8268 bfd_boolean is_newitblock = ((insn & 0xff00) == 0xbf00) &&
8269 ((insn & 0x000f) != 0x0000);
8270 /* If we have a new IT block we compute its size. */
8271 if (is_newitblock)
8272 {
8273 /* Compute the number of instructions controlled
8274 by the IT block, it will be used to decide
8275 whether we are inside an IT block or not. */
8276 unsigned int mask = insn & 0x000f;
8277 itblock_current_pos = 4 - ctz (mask);
8278 }
8279 }
8280
8281 i += insn_32bit ? 4 : 2;
8282 }
8283 }
8284
8285 if (contents != NULL
8286 && elf_section_data (sec)->this_hdr.contents != contents)
8287 free (contents);
8288 contents = NULL;
8289 }
8290
8291 return TRUE;
8292
8293 error_return:
8294 if (contents != NULL
8295 && elf_section_data (sec)->this_hdr.contents != contents)
8296 free (contents);
8297
8298 return FALSE;
8299 }
8300
8301 /* Set target relocation values needed during linking. */
8302
8303 void
8304 bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
8305 struct bfd_link_info *link_info,
8306 int target1_is_rel,
8307 char * target2_type,
8308 int fix_v4bx,
8309 int use_blx,
8310 bfd_arm_vfp11_fix vfp11_fix,
8311 bfd_arm_stm32l4xx_fix stm32l4xx_fix,
8312 int no_enum_warn, int no_wchar_warn,
8313 int pic_veneer, int fix_cortex_a8,
8314 int fix_arm1176, int cmse_implib)
8315 {
8316 struct elf32_arm_link_hash_table *globals;
8317
8318 globals = elf32_arm_hash_table (link_info);
8319 if (globals == NULL)
8320 return;
8321
8322 globals->target1_is_rel = target1_is_rel;
8323 if (strcmp (target2_type, "rel") == 0)
8324 globals->target2_reloc = R_ARM_REL32;
8325 else if (strcmp (target2_type, "abs") == 0)
8326 globals->target2_reloc = R_ARM_ABS32;
8327 else if (strcmp (target2_type, "got-rel") == 0)
8328 globals->target2_reloc = R_ARM_GOT_PREL;
8329 else
8330 {
8331 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
8332 target2_type);
8333 }
8334 globals->fix_v4bx = fix_v4bx;
8335 globals->use_blx |= use_blx;
8336 globals->vfp11_fix = vfp11_fix;
8337 globals->stm32l4xx_fix = stm32l4xx_fix;
8338 globals->pic_veneer = pic_veneer;
8339 globals->fix_cortex_a8 = fix_cortex_a8;
8340 globals->fix_arm1176 = fix_arm1176;
8341 globals->cmse_implib = cmse_implib;
8342
8343 BFD_ASSERT (is_arm_elf (output_bfd));
8344 elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
8345 elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
8346 }
8347
8348 /* Replace the target offset of a Thumb bl or b.w instruction. */
8349
8350 static void
8351 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
8352 {
8353 bfd_vma upper;
8354 bfd_vma lower;
8355 int reloc_sign;
8356
8357 BFD_ASSERT ((offset & 1) == 0);
8358
8359 upper = bfd_get_16 (abfd, insn);
8360 lower = bfd_get_16 (abfd, insn + 2);
8361 reloc_sign = (offset < 0) ? 1 : 0;
8362 upper = (upper & ~(bfd_vma) 0x7ff)
8363 | ((offset >> 12) & 0x3ff)
8364 | (reloc_sign << 10);
8365 lower = (lower & ~(bfd_vma) 0x2fff)
8366 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
8367 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
8368 | ((offset >> 1) & 0x7ff);
8369 bfd_put_16 (abfd, upper, insn);
8370 bfd_put_16 (abfd, lower, insn + 2);
8371 }
8372
8373 /* Thumb code calling an ARM function. */
8374
8375 static int
8376 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
8377 const char * name,
8378 bfd * input_bfd,
8379 bfd * output_bfd,
8380 asection * input_section,
8381 bfd_byte * hit_data,
8382 asection * sym_sec,
8383 bfd_vma offset,
8384 bfd_signed_vma addend,
8385 bfd_vma val,
8386 char **error_message)
8387 {
8388 asection * s = 0;
8389 bfd_vma my_offset;
8390 long int ret_offset;
8391 struct elf_link_hash_entry * myh;
8392 struct elf32_arm_link_hash_table * globals;
8393
8394 myh = find_thumb_glue (info, name, error_message);
8395 if (myh == NULL)
8396 return FALSE;
8397
8398 globals = elf32_arm_hash_table (info);
8399 BFD_ASSERT (globals != NULL);
8400 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
8401
8402 my_offset = myh->root.u.def.value;
8403
8404 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
8405 THUMB2ARM_GLUE_SECTION_NAME);
8406
8407 BFD_ASSERT (s != NULL);
8408 BFD_ASSERT (s->contents != NULL);
8409 BFD_ASSERT (s->output_section != NULL);
8410
8411 if ((my_offset & 0x01) == 0x01)
8412 {
8413 if (sym_sec != NULL
8414 && sym_sec->owner != NULL
8415 && !INTERWORK_FLAG (sym_sec->owner))
8416 {
8417 (*_bfd_error_handler)
8418 (_("%B(%s): warning: interworking not enabled.\n"
8419 " first occurrence: %B: Thumb call to ARM"),
8420 sym_sec->owner, input_bfd, name);
8421
8422 return FALSE;
8423 }
8424
8425 --my_offset;
8426 myh->root.u.def.value = my_offset;
8427
8428 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
8429 s->contents + my_offset);
8430
8431 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
8432 s->contents + my_offset + 2);
8433
8434 ret_offset =
8435 /* Address of destination of the stub. */
8436 ((bfd_signed_vma) val)
8437 - ((bfd_signed_vma)
8438 /* Offset from the start of the current section
8439 to the start of the stubs. */
8440 (s->output_offset
8441 /* Offset of the start of this stub from the start of the stubs. */
8442 + my_offset
8443 /* Address of the start of the current section. */
8444 + s->output_section->vma)
8445 /* The branch instruction is 4 bytes into the stub. */
8446 + 4
8447 /* ARM branches work from the pc of the instruction + 8. */
8448 + 8);
8449
8450 put_arm_insn (globals, output_bfd,
8451 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
8452 s->contents + my_offset + 4);
8453 }
8454
8455 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
8456
8457 /* Now go back and fix up the original BL insn to point to here. */
8458 ret_offset =
8459 /* Address of where the stub is located. */
8460 (s->output_section->vma + s->output_offset + my_offset)
8461 /* Address of where the BL is located. */
8462 - (input_section->output_section->vma + input_section->output_offset
8463 + offset)
8464 /* Addend in the relocation. */
8465 - addend
8466 /* Biassing for PC-relative addressing. */
8467 - 8;
8468
8469 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
8470
8471 return TRUE;
8472 }
8473
8474 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
8475
8476 static struct elf_link_hash_entry *
8477 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
8478 const char * name,
8479 bfd * input_bfd,
8480 bfd * output_bfd,
8481 asection * sym_sec,
8482 bfd_vma val,
8483 asection * s,
8484 char ** error_message)
8485 {
8486 bfd_vma my_offset;
8487 long int ret_offset;
8488 struct elf_link_hash_entry * myh;
8489 struct elf32_arm_link_hash_table * globals;
8490
8491 myh = find_arm_glue (info, name, error_message);
8492 if (myh == NULL)
8493 return NULL;
8494
8495 globals = elf32_arm_hash_table (info);
8496 BFD_ASSERT (globals != NULL);
8497 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
8498
8499 my_offset = myh->root.u.def.value;
8500
8501 if ((my_offset & 0x01) == 0x01)
8502 {
8503 if (sym_sec != NULL
8504 && sym_sec->owner != NULL
8505 && !INTERWORK_FLAG (sym_sec->owner))
8506 {
8507 (*_bfd_error_handler)
8508 (_("%B(%s): warning: interworking not enabled.\n"
8509 " first occurrence: %B: arm call to thumb"),
8510 sym_sec->owner, input_bfd, name);
8511 }
8512
8513 --my_offset;
8514 myh->root.u.def.value = my_offset;
8515
8516 if (bfd_link_pic (info)
8517 || globals->root.is_relocatable_executable
8518 || globals->pic_veneer)
8519 {
8520 /* For relocatable objects we can't use absolute addresses,
8521 so construct the address from a relative offset. */
8522 /* TODO: If the offset is small it's probably worth
8523 constructing the address with adds. */
8524 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
8525 s->contents + my_offset);
8526 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
8527 s->contents + my_offset + 4);
8528 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
8529 s->contents + my_offset + 8);
8530 /* Adjust the offset by 4 for the position of the add,
8531 and 8 for the pipeline offset. */
8532 ret_offset = (val - (s->output_offset
8533 + s->output_section->vma
8534 + my_offset + 12))
8535 | 1;
8536 bfd_put_32 (output_bfd, ret_offset,
8537 s->contents + my_offset + 12);
8538 }
8539 else if (globals->use_blx)
8540 {
8541 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
8542 s->contents + my_offset);
8543
8544 /* It's a thumb address. Add the low order bit. */
8545 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
8546 s->contents + my_offset + 4);
8547 }
8548 else
8549 {
8550 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
8551 s->contents + my_offset);
8552
8553 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
8554 s->contents + my_offset + 4);
8555
8556 /* It's a thumb address. Add the low order bit. */
8557 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
8558 s->contents + my_offset + 8);
8559
8560 my_offset += 12;
8561 }
8562 }
8563
8564 BFD_ASSERT (my_offset <= globals->arm_glue_size);
8565
8566 return myh;
8567 }
8568
8569 /* Arm code calling a Thumb function. */
8570
8571 static int
8572 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
8573 const char * name,
8574 bfd * input_bfd,
8575 bfd * output_bfd,
8576 asection * input_section,
8577 bfd_byte * hit_data,
8578 asection * sym_sec,
8579 bfd_vma offset,
8580 bfd_signed_vma addend,
8581 bfd_vma val,
8582 char **error_message)
8583 {
8584 unsigned long int tmp;
8585 bfd_vma my_offset;
8586 asection * s;
8587 long int ret_offset;
8588 struct elf_link_hash_entry * myh;
8589 struct elf32_arm_link_hash_table * globals;
8590
8591 globals = elf32_arm_hash_table (info);
8592 BFD_ASSERT (globals != NULL);
8593 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
8594
8595 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
8596 ARM2THUMB_GLUE_SECTION_NAME);
8597 BFD_ASSERT (s != NULL);
8598 BFD_ASSERT (s->contents != NULL);
8599 BFD_ASSERT (s->output_section != NULL);
8600
8601 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
8602 sym_sec, val, s, error_message);
8603 if (!myh)
8604 return FALSE;
8605
8606 my_offset = myh->root.u.def.value;
8607 tmp = bfd_get_32 (input_bfd, hit_data);
8608 tmp = tmp & 0xFF000000;
8609
8610 /* Somehow these are both 4 too far, so subtract 8. */
8611 ret_offset = (s->output_offset
8612 + my_offset
8613 + s->output_section->vma
8614 - (input_section->output_offset
8615 + input_section->output_section->vma
8616 + offset + addend)
8617 - 8);
8618
8619 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
8620
8621 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
8622
8623 return TRUE;
8624 }
8625
8626 /* Populate Arm stub for an exported Thumb function. */
8627
8628 static bfd_boolean
8629 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
8630 {
8631 struct bfd_link_info * info = (struct bfd_link_info *) inf;
8632 asection * s;
8633 struct elf_link_hash_entry * myh;
8634 struct elf32_arm_link_hash_entry *eh;
8635 struct elf32_arm_link_hash_table * globals;
8636 asection *sec;
8637 bfd_vma val;
8638 char *error_message;
8639
8640 eh = elf32_arm_hash_entry (h);
8641 /* Allocate stubs for exported Thumb functions on v4t. */
8642 if (eh->export_glue == NULL)
8643 return TRUE;
8644
8645 globals = elf32_arm_hash_table (info);
8646 BFD_ASSERT (globals != NULL);
8647 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
8648
8649 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
8650 ARM2THUMB_GLUE_SECTION_NAME);
8651 BFD_ASSERT (s != NULL);
8652 BFD_ASSERT (s->contents != NULL);
8653 BFD_ASSERT (s->output_section != NULL);
8654
8655 sec = eh->export_glue->root.u.def.section;
8656
8657 BFD_ASSERT (sec->output_section != NULL);
8658
8659 val = eh->export_glue->root.u.def.value + sec->output_offset
8660 + sec->output_section->vma;
8661
8662 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
8663 h->root.u.def.section->owner,
8664 globals->obfd, sec, val, s,
8665 &error_message);
8666 BFD_ASSERT (myh);
8667 return TRUE;
8668 }
8669
8670 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
8671
8672 static bfd_vma
8673 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
8674 {
8675 bfd_byte *p;
8676 bfd_vma glue_addr;
8677 asection *s;
8678 struct elf32_arm_link_hash_table *globals;
8679
8680 globals = elf32_arm_hash_table (info);
8681 BFD_ASSERT (globals != NULL);
8682 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
8683
8684 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
8685 ARM_BX_GLUE_SECTION_NAME);
8686 BFD_ASSERT (s != NULL);
8687 BFD_ASSERT (s->contents != NULL);
8688 BFD_ASSERT (s->output_section != NULL);
8689
8690 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
8691
8692 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
8693
8694 if ((globals->bx_glue_offset[reg] & 1) == 0)
8695 {
8696 p = s->contents + glue_addr;
8697 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
8698 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
8699 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
8700 globals->bx_glue_offset[reg] |= 1;
8701 }
8702
8703 return glue_addr + s->output_section->vma + s->output_offset;
8704 }
8705
8706 /* Generate Arm stubs for exported Thumb symbols. */
8707 static void
8708 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
8709 struct bfd_link_info *link_info)
8710 {
8711 struct elf32_arm_link_hash_table * globals;
8712
8713 if (link_info == NULL)
8714 /* Ignore this if we are not called by the ELF backend linker. */
8715 return;
8716
8717 globals = elf32_arm_hash_table (link_info);
8718 if (globals == NULL)
8719 return;
8720
8721 /* If blx is available then exported Thumb symbols are OK and there is
8722 nothing to do. */
8723 if (globals->use_blx)
8724 return;
8725
8726 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
8727 link_info);
8728 }
8729
8730 /* Reserve space for COUNT dynamic relocations in relocation selection
8731 SRELOC. */
8732
8733 static void
8734 elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
8735 bfd_size_type count)
8736 {
8737 struct elf32_arm_link_hash_table *htab;
8738
8739 htab = elf32_arm_hash_table (info);
8740 BFD_ASSERT (htab->root.dynamic_sections_created);
8741 if (sreloc == NULL)
8742 abort ();
8743 sreloc->size += RELOC_SIZE (htab) * count;
8744 }
8745
8746 /* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
8747 dynamic, the relocations should go in SRELOC, otherwise they should
8748 go in the special .rel.iplt section. */
8749
8750 static void
8751 elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
8752 bfd_size_type count)
8753 {
8754 struct elf32_arm_link_hash_table *htab;
8755
8756 htab = elf32_arm_hash_table (info);
8757 if (!htab->root.dynamic_sections_created)
8758 htab->root.irelplt->size += RELOC_SIZE (htab) * count;
8759 else
8760 {
8761 BFD_ASSERT (sreloc != NULL);
8762 sreloc->size += RELOC_SIZE (htab) * count;
8763 }
8764 }
8765
8766 /* Add relocation REL to the end of relocation section SRELOC. */
8767
8768 static void
8769 elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
8770 asection *sreloc, Elf_Internal_Rela *rel)
8771 {
8772 bfd_byte *loc;
8773 struct elf32_arm_link_hash_table *htab;
8774
8775 htab = elf32_arm_hash_table (info);
8776 if (!htab->root.dynamic_sections_created
8777 && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
8778 sreloc = htab->root.irelplt;
8779 if (sreloc == NULL)
8780 abort ();
8781 loc = sreloc->contents;
8782 loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
8783 if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
8784 abort ();
8785 SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
8786 }
8787
8788 /* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
8789 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
8790 to .plt. */
8791
8792 static void
8793 elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
8794 bfd_boolean is_iplt_entry,
8795 union gotplt_union *root_plt,
8796 struct arm_plt_info *arm_plt)
8797 {
8798 struct elf32_arm_link_hash_table *htab;
8799 asection *splt;
8800 asection *sgotplt;
8801
8802 htab = elf32_arm_hash_table (info);
8803
8804 if (is_iplt_entry)
8805 {
8806 splt = htab->root.iplt;
8807 sgotplt = htab->root.igotplt;
8808
8809 /* NaCl uses a special first entry in .iplt too. */
8810 if (htab->nacl_p && splt->size == 0)
8811 splt->size += htab->plt_header_size;
8812
8813 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
8814 elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
8815 }
8816 else
8817 {
8818 splt = htab->root.splt;
8819 sgotplt = htab->root.sgotplt;
8820
8821 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
8822 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
8823
8824 /* If this is the first .plt entry, make room for the special
8825 first entry. */
8826 if (splt->size == 0)
8827 splt->size += htab->plt_header_size;
8828
8829 htab->next_tls_desc_index++;
8830 }
8831
8832 /* Allocate the PLT entry itself, including any leading Thumb stub. */
8833 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
8834 splt->size += PLT_THUMB_STUB_SIZE;
8835 root_plt->offset = splt->size;
8836 splt->size += htab->plt_entry_size;
8837
8838 if (!htab->symbian_p)
8839 {
8840 /* We also need to make an entry in the .got.plt section, which
8841 will be placed in the .got section by the linker script. */
8842 if (is_iplt_entry)
8843 arm_plt->got_offset = sgotplt->size;
8844 else
8845 arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
8846 sgotplt->size += 4;
8847 }
8848 }
8849
8850 static bfd_vma
8851 arm_movw_immediate (bfd_vma value)
8852 {
8853 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
8854 }
8855
8856 static bfd_vma
8857 arm_movt_immediate (bfd_vma value)
8858 {
8859 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
8860 }
8861
8862 /* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
8863 the entry lives in .iplt and resolves to (*SYM_VALUE)().
8864 Otherwise, DYNINDX is the index of the symbol in the dynamic
8865 symbol table and SYM_VALUE is undefined.
8866
8867 ROOT_PLT points to the offset of the PLT entry from the start of its
8868 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
8869 bookkeeping information.
8870
8871 Returns FALSE if there was a problem. */
8872
8873 static bfd_boolean
8874 elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
8875 union gotplt_union *root_plt,
8876 struct arm_plt_info *arm_plt,
8877 int dynindx, bfd_vma sym_value)
8878 {
8879 struct elf32_arm_link_hash_table *htab;
8880 asection *sgot;
8881 asection *splt;
8882 asection *srel;
8883 bfd_byte *loc;
8884 bfd_vma plt_index;
8885 Elf_Internal_Rela rel;
8886 bfd_vma plt_header_size;
8887 bfd_vma got_header_size;
8888
8889 htab = elf32_arm_hash_table (info);
8890
8891 /* Pick the appropriate sections and sizes. */
8892 if (dynindx == -1)
8893 {
8894 splt = htab->root.iplt;
8895 sgot = htab->root.igotplt;
8896 srel = htab->root.irelplt;
8897
8898 /* There are no reserved entries in .igot.plt, and no special
8899 first entry in .iplt. */
8900 got_header_size = 0;
8901 plt_header_size = 0;
8902 }
8903 else
8904 {
8905 splt = htab->root.splt;
8906 sgot = htab->root.sgotplt;
8907 srel = htab->root.srelplt;
8908
8909 got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
8910 plt_header_size = htab->plt_header_size;
8911 }
8912 BFD_ASSERT (splt != NULL && srel != NULL);
8913
8914 /* Fill in the entry in the procedure linkage table. */
8915 if (htab->symbian_p)
8916 {
8917 BFD_ASSERT (dynindx >= 0);
8918 put_arm_insn (htab, output_bfd,
8919 elf32_arm_symbian_plt_entry[0],
8920 splt->contents + root_plt->offset);
8921 bfd_put_32 (output_bfd,
8922 elf32_arm_symbian_plt_entry[1],
8923 splt->contents + root_plt->offset + 4);
8924
8925 /* Fill in the entry in the .rel.plt section. */
8926 rel.r_offset = (splt->output_section->vma
8927 + splt->output_offset
8928 + root_plt->offset + 4);
8929 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT);
8930
8931 /* Get the index in the procedure linkage table which
8932 corresponds to this symbol. This is the index of this symbol
8933 in all the symbols for which we are making plt entries. The
8934 first entry in the procedure linkage table is reserved. */
8935 plt_index = ((root_plt->offset - plt_header_size)
8936 / htab->plt_entry_size);
8937 }
8938 else
8939 {
8940 bfd_vma got_offset, got_address, plt_address;
8941 bfd_vma got_displacement, initial_got_entry;
8942 bfd_byte * ptr;
8943
8944 BFD_ASSERT (sgot != NULL);
8945
8946 /* Get the offset into the .(i)got.plt table of the entry that
8947 corresponds to this function. */
8948 got_offset = (arm_plt->got_offset & -2);
8949
8950 /* Get the index in the procedure linkage table which
8951 corresponds to this symbol. This is the index of this symbol
8952 in all the symbols for which we are making plt entries.
8953 After the reserved .got.plt entries, all symbols appear in
8954 the same order as in .plt. */
8955 plt_index = (got_offset - got_header_size) / 4;
8956
8957 /* Calculate the address of the GOT entry. */
8958 got_address = (sgot->output_section->vma
8959 + sgot->output_offset
8960 + got_offset);
8961
8962 /* ...and the address of the PLT entry. */
8963 plt_address = (splt->output_section->vma
8964 + splt->output_offset
8965 + root_plt->offset);
8966
8967 ptr = splt->contents + root_plt->offset;
8968 if (htab->vxworks_p && bfd_link_pic (info))
8969 {
8970 unsigned int i;
8971 bfd_vma val;
8972
8973 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
8974 {
8975 val = elf32_arm_vxworks_shared_plt_entry[i];
8976 if (i == 2)
8977 val |= got_address - sgot->output_section->vma;
8978 if (i == 5)
8979 val |= plt_index * RELOC_SIZE (htab);
8980 if (i == 2 || i == 5)
8981 bfd_put_32 (output_bfd, val, ptr);
8982 else
8983 put_arm_insn (htab, output_bfd, val, ptr);
8984 }
8985 }
8986 else if (htab->vxworks_p)
8987 {
8988 unsigned int i;
8989 bfd_vma val;
8990
8991 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
8992 {
8993 val = elf32_arm_vxworks_exec_plt_entry[i];
8994 if (i == 2)
8995 val |= got_address;
8996 if (i == 4)
8997 val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
8998 if (i == 5)
8999 val |= plt_index * RELOC_SIZE (htab);
9000 if (i == 2 || i == 5)
9001 bfd_put_32 (output_bfd, val, ptr);
9002 else
9003 put_arm_insn (htab, output_bfd, val, ptr);
9004 }
9005
9006 loc = (htab->srelplt2->contents
9007 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
9008
9009 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
9010 referencing the GOT for this PLT entry. */
9011 rel.r_offset = plt_address + 8;
9012 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
9013 rel.r_addend = got_offset;
9014 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9015 loc += RELOC_SIZE (htab);
9016
9017 /* Create the R_ARM_ABS32 relocation referencing the
9018 beginning of the PLT for this GOT entry. */
9019 rel.r_offset = got_address;
9020 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
9021 rel.r_addend = 0;
9022 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9023 }
9024 else if (htab->nacl_p)
9025 {
9026 /* Calculate the displacement between the PLT slot and the
9027 common tail that's part of the special initial PLT slot. */
9028 int32_t tail_displacement
9029 = ((splt->output_section->vma + splt->output_offset
9030 + ARM_NACL_PLT_TAIL_OFFSET)
9031 - (plt_address + htab->plt_entry_size + 4));
9032 BFD_ASSERT ((tail_displacement & 3) == 0);
9033 tail_displacement >>= 2;
9034
9035 BFD_ASSERT ((tail_displacement & 0xff000000) == 0
9036 || (-tail_displacement & 0xff000000) == 0);
9037
9038 /* Calculate the displacement between the PLT slot and the entry
9039 in the GOT. The offset accounts for the value produced by
9040 adding to pc in the penultimate instruction of the PLT stub. */
9041 got_displacement = (got_address
9042 - (plt_address + htab->plt_entry_size));
9043
9044 /* NaCl does not support interworking at all. */
9045 BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info, arm_plt));
9046
9047 put_arm_insn (htab, output_bfd,
9048 elf32_arm_nacl_plt_entry[0]
9049 | arm_movw_immediate (got_displacement),
9050 ptr + 0);
9051 put_arm_insn (htab, output_bfd,
9052 elf32_arm_nacl_plt_entry[1]
9053 | arm_movt_immediate (got_displacement),
9054 ptr + 4);
9055 put_arm_insn (htab, output_bfd,
9056 elf32_arm_nacl_plt_entry[2],
9057 ptr + 8);
9058 put_arm_insn (htab, output_bfd,
9059 elf32_arm_nacl_plt_entry[3]
9060 | (tail_displacement & 0x00ffffff),
9061 ptr + 12);
9062 }
9063 else if (using_thumb_only (htab))
9064 {
9065 /* PR ld/16017: Generate thumb only PLT entries. */
9066 if (!using_thumb2 (htab))
9067 {
9068 /* FIXME: We ought to be able to generate thumb-1 PLT
9069 instructions... */
9070 _bfd_error_handler (_("%B: Warning: thumb-1 mode PLT generation not currently supported"),
9071 output_bfd);
9072 return FALSE;
9073 }
9074
9075 /* Calculate the displacement between the PLT slot and the entry in
9076 the GOT. The 12-byte offset accounts for the value produced by
9077 adding to pc in the 3rd instruction of the PLT stub. */
9078 got_displacement = got_address - (plt_address + 12);
9079
9080 /* As we are using 32 bit instructions we have to use 'put_arm_insn'
9081 instead of 'put_thumb_insn'. */
9082 put_arm_insn (htab, output_bfd,
9083 elf32_thumb2_plt_entry[0]
9084 | ((got_displacement & 0x000000ff) << 16)
9085 | ((got_displacement & 0x00000700) << 20)
9086 | ((got_displacement & 0x00000800) >> 1)
9087 | ((got_displacement & 0x0000f000) >> 12),
9088 ptr + 0);
9089 put_arm_insn (htab, output_bfd,
9090 elf32_thumb2_plt_entry[1]
9091 | ((got_displacement & 0x00ff0000) )
9092 | ((got_displacement & 0x07000000) << 4)
9093 | ((got_displacement & 0x08000000) >> 17)
9094 | ((got_displacement & 0xf0000000) >> 28),
9095 ptr + 4);
9096 put_arm_insn (htab, output_bfd,
9097 elf32_thumb2_plt_entry[2],
9098 ptr + 8);
9099 put_arm_insn (htab, output_bfd,
9100 elf32_thumb2_plt_entry[3],
9101 ptr + 12);
9102 }
9103 else
9104 {
9105 /* Calculate the displacement between the PLT slot and the
9106 entry in the GOT. The eight-byte offset accounts for the
9107 value produced by adding to pc in the first instruction
9108 of the PLT stub. */
9109 got_displacement = got_address - (plt_address + 8);
9110
9111 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9112 {
9113 put_thumb_insn (htab, output_bfd,
9114 elf32_arm_plt_thumb_stub[0], ptr - 4);
9115 put_thumb_insn (htab, output_bfd,
9116 elf32_arm_plt_thumb_stub[1], ptr - 2);
9117 }
9118
9119 if (!elf32_arm_use_long_plt_entry)
9120 {
9121 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
9122
9123 put_arm_insn (htab, output_bfd,
9124 elf32_arm_plt_entry_short[0]
9125 | ((got_displacement & 0x0ff00000) >> 20),
9126 ptr + 0);
9127 put_arm_insn (htab, output_bfd,
9128 elf32_arm_plt_entry_short[1]
9129 | ((got_displacement & 0x000ff000) >> 12),
9130 ptr+ 4);
9131 put_arm_insn (htab, output_bfd,
9132 elf32_arm_plt_entry_short[2]
9133 | (got_displacement & 0x00000fff),
9134 ptr + 8);
9135 #ifdef FOUR_WORD_PLT
9136 bfd_put_32 (output_bfd, elf32_arm_plt_entry_short[3], ptr + 12);
9137 #endif
9138 }
9139 else
9140 {
9141 put_arm_insn (htab, output_bfd,
9142 elf32_arm_plt_entry_long[0]
9143 | ((got_displacement & 0xf0000000) >> 28),
9144 ptr + 0);
9145 put_arm_insn (htab, output_bfd,
9146 elf32_arm_plt_entry_long[1]
9147 | ((got_displacement & 0x0ff00000) >> 20),
9148 ptr + 4);
9149 put_arm_insn (htab, output_bfd,
9150 elf32_arm_plt_entry_long[2]
9151 | ((got_displacement & 0x000ff000) >> 12),
9152 ptr+ 8);
9153 put_arm_insn (htab, output_bfd,
9154 elf32_arm_plt_entry_long[3]
9155 | (got_displacement & 0x00000fff),
9156 ptr + 12);
9157 }
9158 }
9159
9160 /* Fill in the entry in the .rel(a).(i)plt section. */
9161 rel.r_offset = got_address;
9162 rel.r_addend = 0;
9163 if (dynindx == -1)
9164 {
9165 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
9166 The dynamic linker or static executable then calls SYM_VALUE
9167 to determine the correct run-time value of the .igot.plt entry. */
9168 rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9169 initial_got_entry = sym_value;
9170 }
9171 else
9172 {
9173 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
9174 initial_got_entry = (splt->output_section->vma
9175 + splt->output_offset);
9176 }
9177
9178 /* Fill in the entry in the global offset table. */
9179 bfd_put_32 (output_bfd, initial_got_entry,
9180 sgot->contents + got_offset);
9181 }
9182
9183 if (dynindx == -1)
9184 elf32_arm_add_dynreloc (output_bfd, info, srel, &rel);
9185 else
9186 {
9187 loc = srel->contents + plt_index * RELOC_SIZE (htab);
9188 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9189 }
9190
9191 return TRUE;
9192 }
9193
9194 /* Some relocations map to different relocations depending on the
9195 target. Return the real relocation. */
9196
9197 static int
9198 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
9199 int r_type)
9200 {
9201 switch (r_type)
9202 {
9203 case R_ARM_TARGET1:
9204 if (globals->target1_is_rel)
9205 return R_ARM_REL32;
9206 else
9207 return R_ARM_ABS32;
9208
9209 case R_ARM_TARGET2:
9210 return globals->target2_reloc;
9211
9212 default:
9213 return r_type;
9214 }
9215 }
9216
9217 /* Return the base VMA address which should be subtracted from real addresses
9218 when resolving @dtpoff relocation.
9219 This is PT_TLS segment p_vaddr. */
9220
9221 static bfd_vma
9222 dtpoff_base (struct bfd_link_info *info)
9223 {
9224 /* If tls_sec is NULL, we should have signalled an error already. */
9225 if (elf_hash_table (info)->tls_sec == NULL)
9226 return 0;
9227 return elf_hash_table (info)->tls_sec->vma;
9228 }
9229
9230 /* Return the relocation value for @tpoff relocation
9231 if STT_TLS virtual address is ADDRESS. */
9232
9233 static bfd_vma
9234 tpoff (struct bfd_link_info *info, bfd_vma address)
9235 {
9236 struct elf_link_hash_table *htab = elf_hash_table (info);
9237 bfd_vma base;
9238
9239 /* If tls_sec is NULL, we should have signalled an error already. */
9240 if (htab->tls_sec == NULL)
9241 return 0;
9242 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
9243 return address - htab->tls_sec->vma + base;
9244 }
9245
9246 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
9247 VALUE is the relocation value. */
9248
9249 static bfd_reloc_status_type
9250 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
9251 {
9252 if (value > 0xfff)
9253 return bfd_reloc_overflow;
9254
9255 value |= bfd_get_32 (abfd, data) & 0xfffff000;
9256 bfd_put_32 (abfd, value, data);
9257 return bfd_reloc_ok;
9258 }
9259
9260 /* Handle TLS relaxations. Relaxing is possible for symbols that use
9261 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
9262 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
9263
9264 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
9265 is to then call final_link_relocate. Return other values in the
9266 case of error.
9267
9268 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
9269 the pre-relaxed code. It would be nice if the relocs were updated
9270 to match the optimization. */
9271
9272 static bfd_reloc_status_type
9273 elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
9274 bfd *input_bfd, asection *input_sec, bfd_byte *contents,
9275 Elf_Internal_Rela *rel, unsigned long is_local)
9276 {
9277 unsigned long insn;
9278
9279 switch (ELF32_R_TYPE (rel->r_info))
9280 {
9281 default:
9282 return bfd_reloc_notsupported;
9283
9284 case R_ARM_TLS_GOTDESC:
9285 if (is_local)
9286 insn = 0;
9287 else
9288 {
9289 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
9290 if (insn & 1)
9291 insn -= 5; /* THUMB */
9292 else
9293 insn -= 8; /* ARM */
9294 }
9295 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
9296 return bfd_reloc_continue;
9297
9298 case R_ARM_THM_TLS_DESCSEQ:
9299 /* Thumb insn. */
9300 insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
9301 if ((insn & 0xff78) == 0x4478) /* add rx, pc */
9302 {
9303 if (is_local)
9304 /* nop */
9305 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
9306 }
9307 else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
9308 {
9309 if (is_local)
9310 /* nop */
9311 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
9312 else
9313 /* ldr rx,[ry] */
9314 bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
9315 }
9316 else if ((insn & 0xff87) == 0x4780) /* blx rx */
9317 {
9318 if (is_local)
9319 /* nop */
9320 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
9321 else
9322 /* mov r0, rx */
9323 bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
9324 contents + rel->r_offset);
9325 }
9326 else
9327 {
9328 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
9329 /* It's a 32 bit instruction, fetch the rest of it for
9330 error generation. */
9331 insn = (insn << 16)
9332 | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
9333 (*_bfd_error_handler)
9334 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' in TLS trampoline"),
9335 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
9336 return bfd_reloc_notsupported;
9337 }
9338 break;
9339
9340 case R_ARM_TLS_DESCSEQ:
9341 /* arm insn. */
9342 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
9343 if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
9344 {
9345 if (is_local)
9346 /* mov rx, ry */
9347 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
9348 contents + rel->r_offset);
9349 }
9350 else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
9351 {
9352 if (is_local)
9353 /* nop */
9354 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
9355 else
9356 /* ldr rx,[ry] */
9357 bfd_put_32 (input_bfd, insn & 0xfffff000,
9358 contents + rel->r_offset);
9359 }
9360 else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
9361 {
9362 if (is_local)
9363 /* nop */
9364 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
9365 else
9366 /* mov r0, rx */
9367 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
9368 contents + rel->r_offset);
9369 }
9370 else
9371 {
9372 (*_bfd_error_handler)
9373 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' in TLS trampoline"),
9374 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
9375 return bfd_reloc_notsupported;
9376 }
9377 break;
9378
9379 case R_ARM_TLS_CALL:
9380 /* GD->IE relaxation, turn the instruction into 'nop' or
9381 'ldr r0, [pc,r0]' */
9382 insn = is_local ? 0xe1a00000 : 0xe79f0000;
9383 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
9384 break;
9385
9386 case R_ARM_THM_TLS_CALL:
9387 /* GD->IE relaxation. */
9388 if (!is_local)
9389 /* add r0,pc; ldr r0, [r0] */
9390 insn = 0x44786800;
9391 else if (using_thumb2 (globals))
9392 /* nop.w */
9393 insn = 0xf3af8000;
9394 else
9395 /* nop; nop */
9396 insn = 0xbf00bf00;
9397
9398 bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
9399 bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
9400 break;
9401 }
9402 return bfd_reloc_ok;
9403 }
9404
9405 /* For a given value of n, calculate the value of G_n as required to
9406 deal with group relocations. We return it in the form of an
9407 encoded constant-and-rotation, together with the final residual. If n is
9408 specified as less than zero, then final_residual is filled with the
9409 input value and no further action is performed. */
9410
9411 static bfd_vma
9412 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
9413 {
9414 int current_n;
9415 bfd_vma g_n;
9416 bfd_vma encoded_g_n = 0;
9417 bfd_vma residual = value; /* Also known as Y_n. */
9418
9419 for (current_n = 0; current_n <= n; current_n++)
9420 {
9421 int shift;
9422
9423 /* Calculate which part of the value to mask. */
9424 if (residual == 0)
9425 shift = 0;
9426 else
9427 {
9428 int msb;
9429
9430 /* Determine the most significant bit in the residual and
9431 align the resulting value to a 2-bit boundary. */
9432 for (msb = 30; msb >= 0; msb -= 2)
9433 if (residual & (3 << msb))
9434 break;
9435
9436 /* The desired shift is now (msb - 6), or zero, whichever
9437 is the greater. */
9438 shift = msb - 6;
9439 if (shift < 0)
9440 shift = 0;
9441 }
9442
9443 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
9444 g_n = residual & (0xff << shift);
9445 encoded_g_n = (g_n >> shift)
9446 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
9447
9448 /* Calculate the residual for the next time around. */
9449 residual &= ~g_n;
9450 }
9451
9452 *final_residual = residual;
9453
9454 return encoded_g_n;
9455 }
9456
9457 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
9458 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
9459
9460 static int
9461 identify_add_or_sub (bfd_vma insn)
9462 {
9463 int opcode = insn & 0x1e00000;
9464
9465 if (opcode == 1 << 23) /* ADD */
9466 return 1;
9467
9468 if (opcode == 1 << 22) /* SUB */
9469 return -1;
9470
9471 return 0;
9472 }
9473
9474 /* Perform a relocation as part of a final link. */
9475
9476 static bfd_reloc_status_type
9477 elf32_arm_final_link_relocate (reloc_howto_type * howto,
9478 bfd * input_bfd,
9479 bfd * output_bfd,
9480 asection * input_section,
9481 bfd_byte * contents,
9482 Elf_Internal_Rela * rel,
9483 bfd_vma value,
9484 struct bfd_link_info * info,
9485 asection * sym_sec,
9486 const char * sym_name,
9487 unsigned char st_type,
9488 enum arm_st_branch_type branch_type,
9489 struct elf_link_hash_entry * h,
9490 bfd_boolean * unresolved_reloc_p,
9491 char ** error_message)
9492 {
9493 unsigned long r_type = howto->type;
9494 unsigned long r_symndx;
9495 bfd_byte * hit_data = contents + rel->r_offset;
9496 bfd_vma * local_got_offsets;
9497 bfd_vma * local_tlsdesc_gotents;
9498 asection * sgot;
9499 asection * splt;
9500 asection * sreloc = NULL;
9501 asection * srelgot;
9502 bfd_vma addend;
9503 bfd_signed_vma signed_addend;
9504 unsigned char dynreloc_st_type;
9505 bfd_vma dynreloc_value;
9506 struct elf32_arm_link_hash_table * globals;
9507 struct elf32_arm_link_hash_entry *eh;
9508 union gotplt_union *root_plt;
9509 struct arm_plt_info *arm_plt;
9510 bfd_vma plt_offset;
9511 bfd_vma gotplt_offset;
9512 bfd_boolean has_iplt_entry;
9513
9514 globals = elf32_arm_hash_table (info);
9515 if (globals == NULL)
9516 return bfd_reloc_notsupported;
9517
9518 BFD_ASSERT (is_arm_elf (input_bfd));
9519
9520 /* Some relocation types map to different relocations depending on the
9521 target. We pick the right one here. */
9522 r_type = arm_real_reloc_type (globals, r_type);
9523
9524 /* It is possible to have linker relaxations on some TLS access
9525 models. Update our information here. */
9526 r_type = elf32_arm_tls_transition (info, r_type, h);
9527
9528 if (r_type != howto->type)
9529 howto = elf32_arm_howto_from_type (r_type);
9530
9531 eh = (struct elf32_arm_link_hash_entry *) h;
9532 sgot = globals->root.sgot;
9533 local_got_offsets = elf_local_got_offsets (input_bfd);
9534 local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
9535
9536 if (globals->root.dynamic_sections_created)
9537 srelgot = globals->root.srelgot;
9538 else
9539 srelgot = NULL;
9540
9541 r_symndx = ELF32_R_SYM (rel->r_info);
9542
9543 if (globals->use_rel)
9544 {
9545 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
9546
9547 if (addend & ((howto->src_mask + 1) >> 1))
9548 {
9549 signed_addend = -1;
9550 signed_addend &= ~ howto->src_mask;
9551 signed_addend |= addend;
9552 }
9553 else
9554 signed_addend = addend;
9555 }
9556 else
9557 addend = signed_addend = rel->r_addend;
9558
9559 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
9560 are resolving a function call relocation. */
9561 if (using_thumb_only (globals)
9562 && (r_type == R_ARM_THM_CALL
9563 || r_type == R_ARM_THM_JUMP24)
9564 && branch_type == ST_BRANCH_TO_ARM)
9565 branch_type = ST_BRANCH_TO_THUMB;
9566
9567 /* Record the symbol information that should be used in dynamic
9568 relocations. */
9569 dynreloc_st_type = st_type;
9570 dynreloc_value = value;
9571 if (branch_type == ST_BRANCH_TO_THUMB)
9572 dynreloc_value |= 1;
9573
9574 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
9575 VALUE appropriately for relocations that we resolve at link time. */
9576 has_iplt_entry = FALSE;
9577 if (elf32_arm_get_plt_info (input_bfd, globals, eh, r_symndx, &root_plt,
9578 &arm_plt)
9579 && root_plt->offset != (bfd_vma) -1)
9580 {
9581 plt_offset = root_plt->offset;
9582 gotplt_offset = arm_plt->got_offset;
9583
9584 if (h == NULL || eh->is_iplt)
9585 {
9586 has_iplt_entry = TRUE;
9587 splt = globals->root.iplt;
9588
9589 /* Populate .iplt entries here, because not all of them will
9590 be seen by finish_dynamic_symbol. The lower bit is set if
9591 we have already populated the entry. */
9592 if (plt_offset & 1)
9593 plt_offset--;
9594 else
9595 {
9596 if (elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
9597 -1, dynreloc_value))
9598 root_plt->offset |= 1;
9599 else
9600 return bfd_reloc_notsupported;
9601 }
9602
9603 /* Static relocations always resolve to the .iplt entry. */
9604 st_type = STT_FUNC;
9605 value = (splt->output_section->vma
9606 + splt->output_offset
9607 + plt_offset);
9608 branch_type = ST_BRANCH_TO_ARM;
9609
9610 /* If there are non-call relocations that resolve to the .iplt
9611 entry, then all dynamic ones must too. */
9612 if (arm_plt->noncall_refcount != 0)
9613 {
9614 dynreloc_st_type = st_type;
9615 dynreloc_value = value;
9616 }
9617 }
9618 else
9619 /* We populate the .plt entry in finish_dynamic_symbol. */
9620 splt = globals->root.splt;
9621 }
9622 else
9623 {
9624 splt = NULL;
9625 plt_offset = (bfd_vma) -1;
9626 gotplt_offset = (bfd_vma) -1;
9627 }
9628
9629 switch (r_type)
9630 {
9631 case R_ARM_NONE:
9632 /* We don't need to find a value for this symbol. It's just a
9633 marker. */
9634 *unresolved_reloc_p = FALSE;
9635 return bfd_reloc_ok;
9636
9637 case R_ARM_ABS12:
9638 if (!globals->vxworks_p)
9639 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
9640
9641 case R_ARM_PC24:
9642 case R_ARM_ABS32:
9643 case R_ARM_ABS32_NOI:
9644 case R_ARM_REL32:
9645 case R_ARM_REL32_NOI:
9646 case R_ARM_CALL:
9647 case R_ARM_JUMP24:
9648 case R_ARM_XPC25:
9649 case R_ARM_PREL31:
9650 case R_ARM_PLT32:
9651 /* Handle relocations which should use the PLT entry. ABS32/REL32
9652 will use the symbol's value, which may point to a PLT entry, but we
9653 don't need to handle that here. If we created a PLT entry, all
9654 branches in this object should go to it, except if the PLT is too
9655 far away, in which case a long branch stub should be inserted. */
9656 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
9657 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
9658 && r_type != R_ARM_CALL
9659 && r_type != R_ARM_JUMP24
9660 && r_type != R_ARM_PLT32)
9661 && plt_offset != (bfd_vma) -1)
9662 {
9663 /* If we've created a .plt section, and assigned a PLT entry
9664 to this function, it must either be a STT_GNU_IFUNC reference
9665 or not be known to bind locally. In other cases, we should
9666 have cleared the PLT entry by now. */
9667 BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
9668
9669 value = (splt->output_section->vma
9670 + splt->output_offset
9671 + plt_offset);
9672 *unresolved_reloc_p = FALSE;
9673 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9674 contents, rel->r_offset, value,
9675 rel->r_addend);
9676 }
9677
9678 /* When generating a shared object or relocatable executable, these
9679 relocations are copied into the output file to be resolved at
9680 run time. */
9681 if ((bfd_link_pic (info)
9682 || globals->root.is_relocatable_executable)
9683 && (input_section->flags & SEC_ALLOC)
9684 && !(globals->vxworks_p
9685 && strcmp (input_section->output_section->name,
9686 ".tls_vars") == 0)
9687 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
9688 || !SYMBOL_CALLS_LOCAL (info, h))
9689 && !(input_bfd == globals->stub_bfd
9690 && strstr (input_section->name, STUB_SUFFIX))
9691 && (h == NULL
9692 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9693 || h->root.type != bfd_link_hash_undefweak)
9694 && r_type != R_ARM_PC24
9695 && r_type != R_ARM_CALL
9696 && r_type != R_ARM_JUMP24
9697 && r_type != R_ARM_PREL31
9698 && r_type != R_ARM_PLT32)
9699 {
9700 Elf_Internal_Rela outrel;
9701 bfd_boolean skip, relocate;
9702
9703 if ((r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
9704 && !h->def_regular)
9705 {
9706 char *v = _("shared object");
9707
9708 if (bfd_link_executable (info))
9709 v = _("PIE executable");
9710
9711 (*_bfd_error_handler)
9712 (_("%B: relocation %s against external or undefined symbol `%s'"
9713 " can not be used when making a %s; recompile with -fPIC"), input_bfd,
9714 elf32_arm_howto_table_1[r_type].name, h->root.root.string, v);
9715 return bfd_reloc_notsupported;
9716 }
9717
9718 *unresolved_reloc_p = FALSE;
9719
9720 if (sreloc == NULL && globals->root.dynamic_sections_created)
9721 {
9722 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
9723 ! globals->use_rel);
9724
9725 if (sreloc == NULL)
9726 return bfd_reloc_notsupported;
9727 }
9728
9729 skip = FALSE;
9730 relocate = FALSE;
9731
9732 outrel.r_addend = addend;
9733 outrel.r_offset =
9734 _bfd_elf_section_offset (output_bfd, info, input_section,
9735 rel->r_offset);
9736 if (outrel.r_offset == (bfd_vma) -1)
9737 skip = TRUE;
9738 else if (outrel.r_offset == (bfd_vma) -2)
9739 skip = TRUE, relocate = TRUE;
9740 outrel.r_offset += (input_section->output_section->vma
9741 + input_section->output_offset);
9742
9743 if (skip)
9744 memset (&outrel, 0, sizeof outrel);
9745 else if (h != NULL
9746 && h->dynindx != -1
9747 && (!bfd_link_pic (info)
9748 || !SYMBOLIC_BIND (info, h)
9749 || !h->def_regular))
9750 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
9751 else
9752 {
9753 int symbol;
9754
9755 /* This symbol is local, or marked to become local. */
9756 BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI);
9757 if (globals->symbian_p)
9758 {
9759 asection *osec;
9760
9761 /* On Symbian OS, the data segment and text segement
9762 can be relocated independently. Therefore, we
9763 must indicate the segment to which this
9764 relocation is relative. The BPABI allows us to
9765 use any symbol in the right segment; we just use
9766 the section symbol as it is convenient. (We
9767 cannot use the symbol given by "h" directly as it
9768 will not appear in the dynamic symbol table.)
