2009-04-01 Christophe Lyon <christophe.lyon@st.com>
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libiberty.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "elf-vxworks.h"
28 #include "elf/arm.h"
29
30 /* Return the relocation section associated with NAME. HTAB is the
31 bfd's elf32_arm_link_hash_entry. */
32 #define RELOC_SECTION(HTAB, NAME) \
33 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
34
35 /* Return size of a relocation entry. HTAB is the bfd's
36 elf32_arm_link_hash_entry. */
37 #define RELOC_SIZE(HTAB) \
38 ((HTAB)->use_rel \
39 ? sizeof (Elf32_External_Rel) \
40 : sizeof (Elf32_External_Rela))
41
42 /* Return function to swap relocations in. HTAB is the bfd's
43 elf32_arm_link_hash_entry. */
44 #define SWAP_RELOC_IN(HTAB) \
45 ((HTAB)->use_rel \
46 ? bfd_elf32_swap_reloc_in \
47 : bfd_elf32_swap_reloca_in)
48
49 /* Return function to swap relocations out. HTAB is the bfd's
50 elf32_arm_link_hash_entry. */
51 #define SWAP_RELOC_OUT(HTAB) \
52 ((HTAB)->use_rel \
53 ? bfd_elf32_swap_reloc_out \
54 : bfd_elf32_swap_reloca_out)
55
56 #define elf_info_to_howto 0
57 #define elf_info_to_howto_rel elf32_arm_info_to_howto
58
59 #define ARM_ELF_ABI_VERSION 0
60 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
61
62 static struct elf_backend_data elf32_arm_vxworks_bed;
63
64 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
65 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
66 in that slot. */
67
68 static reloc_howto_type elf32_arm_howto_table_1[] =
69 {
70 /* No relocation. */
71 HOWTO (R_ARM_NONE, /* type */
72 0, /* rightshift */
73 0, /* size (0 = byte, 1 = short, 2 = long) */
74 0, /* bitsize */
75 FALSE, /* pc_relative */
76 0, /* bitpos */
77 complain_overflow_dont,/* complain_on_overflow */
78 bfd_elf_generic_reloc, /* special_function */
79 "R_ARM_NONE", /* name */
80 FALSE, /* partial_inplace */
81 0, /* src_mask */
82 0, /* dst_mask */
83 FALSE), /* pcrel_offset */
84
85 HOWTO (R_ARM_PC24, /* type */
86 2, /* rightshift */
87 2, /* size (0 = byte, 1 = short, 2 = long) */
88 24, /* bitsize */
89 TRUE, /* pc_relative */
90 0, /* bitpos */
91 complain_overflow_signed,/* complain_on_overflow */
92 bfd_elf_generic_reloc, /* special_function */
93 "R_ARM_PC24", /* name */
94 FALSE, /* partial_inplace */
95 0x00ffffff, /* src_mask */
96 0x00ffffff, /* dst_mask */
97 TRUE), /* pcrel_offset */
98
99 /* 32 bit absolute */
100 HOWTO (R_ARM_ABS32, /* type */
101 0, /* rightshift */
102 2, /* size (0 = byte, 1 = short, 2 = long) */
103 32, /* bitsize */
104 FALSE, /* pc_relative */
105 0, /* bitpos */
106 complain_overflow_bitfield,/* complain_on_overflow */
107 bfd_elf_generic_reloc, /* special_function */
108 "R_ARM_ABS32", /* name */
109 FALSE, /* partial_inplace */
110 0xffffffff, /* src_mask */
111 0xffffffff, /* dst_mask */
112 FALSE), /* pcrel_offset */
113
114 /* standard 32bit pc-relative reloc */
115 HOWTO (R_ARM_REL32, /* type */
116 0, /* rightshift */
117 2, /* size (0 = byte, 1 = short, 2 = long) */
118 32, /* bitsize */
119 TRUE, /* pc_relative */
120 0, /* bitpos */
121 complain_overflow_bitfield,/* complain_on_overflow */
122 bfd_elf_generic_reloc, /* special_function */
123 "R_ARM_REL32", /* name */
124 FALSE, /* partial_inplace */
125 0xffffffff, /* src_mask */
126 0xffffffff, /* dst_mask */
127 TRUE), /* pcrel_offset */
128
129 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
130 HOWTO (R_ARM_LDR_PC_G0, /* type */
131 0, /* rightshift */
132 0, /* size (0 = byte, 1 = short, 2 = long) */
133 32, /* bitsize */
134 TRUE, /* pc_relative */
135 0, /* bitpos */
136 complain_overflow_dont,/* complain_on_overflow */
137 bfd_elf_generic_reloc, /* special_function */
138 "R_ARM_LDR_PC_G0", /* name */
139 FALSE, /* partial_inplace */
140 0xffffffff, /* src_mask */
141 0xffffffff, /* dst_mask */
142 TRUE), /* pcrel_offset */
143
144 /* 16 bit absolute */
145 HOWTO (R_ARM_ABS16, /* type */
146 0, /* rightshift */
147 1, /* size (0 = byte, 1 = short, 2 = long) */
148 16, /* bitsize */
149 FALSE, /* pc_relative */
150 0, /* bitpos */
151 complain_overflow_bitfield,/* complain_on_overflow */
152 bfd_elf_generic_reloc, /* special_function */
153 "R_ARM_ABS16", /* name */
154 FALSE, /* partial_inplace */
155 0x0000ffff, /* src_mask */
156 0x0000ffff, /* dst_mask */
157 FALSE), /* pcrel_offset */
158
159 /* 12 bit absolute */
160 HOWTO (R_ARM_ABS12, /* type */
161 0, /* rightshift */
162 2, /* size (0 = byte, 1 = short, 2 = long) */
163 12, /* bitsize */
164 FALSE, /* pc_relative */
165 0, /* bitpos */
166 complain_overflow_bitfield,/* complain_on_overflow */
167 bfd_elf_generic_reloc, /* special_function */
168 "R_ARM_ABS12", /* name */
169 FALSE, /* partial_inplace */
170 0x00000fff, /* src_mask */
171 0x00000fff, /* dst_mask */
172 FALSE), /* pcrel_offset */
173
174 HOWTO (R_ARM_THM_ABS5, /* type */
175 6, /* rightshift */
176 1, /* size (0 = byte, 1 = short, 2 = long) */
177 5, /* bitsize */
178 FALSE, /* pc_relative */
179 0, /* bitpos */
180 complain_overflow_bitfield,/* complain_on_overflow */
181 bfd_elf_generic_reloc, /* special_function */
182 "R_ARM_THM_ABS5", /* name */
183 FALSE, /* partial_inplace */
184 0x000007e0, /* src_mask */
185 0x000007e0, /* dst_mask */
186 FALSE), /* pcrel_offset */
187
188 /* 8 bit absolute */
189 HOWTO (R_ARM_ABS8, /* type */
190 0, /* rightshift */
191 0, /* size (0 = byte, 1 = short, 2 = long) */
192 8, /* bitsize */
193 FALSE, /* pc_relative */
194 0, /* bitpos */
195 complain_overflow_bitfield,/* complain_on_overflow */
196 bfd_elf_generic_reloc, /* special_function */
197 "R_ARM_ABS8", /* name */
198 FALSE, /* partial_inplace */
199 0x000000ff, /* src_mask */
200 0x000000ff, /* dst_mask */
201 FALSE), /* pcrel_offset */
202
203 HOWTO (R_ARM_SBREL32, /* type */
204 0, /* rightshift */
205 2, /* size (0 = byte, 1 = short, 2 = long) */
206 32, /* bitsize */
207 FALSE, /* pc_relative */
208 0, /* bitpos */
209 complain_overflow_dont,/* complain_on_overflow */
210 bfd_elf_generic_reloc, /* special_function */
211 "R_ARM_SBREL32", /* name */
212 FALSE, /* partial_inplace */
213 0xffffffff, /* src_mask */
214 0xffffffff, /* dst_mask */
215 FALSE), /* pcrel_offset */
216
217 HOWTO (R_ARM_THM_CALL, /* type */
218 1, /* rightshift */
219 2, /* size (0 = byte, 1 = short, 2 = long) */
220 25, /* bitsize */
221 TRUE, /* pc_relative */
222 0, /* bitpos */
223 complain_overflow_signed,/* complain_on_overflow */
224 bfd_elf_generic_reloc, /* special_function */
225 "R_ARM_THM_CALL", /* name */
226 FALSE, /* partial_inplace */
227 0x07ff07ff, /* src_mask */
228 0x07ff07ff, /* dst_mask */
229 TRUE), /* pcrel_offset */
230
231 HOWTO (R_ARM_THM_PC8, /* type */
232 1, /* rightshift */
233 1, /* size (0 = byte, 1 = short, 2 = long) */
234 8, /* bitsize */
235 TRUE, /* pc_relative */
236 0, /* bitpos */
237 complain_overflow_signed,/* complain_on_overflow */
238 bfd_elf_generic_reloc, /* special_function */
239 "R_ARM_THM_PC8", /* name */
240 FALSE, /* partial_inplace */
241 0x000000ff, /* src_mask */
242 0x000000ff, /* dst_mask */
243 TRUE), /* pcrel_offset */
244
245 HOWTO (R_ARM_BREL_ADJ, /* type */
246 1, /* rightshift */
247 1, /* size (0 = byte, 1 = short, 2 = long) */
248 32, /* bitsize */
249 FALSE, /* pc_relative */
250 0, /* bitpos */
251 complain_overflow_signed,/* complain_on_overflow */
252 bfd_elf_generic_reloc, /* special_function */
253 "R_ARM_BREL_ADJ", /* name */
254 FALSE, /* partial_inplace */
255 0xffffffff, /* src_mask */
256 0xffffffff, /* dst_mask */
257 FALSE), /* pcrel_offset */
258
259 HOWTO (R_ARM_SWI24, /* type */
260 0, /* rightshift */
261 0, /* size (0 = byte, 1 = short, 2 = long) */
262 0, /* bitsize */
263 FALSE, /* pc_relative */
264 0, /* bitpos */
265 complain_overflow_signed,/* complain_on_overflow */
266 bfd_elf_generic_reloc, /* special_function */
267 "R_ARM_SWI24", /* name */
268 FALSE, /* partial_inplace */
269 0x00000000, /* src_mask */
270 0x00000000, /* dst_mask */
271 FALSE), /* pcrel_offset */
272
273 HOWTO (R_ARM_THM_SWI8, /* type */
274 0, /* rightshift */
275 0, /* size (0 = byte, 1 = short, 2 = long) */
276 0, /* bitsize */
277 FALSE, /* pc_relative */
278 0, /* bitpos */
279 complain_overflow_signed,/* complain_on_overflow */
280 bfd_elf_generic_reloc, /* special_function */
281 "R_ARM_SWI8", /* name */
282 FALSE, /* partial_inplace */
283 0x00000000, /* src_mask */
284 0x00000000, /* dst_mask */
285 FALSE), /* pcrel_offset */
286
287 /* BLX instruction for the ARM. */
288 HOWTO (R_ARM_XPC25, /* type */
289 2, /* rightshift */
290 2, /* size (0 = byte, 1 = short, 2 = long) */
291 25, /* bitsize */
292 TRUE, /* pc_relative */
293 0, /* bitpos */
294 complain_overflow_signed,/* complain_on_overflow */
295 bfd_elf_generic_reloc, /* special_function */
296 "R_ARM_XPC25", /* name */
297 FALSE, /* partial_inplace */
298 0x00ffffff, /* src_mask */
299 0x00ffffff, /* dst_mask */
300 TRUE), /* pcrel_offset */
301
302 /* BLX instruction for the Thumb. */
303 HOWTO (R_ARM_THM_XPC22, /* type */
304 2, /* rightshift */
305 2, /* size (0 = byte, 1 = short, 2 = long) */
306 22, /* bitsize */
307 TRUE, /* pc_relative */
308 0, /* bitpos */
309 complain_overflow_signed,/* complain_on_overflow */
310 bfd_elf_generic_reloc, /* special_function */
311 "R_ARM_THM_XPC22", /* name */
312 FALSE, /* partial_inplace */
313 0x07ff07ff, /* src_mask */
314 0x07ff07ff, /* dst_mask */
315 TRUE), /* pcrel_offset */
316
317 /* Dynamic TLS relocations. */
318
319 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
320 0, /* rightshift */
321 2, /* size (0 = byte, 1 = short, 2 = long) */
322 32, /* bitsize */
323 FALSE, /* pc_relative */
324 0, /* bitpos */
325 complain_overflow_bitfield,/* complain_on_overflow */
326 bfd_elf_generic_reloc, /* special_function */
327 "R_ARM_TLS_DTPMOD32", /* name */
328 TRUE, /* partial_inplace */
329 0xffffffff, /* src_mask */
330 0xffffffff, /* dst_mask */
331 FALSE), /* pcrel_offset */
332
333 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
334 0, /* rightshift */
335 2, /* size (0 = byte, 1 = short, 2 = long) */
336 32, /* bitsize */
337 FALSE, /* pc_relative */
338 0, /* bitpos */
339 complain_overflow_bitfield,/* complain_on_overflow */
340 bfd_elf_generic_reloc, /* special_function */
341 "R_ARM_TLS_DTPOFF32", /* name */
342 TRUE, /* partial_inplace */
343 0xffffffff, /* src_mask */
344 0xffffffff, /* dst_mask */
345 FALSE), /* pcrel_offset */
346
347 HOWTO (R_ARM_TLS_TPOFF32, /* type */
348 0, /* rightshift */
349 2, /* size (0 = byte, 1 = short, 2 = long) */
350 32, /* bitsize */
351 FALSE, /* pc_relative */
352 0, /* bitpos */
353 complain_overflow_bitfield,/* complain_on_overflow */
354 bfd_elf_generic_reloc, /* special_function */
355 "R_ARM_TLS_TPOFF32", /* name */
356 TRUE, /* partial_inplace */
357 0xffffffff, /* src_mask */
358 0xffffffff, /* dst_mask */
359 FALSE), /* pcrel_offset */
360
361 /* Relocs used in ARM Linux */
362
363 HOWTO (R_ARM_COPY, /* type */
364 0, /* rightshift */
365 2, /* size (0 = byte, 1 = short, 2 = long) */
366 32, /* bitsize */
367 FALSE, /* pc_relative */
368 0, /* bitpos */
369 complain_overflow_bitfield,/* complain_on_overflow */
370 bfd_elf_generic_reloc, /* special_function */
371 "R_ARM_COPY", /* name */
372 TRUE, /* partial_inplace */
373 0xffffffff, /* src_mask */
374 0xffffffff, /* dst_mask */
375 FALSE), /* pcrel_offset */
376
377 HOWTO (R_ARM_GLOB_DAT, /* type */
378 0, /* rightshift */
379 2, /* size (0 = byte, 1 = short, 2 = long) */
380 32, /* bitsize */
381 FALSE, /* pc_relative */
382 0, /* bitpos */
383 complain_overflow_bitfield,/* complain_on_overflow */
384 bfd_elf_generic_reloc, /* special_function */
385 "R_ARM_GLOB_DAT", /* name */
386 TRUE, /* partial_inplace */
387 0xffffffff, /* src_mask */
388 0xffffffff, /* dst_mask */
389 FALSE), /* pcrel_offset */
390
391 HOWTO (R_ARM_JUMP_SLOT, /* type */
392 0, /* rightshift */
393 2, /* size (0 = byte, 1 = short, 2 = long) */
394 32, /* bitsize */
395 FALSE, /* pc_relative */
396 0, /* bitpos */
397 complain_overflow_bitfield,/* complain_on_overflow */
398 bfd_elf_generic_reloc, /* special_function */
399 "R_ARM_JUMP_SLOT", /* name */
400 TRUE, /* partial_inplace */
401 0xffffffff, /* src_mask */
402 0xffffffff, /* dst_mask */
403 FALSE), /* pcrel_offset */
404
405 HOWTO (R_ARM_RELATIVE, /* type */
406 0, /* rightshift */
407 2, /* size (0 = byte, 1 = short, 2 = long) */
408 32, /* bitsize */
409 FALSE, /* pc_relative */
410 0, /* bitpos */
411 complain_overflow_bitfield,/* complain_on_overflow */
412 bfd_elf_generic_reloc, /* special_function */
413 "R_ARM_RELATIVE", /* name */
414 TRUE, /* partial_inplace */
415 0xffffffff, /* src_mask */
416 0xffffffff, /* dst_mask */
417 FALSE), /* pcrel_offset */
418
419 HOWTO (R_ARM_GOTOFF32, /* type */
420 0, /* rightshift */
421 2, /* size (0 = byte, 1 = short, 2 = long) */
422 32, /* bitsize */
423 FALSE, /* pc_relative */
424 0, /* bitpos */
425 complain_overflow_bitfield,/* complain_on_overflow */
426 bfd_elf_generic_reloc, /* special_function */
427 "R_ARM_GOTOFF32", /* name */
428 TRUE, /* partial_inplace */
429 0xffffffff, /* src_mask */
430 0xffffffff, /* dst_mask */
431 FALSE), /* pcrel_offset */
432
433 HOWTO (R_ARM_GOTPC, /* type */
434 0, /* rightshift */
435 2, /* size (0 = byte, 1 = short, 2 = long) */
436 32, /* bitsize */
437 TRUE, /* pc_relative */
438 0, /* bitpos */
439 complain_overflow_bitfield,/* complain_on_overflow */
440 bfd_elf_generic_reloc, /* special_function */
441 "R_ARM_GOTPC", /* name */
442 TRUE, /* partial_inplace */
443 0xffffffff, /* src_mask */
444 0xffffffff, /* dst_mask */
445 TRUE), /* pcrel_offset */
446
447 HOWTO (R_ARM_GOT32, /* type */
448 0, /* rightshift */
449 2, /* size (0 = byte, 1 = short, 2 = long) */
450 32, /* bitsize */
451 FALSE, /* pc_relative */
452 0, /* bitpos */
453 complain_overflow_bitfield,/* complain_on_overflow */
454 bfd_elf_generic_reloc, /* special_function */
455 "R_ARM_GOT32", /* name */
456 TRUE, /* partial_inplace */
457 0xffffffff, /* src_mask */
458 0xffffffff, /* dst_mask */
459 FALSE), /* pcrel_offset */
460
461 HOWTO (R_ARM_PLT32, /* type */
462 2, /* rightshift */
463 2, /* size (0 = byte, 1 = short, 2 = long) */
464 24, /* bitsize */
465 TRUE, /* pc_relative */
466 0, /* bitpos */
467 complain_overflow_bitfield,/* complain_on_overflow */
468 bfd_elf_generic_reloc, /* special_function */
469 "R_ARM_PLT32", /* name */
470 FALSE, /* partial_inplace */
471 0x00ffffff, /* src_mask */
472 0x00ffffff, /* dst_mask */
473 TRUE), /* pcrel_offset */
474
475 HOWTO (R_ARM_CALL, /* type */
476 2, /* rightshift */
477 2, /* size (0 = byte, 1 = short, 2 = long) */
478 24, /* bitsize */
479 TRUE, /* pc_relative */
480 0, /* bitpos */
481 complain_overflow_signed,/* complain_on_overflow */
482 bfd_elf_generic_reloc, /* special_function */
483 "R_ARM_CALL", /* name */
484 FALSE, /* partial_inplace */
485 0x00ffffff, /* src_mask */
486 0x00ffffff, /* dst_mask */
487 TRUE), /* pcrel_offset */
488
489 HOWTO (R_ARM_JUMP24, /* type */
490 2, /* rightshift */
491 2, /* size (0 = byte, 1 = short, 2 = long) */
492 24, /* bitsize */
493 TRUE, /* pc_relative */
494 0, /* bitpos */
495 complain_overflow_signed,/* complain_on_overflow */
496 bfd_elf_generic_reloc, /* special_function */
497 "R_ARM_JUMP24", /* name */
498 FALSE, /* partial_inplace */
499 0x00ffffff, /* src_mask */
500 0x00ffffff, /* dst_mask */
501 TRUE), /* pcrel_offset */
502
503 HOWTO (R_ARM_THM_JUMP24, /* type */
504 1, /* rightshift */
505 2, /* size (0 = byte, 1 = short, 2 = long) */
506 24, /* bitsize */
507 TRUE, /* pc_relative */
508 0, /* bitpos */
509 complain_overflow_signed,/* complain_on_overflow */
510 bfd_elf_generic_reloc, /* special_function */
511 "R_ARM_THM_JUMP24", /* name */
512 FALSE, /* partial_inplace */
513 0x07ff2fff, /* src_mask */
514 0x07ff2fff, /* dst_mask */
515 TRUE), /* pcrel_offset */
516
517 HOWTO (R_ARM_BASE_ABS, /* type */
518 0, /* rightshift */
519 2, /* size (0 = byte, 1 = short, 2 = long) */
520 32, /* bitsize */
521 FALSE, /* pc_relative */
522 0, /* bitpos */
523 complain_overflow_dont,/* complain_on_overflow */
524 bfd_elf_generic_reloc, /* special_function */
525 "R_ARM_BASE_ABS", /* name */
526 FALSE, /* partial_inplace */
527 0xffffffff, /* src_mask */
528 0xffffffff, /* dst_mask */
529 FALSE), /* pcrel_offset */
530
531 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
532 0, /* rightshift */
533 2, /* size (0 = byte, 1 = short, 2 = long) */
534 12, /* bitsize */
535 TRUE, /* pc_relative */
536 0, /* bitpos */
537 complain_overflow_dont,/* complain_on_overflow */
538 bfd_elf_generic_reloc, /* special_function */
539 "R_ARM_ALU_PCREL_7_0", /* name */
540 FALSE, /* partial_inplace */
541 0x00000fff, /* src_mask */
542 0x00000fff, /* dst_mask */
543 TRUE), /* pcrel_offset */
544
545 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
546 0, /* rightshift */
547 2, /* size (0 = byte, 1 = short, 2 = long) */
548 12, /* bitsize */
549 TRUE, /* pc_relative */
550 8, /* bitpos */
551 complain_overflow_dont,/* complain_on_overflow */
552 bfd_elf_generic_reloc, /* special_function */
553 "R_ARM_ALU_PCREL_15_8",/* name */
554 FALSE, /* partial_inplace */
555 0x00000fff, /* src_mask */
556 0x00000fff, /* dst_mask */
557 TRUE), /* pcrel_offset */
558
559 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
560 0, /* rightshift */
561 2, /* size (0 = byte, 1 = short, 2 = long) */
562 12, /* bitsize */
563 TRUE, /* pc_relative */
564 16, /* bitpos */
565 complain_overflow_dont,/* complain_on_overflow */
566 bfd_elf_generic_reloc, /* special_function */
567 "R_ARM_ALU_PCREL_23_15",/* name */
568 FALSE, /* partial_inplace */
569 0x00000fff, /* src_mask */
570 0x00000fff, /* dst_mask */
571 TRUE), /* pcrel_offset */
572
573 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
574 0, /* rightshift */
575 2, /* size (0 = byte, 1 = short, 2 = long) */
576 12, /* bitsize */
577 FALSE, /* pc_relative */
578 0, /* bitpos */
579 complain_overflow_dont,/* complain_on_overflow */
580 bfd_elf_generic_reloc, /* special_function */
581 "R_ARM_LDR_SBREL_11_0",/* name */
582 FALSE, /* partial_inplace */
583 0x00000fff, /* src_mask */
584 0x00000fff, /* dst_mask */
585 FALSE), /* pcrel_offset */
586
587 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
588 0, /* rightshift */
589 2, /* size (0 = byte, 1 = short, 2 = long) */
590 8, /* bitsize */
591 FALSE, /* pc_relative */
592 12, /* bitpos */
593 complain_overflow_dont,/* complain_on_overflow */
594 bfd_elf_generic_reloc, /* special_function */
595 "R_ARM_ALU_SBREL_19_12",/* name */
596 FALSE, /* partial_inplace */
597 0x000ff000, /* src_mask */
598 0x000ff000, /* dst_mask */
599 FALSE), /* pcrel_offset */
600
601 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
602 0, /* rightshift */
603 2, /* size (0 = byte, 1 = short, 2 = long) */
604 8, /* bitsize */
605 FALSE, /* pc_relative */
606 20, /* bitpos */
607 complain_overflow_dont,/* complain_on_overflow */
608 bfd_elf_generic_reloc, /* special_function */
609 "R_ARM_ALU_SBREL_27_20",/* name */
610 FALSE, /* partial_inplace */
611 0x0ff00000, /* src_mask */
612 0x0ff00000, /* dst_mask */
613 FALSE), /* pcrel_offset */
614
615 HOWTO (R_ARM_TARGET1, /* type */
616 0, /* rightshift */
617 2, /* size (0 = byte, 1 = short, 2 = long) */
618 32, /* bitsize */
619 FALSE, /* pc_relative */
620 0, /* bitpos */
621 complain_overflow_dont,/* complain_on_overflow */
622 bfd_elf_generic_reloc, /* special_function */
623 "R_ARM_TARGET1", /* name */
624 FALSE, /* partial_inplace */
625 0xffffffff, /* src_mask */
626 0xffffffff, /* dst_mask */
627 FALSE), /* pcrel_offset */
628
629 HOWTO (R_ARM_ROSEGREL32, /* type */
630 0, /* rightshift */
631 2, /* size (0 = byte, 1 = short, 2 = long) */
632 32, /* bitsize */
633 FALSE, /* pc_relative */
634 0, /* bitpos */
635 complain_overflow_dont,/* complain_on_overflow */
636 bfd_elf_generic_reloc, /* special_function */
637 "R_ARM_ROSEGREL32", /* name */
638 FALSE, /* partial_inplace */
639 0xffffffff, /* src_mask */
640 0xffffffff, /* dst_mask */
641 FALSE), /* pcrel_offset */
642
643 HOWTO (R_ARM_V4BX, /* type */
644 0, /* rightshift */
645 2, /* size (0 = byte, 1 = short, 2 = long) */
646 32, /* bitsize */
647 FALSE, /* pc_relative */
648 0, /* bitpos */
649 complain_overflow_dont,/* complain_on_overflow */
650 bfd_elf_generic_reloc, /* special_function */
651 "R_ARM_V4BX", /* name */
652 FALSE, /* partial_inplace */
653 0xffffffff, /* src_mask */
654 0xffffffff, /* dst_mask */
655 FALSE), /* pcrel_offset */
656
657 HOWTO (R_ARM_TARGET2, /* type */
658 0, /* rightshift */
659 2, /* size (0 = byte, 1 = short, 2 = long) */
660 32, /* bitsize */
661 FALSE, /* pc_relative */
662 0, /* bitpos */
663 complain_overflow_signed,/* complain_on_overflow */
664 bfd_elf_generic_reloc, /* special_function */
665 "R_ARM_TARGET2", /* name */
666 FALSE, /* partial_inplace */
667 0xffffffff, /* src_mask */
668 0xffffffff, /* dst_mask */
669 TRUE), /* pcrel_offset */
670
671 HOWTO (R_ARM_PREL31, /* type */
672 0, /* rightshift */
673 2, /* size (0 = byte, 1 = short, 2 = long) */
674 31, /* bitsize */
675 TRUE, /* pc_relative */
676 0, /* bitpos */
677 complain_overflow_signed,/* complain_on_overflow */
678 bfd_elf_generic_reloc, /* special_function */
679 "R_ARM_PREL31", /* name */
680 FALSE, /* partial_inplace */
681 0x7fffffff, /* src_mask */
682 0x7fffffff, /* dst_mask */
683 TRUE), /* pcrel_offset */
684
685 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
686 0, /* rightshift */
687 2, /* size (0 = byte, 1 = short, 2 = long) */
688 16, /* bitsize */
689 FALSE, /* pc_relative */
690 0, /* bitpos */
691 complain_overflow_dont,/* complain_on_overflow */
692 bfd_elf_generic_reloc, /* special_function */
693 "R_ARM_MOVW_ABS_NC", /* name */
694 FALSE, /* partial_inplace */
695 0x000f0fff, /* src_mask */
696 0x000f0fff, /* dst_mask */
697 FALSE), /* pcrel_offset */
698
699 HOWTO (R_ARM_MOVT_ABS, /* type */
700 0, /* rightshift */
701 2, /* size (0 = byte, 1 = short, 2 = long) */
702 16, /* bitsize */
703 FALSE, /* pc_relative */
704 0, /* bitpos */
705 complain_overflow_bitfield,/* complain_on_overflow */
706 bfd_elf_generic_reloc, /* special_function */
707 "R_ARM_MOVT_ABS", /* name */
708 FALSE, /* partial_inplace */
709 0x000f0fff, /* src_mask */
710 0x000f0fff, /* dst_mask */
711 FALSE), /* pcrel_offset */
712
713 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
714 0, /* rightshift */
715 2, /* size (0 = byte, 1 = short, 2 = long) */
716 16, /* bitsize */
717 TRUE, /* pc_relative */
718 0, /* bitpos */
719 complain_overflow_dont,/* complain_on_overflow */
720 bfd_elf_generic_reloc, /* special_function */
721 "R_ARM_MOVW_PREL_NC", /* name */
722 FALSE, /* partial_inplace */
723 0x000f0fff, /* src_mask */
724 0x000f0fff, /* dst_mask */
725 TRUE), /* pcrel_offset */
726
727 HOWTO (R_ARM_MOVT_PREL, /* type */
728 0, /* rightshift */
729 2, /* size (0 = byte, 1 = short, 2 = long) */
730 16, /* bitsize */
731 TRUE, /* pc_relative */
732 0, /* bitpos */
733 complain_overflow_bitfield,/* complain_on_overflow */
734 bfd_elf_generic_reloc, /* special_function */
735 "R_ARM_MOVT_PREL", /* name */
736 FALSE, /* partial_inplace */
737 0x000f0fff, /* src_mask */
738 0x000f0fff, /* dst_mask */
739 TRUE), /* pcrel_offset */
740
741 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
742 0, /* rightshift */
743 2, /* size (0 = byte, 1 = short, 2 = long) */
744 16, /* bitsize */
745 FALSE, /* pc_relative */
746 0, /* bitpos */
747 complain_overflow_dont,/* complain_on_overflow */
748 bfd_elf_generic_reloc, /* special_function */
749 "R_ARM_THM_MOVW_ABS_NC",/* name */
750 FALSE, /* partial_inplace */
751 0x040f70ff, /* src_mask */
752 0x040f70ff, /* dst_mask */
753 FALSE), /* pcrel_offset */
754
755 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
756 0, /* rightshift */
757 2, /* size (0 = byte, 1 = short, 2 = long) */
758 16, /* bitsize */
759 FALSE, /* pc_relative */
760 0, /* bitpos */
761 complain_overflow_bitfield,/* complain_on_overflow */
762 bfd_elf_generic_reloc, /* special_function */
763 "R_ARM_THM_MOVT_ABS", /* name */
764 FALSE, /* partial_inplace */
765 0x040f70ff, /* src_mask */
766 0x040f70ff, /* dst_mask */
767 FALSE), /* pcrel_offset */
768
769 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
770 0, /* rightshift */
771 2, /* size (0 = byte, 1 = short, 2 = long) */
772 16, /* bitsize */
773 TRUE, /* pc_relative */
774 0, /* bitpos */
775 complain_overflow_dont,/* complain_on_overflow */
776 bfd_elf_generic_reloc, /* special_function */
777 "R_ARM_THM_MOVW_PREL_NC",/* name */
778 FALSE, /* partial_inplace */
779 0x040f70ff, /* src_mask */
780 0x040f70ff, /* dst_mask */
781 TRUE), /* pcrel_offset */
782
783 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
784 0, /* rightshift */
785 2, /* size (0 = byte, 1 = short, 2 = long) */
786 16, /* bitsize */
787 TRUE, /* pc_relative */
788 0, /* bitpos */
789 complain_overflow_bitfield,/* complain_on_overflow */
790 bfd_elf_generic_reloc, /* special_function */
791 "R_ARM_THM_MOVT_PREL", /* name */
792 FALSE, /* partial_inplace */
793 0x040f70ff, /* src_mask */
794 0x040f70ff, /* dst_mask */
795 TRUE), /* pcrel_offset */
796
797 HOWTO (R_ARM_THM_JUMP19, /* type */
798 1, /* rightshift */
799 2, /* size (0 = byte, 1 = short, 2 = long) */
800 19, /* bitsize */
801 TRUE, /* pc_relative */
802 0, /* bitpos */
803 complain_overflow_signed,/* complain_on_overflow */
804 bfd_elf_generic_reloc, /* special_function */
805 "R_ARM_THM_JUMP19", /* name */
806 FALSE, /* partial_inplace */
807 0x043f2fff, /* src_mask */
808 0x043f2fff, /* dst_mask */
809 TRUE), /* pcrel_offset */
810
811 HOWTO (R_ARM_THM_JUMP6, /* type */
812 1, /* rightshift */
813 1, /* size (0 = byte, 1 = short, 2 = long) */
814 6, /* bitsize */
815 TRUE, /* pc_relative */
816 0, /* bitpos */
817 complain_overflow_unsigned,/* complain_on_overflow */
818 bfd_elf_generic_reloc, /* special_function */
819 "R_ARM_THM_JUMP6", /* name */
820 FALSE, /* partial_inplace */
821 0x02f8, /* src_mask */
822 0x02f8, /* dst_mask */
823 TRUE), /* pcrel_offset */
824
825 /* These are declared as 13-bit signed relocations because we can
826 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
827 versa. */
828 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
829 0, /* rightshift */
830 2, /* size (0 = byte, 1 = short, 2 = long) */
831 13, /* bitsize */
832 TRUE, /* pc_relative */
833 0, /* bitpos */
834 complain_overflow_dont,/* complain_on_overflow */
835 bfd_elf_generic_reloc, /* special_function */
836 "R_ARM_THM_ALU_PREL_11_0",/* name */
837 FALSE, /* partial_inplace */
838 0xffffffff, /* src_mask */
839 0xffffffff, /* dst_mask */
840 TRUE), /* pcrel_offset */
841
842 HOWTO (R_ARM_THM_PC12, /* type */
843 0, /* rightshift */
844 2, /* size (0 = byte, 1 = short, 2 = long) */
845 13, /* bitsize */
846 TRUE, /* pc_relative */
847 0, /* bitpos */
848 complain_overflow_dont,/* complain_on_overflow */
849 bfd_elf_generic_reloc, /* special_function */
850 "R_ARM_THM_PC12", /* name */
851 FALSE, /* partial_inplace */
852 0xffffffff, /* src_mask */
853 0xffffffff, /* dst_mask */
854 TRUE), /* pcrel_offset */
855
856 HOWTO (R_ARM_ABS32_NOI, /* type */
857 0, /* rightshift */
858 2, /* size (0 = byte, 1 = short, 2 = long) */
859 32, /* bitsize */
860 FALSE, /* pc_relative */
861 0, /* bitpos */
862 complain_overflow_dont,/* complain_on_overflow */
863 bfd_elf_generic_reloc, /* special_function */
864 "R_ARM_ABS32_NOI", /* name */
865 FALSE, /* partial_inplace */
866 0xffffffff, /* src_mask */
867 0xffffffff, /* dst_mask */
868 FALSE), /* pcrel_offset */
869
870 HOWTO (R_ARM_REL32_NOI, /* type */
871 0, /* rightshift */
872 2, /* size (0 = byte, 1 = short, 2 = long) */
873 32, /* bitsize */
874 TRUE, /* pc_relative */
875 0, /* bitpos */
876 complain_overflow_dont,/* complain_on_overflow */
877 bfd_elf_generic_reloc, /* special_function */
878 "R_ARM_REL32_NOI", /* name */
879 FALSE, /* partial_inplace */
880 0xffffffff, /* src_mask */
881 0xffffffff, /* dst_mask */
882 FALSE), /* pcrel_offset */
883
884 /* Group relocations. */
885
886 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
887 0, /* rightshift */
888 2, /* size (0 = byte, 1 = short, 2 = long) */
889 32, /* bitsize */
890 TRUE, /* pc_relative */
891 0, /* bitpos */
892 complain_overflow_dont,/* complain_on_overflow */
893 bfd_elf_generic_reloc, /* special_function */
894 "R_ARM_ALU_PC_G0_NC", /* name */
895 FALSE, /* partial_inplace */
896 0xffffffff, /* src_mask */
897 0xffffffff, /* dst_mask */
898 TRUE), /* pcrel_offset */
899
900 HOWTO (R_ARM_ALU_PC_G0, /* type */
901 0, /* rightshift */
902 2, /* size (0 = byte, 1 = short, 2 = long) */
903 32, /* bitsize */
904 TRUE, /* pc_relative */
905 0, /* bitpos */
906 complain_overflow_dont,/* complain_on_overflow */
907 bfd_elf_generic_reloc, /* special_function */
908 "R_ARM_ALU_PC_G0", /* name */
909 FALSE, /* partial_inplace */
910 0xffffffff, /* src_mask */
911 0xffffffff, /* dst_mask */
912 TRUE), /* pcrel_offset */
913
914 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
915 0, /* rightshift */
916 2, /* size (0 = byte, 1 = short, 2 = long) */
917 32, /* bitsize */
918 TRUE, /* pc_relative */
919 0, /* bitpos */
920 complain_overflow_dont,/* complain_on_overflow */
921 bfd_elf_generic_reloc, /* special_function */
922 "R_ARM_ALU_PC_G1_NC", /* name */
923 FALSE, /* partial_inplace */
924 0xffffffff, /* src_mask */
925 0xffffffff, /* dst_mask */
926 TRUE), /* pcrel_offset */
927
928 HOWTO (R_ARM_ALU_PC_G1, /* type */
929 0, /* rightshift */
930 2, /* size (0 = byte, 1 = short, 2 = long) */
931 32, /* bitsize */
932 TRUE, /* pc_relative */
933 0, /* bitpos */
934 complain_overflow_dont,/* complain_on_overflow */
935 bfd_elf_generic_reloc, /* special_function */
936 "R_ARM_ALU_PC_G1", /* name */
937 FALSE, /* partial_inplace */
938 0xffffffff, /* src_mask */
939 0xffffffff, /* dst_mask */
940 TRUE), /* pcrel_offset */
941
942 HOWTO (R_ARM_ALU_PC_G2, /* type */
943 0, /* rightshift */
944 2, /* size (0 = byte, 1 = short, 2 = long) */
945 32, /* bitsize */
946 TRUE, /* pc_relative */
947 0, /* bitpos */
948 complain_overflow_dont,/* complain_on_overflow */
949 bfd_elf_generic_reloc, /* special_function */
950 "R_ARM_ALU_PC_G2", /* name */
951 FALSE, /* partial_inplace */
952 0xffffffff, /* src_mask */
953 0xffffffff, /* dst_mask */
954 TRUE), /* pcrel_offset */
955
956 HOWTO (R_ARM_LDR_PC_G1, /* type */
957 0, /* rightshift */
958 2, /* size (0 = byte, 1 = short, 2 = long) */
959 32, /* bitsize */
960 TRUE, /* pc_relative */
961 0, /* bitpos */
962 complain_overflow_dont,/* complain_on_overflow */
963 bfd_elf_generic_reloc, /* special_function */
964 "R_ARM_LDR_PC_G1", /* name */
965 FALSE, /* partial_inplace */
966 0xffffffff, /* src_mask */
967 0xffffffff, /* dst_mask */
968 TRUE), /* pcrel_offset */
969
970 HOWTO (R_ARM_LDR_PC_G2, /* type */
971 0, /* rightshift */
972 2, /* size (0 = byte, 1 = short, 2 = long) */
973 32, /* bitsize */
974 TRUE, /* pc_relative */
975 0, /* bitpos */
976 complain_overflow_dont,/* complain_on_overflow */
977 bfd_elf_generic_reloc, /* special_function */
978 "R_ARM_LDR_PC_G2", /* name */
979 FALSE, /* partial_inplace */
980 0xffffffff, /* src_mask */
981 0xffffffff, /* dst_mask */
982 TRUE), /* pcrel_offset */
983
984 HOWTO (R_ARM_LDRS_PC_G0, /* type */
985 0, /* rightshift */
986 2, /* size (0 = byte, 1 = short, 2 = long) */
987 32, /* bitsize */
988 TRUE, /* pc_relative */
989 0, /* bitpos */
990 complain_overflow_dont,/* complain_on_overflow */
991 bfd_elf_generic_reloc, /* special_function */
992 "R_ARM_LDRS_PC_G0", /* name */
993 FALSE, /* partial_inplace */
994 0xffffffff, /* src_mask */
995 0xffffffff, /* dst_mask */
996 TRUE), /* pcrel_offset */
997
998 HOWTO (R_ARM_LDRS_PC_G1, /* type */
999 0, /* rightshift */
1000 2, /* size (0 = byte, 1 = short, 2 = long) */
1001 32, /* bitsize */
1002 TRUE, /* pc_relative */
1003 0, /* bitpos */
1004 complain_overflow_dont,/* complain_on_overflow */
1005 bfd_elf_generic_reloc, /* special_function */
1006 "R_ARM_LDRS_PC_G1", /* name */
1007 FALSE, /* partial_inplace */
1008 0xffffffff, /* src_mask */
1009 0xffffffff, /* dst_mask */
1010 TRUE), /* pcrel_offset */
1011
1012 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1013 0, /* rightshift */
1014 2, /* size (0 = byte, 1 = short, 2 = long) */
1015 32, /* bitsize */
1016 TRUE, /* pc_relative */
1017 0, /* bitpos */
1018 complain_overflow_dont,/* complain_on_overflow */
1019 bfd_elf_generic_reloc, /* special_function */
1020 "R_ARM_LDRS_PC_G2", /* name */
1021 FALSE, /* partial_inplace */
1022 0xffffffff, /* src_mask */
1023 0xffffffff, /* dst_mask */
1024 TRUE), /* pcrel_offset */
1025
1026 HOWTO (R_ARM_LDC_PC_G0, /* type */
1027 0, /* rightshift */
1028 2, /* size (0 = byte, 1 = short, 2 = long) */
1029 32, /* bitsize */
1030 TRUE, /* pc_relative */
1031 0, /* bitpos */
1032 complain_overflow_dont,/* complain_on_overflow */
1033 bfd_elf_generic_reloc, /* special_function */
1034 "R_ARM_LDC_PC_G0", /* name */
1035 FALSE, /* partial_inplace */
1036 0xffffffff, /* src_mask */
1037 0xffffffff, /* dst_mask */
1038 TRUE), /* pcrel_offset */
1039
1040 HOWTO (R_ARM_LDC_PC_G1, /* type */
1041 0, /* rightshift */
1042 2, /* size (0 = byte, 1 = short, 2 = long) */
1043 32, /* bitsize */
1044 TRUE, /* pc_relative */
1045 0, /* bitpos */
1046 complain_overflow_dont,/* complain_on_overflow */
1047 bfd_elf_generic_reloc, /* special_function */
1048 "R_ARM_LDC_PC_G1", /* name */
1049 FALSE, /* partial_inplace */
1050 0xffffffff, /* src_mask */
1051 0xffffffff, /* dst_mask */
1052 TRUE), /* pcrel_offset */
1053
1054 HOWTO (R_ARM_LDC_PC_G2, /* type */
1055 0, /* rightshift */
1056 2, /* size (0 = byte, 1 = short, 2 = long) */
1057 32, /* bitsize */
1058 TRUE, /* pc_relative */
1059 0, /* bitpos */
1060 complain_overflow_dont,/* complain_on_overflow */
1061 bfd_elf_generic_reloc, /* special_function */
1062 "R_ARM_LDC_PC_G2", /* name */
1063 FALSE, /* partial_inplace */
1064 0xffffffff, /* src_mask */
1065 0xffffffff, /* dst_mask */
1066 TRUE), /* pcrel_offset */
1067
1068 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1069 0, /* rightshift */
1070 2, /* size (0 = byte, 1 = short, 2 = long) */
1071 32, /* bitsize */
1072 TRUE, /* pc_relative */
1073 0, /* bitpos */
1074 complain_overflow_dont,/* complain_on_overflow */
1075 bfd_elf_generic_reloc, /* special_function */
1076 "R_ARM_ALU_SB_G0_NC", /* name */
1077 FALSE, /* partial_inplace */
1078 0xffffffff, /* src_mask */
1079 0xffffffff, /* dst_mask */
1080 TRUE), /* pcrel_offset */
1081
1082 HOWTO (R_ARM_ALU_SB_G0, /* type */
1083 0, /* rightshift */
1084 2, /* size (0 = byte, 1 = short, 2 = long) */
1085 32, /* bitsize */
1086 TRUE, /* pc_relative */
1087 0, /* bitpos */
1088 complain_overflow_dont,/* complain_on_overflow */
1089 bfd_elf_generic_reloc, /* special_function */
1090 "R_ARM_ALU_SB_G0", /* name */
1091 FALSE, /* partial_inplace */
1092 0xffffffff, /* src_mask */
1093 0xffffffff, /* dst_mask */
1094 TRUE), /* pcrel_offset */
1095
1096 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1097 0, /* rightshift */
1098 2, /* size (0 = byte, 1 = short, 2 = long) */
1099 32, /* bitsize */
1100 TRUE, /* pc_relative */
1101 0, /* bitpos */
1102 complain_overflow_dont,/* complain_on_overflow */
1103 bfd_elf_generic_reloc, /* special_function */
1104 "R_ARM_ALU_SB_G1_NC", /* name */
1105 FALSE, /* partial_inplace */
1106 0xffffffff, /* src_mask */
1107 0xffffffff, /* dst_mask */
1108 TRUE), /* pcrel_offset */
1109
1110 HOWTO (R_ARM_ALU_SB_G1, /* type */
1111 0, /* rightshift */
1112 2, /* size (0 = byte, 1 = short, 2 = long) */
1113 32, /* bitsize */
1114 TRUE, /* pc_relative */
1115 0, /* bitpos */
1116 complain_overflow_dont,/* complain_on_overflow */
1117 bfd_elf_generic_reloc, /* special_function */
1118 "R_ARM_ALU_SB_G1", /* name */
1119 FALSE, /* partial_inplace */
1120 0xffffffff, /* src_mask */
1121 0xffffffff, /* dst_mask */
1122 TRUE), /* pcrel_offset */
1123
1124 HOWTO (R_ARM_ALU_SB_G2, /* type */
1125 0, /* rightshift */
1126 2, /* size (0 = byte, 1 = short, 2 = long) */
1127 32, /* bitsize */
1128 TRUE, /* pc_relative */
1129 0, /* bitpos */
1130 complain_overflow_dont,/* complain_on_overflow */
1131 bfd_elf_generic_reloc, /* special_function */
1132 "R_ARM_ALU_SB_G2", /* name */
1133 FALSE, /* partial_inplace */
1134 0xffffffff, /* src_mask */
1135 0xffffffff, /* dst_mask */
1136 TRUE), /* pcrel_offset */
1137
1138 HOWTO (R_ARM_LDR_SB_G0, /* type */
1139 0, /* rightshift */
1140 2, /* size (0 = byte, 1 = short, 2 = long) */
1141 32, /* bitsize */
1142 TRUE, /* pc_relative */
1143 0, /* bitpos */
1144 complain_overflow_dont,/* complain_on_overflow */
1145 bfd_elf_generic_reloc, /* special_function */
1146 "R_ARM_LDR_SB_G0", /* name */
1147 FALSE, /* partial_inplace */
1148 0xffffffff, /* src_mask */
1149 0xffffffff, /* dst_mask */
1150 TRUE), /* pcrel_offset */
1151
1152 HOWTO (R_ARM_LDR_SB_G1, /* type */
1153 0, /* rightshift */
1154 2, /* size (0 = byte, 1 = short, 2 = long) */
1155 32, /* bitsize */
1156 TRUE, /* pc_relative */
1157 0, /* bitpos */
1158 complain_overflow_dont,/* complain_on_overflow */
1159 bfd_elf_generic_reloc, /* special_function */
1160 "R_ARM_LDR_SB_G1", /* name */
1161 FALSE, /* partial_inplace */
1162 0xffffffff, /* src_mask */
1163 0xffffffff, /* dst_mask */
1164 TRUE), /* pcrel_offset */
1165
1166 HOWTO (R_ARM_LDR_SB_G2, /* type */
1167 0, /* rightshift */
1168 2, /* size (0 = byte, 1 = short, 2 = long) */
1169 32, /* bitsize */
1170 TRUE, /* pc_relative */
1171 0, /* bitpos */
1172 complain_overflow_dont,/* complain_on_overflow */
1173 bfd_elf_generic_reloc, /* special_function */
1174 "R_ARM_LDR_SB_G2", /* name */
1175 FALSE, /* partial_inplace */
1176 0xffffffff, /* src_mask */
1177 0xffffffff, /* dst_mask */
1178 TRUE), /* pcrel_offset */
1179
1180 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1181 0, /* rightshift */
1182 2, /* size (0 = byte, 1 = short, 2 = long) */
1183 32, /* bitsize */
1184 TRUE, /* pc_relative */
1185 0, /* bitpos */
1186 complain_overflow_dont,/* complain_on_overflow */
1187 bfd_elf_generic_reloc, /* special_function */
1188 "R_ARM_LDRS_SB_G0", /* name */
1189 FALSE, /* partial_inplace */
1190 0xffffffff, /* src_mask */
1191 0xffffffff, /* dst_mask */
1192 TRUE), /* pcrel_offset */
1193
1194 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1195 0, /* rightshift */
1196 2, /* size (0 = byte, 1 = short, 2 = long) */
1197 32, /* bitsize */
1198 TRUE, /* pc_relative */
1199 0, /* bitpos */
1200 complain_overflow_dont,/* complain_on_overflow */
1201 bfd_elf_generic_reloc, /* special_function */
1202 "R_ARM_LDRS_SB_G1", /* name */
1203 FALSE, /* partial_inplace */
1204 0xffffffff, /* src_mask */
1205 0xffffffff, /* dst_mask */
1206 TRUE), /* pcrel_offset */
1207
1208 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1209 0, /* rightshift */
1210 2, /* size (0 = byte, 1 = short, 2 = long) */
1211 32, /* bitsize */
1212 TRUE, /* pc_relative */
1213 0, /* bitpos */
1214 complain_overflow_dont,/* complain_on_overflow */
1215 bfd_elf_generic_reloc, /* special_function */
1216 "R_ARM_LDRS_SB_G2", /* name */
1217 FALSE, /* partial_inplace */
1218 0xffffffff, /* src_mask */
1219 0xffffffff, /* dst_mask */
1220 TRUE), /* pcrel_offset */
1221
1222 HOWTO (R_ARM_LDC_SB_G0, /* type */
1223 0, /* rightshift */
1224 2, /* size (0 = byte, 1 = short, 2 = long) */
1225 32, /* bitsize */
1226 TRUE, /* pc_relative */
1227 0, /* bitpos */
1228 complain_overflow_dont,/* complain_on_overflow */
1229 bfd_elf_generic_reloc, /* special_function */
1230 "R_ARM_LDC_SB_G0", /* name */
1231 FALSE, /* partial_inplace */
1232 0xffffffff, /* src_mask */
1233 0xffffffff, /* dst_mask */
1234 TRUE), /* pcrel_offset */
1235
1236 HOWTO (R_ARM_LDC_SB_G1, /* type */
1237 0, /* rightshift */
1238 2, /* size (0 = byte, 1 = short, 2 = long) */
1239 32, /* bitsize */
1240 TRUE, /* pc_relative */
1241 0, /* bitpos */
1242 complain_overflow_dont,/* complain_on_overflow */
1243 bfd_elf_generic_reloc, /* special_function */
1244 "R_ARM_LDC_SB_G1", /* name */
1245 FALSE, /* partial_inplace */
1246 0xffffffff, /* src_mask */
1247 0xffffffff, /* dst_mask */
1248 TRUE), /* pcrel_offset */
1249
1250 HOWTO (R_ARM_LDC_SB_G2, /* type */
1251 0, /* rightshift */
1252 2, /* size (0 = byte, 1 = short, 2 = long) */
1253 32, /* bitsize */
1254 TRUE, /* pc_relative */
1255 0, /* bitpos */
1256 complain_overflow_dont,/* complain_on_overflow */
1257 bfd_elf_generic_reloc, /* special_function */
1258 "R_ARM_LDC_SB_G2", /* name */
1259 FALSE, /* partial_inplace */
1260 0xffffffff, /* src_mask */
1261 0xffffffff, /* dst_mask */
1262 TRUE), /* pcrel_offset */
1263
1264 /* End of group relocations. */
1265
1266 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1267 0, /* rightshift */
1268 2, /* size (0 = byte, 1 = short, 2 = long) */
1269 16, /* bitsize */
1270 FALSE, /* pc_relative */
1271 0, /* bitpos */
1272 complain_overflow_dont,/* complain_on_overflow */
1273 bfd_elf_generic_reloc, /* special_function */
1274 "R_ARM_MOVW_BREL_NC", /* name */
1275 FALSE, /* partial_inplace */
1276 0x0000ffff, /* src_mask */
1277 0x0000ffff, /* dst_mask */
1278 FALSE), /* pcrel_offset */
1279
1280 HOWTO (R_ARM_MOVT_BREL, /* type */
1281 0, /* rightshift */
1282 2, /* size (0 = byte, 1 = short, 2 = long) */
1283 16, /* bitsize */
1284 FALSE, /* pc_relative */
1285 0, /* bitpos */
1286 complain_overflow_bitfield,/* complain_on_overflow */
1287 bfd_elf_generic_reloc, /* special_function */
1288 "R_ARM_MOVT_BREL", /* name */
1289 FALSE, /* partial_inplace */
1290 0x0000ffff, /* src_mask */
1291 0x0000ffff, /* dst_mask */
1292 FALSE), /* pcrel_offset */
1293
1294 HOWTO (R_ARM_MOVW_BREL, /* type */
1295 0, /* rightshift */
1296 2, /* size (0 = byte, 1 = short, 2 = long) */
1297 16, /* bitsize */
1298 FALSE, /* pc_relative */
1299 0, /* bitpos */
1300 complain_overflow_dont,/* complain_on_overflow */
1301 bfd_elf_generic_reloc, /* special_function */
1302 "R_ARM_MOVW_BREL", /* name */
1303 FALSE, /* partial_inplace */
1304 0x0000ffff, /* src_mask */
1305 0x0000ffff, /* dst_mask */
1306 FALSE), /* pcrel_offset */
1307
1308 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1309 0, /* rightshift */
1310 2, /* size (0 = byte, 1 = short, 2 = long) */
1311 16, /* bitsize */
1312 FALSE, /* pc_relative */
1313 0, /* bitpos */
1314 complain_overflow_dont,/* complain_on_overflow */
1315 bfd_elf_generic_reloc, /* special_function */
1316 "R_ARM_THM_MOVW_BREL_NC",/* name */
1317 FALSE, /* partial_inplace */
1318 0x040f70ff, /* src_mask */
1319 0x040f70ff, /* dst_mask */
1320 FALSE), /* pcrel_offset */
1321
1322 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1323 0, /* rightshift */
1324 2, /* size (0 = byte, 1 = short, 2 = long) */
1325 16, /* bitsize */
1326 FALSE, /* pc_relative */
1327 0, /* bitpos */
1328 complain_overflow_bitfield,/* complain_on_overflow */
1329 bfd_elf_generic_reloc, /* special_function */
1330 "R_ARM_THM_MOVT_BREL", /* name */
1331 FALSE, /* partial_inplace */
1332 0x040f70ff, /* src_mask */
1333 0x040f70ff, /* dst_mask */
1334 FALSE), /* pcrel_offset */
1335
1336 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1337 0, /* rightshift */
1338 2, /* size (0 = byte, 1 = short, 2 = long) */
1339 16, /* bitsize */
1340 FALSE, /* pc_relative */
1341 0, /* bitpos */
1342 complain_overflow_dont,/* complain_on_overflow */
1343 bfd_elf_generic_reloc, /* special_function */
1344 "R_ARM_THM_MOVW_BREL", /* name */
1345 FALSE, /* partial_inplace */
1346 0x040f70ff, /* src_mask */
1347 0x040f70ff, /* dst_mask */
1348 FALSE), /* pcrel_offset */
1349
1350 EMPTY_HOWTO (90), /* Unallocated. */
1351 EMPTY_HOWTO (91),
1352 EMPTY_HOWTO (92),
1353 EMPTY_HOWTO (93),
1354
1355 HOWTO (R_ARM_PLT32_ABS, /* type */
1356 0, /* rightshift */
1357 2, /* size (0 = byte, 1 = short, 2 = long) */
1358 32, /* bitsize */
1359 FALSE, /* pc_relative */
1360 0, /* bitpos */
1361 complain_overflow_dont,/* complain_on_overflow */
1362 bfd_elf_generic_reloc, /* special_function */
1363 "R_ARM_PLT32_ABS", /* name */
1364 FALSE, /* partial_inplace */
1365 0xffffffff, /* src_mask */
1366 0xffffffff, /* dst_mask */
1367 FALSE), /* pcrel_offset */
1368
1369 HOWTO (R_ARM_GOT_ABS, /* type */
1370 0, /* rightshift */
1371 2, /* size (0 = byte, 1 = short, 2 = long) */
1372 32, /* bitsize */
1373 FALSE, /* pc_relative */
1374 0, /* bitpos */
1375 complain_overflow_dont,/* complain_on_overflow */
1376 bfd_elf_generic_reloc, /* special_function */
1377 "R_ARM_GOT_ABS", /* name */
1378 FALSE, /* partial_inplace */
1379 0xffffffff, /* src_mask */
1380 0xffffffff, /* dst_mask */
1381 FALSE), /* pcrel_offset */
1382
1383 HOWTO (R_ARM_GOT_PREL, /* type */
1384 0, /* rightshift */
1385 2, /* size (0 = byte, 1 = short, 2 = long) */
1386 32, /* bitsize */
1387 TRUE, /* pc_relative */
1388 0, /* bitpos */
1389 complain_overflow_dont, /* complain_on_overflow */
1390 bfd_elf_generic_reloc, /* special_function */
1391 "R_ARM_GOT_PREL", /* name */
1392 FALSE, /* partial_inplace */
1393 0xffffffff, /* src_mask */
1394 0xffffffff, /* dst_mask */
1395 TRUE), /* pcrel_offset */
1396
1397 HOWTO (R_ARM_GOT_BREL12, /* type */
1398 0, /* rightshift */
1399 2, /* size (0 = byte, 1 = short, 2 = long) */
1400 12, /* bitsize */
1401 FALSE, /* pc_relative */
1402 0, /* bitpos */
1403 complain_overflow_bitfield,/* complain_on_overflow */
1404 bfd_elf_generic_reloc, /* special_function */
1405 "R_ARM_GOT_BREL12", /* name */
1406 FALSE, /* partial_inplace */
1407 0x00000fff, /* src_mask */
1408 0x00000fff, /* dst_mask */
1409 FALSE), /* pcrel_offset */
1410
1411 HOWTO (R_ARM_GOTOFF12, /* type */
1412 0, /* rightshift */
1413 2, /* size (0 = byte, 1 = short, 2 = long) */
1414 12, /* bitsize */
1415 FALSE, /* pc_relative */
1416 0, /* bitpos */
1417 complain_overflow_bitfield,/* complain_on_overflow */
1418 bfd_elf_generic_reloc, /* special_function */
1419 "R_ARM_GOTOFF12", /* name */
1420 FALSE, /* partial_inplace */
1421 0x00000fff, /* src_mask */
1422 0x00000fff, /* dst_mask */
1423 FALSE), /* pcrel_offset */
1424
1425 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1426
1427 /* GNU extension to record C++ vtable member usage */
1428 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1429 0, /* rightshift */
1430 2, /* size (0 = byte, 1 = short, 2 = long) */
1431 0, /* bitsize */
1432 FALSE, /* pc_relative */
1433 0, /* bitpos */
1434 complain_overflow_dont, /* complain_on_overflow */
1435 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1436 "R_ARM_GNU_VTENTRY", /* name */
1437 FALSE, /* partial_inplace */
1438 0, /* src_mask */
1439 0, /* dst_mask */
1440 FALSE), /* pcrel_offset */
1441
1442 /* GNU extension to record C++ vtable hierarchy */
1443 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1444 0, /* rightshift */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1446 0, /* bitsize */
1447 FALSE, /* pc_relative */
1448 0, /* bitpos */
1449 complain_overflow_dont, /* complain_on_overflow */
1450 NULL, /* special_function */
1451 "R_ARM_GNU_VTINHERIT", /* name */
1452 FALSE, /* partial_inplace */
1453 0, /* src_mask */
1454 0, /* dst_mask */
1455 FALSE), /* pcrel_offset */
1456
1457 HOWTO (R_ARM_THM_JUMP11, /* type */
1458 1, /* rightshift */
1459 1, /* size (0 = byte, 1 = short, 2 = long) */
1460 11, /* bitsize */
1461 TRUE, /* pc_relative */
1462 0, /* bitpos */
1463 complain_overflow_signed, /* complain_on_overflow */
1464 bfd_elf_generic_reloc, /* special_function */
1465 "R_ARM_THM_JUMP11", /* name */
1466 FALSE, /* partial_inplace */
1467 0x000007ff, /* src_mask */
1468 0x000007ff, /* dst_mask */
1469 TRUE), /* pcrel_offset */
1470
1471 HOWTO (R_ARM_THM_JUMP8, /* type */
1472 1, /* rightshift */
1473 1, /* size (0 = byte, 1 = short, 2 = long) */
1474 8, /* bitsize */
1475 TRUE, /* pc_relative */
1476 0, /* bitpos */
1477 complain_overflow_signed, /* complain_on_overflow */
1478 bfd_elf_generic_reloc, /* special_function */
1479 "R_ARM_THM_JUMP8", /* name */
1480 FALSE, /* partial_inplace */
1481 0x000000ff, /* src_mask */
1482 0x000000ff, /* dst_mask */
1483 TRUE), /* pcrel_offset */
1484
1485 /* TLS relocations */
1486 HOWTO (R_ARM_TLS_GD32, /* type */
1487 0, /* rightshift */
1488 2, /* size (0 = byte, 1 = short, 2 = long) */
1489 32, /* bitsize */
1490 FALSE, /* pc_relative */
1491 0, /* bitpos */
1492 complain_overflow_bitfield,/* complain_on_overflow */
1493 NULL, /* special_function */
1494 "R_ARM_TLS_GD32", /* name */
1495 TRUE, /* partial_inplace */
1496 0xffffffff, /* src_mask */
1497 0xffffffff, /* dst_mask */
1498 FALSE), /* pcrel_offset */
1499
1500 HOWTO (R_ARM_TLS_LDM32, /* type */
1501 0, /* rightshift */
1502 2, /* size (0 = byte, 1 = short, 2 = long) */
1503 32, /* bitsize */
1504 FALSE, /* pc_relative */
1505 0, /* bitpos */
1506 complain_overflow_bitfield,/* complain_on_overflow */
1507 bfd_elf_generic_reloc, /* special_function */
1508 "R_ARM_TLS_LDM32", /* name */
1509 TRUE, /* partial_inplace */
1510 0xffffffff, /* src_mask */
1511 0xffffffff, /* dst_mask */
1512 FALSE), /* pcrel_offset */
1513
1514 HOWTO (R_ARM_TLS_LDO32, /* type */
1515 0, /* rightshift */
1516 2, /* size (0 = byte, 1 = short, 2 = long) */
1517 32, /* bitsize */
1518 FALSE, /* pc_relative */
1519 0, /* bitpos */
1520 complain_overflow_bitfield,/* complain_on_overflow */
1521 bfd_elf_generic_reloc, /* special_function */
1522 "R_ARM_TLS_LDO32", /* name */
1523 TRUE, /* partial_inplace */
1524 0xffffffff, /* src_mask */
1525 0xffffffff, /* dst_mask */
1526 FALSE), /* pcrel_offset */
1527
1528 HOWTO (R_ARM_TLS_IE32, /* type */
1529 0, /* rightshift */
1530 2, /* size (0 = byte, 1 = short, 2 = long) */
1531 32, /* bitsize */
1532 FALSE, /* pc_relative */
1533 0, /* bitpos */
1534 complain_overflow_bitfield,/* complain_on_overflow */
1535 NULL, /* special_function */
1536 "R_ARM_TLS_IE32", /* name */
1537 TRUE, /* partial_inplace */
1538 0xffffffff, /* src_mask */
1539 0xffffffff, /* dst_mask */
1540 FALSE), /* pcrel_offset */
1541
1542 HOWTO (R_ARM_TLS_LE32, /* type */
1543 0, /* rightshift */
1544 2, /* size (0 = byte, 1 = short, 2 = long) */
1545 32, /* bitsize */
1546 FALSE, /* pc_relative */
1547 0, /* bitpos */
1548 complain_overflow_bitfield,/* complain_on_overflow */
1549 bfd_elf_generic_reloc, /* special_function */
1550 "R_ARM_TLS_LE32", /* name */
1551 TRUE, /* partial_inplace */
1552 0xffffffff, /* src_mask */
1553 0xffffffff, /* dst_mask */
1554 FALSE), /* pcrel_offset */
1555
1556 HOWTO (R_ARM_TLS_LDO12, /* type */
1557 0, /* rightshift */
1558 2, /* size (0 = byte, 1 = short, 2 = long) */
1559 12, /* bitsize */
1560 FALSE, /* pc_relative */
1561 0, /* bitpos */
1562 complain_overflow_bitfield,/* complain_on_overflow */
1563 bfd_elf_generic_reloc, /* special_function */
1564 "R_ARM_TLS_LDO12", /* name */
1565 FALSE, /* partial_inplace */
1566 0x00000fff, /* src_mask */
1567 0x00000fff, /* dst_mask */
1568 FALSE), /* pcrel_offset */
1569
1570 HOWTO (R_ARM_TLS_LE12, /* type */
1571 0, /* rightshift */
1572 2, /* size (0 = byte, 1 = short, 2 = long) */
1573 12, /* bitsize */
1574 FALSE, /* pc_relative */
1575 0, /* bitpos */
1576 complain_overflow_bitfield,/* complain_on_overflow */
1577 bfd_elf_generic_reloc, /* special_function */
1578 "R_ARM_TLS_LE12", /* name */
1579 FALSE, /* partial_inplace */
1580 0x00000fff, /* src_mask */
1581 0x00000fff, /* dst_mask */
1582 FALSE), /* pcrel_offset */
1583
1584 HOWTO (R_ARM_TLS_IE12GP, /* type */
1585 0, /* rightshift */
1586 2, /* size (0 = byte, 1 = short, 2 = long) */
1587 12, /* bitsize */
1588 FALSE, /* pc_relative */
1589 0, /* bitpos */
1590 complain_overflow_bitfield,/* complain_on_overflow */
1591 bfd_elf_generic_reloc, /* special_function */
1592 "R_ARM_TLS_IE12GP", /* name */
1593 FALSE, /* partial_inplace */
1594 0x00000fff, /* src_mask */
1595 0x00000fff, /* dst_mask */
1596 FALSE), /* pcrel_offset */
1597 };
1598
1599 /* 112-127 private relocations
1600 128 R_ARM_ME_TOO, obsolete
1601 129-255 unallocated in AAELF.