9769
9770 Note that the dynamic linker ignores the section
9771 symbol value, so we don't subtract osec->vma
9772 from the emitted reloc addend. */
9773 if (sym_sec)
9774 osec = sym_sec->output_section;
9775 else
9776 osec = input_section->output_section;
9777 symbol = elf_section_data (osec)->dynindx;
9778 if (symbol == 0)
9779 {
9780 struct elf_link_hash_table *htab = elf_hash_table (info);
9781
9782 if ((osec->flags & SEC_READONLY) == 0
9783 && htab->data_index_section != NULL)
9784 osec = htab->data_index_section;
9785 else
9786 osec = htab->text_index_section;
9787 symbol = elf_section_data (osec)->dynindx;
9788 }
9789 BFD_ASSERT (symbol != 0);
9790 }
9791 else
9792 /* On SVR4-ish systems, the dynamic loader cannot
9793 relocate the text and data segments independently,
9794 so the symbol does not matter. */
9795 symbol = 0;
9796 if (dynreloc_st_type == STT_GNU_IFUNC)
9797 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
9798 to the .iplt entry. Instead, every non-call reference
9799 must use an R_ARM_IRELATIVE relocation to obtain the
9800 correct run-time address. */
9801 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
9802 else
9803 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
9804 if (globals->use_rel)
9805 relocate = TRUE;
9806 else
9807 outrel.r_addend += dynreloc_value;
9808 }
9809
9810 elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
9811
9812 /* If this reloc is against an external symbol, we do not want to
9813 fiddle with the addend. Otherwise, we need to include the symbol
9814 value so that it becomes an addend for the dynamic reloc. */
9815 if (! relocate)
9816 return bfd_reloc_ok;
9817
9818 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9819 contents, rel->r_offset,
9820 dynreloc_value, (bfd_vma) 0);
9821 }
9822 else switch (r_type)
9823 {
9824 case R_ARM_ABS12:
9825 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
9826
9827 case R_ARM_XPC25: /* Arm BLX instruction. */
9828 case R_ARM_CALL:
9829 case R_ARM_JUMP24:
9830 case R_ARM_PC24: /* Arm B/BL instruction. */
9831 case R_ARM_PLT32:
9832 {
9833 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
9834
9835 if (r_type == R_ARM_XPC25)
9836 {
9837 /* Check for Arm calling Arm function. */
9838 /* FIXME: Should we translate the instruction into a BL
9839 instruction instead ? */
9840 if (branch_type != ST_BRANCH_TO_THUMB)
9841 (*_bfd_error_handler)
9842 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
9843 input_bfd,
9844 h ? h->root.root.string : "(local)");
9845 }
9846 else if (r_type == R_ARM_PC24)
9847 {
9848 /* Check for Arm calling Thumb function. */
9849 if (branch_type == ST_BRANCH_TO_THUMB)
9850 {
9851 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
9852 output_bfd, input_section,
9853 hit_data, sym_sec, rel->r_offset,
9854 signed_addend, value,
9855 error_message))
9856 return bfd_reloc_ok;
9857 else
9858 return bfd_reloc_dangerous;
9859 }
9860 }
9861
9862 /* Check if a stub has to be inserted because the
9863 destination is too far or we are changing mode. */
9864 if ( r_type == R_ARM_CALL
9865 || r_type == R_ARM_JUMP24
9866 || r_type == R_ARM_PLT32)
9867 {
9868 enum elf32_arm_stub_type stub_type = arm_stub_none;
9869 struct elf32_arm_link_hash_entry *hash;
9870
9871 hash = (struct elf32_arm_link_hash_entry *) h;
9872 stub_type = arm_type_of_stub (info, input_section, rel,
9873 st_type, &branch_type,
9874 hash, value, sym_sec,
9875 input_bfd, sym_name);
9876
9877 if (stub_type != arm_stub_none)
9878 {
9879 /* The target is out of reach, so redirect the
9880 branch to the local stub for this function. */
9881 stub_entry = elf32_arm_get_stub_entry (input_section,
9882 sym_sec, h,
9883 rel, globals,
9884 stub_type);
9885 {
9886 if (stub_entry != NULL)
9887 value = (stub_entry->stub_offset
9888 + stub_entry->stub_sec->output_offset
9889 + stub_entry->stub_sec->output_section->vma);
9890
9891 if (plt_offset != (bfd_vma) -1)
9892 *unresolved_reloc_p = FALSE;
9893 }
9894 }
9895 else
9896 {
9897 /* If the call goes through a PLT entry, make sure to
9898 check distance to the right destination address. */
9899 if (plt_offset != (bfd_vma) -1)
9900 {
9901 value = (splt->output_section->vma
9902 + splt->output_offset
9903 + plt_offset);
9904 *unresolved_reloc_p = FALSE;
9905 /* The PLT entry is in ARM mode, regardless of the
9906 target function. */
9907 branch_type = ST_BRANCH_TO_ARM;
9908 }
9909 }
9910 }
9911
9912 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
9913 where:
9914 S is the address of the symbol in the relocation.
9915 P is address of the instruction being relocated.
9916 A is the addend (extracted from the instruction) in bytes.
9917
9918 S is held in 'value'.
9919 P is the base address of the section containing the
9920 instruction plus the offset of the reloc into that
9921 section, ie:
9922 (input_section->output_section->vma +
9923 input_section->output_offset +
9924 rel->r_offset).
9925 A is the addend, converted into bytes, ie:
9926 (signed_addend * 4)
9927
9928 Note: None of these operations have knowledge of the pipeline
9929 size of the processor, thus it is up to the assembler to
9930 encode this information into the addend. */
9931 value -= (input_section->output_section->vma
9932 + input_section->output_offset);
9933 value -= rel->r_offset;
9934 if (globals->use_rel)
9935 value += (signed_addend << howto->size);
9936 else
9937 /* RELA addends do not have to be adjusted by howto->size. */
9938 value += signed_addend;
9939
9940 signed_addend = value;
9941 signed_addend >>= howto->rightshift;
9942
9943 /* A branch to an undefined weak symbol is turned into a jump to
9944 the next instruction unless a PLT entry will be created.
9945 Do the same for local undefined symbols (but not for STN_UNDEF).
9946 The jump to the next instruction is optimized as a NOP depending
9947 on the architecture. */
9948 if (h ? (h->root.type == bfd_link_hash_undefweak
9949 && plt_offset == (bfd_vma) -1)
9950 : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
9951 {
9952 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
9953
9954 if (arch_has_arm_nop (globals))
9955 value |= 0x0320f000;
9956 else
9957 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
9958 }
9959 else
9960 {
9961 /* Perform a signed range check. */
9962 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
9963 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
9964 return bfd_reloc_overflow;
9965
9966 addend = (value & 2);
9967
9968 value = (signed_addend & howto->dst_mask)
9969 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
9970
9971 if (r_type == R_ARM_CALL)
9972 {
9973 /* Set the H bit in the BLX instruction. */
9974 if (branch_type == ST_BRANCH_TO_THUMB)
9975 {
9976 if (addend)
9977 value |= (1 << 24);
9978 else
9979 value &= ~(bfd_vma)(1 << 24);
9980 }
9981
9982 /* Select the correct instruction (BL or BLX). */
9983 /* Only if we are not handling a BL to a stub. In this
9984 case, mode switching is performed by the stub. */
9985 if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
9986 value |= (1 << 28);
9987 else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
9988 {
9989 value &= ~(bfd_vma)(1 << 28);
9990 value |= (1 << 24);
9991 }
9992 }
9993 }
9994 }
9995 break;
9996
9997 case R_ARM_ABS32:
9998 value += addend;
9999 if (branch_type == ST_BRANCH_TO_THUMB)
10000 value |= 1;
10001 break;
10002
10003 case R_ARM_ABS32_NOI:
10004 value += addend;
10005 break;
10006
10007 case R_ARM_REL32:
10008 value += addend;
10009 if (branch_type == ST_BRANCH_TO_THUMB)
10010 value |= 1;
10011 value -= (input_section->output_section->vma
10012 + input_section->output_offset + rel->r_offset);
10013 break;
10014
10015 case R_ARM_REL32_NOI:
10016 value += addend;
10017 value -= (input_section->output_section->vma
10018 + input_section->output_offset + rel->r_offset);
10019 break;
10020
10021 case R_ARM_PREL31:
10022 value -= (input_section->output_section->vma
10023 + input_section->output_offset + rel->r_offset);
10024 value += signed_addend;
10025 if (! h || h->root.type != bfd_link_hash_undefweak)
10026 {
10027 /* Check for overflow. */
10028 if ((value ^ (value >> 1)) & (1 << 30))
10029 return bfd_reloc_overflow;
10030 }
10031 value &= 0x7fffffff;
10032 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
10033 if (branch_type == ST_BRANCH_TO_THUMB)
10034 value |= 1;
10035 break;
10036 }
10037
10038 bfd_put_32 (input_bfd, value, hit_data);
10039 return bfd_reloc_ok;
10040
10041 case R_ARM_ABS8:
10042 /* PR 16202: Refectch the addend using the correct size. */
10043 if (globals->use_rel)
10044 addend = bfd_get_8 (input_bfd, hit_data);
10045 value += addend;
10046
10047 /* There is no way to tell whether the user intended to use a signed or
10048 unsigned addend. When checking for overflow we accept either,
10049 as specified by the AAELF. */
10050 if ((long) value > 0xff || (long) value < -0x80)
10051 return bfd_reloc_overflow;
10052
10053 bfd_put_8 (input_bfd, value, hit_data);
10054 return bfd_reloc_ok;
10055
10056 case R_ARM_ABS16:
10057 /* PR 16202: Refectch the addend using the correct size. */
10058 if (globals->use_rel)
10059 addend = bfd_get_16 (input_bfd, hit_data);
10060 value += addend;
10061
10062 /* See comment for R_ARM_ABS8. */
10063 if ((long) value > 0xffff || (long) value < -0x8000)
10064 return bfd_reloc_overflow;
10065
10066 bfd_put_16 (input_bfd, value, hit_data);
10067 return bfd_reloc_ok;
10068
10069 case R_ARM_THM_ABS5:
10070 /* Support ldr and str instructions for the thumb. */
10071 if (globals->use_rel)
10072 {
10073 /* Need to refetch addend. */
10074 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
10075 /* ??? Need to determine shift amount from operand size. */
10076 addend >>= howto->rightshift;
10077 }
10078 value += addend;
10079
10080 /* ??? Isn't value unsigned? */
10081 if ((long) value > 0x1f || (long) value < -0x10)
10082 return bfd_reloc_overflow;
10083
10084 /* ??? Value needs to be properly shifted into place first. */
10085 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
10086 bfd_put_16 (input_bfd, value, hit_data);
10087 return bfd_reloc_ok;
10088
10089 case R_ARM_THM_ALU_PREL_11_0:
10090 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
10091 {
10092 bfd_vma insn;
10093 bfd_signed_vma relocation;
10094
10095 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
10096 | bfd_get_16 (input_bfd, hit_data + 2);
10097
10098 if (globals->use_rel)
10099 {
10100 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
10101 | ((insn & (1 << 26)) >> 15);
10102 if (insn & 0xf00000)
10103 signed_addend = -signed_addend;
10104 }
10105
10106 relocation = value + signed_addend;
10107 relocation -= Pa (input_section->output_section->vma
10108 + input_section->output_offset
10109 + rel->r_offset);
10110
10111 value = relocation;
10112
10113 if (value >= 0x1000)
10114 return bfd_reloc_overflow;
10115
10116 insn = (insn & 0xfb0f8f00) | (value & 0xff)
10117 | ((value & 0x700) << 4)
10118 | ((value & 0x800) << 15);
10119 if (relocation < 0)
10120 insn |= 0xa00000;
10121
10122 bfd_put_16 (input_bfd, insn >> 16, hit_data);
10123 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
10124
10125 return bfd_reloc_ok;
10126 }
10127
10128 case R_ARM_THM_PC8:
10129 /* PR 10073: This reloc is not generated by the GNU toolchain,
10130 but it is supported for compatibility with third party libraries
10131 generated by other compilers, specifically the ARM/IAR. */
10132 {
10133 bfd_vma insn;
10134 bfd_signed_vma relocation;
10135
10136 insn = bfd_get_16 (input_bfd, hit_data);
10137
10138 if (globals->use_rel)
10139 addend = ((((insn & 0x00ff) << 2) + 4) & 0x3ff) -4;
10140
10141 relocation = value + addend;
10142 relocation -= Pa (input_section->output_section->vma
10143 + input_section->output_offset
10144 + rel->r_offset);
10145
10146 value = relocation;
10147
10148 /* We do not check for overflow of this reloc. Although strictly
10149 speaking this is incorrect, it appears to be necessary in order
10150 to work with IAR generated relocs. Since GCC and GAS do not
10151 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
10152 a problem for them. */
10153 value &= 0x3fc;
10154
10155 insn = (insn & 0xff00) | (value >> 2);
10156
10157 bfd_put_16 (input_bfd, insn, hit_data);
10158
10159 return bfd_reloc_ok;
10160 }
10161
10162 case R_ARM_THM_PC12:
10163 /* Corresponds to: ldr.w reg, [pc, #offset]. */
10164 {
10165 bfd_vma insn;
10166 bfd_signed_vma relocation;
10167
10168 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
10169 | bfd_get_16 (input_bfd, hit_data + 2);
10170
10171 if (globals->use_rel)
10172 {
10173 signed_addend = insn & 0xfff;
10174 if (!(insn & (1 << 23)))
10175 signed_addend = -signed_addend;
10176 }
10177
10178 relocation = value + signed_addend;
10179 relocation -= Pa (input_section->output_section->vma
10180 + input_section->output_offset
10181 + rel->r_offset);
10182
10183 value = relocation;
10184
10185 if (value >= 0x1000)
10186 return bfd_reloc_overflow;
10187
10188 insn = (insn & 0xff7ff000) | value;
10189 if (relocation >= 0)
10190 insn |= (1 << 23);
10191
10192 bfd_put_16 (input_bfd, insn >> 16, hit_data);
10193 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
10194
10195 return bfd_reloc_ok;
10196 }
10197
10198 case R_ARM_THM_XPC22:
10199 case R_ARM_THM_CALL:
10200 case R_ARM_THM_JUMP24:
10201 /* Thumb BL (branch long instruction). */
10202 {
10203 bfd_vma relocation;
10204 bfd_vma reloc_sign;
10205 bfd_boolean overflow = FALSE;
10206 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
10207 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
10208 bfd_signed_vma reloc_signed_max;
10209 bfd_signed_vma reloc_signed_min;
10210 bfd_vma check;
10211 bfd_signed_vma signed_check;
10212 int bitsize;
10213 const int thumb2 = using_thumb2 (globals);
10214 const int thumb2_bl = using_thumb2_bl (globals);
10215
10216 /* A branch to an undefined weak symbol is turned into a jump to
10217 the next instruction unless a PLT entry will be created.
10218 The jump to the next instruction is optimized as a NOP.W for
10219 Thumb-2 enabled architectures. */
10220 if (h && h->root.type == bfd_link_hash_undefweak
10221 && plt_offset == (bfd_vma) -1)
10222 {
10223 if (thumb2)
10224 {
10225 bfd_put_16 (input_bfd, 0xf3af, hit_data);
10226 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
10227 }
10228 else
10229 {
10230 bfd_put_16 (input_bfd, 0xe000, hit_data);
10231 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
10232 }
10233 return bfd_reloc_ok;
10234 }
10235
10236 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
10237 with Thumb-1) involving the J1 and J2 bits. */
10238 if (globals->use_rel)
10239 {
10240 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
10241 bfd_vma upper = upper_insn & 0x3ff;
10242 bfd_vma lower = lower_insn & 0x7ff;
10243 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
10244 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
10245 bfd_vma i1 = j1 ^ s ? 0 : 1;
10246 bfd_vma i2 = j2 ^ s ? 0 : 1;
10247
10248 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
10249 /* Sign extend. */
10250 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
10251
10252 signed_addend = addend;
10253 }
10254
10255 if (r_type == R_ARM_THM_XPC22)
10256 {
10257 /* Check for Thumb to Thumb call. */
10258 /* FIXME: Should we translate the instruction into a BL
10259 instruction instead ? */
10260 if (branch_type == ST_BRANCH_TO_THUMB)
10261 (*_bfd_error_handler)
10262 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
10263 input_bfd,
10264 h ? h->root.root.string : "(local)");
10265 }
10266 else
10267 {
10268 /* If it is not a call to Thumb, assume call to Arm.
10269 If it is a call relative to a section name, then it is not a
10270 function call at all, but rather a long jump. Calls through
10271 the PLT do not require stubs. */
10272 if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
10273 {
10274 if (globals->use_blx && r_type == R_ARM_THM_CALL)
10275 {
10276 /* Convert BL to BLX. */
10277 lower_insn = (lower_insn & ~0x1000) | 0x0800;
10278 }
10279 else if (( r_type != R_ARM_THM_CALL)
10280 && (r_type != R_ARM_THM_JUMP24))
10281 {
10282 if (elf32_thumb_to_arm_stub
10283 (info, sym_name, input_bfd, output_bfd, input_section,
10284 hit_data, sym_sec, rel->r_offset, signed_addend, value,
10285 error_message))
10286 return bfd_reloc_ok;
10287 else
10288 return bfd_reloc_dangerous;
10289 }
10290 }
10291 else if (branch_type == ST_BRANCH_TO_THUMB
10292 && globals->use_blx
10293 && r_type == R_ARM_THM_CALL)
10294 {
10295 /* Make sure this is a BL. */
10296 lower_insn |= 0x1800;
10297 }
10298 }
10299
10300 enum elf32_arm_stub_type stub_type = arm_stub_none;
10301 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
10302 {
10303 /* Check if a stub has to be inserted because the destination
10304 is too far. */
10305 struct elf32_arm_stub_hash_entry *stub_entry;
10306 struct elf32_arm_link_hash_entry *hash;
10307
10308 hash = (struct elf32_arm_link_hash_entry *) h;
10309
10310 stub_type = arm_type_of_stub (info, input_section, rel,
10311 st_type, &branch_type,
10312 hash, value, sym_sec,
10313 input_bfd, sym_name);
10314
10315 if (stub_type != arm_stub_none)
10316 {
10317 /* The target is out of reach or we are changing modes, so
10318 redirect the branch to the local stub for this
10319 function. */
10320 stub_entry = elf32_arm_get_stub_entry (input_section,
10321 sym_sec, h,
10322 rel, globals,
10323 stub_type);
10324 if (stub_entry != NULL)
10325 {
10326 value = (stub_entry->stub_offset
10327 + stub_entry->stub_sec->output_offset
10328 + stub_entry->stub_sec->output_section->vma);
10329
10330 if (plt_offset != (bfd_vma) -1)
10331 *unresolved_reloc_p = FALSE;
10332 }
10333
10334 /* If this call becomes a call to Arm, force BLX. */
10335 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
10336 {
10337 if ((stub_entry
10338 && !arm_stub_is_thumb (stub_entry->stub_type))
10339 || branch_type != ST_BRANCH_TO_THUMB)
10340 lower_insn = (lower_insn & ~0x1000) | 0x0800;
10341 }
10342 }
10343 }
10344
10345 /* Handle calls via the PLT. */
10346 if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
10347 {
10348 value = (splt->output_section->vma
10349 + splt->output_offset
10350 + plt_offset);
10351
10352 if (globals->use_blx
10353 && r_type == R_ARM_THM_CALL
10354 && ! using_thumb_only (globals))
10355 {
10356 /* If the Thumb BLX instruction is available, convert
10357 the BL to a BLX instruction to call the ARM-mode
10358 PLT entry. */
10359 lower_insn = (lower_insn & ~0x1000) | 0x0800;
10360 branch_type = ST_BRANCH_TO_ARM;
10361 }
10362 else
10363 {
10364 if (! using_thumb_only (globals))
10365 /* Target the Thumb stub before the ARM PLT entry. */
10366 value -= PLT_THUMB_STUB_SIZE;
10367 branch_type = ST_BRANCH_TO_THUMB;
10368 }
10369 *unresolved_reloc_p = FALSE;
10370 }
10371
10372 relocation = value + signed_addend;
10373
10374 relocation -= (input_section->output_section->vma
10375 + input_section->output_offset
10376 + rel->r_offset);
10377
10378 check = relocation >> howto->rightshift;
10379
10380 /* If this is a signed value, the rightshift just dropped
10381 leading 1 bits (assuming twos complement). */
10382 if ((bfd_signed_vma) relocation >= 0)
10383 signed_check = check;
10384 else
10385 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
10386
10387 /* Calculate the permissable maximum and minimum values for
10388 this relocation according to whether we're relocating for
10389 Thumb-2 or not. */
10390 bitsize = howto->bitsize;
10391 if (!thumb2_bl)
10392 bitsize -= 2;
10393 reloc_signed_max = (1 << (bitsize - 1)) - 1;
10394 reloc_signed_min = ~reloc_signed_max;
10395
10396 /* Assumes two's complement. */
10397 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
10398 overflow = TRUE;
10399
10400 if ((lower_insn & 0x5000) == 0x4000)
10401 /* For a BLX instruction, make sure that the relocation is rounded up
10402 to a word boundary. This follows the semantics of the instruction
10403 which specifies that bit 1 of the target address will come from bit
10404 1 of the base address. */
10405 relocation = (relocation + 2) & ~ 3;
10406
10407 /* Put RELOCATION back into the insn. Assumes two's complement.
10408 We use the Thumb-2 encoding, which is safe even if dealing with
10409 a Thumb-1 instruction by virtue of our overflow check above. */
10410 reloc_sign = (signed_check < 0) ? 1 : 0;
10411 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
10412 | ((relocation >> 12) & 0x3ff)
10413 | (reloc_sign << 10);
10414 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
10415 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
10416 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
10417 | ((relocation >> 1) & 0x7ff);
10418
10419 /* Put the relocated value back in the object file: */
10420 bfd_put_16 (input_bfd, upper_insn, hit_data);
10421 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
10422
10423 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
10424 }
10425 break;
10426
10427 case R_ARM_THM_JUMP19:
10428 /* Thumb32 conditional branch instruction. */
10429 {
10430 bfd_vma relocation;
10431 bfd_boolean overflow = FALSE;
10432 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
10433 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
10434 bfd_signed_vma reloc_signed_max = 0xffffe;
10435 bfd_signed_vma reloc_signed_min = -0x100000;
10436 bfd_signed_vma signed_check;
10437 enum elf32_arm_stub_type stub_type = arm_stub_none;
10438 struct elf32_arm_stub_hash_entry *stub_entry;
10439 struct elf32_arm_link_hash_entry *hash;
10440
10441 /* Need to refetch the addend, reconstruct the top three bits,
10442 and squish the two 11 bit pieces together. */
10443 if (globals->use_rel)
10444 {
10445 bfd_vma S = (upper_insn & 0x0400) >> 10;
10446 bfd_vma upper = (upper_insn & 0x003f);
10447 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
10448 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
10449 bfd_vma lower = (lower_insn & 0x07ff);
10450
10451 upper |= J1 << 6;
10452 upper |= J2 << 7;
10453 upper |= (!S) << 8;
10454 upper -= 0x0100; /* Sign extend. */
10455
10456 addend = (upper << 12) | (lower << 1);
10457 signed_addend = addend;
10458 }
10459
10460 /* Handle calls via the PLT. */
10461 if (plt_offset != (bfd_vma) -1)
10462 {
10463 value = (splt->output_section->vma
10464 + splt->output_offset
10465 + plt_offset);
10466 /* Target the Thumb stub before the ARM PLT entry. */
10467 value -= PLT_THUMB_STUB_SIZE;
10468 *unresolved_reloc_p = FALSE;
10469 }
10470
10471 hash = (struct elf32_arm_link_hash_entry *)h;
10472
10473 stub_type = arm_type_of_stub (info, input_section, rel,
10474 st_type, &branch_type,
10475 hash, value, sym_sec,
10476 input_bfd, sym_name);
10477 if (stub_type != arm_stub_none)
10478 {
10479 stub_entry = elf32_arm_get_stub_entry (input_section,
10480 sym_sec, h,
10481 rel, globals,
10482 stub_type);
10483 if (stub_entry != NULL)
10484 {
10485 value = (stub_entry->stub_offset
10486 + stub_entry->stub_sec->output_offset
10487 + stub_entry->stub_sec->output_section->vma);
10488 }
10489 }
10490
10491 relocation = value + signed_addend;
10492 relocation -= (input_section->output_section->vma
10493 + input_section->output_offset
10494 + rel->r_offset);
10495 signed_check = (bfd_signed_vma) relocation;
10496
10497 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
10498 overflow = TRUE;
10499
10500 /* Put RELOCATION back into the insn. */
10501 {
10502 bfd_vma S = (relocation & 0x00100000) >> 20;
10503 bfd_vma J2 = (relocation & 0x00080000) >> 19;
10504 bfd_vma J1 = (relocation & 0x00040000) >> 18;
10505 bfd_vma hi = (relocation & 0x0003f000) >> 12;
10506 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
10507
10508 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
10509 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
10510 }
10511
10512 /* Put the relocated value back in the object file: */
10513 bfd_put_16 (input_bfd, upper_insn, hit_data);
10514 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
10515
10516 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
10517 }
10518
10519 case R_ARM_THM_JUMP11:
10520 case R_ARM_THM_JUMP8:
10521 case R_ARM_THM_JUMP6:
10522 /* Thumb B (branch) instruction). */
10523 {
10524 bfd_signed_vma relocation;
10525 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
10526 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
10527 bfd_signed_vma signed_check;
10528
10529 /* CZB cannot jump backward. */
10530 if (r_type == R_ARM_THM_JUMP6)
10531 reloc_signed_min = 0;
10532
10533 if (globals->use_rel)
10534 {
10535 /* Need to refetch addend. */
10536 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
10537 if (addend & ((howto->src_mask + 1) >> 1))
10538 {
10539 signed_addend = -1;
10540 signed_addend &= ~ howto->src_mask;
10541 signed_addend |= addend;
10542 }
10543 else
10544 signed_addend = addend;
10545 /* The value in the insn has been right shifted. We need to
10546 undo this, so that we can perform the address calculation
10547 in terms of bytes. */
10548 signed_addend <<= howto->rightshift;
10549 }
10550 relocation = value + signed_addend;
10551
10552 relocation -= (input_section->output_section->vma
10553 + input_section->output_offset
10554 + rel->r_offset);
10555
10556 relocation >>= howto->rightshift;
10557 signed_check = relocation;
10558
10559 if (r_type == R_ARM_THM_JUMP6)
10560 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
10561 else
10562 relocation &= howto->dst_mask;
10563 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
10564
10565 bfd_put_16 (input_bfd, relocation, hit_data);
10566
10567 /* Assumes two's complement. */
10568 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
10569 return bfd_reloc_overflow;
10570
10571 return bfd_reloc_ok;
10572 }
10573
10574 case R_ARM_ALU_PCREL7_0:
10575 case R_ARM_ALU_PCREL15_8:
10576 case R_ARM_ALU_PCREL23_15:
10577 {
10578 bfd_vma insn;
10579 bfd_vma relocation;
10580
10581 insn = bfd_get_32 (input_bfd, hit_data);
10582 if (globals->use_rel)
10583 {
10584 /* Extract the addend. */
10585 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
10586 signed_addend = addend;
10587 }
10588 relocation = value + signed_addend;
10589
10590 relocation -= (input_section->output_section->vma
10591 + input_section->output_offset
10592 + rel->r_offset);
10593 insn = (insn & ~0xfff)
10594 | ((howto->bitpos << 7) & 0xf00)
10595 | ((relocation >> howto->bitpos) & 0xff);
10596 bfd_put_32 (input_bfd, value, hit_data);
10597 }
10598 return bfd_reloc_ok;
10599
10600 case R_ARM_GNU_VTINHERIT:
10601 case R_ARM_GNU_VTENTRY:
10602 return bfd_reloc_ok;
10603
10604 case R_ARM_GOTOFF32:
10605 /* Relocation is relative to the start of the
10606 global offset table. */
10607
10608 BFD_ASSERT (sgot != NULL);
10609 if (sgot == NULL)
10610 return bfd_reloc_notsupported;
10611
10612 /* If we are addressing a Thumb function, we need to adjust the
10613 address by one, so that attempts to call the function pointer will
10614 correctly interpret it as Thumb code. */
10615 if (branch_type == ST_BRANCH_TO_THUMB)
10616 value += 1;
10617
10618 /* Note that sgot->output_offset is not involved in this
10619 calculation. We always want the start of .got. If we
10620 define _GLOBAL_OFFSET_TABLE in a different way, as is
10621 permitted by the ABI, we might have to change this
10622 calculation. */
10623 value -= sgot->output_section->vma;
10624 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10625 contents, rel->r_offset, value,
10626 rel->r_addend);
10627
10628 case R_ARM_GOTPC:
10629 /* Use global offset table as symbol value. */
10630 BFD_ASSERT (sgot != NULL);
10631
10632 if (sgot == NULL)
10633 return bfd_reloc_notsupported;
10634
10635 *unresolved_reloc_p = FALSE;
10636 value = sgot->output_section->vma;
10637 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10638 contents, rel->r_offset, value,
10639 rel->r_addend);
10640
10641 case R_ARM_GOT32:
10642 case R_ARM_GOT_PREL:
10643 /* Relocation is to the entry for this symbol in the
10644 global offset table. */
10645 if (sgot == NULL)
10646 return bfd_reloc_notsupported;
10647
10648 if (dynreloc_st_type == STT_GNU_IFUNC
10649 && plt_offset != (bfd_vma) -1
10650 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
10651 {
10652 /* We have a relocation against a locally-binding STT_GNU_IFUNC
10653 symbol, and the relocation resolves directly to the runtime
10654 target rather than to the .iplt entry. This means that any
10655 .got entry would be the same value as the .igot.plt entry,
10656 so there's no point creating both. */
10657 sgot = globals->root.igotplt;
10658 value = sgot->output_offset + gotplt_offset;
10659 }
10660 else if (h != NULL)
10661 {
10662 bfd_vma off;
10663
10664 off = h->got.offset;
10665 BFD_ASSERT (off != (bfd_vma) -1);
10666 if ((off & 1) != 0)
10667 {
10668 /* We have already processsed one GOT relocation against
10669 this symbol. */
10670 off &= ~1;
10671 if (globals->root.dynamic_sections_created
10672 && !SYMBOL_REFERENCES_LOCAL (info, h))
10673 *unresolved_reloc_p = FALSE;
10674 }
10675 else
10676 {
10677 Elf_Internal_Rela outrel;
10678
10679 if (h->dynindx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
10680 {
10681 /* If the symbol doesn't resolve locally in a static
10682 object, we have an undefined reference. If the
10683 symbol doesn't resolve locally in a dynamic object,
10684 it should be resolved by the dynamic linker. */
10685 if (globals->root.dynamic_sections_created)
10686 {
10687 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
10688 *unresolved_reloc_p = FALSE;
10689 }
10690 else
10691 outrel.r_info = 0;
10692 outrel.r_addend = 0;
10693 }
10694 else
10695 {
10696 if (dynreloc_st_type == STT_GNU_IFUNC)
10697 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
10698 else if (bfd_link_pic (info) &&
10699 (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10700 || h->root.type != bfd_link_hash_undefweak))
10701 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
10702 else
10703 outrel.r_info = 0;
10704 outrel.r_addend = dynreloc_value;
10705 }
10706
10707 /* The GOT entry is initialized to zero by default.
10708 See if we should install a different value. */
10709 if (outrel.r_addend != 0
10710 && (outrel.r_info == 0 || globals->use_rel))
10711 {
10712 bfd_put_32 (output_bfd, outrel.r_addend,
10713 sgot->contents + off);
10714 outrel.r_addend = 0;
10715 }
10716
10717 if (outrel.r_info != 0)
10718 {
10719 outrel.r_offset = (sgot->output_section->vma
10720 + sgot->output_offset
10721 + off);
10722 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
10723 }
10724 h->got.offset |= 1;
10725 }
10726 value = sgot->output_offset + off;
10727 }
10728 else
10729 {
10730 bfd_vma off;
10731
10732 BFD_ASSERT (local_got_offsets != NULL &&
10733 local_got_offsets[r_symndx] != (bfd_vma) -1);
10734
10735 off = local_got_offsets[r_symndx];
10736
10737 /* The offset must always be a multiple of 4. We use the
10738 least significant bit to record whether we have already
10739 generated the necessary reloc. */
10740 if ((off & 1) != 0)
10741 off &= ~1;
10742 else
10743 {
10744 if (globals->use_rel)
10745 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
10746
10747 if (bfd_link_pic (info) || dynreloc_st_type == STT_GNU_IFUNC)
10748 {
10749 Elf_Internal_Rela outrel;
10750
10751 outrel.r_addend = addend + dynreloc_value;
10752 outrel.r_offset = (sgot->output_section->vma
10753 + sgot->output_offset
10754 + off);
10755 if (dynreloc_st_type == STT_GNU_IFUNC)
10756 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
10757 else
10758 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
10759 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
10760 }
10761
10762 local_got_offsets[r_symndx] |= 1;
10763 }
10764
10765 value = sgot->output_offset + off;
10766 }
10767 if (r_type != R_ARM_GOT32)
10768 value += sgot->output_section->vma;
10769
10770 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10771 contents, rel->r_offset, value,
10772 rel->r_addend);
10773
10774 case R_ARM_TLS_LDO32:
10775 value = value - dtpoff_base (info);
10776
10777 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10778 contents, rel->r_offset, value,
10779 rel->r_addend);
10780
10781 case R_ARM_TLS_LDM32:
10782 {
10783 bfd_vma off;
10784
10785 if (sgot == NULL)
10786 abort ();
10787
10788 off = globals->tls_ldm_got.offset;
10789
10790 if ((off & 1) != 0)
10791 off &= ~1;
10792 else
10793 {
10794 /* If we don't know the module number, create a relocation
10795 for it. */
10796 if (bfd_link_pic (info))
10797 {
10798 Elf_Internal_Rela outrel;
10799
10800 if (srelgot == NULL)
10801 abort ();
10802
10803 outrel.r_addend = 0;
10804 outrel.r_offset = (sgot->output_section->vma
10805 + sgot->output_offset + off);
10806 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
10807
10808 if (globals->use_rel)
10809 bfd_put_32 (output_bfd, outrel.r_addend,
10810 sgot->contents + off);
10811
10812 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
10813 }
10814 else
10815 bfd_put_32 (output_bfd, 1, sgot->contents + off);
10816
10817 globals->tls_ldm_got.offset |= 1;
10818 }
10819
10820 value = sgot->output_section->vma + sgot->output_offset + off
10821 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
10822
10823 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10824 contents, rel->r_offset, value,
10825 rel->r_addend);
10826 }
10827
10828 case R_ARM_TLS_CALL:
10829 case R_ARM_THM_TLS_CALL:
10830 case R_ARM_TLS_GD32:
10831 case R_ARM_TLS_IE32:
10832 case R_ARM_TLS_GOTDESC:
10833 case R_ARM_TLS_DESCSEQ:
10834 case R_ARM_THM_TLS_DESCSEQ:
10835 {
10836 bfd_vma off, offplt;
10837 int indx = 0;
10838 char tls_type;
10839
10840 BFD_ASSERT (sgot != NULL);
10841
10842 if (h != NULL)
10843 {
10844 bfd_boolean dyn;
10845 dyn = globals->root.dynamic_sections_created;
10846 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
10847 bfd_link_pic (info),
10848 h)
10849 && (!bfd_link_pic (info)
10850 || !SYMBOL_REFERENCES_LOCAL (info, h)))
10851 {
10852 *unresolved_reloc_p = FALSE;
10853 indx = h->dynindx;
10854 }
10855 off = h->got.offset;
10856 offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
10857 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
10858 }
10859 else
10860 {
10861 BFD_ASSERT (local_got_offsets != NULL);
10862 off = local_got_offsets[r_symndx];
10863 offplt = local_tlsdesc_gotents[r_symndx];
10864 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
10865 }
10866
10867 /* Linker relaxations happens from one of the
10868 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
10869 if (ELF32_R_TYPE(rel->r_info) != r_type)
10870 tls_type = GOT_TLS_IE;
10871
10872 BFD_ASSERT (tls_type != GOT_UNKNOWN);
10873
10874 if ((off & 1) != 0)
10875 off &= ~1;
10876 else
10877 {
10878 bfd_boolean need_relocs = FALSE;
10879 Elf_Internal_Rela outrel;
10880 int cur_off = off;
10881
10882 /* The GOT entries have not been initialized yet. Do it
10883 now, and emit any relocations. If both an IE GOT and a
10884 GD GOT are necessary, we emit the GD first. */
10885
10886 if ((bfd_link_pic (info) || indx != 0)
10887 && (h == NULL
10888 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10889 || h->root.type != bfd_link_hash_undefweak))
10890 {
10891 need_relocs = TRUE;
10892 BFD_ASSERT (srelgot != NULL);
10893 }
10894
10895 if (tls_type & GOT_TLS_GDESC)
10896 {
10897 bfd_byte *loc;
10898
10899 /* We should have relaxed, unless this is an undefined
10900 weak symbol. */
10901 BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
10902 || bfd_link_pic (info));
10903 BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
10904 <= globals->root.sgotplt->size);
10905
10906 outrel.r_addend = 0;
10907 outrel.r_offset = (globals->root.sgotplt->output_section->vma
10908 + globals->root.sgotplt->output_offset
10909 + offplt
10910 + globals->sgotplt_jump_table_size);
10911
10912 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
10913 sreloc = globals->root.srelplt;
10914 loc = sreloc->contents;
10915 loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
10916 BFD_ASSERT (loc + RELOC_SIZE (globals)
10917 <= sreloc->contents + sreloc->size);
10918
10919 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
10920
10921 /* For globals, the first word in the relocation gets
10922 the relocation index and the top bit set, or zero,
10923 if we're binding now. For locals, it gets the
10924 symbol's offset in the tls section. */
10925 bfd_put_32 (output_bfd,
10926 !h ? value - elf_hash_table (info)->tls_sec->vma
10927 : info->flags & DF_BIND_NOW ? 0
10928 : 0x80000000 | ELF32_R_SYM (outrel.r_info),
10929 globals->root.sgotplt->contents + offplt
10930 + globals->sgotplt_jump_table_size);
10931
10932 /* Second word in the relocation is always zero. */
10933 bfd_put_32 (output_bfd, 0,
10934 globals->root.sgotplt->contents + offplt
10935 + globals->sgotplt_jump_table_size + 4);
10936 }
10937 if (tls_type & GOT_TLS_GD)
10938 {
10939 if (need_relocs)
10940 {
10941 outrel.r_addend = 0;
10942 outrel.r_offset = (sgot->output_section->vma
10943 + sgot->output_offset
10944 + cur_off);
10945 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
10946
10947 if (globals->use_rel)
10948 bfd_put_32 (output_bfd, outrel.r_addend,
10949 sgot->contents + cur_off);
10950
10951 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
10952
10953 if (indx == 0)
10954 bfd_put_32 (output_bfd, value - dtpoff_base (info),
10955 sgot->contents + cur_off + 4);
10956 else
10957 {
10958 outrel.r_addend = 0;
10959 outrel.r_info = ELF32_R_INFO (indx,
10960 R_ARM_TLS_DTPOFF32);
10961 outrel.r_offset += 4;
10962
10963 if (globals->use_rel)
10964 bfd_put_32 (output_bfd, outrel.r_addend,
10965 sgot->contents + cur_off + 4);
10966
10967 elf32_arm_add_dynreloc (output_bfd, info,
10968 srelgot, &outrel);
10969 }
10970 }
10971 else
10972 {
10973 /* If we are not emitting relocations for a
10974 general dynamic reference, then we must be in a
10975 static link or an executable link with the
10976 symbol binding locally. Mark it as belonging
10977 to module 1, the executable. */
10978 bfd_put_32 (output_bfd, 1,
10979 sgot->contents + cur_off);
10980 bfd_put_32 (output_bfd, value - dtpoff_base (info),
10981 sgot->contents + cur_off + 4);
10982 }
10983
10984 cur_off += 8;
10985 }
10986
10987 if (tls_type & GOT_TLS_IE)
10988 {
10989 if (need_relocs)
10990 {
10991 if (indx == 0)
10992 outrel.r_addend = value - dtpoff_base (info);
10993 else
10994 outrel.r_addend = 0;
10995 outrel.r_offset = (sgot->output_section->vma
10996 + sgot->output_offset
10997 + cur_off);
10998 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
10999
11000 if (globals->use_rel)
11001 bfd_put_32 (output_bfd, outrel.r_addend,
11002 sgot->contents + cur_off);
11003
11004 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11005 }
11006 else
11007 bfd_put_32 (output_bfd, tpoff (info, value),
11008 sgot->contents + cur_off);
11009 cur_off += 4;
11010 }
11011
11012 if (h != NULL)
11013 h->got.offset |= 1;
11014 else
11015 local_got_offsets[r_symndx] |= 1;
11016 }
11017
11018 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
11019 off += 8;
11020 else if (tls_type & GOT_TLS_GDESC)
11021 off = offplt;
11022
11023 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL
11024 || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL)
11025 {
11026 bfd_signed_vma offset;
11027 /* TLS stubs are arm mode. The original symbol is a
11028 data object, so branch_type is bogus. */
11029 branch_type = ST_BRANCH_TO_ARM;
11030 enum elf32_arm_stub_type stub_type
11031 = arm_type_of_stub (info, input_section, rel,
11032 st_type, &branch_type,
11033 (struct elf32_arm_link_hash_entry *)h,
11034 globals->tls_trampoline, globals->root.splt,
11035 input_bfd, sym_name);
11036
11037 if (stub_type != arm_stub_none)
11038 {
11039 struct elf32_arm_stub_hash_entry *stub_entry
11040 = elf32_arm_get_stub_entry
11041 (input_section, globals->root.splt, 0, rel,
11042 globals, stub_type);
11043 offset = (stub_entry->stub_offset
11044 + stub_entry->stub_sec->output_offset
11045 + stub_entry->stub_sec->output_section->vma);
11046 }
11047 else
11048 offset = (globals->root.splt->output_section->vma
11049 + globals->root.splt->output_offset
11050 + globals->tls_trampoline);
11051
11052 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL)
11053 {
11054 unsigned long inst;
11055
11056 offset -= (input_section->output_section->vma
11057 + input_section->output_offset
11058 + rel->r_offset + 8);
11059
11060 inst = offset >> 2;
11061 inst &= 0x00ffffff;
11062 value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
11063 }
11064 else
11065 {
11066 /* Thumb blx encodes the offset in a complicated
11067 fashion. */
11068 unsigned upper_insn, lower_insn;
11069 unsigned neg;
11070
11071 offset -= (input_section->output_section->vma
11072 + input_section->output_offset
11073 + rel->r_offset + 4);
11074
11075 if (stub_type != arm_stub_none
11076 && arm_stub_is_thumb (stub_type))
11077 {
11078 lower_insn = 0xd000;
11079 }
11080 else
11081 {
11082 lower_insn = 0xc000;
11083 /* Round up the offset to a word boundary. */
11084 offset = (offset + 2) & ~2;
11085 }
11086
11087 neg = offset < 0;
11088 upper_insn = (0xf000
11089 | ((offset >> 12) & 0x3ff)
11090 | (neg << 10));
11091 lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
11092 | (((!((offset >> 22) & 1)) ^ neg) << 11)
11093 | ((offset >> 1) & 0x7ff);
11094 bfd_put_16 (input_bfd, upper_insn, hit_data);
11095 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11096 return bfd_reloc_ok;
11097 }
11098 }
11099 /* These relocations needs special care, as besides the fact
11100 they point somewhere in .gotplt, the addend must be
11101 adjusted accordingly depending on the type of instruction
11102 we refer to. */
11103 else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
11104 {
11105 unsigned long data, insn;
11106 unsigned thumb;
11107
11108 data = bfd_get_32 (input_bfd, hit_data);
11109 thumb = data & 1;
11110 data &= ~1u;
11111
11112 if (thumb)
11113 {
11114 insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
11115 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
11116 insn = (insn << 16)
11117 | bfd_get_16 (input_bfd,
11118 contents + rel->r_offset - data + 2);
11119 if ((insn & 0xf800c000) == 0xf000c000)
11120 /* bl/blx */
11121 value = -6;
11122 else if ((insn & 0xffffff00) == 0x4400)
11123 /* add */
11124 value = -5;
11125 else
11126 {
11127 (*_bfd_error_handler)
11128 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' referenced by TLS_GOTDESC"),
11129 input_bfd, input_section,
11130 (unsigned long)rel->r_offset, insn);
11131 return bfd_reloc_notsupported;
11132 }
11133 }
11134 else
11135 {
11136 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
11137
11138 switch (insn >> 24)
11139 {
11140 case 0xeb: /* bl */
11141 case 0xfa: /* blx */
11142 value = -4;
11143 break;
11144
11145 case 0xe0: /* add */
11146 value = -8;
11147 break;
11148
11149 default:
11150 (*_bfd_error_handler)
11151 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' referenced by TLS_GOTDESC"),
11152 input_bfd, input_section,
11153 (unsigned long)rel->r_offset, insn);
11154 return bfd_reloc_notsupported;
11155 }
11156 }
11157
11158 value += ((globals->root.sgotplt->output_section->vma
11159 + globals->root.sgotplt->output_offset + off)
11160 - (input_section->output_section->vma
11161 + input_section->output_offset
11162 + rel->r_offset)
11163 + globals->sgotplt_jump_table_size);
11164 }
11165 else
11166 value = ((globals->root.sgot->output_section->vma
11167 + globals->root.sgot->output_offset + off)
11168 - (input_section->output_section->vma
11169 + input_section->output_offset + rel->r_offset));
11170
11171 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11172 contents, rel->r_offset, value,
11173 rel->r_addend);
11174 }
11175
11176 case R_ARM_TLS_LE32:
11177 if (bfd_link_dll (info))
11178 {
11179 (*_bfd_error_handler)
11180 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
11181 input_bfd, input_section,
11182 (long) rel->r_offset, howto->name);
11183 return bfd_reloc_notsupported;
11184 }
11185 else
11186 value = tpoff (info, value);
11187
11188 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11189 contents, rel->r_offset, value,
11190 rel->r_addend);
11191
11192 case R_ARM_V4BX:
11193 if (globals->fix_v4bx)
11194 {
11195 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11196
11197 /* Ensure that we have a BX instruction. */
11198 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
11199
11200 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
11201 {
11202 /* Branch to veneer. */
11203 bfd_vma glue_addr;
11204 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
11205 glue_addr -= input_section->output_section->vma
11206 + input_section->output_offset
11207 + rel->r_offset + 8;
11208 insn = (insn & 0xf0000000) | 0x0a000000
11209 | ((glue_addr >> 2) & 0x00ffffff);
11210 }
11211 else
11212 {
11213 /* Preserve Rm (lowest four bits) and the condition code
11214 (highest four bits). Other bits encode MOV PC,Rm. */
11215 insn = (insn & 0xf000000f) | 0x01a0f000;
11216 }
11217
11218 bfd_put_32 (input_bfd, insn, hit_data);
11219 }
11220 return bfd_reloc_ok;
11221
11222 case R_ARM_MOVW_ABS_NC:
11223 case R_ARM_MOVT_ABS:
11224 case R_ARM_MOVW_PREL_NC:
11225 case R_ARM_MOVT_PREL:
11226 /* Until we properly support segment-base-relative addressing then
11227 we assume the segment base to be zero, as for the group relocations.