1602
1603 249-255 extended, currently unused, relocations: */
1604
1605 static reloc_howto_type elf32_arm_howto_table_2[4] =
1606 {
1607 HOWTO (R_ARM_RREL32, /* type */
1608 0, /* rightshift */
1609 0, /* size (0 = byte, 1 = short, 2 = long) */
1610 0, /* bitsize */
1611 FALSE, /* pc_relative */
1612 0, /* bitpos */
1613 complain_overflow_dont,/* complain_on_overflow */
1614 bfd_elf_generic_reloc, /* special_function */
1615 "R_ARM_RREL32", /* name */
1616 FALSE, /* partial_inplace */
1617 0, /* src_mask */
1618 0, /* dst_mask */
1619 FALSE), /* pcrel_offset */
1620
1621 HOWTO (R_ARM_RABS32, /* type */
1622 0, /* rightshift */
1623 0, /* size (0 = byte, 1 = short, 2 = long) */
1624 0, /* bitsize */
1625 FALSE, /* pc_relative */
1626 0, /* bitpos */
1627 complain_overflow_dont,/* complain_on_overflow */
1628 bfd_elf_generic_reloc, /* special_function */
1629 "R_ARM_RABS32", /* name */
1630 FALSE, /* partial_inplace */
1631 0, /* src_mask */
1632 0, /* dst_mask */
1633 FALSE), /* pcrel_offset */
1634
1635 HOWTO (R_ARM_RPC24, /* type */
1636 0, /* rightshift */
1637 0, /* size (0 = byte, 1 = short, 2 = long) */
1638 0, /* bitsize */
1639 FALSE, /* pc_relative */
1640 0, /* bitpos */
1641 complain_overflow_dont,/* complain_on_overflow */
1642 bfd_elf_generic_reloc, /* special_function */
1643 "R_ARM_RPC24", /* name */
1644 FALSE, /* partial_inplace */
1645 0, /* src_mask */
1646 0, /* dst_mask */
1647 FALSE), /* pcrel_offset */
1648
1649 HOWTO (R_ARM_RBASE, /* type */
1650 0, /* rightshift */
1651 0, /* size (0 = byte, 1 = short, 2 = long) */
1652 0, /* bitsize */
1653 FALSE, /* pc_relative */
1654 0, /* bitpos */
1655 complain_overflow_dont,/* complain_on_overflow */
1656 bfd_elf_generic_reloc, /* special_function */
1657 "R_ARM_RBASE", /* name */
1658 FALSE, /* partial_inplace */
1659 0, /* src_mask */
1660 0, /* dst_mask */
1661 FALSE) /* pcrel_offset */
1662 };
1663
1664 static reloc_howto_type *
1665 elf32_arm_howto_from_type (unsigned int r_type)
1666 {
1667 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1668 return &elf32_arm_howto_table_1[r_type];
1669
1670 if (r_type >= R_ARM_RREL32
1671 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_2))
1672 return &elf32_arm_howto_table_2[r_type - R_ARM_RREL32];
1673
1674 return NULL;
1675 }
1676
1677 static void
1678 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1679 Elf_Internal_Rela * elf_reloc)
1680 {
1681 unsigned int r_type;
1682
1683 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1684 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1685 }
1686
1687 struct elf32_arm_reloc_map
1688 {
1689 bfd_reloc_code_real_type bfd_reloc_val;
1690 unsigned char elf_reloc_val;
1691 };
1692
1693 /* All entries in this list must also be present in elf32_arm_howto_table. */
1694 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1695 {
1696 {BFD_RELOC_NONE, R_ARM_NONE},
1697 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1698 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1699 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1700 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1701 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1702 {BFD_RELOC_32, R_ARM_ABS32},
1703 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1704 {BFD_RELOC_8, R_ARM_ABS8},
1705 {BFD_RELOC_16, R_ARM_ABS16},
1706 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1707 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1708 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1709 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1710 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1711 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1712 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1713 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1714 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1715 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1716 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1717 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1718 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1719 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1720 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1721 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1722 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1723 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1724 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1725 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1726 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1727 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1728 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1729 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1730 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1731 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1732 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1733 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1734 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
1735 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1736 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
1737 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1738 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1739 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1740 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1741 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1742 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1743 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1744 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1745 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1746 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1747 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1748 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1749 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1750 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1751 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1752 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1753 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1754 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1755 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1756 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1757 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1758 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1759 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1760 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1761 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1762 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1763 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1764 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1765 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1766 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1767 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1768 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1769 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1770 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1771 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1772 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1773 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX}
1774 };
1775
1776 static reloc_howto_type *
1777 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1778 bfd_reloc_code_real_type code)
1779 {
1780 unsigned int i;
1781
1782 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1783 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1784 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1785
1786 return NULL;
1787 }
1788
1789 static reloc_howto_type *
1790 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1791 const char *r_name)
1792 {
1793 unsigned int i;
1794
1795 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1796 if (elf32_arm_howto_table_1[i].name != NULL
1797 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1798 return &elf32_arm_howto_table_1[i];
1799
1800 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1801 if (elf32_arm_howto_table_2[i].name != NULL
1802 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1803 return &elf32_arm_howto_table_2[i];
1804
1805 return NULL;
1806 }
1807
1808 /* Support for core dump NOTE sections. */
1809
1810 static bfd_boolean
1811 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1812 {
1813 int offset;
1814 size_t size;
1815
1816 switch (note->descsz)
1817 {
1818 default:
1819 return FALSE;
1820
1821 case 148: /* Linux/ARM 32-bit. */
1822 /* pr_cursig */
1823 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1824
1825 /* pr_pid */
1826 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1827
1828 /* pr_reg */
1829 offset = 72;
1830 size = 72;
1831
1832 break;
1833 }
1834
1835 /* Make a ".reg/999" section. */
1836 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1837 size, note->descpos + offset);
1838 }
1839
1840 static bfd_boolean
1841 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1842 {
1843 switch (note->descsz)
1844 {
1845 default:
1846 return FALSE;
1847
1848 case 124: /* Linux/ARM elf_prpsinfo. */
1849 elf_tdata (abfd)->core_program
1850 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1851 elf_tdata (abfd)->core_command
1852 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1853 }
1854
1855 /* Note that for some reason, a spurious space is tacked
1856 onto the end of the args in some (at least one anyway)
1857 implementations, so strip it off if it exists. */
1858 {
1859 char *command = elf_tdata (abfd)->core_command;
1860 int n = strlen (command);
1861
1862 if (0 < n && command[n - 1] == ' ')
1863 command[n - 1] = '\0';
1864 }
1865
1866 return TRUE;
1867 }
1868
1869 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
1870 #define TARGET_LITTLE_NAME "elf32-littlearm"
1871 #define TARGET_BIG_SYM bfd_elf32_bigarm_vec
1872 #define TARGET_BIG_NAME "elf32-bigarm"
1873
1874 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
1875 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1876
1877 typedef unsigned long int insn32;
1878 typedef unsigned short int insn16;
1879
1880 /* In lieu of proper flags, assume all EABIv4 or later objects are
1881 interworkable. */
1882 #define INTERWORK_FLAG(abfd) \
1883 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
1884 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK))
1885
1886 /* The linker script knows the section names for placement.
1887 The entry_names are used to do simple name mangling on the stubs.
1888 Given a function name, and its type, the stub can be found. The
1889 name can be changed. The only requirement is the %s be present. */
1890 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
1891 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
1892
1893 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
1894 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
1895
1896 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
1897 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
1898
1899 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
1900 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
1901
1902 #define STUB_ENTRY_NAME "__%s_veneer"
1903
1904 /* The name of the dynamic interpreter. This is put in the .interp
1905 section. */
1906 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
1907
1908 #ifdef FOUR_WORD_PLT
1909
1910 /* The first entry in a procedure linkage table looks like
1911 this. It is set up so that any shared library function that is
1912 called before the relocation has been set up calls the dynamic
1913 linker first. */
1914 static const bfd_vma elf32_arm_plt0_entry [] =
1915 {
1916 0xe52de004, /* str lr, [sp, #-4]! */
1917 0xe59fe010, /* ldr lr, [pc, #16] */
1918 0xe08fe00e, /* add lr, pc, lr */
1919 0xe5bef008, /* ldr pc, [lr, #8]! */
1920 };
1921
1922 /* Subsequent entries in a procedure linkage table look like
1923 this. */
1924 static const bfd_vma elf32_arm_plt_entry [] =
1925 {
1926 0xe28fc600, /* add ip, pc, #NN */
1927 0xe28cca00, /* add ip, ip, #NN */
1928 0xe5bcf000, /* ldr pc, [ip, #NN]! */
1929 0x00000000, /* unused */
1930 };
1931
1932 #else
1933
1934 /* The first entry in a procedure linkage table looks like
1935 this. It is set up so that any shared library function that is
1936 called before the relocation has been set up calls the dynamic
1937 linker first. */
1938 static const bfd_vma elf32_arm_plt0_entry [] =
1939 {
1940 0xe52de004, /* str lr, [sp, #-4]! */
1941 0xe59fe004, /* ldr lr, [pc, #4] */
1942 0xe08fe00e, /* add lr, pc, lr */
1943 0xe5bef008, /* ldr pc, [lr, #8]! */
1944 0x00000000, /* &GOT[0] - . */
1945 };
1946
1947 /* Subsequent entries in a procedure linkage table look like
1948 this. */
1949 static const bfd_vma elf32_arm_plt_entry [] =
1950 {
1951 0xe28fc600, /* add ip, pc, #0xNN00000 */
1952 0xe28cca00, /* add ip, ip, #0xNN000 */
1953 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
1954 };
1955
1956 #endif
1957
1958 /* The format of the first entry in the procedure linkage table
1959 for a VxWorks executable. */
1960 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
1961 {
1962 0xe52dc008, /* str ip,[sp,#-8]! */
1963 0xe59fc000, /* ldr ip,[pc] */
1964 0xe59cf008, /* ldr pc,[ip,#8] */
1965 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
1966 };
1967
1968 /* The format of subsequent entries in a VxWorks executable. */
1969 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
1970 {
1971 0xe59fc000, /* ldr ip,[pc] */
1972 0xe59cf000, /* ldr pc,[ip] */
1973 0x00000000, /* .long @got */
1974 0xe59fc000, /* ldr ip,[pc] */
1975 0xea000000, /* b _PLT */
1976 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1977 };
1978
1979 /* The format of entries in a VxWorks shared library. */
1980 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
1981 {
1982 0xe59fc000, /* ldr ip,[pc] */
1983 0xe79cf009, /* ldr pc,[ip,r9] */
1984 0x00000000, /* .long @got */
1985 0xe59fc000, /* ldr ip,[pc] */
1986 0xe599f008, /* ldr pc,[r9,#8] */
1987 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1988 };
1989
1990 /* An initial stub used if the PLT entry is referenced from Thumb code. */
1991 #define PLT_THUMB_STUB_SIZE 4
1992 static const bfd_vma elf32_arm_plt_thumb_stub [] =
1993 {
1994 0x4778, /* bx pc */
1995 0x46c0 /* nop */
1996 };
1997
1998 /* The entries in a PLT when using a DLL-based target with multiple
1999 address spaces. */
2000 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2001 {
2002 0xe51ff004, /* ldr pc, [pc, #-4] */
2003 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2004 };
2005
2006 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2007 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2008 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2009 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2010 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2011 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2012
2013 enum stub_insn_type
2014 {
2015 THUMB16_TYPE = 1,
2016 THUMB32_TYPE,
2017 ARM_TYPE,
2018 DATA_TYPE
2019 };
2020
2021 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2022 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2023 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2024 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2025 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2026
2027 typedef struct
2028 {
2029 bfd_vma data;
2030 enum stub_insn_type type;
2031 unsigned int r_type;
2032 int reloc_addend;
2033 } insn_sequence;
2034
2035 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2036 to reach the stub if necessary. */
2037 static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
2038 {
2039 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2040 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2041 };
2042
2043 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2044 available. */
2045 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
2046 {
2047 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2048 ARM_INSN(0xe12fff1c), /* bx ip */
2049 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2050 };
2051
2052 /* Thumb -> Thumb long branch stub. Used on architectures which
2053 support only this mode, or on V4T where it is expensive to switch
2054 to ARM. */
2055 static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
2056 {
2057 THUMB16_INSN(0xb401), /* push {r0} */
2058 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2059 THUMB16_INSN(0x4684), /* mov ip, r0 */
2060 THUMB16_INSN(0xbc01), /* pop {r0} */
2061 THUMB16_INSN(0x4760), /* bx ip */
2062 THUMB16_INSN(0xbf00), /* nop */
2063 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2064 };
2065
2066 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2067 available. */
2068 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
2069 {
2070 THUMB16_INSN(0x4778), /* bx pc */
2071 THUMB16_INSN(0x46c0), /* nop */
2072 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2073 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2074 };
2075
2076 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2077 one, when the destination is close enough. */
2078 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
2079 {
2080 THUMB16_INSN(0x4778), /* bx pc */
2081 THUMB16_INSN(0x46c0), /* nop */
2082 ARM_REL_INSN(0xea000000, -8), /* b (X-8) */
2083 };
2084
2085 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2086 blx to reach the stub if necessary. */
2087 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
2088 {
2089 ARM_INSN(0xe59fc000), /* ldr r12, [pc] */
2090 ARM_INSN(0xe08ff00c), /* add pc, pc, ip */
2091 DATA_WORD(0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2092 };
2093
2094 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2095 blx to reach the stub if necessary. We can not add into pc;
2096 it is not guaranteed to mode switch (different in ARMv6 and
2097 ARMv7). */
2098 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2099 {
2100 ARM_INSN(0xe59fc004), /* ldr r12, [pc, #4] */
2101 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2102 ARM_INSN(0xe12fff1c), /* bx ip */
2103 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2104 };
2105
2106 /* V4T ARM -> ARM long branch stub, PIC. */
2107 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2108 {
2109 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2110 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2111 ARM_INSN(0xe12fff1c), /* bx ip */
2112 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2113 };
2114
2115 /* V4T Thumb -> ARM long branch stub, PIC. */
2116 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2117 {
2118 THUMB16_INSN(0x4778), /* bx pc */
2119 THUMB16_INSN(0x46c0), /* nop */
2120 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2121 ARM_INSN(0xe08cf00f), /* add pc, ip, pc */
2122 DATA_WORD(0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2123 };
2124
2125 /* Thumb -> Thumb long branch stub, PIC. Used on architectures which
2126 support only this mode, or on V4T where it is expensive to switch
2127 to ARM. */
2128 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2129 {
2130 THUMB16_INSN(0xb401), /* push {r0} */
2131 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2132 THUMB16_INSN(0x46fc), /* mov ip, pc */
2133 THUMB16_INSN(0x4484), /* add ip, r0 */
2134 THUMB16_INSN(0xbc01), /* pop {r0} */
2135 THUMB16_INSN(0x4760), /* bx ip */
2136 DATA_WORD(0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2137 };
2138
2139 /* Section name for stubs is the associated section name plus this
2140 string. */
2141 #define STUB_SUFFIX ".stub"
2142
2143 enum elf32_arm_stub_type
2144 {
2145 arm_stub_none,
2146 arm_stub_long_branch_any_any,
2147 arm_stub_long_branch_v4t_arm_thumb,
2148 arm_stub_long_branch_thumb_only,
2149 arm_stub_long_branch_v4t_thumb_arm,
2150 arm_stub_short_branch_v4t_thumb_arm,
2151 arm_stub_long_branch_any_arm_pic,
2152 arm_stub_long_branch_any_thumb_pic,
2153 arm_stub_long_branch_v4t_arm_thumb_pic,
2154 arm_stub_long_branch_v4t_thumb_arm_pic,
2155 arm_stub_long_branch_thumb_only_pic,
2156 };
2157
2158 struct elf32_arm_stub_hash_entry
2159 {
2160 /* Base hash table entry structure. */
2161 struct bfd_hash_entry root;
2162
2163 /* The stub section. */
2164 asection *stub_sec;
2165
2166 /* Offset within stub_sec of the beginning of this stub. */
2167 bfd_vma stub_offset;
2168
2169 /* Given the symbol's value and its section we can determine its final
2170 value when building the stubs (so the stub knows where to jump). */
2171 bfd_vma target_value;
2172 asection *target_section;
2173
2174 /* The stub type. */
2175 enum elf32_arm_stub_type stub_type;
2176 /* Its encoding size in bytes. */
2177 int stub_size;
2178 /* Its template. */
2179 const insn_sequence *stub_template;
2180 /* The size of the template (number of entries). */
2181 int stub_template_size;
2182
2183 /* The symbol table entry, if any, that this was derived from. */
2184 struct elf32_arm_link_hash_entry *h;
2185
2186 /* Destination symbol type (STT_ARM_TFUNC, ...) */
2187 unsigned char st_type;
2188
2189 /* Where this stub is being called from, or, in the case of combined
2190 stub sections, the first input section in the group. */
2191 asection *id_sec;
2192
2193 /* The name for the local symbol at the start of this stub. The
2194 stub name in the hash table has to be unique; this does not, so
2195 it can be friendlier. */
2196 char *output_name;
2197 };
2198
2199 /* Used to build a map of a section. This is required for mixed-endian
2200 code/data. */
2201
2202 typedef struct elf32_elf_section_map
2203 {
2204 bfd_vma vma;
2205 char type;
2206 }
2207 elf32_arm_section_map;
2208
2209 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2210
2211 typedef enum
2212 {
2213 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2214 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2215 VFP11_ERRATUM_ARM_VENEER,
2216 VFP11_ERRATUM_THUMB_VENEER
2217 }
2218 elf32_vfp11_erratum_type;
2219
2220 typedef struct elf32_vfp11_erratum_list
2221 {
2222 struct elf32_vfp11_erratum_list *next;
2223 bfd_vma vma;
2224 union
2225 {
2226 struct
2227 {
2228 struct elf32_vfp11_erratum_list *veneer;
2229 unsigned int vfp_insn;
2230 } b;
2231 struct
2232 {
2233 struct elf32_vfp11_erratum_list *branch;
2234 unsigned int id;
2235 } v;
2236 } u;
2237 elf32_vfp11_erratum_type type;
2238 }
2239 elf32_vfp11_erratum_list;
2240
2241 typedef struct _arm_elf_section_data
2242 {
2243 struct bfd_elf_section_data elf;
2244 unsigned int mapcount;
2245 unsigned int mapsize;
2246 elf32_arm_section_map *map;
2247 unsigned int erratumcount;
2248 elf32_vfp11_erratum_list *erratumlist;
2249 }
2250 _arm_elf_section_data;
2251
2252 #define elf32_arm_section_data(sec) \
2253 ((_arm_elf_section_data *) elf_section_data (sec))
2254
2255 /* The size of the thread control block. */
2256 #define TCB_SIZE 8
2257
2258 struct elf_arm_obj_tdata
2259 {
2260 struct elf_obj_tdata root;
2261
2262 /* tls_type for each local got entry. */
2263 char *local_got_tls_type;
2264
2265 /* Zero to warn when linking objects with incompatible enum sizes. */
2266 int no_enum_size_warning;
2267
2268 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2269 int no_wchar_size_warning;
2270 };
2271
2272 #define elf_arm_tdata(bfd) \
2273 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2274
2275 #define elf32_arm_local_got_tls_type(bfd) \
2276 (elf_arm_tdata (bfd)->local_got_tls_type)
2277
2278 #define is_arm_elf(bfd) \
2279 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2280 && elf_tdata (bfd) != NULL \
2281 && elf_object_id (bfd) == ARM_ELF_TDATA)
2282
2283 static bfd_boolean
2284 elf32_arm_mkobject (bfd *abfd)
2285 {
2286 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2287 ARM_ELF_TDATA);
2288 }
2289
2290 /* The ARM linker needs to keep track of the number of relocs that it
2291 decides to copy in check_relocs for each symbol. This is so that
2292 it can discard PC relative relocs if it doesn't need them when
2293 linking with -Bsymbolic. We store the information in a field
2294 extending the regular ELF linker hash table. */
2295
2296 /* This structure keeps track of the number of relocs we have copied
2297 for a given symbol. */
2298 struct elf32_arm_relocs_copied
2299 {
2300 /* Next section. */
2301 struct elf32_arm_relocs_copied * next;
2302 /* A section in dynobj. */
2303 asection * section;
2304 /* Number of relocs copied in this section. */
2305 bfd_size_type count;
2306 /* Number of PC-relative relocs copied in this section. */
2307 bfd_size_type pc_count;
2308 };
2309
2310 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2311
2312 /* Arm ELF linker hash entry. */
2313 struct elf32_arm_link_hash_entry
2314 {
2315 struct elf_link_hash_entry root;
2316
2317 /* Number of PC relative relocs copied for this symbol. */
2318 struct elf32_arm_relocs_copied * relocs_copied;
2319
2320 /* We reference count Thumb references to a PLT entry separately,
2321 so that we can emit the Thumb trampoline only if needed. */
2322 bfd_signed_vma plt_thumb_refcount;
2323
2324 /* Some references from Thumb code may be eliminated by BL->BLX
2325 conversion, so record them separately. */
2326 bfd_signed_vma plt_maybe_thumb_refcount;
2327
2328 /* Since PLT entries have variable size if the Thumb prologue is
2329 used, we need to record the index into .got.plt instead of
2330 recomputing it from the PLT offset. */
2331 bfd_signed_vma plt_got_offset;
2332
2333 #define GOT_UNKNOWN 0
2334 #define GOT_NORMAL 1
2335 #define GOT_TLS_GD 2
2336 #define GOT_TLS_IE 4
2337 unsigned char tls_type;
2338
2339 /* The symbol marking the real symbol location for exported thumb
2340 symbols with Arm stubs. */
2341 struct elf_link_hash_entry *export_glue;
2342
2343 /* A pointer to the most recently used stub hash entry against this
2344 symbol. */
2345 struct elf32_arm_stub_hash_entry *stub_cache;
2346 };
2347
2348 /* Traverse an arm ELF linker hash table. */
2349 #define elf32_arm_link_hash_traverse(table, func, info) \
2350 (elf_link_hash_traverse \
2351 (&(table)->root, \
2352 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2353 (info)))
2354
2355 /* Get the ARM elf linker hash table from a link_info structure. */
2356 #define elf32_arm_hash_table(info) \
2357 ((struct elf32_arm_link_hash_table *) ((info)->hash))
2358
2359 #define arm_stub_hash_lookup(table, string, create, copy) \
2360 ((struct elf32_arm_stub_hash_entry *) \
2361 bfd_hash_lookup ((table), (string), (create), (copy)))
2362
2363 /* ARM ELF linker hash table. */
2364 struct elf32_arm_link_hash_table
2365 {
2366 /* The main hash table. */
2367 struct elf_link_hash_table root;
2368
2369 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2370 bfd_size_type thumb_glue_size;
2371
2372 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2373 bfd_size_type arm_glue_size;
2374
2375 /* The size in bytes of section containing the ARMv4 BX veneers. */
2376 bfd_size_type bx_glue_size;
2377
2378 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2379 veneer has been populated. */
2380 bfd_vma bx_glue_offset[15];
2381
2382 /* The size in bytes of the section containing glue for VFP11 erratum
2383 veneers. */
2384 bfd_size_type vfp11_erratum_glue_size;
2385
2386 /* An arbitrary input BFD chosen to hold the glue sections. */
2387 bfd * bfd_of_glue_owner;
2388
2389 /* Nonzero to output a BE8 image. */
2390 int byteswap_code;
2391
2392 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2393 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2394 int target1_is_rel;
2395
2396 /* The relocation to use for R_ARM_TARGET2 relocations. */
2397 int target2_reloc;
2398
2399 /* 0 = Ignore R_ARM_V4BX.
2400 1 = Convert BX to MOV PC.
2401 2 = Generate v4 interworing stubs. */
2402 int fix_v4bx;
2403
2404 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2405 int use_blx;
2406
2407 /* What sort of code sequences we should look for which may trigger the
2408 VFP11 denorm erratum. */
2409 bfd_arm_vfp11_fix vfp11_fix;
2410
2411 /* Global counter for the number of fixes we have emitted. */
2412 int num_vfp11_fixes;
2413
2414 /* Nonzero to force PIC branch veneers. */
2415 int pic_veneer;
2416
2417 /* The number of bytes in the initial entry in the PLT. */
2418 bfd_size_type plt_header_size;
2419
2420 /* The number of bytes in the subsequent PLT etries. */
2421 bfd_size_type plt_entry_size;
2422
2423 /* True if the target system is VxWorks. */
2424 int vxworks_p;
2425
2426 /* True if the target system is Symbian OS. */
2427 int symbian_p;
2428
2429 /* True if the target uses REL relocations. */
2430 int use_rel;
2431
2432 /* Short-cuts to get to dynamic linker sections. */
2433 asection *sgot;
2434 asection *sgotplt;
2435 asection *srelgot;
2436 asection *splt;
2437 asection *srelplt;
2438 asection *sdynbss;
2439 asection *srelbss;
2440
2441 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2442 asection *srelplt2;
2443
2444 /* Data for R_ARM_TLS_LDM32 relocations. */
2445 union
2446 {
2447 bfd_signed_vma refcount;
2448 bfd_vma offset;
2449 } tls_ldm_got;
2450
2451 /* Small local sym to section mapping cache. */
2452 struct sym_sec_cache sym_sec;
2453
2454 /* For convenience in allocate_dynrelocs. */
2455 bfd * obfd;
2456
2457 /* The stub hash table. */
2458 struct bfd_hash_table stub_hash_table;
2459
2460 /* Linker stub bfd. */
2461 bfd *stub_bfd;
2462
2463 /* Linker call-backs. */
2464 asection * (*add_stub_section) (const char *, asection *);
2465 void (*layout_sections_again) (void);
2466
2467 /* Array to keep track of which stub sections have been created, and
2468 information on stub grouping. */
2469 struct map_stub
2470 {
2471 /* This is the section to which stubs in the group will be
2472 attached. */
2473 asection *link_sec;
2474 /* The stub section. */
2475 asection *stub_sec;
2476 } *stub_group;
2477
2478 /* Assorted information used by elf32_arm_size_stubs. */
2479 unsigned int bfd_count;
2480 int top_index;
2481 asection **input_list;
2482 };
2483
2484 /* Create an entry in an ARM ELF linker hash table. */
2485
2486 static struct bfd_hash_entry *
2487 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
2488 struct bfd_hash_table * table,
2489 const char * string)
2490 {
2491 struct elf32_arm_link_hash_entry * ret =
2492 (struct elf32_arm_link_hash_entry *) entry;
2493
2494 /* Allocate the structure if it has not already been allocated by a
2495 subclass. */
2496 if (ret == NULL)
2497 ret = bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
2498 if (ret == NULL)
2499 return (struct bfd_hash_entry *) ret;
2500
2501 /* Call the allocation method of the superclass. */
2502 ret = ((struct elf32_arm_link_hash_entry *)
2503 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2504 table, string));
2505 if (ret != NULL)
2506 {
2507 ret->relocs_copied = NULL;
2508 ret->tls_type = GOT_UNKNOWN;
2509 ret->plt_thumb_refcount = 0;
2510 ret->plt_maybe_thumb_refcount = 0;
2511 ret->plt_got_offset = -1;
2512 ret->export_glue = NULL;
2513
2514 ret->stub_cache = NULL;
2515 }
2516
2517 return (struct bfd_hash_entry *) ret;
2518 }
2519
2520 /* Initialize an entry in the stub hash table. */
2521
2522 static struct bfd_hash_entry *
2523 stub_hash_newfunc (struct bfd_hash_entry *entry,
2524 struct bfd_hash_table *table,
2525 const char *string)
2526 {
2527 /* Allocate the structure if it has not already been allocated by a
2528 subclass. */
2529 if (entry == NULL)
2530 {
2531 entry = bfd_hash_allocate (table,
2532 sizeof (struct elf32_arm_stub_hash_entry));
2533 if (entry == NULL)
2534 return entry;
2535 }
2536
2537 /* Call the allocation method of the superclass. */
2538 entry = bfd_hash_newfunc (entry, table, string);
2539 if (entry != NULL)
2540 {
2541 struct elf32_arm_stub_hash_entry *eh;
2542
2543 /* Initialize the local fields. */
2544 eh = (struct elf32_arm_stub_hash_entry *) entry;
2545 eh->stub_sec = NULL;
2546 eh->stub_offset = 0;
2547 eh->target_value = 0;
2548 eh->target_section = NULL;
2549 eh->stub_type = arm_stub_none;
2550 eh->stub_size = 0;
2551 eh->stub_template = NULL;
2552 eh->stub_template_size = 0;
2553 eh->h = NULL;
2554 eh->id_sec = NULL;
2555 }
2556
2557 return entry;
2558 }
2559
2560 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
2561 shortcuts to them in our hash table. */
2562
2563 static bfd_boolean
2564 create_got_section (bfd *dynobj, struct bfd_link_info *info)
2565 {
2566 struct elf32_arm_link_hash_table *htab;
2567
2568 htab = elf32_arm_hash_table (info);
2569 /* BPABI objects never have a GOT, or associated sections. */
2570 if (htab->symbian_p)
2571 return TRUE;
2572
2573 if (! _bfd_elf_create_got_section (dynobj, info))
2574 return FALSE;
2575
2576 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
2577 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
2578 if (!htab->sgot || !htab->sgotplt)
2579 abort ();
2580
2581 htab->srelgot = bfd_make_section_with_flags (dynobj,
2582 RELOC_SECTION (htab, ".got"),
2583 (SEC_ALLOC | SEC_LOAD
2584 | SEC_HAS_CONTENTS
2585 | SEC_IN_MEMORY
2586 | SEC_LINKER_CREATED
2587 | SEC_READONLY));
2588 if (htab->srelgot == NULL
2589 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
2590 return FALSE;
2591 return TRUE;
2592 }
2593
2594 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
2595 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
2596 hash table. */
2597
2598 static bfd_boolean
2599 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
2600 {
2601 struct elf32_arm_link_hash_table *htab;
2602
2603 htab = elf32_arm_hash_table (info);
2604 if (!htab->sgot && !create_got_section (dynobj, info))
2605 return FALSE;
2606
2607 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
2608 return FALSE;
2609
2610 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
2611 htab->srelplt = bfd_get_section_by_name (dynobj,
2612 RELOC_SECTION (htab, ".plt"));
2613 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
2614 if (!info->shared)
2615 htab->srelbss = bfd_get_section_by_name (dynobj,
2616 RELOC_SECTION (htab, ".bss"));
2617
2618 if (htab->vxworks_p)
2619 {
2620 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
2621 return FALSE;
2622
2623 if (info->shared)
2624 {
2625 htab->plt_header_size = 0;
2626 htab->plt_entry_size
2627 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
2628 }
2629 else
2630 {
2631 htab->plt_header_size
2632 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
2633 htab->plt_entry_size
2634 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
2635 }
2636 }
2637
2638 if (!htab->splt
2639 || !htab->srelplt
2640 || !htab->sdynbss
2641 || (!info->shared && !htab->srelbss))
2642 abort ();
2643
2644 return TRUE;
2645 }
2646
2647 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2648
2649 static void
2650 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
2651 struct elf_link_hash_entry *dir,
2652 struct elf_link_hash_entry *ind)
2653 {
2654 struct elf32_arm_link_hash_entry *edir, *eind;
2655
2656 edir = (struct elf32_arm_link_hash_entry *) dir;
2657 eind = (struct elf32_arm_link_hash_entry *) ind;
2658
2659 if (eind->relocs_copied != NULL)
2660 {
2661 if (edir->relocs_copied != NULL)
2662 {
2663 struct elf32_arm_relocs_copied **pp;
2664 struct elf32_arm_relocs_copied *p;
2665
2666 /* Add reloc counts against the indirect sym to the direct sym
2667 list. Merge any entries against the same section. */
2668 for (pp = &eind->relocs_copied; (p = *pp) != NULL; )
2669 {
2670 struct elf32_arm_relocs_copied *q;
2671
2672 for (q = edir->relocs_copied; q != NULL; q = q->next)
2673 if (q->section == p->section)
2674 {
2675 q->pc_count += p->pc_count;
2676 q->count += p->count;
2677 *pp = p->next;
2678 break;
2679 }
2680 if (q == NULL)
2681 pp = &p->next;
2682 }
2683 *pp = edir->relocs_copied;
2684 }
2685
2686 edir->relocs_copied = eind->relocs_copied;
2687 eind->relocs_copied = NULL;
2688 }
2689
2690 if (ind->root.type == bfd_link_hash_indirect)
2691 {
2692 /* Copy over PLT info. */
2693 edir->plt_thumb_refcount += eind->plt_thumb_refcount;
2694 eind->plt_thumb_refcount = 0;
2695 edir->plt_maybe_thumb_refcount += eind->plt_maybe_thumb_refcount;
2696 eind->plt_maybe_thumb_refcount = 0;
2697
2698 if (dir->got.refcount <= 0)
2699 {
2700 edir->tls_type = eind->tls_type;
2701 eind->tls_type = GOT_UNKNOWN;
2702 }
2703 }
2704
2705 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2706 }
2707
2708 /* Create an ARM elf linker hash table. */
2709
2710 static struct bfd_link_hash_table *
2711 elf32_arm_link_hash_table_create (bfd *abfd)
2712 {
2713 struct elf32_arm_link_hash_table *ret;
2714 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
2715
2716 ret = bfd_malloc (amt);
2717 if (ret == NULL)
2718 return NULL;
2719
2720 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
2721 elf32_arm_link_hash_newfunc,
2722 sizeof (struct elf32_arm_link_hash_entry)))
2723 {
2724 free (ret);
2725 return NULL;
2726 }
2727
2728 ret->sgot = NULL;
2729 ret->sgotplt = NULL;
2730 ret->srelgot = NULL;
2731 ret->splt = NULL;
2732 ret->srelplt = NULL;
2733 ret->sdynbss = NULL;
2734 ret->srelbss = NULL;
2735 ret->srelplt2 = NULL;
2736 ret->thumb_glue_size = 0;
2737 ret->arm_glue_size = 0;
2738 ret->bx_glue_size = 0;
2739 memset (ret->bx_glue_offset, 0, sizeof (ret->bx_glue_offset));
2740 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
2741 ret->vfp11_erratum_glue_size = 0;
2742 ret->num_vfp11_fixes = 0;
2743 ret->bfd_of_glue_owner = NULL;
2744 ret->byteswap_code = 0;
2745 ret->target1_is_rel = 0;
2746 ret->target2_reloc = R_ARM_NONE;
2747 #ifdef FOUR_WORD_PLT
2748 ret->plt_header_size = 16;
2749 ret->plt_entry_size = 16;
2750 #else
2751 ret->plt_header_size = 20;
2752 ret->plt_entry_size = 12;
2753 #endif
2754 ret->fix_v4bx = 0;
2755 ret->use_blx = 0;
2756 ret->vxworks_p = 0;
2757 ret->symbian_p = 0;
2758 ret->use_rel = 1;
2759 ret->sym_sec.abfd = NULL;
2760 ret->obfd = abfd;
2761 ret->tls_ldm_got.refcount = 0;
2762 ret->stub_bfd = NULL;
2763 ret->add_stub_section = NULL;
2764 ret->layout_sections_again = NULL;
2765 ret->stub_group = NULL;
2766 ret->bfd_count = 0;
2767 ret->top_index = 0;
2768 ret->input_list = NULL;
2769
2770 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2771 sizeof (struct elf32_arm_stub_hash_entry)))
2772 {
2773 free (ret);
2774 return NULL;
2775 }
2776
2777 return &ret->root.root;
2778 }
2779
2780 /* Free the derived linker hash table. */
2781
2782 static void
2783 elf32_arm_hash_table_free (struct bfd_link_hash_table *hash)
2784 {
2785 struct elf32_arm_link_hash_table *ret
2786 = (struct elf32_arm_link_hash_table *) hash;
2787
2788 bfd_hash_table_free (&ret->stub_hash_table);
2789 _bfd_generic_link_hash_table_free (hash);
2790 }
2791
2792 /* Determine if we're dealing with a Thumb only architecture. */
2793
2794 static bfd_boolean
2795 using_thumb_only (struct elf32_arm_link_hash_table *globals)
2796 {
2797 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2798 Tag_CPU_arch);
2799 int profile;
2800
2801 if (arch != TAG_CPU_ARCH_V7)
2802 return FALSE;
2803
2804 profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2805 Tag_CPU_arch_profile);
2806
2807 return profile == 'M';
2808 }
2809
2810 /* Determine if we're dealing with a Thumb-2 object. */
2811
2812 static bfd_boolean
2813 using_thumb2 (struct elf32_arm_link_hash_table *globals)
2814 {
2815 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2816 Tag_CPU_arch);
2817 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
2818 }
2819
2820 static bfd_boolean
2821 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
2822 {
2823 switch (stub_type)
2824 {
2825 case arm_stub_long_branch_thumb_only:
2826 case arm_stub_long_branch_v4t_thumb_arm:
2827 case arm_stub_short_branch_v4t_thumb_arm:
2828 case arm_stub_long_branch_v4t_thumb_arm_pic:
2829 case arm_stub_long_branch_thumb_only_pic:
2830 return TRUE;
2831 case arm_stub_none:
2832 BFD_FAIL ();
2833 return FALSE;
2834 break;
2835 default:
2836 return FALSE;
2837 }
2838 }
2839
2840 /* Determine the type of stub needed, if any, for a call. */
2841
2842 static enum elf32_arm_stub_type
2843 arm_type_of_stub (struct bfd_link_info *info,
2844 asection *input_sec,
2845 const Elf_Internal_Rela *rel,
2846 unsigned char st_type,
2847 struct elf32_arm_link_hash_entry *hash,
2848 bfd_vma destination,
2849 asection *sym_sec,
2850 bfd *input_bfd,
2851 const char *name)
2852 {
2853 bfd_vma location;
2854 bfd_signed_vma branch_offset;
2855 unsigned int r_type;
2856 struct elf32_arm_link_hash_table * globals;
2857 int thumb2;
2858 int thumb_only;
2859 enum elf32_arm_stub_type stub_type = arm_stub_none;
2860 int use_plt = 0;
2861
2862 /* We don't know the actual type of destination in case it is of
2863 type STT_SECTION: give up. */
2864 if (st_type == STT_SECTION)
2865 return stub_type;
2866
2867 globals = elf32_arm_hash_table (info);
2868
2869 thumb_only = using_thumb_only (globals);
2870
2871 thumb2 = using_thumb2 (globals);
2872
2873 /* Determine where the call point is. */
2874 location = (input_sec->output_offset
2875 + input_sec->output_section->vma
2876 + rel->r_offset);
2877
2878 branch_offset = (bfd_signed_vma)(destination - location);
2879
2880 r_type = ELF32_R_TYPE (rel->r_info);
2881
2882 /* Keep a simpler condition, for the sake of clarity. */
2883 if (globals->splt != NULL && hash != NULL && hash->root.plt.offset != (bfd_vma) -1)
2884 {
2885 use_plt = 1;
2886 /* Note when dealing with PLT entries: the main PLT stub is in
2887 ARM mode, so if the branch is in Thumb mode, another
2888 Thumb->ARM stub will be inserted later just before the ARM
2889 PLT stub. We don't take this extra distance into account
2890 here, because if a long branch stub is needed, we'll add a
2891 Thumb->Arm one and branch directly to the ARM PLT entry
2892 because it avoids spreading offset corrections in several
2893 places. */
2894 }
2895
2896 if (r_type == R_ARM_THM_CALL)
2897 {
2898 /* Handle cases where:
2899 - this call goes too far (different Thumb/Thumb2 max
2900 distance)
2901 - it's a Thumb->Arm call and blx is not available. A stub is
2902 needed in this case, but only if this call is not through a
2903 PLT entry. Indeed, PLT stubs handle mode switching already.
2904 */
2905 if ((!thumb2
2906 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
2907 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
2908 || (thumb2
2909 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
2910 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
2911 || ((st_type != STT_ARM_TFUNC)
2912 && ((r_type == R_ARM_THM_CALL) && !globals->use_blx)
2913 && !use_plt))
2914 {
2915 if (st_type == STT_ARM_TFUNC)
2916 {
2917 /* Thumb to thumb. */
2918 if (!thumb_only)
2919 {
2920 stub_type = (info->shared | globals->pic_veneer)
2921 /* PIC stubs. */
2922 ? ((globals->use_blx)
2923 /* V5T and above. */
2924 ? arm_stub_long_branch_any_thumb_pic
2925 /* On V4T, use Thumb code only. */
2926 : arm_stub_long_branch_thumb_only_pic)
2927
2928 /* non-PIC stubs. */
2929 : ((globals->use_blx)
2930 /* V5T and above. */
2931 ? arm_stub_long_branch_any_any
2932 /* V4T. */
2933 : arm_stub_long_branch_thumb_only);
2934 }
2935 else
2936 {
2937 stub_type = (info->shared | globals->pic_veneer)
2938 /* PIC stub. */
2939 ? arm_stub_long_branch_thumb_only_pic
2940 /* non-PIC stub. */
2941 : arm_stub_long_branch_thumb_only;
2942 }
2943 }
2944 else
2945 {
2946 /* Thumb to arm. */
2947 if (sym_sec != NULL
2948 && sym_sec->owner != NULL
2949 && !INTERWORK_FLAG (sym_sec->owner))
2950 {
2951 (*_bfd_error_handler)
2952 (_("%B(%s): warning: interworking not enabled.\n"
2953 " first occurrence: %B: Thumb call to ARM"),
2954 sym_sec->owner, input_bfd, name);
2955 }
2956
2957 stub_type = (info->shared | globals->pic_veneer)
2958 /* PIC stubs. */
2959 ? ((globals->use_blx)
2960 /* V5T and above. */
2961 ? arm_stub_long_branch_any_arm_pic
2962 /* V4T PIC stub. */
2963 : arm_stub_long_branch_v4t_thumb_arm_pic)
2964
2965 /* non-PIC stubs. */
2966 : ((globals->use_blx)
2967 /* V5T and above. */
2968 ? arm_stub_long_branch_any_any
2969 /* V4T. */
2970 : arm_stub_long_branch_v4t_thumb_arm);
2971
2972 /* Handle v4t short branches. */
2973 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
2974 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
2975 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
2976 stub_type = arm_stub_short_branch_v4t_thumb_arm;
2977 }
2978 }
2979 }
2980 else if (r_type == R_ARM_CALL)
2981 {
2982 if (st_type == STT_ARM_TFUNC)
2983 {
2984 /* Arm to thumb. */
2985
2986 if (sym_sec != NULL
2987 && sym_sec->owner != NULL
2988 && !INTERWORK_FLAG (sym_sec->owner))
2989 {
2990 (*_bfd_error_handler)
2991 (_("%B(%s): warning: interworking not enabled.\n"
2992 " first occurrence: %B: ARM call to Thumb"),
2993 sym_sec->owner, input_bfd, name);
2994 }
2995
2996 /* We have an extra 2-bytes reach because of
2997 the mode change (bit 24 (H) of BLX encoding). */
2998 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
2999 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
3000 || !globals->use_blx)
3001 {
3002 stub_type = (info->shared | globals->pic_veneer)
3003 /* PIC stubs. */
3004 ? ((globals->use_blx)
3005 /* V5T and above. */
3006 ? arm_stub_long_branch_any_thumb_pic
3007 /* V4T stub. */
3008 : arm_stub_long_branch_v4t_arm_thumb_pic)
3009
3010 /* non-PIC stubs. */
3011 : ((globals->use_blx)
3012 /* V5T and above. */
3013 ? arm_stub_long_branch_any_any
3014 /* V4T. */
3015 : arm_stub_long_branch_v4t_arm_thumb);
3016 }
3017 }
3018 else
3019 {
3020 /* Arm to arm. */
3021 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
3022 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
3023 {
3024 stub_type = (info->shared | globals->pic_veneer)
3025 /* PIC stubs. */
3026 ? arm_stub_long_branch_any_arm_pic
3027 /* non-PIC stubs. */
3028 : arm_stub_long_branch_any_any;
3029 }
3030 }
3031 }
3032
3033 return stub_type;
3034 }
3035
3036 /* Build a name for an entry in the stub hash table. */
3037
3038 static char *
3039 elf32_arm_stub_name (const asection *input_section,
3040 const asection *sym_sec,
3041 const struct elf32_arm_link_hash_entry *hash,
3042 const Elf_Internal_Rela *rel)
3043 {
3044 char *stub_name;
3045 bfd_size_type len;
3046
3047 if (hash)
3048 {
3049 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1;
3050 stub_name = bfd_malloc (len);
3051 if (stub_name != NULL)
3052 sprintf (stub_name, "%08x_%s+%x",
3053 input_section->id & 0xffffffff,
3054 hash->root.root.root.string,
3055 (int) rel->r_addend & 0xffffffff);
3056 }
3057 else
3058 {
3059 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
3060 stub_name = bfd_malloc (len);
3061 if (stub_name != NULL)
3062 sprintf (stub_name, "%08x_%x:%x+%x",
3063 input_section->id & 0xffffffff,
3064 sym_sec->id & 0xffffffff,
3065 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
3066 (int) rel->r_addend & 0xffffffff);
3067 }
3068
3069 return stub_name;
3070 }
3071
3072 /* Look up an entry in the stub hash. Stub entries are cached because
3073 creating the stub name takes a bit of time. */
3074
3075 static struct elf32_arm_stub_hash_entry *
3076 elf32_arm_get_stub_entry (const asection *input_section,
3077 const asection *sym_sec,
3078 struct elf_link_hash_entry *hash,
3079 const Elf_Internal_Rela *rel,
3080 struct elf32_arm_link_hash_table *htab)
3081 {
3082 struct elf32_arm_stub_hash_entry *stub_entry;
3083 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
3084 const asection *id_sec;
3085
3086 if ((input_section->flags & SEC_CODE) == 0)
3087 return NULL;
3088
3089 /* If this input section is part of a group of sections sharing one
3090 stub section, then use the id of the first section in the group.
3091 Stub names need to include a section id, as there may well be
3092 more than one stub used to reach say, printf, and we need to
3093 distinguish between them. */
3094 id_sec = htab->stub_group[input_section->id].link_sec;
3095
3096 if (h != NULL && h->stub_cache != NULL
3097 && h->stub_cache->h == h
3098 && h->stub_cache->id_sec == id_sec)
3099 {
3100 stub_entry = h->stub_cache;
3101 }
3102 else
3103 {
3104 char *stub_name;
3105
3106 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel);
3107 if (stub_name == NULL)
3108 return NULL;
3109
3110 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3111 stub_name, FALSE, FALSE);
3112 if (h != NULL)
3113 h->stub_cache = stub_entry;
3114
3115 free (stub_name);
3116 }
3117
3118 return stub_entry;
3119 }
3120
3121 /* Add a new stub entry to the stub hash. Not all fields of the new
3122 stub entry are initialised. */
3123
3124 static struct elf32_arm_stub_hash_entry *
3125 elf32_arm_add_stub (const char *stub_name,
3126 asection *section,
3127 struct elf32_arm_link_hash_table *htab)
3128 {
3129 asection *link_sec;
3130 asection *stub_sec;
3131 struct elf32_arm_stub_hash_entry *stub_entry;
3132
3133 link_sec = htab->stub_group[section->id].link_sec;
3134 stub_sec = htab->stub_group[section->id].stub_sec;
3135 if (stub_sec == NULL)
3136 {
3137 stub_sec = htab->stub_group[link_sec->id].stub_sec;
3138 if (stub_sec == NULL)
3139 {
3140 size_t namelen;
3141 bfd_size_type len;
3142 char *s_name;
3143
3144 namelen = strlen (link_sec->name);
3145 len = namelen + sizeof (STUB_SUFFIX);
3146 s_name = bfd_alloc (htab->stub_bfd, len);
3147 if (s_name == NULL)
3148 return NULL;
3149
3150 memcpy (s_name, link_sec->name, namelen);
3151 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3152 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
3153 if (stub_sec == NULL)
3154 return NULL;
3155 htab->stub_group[link_sec->id].stub_sec = stub_sec;
3156 }
3157 htab->stub_group[section->id].stub_sec = stub_sec;
3158 }
3159
3160 /* Enter this entry into the linker stub hash table. */
3161 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3162 TRUE, FALSE);
3163 if (stub_entry == NULL)
3164 {
3165 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
3166 section->owner,
3167 stub_name);
3168 return NULL;
3169 }
3170
3171 stub_entry->stub_sec = stub_sec;
3172 stub_entry->stub_offset = 0;
3173 stub_entry->id_sec = link_sec;
3174
3175 return stub_entry;
3176 }
3177
3178 /* Store an Arm insn into an output section not processed by
3179 elf32_arm_write_section. */
3180
3181 static void
3182 put_arm_insn (struct elf32_arm_link_hash_table * htab,
3183 bfd * output_bfd, bfd_vma val, void * ptr)
3184 {
3185 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3186 bfd_putl32 (val, ptr);
3187 else
3188 bfd_putb32 (val, ptr);
3189 }
3190
3191 /* Store a 16-bit Thumb insn into an output section not processed by
3192 elf32_arm_write_section. */
3193
3194 static void
3195 put_thumb_insn (struct elf32_arm_link_hash_table * htab,
3196 bfd * output_bfd, bfd_vma val, void * ptr)
3197 {
3198 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3199 bfd_putl16 (val, ptr);
3200 else
3201 bfd_putb16 (val, ptr);
3202 }
3203
3204 static bfd_boolean
3205 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
3206 void * in_arg)
3207 {
3208 struct elf32_arm_stub_hash_entry *stub_entry;
3209 struct bfd_link_info *info;
3210 struct elf32_arm_link_hash_table *htab;
3211 asection *stub_sec;
3212 bfd *stub_bfd;
3213 bfd_vma stub_addr;
3214 bfd_byte *loc;
3215 bfd_vma sym_value;
3216 int template_size;
3217 int size;
3218 const insn_sequence *template;
3219 int i;
3220 struct elf32_arm_link_hash_table * globals;
3221 int stub_reloc_idx = -1;
3222 int stub_reloc_offset = 0;
3223
3224 /* Massage our args to the form they really have. */
3225 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3226 info = (struct bfd_link_info *) in_arg;
3227
3228 globals = elf32_arm_hash_table (info);
3229
3230 htab = elf32_arm_hash_table (info);
3231 stub_sec = stub_entry->stub_sec;
3232
3233 /* Make a note of the offset within the stubs for this entry. */
3234 stub_entry->stub_offset = stub_sec->size;
3235 loc = stub_sec->contents + stub_entry->stub_offset;
3236
3237 stub_bfd = stub_sec->owner;
3238
3239 /* This is the address of the start of the stub. */
3240 stub_addr = stub_sec->output_section->vma + stub_sec->output_offset
3241 + stub_entry->stub_offset;
3242
3243 /* This is the address of the stub destination. */
3244 sym_value = (stub_entry->target_value
3245 + stub_entry->target_section->output_offset
3246 + stub_entry->target_section->output_section->vma);
3247
3248 template = stub_entry->stub_template;
3249 template_size = stub_entry->stub_template_size;
3250
3251 size = 0;
3252 for (i = 0; i < template_size; i++)
3253 {
3254 switch (template[i].type)
3255 {
3256 case THUMB16_TYPE:
3257 put_thumb_insn (globals, stub_bfd, template[i].data, loc + size);
3258 size += 2;
3259 break;
3260
3261 case ARM_TYPE:
3262 put_arm_insn (globals, stub_bfd, template[i].data, loc + size);
3263 /* Handle cases where the target is encoded within the
3264 instruction. */
3265 if (template[i].r_type == R_ARM_JUMP24)
3266 {
3267 stub_reloc_idx = i;
3268 stub_reloc_offset = size;
3269 }
3270 size += 4;
3271 break;
3272
3273 case DATA_TYPE:
3274 bfd_put_32 (stub_bfd, template[i].data, loc + size);
3275 stub_reloc_idx = i;
3276 stub_reloc_offset = size;
3277 size += 4;
3278 break;
3279
3280 default:
3281 BFD_FAIL ();
3282 return FALSE;
3283 }
3284 }
3285
3286 stub_sec->size += size;
3287
3288 /* Stub size has already been computed in arm_size_one_stub. Check
3289 consistency. */
3290 BFD_ASSERT (size == stub_entry->stub_size);
3291
3292 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
3293 if (stub_entry->st_type == STT_ARM_TFUNC)
3294 sym_value |= 1;
3295
3296 /* Assume there is one and only one entry to relocate in each stub. */
3297 BFD_ASSERT (stub_reloc_idx != -1);
3298
3299 _bfd_final_link_relocate (elf32_arm_howto_from_type (template[stub_reloc_idx].r_type),
3300 stub_bfd, stub_sec, stub_sec->contents,
3301 stub_entry->stub_offset + stub_reloc_offset,
3302 sym_value, template[stub_reloc_idx].reloc_addend);
3303
3304 return TRUE;
3305 }
3306
3307 /* As above, but don't actually build the stub. Just bump offset so
3308 we know stub section sizes. */
3309
3310 static bfd_boolean
3311 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
3312 void * in_arg)
3313 {
3314 struct elf32_arm_stub_hash_entry *stub_entry;
3315 struct elf32_arm_link_hash_table *htab;
3316 const insn_sequence *template;
3317 int template_size;
3318 int size;
3319 int i;
3320
3321 /* Massage our args to the form they really have. */
3322 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3323 htab = (struct elf32_arm_link_hash_table *) in_arg;
3324
3325 switch (stub_entry->stub_type)
3326 {
3327 case arm_stub_long_branch_any_any:
3328 template = elf32_arm_stub_long_branch_any_any;
3329 template_size = ARRAY_SIZE (elf32_arm_stub_long_branch_any_any);
3330 break;
3331 case arm_stub_long_branch_v4t_arm_thumb:
3332 template = elf32_arm_stub_long_branch_v4t_arm_thumb;
3333 template_size = ARRAY_SIZE (elf32_arm_stub_long_branch_v4t_arm_thumb);
3334 break;
3335 case arm_stub_long_branch_thumb_only:
3336 template = elf32_arm_stub_long_branch_thumb_only;
3337 template_size = ARRAY_SIZE (elf32_arm_stub_long_branch_thumb_only);
3338 break;
3339 case arm_stub_long_branch_v4t_thumb_arm:
3340 template = elf32_arm_stub_long_branch_v4t_thumb_arm;
3341 template_size = ARRAY_SIZE (elf32_arm_stub_long_branch_v4t_thumb_arm);
3342 break;
3343 case arm_stub_short_branch_v4t_thumb_arm:
3344 template = elf32_arm_stub_short_branch_v4t_thumb_arm;
3345 template_size = ARRAY_SIZE (elf32_arm_stub_short_branch_v4t_thumb_arm);
3346 break;
3347 case arm_stub_long_branch_any_arm_pic:
3348 template = elf32_arm_stub_long_branch_any_arm_pic;
3349 template_size = ARRAY_SIZE (elf32_arm_stub_long_branch_any_arm_pic);
3350 break;
3351 case arm_stub_long_branch_any_thumb_pic:
3352 template = elf32_arm_stub_long_branch_any_thumb_pic;
3353 template_size = ARRAY_SIZE (elf32_arm_stub_long_branch_any_thumb_pic);
3354 break;
3355 case arm_stub_long_branch_v4t_arm_thumb_pic:
3356 template = elf32_arm_stub_long_branch_v4t_arm_thumb_pic;
3357 template_size = ARRAY_SIZE (elf32_arm_stub_long_branch_v4t_arm_thumb_pic);
3358 break;
3359 case arm_stub_long_branch_v4t_thumb_arm_pic:
3360 template = elf32_arm_stub_long_branch_v4t_thumb_arm_pic;
3361 template_size = ARRAY_SIZE (elf32_arm_stub_long_branch_v4t_thumb_arm_pic);
3362 break;
3363 case arm_stub_long_branch_thumb_only_pic:
3364 template = elf32_arm_stub_long_branch_thumb_only_pic;
3365 template_size = ARRAY_SIZE (elf32_arm_stub_long_branch_thumb_only_pic);
3366 break;
3367 default:
3368 BFD_FAIL ();
3369 return FALSE;
3370 }
3371
3372 size = 0;
3373 for (i = 0; i < template_size; i++)
3374 {
3375 switch (template[i].type)
3376 {
3377 case THUMB16_TYPE:
3378 size += 2;
3379 break;
3380
3381 case ARM_TYPE:
3382 size += 4;
3383 break;
3384
3385 case DATA_TYPE:
3386 size += 4;
3387 break;
3388
3389 default:
3390 BFD_FAIL ();
3391 return FALSE;
3392 }
3393 }
3394
3395 stub_entry->stub_size = size;
3396 stub_entry->stub_template = template;
3397 stub_entry->stub_template_size = template_size;
3398
3399 size = (size + 7) & ~7;
3400 stub_entry->stub_sec->size += size;
3401
3402 return TRUE;
3403 }
3404
3405 /* External entry points for sizing and building linker stubs. */
3406
3407 /* Set up various things so that we can make a list of input sections
3408 for each output section included in the link. Returns -1 on error,
3409 0 when no stubs will be needed, and 1 on success. */
3410
3411 int
3412 elf32_arm_setup_section_lists (bfd *output_bfd,
3413 struct bfd_link_info *info)
3414 {
3415 bfd *input_bfd;
3416 unsigned int bfd_count;
3417 int top_id, top_index;
3418 asection *section;
3419 asection **input_list, **list;
3420 bfd_size_type amt;
3421 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3422
3423 if (! is_elf_hash_table (htab))
3424 return 0;
3425
3426 /* Count the number of input BFDs and find the top input section id. */
3427 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3428 input_bfd != NULL;
3429 input_bfd = input_bfd->link_next)
3430 {
3431 bfd_count += 1;
3432 for (section = input_bfd->sections;
3433 section != NULL;
3434 section = section->next)
3435 {
3436 if (top_id < section->id)
3437 top_id = section->id;
3438 }
3439 }
3440 htab->bfd_count = bfd_count;
3441
3442 amt = sizeof (struct map_stub) * (top_id + 1);
3443 htab->stub_group = bfd_zmalloc (amt);
3444 if (htab->stub_group == NULL)
3445 return -1;
3446
3447 /* We can't use output_bfd->section_count here to find the top output
3448 section index as some sections may have been removed, and
3449 _bfd_strip_section_from_output doesn't renumber the indices. */
3450 for (section = output_bfd->sections, top_index = 0;
3451 section != NULL;
3452 section = section->next)
3453 {
3454 if (top_index < section->index)
3455 top_index = section->index;
3456 }
3457
3458 htab->top_index = top_index;
3459 amt = sizeof (asection *) * (top_index + 1);
3460 input_list = bfd_malloc (amt);
3461 htab->input_list = input_list;
3462 if (input_list == NULL)
3463 return -1;
3464
3465 /* For sections we aren't interested in, mark their entries with a
3466 value we can check later. */
3467 list = input_list + top_index;
3468 do
3469 *list = bfd_abs_section_ptr;
3470 while (list-- != input_list);
3471
3472 for (section = output_bfd->sections;
3473 section != NULL;
3474 section = section->next)
3475 {
3476 if ((section->flags & SEC_CODE) != 0)
3477 input_list[section->index] = NULL;
3478 }
3479
3480 return 1;
3481 }
3482
3483 /* The linker repeatedly calls this function for each input section,
3484 in the order that input sections are linked into output sections.
3485 Build lists of input sections to determine groupings between which
3486 we may insert linker stubs. */
3487
3488 void
3489 elf32_arm_next_input_section (struct bfd_link_info *info,
3490 asection *isec)
3491 {
3492 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3493
3494 if (isec->output_section->index <= htab->top_index)
3495 {
3496 asection **list = htab->input_list + isec->output_section->index;
3497
3498 if (*list != bfd_abs_section_ptr)
3499 {
3500 /* Steal the link_sec pointer for our list. */
3501 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3502 /* This happens to make the list in reverse order,
3503 which we reverse later. */
3504 PREV_SEC (isec) = *list;
3505 *list = isec;
3506 }
3507 }
3508 }
3509
3510 /* See whether we can group stub sections together. Grouping stub
3511 sections may result in fewer stubs. More importantly, we need to
3512 put all .init* and .fini* stubs at the end of the .init or
3513 .fini output sections respectively, because glibc splits the
3514 _init and _fini functions into multiple parts. Putting a stub in
3515 the middle of a function is not a good idea. */
3516
3517 static void
3518 group_sections (struct elf32_arm_link_hash_table *htab,
3519 bfd_size_type stub_group_size,
3520 bfd_boolean stubs_always_after_branch)
3521 {
3522 asection **list = htab->input_list;
3523
3524 do
3525 {
3526 asection *tail = *list;
3527 asection *head;
3528
3529 if (tail == bfd_abs_section_ptr)
3530 continue;
3531
3532 /* Reverse the list: we must avoid placing stubs at the
3533 beginning of the section because the beginning of the text
3534 section may be required for an interrupt vector in bare metal
3535 code. */
3536 #define NEXT_SEC PREV_SEC
3537 head = NULL;
3538 while (tail != NULL)
3539 {
3540 /* Pop from tail. */
3541 asection *item = tail;
3542 tail = PREV_SEC (item);
3543
3544 /* Push on head. */
3545 NEXT_SEC (item) = head;
3546 head = item;
3547 }
3548
3549 while (head != NULL)
3550 {
3551 asection *curr;
3552 asection *next;
3553 bfd_vma stub_group_start = head->output_offset;
3554 bfd_vma end_of_next;
3555
3556 curr = head;
3557 while (NEXT_SEC (curr) != NULL)
3558 {
3559 next = NEXT_SEC (curr);
3560 end_of_next = next->output_offset + next->size;
3561 if (end_of_next - stub_group_start >= stub_group_size)
3562 /* End of NEXT is too far from start, so stop. */
3563 break;
3564 /* Add NEXT to the group. */
3565 curr = next;
3566 }
3567
3568 /* OK, the size from the start to the start of CURR is less
3569 than stub_group_size and thus can be handled by one stub
3570 section. (Or the head section is itself larger than
3571 stub_group_size, in which case we may be toast.)
3572 We should really be keeping track of the total size of
3573 stubs added here, as stubs contribute to the final output
3574 section size. */
3575 do
3576 {
3577 next = NEXT_SEC (head);
3578 /* Set up this stub group. */
3579 htab->stub_group[head->id].link_sec = curr;
3580 }
3581 while (head != curr && (head = next) != NULL);
3582
3583 /* But wait, there's more! Input sections up to stub_group_size
3584 bytes after the stub section can be handled by it too. */
3585 if (!stubs_always_after_branch)
3586 {
3587 stub_group_start = curr->output_offset + curr->size;
3588
3589 while (next != NULL)
3590 {
3591 end_of_next = next->output_offset + next->size;
3592 if (end_of_next - stub_group_start >= stub_group_size)
3593 /* End of NEXT is too far from stubs, so stop. */
3594 break;
3595 /* Add NEXT to the stub group. */
3596 head = next;
3597 next = NEXT_SEC (head);
3598 htab->stub_group[head->id].link_sec = curr;
3599 }
3600 }
3601 head = next;
3602 }
3603 }
3604 while (list++ != htab->input_list + htab->top_index);
3605
3606 free (htab->input_list);
3607 #undef PREV_SEC
3608 #undef NEXT_SEC
3609 }
3610
3611 /* Determine and set the size of the stub section for a final link.
3612
3613 The basic idea here is to examine all the relocations looking for
3614 PC-relative calls to a target that is unreachable with a "bl"
3615 instruction. */
3616
3617 bfd_boolean
3618 elf32_arm_size_stubs (bfd *output_bfd,
3619 bfd *stub_bfd,
3620 struct bfd_link_info *info,
3621 bfd_signed_vma group_size,
3622 asection * (*add_stub_section) (const char *, asection *),
3623 void (*layout_sections_again) (void))
3624 {
3625 bfd_size_type stub_group_size;
3626 bfd_boolean stubs_always_after_branch;
3627 bfd_boolean stub_changed = 0;
3628 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3629
3630 /* Propagate mach to stub bfd, because it may not have been
3631 finalized when we created stub_bfd. */
3632 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
3633 bfd_get_mach (output_bfd));
3634
3635 /* Stash our params away. */
3636 htab->stub_bfd = stub_bfd;
3637 htab->add_stub_section = add_stub_section;
3638 htab->layout_sections_again = layout_sections_again;
3639 stubs_always_after_branch = group_size < 0;
3640 if (group_size < 0)
3641 stub_group_size = -group_size;
3642 else
3643 stub_group_size = group_size;
3644
3645 if (stub_group_size == 1)
3646 {
3647 /* Default values. */
3648 /* Thumb branch range is +-4MB has to be used as the default
3649 maximum size (a given section can contain both ARM and Thumb
3650 code, so the worst case has to be taken into account).
3651
3652 This value is 24K less than that, which allows for 2025
3653 12-byte stubs. If we exceed that, then we will fail to link.
3654 The user will have to relink with an explicit group size
3655 option. */
3656 stub_group_size = 4170000;
3657 }
3658
3659 group_sections (htab, stub_group_size, stubs_always_after_branch);
3660
3661 while (1)
3662 {
3663 bfd *input_bfd;
3664 unsigned int bfd_indx;
3665 asection *stub_sec;
3666
3667 for (input_bfd = info->input_bfds, bfd_indx = 0;
3668 input_bfd != NULL;
3669 input_bfd = input_bfd->link_next, bfd_indx++)
3670 {
3671 Elf_Internal_Shdr *symtab_hdr;
3672 asection *section;
3673 Elf_Internal_Sym *local_syms = NULL;
3674
3675 /* We'll need the symbol table in a second. */
3676 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3677 if (symtab_hdr->sh_info == 0)
3678 continue;
3679
3680 /* Walk over each section attached to the input bfd. */
3681 for (section = input_bfd->sections;
3682 section != NULL;
3683 section = section->next)
3684 {
3685 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
3686
3687 /* If there aren't any relocs, then there's nothing more
3688 to do. */
3689 if ((section->flags & SEC_RELOC) == 0
3690 || section->reloc_count == 0
3691 || (section->flags & SEC_CODE) == 0)
3692 continue;
3693
3694 /* If this section is a link-once section that will be
3695 discarded, then don't create any stubs. */
3696 if (section->output_section == NULL
3697 || section->output_section->owner != output_bfd)
3698 continue;
3699
3700 /* Get the relocs. */
3701 internal_relocs
3702 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
3703 NULL, info->keep_memory);
3704 if (internal_relocs == NULL)
3705 goto error_ret_free_local;
3706
3707 /* Now examine each relocation. */
3708 irela = internal_relocs;
3709 irelaend = irela + section->reloc_count;
3710 for (; irela < irelaend; irela++)
3711 {
3712 unsigned int r_type, r_indx;
3713 enum elf32_arm_stub_type stub_type;
3714 struct elf32_arm_stub_hash_entry *stub_entry;
3715 asection *sym_sec;
3716 bfd_vma sym_value;
3717 bfd_vma destination;
3718 struct elf32_arm_link_hash_entry *hash;
3719 const char *sym_name;
3720 char *stub_name;
3721 const asection *id_sec;
3722 unsigned char st_type;
3723
3724 r_type = ELF32_R_TYPE (irela->r_info);
3725 r_indx = ELF32_R_SYM (irela->r_info);
3726
3727 if (r_type >= (unsigned int) R_ARM_max)
3728 {
3729 bfd_set_error (bfd_error_bad_value);
3730 error_ret_free_internal:
3731 if (elf_section_data (section)->relocs == NULL)
3732 free (internal_relocs);
3733 goto error_ret_free_local;
3734 }
3735
3736 /* Only look for stubs on call instructions. */
3737 if ((r_type != (unsigned int) R_ARM_CALL)
3738 && (r_type != (unsigned int) R_ARM_THM_CALL))
3739 continue;
3740
3741 /* Now determine the call target, its name, value,
3742 section. */
3743 sym_sec = NULL;
3744 sym_value = 0;
3745 destination = 0;
3746 hash = NULL;
3747 sym_name = NULL;
3748 if (r_indx < symtab_hdr->sh_info)
3749 {
3750 /* It's a local symbol. */
3751 Elf_Internal_Sym *sym;
3752 Elf_Internal_Shdr *hdr;
3753
3754 if (local_syms == NULL)
3755 {
3756 local_syms
3757 = (Elf_Internal_Sym *) symtab_hdr->contents;
3758 if (local_syms == NULL)
3759 local_syms
3760 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
3761 symtab_hdr->sh_info, 0,
3762 NULL, NULL, NULL);
3763 if (local_syms == NULL)
3764 goto error_ret_free_internal;
3765 }
3766
3767 sym = local_syms + r_indx;
3768 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
3769 sym_sec = hdr->bfd_section;
3770 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
3771 sym_value = sym->st_value;
3772 destination = (sym_value + irela->r_addend
3773 + sym_sec->output_offset
3774 + sym_sec->output_section->vma);
3775 st_type = ELF_ST_TYPE (sym->st_info);
3776 sym_name
3777 = bfd_elf_string_from_elf_section (input_bfd,
3778 symtab_hdr->sh_link,
3779 sym->st_name);
3780 }
3781 else
3782 {
3783 /* It's an external symbol. */
3784 int e_indx;
3785
3786 e_indx = r_indx - symtab_hdr->sh_info;
3787 hash = ((struct elf32_arm_link_hash_entry *)
3788 elf_sym_hashes (input_bfd)[e_indx]);
3789
3790 while (hash->root.root.type == bfd_link_hash_indirect
3791 || hash->root.root.type == bfd_link_hash_warning)
3792 hash = ((struct elf32_arm_link_hash_entry *)
3793 hash->root.root.u.i.link);
3794
3795 if (hash->root.root.type == bfd_link_hash_defined
3796 || hash->root.root.type == bfd_link_hash_defweak)
3797 {
3798 sym_sec = hash->root.root.u.def.section;
3799 sym_value = hash->root.root.u.def.value;
3800 if (sym_sec->output_section != NULL)
3801 destination = (sym_value + irela->r_addend
3802 + sym_sec->output_offset
3803 + sym_sec->output_section->vma);
3804 }
3805 else if (hash->root.root.type == bfd_link_hash_undefweak
3806 || hash->root.root.type == bfd_link_hash_undefined)
3807 /* For a shared library, these will need a PLT stub,
3808 which is treated separately.
3809 For absolute code, they cannot be handled. */
3810 continue;
3811 else
3812 {
3813 bfd_set_error (bfd_error_bad_value);
3814 goto error_ret_free_internal;
3815 }
3816 st_type = ELF_ST_TYPE (hash->root.type);
3817 sym_name = hash->root.root.root.string;
3818 }
3819
3820 /* Determine what (if any) linker stub is needed. */
3821 stub_type = arm_type_of_stub (info, section, irela, st_type,
3822 hash, destination, sym_sec,
3823 input_bfd, sym_name);
3824 if (stub_type == arm_stub_none)
3825 continue;
3826
3827 /* Support for grouping stub sections. */
3828 id_sec = htab->stub_group[section->id].link_sec;
3829
3830 /* Get the name of this stub. */
3831 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela);
3832 if (!stub_name)
3833 goto error_ret_free_internal;
3834
3835 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3836 stub_name,
3837 FALSE, FALSE);
3838 if (stub_entry != NULL)
3839 {
3840 /* The proper stub has already been created. */
3841 free (stub_name);
3842 continue;
3843 }
3844
3845 stub_entry = elf32_arm_add_stub (stub_name, section, htab);
3846 if (stub_entry == NULL)
3847 {
3848 free (stub_name);
3849 goto error_ret_free_internal;
3850 }
3851
3852 stub_entry->target_value = sym_value;
3853 stub_entry->target_section = sym_sec;
3854 stub_entry->stub_type = stub_type;
3855 stub_entry->h = hash;
3856 stub_entry->st_type = st_type;
3857
3858 if (sym_name == NULL)
3859 sym_name = "unnamed";
3860 stub_entry->output_name
3861 = bfd_alloc (htab->stub_bfd,
3862 sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
3863 + strlen (sym_name));
3864 if (stub_entry->output_name == NULL)
3865 {
3866 free (stub_name);
3867 goto error_ret_free_internal;
3868 }
3869
3870 /* For historical reasons, use the existing names for
3871 ARM-to-Thumb and Thumb-to-ARM stubs. */
3872 if (r_type == (unsigned int) R_ARM_THM_CALL
3873 && st_type != STT_ARM_TFUNC)
3874 sprintf (stub_entry->output_name, THUMB2ARM_GLUE_ENTRY_NAME,
3875 sym_name);
3876 else if (r_type == (unsigned int) R_ARM_CALL
3877 && st_type == STT_ARM_TFUNC)
3878 sprintf (stub_entry->output_name, ARM2THUMB_GLUE_ENTRY_NAME,
3879 sym_name);
3880 else
3881 sprintf (stub_entry->output_name, STUB_ENTRY_NAME,
3882 sym_name);
3883
3884 stub_changed = TRUE;
3885 }
3886
3887 /* We're done with the internal relocs, free them. */
3888 if (elf_section_data (section)->relocs == NULL)
3889 free (internal_relocs);
3890 }
3891 }
3892
3893 if (!stub_changed)
3894 break;
3895
3896 /* OK, we've added some stubs. Find out the new size of the
3897 stub sections. */
3898 for (stub_sec = htab->stub_bfd->sections;
3899 stub_sec != NULL;
3900 stub_sec = stub_sec->next)
3901 stub_sec->size = 0;
3902
3903 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
3904
3905 /* Ask the linker to do its stuff. */
3906 (*htab->layout_sections_again) ();
3907 stub_changed = FALSE;
3908 }
3909
3910 return TRUE;
3911
3912 error_ret_free_local:
3913 return FALSE;
3914 }
3915
3916 /* Build all the stubs associated with the current output file. The
3917 stubs are kept in a hash table attached to the main linker hash
3918 table. We also set up the .plt entries for statically linked PIC
3919 functions here. This function is called via arm_elf_finish in the
3920 linker. */
3921
3922 bfd_boolean
3923 elf32_arm_build_stubs (struct bfd_link_info *info)
3924 {
3925 asection *stub_sec;
3926 struct bfd_hash_table *table;
3927 struct elf32_arm_link_hash_table *htab;
3928
3929 htab = elf32_arm_hash_table (info);
3930
3931 for (stub_sec = htab->stub_bfd->sections;
3932 stub_sec != NULL;
3933 stub_sec = stub_sec->next)
3934 {
3935 bfd_size_type size;
3936
3937 /* Ignore non-stub sections. */
3938 if (!strstr (stub_sec->name, STUB_SUFFIX))
3939 continue;
3940
3941 /* Allocate memory to hold the linker stubs. */
3942 size = stub_sec->size;
3943 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3944 if (stub_sec->contents == NULL && size != 0)
3945 return FALSE;
3946 stub_sec->size = 0;
3947 }
3948
3949 /* Build the stubs as directed by the stub hash table. */
3950 table = &htab->stub_hash_table;
3951 bfd_hash_traverse (table, arm_build_one_stub, info);
3952
3953 return TRUE;
3954 }
3955
3956 /* Locate the Thumb encoded calling stub for NAME. */
3957
3958 static struct elf_link_hash_entry *
3959 find_thumb_glue (struct bfd_link_info *link_info,
3960 const char *name,
3961 char **error_message)
3962 {
3963 char *tmp_name;
3964 struct elf_link_hash_entry *hash;
3965 struct elf32_arm_link_hash_table *hash_table;
3966
3967 /* We need a pointer to the armelf specific hash table. */
3968 hash_table = elf32_arm_hash_table (link_info);
3969
3970 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
3971 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
3972
3973 BFD_ASSERT (tmp_name);
3974
3975 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
3976
3977 hash = elf_link_hash_lookup
3978 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
3979
3980 if (hash == NULL
3981 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
3982 tmp_name, name) == -1)
3983 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
3984
3985 free (tmp_name);
3986
3987 return hash;
3988 }
3989
3990 /* Locate the ARM encoded calling stub for NAME. */
3991
3992 static struct elf_link_hash_entry *
3993 find_arm_glue (struct bfd_link_info *link_info,
3994 const char *name,
3995 char **error_message)
3996 {
3997 char *tmp_name;
3998 struct elf_link_hash_entry *myh;
3999 struct elf32_arm_link_hash_table *hash_table;
4000
4001 /* We need a pointer to the elfarm specific hash table. */
4002 hash_table = elf32_arm_hash_table (link_info);
4003
4004 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
4005 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
4006
4007 BFD_ASSERT (tmp_name);
4008
4009 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
4010
4011 myh = elf_link_hash_lookup
4012 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
4013
4014 if (myh == NULL
4015 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
4016 tmp_name, name) == -1)
4017 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
4018
4019 free (tmp_name);
4020
4021 return myh;
4022 }
4023
4024 /* ARM->Thumb glue (static images):
4025
4026 .arm
4027 __func_from_arm:
4028 ldr r12, __func_addr
4029 bx r12
4030 __func_addr:
4031 .word func @ behave as if you saw a ARM_32 reloc.
4032
4033 (v5t static images)
4034 .arm
4035 __func_from_arm:
4036 ldr pc, __func_addr
4037 __func_addr:
4038 .word func @ behave as if you saw a ARM_32 reloc.
4039
4040 (relocatable images)
4041 .arm
4042 __func_from_arm:
4043 ldr r12, __func_offset
4044 add r12, r12, pc
4045 bx r12
4046 __func_offset:
4047 .word func - . */
4048
4049 #define ARM2THUMB_STATIC_GLUE_SIZE 12
4050 static const insn32 a2t1_ldr_insn = 0xe59fc000;
4051 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
4052 static const insn32 a2t3_func_addr_insn = 0x00000001;
4053
4054 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
4055 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
4056 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
4057
4058 #define ARM2THUMB_PIC_GLUE_SIZE 16
4059 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
4060 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
4061 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
4062
4063 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
4064
4065 .thumb .thumb
4066 .align 2 .align 2
4067 __func_from_thumb: __func_from_thumb:
4068 bx pc push {r6, lr}
4069 nop ldr r6, __func_addr
4070 .arm mov lr, pc
4071 b func bx r6
4072 .arm
4073 ;; back_to_thumb
4074 ldmia r13! {r6, lr}
4075 bx lr
4076 __func_addr:
4077 .word func */
4078
4079 #define THUMB2ARM_GLUE_SIZE 8
4080 static const insn16 t2a1_bx_pc_insn = 0x4778;
4081 static const insn16 t2a2_noop_insn = 0x46c0;
4082 static const insn32 t2a3_b_insn = 0xea000000;
4083
4084 #define VFP11_ERRATUM_VENEER_SIZE 8
4085
4086 #define ARM_BX_VENEER_SIZE 12
4087 static const insn32 armbx1_tst_insn = 0xe3100001;
4088 static const insn32 armbx2_moveq_insn = 0x01a0f000;
4089 static const insn32 armbx3_bx_insn = 0xe12fff10;
4090
4091 #ifndef ELFARM_NABI_C_INCLUDED
4092 static void
4093 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
4094 {
4095 asection * s;
4096 bfd_byte * contents;
4097
4098 if (size == 0)
4099 return;
4100
4101 BFD_ASSERT (abfd != NULL);
4102
4103 s = bfd_get_section_by_name (abfd, name);
4104 BFD_ASSERT (s != NULL);
4105
4106 contents = bfd_alloc (abfd, size);
4107
4108 BFD_ASSERT (s->size == size);
4109 s->contents = contents;
4110 }
4111
4112 bfd_boolean
4113 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
4114 {
4115 struct elf32_arm_link_hash_table * globals;
4116
4117 globals = elf32_arm_hash_table (info);
4118 BFD_ASSERT (globals != NULL);
4119
4120 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
4121 globals->arm_glue_size,
4122 ARM2THUMB_GLUE_SECTION_NAME);
4123
4124 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
4125 globals->thumb_glue_size,
4126 THUMB2ARM_GLUE_SECTION_NAME);
4127
4128 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
4129 globals->vfp11_erratum_glue_size,
4130 VFP11_ERRATUM_VENEER_SECTION_NAME);
4131
4132 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
4133 globals->bx_glue_size,
4134 ARM_BX_GLUE_SECTION_NAME);
4135
4136 return TRUE;
4137 }
4138
4139 /* Allocate space and symbols for calling a Thumb function from Arm mode.
4140 returns the symbol identifying the stub. */
4141
4142 static struct elf_link_hash_entry *
4143 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
4144 struct elf_link_hash_entry * h)
4145 {
4146 const char * name = h->root.root.string;
4147 asection * s;
4148 char * tmp_name;
4149 struct elf_link_hash_entry * myh;
4150 struct bfd_link_hash_entry * bh;
4151 struct elf32_arm_link_hash_table * globals;
4152 bfd_vma val;
4153 bfd_size_type size;
4154
4155 globals = elf32_arm_hash_table (link_info);
4156
4157 BFD_ASSERT (globals != NULL);
4158 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4159
4160 s = bfd_get_section_by_name
4161 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
4162
4163 BFD_ASSERT (s != NULL);
4164
4165 tmp_name = bfd_malloc ((bfd_size_type) strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
4166
4167 BFD_ASSERT (tmp_name);
4168
4169 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
4170
4171 myh = elf_link_hash_lookup
4172 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
4173
4174 if (myh != NULL)
4175 {
4176 /* We've already seen this guy. */
4177 free (tmp_name);
4178 return myh;
4179 }
4180
4181 /* The only trick here is using hash_table->arm_glue_size as the value.
4182 Even though the section isn't allocated yet, this is where we will be
4183 putting it. The +1 on the value marks that the stub has not been
4184 output yet - not that it is a Thumb function. */
4185 bh = NULL;
4186 val = globals->arm_glue_size + 1;
4187 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
4188 tmp_name, BSF_GLOBAL, s, val,
4189 NULL, TRUE, FALSE, &bh);
4190
4191 myh = (struct elf_link_hash_entry *) bh;
4192 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4193 myh->forced_local = 1;
4194
4195 free (tmp_name);
4196
4197 if (link_info->shared || globals->root.is_relocatable_executable
4198 || globals->pic_veneer)
4199 size = ARM2THUMB_PIC_GLUE_SIZE;
4200 else if (globals->use_blx)
4201 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
4202 else
4203 size = ARM2THUMB_STATIC_GLUE_SIZE;
4204
4205 s->size += size;
4206 globals->arm_glue_size += size;
4207
4208 return myh;
4209 }
4210
4211 static void
4212 record_thumb_to_arm_glue (struct bfd_link_info *link_info,
4213 struct elf_link_hash_entry *h)
4214 {
4215 const char *name = h->root.root.string;
4216 asection *s;
4217 char *tmp_name;
4218 struct elf_link_hash_entry *myh;
4219 struct bfd_link_hash_entry *bh;
4220 struct elf32_arm_link_hash_table *hash_table;
4221 bfd_vma val;
4222
4223 hash_table = elf32_arm_hash_table (link_info);
4224
4225 BFD_ASSERT (hash_table != NULL);
4226 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
4227
4228 s = bfd_get_section_by_name
4229 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
4230
4231 BFD_ASSERT (s != NULL);
4232
4233 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
4234 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
4235
4236 BFD_ASSERT (tmp_name);
4237
4238 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
4239
4240 myh = elf_link_hash_lookup
4241 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
4242
4243 if (myh != NULL)
4244 {
4245 /* We've already seen this guy. */
4246 free (tmp_name);
4247 return;
4248 }
4249
4250 /* The only trick here is using hash_table->thumb_glue_size as the value.
4251 Even though the section isn't allocated yet, this is where we will be
4252 putting it. The +1 on the value marks that the stub has not been
4253 output yet - not that it is a Thumb function. */
4254 bh = NULL;
4255 val = hash_table->thumb_glue_size + 1;
4256 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4257 tmp_name, BSF_GLOBAL, s, val,
4258 NULL, TRUE, FALSE, &bh);
4259
4260 /* If we mark it 'Thumb', the disassembler will do a better job. */
4261 myh = (struct elf_link_hash_entry *) bh;
4262 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
4263 myh->forced_local = 1;
4264
4265 free (tmp_name);
4266
4267 #define CHANGE_TO_ARM "__%s_change_to_arm"
4268 #define BACK_FROM_ARM "__%s_back_from_arm"
4269
4270 /* Allocate another symbol to mark where we switch to Arm mode. */
4271 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
4272 + strlen (CHANGE_TO_ARM) + 1);
4273
4274 BFD_ASSERT (tmp_name);
4275
4276 sprintf (tmp_name, CHANGE_TO_ARM, name);
4277
4278 bh = NULL;
4279 val = hash_table->thumb_glue_size + 4,
4280 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4281 tmp_name, BSF_LOCAL, s, val,
4282 NULL, TRUE, FALSE, &bh);
4283
4284 free (tmp_name);
4285
4286 s->size += THUMB2ARM_GLUE_SIZE;
4287 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
4288 }
4289
4290
4291 /* Allocate space for ARMv4 BX veneers. */
4292
4293 static void
4294 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
4295 {
4296 asection * s;
4297 struct elf32_arm_link_hash_table *globals;
4298 char *tmp_name;
4299 struct elf_link_hash_entry *myh;
4300 struct bfd_link_hash_entry *bh;
4301 bfd_vma val;
4302
4303 /* BX PC does not need a veneer. */
4304 if (reg == 15)
4305 return;
4306
4307 globals = elf32_arm_hash_table (link_info);
4308
4309 BFD_ASSERT (globals != NULL);
4310 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4311
4312 /* Check if this veneer has already been allocated. */
4313 if (globals->bx_glue_offset[reg])
4314 return;
4315
4316 s = bfd_get_section_by_name
4317 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
4318
4319 BFD_ASSERT (s != NULL);
4320
4321 /* Add symbol for veneer. */
4322 tmp_name = bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
4323
4324 BFD_ASSERT (tmp_name);
4325
4326 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
4327
4328 myh = elf_link_hash_lookup
4329 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
4330
4331 BFD_ASSERT (myh == NULL);
4332
4333 bh = NULL;
4334 val = globals->bx_glue_size;
4335 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
4336 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
4337 NULL, TRUE, FALSE, &bh);
4338
4339 myh = (struct elf_link_hash_entry *) bh;
4340 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4341 myh->forced_local = 1;
4342
4343 s->size += ARM_BX_VENEER_SIZE;
4344 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
4345 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
4346 }
4347
4348
4349 /* Add an entry to the code/data map for section SEC. */
4350
4351 static void
4352 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
4353 {
4354 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
4355 unsigned int newidx;
4356
4357 if (sec_data->map == NULL)
4358 {
4359 sec_data->map = bfd_malloc (sizeof (elf32_arm_section_map));
4360 sec_data->mapcount = 0;
4361 sec_data->mapsize = 1;
4362 }
4363
4364 newidx = sec_data->mapcount++;
4365
4366 if (sec_data->mapcount > sec_data->mapsize)
4367 {
4368 sec_data->mapsize *= 2;
4369 sec_data->map = bfd_realloc_or_free (sec_data->map, sec_data->mapsize
4370 * sizeof (elf32_arm_section_map));
4371 }
4372
4373 if (sec_data->map)
4374 {
4375 sec_data->map[newidx].vma = vma;
4376 sec_data->map[newidx].type = type;
4377 }
4378 }
4379
4380
4381 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
4382 veneers are handled for now. */
4383
4384 static bfd_vma
4385 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
4386 elf32_vfp11_erratum_list *branch,
4387 bfd *branch_bfd,
4388 asection *branch_sec,
4389 unsigned int offset)
4390 {
4391 asection *s;
4392 struct elf32_arm_link_hash_table *hash_table;
4393 char *tmp_name;
4394 struct elf_link_hash_entry *myh;
4395 struct bfd_link_hash_entry *bh;
4396 bfd_vma val;
4397 struct _arm_elf_section_data *sec_data;
4398 int errcount;
4399 elf32_vfp11_erratum_list *newerr;
4400
4401 hash_table = elf32_arm_hash_table (link_info);
4402
4403 BFD_ASSERT (hash_table != NULL);
4404 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
4405
4406 s = bfd_get_section_by_name
4407 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
4408
4409 sec_data = elf32_arm_section_data (s);
4410
4411 BFD_ASSERT (s != NULL);
4412
4413 tmp_name = bfd_malloc ((bfd_size_type) strlen
4414 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
4415
4416 BFD_ASSERT (tmp_name);
4417
4418 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
4419 hash_table->num_vfp11_fixes);
4420
4421 myh = elf_link_hash_lookup
4422 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
4423
4424 BFD_ASSERT (myh == NULL);
4425
4426 bh = NULL;
4427 val = hash_table->vfp11_erratum_glue_size;
4428 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4429 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
4430 NULL, TRUE, FALSE, &bh);
4431
4432 myh = (struct elf_link_hash_entry *) bh;
4433 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4434 myh->forced_local = 1;
4435
4436 /* Link veneer back to calling location. */
4437 errcount = ++(sec_data->erratumcount);
4438 newerr = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
4439
4440 newerr->type = VFP11_ERRATUM_ARM_VENEER;
4441 newerr->vma = -1;
4442 newerr->u.v.branch = branch;
4443 newerr->u.v.id = hash_table->num_vfp11_fixes;
4444 branch->u.b.veneer = newerr;
4445
4446 newerr->next = sec_data->erratumlist;
4447 sec_data->erratumlist = newerr;
4448
4449 /* A symbol for the return from the veneer. */
4450 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
4451 hash_table->num_vfp11_fixes);
4452
4453 myh = elf_link_hash_lookup
4454 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
4455
4456 if (myh != NULL)
4457 abort ();
4458
4459 bh = NULL;
4460 val = offset + 4;
4461 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
4462 branch_sec, val, NULL, TRUE, FALSE, &bh);
4463
4464 myh = (struct elf_link_hash_entry *) bh;
4465 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4466 myh->forced_local = 1;
4467
4468 free (tmp_name);
4469
4470 /* Generate a mapping symbol for the veneer section, and explicitly add an
4471 entry for that symbol to the code/data map for the section. */
4472 if (hash_table->vfp11_erratum_glue_size == 0)
4473 {
4474 bh = NULL;
4475 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
4476 ever requires this erratum fix. */
4477 _bfd_generic_link_add_one_symbol (link_info,
4478 hash_table->bfd_of_glue_owner, "$a",
4479 BSF_LOCAL, s, 0, NULL,
4480 TRUE, FALSE, &bh);
4481
4482 myh = (struct elf_link_hash_entry *) bh;
4483 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
4484 myh->forced_local = 1;
4485
4486 /* The elf32_arm_init_maps function only cares about symbols from input
4487 BFDs. We must make a note of this generated mapping symbol
4488 ourselves so that code byteswapping works properly in
4489 elf32_arm_write_section. */
4490 elf32_arm_section_map_add (s, 'a', 0);
4491 }
4492
4493 s->size += VFP11_ERRATUM_VENEER_SIZE;
4494 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
4495 hash_table->num_vfp11_fixes++;
4496
4497 /* The offset of the veneer. */
4498 return val;
4499 }
4500
4501 /* Note: we do not include the flag SEC_LINKER_CREATED, as that
4502 would prevent elf_link_input_bfd() from processing the contents
4503 of the section. */
4504 #define ARM_GLUE_SECTION_FLAGS \
4505 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY)
4506
4507 /* Create a fake section for use by the ARM backend of the linker. */
4508
4509 static bfd_boolean
4510 arm_make_glue_section (bfd * abfd, const char * name)
4511 {
4512 asection * sec;
4513
4514 sec = bfd_get_section_by_name (abfd, name);
4515 if (sec != NULL)
4516 /* Already made. */
4517 return TRUE;
4518
4519 sec = bfd_make_section_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
4520
4521 if (sec == NULL
4522 || !bfd_set_section_alignment (abfd, sec, 2))
4523 return FALSE;
4524
4525 /* Set the gc mark to prevent the section from being removed by garbage
4526 collection, despite the fact that no relocs refer to this section. */
4527 sec->gc_mark = 1;
4528
4529 return TRUE;
4530 }
4531
4532 /* Add the glue sections to ABFD. This function is called from the
4533 linker scripts in ld/emultempl/{armelf}.em. */
4534
4535 bfd_boolean
4536 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
4537 struct bfd_link_info *info)
4538 {
4539 /* If we are only performing a partial
4540 link do not bother adding the glue. */
4541 if (info->relocatable)
4542 return TRUE;
4543
4544 /* Linker stubs don't need glue. */
4545 if (!strcmp (abfd->filename, "linker stubs"))
4546 return TRUE;
4547
4548 return arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
4549 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
4550 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
4551 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
4552 }
4553
4554 /* Select a BFD to be used to hold the sections used by the glue code.