11228 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
11229 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
11230 case R_ARM_MOVW_BREL_NC:
11231 case R_ARM_MOVW_BREL:
11232 case R_ARM_MOVT_BREL:
11233 {
11234 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11235
11236 if (globals->use_rel)
11237 {
11238 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
11239 signed_addend = (addend ^ 0x8000) - 0x8000;
11240 }
11241
11242 value += signed_addend;
11243
11244 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
11245 value -= (input_section->output_section->vma
11246 + input_section->output_offset + rel->r_offset);
11247
11248 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
11249 return bfd_reloc_overflow;
11250
11251 if (branch_type == ST_BRANCH_TO_THUMB)
11252 value |= 1;
11253
11254 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
11255 || r_type == R_ARM_MOVT_BREL)
11256 value >>= 16;
11257
11258 insn &= 0xfff0f000;
11259 insn |= value & 0xfff;
11260 insn |= (value & 0xf000) << 4;
11261 bfd_put_32 (input_bfd, insn, hit_data);
11262 }
11263 return bfd_reloc_ok;
11264
11265 case R_ARM_THM_MOVW_ABS_NC:
11266 case R_ARM_THM_MOVT_ABS:
11267 case R_ARM_THM_MOVW_PREL_NC:
11268 case R_ARM_THM_MOVT_PREL:
11269 /* Until we properly support segment-base-relative addressing then
11270 we assume the segment base to be zero, as for the above relocations.
11271 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
11272 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
11273 as R_ARM_THM_MOVT_ABS. */
11274 case R_ARM_THM_MOVW_BREL_NC:
11275 case R_ARM_THM_MOVW_BREL:
11276 case R_ARM_THM_MOVT_BREL:
11277 {
11278 bfd_vma insn;
11279
11280 insn = bfd_get_16 (input_bfd, hit_data) << 16;
11281 insn |= bfd_get_16 (input_bfd, hit_data + 2);
11282
11283 if (globals->use_rel)
11284 {
11285 addend = ((insn >> 4) & 0xf000)
11286 | ((insn >> 15) & 0x0800)
11287 | ((insn >> 4) & 0x0700)
11288 | (insn & 0x00ff);
11289 signed_addend = (addend ^ 0x8000) - 0x8000;
11290 }
11291
11292 value += signed_addend;
11293
11294 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
11295 value -= (input_section->output_section->vma
11296 + input_section->output_offset + rel->r_offset);
11297
11298 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
11299 return bfd_reloc_overflow;
11300
11301 if (branch_type == ST_BRANCH_TO_THUMB)
11302 value |= 1;
11303
11304 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
11305 || r_type == R_ARM_THM_MOVT_BREL)
11306 value >>= 16;
11307
11308 insn &= 0xfbf08f00;
11309 insn |= (value & 0xf000) << 4;
11310 insn |= (value & 0x0800) << 15;
11311 insn |= (value & 0x0700) << 4;
11312 insn |= (value & 0x00ff);
11313
11314 bfd_put_16 (input_bfd, insn >> 16, hit_data);
11315 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
11316 }
11317 return bfd_reloc_ok;
11318
11319 case R_ARM_ALU_PC_G0_NC:
11320 case R_ARM_ALU_PC_G1_NC:
11321 case R_ARM_ALU_PC_G0:
11322 case R_ARM_ALU_PC_G1:
11323 case R_ARM_ALU_PC_G2:
11324 case R_ARM_ALU_SB_G0_NC:
11325 case R_ARM_ALU_SB_G1_NC:
11326 case R_ARM_ALU_SB_G0:
11327 case R_ARM_ALU_SB_G1:
11328 case R_ARM_ALU_SB_G2:
11329 {
11330 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11331 bfd_vma pc = input_section->output_section->vma
11332 + input_section->output_offset + rel->r_offset;
11333 /* sb is the origin of the *segment* containing the symbol. */
11334 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
11335 bfd_vma residual;
11336 bfd_vma g_n;
11337 bfd_signed_vma signed_value;
11338 int group = 0;
11339
11340 /* Determine which group of bits to select. */
11341 switch (r_type)
11342 {
11343 case R_ARM_ALU_PC_G0_NC:
11344 case R_ARM_ALU_PC_G0:
11345 case R_ARM_ALU_SB_G0_NC:
11346 case R_ARM_ALU_SB_G0:
11347 group = 0;
11348 break;
11349
11350 case R_ARM_ALU_PC_G1_NC:
11351 case R_ARM_ALU_PC_G1:
11352 case R_ARM_ALU_SB_G1_NC:
11353 case R_ARM_ALU_SB_G1:
11354 group = 1;
11355 break;
11356
11357 case R_ARM_ALU_PC_G2:
11358 case R_ARM_ALU_SB_G2:
11359 group = 2;
11360 break;
11361
11362 default:
11363 abort ();
11364 }
11365
11366 /* If REL, extract the addend from the insn. If RELA, it will
11367 have already been fetched for us. */
11368 if (globals->use_rel)
11369 {
11370 int negative;
11371 bfd_vma constant = insn & 0xff;
11372 bfd_vma rotation = (insn & 0xf00) >> 8;
11373
11374 if (rotation == 0)
11375 signed_addend = constant;
11376 else
11377 {
11378 /* Compensate for the fact that in the instruction, the
11379 rotation is stored in multiples of 2 bits. */
11380 rotation *= 2;
11381
11382 /* Rotate "constant" right by "rotation" bits. */
11383 signed_addend = (constant >> rotation) |
11384 (constant << (8 * sizeof (bfd_vma) - rotation));
11385 }
11386
11387 /* Determine if the instruction is an ADD or a SUB.
11388 (For REL, this determines the sign of the addend.) */
11389 negative = identify_add_or_sub (insn);
11390 if (negative == 0)
11391 {
11392 (*_bfd_error_handler)
11393 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
11394 input_bfd, input_section,
11395 (long) rel->r_offset, howto->name);
11396 return bfd_reloc_overflow;
11397 }
11398
11399 signed_addend *= negative;
11400 }
11401
11402 /* Compute the value (X) to go in the place. */
11403 if (r_type == R_ARM_ALU_PC_G0_NC
11404 || r_type == R_ARM_ALU_PC_G1_NC
11405 || r_type == R_ARM_ALU_PC_G0
11406 || r_type == R_ARM_ALU_PC_G1
11407 || r_type == R_ARM_ALU_PC_G2)
11408 /* PC relative. */
11409 signed_value = value - pc + signed_addend;
11410 else
11411 /* Section base relative. */
11412 signed_value = value - sb + signed_addend;
11413
11414 /* If the target symbol is a Thumb function, then set the
11415 Thumb bit in the address. */
11416 if (branch_type == ST_BRANCH_TO_THUMB)
11417 signed_value |= 1;
11418
11419 /* Calculate the value of the relevant G_n, in encoded
11420 constant-with-rotation format. */
11421 g_n = calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
11422 group, &residual);
11423
11424 /* Check for overflow if required. */
11425 if ((r_type == R_ARM_ALU_PC_G0
11426 || r_type == R_ARM_ALU_PC_G1
11427 || r_type == R_ARM_ALU_PC_G2
11428 || r_type == R_ARM_ALU_SB_G0
11429 || r_type == R_ARM_ALU_SB_G1
11430 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
11431 {
11432 (*_bfd_error_handler)
11433 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
11434 input_bfd, input_section,
11435 (long) rel->r_offset, signed_value < 0 ? - signed_value : signed_value,
11436 howto->name);
11437 return bfd_reloc_overflow;
11438 }
11439
11440 /* Mask out the value and the ADD/SUB part of the opcode; take care
11441 not to destroy the S bit. */
11442 insn &= 0xff1ff000;
11443
11444 /* Set the opcode according to whether the value to go in the
11445 place is negative. */
11446 if (signed_value < 0)
11447 insn |= 1 << 22;
11448 else
11449 insn |= 1 << 23;
11450
11451 /* Encode the offset. */
11452 insn |= g_n;
11453
11454 bfd_put_32 (input_bfd, insn, hit_data);
11455 }
11456 return bfd_reloc_ok;
11457
11458 case R_ARM_LDR_PC_G0:
11459 case R_ARM_LDR_PC_G1:
11460 case R_ARM_LDR_PC_G2:
11461 case R_ARM_LDR_SB_G0:
11462 case R_ARM_LDR_SB_G1:
11463 case R_ARM_LDR_SB_G2:
11464 {
11465 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11466 bfd_vma pc = input_section->output_section->vma
11467 + input_section->output_offset + rel->r_offset;
11468 /* sb is the origin of the *segment* containing the symbol. */
11469 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
11470 bfd_vma residual;
11471 bfd_signed_vma signed_value;
11472 int group = 0;
11473
11474 /* Determine which groups of bits to calculate. */
11475 switch (r_type)
11476 {
11477 case R_ARM_LDR_PC_G0:
11478 case R_ARM_LDR_SB_G0:
11479 group = 0;
11480 break;
11481
11482 case R_ARM_LDR_PC_G1:
11483 case R_ARM_LDR_SB_G1:
11484 group = 1;
11485 break;
11486
11487 case R_ARM_LDR_PC_G2:
11488 case R_ARM_LDR_SB_G2:
11489 group = 2;
11490 break;
11491
11492 default:
11493 abort ();
11494 }
11495
11496 /* If REL, extract the addend from the insn. If RELA, it will
11497 have already been fetched for us. */
11498 if (globals->use_rel)
11499 {
11500 int negative = (insn & (1 << 23)) ? 1 : -1;
11501 signed_addend = negative * (insn & 0xfff);
11502 }
11503
11504 /* Compute the value (X) to go in the place. */
11505 if (r_type == R_ARM_LDR_PC_G0
11506 || r_type == R_ARM_LDR_PC_G1
11507 || r_type == R_ARM_LDR_PC_G2)
11508 /* PC relative. */
11509 signed_value = value - pc + signed_addend;
11510 else
11511 /* Section base relative. */
11512 signed_value = value - sb + signed_addend;
11513
11514 /* Calculate the value of the relevant G_{n-1} to obtain
11515 the residual at that stage. */
11516 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
11517 group - 1, &residual);
11518
11519 /* Check for overflow. */
11520 if (residual >= 0x1000)
11521 {
11522 (*_bfd_error_handler)
11523 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
11524 input_bfd, input_section,
11525 (long) rel->r_offset, labs (signed_value), howto->name);
11526 return bfd_reloc_overflow;
11527 }
11528
11529 /* Mask out the value and U bit. */
11530 insn &= 0xff7ff000;
11531
11532 /* Set the U bit if the value to go in the place is non-negative. */
11533 if (signed_value >= 0)
11534 insn |= 1 << 23;
11535
11536 /* Encode the offset. */
11537 insn |= residual;
11538
11539 bfd_put_32 (input_bfd, insn, hit_data);
11540 }
11541 return bfd_reloc_ok;
11542
11543 case R_ARM_LDRS_PC_G0:
11544 case R_ARM_LDRS_PC_G1:
11545 case R_ARM_LDRS_PC_G2:
11546 case R_ARM_LDRS_SB_G0:
11547 case R_ARM_LDRS_SB_G1:
11548 case R_ARM_LDRS_SB_G2:
11549 {
11550 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11551 bfd_vma pc = input_section->output_section->vma
11552 + input_section->output_offset + rel->r_offset;
11553 /* sb is the origin of the *segment* containing the symbol. */
11554 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
11555 bfd_vma residual;
11556 bfd_signed_vma signed_value;
11557 int group = 0;
11558
11559 /* Determine which groups of bits to calculate. */
11560 switch (r_type)
11561 {
11562 case R_ARM_LDRS_PC_G0:
11563 case R_ARM_LDRS_SB_G0:
11564 group = 0;
11565 break;
11566
11567 case R_ARM_LDRS_PC_G1:
11568 case R_ARM_LDRS_SB_G1:
11569 group = 1;
11570 break;
11571
11572 case R_ARM_LDRS_PC_G2:
11573 case R_ARM_LDRS_SB_G2:
11574 group = 2;
11575 break;
11576
11577 default:
11578 abort ();
11579 }
11580
11581 /* If REL, extract the addend from the insn. If RELA, it will
11582 have already been fetched for us. */
11583 if (globals->use_rel)
11584 {
11585 int negative = (insn & (1 << 23)) ? 1 : -1;
11586 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
11587 }
11588
11589 /* Compute the value (X) to go in the place. */
11590 if (r_type == R_ARM_LDRS_PC_G0
11591 || r_type == R_ARM_LDRS_PC_G1
11592 || r_type == R_ARM_LDRS_PC_G2)
11593 /* PC relative. */
11594 signed_value = value - pc + signed_addend;
11595 else
11596 /* Section base relative. */
11597 signed_value = value - sb + signed_addend;
11598
11599 /* Calculate the value of the relevant G_{n-1} to obtain
11600 the residual at that stage. */
11601 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
11602 group - 1, &residual);
11603
11604 /* Check for overflow. */
11605 if (residual >= 0x100)
11606 {
11607 (*_bfd_error_handler)
11608 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
11609 input_bfd, input_section,
11610 (long) rel->r_offset, labs (signed_value), howto->name);
11611 return bfd_reloc_overflow;
11612 }
11613
11614 /* Mask out the value and U bit. */
11615 insn &= 0xff7ff0f0;
11616
11617 /* Set the U bit if the value to go in the place is non-negative. */
11618 if (signed_value >= 0)
11619 insn |= 1 << 23;
11620
11621 /* Encode the offset. */
11622 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
11623
11624 bfd_put_32 (input_bfd, insn, hit_data);
11625 }
11626 return bfd_reloc_ok;
11627
11628 case R_ARM_LDC_PC_G0:
11629 case R_ARM_LDC_PC_G1:
11630 case R_ARM_LDC_PC_G2:
11631 case R_ARM_LDC_SB_G0:
11632 case R_ARM_LDC_SB_G1:
11633 case R_ARM_LDC_SB_G2:
11634 {
11635 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11636 bfd_vma pc = input_section->output_section->vma
11637 + input_section->output_offset + rel->r_offset;
11638 /* sb is the origin of the *segment* containing the symbol. */
11639 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
11640 bfd_vma residual;
11641 bfd_signed_vma signed_value;
11642 int group = 0;
11643
11644 /* Determine which groups of bits to calculate. */
11645 switch (r_type)
11646 {
11647 case R_ARM_LDC_PC_G0:
11648 case R_ARM_LDC_SB_G0:
11649 group = 0;
11650 break;
11651
11652 case R_ARM_LDC_PC_G1:
11653 case R_ARM_LDC_SB_G1:
11654 group = 1;
11655 break;
11656
11657 case R_ARM_LDC_PC_G2:
11658 case R_ARM_LDC_SB_G2:
11659 group = 2;
11660 break;
11661
11662 default:
11663 abort ();
11664 }
11665
11666 /* If REL, extract the addend from the insn. If RELA, it will
11667 have already been fetched for us. */
11668 if (globals->use_rel)
11669 {
11670 int negative = (insn & (1 << 23)) ? 1 : -1;
11671 signed_addend = negative * ((insn & 0xff) << 2);
11672 }
11673
11674 /* Compute the value (X) to go in the place. */
11675 if (r_type == R_ARM_LDC_PC_G0
11676 || r_type == R_ARM_LDC_PC_G1
11677 || r_type == R_ARM_LDC_PC_G2)
11678 /* PC relative. */
11679 signed_value = value - pc + signed_addend;
11680 else
11681 /* Section base relative. */
11682 signed_value = value - sb + signed_addend;
11683
11684 /* Calculate the value of the relevant G_{n-1} to obtain
11685 the residual at that stage. */
11686 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
11687 group - 1, &residual);
11688
11689 /* Check for overflow. (The absolute value to go in the place must be
11690 divisible by four and, after having been divided by four, must
11691 fit in eight bits.) */
11692 if ((residual & 0x3) != 0 || residual >= 0x400)
11693 {
11694 (*_bfd_error_handler)
11695 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
11696 input_bfd, input_section,
11697 (long) rel->r_offset, labs (signed_value), howto->name);
11698 return bfd_reloc_overflow;
11699 }
11700
11701 /* Mask out the value and U bit. */
11702 insn &= 0xff7fff00;
11703
11704 /* Set the U bit if the value to go in the place is non-negative. */
11705 if (signed_value >= 0)
11706 insn |= 1 << 23;
11707
11708 /* Encode the offset. */
11709 insn |= residual >> 2;
11710
11711 bfd_put_32 (input_bfd, insn, hit_data);
11712 }
11713 return bfd_reloc_ok;
11714
11715 case R_ARM_THM_ALU_ABS_G0_NC:
11716 case R_ARM_THM_ALU_ABS_G1_NC:
11717 case R_ARM_THM_ALU_ABS_G2_NC:
11718 case R_ARM_THM_ALU_ABS_G3_NC:
11719 {
11720 const int shift_array[4] = {0, 8, 16, 24};
11721 bfd_vma insn = bfd_get_16 (input_bfd, hit_data);
11722 bfd_vma addr = value;
11723 int shift = shift_array[r_type - R_ARM_THM_ALU_ABS_G0_NC];
11724
11725 /* Compute address. */
11726 if (globals->use_rel)
11727 signed_addend = insn & 0xff;
11728 addr += signed_addend;
11729 if (branch_type == ST_BRANCH_TO_THUMB)
11730 addr |= 1;
11731 /* Clean imm8 insn. */
11732 insn &= 0xff00;
11733 /* And update with correct part of address. */
11734 insn |= (addr >> shift) & 0xff;
11735 /* Update insn. */
11736 bfd_put_16 (input_bfd, insn, hit_data);
11737 }
11738
11739 *unresolved_reloc_p = FALSE;
11740 return bfd_reloc_ok;
11741
11742 default:
11743 return bfd_reloc_notsupported;
11744 }
11745 }
11746
11747 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
11748 static void
11749 arm_add_to_rel (bfd * abfd,
11750 bfd_byte * address,
11751 reloc_howto_type * howto,
11752 bfd_signed_vma increment)
11753 {
11754 bfd_signed_vma addend;
11755
11756 if (howto->type == R_ARM_THM_CALL
11757 || howto->type == R_ARM_THM_JUMP24)
11758 {
11759 int upper_insn, lower_insn;
11760 int upper, lower;
11761
11762 upper_insn = bfd_get_16 (abfd, address);
11763 lower_insn = bfd_get_16 (abfd, address + 2);
11764 upper = upper_insn & 0x7ff;
11765 lower = lower_insn & 0x7ff;
11766
11767 addend = (upper << 12) | (lower << 1);
11768 addend += increment;
11769 addend >>= 1;
11770
11771 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
11772 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
11773
11774 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
11775 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
11776 }
11777 else
11778 {
11779 bfd_vma contents;
11780
11781 contents = bfd_get_32 (abfd, address);
11782
11783 /* Get the (signed) value from the instruction. */
11784 addend = contents & howto->src_mask;
11785 if (addend & ((howto->src_mask + 1) >> 1))
11786 {
11787 bfd_signed_vma mask;
11788
11789 mask = -1;
11790 mask &= ~ howto->src_mask;
11791 addend |= mask;
11792 }
11793
11794 /* Add in the increment, (which is a byte value). */
11795 switch (howto->type)
11796 {
11797 default:
11798 addend += increment;
11799 break;
11800
11801 case R_ARM_PC24:
11802 case R_ARM_PLT32:
11803 case R_ARM_CALL:
11804 case R_ARM_JUMP24:
11805 addend <<= howto->size;
11806 addend += increment;
11807
11808 /* Should we check for overflow here ? */
11809
11810 /* Drop any undesired bits. */
11811 addend >>= howto->rightshift;
11812 break;
11813 }
11814
11815 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
11816
11817 bfd_put_32 (abfd, contents, address);
11818 }
11819 }
11820
11821 #define IS_ARM_TLS_RELOC(R_TYPE) \
11822 ((R_TYPE) == R_ARM_TLS_GD32 \
11823 || (R_TYPE) == R_ARM_TLS_LDO32 \
11824 || (R_TYPE) == R_ARM_TLS_LDM32 \
11825 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
11826 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
11827 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
11828 || (R_TYPE) == R_ARM_TLS_LE32 \
11829 || (R_TYPE) == R_ARM_TLS_IE32 \
11830 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
11831
11832 /* Specific set of relocations for the gnu tls dialect. */
11833 #define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
11834 ((R_TYPE) == R_ARM_TLS_GOTDESC \
11835 || (R_TYPE) == R_ARM_TLS_CALL \
11836 || (R_TYPE) == R_ARM_THM_TLS_CALL \
11837 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
11838 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
11839
11840 /* Relocate an ARM ELF section. */
11841
11842 static bfd_boolean
11843 elf32_arm_relocate_section (bfd * output_bfd,
11844 struct bfd_link_info * info,
11845 bfd * input_bfd,
11846 asection * input_section,
11847 bfd_byte * contents,
11848 Elf_Internal_Rela * relocs,
11849 Elf_Internal_Sym * local_syms,
11850 asection ** local_sections)
11851 {
11852 Elf_Internal_Shdr *symtab_hdr;
11853 struct elf_link_hash_entry **sym_hashes;
11854 Elf_Internal_Rela *rel;
11855 Elf_Internal_Rela *relend;
11856 const char *name;
11857 struct elf32_arm_link_hash_table * globals;
11858
11859 globals = elf32_arm_hash_table (info);
11860 if (globals == NULL)
11861 return FALSE;
11862
11863 symtab_hdr = & elf_symtab_hdr (input_bfd);
11864 sym_hashes = elf_sym_hashes (input_bfd);
11865
11866 rel = relocs;
11867 relend = relocs + input_section->reloc_count;
11868 for (; rel < relend; rel++)
11869 {
11870 int r_type;
11871 reloc_howto_type * howto;
11872 unsigned long r_symndx;
11873 Elf_Internal_Sym * sym;
11874 asection * sec;
11875 struct elf_link_hash_entry * h;
11876 bfd_vma relocation;
11877 bfd_reloc_status_type r;
11878 arelent bfd_reloc;
11879 char sym_type;
11880 bfd_boolean unresolved_reloc = FALSE;
11881 char *error_message = NULL;
11882
11883 r_symndx = ELF32_R_SYM (rel->r_info);
11884 r_type = ELF32_R_TYPE (rel->r_info);
11885 r_type = arm_real_reloc_type (globals, r_type);
11886
11887 if ( r_type == R_ARM_GNU_VTENTRY
11888 || r_type == R_ARM_GNU_VTINHERIT)
11889 continue;
11890
11891 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
11892 howto = bfd_reloc.howto;
11893
11894 h = NULL;
11895 sym = NULL;
11896 sec = NULL;
11897
11898 if (r_symndx < symtab_hdr->sh_info)
11899 {
11900 sym = local_syms + r_symndx;
11901 sym_type = ELF32_ST_TYPE (sym->st_info);
11902 sec = local_sections[r_symndx];
11903
11904 /* An object file might have a reference to a local
11905 undefined symbol. This is a daft object file, but we
11906 should at least do something about it. V4BX & NONE
11907 relocations do not use the symbol and are explicitly
11908 allowed to use the undefined symbol, so allow those.
11909 Likewise for relocations against STN_UNDEF. */
11910 if (r_type != R_ARM_V4BX
11911 && r_type != R_ARM_NONE
11912 && r_symndx != STN_UNDEF
11913 && bfd_is_und_section (sec)
11914 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
11915 (*info->callbacks->undefined_symbol)
11916 (info, bfd_elf_string_from_elf_section
11917 (input_bfd, symtab_hdr->sh_link, sym->st_name),
11918 input_bfd, input_section,
11919 rel->r_offset, TRUE);
11920
11921 if (globals->use_rel)
11922 {
11923 relocation = (sec->output_section->vma
11924 + sec->output_offset
11925 + sym->st_value);
11926 if (!bfd_link_relocatable (info)
11927 && (sec->flags & SEC_MERGE)
11928 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
11929 {
11930 asection *msec;
11931 bfd_vma addend, value;
11932
11933 switch (r_type)
11934 {
11935 case R_ARM_MOVW_ABS_NC:
11936 case R_ARM_MOVT_ABS:
11937 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
11938 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
11939 addend = (addend ^ 0x8000) - 0x8000;
11940 break;
11941
11942 case R_ARM_THM_MOVW_ABS_NC:
11943 case R_ARM_THM_MOVT_ABS:
11944 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
11945 << 16;
11946 value |= bfd_get_16 (input_bfd,
11947 contents + rel->r_offset + 2);
11948 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
11949 | ((value & 0x04000000) >> 15);
11950 addend = (addend ^ 0x8000) - 0x8000;
11951 break;
11952
11953 default:
11954 if (howto->rightshift
11955 || (howto->src_mask & (howto->src_mask + 1)))
11956 {
11957 (*_bfd_error_handler)
11958 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
11959 input_bfd, input_section,
11960 (long) rel->r_offset, howto->name);
11961 return FALSE;
11962 }
11963
11964 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
11965
11966 /* Get the (signed) value from the instruction. */
11967 addend = value & howto->src_mask;
11968 if (addend & ((howto->src_mask + 1) >> 1))
11969 {
11970 bfd_signed_vma mask;
11971
11972 mask = -1;
11973 mask &= ~ howto->src_mask;
11974 addend |= mask;
11975 }
11976 break;
11977 }
11978
11979 msec = sec;
11980 addend =
11981 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
11982 - relocation;
11983 addend += msec->output_section->vma + msec->output_offset;
11984
11985 /* Cases here must match those in the preceding
11986 switch statement. */
11987 switch (r_type)
11988 {
11989 case R_ARM_MOVW_ABS_NC:
11990 case R_ARM_MOVT_ABS:
11991 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
11992 | (addend & 0xfff);
11993 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
11994 break;
11995
11996 case R_ARM_THM_MOVW_ABS_NC:
11997 case R_ARM_THM_MOVT_ABS:
11998 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
11999 | (addend & 0xff) | ((addend & 0x0800) << 15);
12000 bfd_put_16 (input_bfd, value >> 16,
12001 contents + rel->r_offset);
12002 bfd_put_16 (input_bfd, value,
12003 contents + rel->r_offset + 2);
12004 break;
12005
12006 default:
12007 value = (value & ~ howto->dst_mask)
12008 | (addend & howto->dst_mask);
12009 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
12010 break;
12011 }
12012 }
12013 }
12014 else
12015 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
12016 }
12017 else
12018 {
12019 bfd_boolean warned, ignored;
12020
12021 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
12022 r_symndx, symtab_hdr, sym_hashes,
12023 h, sec, relocation,
12024 unresolved_reloc, warned, ignored);
12025
12026 sym_type = h->type;
12027 }
12028
12029 if (sec != NULL && discarded_section (sec))
12030 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
12031 rel, 1, relend, howto, 0, contents);
12032
12033 if (bfd_link_relocatable (info))
12034 {
12035 /* This is a relocatable link. We don't have to change
12036 anything, unless the reloc is against a section symbol,
12037 in which case we have to adjust according to where the
12038 section symbol winds up in the output section. */
12039 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
12040 {
12041 if (globals->use_rel)
12042 arm_add_to_rel (input_bfd, contents + rel->r_offset,
12043 howto, (bfd_signed_vma) sec->output_offset);
12044 else
12045 rel->r_addend += sec->output_offset;
12046 }
12047 continue;
12048 }
12049
12050 if (h != NULL)
12051 name = h->root.root.string;
12052 else
12053 {
12054 name = (bfd_elf_string_from_elf_section
12055 (input_bfd, symtab_hdr->sh_link, sym->st_name));
12056 if (name == NULL || *name == '\0')
12057 name = bfd_section_name (input_bfd, sec);
12058 }
12059
12060 if (r_symndx != STN_UNDEF
12061 && r_type != R_ARM_NONE
12062 && (h == NULL
12063 || h->root.type == bfd_link_hash_defined
12064 || h->root.type == bfd_link_hash_defweak)
12065 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
12066 {
12067 (*_bfd_error_handler)
12068 ((sym_type == STT_TLS
12069 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
12070 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
12071 input_bfd,
12072 input_section,
12073 (long) rel->r_offset,
12074 howto->name,
12075 name);
12076 }
12077
12078 /* We call elf32_arm_final_link_relocate unless we're completely
12079 done, i.e., the relaxation produced the final output we want,
12080 and we won't let anybody mess with it. Also, we have to do
12081 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
12082 both in relaxed and non-relaxed cases. */
12083 if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
12084 || (IS_ARM_TLS_GNU_RELOC (r_type)
12085 && !((h ? elf32_arm_hash_entry (h)->tls_type :
12086 elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
12087 & GOT_TLS_GDESC)))
12088 {
12089 r = elf32_arm_tls_relax (globals, input_bfd, input_section,
12090 contents, rel, h == NULL);
12091 /* This may have been marked unresolved because it came from
12092 a shared library. But we've just dealt with that. */
12093 unresolved_reloc = 0;
12094 }
12095 else
12096 r = bfd_reloc_continue;
12097
12098 if (r == bfd_reloc_continue)
12099 {
12100 unsigned char branch_type =
12101 h ? ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
12102 : ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
12103
12104 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
12105 input_section, contents, rel,
12106 relocation, info, sec, name,
12107 sym_type, branch_type, h,
12108 &unresolved_reloc,
12109 &error_message);
12110 }
12111
12112 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
12113 because such sections are not SEC_ALLOC and thus ld.so will
12114 not process them. */
12115 if (unresolved_reloc
12116 && !((input_section->flags & SEC_DEBUGGING) != 0
12117 && h->def_dynamic)
12118 && _bfd_elf_section_offset (output_bfd, info, input_section,
12119 rel->r_offset) != (bfd_vma) -1)
12120 {
12121 (*_bfd_error_handler)
12122 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
12123 input_bfd,
12124 input_section,
12125 (long) rel->r_offset,
12126 howto->name,
12127 h->root.root.string);
12128 return FALSE;
12129 }
12130
12131 if (r != bfd_reloc_ok)
12132 {
12133 switch (r)
12134 {
12135 case bfd_reloc_overflow:
12136 /* If the overflowing reloc was to an undefined symbol,
12137 we have already printed one error message and there
12138 is no point complaining again. */
12139 if (!h || h->root.type != bfd_link_hash_undefined)
12140 (*info->callbacks->reloc_overflow)
12141 (info, (h ? &h->root : NULL), name, howto->name,
12142 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
12143 break;
12144
12145 case bfd_reloc_undefined:
12146 (*info->callbacks->undefined_symbol)
12147 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
12148 break;
12149
12150 case bfd_reloc_outofrange:
12151 error_message = _("out of range");
12152 goto common_error;
12153
12154 case bfd_reloc_notsupported:
12155 error_message = _("unsupported relocation");
12156 goto common_error;
12157
12158 case bfd_reloc_dangerous:
12159 /* error_message should already be set. */
12160 goto common_error;
12161
12162 default:
12163 error_message = _("unknown error");
12164 /* Fall through. */
12165
12166 common_error:
12167 BFD_ASSERT (error_message != NULL);
12168 (*info->callbacks->reloc_dangerous)
12169 (info, error_message, input_bfd, input_section, rel->r_offset);
12170 break;
12171 }
12172 }
12173 }
12174
12175 return TRUE;
12176 }
12177
12178 /* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
12179 adds the edit to the start of the list. (The list must be built in order of
12180 ascending TINDEX: the function's callers are primarily responsible for
12181 maintaining that condition). */
12182
12183 static void
12184 add_unwind_table_edit (arm_unwind_table_edit **head,
12185 arm_unwind_table_edit **tail,
12186 arm_unwind_edit_type type,
12187 asection *linked_section,
12188 unsigned int tindex)
12189 {
12190 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
12191 xmalloc (sizeof (arm_unwind_table_edit));
12192
12193 new_edit->type = type;
12194 new_edit->linked_section = linked_section;
12195 new_edit->index = tindex;
12196
12197 if (tindex > 0)
12198 {
12199 new_edit->next = NULL;
12200
12201 if (*tail)
12202 (*tail)->next = new_edit;
12203
12204 (*tail) = new_edit;
12205
12206 if (!*head)
12207 (*head) = new_edit;
12208 }
12209 else
12210 {
12211 new_edit->next = *head;
12212
12213 if (!*tail)
12214 *tail = new_edit;
12215
12216 *head = new_edit;
12217 }
12218 }
12219
12220 static _arm_elf_section_data *get_arm_elf_section_data (asection *);
12221
12222 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
12223 static void
12224 adjust_exidx_size(asection *exidx_sec, int adjust)
12225 {
12226 asection *out_sec;
12227
12228 if (!exidx_sec->rawsize)
12229 exidx_sec->rawsize = exidx_sec->size;
12230
12231 bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
12232 out_sec = exidx_sec->output_section;
12233 /* Adjust size of output section. */
12234 bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
12235 }
12236
12237 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
12238 static void
12239 insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
12240 {
12241 struct _arm_elf_section_data *exidx_arm_data;
12242
12243 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
12244 add_unwind_table_edit (
12245 &exidx_arm_data->u.exidx.unwind_edit_list,
12246 &exidx_arm_data->u.exidx.unwind_edit_tail,
12247 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
12248
12249 exidx_arm_data->additional_reloc_count++;
12250
12251 adjust_exidx_size(exidx_sec, 8);
12252 }
12253
12254 /* Scan .ARM.exidx tables, and create a list describing edits which should be
12255 made to those tables, such that:
12256
12257 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
12258 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
12259 codes which have been inlined into the index).