4555 This function is called from the linker scripts in ld/emultempl/
4556 {armelf/pe}.em. */
4557
4558 bfd_boolean
4559 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
4560 {
4561 struct elf32_arm_link_hash_table *globals;
4562
4563 /* If we are only performing a partial link
4564 do not bother getting a bfd to hold the glue. */
4565 if (info->relocatable)
4566 return TRUE;
4567
4568 /* Make sure we don't attach the glue sections to a dynamic object. */
4569 BFD_ASSERT (!(abfd->flags & DYNAMIC));
4570
4571 globals = elf32_arm_hash_table (info);
4572
4573 BFD_ASSERT (globals != NULL);
4574
4575 if (globals->bfd_of_glue_owner != NULL)
4576 return TRUE;
4577
4578 /* Save the bfd for later use. */
4579 globals->bfd_of_glue_owner = abfd;
4580
4581 return TRUE;
4582 }
4583
4584 static void
4585 check_use_blx (struct elf32_arm_link_hash_table *globals)
4586 {
4587 if (bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
4588 Tag_CPU_arch) > 2)
4589 globals->use_blx = 1;
4590 }
4591
4592 bfd_boolean
4593 bfd_elf32_arm_process_before_allocation (bfd *abfd,
4594 struct bfd_link_info *link_info)
4595 {
4596 Elf_Internal_Shdr *symtab_hdr;
4597 Elf_Internal_Rela *internal_relocs = NULL;
4598 Elf_Internal_Rela *irel, *irelend;
4599 bfd_byte *contents = NULL;
4600
4601 asection *sec;
4602 struct elf32_arm_link_hash_table *globals;
4603
4604 /* If we are only performing a partial link do not bother
4605 to construct any glue. */
4606 if (link_info->relocatable)
4607 return TRUE;
4608
4609 /* Here we have a bfd that is to be included on the link. We have a
4610 hook to do reloc rummaging, before section sizes are nailed down. */
4611 globals = elf32_arm_hash_table (link_info);
4612
4613 BFD_ASSERT (globals != NULL);
4614
4615 check_use_blx (globals);
4616
4617 if (globals->byteswap_code && !bfd_big_endian (abfd))
4618 {
4619 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
4620 abfd);
4621 return FALSE;
4622 }
4623
4624 /* PR 5398: If we have not decided to include any loadable sections in
4625 the output then we will not have a glue owner bfd. This is OK, it
4626 just means that there is nothing else for us to do here. */
4627 if (globals->bfd_of_glue_owner == NULL)
4628 return TRUE;
4629
4630 /* Rummage around all the relocs and map the glue vectors. */
4631 sec = abfd->sections;
4632
4633 if (sec == NULL)
4634 return TRUE;
4635
4636 for (; sec != NULL; sec = sec->next)
4637 {
4638 if (sec->reloc_count == 0)
4639 continue;
4640
4641 if ((sec->flags & SEC_EXCLUDE) != 0)
4642 continue;
4643
4644 symtab_hdr = & elf_symtab_hdr (abfd);
4645
4646 /* Load the relocs. */
4647 internal_relocs
4648 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
4649
4650 if (internal_relocs == NULL)
4651 goto error_return;
4652
4653 irelend = internal_relocs + sec->reloc_count;
4654 for (irel = internal_relocs; irel < irelend; irel++)
4655 {
4656 long r_type;
4657 unsigned long r_index;
4658
4659 struct elf_link_hash_entry *h;
4660
4661 r_type = ELF32_R_TYPE (irel->r_info);
4662 r_index = ELF32_R_SYM (irel->r_info);
4663
4664 /* These are the only relocation types we care about. */
4665 if ( r_type != R_ARM_PC24
4666 && r_type != R_ARM_PLT32
4667 && r_type != R_ARM_JUMP24
4668 && r_type != R_ARM_THM_JUMP24
4669 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
4670 continue;
4671
4672 /* Get the section contents if we haven't done so already. */
4673 if (contents == NULL)
4674 {
4675 /* Get cached copy if it exists. */
4676 if (elf_section_data (sec)->this_hdr.contents != NULL)
4677 contents = elf_section_data (sec)->this_hdr.contents;
4678 else
4679 {
4680 /* Go get them off disk. */
4681 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
4682 goto error_return;
4683 }
4684 }
4685
4686 if (r_type == R_ARM_V4BX)
4687 {
4688 int reg;
4689
4690 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
4691 record_arm_bx_glue (link_info, reg);
4692 continue;
4693 }
4694
4695 /* If the relocation is not against a symbol it cannot concern us. */
4696 h = NULL;
4697
4698 /* We don't care about local symbols. */
4699 if (r_index < symtab_hdr->sh_info)
4700 continue;
4701
4702 /* This is an external symbol. */
4703 r_index -= symtab_hdr->sh_info;
4704 h = (struct elf_link_hash_entry *)
4705 elf_sym_hashes (abfd)[r_index];
4706
4707 /* If the relocation is against a static symbol it must be within
4708 the current section and so cannot be a cross ARM/Thumb relocation. */
4709 if (h == NULL)
4710 continue;
4711
4712 /* If the call will go through a PLT entry then we do not need
4713 glue. */
4714 if (globals->splt != NULL && h->plt.offset != (bfd_vma) -1)
4715 continue;
4716
4717 switch (r_type)
4718 {
4719 case R_ARM_PC24:
4720 case R_ARM_PLT32:
4721 case R_ARM_JUMP24:
4722 /* This one is a call from arm code. We need to look up
4723 the target of the call. If it is a thumb target, we
4724 insert glue. */
4725 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
4726 record_arm_to_thumb_glue (link_info, h);
4727 break;
4728
4729 case R_ARM_THM_JUMP24:
4730 /* This one is a call from thumb code. We look
4731 up the target of the call. If it is not a thumb
4732 target, we insert glue. */
4733 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC
4734 && !(globals->use_blx && r_type == R_ARM_THM_CALL)
4735 && h->root.type != bfd_link_hash_undefweak)
4736 record_thumb_to_arm_glue (link_info, h);
4737 break;
4738
4739 default:
4740 abort ();
4741 }
4742 }
4743
4744 if (contents != NULL
4745 && elf_section_data (sec)->this_hdr.contents != contents)
4746 free (contents);
4747 contents = NULL;
4748
4749 if (internal_relocs != NULL
4750 && elf_section_data (sec)->relocs != internal_relocs)
4751 free (internal_relocs);
4752 internal_relocs = NULL;
4753 }
4754
4755 return TRUE;
4756
4757 error_return:
4758 if (contents != NULL
4759 && elf_section_data (sec)->this_hdr.contents != contents)
4760 free (contents);
4761 if (internal_relocs != NULL
4762 && elf_section_data (sec)->relocs != internal_relocs)
4763 free (internal_relocs);
4764
4765 return FALSE;
4766 }
4767 #endif
4768
4769
4770 /* Initialise maps of ARM/Thumb/data for input BFDs. */
4771
4772 void
4773 bfd_elf32_arm_init_maps (bfd *abfd)
4774 {
4775 Elf_Internal_Sym *isymbuf;
4776 Elf_Internal_Shdr *hdr;
4777 unsigned int i, localsyms;
4778
4779 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
4780 if (! is_arm_elf (abfd))
4781 return;
4782
4783 if ((abfd->flags & DYNAMIC) != 0)
4784 return;
4785
4786 hdr = & elf_symtab_hdr (abfd);
4787 localsyms = hdr->sh_info;
4788
4789 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4790 should contain the number of local symbols, which should come before any
4791 global symbols. Mapping symbols are always local. */
4792 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
4793 NULL);
4794
4795 /* No internal symbols read? Skip this BFD. */
4796 if (isymbuf == NULL)
4797 return;
4798
4799 for (i = 0; i < localsyms; i++)
4800 {
4801 Elf_Internal_Sym *isym = &isymbuf[i];
4802 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4803 const char *name;
4804
4805 if (sec != NULL
4806 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4807 {
4808 name = bfd_elf_string_from_elf_section (abfd,
4809 hdr->sh_link, isym->st_name);
4810
4811 if (bfd_is_arm_special_symbol_name (name,
4812 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
4813 elf32_arm_section_map_add (sec, name[1], isym->st_value);
4814 }
4815 }
4816 }
4817
4818
4819 void
4820 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
4821 {
4822 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
4823 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
4824
4825 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
4826 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
4827 {
4828 switch (globals->vfp11_fix)
4829 {
4830 case BFD_ARM_VFP11_FIX_DEFAULT:
4831 case BFD_ARM_VFP11_FIX_NONE:
4832 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
4833 break;
4834
4835 default:
4836 /* Give a warning, but do as the user requests anyway. */
4837 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
4838 "workaround is not necessary for target architecture"), obfd);
4839 }
4840 }
4841 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
4842 /* For earlier architectures, we might need the workaround, but do not
4843 enable it by default. If users is running with broken hardware, they
4844 must enable the erratum fix explicitly. */
4845 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
4846 }
4847
4848
4849 enum bfd_arm_vfp11_pipe
4850 {
4851 VFP11_FMAC,
4852 VFP11_LS,
4853 VFP11_DS,
4854 VFP11_BAD
4855 };
4856
4857 /* Return a VFP register number. This is encoded as RX:X for single-precision
4858 registers, or X:RX for double-precision registers, where RX is the group of
4859 four bits in the instruction encoding and X is the single extension bit.
4860 RX and X fields are specified using their lowest (starting) bit. The return
4861 value is:
4862
4863 0...31: single-precision registers s0...s31
4864 32...63: double-precision registers d0...d31.
4865
4866 Although X should be zero for VFP11 (encoding d0...d15 only), we might
4867 encounter VFP3 instructions, so we allow the full range for DP registers. */
4868
4869 static unsigned int
4870 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
4871 unsigned int x)
4872 {
4873 if (is_double)
4874 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
4875 else
4876 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
4877 }
4878
4879 /* Set bits in *WMASK according to a register number REG as encoded by
4880 bfd_arm_vfp11_regno(). Ignore d16-d31. */
4881
4882 static void
4883 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
4884 {
4885 if (reg < 32)
4886 *wmask |= 1 << reg;
4887 else if (reg < 48)
4888 *wmask |= 3 << ((reg - 32) * 2);
4889 }
4890
4891 /* Return TRUE if WMASK overwrites anything in REGS. */
4892
4893 static bfd_boolean
4894 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
4895 {
4896 int i;
4897
4898 for (i = 0; i < numregs; i++)
4899 {
4900 unsigned int reg = regs[i];
4901
4902 if (reg < 32 && (wmask & (1 << reg)) != 0)
4903 return TRUE;
4904
4905 reg -= 32;
4906
4907 if (reg >= 16)
4908 continue;
4909
4910 if ((wmask & (3 << (reg * 2))) != 0)
4911 return TRUE;
4912 }
4913
4914 return FALSE;
4915 }
4916
4917 /* In this function, we're interested in two things: finding input registers
4918 for VFP data-processing instructions, and finding the set of registers which
4919 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
4920 hold the written set, so FLDM etc. are easy to deal with (we're only
4921 interested in 32 SP registers or 16 dp registers, due to the VFP version
4922 implemented by the chip in question). DP registers are marked by setting
4923 both SP registers in the write mask). */
4924
4925 static enum bfd_arm_vfp11_pipe
4926 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
4927 int *numregs)
4928 {
4929 enum bfd_arm_vfp11_pipe pipe = VFP11_BAD;
4930 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
4931
4932 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
4933 {
4934 unsigned int pqrs;
4935 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
4936 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
4937
4938 pqrs = ((insn & 0x00800000) >> 20)
4939 | ((insn & 0x00300000) >> 19)
4940 | ((insn & 0x00000040) >> 6);
4941
4942 switch (pqrs)
4943 {
4944 case 0: /* fmac[sd]. */
4945 case 1: /* fnmac[sd]. */
4946 case 2: /* fmsc[sd]. */
4947 case 3: /* fnmsc[sd]. */
4948 pipe = VFP11_FMAC;
4949 bfd_arm_vfp11_write_mask (destmask, fd);
4950 regs[0] = fd;
4951 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
4952 regs[2] = fm;
4953 *numregs = 3;
4954 break;
4955
4956 case 4: /* fmul[sd]. */
4957 case 5: /* fnmul[sd]. */
4958 case 6: /* fadd[sd]. */
4959 case 7: /* fsub[sd]. */
4960 pipe = VFP11_FMAC;
4961 goto vfp_binop;
4962
4963 case 8: /* fdiv[sd]. */
4964 pipe = VFP11_DS;
4965 vfp_binop:
4966 bfd_arm_vfp11_write_mask (destmask, fd);
4967 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
4968 regs[1] = fm;
4969 *numregs = 2;
4970 break;
4971
4972 case 15: /* extended opcode. */
4973 {
4974 unsigned int extn = ((insn >> 15) & 0x1e)
4975 | ((insn >> 7) & 1);
4976
4977 switch (extn)
4978 {
4979 case 0: /* fcpy[sd]. */
4980 case 1: /* fabs[sd]. */
4981 case 2: /* fneg[sd]. */
4982 case 8: /* fcmp[sd]. */
4983 case 9: /* fcmpe[sd]. */
4984 case 10: /* fcmpz[sd]. */
4985 case 11: /* fcmpez[sd]. */
4986 case 16: /* fuito[sd]. */
4987 case 17: /* fsito[sd]. */
4988 case 24: /* ftoui[sd]. */
4989 case 25: /* ftouiz[sd]. */
4990 case 26: /* ftosi[sd]. */
4991 case 27: /* ftosiz[sd]. */
4992 /* These instructions will not bounce due to underflow. */
4993 *numregs = 0;
4994 pipe = VFP11_FMAC;
4995 break;
4996
4997 case 3: /* fsqrt[sd]. */
4998 /* fsqrt cannot underflow, but it can (perhaps) overwrite
4999 registers to cause the erratum in previous instructions. */
5000 bfd_arm_vfp11_write_mask (destmask, fd);
5001 pipe = VFP11_DS;
5002 break;
5003
5004 case 15: /* fcvt{ds,sd}. */
5005 {
5006 int rnum = 0;
5007
5008 bfd_arm_vfp11_write_mask (destmask, fd);
5009
5010 /* Only FCVTSD can underflow. */
5011 if ((insn & 0x100) != 0)
5012 regs[rnum++] = fm;
5013
5014 *numregs = rnum;
5015
5016 pipe = VFP11_FMAC;
5017 }
5018 break;
5019
5020 default:
5021 return VFP11_BAD;
5022 }
5023 }
5024 break;
5025
5026 default:
5027 return VFP11_BAD;
5028 }
5029 }
5030 /* Two-register transfer. */
5031 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
5032 {
5033 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
5034
5035 if ((insn & 0x100000) == 0)
5036 {
5037 if (is_double)
5038 bfd_arm_vfp11_write_mask (destmask, fm);
5039 else
5040 {
5041 bfd_arm_vfp11_write_mask (destmask, fm);
5042 bfd_arm_vfp11_write_mask (destmask, fm + 1);
5043 }
5044 }
5045
5046 pipe = VFP11_LS;
5047 }
5048 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
5049 {
5050 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
5051 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
5052
5053 switch (puw)
5054 {
5055 case 0: /* Two-reg transfer. We should catch these above. */
5056 abort ();
5057
5058 case 2: /* fldm[sdx]. */
5059 case 3:
5060 case 5:
5061 {
5062 unsigned int i, offset = insn & 0xff;
5063
5064 if (is_double)
5065 offset >>= 1;
5066
5067 for (i = fd; i < fd + offset; i++)
5068 bfd_arm_vfp11_write_mask (destmask, i);
5069 }
5070 break;
5071
5072 case 4: /* fld[sd]. */
5073 case 6:
5074 bfd_arm_vfp11_write_mask (destmask, fd);
5075 break;
5076
5077 default:
5078 return VFP11_BAD;
5079 }
5080
5081 pipe = VFP11_LS;
5082 }
5083 /* Single-register transfer. Note L==0. */
5084 else if ((insn & 0x0f100e10) == 0x0e000a10)
5085 {
5086 unsigned int opcode = (insn >> 21) & 7;
5087 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
5088
5089 switch (opcode)
5090 {
5091 case 0: /* fmsr/fmdlr. */
5092 case 1: /* fmdhr. */
5093 /* Mark fmdhr and fmdlr as writing to the whole of the DP
5094 destination register. I don't know if this is exactly right,
5095 but it is the conservative choice. */
5096 bfd_arm_vfp11_write_mask (destmask, fn);
5097 break;
5098
5099 case 7: /* fmxr. */
5100 break;
5101 }
5102
5103 pipe = VFP11_LS;
5104 }
5105
5106 return pipe;
5107 }
5108
5109
5110 static int elf32_arm_compare_mapping (const void * a, const void * b);
5111
5112
5113 /* Look for potentially-troublesome code sequences which might trigger the
5114 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
5115 (available from ARM) for details of the erratum. A short version is
5116 described in ld.texinfo. */
5117
5118 bfd_boolean
5119 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
5120 {
5121 asection *sec;
5122 bfd_byte *contents = NULL;
5123 int state = 0;
5124 int regs[3], numregs = 0;
5125 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
5126 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
5127
5128 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
5129 The states transition as follows:
5130
5131 0 -> 1 (vector) or 0 -> 2 (scalar)
5132 A VFP FMAC-pipeline instruction has been seen. Fill
5133 regs[0]..regs[numregs-1] with its input operands. Remember this
5134 instruction in 'first_fmac'.
5135
5136 1 -> 2
5137 Any instruction, except for a VFP instruction which overwrites
5138 regs[*].
5139
5140 1 -> 3 [ -> 0 ] or
5141 2 -> 3 [ -> 0 ]
5142 A VFP instruction has been seen which overwrites any of regs[*].
5143 We must make a veneer! Reset state to 0 before examining next
5144 instruction.
5145
5146 2 -> 0
5147 If we fail to match anything in state 2, reset to state 0 and reset
5148 the instruction pointer to the instruction after 'first_fmac'.
5149
5150 If the VFP11 vector mode is in use, there must be at least two unrelated
5151 instructions between anti-dependent VFP11 instructions to properly avoid
5152 triggering the erratum, hence the use of the extra state 1. */
5153
5154 /* If we are only performing a partial link do not bother
5155 to construct any glue. */
5156 if (link_info->relocatable)
5157 return TRUE;
5158
5159 /* Skip if this bfd does not correspond to an ELF image. */
5160 if (! is_arm_elf (abfd))
5161 return TRUE;
5162
5163 /* We should have chosen a fix type by the time we get here. */
5164 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
5165
5166 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
5167 return TRUE;
5168
5169 /* Skip this BFD if it corresponds to an executable or dynamic object. */
5170 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
5171 return TRUE;
5172
5173 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5174 {
5175 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
5176 struct _arm_elf_section_data *sec_data;
5177
5178 /* If we don't have executable progbits, we're not interested in this
5179 section. Also skip if section is to be excluded. */
5180 if (elf_section_type (sec) != SHT_PROGBITS
5181 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
5182 || (sec->flags & SEC_EXCLUDE) != 0
5183 || sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS
5184 || sec->output_section == bfd_abs_section_ptr
5185 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
5186 continue;
5187
5188 sec_data = elf32_arm_section_data (sec);
5189
5190 if (sec_data->mapcount == 0)
5191 continue;
5192
5193 if (elf_section_data (sec)->this_hdr.contents != NULL)
5194 contents = elf_section_data (sec)->this_hdr.contents;
5195 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
5196 goto error_return;
5197
5198 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
5199 elf32_arm_compare_mapping);
5200
5201 for (span = 0; span < sec_data->mapcount; span++)
5202 {
5203 unsigned int span_start = sec_data->map[span].vma;
5204 unsigned int span_end = (span == sec_data->mapcount - 1)
5205 ? sec->size : sec_data->map[span + 1].vma;
5206 char span_type = sec_data->map[span].type;
5207
5208 /* FIXME: Only ARM mode is supported at present. We may need to
5209 support Thumb-2 mode also at some point. */
5210 if (span_type != 'a')
5211 continue;
5212
5213 for (i = span_start; i < span_end;)
5214 {
5215 unsigned int next_i = i + 4;
5216 unsigned int insn = bfd_big_endian (abfd)
5217 ? (contents[i] << 24)
5218 | (contents[i + 1] << 16)
5219 | (contents[i + 2] << 8)
5220 | contents[i + 3]
5221 : (contents[i + 3] << 24)
5222 | (contents[i + 2] << 16)
5223 | (contents[i + 1] << 8)
5224 | contents[i];
5225 unsigned int writemask = 0;
5226 enum bfd_arm_vfp11_pipe pipe;
5227
5228 switch (state)
5229 {
5230 case 0:
5231 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
5232 &numregs);
5233 /* I'm assuming the VFP11 erratum can trigger with denorm
5234 operands on either the FMAC or the DS pipeline. This might
5235 lead to slightly overenthusiastic veneer insertion. */
5236 if (pipe == VFP11_FMAC || pipe == VFP11_DS)
5237 {
5238 state = use_vector ? 1 : 2;
5239 first_fmac = i;
5240 veneer_of_insn = insn;
5241 }
5242 break;
5243
5244 case 1:
5245 {
5246 int other_regs[3], other_numregs;
5247 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
5248 other_regs,
5249 &other_numregs);
5250 if (pipe != VFP11_BAD
5251 && bfd_arm_vfp11_antidependency (writemask, regs,
5252 numregs))
5253 state = 3;
5254 else
5255 state = 2;
5256 }
5257 break;
5258
5259 case 2:
5260 {
5261 int other_regs[3], other_numregs;
5262 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
5263 other_regs,
5264 &other_numregs);
5265 if (pipe != VFP11_BAD
5266 && bfd_arm_vfp11_antidependency (writemask, regs,
5267 numregs))
5268 state = 3;
5269 else
5270 {
5271 state = 0;
5272 next_i = first_fmac + 4;
5273 }
5274 }
5275 break;
5276
5277 case 3:
5278 abort (); /* Should be unreachable. */
5279 }
5280
5281 if (state == 3)
5282 {
5283 elf32_vfp11_erratum_list *newerr
5284 = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
5285 int errcount;
5286
5287 errcount = ++(elf32_arm_section_data (sec)->erratumcount);
5288
5289 newerr->u.b.vfp_insn = veneer_of_insn;
5290
5291 switch (span_type)
5292 {
5293 case 'a':
5294 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
5295 break;
5296
5297 default:
5298 abort ();
5299 }
5300
5301 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
5302 first_fmac);
5303
5304 newerr->vma = -1;
5305
5306 newerr->next = sec_data->erratumlist;
5307 sec_data->erratumlist = newerr;
5308
5309 state = 0;
5310 }
5311
5312 i = next_i;
5313 }
5314 }
5315
5316 if (contents != NULL
5317 && elf_section_data (sec)->this_hdr.contents != contents)
5318 free (contents);
5319 contents = NULL;
5320 }
5321
5322 return TRUE;
5323
5324 error_return:
5325 if (contents != NULL
5326 && elf_section_data (sec)->this_hdr.contents != contents)
5327 free (contents);
5328
5329 return FALSE;
5330 }
5331
5332 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
5333 after sections have been laid out, using specially-named symbols. */
5334
5335 void
5336 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
5337 struct bfd_link_info *link_info)
5338 {
5339 asection *sec;
5340 struct elf32_arm_link_hash_table *globals;
5341 char *tmp_name;
5342
5343 if (link_info->relocatable)
5344 return;
5345
5346 /* Skip if this bfd does not correspond to an ELF image. */
5347 if (! is_arm_elf (abfd))
5348 return;
5349
5350 globals = elf32_arm_hash_table (link_info);
5351
5352 tmp_name = bfd_malloc ((bfd_size_type) strlen
5353 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
5354
5355 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5356 {
5357 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
5358 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
5359
5360 for (; errnode != NULL; errnode = errnode->next)
5361 {
5362 struct elf_link_hash_entry *myh;
5363 bfd_vma vma;
5364
5365 switch (errnode->type)
5366 {
5367 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
5368 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
5369 /* Find veneer symbol. */
5370 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
5371 errnode->u.b.veneer->u.v.id);
5372
5373 myh = elf_link_hash_lookup
5374 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5375
5376 if (myh == NULL)
5377 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
5378 "`%s'"), abfd, tmp_name);
5379
5380 vma = myh->root.u.def.section->output_section->vma
5381 + myh->root.u.def.section->output_offset
5382 + myh->root.u.def.value;
5383
5384 errnode->u.b.veneer->vma = vma;
5385 break;
5386
5387 case VFP11_ERRATUM_ARM_VENEER:
5388 case VFP11_ERRATUM_THUMB_VENEER:
5389 /* Find return location. */
5390 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
5391 errnode->u.v.id);
5392
5393 myh = elf_link_hash_lookup
5394 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5395
5396 if (myh == NULL)
5397 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
5398 "`%s'"), abfd, tmp_name);
5399
5400 vma = myh->root.u.def.section->output_section->vma
5401 + myh->root.u.def.section->output_offset
5402 + myh->root.u.def.value;
5403
5404 errnode->u.v.branch->vma = vma;
5405 break;
5406
5407 default:
5408 abort ();
5409 }
5410 }
5411 }
5412
5413 free (tmp_name);
5414 }
5415
5416
5417 /* Set target relocation values needed during linking. */
5418
5419 void
5420 bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
5421 struct bfd_link_info *link_info,
5422 int target1_is_rel,
5423 char * target2_type,
5424 int fix_v4bx,
5425 int use_blx,
5426 bfd_arm_vfp11_fix vfp11_fix,
5427 int no_enum_warn, int no_wchar_warn,
5428 int pic_veneer)
5429 {
5430 struct elf32_arm_link_hash_table *globals;
5431
5432 globals = elf32_arm_hash_table (link_info);
5433
5434 globals->target1_is_rel = target1_is_rel;
5435 if (strcmp (target2_type, "rel") == 0)
5436 globals->target2_reloc = R_ARM_REL32;
5437 else if (strcmp (target2_type, "abs") == 0)
5438 globals->target2_reloc = R_ARM_ABS32;
5439 else if (strcmp (target2_type, "got-rel") == 0)
5440 globals->target2_reloc = R_ARM_GOT_PREL;
5441 else
5442 {
5443 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
5444 target2_type);
5445 }
5446 globals->fix_v4bx = fix_v4bx;
5447 globals->use_blx |= use_blx;
5448 globals->vfp11_fix = vfp11_fix;
5449 globals->pic_veneer = pic_veneer;
5450
5451 BFD_ASSERT (is_arm_elf (output_bfd));
5452 elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
5453 elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
5454 }
5455
5456 /* Replace the target offset of a Thumb bl or b.w instruction. */
5457
5458 static void
5459 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
5460 {
5461 bfd_vma upper;
5462 bfd_vma lower;
5463 int reloc_sign;
5464
5465 BFD_ASSERT ((offset & 1) == 0);
5466
5467 upper = bfd_get_16 (abfd, insn);
5468 lower = bfd_get_16 (abfd, insn + 2);
5469 reloc_sign = (offset < 0) ? 1 : 0;
5470 upper = (upper & ~(bfd_vma) 0x7ff)
5471 | ((offset >> 12) & 0x3ff)
5472 | (reloc_sign << 10);
5473 lower = (lower & ~(bfd_vma) 0x2fff)
5474 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
5475 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
5476 | ((offset >> 1) & 0x7ff);
5477 bfd_put_16 (abfd, upper, insn);
5478 bfd_put_16 (abfd, lower, insn + 2);
5479 }
5480
5481 /* Thumb code calling an ARM function. */
5482
5483 static int
5484 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
5485 const char * name,
5486 bfd * input_bfd,
5487 bfd * output_bfd,
5488 asection * input_section,
5489 bfd_byte * hit_data,
5490 asection * sym_sec,
5491 bfd_vma offset,
5492 bfd_signed_vma addend,
5493 bfd_vma val,
5494 char **error_message)
5495 {
5496 asection * s = 0;
5497 bfd_vma my_offset;
5498 long int ret_offset;
5499 struct elf_link_hash_entry * myh;
5500 struct elf32_arm_link_hash_table * globals;
5501
5502 myh = find_thumb_glue (info, name, error_message);
5503 if (myh == NULL)
5504 return FALSE;
5505
5506 globals = elf32_arm_hash_table (info);
5507
5508 BFD_ASSERT (globals != NULL);
5509 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5510
5511 my_offset = myh->root.u.def.value;
5512
5513 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5514 THUMB2ARM_GLUE_SECTION_NAME);
5515
5516 BFD_ASSERT (s != NULL);
5517 BFD_ASSERT (s->contents != NULL);
5518 BFD_ASSERT (s->output_section != NULL);
5519
5520 if ((my_offset & 0x01) == 0x01)
5521 {
5522 if (sym_sec != NULL
5523 && sym_sec->owner != NULL
5524 && !INTERWORK_FLAG (sym_sec->owner))
5525 {
5526 (*_bfd_error_handler)
5527 (_("%B(%s): warning: interworking not enabled.\n"
5528 " first occurrence: %B: thumb call to arm"),
5529 sym_sec->owner, input_bfd, name);
5530
5531 return FALSE;
5532 }
5533
5534 --my_offset;
5535 myh->root.u.def.value = my_offset;
5536
5537 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
5538 s->contents + my_offset);
5539
5540 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
5541 s->contents + my_offset + 2);
5542
5543 ret_offset =
5544 /* Address of destination of the stub. */
5545 ((bfd_signed_vma) val)
5546 - ((bfd_signed_vma)
5547 /* Offset from the start of the current section
5548 to the start of the stubs. */
5549 (s->output_offset
5550 /* Offset of the start of this stub from the start of the stubs. */
5551 + my_offset
5552 /* Address of the start of the current section. */
5553 + s->output_section->vma)
5554 /* The branch instruction is 4 bytes into the stub. */
5555 + 4
5556 /* ARM branches work from the pc of the instruction + 8. */
5557 + 8);
5558
5559 put_arm_insn (globals, output_bfd,
5560 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
5561 s->contents + my_offset + 4);
5562 }
5563
5564 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
5565
5566 /* Now go back and fix up the original BL insn to point to here. */
5567 ret_offset =
5568 /* Address of where the stub is located. */
5569 (s->output_section->vma + s->output_offset + my_offset)
5570 /* Address of where the BL is located. */
5571 - (input_section->output_section->vma + input_section->output_offset
5572 + offset)
5573 /* Addend in the relocation. */
5574 - addend
5575 /* Biassing for PC-relative addressing. */
5576 - 8;
5577
5578 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
5579
5580 return TRUE;
5581 }
5582
5583 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
5584
5585 static struct elf_link_hash_entry *
5586 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
5587 const char * name,
5588 bfd * input_bfd,
5589 bfd * output_bfd,
5590 asection * sym_sec,
5591 bfd_vma val,
5592 asection * s,
5593 char ** error_message)
5594 {
5595 bfd_vma my_offset;
5596 long int ret_offset;
5597 struct elf_link_hash_entry * myh;
5598 struct elf32_arm_link_hash_table * globals;
5599
5600 myh = find_arm_glue (info, name, error_message);
5601 if (myh == NULL)
5602 return NULL;
5603
5604 globals = elf32_arm_hash_table (info);
5605
5606 BFD_ASSERT (globals != NULL);
5607 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5608
5609 my_offset = myh->root.u.def.value;
5610
5611 if ((my_offset & 0x01) == 0x01)
5612 {
5613 if (sym_sec != NULL
5614 && sym_sec->owner != NULL
5615 && !INTERWORK_FLAG (sym_sec->owner))
5616 {
5617 (*_bfd_error_handler)
5618 (_("%B(%s): warning: interworking not enabled.\n"
5619 " first occurrence: %B: arm call to thumb"),
5620 sym_sec->owner, input_bfd, name);
5621 }
5622
5623 --my_offset;
5624 myh->root.u.def.value = my_offset;
5625
5626 if (info->shared || globals->root.is_relocatable_executable
5627 || globals->pic_veneer)
5628 {
5629 /* For relocatable objects we can't use absolute addresses,
5630 so construct the address from a relative offset. */
5631 /* TODO: If the offset is small it's probably worth
5632 constructing the address with adds. */
5633 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
5634 s->contents + my_offset);
5635 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
5636 s->contents + my_offset + 4);
5637 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
5638 s->contents + my_offset + 8);
5639 /* Adjust the offset by 4 for the position of the add,
5640 and 8 for the pipeline offset. */
5641 ret_offset = (val - (s->output_offset
5642 + s->output_section->vma
5643 + my_offset + 12))
5644 | 1;
5645 bfd_put_32 (output_bfd, ret_offset,
5646 s->contents + my_offset + 12);
5647 }
5648 else if (globals->use_blx)
5649 {
5650 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
5651 s->contents + my_offset);
5652
5653 /* It's a thumb address. Add the low order bit. */
5654 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
5655 s->contents + my_offset + 4);
5656 }
5657 else
5658 {
5659 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
5660 s->contents + my_offset);
5661
5662 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
5663 s->contents + my_offset + 4);
5664
5665 /* It's a thumb address. Add the low order bit. */
5666 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
5667 s->contents + my_offset + 8);
5668
5669 my_offset += 12;
5670 }
5671 }
5672
5673 BFD_ASSERT (my_offset <= globals->arm_glue_size);
5674
5675 return myh;
5676 }
5677
5678 /* Arm code calling a Thumb function. */
5679
5680 static int
5681 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
5682 const char * name,
5683 bfd * input_bfd,
5684 bfd * output_bfd,
5685 asection * input_section,
5686 bfd_byte * hit_data,
5687 asection * sym_sec,
5688 bfd_vma offset,
5689 bfd_signed_vma addend,
5690 bfd_vma val,
5691 char **error_message)
5692 {
5693 unsigned long int tmp;
5694 bfd_vma my_offset;
5695 asection * s;
5696 long int ret_offset;
5697 struct elf_link_hash_entry * myh;
5698 struct elf32_arm_link_hash_table * globals;
5699
5700 globals = elf32_arm_hash_table (info);
5701
5702 BFD_ASSERT (globals != NULL);
5703 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5704
5705 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5706 ARM2THUMB_GLUE_SECTION_NAME);
5707 BFD_ASSERT (s != NULL);
5708 BFD_ASSERT (s->contents != NULL);
5709 BFD_ASSERT (s->output_section != NULL);
5710
5711 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
5712 sym_sec, val, s, error_message);
5713 if (!myh)
5714 return FALSE;
5715
5716 my_offset = myh->root.u.def.value;
5717 tmp = bfd_get_32 (input_bfd, hit_data);
5718 tmp = tmp & 0xFF000000;
5719
5720 /* Somehow these are both 4 too far, so subtract 8. */
5721 ret_offset = (s->output_offset
5722 + my_offset
5723 + s->output_section->vma
5724 - (input_section->output_offset
5725 + input_section->output_section->vma
5726 + offset + addend)
5727 - 8);
5728
5729 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
5730
5731 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
5732
5733 return TRUE;
5734 }
5735
5736 /* Populate Arm stub for an exported Thumb function. */
5737
5738 static bfd_boolean
5739 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
5740 {
5741 struct bfd_link_info * info = (struct bfd_link_info *) inf;
5742 asection * s;
5743 struct elf_link_hash_entry * myh;
5744 struct elf32_arm_link_hash_entry *eh;
5745 struct elf32_arm_link_hash_table * globals;
5746 asection *sec;
5747 bfd_vma val;
5748 char *error_message;
5749
5750 eh = elf32_arm_hash_entry (h);
5751 /* Allocate stubs for exported Thumb functions on v4t. */
5752 if (eh->export_glue == NULL)
5753 return TRUE;
5754
5755 globals = elf32_arm_hash_table (info);
5756
5757 BFD_ASSERT (globals != NULL);
5758 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5759
5760 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5761 ARM2THUMB_GLUE_SECTION_NAME);
5762 BFD_ASSERT (s != NULL);
5763 BFD_ASSERT (s->contents != NULL);
5764 BFD_ASSERT (s->output_section != NULL);
5765
5766 sec = eh->export_glue->root.u.def.section;
5767
5768 BFD_ASSERT (sec->output_section != NULL);
5769
5770 val = eh->export_glue->root.u.def.value + sec->output_offset
5771 + sec->output_section->vma;
5772
5773 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
5774 h->root.u.def.section->owner,
5775 globals->obfd, sec, val, s,
5776 &error_message);
5777 BFD_ASSERT (myh);
5778 return TRUE;
5779 }
5780
5781 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
5782
5783 static bfd_vma
5784 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
5785 {
5786 bfd_byte *p;
5787 bfd_vma glue_addr;
5788 asection *s;
5789 struct elf32_arm_link_hash_table *globals;
5790
5791 globals = elf32_arm_hash_table (info);
5792
5793 BFD_ASSERT (globals != NULL);
5794 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5795
5796 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5797 ARM_BX_GLUE_SECTION_NAME);
5798 BFD_ASSERT (s != NULL);
5799 BFD_ASSERT (s->contents != NULL);
5800 BFD_ASSERT (s->output_section != NULL);
5801
5802 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
5803
5804 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
5805
5806 if ((globals->bx_glue_offset[reg] & 1) == 0)
5807 {
5808 p = s->contents + glue_addr;
5809 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
5810 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
5811 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
5812 globals->bx_glue_offset[reg] |= 1;
5813 }
5814
5815 return glue_addr + s->output_section->vma + s->output_offset;
5816 }
5817
5818 /* Generate Arm stubs for exported Thumb symbols. */
5819 static void
5820 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
5821 struct bfd_link_info *link_info)
5822 {
5823 struct elf32_arm_link_hash_table * globals;
5824
5825 if (link_info == NULL)
5826 /* Ignore this if we are not called by the ELF backend linker. */
5827 return;
5828
5829 globals = elf32_arm_hash_table (link_info);
5830 /* If blx is available then exported Thumb symbols are OK and there is
5831 nothing to do. */
5832 if (globals->use_blx)
5833 return;
5834
5835 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
5836 link_info);
5837 }
5838
5839 /* Some relocations map to different relocations depending on the
5840 target. Return the real relocation. */
5841
5842 static int
5843 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
5844 int r_type)
5845 {
5846 switch (r_type)
5847 {
5848 case R_ARM_TARGET1:
5849 if (globals->target1_is_rel)
5850 return R_ARM_REL32;
5851 else
5852 return R_ARM_ABS32;
5853
5854 case R_ARM_TARGET2:
5855 return globals->target2_reloc;
5856
5857 default:
5858 return r_type;
5859 }
5860 }
5861
5862 /* Return the base VMA address which should be subtracted from real addresses
5863 when resolving @dtpoff relocation.
5864 This is PT_TLS segment p_vaddr. */
5865
5866 static bfd_vma
5867 dtpoff_base (struct bfd_link_info *info)
5868 {
5869 /* If tls_sec is NULL, we should have signalled an error already. */
5870 if (elf_hash_table (info)->tls_sec == NULL)
5871 return 0;
5872 return elf_hash_table (info)->tls_sec->vma;
5873 }
5874
5875 /* Return the relocation value for @tpoff relocation
5876 if STT_TLS virtual address is ADDRESS. */
5877
5878 static bfd_vma
5879 tpoff (struct bfd_link_info *info, bfd_vma address)
5880 {
5881 struct elf_link_hash_table *htab = elf_hash_table (info);
5882 bfd_vma base;
5883
5884 /* If tls_sec is NULL, we should have signalled an error already. */
5885 if (htab->tls_sec == NULL)
5886 return 0;
5887 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
5888 return address - htab->tls_sec->vma + base;
5889 }
5890
5891 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
5892 VALUE is the relocation value. */
5893
5894 static bfd_reloc_status_type
5895 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
5896 {
5897 if (value > 0xfff)
5898 return bfd_reloc_overflow;
5899
5900 value |= bfd_get_32 (abfd, data) & 0xfffff000;
5901 bfd_put_32 (abfd, value, data);
5902 return bfd_reloc_ok;
5903 }
5904
5905 /* For a given value of n, calculate the value of G_n as required to
5906 deal with group relocations. We return it in the form of an
5907 encoded constant-and-rotation, together with the final residual. If n is
5908 specified as less than zero, then final_residual is filled with the
5909 input value and no further action is performed. */
5910
5911 static bfd_vma
5912 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
5913 {
5914 int current_n;
5915 bfd_vma g_n;
5916 bfd_vma encoded_g_n = 0;
5917 bfd_vma residual = value; /* Also known as Y_n. */
5918
5919 for (current_n = 0; current_n <= n; current_n++)
5920 {
5921 int shift;
5922
5923 /* Calculate which part of the value to mask. */
5924 if (residual == 0)
5925 shift = 0;
5926 else
5927 {
5928 int msb;
5929
5930 /* Determine the most significant bit in the residual and
5931 align the resulting value to a 2-bit boundary. */
5932 for (msb = 30; msb >= 0; msb -= 2)
5933 if (residual & (3 << msb))
5934 break;
5935
5936 /* The desired shift is now (msb - 6), or zero, whichever
5937 is the greater. */
5938 shift = msb - 6;
5939 if (shift < 0)
5940 shift = 0;
5941 }
5942
5943 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
5944 g_n = residual & (0xff << shift);
5945 encoded_g_n = (g_n >> shift)
5946 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
5947
5948 /* Calculate the residual for the next time around. */
5949 residual &= ~g_n;
5950 }
5951
5952 *final_residual = residual;
5953
5954 return encoded_g_n;
5955 }
5956
5957 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
5958 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
5959
5960 static int
5961 identify_add_or_sub (bfd_vma insn)
5962 {
5963 int opcode = insn & 0x1e00000;
5964
5965 if (opcode == 1 << 23) /* ADD */
5966 return 1;
5967
5968 if (opcode == 1 << 22) /* SUB */
5969 return -1;
5970
5971 return 0;
5972 }
5973
5974 /* Perform a relocation as part of a final link. */
5975
5976 static bfd_reloc_status_type
5977 elf32_arm_final_link_relocate (reloc_howto_type * howto,
5978 bfd * input_bfd,
5979 bfd * output_bfd,
5980 asection * input_section,
5981 bfd_byte * contents,
5982 Elf_Internal_Rela * rel,
5983 bfd_vma value,
5984 struct bfd_link_info * info,
5985 asection * sym_sec,
5986 const char * sym_name,
5987 int sym_flags,
5988 struct elf_link_hash_entry * h,
5989 bfd_boolean * unresolved_reloc_p,
5990 char ** error_message)
5991 {
5992 unsigned long r_type = howto->type;
5993 unsigned long r_symndx;
5994 bfd_byte * hit_data = contents + rel->r_offset;
5995 bfd * dynobj = NULL;
5996 Elf_Internal_Shdr * symtab_hdr;
5997 struct elf_link_hash_entry ** sym_hashes;
5998 bfd_vma * local_got_offsets;
5999 asection * sgot = NULL;
6000 asection * splt = NULL;
6001 asection * sreloc = NULL;
6002 bfd_vma addend;
6003 bfd_signed_vma signed_addend;
6004 struct elf32_arm_link_hash_table * globals;
6005
6006 globals = elf32_arm_hash_table (info);
6007
6008 BFD_ASSERT (is_arm_elf (input_bfd));
6009
6010 /* Some relocation types map to different relocations depending on the
6011 target. We pick the right one here. */
6012 r_type = arm_real_reloc_type (globals, r_type);
6013 if (r_type != howto->type)
6014 howto = elf32_arm_howto_from_type (r_type);
6015
6016 /* If the start address has been set, then set the EF_ARM_HASENTRY
6017 flag. Setting this more than once is redundant, but the cost is
6018 not too high, and it keeps the code simple.
6019
6020 The test is done here, rather than somewhere else, because the
6021 start address is only set just before the final link commences.
6022
6023 Note - if the user deliberately sets a start address of 0, the
6024 flag will not be set. */
6025 if (bfd_get_start_address (output_bfd) != 0)
6026 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
6027
6028 dynobj = elf_hash_table (info)->dynobj;
6029 if (dynobj)
6030 {
6031 sgot = bfd_get_section_by_name (dynobj, ".got");
6032 splt = bfd_get_section_by_name (dynobj, ".plt");
6033 }
6034 symtab_hdr = & elf_symtab_hdr (input_bfd);
6035 sym_hashes = elf_sym_hashes (input_bfd);
6036 local_got_offsets = elf_local_got_offsets (input_bfd);
6037 r_symndx = ELF32_R_SYM (rel->r_info);
6038
6039 if (globals->use_rel)
6040 {
6041 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
6042
6043 if (addend & ((howto->src_mask + 1) >> 1))
6044 {
6045 signed_addend = -1;
6046 signed_addend &= ~ howto->src_mask;
6047 signed_addend |= addend;
6048 }
6049 else
6050 signed_addend = addend;
6051 }
6052 else
6053 addend = signed_addend = rel->r_addend;
6054
6055 switch (r_type)
6056 {
6057 case R_ARM_NONE:
6058 /* We don't need to find a value for this symbol. It's just a
6059 marker. */
6060 *unresolved_reloc_p = FALSE;
6061 return bfd_reloc_ok;
6062
6063 case R_ARM_ABS12:
6064 if (!globals->vxworks_p)
6065 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
6066
6067 case R_ARM_PC24:
6068 case R_ARM_ABS32:
6069 case R_ARM_ABS32_NOI:
6070 case R_ARM_REL32:
6071 case R_ARM_REL32_NOI:
6072 case R_ARM_CALL:
6073 case R_ARM_JUMP24:
6074 case R_ARM_XPC25:
6075 case R_ARM_PREL31:
6076 case R_ARM_PLT32:
6077 /* Handle relocations which should use the PLT entry. ABS32/REL32
6078 will use the symbol's value, which may point to a PLT entry, but we
6079 don't need to handle that here. If we created a PLT entry, all
6080 branches in this object should go to it, except if the PLT is too
6081 far away, in which case a long branch stub should be inserted. */
6082 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
6083 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
6084 && r_type != R_ARM_CALL)
6085 && h != NULL
6086 && splt != NULL
6087 && h->plt.offset != (bfd_vma) -1)
6088 {
6089 /* If we've created a .plt section, and assigned a PLT entry to
6090 this function, it should not be known to bind locally. If
6091 it were, we would have cleared the PLT entry. */
6092 BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info, h));
6093
6094 value = (splt->output_section->vma
6095 + splt->output_offset
6096 + h->plt.offset);
6097 *unresolved_reloc_p = FALSE;
6098 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6099 contents, rel->r_offset, value,
6100 rel->r_addend);
6101 }
6102
6103 /* When generating a shared object or relocatable executable, these
6104 relocations are copied into the output file to be resolved at
6105 run time. */
6106 if ((info->shared || globals->root.is_relocatable_executable)
6107 && (input_section->flags & SEC_ALLOC)
6108 && !(elf32_arm_hash_table (info)->vxworks_p
6109 && strcmp (input_section->output_section->name,
6110 ".tls_vars") == 0)
6111 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
6112 || !SYMBOL_CALLS_LOCAL (info, h))
6113 && (h == NULL
6114 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6115 || h->root.type != bfd_link_hash_undefweak)
6116 && r_type != R_ARM_PC24
6117 && r_type != R_ARM_CALL
6118 && r_type != R_ARM_JUMP24
6119 && r_type != R_ARM_PREL31
6120 && r_type != R_ARM_PLT32)
6121 {
6122 Elf_Internal_Rela outrel;
6123 bfd_byte *loc;
6124 bfd_boolean skip, relocate;
6125
6126 *unresolved_reloc_p = FALSE;
6127
6128 if (sreloc == NULL)
6129 {
6130 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
6131 ! globals->use_rel);
6132
6133 if (sreloc == NULL)
6134 return bfd_reloc_notsupported;
6135 }
6136
6137 skip = FALSE;
6138 relocate = FALSE;
6139
6140 outrel.r_addend = addend;
6141 outrel.r_offset =
6142 _bfd_elf_section_offset (output_bfd, info, input_section,
6143 rel->r_offset);
6144 if (outrel.r_offset == (bfd_vma) -1)
6145 skip = TRUE;
6146 else if (outrel.r_offset == (bfd_vma) -2)
6147 skip = TRUE, relocate = TRUE;
6148 outrel.r_offset += (input_section->output_section->vma
6149 + input_section->output_offset);
6150
6151 if (skip)
6152 memset (&outrel, 0, sizeof outrel);
6153 else if (h != NULL
6154 && h->dynindx != -1
6155 && (!info->shared
6156 || !info->symbolic
6157 || !h->def_regular))
6158 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
6159 else
6160 {
6161 int symbol;
6162
6163 /* This symbol is local, or marked to become local. */
6164 if (sym_flags == STT_ARM_TFUNC)
6165 value |= 1;
6166 if (globals->symbian_p)
6167 {
6168 asection *osec;
6169
6170 /* On Symbian OS, the data segment and text segement
6171 can be relocated independently. Therefore, we
6172 must indicate the segment to which this
6173 relocation is relative. The BPABI allows us to
6174 use any symbol in the right segment; we just use
6175 the section symbol as it is convenient. (We
6176 cannot use the symbol given by "h" directly as it
6177 will not appear in the dynamic symbol table.)