12260
12261 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
12262
12263 The edits are applied when the tables are written
12264 (in elf32_arm_write_section). */
12265
12266 bfd_boolean
12267 elf32_arm_fix_exidx_coverage (asection **text_section_order,
12268 unsigned int num_text_sections,
12269 struct bfd_link_info *info,
12270 bfd_boolean merge_exidx_entries)
12271 {
12272 bfd *inp;
12273 unsigned int last_second_word = 0, i;
12274 asection *last_exidx_sec = NULL;
12275 asection *last_text_sec = NULL;
12276 int last_unwind_type = -1;
12277
12278 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
12279 text sections. */
12280 for (inp = info->input_bfds; inp != NULL; inp = inp->link.next)
12281 {
12282 asection *sec;
12283
12284 for (sec = inp->sections; sec != NULL; sec = sec->next)
12285 {
12286 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
12287 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
12288
12289 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
12290 continue;
12291
12292 if (elf_sec->linked_to)
12293 {
12294 Elf_Internal_Shdr *linked_hdr
12295 = &elf_section_data (elf_sec->linked_to)->this_hdr;
12296 struct _arm_elf_section_data *linked_sec_arm_data
12297 = get_arm_elf_section_data (linked_hdr->bfd_section);
12298
12299 if (linked_sec_arm_data == NULL)
12300 continue;
12301
12302 /* Link this .ARM.exidx section back from the text section it
12303 describes. */
12304 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
12305 }
12306 }
12307 }
12308
12309 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
12310 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
12311 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
12312
12313 for (i = 0; i < num_text_sections; i++)
12314 {
12315 asection *sec = text_section_order[i];
12316 asection *exidx_sec;
12317 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
12318 struct _arm_elf_section_data *exidx_arm_data;
12319 bfd_byte *contents = NULL;
12320 int deleted_exidx_bytes = 0;
12321 bfd_vma j;
12322 arm_unwind_table_edit *unwind_edit_head = NULL;
12323 arm_unwind_table_edit *unwind_edit_tail = NULL;
12324 Elf_Internal_Shdr *hdr;
12325 bfd *ibfd;
12326
12327 if (arm_data == NULL)
12328 continue;
12329
12330 exidx_sec = arm_data->u.text.arm_exidx_sec;
12331 if (exidx_sec == NULL)
12332 {
12333 /* Section has no unwind data. */
12334 if (last_unwind_type == 0 || !last_exidx_sec)
12335 continue;
12336
12337 /* Ignore zero sized sections. */
12338 if (sec->size == 0)
12339 continue;
12340
12341 insert_cantunwind_after(last_text_sec, last_exidx_sec);
12342 last_unwind_type = 0;
12343 continue;
12344 }
12345
12346 /* Skip /DISCARD/ sections. */
12347 if (bfd_is_abs_section (exidx_sec->output_section))
12348 continue;
12349
12350 hdr = &elf_section_data (exidx_sec)->this_hdr;
12351 if (hdr->sh_type != SHT_ARM_EXIDX)
12352 continue;
12353
12354 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
12355 if (exidx_arm_data == NULL)
12356 continue;
12357
12358 ibfd = exidx_sec->owner;
12359
12360 if (hdr->contents != NULL)
12361 contents = hdr->contents;
12362 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
12363 /* An error? */
12364 continue;
12365
12366 if (last_unwind_type > 0)
12367 {
12368 unsigned int first_word = bfd_get_32 (ibfd, contents);
12369 /* Add cantunwind if first unwind item does not match section
12370 start. */
12371 if (first_word != sec->vma)
12372 {
12373 insert_cantunwind_after (last_text_sec, last_exidx_sec);
12374 last_unwind_type = 0;
12375 }
12376 }
12377
12378 for (j = 0; j < hdr->sh_size; j += 8)
12379 {
12380 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
12381 int unwind_type;
12382 int elide = 0;
12383
12384 /* An EXIDX_CANTUNWIND entry. */
12385 if (second_word == 1)
12386 {
12387 if (last_unwind_type == 0)
12388 elide = 1;
12389 unwind_type = 0;
12390 }
12391 /* Inlined unwinding data. Merge if equal to previous. */
12392 else if ((second_word & 0x80000000) != 0)
12393 {
12394 if (merge_exidx_entries
12395 && last_second_word == second_word && last_unwind_type == 1)
12396 elide = 1;
12397 unwind_type = 1;
12398 last_second_word = second_word;
12399 }
12400 /* Normal table entry. In theory we could merge these too,
12401 but duplicate entries are likely to be much less common. */
12402 else
12403 unwind_type = 2;
12404
12405 if (elide && !bfd_link_relocatable (info))
12406 {
12407 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
12408 DELETE_EXIDX_ENTRY, NULL, j / 8);
12409
12410 deleted_exidx_bytes += 8;
12411 }
12412
12413 last_unwind_type = unwind_type;
12414 }
12415
12416 /* Free contents if we allocated it ourselves. */
12417 if (contents != hdr->contents)
12418 free (contents);
12419
12420 /* Record edits to be applied later (in elf32_arm_write_section). */
12421 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
12422 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
12423
12424 if (deleted_exidx_bytes > 0)
12425 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
12426
12427 last_exidx_sec = exidx_sec;
12428 last_text_sec = sec;
12429 }
12430
12431 /* Add terminating CANTUNWIND entry. */
12432 if (!bfd_link_relocatable (info) && last_exidx_sec
12433 && last_unwind_type != 0)
12434 insert_cantunwind_after(last_text_sec, last_exidx_sec);
12435
12436 return TRUE;
12437 }
12438
12439 static bfd_boolean
12440 elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
12441 bfd *ibfd, const char *name)
12442 {
12443 asection *sec, *osec;
12444
12445 sec = bfd_get_linker_section (ibfd, name);
12446 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
12447 return TRUE;
12448
12449 osec = sec->output_section;
12450 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
12451 return TRUE;
12452
12453 if (! bfd_set_section_contents (obfd, osec, sec->contents,
12454 sec->output_offset, sec->size))
12455 return FALSE;
12456
12457 return TRUE;
12458 }
12459
12460 static bfd_boolean
12461 elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
12462 {
12463 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
12464 asection *sec, *osec;
12465
12466 if (globals == NULL)
12467 return FALSE;
12468
12469 /* Invoke the regular ELF backend linker to do all the work. */
12470 if (!bfd_elf_final_link (abfd, info))
12471 return FALSE;
12472
12473 /* Process stub sections (eg BE8 encoding, ...). */
12474 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
12475 unsigned int i;
12476 for (i=0; i<htab->top_id; i++)
12477 {
12478 sec = htab->stub_group[i].stub_sec;
12479 /* Only process it once, in its link_sec slot. */
12480 if (sec && i == htab->stub_group[i].link_sec->id)
12481 {
12482 osec = sec->output_section;
12483 elf32_arm_write_section (abfd, info, sec, sec->contents);
12484 if (! bfd_set_section_contents (abfd, osec, sec->contents,
12485 sec->output_offset, sec->size))
12486 return FALSE;
12487 }
12488 }
12489
12490 /* Write out any glue sections now that we have created all the
12491 stubs. */
12492 if (globals->bfd_of_glue_owner != NULL)
12493 {
12494 if (! elf32_arm_output_glue_section (info, abfd,
12495 globals->bfd_of_glue_owner,
12496 ARM2THUMB_GLUE_SECTION_NAME))
12497 return FALSE;
12498
12499 if (! elf32_arm_output_glue_section (info, abfd,
12500 globals->bfd_of_glue_owner,
12501 THUMB2ARM_GLUE_SECTION_NAME))
12502 return FALSE;
12503
12504 if (! elf32_arm_output_glue_section (info, abfd,
12505 globals->bfd_of_glue_owner,
12506 VFP11_ERRATUM_VENEER_SECTION_NAME))
12507 return FALSE;
12508
12509 if (! elf32_arm_output_glue_section (info, abfd,
12510 globals->bfd_of_glue_owner,
12511 STM32L4XX_ERRATUM_VENEER_SECTION_NAME))
12512 return FALSE;
12513
12514 if (! elf32_arm_output_glue_section (info, abfd,
12515 globals->bfd_of_glue_owner,
12516 ARM_BX_GLUE_SECTION_NAME))
12517 return FALSE;
12518 }
12519
12520 return TRUE;
12521 }
12522
12523 /* Return a best guess for the machine number based on the attributes. */
12524
12525 static unsigned int
12526 bfd_arm_get_mach_from_attributes (bfd * abfd)
12527 {
12528 int arch = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_CPU_arch);
12529
12530 switch (arch)
12531 {
12532 case TAG_CPU_ARCH_V4: return bfd_mach_arm_4;
12533 case TAG_CPU_ARCH_V4T: return bfd_mach_arm_4T;
12534 case TAG_CPU_ARCH_V5T: return bfd_mach_arm_5T;
12535
12536 case TAG_CPU_ARCH_V5TE:
12537 {
12538 char * name;
12539
12540 BFD_ASSERT (Tag_CPU_name < NUM_KNOWN_OBJ_ATTRIBUTES);
12541 name = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_CPU_name].s;
12542
12543 if (name)
12544 {
12545 if (strcmp (name, "IWMMXT2") == 0)
12546 return bfd_mach_arm_iWMMXt2;
12547
12548 if (strcmp (name, "IWMMXT") == 0)
12549 return bfd_mach_arm_iWMMXt;
12550
12551 if (strcmp (name, "XSCALE") == 0)
12552 {
12553 int wmmx;
12554
12555 BFD_ASSERT (Tag_WMMX_arch < NUM_KNOWN_OBJ_ATTRIBUTES);
12556 wmmx = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_WMMX_arch].i;
12557 switch (wmmx)
12558 {
12559 case 1: return bfd_mach_arm_iWMMXt;
12560 case 2: return bfd_mach_arm_iWMMXt2;
12561 default: return bfd_mach_arm_XScale;
12562 }
12563 }
12564 }
12565
12566 return bfd_mach_arm_5TE;
12567 }
12568
12569 default:
12570 return bfd_mach_arm_unknown;
12571 }
12572 }
12573
12574 /* Set the right machine number. */
12575
12576 static bfd_boolean
12577 elf32_arm_object_p (bfd *abfd)
12578 {
12579 unsigned int mach;
12580
12581 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
12582
12583 if (mach == bfd_mach_arm_unknown)
12584 {
12585 if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
12586 mach = bfd_mach_arm_ep9312;
12587 else
12588 mach = bfd_arm_get_mach_from_attributes (abfd);
12589 }
12590
12591 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
12592 return TRUE;
12593 }
12594
12595 /* Function to keep ARM specific flags in the ELF header. */
12596
12597 static bfd_boolean
12598 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
12599 {
12600 if (elf_flags_init (abfd)
12601 && elf_elfheader (abfd)->e_flags != flags)
12602 {
12603 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
12604 {
12605 if (flags & EF_ARM_INTERWORK)
12606 (*_bfd_error_handler)
12607 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
12608 abfd);
12609 else
12610 _bfd_error_handler
12611 (_("Warning: Clearing the interworking flag of %B due to outside request"),
12612 abfd);
12613 }
12614 }
12615 else
12616 {
12617 elf_elfheader (abfd)->e_flags = flags;
12618 elf_flags_init (abfd) = TRUE;
12619 }
12620
12621 return TRUE;
12622 }
12623
12624 /* Copy backend specific data from one object module to another. */
12625
12626 static bfd_boolean
12627 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
12628 {
12629 flagword in_flags;
12630 flagword out_flags;
12631
12632 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
12633 return TRUE;
12634
12635 in_flags = elf_elfheader (ibfd)->e_flags;
12636 out_flags = elf_elfheader (obfd)->e_flags;
12637
12638 if (elf_flags_init (obfd)
12639 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
12640 && in_flags != out_flags)
12641 {
12642 /* Cannot mix APCS26 and APCS32 code. */
12643 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
12644 return FALSE;
12645
12646 /* Cannot mix float APCS and non-float APCS code. */
12647 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
12648 return FALSE;
12649
12650 /* If the src and dest have different interworking flags
12651 then turn off the interworking bit. */
12652 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
12653 {
12654 if (out_flags & EF_ARM_INTERWORK)
12655 _bfd_error_handler
12656 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
12657 obfd, ibfd);
12658
12659 in_flags &= ~EF_ARM_INTERWORK;
12660 }
12661
12662 /* Likewise for PIC, though don't warn for this case. */
12663 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
12664 in_flags &= ~EF_ARM_PIC;
12665 }
12666
12667 elf_elfheader (obfd)->e_flags = in_flags;
12668 elf_flags_init (obfd) = TRUE;
12669
12670 return _bfd_elf_copy_private_bfd_data (ibfd, obfd);
12671 }
12672
12673 /* Values for Tag_ABI_PCS_R9_use. */
12674 enum
12675 {
12676 AEABI_R9_V6,
12677 AEABI_R9_SB,
12678 AEABI_R9_TLS,
12679 AEABI_R9_unused
12680 };
12681
12682 /* Values for Tag_ABI_PCS_RW_data. */
12683 enum
12684 {
12685 AEABI_PCS_RW_data_absolute,
12686 AEABI_PCS_RW_data_PCrel,
12687 AEABI_PCS_RW_data_SBrel,
12688 AEABI_PCS_RW_data_unused
12689 };
12690
12691 /* Values for Tag_ABI_enum_size. */
12692 enum
12693 {
12694 AEABI_enum_unused,
12695 AEABI_enum_short,
12696 AEABI_enum_wide,
12697 AEABI_enum_forced_wide
12698 };
12699
12700 /* Determine whether an object attribute tag takes an integer, a
12701 string or both. */
12702
12703 static int
12704 elf32_arm_obj_attrs_arg_type (int tag)
12705 {
12706 if (tag == Tag_compatibility)
12707 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
12708 else if (tag == Tag_nodefaults)
12709 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
12710 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
12711 return ATTR_TYPE_FLAG_STR_VAL;
12712 else if (tag < 32)
12713 return ATTR_TYPE_FLAG_INT_VAL;
12714 else
12715 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
12716 }
12717
12718 /* The ABI defines that Tag_conformance should be emitted first, and that
12719 Tag_nodefaults should be second (if either is defined). This sets those
12720 two positions, and bumps up the position of all the remaining tags to
12721 compensate. */
12722 static int
12723 elf32_arm_obj_attrs_order (int num)
12724 {
12725 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
12726 return Tag_conformance;
12727 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
12728 return Tag_nodefaults;
12729 if ((num - 2) < Tag_nodefaults)
12730 return num - 2;
12731 if ((num - 1) < Tag_conformance)
12732 return num - 1;
12733 return num;
12734 }
12735
12736 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
12737 static bfd_boolean
12738 elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
12739 {
12740 if ((tag & 127) < 64)
12741 {
12742 _bfd_error_handler
12743 (_("%B: Unknown mandatory EABI object attribute %d"),
12744 abfd, tag);
12745 bfd_set_error (bfd_error_bad_value);
12746 return FALSE;
12747 }
12748 else
12749 {
12750 _bfd_error_handler
12751 (_("Warning: %B: Unknown EABI object attribute %d"),
12752 abfd, tag);
12753 return TRUE;
12754 }
12755 }
12756
12757 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
12758 Returns -1 if no architecture could be read. */
12759
12760 static int
12761 get_secondary_compatible_arch (bfd *abfd)
12762 {
12763 obj_attribute *attr =
12764 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
12765
12766 /* Note: the tag and its argument below are uleb128 values, though
12767 currently-defined values fit in one byte for each. */
12768 if (attr->s
12769 && attr->s[0] == Tag_CPU_arch
12770 && (attr->s[1] & 128) != 128
12771 && attr->s[2] == 0)
12772 return attr->s[1];
12773
12774 /* This tag is "safely ignorable", so don't complain if it looks funny. */
12775 return -1;
12776 }
12777
12778 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
12779 The tag is removed if ARCH is -1. */
12780
12781 static void
12782 set_secondary_compatible_arch (bfd *abfd, int arch)
12783 {
12784 obj_attribute *attr =
12785 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
12786
12787 if (arch == -1)
12788 {
12789 attr->s = NULL;
12790 return;
12791 }
12792
12793 /* Note: the tag and its argument below are uleb128 values, though
12794 currently-defined values fit in one byte for each. */
12795 if (!attr->s)
12796 attr->s = (char *) bfd_alloc (abfd, 3);
12797 attr->s[0] = Tag_CPU_arch;
12798 attr->s[1] = arch;
12799 attr->s[2] = '\0';
12800 }
12801
12802 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
12803 into account. */
12804
12805 static int
12806 tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
12807 int newtag, int secondary_compat)
12808 {
12809 #define T(X) TAG_CPU_ARCH_##X
12810 int tagl, tagh, result;
12811 const int v6t2[] =
12812 {
12813 T(V6T2), /* PRE_V4. */
12814 T(V6T2), /* V4. */
12815 T(V6T2), /* V4T. */
12816 T(V6T2), /* V5T. */
12817 T(V6T2), /* V5TE. */
12818 T(V6T2), /* V5TEJ. */
12819 T(V6T2), /* V6. */
12820 T(V7), /* V6KZ. */
12821 T(V6T2) /* V6T2. */
12822 };
12823 const int v6k[] =
12824 {
12825 T(V6K), /* PRE_V4. */
12826 T(V6K), /* V4. */
12827 T(V6K), /* V4T. */
12828 T(V6K), /* V5T. */
12829 T(V6K), /* V5TE. */
12830 T(V6K), /* V5TEJ. */
12831 T(V6K), /* V6. */
12832 T(V6KZ), /* V6KZ. */
12833 T(V7), /* V6T2. */
12834 T(V6K) /* V6K. */
12835 };
12836 const int v7[] =
12837 {
12838 T(V7), /* PRE_V4. */
12839 T(V7), /* V4. */
12840 T(V7), /* V4T. */
12841 T(V7), /* V5T. */
12842 T(V7), /* V5TE. */
12843 T(V7), /* V5TEJ. */
12844 T(V7), /* V6. */
12845 T(V7), /* V6KZ. */
12846 T(V7), /* V6T2. */
12847 T(V7), /* V6K. */
12848 T(V7) /* V7. */
12849 };
12850 const int v6_m[] =
12851 {
12852 -1, /* PRE_V4. */
12853 -1, /* V4. */
12854 T(V6K), /* V4T. */
12855 T(V6K), /* V5T. */
12856 T(V6K), /* V5TE. */
12857 T(V6K), /* V5TEJ. */
12858 T(V6K), /* V6. */
12859 T(V6KZ), /* V6KZ. */
12860 T(V7), /* V6T2. */
12861 T(V6K), /* V6K. */
12862 T(V7), /* V7. */
12863 T(V6_M) /* V6_M. */
12864 };
12865 const int v6s_m[] =
12866 {
12867 -1, /* PRE_V4. */
12868 -1, /* V4. */
12869 T(V6K), /* V4T. */
12870 T(V6K), /* V5T. */
12871 T(V6K), /* V5TE. */
12872 T(V6K), /* V5TEJ. */
12873 T(V6K), /* V6. */
12874 T(V6KZ), /* V6KZ. */
12875 T(V7), /* V6T2. */
12876 T(V6K), /* V6K. */
12877 T(V7), /* V7. */
12878 T(V6S_M), /* V6_M. */
12879 T(V6S_M) /* V6S_M. */
12880 };
12881 const int v7e_m[] =
12882 {
12883 -1, /* PRE_V4. */
12884 -1, /* V4. */
12885 T(V7E_M), /* V4T. */
12886 T(V7E_M), /* V5T. */
12887 T(V7E_M), /* V5TE. */
12888 T(V7E_M), /* V5TEJ. */
12889 T(V7E_M), /* V6. */
12890 T(V7E_M), /* V6KZ. */
12891 T(V7E_M), /* V6T2. */
12892 T(V7E_M), /* V6K. */
12893 T(V7E_M), /* V7. */
12894 T(V7E_M), /* V6_M. */
12895 T(V7E_M), /* V6S_M. */
12896 T(V7E_M) /* V7E_M. */
12897 };
12898 const int v8[] =
12899 {
12900 T(V8), /* PRE_V4. */
12901 T(V8), /* V4. */
12902 T(V8), /* V4T. */
12903 T(V8), /* V5T. */
12904 T(V8), /* V5TE. */
12905 T(V8), /* V5TEJ. */
12906 T(V8), /* V6. */
12907 T(V8), /* V6KZ. */
12908 T(V8), /* V6T2. */
12909 T(V8), /* V6K. */
12910 T(V8), /* V7. */
12911 T(V8), /* V6_M. */
12912 T(V8), /* V6S_M. */
12913 T(V8), /* V7E_M. */
12914 T(V8) /* V8. */
12915 };
12916 const int v8m_baseline[] =
12917 {
12918 -1, /* PRE_V4. */
12919 -1, /* V4. */
12920 -1, /* V4T. */
12921 -1, /* V5T. */
12922 -1, /* V5TE. */
12923 -1, /* V5TEJ. */
12924 -1, /* V6. */
12925 -1, /* V6KZ. */
12926 -1, /* V6T2. */
12927 -1, /* V6K. */
12928 -1, /* V7. */
12929 T(V8M_BASE), /* V6_M. */
12930 T(V8M_BASE), /* V6S_M. */
12931 -1, /* V7E_M. */
12932 -1, /* V8. */
12933 -1,
12934 T(V8M_BASE) /* V8-M BASELINE. */
12935 };
12936 const int v8m_mainline[] =
12937 {
12938 -1, /* PRE_V4. */
12939 -1, /* V4. */
12940 -1, /* V4T. */
12941 -1, /* V5T. */
12942 -1, /* V5TE. */
12943 -1, /* V5TEJ. */
12944 -1, /* V6. */
12945 -1, /* V6KZ. */
12946 -1, /* V6T2. */
12947 -1, /* V6K. */
12948 T(V8M_MAIN), /* V7. */
12949 T(V8M_MAIN), /* V6_M. */
12950 T(V8M_MAIN), /* V6S_M. */
12951 T(V8M_MAIN), /* V7E_M. */
12952 -1, /* V8. */
12953 -1,
12954 T(V8M_MAIN), /* V8-M BASELINE. */
12955 T(V8M_MAIN) /* V8-M MAINLINE. */
12956 };
12957 const int v4t_plus_v6_m[] =
12958 {
12959 -1, /* PRE_V4. */
12960 -1, /* V4. */
12961 T(V4T), /* V4T. */
12962 T(V5T), /* V5T. */
12963 T(V5TE), /* V5TE. */
12964 T(V5TEJ), /* V5TEJ. */
12965 T(V6), /* V6. */
12966 T(V6KZ), /* V6KZ. */
12967 T(V6T2), /* V6T2. */
12968 T(V6K), /* V6K. */
12969 T(V7), /* V7. */
12970 T(V6_M), /* V6_M. */
12971 T(V6S_M), /* V6S_M. */
12972 T(V7E_M), /* V7E_M. */
12973 T(V8), /* V8. */
12974 -1, /* Unused. */
12975 T(V8M_BASE), /* V8-M BASELINE. */
12976 T(V8M_MAIN), /* V8-M MAINLINE. */
12977 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
12978 };
12979 const int *comb[] =
12980 {
12981 v6t2,
12982 v6k,
12983 v7,
12984 v6_m,
12985 v6s_m,
12986 v7e_m,
12987 v8,
12988 NULL,
12989 v8m_baseline,
12990 v8m_mainline,
12991 /* Pseudo-architecture. */
12992 v4t_plus_v6_m
12993 };
12994
12995 /* Check we've not got a higher architecture than we know about. */
12996
12997 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
12998 {
12999 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
13000 return -1;
13001 }
13002
13003 /* Override old tag if we have a Tag_also_compatible_with on the output. */
13004
13005 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
13006 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
13007 oldtag = T(V4T_PLUS_V6_M);
13008
13009 /* And override the new tag if we have a Tag_also_compatible_with on the
13010 input. */
13011
13012 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
13013 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
13014 newtag = T(V4T_PLUS_V6_M);
13015
13016 tagl = (oldtag < newtag) ? oldtag : newtag;
13017 result = tagh = (oldtag > newtag) ? oldtag : newtag;
13018
13019 /* Architectures before V6KZ add features monotonically. */
13020 if (tagh <= TAG_CPU_ARCH_V6KZ)
13021 return result;
13022
13023 result = comb[tagh - T(V6T2)] ? comb[tagh - T(V6T2)][tagl] : -1;
13024
13025 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
13026 as the canonical version. */
13027 if (result == T(V4T_PLUS_V6_M))
13028 {
13029 result = T(V4T);
13030 *secondary_compat_out = T(V6_M);
13031 }
13032 else
13033 *secondary_compat_out = -1;
13034
13035 if (result == -1)
13036 {
13037 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
13038 ibfd, oldtag, newtag);
13039 return -1;
13040 }
13041
13042 return result;
13043 #undef T
13044 }
13045
13046 /* Query attributes object to see if integer divide instructions may be
13047 present in an object. */
13048 static bfd_boolean
13049 elf32_arm_attributes_accept_div (const obj_attribute *attr)
13050 {
13051 int arch = attr[Tag_CPU_arch].i;
13052 int profile = attr[Tag_CPU_arch_profile].i;
13053
13054 switch (attr[Tag_DIV_use].i)
13055 {
13056 case 0:
13057 /* Integer divide allowed if instruction contained in archetecture. */
13058 if (arch == TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
13059 return TRUE;
13060 else if (arch >= TAG_CPU_ARCH_V7E_M)
13061 return TRUE;
13062 else
13063 return FALSE;
13064
13065 case 1:
13066 /* Integer divide explicitly prohibited. */
13067 return FALSE;
13068
13069 default:
13070 /* Unrecognised case - treat as allowing divide everywhere. */
13071 case 2:
13072 /* Integer divide allowed in ARM state. */
13073 return TRUE;
13074 }
13075 }
13076
13077 /* Query attributes object to see if integer divide instructions are
13078 forbidden to be in the object. This is not the inverse of
13079 elf32_arm_attributes_accept_div. */
13080 static bfd_boolean
13081 elf32_arm_attributes_forbid_div (const obj_attribute *attr)
13082 {
13083 return attr[Tag_DIV_use].i == 1;
13084 }
13085
13086 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
13087 are conflicting attributes. */
13088
13089 static bfd_boolean
13090 elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
13091 {
13092 obj_attribute *in_attr;
13093 obj_attribute *out_attr;
13094 /* Some tags have 0 = don't care, 1 = strong requirement,
13095 2 = weak requirement. */
13096 static const int order_021[3] = {0, 2, 1};
13097 int i;
13098 bfd_boolean result = TRUE;
13099 const char *sec_name = get_elf_backend_data (ibfd)->obj_attrs_section;
13100
13101 /* Skip the linker stubs file. This preserves previous behavior
13102 of accepting unknown attributes in the first input file - but
13103 is that a bug? */
13104 if (ibfd->flags & BFD_LINKER_CREATED)
13105 return TRUE;
13106
13107 /* Skip any input that hasn't attribute section.
13108 This enables to link object files without attribute section with
13109 any others. */
13110 if (bfd_get_section_by_name (ibfd, sec_name) == NULL)
13111 return TRUE;
13112
13113 if (!elf_known_obj_attributes_proc (obfd)[0].i)
13114 {
13115 /* This is the first object. Copy the attributes. */
13116 _bfd_elf_copy_obj_attributes (ibfd, obfd);
13117
13118 out_attr = elf_known_obj_attributes_proc (obfd);
13119
13120 /* Use the Tag_null value to indicate the attributes have been
13121 initialized. */
13122 out_attr[0].i = 1;
13123
13124 /* We do not output objects with Tag_MPextension_use_legacy - we move
13125 the attribute's value to Tag_MPextension_use. */
13126 if (out_attr[Tag_MPextension_use_legacy].i != 0)
13127 {
13128 if (out_attr[Tag_MPextension_use].i != 0
13129 && out_attr[Tag_MPextension_use_legacy].i
13130 != out_attr[Tag_MPextension_use].i)
13131 {
13132 _bfd_error_handler
13133 (_("Error: %B has both the current and legacy "
13134 "Tag_MPextension_use attributes"), ibfd);
13135 result = FALSE;
13136 }
13137
13138 out_attr[Tag_MPextension_use] =
13139 out_attr[Tag_MPextension_use_legacy];
13140 out_attr[Tag_MPextension_use_legacy].type = 0;
13141 out_attr[Tag_MPextension_use_legacy].i = 0;
13142 }
13143
13144 return result;
13145 }
13146
13147 in_attr = elf_known_obj_attributes_proc (ibfd);
13148 out_attr = elf_known_obj_attributes_proc (obfd);
13149 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
13150 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
13151 {
13152 /* Ignore mismatches if the object doesn't use floating point or is
13153 floating point ABI independent. */
13154 if (out_attr[Tag_ABI_FP_number_model].i == AEABI_FP_number_model_none
13155 || (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
13156 && out_attr[Tag_ABI_VFP_args].i == AEABI_VFP_args_compatible))
13157 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
13158 else if (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
13159 && in_attr[Tag_ABI_VFP_args].i != AEABI_VFP_args_compatible)
13160 {
13161 _bfd_error_handler
13162 (_("error: %B uses VFP register arguments, %B does not"),
13163 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
13164 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
13165 result = FALSE;
13166 }
13167 }
13168
13169 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
13170 {
13171 /* Merge this attribute with existing attributes. */
13172 switch (i)
13173 {
13174 case Tag_CPU_raw_name:
13175 case Tag_CPU_name:
13176 /* These are merged after Tag_CPU_arch. */
13177 break;
13178
13179 case Tag_ABI_optimization_goals:
13180 case Tag_ABI_FP_optimization_goals:
13181 /* Use the first value seen. */
13182 break;
13183
13184 case Tag_CPU_arch:
13185 {
13186 int secondary_compat = -1, secondary_compat_out = -1;
13187 unsigned int saved_out_attr = out_attr[i].i;
13188 int arch_attr;
13189 static const char *name_table[] =
13190 {
13191 /* These aren't real CPU names, but we can't guess
13192 that from the architecture version alone. */
13193 "Pre v4",
13194 "ARM v4",
13195 "ARM v4T",
13196 "ARM v5T",
13197 "ARM v5TE",
13198 "ARM v5TEJ",
13199 "ARM v6",
13200 "ARM v6KZ",
13201 "ARM v6T2",
13202 "ARM v6K",
13203 "ARM v7",
13204 "ARM v6-M",
13205 "ARM v6S-M",
13206 "ARM v8",
13207 "",
13208 "ARM v8-M.baseline",
13209 "ARM v8-M.mainline",
13210 };
13211
13212 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
13213 secondary_compat = get_secondary_compatible_arch (ibfd);
13214 secondary_compat_out = get_secondary_compatible_arch (obfd);
13215 arch_attr = tag_cpu_arch_combine (ibfd, out_attr[i].i,
13216 &secondary_compat_out,
13217 in_attr[i].i,
13218 secondary_compat);
13219
13220 /* Return with error if failed to merge. */
13221 if (arch_attr == -1)
13222 return FALSE;
13223
13224 out_attr[i].i = arch_attr;
13225
13226 set_secondary_compatible_arch (obfd, secondary_compat_out);
13227
13228 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
13229 if (out_attr[i].i == saved_out_attr)
13230 ; /* Leave the names alone. */
13231 else if (out_attr[i].i == in_attr[i].i)
13232 {
13233 /* The output architecture has been changed to match the
13234 input architecture. Use the input names. */
13235 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
13236 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
13237 : NULL;
13238 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
13239 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
13240 : NULL;
13241 }
13242 else
13243 {
13244 out_attr[Tag_CPU_name].s = NULL;
13245 out_attr[Tag_CPU_raw_name].s = NULL;
13246 }
13247
13248 /* If we still don't have a value for Tag_CPU_name,
13249 make one up now. Tag_CPU_raw_name remains blank. */
13250 if (out_attr[Tag_CPU_name].s == NULL
13251 && out_attr[i].i < ARRAY_SIZE (name_table))
13252 out_attr[Tag_CPU_name].s =
13253 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
13254 }
13255 break;
13256
13257 case Tag_ARM_ISA_use:
13258 case Tag_THUMB_ISA_use:
13259 case Tag_WMMX_arch:
13260 case Tag_Advanced_SIMD_arch:
13261 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
13262 case Tag_ABI_FP_rounding:
13263 case Tag_ABI_FP_exceptions:
13264 case Tag_ABI_FP_user_exceptions:
13265 case Tag_ABI_FP_number_model:
13266 case Tag_FP_HP_extension:
13267 case Tag_CPU_unaligned_access:
13268 case Tag_T2EE_use:
13269 case Tag_MPextension_use:
13270 /* Use the largest value specified. */
13271 if (in_attr[i].i > out_attr[i].i)
13272 out_attr[i].i = in_attr[i].i;
13273 break;
13274
13275 case Tag_ABI_align_preserved:
13276 case Tag_ABI_PCS_RO_data:
13277 /* Use the smallest value specified. */
13278 if (in_attr[i].i < out_attr[i].i)
13279 out_attr[i].i = in_attr[i].i;
13280 break;
13281
13282 case Tag_ABI_align_needed:
13283 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
13284 && (in_attr[Tag_ABI_align_preserved].i == 0
13285 || out_attr[Tag_ABI_align_preserved].i == 0))
13286 {
13287 /* This error message should be enabled once all non-conformant
13288 binaries in the toolchain have had the attributes set
13289 properly.
13290 _bfd_error_handler
13291 (_("error: %B: 8-byte data alignment conflicts with %B"),
13292 obfd, ibfd);
13293 result = FALSE; */
13294 }
13295 /* Fall through. */
13296 case Tag_ABI_FP_denormal:
13297 case Tag_ABI_PCS_GOT_use:
13298 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
13299 value if greater than 2 (for future-proofing). */
13300 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
13301 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
13302 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
13303 out_attr[i].i = in_attr[i].i;
13304 break;
13305
13306 case Tag_Virtualization_use:
13307 /* The virtualization tag effectively stores two bits of
13308 information: the intended use of TrustZone (in bit 0), and the
13309 intended use of Virtualization (in bit 1). */
13310 if (out_attr[i].i == 0)
13311 out_attr[i].i = in_attr[i].i;
13312 else if (in_attr[i].i != 0
13313 && in_attr[i].i != out_attr[i].i)
13314 {
13315 if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
13316 out_attr[i].i = 3;
13317 else
13318 {
13319 _bfd_error_handler
13320 (_("error: %B: unable to merge virtualization attributes "
13321 "with %B"),
13322 obfd, ibfd);
13323 result = FALSE;
13324 }
13325 }
13326 break;
13327
13328 case Tag_CPU_arch_profile:
13329 if (out_attr[i].i != in_attr[i].i)
13330 {
13331 /* 0 will merge with anything.
13332 'A' and 'S' merge to 'A'.
13333 'R' and 'S' merge to 'R'.
13334 'M' and 'A|R|S' is an error. */
13335 if (out_attr[i].i == 0
13336 || (out_attr[i].i == 'S'
13337 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
13338 out_attr[i].i = in_attr[i].i;
13339 else if (in_attr[i].i == 0
13340 || (in_attr[i].i == 'S'
13341 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
13342 ; /* Do nothing. */
13343 else
13344 {
13345 _bfd_error_handler
13346 (_("error: %B: Conflicting architecture profiles %c/%c"),
13347 ibfd,
13348 in_attr[i].i ? in_attr[i].i : '0',
13349 out_attr[i].i ? out_attr[i].i : '0');
13350 result = FALSE;
13351 }
13352 }
13353 break;
13354
13355 case Tag_DSP_extension:
13356 /* No need to change output value if any of:
13357 - pre (<=) ARMv5T input architecture (do not have DSP)
13358 - M input profile not ARMv7E-M and do not have DSP. */
13359 if (in_attr[Tag_CPU_arch].i <= 3
13360 || (in_attr[Tag_CPU_arch_profile].i == 'M'
13361 && in_attr[Tag_CPU_arch].i != 13
13362 && in_attr[i].i == 0))
13363 ; /* Do nothing. */
13364 /* Output value should be 0 if DSP part of architecture, ie.
13365 - post (>=) ARMv5te architecture output
13366 - A, R or S profile output or ARMv7E-M output architecture. */
13367 else if (out_attr[Tag_CPU_arch].i >= 4
13368 && (out_attr[Tag_CPU_arch_profile].i == 'A'
13369 || out_attr[Tag_CPU_arch_profile].i == 'R'
13370 || out_attr[Tag_CPU_arch_profile].i == 'S'
13371 || out_attr[Tag_CPU_arch].i == 13))
13372 out_attr[i].i = 0;
13373 /* Otherwise, DSP instructions are added and not part of output
13374 architecture. */
13375 else
13376 out_attr[i].i = 1;
13377 break;
13378
13379 case Tag_FP_arch:
13380 {
13381 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
13382 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
13383 when it's 0. It might mean absence of FP hardware if
13384 Tag_FP_arch is zero. */
13385
13386 #define VFP_VERSION_COUNT 9
13387 static const struct
13388 {
13389 int ver;
13390 int regs;
13391 } vfp_versions[VFP_VERSION_COUNT] =
13392 {
13393 {0, 0},
13394 {1, 16},
13395 {2, 16},
13396 {3, 32},
13397 {3, 16},
13398 {4, 32},
13399 {4, 16},
13400 {8, 32},
13401 {8, 16}
13402 };
13403 int ver;
13404 int regs;
13405 int newval;
13406
13407 /* If the output has no requirement about FP hardware,
13408 follow the requirement of the input. */
13409 if (out_attr[i].i == 0)
13410 {
13411 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
13412 out_attr[i].i = in_attr[i].i;
13413 out_attr[Tag_ABI_HardFP_use].i
13414 = in_attr[Tag_ABI_HardFP_use].i;
13415 break;
13416 }
13417 /* If the input has no requirement about FP hardware, do
13418 nothing. */
13419 else if (in_attr[i].i == 0)
13420 {
13421 BFD_ASSERT (in_attr[Tag_ABI_HardFP_use].i == 0);
13422 break;
13423 }
13424
13425 /* Both the input and the output have nonzero Tag_FP_arch.
13426 So Tag_ABI_HardFP_use is implied by Tag_FP_arch when it's zero. */
13427
13428 /* If both the input and the output have zero Tag_ABI_HardFP_use,
13429 do nothing. */
13430 if (in_attr[Tag_ABI_HardFP_use].i == 0
13431 && out_attr[Tag_ABI_HardFP_use].i == 0)
13432 ;
13433 /* If the input and the output have different Tag_ABI_HardFP_use,
13434 the combination of them is 0 (implied by Tag_FP_arch). */
13435 else if (in_attr[Tag_ABI_HardFP_use].i
13436 != out_attr[Tag_ABI_HardFP_use].i)
13437 out_attr[Tag_ABI_HardFP_use].i = 0;
13438
13439 /* Now we can handle Tag_FP_arch. */
13440
13441 /* Values of VFP_VERSION_COUNT or more aren't defined, so just
13442 pick the biggest. */
13443 if (in_attr[i].i >= VFP_VERSION_COUNT
13444 && in_attr[i].i > out_attr[i].i)
13445 {
13446 out_attr[i] = in_attr[i];
13447 break;
13448 }
13449 /* The output uses the superset of input features
13450 (ISA version) and registers. */
13451 ver = vfp_versions[in_attr[i].i].ver;
13452 if (ver < vfp_versions[out_attr[i].i].ver)
13453 ver = vfp_versions[out_attr[i].i].ver;
13454 regs = vfp_versions[in_attr[i].i].regs;
13455 if (regs < vfp_versions[out_attr[i].i].regs)
13456 regs = vfp_versions[out_attr[i].i].regs;
13457 /* This assumes all possible supersets are also a valid
13458 options. */
13459 for (newval = VFP_VERSION_COUNT - 1; newval > 0; newval--)
13460 {
13461 if (regs == vfp_versions[newval].regs
13462 && ver == vfp_versions[newval].ver)
13463 break;
13464 }
13465 out_attr[i].i = newval;
13466 }
13467 break;
13468 case Tag_PCS_config:
13469 if (out_attr[i].i == 0)
13470 out_attr[i].i = in_attr[i].i;
13471 else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i)
13472 {
13473 /* It's sometimes ok to mix different configs, so this is only
13474 a warning. */
13475 _bfd_error_handler
13476 (_("Warning: %B: Conflicting platform configuration"), ibfd);
13477 }
13478 break;
13479 case Tag_ABI_PCS_R9_use:
13480 if (in_attr[i].i != out_attr[i].i
13481 && out_attr[i].i != AEABI_R9_unused
13482 && in_attr[i].i != AEABI_R9_unused)
13483 {
13484 _bfd_error_handler
13485 (_("error: %B: Conflicting use of R9"), ibfd);
13486 result = FALSE;
13487 }
13488 if (out_attr[i].i == AEABI_R9_unused)
13489 out_attr[i].i = in_attr[i].i;
13490 break;
13491 case Tag_ABI_PCS_RW_data:
13492 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
13493 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
13494 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
13495 {
13496 _bfd_error_handler
13497 (_("error: %B: SB relative addressing conflicts with use of R9"),
13498 ibfd);
13499 result = FALSE;
13500 }
13501 /* Use the smallest value specified. */
13502 if (in_attr[i].i < out_attr[i].i)
13503 out_attr[i].i = in_attr[i].i;
13504 break;
13505 case Tag_ABI_PCS_wchar_t:
13506 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
13507 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
13508 {
13509 _bfd_error_handler
13510 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
13511 ibfd, in_attr[i].i, out_attr[i].i);
13512 }
13513 else if (in_attr[i].i && !out_attr[i].i)
13514 out_attr[i].i = in_attr[i].i;
13515 break;
13516 case Tag_ABI_enum_size:
13517 if (in_attr[i].i != AEABI_enum_unused)
13518 {
13519 if (out_attr[i].i == AEABI_enum_unused
13520 || out_attr[i].i == AEABI_enum_forced_wide)
13521 {
13522 /* The existing object is compatible with anything.
13523 Use whatever requirements the new object has. */
13524 out_attr[i].i = in_attr[i].i;
13525 }
13526 else if (in_attr[i].i != AEABI_enum_forced_wide
13527 && out_attr[i].i != in_attr[i].i
13528 && !elf_arm_tdata (obfd)->no_enum_size_warning)
13529 {
13530 static const char *aeabi_enum_names[] =
13531 { "", "variable-size", "32-bit", "" };
13532 const char *in_name =
13533 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
13534 ? aeabi_enum_names[in_attr[i].i]
13535 : "<unknown>";
13536 const char *out_name =
13537 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
13538 ? aeabi_enum_names[out_attr[i].i]
13539 : "<unknown>";
13540 _bfd_error_handler
13541 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
13542 ibfd, in_name, out_name);
13543 }
13544 }
13545 break;
13546 case Tag_ABI_VFP_args:
13547 /* Aready done. */
13548 break;
13549 case Tag_ABI_WMMX_args:
13550 if (in_attr[i].i != out_attr[i].i)
13551 {
13552 _bfd_error_handler
13553 (_("error: %B uses iWMMXt register arguments, %B does not"),
13554 ibfd, obfd);
13555 result = FALSE;
13556 }
13557 break;
13558 case Tag_compatibility:
13559 /* Merged in target-independent code. */
13560 break;
13561 case Tag_ABI_HardFP_use:
13562 /* This is handled along with Tag_FP_arch. */
13563 break;
13564 case Tag_ABI_FP_16bit_format:
13565 if (in_attr[i].i != 0 && out_attr[i].i != 0)
13566 {
13567 if (in_attr[i].i != out_attr[i].i)
13568 {
13569 _bfd_error_handler
13570 (_("error: fp16 format mismatch between %B and %B"),
13571 ibfd, obfd);
13572 result = FALSE;
13573 }
13574 }
13575 if (in_attr[i].i != 0)
13576 out_attr[i].i = in_attr[i].i;
13577 break;
13578
13579 case Tag_DIV_use:
13580 /* A value of zero on input means that the divide instruction may
13581 be used if available in the base architecture as specified via
13582 Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that
13583 the user did not want divide instructions. A value of 2
13584 explicitly means that divide instructions were allowed in ARM
13585 and Thumb state. */
13586 if (in_attr[i].i == out_attr[i].i)
13587 /* Do nothing. */ ;
13588 else if (elf32_arm_attributes_forbid_div (in_attr)
13589 && !elf32_arm_attributes_accept_div (out_attr))
13590 out_attr[i].i = 1;
13591 else if (elf32_arm_attributes_forbid_div (out_attr)
13592 && elf32_arm_attributes_accept_div (in_attr))
13593 out_attr[i].i = in_attr[i].i;
13594 else if (in_attr[i].i == 2)
13595 out_attr[i].i = in_attr[i].i;
13596 break;
13597
13598 case Tag_MPextension_use_legacy:
13599 /* We don't output objects with Tag_MPextension_use_legacy - we
13600 move the value to Tag_MPextension_use. */
13601 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
13602 {
13603 if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
13604 {
13605 _bfd_error_handler
13606 (_("%B has has both the current and legacy "
13607 "Tag_MPextension_use attributes"),
13608 ibfd);
13609 result = FALSE;
13610 }
13611 }
13612
13613 if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
13614 out_attr[Tag_MPextension_use] = in_attr[i];
13615
13616 break;
13617
13618 case Tag_nodefaults:
13619 /* This tag is set if it exists, but the value is unused (and is
13620 typically zero). We don't actually need to do anything here -
13621 the merge happens automatically when the type flags are merged
13622 below. */
13623 break;
13624 case Tag_also_compatible_with:
13625 /* Already done in Tag_CPU_arch. */
13626 break;
13627 case Tag_conformance:
13628 /* Keep the attribute if it matches. Throw it away otherwise.
13629 No attribute means no claim to conform. */
13630 if (!in_attr[i].s || !out_attr[i].s
13631 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
13632 out_attr[i].s = NULL;
13633 break;
13634
13635 default:
13636 result
13637 = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
13638 }
13639
13640 /* If out_attr was copied from in_attr then it won't have a type yet. */
13641 if (in_attr[i].type && !out_attr[i].type)
13642 out_attr[i].type = in_attr[i].type;
13643 }
13644
13645 /* Merge Tag_compatibility attributes and any common GNU ones. */
13646 if (!_bfd_elf_merge_object_attributes (ibfd, obfd))
13647 return FALSE;
13648
13649 /* Check for any attributes not known on ARM. */
13650 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
13651
13652 return result;
13653 }
13654
13655
13656 /* Return TRUE if the two EABI versions are incompatible. */
13657
13658 static bfd_boolean
13659 elf32_arm_versions_compatible (unsigned iver, unsigned over)
13660 {
13661 /* v4 and v5 are the same spec before and after it was released,
13662 so allow mixing them. */
13663 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
13664 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
13665 return TRUE;
13666
13667 return (iver == over);
13668 }
13669
13670 /* Merge backend specific data from an object file to the output
13671 object file when linking. */
13672
13673 static bfd_boolean
13674 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd);
13675
13676 /* Display the flags field. */
13677
13678 static bfd_boolean
13679 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
13680 {
13681 FILE * file = (FILE *) ptr;
13682 unsigned long flags;
13683
13684 BFD_ASSERT (abfd != NULL && ptr != NULL);
13685
13686 /* Print normal ELF private data. */
13687 _bfd_elf_print_private_bfd_data (abfd, ptr);
13688
13689 flags = elf_elfheader (abfd)->e_flags;
13690 /* Ignore init flag - it may not be set, despite the flags field
13691 containing valid data. */
13692
13693 /* xgettext:c-format */
13694 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
13695
13696 switch (EF_ARM_EABI_VERSION (flags))
13697 {
13698 case EF_ARM_EABI_UNKNOWN:
13699 /* The following flag bits are GNU extensions and not part of the
13700 official ARM ELF extended ABI. Hence they are only decoded if
13701 the EABI version is not set. */
13702 if (flags & EF_ARM_INTERWORK)
13703 fprintf (file, _(" [interworking enabled]"));
13704
13705 if (flags & EF_ARM_APCS_26)
13706 fprintf (file, " [APCS-26]");
13707 else
13708 fprintf (file, " [APCS-32]");
13709
13710 if (flags & EF_ARM_VFP_FLOAT)
13711 fprintf (file, _(" [VFP float format]"));
13712 else if (flags & EF_ARM_MAVERICK_FLOAT)
13713 fprintf (file, _(" [Maverick float format]"));
13714 else
13715 fprintf (file, _(" [FPA float format]"));
13716
13717 if (flags & EF_ARM_APCS_FLOAT)
13718 fprintf (file, _(" [floats passed in float registers]"));
13719
13720 if (flags & EF_ARM_PIC)
13721 fprintf (file, _(" [position independent]"));
13722
13723 if (flags & EF_ARM_NEW_ABI)
13724 fprintf (file, _(" [new ABI]"));
13725
13726 if (flags & EF_ARM_OLD_ABI)
13727 fprintf (file, _(" [old ABI]"));
13728
13729 if (flags & EF_ARM_SOFT_FLOAT)
13730 fprintf (file, _(" [software FP]"));
13731
13732 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
13733 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
13734 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
13735 | EF_ARM_MAVERICK_FLOAT);
13736 break;
13737
13738 case EF_ARM_EABI_VER1:
13739 fprintf (file, _(" [Version1 EABI]"));
13740
13741 if (flags & EF_ARM_SYMSARESORTED)
13742 fprintf (file, _(" [sorted symbol table]"));
13743 else
13744 fprintf (file, _(" [unsorted symbol table]"));
13745
13746 flags &= ~ EF_ARM_SYMSARESORTED;
13747 break;
13748
13749 case EF_ARM_EABI_VER2:
13750 fprintf (file, _(" [Version2 EABI]"));
13751
13752 if (flags & EF_ARM_SYMSARESORTED)
13753 fprintf (file, _(" [sorted symbol table]"));
13754 else
13755 fprintf (file, _(" [unsorted symbol table]"));
13756
13757 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
13758 fprintf (file, _(" [dynamic symbols use segment index]"));
13759
13760 if (flags & EF_ARM_MAPSYMSFIRST)
13761 fprintf (file, _(" [mapping symbols precede others]"));
13762
13763 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
13764 | EF_ARM_MAPSYMSFIRST);
13765 break;
13766
13767 case EF_ARM_EABI_VER3:
13768 fprintf (file, _(" [Version3 EABI]"));
13769 break;
13770
13771 case EF_ARM_EABI_VER4:
13772 fprintf (file, _(" [Version4 EABI]"));
13773 goto eabi;
13774
13775 case EF_ARM_EABI_VER5:
13776 fprintf (file, _(" [Version5 EABI]"));
13777
13778 if (flags & EF_ARM_ABI_FLOAT_SOFT)
13779 fprintf (file, _(" [soft-float ABI]"));
13780
13781 if (flags & EF_ARM_ABI_FLOAT_HARD)
13782 fprintf (file, _(" [hard-float ABI]"));
13783
13784 flags &= ~(EF_ARM_ABI_FLOAT_SOFT | EF_ARM_ABI_FLOAT_HARD);
13785
13786 eabi:
13787 if (flags & EF_ARM_BE8)
13788 fprintf (file, _(" [BE8]"));
13789
13790 if (flags & EF_ARM_LE8)
13791 fprintf (file, _(" [LE8]"));
13792
13793 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
13794 break;
13795
13796 default:
13797 fprintf (file, _(" <EABI version unrecognised>"));
13798 break;
13799 }
13800
13801 flags &= ~ EF_ARM_EABIMASK;
13802
13803 if (flags & EF_ARM_RELEXEC)
13804 fprintf (file, _(" [relocatable executable]"));
13805
13806 flags &= ~EF_ARM_RELEXEC;
13807
13808 if (flags)
13809 fprintf (file, _("<Unrecognised flag bits set>"));
13810
13811 fputc ('\n', file);
13812
13813 return TRUE;
13814 }
13815
13816 static int
13817 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
13818 {
13819 switch (ELF_ST_TYPE (elf_sym->st_info))
13820 {
13821 case STT_ARM_TFUNC:
13822 return ELF_ST_TYPE (elf_sym->st_info);
13823
13824 case STT_ARM_16BIT:
13825 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
13826 This allows us to distinguish between data used by Thumb instructions
13827 and non-data (which is probably code) inside Thumb regions of an
13828 executable. */
13829 if (type != STT_OBJECT && type != STT_TLS)
13830 return ELF_ST_TYPE (elf_sym->st_info);
13831 break;
13832
13833 default:
13834 break;
13835 }
13836
13837 return type;
13838 }
13839
13840 static asection *
13841 elf32_arm_gc_mark_hook (asection *sec,
13842 struct bfd_link_info *info,
13843 Elf_Internal_Rela *rel,
13844 struct elf_link_hash_entry *h,
13845 Elf_Internal_Sym *sym)
13846 {
13847 if (h != NULL)
13848 switch (ELF32_R_TYPE (rel->r_info))
13849 {
13850 case R_ARM_GNU_VTINHERIT:
13851 case R_ARM_GNU_VTENTRY:
13852 return NULL;
13853 }
13854
13855 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
13856 }
13857
13858 /* Update the got entry reference counts for the section being removed. */
13859
13860 static bfd_boolean
13861 elf32_arm_gc_sweep_hook (bfd * abfd,
13862 struct bfd_link_info * info,
13863 asection * sec,
13864 const Elf_Internal_Rela * relocs)
13865 {
13866 Elf_Internal_Shdr *symtab_hdr;
13867 struct elf_link_hash_entry **sym_hashes;
13868 bfd_signed_vma *local_got_refcounts;
13869 const Elf_Internal_Rela *rel, *relend;
13870 struct elf32_arm_link_hash_table * globals;
13871
13872 if (bfd_link_relocatable (info))
13873 return TRUE;
13874
13875 globals = elf32_arm_hash_table (info);
13876 if (globals == NULL)
13877 return FALSE;
13878
13879 elf_section_data (sec)->local_dynrel = NULL;
13880
13881 symtab_hdr = & elf_symtab_hdr (abfd);
13882 sym_hashes = elf_sym_hashes (abfd);
13883 local_got_refcounts = elf_local_got_refcounts (abfd);
13884
13885 check_use_blx (globals);
13886
13887 relend = relocs + sec->reloc_count;
13888 for (rel = relocs; rel < relend; rel++)
13889 {
13890 unsigned long r_symndx;
13891 struct elf_link_hash_entry *h = NULL;
13892 struct elf32_arm_link_hash_entry *eh;
13893 int r_type;
13894 bfd_boolean call_reloc_p;
13895 bfd_boolean may_become_dynamic_p;
13896 bfd_boolean may_need_local_target_p;
13897 union gotplt_union *root_plt;
13898 struct arm_plt_info *arm_plt;
13899
13900 r_symndx = ELF32_R_SYM (rel->r_info);
13901 if (r_symndx >= symtab_hdr->sh_info)
13902 {
13903 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
13904 while (h->root.type == bfd_link_hash_indirect
13905 || h->root.type == bfd_link_hash_warning)
13906 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13907 }
13908 eh = (struct elf32_arm_link_hash_entry *) h;
13909
13910 call_reloc_p = FALSE;
13911 may_become_dynamic_p = FALSE;
13912 may_need_local_target_p = FALSE;
13913
13914 r_type = ELF32_R_TYPE (rel->r_info);
13915 r_type = arm_real_reloc_type (globals, r_type);
13916 switch (r_type)
13917 {
13918 case R_ARM_GOT32:
13919 case R_ARM_GOT_PREL:
13920 case R_ARM_TLS_GD32:
13921 case R_ARM_TLS_IE32:
13922 if (h != NULL)
13923 {
13924 if (h->got.refcount > 0)
13925 h->got.refcount -= 1;
13926 }
13927 else if (local_got_refcounts != NULL)
13928 {
13929 if (local_got_refcounts[r_symndx] > 0)
13930 local_got_refcounts[r_symndx] -= 1;
13931 }
13932 break;
13933
13934 case R_ARM_TLS_LDM32:
13935 globals->tls_ldm_got.refcount -= 1;
13936 break;
13937
13938 case R_ARM_PC24:
13939 case R_ARM_PLT32:
13940 case R_ARM_CALL:
13941 case R_ARM_JUMP24:
13942 case R_ARM_PREL31:
13943 case R_ARM_THM_CALL:
13944 case R_ARM_THM_JUMP24:
13945 case R_ARM_THM_JUMP19:
13946 call_reloc_p = TRUE;
13947 may_need_local_target_p = TRUE;
13948 break;
13949
13950 case R_ARM_ABS12:
13951 if (!globals->vxworks_p)
13952 {
13953 may_need_local_target_p = TRUE;
13954 break;
13955 }
13956 /* Fall through. */
13957 case R_ARM_ABS32:
13958 case R_ARM_ABS32_NOI:
13959 case R_ARM_REL32:
13960 case R_ARM_REL32_NOI:
13961 case R_ARM_MOVW_ABS_NC:
13962 case R_ARM_MOVT_ABS:
13963 case R_ARM_MOVW_PREL_NC:
13964 case R_ARM_MOVT_PREL:
13965 case R_ARM_THM_MOVW_ABS_NC:
13966 case R_ARM_THM_MOVT_ABS:
13967 case R_ARM_THM_MOVW_PREL_NC:
13968 case R_ARM_THM_MOVT_PREL:
13969 /* Should the interworking branches be here also? */
13970 if ((bfd_link_pic (info) || globals->root.is_relocatable_executable)
13971 && (sec->flags & SEC_ALLOC) != 0)
13972 {
13973 if (h == NULL
13974 && elf32_arm_howto_from_type (r_type)->pc_relative)
13975 {
13976 call_reloc_p = TRUE;
13977 may_need_local_target_p = TRUE;
13978 }
13979 else
13980 may_become_dynamic_p = TRUE;
13981 }
13982 else
13983 may_need_local_target_p = TRUE;
13984 break;
13985
13986 default:
13987 break;
13988 }
13989
13990 if (may_need_local_target_p
13991 && elf32_arm_get_plt_info (abfd, globals, eh, r_symndx, &root_plt,
13992 &arm_plt))
13993 {
13994 /* If PLT refcount book-keeping is wrong and too low, we'll
13995 see a zero value (going to -1) for the root PLT reference
13996 count. */
13997 if (root_plt->refcount >= 0)
13998 {
13999 BFD_ASSERT (root_plt->refcount != 0);
14000 root_plt->refcount -= 1;
14001 }
14002 else
14003 /* A value of -1 means the symbol has become local, forced
14004 or seeing a hidden definition. Any other negative value
14005 is an error. */
14006 BFD_ASSERT (root_plt->refcount == -1);
14007
14008 if (!call_reloc_p)
14009 arm_plt->noncall_refcount--;
14010
14011 if (r_type == R_ARM_THM_CALL)
14012 arm_plt->maybe_thumb_refcount--;
14013
14014 if (r_type == R_ARM_THM_JUMP24
14015 || r_type == R_ARM_THM_JUMP19)
14016 arm_plt->thumb_refcount--;
14017 }
14018
14019 if (may_become_dynamic_p)
14020 {
14021 struct elf_dyn_relocs **pp;
14022 struct elf_dyn_relocs *p;
14023
14024 if (h != NULL)
14025 pp = &(eh->dyn_relocs);
14026 else
14027 {
14028 Elf_Internal_Sym *isym;
14029
14030 isym = bfd_sym_from_r_symndx (&globals->sym_cache,
14031 abfd, r_symndx);
14032 if (isym == NULL)
14033 return FALSE;
14034 pp = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
14035 if (pp == NULL)
14036 return FALSE;
14037 }
14038 for (; (p = *pp) != NULL; pp = &p->next)
14039 if (p->sec == sec)
14040 {
14041 /* Everything must go for SEC. */
14042 *pp = p->next;
14043 break;
14044 }
14045 }
14046 }
14047
14048 return TRUE;
14049 }
14050
14051 /* Look through the relocs for a section during the first phase. */
14052
14053 static bfd_boolean
14054 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
14055 asection *sec, const Elf_Internal_Rela *relocs)
14056 {
14057 Elf_Internal_Shdr *symtab_hdr;
14058 struct elf_link_hash_entry **sym_hashes;
14059 const Elf_Internal_Rela *rel;
14060 const Elf_Internal_Rela *rel_end;
14061 bfd *dynobj;
14062 asection *sreloc;
14063 struct elf32_arm_link_hash_table *htab;
14064 bfd_boolean call_reloc_p;
14065 bfd_boolean may_become_dynamic_p;
14066 bfd_boolean may_need_local_target_p;
14067 unsigned long nsyms;
14068
14069 if (bfd_link_relocatable (info))
14070 return TRUE;
14071
14072 BFD_ASSERT (is_arm_elf (abfd));
14073
14074 htab = elf32_arm_hash_table (info);
14075 if (htab == NULL)
14076 return FALSE;
14077
14078 sreloc = NULL;
14079
14080 /* Create dynamic sections for relocatable executables so that we can
14081 copy relocations. */
14082 if (htab->root.is_relocatable_executable
14083 && ! htab->root.dynamic_sections_created)
14084 {
14085 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
14086 return FALSE;
14087 }
14088
14089 if (htab->root.dynobj == NULL)
14090 htab->root.dynobj = abfd;
14091 if (!create_ifunc_sections (info))
14092 return FALSE;
14093
14094 dynobj = htab->root.dynobj;
14095
14096 symtab_hdr = & elf_symtab_hdr (abfd);
14097 sym_hashes = elf_sym_hashes (abfd);
14098 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
14099
14100 rel_end = relocs + sec->reloc_count;
14101 for (rel = relocs; rel < rel_end; rel++)
14102 {
14103 Elf_Internal_Sym *isym;
14104 struct elf_link_hash_entry *h;
14105 struct elf32_arm_link_hash_entry *eh;
14106 unsigned long r_symndx;
14107 int r_type;
14108
14109 r_symndx = ELF32_R_SYM (rel->r_info);
14110 r_type = ELF32_R_TYPE (rel->r_info);
14111 r_type = arm_real_reloc_type (htab, r_type);
14112
14113 if (r_symndx >= nsyms
14114 /* PR 9934: It is possible to have relocations that do not
14115 refer to symbols, thus it is also possible to have an
14116 object file containing relocations but no symbol table. */
14117 && (r_symndx > STN_UNDEF || nsyms > 0))
14118 {
14119 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
14120 r_symndx);
14121 return FALSE;
14122 }
14123
14124 h = NULL;
14125 isym = NULL;
14126 if (nsyms > 0)
14127 {
14128 if (r_symndx < symtab_hdr->sh_info)
14129 {
14130 /* A local symbol. */
14131 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
14132 abfd, r_symndx);
14133 if (isym == NULL)
14134 return FALSE;
14135 }
14136 else
14137 {
14138 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
14139 while (h->root.type == bfd_link_hash_indirect
14140 || h->root.type == bfd_link_hash_warning)
14141 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14142
14143 /* PR15323, ref flags aren't set for references in the
14144 same object. */
14145 h->root.non_ir_ref = 1;
14146 }
14147 }
14148
14149 eh = (struct elf32_arm_link_hash_entry *) h;
14150
14151 call_reloc_p = FALSE;
14152 may_become_dynamic_p = FALSE;
14153 may_need_local_target_p = FALSE;
14154
14155 /* Could be done earlier, if h were already available. */
14156 r_type = elf32_arm_tls_transition (info, r_type, h);
14157 switch (r_type)
14158 {
14159 case R_ARM_GOT32:
14160 case R_ARM_GOT_PREL:
14161 case R_ARM_TLS_GD32:
14162 case R_ARM_TLS_IE32:
14163 case R_ARM_TLS_GOTDESC:
14164 case R_ARM_TLS_DESCSEQ:
14165 case R_ARM_THM_TLS_DESCSEQ:
14166 case R_ARM_TLS_CALL:
14167 case R_ARM_THM_TLS_CALL:
14168 /* This symbol requires a global offset table entry. */
14169 {
14170 int tls_type, old_tls_type;
14171
14172 switch (r_type)
14173 {
14174 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
14175
14176 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
14177
14178 case R_ARM_TLS_GOTDESC:
14179 case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
14180 case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
14181 tls_type = GOT_TLS_GDESC; break;
14182
14183 default: tls_type = GOT_NORMAL; break;
14184 }
14185
14186 if (!bfd_link_executable (info) && (tls_type & GOT_TLS_IE))
14187 info->flags |= DF_STATIC_TLS;
14188
14189 if (h != NULL)
14190 {
14191 h->got.refcount++;
14192 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
14193 }
14194 else
14195 {
14196 /* This is a global offset table entry for a local symbol. */
14197 if (!elf32_arm_allocate_local_sym_info (abfd))
14198 return FALSE;
14199 elf_local_got_refcounts (abfd)[r_symndx] += 1;
14200 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
14201 }
14202
14203 /* If a variable is accessed with both tls methods, two
14204 slots may be created. */
14205 if (GOT_TLS_GD_ANY_P (old_tls_type)
14206 && GOT_TLS_GD_ANY_P (tls_type))
14207 tls_type |= old_tls_type;
14208
14209 /* We will already have issued an error message if there
14210 is a TLS/non-TLS mismatch, based on the symbol
14211 type. So just combine any TLS types needed. */
14212 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
14213 && tls_type != GOT_NORMAL)
14214 tls_type |= old_tls_type;
14215
14216 /* If the symbol is accessed in both IE and GDESC
14217 method, we're able to relax. Turn off the GDESC flag,
14218 without messing up with any other kind of tls types
14219 that may be involved. */
14220 if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
14221 tls_type &= ~GOT_TLS_GDESC;
14222
14223 if (old_tls_type != tls_type)
14224 {
14225 if (h != NULL)
14226 elf32_arm_hash_entry (h)->tls_type = tls_type;
14227 else
14228 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
14229 }
14230 }
14231 /* Fall through. */
14232
14233 case R_ARM_TLS_LDM32:
14234 if (r_type == R_ARM_TLS_LDM32)
14235 htab->tls_ldm_got.refcount++;
14236 /* Fall through. */
14237
14238 case R_ARM_GOTOFF32:
14239 case R_ARM_GOTPC:
14240 if (htab->root.sgot == NULL
14241 && !create_got_section (htab->root.dynobj, info))
14242 return FALSE;
14243 break;
14244
14245 case R_ARM_PC24:
14246 case R_ARM_PLT32:
14247 case R_ARM_CALL:
14248 case R_ARM_JUMP24:
14249 case R_ARM_PREL31:
14250 case R_ARM_THM_CALL:
14251 case R_ARM_THM_JUMP24:
14252 case R_ARM_THM_JUMP19:
14253 call_reloc_p = TRUE;
14254 may_need_local_target_p = TRUE;
14255 break;
14256
14257 case R_ARM_ABS12:
14258 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
14259 ldr __GOTT_INDEX__ offsets. */
14260 if (!htab->vxworks_p)
14261 {
14262 may_need_local_target_p = TRUE;
14263 break;
14264 }
14265 else goto jump_over;
14266
14267 /* Fall through. */
14268
14269 case R_ARM_MOVW_ABS_NC:
14270 case R_ARM_MOVT_ABS:
14271 case R_ARM_THM_MOVW_ABS_NC:
14272 case R_ARM_THM_MOVT_ABS:
14273 if (bfd_link_pic (info))
14274 {
14275 (*_bfd_error_handler)
14276 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
14277 abfd, elf32_arm_howto_table_1[r_type].name,
14278 (h) ? h->root.root.string : "a local symbol");
14279 bfd_set_error (bfd_error_bad_value);
14280 return FALSE;
14281 }
14282
14283 /* Fall through. */
14284 case R_ARM_ABS32:
14285 case R_ARM_ABS32_NOI:
14286 jump_over:
14287 if (h != NULL && bfd_link_executable (info))
14288 {
14289 h->pointer_equality_needed = 1;
14290 }
14291 /* Fall through. */
14292 case R_ARM_REL32:
14293 case R_ARM_REL32_NOI:
14294 case R_ARM_MOVW_PREL_NC:
14295 case R_ARM_MOVT_PREL:
14296 case R_ARM_THM_MOVW_PREL_NC:
14297 case R_ARM_THM_MOVT_PREL:
14298
14299 /* Should the interworking branches be listed here? */
14300 if ((bfd_link_pic (info) || htab->root.is_relocatable_executable)
14301 && (sec->flags & SEC_ALLOC) != 0)
14302 {
14303 if (h == NULL
14304 && elf32_arm_howto_from_type (r_type)->pc_relative)
14305 {
14306 /* In shared libraries and relocatable executables,
14307 we treat local relative references as calls;
14308 see the related SYMBOL_CALLS_LOCAL code in
14309 allocate_dynrelocs. */
14310 call_reloc_p = TRUE;
14311 may_need_local_target_p = TRUE;
14312 }
14313 else
14314 /* We are creating a shared library or relocatable
14315 executable, and this is a reloc against a global symbol,
14316 or a non-PC-relative reloc against a local symbol.
14317 We may need to copy the reloc into the output. */
14318 may_become_dynamic_p = TRUE;
14319 }
14320 else
14321 may_need_local_target_p = TRUE;
14322 break;
14323
14324 /* This relocation describes the C++ object vtable hierarchy.
14325 Reconstruct it for later use during GC. */
14326 case R_ARM_GNU_VTINHERIT:
14327 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
14328 return FALSE;
14329 break;
14330
14331 /* This relocation describes which C++ vtable entries are actually
14332 used. Record for later use during GC. */
14333 case R_ARM_GNU_VTENTRY:
14334 BFD_ASSERT (h != NULL);
14335 if (h != NULL
14336 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
14337 return FALSE;
14338 break;
14339 }
14340
14341 if (h != NULL)
14342 {
14343 if (call_reloc_p)
14344 /* We may need a .plt entry if the function this reloc
14345 refers to is in a different object, regardless of the
14346 symbol's type. We can't tell for sure yet, because
14347 something later might force the symbol local. */
14348 h->needs_plt = 1;
14349 else if (may_need_local_target_p)
14350 /* If this reloc is in a read-only section, we might
14351 need a copy reloc. We can't check reliably at this
14352 stage whether the section is read-only, as input
14353 sections have not yet been mapped to output sections.
14354 Tentatively set the flag for now, and correct in
14355 adjust_dynamic_symbol. */
14356 h->non_got_ref = 1;
14357 }
14358
14359 if (may_need_local_target_p
14360 && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
14361 {
14362 union gotplt_union *root_plt;
14363 struct arm_plt_info *arm_plt;
14364 struct arm_local_iplt_info *local_iplt;
14365
14366 if (h != NULL)
14367 {
14368 root_plt = &h->plt;
14369 arm_plt = &eh->plt;
14370 }
14371 else
14372 {
14373 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
14374 if (local_iplt == NULL)
14375 return FALSE;
14376 root_plt = &local_iplt->root;
14377 arm_plt = &local_iplt->arm;
14378 }
14379
14380 /* If the symbol is a function that doesn't bind locally,
14381 this relocation will need a PLT entry. */
14382 if (root_plt->refcount != -1)
14383 root_plt->refcount += 1;
14384
14385 if (!call_reloc_p)
14386 arm_plt->noncall_refcount++;
14387
14388 /* It's too early to use htab->use_blx here, so we have to
14389 record possible blx references separately from
14390 relocs that definitely need a thumb stub. */
14391
14392 if (r_type == R_ARM_THM_CALL)
14393 arm_plt->maybe_thumb_refcount += 1;
14394
14395 if (r_type == R_ARM_THM_JUMP24
14396 || r_type == R_ARM_THM_JUMP19)
14397 arm_plt->thumb_refcount += 1;
14398 }
14399
14400 if (may_become_dynamic_p)
14401 {
14402 struct elf_dyn_relocs *p, **head;
14403
14404 /* Create a reloc section in dynobj. */
14405 if (sreloc == NULL)
14406 {
14407 sreloc = _bfd_elf_make_dynamic_reloc_section
14408 (sec, dynobj, 2, abfd, ! htab->use_rel);
14409
14410 if (sreloc == NULL)
14411 return FALSE;
14412
14413 /* BPABI objects never have dynamic relocations mapped. */
14414 if (htab->symbian_p)
14415 {
14416 flagword flags;
14417
14418 flags = bfd_get_section_flags (dynobj, sreloc);
14419 flags &= ~(SEC_LOAD | SEC_ALLOC);
14420 bfd_set_section_flags (dynobj, sreloc, flags);
14421 }
14422 }
14423
14424 /* If this is a global symbol, count the number of
14425 relocations we need for this symbol. */
14426 if (h != NULL)
14427 head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs;
14428 else
14429 {
14430 head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
14431 if (head == NULL)
14432 return FALSE;
14433 }
14434
14435 p = *head;
14436 if (p == NULL || p->sec != sec)
14437 {
14438 bfd_size_type amt = sizeof *p;
14439
14440 p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
14441 if (p == NULL)
14442 return FALSE;
14443 p->next = *head;
14444 *head = p;
14445 p->sec = sec;
14446 p->count = 0;
14447 p->pc_count = 0;
14448 }
14449
14450 if (elf32_arm_howto_from_type (r_type)->pc_relative)
14451 p->pc_count += 1;
14452 p->count += 1;
14453 }
14454 }
14455
14456 return TRUE;
14457 }
14458
14459 /* Unwinding tables are not referenced directly. This pass marks them as
14460 required if the corresponding code section is marked. Similarly, ARMv8-M
14461 secure entry functions can only be referenced by SG veneers which are
14462 created after the GC process. They need to be marked in case they reside in
14463 their own section (as would be the case if code was compiled with
14464 -ffunction-sections). */
14465
14466 static bfd_boolean
14467 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
14468 elf_gc_mark_hook_fn gc_mark_hook)
14469 {
14470 bfd *sub;
14471 Elf_Internal_Shdr **elf_shdrp;
14472 asection *cmse_sec;
14473 obj_attribute *out_attr;
14474 Elf_Internal_Shdr *symtab_hdr;
14475 unsigned i, sym_count, ext_start;
14476 const struct elf_backend_data *bed;
14477 struct elf_link_hash_entry **sym_hashes;
14478 struct elf32_arm_link_hash_entry *cmse_hash;
14479 bfd_boolean again, is_v8m, first_bfd_browse = TRUE;
14480
14481 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
14482
14483 out_attr = elf_known_obj_attributes_proc (info->output_bfd);
14484 is_v8m = out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
14485 && out_attr[Tag_CPU_arch_profile].i == 'M';
14486
14487 /* Marking EH data may cause additional code sections to be marked,
14488 requiring multiple passes. */
14489 again = TRUE;
14490 while (again)
14491 {
14492 again = FALSE;
14493 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
14494 {
14495 asection *o;
14496
14497 if (! is_arm_elf (sub))
14498 continue;
14499
14500 elf_shdrp = elf_elfsections (sub);
14501 for (o = sub->sections; o != NULL; o = o->next)
14502 {
14503 Elf_Internal_Shdr *hdr;
14504
14505 hdr = &elf_section_data (o)->this_hdr;
14506 if (hdr->sh_type == SHT_ARM_EXIDX
14507 && hdr->sh_link
14508 && hdr->sh_link < elf_numsections (sub)
14509 && !o->gc_mark
14510 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
14511 {
14512 again = TRUE;
14513 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
14514 return FALSE;
14515 }
14516 }
14517
14518 /* Mark section holding ARMv8-M secure entry functions. We mark all
14519 of them so no need for a second browsing. */
14520 if (is_v8m && first_bfd_browse)
14521 {
14522 sym_hashes = elf_sym_hashes (sub);
14523 bed = get_elf_backend_data (sub);
14524 symtab_hdr = &elf_tdata (sub)->symtab_hdr;
14525 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
14526 ext_start = symtab_hdr->sh_info;
14527
14528 /* Scan symbols. */
14529 for (i = ext_start; i < sym_count; i++)
14530 {
14531 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
14532
14533 /* Assume it is a special symbol. If not, cmse_scan will
14534 warn about it and user can do something about it. */
14535 if (ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
14536 {
14537 cmse_sec = cmse_hash->root.root.u.def.section;
14538 if (!_bfd_elf_gc_mark (info, cmse_sec, gc_mark_hook))
14539 return FALSE;
14540 }
14541 }
14542 }
14543 }
14544 first_bfd_browse = FALSE;
14545 }
14546
14547 return TRUE;
14548 }
14549
14550 /* Treat mapping symbols as special target symbols. */
14551
14552 static bfd_boolean
14553 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
14554 {
14555 return bfd_is_arm_special_symbol_name (sym->name,
14556 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
14557 }
14558
14559 /* This is a copy of elf_find_function() from elf.c except that
14560 ARM mapping symbols are ignored when looking for function names
14561 and STT_ARM_TFUNC is considered to a function type. */
14562
14563 static bfd_boolean
14564 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
14565 asymbol ** symbols,
14566 asection * section,
14567 bfd_vma offset,
14568 const char ** filename_ptr,
14569 const char ** functionname_ptr)
14570 {
14571 const char * filename = NULL;
14572 asymbol * func = NULL;
14573 bfd_vma low_func = 0;
14574 asymbol ** p;
14575
14576 for (p = symbols; *p != NULL; p++)
14577 {
14578 elf_symbol_type *q;
14579
14580 q = (elf_symbol_type *) *p;
14581
14582 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
14583 {
14584 default:
14585 break;
14586 case STT_FILE:
14587 filename = bfd_asymbol_name (&q->symbol);
14588 break;
14589 case STT_FUNC:
14590 case STT_ARM_TFUNC:
14591 case STT_NOTYPE:
14592 /* Skip mapping symbols. */
14593 if ((q->symbol.flags & BSF_LOCAL)
14594 && bfd_is_arm_special_symbol_name (q->symbol.name,
14595 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
14596 continue;
14597 /* Fall through. */
14598 if (bfd_get_section (&q->symbol) == section
14599 && q->symbol.value >= low_func
14600 && q->symbol.value <= offset)
14601 {
14602 func = (asymbol *) q;
14603 low_func = q->symbol.value;
14604 }
14605 break;
14606 }
14607 }
14608
14609 if (func == NULL)
14610 return FALSE;
14611
14612 if (filename_ptr)
14613 *filename_ptr = filename;
14614 if (functionname_ptr)
14615 *functionname_ptr = bfd_asymbol_name (func);
14616
14617 return TRUE;
14618 }
14619
14620
14621 /* Find the nearest line to a particular section and offset, for error
14622 reporting. This code is a duplicate of the code in elf.c, except
14623 that it uses arm_elf_find_function. */
14624
14625 static bfd_boolean
14626 elf32_arm_find_nearest_line (bfd * abfd,
14627 asymbol ** symbols,
14628 asection * section,
14629 bfd_vma offset,
14630 const char ** filename_ptr,
14631 const char ** functionname_ptr,
14632 unsigned int * line_ptr,
14633 unsigned int * discriminator_ptr)
14634 {
14635 bfd_boolean found = FALSE;
14636
14637 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
14638 filename_ptr, functionname_ptr,
14639 line_ptr, discriminator_ptr,
14640 dwarf_debug_sections, 0,
14641 & elf_tdata (abfd)->dwarf2_find_line_info))
14642 {
14643 if (!*functionname_ptr)
14644 arm_elf_find_function (abfd, symbols, section, offset,
14645 *filename_ptr ? NULL : filename_ptr,
14646 functionname_ptr);
14647
14648 return TRUE;
14649 }
14650
14651 /* Skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain
14652 uses DWARF1. */
14653
14654 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
14655 & found, filename_ptr,
14656 functionname_ptr, line_ptr,
14657 & elf_tdata (abfd)->line_info))
14658 return FALSE;
14659
14660 if (found && (*functionname_ptr || *line_ptr))
14661 return TRUE;
14662
14663 if (symbols == NULL)
14664 return FALSE;
14665
14666 if (! arm_elf_find_function (abfd, symbols, section, offset,
14667 filename_ptr, functionname_ptr))
14668 return FALSE;
14669
14670 *line_ptr = 0;
14671 return TRUE;
14672 }
14673
14674 static bfd_boolean
14675 elf32_arm_find_inliner_info (bfd * abfd,
14676 const char ** filename_ptr,
14677 const char ** functionname_ptr,
14678 unsigned int * line_ptr)
14679 {
14680 bfd_boolean found;
14681 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
14682 functionname_ptr, line_ptr,
14683 & elf_tdata (abfd)->dwarf2_find_line_info);
14684 return found;
14685 }
14686
14687 /* Adjust a symbol defined by a dynamic object and referenced by a
14688 regular object. The current definition is in some section of the
14689 dynamic object, but we're not including those sections. We have to
14690 change the definition to something the rest of the link can
14691 understand. */
14692
14693 static bfd_boolean
14694 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
14695 struct elf_link_hash_entry * h)
14696 {
14697 bfd * dynobj;
14698 asection * s;
14699 struct elf32_arm_link_hash_entry * eh;
14700 struct elf32_arm_link_hash_table *globals;
14701
14702 globals = elf32_arm_hash_table (info);
14703 if (globals == NULL)
14704 return FALSE;
14705
14706 dynobj = elf_hash_table (info)->dynobj;
14707
14708 /* Make sure we know what is going on here. */
14709 BFD_ASSERT (dynobj != NULL
14710 && (h->needs_plt
14711 || h->type == STT_GNU_IFUNC
14712 || h->u.weakdef != NULL
14713 || (h->def_dynamic
14714 && h->ref_regular
14715 && !h->def_regular)));
14716
14717 eh = (struct elf32_arm_link_hash_entry *) h;
14718
14719 /* If this is a function, put it in the procedure linkage table. We
14720 will fill in the contents of the procedure linkage table later,
14721 when we know the address of the .got section. */
14722 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
14723 {
14724 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
14725 symbol binds locally. */
14726 if (h->plt.refcount <= 0
14727 || (h->type != STT_GNU_IFUNC
14728 && (SYMBOL_CALLS_LOCAL (info, h)
14729 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
14730 && h->root.type == bfd_link_hash_undefweak))))
14731 {
14732 /* This case can occur if we saw a PLT32 reloc in an input
14733 file, but the symbol was never referred to by a dynamic
14734 object, or if all references were garbage collected. In
14735 such a case, we don't actually need to build a procedure
14736 linkage table, and we can just do a PC24 reloc instead. */
14737 h->plt.offset = (bfd_vma) -1;
14738 eh->plt.thumb_refcount = 0;
14739 eh->plt.maybe_thumb_refcount = 0;
14740 eh->plt.noncall_refcount = 0;
14741 h->needs_plt = 0;
14742 }
14743
14744 return TRUE;
14745 }
14746 else
14747 {
14748 /* It's possible that we incorrectly decided a .plt reloc was
14749 needed for an R_ARM_PC24 or similar reloc to a non-function sym
14750 in check_relocs. We can't decide accurately between function
14751 and non-function syms in check-relocs; Objects loaded later in
14752 the link may change h->type. So fix it now. */
14753 h->plt.offset = (bfd_vma) -1;
14754 eh->plt.thumb_refcount = 0;
14755 eh->plt.maybe_thumb_refcount = 0;
14756 eh->plt.noncall_refcount = 0;
14757 }
14758
14759 /* If this is a weak symbol, and there is a real definition, the
14760 processor independent code will have arranged for us to see the
14761 real definition first, and we can just use the same value. */
14762 if (h->u.weakdef != NULL)
14763 {
14764 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
14765 || h->u.weakdef->root.type == bfd_link_hash_defweak);
14766 h->root.u.def.section = h->u.weakdef->root.u.def.section;
14767 h->root.u.def.value = h->u.weakdef->root.u.def.value;
14768 return TRUE;
14769 }
14770
14771 /* If there are no non-GOT references, we do not need a copy
14772 relocation. */
14773 if (!h->non_got_ref)
14774 return TRUE;
14775
14776 /* This is a reference to a symbol defined by a dynamic object which
14777 is not a function. */
14778
14779 /* If we are creating a shared library, we must presume that the
14780 only references to the symbol are via the global offset table.
14781 For such cases we need not do anything here; the relocations will
14782 be handled correctly by relocate_section. Relocatable executables
14783 can reference data in shared objects directly, so we don't need to
14784 do anything here. */
14785 if (bfd_link_pic (info) || globals->root.is_relocatable_executable)
14786 return TRUE;
14787
14788 /* We must allocate the symbol in our .dynbss section, which will
14789 become part of the .bss section of the executable. There will be
14790 an entry for this symbol in the .dynsym section. The dynamic
14791 object will contain position independent code, so all references
14792 from the dynamic object to this symbol will go through the global
14793 offset table. The dynamic linker will use the .dynsym entry to
14794 determine the address it must put in the global offset table, so
14795 both the dynamic object and the regular object will refer to the
14796 same memory location for the variable. */
14797 s = bfd_get_linker_section (dynobj, ".dynbss");
14798 BFD_ASSERT (s != NULL);
14799
14800 /* If allowed, we must generate a R_ARM_COPY reloc to tell the dynamic
14801 linker to copy the initial value out of the dynamic object and into
14802 the runtime process image. We need to remember the offset into the
14803 .rel(a).bss section we are going to use. */
14804 if (info->nocopyreloc == 0
14805 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
14806 && h->size != 0)
14807 {
14808 asection *srel;
14809
14810 srel = bfd_get_linker_section (dynobj, RELOC_SECTION (globals, ".bss"));
14811 elf32_arm_allocate_dynrelocs (info, srel, 1);
14812 h->needs_copy = 1;
14813 }
14814
14815 return _bfd_elf_adjust_dynamic_copy (info, h, s);
14816 }
14817
14818 /* Allocate space in .plt, .got and associated reloc sections for
14819 dynamic relocs. */
14820
14821 static bfd_boolean
14822 allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
14823 {
14824 struct bfd_link_info *info;
14825 struct elf32_arm_link_hash_table *htab;
14826 struct elf32_arm_link_hash_entry *eh;
14827 struct elf_dyn_relocs *p;
14828
14829 if (h->root.type == bfd_link_hash_indirect)
14830 return TRUE;
14831
14832 eh = (struct elf32_arm_link_hash_entry *) h;
14833
14834 info = (struct bfd_link_info *) inf;
14835 htab = elf32_arm_hash_table (info);
14836 if (htab == NULL)
14837 return FALSE;
14838
14839 if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
14840 && h->plt.refcount > 0)
14841 {
14842 /* Make sure this symbol is output as a dynamic symbol.
14843 Undefined weak syms won't yet be marked as dynamic. */
14844 if (h->dynindx == -1
14845 && !h->forced_local)
14846 {
14847 if (! bfd_elf_link_record_dynamic_symbol (info, h))
14848 return FALSE;
14849 }
14850
14851 /* If the call in the PLT entry binds locally, the associated
14852 GOT entry should use an R_ARM_IRELATIVE relocation instead of
14853 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
14854 than the .plt section. */
14855 if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
14856 {
14857 eh->is_iplt = 1;
14858 if (eh->plt.noncall_refcount == 0
14859 && SYMBOL_REFERENCES_LOCAL (info, h))
14860 /* All non-call references can be resolved directly.
14861 This means that they can (and in some cases, must)
14862 resolve directly to the run-time target, rather than
14863 to the PLT. That in turns means that any .got entry
14864 would be equal to the .igot.plt entry, so there's
14865 no point having both. */
14866 h->got.refcount = 0;
14867 }
14868
14869 if (bfd_link_pic (info)
14870 || eh->is_iplt
14871 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
14872 {
14873 elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
14874
14875 /* If this symbol is not defined in a regular file, and we are
14876 not generating a shared library, then set the symbol to this
14877 location in the .plt. This is required to make function
14878 pointers compare as equal between the normal executable and
14879 the shared library. */
14880 if (! bfd_link_pic (info)
14881 && !h->def_regular)
14882 {
14883 h->root.u.def.section = htab->root.splt;
14884 h->root.u.def.value = h->plt.offset;
14885
14886 /* Make sure the function is not marked as Thumb, in case
14887 it is the target of an ABS32 relocation, which will
14888 point to the PLT entry. */
14889 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
14890 }
14891
14892 /* VxWorks executables have a second set of relocations for
14893 each PLT entry. They go in a separate relocation section,
14894 which is processed by the kernel loader. */
14895 if (htab->vxworks_p && !bfd_link_pic (info))
14896 {
14897 /* There is a relocation for the initial PLT entry:
14898 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
14899 if (h->plt.offset == htab->plt_header_size)
14900 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
14901
14902 /* There are two extra relocations for each subsequent
14903 PLT entry: an R_ARM_32 relocation for the GOT entry,
14904 and an R_ARM_32 relocation for the PLT entry. */
14905 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
14906 }
14907 }
14908 else
14909 {
14910 h->plt.offset = (bfd_vma) -1;
14911 h->needs_plt = 0;
14912 }
14913 }
14914 else
14915 {
14916 h->plt.offset = (bfd_vma) -1;
14917 h->needs_plt = 0;
14918 }
14919
14920 eh = (struct elf32_arm_link_hash_entry *) h;
14921 eh->tlsdesc_got = (bfd_vma) -1;
14922
14923 if (h->got.refcount > 0)
14924 {
14925 asection *s;
14926 bfd_boolean dyn;
14927 int tls_type = elf32_arm_hash_entry (h)->tls_type;
14928 int indx;
14929
14930 /* Make sure this symbol is output as a dynamic symbol.
14931 Undefined weak syms won't yet be marked as dynamic. */
14932 if (h->dynindx == -1
14933 && !h->forced_local)
14934 {
14935 if (! bfd_elf_link_record_dynamic_symbol (info, h))
14936 return FALSE;
14937 }
14938
14939 if (!htab->symbian_p)
14940 {
14941 s = htab->root.sgot;
14942 h->got.offset = s->size;
14943
14944 if (tls_type == GOT_UNKNOWN)
14945 abort ();
14946
14947 if (tls_type == GOT_NORMAL)
14948 /* Non-TLS symbols need one GOT slot. */
14949 s->size += 4;
14950 else
14951 {
14952 if (tls_type & GOT_TLS_GDESC)
14953 {
14954 /* R_ARM_TLS_DESC needs 2 GOT slots. */
14955 eh->tlsdesc_got
14956 = (htab->root.sgotplt->size
14957 - elf32_arm_compute_jump_table_size (htab));
14958 htab->root.sgotplt->size += 8;
14959 h->got.offset = (bfd_vma) -2;
14960 /* plt.got_offset needs to know there's a TLS_DESC
14961 reloc in the middle of .got.plt. */
14962 htab->num_tls_desc++;
14963 }
14964
14965 if (tls_type & GOT_TLS_GD)
14966 {
14967 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. If
14968 the symbol is both GD and GDESC, got.offset may
14969 have been overwritten. */
14970 h->got.offset = s->size;
14971 s->size += 8;
14972 }
14973
14974 if (tls_type & GOT_TLS_IE)
14975 /* R_ARM_TLS_IE32 needs one GOT slot. */
14976 s->size += 4;
14977 }
14978
14979 dyn = htab->root.dynamic_sections_created;
14980
14981 indx = 0;
14982 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
14983 bfd_link_pic (info),
14984 h)
14985 && (!bfd_link_pic (info)
14986 || !SYMBOL_REFERENCES_LOCAL (info, h)))
14987 indx = h->dynindx;
14988
14989 if (tls_type != GOT_NORMAL
14990 && (bfd_link_pic (info) || indx != 0)
14991 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
14992 || h->root.type != bfd_link_hash_undefweak))
14993 {
14994 if (tls_type & GOT_TLS_IE)
14995 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
14996
14997 if (tls_type & GOT_TLS_GD)
14998 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
14999
15000 if (tls_type & GOT_TLS_GDESC)
15001 {
15002 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
15003 /* GDESC needs a trampoline to jump to. */
15004 htab->tls_trampoline = -1;
15005 }
15006
15007 /* Only GD needs it. GDESC just emits one relocation per
15008 2 entries. */
15009 if ((tls_type & GOT_TLS_GD) && indx != 0)
15010 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15011 }
15012 else if (indx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
15013 {
15014 if (htab->root.dynamic_sections_created)
15015 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
15016 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15017 }
15018 else if (h->type == STT_GNU_IFUNC
15019 && eh->plt.noncall_refcount == 0)
15020 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
15021 they all resolve dynamically instead. Reserve room for the
15022 GOT entry's R_ARM_IRELATIVE relocation. */
15023 elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
15024 else if (bfd_link_pic (info)
15025 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
15026 || h->root.type != bfd_link_hash_undefweak))
15027 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
15028 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15029 }
15030 }
15031 else
15032 h->got.offset = (bfd_vma) -1;
15033
15034 /* Allocate stubs for exported Thumb functions on v4t. */
15035 if (!htab->use_blx && h->dynindx != -1
15036 && h->def_regular
15037 && ARM_GET_SYM_BRANCH_TYPE (h->target_internal) == ST_BRANCH_TO_THUMB
15038 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
15039 {
15040 struct elf_link_hash_entry * th;
15041 struct bfd_link_hash_entry * bh;
15042 struct elf_link_hash_entry * myh;
15043 char name[1024];
15044 asection *s;
15045 bh = NULL;
15046 /* Create a new symbol to regist the real location of the function. */
15047 s = h->root.u.def.section;
15048 sprintf (name, "__real_%s", h->root.root.string);
15049 _bfd_generic_link_add_one_symbol (info, s->owner,
15050 name, BSF_GLOBAL, s,
15051 h->root.u.def.value,
15052 NULL, TRUE, FALSE, &bh);
15053
15054 myh = (struct elf_link_hash_entry *) bh;
15055 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
15056 myh->forced_local = 1;
15057 ARM_SET_SYM_BRANCH_TYPE (myh->target_internal, ST_BRANCH_TO_THUMB);
15058 eh->export_glue = myh;
15059 th = record_arm_to_thumb_glue (info, h);
15060 /* Point the symbol at the stub. */
15061 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
15062 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
15063 h->root.u.def.section = th->root.u.def.section;
15064 h->root.u.def.value = th->root.u.def.value & ~1;
15065 }
15066
15067 if (eh->dyn_relocs == NULL)
15068 return TRUE;
15069
15070 /* In the shared -Bsymbolic case, discard space allocated for
15071 dynamic pc-relative relocs against symbols which turn out to be
15072 defined in regular objects. For the normal shared case, discard
15073 space for pc-relative relocs that have become local due to symbol
15074 visibility changes. */
15075
15076 if (bfd_link_pic (info) || htab->root.is_relocatable_executable)
15077 {
15078 /* Relocs that use pc_count are PC-relative forms, which will appear
15079 on something like ".long foo - ." or "movw REG, foo - .". We want
15080 calls to protected symbols to resolve directly to the function
15081 rather than going via the plt. If people want function pointer
15082 comparisons to work as expected then they should avoid writing
15083 assembly like ".long foo - .". */
15084 if (SYMBOL_CALLS_LOCAL (info, h))
15085 {
15086 struct elf_dyn_relocs **pp;
15087
15088 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
15089 {
15090 p->count -= p->pc_count;
15091 p->pc_count = 0;
15092 if (p->count == 0)
15093 *pp = p->next;
15094 else
15095 pp = &p->next;
15096 }
15097 }
15098
15099 if (htab->vxworks_p)
15100 {
15101 struct elf_dyn_relocs **pp;
15102
15103 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
15104 {
15105 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
15106 *pp = p->next;
15107 else
15108 pp = &p->next;
15109 }
15110 }
15111
15112 /* Also discard relocs on undefined weak syms with non-default
15113 visibility. */
15114 if (eh->dyn_relocs != NULL
15115 && h->root.type == bfd_link_hash_undefweak)
15116 {
15117 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
15118 eh->dyn_relocs = NULL;
15119
15120 /* Make sure undefined weak symbols are output as a dynamic
15121 symbol in PIEs. */
15122 else if (h->dynindx == -1
15123 && !h->forced_local)
15124 {
15125 if (! bfd_elf_link_record_dynamic_symbol (info, h))
15126 return FALSE;
15127 }
15128 }
15129
15130 else if (htab->root.is_relocatable_executable && h->dynindx == -1
15131 && h->root.type == bfd_link_hash_new)
15132 {
15133 /* Output absolute symbols so that we can create relocations
15134 against them. For normal symbols we output a relocation
15135 against the section that contains them. */
15136 if (! bfd_elf_link_record_dynamic_symbol (info, h))
15137 return FALSE;
15138 }
15139
15140 }
15141 else
15142 {
15143 /* For the non-shared case, discard space for relocs against
15144 symbols which turn out to need copy relocs or are not
15145 dynamic. */
15146
15147 if (!h->non_got_ref
15148 && ((h->def_dynamic
15149 && !h->def_regular)
15150 || (htab->root.dynamic_sections_created
15151 && (h->root.type == bfd_link_hash_undefweak
15152 || h->root.type == bfd_link_hash_undefined))))
15153 {
15154 /* Make sure this symbol is output as a dynamic symbol.