6178
6179 Note that the dynamic linker ignores the section
6180 symbol value, so we don't subtract osec->vma
6181 from the emitted reloc addend. */
6182 if (sym_sec)
6183 osec = sym_sec->output_section;
6184 else
6185 osec = input_section->output_section;
6186 symbol = elf_section_data (osec)->dynindx;
6187 if (symbol == 0)
6188 {
6189 struct elf_link_hash_table *htab = elf_hash_table (info);
6190
6191 if ((osec->flags & SEC_READONLY) == 0
6192 && htab->data_index_section != NULL)
6193 osec = htab->data_index_section;
6194 else
6195 osec = htab->text_index_section;
6196 symbol = elf_section_data (osec)->dynindx;
6197 }
6198 BFD_ASSERT (symbol != 0);
6199 }
6200 else
6201 /* On SVR4-ish systems, the dynamic loader cannot
6202 relocate the text and data segments independently,
6203 so the symbol does not matter. */
6204 symbol = 0;
6205 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
6206 if (globals->use_rel)
6207 relocate = TRUE;
6208 else
6209 outrel.r_addend += value;
6210 }
6211
6212 loc = sreloc->contents;
6213 loc += sreloc->reloc_count++ * RELOC_SIZE (globals);
6214 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6215
6216 /* If this reloc is against an external symbol, we do not want to
6217 fiddle with the addend. Otherwise, we need to include the symbol
6218 value so that it becomes an addend for the dynamic reloc. */
6219 if (! relocate)
6220 return bfd_reloc_ok;
6221
6222 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6223 contents, rel->r_offset, value,
6224 (bfd_vma) 0);
6225 }
6226 else switch (r_type)
6227 {
6228 case R_ARM_ABS12:
6229 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
6230
6231 case R_ARM_XPC25: /* Arm BLX instruction. */
6232 case R_ARM_CALL:
6233 case R_ARM_JUMP24:
6234 case R_ARM_PC24: /* Arm B/BL instruction. */
6235 case R_ARM_PLT32:
6236 {
6237 bfd_vma from;
6238 bfd_signed_vma branch_offset;
6239 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
6240
6241 if (r_type == R_ARM_XPC25)
6242 {
6243 /* Check for Arm calling Arm function. */
6244 /* FIXME: Should we translate the instruction into a BL
6245 instruction instead ? */
6246 if (sym_flags != STT_ARM_TFUNC)
6247 (*_bfd_error_handler)
6248 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
6249 input_bfd,
6250 h ? h->root.root.string : "(local)");
6251 }
6252 else if (r_type != R_ARM_CALL)
6253 {
6254 /* Check for Arm calling Thumb function. */
6255 if (sym_flags == STT_ARM_TFUNC)
6256 {
6257 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
6258 output_bfd, input_section,
6259 hit_data, sym_sec, rel->r_offset,
6260 signed_addend, value,
6261 error_message))
6262 return bfd_reloc_ok;
6263 else
6264 return bfd_reloc_dangerous;
6265 }
6266 }
6267
6268 /* Check if a stub has to be inserted because the
6269 destination is too far or we are changing mode. */
6270 if (r_type == R_ARM_CALL)
6271 {
6272 /* If the call goes through a PLT entry, make sure to
6273 check distance to the right destination address. */
6274 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
6275 {
6276 value = (splt->output_section->vma
6277 + splt->output_offset
6278 + h->plt.offset);
6279 *unresolved_reloc_p = FALSE;
6280 }
6281
6282 from = (input_section->output_section->vma
6283 + input_section->output_offset
6284 + rel->r_offset);
6285 branch_offset = (bfd_signed_vma)(value - from);
6286
6287 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
6288 || branch_offset < ARM_MAX_BWD_BRANCH_OFFSET
6289 || sym_flags == STT_ARM_TFUNC)
6290 {
6291 /* The target is out of reach, so redirect the
6292 branch to the local stub for this function. */
6293
6294 stub_entry = elf32_arm_get_stub_entry (input_section,
6295 sym_sec, h,
6296 rel, globals);
6297 if (stub_entry != NULL)
6298 value = (stub_entry->stub_offset
6299 + stub_entry->stub_sec->output_offset
6300 + stub_entry->stub_sec->output_section->vma);
6301 }
6302 }
6303
6304 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
6305 where:
6306 S is the address of the symbol in the relocation.
6307 P is address of the instruction being relocated.
6308 A is the addend (extracted from the instruction) in bytes.
6309
6310 S is held in 'value'.
6311 P is the base address of the section containing the
6312 instruction plus the offset of the reloc into that
6313 section, ie:
6314 (input_section->output_section->vma +
6315 input_section->output_offset +
6316 rel->r_offset).
6317 A is the addend, converted into bytes, ie:
6318 (signed_addend * 4)
6319
6320 Note: None of these operations have knowledge of the pipeline
6321 size of the processor, thus it is up to the assembler to
6322 encode this information into the addend. */
6323 value -= (input_section->output_section->vma
6324 + input_section->output_offset);
6325 value -= rel->r_offset;
6326 if (globals->use_rel)
6327 value += (signed_addend << howto->size);
6328 else
6329 /* RELA addends do not have to be adjusted by howto->size. */
6330 value += signed_addend;
6331
6332 signed_addend = value;
6333 signed_addend >>= howto->rightshift;
6334
6335 /* A branch to an undefined weak symbol is turned into a jump to
6336 the next instruction. */
6337 if (h && h->root.type == bfd_link_hash_undefweak)
6338 {
6339 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000)
6340 | 0x0affffff;
6341 }
6342 else
6343 {
6344 /* Perform a signed range check. */
6345 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
6346 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
6347 return bfd_reloc_overflow;
6348
6349 addend = (value & 2);
6350
6351 value = (signed_addend & howto->dst_mask)
6352 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
6353
6354 /* Set the H bit in the BLX instruction. */
6355 if (sym_flags == STT_ARM_TFUNC)
6356 {
6357 if (addend)
6358 value |= (1 << 24);
6359 else
6360 value &= ~(bfd_vma)(1 << 24);
6361 }
6362 if (r_type == R_ARM_CALL)
6363 {
6364 /* Select the correct instruction (BL or BLX). */
6365 /* Only if we are not handling a BL to a stub. In this
6366 case, mode switching is performed by the stub. */
6367 if (sym_flags == STT_ARM_TFUNC && !stub_entry)
6368 value |= (1 << 28);
6369 else
6370 {
6371 value &= ~(bfd_vma)(1 << 28);
6372 value |= (1 << 24);
6373 }
6374 }
6375 }
6376 }
6377 break;
6378
6379 case R_ARM_ABS32:
6380 value += addend;
6381 if (sym_flags == STT_ARM_TFUNC)
6382 value |= 1;
6383 break;
6384
6385 case R_ARM_ABS32_NOI:
6386 value += addend;
6387 break;
6388
6389 case R_ARM_REL32:
6390 value += addend;
6391 if (sym_flags == STT_ARM_TFUNC)
6392 value |= 1;
6393 value -= (input_section->output_section->vma
6394 + input_section->output_offset + rel->r_offset);
6395 break;
6396
6397 case R_ARM_REL32_NOI:
6398 value += addend;
6399 value -= (input_section->output_section->vma
6400 + input_section->output_offset + rel->r_offset);
6401 break;
6402
6403 case R_ARM_PREL31:
6404 value -= (input_section->output_section->vma
6405 + input_section->output_offset + rel->r_offset);
6406 value += signed_addend;
6407 if (! h || h->root.type != bfd_link_hash_undefweak)
6408 {
6409 /* Check for overflow. */
6410 if ((value ^ (value >> 1)) & (1 << 30))
6411 return bfd_reloc_overflow;
6412 }
6413 value &= 0x7fffffff;
6414 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
6415 if (sym_flags == STT_ARM_TFUNC)
6416 value |= 1;
6417 break;
6418 }
6419
6420 bfd_put_32 (input_bfd, value, hit_data);
6421 return bfd_reloc_ok;
6422
6423 case R_ARM_ABS8:
6424 value += addend;
6425 if ((long) value > 0x7f || (long) value < -0x80)
6426 return bfd_reloc_overflow;
6427
6428 bfd_put_8 (input_bfd, value, hit_data);
6429 return bfd_reloc_ok;
6430
6431 case R_ARM_ABS16:
6432 value += addend;
6433
6434 if ((long) value > 0x7fff || (long) value < -0x8000)
6435 return bfd_reloc_overflow;
6436
6437 bfd_put_16 (input_bfd, value, hit_data);
6438 return bfd_reloc_ok;
6439
6440 case R_ARM_THM_ABS5:
6441 /* Support ldr and str instructions for the thumb. */
6442 if (globals->use_rel)
6443 {
6444 /* Need to refetch addend. */
6445 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
6446 /* ??? Need to determine shift amount from operand size. */
6447 addend >>= howto->rightshift;
6448 }
6449 value += addend;
6450
6451 /* ??? Isn't value unsigned? */
6452 if ((long) value > 0x1f || (long) value < -0x10)
6453 return bfd_reloc_overflow;
6454
6455 /* ??? Value needs to be properly shifted into place first. */
6456 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
6457 bfd_put_16 (input_bfd, value, hit_data);
6458 return bfd_reloc_ok;
6459
6460 case R_ARM_THM_ALU_PREL_11_0:
6461 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
6462 {
6463 bfd_vma insn;
6464 bfd_signed_vma relocation;
6465
6466 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
6467 | bfd_get_16 (input_bfd, hit_data + 2);
6468
6469 if (globals->use_rel)
6470 {
6471 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
6472 | ((insn & (1 << 26)) >> 15);
6473 if (insn & 0xf00000)
6474 signed_addend = -signed_addend;
6475 }
6476
6477 relocation = value + signed_addend;
6478 relocation -= (input_section->output_section->vma
6479 + input_section->output_offset
6480 + rel->r_offset);
6481
6482 value = abs (relocation);
6483
6484 if (value >= 0x1000)
6485 return bfd_reloc_overflow;
6486
6487 insn = (insn & 0xfb0f8f00) | (value & 0xff)
6488 | ((value & 0x700) << 4)
6489 | ((value & 0x800) << 15);
6490 if (relocation < 0)
6491 insn |= 0xa00000;
6492
6493 bfd_put_16 (input_bfd, insn >> 16, hit_data);
6494 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
6495
6496 return bfd_reloc_ok;
6497 }
6498
6499 case R_ARM_THM_PC12:
6500 /* Corresponds to: ldr.w reg, [pc, #offset]. */
6501 {
6502 bfd_vma insn;
6503 bfd_signed_vma relocation;
6504
6505 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
6506 | bfd_get_16 (input_bfd, hit_data + 2);
6507
6508 if (globals->use_rel)
6509 {
6510 signed_addend = insn & 0xfff;
6511 if (!(insn & (1 << 23)))
6512 signed_addend = -signed_addend;
6513 }
6514
6515 relocation = value + signed_addend;
6516 relocation -= (input_section->output_section->vma
6517 + input_section->output_offset
6518 + rel->r_offset);
6519
6520 value = abs (relocation);
6521
6522 if (value >= 0x1000)
6523 return bfd_reloc_overflow;
6524
6525 insn = (insn & 0xff7ff000) | value;
6526 if (relocation >= 0)
6527 insn |= (1 << 23);
6528
6529 bfd_put_16 (input_bfd, insn >> 16, hit_data);
6530 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
6531
6532 return bfd_reloc_ok;
6533 }
6534
6535 case R_ARM_THM_XPC22:
6536 case R_ARM_THM_CALL:
6537 case R_ARM_THM_JUMP24:
6538 /* Thumb BL (branch long instruction). */
6539 {
6540 bfd_vma relocation;
6541 bfd_vma reloc_sign;
6542 bfd_boolean overflow = FALSE;
6543 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
6544 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
6545 bfd_signed_vma reloc_signed_max;
6546 bfd_signed_vma reloc_signed_min;
6547 bfd_vma check;
6548 bfd_signed_vma signed_check;
6549 int bitsize;
6550 int thumb2 = using_thumb2 (globals);
6551
6552 /* A branch to an undefined weak symbol is turned into a jump to
6553 the next instruction unless a PLT entry will be created. */
6554 if (h && h->root.type == bfd_link_hash_undefweak
6555 && !(splt != NULL && h->plt.offset != (bfd_vma) -1))
6556 {
6557 bfd_put_16 (input_bfd, 0xe000, hit_data);
6558 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
6559 return bfd_reloc_ok;
6560 }
6561
6562 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
6563 with Thumb-1) involving the J1 and J2 bits. */
6564 if (globals->use_rel)
6565 {
6566 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
6567 bfd_vma upper = upper_insn & 0x3ff;
6568 bfd_vma lower = lower_insn & 0x7ff;
6569 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
6570 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
6571 bfd_vma i1 = j1 ^ s ? 0 : 1;
6572 bfd_vma i2 = j2 ^ s ? 0 : 1;
6573
6574 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
6575 /* Sign extend. */
6576 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
6577
6578 signed_addend = addend;
6579 }
6580
6581 if (r_type == R_ARM_THM_XPC22)
6582 {
6583 /* Check for Thumb to Thumb call. */
6584 /* FIXME: Should we translate the instruction into a BL
6585 instruction instead ? */
6586 if (sym_flags == STT_ARM_TFUNC)
6587 (*_bfd_error_handler)
6588 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
6589 input_bfd,
6590 h ? h->root.root.string : "(local)");
6591 }
6592 else
6593 {
6594 /* If it is not a call to Thumb, assume call to Arm.
6595 If it is a call relative to a section name, then it is not a
6596 function call at all, but rather a long jump. Calls through
6597 the PLT do not require stubs. */
6598 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION
6599 && (h == NULL || splt == NULL
6600 || h->plt.offset == (bfd_vma) -1))
6601 {
6602 if (globals->use_blx && r_type == R_ARM_THM_CALL)
6603 {
6604 /* Convert BL to BLX. */
6605 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6606 }
6607 else if (r_type != R_ARM_THM_CALL)
6608 {
6609 if (elf32_thumb_to_arm_stub
6610 (info, sym_name, input_bfd, output_bfd, input_section,
6611 hit_data, sym_sec, rel->r_offset, signed_addend, value,
6612 error_message))
6613 return bfd_reloc_ok;
6614 else
6615 return bfd_reloc_dangerous;
6616 }
6617 }
6618 else if (sym_flags == STT_ARM_TFUNC && globals->use_blx
6619 && r_type == R_ARM_THM_CALL)
6620 {
6621 /* Make sure this is a BL. */
6622 lower_insn |= 0x1800;
6623 }
6624 }
6625
6626 /* Handle calls via the PLT. */
6627 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
6628 {
6629 value = (splt->output_section->vma
6630 + splt->output_offset
6631 + h->plt.offset);
6632 if (globals->use_blx && r_type == R_ARM_THM_CALL)
6633 {
6634 /* If the Thumb BLX instruction is available, convert the
6635 BL to a BLX instruction to call the ARM-mode PLT entry. */
6636 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6637 }
6638 else
6639 /* Target the Thumb stub before the ARM PLT entry. */
6640 value -= PLT_THUMB_STUB_SIZE;
6641 *unresolved_reloc_p = FALSE;
6642 }
6643
6644 if (r_type == R_ARM_THM_CALL)
6645 {
6646 /* Check if a stub has to be inserted because the destination
6647 is too far. */
6648 bfd_vma from;
6649 bfd_signed_vma branch_offset;
6650 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
6651
6652 from = (input_section->output_section->vma
6653 + input_section->output_offset
6654 + rel->r_offset);
6655 branch_offset = (bfd_signed_vma)(value - from);
6656
6657 if ((!thumb2
6658 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
6659 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
6660 ||
6661 (thumb2
6662 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
6663 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
6664 || ((sym_flags != STT_ARM_TFUNC) && !globals->use_blx))
6665 {
6666 /* The target is out of reach or we are changing modes, so
6667 redirect the branch to the local stub for this
6668 function. */
6669 stub_entry = elf32_arm_get_stub_entry (input_section,
6670 sym_sec, h,
6671 rel, globals);
6672 if (stub_entry != NULL)
6673 value = (stub_entry->stub_offset
6674 + stub_entry->stub_sec->output_offset
6675 + stub_entry->stub_sec->output_section->vma);
6676
6677 /* If this call becomes a call to Arm, force BLX. */
6678 if (globals->use_blx)
6679 {
6680 if ((stub_entry
6681 && !arm_stub_is_thumb (stub_entry->stub_type))
6682 || (sym_flags != STT_ARM_TFUNC))
6683 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6684 }
6685 }
6686 }
6687
6688 relocation = value + signed_addend;
6689
6690 relocation -= (input_section->output_section->vma
6691 + input_section->output_offset
6692 + rel->r_offset);
6693
6694 check = relocation >> howto->rightshift;
6695
6696 /* If this is a signed value, the rightshift just dropped
6697 leading 1 bits (assuming twos complement). */
6698 if ((bfd_signed_vma) relocation >= 0)
6699 signed_check = check;
6700 else
6701 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
6702
6703 /* Calculate the permissable maximum and minimum values for
6704 this relocation according to whether we're relocating for
6705 Thumb-2 or not. */
6706 bitsize = howto->bitsize;
6707 if (!thumb2)
6708 bitsize -= 2;
6709 reloc_signed_max = ((1 << (bitsize - 1)) - 1) >> howto->rightshift;
6710 reloc_signed_min = ~reloc_signed_max;
6711
6712 /* Assumes two's complement. */
6713 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6714 overflow = TRUE;
6715
6716 if ((lower_insn & 0x5000) == 0x4000)
6717 /* For a BLX instruction, make sure that the relocation is rounded up
6718 to a word boundary. This follows the semantics of the instruction
6719 which specifies that bit 1 of the target address will come from bit
6720 1 of the base address. */
6721 relocation = (relocation + 2) & ~ 3;
6722
6723 /* Put RELOCATION back into the insn. Assumes two's complement.
6724 We use the Thumb-2 encoding, which is safe even if dealing with
6725 a Thumb-1 instruction by virtue of our overflow check above. */
6726 reloc_sign = (signed_check < 0) ? 1 : 0;
6727 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
6728 | ((relocation >> 12) & 0x3ff)
6729 | (reloc_sign << 10);
6730 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
6731 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
6732 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
6733 | ((relocation >> 1) & 0x7ff);
6734
6735 /* Put the relocated value back in the object file: */
6736 bfd_put_16 (input_bfd, upper_insn, hit_data);
6737 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
6738
6739 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
6740 }
6741 break;
6742
6743 case R_ARM_THM_JUMP19:
6744 /* Thumb32 conditional branch instruction. */
6745 {
6746 bfd_vma relocation;
6747 bfd_boolean overflow = FALSE;
6748 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
6749 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
6750 bfd_signed_vma reloc_signed_max = 0xffffe;
6751 bfd_signed_vma reloc_signed_min = -0x100000;
6752 bfd_signed_vma signed_check;
6753
6754 /* Need to refetch the addend, reconstruct the top three bits,
6755 and squish the two 11 bit pieces together. */
6756 if (globals->use_rel)
6757 {
6758 bfd_vma S = (upper_insn & 0x0400) >> 10;
6759 bfd_vma upper = (upper_insn & 0x003f);
6760 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
6761 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
6762 bfd_vma lower = (lower_insn & 0x07ff);
6763
6764 upper |= J1 << 6;
6765 upper |= J2 << 7;
6766 upper |= (!S) << 8;
6767 upper -= 0x0100; /* Sign extend. */
6768
6769 addend = (upper << 12) | (lower << 1);
6770 signed_addend = addend;
6771 }
6772
6773 /* Handle calls via the PLT. */
6774 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
6775 {
6776 value = (splt->output_section->vma
6777 + splt->output_offset
6778 + h->plt.offset);
6779 /* Target the Thumb stub before the ARM PLT entry. */
6780 value -= PLT_THUMB_STUB_SIZE;
6781 *unresolved_reloc_p = FALSE;
6782 }
6783
6784 /* ??? Should handle interworking? GCC might someday try to
6785 use this for tail calls. */
6786
6787 relocation = value + signed_addend;
6788 relocation -= (input_section->output_section->vma
6789 + input_section->output_offset
6790 + rel->r_offset);
6791 signed_check = (bfd_signed_vma) relocation;
6792
6793 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6794 overflow = TRUE;
6795
6796 /* Put RELOCATION back into the insn. */
6797 {
6798 bfd_vma S = (relocation & 0x00100000) >> 20;
6799 bfd_vma J2 = (relocation & 0x00080000) >> 19;
6800 bfd_vma J1 = (relocation & 0x00040000) >> 18;
6801 bfd_vma hi = (relocation & 0x0003f000) >> 12;
6802 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
6803
6804 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
6805 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
6806 }
6807
6808 /* Put the relocated value back in the object file: */
6809 bfd_put_16 (input_bfd, upper_insn, hit_data);
6810 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
6811
6812 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
6813 }
6814
6815 case R_ARM_THM_JUMP11:
6816 case R_ARM_THM_JUMP8:
6817 case R_ARM_THM_JUMP6:
6818 /* Thumb B (branch) instruction). */
6819 {
6820 bfd_signed_vma relocation;
6821 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
6822 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
6823 bfd_signed_vma signed_check;
6824
6825 /* CZB cannot jump backward. */
6826 if (r_type == R_ARM_THM_JUMP6)
6827 reloc_signed_min = 0;
6828
6829 if (globals->use_rel)
6830 {
6831 /* Need to refetch addend. */
6832 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
6833 if (addend & ((howto->src_mask + 1) >> 1))
6834 {
6835 signed_addend = -1;
6836 signed_addend &= ~ howto->src_mask;
6837 signed_addend |= addend;
6838 }
6839 else
6840 signed_addend = addend;
6841 /* The value in the insn has been right shifted. We need to
6842 undo this, so that we can perform the address calculation
6843 in terms of bytes. */
6844 signed_addend <<= howto->rightshift;
6845 }
6846 relocation = value + signed_addend;
6847
6848 relocation -= (input_section->output_section->vma
6849 + input_section->output_offset
6850 + rel->r_offset);
6851
6852 relocation >>= howto->rightshift;
6853 signed_check = relocation;
6854
6855 if (r_type == R_ARM_THM_JUMP6)
6856 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
6857 else
6858 relocation &= howto->dst_mask;
6859 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
6860
6861 bfd_put_16 (input_bfd, relocation, hit_data);
6862
6863 /* Assumes two's complement. */
6864 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6865 return bfd_reloc_overflow;
6866
6867 return bfd_reloc_ok;
6868 }
6869
6870 case R_ARM_ALU_PCREL7_0:
6871 case R_ARM_ALU_PCREL15_8:
6872 case R_ARM_ALU_PCREL23_15:
6873 {
6874 bfd_vma insn;
6875 bfd_vma relocation;
6876
6877 insn = bfd_get_32 (input_bfd, hit_data);
6878 if (globals->use_rel)
6879 {
6880 /* Extract the addend. */
6881 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
6882 signed_addend = addend;
6883 }
6884 relocation = value + signed_addend;
6885
6886 relocation -= (input_section->output_section->vma
6887 + input_section->output_offset
6888 + rel->r_offset);
6889 insn = (insn & ~0xfff)
6890 | ((howto->bitpos << 7) & 0xf00)
6891 | ((relocation >> howto->bitpos) & 0xff);
6892 bfd_put_32 (input_bfd, value, hit_data);
6893 }
6894 return bfd_reloc_ok;
6895
6896 case R_ARM_GNU_VTINHERIT:
6897 case R_ARM_GNU_VTENTRY:
6898 return bfd_reloc_ok;
6899
6900 case R_ARM_GOTOFF32:
6901 /* Relocation is relative to the start of the
6902 global offset table. */
6903
6904 BFD_ASSERT (sgot != NULL);
6905 if (sgot == NULL)
6906 return bfd_reloc_notsupported;
6907
6908 /* If we are addressing a Thumb function, we need to adjust the
6909 address by one, so that attempts to call the function pointer will
6910 correctly interpret it as Thumb code. */
6911 if (sym_flags == STT_ARM_TFUNC)
6912 value += 1;
6913
6914 /* Note that sgot->output_offset is not involved in this
6915 calculation. We always want the start of .got. If we
6916 define _GLOBAL_OFFSET_TABLE in a different way, as is
6917 permitted by the ABI, we might have to change this
6918 calculation. */
6919 value -= sgot->output_section->vma;
6920 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6921 contents, rel->r_offset, value,
6922 rel->r_addend);
6923
6924 case R_ARM_GOTPC:
6925 /* Use global offset table as symbol value. */
6926 BFD_ASSERT (sgot != NULL);
6927
6928 if (sgot == NULL)
6929 return bfd_reloc_notsupported;
6930
6931 *unresolved_reloc_p = FALSE;
6932 value = sgot->output_section->vma;
6933 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6934 contents, rel->r_offset, value,
6935 rel->r_addend);
6936
6937 case R_ARM_GOT32:
6938 case R_ARM_GOT_PREL:
6939 /* Relocation is to the entry for this symbol in the
6940 global offset table. */
6941 if (sgot == NULL)
6942 return bfd_reloc_notsupported;
6943
6944 if (h != NULL)
6945 {
6946 bfd_vma off;
6947 bfd_boolean dyn;
6948
6949 off = h->got.offset;
6950 BFD_ASSERT (off != (bfd_vma) -1);
6951 dyn = globals->root.dynamic_sections_created;
6952
6953 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
6954 || (info->shared
6955 && SYMBOL_REFERENCES_LOCAL (info, h))
6956 || (ELF_ST_VISIBILITY (h->other)
6957 && h->root.type == bfd_link_hash_undefweak))
6958 {
6959 /* This is actually a static link, or it is a -Bsymbolic link
6960 and the symbol is defined locally. We must initialize this
6961 entry in the global offset table. Since the offset must
6962 always be a multiple of 4, we use the least significant bit
6963 to record whether we have initialized it already.
6964
6965 When doing a dynamic link, we create a .rel(a).got relocation
6966 entry to initialize the value. This is done in the
6967 finish_dynamic_symbol routine. */
6968 if ((off & 1) != 0)
6969 off &= ~1;
6970 else
6971 {
6972 /* If we are addressing a Thumb function, we need to
6973 adjust the address by one, so that attempts to
6974 call the function pointer will correctly
6975 interpret it as Thumb code. */
6976 if (sym_flags == STT_ARM_TFUNC)
6977 value |= 1;
6978
6979 bfd_put_32 (output_bfd, value, sgot->contents + off);
6980 h->got.offset |= 1;
6981 }
6982 }
6983 else
6984 *unresolved_reloc_p = FALSE;
6985
6986 value = sgot->output_offset + off;
6987 }
6988 else
6989 {
6990 bfd_vma off;
6991
6992 BFD_ASSERT (local_got_offsets != NULL &&
6993 local_got_offsets[r_symndx] != (bfd_vma) -1);
6994
6995 off = local_got_offsets[r_symndx];
6996
6997 /* The offset must always be a multiple of 4. We use the
6998 least significant bit to record whether we have already
6999 generated the necessary reloc. */
7000 if ((off & 1) != 0)
7001 off &= ~1;
7002 else
7003 {
7004 /* If we are addressing a Thumb function, we need to
7005 adjust the address by one, so that attempts to
7006 call the function pointer will correctly
7007 interpret it as Thumb code. */
7008 if (sym_flags == STT_ARM_TFUNC)
7009 value |= 1;
7010
7011 if (globals->use_rel)
7012 bfd_put_32 (output_bfd, value, sgot->contents + off);
7013
7014 if (info->shared)
7015 {
7016 asection * srelgot;
7017 Elf_Internal_Rela outrel;
7018 bfd_byte *loc;
7019
7020 srelgot = (bfd_get_section_by_name
7021 (dynobj, RELOC_SECTION (globals, ".got")));
7022 BFD_ASSERT (srelgot != NULL);
7023
7024 outrel.r_addend = addend + value;
7025 outrel.r_offset = (sgot->output_section->vma
7026 + sgot->output_offset
7027 + off);
7028 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
7029 loc = srelgot->contents;
7030 loc += srelgot->reloc_count++ * RELOC_SIZE (globals);
7031 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7032 }
7033
7034 local_got_offsets[r_symndx] |= 1;
7035 }
7036
7037 value = sgot->output_offset + off;
7038 }
7039 if (r_type != R_ARM_GOT32)
7040 value += sgot->output_section->vma;
7041
7042 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7043 contents, rel->r_offset, value,
7044 rel->r_addend);
7045
7046 case R_ARM_TLS_LDO32:
7047 value = value - dtpoff_base (info);
7048
7049 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7050 contents, rel->r_offset, value,
7051 rel->r_addend);
7052
7053 case R_ARM_TLS_LDM32:
7054 {
7055 bfd_vma off;
7056
7057 if (globals->sgot == NULL)
7058 abort ();
7059
7060 off = globals->tls_ldm_got.offset;
7061
7062 if ((off & 1) != 0)
7063 off &= ~1;
7064 else
7065 {
7066 /* If we don't know the module number, create a relocation
7067 for it. */
7068 if (info->shared)
7069 {
7070 Elf_Internal_Rela outrel;
7071 bfd_byte *loc;
7072
7073 if (globals->srelgot == NULL)
7074 abort ();
7075
7076 outrel.r_addend = 0;
7077 outrel.r_offset = (globals->sgot->output_section->vma
7078 + globals->sgot->output_offset + off);
7079 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
7080
7081 if (globals->use_rel)
7082 bfd_put_32 (output_bfd, outrel.r_addend,
7083 globals->sgot->contents + off);
7084
7085 loc = globals->srelgot->contents;
7086 loc += globals->srelgot->reloc_count++ * RELOC_SIZE (globals);
7087 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7088 }
7089 else
7090 bfd_put_32 (output_bfd, 1, globals->sgot->contents + off);
7091
7092 globals->tls_ldm_got.offset |= 1;
7093 }
7094
7095 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
7096 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
7097
7098 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7099 contents, rel->r_offset, value,
7100 rel->r_addend);
7101 }
7102
7103 case R_ARM_TLS_GD32:
7104 case R_ARM_TLS_IE32:
7105 {
7106 bfd_vma off;
7107 int indx;
7108 char tls_type;
7109
7110 if (globals->sgot == NULL)
7111 abort ();
7112
7113 indx = 0;
7114 if (h != NULL)
7115 {
7116 bfd_boolean dyn;
7117 dyn = globals->root.dynamic_sections_created;
7118 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
7119 && (!info->shared
7120 || !SYMBOL_REFERENCES_LOCAL (info, h)))
7121 {
7122 *unresolved_reloc_p = FALSE;
7123 indx = h->dynindx;
7124 }
7125 off = h->got.offset;
7126 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
7127 }
7128 else
7129 {
7130 if (local_got_offsets == NULL)
7131 abort ();
7132 off = local_got_offsets[r_symndx];
7133 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
7134 }
7135
7136 if (tls_type == GOT_UNKNOWN)
7137 abort ();
7138
7139 if ((off & 1) != 0)
7140 off &= ~1;
7141 else
7142 {
7143 bfd_boolean need_relocs = FALSE;
7144 Elf_Internal_Rela outrel;
7145 bfd_byte *loc = NULL;
7146 int cur_off = off;
7147
7148 /* The GOT entries have not been initialized yet. Do it
7149 now, and emit any relocations. If both an IE GOT and a
7150 GD GOT are necessary, we emit the GD first. */
7151
7152 if ((info->shared || indx != 0)
7153 && (h == NULL
7154 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7155 || h->root.type != bfd_link_hash_undefweak))
7156 {
7157 need_relocs = TRUE;
7158 if (globals->srelgot == NULL)
7159 abort ();
7160 loc = globals->srelgot->contents;
7161 loc += globals->srelgot->reloc_count * RELOC_SIZE (globals);
7162 }
7163
7164 if (tls_type & GOT_TLS_GD)
7165 {
7166 if (need_relocs)
7167 {
7168 outrel.r_addend = 0;
7169 outrel.r_offset = (globals->sgot->output_section->vma
7170 + globals->sgot->output_offset
7171 + cur_off);
7172 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
7173
7174 if (globals->use_rel)
7175 bfd_put_32 (output_bfd, outrel.r_addend,
7176 globals->sgot->contents + cur_off);
7177
7178 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7179 globals->srelgot->reloc_count++;
7180 loc += RELOC_SIZE (globals);
7181
7182 if (indx == 0)
7183 bfd_put_32 (output_bfd, value - dtpoff_base (info),
7184 globals->sgot->contents + cur_off + 4);
7185 else
7186 {
7187 outrel.r_addend = 0;
7188 outrel.r_info = ELF32_R_INFO (indx,
7189 R_ARM_TLS_DTPOFF32);
7190 outrel.r_offset += 4;
7191
7192 if (globals->use_rel)
7193 bfd_put_32 (output_bfd, outrel.r_addend,
7194 globals->sgot->contents + cur_off + 4);
7195
7196
7197 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7198 globals->srelgot->reloc_count++;
7199 loc += RELOC_SIZE (globals);
7200 }
7201 }
7202 else
7203 {
7204 /* If we are not emitting relocations for a
7205 general dynamic reference, then we must be in a
7206 static link or an executable link with the
7207 symbol binding locally. Mark it as belonging
7208 to module 1, the executable. */
7209 bfd_put_32 (output_bfd, 1,
7210 globals->sgot->contents + cur_off);
7211 bfd_put_32 (output_bfd, value - dtpoff_base (info),
7212 globals->sgot->contents + cur_off + 4);
7213 }
7214
7215 cur_off += 8;
7216 }
7217
7218 if (tls_type & GOT_TLS_IE)
7219 {
7220 if (need_relocs)
7221 {
7222 if (indx == 0)
7223 outrel.r_addend = value - dtpoff_base (info);
7224 else
7225 outrel.r_addend = 0;
7226 outrel.r_offset = (globals->sgot->output_section->vma
7227 + globals->sgot->output_offset
7228 + cur_off);
7229 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
7230
7231 if (globals->use_rel)
7232 bfd_put_32 (output_bfd, outrel.r_addend,
7233 globals->sgot->contents + cur_off);
7234
7235 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7236 globals->srelgot->reloc_count++;
7237 loc += RELOC_SIZE (globals);
7238 }
7239 else
7240 bfd_put_32 (output_bfd, tpoff (info, value),
7241 globals->sgot->contents + cur_off);
7242 cur_off += 4;
7243 }
7244
7245 if (h != NULL)
7246 h->got.offset |= 1;
7247 else
7248 local_got_offsets[r_symndx] |= 1;
7249 }
7250
7251 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
7252 off += 8;
7253 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
7254 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
7255
7256 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7257 contents, rel->r_offset, value,
7258 rel->r_addend);
7259 }
7260
7261 case R_ARM_TLS_LE32:
7262 if (info->shared)
7263 {
7264 (*_bfd_error_handler)
7265 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
7266 input_bfd, input_section,
7267 (long) rel->r_offset, howto->name);
7268 return FALSE;
7269 }
7270 else
7271 value = tpoff (info, value);
7272
7273 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7274 contents, rel->r_offset, value,
7275 rel->r_addend);
7276
7277 case R_ARM_V4BX:
7278 if (globals->fix_v4bx)
7279 {
7280 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7281
7282 /* Ensure that we have a BX instruction. */
7283 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
7284
7285 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
7286 {
7287 /* Branch to veneer. */
7288 bfd_vma glue_addr;
7289 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
7290 glue_addr -= input_section->output_section->vma
7291 + input_section->output_offset
7292 + rel->r_offset + 8;
7293 insn = (insn & 0xf0000000) | 0x0a000000
7294 | ((glue_addr >> 2) & 0x00ffffff);
7295 }
7296 else
7297 {
7298 /* Preserve Rm (lowest four bits) and the condition code
7299 (highest four bits). Other bits encode MOV PC,Rm. */
7300 insn = (insn & 0xf000000f) | 0x01a0f000;
7301 }
7302
7303 bfd_put_32 (input_bfd, insn, hit_data);
7304 }
7305 return bfd_reloc_ok;
7306
7307 case R_ARM_MOVW_ABS_NC:
7308 case R_ARM_MOVT_ABS:
7309 case R_ARM_MOVW_PREL_NC:
7310 case R_ARM_MOVT_PREL:
7311 /* Until we properly support segment-base-relative addressing then
7312 we assume the segment base to be zero, as for the group relocations.
7313 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
7314 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
7315 case R_ARM_MOVW_BREL_NC:
7316 case R_ARM_MOVW_BREL:
7317 case R_ARM_MOVT_BREL:
7318 {
7319 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7320
7321 if (globals->use_rel)
7322 {
7323 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
7324 signed_addend = (addend ^ 0x8000) - 0x8000;
7325 }
7326
7327 value += signed_addend;
7328
7329 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
7330 value -= (input_section->output_section->vma
7331 + input_section->output_offset + rel->r_offset);
7332
7333 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
7334 return bfd_reloc_overflow;
7335
7336 if (sym_flags == STT_ARM_TFUNC)
7337 value |= 1;
7338
7339 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
7340 || r_type == R_ARM_MOVT_BREL)
7341 value >>= 16;
7342
7343 insn &= 0xfff0f000;
7344 insn |= value & 0xfff;
7345 insn |= (value & 0xf000) << 4;
7346 bfd_put_32 (input_bfd, insn, hit_data);
7347 }
7348 return bfd_reloc_ok;
7349
7350 case R_ARM_THM_MOVW_ABS_NC:
7351 case R_ARM_THM_MOVT_ABS:
7352 case R_ARM_THM_MOVW_PREL_NC:
7353 case R_ARM_THM_MOVT_PREL:
7354 /* Until we properly support segment-base-relative addressing then
7355 we assume the segment base to be zero, as for the above relocations.
7356 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
7357 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
7358 as R_ARM_THM_MOVT_ABS. */
7359 case R_ARM_THM_MOVW_BREL_NC:
7360 case R_ARM_THM_MOVW_BREL:
7361 case R_ARM_THM_MOVT_BREL:
7362 {
7363 bfd_vma insn;
7364
7365 insn = bfd_get_16 (input_bfd, hit_data) << 16;
7366 insn |= bfd_get_16 (input_bfd, hit_data + 2);
7367
7368 if (globals->use_rel)
7369 {
7370 addend = ((insn >> 4) & 0xf000)
7371 | ((insn >> 15) & 0x0800)
7372 | ((insn >> 4) & 0x0700)
7373 | (insn & 0x00ff);
7374 signed_addend = (addend ^ 0x8000) - 0x8000;
7375 }
7376
7377 value += signed_addend;
7378
7379 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
7380 value -= (input_section->output_section->vma
7381 + input_section->output_offset + rel->r_offset);
7382
7383 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
7384 return bfd_reloc_overflow;
7385
7386 if (sym_flags == STT_ARM_TFUNC)
7387 value |= 1;
7388
7389 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
7390 || r_type == R_ARM_THM_MOVT_BREL)
7391 value >>= 16;
7392
7393 insn &= 0xfbf08f00;
7394 insn |= (value & 0xf000) << 4;
7395 insn |= (value & 0x0800) << 15;
7396 insn |= (value & 0x0700) << 4;
7397 insn |= (value & 0x00ff);
7398
7399 bfd_put_16 (input_bfd, insn >> 16, hit_data);
7400 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
7401 }
7402 return bfd_reloc_ok;
7403
7404 case R_ARM_ALU_PC_G0_NC:
7405 case R_ARM_ALU_PC_G1_NC:
7406 case R_ARM_ALU_PC_G0:
7407 case R_ARM_ALU_PC_G1:
7408 case R_ARM_ALU_PC_G2:
7409 case R_ARM_ALU_SB_G0_NC:
7410 case R_ARM_ALU_SB_G1_NC:
7411 case R_ARM_ALU_SB_G0:
7412 case R_ARM_ALU_SB_G1:
7413 case R_ARM_ALU_SB_G2:
7414 {
7415 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7416 bfd_vma pc = input_section->output_section->vma
7417 + input_section->output_offset + rel->r_offset;
7418 /* sb should be the origin of the *segment* containing the symbol.
7419 It is not clear how to obtain this OS-dependent value, so we
7420 make an arbitrary choice of zero. */
7421 bfd_vma sb = 0;
7422 bfd_vma residual;
7423 bfd_vma g_n;
7424 bfd_signed_vma signed_value;
7425 int group = 0;
7426
7427 /* Determine which group of bits to select. */
7428 switch (r_type)
7429 {
7430 case R_ARM_ALU_PC_G0_NC:
7431 case R_ARM_ALU_PC_G0:
7432 case R_ARM_ALU_SB_G0_NC:
7433 case R_ARM_ALU_SB_G0:
7434 group = 0;
7435 break;
7436
7437 case R_ARM_ALU_PC_G1_NC:
7438 case R_ARM_ALU_PC_G1:
7439 case R_ARM_ALU_SB_G1_NC:
7440 case R_ARM_ALU_SB_G1:
7441 group = 1;
7442 break;
7443
7444 case R_ARM_ALU_PC_G2:
7445 case R_ARM_ALU_SB_G2:
7446 group = 2;
7447 break;
7448
7449 default:
7450 abort ();
7451 }
7452
7453 /* If REL, extract the addend from the insn. If RELA, it will
7454 have already been fetched for us. */
7455 if (globals->use_rel)
7456 {
7457 int negative;
7458 bfd_vma constant = insn & 0xff;
7459 bfd_vma rotation = (insn & 0xf00) >> 8;
7460
7461 if (rotation == 0)
7462 signed_addend = constant;
7463 else
7464 {
7465 /* Compensate for the fact that in the instruction, the
7466 rotation is stored in multiples of 2 bits. */
7467 rotation *= 2;
7468
7469 /* Rotate "constant" right by "rotation" bits. */
7470 signed_addend = (constant >> rotation) |
7471 (constant << (8 * sizeof (bfd_vma) - rotation));
7472 }
7473
7474 /* Determine if the instruction is an ADD or a SUB.