15155 Undefined weak syms won't yet be marked as dynamic. */
15156 if (h->dynindx == -1
15157 && !h->forced_local)
15158 {
15159 if (! bfd_elf_link_record_dynamic_symbol (info, h))
15160 return FALSE;
15161 }
15162
15163 /* If that succeeded, we know we'll be keeping all the
15164 relocs. */
15165 if (h->dynindx != -1)
15166 goto keep;
15167 }
15168
15169 eh->dyn_relocs = NULL;
15170
15171 keep: ;
15172 }
15173
15174 /* Finally, allocate space. */
15175 for (p = eh->dyn_relocs; p != NULL; p = p->next)
15176 {
15177 asection *sreloc = elf_section_data (p->sec)->sreloc;
15178 if (h->type == STT_GNU_IFUNC
15179 && eh->plt.noncall_refcount == 0
15180 && SYMBOL_REFERENCES_LOCAL (info, h))
15181 elf32_arm_allocate_irelocs (info, sreloc, p->count);
15182 else
15183 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
15184 }
15185
15186 return TRUE;
15187 }
15188
15189 /* Find any dynamic relocs that apply to read-only sections. */
15190
15191 static bfd_boolean
15192 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
15193 {
15194 struct elf32_arm_link_hash_entry * eh;
15195 struct elf_dyn_relocs * p;
15196
15197 eh = (struct elf32_arm_link_hash_entry *) h;
15198 for (p = eh->dyn_relocs; p != NULL; p = p->next)
15199 {
15200 asection *s = p->sec;
15201
15202 if (s != NULL && (s->flags & SEC_READONLY) != 0)
15203 {
15204 struct bfd_link_info *info = (struct bfd_link_info *) inf;
15205
15206 info->flags |= DF_TEXTREL;
15207
15208 /* Not an error, just cut short the traversal. */
15209 return FALSE;
15210 }
15211 }
15212 return TRUE;
15213 }
15214
15215 void
15216 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
15217 int byteswap_code)
15218 {
15219 struct elf32_arm_link_hash_table *globals;
15220
15221 globals = elf32_arm_hash_table (info);
15222 if (globals == NULL)
15223 return;
15224
15225 globals->byteswap_code = byteswap_code;
15226 }
15227
15228 /* Set the sizes of the dynamic sections. */
15229
15230 static bfd_boolean
15231 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
15232 struct bfd_link_info * info)
15233 {
15234 bfd * dynobj;
15235 asection * s;
15236 bfd_boolean plt;
15237 bfd_boolean relocs;
15238 bfd *ibfd;
15239 struct elf32_arm_link_hash_table *htab;
15240
15241 htab = elf32_arm_hash_table (info);
15242 if (htab == NULL)
15243 return FALSE;
15244
15245 dynobj = elf_hash_table (info)->dynobj;
15246 BFD_ASSERT (dynobj != NULL);
15247 check_use_blx (htab);
15248
15249 if (elf_hash_table (info)->dynamic_sections_created)
15250 {
15251 /* Set the contents of the .interp section to the interpreter. */
15252 if (bfd_link_executable (info) && !info->nointerp)
15253 {
15254 s = bfd_get_linker_section (dynobj, ".interp");
15255 BFD_ASSERT (s != NULL);
15256 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
15257 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
15258 }
15259 }
15260
15261 /* Set up .got offsets for local syms, and space for local dynamic
15262 relocs. */
15263 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
15264 {
15265 bfd_signed_vma *local_got;
15266 bfd_signed_vma *end_local_got;
15267 struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
15268 char *local_tls_type;
15269 bfd_vma *local_tlsdesc_gotent;
15270 bfd_size_type locsymcount;
15271 Elf_Internal_Shdr *symtab_hdr;
15272 asection *srel;
15273 bfd_boolean is_vxworks = htab->vxworks_p;
15274 unsigned int symndx;
15275
15276 if (! is_arm_elf (ibfd))
15277 continue;
15278
15279 for (s = ibfd->sections; s != NULL; s = s->next)
15280 {
15281 struct elf_dyn_relocs *p;
15282
15283 for (p = (struct elf_dyn_relocs *)
15284 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
15285 {
15286 if (!bfd_is_abs_section (p->sec)
15287 && bfd_is_abs_section (p->sec->output_section))
15288 {
15289 /* Input section has been discarded, either because
15290 it is a copy of a linkonce section or due to
15291 linker script /DISCARD/, so we'll be discarding
15292 the relocs too. */
15293 }
15294 else if (is_vxworks
15295 && strcmp (p->sec->output_section->name,
15296 ".tls_vars") == 0)
15297 {
15298 /* Relocations in vxworks .tls_vars sections are
15299 handled specially by the loader. */
15300 }
15301 else if (p->count != 0)
15302 {
15303 srel = elf_section_data (p->sec)->sreloc;
15304 elf32_arm_allocate_dynrelocs (info, srel, p->count);
15305 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
15306 info->flags |= DF_TEXTREL;
15307 }
15308 }
15309 }
15310
15311 local_got = elf_local_got_refcounts (ibfd);
15312 if (!local_got)
15313 continue;
15314
15315 symtab_hdr = & elf_symtab_hdr (ibfd);
15316 locsymcount = symtab_hdr->sh_info;
15317 end_local_got = local_got + locsymcount;
15318 local_iplt_ptr = elf32_arm_local_iplt (ibfd);
15319 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
15320 local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
15321 symndx = 0;
15322 s = htab->root.sgot;
15323 srel = htab->root.srelgot;
15324 for (; local_got < end_local_got;
15325 ++local_got, ++local_iplt_ptr, ++local_tls_type,
15326 ++local_tlsdesc_gotent, ++symndx)
15327 {
15328 *local_tlsdesc_gotent = (bfd_vma) -1;
15329 local_iplt = *local_iplt_ptr;
15330 if (local_iplt != NULL)
15331 {
15332 struct elf_dyn_relocs *p;
15333
15334 if (local_iplt->root.refcount > 0)
15335 {
15336 elf32_arm_allocate_plt_entry (info, TRUE,
15337 &local_iplt->root,
15338 &local_iplt->arm);
15339 if (local_iplt->arm.noncall_refcount == 0)
15340 /* All references to the PLT are calls, so all
15341 non-call references can resolve directly to the
15342 run-time target. This means that the .got entry
15343 would be the same as the .igot.plt entry, so there's
15344 no point creating both. */
15345 *local_got = 0;
15346 }
15347 else
15348 {
15349 BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
15350 local_iplt->root.offset = (bfd_vma) -1;
15351 }
15352
15353 for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
15354 {
15355 asection *psrel;
15356
15357 psrel = elf_section_data (p->sec)->sreloc;
15358 if (local_iplt->arm.noncall_refcount == 0)
15359 elf32_arm_allocate_irelocs (info, psrel, p->count);
15360 else
15361 elf32_arm_allocate_dynrelocs (info, psrel, p->count);
15362 }
15363 }
15364 if (*local_got > 0)
15365 {
15366 Elf_Internal_Sym *isym;
15367
15368 *local_got = s->size;
15369 if (*local_tls_type & GOT_TLS_GD)
15370 /* TLS_GD relocs need an 8-byte structure in the GOT. */
15371 s->size += 8;
15372 if (*local_tls_type & GOT_TLS_GDESC)
15373 {
15374 *local_tlsdesc_gotent = htab->root.sgotplt->size
15375 - elf32_arm_compute_jump_table_size (htab);
15376 htab->root.sgotplt->size += 8;
15377 *local_got = (bfd_vma) -2;
15378 /* plt.got_offset needs to know there's a TLS_DESC
15379 reloc in the middle of .got.plt. */
15380 htab->num_tls_desc++;
15381 }
15382 if (*local_tls_type & GOT_TLS_IE)
15383 s->size += 4;
15384
15385 if (*local_tls_type & GOT_NORMAL)
15386 {
15387 /* If the symbol is both GD and GDESC, *local_got
15388 may have been overwritten. */
15389 *local_got = s->size;
15390 s->size += 4;
15391 }
15392
15393 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx);
15394 if (isym == NULL)
15395 return FALSE;
15396
15397 /* If all references to an STT_GNU_IFUNC PLT are calls,
15398 then all non-call references, including this GOT entry,
15399 resolve directly to the run-time target. */
15400 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
15401 && (local_iplt == NULL
15402 || local_iplt->arm.noncall_refcount == 0))
15403 elf32_arm_allocate_irelocs (info, srel, 1);
15404 else if (bfd_link_pic (info) || output_bfd->flags & DYNAMIC)
15405 {
15406 if ((bfd_link_pic (info) && !(*local_tls_type & GOT_TLS_GDESC))
15407 || *local_tls_type & GOT_TLS_GD)
15408 elf32_arm_allocate_dynrelocs (info, srel, 1);
15409
15410 if (bfd_link_pic (info) && *local_tls_type & GOT_TLS_GDESC)
15411 {
15412 elf32_arm_allocate_dynrelocs (info,
15413 htab->root.srelplt, 1);
15414 htab->tls_trampoline = -1;
15415 }
15416 }
15417 }
15418 else
15419 *local_got = (bfd_vma) -1;
15420 }
15421 }
15422
15423 if (htab->tls_ldm_got.refcount > 0)
15424 {
15425 /* Allocate two GOT entries and one dynamic relocation (if necessary)
15426 for R_ARM_TLS_LDM32 relocations. */
15427 htab->tls_ldm_got.offset = htab->root.sgot->size;
15428 htab->root.sgot->size += 8;
15429 if (bfd_link_pic (info))
15430 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15431 }
15432 else
15433 htab->tls_ldm_got.offset = -1;
15434
15435 /* Allocate global sym .plt and .got entries, and space for global
15436 sym dynamic relocs. */
15437 elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
15438
15439 /* Here we rummage through the found bfds to collect glue information. */
15440 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
15441 {
15442 if (! is_arm_elf (ibfd))
15443 continue;
15444
15445 /* Initialise mapping tables for code/data. */
15446 bfd_elf32_arm_init_maps (ibfd);
15447
15448 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
15449 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info)
15450 || !bfd_elf32_arm_stm32l4xx_erratum_scan (ibfd, info))
15451 /* xgettext:c-format */
15452 _bfd_error_handler (_("Errors encountered processing file %s"),
15453 ibfd->filename);
15454 }
15455
15456 /* Allocate space for the glue sections now that we've sized them. */
15457 bfd_elf32_arm_allocate_interworking_sections (info);
15458
15459 /* For every jump slot reserved in the sgotplt, reloc_count is
15460 incremented. However, when we reserve space for TLS descriptors,
15461 it's not incremented, so in order to compute the space reserved
15462 for them, it suffices to multiply the reloc count by the jump
15463 slot size. */
15464 if (htab->root.srelplt)
15465 htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab);
15466
15467 if (htab->tls_trampoline)
15468 {
15469 if (htab->root.splt->size == 0)
15470 htab->root.splt->size += htab->plt_header_size;
15471
15472 htab->tls_trampoline = htab->root.splt->size;
15473 htab->root.splt->size += htab->plt_entry_size;
15474
15475 /* If we're not using lazy TLS relocations, don't generate the
15476 PLT and GOT entries they require. */
15477 if (!(info->flags & DF_BIND_NOW))
15478 {
15479 htab->dt_tlsdesc_got = htab->root.sgot->size;
15480 htab->root.sgot->size += 4;
15481
15482 htab->dt_tlsdesc_plt = htab->root.splt->size;
15483 htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
15484 }
15485 }
15486
15487 /* The check_relocs and adjust_dynamic_symbol entry points have
15488 determined the sizes of the various dynamic sections. Allocate
15489 memory for them. */
15490 plt = FALSE;
15491 relocs = FALSE;
15492 for (s = dynobj->sections; s != NULL; s = s->next)
15493 {
15494 const char * name;
15495
15496 if ((s->flags & SEC_LINKER_CREATED) == 0)
15497 continue;
15498
15499 /* It's OK to base decisions on the section name, because none
15500 of the dynobj section names depend upon the input files. */
15501 name = bfd_get_section_name (dynobj, s);
15502
15503 if (s == htab->root.splt)
15504 {
15505 /* Remember whether there is a PLT. */
15506 plt = s->size != 0;
15507 }
15508 else if (CONST_STRNEQ (name, ".rel"))
15509 {
15510 if (s->size != 0)
15511 {
15512 /* Remember whether there are any reloc sections other
15513 than .rel(a).plt and .rela.plt.unloaded. */
15514 if (s != htab->root.srelplt && s != htab->srelplt2)
15515 relocs = TRUE;
15516
15517 /* We use the reloc_count field as a counter if we need
15518 to copy relocs into the output file. */
15519 s->reloc_count = 0;
15520 }
15521 }
15522 else if (s != htab->root.sgot
15523 && s != htab->root.sgotplt
15524 && s != htab->root.iplt
15525 && s != htab->root.igotplt
15526 && s != htab->sdynbss)
15527 {
15528 /* It's not one of our sections, so don't allocate space. */
15529 continue;
15530 }
15531
15532 if (s->size == 0)
15533 {
15534 /* If we don't need this section, strip it from the
15535 output file. This is mostly to handle .rel(a).bss and
15536 .rel(a).plt. We must create both sections in
15537 create_dynamic_sections, because they must be created
15538 before the linker maps input sections to output
15539 sections. The linker does that before
15540 adjust_dynamic_symbol is called, and it is that
15541 function which decides whether anything needs to go
15542 into these sections. */
15543 s->flags |= SEC_EXCLUDE;
15544 continue;
15545 }
15546
15547 if ((s->flags & SEC_HAS_CONTENTS) == 0)
15548 continue;
15549
15550 /* Allocate memory for the section contents. */
15551 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
15552 if (s->contents == NULL)
15553 return FALSE;
15554 }
15555
15556 if (elf_hash_table (info)->dynamic_sections_created)
15557 {
15558 /* Add some entries to the .dynamic section. We fill in the
15559 values later, in elf32_arm_finish_dynamic_sections, but we
15560 must add the entries now so that we get the correct size for
15561 the .dynamic section. The DT_DEBUG entry is filled in by the
15562 dynamic linker and used by the debugger. */
15563 #define add_dynamic_entry(TAG, VAL) \
15564 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
15565
15566 if (bfd_link_executable (info))
15567 {
15568 if (!add_dynamic_entry (DT_DEBUG, 0))
15569 return FALSE;
15570 }
15571
15572 if (plt)
15573 {
15574 if ( !add_dynamic_entry (DT_PLTGOT, 0)
15575 || !add_dynamic_entry (DT_PLTRELSZ, 0)
15576 || !add_dynamic_entry (DT_PLTREL,
15577 htab->use_rel ? DT_REL : DT_RELA)
15578 || !add_dynamic_entry (DT_JMPREL, 0))
15579 return FALSE;
15580
15581 if (htab->dt_tlsdesc_plt &&
15582 (!add_dynamic_entry (DT_TLSDESC_PLT,0)
15583 || !add_dynamic_entry (DT_TLSDESC_GOT,0)))
15584 return FALSE;
15585 }
15586
15587 if (relocs)
15588 {
15589 if (htab->use_rel)
15590 {
15591 if (!add_dynamic_entry (DT_REL, 0)
15592 || !add_dynamic_entry (DT_RELSZ, 0)
15593 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
15594 return FALSE;
15595 }
15596 else
15597 {
15598 if (!add_dynamic_entry (DT_RELA, 0)
15599 || !add_dynamic_entry (DT_RELASZ, 0)
15600 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
15601 return FALSE;
15602 }
15603 }
15604
15605 /* If any dynamic relocs apply to a read-only section,
15606 then we need a DT_TEXTREL entry. */
15607 if ((info->flags & DF_TEXTREL) == 0)
15608 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
15609 info);
15610
15611 if ((info->flags & DF_TEXTREL) != 0)
15612 {
15613 if (!add_dynamic_entry (DT_TEXTREL, 0))
15614 return FALSE;
15615 }
15616 if (htab->vxworks_p
15617 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
15618 return FALSE;
15619 }
15620 #undef add_dynamic_entry
15621
15622 return TRUE;
15623 }
15624
15625 /* Size sections even though they're not dynamic. We use it to setup
15626 _TLS_MODULE_BASE_, if needed. */
15627
15628 static bfd_boolean
15629 elf32_arm_always_size_sections (bfd *output_bfd,
15630 struct bfd_link_info *info)
15631 {
15632 asection *tls_sec;
15633
15634 if (bfd_link_relocatable (info))
15635 return TRUE;
15636
15637 tls_sec = elf_hash_table (info)->tls_sec;
15638
15639 if (tls_sec)
15640 {
15641 struct elf_link_hash_entry *tlsbase;
15642
15643 tlsbase = elf_link_hash_lookup
15644 (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
15645
15646 if (tlsbase)
15647 {
15648 struct bfd_link_hash_entry *bh = NULL;
15649 const struct elf_backend_data *bed
15650 = get_elf_backend_data (output_bfd);
15651
15652 if (!(_bfd_generic_link_add_one_symbol
15653 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
15654 tls_sec, 0, NULL, FALSE,
15655 bed->collect, &bh)))
15656 return FALSE;
15657
15658 tlsbase->type = STT_TLS;
15659 tlsbase = (struct elf_link_hash_entry *)bh;
15660 tlsbase->def_regular = 1;
15661 tlsbase->other = STV_HIDDEN;
15662 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
15663 }
15664 }
15665 return TRUE;
15666 }
15667
15668 /* Finish up dynamic symbol handling. We set the contents of various
15669 dynamic sections here. */
15670
15671 static bfd_boolean
15672 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
15673 struct bfd_link_info * info,
15674 struct elf_link_hash_entry * h,
15675 Elf_Internal_Sym * sym)
15676 {
15677 struct elf32_arm_link_hash_table *htab;
15678 struct elf32_arm_link_hash_entry *eh;
15679
15680 htab = elf32_arm_hash_table (info);
15681 if (htab == NULL)
15682 return FALSE;
15683
15684 eh = (struct elf32_arm_link_hash_entry *) h;
15685
15686 if (h->plt.offset != (bfd_vma) -1)
15687 {
15688 if (!eh->is_iplt)
15689 {
15690 BFD_ASSERT (h->dynindx != -1);
15691 if (! elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
15692 h->dynindx, 0))
15693 return FALSE;
15694 }
15695
15696 if (!h->def_regular)
15697 {
15698 /* Mark the symbol as undefined, rather than as defined in
15699 the .plt section. */
15700 sym->st_shndx = SHN_UNDEF;
15701 /* If the symbol is weak we need to clear the value.
15702 Otherwise, the PLT entry would provide a definition for
15703 the symbol even if the symbol wasn't defined anywhere,
15704 and so the symbol would never be NULL. Leave the value if
15705 there were any relocations where pointer equality matters
15706 (this is a clue for the dynamic linker, to make function
15707 pointer comparisons work between an application and shared
15708 library). */
15709 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
15710 sym->st_value = 0;
15711 }
15712 else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
15713 {
15714 /* At least one non-call relocation references this .iplt entry,
15715 so the .iplt entry is the function's canonical address. */
15716 sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
15717 ARM_SET_SYM_BRANCH_TYPE (sym->st_target_internal, ST_BRANCH_TO_ARM);
15718 sym->st_shndx = (_bfd_elf_section_from_bfd_section
15719 (output_bfd, htab->root.iplt->output_section));
15720 sym->st_value = (h->plt.offset
15721 + htab->root.iplt->output_section->vma
15722 + htab->root.iplt->output_offset);
15723 }
15724 }
15725
15726 if (h->needs_copy)
15727 {
15728 asection * s;
15729 Elf_Internal_Rela rel;
15730
15731 /* This symbol needs a copy reloc. Set it up. */
15732 BFD_ASSERT (h->dynindx != -1
15733 && (h->root.type == bfd_link_hash_defined
15734 || h->root.type == bfd_link_hash_defweak));
15735
15736 s = htab->srelbss;
15737 BFD_ASSERT (s != NULL);
15738
15739 rel.r_addend = 0;
15740 rel.r_offset = (h->root.u.def.value
15741 + h->root.u.def.section->output_section->vma
15742 + h->root.u.def.section->output_offset);
15743 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
15744 elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
15745 }
15746
15747 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
15748 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
15749 to the ".got" section. */
15750 if (h == htab->root.hdynamic
15751 || (!htab->vxworks_p && h == htab->root.hgot))
15752 sym->st_shndx = SHN_ABS;
15753
15754 return TRUE;
15755 }
15756
15757 static void
15758 arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
15759 void *contents,
15760 const unsigned long *template, unsigned count)
15761 {
15762 unsigned ix;
15763
15764 for (ix = 0; ix != count; ix++)
15765 {
15766 unsigned long insn = template[ix];
15767
15768 /* Emit mov pc,rx if bx is not permitted. */
15769 if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
15770 insn = (insn & 0xf000000f) | 0x01a0f000;
15771 put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
15772 }
15773 }
15774
15775 /* Install the special first PLT entry for elf32-arm-nacl. Unlike
15776 other variants, NaCl needs this entry in a static executable's
15777 .iplt too. When we're handling that case, GOT_DISPLACEMENT is
15778 zero. For .iplt really only the last bundle is useful, and .iplt
15779 could have a shorter first entry, with each individual PLT entry's
15780 relative branch calculated differently so it targets the last
15781 bundle instead of the instruction before it (labelled .Lplt_tail
15782 above). But it's simpler to keep the size and layout of PLT0
15783 consistent with the dynamic case, at the cost of some dead code at
15784 the start of .iplt and the one dead store to the stack at the start
15785 of .Lplt_tail. */
15786 static void
15787 arm_nacl_put_plt0 (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
15788 asection *plt, bfd_vma got_displacement)
15789 {
15790 unsigned int i;
15791
15792 put_arm_insn (htab, output_bfd,
15793 elf32_arm_nacl_plt0_entry[0]
15794 | arm_movw_immediate (got_displacement),
15795 plt->contents + 0);
15796 put_arm_insn (htab, output_bfd,
15797 elf32_arm_nacl_plt0_entry[1]
15798 | arm_movt_immediate (got_displacement),
15799 plt->contents + 4);
15800
15801 for (i = 2; i < ARRAY_SIZE (elf32_arm_nacl_plt0_entry); ++i)
15802 put_arm_insn (htab, output_bfd,
15803 elf32_arm_nacl_plt0_entry[i],
15804 plt->contents + (i * 4));
15805 }
15806
15807 /* Finish up the dynamic sections. */
15808
15809 static bfd_boolean
15810 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
15811 {
15812 bfd * dynobj;
15813 asection * sgot;
15814 asection * sdyn;
15815 struct elf32_arm_link_hash_table *htab;
15816
15817 htab = elf32_arm_hash_table (info);
15818 if (htab == NULL)
15819 return FALSE;
15820
15821 dynobj = elf_hash_table (info)->dynobj;
15822
15823 sgot = htab->root.sgotplt;
15824 /* A broken linker script might have discarded the dynamic sections.
15825 Catch this here so that we do not seg-fault later on. */
15826 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
15827 return FALSE;
15828 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
15829
15830 if (elf_hash_table (info)->dynamic_sections_created)
15831 {
15832 asection *splt;
15833 Elf32_External_Dyn *dyncon, *dynconend;
15834
15835 splt = htab->root.splt;
15836 BFD_ASSERT (splt != NULL && sdyn != NULL);
15837 BFD_ASSERT (htab->symbian_p || sgot != NULL);
15838
15839 dyncon = (Elf32_External_Dyn *) sdyn->contents;
15840 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
15841
15842 for (; dyncon < dynconend; dyncon++)
15843 {
15844 Elf_Internal_Dyn dyn;
15845 const char * name;
15846 asection * s;
15847
15848 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
15849
15850 switch (dyn.d_tag)
15851 {
15852 unsigned int type;
15853
15854 default:
15855 if (htab->vxworks_p
15856 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
15857 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
15858 break;
15859
15860 case DT_HASH:
15861 name = ".hash";
15862 goto get_vma_if_bpabi;
15863 case DT_STRTAB:
15864 name = ".dynstr";
15865 goto get_vma_if_bpabi;
15866 case DT_SYMTAB:
15867 name = ".dynsym";
15868 goto get_vma_if_bpabi;
15869 case DT_VERSYM:
15870 name = ".gnu.version";
15871 goto get_vma_if_bpabi;
15872 case DT_VERDEF:
15873 name = ".gnu.version_d";
15874 goto get_vma_if_bpabi;
15875 case DT_VERNEED:
15876 name = ".gnu.version_r";
15877 goto get_vma_if_bpabi;
15878
15879 case DT_PLTGOT:
15880 name = htab->symbian_p ? ".got" : ".got.plt";
15881 goto get_vma;
15882 case DT_JMPREL:
15883 name = RELOC_SECTION (htab, ".plt");
15884 get_vma:
15885 s = bfd_get_linker_section (dynobj, name);
15886 if (s == NULL)
15887 {
15888 (*_bfd_error_handler)
15889 (_("could not find section %s"), name);
15890 bfd_set_error (bfd_error_invalid_operation);
15891 return FALSE;
15892 }
15893 if (!htab->symbian_p)
15894 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
15895 else
15896 /* In the BPABI, tags in the PT_DYNAMIC section point
15897 at the file offset, not the memory address, for the
15898 convenience of the post linker. */
15899 dyn.d_un.d_ptr = s->output_section->filepos + s->output_offset;
15900 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
15901 break;
15902
15903 get_vma_if_bpabi:
15904 if (htab->symbian_p)
15905 goto get_vma;
15906 break;
15907
15908 case DT_PLTRELSZ:
15909 s = htab->root.srelplt;
15910 BFD_ASSERT (s != NULL);
15911 dyn.d_un.d_val = s->size;
15912 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
15913 break;
15914
15915 case DT_RELSZ:
15916 case DT_RELASZ:
15917 if (!htab->symbian_p)
15918 {
15919 /* My reading of the SVR4 ABI indicates that the
15920 procedure linkage table relocs (DT_JMPREL) should be
15921 included in the overall relocs (DT_REL). This is
15922 what Solaris does. However, UnixWare can not handle
15923 that case. Therefore, we override the DT_RELSZ entry
15924 here to make it not include the JMPREL relocs. Since
15925 the linker script arranges for .rel(a).plt to follow all
15926 other relocation sections, we don't have to worry
15927 about changing the DT_REL entry. */
15928 s = htab->root.srelplt;
15929 if (s != NULL)
15930 dyn.d_un.d_val -= s->size;
15931 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
15932 break;
15933 }
15934 /* Fall through. */
15935
15936 case DT_REL:
15937 case DT_RELA:
15938 /* In the BPABI, the DT_REL tag must point at the file
15939 offset, not the VMA, of the first relocation
15940 section. So, we use code similar to that in
15941 elflink.c, but do not check for SHF_ALLOC on the
15942 relcoation section, since relocations sections are
15943 never allocated under the BPABI. The comments above
15944 about Unixware notwithstanding, we include all of the
15945 relocations here. */
15946 if (htab->symbian_p)
15947 {
15948 unsigned int i;
15949 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
15950 ? SHT_REL : SHT_RELA);
15951 dyn.d_un.d_val = 0;
15952 for (i = 1; i < elf_numsections (output_bfd); i++)
15953 {
15954 Elf_Internal_Shdr *hdr
15955 = elf_elfsections (output_bfd)[i];
15956 if (hdr->sh_type == type)
15957 {
15958 if (dyn.d_tag == DT_RELSZ
15959 || dyn.d_tag == DT_RELASZ)
15960 dyn.d_un.d_val += hdr->sh_size;
15961 else if ((ufile_ptr) hdr->sh_offset
15962 <= dyn.d_un.d_val - 1)
15963 dyn.d_un.d_val = hdr->sh_offset;
15964 }
15965 }
15966 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
15967 }
15968 break;
15969
15970 case DT_TLSDESC_PLT:
15971 s = htab->root.splt;
15972 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
15973 + htab->dt_tlsdesc_plt);
15974 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
15975 break;
15976
15977 case DT_TLSDESC_GOT:
15978 s = htab->root.sgot;
15979 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
15980 + htab->dt_tlsdesc_got);
15981 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
15982 break;
15983
15984 /* Set the bottom bit of DT_INIT/FINI if the
15985 corresponding function is Thumb. */
15986 case DT_INIT:
15987 name = info->init_function;
15988 goto get_sym;
15989 case DT_FINI:
15990 name = info->fini_function;
15991 get_sym:
15992 /* If it wasn't set by elf_bfd_final_link
15993 then there is nothing to adjust. */
15994 if (dyn.d_un.d_val != 0)
15995 {
15996 struct elf_link_hash_entry * eh;
15997
15998 eh = elf_link_hash_lookup (elf_hash_table (info), name,
15999 FALSE, FALSE, TRUE);
16000 if (eh != NULL
16001 && ARM_GET_SYM_BRANCH_TYPE (eh->target_internal)
16002 == ST_BRANCH_TO_THUMB)
16003 {
16004 dyn.d_un.d_val |= 1;
16005 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16006 }
16007 }
16008 break;
16009 }
16010 }
16011
16012 /* Fill in the first entry in the procedure linkage table. */
16013 if (splt->size > 0 && htab->plt_header_size)
16014 {
16015 const bfd_vma *plt0_entry;
16016 bfd_vma got_address, plt_address, got_displacement;
16017
16018 /* Calculate the addresses of the GOT and PLT. */
16019 got_address = sgot->output_section->vma + sgot->output_offset;
16020 plt_address = splt->output_section->vma + splt->output_offset;
16021
16022 if (htab->vxworks_p)
16023 {
16024 /* The VxWorks GOT is relocated by the dynamic linker.
16025 Therefore, we must emit relocations rather than simply
16026 computing the values now. */
16027 Elf_Internal_Rela rel;
16028
16029 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
16030 put_arm_insn (htab, output_bfd, plt0_entry[0],
16031 splt->contents + 0);
16032 put_arm_insn (htab, output_bfd, plt0_entry[1],
16033 splt->contents + 4);
16034 put_arm_insn (htab, output_bfd, plt0_entry[2],
16035 splt->contents + 8);
16036 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
16037
16038 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
16039 rel.r_offset = plt_address + 12;
16040 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
16041 rel.r_addend = 0;
16042 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
16043 htab->srelplt2->contents);
16044 }
16045 else if (htab->nacl_p)
16046 arm_nacl_put_plt0 (htab, output_bfd, splt,
16047 got_address + 8 - (plt_address + 16));
16048 else if (using_thumb_only (htab))
16049 {
16050 got_displacement = got_address - (plt_address + 12);
16051
16052 plt0_entry = elf32_thumb2_plt0_entry;
16053 put_arm_insn (htab, output_bfd, plt0_entry[0],
16054 splt->contents + 0);
16055 put_arm_insn (htab, output_bfd, plt0_entry[1],
16056 splt->contents + 4);
16057 put_arm_insn (htab, output_bfd, plt0_entry[2],
16058 splt->contents + 8);
16059
16060 bfd_put_32 (output_bfd, got_displacement, splt->contents + 12);
16061 }
16062 else
16063 {
16064 got_displacement = got_address - (plt_address + 16);
16065
16066 plt0_entry = elf32_arm_plt0_entry;
16067 put_arm_insn (htab, output_bfd, plt0_entry[0],
16068 splt->contents + 0);
16069 put_arm_insn (htab, output_bfd, plt0_entry[1],
16070 splt->contents + 4);
16071 put_arm_insn (htab, output_bfd, plt0_entry[2],
16072 splt->contents + 8);
16073 put_arm_insn (htab, output_bfd, plt0_entry[3],
16074 splt->contents + 12);
16075
16076 #ifdef FOUR_WORD_PLT
16077 /* The displacement value goes in the otherwise-unused
16078 last word of the second entry. */
16079 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
16080 #else
16081 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
16082 #endif
16083 }
16084 }
16085
16086 /* UnixWare sets the entsize of .plt to 4, although that doesn't
16087 really seem like the right value. */
16088 if (splt->output_section->owner == output_bfd)
16089 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
16090
16091 if (htab->dt_tlsdesc_plt)
16092 {
16093 bfd_vma got_address
16094 = sgot->output_section->vma + sgot->output_offset;
16095 bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
16096 + htab->root.sgot->output_offset);
16097 bfd_vma plt_address
16098 = splt->output_section->vma + splt->output_offset;
16099
16100 arm_put_trampoline (htab, output_bfd,
16101 splt->contents + htab->dt_tlsdesc_plt,
16102 dl_tlsdesc_lazy_trampoline, 6);
16103
16104 bfd_put_32 (output_bfd,
16105 gotplt_address + htab->dt_tlsdesc_got
16106 - (plt_address + htab->dt_tlsdesc_plt)
16107 - dl_tlsdesc_lazy_trampoline[6],
16108 splt->contents + htab->dt_tlsdesc_plt + 24);
16109 bfd_put_32 (output_bfd,
16110 got_address - (plt_address + htab->dt_tlsdesc_plt)
16111 - dl_tlsdesc_lazy_trampoline[7],
16112 splt->contents + htab->dt_tlsdesc_plt + 24 + 4);
16113 }
16114
16115 if (htab->tls_trampoline)
16116 {
16117 arm_put_trampoline (htab, output_bfd,
16118 splt->contents + htab->tls_trampoline,
16119 tls_trampoline, 3);
16120 #ifdef FOUR_WORD_PLT
16121 bfd_put_32 (output_bfd, 0x00000000,
16122 splt->contents + htab->tls_trampoline + 12);
16123 #endif
16124 }
16125
16126 if (htab->vxworks_p
16127 && !bfd_link_pic (info)
16128 && htab->root.splt->size > 0)
16129 {
16130 /* Correct the .rel(a).plt.unloaded relocations. They will have
16131 incorrect symbol indexes. */
16132 int num_plts;
16133 unsigned char *p;
16134
16135 num_plts = ((htab->root.splt->size - htab->plt_header_size)
16136 / htab->plt_entry_size);
16137 p = htab->srelplt2->contents + RELOC_SIZE (htab);
16138
16139 for (; num_plts; num_plts--)
16140 {
16141 Elf_Internal_Rela rel;
16142
16143 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
16144 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
16145 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
16146 p += RELOC_SIZE (htab);
16147
16148 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
16149 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
16150 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
16151 p += RELOC_SIZE (htab);
16152 }
16153 }
16154 }
16155
16156 if (htab->nacl_p && htab->root.iplt != NULL && htab->root.iplt->size > 0)
16157 /* NaCl uses a special first entry in .iplt too. */
16158 arm_nacl_put_plt0 (htab, output_bfd, htab->root.iplt, 0);
16159
16160 /* Fill in the first three entries in the global offset table. */
16161 if (sgot)
16162 {
16163 if (sgot->size > 0)
16164 {
16165 if (sdyn == NULL)
16166 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
16167 else
16168 bfd_put_32 (output_bfd,
16169 sdyn->output_section->vma + sdyn->output_offset,
16170 sgot->contents);
16171 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
16172 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
16173 }
16174
16175 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
16176 }
16177
16178 return TRUE;
16179 }
16180
16181 static void
16182 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
16183 {
16184 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
16185 struct elf32_arm_link_hash_table *globals;
16186 struct elf_segment_map *m;
16187
16188 i_ehdrp = elf_elfheader (abfd);
16189
16190 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
16191 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
16192 else
16193 _bfd_elf_post_process_headers (abfd, link_info);
16194 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
16195
16196 if (link_info)
16197 {
16198 globals = elf32_arm_hash_table (link_info);
16199 if (globals != NULL && globals->byteswap_code)
16200 i_ehdrp->e_flags |= EF_ARM_BE8;
16201 }
16202
16203 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_VER5
16204 && ((i_ehdrp->e_type == ET_DYN) || (i_ehdrp->e_type == ET_EXEC)))
16205 {
16206 int abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ABI_VFP_args);
16207 if (abi == AEABI_VFP_args_vfp)
16208 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_HARD;
16209 else
16210 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_SOFT;
16211 }
16212
16213 /* Scan segment to set p_flags attribute if it contains only sections with
16214 SHF_ARM_PURECODE flag. */
16215 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
16216 {
16217 unsigned int j;
16218
16219 if (m->count == 0)
16220 continue;
16221 for (j = 0; j < m->count; j++)
16222 {
16223 if (!(elf_section_flags (m->sections[j]) & SHF_ARM_PURECODE))
16224 break;
16225 }
16226 if (j == m->count)
16227 {
16228 m->p_flags = PF_X;
16229 m->p_flags_valid = 1;
16230 }
16231 }
16232 }
16233
16234 static enum elf_reloc_type_class
16235 elf32_arm_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
16236 const asection *rel_sec ATTRIBUTE_UNUSED,
16237 const Elf_Internal_Rela *rela)
16238 {
16239 switch ((int) ELF32_R_TYPE (rela->r_info))
16240 {
16241 case R_ARM_RELATIVE:
16242 return reloc_class_relative;
16243 case R_ARM_JUMP_SLOT:
16244 return reloc_class_plt;
16245 case R_ARM_COPY:
16246 return reloc_class_copy;
16247 case R_ARM_IRELATIVE:
16248 return reloc_class_ifunc;
16249 default:
16250 return reloc_class_normal;
16251 }
16252 }
16253
16254 static void
16255 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
16256 {
16257 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
16258 }
16259
16260 /* Return TRUE if this is an unwinding table entry. */
16261
16262 static bfd_boolean
16263 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
16264 {
16265 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
16266 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
16267 }
16268
16269
16270 /* Set the type and flags for an ARM section. We do this by
16271 the section name, which is a hack, but ought to work. */
16272
16273 static bfd_boolean
16274 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
16275 {
16276 const char * name;
16277
16278 name = bfd_get_section_name (abfd, sec);
16279
16280 if (is_arm_elf_unwind_section_name (abfd, name))
16281 {
16282 hdr->sh_type = SHT_ARM_EXIDX;
16283 hdr->sh_flags |= SHF_LINK_ORDER;
16284 }
16285
16286 if (sec->flags & SEC_ELF_PURECODE)
16287 hdr->sh_flags |= SHF_ARM_PURECODE;
16288
16289 return TRUE;
16290 }
16291
16292 /* Handle an ARM specific section when reading an object file. This is
16293 called when bfd_section_from_shdr finds a section with an unknown
16294 type. */
16295
16296 static bfd_boolean
16297 elf32_arm_section_from_shdr (bfd *abfd,
16298 Elf_Internal_Shdr * hdr,
16299 const char *name,
16300 int shindex)
16301 {
16302 /* There ought to be a place to keep ELF backend specific flags, but
16303 at the moment there isn't one. We just keep track of the
16304 sections by their name, instead. Fortunately, the ABI gives
16305 names for all the ARM specific sections, so we will probably get
16306 away with this. */
16307 switch (hdr->sh_type)
16308 {
16309 case SHT_ARM_EXIDX:
16310 case SHT_ARM_PREEMPTMAP:
16311 case SHT_ARM_ATTRIBUTES:
16312 break;
16313
16314 default:
16315 return FALSE;
16316 }
16317
16318 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
16319 return FALSE;
16320
16321 return TRUE;
16322 }
16323
16324 static _arm_elf_section_data *
16325 get_arm_elf_section_data (asection * sec)
16326 {
16327 if (sec && sec->owner && is_arm_elf (sec->owner))
16328 return elf32_arm_section_data (sec);
16329 else
16330 return NULL;
16331 }
16332
16333 typedef struct
16334 {
16335 void *flaginfo;
16336 struct bfd_link_info *info;
16337 asection *sec;
16338 int sec_shndx;
16339 int (*func) (void *, const char *, Elf_Internal_Sym *,
16340 asection *, struct elf_link_hash_entry *);
16341 } output_arch_syminfo;
16342
16343 enum map_symbol_type
16344 {
16345 ARM_MAP_ARM,
16346 ARM_MAP_THUMB,
16347 ARM_MAP_DATA
16348 };
16349
16350
16351 /* Output a single mapping symbol. */
16352
16353 static bfd_boolean
16354 elf32_arm_output_map_sym (output_arch_syminfo *osi,
16355 enum map_symbol_type type,
16356 bfd_vma offset)
16357 {
16358 static const char *names[3] = {"$a", "$t", "$d"};
16359 Elf_Internal_Sym sym;
16360
16361 sym.st_value = osi->sec->output_section->vma
16362 + osi->sec->output_offset
16363 + offset;
16364 sym.st_size = 0;
16365 sym.st_other = 0;
16366 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
16367 sym.st_shndx = osi->sec_shndx;
16368 sym.st_target_internal = 0;
16369 elf32_arm_section_map_add (osi->sec, names[type][1], offset);
16370 return osi->func (osi->flaginfo, names[type], &sym, osi->sec, NULL) == 1;
16371 }
16372
16373 /* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
16374 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
16375
16376 static bfd_boolean
16377 elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
16378 bfd_boolean is_iplt_entry_p,
16379 union gotplt_union *root_plt,
16380 struct arm_plt_info *arm_plt)
16381 {
16382 struct elf32_arm_link_hash_table *htab;
16383 bfd_vma addr, plt_header_size;
16384
16385 if (root_plt->offset == (bfd_vma) -1)
16386 return TRUE;
16387
16388 htab = elf32_arm_hash_table (osi->info);
16389 if (htab == NULL)
16390 return FALSE;
16391
16392 if (is_iplt_entry_p)
16393 {
16394 osi->sec = htab->root.iplt;
16395 plt_header_size = 0;
16396 }
16397 else
16398 {
16399 osi->sec = htab->root.splt;
16400 plt_header_size = htab->plt_header_size;
16401 }
16402 osi->sec_shndx = (_bfd_elf_section_from_bfd_section
16403 (osi->info->output_bfd, osi->sec->output_section));
16404
16405 addr = root_plt->offset & -2;
16406 if (htab->symbian_p)
16407 {
16408 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
16409 return FALSE;
16410 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
16411 return FALSE;
16412 }
16413 else if (htab->vxworks_p)
16414 {
16415 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
16416 return FALSE;
16417 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
16418 return FALSE;
16419 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
16420 return FALSE;
16421 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
16422 return FALSE;
16423 }
16424 else if (htab->nacl_p)
16425 {
16426 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
16427 return FALSE;
16428 }
16429 else if (using_thumb_only (htab))
16430 {
16431 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
16432 return FALSE;
16433 }
16434 else
16435 {
16436 bfd_boolean thumb_stub_p;
16437
16438 thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
16439 if (thumb_stub_p)
16440 {
16441 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
16442 return FALSE;
16443 }
16444 #ifdef FOUR_WORD_PLT
16445 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
16446 return FALSE;
16447 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
16448 return FALSE;
16449 #else
16450 /* A three-word PLT with no Thumb thunk contains only Arm code,
16451 so only need to output a mapping symbol for the first PLT entry and
16452 entries with thumb thunks. */
16453 if (thumb_stub_p || addr == plt_header_size)
16454 {
16455 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
16456 return FALSE;
16457 }
16458 #endif
16459 }
16460
16461 return TRUE;
16462 }
16463
16464 /* Output mapping symbols for PLT entries associated with H. */
16465
16466 static bfd_boolean
16467 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
16468 {
16469 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
16470 struct elf32_arm_link_hash_entry *eh;
16471
16472 if (h->root.type == bfd_link_hash_indirect)
16473 return TRUE;
16474
16475 if (h->root.type == bfd_link_hash_warning)
16476 /* When warning symbols are created, they **replace** the "real"
16477 entry in the hash table, thus we never get to see the real
16478 symbol in a hash traversal. So look at it now. */
16479 h = (struct elf_link_hash_entry *) h->root.u.i.link;
16480
16481 eh = (struct elf32_arm_link_hash_entry *) h;
16482 return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
16483 &h->plt, &eh->plt);
16484 }
16485
16486 /* Bind a veneered symbol to its veneer identified by its hash entry
16487 STUB_ENTRY. The veneered location thus loose its symbol. */
16488
16489 static void
16490 arm_stub_claim_sym (struct elf32_arm_stub_hash_entry *stub_entry)
16491 {
16492 struct elf32_arm_link_hash_entry *hash = stub_entry->h;
16493
16494 BFD_ASSERT (hash);
16495 hash->root.root.u.def.section = stub_entry->stub_sec;
16496 hash->root.root.u.def.value = stub_entry->stub_offset;
16497 hash->root.size = stub_entry->stub_size;
16498 }
16499
16500 /* Output a single local symbol for a generated stub. */
16501
16502 static bfd_boolean
16503 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
16504 bfd_vma offset, bfd_vma size)
16505 {
16506 Elf_Internal_Sym sym;
16507
16508 sym.st_value = osi->sec->output_section->vma
16509 + osi->sec->output_offset
16510 + offset;
16511 sym.st_size = size;
16512 sym.st_other = 0;
16513 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
16514 sym.st_shndx = osi->sec_shndx;
16515 sym.st_target_internal = 0;
16516 return osi->func (osi->flaginfo, name, &sym, osi->sec, NULL) == 1;
16517 }
16518
16519 static bfd_boolean
16520 arm_map_one_stub (struct bfd_hash_entry * gen_entry,
16521 void * in_arg)
16522 {
16523 struct elf32_arm_stub_hash_entry *stub_entry;
16524 asection *stub_sec;
16525 bfd_vma addr;
16526 char *stub_name;
16527 output_arch_syminfo *osi;
16528 const insn_sequence *template_sequence;
16529 enum stub_insn_type prev_type;
16530 int size;
16531 int i;
16532 enum map_symbol_type sym_type;
16533
16534 /* Massage our args to the form they really have. */
16535 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
16536 osi = (output_arch_syminfo *) in_arg;
16537
16538 stub_sec = stub_entry->stub_sec;
16539
16540 /* Ensure this stub is attached to the current section being
16541 processed. */
16542 if (stub_sec != osi->sec)
16543 return TRUE;
16544
16545 addr = (bfd_vma) stub_entry->stub_offset;
16546 template_sequence = stub_entry->stub_template;
16547
16548 if (arm_stub_sym_claimed (stub_entry->stub_type))
16549 arm_stub_claim_sym (stub_entry);
16550 else
16551 {
16552 stub_name = stub_entry->output_name;
16553 switch (template_sequence[0].type)
16554 {
16555 case ARM_TYPE:
16556 if (!elf32_arm_output_stub_sym (osi, stub_name, addr,
16557 stub_entry->stub_size))
16558 return FALSE;
16559 break;
16560 case THUMB16_TYPE:
16561 case THUMB32_TYPE:
16562 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
16563 stub_entry->stub_size))
16564 return FALSE;
16565 break;
16566 default:
16567 BFD_FAIL ();
16568 return 0;
16569 }
16570 }
16571
16572 prev_type = DATA_TYPE;
16573 size = 0;
16574 for (i = 0; i < stub_entry->stub_template_size; i++)
16575 {
16576 switch (template_sequence[i].type)
16577 {
16578 case ARM_TYPE:
16579 sym_type = ARM_MAP_ARM;
16580 break;
16581
16582 case THUMB16_TYPE:
16583 case THUMB32_TYPE:
16584 sym_type = ARM_MAP_THUMB;
16585 break;
16586
16587 case DATA_TYPE:
16588 sym_type = ARM_MAP_DATA;
16589 break;
16590
16591 default:
16592 BFD_FAIL ();
16593 return FALSE;
16594 }
16595
16596 if (template_sequence[i].type != prev_type)
16597 {
16598 prev_type = template_sequence[i].type;
16599 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
16600 return FALSE;
16601 }
16602
16603 switch (template_sequence[i].type)
16604 {
16605 case ARM_TYPE:
16606 case THUMB32_TYPE:
16607 size += 4;
16608 break;
16609
16610 case THUMB16_TYPE:
16611 size += 2;
16612 break;
16613
16614 case DATA_TYPE:
16615 size += 4;
16616 break;
16617
16618 default:
16619 BFD_FAIL ();
16620 return FALSE;
16621 }
16622 }
16623
16624 return TRUE;
16625 }
16626
16627 /* Output mapping symbols for linker generated sections,
16628 and for those data-only sections that do not have a
16629 $d. */
16630
16631 static bfd_boolean
16632 elf32_arm_output_arch_local_syms (bfd *output_bfd,
16633 struct bfd_link_info *info,
16634 void *flaginfo,
16635 int (*func) (void *, const char *,
16636 Elf_Internal_Sym *,
16637 asection *,
16638 struct elf_link_hash_entry *))
16639 {
16640 output_arch_syminfo osi;
16641 struct elf32_arm_link_hash_table *htab;
16642 bfd_vma offset;
16643 bfd_size_type size;
16644 bfd *input_bfd;
16645
16646 htab = elf32_arm_hash_table (info);
16647 if (htab == NULL)
16648 return FALSE;
16649
16650 check_use_blx (htab);
16651
16652 osi.flaginfo = flaginfo;
16653 osi.info = info;
16654 osi.func = func;
16655
16656 /* Add a $d mapping symbol to data-only sections that
16657 don't have any mapping symbol. This may result in (harmless) redundant
16658 mapping symbols. */
16659 for (input_bfd = info->input_bfds;
16660 input_bfd != NULL;
16661 input_bfd = input_bfd->link.next)
16662 {
16663 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
16664 for (osi.sec = input_bfd->sections;
16665 osi.sec != NULL;
16666 osi.sec = osi.sec->next)
16667 {
16668 if (osi.sec->output_section != NULL
16669 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
16670 != 0)
16671 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
16672 == SEC_HAS_CONTENTS
16673 && get_arm_elf_section_data (osi.sec) != NULL
16674 && get_arm_elf_section_data (osi.sec)->mapcount == 0
16675 && osi.sec->size > 0
16676 && (osi.sec->flags & SEC_EXCLUDE) == 0)
16677 {
16678 osi.sec_shndx = _bfd_elf_section_from_bfd_section
16679 (output_bfd, osi.sec->output_section);
16680 if (osi.sec_shndx != (int)SHN_BAD)
16681 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
16682 }
16683 }
16684 }
16685
16686 /* ARM->Thumb glue. */
16687 if (htab->arm_glue_size > 0)
16688 {
16689 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
16690 ARM2THUMB_GLUE_SECTION_NAME);
16691
16692 osi.sec_shndx = _bfd_elf_section_from_bfd_section
16693 (output_bfd, osi.sec->output_section);
16694 if (bfd_link_pic (info) || htab->root.is_relocatable_executable
16695 || htab->pic_veneer)
16696 size = ARM2THUMB_PIC_GLUE_SIZE;
16697 else if (htab->use_blx)
16698 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
16699 else
16700 size = ARM2THUMB_STATIC_GLUE_SIZE;
16701
16702 for (offset = 0; offset < htab->arm_glue_size; offset += size)
16703 {
16704 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
16705 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
16706 }
16707 }
16708
16709 /* Thumb->ARM glue. */
16710 if (htab->thumb_glue_size > 0)
16711 {
16712 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
16713 THUMB2ARM_GLUE_SECTION_NAME);
16714
16715 osi.sec_shndx = _bfd_elf_section_from_bfd_section
16716 (output_bfd, osi.sec->output_section);
16717 size = THUMB2ARM_GLUE_SIZE;
16718
16719 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
16720 {
16721 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
16722 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
16723 }
16724 }
16725
16726 /* ARMv4 BX veneers. */
16727 if (htab->bx_glue_size > 0)
16728 {
16729 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
16730 ARM_BX_GLUE_SECTION_NAME);
16731
16732 osi.sec_shndx = _bfd_elf_section_from_bfd_section
16733 (output_bfd, osi.sec->output_section);
16734
16735 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
16736 }
16737
16738 /* Long calls stubs. */
16739 if (htab->stub_bfd && htab->stub_bfd->sections)
16740 {
16741 asection* stub_sec;
16742
16743 for (stub_sec = htab->stub_bfd->sections;
16744 stub_sec != NULL;
16745 stub_sec = stub_sec->next)
16746 {
16747 /* Ignore non-stub sections. */
16748 if (!strstr (stub_sec->name, STUB_SUFFIX))
16749 continue;
16750
16751 osi.sec = stub_sec;
16752
16753 osi.sec_shndx = _bfd_elf_section_from_bfd_section
16754 (output_bfd, osi.sec->output_section);
16755
16756 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
16757 }
16758 }
16759
16760 /* Finally, output mapping symbols for the PLT. */
16761 if (htab->root.splt && htab->root.splt->size > 0)
16762 {
16763 osi.sec = htab->root.splt;
16764 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
16765 (output_bfd, osi.sec->output_section));
16766
16767 /* Output mapping symbols for the plt header. SymbianOS does not have a
16768 plt header. */
16769 if (htab->vxworks_p)
16770 {
16771 /* VxWorks shared libraries have no PLT header. */
16772 if (!bfd_link_pic (info))
16773 {
16774 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
16775 return FALSE;
16776 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
16777 return FALSE;
16778 }
16779 }
16780 else if (htab->nacl_p)
16781 {
16782 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
16783 return FALSE;
16784 }
16785 else if (using_thumb_only (htab))
16786 {
16787 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 0))
16788 return FALSE;
16789 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
16790 return FALSE;
16791 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 16))
16792 return FALSE;
16793 }
16794 else if (!htab->symbian_p)
16795 {
16796 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
16797 return FALSE;
16798 #ifndef FOUR_WORD_PLT
16799 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
16800 return FALSE;
16801 #endif
16802 }
16803 }
16804 if (htab->nacl_p && htab->root.iplt && htab->root.iplt->size > 0)
16805 {
16806 /* NaCl uses a special first entry in .iplt too. */
16807 osi.sec = htab->root.iplt;
16808 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
16809 (output_bfd, osi.sec->output_section));
16810 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
16811 return FALSE;
16812 }
16813 if ((htab->root.splt && htab->root.splt->size > 0)
16814 || (htab->root.iplt && htab->root.iplt->size > 0))
16815 {
16816 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
16817 for (input_bfd = info->input_bfds;
16818 input_bfd != NULL;
16819 input_bfd = input_bfd->link.next)
16820 {
16821 struct arm_local_iplt_info **local_iplt;
16822 unsigned int i, num_syms;
16823
16824 local_iplt = elf32_arm_local_iplt (input_bfd);
16825 if (local_iplt != NULL)
16826 {
16827 num_syms = elf_symtab_hdr (input_bfd).sh_info;
16828 for (i = 0; i < num_syms; i++)
16829 if (local_iplt[i] != NULL
16830 && !elf32_arm_output_plt_map_1 (&osi, TRUE,
16831 &local_iplt[i]->root,
16832 &local_iplt[i]->arm))
16833 return FALSE;
16834 }
16835 }
16836 }
16837 if (htab->dt_tlsdesc_plt != 0)
16838 {
16839 /* Mapping symbols for the lazy tls trampoline. */
16840 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt))
16841 return FALSE;
16842
16843 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
16844 htab->dt_tlsdesc_plt + 24))
16845 return FALSE;
16846 }
16847 if (htab->tls_trampoline != 0)
16848 {
16849 /* Mapping symbols for the tls trampoline. */
16850 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
16851 return FALSE;
16852 #ifdef FOUR_WORD_PLT
16853 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
16854 htab->tls_trampoline + 12))
16855 return FALSE;
16856 #endif
16857 }
16858
16859 return TRUE;
16860 }
16861
16862 /* Filter normal symbols of CMSE entry functions of ABFD to include in
16863 the import library. All SYMCOUNT symbols of ABFD can be examined
16864 from their pointers in SYMS. Pointers of symbols to keep should be
16865 stored continuously at the beginning of that array.