7475 (For REL, this determines the sign of the addend.) */
7476 negative = identify_add_or_sub (insn);
7477 if (negative == 0)
7478 {
7479 (*_bfd_error_handler)
7480 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
7481 input_bfd, input_section,
7482 (long) rel->r_offset, howto->name);
7483 return bfd_reloc_overflow;
7484 }
7485
7486 signed_addend *= negative;
7487 }
7488
7489 /* Compute the value (X) to go in the place. */
7490 if (r_type == R_ARM_ALU_PC_G0_NC
7491 || r_type == R_ARM_ALU_PC_G1_NC
7492 || r_type == R_ARM_ALU_PC_G0
7493 || r_type == R_ARM_ALU_PC_G1
7494 || r_type == R_ARM_ALU_PC_G2)
7495 /* PC relative. */
7496 signed_value = value - pc + signed_addend;
7497 else
7498 /* Section base relative. */
7499 signed_value = value - sb + signed_addend;
7500
7501 /* If the target symbol is a Thumb function, then set the
7502 Thumb bit in the address. */
7503 if (sym_flags == STT_ARM_TFUNC)
7504 signed_value |= 1;
7505
7506 /* Calculate the value of the relevant G_n, in encoded
7507 constant-with-rotation format. */
7508 g_n = calculate_group_reloc_mask (abs (signed_value), group,
7509 &residual);
7510
7511 /* Check for overflow if required. */
7512 if ((r_type == R_ARM_ALU_PC_G0
7513 || r_type == R_ARM_ALU_PC_G1
7514 || r_type == R_ARM_ALU_PC_G2
7515 || r_type == R_ARM_ALU_SB_G0
7516 || r_type == R_ARM_ALU_SB_G1
7517 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
7518 {
7519 (*_bfd_error_handler)
7520 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7521 input_bfd, input_section,
7522 (long) rel->r_offset, abs (signed_value), howto->name);
7523 return bfd_reloc_overflow;
7524 }
7525
7526 /* Mask out the value and the ADD/SUB part of the opcode; take care
7527 not to destroy the S bit. */
7528 insn &= 0xff1ff000;
7529
7530 /* Set the opcode according to whether the value to go in the
7531 place is negative. */
7532 if (signed_value < 0)
7533 insn |= 1 << 22;
7534 else
7535 insn |= 1 << 23;
7536
7537 /* Encode the offset. */
7538 insn |= g_n;
7539
7540 bfd_put_32 (input_bfd, insn, hit_data);
7541 }
7542 return bfd_reloc_ok;
7543
7544 case R_ARM_LDR_PC_G0:
7545 case R_ARM_LDR_PC_G1:
7546 case R_ARM_LDR_PC_G2:
7547 case R_ARM_LDR_SB_G0:
7548 case R_ARM_LDR_SB_G1:
7549 case R_ARM_LDR_SB_G2:
7550 {
7551 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7552 bfd_vma pc = input_section->output_section->vma
7553 + input_section->output_offset + rel->r_offset;
7554 bfd_vma sb = 0; /* See note above. */
7555 bfd_vma residual;
7556 bfd_signed_vma signed_value;
7557 int group = 0;
7558
7559 /* Determine which groups of bits to calculate. */
7560 switch (r_type)
7561 {
7562 case R_ARM_LDR_PC_G0:
7563 case R_ARM_LDR_SB_G0:
7564 group = 0;
7565 break;
7566
7567 case R_ARM_LDR_PC_G1:
7568 case R_ARM_LDR_SB_G1:
7569 group = 1;
7570 break;
7571
7572 case R_ARM_LDR_PC_G2:
7573 case R_ARM_LDR_SB_G2:
7574 group = 2;
7575 break;
7576
7577 default:
7578 abort ();
7579 }
7580
7581 /* If REL, extract the addend from the insn. If RELA, it will
7582 have already been fetched for us. */
7583 if (globals->use_rel)
7584 {
7585 int negative = (insn & (1 << 23)) ? 1 : -1;
7586 signed_addend = negative * (insn & 0xfff);
7587 }
7588
7589 /* Compute the value (X) to go in the place. */
7590 if (r_type == R_ARM_LDR_PC_G0
7591 || r_type == R_ARM_LDR_PC_G1
7592 || r_type == R_ARM_LDR_PC_G2)
7593 /* PC relative. */
7594 signed_value = value - pc + signed_addend;
7595 else
7596 /* Section base relative. */
7597 signed_value = value - sb + signed_addend;
7598
7599 /* Calculate the value of the relevant G_{n-1} to obtain
7600 the residual at that stage. */
7601 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7602
7603 /* Check for overflow. */
7604 if (residual >= 0x1000)
7605 {
7606 (*_bfd_error_handler)
7607 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7608 input_bfd, input_section,
7609 (long) rel->r_offset, abs (signed_value), howto->name);
7610 return bfd_reloc_overflow;
7611 }
7612
7613 /* Mask out the value and U bit. */
7614 insn &= 0xff7ff000;
7615
7616 /* Set the U bit if the value to go in the place is non-negative. */
7617 if (signed_value >= 0)
7618 insn |= 1 << 23;
7619
7620 /* Encode the offset. */
7621 insn |= residual;
7622
7623 bfd_put_32 (input_bfd, insn, hit_data);
7624 }
7625 return bfd_reloc_ok;
7626
7627 case R_ARM_LDRS_PC_G0:
7628 case R_ARM_LDRS_PC_G1:
7629 case R_ARM_LDRS_PC_G2:
7630 case R_ARM_LDRS_SB_G0:
7631 case R_ARM_LDRS_SB_G1:
7632 case R_ARM_LDRS_SB_G2:
7633 {
7634 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7635 bfd_vma pc = input_section->output_section->vma
7636 + input_section->output_offset + rel->r_offset;
7637 bfd_vma sb = 0; /* See note above. */
7638 bfd_vma residual;
7639 bfd_signed_vma signed_value;
7640 int group = 0;
7641
7642 /* Determine which groups of bits to calculate. */
7643 switch (r_type)
7644 {
7645 case R_ARM_LDRS_PC_G0:
7646 case R_ARM_LDRS_SB_G0:
7647 group = 0;
7648 break;
7649
7650 case R_ARM_LDRS_PC_G1:
7651 case R_ARM_LDRS_SB_G1:
7652 group = 1;
7653 break;
7654
7655 case R_ARM_LDRS_PC_G2:
7656 case R_ARM_LDRS_SB_G2:
7657 group = 2;
7658 break;
7659
7660 default:
7661 abort ();
7662 }
7663
7664 /* If REL, extract the addend from the insn. If RELA, it will
7665 have already been fetched for us. */
7666 if (globals->use_rel)
7667 {
7668 int negative = (insn & (1 << 23)) ? 1 : -1;
7669 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
7670 }
7671
7672 /* Compute the value (X) to go in the place. */
7673 if (r_type == R_ARM_LDRS_PC_G0
7674 || r_type == R_ARM_LDRS_PC_G1
7675 || r_type == R_ARM_LDRS_PC_G2)
7676 /* PC relative. */
7677 signed_value = value - pc + signed_addend;
7678 else
7679 /* Section base relative. */
7680 signed_value = value - sb + signed_addend;
7681
7682 /* Calculate the value of the relevant G_{n-1} to obtain
7683 the residual at that stage. */
7684 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7685
7686 /* Check for overflow. */
7687 if (residual >= 0x100)
7688 {
7689 (*_bfd_error_handler)
7690 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7691 input_bfd, input_section,
7692 (long) rel->r_offset, abs (signed_value), howto->name);
7693 return bfd_reloc_overflow;
7694 }
7695
7696 /* Mask out the value and U bit. */
7697 insn &= 0xff7ff0f0;
7698
7699 /* Set the U bit if the value to go in the place is non-negative. */
7700 if (signed_value >= 0)
7701 insn |= 1 << 23;
7702
7703 /* Encode the offset. */
7704 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
7705
7706 bfd_put_32 (input_bfd, insn, hit_data);
7707 }
7708 return bfd_reloc_ok;
7709
7710 case R_ARM_LDC_PC_G0:
7711 case R_ARM_LDC_PC_G1:
7712 case R_ARM_LDC_PC_G2:
7713 case R_ARM_LDC_SB_G0:
7714 case R_ARM_LDC_SB_G1:
7715 case R_ARM_LDC_SB_G2:
7716 {
7717 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7718 bfd_vma pc = input_section->output_section->vma
7719 + input_section->output_offset + rel->r_offset;
7720 bfd_vma sb = 0; /* See note above. */
7721 bfd_vma residual;
7722 bfd_signed_vma signed_value;
7723 int group = 0;
7724
7725 /* Determine which groups of bits to calculate. */
7726 switch (r_type)
7727 {
7728 case R_ARM_LDC_PC_G0:
7729 case R_ARM_LDC_SB_G0:
7730 group = 0;
7731 break;
7732
7733 case R_ARM_LDC_PC_G1:
7734 case R_ARM_LDC_SB_G1:
7735 group = 1;
7736 break;
7737
7738 case R_ARM_LDC_PC_G2:
7739 case R_ARM_LDC_SB_G2:
7740 group = 2;
7741 break;
7742
7743 default:
7744 abort ();
7745 }
7746
7747 /* If REL, extract the addend from the insn. If RELA, it will
7748 have already been fetched for us. */
7749 if (globals->use_rel)
7750 {
7751 int negative = (insn & (1 << 23)) ? 1 : -1;
7752 signed_addend = negative * ((insn & 0xff) << 2);
7753 }
7754
7755 /* Compute the value (X) to go in the place. */
7756 if (r_type == R_ARM_LDC_PC_G0
7757 || r_type == R_ARM_LDC_PC_G1
7758 || r_type == R_ARM_LDC_PC_G2)
7759 /* PC relative. */
7760 signed_value = value - pc + signed_addend;
7761 else
7762 /* Section base relative. */
7763 signed_value = value - sb + signed_addend;
7764
7765 /* Calculate the value of the relevant G_{n-1} to obtain
7766 the residual at that stage. */
7767 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7768
7769 /* Check for overflow. (The absolute value to go in the place must be
7770 divisible by four and, after having been divided by four, must
7771 fit in eight bits.) */
7772 if ((residual & 0x3) != 0 || residual >= 0x400)
7773 {
7774 (*_bfd_error_handler)
7775 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7776 input_bfd, input_section,
7777 (long) rel->r_offset, abs (signed_value), howto->name);
7778 return bfd_reloc_overflow;
7779 }
7780
7781 /* Mask out the value and U bit. */
7782 insn &= 0xff7fff00;
7783
7784 /* Set the U bit if the value to go in the place is non-negative. */
7785 if (signed_value >= 0)
7786 insn |= 1 << 23;
7787
7788 /* Encode the offset. */
7789 insn |= residual >> 2;
7790
7791 bfd_put_32 (input_bfd, insn, hit_data);
7792 }
7793 return bfd_reloc_ok;
7794
7795 default:
7796 return bfd_reloc_notsupported;
7797 }
7798 }
7799
7800 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
7801 static void
7802 arm_add_to_rel (bfd * abfd,
7803 bfd_byte * address,
7804 reloc_howto_type * howto,
7805 bfd_signed_vma increment)
7806 {
7807 bfd_signed_vma addend;
7808
7809 if (howto->type == R_ARM_THM_CALL
7810 || howto->type == R_ARM_THM_JUMP24)
7811 {
7812 int upper_insn, lower_insn;
7813 int upper, lower;
7814
7815 upper_insn = bfd_get_16 (abfd, address);
7816 lower_insn = bfd_get_16 (abfd, address + 2);
7817 upper = upper_insn & 0x7ff;
7818 lower = lower_insn & 0x7ff;
7819
7820 addend = (upper << 12) | (lower << 1);
7821 addend += increment;
7822 addend >>= 1;
7823
7824 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
7825 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
7826
7827 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
7828 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
7829 }
7830 else
7831 {
7832 bfd_vma contents;
7833
7834 contents = bfd_get_32 (abfd, address);
7835
7836 /* Get the (signed) value from the instruction. */
7837 addend = contents & howto->src_mask;
7838 if (addend & ((howto->src_mask + 1) >> 1))
7839 {
7840 bfd_signed_vma mask;
7841
7842 mask = -1;
7843 mask &= ~ howto->src_mask;
7844 addend |= mask;
7845 }
7846
7847 /* Add in the increment, (which is a byte value). */
7848 switch (howto->type)
7849 {
7850 default:
7851 addend += increment;
7852 break;
7853
7854 case R_ARM_PC24:
7855 case R_ARM_PLT32:
7856 case R_ARM_CALL:
7857 case R_ARM_JUMP24:
7858 addend <<= howto->size;
7859 addend += increment;
7860
7861 /* Should we check for overflow here ? */
7862
7863 /* Drop any undesired bits. */
7864 addend >>= howto->rightshift;
7865 break;
7866 }
7867
7868 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
7869
7870 bfd_put_32 (abfd, contents, address);
7871 }
7872 }
7873
7874 #define IS_ARM_TLS_RELOC(R_TYPE) \
7875 ((R_TYPE) == R_ARM_TLS_GD32 \
7876 || (R_TYPE) == R_ARM_TLS_LDO32 \
7877 || (R_TYPE) == R_ARM_TLS_LDM32 \
7878 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
7879 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
7880 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
7881 || (R_TYPE) == R_ARM_TLS_LE32 \
7882 || (R_TYPE) == R_ARM_TLS_IE32)
7883
7884 /* Relocate an ARM ELF section. */
7885
7886 static bfd_boolean
7887 elf32_arm_relocate_section (bfd * output_bfd,
7888 struct bfd_link_info * info,
7889 bfd * input_bfd,
7890 asection * input_section,
7891 bfd_byte * contents,
7892 Elf_Internal_Rela * relocs,
7893 Elf_Internal_Sym * local_syms,
7894 asection ** local_sections)
7895 {
7896 Elf_Internal_Shdr *symtab_hdr;
7897 struct elf_link_hash_entry **sym_hashes;
7898 Elf_Internal_Rela *rel;
7899 Elf_Internal_Rela *relend;
7900 const char *name;
7901 struct elf32_arm_link_hash_table * globals;
7902
7903 globals = elf32_arm_hash_table (info);
7904
7905 symtab_hdr = & elf_symtab_hdr (input_bfd);
7906 sym_hashes = elf_sym_hashes (input_bfd);
7907
7908 rel = relocs;
7909 relend = relocs + input_section->reloc_count;
7910 for (; rel < relend; rel++)
7911 {
7912 int r_type;
7913 reloc_howto_type * howto;
7914 unsigned long r_symndx;
7915 Elf_Internal_Sym * sym;
7916 asection * sec;
7917 struct elf_link_hash_entry * h;
7918 bfd_vma relocation;
7919 bfd_reloc_status_type r;
7920 arelent bfd_reloc;
7921 char sym_type;
7922 bfd_boolean unresolved_reloc = FALSE;
7923 char *error_message = NULL;
7924
7925 r_symndx = ELF32_R_SYM (rel->r_info);
7926 r_type = ELF32_R_TYPE (rel->r_info);
7927 r_type = arm_real_reloc_type (globals, r_type);
7928
7929 if ( r_type == R_ARM_GNU_VTENTRY
7930 || r_type == R_ARM_GNU_VTINHERIT)
7931 continue;
7932
7933 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
7934 howto = bfd_reloc.howto;
7935
7936 h = NULL;
7937 sym = NULL;
7938 sec = NULL;
7939
7940 if (r_symndx < symtab_hdr->sh_info)
7941 {
7942 sym = local_syms + r_symndx;
7943 sym_type = ELF32_ST_TYPE (sym->st_info);
7944 sec = local_sections[r_symndx];
7945 if (globals->use_rel)
7946 {
7947 relocation = (sec->output_section->vma
7948 + sec->output_offset
7949 + sym->st_value);
7950 if (!info->relocatable
7951 && (sec->flags & SEC_MERGE)
7952 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7953 {
7954 asection *msec;
7955 bfd_vma addend, value;
7956
7957 switch (r_type)
7958 {
7959 case R_ARM_MOVW_ABS_NC:
7960 case R_ARM_MOVT_ABS:
7961 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
7962 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
7963 addend = (addend ^ 0x8000) - 0x8000;
7964 break;
7965
7966 case R_ARM_THM_MOVW_ABS_NC:
7967 case R_ARM_THM_MOVT_ABS:
7968 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
7969 << 16;
7970 value |= bfd_get_16 (input_bfd,
7971 contents + rel->r_offset + 2);
7972 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
7973 | ((value & 0x04000000) >> 15);
7974 addend = (addend ^ 0x8000) - 0x8000;
7975 break;
7976
7977 default:
7978 if (howto->rightshift
7979 || (howto->src_mask & (howto->src_mask + 1)))
7980 {
7981 (*_bfd_error_handler)
7982 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
7983 input_bfd, input_section,
7984 (long) rel->r_offset, howto->name);
7985 return FALSE;
7986 }
7987
7988 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
7989
7990 /* Get the (signed) value from the instruction. */
7991 addend = value & howto->src_mask;
7992 if (addend & ((howto->src_mask + 1) >> 1))
7993 {
7994 bfd_signed_vma mask;
7995
7996 mask = -1;
7997 mask &= ~ howto->src_mask;
7998 addend |= mask;
7999 }
8000 break;
8001 }
8002
8003 msec = sec;
8004 addend =
8005 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
8006 - relocation;
8007 addend += msec->output_section->vma + msec->output_offset;
8008
8009 /* Cases here must match those in the preceeding
8010 switch statement. */
8011 switch (r_type)
8012 {
8013 case R_ARM_MOVW_ABS_NC:
8014 case R_ARM_MOVT_ABS:
8015 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
8016 | (addend & 0xfff);
8017 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
8018 break;
8019
8020 case R_ARM_THM_MOVW_ABS_NC:
8021 case R_ARM_THM_MOVT_ABS:
8022 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
8023 | (addend & 0xff) | ((addend & 0x0800) << 15);
8024 bfd_put_16 (input_bfd, value >> 16,
8025 contents + rel->r_offset);
8026 bfd_put_16 (input_bfd, value,
8027 contents + rel->r_offset + 2);
8028 break;
8029
8030 default:
8031 value = (value & ~ howto->dst_mask)
8032 | (addend & howto->dst_mask);
8033 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
8034 break;
8035 }
8036 }
8037 }
8038 else
8039 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
8040 }
8041 else
8042 {
8043 bfd_boolean warned;
8044
8045 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
8046 r_symndx, symtab_hdr, sym_hashes,
8047 h, sec, relocation,
8048 unresolved_reloc, warned);
8049
8050 sym_type = h->type;
8051 }
8052
8053 if (sec != NULL && elf_discarded_section (sec))
8054 {
8055 /* For relocs against symbols from removed linkonce sections,
8056 or sections discarded by a linker script, we just want the
8057 section contents zeroed. Avoid any special processing. */
8058 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
8059 rel->r_info = 0;
8060 rel->r_addend = 0;
8061 continue;
8062 }
8063
8064 if (info->relocatable)
8065 {
8066 /* This is a relocatable link. We don't have to change
8067 anything, unless the reloc is against a section symbol,
8068 in which case we have to adjust according to where the
8069 section symbol winds up in the output section. */
8070 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
8071 {
8072 if (globals->use_rel)
8073 arm_add_to_rel (input_bfd, contents + rel->r_offset,
8074 howto, (bfd_signed_vma) sec->output_offset);
8075 else
8076 rel->r_addend += sec->output_offset;
8077 }
8078 continue;
8079 }
8080
8081 if (h != NULL)
8082 name = h->root.root.string;
8083 else
8084 {
8085 name = (bfd_elf_string_from_elf_section
8086 (input_bfd, symtab_hdr->sh_link, sym->st_name));
8087 if (name == NULL || *name == '\0')
8088 name = bfd_section_name (input_bfd, sec);
8089 }
8090
8091 if (r_symndx != 0
8092 && r_type != R_ARM_NONE
8093 && (h == NULL
8094 || h->root.type == bfd_link_hash_defined
8095 || h->root.type == bfd_link_hash_defweak)
8096 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
8097 {
8098 (*_bfd_error_handler)
8099 ((sym_type == STT_TLS
8100 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
8101 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
8102 input_bfd,
8103 input_section,
8104 (long) rel->r_offset,
8105 howto->name,
8106 name);
8107 }
8108
8109 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
8110 input_section, contents, rel,
8111 relocation, info, sec, name,
8112 (h ? ELF_ST_TYPE (h->type) :
8113 ELF_ST_TYPE (sym->st_info)), h,
8114 &unresolved_reloc, &error_message);
8115
8116 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
8117 because such sections are not SEC_ALLOC and thus ld.so will
8118 not process them. */
8119 if (unresolved_reloc
8120 && !((input_section->flags & SEC_DEBUGGING) != 0
8121 && h->def_dynamic))
8122 {
8123 (*_bfd_error_handler)
8124 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
8125 input_bfd,
8126 input_section,
8127 (long) rel->r_offset,
8128 howto->name,
8129 h->root.root.string);
8130 return FALSE;
8131 }
8132
8133 if (r != bfd_reloc_ok)
8134 {
8135 switch (r)
8136 {
8137 case bfd_reloc_overflow:
8138 /* If the overflowing reloc was to an undefined symbol,
8139 we have already printed one error message and there
8140 is no point complaining again. */
8141 if ((! h ||
8142 h->root.type != bfd_link_hash_undefined)
8143 && (!((*info->callbacks->reloc_overflow)
8144 (info, (h ? &h->root : NULL), name, howto->name,
8145 (bfd_vma) 0, input_bfd, input_section,
8146 rel->r_offset))))
8147 return FALSE;
8148 break;
8149
8150 case bfd_reloc_undefined:
8151 if (!((*info->callbacks->undefined_symbol)
8152 (info, name, input_bfd, input_section,
8153 rel->r_offset, TRUE)))
8154 return FALSE;
8155 break;
8156
8157 case bfd_reloc_outofrange:
8158 error_message = _("out of range");
8159 goto common_error;
8160
8161 case bfd_reloc_notsupported:
8162 error_message = _("unsupported relocation");
8163 goto common_error;
8164
8165 case bfd_reloc_dangerous:
8166 /* error_message should already be set. */
8167 goto common_error;
8168
8169 default:
8170 error_message = _("unknown error");
8171 /* Fall through. */
8172
8173 common_error:
8174 BFD_ASSERT (error_message != NULL);
8175 if (!((*info->callbacks->reloc_dangerous)
8176 (info, error_message, input_bfd, input_section,
8177 rel->r_offset)))
8178 return FALSE;
8179 break;
8180 }
8181 }
8182 }
8183
8184 return TRUE;
8185 }
8186
8187 /* Set the right machine number. */
8188
8189 static bfd_boolean
8190 elf32_arm_object_p (bfd *abfd)
8191 {
8192 unsigned int mach;
8193
8194 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
8195
8196 if (mach != bfd_mach_arm_unknown)
8197 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
8198
8199 else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
8200 bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
8201
8202 else
8203 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
8204
8205 return TRUE;
8206 }
8207
8208 /* Function to keep ARM specific flags in the ELF header. */
8209
8210 static bfd_boolean
8211 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
8212 {
8213 if (elf_flags_init (abfd)
8214 && elf_elfheader (abfd)->e_flags != flags)
8215 {
8216 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
8217 {
8218 if (flags & EF_ARM_INTERWORK)
8219 (*_bfd_error_handler)
8220 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
8221 abfd);
8222 else
8223 _bfd_error_handler
8224 (_("Warning: Clearing the interworking flag of %B due to outside request"),
8225 abfd);
8226 }
8227 }
8228 else
8229 {
8230 elf_elfheader (abfd)->e_flags = flags;
8231 elf_flags_init (abfd) = TRUE;
8232 }
8233
8234 return TRUE;
8235 }
8236
8237 /* Copy backend specific data from one object module to another. */
8238
8239 static bfd_boolean
8240 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
8241 {
8242 flagword in_flags;
8243 flagword out_flags;
8244
8245 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
8246 return TRUE;
8247
8248 in_flags = elf_elfheader (ibfd)->e_flags;
8249 out_flags = elf_elfheader (obfd)->e_flags;
8250
8251 if (elf_flags_init (obfd)
8252 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
8253 && in_flags != out_flags)
8254 {
8255 /* Cannot mix APCS26 and APCS32 code. */
8256 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
8257 return FALSE;
8258
8259 /* Cannot mix float APCS and non-float APCS code. */
8260 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
8261 return FALSE;
8262
8263 /* If the src and dest have different interworking flags
8264 then turn off the interworking bit. */
8265 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
8266 {
8267 if (out_flags & EF_ARM_INTERWORK)
8268 _bfd_error_handler
8269 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
8270 obfd, ibfd);
8271
8272 in_flags &= ~EF_ARM_INTERWORK;
8273 }
8274
8275 /* Likewise for PIC, though don't warn for this case. */
8276 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
8277 in_flags &= ~EF_ARM_PIC;
8278 }
8279
8280 elf_elfheader (obfd)->e_flags = in_flags;
8281 elf_flags_init (obfd) = TRUE;
8282
8283 /* Also copy the EI_OSABI field. */
8284 elf_elfheader (obfd)->e_ident[EI_OSABI] =
8285 elf_elfheader (ibfd)->e_ident[EI_OSABI];
8286
8287 /* Copy object attributes. */
8288 _bfd_elf_copy_obj_attributes (ibfd, obfd);
8289
8290 return TRUE;
8291 }
8292
8293 /* Values for Tag_ABI_PCS_R9_use. */
8294 enum
8295 {
8296 AEABI_R9_V6,
8297 AEABI_R9_SB,
8298 AEABI_R9_TLS,
8299 AEABI_R9_unused
8300 };
8301
8302 /* Values for Tag_ABI_PCS_RW_data. */
8303 enum
8304 {
8305 AEABI_PCS_RW_data_absolute,
8306 AEABI_PCS_RW_data_PCrel,
8307 AEABI_PCS_RW_data_SBrel,
8308 AEABI_PCS_RW_data_unused
8309 };
8310
8311 /* Values for Tag_ABI_enum_size. */
8312 enum
8313 {
8314 AEABI_enum_unused,
8315 AEABI_enum_short,
8316 AEABI_enum_wide,
8317 AEABI_enum_forced_wide
8318 };
8319
8320 /* Determine whether an object attribute tag takes an integer, a
8321 string or both. */
8322
8323 static int
8324 elf32_arm_obj_attrs_arg_type (int tag)
8325 {
8326 if (tag == Tag_compatibility)
8327 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
8328 else if (tag == Tag_nodefaults)
8329 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
8330 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
8331 return ATTR_TYPE_FLAG_STR_VAL;
8332 else if (tag < 32)
8333 return ATTR_TYPE_FLAG_INT_VAL;
8334 else
8335 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
8336 }
8337
8338 /* The ABI defines that Tag_conformance should be emitted first, and that
8339 Tag_nodefaults should be second (if either is defined). This sets those
8340 two positions, and bumps up the position of all the remaining tags to
8341 compensate. */
8342 static int
8343 elf32_arm_obj_attrs_order (int num)
8344 {
8345 if (num == 4)
8346 return Tag_conformance;
8347 if (num == 5)
8348 return Tag_nodefaults;
8349 if ((num - 2) < Tag_nodefaults)
8350 return num - 2;
8351 if ((num - 1) < Tag_conformance)
8352 return num - 1;
8353 return num;
8354 }
8355
8356 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
8357 Returns -1 if no architecture could be read. */
8358
8359 static int
8360 get_secondary_compatible_arch (bfd *abfd)
8361 {
8362 obj_attribute *attr =
8363 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
8364
8365 /* Note: the tag and its argument below are uleb128 values, though
8366 currently-defined values fit in one byte for each. */
8367 if (attr->s
8368 && attr->s[0] == Tag_CPU_arch
8369 && (attr->s[1] & 128) != 128
8370 && attr->s[2] == 0)
8371 return attr->s[1];
8372
8373 /* This tag is "safely ignorable", so don't complain if it looks funny. */
8374 return -1;
8375 }
8376
8377 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
8378 The tag is removed if ARCH is -1. */
8379
8380 static void
8381 set_secondary_compatible_arch (bfd *abfd, int arch)
8382 {
8383 obj_attribute *attr =
8384 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
8385
8386 if (arch == -1)
8387 {
8388 attr->s = NULL;
8389 return;
8390 }
8391
8392 /* Note: the tag and its argument below are uleb128 values, though
8393 currently-defined values fit in one byte for each. */
8394 if (!attr->s)
8395 attr->s = bfd_alloc (abfd, 3);
8396 attr->s[0] = Tag_CPU_arch;
8397 attr->s[1] = arch;
8398 attr->s[2] = '\0';
8399 }
8400
8401 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
8402 into account. */
8403
8404 static int
8405 tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
8406 int newtag, int secondary_compat)
8407 {
8408 #define T(X) TAG_CPU_ARCH_##X
8409 int tagl, tagh, result;
8410 const int v6t2[] =
8411 {
8412 T(V6T2), /* PRE_V4. */
8413 T(V6T2), /* V4. */
8414 T(V6T2), /* V4T. */
8415 T(V6T2), /* V5T. */
8416 T(V6T2), /* V5TE. */
8417 T(V6T2), /* V5TEJ. */
8418 T(V6T2), /* V6. */
8419 T(V7), /* V6KZ. */
8420 T(V6T2) /* V6T2. */
8421 };
8422 const int v6k[] =
8423 {
8424 T(V6K), /* PRE_V4. */
8425 T(V6K), /* V4. */
8426 T(V6K), /* V4T. */
8427 T(V6K), /* V5T. */
8428 T(V6K), /* V5TE. */
8429 T(V6K), /* V5TEJ. */
8430 T(V6K), /* V6. */
8431 T(V6KZ), /* V6KZ. */
8432 T(V7), /* V6T2. */
8433 T(V6K) /* V6K. */
8434 };
8435 const int v7[] =
8436 {
8437 T(V7), /* PRE_V4. */
8438 T(V7), /* V4. */
8439 T(V7), /* V4T. */
8440 T(V7), /* V5T. */
8441 T(V7), /* V5TE. */
8442 T(V7), /* V5TEJ. */
8443 T(V7), /* V6. */
8444 T(V7), /* V6KZ. */
8445 T(V7), /* V6T2. */
8446 T(V7), /* V6K. */
8447 T(V7) /* V7. */
8448 };
8449 const int v6_m[] =
8450 {
8451 -1, /* PRE_V4. */
8452 -1, /* V4. */
8453 T(V6K), /* V4T. */
8454 T(V6K), /* V5T. */
8455 T(V6K), /* V5TE. */
8456 T(V6K), /* V5TEJ. */
8457 T(V6K), /* V6. */
8458 T(V6KZ), /* V6KZ. */
8459 T(V7), /* V6T2. */
8460 T(V6K), /* V6K. */
8461 T(V7), /* V7. */
8462 T(V6_M) /* V6_M. */
8463 };
8464 const int v6s_m[] =
8465 {
8466 -1, /* PRE_V4. */
8467 -1, /* V4. */
8468 T(V6K), /* V4T. */
8469 T(V6K), /* V5T. */
8470 T(V6K), /* V5TE. */
8471 T(V6K), /* V5TEJ. */
8472 T(V6K), /* V6. */
8473 T(V6KZ), /* V6KZ. */
8474 T(V7), /* V6T2. */
8475 T(V6K), /* V6K. */
8476 T(V7), /* V7. */
8477 T(V6S_M), /* V6_M. */
8478 T(V6S_M) /* V6S_M. */
8479 };
8480 const int v4t_plus_v6_m[] =
8481 {
8482 -1, /* PRE_V4. */
8483 -1, /* V4. */
8484 T(V4T), /* V4T. */
8485 T(V5T), /* V5T. */
8486 T(V5TE), /* V5TE. */
8487 T(V5TEJ), /* V5TEJ. */
8488 T(V6), /* V6. */
8489 T(V6KZ), /* V6KZ. */
8490 T(V6T2), /* V6T2. */
8491 T(V6K), /* V6K. */
8492 T(V7), /* V7. */
8493 T(V6_M), /* V6_M. */
8494 T(V6S_M), /* V6S_M. */
8495 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
8496 };
8497 const int *comb[] =
8498 {
8499 v6t2,
8500 v6k,
8501 v7,
8502 v6_m,
8503 v6s_m,
8504 /* Pseudo-architecture. */
8505 v4t_plus_v6_m
8506 };
8507
8508 /* Check we've not got a higher architecture than we know about. */
8509
8510 if (oldtag >= MAX_TAG_CPU_ARCH || newtag >= MAX_TAG_CPU_ARCH)
8511 {
8512 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
8513 return -1;
8514 }
8515
8516 /* Override old tag if we have a Tag_also_compatible_with on the output. */
8517
8518 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
8519 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
8520 oldtag = T(V4T_PLUS_V6_M);
8521
8522 /* And override the new tag if we have a Tag_also_compatible_with on the
8523 input. */
8524
8525 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
8526 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
8527 newtag = T(V4T_PLUS_V6_M);
8528
8529 tagl = (oldtag < newtag) ? oldtag : newtag;
8530 result = tagh = (oldtag > newtag) ? oldtag : newtag;
8531
8532 /* Architectures before V6KZ add features monotonically. */
8533 if (tagh <= TAG_CPU_ARCH_V6KZ)
8534 return result;
8535
8536 result = comb[tagh - T(V6T2)][tagl];
8537
8538 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
8539 as the canonical version. */
8540 if (result == T(V4T_PLUS_V6_M))
8541 {
8542 result = T(V4T);
8543 *secondary_compat_out = T(V6_M);
8544 }
8545 else
8546 *secondary_compat_out = -1;
8547
8548 if (result == -1)
8549 {
8550 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
8551 ibfd, oldtag, newtag);
8552 return -1;
8553 }
8554
8555 return result;
8556 #undef T
8557 }
8558
8559 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
8560 are conflicting attributes. */
8561
8562 static bfd_boolean
8563 elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
8564 {
8565 obj_attribute *in_attr;
8566 obj_attribute *out_attr;
8567 obj_attribute_list *in_list;
8568 obj_attribute_list *out_list;
8569 obj_attribute_list **out_listp;
8570 /* Some tags have 0 = don't care, 1 = strong requirement,
8571 2 = weak requirement. */
8572 static const int order_021[3] = {0, 2, 1};
8573 /* For use with Tag_VFP_arch. */
8574 static const int order_01243[5] = {0, 1, 2, 4, 3};
8575 int i;
8576 bfd_boolean result = TRUE;
8577
8578 if (!elf_known_obj_attributes_proc (obfd)[0].i)
8579 {
8580 /* This is the first object. Copy the attributes. */
8581 _bfd_elf_copy_obj_attributes (ibfd, obfd);
8582
8583 /* Use the Tag_null value to indicate the attributes have been
8584 initialized. */
8585 elf_known_obj_attributes_proc (obfd)[0].i = 1;
8586
8587 return TRUE;
8588 }
8589
8590 in_attr = elf_known_obj_attributes_proc (ibfd);
8591 out_attr = elf_known_obj_attributes_proc (obfd);
8592 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
8593 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
8594 {
8595 /* Ignore mismatches if the object doesn't use floating point. */
8596 if (out_attr[Tag_ABI_FP_number_model].i == 0)
8597 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
8598 else if (in_attr[Tag_ABI_FP_number_model].i != 0)
8599 {
8600 _bfd_error_handler
8601 (_("error: %B uses VFP register arguments, %B does not"),
8602 ibfd, obfd);
8603 result = FALSE;
8604 }
8605 }
8606
8607 for (i = 4; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
8608 {
8609 /* Merge this attribute with existing attributes. */
8610 switch (i)
8611 {
8612 case Tag_CPU_raw_name:
8613 case Tag_CPU_name:
8614 /* These are merged after Tag_CPU_arch. */
8615 break;
8616
8617 case Tag_ABI_optimization_goals:
8618 case Tag_ABI_FP_optimization_goals:
8619 /* Use the first value seen. */
8620 break;
8621
8622 case Tag_CPU_arch:
8623 {
8624 int secondary_compat = -1, secondary_compat_out = -1;
8625 unsigned int saved_out_attr = out_attr[i].i;
8626 static const char *name_table[] = {
8627 /* These aren't real CPU names, but we can't guess
8628 that from the architecture version alone. */
8629 "Pre v4",
8630 "ARM v4",
8631 "ARM v4T",
8632 "ARM v5T",
8633 "ARM v5TE",
8634 "ARM v5TEJ",
8635 "ARM v6",
8636 "ARM v6KZ",
8637 "ARM v6T2",
8638 "ARM v6K",
8639 "ARM v7",
8640 "ARM v6-M",
8641 "ARM v6S-M"
8642 };
8643
8644 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
8645 secondary_compat = get_secondary_compatible_arch (ibfd);
8646 secondary_compat_out = get_secondary_compatible_arch (obfd);
8647 out_attr[i].i = tag_cpu_arch_combine (ibfd, out_attr[i].i,
8648 &secondary_compat_out,
8649 in_attr[i].i,
8650 secondary_compat);
8651 set_secondary_compatible_arch (obfd, secondary_compat_out);
8652
8653 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
8654 if (out_attr[i].i == saved_out_attr)
8655 ; /* Leave the names alone. */
8656 else if (out_attr[i].i == in_attr[i].i)
8657 {
8658 /* The output architecture has been changed to match the
8659 input architecture. Use the input names. */
8660 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
8661 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
8662 : NULL;
8663 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
8664 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
8665 : NULL;
8666 }
8667 else
8668 {
8669 out_attr[Tag_CPU_name].s = NULL;
8670 out_attr[Tag_CPU_raw_name].s = NULL;
8671 }
8672
8673 /* If we still don't have a value for Tag_CPU_name,
8674 make one up now. Tag_CPU_raw_name remains blank. */
8675 if (out_attr[Tag_CPU_name].s == NULL
8676 && out_attr[i].i < ARRAY_SIZE (name_table))
8677 out_attr[Tag_CPU_name].s =
8678 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
8679 }
8680 break;
8681
8682 case Tag_ARM_ISA_use:
8683 case Tag_THUMB_ISA_use:
8684 case Tag_WMMX_arch:
8685 case Tag_Advanced_SIMD_arch:
8686 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
8687 case Tag_ABI_FP_rounding:
8688 case Tag_ABI_FP_exceptions:
8689 case Tag_ABI_FP_user_exceptions:
8690 case Tag_ABI_FP_number_model:
8691 case Tag_VFP_HP_extension:
8692 case Tag_CPU_unaligned_access:
8693 case Tag_T2EE_use:
8694 case Tag_Virtualization_use:
8695 case Tag_MPextension_use:
8696 /* Use the largest value specified. */
8697 if (in_attr[i].i > out_attr[i].i)
8698 out_attr[i].i = in_attr[i].i;
8699 break;
8700
8701 case Tag_ABI_align8_preserved:
8702 case Tag_ABI_PCS_RO_data:
8703 /* Use the smallest value specified. */
8704 if (in_attr[i].i < out_attr[i].i)
8705 out_attr[i].i = in_attr[i].i;
8706 break;
8707
8708 case Tag_ABI_align8_needed:
8709 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
8710 && (in_attr[Tag_ABI_align8_preserved].i == 0
8711 || out_attr[Tag_ABI_align8_preserved].i == 0))
8712 {
8713 /* This error message should be enabled once all non-conformant
8714 binaries in the toolchain have had the attributes set
8715 properly.
8716 _bfd_error_handler
8717 (_("error: %B: 8-byte data alignment conflicts with %B"),
8718 obfd, ibfd);
8719 result = FALSE; */
8720 }
8721 /* Fall through. */
8722 case Tag_ABI_FP_denormal:
8723 case Tag_ABI_PCS_GOT_use:
8724 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
8725 value if greater than 2 (for future-proofing). */
8726 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
8727 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
8728 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
8729 out_attr[i].i = in_attr[i].i;
8730 break;
8731
8732
8733 case Tag_CPU_arch_profile:
8734 if (out_attr[i].i != in_attr[i].i)
8735 {
8736 /* 0 will merge with anything.
8737 'A' and 'S' merge to 'A'.
8738 'R' and 'S' merge to 'R'.
8739 'M' and 'A|R|S' is an error. */
8740 if (out_attr[i].i == 0
8741 || (out_attr[i].i == 'S'
8742 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
8743 out_attr[i].i = in_attr[i].i;
8744 else if (in_attr[i].i == 0
8745 || (in_attr[i].i == 'S'
8746 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
8747 ; /* Do nothing. */
8748 else
8749 {
8750 _bfd_error_handler
8751 (_("error: %B: Conflicting architecture profiles %c/%c"),
8752 ibfd,
8753 in_attr[i].i ? in_attr[i].i : '0',
8754 out_attr[i].i ? out_attr[i].i : '0');
8755 result = FALSE;
8756 }
8757 }
8758 break;
8759 case Tag_VFP_arch:
8760 /* Use the "greatest" from the sequence 0, 1, 2, 4, 3, or the
8761 largest value if greater than 4 (for future-proofing). */
8762 if ((in_attr[i].i > 4 && in_attr[i].i > out_attr[i].i)
8763 || (in_attr[i].i <= 4 && out_attr[i].i <= 4
8764 && order_01243[in_attr[i].i] > order_01243[out_attr[i].i]))
8765 out_attr[i].i = in_attr[i].i;
8766 break;
8767 case Tag_PCS_config:
8768 if (out_attr[i].i == 0)
8769 out_attr[i].i = in_attr[i].i;
8770 else if (in_attr[i].i != 0 && out_attr[i].i != 0)
8771 {
8772 /* It's sometimes ok to mix different configs, so this is only
8773 a warning. */
8774 _bfd_error_handler
8775 (_("Warning: %B: Conflicting platform configuration"), ibfd);
8776 }
8777 break;
8778 case Tag_ABI_PCS_R9_use:
8779 if (in_attr[i].i != out_attr[i].i
8780 && out_attr[i].i != AEABI_R9_unused
8781 && in_attr[i].i != AEABI_R9_unused)
8782 {
8783 _bfd_error_handler
8784 (_("error: %B: Conflicting use of R9"), ibfd);
8785 result = FALSE;
8786 }
8787 if (out_attr[i].i == AEABI_R9_unused)
8788 out_attr[i].i = in_attr[i].i;
8789 break;
8790 case Tag_ABI_PCS_RW_data:
8791 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
8792 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
8793 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
8794 {
8795 _bfd_error_handler
8796 (_("error: %B: SB relative addressing conflicts with use of R9"),
8797 ibfd);
8798 result = FALSE;
8799 }
8800 /* Use the smallest value specified. */
8801 if (in_attr[i].i < out_attr[i].i)
8802 out_attr[i].i = in_attr[i].i;
8803 break;
8804 case Tag_ABI_PCS_wchar_t:
8805 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
8806 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
8807 {
8808 _bfd_error_handler
8809 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
8810 ibfd, in_attr[i].i, out_attr[i].i);
8811 }
8812 else if (in_attr[i].i && !out_attr[i].i)
8813 out_attr[i].i = in_attr[i].i;
8814 break;
8815 case Tag_ABI_enum_size:
8816 if (in_attr[i].i != AEABI_enum_unused)
8817 {
8818 if (out_attr[i].i == AEABI_enum_unused
8819 || out_attr[i].i == AEABI_enum_forced_wide)
8820 {
8821 /* The existing object is compatible with anything.
8822 Use whatever requirements the new object has. */
8823 out_attr[i].i = in_attr[i].i;
8824 }
8825 else if (in_attr[i].i != AEABI_enum_forced_wide
8826 && out_attr[i].i != in_attr[i].i
8827 && !elf_arm_tdata (obfd)->no_enum_size_warning)
8828 {
8829 static const char *aeabi_enum_names[] =
8830 { "", "variable-size", "32-bit", "" };
8831 const char *in_name =
8832 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
8833 ? aeabi_enum_names[in_attr[i].i]
8834 : "<unknown>";
8835 const char *out_name =
8836 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
8837 ? aeabi_enum_names[out_attr[i].i]
8838 : "<unknown>";
8839 _bfd_error_handler
8840 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
8841 ibfd, in_name, out_name);
8842 }
8843 }
8844 break;
8845 case Tag_ABI_VFP_args:
8846 /* Aready done. */
8847 break;
8848 case Tag_ABI_WMMX_args:
8849 if (in_attr[i].i != out_attr[i].i)
8850 {
8851 _bfd_error_handler
8852 (_("error: %B uses iWMMXt register arguments, %B does not"),
8853 ibfd, obfd);
8854 result = FALSE;
8855 }
8856 break;
8857 case Tag_compatibility:
8858 /* Merged in target-independent code. */
8859 break;
8860 case Tag_ABI_HardFP_use:
8861 /* 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP). */
8862 if ((in_attr[i].i == 1 && out_attr[i].i == 2)
8863 || (in_attr[i].i == 2 && out_attr[i].i == 1))
8864 out_attr[i].i = 3;
8865 else if (in_attr[i].i > out_attr[i].i)
8866 out_attr[i].i = in_attr[i].i;
8867 break;
8868 case Tag_ABI_FP_16bit_format:
8869 if (in_attr[i].i != 0 && out_attr[i].i != 0)
8870 {
8871 if (in_attr[i].i != out_attr[i].i)
8872 {
8873 _bfd_error_handler
8874 (_("error: fp16 format mismatch between %B and %B"),
8875 ibfd, obfd);
8876 result = FALSE;
8877 }
8878 }
8879 if (in_attr[i].i != 0)
8880 out_attr[i].i = in_attr[i].i;
8881 break;
8882
8883 case Tag_nodefaults:
8884 /* This tag is set if it exists, but the value is unused (and is
8885 typically zero). We don't actually need to do anything here -
8886 the merge happens automatically when the type flags are merged
8887 below. */
8888 break;
8889 case Tag_also_compatible_with:
8890 /* Already done in Tag_CPU_arch. */
8891 break;
8892 case Tag_conformance:
8893 /* Keep the attribute if it matches. Throw it away otherwise.
8894 No attribute means no claim to conform. */
8895 if (!in_attr[i].s || !out_attr[i].s
8896 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
8897 out_attr[i].s = NULL;
8898 break;
8899
8900 default:
8901 {
8902 bfd *err_bfd = NULL;
8903
8904 /* The "known_obj_attributes" table does contain some undefined
8905 attributes. Ensure that there are unused. */
8906 if (out_attr[i].i != 0 || out_attr[i].s != NULL)
8907 err_bfd = obfd;
8908 else if (in_attr[i].i != 0 || in_attr[i].s != NULL)
8909 err_bfd = ibfd;
8910
8911 if (err_bfd != NULL)
8912 {
8913 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
8914 if ((i & 127) < 64)
8915 {
8916 _bfd_error_handler
8917 (_("%B: Unknown mandatory EABI object attribute %d"),
8918 err_bfd, i);
8919 bfd_set_error (bfd_error_bad_value);
8920 result = FALSE;
8921 }
8922 else
8923 {
8924 _bfd_error_handler
8925 (_("Warning: %B: Unknown EABI object attribute %d"),
8926 err_bfd, i);
8927 }
8928 }
8929
8930 /* Only pass on attributes that match in both inputs. */
8931 if (in_attr[i].i != out_attr[i].i
8932 || in_attr[i].s != out_attr[i].s
8933 || (in_attr[i].s != NULL && out_attr[i].s != NULL
8934 && strcmp (in_attr[i].s, out_attr[i].s) != 0))
8935 {
8936 out_attr[i].i = 0;
8937 out_attr[i].s = NULL;
8938 }
8939 }
8940 }
8941
8942 /* If out_attr was copied from in_attr then it won't have a type yet. */
8943 if (in_attr[i].type && !out_attr[i].type)
8944 out_attr[i].type = in_attr[i].type;
8945 }
8946
8947 /* Merge Tag_compatibility attributes and any common GNU ones. */
8948 _bfd_elf_merge_object_attributes (ibfd, obfd);
8949
8950 /* Check for any attributes not known on ARM. */
8951 in_list = elf_other_obj_attributes_proc (ibfd);
8952 out_listp = &elf_other_obj_attributes_proc (obfd);
8953 out_list = *out_listp;
8954
8955 for (; in_list || out_list; )
8956 {
8957 bfd *err_bfd = NULL;
8958 int err_tag = 0;
8959
8960 /* The tags for each list are in numerical order. */
8961 /* If the tags are equal, then merge. */
8962 if (out_list && (!in_list || in_list->tag > out_list->tag))
8963 {
8964 /* This attribute only exists in obfd. We can't merge, and we don't
8965 know what the tag means, so delete it. */
8966 err_bfd = obfd;
8967 err_tag = out_list->tag;
8968 *out_listp = out_list->next;
8969 out_list = *out_listp;
8970 }
8971 else if (in_list && (!out_list || in_list->tag < out_list->tag))
8972 {
8973 /* This attribute only exists in ibfd. We can't merge, and we don't
8974 know what the tag means, so ignore it. */
8975 err_bfd = ibfd;
8976 err_tag = in_list->tag;
8977 in_list = in_list->next;
8978 }
8979 else /* The tags are equal. */
8980 {
8981 /* As present, all attributes in the list are unknown, and
8982 therefore can't be merged meaningfully. */
8983 err_bfd = obfd;
8984 err_tag = out_list->tag;
8985
8986 /* Only pass on attributes that match in both inputs. */
8987 if (in_list->attr.i != out_list->attr.i
8988 || in_list->attr.s != out_list->attr.s
8989 || (in_list->attr.s && out_list->attr.s
8990 && strcmp (in_list->attr.s, out_list->attr.s) != 0))
8991 {
8992 /* No match. Delete the attribute. */
8993 *out_listp = out_list->next;
8994 out_list = *out_listp;
8995 }
8996 else
8997 {
8998 /* Matched. Keep the attribute and move to the next. */
8999 out_list = out_list->next;
9000 in_list = in_list->next;
9001 }
9002 }
9003
9004 if (err_bfd)
9005 {
9006 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
9007 if ((err_tag & 127) < 64)
9008 {
9009 _bfd_error_handler
9010 (_("%B: Unknown mandatory EABI object attribute %d"),
9011 err_bfd, err_tag);
9012 bfd_set_error (bfd_error_bad_value);
9013 result = FALSE;
9014 }
9015 else
9016 {
9017 _bfd_error_handler
9018 (_("Warning: %B: Unknown EABI object attribute %d"),
9019 err_bfd, err_tag);
9020 }
9021 }
9022 }
9023 return result;
9024 }
9025
9026
9027 /* Return TRUE if the two EABI versions are incompatible. */
9028
9029 static bfd_boolean
9030 elf32_arm_versions_compatible (unsigned iver, unsigned over)
9031 {
9032 /* v4 and v5 are the same spec before and after it was released,
9033 so allow mixing them. */
9034 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
9035 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
9036 return TRUE;
9037
9038 return (iver == over);
9039 }
9040
9041 /* Merge backend specific data from an object file to the output
9042 object file when linking. */
9043
9044 static bfd_boolean
9045 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
9046 {
9047 flagword out_flags;
9048 flagword in_flags;
9049 bfd_boolean flags_compatible = TRUE;
9050 asection *sec;
9051
9052 /* Check if we have the same endianess. */
9053 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
9054 return FALSE;
9055
9056 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
9057 return TRUE;
9058
9059 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
9060 return FALSE;
9061
9062 /* The input BFD must have had its flags initialised. */
9063 /* The following seems bogus to me -- The flags are initialized in
9064 the assembler but I don't think an elf_flags_init field is
9065 written into the object. */
9066 /* BFD_ASSERT (elf_flags_init (ibfd)); */
9067
9068 in_flags = elf_elfheader (ibfd)->e_flags;
9069 out_flags = elf_elfheader (obfd)->e_flags;
9070
9071 /* In theory there is no reason why we couldn't handle this. However
9072 in practice it isn't even close to working and there is no real
9073 reason to want it. */
9074 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
9075 && !(ibfd->flags & DYNAMIC)
9076 && (in_flags & EF_ARM_BE8))
9077 {
9078 _bfd_error_handler (_("error: %B is already in final BE8 format"),
9079 ibfd);
9080 return FALSE;
9081 }
9082
9083 if (!elf_flags_init (obfd))
9084 {
9085 /* If the input is the default architecture and had the default
9086 flags then do not bother setting the flags for the output
9087 architecture, instead allow future merges to do this. If no
9088 future merges ever set these flags then they will retain their
9089 uninitialised values, which surprise surprise, correspond
9090 to the default values. */
9091 if (bfd_get_arch_info (ibfd)->the_default
9092 && elf_elfheader (ibfd)->e_flags == 0)
9093 return TRUE;
9094
9095 elf_flags_init (obfd) = TRUE;
9096 elf_elfheader (obfd)->e_flags = in_flags;
9097
9098 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
9099 && bfd_get_arch_info (obfd)->the_default)
9100 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
9101
9102 return TRUE;
9103 }
9104
9105 /* Determine what should happen if the input ARM architecture
9106 does not match the output ARM architecture. */
9107 if (! bfd_arm_merge_machines (ibfd, obfd))
9108 return FALSE;
9109
9110 /* Identical flags must be compatible. */
9111 if (in_flags == out_flags)
9112 return TRUE;
9113
9114 /* Check to see if the input BFD actually contains any sections. If
9115 not, its flags may not have been initialised either, but it
9116 cannot actually cause any incompatiblity. Do not short-circuit
9117 dynamic objects; their section list may be emptied by
9118 elf_link_add_object_symbols.