16866
16867 Returns the number of symbols to keep. */
16868
16869 static unsigned int
16870 elf32_arm_filter_cmse_symbols (bfd *abfd ATTRIBUTE_UNUSED,
16871 struct bfd_link_info *info,
16872 asymbol **syms, long symcount)
16873 {
16874 size_t maxnamelen;
16875 char *cmse_name;
16876 long src_count, dst_count = 0;
16877 struct elf32_arm_link_hash_table *htab;
16878
16879 htab = elf32_arm_hash_table (info);
16880 if (!htab->stub_bfd || !htab->stub_bfd->sections)
16881 symcount = 0;
16882
16883 maxnamelen = 128;
16884 cmse_name = (char *) bfd_malloc (maxnamelen);
16885 for (src_count = 0; src_count < symcount; src_count++)
16886 {
16887 struct elf32_arm_link_hash_entry *cmse_hash;
16888 asymbol *sym;
16889 flagword flags;
16890 char *name;
16891 size_t namelen;
16892
16893 sym = syms[src_count];
16894 flags = sym->flags;
16895 name = (char *) bfd_asymbol_name (sym);
16896
16897 if ((flags & BSF_FUNCTION) != BSF_FUNCTION)
16898 continue;
16899 if (!(flags & (BSF_GLOBAL | BSF_WEAK)))
16900 continue;
16901
16902 namelen = strlen (name) + sizeof (CMSE_PREFIX) + 1;
16903 if (namelen > maxnamelen)
16904 {
16905 cmse_name = (char *)
16906 bfd_realloc (cmse_name, namelen);
16907 maxnamelen = namelen;
16908 }
16909 snprintf (cmse_name, maxnamelen, "%s%s", CMSE_PREFIX, name);
16910 cmse_hash = (struct elf32_arm_link_hash_entry *)
16911 elf_link_hash_lookup (&(htab)->root, cmse_name, FALSE, FALSE, TRUE);
16912
16913 if (!cmse_hash
16914 || (cmse_hash->root.root.type != bfd_link_hash_defined
16915 && cmse_hash->root.root.type != bfd_link_hash_defweak)
16916 || cmse_hash->root.type != STT_FUNC)
16917 continue;
16918
16919 if (!ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
16920 continue;
16921
16922 syms[dst_count++] = sym;
16923 }
16924 free (cmse_name);
16925
16926 syms[dst_count] = NULL;
16927
16928 return dst_count;
16929 }
16930
16931 /* Filter symbols of ABFD to include in the import library. All
16932 SYMCOUNT symbols of ABFD can be examined from their pointers in
16933 SYMS. Pointers of symbols to keep should be stored continuously at
16934 the beginning of that array.
16935
16936 Returns the number of symbols to keep. */
16937
16938 static unsigned int
16939 elf32_arm_filter_implib_symbols (bfd *abfd ATTRIBUTE_UNUSED,
16940 struct bfd_link_info *info,
16941 asymbol **syms, long symcount)
16942 {
16943 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
16944
16945 if (globals->cmse_implib)
16946 return elf32_arm_filter_cmse_symbols (abfd, info, syms, symcount);
16947 else
16948 return _bfd_elf_filter_global_symbols (abfd, info, syms, symcount);
16949 }
16950
16951 /* Allocate target specific section data. */
16952
16953 static bfd_boolean
16954 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
16955 {
16956 if (!sec->used_by_bfd)
16957 {
16958 _arm_elf_section_data *sdata;
16959 bfd_size_type amt = sizeof (*sdata);
16960
16961 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
16962 if (sdata == NULL)
16963 return FALSE;
16964 sec->used_by_bfd = sdata;
16965 }
16966
16967 return _bfd_elf_new_section_hook (abfd, sec);
16968 }
16969
16970
16971 /* Used to order a list of mapping symbols by address. */
16972
16973 static int
16974 elf32_arm_compare_mapping (const void * a, const void * b)
16975 {
16976 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
16977 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
16978
16979 if (amap->vma > bmap->vma)
16980 return 1;
16981 else if (amap->vma < bmap->vma)
16982 return -1;
16983 else if (amap->type > bmap->type)
16984 /* Ensure results do not depend on the host qsort for objects with
16985 multiple mapping symbols at the same address by sorting on type
16986 after vma. */
16987 return 1;
16988 else if (amap->type < bmap->type)
16989 return -1;
16990 else
16991 return 0;
16992 }
16993
16994 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
16995
16996 static unsigned long
16997 offset_prel31 (unsigned long addr, bfd_vma offset)
16998 {
16999 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
17000 }
17001
17002 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
17003 relocations. */
17004
17005 static void
17006 copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
17007 {
17008 unsigned long first_word = bfd_get_32 (output_bfd, from);
17009 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
17010
17011 /* High bit of first word is supposed to be zero. */
17012 if ((first_word & 0x80000000ul) == 0)
17013 first_word = offset_prel31 (first_word, offset);
17014
17015 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
17016 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
17017 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
17018 second_word = offset_prel31 (second_word, offset);
17019
17020 bfd_put_32 (output_bfd, first_word, to);
17021 bfd_put_32 (output_bfd, second_word, to + 4);
17022 }
17023
17024 /* Data for make_branch_to_a8_stub(). */
17025
17026 struct a8_branch_to_stub_data
17027 {
17028 asection *writing_section;
17029 bfd_byte *contents;
17030 };
17031
17032
17033 /* Helper to insert branches to Cortex-A8 erratum stubs in the right
17034 places for a particular section. */
17035
17036 static bfd_boolean
17037 make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
17038 void *in_arg)
17039 {
17040 struct elf32_arm_stub_hash_entry *stub_entry;
17041 struct a8_branch_to_stub_data *data;
17042 bfd_byte *contents;
17043 unsigned long branch_insn;
17044 bfd_vma veneered_insn_loc, veneer_entry_loc;
17045 bfd_signed_vma branch_offset;
17046 bfd *abfd;
17047 unsigned int loc;
17048
17049 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
17050 data = (struct a8_branch_to_stub_data *) in_arg;
17051
17052 if (stub_entry->target_section != data->writing_section
17053 || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
17054 return TRUE;
17055
17056 contents = data->contents;
17057
17058 /* We use target_section as Cortex-A8 erratum workaround stubs are only
17059 generated when both source and target are in the same section. */
17060 veneered_insn_loc = stub_entry->target_section->output_section->vma
17061 + stub_entry->target_section->output_offset
17062 + stub_entry->source_value;
17063
17064 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
17065 + stub_entry->stub_sec->output_offset
17066 + stub_entry->stub_offset;
17067
17068 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
17069 veneered_insn_loc &= ~3u;
17070
17071 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
17072
17073 abfd = stub_entry->target_section->owner;
17074 loc = stub_entry->source_value;
17075
17076 /* We attempt to avoid this condition by setting stubs_always_after_branch
17077 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
17078 This check is just to be on the safe side... */
17079 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
17080 {
17081 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub is "
17082 "allocated in unsafe location"), abfd);
17083 return FALSE;
17084 }
17085
17086 switch (stub_entry->stub_type)
17087 {
17088 case arm_stub_a8_veneer_b:
17089 case arm_stub_a8_veneer_b_cond:
17090 branch_insn = 0xf0009000;
17091 goto jump24;
17092
17093 case arm_stub_a8_veneer_blx:
17094 branch_insn = 0xf000e800;
17095 goto jump24;
17096
17097 case arm_stub_a8_veneer_bl:
17098 {
17099 unsigned int i1, j1, i2, j2, s;
17100
17101 branch_insn = 0xf000d000;
17102
17103 jump24:
17104 if (branch_offset < -16777216 || branch_offset > 16777214)
17105 {
17106 /* There's not much we can do apart from complain if this
17107 happens. */
17108 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub out "
17109 "of range (input file too large)"), abfd);
17110 return FALSE;
17111 }
17112
17113 /* i1 = not(j1 eor s), so:
17114 not i1 = j1 eor s
17115 j1 = (not i1) eor s. */
17116
17117 branch_insn |= (branch_offset >> 1) & 0x7ff;
17118 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
17119 i2 = (branch_offset >> 22) & 1;
17120 i1 = (branch_offset >> 23) & 1;
17121 s = (branch_offset >> 24) & 1;
17122 j1 = (!i1) ^ s;
17123 j2 = (!i2) ^ s;
17124 branch_insn |= j2 << 11;
17125 branch_insn |= j1 << 13;
17126 branch_insn |= s << 26;
17127 }
17128 break;
17129
17130 default:
17131 BFD_FAIL ();
17132 return FALSE;
17133 }
17134
17135 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[loc]);
17136 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[loc + 2]);
17137
17138 return TRUE;
17139 }
17140
17141 /* Beginning of stm32l4xx work-around. */
17142
17143 /* Functions encoding instructions necessary for the emission of the
17144 fix-stm32l4xx-629360.
17145 Encoding is extracted from the
17146 ARM (C) Architecture Reference Manual
17147 ARMv7-A and ARMv7-R edition
17148 ARM DDI 0406C.b (ID072512). */
17149
17150 static inline bfd_vma
17151 create_instruction_branch_absolute (int branch_offset)
17152 {
17153 /* A8.8.18 B (A8-334)
17154 B target_address (Encoding T4). */
17155 /* 1111 - 0Sii - iiii - iiii - 10J1 - Jiii - iiii - iiii. */
17156 /* jump offset is: S:I1:I2:imm10:imm11:0. */
17157 /* with : I1 = NOT (J1 EOR S) I2 = NOT (J2 EOR S). */
17158
17159 int s = ((branch_offset & 0x1000000) >> 24);
17160 int j1 = s ^ !((branch_offset & 0x800000) >> 23);
17161 int j2 = s ^ !((branch_offset & 0x400000) >> 22);
17162
17163 if (branch_offset < -(1 << 24) || branch_offset >= (1 << 24))
17164 BFD_ASSERT (0 && "Error: branch out of range. Cannot create branch.");
17165
17166 bfd_vma patched_inst = 0xf0009000
17167 | s << 26 /* S. */
17168 | (((unsigned long) (branch_offset) >> 12) & 0x3ff) << 16 /* imm10. */
17169 | j1 << 13 /* J1. */
17170 | j2 << 11 /* J2. */
17171 | (((unsigned long) (branch_offset) >> 1) & 0x7ff); /* imm11. */
17172
17173 return patched_inst;
17174 }
17175
17176 static inline bfd_vma
17177 create_instruction_ldmia (int base_reg, int wback, int reg_mask)
17178 {
17179 /* A8.8.57 LDM/LDMIA/LDMFD (A8-396)
17180 LDMIA Rn!, {Ra, Rb, Rc, ...} (Encoding T2). */
17181 bfd_vma patched_inst = 0xe8900000
17182 | (/*W=*/wback << 21)
17183 | (base_reg << 16)
17184 | (reg_mask & 0x0000ffff);
17185
17186 return patched_inst;
17187 }
17188
17189 static inline bfd_vma
17190 create_instruction_ldmdb (int base_reg, int wback, int reg_mask)
17191 {
17192 /* A8.8.60 LDMDB/LDMEA (A8-402)
17193 LDMDB Rn!, {Ra, Rb, Rc, ...} (Encoding T1). */
17194 bfd_vma patched_inst = 0xe9100000
17195 | (/*W=*/wback << 21)
17196 | (base_reg << 16)
17197 | (reg_mask & 0x0000ffff);
17198
17199 return patched_inst;
17200 }
17201
17202 static inline bfd_vma
17203 create_instruction_mov (int target_reg, int source_reg)
17204 {
17205 /* A8.8.103 MOV (register) (A8-486)
17206 MOV Rd, Rm (Encoding T1). */
17207 bfd_vma patched_inst = 0x4600
17208 | (target_reg & 0x7)
17209 | ((target_reg & 0x8) >> 3) << 7
17210 | (source_reg << 3);
17211
17212 return patched_inst;
17213 }
17214
17215 static inline bfd_vma
17216 create_instruction_sub (int target_reg, int source_reg, int value)
17217 {
17218 /* A8.8.221 SUB (immediate) (A8-708)
17219 SUB Rd, Rn, #value (Encoding T3). */
17220 bfd_vma patched_inst = 0xf1a00000
17221 | (target_reg << 8)
17222 | (source_reg << 16)
17223 | (/*S=*/0 << 20)
17224 | ((value & 0x800) >> 11) << 26
17225 | ((value & 0x700) >> 8) << 12
17226 | (value & 0x0ff);
17227
17228 return patched_inst;
17229 }
17230
17231 static inline bfd_vma
17232 create_instruction_vldmia (int base_reg, int is_dp, int wback, int num_words,
17233 int first_reg)
17234 {
17235 /* A8.8.332 VLDM (A8-922)
17236 VLMD{MODE} Rn{!}, {list} (Encoding T1 or T2). */
17237 bfd_vma patched_inst = (is_dp ? 0xec900b00 : 0xec900a00)
17238 | (/*W=*/wback << 21)
17239 | (base_reg << 16)
17240 | (num_words & 0x000000ff)
17241 | (((unsigned)first_reg >> 1) & 0x0000000f) << 12
17242 | (first_reg & 0x00000001) << 22;
17243
17244 return patched_inst;
17245 }
17246
17247 static inline bfd_vma
17248 create_instruction_vldmdb (int base_reg, int is_dp, int num_words,
17249 int first_reg)
17250 {
17251 /* A8.8.332 VLDM (A8-922)
17252 VLMD{MODE} Rn!, {} (Encoding T1 or T2). */
17253 bfd_vma patched_inst = (is_dp ? 0xed300b00 : 0xed300a00)
17254 | (base_reg << 16)
17255 | (num_words & 0x000000ff)
17256 | (((unsigned)first_reg >>1 ) & 0x0000000f) << 12
17257 | (first_reg & 0x00000001) << 22;
17258
17259 return patched_inst;
17260 }
17261
17262 static inline bfd_vma
17263 create_instruction_udf_w (int value)
17264 {
17265 /* A8.8.247 UDF (A8-758)
17266 Undefined (Encoding T2). */
17267 bfd_vma patched_inst = 0xf7f0a000
17268 | (value & 0x00000fff)
17269 | (value & 0x000f0000) << 16;
17270
17271 return patched_inst;
17272 }
17273
17274 static inline bfd_vma
17275 create_instruction_udf (int value)
17276 {
17277 /* A8.8.247 UDF (A8-758)
17278 Undefined (Encoding T1). */
17279 bfd_vma patched_inst = 0xde00
17280 | (value & 0xff);
17281
17282 return patched_inst;
17283 }
17284
17285 /* Functions writing an instruction in memory, returning the next
17286 memory position to write to. */
17287
17288 static inline bfd_byte *
17289 push_thumb2_insn32 (struct elf32_arm_link_hash_table * htab,
17290 bfd * output_bfd, bfd_byte *pt, insn32 insn)
17291 {
17292 put_thumb2_insn (htab, output_bfd, insn, pt);
17293 return pt + 4;
17294 }
17295
17296 static inline bfd_byte *
17297 push_thumb2_insn16 (struct elf32_arm_link_hash_table * htab,
17298 bfd * output_bfd, bfd_byte *pt, insn32 insn)
17299 {
17300 put_thumb_insn (htab, output_bfd, insn, pt);
17301 return pt + 2;
17302 }
17303
17304 /* Function filling up a region in memory with T1 and T2 UDFs taking
17305 care of alignment. */
17306
17307 static bfd_byte *
17308 stm32l4xx_fill_stub_udf (struct elf32_arm_link_hash_table * htab,
17309 bfd * output_bfd,
17310 const bfd_byte * const base_stub_contents,
17311 bfd_byte * const from_stub_contents,
17312 const bfd_byte * const end_stub_contents)
17313 {
17314 bfd_byte *current_stub_contents = from_stub_contents;
17315
17316 /* Fill the remaining of the stub with deterministic contents : UDF
17317 instructions.
17318 Check if realignment is needed on modulo 4 frontier using T1, to
17319 further use T2. */
17320 if ((current_stub_contents < end_stub_contents)
17321 && !((current_stub_contents - base_stub_contents) % 2)
17322 && ((current_stub_contents - base_stub_contents) % 4))
17323 current_stub_contents =
17324 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
17325 create_instruction_udf (0));
17326
17327 for (; current_stub_contents < end_stub_contents;)
17328 current_stub_contents =
17329 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17330 create_instruction_udf_w (0));
17331
17332 return current_stub_contents;
17333 }
17334
17335 /* Functions writing the stream of instructions equivalent to the
17336 derived sequence for ldmia, ldmdb, vldm respectively. */
17337
17338 static void
17339 stm32l4xx_create_replacing_stub_ldmia (struct elf32_arm_link_hash_table * htab,
17340 bfd * output_bfd,
17341 const insn32 initial_insn,
17342 const bfd_byte *const initial_insn_addr,
17343 bfd_byte *const base_stub_contents)
17344 {
17345 int wback = (initial_insn & 0x00200000) >> 21;
17346 int ri, rn = (initial_insn & 0x000F0000) >> 16;
17347 int insn_all_registers = initial_insn & 0x0000ffff;
17348 int insn_low_registers, insn_high_registers;
17349 int usable_register_mask;
17350 int nb_registers = popcount (insn_all_registers);
17351 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
17352 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
17353 bfd_byte *current_stub_contents = base_stub_contents;
17354
17355 BFD_ASSERT (is_thumb2_ldmia (initial_insn));
17356
17357 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
17358 smaller than 8 registers load sequences that do not cause the
17359 hardware issue. */
17360 if (nb_registers <= 8)
17361 {
17362 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
17363 current_stub_contents =
17364 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17365 initial_insn);
17366
17367 /* B initial_insn_addr+4. */
17368 if (!restore_pc)
17369 current_stub_contents =
17370 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17371 create_instruction_branch_absolute
17372 (initial_insn_addr - current_stub_contents));
17373
17374
17375 /* Fill the remaining of the stub with deterministic contents. */
17376 current_stub_contents =
17377 stm32l4xx_fill_stub_udf (htab, output_bfd,
17378 base_stub_contents, current_stub_contents,
17379 base_stub_contents +
17380 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
17381
17382 return;
17383 }
17384
17385 /* - reg_list[13] == 0. */
17386 BFD_ASSERT ((insn_all_registers & (1 << 13))==0);
17387
17388 /* - reg_list[14] & reg_list[15] != 1. */
17389 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
17390
17391 /* - if (wback==1) reg_list[rn] == 0. */
17392 BFD_ASSERT (!wback || !restore_rn);
17393
17394 /* - nb_registers > 8. */
17395 BFD_ASSERT (popcount (insn_all_registers) > 8);
17396
17397 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
17398
17399 /* In the following algorithm, we split this wide LDM using 2 LDM insns:
17400 - One with the 7 lowest registers (register mask 0x007F)
17401 This LDM will finally contain between 2 and 7 registers
17402 - One with the 7 highest registers (register mask 0xDF80)
17403 This ldm will finally contain between 2 and 7 registers. */
17404 insn_low_registers = insn_all_registers & 0x007F;
17405 insn_high_registers = insn_all_registers & 0xDF80;
17406
17407 /* A spare register may be needed during this veneer to temporarily
17408 handle the base register. This register will be restored with the
17409 last LDM operation.
17410 The usable register may be any general purpose register (that
17411 excludes PC, SP, LR : register mask is 0x1FFF). */
17412 usable_register_mask = 0x1FFF;
17413
17414 /* Generate the stub function. */
17415 if (wback)
17416 {
17417 /* LDMIA Rn!, {R-low-register-list} : (Encoding T2). */
17418 current_stub_contents =
17419 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17420 create_instruction_ldmia
17421 (rn, /*wback=*/1, insn_low_registers));
17422
17423 /* LDMIA Rn!, {R-high-register-list} : (Encoding T2). */
17424 current_stub_contents =
17425 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17426 create_instruction_ldmia
17427 (rn, /*wback=*/1, insn_high_registers));
17428 if (!restore_pc)
17429 {
17430 /* B initial_insn_addr+4. */
17431 current_stub_contents =
17432 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17433 create_instruction_branch_absolute
17434 (initial_insn_addr - current_stub_contents));
17435 }
17436 }
17437 else /* if (!wback). */
17438 {
17439 ri = rn;
17440
17441 /* If Rn is not part of the high-register-list, move it there. */
17442 if (!(insn_high_registers & (1 << rn)))
17443 {
17444 /* Choose a Ri in the high-register-list that will be restored. */
17445 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
17446
17447 /* MOV Ri, Rn. */
17448 current_stub_contents =
17449 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
17450 create_instruction_mov (ri, rn));
17451 }
17452
17453 /* LDMIA Ri!, {R-low-register-list} : (Encoding T2). */
17454 current_stub_contents =
17455 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17456 create_instruction_ldmia
17457 (ri, /*wback=*/1, insn_low_registers));
17458
17459 /* LDMIA Ri, {R-high-register-list} : (Encoding T2). */
17460 current_stub_contents =
17461 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17462 create_instruction_ldmia
17463 (ri, /*wback=*/0, insn_high_registers));
17464
17465 if (!restore_pc)
17466 {
17467 /* B initial_insn_addr+4. */
17468 current_stub_contents =
17469 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17470 create_instruction_branch_absolute
17471 (initial_insn_addr - current_stub_contents));
17472 }
17473 }
17474
17475 /* Fill the remaining of the stub with deterministic contents. */
17476 current_stub_contents =
17477 stm32l4xx_fill_stub_udf (htab, output_bfd,
17478 base_stub_contents, current_stub_contents,
17479 base_stub_contents +
17480 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
17481 }
17482
17483 static void
17484 stm32l4xx_create_replacing_stub_ldmdb (struct elf32_arm_link_hash_table * htab,
17485 bfd * output_bfd,
17486 const insn32 initial_insn,
17487 const bfd_byte *const initial_insn_addr,
17488 bfd_byte *const base_stub_contents)
17489 {
17490 int wback = (initial_insn & 0x00200000) >> 21;
17491 int ri, rn = (initial_insn & 0x000f0000) >> 16;
17492 int insn_all_registers = initial_insn & 0x0000ffff;
17493 int insn_low_registers, insn_high_registers;
17494 int usable_register_mask;
17495 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
17496 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
17497 int nb_registers = popcount (insn_all_registers);
17498 bfd_byte *current_stub_contents = base_stub_contents;
17499
17500 BFD_ASSERT (is_thumb2_ldmdb (initial_insn));
17501
17502 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
17503 smaller than 8 registers load sequences that do not cause the
17504 hardware issue. */
17505 if (nb_registers <= 8)
17506 {
17507 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
17508 current_stub_contents =
17509 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17510 initial_insn);
17511
17512 /* B initial_insn_addr+4. */
17513 current_stub_contents =
17514 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17515 create_instruction_branch_absolute
17516 (initial_insn_addr - current_stub_contents));
17517
17518 /* Fill the remaining of the stub with deterministic contents. */
17519 current_stub_contents =
17520 stm32l4xx_fill_stub_udf (htab, output_bfd,
17521 base_stub_contents, current_stub_contents,
17522 base_stub_contents +
17523 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
17524
17525 return;
17526 }
17527
17528 /* - reg_list[13] == 0. */
17529 BFD_ASSERT ((insn_all_registers & (1 << 13)) == 0);
17530
17531 /* - reg_list[14] & reg_list[15] != 1. */
17532 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
17533
17534 /* - if (wback==1) reg_list[rn] == 0. */
17535 BFD_ASSERT (!wback || !restore_rn);
17536
17537 /* - nb_registers > 8. */
17538 BFD_ASSERT (popcount (insn_all_registers) > 8);
17539
17540 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
17541
17542 /* In the following algorithm, we split this wide LDM using 2 LDM insn:
17543 - One with the 7 lowest registers (register mask 0x007F)
17544 This LDM will finally contain between 2 and 7 registers
17545 - One with the 7 highest registers (register mask 0xDF80)
17546 This ldm will finally contain between 2 and 7 registers. */
17547 insn_low_registers = insn_all_registers & 0x007F;
17548 insn_high_registers = insn_all_registers & 0xDF80;
17549
17550 /* A spare register may be needed during this veneer to temporarily
17551 handle the base register. This register will be restored with
17552 the last LDM operation.
17553 The usable register may be any general purpose register (that excludes
17554 PC, SP, LR : register mask is 0x1FFF). */
17555 usable_register_mask = 0x1FFF;
17556
17557 /* Generate the stub function. */
17558 if (!wback && !restore_pc && !restore_rn)
17559 {
17560 /* Choose a Ri in the low-register-list that will be restored. */
17561 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
17562
17563 /* MOV Ri, Rn. */
17564 current_stub_contents =
17565 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
17566 create_instruction_mov (ri, rn));
17567
17568 /* LDMDB Ri!, {R-high-register-list}. */
17569 current_stub_contents =
17570 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17571 create_instruction_ldmdb
17572 (ri, /*wback=*/1, insn_high_registers));
17573
17574 /* LDMDB Ri, {R-low-register-list}. */
17575 current_stub_contents =
17576 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17577 create_instruction_ldmdb
17578 (ri, /*wback=*/0, insn_low_registers));
17579
17580 /* B initial_insn_addr+4. */
17581 current_stub_contents =
17582 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17583 create_instruction_branch_absolute
17584 (initial_insn_addr - current_stub_contents));
17585 }
17586 else if (wback && !restore_pc && !restore_rn)
17587 {
17588 /* LDMDB Rn!, {R-high-register-list}. */
17589 current_stub_contents =
17590 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17591 create_instruction_ldmdb
17592 (rn, /*wback=*/1, insn_high_registers));
17593
17594 /* LDMDB Rn!, {R-low-register-list}. */
17595 current_stub_contents =
17596 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17597 create_instruction_ldmdb
17598 (rn, /*wback=*/1, insn_low_registers));
17599
17600 /* B initial_insn_addr+4. */
17601 current_stub_contents =
17602 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17603 create_instruction_branch_absolute
17604 (initial_insn_addr - current_stub_contents));
17605 }
17606 else if (!wback && restore_pc && !restore_rn)
17607 {
17608 /* Choose a Ri in the high-register-list that will be restored. */
17609 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
17610
17611 /* SUB Ri, Rn, #(4*nb_registers). */
17612 current_stub_contents =
17613 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17614 create_instruction_sub (ri, rn, (4 * nb_registers)));
17615
17616 /* LDMIA Ri!, {R-low-register-list}. */
17617 current_stub_contents =
17618 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17619 create_instruction_ldmia
17620 (ri, /*wback=*/1, insn_low_registers));
17621
17622 /* LDMIA Ri, {R-high-register-list}. */
17623 current_stub_contents =
17624 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17625 create_instruction_ldmia
17626 (ri, /*wback=*/0, insn_high_registers));
17627 }
17628 else if (wback && restore_pc && !restore_rn)
17629 {
17630 /* Choose a Ri in the high-register-list that will be restored. */
17631 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
17632
17633 /* SUB Rn, Rn, #(4*nb_registers) */
17634 current_stub_contents =
17635 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17636 create_instruction_sub (rn, rn, (4 * nb_registers)));
17637
17638 /* MOV Ri, Rn. */
17639 current_stub_contents =
17640 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
17641 create_instruction_mov (ri, rn));
17642
17643 /* LDMIA Ri!, {R-low-register-list}. */
17644 current_stub_contents =
17645 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17646 create_instruction_ldmia
17647 (ri, /*wback=*/1, insn_low_registers));
17648
17649 /* LDMIA Ri, {R-high-register-list}. */
17650 current_stub_contents =
17651 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17652 create_instruction_ldmia
17653 (ri, /*wback=*/0, insn_high_registers));
17654 }
17655 else if (!wback && !restore_pc && restore_rn)
17656 {
17657 ri = rn;
17658 if (!(insn_low_registers & (1 << rn)))
17659 {
17660 /* Choose a Ri in the low-register-list that will be restored. */
17661 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
17662
17663 /* MOV Ri, Rn. */
17664 current_stub_contents =
17665 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
17666 create_instruction_mov (ri, rn));
17667 }
17668
17669 /* LDMDB Ri!, {R-high-register-list}. */
17670 current_stub_contents =
17671 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17672 create_instruction_ldmdb
17673 (ri, /*wback=*/1, insn_high_registers));
17674
17675 /* LDMDB Ri, {R-low-register-list}. */
17676 current_stub_contents =
17677 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17678 create_instruction_ldmdb
17679 (ri, /*wback=*/0, insn_low_registers));
17680
17681 /* B initial_insn_addr+4. */
17682 current_stub_contents =
17683 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17684 create_instruction_branch_absolute
17685 (initial_insn_addr - current_stub_contents));
17686 }
17687 else if (!wback && restore_pc && restore_rn)
17688 {
17689 ri = rn;
17690 if (!(insn_high_registers & (1 << rn)))
17691 {
17692 /* Choose a Ri in the high-register-list that will be restored. */
17693 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
17694 }
17695
17696 /* SUB Ri, Rn, #(4*nb_registers). */
17697 current_stub_contents =
17698 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17699 create_instruction_sub (ri, rn, (4 * nb_registers)));
17700
17701 /* LDMIA Ri!, {R-low-register-list}. */
17702 current_stub_contents =
17703 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17704 create_instruction_ldmia
17705 (ri, /*wback=*/1, insn_low_registers));
17706
17707 /* LDMIA Ri, {R-high-register-list}. */
17708 current_stub_contents =
17709 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17710 create_instruction_ldmia
17711 (ri, /*wback=*/0, insn_high_registers));
17712 }
17713 else if (wback && restore_rn)
17714 {
17715 /* The assembler should not have accepted to encode this. */
17716 BFD_ASSERT (0 && "Cannot patch an instruction that has an "
17717 "undefined behavior.\n");
17718 }
17719
17720 /* Fill the remaining of the stub with deterministic contents. */
17721 current_stub_contents =
17722 stm32l4xx_fill_stub_udf (htab, output_bfd,
17723 base_stub_contents, current_stub_contents,
17724 base_stub_contents +
17725 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
17726
17727 }
17728
17729 static void
17730 stm32l4xx_create_replacing_stub_vldm (struct elf32_arm_link_hash_table * htab,
17731 bfd * output_bfd,
17732 const insn32 initial_insn,
17733 const bfd_byte *const initial_insn_addr,
17734 bfd_byte *const base_stub_contents)
17735 {
17736 int num_words = ((unsigned int) initial_insn << 24) >> 24;
17737 bfd_byte *current_stub_contents = base_stub_contents;
17738
17739 BFD_ASSERT (is_thumb2_vldm (initial_insn));
17740
17741 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
17742 smaller than 8 words load sequences that do not cause the
17743 hardware issue. */
17744 if (num_words <= 8)
17745 {
17746 /* Untouched instruction. */
17747 current_stub_contents =
17748 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17749 initial_insn);
17750
17751 /* B initial_insn_addr+4. */
17752 current_stub_contents =
17753 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17754 create_instruction_branch_absolute
17755 (initial_insn_addr - current_stub_contents));
17756 }
17757 else
17758 {
17759 bfd_boolean is_dp = /* DP encoding. */
17760 (initial_insn & 0xfe100f00) == 0xec100b00;
17761 bfd_boolean is_ia_nobang = /* (IA without !). */
17762 (((initial_insn << 7) >> 28) & 0xd) == 0x4;
17763 bfd_boolean is_ia_bang = /* (IA with !) - includes VPOP. */
17764 (((initial_insn << 7) >> 28) & 0xd) == 0x5;
17765 bfd_boolean is_db_bang = /* (DB with !). */
17766 (((initial_insn << 7) >> 28) & 0xd) == 0x9;
17767 int base_reg = ((unsigned int) initial_insn << 12) >> 28;
17768 /* d = UInt (Vd:D);. */
17769 int first_reg = ((((unsigned int) initial_insn << 16) >> 28) << 1)
17770 | (((unsigned int)initial_insn << 9) >> 31);
17771
17772 /* Compute the number of 8-words chunks needed to split. */
17773 int chunks = (num_words % 8) ? (num_words / 8 + 1) : (num_words / 8);
17774 int chunk;
17775
17776 /* The test coverage has been done assuming the following
17777 hypothesis that exactly one of the previous is_ predicates is
17778 true. */
17779 BFD_ASSERT ( (is_ia_nobang ^ is_ia_bang ^ is_db_bang)
17780 && !(is_ia_nobang & is_ia_bang & is_db_bang));
17781
17782 /* We treat the cutting of the words in one pass for all
17783 cases, then we emit the adjustments:
17784
17785 vldm rx, {...}
17786 -> vldm rx!, {8_words_or_less} for each needed 8_word
17787 -> sub rx, rx, #size (list)
17788
17789 vldm rx!, {...}
17790 -> vldm rx!, {8_words_or_less} for each needed 8_word
17791 This also handles vpop instruction (when rx is sp)
17792
17793 vldmd rx!, {...}
17794 -> vldmb rx!, {8_words_or_less} for each needed 8_word. */
17795 for (chunk = 0; chunk < chunks; ++chunk)
17796 {
17797 bfd_vma new_insn = 0;
17798
17799 if (is_ia_nobang || is_ia_bang)
17800 {
17801 new_insn = create_instruction_vldmia
17802 (base_reg,
17803 is_dp,
17804 /*wback= . */1,
17805 chunks - (chunk + 1) ?
17806 8 : num_words - chunk * 8,
17807 first_reg + chunk * 8);
17808 }
17809 else if (is_db_bang)
17810 {
17811 new_insn = create_instruction_vldmdb
17812 (base_reg,
17813 is_dp,
17814 chunks - (chunk + 1) ?
17815 8 : num_words - chunk * 8,
17816 first_reg + chunk * 8);
17817 }
17818
17819 if (new_insn)
17820 current_stub_contents =
17821 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17822 new_insn);
17823 }
17824
17825 /* Only this case requires the base register compensation
17826 subtract. */
17827 if (is_ia_nobang)
17828 {
17829 current_stub_contents =
17830 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17831 create_instruction_sub
17832 (base_reg, base_reg, 4*num_words));
17833 }
17834
17835 /* B initial_insn_addr+4. */
17836 current_stub_contents =
17837 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17838 create_instruction_branch_absolute
17839 (initial_insn_addr - current_stub_contents));
17840 }
17841
17842 /* Fill the remaining of the stub with deterministic contents. */
17843 current_stub_contents =
17844 stm32l4xx_fill_stub_udf (htab, output_bfd,
17845 base_stub_contents, current_stub_contents,
17846 base_stub_contents +
17847 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
17848 }
17849
17850 static void
17851 stm32l4xx_create_replacing_stub (struct elf32_arm_link_hash_table * htab,
17852 bfd * output_bfd,
17853 const insn32 wrong_insn,
17854 const bfd_byte *const wrong_insn_addr,
17855 bfd_byte *const stub_contents)
17856 {
17857 if (is_thumb2_ldmia (wrong_insn))
17858 stm32l4xx_create_replacing_stub_ldmia (htab, output_bfd,
17859 wrong_insn, wrong_insn_addr,
17860 stub_contents);
17861 else if (is_thumb2_ldmdb (wrong_insn))
17862 stm32l4xx_create_replacing_stub_ldmdb (htab, output_bfd,
17863 wrong_insn, wrong_insn_addr,
17864 stub_contents);
17865 else if (is_thumb2_vldm (wrong_insn))
17866 stm32l4xx_create_replacing_stub_vldm (htab, output_bfd,
17867 wrong_insn, wrong_insn_addr,
17868 stub_contents);
17869 }
17870
17871 /* End of stm32l4xx work-around. */
17872
17873
17874 static void
17875 elf32_arm_add_relocation (bfd *output_bfd, struct bfd_link_info *info,
17876 asection *output_sec, Elf_Internal_Rela *rel)
17877 {
17878 BFD_ASSERT (output_sec && rel);
17879 struct bfd_elf_section_reloc_data *output_reldata;
17880 struct elf32_arm_link_hash_table *htab;
17881 struct bfd_elf_section_data *oesd = elf_section_data (output_sec);
17882 Elf_Internal_Shdr *rel_hdr;
17883
17884
17885 if (oesd->rel.hdr)
17886 {
17887 rel_hdr = oesd->rel.hdr;
17888 output_reldata = &(oesd->rel);
17889 }
17890 else if (oesd->rela.hdr)
17891 {
17892 rel_hdr = oesd->rela.hdr;
17893 output_reldata = &(oesd->rela);
17894 }
17895 else
17896 {
17897 abort ();
17898 }
17899
17900 bfd_byte *erel = rel_hdr->contents;
17901 erel += output_reldata->count * rel_hdr->sh_entsize;
17902 htab = elf32_arm_hash_table (info);
17903 SWAP_RELOC_OUT (htab) (output_bfd, rel, erel);
17904 output_reldata->count++;
17905 }
17906
17907 /* Do code byteswapping. Return FALSE afterwards so that the section is
17908 written out as normal. */
17909
17910 static bfd_boolean
17911 elf32_arm_write_section (bfd *output_bfd,
17912 struct bfd_link_info *link_info,
17913 asection *sec,
17914 bfd_byte *contents)
17915 {
17916 unsigned int mapcount, errcount;
17917 _arm_elf_section_data *arm_data;
17918 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
17919 elf32_arm_section_map *map;
17920 elf32_vfp11_erratum_list *errnode;
17921 elf32_stm32l4xx_erratum_list *stm32l4xx_errnode;
17922 bfd_vma ptr;
17923 bfd_vma end;
17924 bfd_vma offset = sec->output_section->vma + sec->output_offset;
17925 bfd_byte tmp;
17926 unsigned int i;
17927
17928 if (globals == NULL)
17929 return FALSE;
17930
17931 /* If this section has not been allocated an _arm_elf_section_data
17932 structure then we cannot record anything. */
17933 arm_data = get_arm_elf_section_data (sec);
17934 if (arm_data == NULL)
17935 return FALSE;
17936
17937 mapcount = arm_data->mapcount;
17938 map = arm_data->map;
17939 errcount = arm_data->erratumcount;
17940
17941 if (errcount != 0)
17942 {
17943 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
17944
17945 for (errnode = arm_data->erratumlist; errnode != 0;
17946 errnode = errnode->next)
17947 {
17948 bfd_vma target = errnode->vma - offset;
17949
17950 switch (errnode->type)
17951 {
17952 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
17953 {
17954 bfd_vma branch_to_veneer;
17955 /* Original condition code of instruction, plus bit mask for
17956 ARM B instruction. */
17957 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
17958 | 0x0a000000;
17959
17960 /* The instruction is before the label. */
17961 target -= 4;
17962
17963 /* Above offset included in -4 below. */
17964 branch_to_veneer = errnode->u.b.veneer->vma
17965 - errnode->vma - 4;
17966
17967 if ((signed) branch_to_veneer < -(1 << 25)
17968 || (signed) branch_to_veneer >= (1 << 25))
17969 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
17970 "range"), output_bfd);
17971
17972 insn |= (branch_to_veneer >> 2) & 0xffffff;
17973 contents[endianflip ^ target] = insn & 0xff;
17974 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
17975 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
17976 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
17977 }
17978 break;
17979
17980 case VFP11_ERRATUM_ARM_VENEER:
17981 {
17982 bfd_vma branch_from_veneer;
17983 unsigned int insn;
17984
17985 /* Take size of veneer into account. */
17986 branch_from_veneer = errnode->u.v.branch->vma
17987 - errnode->vma - 12;
17988
17989 if ((signed) branch_from_veneer < -(1 << 25)
17990 || (signed) branch_from_veneer >= (1 << 25))
17991 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
17992 "range"), output_bfd);
17993
17994 /* Original instruction. */
17995 insn = errnode->u.v.branch->u.b.vfp_insn;
17996 contents[endianflip ^ target] = insn & 0xff;
17997 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
17998 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
17999 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
18000
18001 /* Branch back to insn after original insn. */
18002 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
18003 contents[endianflip ^ (target + 4)] = insn & 0xff;
18004 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
18005 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
18006 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
18007 }
18008 break;
18009
18010 default:
18011 abort ();
18012 }
18013 }
18014 }
18015
18016 if (arm_data->stm32l4xx_erratumcount != 0)
18017 {
18018 for (stm32l4xx_errnode = arm_data->stm32l4xx_erratumlist;
18019 stm32l4xx_errnode != 0;
18020 stm32l4xx_errnode = stm32l4xx_errnode->next)
18021 {
18022 bfd_vma target = stm32l4xx_errnode->vma - offset;
18023
18024 switch (stm32l4xx_errnode->type)
18025 {
18026 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
18027 {
18028 unsigned int insn;
18029 bfd_vma branch_to_veneer =
18030 stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma;
18031
18032 if ((signed) branch_to_veneer < -(1 << 24)
18033 || (signed) branch_to_veneer >= (1 << 24))
18034 {
18035 bfd_vma out_of_range =
18036 ((signed) branch_to_veneer < -(1 << 24)) ?
18037 - branch_to_veneer - (1 << 24) :
18038 ((signed) branch_to_veneer >= (1 << 24)) ?