9119
9120 Also check to see if there are no code sections in the input.
9121 In this case there is no need to check for code specific flags.
9122 XXX - do we need to worry about floating-point format compatability
9123 in data sections ? */
9124 if (!(ibfd->flags & DYNAMIC))
9125 {
9126 bfd_boolean null_input_bfd = TRUE;
9127 bfd_boolean only_data_sections = TRUE;
9128
9129 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9130 {
9131 /* Ignore synthetic glue sections. */
9132 if (strcmp (sec->name, ".glue_7")
9133 && strcmp (sec->name, ".glue_7t"))
9134 {
9135 if ((bfd_get_section_flags (ibfd, sec)
9136 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
9137 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
9138 only_data_sections = FALSE;
9139
9140 null_input_bfd = FALSE;
9141 break;
9142 }
9143 }
9144
9145 if (null_input_bfd || only_data_sections)
9146 return TRUE;
9147 }
9148
9149 /* Complain about various flag mismatches. */
9150 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
9151 EF_ARM_EABI_VERSION (out_flags)))
9152 {
9153 _bfd_error_handler
9154 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
9155 ibfd, obfd,
9156 (in_flags & EF_ARM_EABIMASK) >> 24,
9157 (out_flags & EF_ARM_EABIMASK) >> 24);
9158 return FALSE;
9159 }
9160
9161 /* Not sure what needs to be checked for EABI versions >= 1. */
9162 /* VxWorks libraries do not use these flags. */
9163 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
9164 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
9165 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
9166 {
9167 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
9168 {
9169 _bfd_error_handler
9170 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
9171 ibfd, obfd,
9172 in_flags & EF_ARM_APCS_26 ? 26 : 32,
9173 out_flags & EF_ARM_APCS_26 ? 26 : 32);
9174 flags_compatible = FALSE;
9175 }
9176
9177 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
9178 {
9179 if (in_flags & EF_ARM_APCS_FLOAT)
9180 _bfd_error_handler
9181 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
9182 ibfd, obfd);
9183 else
9184 _bfd_error_handler
9185 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
9186 ibfd, obfd);
9187
9188 flags_compatible = FALSE;
9189 }
9190
9191 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
9192 {
9193 if (in_flags & EF_ARM_VFP_FLOAT)
9194 _bfd_error_handler
9195 (_("error: %B uses VFP instructions, whereas %B does not"),
9196 ibfd, obfd);
9197 else
9198 _bfd_error_handler
9199 (_("error: %B uses FPA instructions, whereas %B does not"),
9200 ibfd, obfd);
9201
9202 flags_compatible = FALSE;
9203 }
9204
9205 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
9206 {
9207 if (in_flags & EF_ARM_MAVERICK_FLOAT)
9208 _bfd_error_handler
9209 (_("error: %B uses Maverick instructions, whereas %B does not"),
9210 ibfd, obfd);
9211 else
9212 _bfd_error_handler
9213 (_("error: %B does not use Maverick instructions, whereas %B does"),
9214 ibfd, obfd);
9215
9216 flags_compatible = FALSE;
9217 }
9218
9219 #ifdef EF_ARM_SOFT_FLOAT
9220 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
9221 {
9222 /* We can allow interworking between code that is VFP format
9223 layout, and uses either soft float or integer regs for
9224 passing floating point arguments and results. We already
9225 know that the APCS_FLOAT flags match; similarly for VFP
9226 flags. */
9227 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
9228 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
9229 {
9230 if (in_flags & EF_ARM_SOFT_FLOAT)
9231 _bfd_error_handler
9232 (_("error: %B uses software FP, whereas %B uses hardware FP"),
9233 ibfd, obfd);
9234 else
9235 _bfd_error_handler
9236 (_("error: %B uses hardware FP, whereas %B uses software FP"),
9237 ibfd, obfd);
9238
9239 flags_compatible = FALSE;
9240 }
9241 }
9242 #endif
9243
9244 /* Interworking mismatch is only a warning. */
9245 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
9246 {
9247 if (in_flags & EF_ARM_INTERWORK)
9248 {
9249 _bfd_error_handler
9250 (_("Warning: %B supports interworking, whereas %B does not"),
9251 ibfd, obfd);
9252 }
9253 else
9254 {
9255 _bfd_error_handler
9256 (_("Warning: %B does not support interworking, whereas %B does"),
9257 ibfd, obfd);
9258 }
9259 }
9260 }
9261
9262 return flags_compatible;
9263 }
9264
9265 /* Display the flags field. */
9266
9267 static bfd_boolean
9268 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
9269 {
9270 FILE * file = (FILE *) ptr;
9271 unsigned long flags;
9272
9273 BFD_ASSERT (abfd != NULL && ptr != NULL);
9274
9275 /* Print normal ELF private data. */
9276 _bfd_elf_print_private_bfd_data (abfd, ptr);
9277
9278 flags = elf_elfheader (abfd)->e_flags;
9279 /* Ignore init flag - it may not be set, despite the flags field
9280 containing valid data. */
9281
9282 /* xgettext:c-format */
9283 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
9284
9285 switch (EF_ARM_EABI_VERSION (flags))
9286 {
9287 case EF_ARM_EABI_UNKNOWN:
9288 /* The following flag bits are GNU extensions and not part of the
9289 official ARM ELF extended ABI. Hence they are only decoded if
9290 the EABI version is not set. */
9291 if (flags & EF_ARM_INTERWORK)
9292 fprintf (file, _(" [interworking enabled]"));
9293
9294 if (flags & EF_ARM_APCS_26)
9295 fprintf (file, " [APCS-26]");
9296 else
9297 fprintf (file, " [APCS-32]");
9298
9299 if (flags & EF_ARM_VFP_FLOAT)
9300 fprintf (file, _(" [VFP float format]"));
9301 else if (flags & EF_ARM_MAVERICK_FLOAT)
9302 fprintf (file, _(" [Maverick float format]"));
9303 else
9304 fprintf (file, _(" [FPA float format]"));
9305
9306 if (flags & EF_ARM_APCS_FLOAT)
9307 fprintf (file, _(" [floats passed in float registers]"));
9308
9309 if (flags & EF_ARM_PIC)
9310 fprintf (file, _(" [position independent]"));
9311
9312 if (flags & EF_ARM_NEW_ABI)
9313 fprintf (file, _(" [new ABI]"));
9314
9315 if (flags & EF_ARM_OLD_ABI)
9316 fprintf (file, _(" [old ABI]"));
9317
9318 if (flags & EF_ARM_SOFT_FLOAT)
9319 fprintf (file, _(" [software FP]"));
9320
9321 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
9322 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
9323 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
9324 | EF_ARM_MAVERICK_FLOAT);
9325 break;
9326
9327 case EF_ARM_EABI_VER1:
9328 fprintf (file, _(" [Version1 EABI]"));
9329
9330 if (flags & EF_ARM_SYMSARESORTED)
9331 fprintf (file, _(" [sorted symbol table]"));
9332 else
9333 fprintf (file, _(" [unsorted symbol table]"));
9334
9335 flags &= ~ EF_ARM_SYMSARESORTED;
9336 break;
9337
9338 case EF_ARM_EABI_VER2:
9339 fprintf (file, _(" [Version2 EABI]"));
9340
9341 if (flags & EF_ARM_SYMSARESORTED)
9342 fprintf (file, _(" [sorted symbol table]"));
9343 else
9344 fprintf (file, _(" [unsorted symbol table]"));
9345
9346 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
9347 fprintf (file, _(" [dynamic symbols use segment index]"));
9348
9349 if (flags & EF_ARM_MAPSYMSFIRST)
9350 fprintf (file, _(" [mapping symbols precede others]"));
9351
9352 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
9353 | EF_ARM_MAPSYMSFIRST);
9354 break;
9355
9356 case EF_ARM_EABI_VER3:
9357 fprintf (file, _(" [Version3 EABI]"));
9358 break;
9359
9360 case EF_ARM_EABI_VER4:
9361 fprintf (file, _(" [Version4 EABI]"));
9362 goto eabi;
9363
9364 case EF_ARM_EABI_VER5:
9365 fprintf (file, _(" [Version5 EABI]"));
9366 eabi:
9367 if (flags & EF_ARM_BE8)
9368 fprintf (file, _(" [BE8]"));
9369
9370 if (flags & EF_ARM_LE8)
9371 fprintf (file, _(" [LE8]"));
9372
9373 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
9374 break;
9375
9376 default:
9377 fprintf (file, _(" <EABI version unrecognised>"));
9378 break;
9379 }
9380
9381 flags &= ~ EF_ARM_EABIMASK;
9382
9383 if (flags & EF_ARM_RELEXEC)
9384 fprintf (file, _(" [relocatable executable]"));
9385
9386 if (flags & EF_ARM_HASENTRY)
9387 fprintf (file, _(" [has entry point]"));
9388
9389 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
9390
9391 if (flags)
9392 fprintf (file, _("<Unrecognised flag bits set>"));
9393
9394 fputc ('\n', file);
9395
9396 return TRUE;
9397 }
9398
9399 static int
9400 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
9401 {
9402 switch (ELF_ST_TYPE (elf_sym->st_info))
9403 {
9404 case STT_ARM_TFUNC:
9405 return ELF_ST_TYPE (elf_sym->st_info);
9406
9407 case STT_ARM_16BIT:
9408 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
9409 This allows us to distinguish between data used by Thumb instructions
9410 and non-data (which is probably code) inside Thumb regions of an
9411 executable. */
9412 if (type != STT_OBJECT && type != STT_TLS)
9413 return ELF_ST_TYPE (elf_sym->st_info);
9414 break;
9415
9416 default:
9417 break;
9418 }
9419
9420 return type;
9421 }
9422
9423 static asection *
9424 elf32_arm_gc_mark_hook (asection *sec,
9425 struct bfd_link_info *info,
9426 Elf_Internal_Rela *rel,
9427 struct elf_link_hash_entry *h,
9428 Elf_Internal_Sym *sym)
9429 {
9430 if (h != NULL)
9431 switch (ELF32_R_TYPE (rel->r_info))
9432 {
9433 case R_ARM_GNU_VTINHERIT:
9434 case R_ARM_GNU_VTENTRY:
9435 return NULL;
9436 }
9437
9438 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
9439 }
9440
9441 /* Update the got entry reference counts for the section being removed. */
9442
9443 static bfd_boolean
9444 elf32_arm_gc_sweep_hook (bfd * abfd,
9445 struct bfd_link_info * info,
9446 asection * sec,
9447 const Elf_Internal_Rela * relocs)
9448 {
9449 Elf_Internal_Shdr *symtab_hdr;
9450 struct elf_link_hash_entry **sym_hashes;
9451 bfd_signed_vma *local_got_refcounts;
9452 const Elf_Internal_Rela *rel, *relend;
9453 struct elf32_arm_link_hash_table * globals;
9454
9455 if (info->relocatable)
9456 return TRUE;
9457
9458 globals = elf32_arm_hash_table (info);
9459
9460 elf_section_data (sec)->local_dynrel = NULL;
9461
9462 symtab_hdr = & elf_symtab_hdr (abfd);
9463 sym_hashes = elf_sym_hashes (abfd);
9464 local_got_refcounts = elf_local_got_refcounts (abfd);
9465
9466 check_use_blx (globals);
9467
9468 relend = relocs + sec->reloc_count;
9469 for (rel = relocs; rel < relend; rel++)
9470 {
9471 unsigned long r_symndx;
9472 struct elf_link_hash_entry *h = NULL;
9473 int r_type;
9474
9475 r_symndx = ELF32_R_SYM (rel->r_info);
9476 if (r_symndx >= symtab_hdr->sh_info)
9477 {
9478 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
9479 while (h->root.type == bfd_link_hash_indirect
9480 || h->root.type == bfd_link_hash_warning)
9481 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9482 }
9483
9484 r_type = ELF32_R_TYPE (rel->r_info);
9485 r_type = arm_real_reloc_type (globals, r_type);
9486 switch (r_type)
9487 {
9488 case R_ARM_GOT32:
9489 case R_ARM_GOT_PREL:
9490 case R_ARM_TLS_GD32:
9491 case R_ARM_TLS_IE32:
9492 if (h != NULL)
9493 {
9494 if (h->got.refcount > 0)
9495 h->got.refcount -= 1;
9496 }
9497 else if (local_got_refcounts != NULL)
9498 {
9499 if (local_got_refcounts[r_symndx] > 0)
9500 local_got_refcounts[r_symndx] -= 1;
9501 }
9502 break;
9503
9504 case R_ARM_TLS_LDM32:
9505 elf32_arm_hash_table (info)->tls_ldm_got.refcount -= 1;
9506 break;
9507
9508 case R_ARM_ABS32:
9509 case R_ARM_ABS32_NOI:
9510 case R_ARM_REL32:
9511 case R_ARM_REL32_NOI:
9512 case R_ARM_PC24:
9513 case R_ARM_PLT32:
9514 case R_ARM_CALL:
9515 case R_ARM_JUMP24:
9516 case R_ARM_PREL31:
9517 case R_ARM_THM_CALL:
9518 case R_ARM_THM_JUMP24:
9519 case R_ARM_THM_JUMP19:
9520 case R_ARM_MOVW_ABS_NC:
9521 case R_ARM_MOVT_ABS:
9522 case R_ARM_MOVW_PREL_NC:
9523 case R_ARM_MOVT_PREL:
9524 case R_ARM_THM_MOVW_ABS_NC:
9525 case R_ARM_THM_MOVT_ABS:
9526 case R_ARM_THM_MOVW_PREL_NC:
9527 case R_ARM_THM_MOVT_PREL:
9528 /* Should the interworking branches be here also? */
9529
9530 if (h != NULL)
9531 {
9532 struct elf32_arm_link_hash_entry *eh;
9533 struct elf32_arm_relocs_copied **pp;
9534 struct elf32_arm_relocs_copied *p;
9535
9536 eh = (struct elf32_arm_link_hash_entry *) h;
9537
9538 if (h->plt.refcount > 0)
9539 {
9540 h->plt.refcount -= 1;
9541 if (r_type == R_ARM_THM_CALL)
9542 eh->plt_maybe_thumb_refcount--;
9543
9544 if (r_type == R_ARM_THM_JUMP24
9545 || r_type == R_ARM_THM_JUMP19)
9546 eh->plt_thumb_refcount--;
9547 }
9548
9549 if (r_type == R_ARM_ABS32
9550 || r_type == R_ARM_REL32
9551 || r_type == R_ARM_ABS32_NOI
9552 || r_type == R_ARM_REL32_NOI)
9553 {
9554 for (pp = &eh->relocs_copied; (p = *pp) != NULL;
9555 pp = &p->next)
9556 if (p->section == sec)
9557 {
9558 p->count -= 1;
9559 if (ELF32_R_TYPE (rel->r_info) == R_ARM_REL32
9560 || ELF32_R_TYPE (rel->r_info) == R_ARM_REL32_NOI)
9561 p->pc_count -= 1;
9562 if (p->count == 0)
9563 *pp = p->next;
9564 break;
9565 }
9566 }
9567 }
9568 break;
9569
9570 default:
9571 break;
9572 }
9573 }
9574
9575 return TRUE;
9576 }
9577
9578 /* Look through the relocs for a section during the first phase. */
9579
9580 static bfd_boolean
9581 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
9582 asection *sec, const Elf_Internal_Rela *relocs)
9583 {
9584 Elf_Internal_Shdr *symtab_hdr;
9585 struct elf_link_hash_entry **sym_hashes;
9586 const Elf_Internal_Rela *rel;
9587 const Elf_Internal_Rela *rel_end;
9588 bfd *dynobj;
9589 asection *sreloc;
9590 bfd_vma *local_got_offsets;
9591 struct elf32_arm_link_hash_table *htab;
9592 bfd_boolean needs_plt;
9593 unsigned long nsyms;
9594
9595 if (info->relocatable)
9596 return TRUE;
9597
9598 BFD_ASSERT (is_arm_elf (abfd));
9599
9600 htab = elf32_arm_hash_table (info);
9601 sreloc = NULL;
9602
9603 /* Create dynamic sections for relocatable executables so that we can
9604 copy relocations. */
9605 if (htab->root.is_relocatable_executable
9606 && ! htab->root.dynamic_sections_created)
9607 {
9608 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
9609 return FALSE;
9610 }
9611
9612 dynobj = elf_hash_table (info)->dynobj;
9613 local_got_offsets = elf_local_got_offsets (abfd);
9614
9615 symtab_hdr = & elf_symtab_hdr (abfd);
9616 sym_hashes = elf_sym_hashes (abfd);
9617 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
9618
9619 rel_end = relocs + sec->reloc_count;
9620 for (rel = relocs; rel < rel_end; rel++)
9621 {
9622 struct elf_link_hash_entry *h;
9623 struct elf32_arm_link_hash_entry *eh;
9624 unsigned long r_symndx;
9625 int r_type;
9626
9627 r_symndx = ELF32_R_SYM (rel->r_info);
9628 r_type = ELF32_R_TYPE (rel->r_info);
9629 r_type = arm_real_reloc_type (htab, r_type);
9630
9631 if (r_symndx >= nsyms
9632 /* PR 9934: It is possible to have relocations that do not
9633 refer to symbols, thus it is also possible to have an
9634 object file containing relocations but no symbol table. */
9635 && (r_symndx > 0 || nsyms > 0))
9636 {
9637 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
9638 r_symndx);
9639 return FALSE;
9640 }
9641
9642 if (nsyms == 0 || r_symndx < symtab_hdr->sh_info)
9643 h = NULL;
9644 else
9645 {
9646 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
9647 while (h->root.type == bfd_link_hash_indirect
9648 || h->root.type == bfd_link_hash_warning)
9649 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9650 }
9651
9652 eh = (struct elf32_arm_link_hash_entry *) h;
9653
9654 switch (r_type)
9655 {
9656 case R_ARM_GOT32:
9657 case R_ARM_GOT_PREL:
9658 case R_ARM_TLS_GD32:
9659 case R_ARM_TLS_IE32:
9660 /* This symbol requires a global offset table entry. */
9661 {
9662 int tls_type, old_tls_type;
9663
9664 switch (r_type)
9665 {
9666 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
9667 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
9668 default: tls_type = GOT_NORMAL; break;
9669 }
9670
9671 if (h != NULL)
9672 {
9673 h->got.refcount++;
9674 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
9675 }
9676 else
9677 {
9678 bfd_signed_vma *local_got_refcounts;
9679
9680 /* This is a global offset table entry for a local symbol. */
9681 local_got_refcounts = elf_local_got_refcounts (abfd);
9682 if (local_got_refcounts == NULL)
9683 {
9684 bfd_size_type size;
9685
9686 size = symtab_hdr->sh_info;
9687 size *= (sizeof (bfd_signed_vma) + sizeof (char));
9688 local_got_refcounts = bfd_zalloc (abfd, size);
9689 if (local_got_refcounts == NULL)
9690 return FALSE;
9691 elf_local_got_refcounts (abfd) = local_got_refcounts;
9692 elf32_arm_local_got_tls_type (abfd)
9693 = (char *) (local_got_refcounts + symtab_hdr->sh_info);
9694 }
9695 local_got_refcounts[r_symndx] += 1;
9696 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
9697 }
9698
9699 /* We will already have issued an error message if there is a
9700 TLS / non-TLS mismatch, based on the symbol type. We don't
9701 support any linker relaxations. So just combine any TLS
9702 types needed. */
9703 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
9704 && tls_type != GOT_NORMAL)
9705 tls_type |= old_tls_type;
9706
9707 if (old_tls_type != tls_type)
9708 {
9709 if (h != NULL)
9710 elf32_arm_hash_entry (h)->tls_type = tls_type;
9711 else
9712 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
9713 }
9714 }
9715 /* Fall through. */
9716
9717 case R_ARM_TLS_LDM32:
9718 if (r_type == R_ARM_TLS_LDM32)
9719 htab->tls_ldm_got.refcount++;
9720 /* Fall through. */
9721
9722 case R_ARM_GOTOFF32:
9723 case R_ARM_GOTPC:
9724 if (htab->sgot == NULL)
9725 {
9726 if (htab->root.dynobj == NULL)
9727 htab->root.dynobj = abfd;
9728 if (!create_got_section (htab->root.dynobj, info))
9729 return FALSE;
9730 }
9731 break;
9732
9733 case R_ARM_ABS12:
9734 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
9735 ldr __GOTT_INDEX__ offsets. */
9736 if (!htab->vxworks_p)
9737 break;
9738 /* Fall through. */
9739
9740 case R_ARM_PC24:
9741 case R_ARM_PLT32:
9742 case R_ARM_CALL:
9743 case R_ARM_JUMP24:
9744 case R_ARM_PREL31:
9745 case R_ARM_THM_CALL:
9746 case R_ARM_THM_JUMP24:
9747 case R_ARM_THM_JUMP19:
9748 needs_plt = 1;
9749 goto normal_reloc;
9750
9751 case R_ARM_ABS32:
9752 case R_ARM_ABS32_NOI:
9753 case R_ARM_REL32:
9754 case R_ARM_REL32_NOI:
9755 case R_ARM_MOVW_ABS_NC:
9756 case R_ARM_MOVT_ABS:
9757 case R_ARM_MOVW_PREL_NC:
9758 case R_ARM_MOVT_PREL:
9759 case R_ARM_THM_MOVW_ABS_NC:
9760 case R_ARM_THM_MOVT_ABS:
9761 case R_ARM_THM_MOVW_PREL_NC:
9762 case R_ARM_THM_MOVT_PREL:
9763 needs_plt = 0;
9764 normal_reloc:
9765
9766 /* Should the interworking branches be listed here? */
9767 if (h != NULL)
9768 {
9769 /* If this reloc is in a read-only section, we might
9770 need a copy reloc. We can't check reliably at this
9771 stage whether the section is read-only, as input
9772 sections have not yet been mapped to output sections.
9773 Tentatively set the flag for now, and correct in
9774 adjust_dynamic_symbol. */
9775 if (!info->shared)
9776 h->non_got_ref = 1;
9777
9778 /* We may need a .plt entry if the function this reloc
9779 refers to is in a different object. We can't tell for
9780 sure yet, because something later might force the
9781 symbol local. */
9782 if (needs_plt)
9783 h->needs_plt = 1;
9784
9785 /* If we create a PLT entry, this relocation will reference
9786 it, even if it's an ABS32 relocation. */
9787 h->plt.refcount += 1;
9788
9789 /* It's too early to use htab->use_blx here, so we have to
9790 record possible blx references separately from
9791 relocs that definitely need a thumb stub. */
9792
9793 if (r_type == R_ARM_THM_CALL)
9794 eh->plt_maybe_thumb_refcount += 1;
9795
9796 if (r_type == R_ARM_THM_JUMP24
9797 || r_type == R_ARM_THM_JUMP19)
9798 eh->plt_thumb_refcount += 1;
9799 }
9800
9801 /* If we are creating a shared library or relocatable executable,
9802 and this is a reloc against a global symbol, or a non PC
9803 relative reloc against a local symbol, then we need to copy
9804 the reloc into the shared library. However, if we are linking
9805 with -Bsymbolic, we do not need to copy a reloc against a
9806 global symbol which is defined in an object we are
9807 including in the link (i.e., DEF_REGULAR is set). At
9808 this point we have not seen all the input files, so it is
9809 possible that DEF_REGULAR is not set now but will be set
9810 later (it is never cleared). We account for that
9811 possibility below by storing information in the
9812 relocs_copied field of the hash table entry. */
9813 if ((info->shared || htab->root.is_relocatable_executable)
9814 && (sec->flags & SEC_ALLOC) != 0
9815 && ((r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI)
9816 || (h != NULL && ! h->needs_plt
9817 && (! info->symbolic || ! h->def_regular))))
9818 {
9819 struct elf32_arm_relocs_copied *p, **head;
9820
9821 /* When creating a shared object, we must copy these
9822 reloc types into the output file. We create a reloc
9823 section in dynobj and make room for this reloc. */
9824 if (sreloc == NULL)
9825 {
9826 sreloc = _bfd_elf_make_dynamic_reloc_section
9827 (sec, dynobj, 2, abfd, ! htab->use_rel);
9828
9829 if (sreloc == NULL)
9830 return FALSE;
9831
9832 /* BPABI objects never have dynamic relocations mapped. */
9833 if (htab->symbian_p)
9834 {
9835 flagword flags;
9836
9837 flags = bfd_get_section_flags (dynobj, sreloc);
9838 flags &= ~(SEC_LOAD | SEC_ALLOC);
9839 bfd_set_section_flags (dynobj, sreloc, flags);
9840 }
9841 }
9842
9843 /* If this is a global symbol, we count the number of
9844 relocations we need for this symbol. */
9845 if (h != NULL)
9846 {
9847 head = &((struct elf32_arm_link_hash_entry *) h)->relocs_copied;
9848 }
9849 else
9850 {
9851 /* Track dynamic relocs needed for local syms too.
9852 We really need local syms available to do this
9853 easily. Oh well. */
9854
9855 asection *s;
9856 void *vpp;
9857
9858 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
9859 sec, r_symndx);
9860 if (s == NULL)
9861 return FALSE;
9862
9863 vpp = &elf_section_data (s)->local_dynrel;
9864 head = (struct elf32_arm_relocs_copied **) vpp;
9865 }
9866
9867 p = *head;
9868 if (p == NULL || p->section != sec)
9869 {
9870 bfd_size_type amt = sizeof *p;
9871
9872 p = bfd_alloc (htab->root.dynobj, amt);
9873 if (p == NULL)
9874 return FALSE;
9875 p->next = *head;
9876 *head = p;
9877 p->section = sec;
9878 p->count = 0;
9879 p->pc_count = 0;
9880 }
9881
9882 if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
9883 p->pc_count += 1;
9884 p->count += 1;
9885 }
9886 break;
9887
9888 /* This relocation describes the C++ object vtable hierarchy.
9889 Reconstruct it for later use during GC. */
9890 case R_ARM_GNU_VTINHERIT:
9891 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
9892 return FALSE;
9893 break;
9894
9895 /* This relocation describes which C++ vtable entries are actually
9896 used. Record for later use during GC. */
9897 case R_ARM_GNU_VTENTRY:
9898 BFD_ASSERT (h != NULL);
9899 if (h != NULL
9900 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
9901 return FALSE;
9902 break;
9903 }
9904 }
9905
9906 return TRUE;
9907 }
9908
9909 /* Unwinding tables are not referenced directly. This pass marks them as
9910 required if the corresponding code section is marked. */
9911
9912 static bfd_boolean
9913 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
9914 elf_gc_mark_hook_fn gc_mark_hook)
9915 {
9916 bfd *sub;
9917 Elf_Internal_Shdr **elf_shdrp;
9918 bfd_boolean again;
9919
9920 /* Marking EH data may cause additional code sections to be marked,
9921 requiring multiple passes. */
9922 again = TRUE;
9923 while (again)
9924 {
9925 again = FALSE;
9926 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
9927 {
9928 asection *o;
9929
9930 if (! is_arm_elf (sub))
9931 continue;
9932
9933 elf_shdrp = elf_elfsections (sub);
9934 for (o = sub->sections; o != NULL; o = o->next)
9935 {
9936 Elf_Internal_Shdr *hdr;
9937
9938 hdr = &elf_section_data (o)->this_hdr;
9939 if (hdr->sh_type == SHT_ARM_EXIDX
9940 && hdr->sh_link
9941 && hdr->sh_link < elf_numsections (sub)
9942 && !o->gc_mark
9943 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
9944 {
9945 again = TRUE;
9946 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
9947 return FALSE;
9948 }
9949 }
9950 }
9951 }
9952
9953 return TRUE;
9954 }
9955
9956 /* Treat mapping symbols as special target symbols. */
9957
9958 static bfd_boolean
9959 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
9960 {
9961 return bfd_is_arm_special_symbol_name (sym->name,
9962 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
9963 }
9964
9965 /* This is a copy of elf_find_function() from elf.c except that
9966 ARM mapping symbols are ignored when looking for function names
9967 and STT_ARM_TFUNC is considered to a function type. */
9968
9969 static bfd_boolean
9970 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
9971 asection * section,
9972 asymbol ** symbols,
9973 bfd_vma offset,
9974 const char ** filename_ptr,
9975 const char ** functionname_ptr)
9976 {
9977 const char * filename = NULL;
9978 asymbol * func = NULL;
9979 bfd_vma low_func = 0;
9980 asymbol ** p;
9981
9982 for (p = symbols; *p != NULL; p++)
9983 {
9984 elf_symbol_type *q;
9985
9986 q = (elf_symbol_type *) *p;
9987
9988 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
9989 {
9990 default:
9991 break;
9992 case STT_FILE:
9993 filename = bfd_asymbol_name (&q->symbol);
9994 break;
9995 case STT_FUNC:
9996 case STT_ARM_TFUNC:
9997 case STT_NOTYPE:
9998 /* Skip mapping symbols. */
9999 if ((q->symbol.flags & BSF_LOCAL)
10000 && bfd_is_arm_special_symbol_name (q->symbol.name,
10001 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
10002 continue;
10003 /* Fall through. */
10004 if (bfd_get_section (&q->symbol) == section
10005 && q->symbol.value >= low_func
10006 && q->symbol.value <= offset)
10007 {
10008 func = (asymbol *) q;
10009 low_func = q->symbol.value;
10010 }
10011 break;
10012 }
10013 }
10014
10015 if (func == NULL)
10016 return FALSE;
10017
10018 if (filename_ptr)
10019 *filename_ptr = filename;
10020 if (functionname_ptr)
10021 *functionname_ptr = bfd_asymbol_name (func);
10022
10023 return TRUE;
10024 }
10025
10026
10027 /* Find the nearest line to a particular section and offset, for error
10028 reporting. This code is a duplicate of the code in elf.c, except
10029 that it uses arm_elf_find_function. */
10030
10031 static bfd_boolean
10032 elf32_arm_find_nearest_line (bfd * abfd,
10033 asection * section,
10034 asymbol ** symbols,
10035 bfd_vma offset,
10036 const char ** filename_ptr,
10037 const char ** functionname_ptr,
10038 unsigned int * line_ptr)
10039 {
10040 bfd_boolean found = FALSE;
10041
10042 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
10043
10044 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
10045 filename_ptr, functionname_ptr,
10046 line_ptr, 0,
10047 & elf_tdata (abfd)->dwarf2_find_line_info))
10048 {
10049 if (!*functionname_ptr)
10050 arm_elf_find_function (abfd, section, symbols, offset,
10051 *filename_ptr ? NULL : filename_ptr,
10052 functionname_ptr);
10053
10054 return TRUE;
10055 }
10056
10057 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
10058 & found, filename_ptr,
10059 functionname_ptr, line_ptr,
10060 & elf_tdata (abfd)->line_info))
10061 return FALSE;
10062
10063 if (found && (*functionname_ptr || *line_ptr))
10064 return TRUE;
10065
10066 if (symbols == NULL)
10067 return FALSE;
10068
10069 if (! arm_elf_find_function (abfd, section, symbols, offset,
10070 filename_ptr, functionname_ptr))
10071 return FALSE;
10072
10073 *line_ptr = 0;
10074 return TRUE;
10075 }
10076
10077 static bfd_boolean
10078 elf32_arm_find_inliner_info (bfd * abfd,
10079 const char ** filename_ptr,
10080 const char ** functionname_ptr,
10081 unsigned int * line_ptr)
10082 {
10083 bfd_boolean found;
10084 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
10085 functionname_ptr, line_ptr,
10086 & elf_tdata (abfd)->dwarf2_find_line_info);
10087 return found;
10088 }
10089
10090 /* Adjust a symbol defined by a dynamic object and referenced by a
10091 regular object. The current definition is in some section of the
10092 dynamic object, but we're not including those sections. We have to
10093 change the definition to something the rest of the link can
10094 understand. */
10095
10096 static bfd_boolean
10097 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
10098 struct elf_link_hash_entry * h)
10099 {
10100 bfd * dynobj;
10101 asection * s;
10102 struct elf32_arm_link_hash_entry * eh;
10103 struct elf32_arm_link_hash_table *globals;
10104
10105 globals = elf32_arm_hash_table (info);
10106 dynobj = elf_hash_table (info)->dynobj;
10107
10108 /* Make sure we know what is going on here. */
10109 BFD_ASSERT (dynobj != NULL
10110 && (h->needs_plt
10111 || h->u.weakdef != NULL
10112 || (h->def_dynamic
10113 && h->ref_regular
10114 && !h->def_regular)));
10115
10116 eh = (struct elf32_arm_link_hash_entry *) h;
10117
10118 /* If this is a function, put it in the procedure linkage table. We
10119 will fill in the contents of the procedure linkage table later,
10120 when we know the address of the .got section. */
10121 if (h->type == STT_FUNC || h->type == STT_ARM_TFUNC
10122 || h->needs_plt)
10123 {
10124 if (h->plt.refcount <= 0
10125 || SYMBOL_CALLS_LOCAL (info, h)
10126 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
10127 && h->root.type == bfd_link_hash_undefweak))
10128 {
10129 /* This case can occur if we saw a PLT32 reloc in an input
10130 file, but the symbol was never referred to by a dynamic
10131 object, or if all references were garbage collected. In
10132 such a case, we don't actually need to build a procedure
10133 linkage table, and we can just do a PC24 reloc instead. */
10134 h->plt.offset = (bfd_vma) -1;
10135 eh->plt_thumb_refcount = 0;
10136 eh->plt_maybe_thumb_refcount = 0;
10137 h->needs_plt = 0;
10138 }
10139
10140 return TRUE;
10141 }
10142 else
10143 {
10144 /* It's possible that we incorrectly decided a .plt reloc was
10145 needed for an R_ARM_PC24 or similar reloc to a non-function sym
10146 in check_relocs. We can't decide accurately between function
10147 and non-function syms in check-relocs; Objects loaded later in
10148 the link may change h->type. So fix it now. */
10149 h->plt.offset = (bfd_vma) -1;
10150 eh->plt_thumb_refcount = 0;
10151 eh->plt_maybe_thumb_refcount = 0;
10152 }
10153
10154 /* If this is a weak symbol, and there is a real definition, the
10155 processor independent code will have arranged for us to see the
10156 real definition first, and we can just use the same value. */
10157 if (h->u.weakdef != NULL)
10158 {
10159 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
10160 || h->u.weakdef->root.type == bfd_link_hash_defweak);
10161 h->root.u.def.section = h->u.weakdef->root.u.def.section;
10162 h->root.u.def.value = h->u.weakdef->root.u.def.value;
10163 return TRUE;
10164 }
10165
10166 /* If there are no non-GOT references, we do not need a copy
10167 relocation. */
10168 if (!h->non_got_ref)
10169 return TRUE;
10170
10171 /* This is a reference to a symbol defined by a dynamic object which
10172 is not a function. */
10173
10174 /* If we are creating a shared library, we must presume that the
10175 only references to the symbol are via the global offset table.
10176 For such cases we need not do anything here; the relocations will
10177 be handled correctly by relocate_section. Relocatable executables
10178 can reference data in shared objects directly, so we don't need to
10179 do anything here. */
10180 if (info->shared || globals->root.is_relocatable_executable)
10181 return TRUE;
10182
10183 if (h->size == 0)
10184 {
10185 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
10186 h->root.root.string);
10187 return TRUE;
10188 }
10189
10190 /* We must allocate the symbol in our .dynbss section, which will
10191 become part of the .bss section of the executable. There will be
10192 an entry for this symbol in the .dynsym section. The dynamic
10193 object will contain position independent code, so all references
10194 from the dynamic object to this symbol will go through the global
10195 offset table. The dynamic linker will use the .dynsym entry to
10196 determine the address it must put in the global offset table, so
10197 both the dynamic object and the regular object will refer to the
10198 same memory location for the variable. */
10199 s = bfd_get_section_by_name (dynobj, ".dynbss");
10200 BFD_ASSERT (s != NULL);
10201
10202 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
10203 copy the initial value out of the dynamic object and into the
10204 runtime process image. We need to remember the offset into the
10205 .rel(a).bss section we are going to use. */
10206 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
10207 {
10208 asection *srel;
10209
10210 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (globals, ".bss"));
10211 BFD_ASSERT (srel != NULL);
10212 srel->size += RELOC_SIZE (globals);
10213 h->needs_copy = 1;
10214 }
10215
10216 return _bfd_elf_adjust_dynamic_copy (h, s);
10217 }
10218
10219 /* Allocate space in .plt, .got and associated reloc sections for
10220 dynamic relocs. */
10221
10222 static bfd_boolean
10223 allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
10224 {
10225 struct bfd_link_info *info;
10226 struct elf32_arm_link_hash_table *htab;
10227 struct elf32_arm_link_hash_entry *eh;
10228 struct elf32_arm_relocs_copied *p;
10229 bfd_signed_vma thumb_refs;
10230
10231 eh = (struct elf32_arm_link_hash_entry *) h;
10232
10233 if (h->root.type == bfd_link_hash_indirect)
10234 return TRUE;
10235
10236 if (h->root.type == bfd_link_hash_warning)
10237 /* When warning symbols are created, they **replace** the "real"
10238 entry in the hash table, thus we never get to see the real
10239 symbol in a hash traversal. So look at it now. */
10240 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10241
10242 info = (struct bfd_link_info *) inf;
10243 htab = elf32_arm_hash_table (info);
10244
10245 if (htab->root.dynamic_sections_created
10246 && h->plt.refcount > 0)
10247 {
10248 /* Make sure this symbol is output as a dynamic symbol.
10249 Undefined weak syms won't yet be marked as dynamic. */
10250 if (h->dynindx == -1
10251 && !h->forced_local)
10252 {
10253 if (! bfd_elf_link_record_dynamic_symbol (info, h))
10254 return FALSE;
10255 }
10256
10257 if (info->shared
10258 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
10259 {
10260 asection *s = htab->splt;
10261
10262 /* If this is the first .plt entry, make room for the special
10263 first entry. */
10264 if (s->size == 0)
10265 s->size += htab->plt_header_size;
10266
10267 h->plt.offset = s->size;
10268
10269 /* If we will insert a Thumb trampoline before this PLT, leave room
10270 for it. */
10271 thumb_refs = eh->plt_thumb_refcount;
10272 if (!htab->use_blx)
10273 thumb_refs += eh->plt_maybe_thumb_refcount;
10274
10275 if (thumb_refs > 0)
10276 {
10277 h->plt.offset += PLT_THUMB_STUB_SIZE;
10278 s->size += PLT_THUMB_STUB_SIZE;
10279 }
10280
10281 /* If this symbol is not defined in a regular file, and we are
10282 not generating a shared library, then set the symbol to this
10283 location in the .plt. This is required to make function
10284 pointers compare as equal between the normal executable and
10285 the shared library. */
10286 if (! info->shared
10287 && !h->def_regular)
10288 {
10289 h->root.u.def.section = s;
10290 h->root.u.def.value = h->plt.offset;
10291
10292 /* Make sure the function is not marked as Thumb, in case
10293 it is the target of an ABS32 relocation, which will
10294 point to the PLT entry. */
10295 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
10296 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
10297 }
10298
10299 /* Make room for this entry. */
10300 s->size += htab->plt_entry_size;
10301
10302 if (!htab->symbian_p)
10303 {
10304 /* We also need to make an entry in the .got.plt section, which
10305 will be placed in the .got section by the linker script. */
10306 eh->plt_got_offset = htab->sgotplt->size;
10307 htab->sgotplt->size += 4;
10308 }
10309
10310 /* We also need to make an entry in the .rel(a).plt section. */
10311 htab->srelplt->size += RELOC_SIZE (htab);
10312
10313 /* VxWorks executables have a second set of relocations for
10314 each PLT entry. They go in a separate relocation section,
10315 which is processed by the kernel loader. */
10316 if (htab->vxworks_p && !info->shared)
10317 {
10318 /* There is a relocation for the initial PLT entry:
10319 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
10320 if (h->plt.offset == htab->plt_header_size)
10321 htab->srelplt2->size += RELOC_SIZE (htab);
10322
10323 /* There are two extra relocations for each subsequent
10324 PLT entry: an R_ARM_32 relocation for the GOT entry,
10325 and an R_ARM_32 relocation for the PLT entry. */
10326 htab->srelplt2->size += RELOC_SIZE (htab) * 2;
10327 }
10328 }
10329 else
10330 {
10331 h->plt.offset = (bfd_vma) -1;
10332 h->needs_plt = 0;
10333 }
10334 }
10335 else
10336 {
10337 h->plt.offset = (bfd_vma) -1;
10338 h->needs_plt = 0;
10339 }
10340
10341 if (h->got.refcount > 0)
10342 {
10343 asection *s;
10344 bfd_boolean dyn;
10345 int tls_type = elf32_arm_hash_entry (h)->tls_type;
10346 int indx;
10347
10348 /* Make sure this symbol is output as a dynamic symbol.
10349 Undefined weak syms won't yet be marked as dynamic. */
10350 if (h->dynindx == -1
10351 && !h->forced_local)
10352 {
10353 if (! bfd_elf_link_record_dynamic_symbol (info, h))
10354 return FALSE;
10355 }
10356
10357 if (!htab->symbian_p)
10358 {
10359 s = htab->sgot;
10360 h->got.offset = s->size;
10361
10362 if (tls_type == GOT_UNKNOWN)
10363 abort ();
10364
10365 if (tls_type == GOT_NORMAL)
10366 /* Non-TLS symbols need one GOT slot. */
10367 s->size += 4;
10368 else
10369 {
10370 if (tls_type & GOT_TLS_GD)
10371 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. */
10372 s->size += 8;
10373 if (tls_type & GOT_TLS_IE)
10374 /* R_ARM_TLS_IE32 needs one GOT slot. */
10375 s->size += 4;
10376 }
10377
10378 dyn = htab->root.dynamic_sections_created;
10379
10380 indx = 0;
10381 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
10382 && (!info->shared
10383 || !SYMBOL_REFERENCES_LOCAL (info, h)))
10384 indx = h->dynindx;
10385
10386 if (tls_type != GOT_NORMAL
10387 && (info->shared || indx != 0)
10388 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10389 || h->root.type != bfd_link_hash_undefweak))
10390 {
10391 if (tls_type & GOT_TLS_IE)
10392 htab->srelgot->size += RELOC_SIZE (htab);
10393
10394 if (tls_type & GOT_TLS_GD)
10395 htab->srelgot->size += RELOC_SIZE (htab);
10396
10397 if ((tls_type & GOT_TLS_GD) && indx != 0)
10398 htab->srelgot->size += RELOC_SIZE (htab);
10399 }
10400 else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10401 || h->root.type != bfd_link_hash_undefweak)
10402 && (info->shared
10403 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
10404 htab->srelgot->size += RELOC_SIZE (htab);
10405 }
10406 }
10407 else
10408 h->got.offset = (bfd_vma) -1;
10409
10410 /* Allocate stubs for exported Thumb functions on v4t. */
10411 if (!htab->use_blx && h->dynindx != -1
10412 && h->def_regular
10413 && ELF_ST_TYPE (h->type) == STT_ARM_TFUNC
10414 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
10415 {
10416 struct elf_link_hash_entry * th;
10417 struct bfd_link_hash_entry * bh;
10418 struct elf_link_hash_entry * myh;
10419 char name[1024];
10420 asection *s;
10421 bh = NULL;
10422 /* Create a new symbol to regist the real location of the function. */
10423 s = h->root.u.def.section;
10424 sprintf (name, "__real_%s", h->root.root.string);
10425 _bfd_generic_link_add_one_symbol (info, s->owner,
10426 name, BSF_GLOBAL, s,
10427 h->root.u.def.value,
10428 NULL, TRUE, FALSE, &bh);
10429
10430 myh = (struct elf_link_hash_entry *) bh;
10431 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
10432 myh->forced_local = 1;
10433 eh->export_glue = myh;
10434 th = record_arm_to_thumb_glue (info, h);
10435 /* Point the symbol at the stub. */
10436 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
10437 h->root.u.def.section = th->root.u.def.section;
10438 h->root.u.def.value = th->root.u.def.value & ~1;
10439 }
10440
10441 if (eh->relocs_copied == NULL)
10442 return TRUE;
10443
10444 /* In the shared -Bsymbolic case, discard space allocated for
10445 dynamic pc-relative relocs against symbols which turn out to be
10446 defined in regular objects. For the normal shared case, discard
10447 space for pc-relative relocs that have become local due to symbol
10448 visibility changes. */
10449
10450 if (info->shared || htab->root.is_relocatable_executable)
10451 {
10452 /* The only relocs that use pc_count are R_ARM_REL32 and
10453 R_ARM_REL32_NOI, which will appear on something like
10454 ".long foo - .". We want calls to protected symbols to resolve
10455 directly to the function rather than going via the plt. If people
10456 want function pointer comparisons to work as expected then they
10457 should avoid writing assembly like ".long foo - .". */
10458 if (SYMBOL_CALLS_LOCAL (info, h))
10459 {
10460 struct elf32_arm_relocs_copied **pp;
10461
10462 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
10463 {
10464 p->count -= p->pc_count;
10465 p->pc_count = 0;
10466 if (p->count == 0)
10467 *pp = p->next;
10468 else
10469 pp = &p->next;
10470 }
10471 }
10472
10473 if (elf32_arm_hash_table (info)->vxworks_p)
10474 {
10475 struct elf32_arm_relocs_copied **pp;
10476
10477 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
10478 {
10479 if (strcmp (p->section->output_section->name, ".tls_vars") == 0)
10480 *pp = p->next;
10481 else
10482 pp = &p->next;
10483 }
10484 }
10485
10486 /* Also discard relocs on undefined weak syms with non-default
10487 visibility. */
10488 if (eh->relocs_copied != NULL
10489 && h->root.type == bfd_link_hash_undefweak)
10490 {
10491 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
10492 eh->relocs_copied = NULL;
10493
10494 /* Make sure undefined weak symbols are output as a dynamic
10495 symbol in PIEs. */
10496 else if (h->dynindx == -1
10497 && !h->forced_local)
10498 {
10499 if (! bfd_elf_link_record_dynamic_symbol (info, h))
10500 return FALSE;
10501 }
10502 }
10503
10504 else if (htab->root.is_relocatable_executable && h->dynindx == -1
10505 && h->root.type == bfd_link_hash_new)
10506 {
10507 /* Output absolute symbols so that we can create relocations
10508 against them. For normal symbols we output a relocation
10509 against the section that contains them. */
10510 if (! bfd_elf_link_record_dynamic_symbol (info, h))
10511 return FALSE;
10512 }
10513
10514 }
10515 else
10516 {
10517 /* For the non-shared case, discard space for relocs against
10518 symbols which turn out to need copy relocs or are not
10519 dynamic. */
10520
10521 if (!h->non_got_ref
10522 && ((h->def_dynamic
10523 && !h->def_regular)
10524 || (htab->root.dynamic_sections_created
10525 && (h->root.type == bfd_link_hash_undefweak
10526 || h->root.type == bfd_link_hash_undefined))))
10527 {
10528 /* Make sure this symbol is output as a dynamic symbol.
10529 Undefined weak syms won't yet be marked as dynamic. */
10530 if (h->dynindx == -1
10531 && !h->forced_local)
10532 {
10533 if (! bfd_elf_link_record_dynamic_symbol (info, h))
10534 return FALSE;
10535 }
10536
10537 /* If that succeeded, we know we'll be keeping all the
10538 relocs. */
10539 if (h->dynindx != -1)
10540 goto keep;
10541 }
10542
10543 eh->relocs_copied = NULL;
10544
10545 keep: ;
10546 }
10547
10548 /* Finally, allocate space. */
10549 for (p = eh->relocs_copied; p != NULL; p = p->next)
10550 {
10551 asection *sreloc = elf_section_data (p->section)->sreloc;
10552 sreloc->size += p->count * RELOC_SIZE (htab);
10553 }
10554
10555 return TRUE;
10556 }
10557
10558 /* Find any dynamic relocs that apply to read-only sections. */
10559
10560 static bfd_boolean
10561 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
10562 {
10563 struct elf32_arm_link_hash_entry * eh;
10564 struct elf32_arm_relocs_copied * p;
10565
10566 if (h->root.type == bfd_link_hash_warning)
10567 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10568
10569 eh = (struct elf32_arm_link_hash_entry *) h;
10570 for (p = eh->relocs_copied; p != NULL; p = p->next)
10571 {
10572 asection *s = p->section;
10573
10574 if (s != NULL && (s->flags & SEC_READONLY) != 0)
10575 {
10576 struct bfd_link_info *info = (struct bfd_link_info *) inf;
10577
10578 info->flags |= DF_TEXTREL;
10579
10580 /* Not an error, just cut short the traversal. */
10581 return FALSE;
10582 }
10583 }
10584 return TRUE;
10585 }
10586
10587 void
10588 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
10589 int byteswap_code)
10590 {
10591 struct elf32_arm_link_hash_table *globals;
10592
10593 globals = elf32_arm_hash_table (info);
10594 globals->byteswap_code = byteswap_code;
10595 }
10596
10597 /* Set the sizes of the dynamic sections. */
10598
10599 static bfd_boolean
10600 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
10601 struct bfd_link_info * info)
10602 {
10603 bfd * dynobj;
10604 asection * s;
10605 bfd_boolean plt;
10606 bfd_boolean relocs;
10607 bfd *ibfd;
10608 struct elf32_arm_link_hash_table *htab;
10609
10610 htab = elf32_arm_hash_table (info);
10611 dynobj = elf_hash_table (info)->dynobj;
10612 BFD_ASSERT (dynobj != NULL);
10613 check_use_blx (htab);
10614
10615 if (elf_hash_table (info)->dynamic_sections_created)
10616 {
10617 /* Set the contents of the .interp section to the interpreter. */
10618 if (info->executable)
10619 {
10620 s = bfd_get_section_by_name (dynobj, ".interp");
10621 BFD_ASSERT (s != NULL);
10622 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
10623 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
10624 }
10625 }
10626
10627 /* Set up .got offsets for local syms, and space for local dynamic
10628 relocs. */
10629 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10630 {
10631 bfd_signed_vma *local_got;
10632 bfd_signed_vma *end_local_got;
10633 char *local_tls_type;
10634 bfd_size_type locsymcount;
10635 Elf_Internal_Shdr *symtab_hdr;
10636 asection *srel;
10637 bfd_boolean is_vxworks = elf32_arm_hash_table (info)->vxworks_p;
10638
10639 if (! is_arm_elf (ibfd))
10640 continue;
10641
10642 for (s = ibfd->sections; s != NULL; s = s->next)
10643 {
10644 struct elf32_arm_relocs_copied *p;
10645
10646 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
10647 {
10648 if (!bfd_is_abs_section (p->section)
10649 && bfd_is_abs_section (p->section->output_section))
10650 {
10651 /* Input section has been discarded, either because
10652 it is a copy of a linkonce section or due to
10653 linker script /DISCARD/, so we'll be discarding
10654 the relocs too. */
10655 }
10656 else if (is_vxworks
10657 && strcmp (p->section->output_section->name,
10658 ".tls_vars") == 0)
10659 {
10660 /* Relocations in vxworks .tls_vars sections are
10661 handled specially by the loader. */
10662 }
10663 else if (p->count != 0)
10664 {
10665 srel = elf_section_data (p->section)->sreloc;
10666 srel->size += p->count * RELOC_SIZE (htab);
10667 if ((p->section->output_section->flags & SEC_READONLY) != 0)
10668 info->flags |= DF_TEXTREL;
10669 }
10670 }
10671 }
10672
10673 local_got = elf_local_got_refcounts (ibfd);
10674 if (!local_got)
10675 continue;
10676
10677 symtab_hdr = & elf_symtab_hdr (ibfd);
10678 locsymcount = symtab_hdr->sh_info;
10679 end_local_got = local_got + locsymcount;
10680 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
10681 s = htab->sgot;
10682 srel = htab->srelgot;
10683 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
10684 {
10685 if (*local_got > 0)
10686 {
10687 *local_got = s->size;
10688 if (*local_tls_type & GOT_TLS_GD)
10689 /* TLS_GD relocs need an 8-byte structure in the GOT. */
10690 s->size += 8;
10691 if (*local_tls_type & GOT_TLS_IE)
10692 s->size += 4;
10693 if (*local_tls_type == GOT_NORMAL)
10694 s->size += 4;
10695
10696 if (info->shared || *local_tls_type == GOT_TLS_GD)
10697 srel->size += RELOC_SIZE (htab);
10698 }
10699 else
10700 *local_got = (bfd_vma) -1;
10701 }
10702 }
10703
10704 if (htab->tls_ldm_got.refcount > 0)
10705 {
10706 /* Allocate two GOT entries and one dynamic relocation (if necessary)
10707 for R_ARM_TLS_LDM32 relocations. */
10708 htab->tls_ldm_got.offset = htab->sgot->size;
10709 htab->sgot->size += 8;
10710 if (info->shared)
10711 htab->srelgot->size += RELOC_SIZE (htab);
10712 }
10713 else
10714 htab->tls_ldm_got.offset = -1;
10715
10716 /* Allocate global sym .plt and .got entries, and space for global
10717 sym dynamic relocs. */
10718 elf_link_hash_traverse (& htab->root, allocate_dynrelocs, info);
10719
10720 /* Here we rummage through the found bfds to collect glue information. */
10721 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10722 {
10723 if (! is_arm_elf (ibfd))
10724 continue;
10725
10726 /* Initialise mapping tables for code/data. */
10727 bfd_elf32_arm_init_maps (ibfd);
10728
10729 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
10730 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
10731 /* xgettext:c-format */
10732 _bfd_error_handler (_("Errors encountered processing file %s"),
10733 ibfd->filename);
10734 }
10735
10736 /* The check_relocs and adjust_dynamic_symbol entry points have
10737 determined the sizes of the various dynamic sections. Allocate
10738 memory for them. */
10739 plt = FALSE;
10740 relocs = FALSE;
10741 for (s = dynobj->sections; s != NULL; s = s->next)
10742 {
10743 const char * name;
10744
10745 if ((s->flags & SEC_LINKER_CREATED) == 0)
10746 continue;
10747
10748 /* It's OK to base decisions on the section name, because none
10749 of the dynobj section names depend upon the input files. */
10750 name = bfd_get_section_name (dynobj, s);
10751
10752 if (strcmp (name, ".plt") == 0)
10753 {
10754 /* Remember whether there is a PLT. */
10755 plt = s->size != 0;
10756 }
10757 else if (CONST_STRNEQ (name, ".rel"))
10758 {
10759 if (s->size != 0)
10760 {
10761 /* Remember whether there are any reloc sections other
10762 than .rel(a).plt and .rela.plt.unloaded. */
10763 if (s != htab->srelplt && s != htab->srelplt2)
10764 relocs = TRUE;
10765
10766 /* We use the reloc_count field as a counter if we need
10767 to copy relocs into the output file. */
10768 s->reloc_count = 0;
10769 }
10770 }
10771 else if (! CONST_STRNEQ (name, ".got")
10772 && strcmp (name, ".dynbss") != 0)
10773 {
10774 /* It's not one of our sections, so don't allocate space. */
10775 continue;
10776 }
10777
10778 if (s->size == 0)
10779 {
10780 /* If we don't need this section, strip it from the
10781 output file. This is mostly to handle .rel(a).bss and
10782 .rel(a).plt. We must create both sections in
10783 create_dynamic_sections, because they must be created
10784 before the linker maps input sections to output
10785 sections. The linker does that before
10786 adjust_dynamic_symbol is called, and it is that
10787 function which decides whether anything needs to go
10788 into these sections. */
10789 s->flags |= SEC_EXCLUDE;
10790 continue;
10791 }
10792
10793 if ((s->flags & SEC_HAS_CONTENTS) == 0)
10794 continue;
10795
10796 /* Allocate memory for the section contents. */
10797 s->contents = bfd_zalloc (dynobj, s->size);
10798 if (s->contents == NULL)
10799 return FALSE;
10800 }
10801
10802 if (elf_hash_table (info)->dynamic_sections_created)
10803 {
10804 /* Add some entries to the .dynamic section. We fill in the
10805 values later, in elf32_arm_finish_dynamic_sections, but we
10806 must add the entries now so that we get the correct size for
10807 the .dynamic section. The DT_DEBUG entry is filled in by the
10808 dynamic linker and used by the debugger. */
10809 #define add_dynamic_entry(TAG, VAL) \
10810 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
10811
10812 if (info->executable)
10813 {
10814 if (!add_dynamic_entry (DT_DEBUG, 0))
10815 return FALSE;
10816 }
10817
10818 if (plt)
10819 {
10820 if ( !add_dynamic_entry (DT_PLTGOT, 0)
10821 || !add_dynamic_entry (DT_PLTRELSZ, 0)
10822 || !add_dynamic_entry (DT_PLTREL,
10823 htab->use_rel ? DT_REL : DT_RELA)
10824 || !add_dynamic_entry (DT_JMPREL, 0))
10825 return FALSE;
10826 }
10827
10828 if (relocs)
10829 {
10830 if (htab->use_rel)
10831 {
10832 if (!add_dynamic_entry (DT_REL, 0)
10833 || !add_dynamic_entry (DT_RELSZ, 0)
10834 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
10835 return FALSE;
10836 }
10837 else
10838 {
10839 if (!add_dynamic_entry (DT_RELA, 0)
10840 || !add_dynamic_entry (DT_RELASZ, 0)
10841 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
10842 return FALSE;
10843 }
10844 }
10845
10846 /* If any dynamic relocs apply to a read-only section,
10847 then we need a DT_TEXTREL entry. */
10848 if ((info->flags & DF_TEXTREL) == 0)
10849 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
10850 info);
10851
10852 if ((info->flags & DF_TEXTREL) != 0)
10853 {
10854 if (!add_dynamic_entry (DT_TEXTREL, 0))
10855 return FALSE;
10856 }
10857 if (htab->vxworks_p
10858 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10859 return FALSE;
10860 }
10861 #undef add_dynamic_entry
10862
10863 return TRUE;
10864 }
10865
10866 /* Finish up dynamic symbol handling. We set the contents of various
10867 dynamic sections here. */
10868
10869 static bfd_boolean
10870 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
10871 struct bfd_link_info * info,
10872 struct elf_link_hash_entry * h,
10873 Elf_Internal_Sym * sym)
10874 {
10875 bfd * dynobj;
10876 struct elf32_arm_link_hash_table *htab;
10877 struct elf32_arm_link_hash_entry *eh;
10878
10879 dynobj = elf_hash_table (info)->dynobj;
10880 htab = elf32_arm_hash_table (info);
10881 eh = (struct elf32_arm_link_hash_entry *) h;
10882
10883 if (h->plt.offset != (bfd_vma) -1)
10884 {
10885 asection * splt;
10886 asection * srel;
10887 bfd_byte *loc;
10888 bfd_vma plt_index;
10889 Elf_Internal_Rela rel;
10890
10891 /* This symbol has an entry in the procedure linkage table. Set
10892 it up. */
10893
10894 BFD_ASSERT (h->dynindx != -1);
10895
10896 splt = bfd_get_section_by_name (dynobj, ".plt");
10897 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".plt"));
10898 BFD_ASSERT (splt != NULL && srel != NULL);
10899
10900 /* Fill in the entry in the procedure linkage table. */
10901 if (htab->symbian_p)
10902 {
10903 put_arm_insn (htab, output_bfd,
10904 elf32_arm_symbian_plt_entry[0],
10905 splt->contents + h->plt.offset);
10906 bfd_put_32 (output_bfd,
10907 elf32_arm_symbian_plt_entry[1],
10908 splt->contents + h->plt.offset + 4);
10909
10910 /* Fill in the entry in the .rel.plt section. */
10911 rel.r_offset = (splt->output_section->vma
10912 + splt->output_offset
10913 + h->plt.offset + 4);
10914 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
10915
10916 /* Get the index in the procedure linkage table which
10917 corresponds to this symbol. This is the index of this symbol
10918 in all the symbols for which we are making plt entries. The
10919 first entry in the procedure linkage table is reserved. */
10920 plt_index = ((h->plt.offset - htab->plt_header_size)
10921 / htab->plt_entry_size);
10922 }
10923 else
10924 {
10925 bfd_vma got_offset, got_address, plt_address;
10926 bfd_vma got_displacement;
10927 asection * sgot;
10928 bfd_byte * ptr;
10929
10930 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
10931 BFD_ASSERT (sgot != NULL);
10932
10933 /* Get the offset into the .got.plt table of the entry that
10934 corresponds to this function. */
10935 got_offset = eh->plt_got_offset;
10936
10937 /* Get the index in the procedure linkage table which
10938 corresponds to this symbol. This is the index of this symbol
10939 in all the symbols for which we are making plt entries. The
10940 first three entries in .got.plt are reserved; after that
10941 symbols appear in the same order as in .plt. */
10942 plt_index = (got_offset - 12) / 4;
10943
10944 /* Calculate the address of the GOT entry. */
10945 got_address = (sgot->output_section->vma
10946 + sgot->output_offset
10947 + got_offset);
10948
10949 /* ...and the address of the PLT entry. */
10950 plt_address = (splt->output_section->vma
10951 + splt->output_offset
10952 + h->plt.offset);
10953
10954 ptr = htab->splt->contents + h->plt.offset;
10955 if (htab->vxworks_p && info->shared)
10956 {
10957 unsigned int i;
10958 bfd_vma val;
10959
10960 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
10961 {
10962 val = elf32_arm_vxworks_shared_plt_entry[i];
10963 if (i == 2)
10964 val |= got_address - sgot->output_section->vma;
10965 if (i == 5)
10966 val |= plt_index * RELOC_SIZE (htab);
10967 if (i == 2 || i == 5)
10968 bfd_put_32 (output_bfd, val, ptr);
10969 else
10970 put_arm_insn (htab, output_bfd, val, ptr);
10971 }
10972 }
10973 else if (htab->vxworks_p)
10974 {
10975 unsigned int i;
10976 bfd_vma val;
10977
10978 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
10979 {
10980 val = elf32_arm_vxworks_exec_plt_entry[i];
10981 if (i == 2)
10982 val |= got_address;
10983 if (i == 4)
10984 val |= 0xffffff & -((h->plt.offset + i * 4 + 8) >> 2);
10985 if (i == 5)
10986 val |= plt_index * RELOC_SIZE (htab);
10987 if (i == 2 || i == 5)
10988 bfd_put_32 (output_bfd, val, ptr);
10989 else
10990 put_arm_insn (htab, output_bfd, val, ptr);
10991 }
10992
10993 loc = (htab->srelplt2->contents
10994 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
10995
10996 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
10997 referencing the GOT for this PLT entry. */
10998 rel.r_offset = plt_address + 8;
10999 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
11000 rel.r_addend = got_offset;
11001 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
11002 loc += RELOC_SIZE (htab);
11003
11004 /* Create the R_ARM_ABS32 relocation referencing the
11005 beginning of the PLT for this GOT entry. */
11006 rel.r_offset = got_address;
11007 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
11008 rel.r_addend = 0;
11009 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
11010 }
11011 else
11012 {
11013 bfd_signed_vma thumb_refs;
11014 /* Calculate the displacement between the PLT slot and the
11015 entry in the GOT. The eight-byte offset accounts for the
11016 value produced by adding to pc in the first instruction
11017 of the PLT stub. */
11018 got_displacement = got_address - (plt_address + 8);
11019
11020 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
11021
11022 thumb_refs = eh->plt_thumb_refcount;
11023 if (!htab->use_blx)
11024 thumb_refs += eh->plt_maybe_thumb_refcount;
11025
11026 if (thumb_refs > 0)
11027 {
11028 put_thumb_insn (htab, output_bfd,
11029 elf32_arm_plt_thumb_stub[0], ptr - 4);
11030 put_thumb_insn (htab, output_bfd,
11031 elf32_arm_plt_thumb_stub[1], ptr - 2);
11032 }
11033
11034 put_arm_insn (htab, output_bfd,
11035 elf32_arm_plt_entry[0]
11036 | ((got_displacement & 0x0ff00000) >> 20),
11037 ptr + 0);
11038 put_arm_insn (htab, output_bfd,
11039 elf32_arm_plt_entry[1]
11040 | ((got_displacement & 0x000ff000) >> 12),
11041 ptr+ 4);
11042 put_arm_insn (htab, output_bfd,
11043 elf32_arm_plt_entry[2]
11044 | (got_displacement & 0x00000fff),
11045 ptr + 8);
11046 #ifdef FOUR_WORD_PLT
11047 bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
11048 #endif
11049 }
11050
11051 /* Fill in the entry in the global offset table. */
11052 bfd_put_32 (output_bfd,
11053 (splt->output_section->vma
11054 + splt->output_offset),
11055 sgot->contents + got_offset);
11056
11057 /* Fill in the entry in the .rel(a).plt section. */
11058 rel.r_addend = 0;
11059 rel.r_offset = got_address;
11060 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
11061 }
11062
11063 loc = srel->contents + plt_index * RELOC_SIZE (htab);
11064 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
11065
11066 if (!h->def_regular)
11067 {
11068 /* Mark the symbol as undefined, rather than as defined in
11069 the .plt section. Leave the value alone. */
11070 sym->st_shndx = SHN_UNDEF;
11071 /* If the symbol is weak, we do need to clear the value.