18039 branch_to_veneer - (1 << 24) : 0;
18040
18041 (*_bfd_error_handler)
18042 (_("%B(%#x): error: Cannot create STM32L4XX veneer. "
18043 "Jump out of range by %ld bytes. "
18044 "Cannot encode branch instruction. "),
18045 output_bfd,
18046 (long) (stm32l4xx_errnode->vma - 4),
18047 out_of_range);
18048 continue;
18049 }
18050
18051 insn = create_instruction_branch_absolute
18052 (stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma);
18053
18054 /* The instruction is before the label. */
18055 target -= 4;
18056
18057 put_thumb2_insn (globals, output_bfd,
18058 (bfd_vma) insn, contents + target);
18059 }
18060 break;
18061
18062 case STM32L4XX_ERRATUM_VENEER:
18063 {
18064 bfd_byte * veneer;
18065 bfd_byte * veneer_r;
18066 unsigned int insn;
18067
18068 veneer = contents + target;
18069 veneer_r = veneer
18070 + stm32l4xx_errnode->u.b.veneer->vma
18071 - stm32l4xx_errnode->vma - 4;
18072
18073 if ((signed) (veneer_r - veneer -
18074 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE >
18075 STM32L4XX_ERRATUM_LDM_VENEER_SIZE ?
18076 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE :
18077 STM32L4XX_ERRATUM_LDM_VENEER_SIZE) < -(1 << 24)
18078 || (signed) (veneer_r - veneer) >= (1 << 24))
18079 {
18080 (*_bfd_error_handler) (_("%B: error: Cannot create STM32L4XX "
18081 "veneer."), output_bfd);
18082 continue;
18083 }
18084
18085 /* Original instruction. */
18086 insn = stm32l4xx_errnode->u.v.branch->u.b.insn;
18087
18088 stm32l4xx_create_replacing_stub
18089 (globals, output_bfd, insn, (void*)veneer_r, (void*)veneer);
18090 }
18091 break;
18092
18093 default:
18094 abort ();
18095 }
18096 }
18097 }
18098
18099 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
18100 {
18101 arm_unwind_table_edit *edit_node
18102 = arm_data->u.exidx.unwind_edit_list;
18103 /* Now, sec->size is the size of the section we will write. The original
18104 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
18105 markers) was sec->rawsize. (This isn't the case if we perform no
18106 edits, then rawsize will be zero and we should use size). */
18107 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
18108 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
18109 unsigned int in_index, out_index;
18110 bfd_vma add_to_offsets = 0;
18111
18112 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
18113 {
18114 if (edit_node)
18115 {
18116 unsigned int edit_index = edit_node->index;
18117
18118 if (in_index < edit_index && in_index * 8 < input_size)
18119 {
18120 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
18121 contents + in_index * 8, add_to_offsets);
18122 out_index++;
18123 in_index++;
18124 }
18125 else if (in_index == edit_index
18126 || (in_index * 8 >= input_size
18127 && edit_index == UINT_MAX))
18128 {
18129 switch (edit_node->type)
18130 {
18131 case DELETE_EXIDX_ENTRY:
18132 in_index++;
18133 add_to_offsets += 8;
18134 break;
18135
18136 case INSERT_EXIDX_CANTUNWIND_AT_END:
18137 {
18138 asection *text_sec = edit_node->linked_section;
18139 bfd_vma text_offset = text_sec->output_section->vma
18140 + text_sec->output_offset
18141 + text_sec->size;
18142 bfd_vma exidx_offset = offset + out_index * 8;
18143 unsigned long prel31_offset;
18144
18145 /* Note: this is meant to be equivalent to an
18146 R_ARM_PREL31 relocation. These synthetic
18147 EXIDX_CANTUNWIND markers are not relocated by the
18148 usual BFD method. */
18149 prel31_offset = (text_offset - exidx_offset)
18150 & 0x7ffffffful;
18151 if (bfd_link_relocatable (link_info))
18152 {
18153 /* Here relocation for new EXIDX_CANTUNWIND is
18154 created, so there is no need to
18155 adjust offset by hand. */
18156 prel31_offset = text_sec->output_offset
18157 + text_sec->size;
18158
18159 /* New relocation entity. */
18160 asection *text_out = text_sec->output_section;
18161 Elf_Internal_Rela rel;
18162 rel.r_addend = 0;
18163 rel.r_offset = exidx_offset;
18164 rel.r_info = ELF32_R_INFO (text_out->target_index,
18165 R_ARM_PREL31);
18166
18167 elf32_arm_add_relocation (output_bfd, link_info,
18168 sec->output_section,
18169 &rel);
18170 }
18171
18172 /* First address we can't unwind. */
18173 bfd_put_32 (output_bfd, prel31_offset,
18174 &edited_contents[out_index * 8]);
18175
18176 /* Code for EXIDX_CANTUNWIND. */
18177 bfd_put_32 (output_bfd, 0x1,
18178 &edited_contents[out_index * 8 + 4]);
18179
18180 out_index++;
18181 add_to_offsets -= 8;
18182 }
18183 break;
18184 }
18185
18186 edit_node = edit_node->next;
18187 }
18188 }
18189 else
18190 {
18191 /* No more edits, copy remaining entries verbatim. */
18192 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
18193 contents + in_index * 8, add_to_offsets);
18194 out_index++;
18195 in_index++;
18196 }
18197 }
18198
18199 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
18200 bfd_set_section_contents (output_bfd, sec->output_section,
18201 edited_contents,
18202 (file_ptr) sec->output_offset, sec->size);
18203
18204 return TRUE;
18205 }
18206
18207 /* Fix code to point to Cortex-A8 erratum stubs. */
18208 if (globals->fix_cortex_a8)
18209 {
18210 struct a8_branch_to_stub_data data;
18211
18212 data.writing_section = sec;
18213 data.contents = contents;
18214
18215 bfd_hash_traverse (& globals->stub_hash_table, make_branch_to_a8_stub,
18216 & data);
18217 }
18218
18219 if (mapcount == 0)
18220 return FALSE;
18221
18222 if (globals->byteswap_code)
18223 {
18224 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
18225
18226 ptr = map[0].vma;
18227 for (i = 0; i < mapcount; i++)
18228 {
18229 if (i == mapcount - 1)
18230 end = sec->size;
18231 else
18232 end = map[i + 1].vma;
18233
18234 switch (map[i].type)
18235 {
18236 case 'a':
18237 /* Byte swap code words. */
18238 while (ptr + 3 < end)
18239 {
18240 tmp = contents[ptr];
18241 contents[ptr] = contents[ptr + 3];
18242 contents[ptr + 3] = tmp;
18243 tmp = contents[ptr + 1];
18244 contents[ptr + 1] = contents[ptr + 2];
18245 contents[ptr + 2] = tmp;
18246 ptr += 4;
18247 }
18248 break;
18249
18250 case 't':
18251 /* Byte swap code halfwords. */
18252 while (ptr + 1 < end)
18253 {
18254 tmp = contents[ptr];
18255 contents[ptr] = contents[ptr + 1];
18256 contents[ptr + 1] = tmp;
18257 ptr += 2;
18258 }
18259 break;
18260
18261 case 'd':
18262 /* Leave data alone. */
18263 break;
18264 }
18265 ptr = end;
18266 }
18267 }
18268
18269 free (map);
18270 arm_data->mapcount = -1;
18271 arm_data->mapsize = 0;
18272 arm_data->map = NULL;
18273
18274 return FALSE;
18275 }
18276
18277 /* Mangle thumb function symbols as we read them in. */
18278
18279 static bfd_boolean
18280 elf32_arm_swap_symbol_in (bfd * abfd,
18281 const void *psrc,
18282 const void *pshn,
18283 Elf_Internal_Sym *dst)
18284 {
18285 Elf_Internal_Shdr *symtab_hdr;
18286 const char *name = NULL;
18287
18288 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
18289 return FALSE;
18290 dst->st_target_internal = 0;
18291
18292 /* New EABI objects mark thumb function symbols by setting the low bit of
18293 the address. */
18294 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
18295 || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
18296 {
18297 if (dst->st_value & 1)
18298 {
18299 dst->st_value &= ~(bfd_vma) 1;
18300 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal,
18301 ST_BRANCH_TO_THUMB);
18302 }
18303 else
18304 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_ARM);
18305 }
18306 else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
18307 {
18308 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
18309 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_THUMB);
18310 }
18311 else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
18312 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_LONG);
18313 else
18314 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_UNKNOWN);
18315
18316 /* Mark CMSE special symbols. */
18317 symtab_hdr = & elf_symtab_hdr (abfd);
18318 if (symtab_hdr->sh_size)
18319 name = bfd_elf_sym_name (abfd, symtab_hdr, dst, NULL);
18320 if (name && CONST_STRNEQ (name, CMSE_PREFIX))
18321 ARM_SET_SYM_CMSE_SPCL (dst->st_target_internal);
18322
18323 return TRUE;
18324 }
18325
18326
18327 /* Mangle thumb function symbols as we write them out. */
18328
18329 static void
18330 elf32_arm_swap_symbol_out (bfd *abfd,
18331 const Elf_Internal_Sym *src,
18332 void *cdst,
18333 void *shndx)
18334 {
18335 Elf_Internal_Sym newsym;
18336
18337 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
18338 of the address set, as per the new EABI. We do this unconditionally
18339 because objcopy does not set the elf header flags until after
18340 it writes out the symbol table. */
18341 if (ARM_GET_SYM_BRANCH_TYPE (src->st_target_internal) == ST_BRANCH_TO_THUMB)
18342 {
18343 newsym = *src;
18344 if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
18345 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
18346 if (newsym.st_shndx != SHN_UNDEF)
18347 {
18348 /* Do this only for defined symbols. At link type, the static
18349 linker will simulate the work of dynamic linker of resolving
18350 symbols and will carry over the thumbness of found symbols to
18351 the output symbol table. It's not clear how it happens, but
18352 the thumbness of undefined symbols can well be different at
18353 runtime, and writing '1' for them will be confusing for users
18354 and possibly for dynamic linker itself.
18355 */
18356 newsym.st_value |= 1;
18357 }
18358
18359 src = &newsym;
18360 }
18361 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
18362 }
18363
18364 /* Add the PT_ARM_EXIDX program header. */
18365
18366 static bfd_boolean
18367 elf32_arm_modify_segment_map (bfd *abfd,
18368 struct bfd_link_info *info ATTRIBUTE_UNUSED)
18369 {
18370 struct elf_segment_map *m;
18371 asection *sec;
18372
18373 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
18374 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
18375 {
18376 /* If there is already a PT_ARM_EXIDX header, then we do not
18377 want to add another one. This situation arises when running
18378 "strip"; the input binary already has the header. */
18379 m = elf_seg_map (abfd);
18380 while (m && m->p_type != PT_ARM_EXIDX)
18381 m = m->next;
18382 if (!m)
18383 {
18384 m = (struct elf_segment_map *)
18385 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
18386 if (m == NULL)
18387 return FALSE;
18388 m->p_type = PT_ARM_EXIDX;
18389 m->count = 1;
18390 m->sections[0] = sec;
18391
18392 m->next = elf_seg_map (abfd);
18393 elf_seg_map (abfd) = m;
18394 }
18395 }
18396
18397 return TRUE;
18398 }
18399
18400 /* We may add a PT_ARM_EXIDX program header. */
18401
18402 static int
18403 elf32_arm_additional_program_headers (bfd *abfd,
18404 struct bfd_link_info *info ATTRIBUTE_UNUSED)
18405 {
18406 asection *sec;
18407
18408 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
18409 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
18410 return 1;
18411 else
18412 return 0;
18413 }
18414
18415 /* Hook called by the linker routine which adds symbols from an object
18416 file. */
18417
18418 static bfd_boolean
18419 elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
18420 Elf_Internal_Sym *sym, const char **namep,
18421 flagword *flagsp, asection **secp, bfd_vma *valp)
18422 {
18423 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
18424 && (abfd->flags & DYNAMIC) == 0
18425 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
18426 elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_ifunc;
18427
18428 if (elf32_arm_hash_table (info) == NULL)
18429 return FALSE;
18430
18431 if (elf32_arm_hash_table (info)->vxworks_p
18432 && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
18433 flagsp, secp, valp))
18434 return FALSE;
18435
18436 return TRUE;
18437 }
18438
18439 /* We use this to override swap_symbol_in and swap_symbol_out. */
18440 const struct elf_size_info elf32_arm_size_info =
18441 {
18442 sizeof (Elf32_External_Ehdr),
18443 sizeof (Elf32_External_Phdr),
18444 sizeof (Elf32_External_Shdr),
18445 sizeof (Elf32_External_Rel),
18446 sizeof (Elf32_External_Rela),
18447 sizeof (Elf32_External_Sym),
18448 sizeof (Elf32_External_Dyn),
18449 sizeof (Elf_External_Note),
18450 4,
18451 1,
18452 32, 2,
18453 ELFCLASS32, EV_CURRENT,
18454 bfd_elf32_write_out_phdrs,
18455 bfd_elf32_write_shdrs_and_ehdr,
18456 bfd_elf32_checksum_contents,
18457 bfd_elf32_write_relocs,
18458 elf32_arm_swap_symbol_in,
18459 elf32_arm_swap_symbol_out,
18460 bfd_elf32_slurp_reloc_table,
18461 bfd_elf32_slurp_symbol_table,
18462 bfd_elf32_swap_dyn_in,
18463 bfd_elf32_swap_dyn_out,
18464 bfd_elf32_swap_reloc_in,
18465 bfd_elf32_swap_reloc_out,
18466 bfd_elf32_swap_reloca_in,
18467 bfd_elf32_swap_reloca_out
18468 };
18469
18470 static bfd_vma
18471 read_code32 (const bfd *abfd, const bfd_byte *addr)
18472 {
18473 /* V7 BE8 code is always little endian. */
18474 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
18475 return bfd_getl32 (addr);
18476
18477 return bfd_get_32 (abfd, addr);
18478 }
18479
18480 static bfd_vma
18481 read_code16 (const bfd *abfd, const bfd_byte *addr)
18482 {
18483 /* V7 BE8 code is always little endian. */
18484 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
18485 return bfd_getl16 (addr);
18486
18487 return bfd_get_16 (abfd, addr);
18488 }
18489
18490 /* Return size of plt0 entry starting at ADDR
18491 or (bfd_vma) -1 if size can not be determined. */
18492
18493 static bfd_vma
18494 elf32_arm_plt0_size (const bfd *abfd, const bfd_byte *addr)
18495 {
18496 bfd_vma first_word;
18497 bfd_vma plt0_size;
18498
18499 first_word = read_code32 (abfd, addr);
18500
18501 if (first_word == elf32_arm_plt0_entry[0])
18502 plt0_size = 4 * ARRAY_SIZE (elf32_arm_plt0_entry);
18503 else if (first_word == elf32_thumb2_plt0_entry[0])
18504 plt0_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
18505 else
18506 /* We don't yet handle this PLT format. */
18507 return (bfd_vma) -1;
18508
18509 return plt0_size;
18510 }
18511
18512 /* Return size of plt entry starting at offset OFFSET
18513 of plt section located at address START
18514 or (bfd_vma) -1 if size can not be determined. */
18515
18516 static bfd_vma
18517 elf32_arm_plt_size (const bfd *abfd, const bfd_byte *start, bfd_vma offset)
18518 {
18519 bfd_vma first_insn;
18520 bfd_vma plt_size = 0;
18521 const bfd_byte *addr = start + offset;
18522
18523 /* PLT entry size if fixed on Thumb-only platforms. */
18524 if (read_code32 (abfd, start) == elf32_thumb2_plt0_entry[0])
18525 return 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
18526
18527 /* Respect Thumb stub if necessary. */
18528 if (read_code16 (abfd, addr) == elf32_arm_plt_thumb_stub[0])
18529 {
18530 plt_size += 2 * ARRAY_SIZE(elf32_arm_plt_thumb_stub);
18531 }
18532
18533 /* Strip immediate from first add. */
18534 first_insn = read_code32 (abfd, addr + plt_size) & 0xffffff00;
18535
18536 #ifdef FOUR_WORD_PLT
18537 if (first_insn == elf32_arm_plt_entry[0])
18538 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry);
18539 #else
18540 if (first_insn == elf32_arm_plt_entry_long[0])
18541 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_long);
18542 else if (first_insn == elf32_arm_plt_entry_short[0])
18543 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_short);
18544 #endif
18545 else
18546 /* We don't yet handle this PLT format. */
18547 return (bfd_vma) -1;
18548
18549 return plt_size;
18550 }
18551
18552 /* Implementation is shamelessly borrowed from _bfd_elf_get_synthetic_symtab. */
18553
18554 static long
18555 elf32_arm_get_synthetic_symtab (bfd *abfd,
18556 long symcount ATTRIBUTE_UNUSED,
18557 asymbol **syms ATTRIBUTE_UNUSED,
18558 long dynsymcount,
18559 asymbol **dynsyms,
18560 asymbol **ret)
18561 {
18562 asection *relplt;
18563 asymbol *s;
18564 arelent *p;
18565 long count, i, n;
18566 size_t size;
18567 Elf_Internal_Shdr *hdr;
18568 char *names;
18569 asection *plt;
18570 bfd_vma offset;
18571 bfd_byte *data;
18572
18573 *ret = NULL;
18574
18575 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
18576 return 0;
18577
18578 if (dynsymcount <= 0)
18579 return 0;
18580
18581 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
18582 if (relplt == NULL)
18583 return 0;
18584
18585 hdr = &elf_section_data (relplt)->this_hdr;
18586 if (hdr->sh_link != elf_dynsymtab (abfd)
18587 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
18588 return 0;
18589
18590 plt = bfd_get_section_by_name (abfd, ".plt");
18591 if (plt == NULL)
18592 return 0;
18593
18594 if (!elf32_arm_size_info.slurp_reloc_table (abfd, relplt, dynsyms, TRUE))
18595 return -1;
18596
18597 data = plt->contents;
18598 if (data == NULL)
18599 {
18600 if (!bfd_get_full_section_contents(abfd, (asection *) plt, &data) || data == NULL)
18601 return -1;
18602 bfd_cache_section_contents((asection *) plt, data);
18603 }
18604
18605 count = relplt->size / hdr->sh_entsize;
18606 size = count * sizeof (asymbol);
18607 p = relplt->relocation;
18608 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
18609 {
18610 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
18611 if (p->addend != 0)
18612 size += sizeof ("+0x") - 1 + 8;
18613 }
18614
18615 s = *ret = (asymbol *) bfd_malloc (size);
18616 if (s == NULL)
18617 return -1;
18618
18619 offset = elf32_arm_plt0_size (abfd, data);
18620 if (offset == (bfd_vma) -1)
18621 return -1;
18622
18623 names = (char *) (s + count);
18624 p = relplt->relocation;
18625 n = 0;
18626 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
18627 {
18628 size_t len;
18629
18630 bfd_vma plt_size = elf32_arm_plt_size (abfd, data, offset);
18631 if (plt_size == (bfd_vma) -1)
18632 break;
18633
18634 *s = **p->sym_ptr_ptr;
18635 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
18636 we are defining a symbol, ensure one of them is set. */
18637 if ((s->flags & BSF_LOCAL) == 0)
18638 s->flags |= BSF_GLOBAL;
18639 s->flags |= BSF_SYNTHETIC;
18640 s->section = plt;
18641 s->value = offset;
18642 s->name = names;
18643 s->udata.p = NULL;
18644 len = strlen ((*p->sym_ptr_ptr)->name);
18645 memcpy (names, (*p->sym_ptr_ptr)->name, len);
18646 names += len;
18647 if (p->addend != 0)
18648 {
18649 char buf[30], *a;
18650
18651 memcpy (names, "+0x", sizeof ("+0x") - 1);
18652 names += sizeof ("+0x") - 1;
18653 bfd_sprintf_vma (abfd, buf, p->addend);
18654 for (a = buf; *a == '0'; ++a)
18655 ;
18656 len = strlen (a);
18657 memcpy (names, a, len);
18658 names += len;
18659 }
18660 memcpy (names, "@plt", sizeof ("@plt"));
18661 names += sizeof ("@plt");
18662 ++s, ++n;
18663 offset += plt_size;
18664 }
18665
18666 return n;
18667 }
18668
18669 static bfd_boolean
18670 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr * hdr)
18671 {
18672 if (hdr->sh_flags & SHF_ARM_PURECODE)
18673 *flags |= SEC_ELF_PURECODE;
18674 return TRUE;
18675 }
18676
18677 static flagword
18678 elf32_arm_lookup_section_flags (char *flag_name)
18679 {
18680 if (!strcmp (flag_name, "SHF_ARM_PURECODE"))
18681 return SHF_ARM_PURECODE;
18682
18683 return SEC_NO_FLAGS;
18684 }
18685
18686 static unsigned int
18687 elf32_arm_count_additional_relocs (asection *sec)
18688 {
18689 struct _arm_elf_section_data *arm_data;
18690 arm_data = get_arm_elf_section_data (sec);
18691 return arm_data->additional_reloc_count;
18692 }
18693
18694 /* Called to set the sh_flags, sh_link and sh_info fields of OSECTION which
18695 has a type >= SHT_LOOS. Returns TRUE if these fields were initialised
18696 FALSE otherwise. ISECTION is the best guess matching section from the
18697 input bfd IBFD, but it might be NULL. */
18698
18699 static bfd_boolean
18700 elf32_arm_copy_special_section_fields (const bfd *ibfd ATTRIBUTE_UNUSED,
18701 bfd *obfd ATTRIBUTE_UNUSED,
18702 const Elf_Internal_Shdr *isection ATTRIBUTE_UNUSED,
18703 Elf_Internal_Shdr *osection)
18704 {
18705 switch (osection->sh_type)
18706 {
18707 case SHT_ARM_EXIDX:
18708 {
18709 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
18710 Elf_Internal_Shdr **iheaders = elf_elfsections (ibfd);
18711 unsigned i = 0;
18712
18713 osection->sh_flags = SHF_ALLOC | SHF_LINK_ORDER;
18714 osection->sh_info = 0;
18715
18716 /* The sh_link field must be set to the text section associated with
18717 this index section. Unfortunately the ARM EHABI does not specify
18718 exactly how to determine this association. Our caller does try
18719 to match up OSECTION with its corresponding input section however
18720 so that is a good first guess. */
18721 if (isection != NULL
18722 && osection->bfd_section != NULL
18723 && isection->bfd_section != NULL
18724 && isection->bfd_section->output_section != NULL
18725 && isection->bfd_section->output_section == osection->bfd_section
18726 && iheaders != NULL
18727 && isection->sh_link > 0
18728 && isection->sh_link < elf_numsections (ibfd)
18729 && iheaders[isection->sh_link]->bfd_section != NULL
18730 && iheaders[isection->sh_link]->bfd_section->output_section != NULL
18731 )
18732 {
18733 for (i = elf_numsections (obfd); i-- > 0;)
18734 if (oheaders[i]->bfd_section
18735 == iheaders[isection->sh_link]->bfd_section->output_section)
18736 break;
18737 }
18738
18739 if (i == 0)
18740 {
18741 /* Failing that we have to find a matching section ourselves. If
18742 we had the output section name available we could compare that
18743 with input section names. Unfortunately we don't. So instead
18744 we use a simple heuristic and look for the nearest executable
18745 section before this one. */
18746 for (i = elf_numsections (obfd); i-- > 0;)
18747 if (oheaders[i] == osection)
18748 break;
18749 if (i == 0)
18750 break;
18751
18752 while (i-- > 0)
18753 if (oheaders[i]->sh_type == SHT_PROGBITS
18754 && (oheaders[i]->sh_flags & (SHF_ALLOC | SHF_EXECINSTR))
18755 == (SHF_ALLOC | SHF_EXECINSTR))
18756 break;
18757 }
18758
18759 if (i)
18760 {
18761 osection->sh_link = i;
18762 /* If the text section was part of a group
18763 then the index section should be too. */
18764 if (oheaders[i]->sh_flags & SHF_GROUP)
18765 osection->sh_flags |= SHF_GROUP;
18766 return TRUE;
18767 }
18768 }
18769 break;
18770
18771 case SHT_ARM_PREEMPTMAP:
18772 osection->sh_flags = SHF_ALLOC;
18773 break;
18774
18775 case SHT_ARM_ATTRIBUTES:
18776 case SHT_ARM_DEBUGOVERLAY:
18777 case SHT_ARM_OVERLAYSECTION:
18778 default:
18779 break;
18780 }
18781
18782 return FALSE;
18783 }
18784
18785 /* Returns TRUE if NAME is an ARM mapping symbol.
18786 Traditionally the symbols $a, $d and $t have been used.
18787 The ARM ELF standard also defines $x (for A64 code). It also allows a
18788 period initiated suffix to be added to the symbol: "$[adtx]\.[:sym_char]+".
18789 Other tools might also produce $b (Thumb BL), $f, $p, $m and $v, but we do
18790 not support them here. $t.x indicates the start of ThumbEE instructions. */
18791
18792 static bfd_boolean
18793 is_arm_mapping_symbol (const char * name)
18794 {
18795 return name != NULL /* Paranoia. */
18796 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
18797 the mapping symbols could have acquired a prefix.
18798 We do not support this here, since such symbols no
18799 longer conform to the ARM ELF ABI. */
18800 && (name[1] == 'a' || name[1] == 'd' || name[1] == 't' || name[1] == 'x')
18801 && (name[2] == 0 || name[2] == '.');
18802 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
18803 any characters that follow the period are legal characters for the body
18804 of a symbol's name. For now we just assume that this is the case. */
18805 }
18806
18807 /* Make sure that mapping symbols in object files are not removed via the
18808 "strip --strip-unneeded" tool. These symbols are needed in order to
18809 correctly generate interworking veneers, and for byte swapping code
18810 regions. Once an object file has been linked, it is safe to remove the
18811 symbols as they will no longer be needed. */
18812
18813 static void
18814 elf32_arm_backend_symbol_processing (bfd *abfd, asymbol *sym)
18815 {
18816 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
18817 && sym->section != bfd_abs_section_ptr
18818 && is_arm_mapping_symbol (sym->name))
18819 sym->flags |= BSF_KEEP;
18820 }
18821
18822 #undef elf_backend_copy_special_section_fields
18823 #define elf_backend_copy_special_section_fields elf32_arm_copy_special_section_fields
18824
18825 #define ELF_ARCH bfd_arch_arm
18826 #define ELF_TARGET_ID ARM_ELF_DATA
18827 #define ELF_MACHINE_CODE EM_ARM
18828 #ifdef __QNXTARGET__
18829 #define ELF_MAXPAGESIZE 0x1000
18830 #else
18831 #define ELF_MAXPAGESIZE 0x10000
18832 #endif
18833 #define ELF_MINPAGESIZE 0x1000
18834 #define ELF_COMMONPAGESIZE 0x1000
18835
18836 #define bfd_elf32_mkobject elf32_arm_mkobject
18837
18838 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
18839 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
18840 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
18841 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
18842 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
18843 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
18844 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
18845 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
18846 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
18847 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
18848 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
18849 #define bfd_elf32_bfd_final_link elf32_arm_final_link
18850 #define bfd_elf32_get_synthetic_symtab elf32_arm_get_synthetic_symtab
18851
18852 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
18853 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
18854 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
18855 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
18856 #define elf_backend_check_relocs elf32_arm_check_relocs
18857 #define elf_backend_relocate_section elf32_arm_relocate_section
18858 #define elf_backend_write_section elf32_arm_write_section
18859 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
18860 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
18861 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
18862 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
18863 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
18864 #define elf_backend_always_size_sections elf32_arm_always_size_sections
18865 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
18866 #define elf_backend_post_process_headers elf32_arm_post_process_headers
18867 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
18868 #define elf_backend_object_p elf32_arm_object_p
18869 #define elf_backend_fake_sections elf32_arm_fake_sections
18870 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
18871 #define elf_backend_final_write_processing elf32_arm_final_write_processing
18872 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
18873 #define elf_backend_size_info elf32_arm_size_info
18874 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
18875 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
18876 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
18877 #define elf_backend_filter_implib_symbols elf32_arm_filter_implib_symbols
18878 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
18879 #define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
18880 #define elf_backend_count_additional_relocs elf32_arm_count_additional_relocs
18881 #define elf_backend_symbol_processing elf32_arm_backend_symbol_processing
18882
18883 #define elf_backend_can_refcount 1
18884 #define elf_backend_can_gc_sections 1
18885 #define elf_backend_plt_readonly 1
18886 #define elf_backend_want_got_plt 1
18887 #define elf_backend_want_plt_sym 0
18888 #define elf_backend_may_use_rel_p 1
18889 #define elf_backend_may_use_rela_p 0
18890 #define elf_backend_default_use_rela_p 0
18891
18892 #define elf_backend_got_header_size 12
18893 #define elf_backend_extern_protected_data 1
18894
18895 #undef elf_backend_obj_attrs_vendor
18896 #define elf_backend_obj_attrs_vendor "aeabi"
18897 #undef elf_backend_obj_attrs_section
18898 #define elf_backend_obj_attrs_section ".ARM.attributes"
18899 #undef elf_backend_obj_attrs_arg_type
18900 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
18901 #undef elf_backend_obj_attrs_section_type
18902 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
18903 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
18904 #define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
18905
18906 #undef elf_backend_section_flags
18907 #define elf_backend_section_flags elf32_arm_section_flags
18908 #undef elf_backend_lookup_section_flags_hook
18909 #define elf_backend_lookup_section_flags_hook elf32_arm_lookup_section_flags
18910
18911 #include "elf32-target.h"
18912
18913 /* Native Client targets. */
18914
18915 #undef TARGET_LITTLE_SYM
18916 #define TARGET_LITTLE_SYM arm_elf32_nacl_le_vec
18917 #undef TARGET_LITTLE_NAME
18918 #define TARGET_LITTLE_NAME "elf32-littlearm-nacl"
18919 #undef TARGET_BIG_SYM
18920 #define TARGET_BIG_SYM arm_elf32_nacl_be_vec
18921 #undef TARGET_BIG_NAME
18922 #define TARGET_BIG_NAME "elf32-bigarm-nacl"
18923
18924 /* Like elf32_arm_link_hash_table_create -- but overrides
18925 appropriately for NaCl. */
18926
18927 static struct bfd_link_hash_table *
18928 elf32_arm_nacl_link_hash_table_create (bfd *abfd)
18929 {
18930 struct bfd_link_hash_table *ret;
18931
18932 ret = elf32_arm_link_hash_table_create (abfd);
18933 if (ret)
18934 {
18935 struct elf32_arm_link_hash_table *htab
18936 = (struct elf32_arm_link_hash_table *) ret;
18937
18938 htab->nacl_p = 1;
18939
18940 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry);
18941 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry);
18942 }
18943 return ret;
18944 }
18945
18946 /* Since NaCl doesn't use the ARM-specific unwind format, we don't
18947 really need to use elf32_arm_modify_segment_map. But we do it
18948 anyway just to reduce gratuitous differences with the stock ARM backend. */
18949
18950 static bfd_boolean
18951 elf32_arm_nacl_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
18952 {
18953 return (elf32_arm_modify_segment_map (abfd, info)
18954 && nacl_modify_segment_map (abfd, info));
18955 }
18956
18957 static void
18958 elf32_arm_nacl_final_write_processing (bfd *abfd, bfd_boolean linker)
18959 {
18960 elf32_arm_final_write_processing (abfd, linker);
18961 nacl_final_write_processing (abfd, linker);
18962 }
18963
18964 static bfd_vma
18965 elf32_arm_nacl_plt_sym_val (bfd_vma i, const asection *plt,
18966 const arelent *rel ATTRIBUTE_UNUSED)
18967 {
18968 return plt->vma
18969 + 4 * (ARRAY_SIZE (elf32_arm_nacl_plt0_entry) +
18970 i * ARRAY_SIZE (elf32_arm_nacl_plt_entry));
18971 }
18972
18973 #undef elf32_bed
18974 #define elf32_bed elf32_arm_nacl_bed
18975 #undef bfd_elf32_bfd_link_hash_table_create
18976 #define bfd_elf32_bfd_link_hash_table_create \
18977 elf32_arm_nacl_link_hash_table_create
18978 #undef elf_backend_plt_alignment
18979 #define elf_backend_plt_alignment 4
18980 #undef elf_backend_modify_segment_map
18981 #define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map
18982 #undef elf_backend_modify_program_headers
18983 #define elf_backend_modify_program_headers nacl_modify_program_headers
18984 #undef elf_backend_final_write_processing
18985 #define elf_backend_final_write_processing elf32_arm_nacl_final_write_processing
18986 #undef bfd_elf32_get_synthetic_symtab
18987 #undef elf_backend_plt_sym_val
18988 #define elf_backend_plt_sym_val elf32_arm_nacl_plt_sym_val
18989 #undef elf_backend_copy_special_section_fields
18990
18991 #undef ELF_MINPAGESIZE
18992 #undef ELF_COMMONPAGESIZE
18993
18994
18995 #include "elf32-target.h"
18996
18997 /* Reset to defaults. */
18998 #undef elf_backend_plt_alignment
18999 #undef elf_backend_modify_segment_map
19000 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
19001 #undef elf_backend_modify_program_headers
19002 #undef elf_backend_final_write_processing
19003 #define elf_backend_final_write_processing elf32_arm_final_write_processing
19004 #undef ELF_MINPAGESIZE
19005 #define ELF_MINPAGESIZE 0x1000
19006 #undef ELF_COMMONPAGESIZE
19007 #define ELF_COMMONPAGESIZE 0x1000
19008
19009
19010 /* VxWorks Targets. */
19011
19012 #undef TARGET_LITTLE_SYM
19013 #define TARGET_LITTLE_SYM arm_elf32_vxworks_le_vec
19014 #undef TARGET_LITTLE_NAME
19015 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
19016 #undef TARGET_BIG_SYM
19017 #define TARGET_BIG_SYM arm_elf32_vxworks_be_vec
19018 #undef TARGET_BIG_NAME
19019 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
19020
19021 /* Like elf32_arm_link_hash_table_create -- but overrides
19022 appropriately for VxWorks. */
19023
19024 static struct bfd_link_hash_table *
19025 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
19026 {
19027 struct bfd_link_hash_table *ret;
19028
19029 ret = elf32_arm_link_hash_table_create (abfd);
19030 if (ret)
19031 {
19032 struct elf32_arm_link_hash_table *htab
19033 = (struct elf32_arm_link_hash_table *) ret;
19034 htab->use_rel = 0;
19035 htab->vxworks_p = 1;
19036 }
19037 return ret;
19038 }
19039
19040 static void
19041 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
19042 {
19043 elf32_arm_final_write_processing (abfd, linker);
19044 elf_vxworks_final_write_processing (abfd, linker);
19045 }
19046
19047 #undef elf32_bed
19048 #define elf32_bed elf32_arm_vxworks_bed
19049
19050 #undef bfd_elf32_bfd_link_hash_table_create
19051 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
19052 #undef elf_backend_final_write_processing
19053 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
19054 #undef elf_backend_emit_relocs
19055 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
19056
19057 #undef elf_backend_may_use_rel_p
19058 #define elf_backend_may_use_rel_p 0
19059 #undef elf_backend_may_use_rela_p
19060 #define elf_backend_may_use_rela_p 1
19061 #undef elf_backend_default_use_rela_p
19062 #define elf_backend_default_use_rela_p 1
19063 #undef elf_backend_want_plt_sym
19064 #define elf_backend_want_plt_sym 1
19065 #undef ELF_MAXPAGESIZE
19066 #define ELF_MAXPAGESIZE 0x1000
19067
19068 #include "elf32-target.h"
19069
19070
19071 /* Merge backend specific data from an object file to the output
19072 object file when linking. */
19073
19074 static bfd_boolean
19075 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
19076 {
19077 flagword out_flags;
19078 flagword in_flags;
19079 bfd_boolean flags_compatible = TRUE;
19080 asection *sec;
19081
19082 /* Check if we have the same endianness. */
19083 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
19084 return FALSE;
19085
19086 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
19087 return TRUE;
19088
19089 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
19090 return FALSE;
19091
19092 /* The input BFD must have had its flags initialised. */
19093 /* The following seems bogus to me -- The flags are initialized in
19094 the assembler but I don't think an elf_flags_init field is
19095 written into the object. */
19096 /* BFD_ASSERT (elf_flags_init (ibfd)); */
19097
19098 in_flags = elf_elfheader (ibfd)->e_flags;
19099 out_flags = elf_elfheader (obfd)->e_flags;
19100
19101 /* In theory there is no reason why we couldn't handle this. However
19102 in practice it isn't even close to working and there is no real
19103 reason to want it. */
19104 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
19105 && !(ibfd->flags & DYNAMIC)
19106 && (in_flags & EF_ARM_BE8))
19107 {
19108 _bfd_error_handler (_("error: %B is already in final BE8 format"),
19109 ibfd);
19110 return FALSE;
19111 }
19112
19113 if (!elf_flags_init (obfd))
19114 {
19115 /* If the input is the default architecture and had the default
19116 flags then do not bother setting the flags for the output
19117 architecture, instead allow future merges to do this. If no
19118 future merges ever set these flags then they will retain their
19119 uninitialised values, which surprise surprise, correspond
19120 to the default values. */
19121 if (bfd_get_arch_info (ibfd)->the_default
19122 && elf_elfheader (ibfd)->e_flags == 0)
19123 return TRUE;
19124
19125 elf_flags_init (obfd) = TRUE;
19126 elf_elfheader (obfd)->e_flags = in_flags;
19127
19128 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
19129 && bfd_get_arch_info (obfd)->the_default)
19130 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
19131
19132 return TRUE;
19133 }
19134
19135 /* Determine what should happen if the input ARM architecture
19136 does not match the output ARM architecture. */
19137 if (! bfd_arm_merge_machines (ibfd, obfd))
19138 return FALSE;
19139
19140 /* Identical flags must be compatible. */
19141 if (in_flags == out_flags)
19142 return TRUE;
19143
19144 /* Check to see if the input BFD actually contains any sections. If
19145 not, its flags may not have been initialised either, but it
19146 cannot actually cause any incompatiblity. Do not short-circuit
19147 dynamic objects; their section list may be emptied by
19148 elf_link_add_object_symbols.
19149
19150 Also check to see if there are no code sections in the input.
19151 In this case there is no need to check for code specific flags.
19152 XXX - do we need to worry about floating-point format compatability
19153 in data sections ? */
19154 if (!(ibfd->flags & DYNAMIC))
19155 {
19156 bfd_boolean null_input_bfd = TRUE;
19157 bfd_boolean only_data_sections = TRUE;
19158
19159 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
19160 {
19161 /* Ignore synthetic glue sections. */
19162 if (strcmp (sec->name, ".glue_7")
19163 && strcmp (sec->name, ".glue_7t"))
19164 {
19165 if ((bfd_get_section_flags (ibfd, sec)
19166 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
19167 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
19168 only_data_sections = FALSE;
19169
19170 null_input_bfd = FALSE;
19171 break;
19172 }
19173 }
19174
19175 if (null_input_bfd || only_data_sections)
19176 return TRUE;
19177 }
19178
19179 /* Complain about various flag mismatches. */
19180 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
19181 EF_ARM_EABI_VERSION (out_flags)))
19182 {
19183 _bfd_error_handler
19184 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
19185 ibfd, obfd,
19186 (in_flags & EF_ARM_EABIMASK) >> 24,
19187 (out_flags & EF_ARM_EABIMASK) >> 24);
19188 return FALSE;
19189 }
19190
19191 /* Not sure what needs to be checked for EABI versions >= 1. */
19192 /* VxWorks libraries do not use these flags. */
19193 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
19194 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
19195 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
19196 {
19197 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
19198 {
19199 _bfd_error_handler
19200 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
19201 ibfd, obfd,
19202 in_flags & EF_ARM_APCS_26 ? 26 : 32,
19203 out_flags & EF_ARM_APCS_26 ? 26 : 32);
19204 flags_compatible = FALSE;
19205 }
19206
19207 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
19208 {
19209 if (in_flags & EF_ARM_APCS_FLOAT)
19210 _bfd_error_handler
19211 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
19212 ibfd, obfd);
19213 else
19214 _bfd_error_handler
19215 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
19216 ibfd, obfd);
19217
19218 flags_compatible = FALSE;
19219 }
19220
19221 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
19222 {
19223 if (in_flags & EF_ARM_VFP_FLOAT)
19224 _bfd_error_handler
19225 (_("error: %B uses VFP instructions, whereas %B does not"),
19226 ibfd, obfd);
19227 else
19228 _bfd_error_handler
19229 (_("error: %B uses FPA instructions, whereas %B does not"),
19230 ibfd, obfd);
19231
19232 flags_compatible = FALSE;
19233 }
19234
19235 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
19236 {
19237 if (in_flags & EF_ARM_MAVERICK_FLOAT)
19238 _bfd_error_handler
19239 (_("error: %B uses Maverick instructions, whereas %B does not"),
19240 ibfd, obfd);
19241 else
19242 _bfd_error_handler
19243 (_("error: %B does not use Maverick instructions, whereas %B does"),
19244 ibfd, obfd);
19245
19246 flags_compatible = FALSE;
19247 }
19248
19249 #ifdef EF_ARM_SOFT_FLOAT
19250 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
19251 {
19252 /* We can allow interworking between code that is VFP format
19253 layout, and uses either soft float or integer regs for
19254 passing floating point arguments and results. We already
19255 know that the APCS_FLOAT flags match; similarly for VFP
19256 flags. */
19257 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
19258 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
19259 {
19260 if (in_flags & EF_ARM_SOFT_FLOAT)
19261 _bfd_error_handler
19262 (_("error: %B uses software FP, whereas %B uses hardware FP"),
19263 ibfd, obfd);
19264 else
19265 _bfd_error_handler
19266 (_("error: %B uses hardware FP, whereas %B uses software FP"),
19267 ibfd, obfd);
19268
19269 flags_compatible = FALSE;
19270 }
19271 }
19272 #endif
19273
19274 /* Interworking mismatch is only a warning. */
19275 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
19276 {
19277 if (in_flags & EF_ARM_INTERWORK)
19278 {
19279 _bfd_error_handler
19280 (_("Warning: %B supports interworking, whereas %B does not"),
19281 ibfd, obfd);
19282 }
19283 else
19284 {
19285 _bfd_error_handler
19286 (_("Warning: %B does not support interworking, whereas %B does"),
19287 ibfd, obfd);
19288 }
19289 }
19290 }
19291
19292 return flags_compatible;
19293 }
19294
19295
19296 /* Symbian OS Targets. */
19297
19298 #undef TARGET_LITTLE_SYM
19299 #define TARGET_LITTLE_SYM arm_elf32_symbian_le_vec
19300 #undef TARGET_LITTLE_NAME
19301 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
19302 #undef TARGET_BIG_SYM
19303 #define TARGET_BIG_SYM arm_elf32_symbian_be_vec
19304 #undef TARGET_BIG_NAME
19305 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
19306
19307 /* Like elf32_arm_link_hash_table_create -- but overrides
19308 appropriately for Symbian OS. */
19309
19310 static struct bfd_link_hash_table *
19311 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
19312 {
19313 struct bfd_link_hash_table *ret;
19314
19315 ret = elf32_arm_link_hash_table_create (abfd);
19316 if (ret)
19317 {
19318 struct elf32_arm_link_hash_table *htab
19319 = (struct elf32_arm_link_hash_table *)ret;
19320 /* There is no PLT header for Symbian OS. */
19321 htab->plt_header_size = 0;
19322 /* The PLT entries are each one instruction and one word. */
19323 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
19324 htab->symbian_p = 1;
19325 /* Symbian uses armv5t or above, so use_blx is always true. */
19326 htab->use_blx = 1;
19327 htab->root.is_relocatable_executable = 1;
19328 }
19329 return ret;
19330 }
19331
19332 static const struct bfd_elf_special_section
19333 elf32_arm_symbian_special_sections[] =
19334 {
19335 /* In a BPABI executable, the dynamic linking sections do not go in
19336 the loadable read-only segment. The post-linker may wish to
19337 refer to these sections, but they are not part of the final
19338 program image. */
19339 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
19340 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
19341 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
19342 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
19343 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
19344 /* These sections do not need to be writable as the SymbianOS
19345 postlinker will arrange things so that no dynamic relocation is
19346 required. */
19347 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
19348 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
19349 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
19350 { NULL, 0, 0, 0, 0 }
19351 };
19352
19353 static void
19354 elf32_arm_symbian_begin_write_processing (bfd *abfd,
19355 struct bfd_link_info *link_info)
19356 {
19357 /* BPABI objects are never loaded directly by an OS kernel; they are
19358 processed by a postlinker first, into an OS-specific format. If
19359 the D_PAGED bit is set on the file, BFD will align segments on
19360 page boundaries, so that an OS can directly map the file. With
19361 BPABI objects, that just results in wasted space. In addition,
19362 because we clear the D_PAGED bit, map_sections_to_segments will
19363 recognize that the program headers should not be mapped into any
19364 loadable segment. */
19365 abfd->flags &= ~D_PAGED;
19366 elf32_arm_begin_write_processing (abfd, link_info);
19367 }
19368
19369 static bfd_boolean
19370 elf32_arm_symbian_modify_segment_map (bfd *abfd,
19371 struct bfd_link_info *info)
19372 {
19373 struct elf_segment_map *m;
19374 asection *dynsec;
19375
19376 /* BPABI shared libraries and executables should have a PT_DYNAMIC
19377 segment. However, because the .dynamic section is not marked
19378 with SEC_LOAD, the generic ELF code will not create such a
19379 segment. */
19380 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
19381 if (dynsec)
19382 {
19383 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
19384 if (m->p_type == PT_DYNAMIC)
19385 break;
19386
19387 if (m == NULL)
19388 {
19389 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
19390 m->next = elf_seg_map (abfd);
19391 elf_seg_map (abfd) = m;
19392 }
19393 }
19394
19395 /* Also call the generic arm routine. */
19396 return elf32_arm_modify_segment_map (abfd, info);
19397 }
19398
19399 /* Return address for Ith PLT stub in section PLT, for relocation REL
19400 or (bfd_vma) -1 if it should not be included. */
19401
19402 static bfd_vma
19403 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
19404 const arelent *rel ATTRIBUTE_UNUSED)
19405 {
19406 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
19407 }
19408
19409 #undef elf32_bed
19410 #define elf32_bed elf32_arm_symbian_bed
19411
19412 /* The dynamic sections are not allocated on SymbianOS; the postlinker
19413 will process them and then discard them. */
19414 #undef ELF_DYNAMIC_SEC_FLAGS
19415 #define ELF_DYNAMIC_SEC_FLAGS \
19416 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
19417
19418 #undef elf_backend_emit_relocs
19419
19420 #undef bfd_elf32_bfd_link_hash_table_create
19421 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
19422 #undef elf_backend_special_sections
19423 #define elf_backend_special_sections elf32_arm_symbian_special_sections
19424 #undef elf_backend_begin_write_processing
19425 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
19426 #undef elf_backend_final_write_processing
19427 #define elf_backend_final_write_processing elf32_arm_final_write_processing
19428
19429 #undef elf_backend_modify_segment_map
19430 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
19431
19432 /* There is no .got section for BPABI objects, and hence no header. */
19433 #undef elf_backend_got_header_size
19434 #define elf_backend_got_header_size 0
19435
19436 /* Similarly, there is no .got.plt section. */
19437 #undef elf_backend_want_got_plt
19438 #define elf_backend_want_got_plt 0
19439
19440 #undef elf_backend_plt_sym_val
19441 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
19442
19443 #undef elf_backend_may_use_rel_p
19444 #define elf_backend_may_use_rel_p 1
19445 #undef elf_backend_may_use_rela_p
19446 #define elf_backend_may_use_rela_p 0
19447 #undef elf_backend_default_use_rela_p
19448 #define elf_backend_default_use_rela_p 0
19449 #undef elf_backend_want_plt_sym
19450 #define elf_backend_want_plt_sym 0
19451 #undef ELF_MAXPAGESIZE
19452 #define ELF_MAXPAGESIZE 0x8000
19453
19454 #include "elf32-target.h"
This page took 0.600009 seconds and 5 git commands to generate.