11072 Otherwise, the PLT entry would provide a definition for
11073 the symbol even if the symbol wasn't defined anywhere,
11074 and so the symbol would never be NULL. */
11075 if (!h->ref_regular_nonweak)
11076 sym->st_value = 0;
11077 }
11078 }
11079
11080 if (h->got.offset != (bfd_vma) -1
11081 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_GD) == 0
11082 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_IE) == 0)
11083 {
11084 asection * sgot;
11085 asection * srel;
11086 Elf_Internal_Rela rel;
11087 bfd_byte *loc;
11088 bfd_vma offset;
11089
11090 /* This symbol has an entry in the global offset table. Set it
11091 up. */
11092 sgot = bfd_get_section_by_name (dynobj, ".got");
11093 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".got"));
11094 BFD_ASSERT (sgot != NULL && srel != NULL);
11095
11096 offset = (h->got.offset & ~(bfd_vma) 1);
11097 rel.r_addend = 0;
11098 rel.r_offset = (sgot->output_section->vma
11099 + sgot->output_offset
11100 + offset);
11101
11102 /* If this is a static link, or it is a -Bsymbolic link and the
11103 symbol is defined locally or was forced to be local because
11104 of a version file, we just want to emit a RELATIVE reloc.
11105 The entry in the global offset table will already have been
11106 initialized in the relocate_section function. */
11107 if (info->shared
11108 && SYMBOL_REFERENCES_LOCAL (info, h))
11109 {
11110 BFD_ASSERT ((h->got.offset & 1) != 0);
11111 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11112 if (!htab->use_rel)
11113 {
11114 rel.r_addend = bfd_get_32 (output_bfd, sgot->contents + offset);
11115 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
11116 }
11117 }
11118 else
11119 {
11120 BFD_ASSERT ((h->got.offset & 1) == 0);
11121 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
11122 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
11123 }
11124
11125 loc = srel->contents + srel->reloc_count++ * RELOC_SIZE (htab);
11126 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
11127 }
11128
11129 if (h->needs_copy)
11130 {
11131 asection * s;
11132 Elf_Internal_Rela rel;
11133 bfd_byte *loc;
11134
11135 /* This symbol needs a copy reloc. Set it up. */
11136 BFD_ASSERT (h->dynindx != -1
11137 && (h->root.type == bfd_link_hash_defined
11138 || h->root.type == bfd_link_hash_defweak));
11139
11140 s = bfd_get_section_by_name (h->root.u.def.section->owner,
11141 RELOC_SECTION (htab, ".bss"));
11142 BFD_ASSERT (s != NULL);
11143
11144 rel.r_addend = 0;
11145 rel.r_offset = (h->root.u.def.value
11146 + h->root.u.def.section->output_section->vma
11147 + h->root.u.def.section->output_offset);
11148 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
11149 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
11150 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
11151 }
11152
11153 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
11154 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
11155 to the ".got" section. */
11156 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
11157 || (!htab->vxworks_p && h == htab->root.hgot))
11158 sym->st_shndx = SHN_ABS;
11159
11160 return TRUE;
11161 }
11162
11163 /* Finish up the dynamic sections. */
11164
11165 static bfd_boolean
11166 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
11167 {
11168 bfd * dynobj;
11169 asection * sgot;
11170 asection * sdyn;
11171
11172 dynobj = elf_hash_table (info)->dynobj;
11173
11174 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
11175 BFD_ASSERT (elf32_arm_hash_table (info)->symbian_p || sgot != NULL);
11176 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
11177
11178 if (elf_hash_table (info)->dynamic_sections_created)
11179 {
11180 asection *splt;
11181 Elf32_External_Dyn *dyncon, *dynconend;
11182 struct elf32_arm_link_hash_table *htab;
11183
11184 htab = elf32_arm_hash_table (info);
11185 splt = bfd_get_section_by_name (dynobj, ".plt");
11186 BFD_ASSERT (splt != NULL && sdyn != NULL);
11187
11188 dyncon = (Elf32_External_Dyn *) sdyn->contents;
11189 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
11190
11191 for (; dyncon < dynconend; dyncon++)
11192 {
11193 Elf_Internal_Dyn dyn;
11194 const char * name;
11195 asection * s;
11196
11197 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
11198
11199 switch (dyn.d_tag)
11200 {
11201 unsigned int type;
11202
11203 default:
11204 if (htab->vxworks_p
11205 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11206 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
11207 break;
11208
11209 case DT_HASH:
11210 name = ".hash";
11211 goto get_vma_if_bpabi;
11212 case DT_STRTAB:
11213 name = ".dynstr";
11214 goto get_vma_if_bpabi;
11215 case DT_SYMTAB:
11216 name = ".dynsym";
11217 goto get_vma_if_bpabi;
11218 case DT_VERSYM:
11219 name = ".gnu.version";
11220 goto get_vma_if_bpabi;
11221 case DT_VERDEF:
11222 name = ".gnu.version_d";
11223 goto get_vma_if_bpabi;
11224 case DT_VERNEED:
11225 name = ".gnu.version_r";
11226 goto get_vma_if_bpabi;
11227
11228 case DT_PLTGOT:
11229 name = ".got";
11230 goto get_vma;
11231 case DT_JMPREL:
11232 name = RELOC_SECTION (htab, ".plt");
11233 get_vma:
11234 s = bfd_get_section_by_name (output_bfd, name);
11235 BFD_ASSERT (s != NULL);
11236 if (!htab->symbian_p)
11237 dyn.d_un.d_ptr = s->vma;
11238 else
11239 /* In the BPABI, tags in the PT_DYNAMIC section point
11240 at the file offset, not the memory address, for the
11241 convenience of the post linker. */
11242 dyn.d_un.d_ptr = s->filepos;
11243 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
11244 break;
11245
11246 get_vma_if_bpabi:
11247 if (htab->symbian_p)
11248 goto get_vma;
11249 break;
11250
11251 case DT_PLTRELSZ:
11252 s = bfd_get_section_by_name (output_bfd,
11253 RELOC_SECTION (htab, ".plt"));
11254 BFD_ASSERT (s != NULL);
11255 dyn.d_un.d_val = s->size;
11256 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
11257 break;
11258
11259 case DT_RELSZ:
11260 case DT_RELASZ:
11261 if (!htab->symbian_p)
11262 {
11263 /* My reading of the SVR4 ABI indicates that the
11264 procedure linkage table relocs (DT_JMPREL) should be
11265 included in the overall relocs (DT_REL). This is
11266 what Solaris does. However, UnixWare can not handle
11267 that case. Therefore, we override the DT_RELSZ entry
11268 here to make it not include the JMPREL relocs. Since
11269 the linker script arranges for .rel(a).plt to follow all
11270 other relocation sections, we don't have to worry
11271 about changing the DT_REL entry. */
11272 s = bfd_get_section_by_name (output_bfd,
11273 RELOC_SECTION (htab, ".plt"));
11274 if (s != NULL)
11275 dyn.d_un.d_val -= s->size;
11276 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
11277 break;
11278 }
11279 /* Fall through. */
11280
11281 case DT_REL:
11282 case DT_RELA:
11283 /* In the BPABI, the DT_REL tag must point at the file
11284 offset, not the VMA, of the first relocation
11285 section. So, we use code similar to that in
11286 elflink.c, but do not check for SHF_ALLOC on the
11287 relcoation section, since relocations sections are
11288 never allocated under the BPABI. The comments above
11289 about Unixware notwithstanding, we include all of the
11290 relocations here. */
11291 if (htab->symbian_p)
11292 {
11293 unsigned int i;
11294 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11295 ? SHT_REL : SHT_RELA);
11296 dyn.d_un.d_val = 0;
11297 for (i = 1; i < elf_numsections (output_bfd); i++)
11298 {
11299 Elf_Internal_Shdr *hdr
11300 = elf_elfsections (output_bfd)[i];
11301 if (hdr->sh_type == type)
11302 {
11303 if (dyn.d_tag == DT_RELSZ
11304 || dyn.d_tag == DT_RELASZ)
11305 dyn.d_un.d_val += hdr->sh_size;
11306 else if ((ufile_ptr) hdr->sh_offset
11307 <= dyn.d_un.d_val - 1)
11308 dyn.d_un.d_val = hdr->sh_offset;
11309 }
11310 }
11311 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
11312 }
11313 break;
11314
11315 /* Set the bottom bit of DT_INIT/FINI if the
11316 corresponding function is Thumb. */
11317 case DT_INIT:
11318 name = info->init_function;
11319 goto get_sym;
11320 case DT_FINI:
11321 name = info->fini_function;
11322 get_sym:
11323 /* If it wasn't set by elf_bfd_final_link
11324 then there is nothing to adjust. */
11325 if (dyn.d_un.d_val != 0)
11326 {
11327 struct elf_link_hash_entry * eh;
11328
11329 eh = elf_link_hash_lookup (elf_hash_table (info), name,
11330 FALSE, FALSE, TRUE);
11331 if (eh != NULL
11332 && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
11333 {
11334 dyn.d_un.d_val |= 1;
11335 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
11336 }
11337 }
11338 break;
11339 }
11340 }
11341
11342 /* Fill in the first entry in the procedure linkage table. */
11343 if (splt->size > 0 && elf32_arm_hash_table (info)->plt_header_size)
11344 {
11345 const bfd_vma *plt0_entry;
11346 bfd_vma got_address, plt_address, got_displacement;
11347
11348 /* Calculate the addresses of the GOT and PLT. */
11349 got_address = sgot->output_section->vma + sgot->output_offset;
11350 plt_address = splt->output_section->vma + splt->output_offset;
11351
11352 if (htab->vxworks_p)
11353 {
11354 /* The VxWorks GOT is relocated by the dynamic linker.
11355 Therefore, we must emit relocations rather than simply
11356 computing the values now. */
11357 Elf_Internal_Rela rel;
11358
11359 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
11360 put_arm_insn (htab, output_bfd, plt0_entry[0],
11361 splt->contents + 0);
11362 put_arm_insn (htab, output_bfd, plt0_entry[1],
11363 splt->contents + 4);
11364 put_arm_insn (htab, output_bfd, plt0_entry[2],
11365 splt->contents + 8);
11366 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
11367
11368 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
11369 rel.r_offset = plt_address + 12;
11370 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
11371 rel.r_addend = 0;
11372 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
11373 htab->srelplt2->contents);
11374 }
11375 else
11376 {
11377 got_displacement = got_address - (plt_address + 16);
11378
11379 plt0_entry = elf32_arm_plt0_entry;
11380 put_arm_insn (htab, output_bfd, plt0_entry[0],
11381 splt->contents + 0);
11382 put_arm_insn (htab, output_bfd, plt0_entry[1],
11383 splt->contents + 4);
11384 put_arm_insn (htab, output_bfd, plt0_entry[2],
11385 splt->contents + 8);
11386 put_arm_insn (htab, output_bfd, plt0_entry[3],
11387 splt->contents + 12);
11388
11389 #ifdef FOUR_WORD_PLT
11390 /* The displacement value goes in the otherwise-unused
11391 last word of the second entry. */
11392 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
11393 #else
11394 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
11395 #endif
11396 }
11397 }
11398
11399 /* UnixWare sets the entsize of .plt to 4, although that doesn't
11400 really seem like the right value. */
11401 if (splt->output_section->owner == output_bfd)
11402 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
11403
11404 if (htab->vxworks_p && !info->shared && htab->splt->size > 0)
11405 {
11406 /* Correct the .rel(a).plt.unloaded relocations. They will have
11407 incorrect symbol indexes. */
11408 int num_plts;
11409 unsigned char *p;
11410
11411 num_plts = ((htab->splt->size - htab->plt_header_size)
11412 / htab->plt_entry_size);
11413 p = htab->srelplt2->contents + RELOC_SIZE (htab);
11414
11415 for (; num_plts; num_plts--)
11416 {
11417 Elf_Internal_Rela rel;
11418
11419 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
11420 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
11421 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
11422 p += RELOC_SIZE (htab);
11423
11424 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
11425 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
11426 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
11427 p += RELOC_SIZE (htab);
11428 }
11429 }
11430 }
11431
11432 /* Fill in the first three entries in the global offset table. */
11433 if (sgot)
11434 {
11435 if (sgot->size > 0)
11436 {
11437 if (sdyn == NULL)
11438 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
11439 else
11440 bfd_put_32 (output_bfd,
11441 sdyn->output_section->vma + sdyn->output_offset,
11442 sgot->contents);
11443 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
11444 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
11445 }
11446
11447 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
11448 }
11449
11450 return TRUE;
11451 }
11452
11453 static void
11454 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
11455 {
11456 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
11457 struct elf32_arm_link_hash_table *globals;
11458
11459 i_ehdrp = elf_elfheader (abfd);
11460
11461 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
11462 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
11463 else
11464 i_ehdrp->e_ident[EI_OSABI] = 0;
11465 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
11466
11467 if (link_info)
11468 {
11469 globals = elf32_arm_hash_table (link_info);
11470 if (globals->byteswap_code)
11471 i_ehdrp->e_flags |= EF_ARM_BE8;
11472 }
11473 }
11474
11475 static enum elf_reloc_type_class
11476 elf32_arm_reloc_type_class (const Elf_Internal_Rela *rela)
11477 {
11478 switch ((int) ELF32_R_TYPE (rela->r_info))
11479 {
11480 case R_ARM_RELATIVE:
11481 return reloc_class_relative;
11482 case R_ARM_JUMP_SLOT:
11483 return reloc_class_plt;
11484 case R_ARM_COPY:
11485 return reloc_class_copy;
11486 default:
11487 return reloc_class_normal;
11488 }
11489 }
11490
11491 /* Set the right machine number for an Arm ELF file. */
11492
11493 static bfd_boolean
11494 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
11495 {
11496 if (hdr->sh_type == SHT_NOTE)
11497 *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS;
11498
11499 return TRUE;
11500 }
11501
11502 static void
11503 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
11504 {
11505 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
11506 }
11507
11508 /* Return TRUE if this is an unwinding table entry. */
11509
11510 static bfd_boolean
11511 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
11512 {
11513 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
11514 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
11515 }
11516
11517
11518 /* Set the type and flags for an ARM section. We do this by
11519 the section name, which is a hack, but ought to work. */
11520
11521 static bfd_boolean
11522 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
11523 {
11524 const char * name;
11525
11526 name = bfd_get_section_name (abfd, sec);
11527
11528 if (is_arm_elf_unwind_section_name (abfd, name))
11529 {
11530 hdr->sh_type = SHT_ARM_EXIDX;
11531 hdr->sh_flags |= SHF_LINK_ORDER;
11532 }
11533 return TRUE;
11534 }
11535
11536 /* Handle an ARM specific section when reading an object file. This is
11537 called when bfd_section_from_shdr finds a section with an unknown
11538 type. */
11539
11540 static bfd_boolean
11541 elf32_arm_section_from_shdr (bfd *abfd,
11542 Elf_Internal_Shdr * hdr,
11543 const char *name,
11544 int shindex)
11545 {
11546 /* There ought to be a place to keep ELF backend specific flags, but
11547 at the moment there isn't one. We just keep track of the
11548 sections by their name, instead. Fortunately, the ABI gives
11549 names for all the ARM specific sections, so we will probably get
11550 away with this. */
11551 switch (hdr->sh_type)
11552 {
11553 case SHT_ARM_EXIDX:
11554 case SHT_ARM_PREEMPTMAP:
11555 case SHT_ARM_ATTRIBUTES:
11556 break;
11557
11558 default:
11559 return FALSE;
11560 }
11561
11562 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
11563 return FALSE;
11564
11565 return TRUE;
11566 }
11567
11568 /* A structure used to record a list of sections, independently
11569 of the next and prev fields in the asection structure. */
11570 typedef struct section_list
11571 {
11572 asection * sec;
11573 struct section_list * next;
11574 struct section_list * prev;
11575 }
11576 section_list;
11577
11578 /* Unfortunately we need to keep a list of sections for which
11579 an _arm_elf_section_data structure has been allocated. This
11580 is because it is possible for functions like elf32_arm_write_section
11581 to be called on a section which has had an elf_data_structure
11582 allocated for it (and so the used_by_bfd field is valid) but
11583 for which the ARM extended version of this structure - the
11584 _arm_elf_section_data structure - has not been allocated. */
11585 static section_list * sections_with_arm_elf_section_data = NULL;
11586
11587 static void
11588 record_section_with_arm_elf_section_data (asection * sec)
11589 {
11590 struct section_list * entry;
11591
11592 entry = bfd_malloc (sizeof (* entry));
11593 if (entry == NULL)
11594 return;
11595 entry->sec = sec;
11596 entry->next = sections_with_arm_elf_section_data;
11597 entry->prev = NULL;
11598 if (entry->next != NULL)
11599 entry->next->prev = entry;
11600 sections_with_arm_elf_section_data = entry;
11601 }
11602
11603 static struct section_list *
11604 find_arm_elf_section_entry (asection * sec)
11605 {
11606 struct section_list * entry;
11607 static struct section_list * last_entry = NULL;
11608
11609 /* This is a short cut for the typical case where the sections are added
11610 to the sections_with_arm_elf_section_data list in forward order and
11611 then looked up here in backwards order. This makes a real difference
11612 to the ld-srec/sec64k.exp linker test. */
11613 entry = sections_with_arm_elf_section_data;
11614 if (last_entry != NULL)
11615 {
11616 if (last_entry->sec == sec)
11617 entry = last_entry;
11618 else if (last_entry->next != NULL
11619 && last_entry->next->sec == sec)
11620 entry = last_entry->next;
11621 }
11622
11623 for (; entry; entry = entry->next)
11624 if (entry->sec == sec)
11625 break;
11626
11627 if (entry)
11628 /* Record the entry prior to this one - it is the entry we are most
11629 likely to want to locate next time. Also this way if we have been
11630 called from unrecord_section_with_arm_elf_section_data() we will not
11631 be caching a pointer that is about to be freed. */
11632 last_entry = entry->prev;
11633
11634 return entry;
11635 }
11636
11637 static _arm_elf_section_data *
11638 get_arm_elf_section_data (asection * sec)
11639 {
11640 struct section_list * entry;
11641
11642 entry = find_arm_elf_section_entry (sec);
11643
11644 if (entry)
11645 return elf32_arm_section_data (entry->sec);
11646 else
11647 return NULL;
11648 }
11649
11650 static void
11651 unrecord_section_with_arm_elf_section_data (asection * sec)
11652 {
11653 struct section_list * entry;
11654
11655 entry = find_arm_elf_section_entry (sec);
11656
11657 if (entry)
11658 {
11659 if (entry->prev != NULL)
11660 entry->prev->next = entry->next;
11661 if (entry->next != NULL)
11662 entry->next->prev = entry->prev;
11663 if (entry == sections_with_arm_elf_section_data)
11664 sections_with_arm_elf_section_data = entry->next;
11665 free (entry);
11666 }
11667 }
11668
11669
11670 typedef struct
11671 {
11672 void *finfo;
11673 struct bfd_link_info *info;
11674 asection *sec;
11675 int sec_shndx;
11676 bfd_boolean (*func) (void *, const char *, Elf_Internal_Sym *,
11677 asection *, struct elf_link_hash_entry *);
11678 } output_arch_syminfo;
11679
11680 enum map_symbol_type
11681 {
11682 ARM_MAP_ARM,
11683 ARM_MAP_THUMB,
11684 ARM_MAP_DATA
11685 };
11686
11687
11688 /* Output a single mapping symbol. */
11689
11690 static bfd_boolean
11691 elf32_arm_output_map_sym (output_arch_syminfo *osi,
11692 enum map_symbol_type type,
11693 bfd_vma offset)
11694 {
11695 static const char *names[3] = {"$a", "$t", "$d"};
11696 struct elf32_arm_link_hash_table *htab;
11697 Elf_Internal_Sym sym;
11698
11699 htab = elf32_arm_hash_table (osi->info);
11700 sym.st_value = osi->sec->output_section->vma
11701 + osi->sec->output_offset
11702 + offset;
11703 sym.st_size = 0;
11704 sym.st_other = 0;
11705 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
11706 sym.st_shndx = osi->sec_shndx;
11707 if (!osi->func (osi->finfo, names[type], &sym, osi->sec, NULL))
11708 return FALSE;
11709 return TRUE;
11710 }
11711
11712
11713 /* Output mapping symbols for PLT entries associated with H. */
11714
11715 static bfd_boolean
11716 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
11717 {
11718 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
11719 struct elf32_arm_link_hash_table *htab;
11720 struct elf32_arm_link_hash_entry *eh;
11721 bfd_vma addr;
11722
11723 htab = elf32_arm_hash_table (osi->info);
11724
11725 if (h->root.type == bfd_link_hash_indirect)
11726 return TRUE;
11727
11728 if (h->root.type == bfd_link_hash_warning)
11729 /* When warning symbols are created, they **replace** the "real"
11730 entry in the hash table, thus we never get to see the real
11731 symbol in a hash traversal. So look at it now. */
11732 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11733
11734 if (h->plt.offset == (bfd_vma) -1)
11735 return TRUE;
11736
11737 eh = (struct elf32_arm_link_hash_entry *) h;
11738 addr = h->plt.offset;
11739 if (htab->symbian_p)
11740 {
11741 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11742 return FALSE;
11743 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
11744 return FALSE;
11745 }
11746 else if (htab->vxworks_p)
11747 {
11748 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11749 return FALSE;
11750 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
11751 return FALSE;
11752 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
11753 return FALSE;
11754 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
11755 return FALSE;
11756 }
11757 else
11758 {
11759 bfd_signed_vma thumb_refs;
11760
11761 thumb_refs = eh->plt_thumb_refcount;
11762 if (!htab->use_blx)
11763 thumb_refs += eh->plt_maybe_thumb_refcount;
11764
11765 if (thumb_refs > 0)
11766 {
11767 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
11768 return FALSE;
11769 }
11770 #ifdef FOUR_WORD_PLT
11771 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11772 return FALSE;
11773 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
11774 return FALSE;
11775 #else
11776 /* A three-word PLT with no Thumb thunk contains only Arm code,
11777 so only need to output a mapping symbol for the first PLT entry and
11778 entries with thumb thunks. */
11779 if (thumb_refs > 0 || addr == 20)
11780 {
11781 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11782 return FALSE;
11783 }
11784 #endif
11785 }
11786
11787 return TRUE;
11788 }
11789
11790 /* Output a single local symbol for a generated stub. */
11791
11792 static bfd_boolean
11793 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
11794 bfd_vma offset, bfd_vma size)
11795 {
11796 struct elf32_arm_link_hash_table *htab;
11797 Elf_Internal_Sym sym;
11798
11799 htab = elf32_arm_hash_table (osi->info);
11800 sym.st_value = osi->sec->output_section->vma
11801 + osi->sec->output_offset
11802 + offset;
11803 sym.st_size = size;
11804 sym.st_other = 0;
11805 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
11806 sym.st_shndx = osi->sec_shndx;
11807 if (!osi->func (osi->finfo, name, &sym, osi->sec, NULL))
11808 return FALSE;
11809 return TRUE;
11810 }
11811
11812 static bfd_boolean
11813 arm_map_one_stub (struct bfd_hash_entry * gen_entry,
11814 void * in_arg)
11815 {
11816 struct elf32_arm_stub_hash_entry *stub_entry;
11817 struct bfd_link_info *info;
11818 struct elf32_arm_link_hash_table *htab;
11819 asection *stub_sec;
11820 bfd_vma addr;
11821 char *stub_name;
11822 output_arch_syminfo *osi;
11823 const insn_sequence *template;
11824 enum stub_insn_type prev_type;
11825 int size;
11826 int i;
11827 enum map_symbol_type sym_type;
11828
11829 /* Massage our args to the form they really have. */
11830 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
11831 osi = (output_arch_syminfo *) in_arg;
11832
11833 info = osi->info;
11834
11835 htab = elf32_arm_hash_table (info);
11836 stub_sec = stub_entry->stub_sec;
11837
11838 /* Ensure this stub is attached to the current section being
11839 processed. */
11840 if (stub_sec != osi->sec)
11841 return TRUE;
11842
11843 addr = (bfd_vma) stub_entry->stub_offset;
11844 stub_name = stub_entry->output_name;
11845
11846 template = stub_entry->stub_template;
11847 switch (template[0].type)
11848 {
11849 case ARM_TYPE:
11850 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, stub_entry->stub_size))
11851 return FALSE;
11852 break;
11853 case THUMB16_TYPE:
11854 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
11855 stub_entry->stub_size))
11856 return FALSE;
11857 break;
11858 default:
11859 BFD_FAIL ();
11860 return FALSE;
11861 }
11862
11863 prev_type = DATA_TYPE;
11864 size = 0;
11865 for (i = 0; i < stub_entry->stub_template_size; i++)
11866 {
11867 switch (template[i].type)
11868 {
11869 case ARM_TYPE:
11870 sym_type = ARM_MAP_ARM;
11871 break;
11872
11873 case THUMB16_TYPE:
11874 sym_type = ARM_MAP_THUMB;
11875 break;
11876
11877 case DATA_TYPE:
11878 sym_type = ARM_MAP_DATA;
11879 break;
11880
11881 default:
11882 BFD_FAIL ();
11883 return FALSE;
11884 }
11885
11886 if (template[i].type != prev_type)
11887 {
11888 prev_type = template[i].type;
11889 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
11890 return FALSE;
11891 }
11892
11893 switch (template[i].type)
11894 {
11895 case ARM_TYPE:
11896 size += 4;
11897 break;
11898
11899 case THUMB16_TYPE:
11900 size += 2;
11901 break;
11902
11903 case DATA_TYPE:
11904 size += 4;
11905 break;
11906
11907 default:
11908 BFD_FAIL ();
11909 return FALSE;
11910 }
11911 }
11912
11913 return TRUE;
11914 }
11915
11916 /* Output mapping symbols for linker generated sections. */
11917
11918 static bfd_boolean
11919 elf32_arm_output_arch_local_syms (bfd *output_bfd,
11920 struct bfd_link_info *info,
11921 void *finfo,
11922 bfd_boolean (*func) (void *, const char *,
11923 Elf_Internal_Sym *,
11924 asection *,
11925 struct elf_link_hash_entry *))
11926 {
11927 output_arch_syminfo osi;
11928 struct elf32_arm_link_hash_table *htab;
11929 bfd_vma offset;
11930 bfd_size_type size;
11931
11932 htab = elf32_arm_hash_table (info);
11933 check_use_blx (htab);
11934
11935 osi.finfo = finfo;
11936 osi.info = info;
11937 osi.func = func;
11938
11939 /* ARM->Thumb glue. */
11940 if (htab->arm_glue_size > 0)
11941 {
11942 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
11943 ARM2THUMB_GLUE_SECTION_NAME);
11944
11945 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11946 (output_bfd, osi.sec->output_section);
11947 if (info->shared || htab->root.is_relocatable_executable
11948 || htab->pic_veneer)
11949 size = ARM2THUMB_PIC_GLUE_SIZE;
11950 else if (htab->use_blx)
11951 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
11952 else
11953 size = ARM2THUMB_STATIC_GLUE_SIZE;
11954
11955 for (offset = 0; offset < htab->arm_glue_size; offset += size)
11956 {
11957 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
11958 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
11959 }
11960 }
11961
11962 /* Thumb->ARM glue. */
11963 if (htab->thumb_glue_size > 0)
11964 {
11965 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
11966 THUMB2ARM_GLUE_SECTION_NAME);
11967
11968 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11969 (output_bfd, osi.sec->output_section);
11970 size = THUMB2ARM_GLUE_SIZE;
11971
11972 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
11973 {
11974 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
11975 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
11976 }
11977 }
11978
11979 /* ARMv4 BX veneers. */
11980 if (htab->bx_glue_size > 0)
11981 {
11982 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
11983 ARM_BX_GLUE_SECTION_NAME);
11984
11985 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11986 (output_bfd, osi.sec->output_section);
11987
11988 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
11989 }
11990
11991 /* Long calls stubs. */
11992 if (htab->stub_bfd && htab->stub_bfd->sections)
11993 {
11994 asection* stub_sec;
11995
11996 for (stub_sec = htab->stub_bfd->sections;
11997 stub_sec != NULL;
11998 stub_sec = stub_sec->next)
11999 {
12000 /* Ignore non-stub sections. */
12001 if (!strstr (stub_sec->name, STUB_SUFFIX))
12002 continue;
12003
12004 osi.sec = stub_sec;
12005
12006 osi.sec_shndx = _bfd_elf_section_from_bfd_section
12007 (output_bfd, osi.sec->output_section);
12008
12009 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
12010 }
12011 }
12012
12013 /* Finally, output mapping symbols for the PLT. */
12014 if (!htab->splt || htab->splt->size == 0)
12015 return TRUE;
12016
12017 osi.sec_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
12018 htab->splt->output_section);
12019 osi.sec = htab->splt;
12020 /* Output mapping symbols for the plt header. SymbianOS does not have a
12021 plt header. */
12022 if (htab->vxworks_p)
12023 {
12024 /* VxWorks shared libraries have no PLT header. */
12025 if (!info->shared)
12026 {
12027 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
12028 return FALSE;
12029 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
12030 return FALSE;
12031 }
12032 }
12033 else if (!htab->symbian_p)
12034 {
12035 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
12036 return FALSE;
12037 #ifndef FOUR_WORD_PLT
12038 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
12039 return FALSE;
12040 #endif
12041 }
12042
12043 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, (void *) &osi);
12044 return TRUE;
12045 }
12046
12047 /* Allocate target specific section data. */
12048
12049 static bfd_boolean
12050 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
12051 {
12052 if (!sec->used_by_bfd)
12053 {
12054 _arm_elf_section_data *sdata;
12055 bfd_size_type amt = sizeof (*sdata);
12056
12057 sdata = bfd_zalloc (abfd, amt);
12058 if (sdata == NULL)
12059 return FALSE;
12060 sec->used_by_bfd = sdata;
12061 }
12062
12063 record_section_with_arm_elf_section_data (sec);
12064
12065 return _bfd_elf_new_section_hook (abfd, sec);
12066 }
12067
12068
12069 /* Used to order a list of mapping symbols by address. */
12070
12071 static int
12072 elf32_arm_compare_mapping (const void * a, const void * b)
12073 {
12074 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
12075 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
12076
12077 if (amap->vma > bmap->vma)
12078 return 1;
12079 else if (amap->vma < bmap->vma)
12080 return -1;
12081 else if (amap->type > bmap->type)
12082 /* Ensure results do not depend on the host qsort for objects with
12083 multiple mapping symbols at the same address by sorting on type
12084 after vma. */
12085 return 1;
12086 else if (amap->type < bmap->type)
12087 return -1;
12088 else
12089 return 0;
12090 }
12091
12092
12093 /* Do code byteswapping. Return FALSE afterwards so that the section is
12094 written out as normal. */
12095
12096 static bfd_boolean
12097 elf32_arm_write_section (bfd *output_bfd,
12098 struct bfd_link_info *link_info,
12099 asection *sec,
12100 bfd_byte *contents)
12101 {
12102 int mapcount, errcount;
12103 _arm_elf_section_data *arm_data;
12104 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
12105 elf32_arm_section_map *map;
12106 elf32_vfp11_erratum_list *errnode;
12107 bfd_vma ptr;
12108 bfd_vma end;
12109 bfd_vma offset = sec->output_section->vma + sec->output_offset;
12110 bfd_byte tmp;
12111 int i;
12112
12113 /* If this section has not been allocated an _arm_elf_section_data
12114 structure then we cannot record anything. */
12115 arm_data = get_arm_elf_section_data (sec);
12116 if (arm_data == NULL)
12117 return FALSE;
12118
12119 mapcount = arm_data->mapcount;
12120 map = arm_data->map;
12121 errcount = arm_data->erratumcount;
12122
12123 if (errcount != 0)
12124 {
12125 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
12126
12127 for (errnode = arm_data->erratumlist; errnode != 0;
12128 errnode = errnode->next)
12129 {
12130 bfd_vma index = errnode->vma - offset;
12131
12132 switch (errnode->type)
12133 {
12134 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
12135 {
12136 bfd_vma branch_to_veneer;
12137 /* Original condition code of instruction, plus bit mask for
12138 ARM B instruction. */
12139 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
12140 | 0x0a000000;
12141
12142 /* The instruction is before the label. */
12143 index -= 4;
12144
12145 /* Above offset included in -4 below. */
12146 branch_to_veneer = errnode->u.b.veneer->vma
12147 - errnode->vma - 4;
12148
12149 if ((signed) branch_to_veneer < -(1 << 25)
12150 || (signed) branch_to_veneer >= (1 << 25))
12151 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
12152 "range"), output_bfd);
12153
12154 insn |= (branch_to_veneer >> 2) & 0xffffff;
12155 contents[endianflip ^ index] = insn & 0xff;
12156 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
12157 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
12158 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
12159 }
12160 break;
12161
12162 case VFP11_ERRATUM_ARM_VENEER:
12163 {
12164 bfd_vma branch_from_veneer;
12165 unsigned int insn;
12166
12167 /* Take size of veneer into account. */
12168 branch_from_veneer = errnode->u.v.branch->vma
12169 - errnode->vma - 12;
12170
12171 if ((signed) branch_from_veneer < -(1 << 25)
12172 || (signed) branch_from_veneer >= (1 << 25))
12173 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
12174 "range"), output_bfd);
12175
12176 /* Original instruction. */
12177 insn = errnode->u.v.branch->u.b.vfp_insn;
12178 contents[endianflip ^ index] = insn & 0xff;
12179 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
12180 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
12181 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
12182
12183 /* Branch back to insn after original insn. */
12184 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
12185 contents[endianflip ^ (index + 4)] = insn & 0xff;
12186 contents[endianflip ^ (index + 5)] = (insn >> 8) & 0xff;
12187 contents[endianflip ^ (index + 6)] = (insn >> 16) & 0xff;
12188 contents[endianflip ^ (index + 7)] = (insn >> 24) & 0xff;
12189 }
12190 break;
12191
12192 default:
12193 abort ();
12194 }
12195 }
12196 }
12197
12198 if (mapcount == 0)
12199 return FALSE;
12200
12201 if (globals->byteswap_code)
12202 {
12203 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
12204
12205 ptr = map[0].vma;
12206 for (i = 0; i < mapcount; i++)
12207 {
12208 if (i == mapcount - 1)
12209 end = sec->size;
12210 else
12211 end = map[i + 1].vma;
12212
12213 switch (map[i].type)
12214 {
12215 case 'a':
12216 /* Byte swap code words. */
12217 while (ptr + 3 < end)
12218 {
12219 tmp = contents[ptr];
12220 contents[ptr] = contents[ptr + 3];
12221 contents[ptr + 3] = tmp;
12222 tmp = contents[ptr + 1];
12223 contents[ptr + 1] = contents[ptr + 2];
12224 contents[ptr + 2] = tmp;
12225 ptr += 4;
12226 }
12227 break;
12228
12229 case 't':
12230 /* Byte swap code halfwords. */
12231 while (ptr + 1 < end)
12232 {
12233 tmp = contents[ptr];
12234 contents[ptr] = contents[ptr + 1];
12235 contents[ptr + 1] = tmp;
12236 ptr += 2;
12237 }
12238 break;
12239
12240 case 'd':
12241 /* Leave data alone. */
12242 break;
12243 }
12244 ptr = end;
12245 }
12246 }
12247
12248 free (map);
12249 arm_data->mapcount = 0;
12250 arm_data->mapsize = 0;
12251 arm_data->map = NULL;
12252 unrecord_section_with_arm_elf_section_data (sec);
12253
12254 return FALSE;
12255 }
12256
12257 static void
12258 unrecord_section_via_map_over_sections (bfd * abfd ATTRIBUTE_UNUSED,
12259 asection * sec,
12260 void * ignore ATTRIBUTE_UNUSED)
12261 {
12262 unrecord_section_with_arm_elf_section_data (sec);
12263 }
12264
12265 static bfd_boolean
12266 elf32_arm_close_and_cleanup (bfd * abfd)
12267 {
12268 if (abfd->sections)
12269 bfd_map_over_sections (abfd,
12270 unrecord_section_via_map_over_sections,
12271 NULL);
12272
12273 return _bfd_elf_close_and_cleanup (abfd);
12274 }
12275
12276 static bfd_boolean
12277 elf32_arm_bfd_free_cached_info (bfd * abfd)
12278 {
12279 if (abfd->sections)
12280 bfd_map_over_sections (abfd,
12281 unrecord_section_via_map_over_sections,
12282 NULL);
12283
12284 return _bfd_free_cached_info (abfd);
12285 }
12286
12287 /* Display STT_ARM_TFUNC symbols as functions. */
12288
12289 static void
12290 elf32_arm_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
12291 asymbol *asym)
12292 {
12293 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
12294
12295 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_ARM_TFUNC)
12296 elfsym->symbol.flags |= BSF_FUNCTION;
12297 }
12298
12299
12300 /* Mangle thumb function symbols as we read them in. */
12301
12302 static bfd_boolean
12303 elf32_arm_swap_symbol_in (bfd * abfd,
12304 const void *psrc,
12305 const void *pshn,
12306 Elf_Internal_Sym *dst)
12307 {
12308 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
12309 return FALSE;
12310
12311 /* New EABI objects mark thumb function symbols by setting the low bit of
12312 the address. Turn these into STT_ARM_TFUNC. */
12313 if ((ELF_ST_TYPE (dst->st_info) == STT_FUNC)
12314 && (dst->st_value & 1))
12315 {
12316 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_ARM_TFUNC);
12317 dst->st_value &= ~(bfd_vma) 1;
12318 }
12319 return TRUE;
12320 }
12321
12322
12323 /* Mangle thumb function symbols as we write them out. */
12324
12325 static void
12326 elf32_arm_swap_symbol_out (bfd *abfd,
12327 const Elf_Internal_Sym *src,
12328 void *cdst,
12329 void *shndx)
12330 {
12331 Elf_Internal_Sym newsym;
12332
12333 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
12334 of the address set, as per the new EABI. We do this unconditionally
12335 because objcopy does not set the elf header flags until after
12336 it writes out the symbol table. */
12337 if (ELF_ST_TYPE (src->st_info) == STT_ARM_TFUNC)
12338 {
12339 newsym = *src;
12340 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
12341 if (newsym.st_shndx != SHN_UNDEF)
12342 {
12343 /* Do this only for defined symbols. At link type, the static
12344 linker will simulate the work of dynamic linker of resolving
12345 symbols and will carry over the thumbness of found symbols to
12346 the output symbol table. It's not clear how it happens, but
12347 the thumbness of undefined symbols can well be different at
12348 runtime, and writing '1' for them will be confusing for users
12349 and possibly for dynamic linker itself.
12350 */
12351 newsym.st_value |= 1;
12352 }
12353
12354 src = &newsym;
12355 }
12356 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
12357 }
12358
12359 /* Add the PT_ARM_EXIDX program header. */
12360
12361 static bfd_boolean
12362 elf32_arm_modify_segment_map (bfd *abfd,
12363 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12364 {
12365 struct elf_segment_map *m;
12366 asection *sec;
12367
12368 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
12369 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
12370 {
12371 /* If there is already a PT_ARM_EXIDX header, then we do not
12372 want to add another one. This situation arises when running
12373 "strip"; the input binary already has the header. */
12374 m = elf_tdata (abfd)->segment_map;
12375 while (m && m->p_type != PT_ARM_EXIDX)
12376 m = m->next;
12377 if (!m)
12378 {
12379 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
12380 if (m == NULL)
12381 return FALSE;
12382 m->p_type = PT_ARM_EXIDX;
12383 m->count = 1;
12384 m->sections[0] = sec;
12385
12386 m->next = elf_tdata (abfd)->segment_map;
12387 elf_tdata (abfd)->segment_map = m;
12388 }
12389 }
12390
12391 return TRUE;
12392 }
12393
12394 /* We may add a PT_ARM_EXIDX program header. */
12395
12396 static int
12397 elf32_arm_additional_program_headers (bfd *abfd,
12398 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12399 {
12400 asection *sec;
12401
12402 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
12403 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
12404 return 1;
12405 else
12406 return 0;
12407 }
12408
12409 /* We have two function types: STT_FUNC and STT_ARM_TFUNC. */
12410
12411 static bfd_boolean
12412 elf32_arm_is_function_type (unsigned int type)
12413 {
12414 return (type == STT_FUNC) || (type == STT_ARM_TFUNC);
12415 }
12416
12417 /* We use this to override swap_symbol_in and swap_symbol_out. */
12418 const struct elf_size_info elf32_arm_size_info =
12419 {
12420 sizeof (Elf32_External_Ehdr),
12421 sizeof (Elf32_External_Phdr),
12422 sizeof (Elf32_External_Shdr),
12423 sizeof (Elf32_External_Rel),
12424 sizeof (Elf32_External_Rela),
12425 sizeof (Elf32_External_Sym),
12426 sizeof (Elf32_External_Dyn),
12427 sizeof (Elf_External_Note),
12428 4,
12429 1,
12430 32, 2,
12431 ELFCLASS32, EV_CURRENT,
12432 bfd_elf32_write_out_phdrs,
12433 bfd_elf32_write_shdrs_and_ehdr,
12434 bfd_elf32_checksum_contents,
12435 bfd_elf32_write_relocs,
12436 elf32_arm_swap_symbol_in,
12437 elf32_arm_swap_symbol_out,
12438 bfd_elf32_slurp_reloc_table,
12439 bfd_elf32_slurp_symbol_table,
12440 bfd_elf32_swap_dyn_in,
12441 bfd_elf32_swap_dyn_out,
12442 bfd_elf32_swap_reloc_in,
12443 bfd_elf32_swap_reloc_out,
12444 bfd_elf32_swap_reloca_in,
12445 bfd_elf32_swap_reloca_out
12446 };
12447
12448 #define ELF_ARCH bfd_arch_arm
12449 #define ELF_MACHINE_CODE EM_ARM
12450 #ifdef __QNXTARGET__
12451 #define ELF_MAXPAGESIZE 0x1000
12452 #else
12453 #define ELF_MAXPAGESIZE 0x8000
12454 #endif
12455 #define ELF_MINPAGESIZE 0x1000
12456 #define ELF_COMMONPAGESIZE 0x1000
12457
12458 #define bfd_elf32_mkobject elf32_arm_mkobject
12459
12460 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
12461 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
12462 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
12463 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
12464 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
12465 #define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
12466 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
12467 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
12468 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
12469 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
12470 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
12471 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
12472 #define bfd_elf32_close_and_cleanup elf32_arm_close_and_cleanup
12473 #define bfd_elf32_bfd_free_cached_info elf32_arm_bfd_free_cached_info
12474
12475 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
12476 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
12477 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
12478 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
12479 #define elf_backend_check_relocs elf32_arm_check_relocs
12480 #define elf_backend_relocate_section elf32_arm_relocate_section
12481 #define elf_backend_write_section elf32_arm_write_section
12482 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
12483 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
12484 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
12485 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
12486 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
12487 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
12488 #define elf_backend_post_process_headers elf32_arm_post_process_headers
12489 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
12490 #define elf_backend_object_p elf32_arm_object_p
12491 #define elf_backend_section_flags elf32_arm_section_flags
12492 #define elf_backend_fake_sections elf32_arm_fake_sections
12493 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
12494 #define elf_backend_final_write_processing elf32_arm_final_write_processing
12495 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
12496 #define elf_backend_symbol_processing elf32_arm_symbol_processing
12497 #define elf_backend_size_info elf32_arm_size_info
12498 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
12499 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
12500 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
12501 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
12502 #define elf_backend_is_function_type elf32_arm_is_function_type
12503
12504 #define elf_backend_can_refcount 1
12505 #define elf_backend_can_gc_sections 1
12506 #define elf_backend_plt_readonly 1
12507 #define elf_backend_want_got_plt 1
12508 #define elf_backend_want_plt_sym 0
12509 #define elf_backend_may_use_rel_p 1
12510 #define elf_backend_may_use_rela_p 0
12511 #define elf_backend_default_use_rela_p 0
12512
12513 #define elf_backend_got_header_size 12
12514
12515 #undef elf_backend_obj_attrs_vendor
12516 #define elf_backend_obj_attrs_vendor "aeabi"
12517 #undef elf_backend_obj_attrs_section
12518 #define elf_backend_obj_attrs_section ".ARM.attributes"
12519 #undef elf_backend_obj_attrs_arg_type
12520 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
12521 #undef elf_backend_obj_attrs_section_type
12522 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
12523 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
12524
12525 #include "elf32-target.h"
12526
12527 /* VxWorks Targets. */
12528
12529 #undef TARGET_LITTLE_SYM
12530 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
12531 #undef TARGET_LITTLE_NAME
12532 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
12533 #undef TARGET_BIG_SYM
12534 #define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
12535 #undef TARGET_BIG_NAME
12536 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
12537
12538 /* Like elf32_arm_link_hash_table_create -- but overrides
12539 appropriately for VxWorks. */
12540
12541 static struct bfd_link_hash_table *
12542 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
12543 {
12544 struct bfd_link_hash_table *ret;
12545
12546 ret = elf32_arm_link_hash_table_create (abfd);
12547 if (ret)
12548 {
12549 struct elf32_arm_link_hash_table *htab
12550 = (struct elf32_arm_link_hash_table *) ret;
12551 htab->use_rel = 0;
12552 htab->vxworks_p = 1;
12553 }
12554 return ret;
12555 }
12556
12557 static void
12558 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
12559 {
12560 elf32_arm_final_write_processing (abfd, linker);
12561 elf_vxworks_final_write_processing (abfd, linker);
12562 }
12563
12564 #undef elf32_bed
12565 #define elf32_bed elf32_arm_vxworks_bed
12566
12567 #undef bfd_elf32_bfd_link_hash_table_create
12568 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
12569 #undef elf_backend_add_symbol_hook
12570 #define elf_backend_add_symbol_hook elf_vxworks_add_symbol_hook
12571 #undef elf_backend_final_write_processing
12572 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
12573 #undef elf_backend_emit_relocs
12574 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
12575
12576 #undef elf_backend_may_use_rel_p
12577 #define elf_backend_may_use_rel_p 0
12578 #undef elf_backend_may_use_rela_p
12579 #define elf_backend_may_use_rela_p 1
12580 #undef elf_backend_default_use_rela_p
12581 #define elf_backend_default_use_rela_p 1
12582 #undef elf_backend_want_plt_sym
12583 #define elf_backend_want_plt_sym 1
12584 #undef ELF_MAXPAGESIZE
12585 #define ELF_MAXPAGESIZE 0x1000
12586
12587 #include "elf32-target.h"
12588
12589
12590 /* Symbian OS Targets. */
12591
12592 #undef TARGET_LITTLE_SYM
12593 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
12594 #undef TARGET_LITTLE_NAME
12595 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
12596 #undef TARGET_BIG_SYM
12597 #define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
12598 #undef TARGET_BIG_NAME
12599 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
12600
12601 /* Like elf32_arm_link_hash_table_create -- but overrides
12602 appropriately for Symbian OS. */
12603
12604 static struct bfd_link_hash_table *
12605 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
12606 {
12607 struct bfd_link_hash_table *ret;
12608
12609 ret = elf32_arm_link_hash_table_create (abfd);
12610 if (ret)
12611 {
12612 struct elf32_arm_link_hash_table *htab
12613 = (struct elf32_arm_link_hash_table *)ret;
12614 /* There is no PLT header for Symbian OS. */
12615 htab->plt_header_size = 0;
12616 /* The PLT entries are each one instruction and one word. */
12617 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
12618 htab->symbian_p = 1;
12619 /* Symbian uses armv5t or above, so use_blx is always true. */
12620 htab->use_blx = 1;
12621 htab->root.is_relocatable_executable = 1;
12622 }
12623 return ret;
12624 }
12625
12626 static const struct bfd_elf_special_section
12627 elf32_arm_symbian_special_sections[] =
12628 {
12629 /* In a BPABI executable, the dynamic linking sections do not go in
12630 the loadable read-only segment. The post-linker may wish to
12631 refer to these sections, but they are not part of the final
12632 program image. */
12633 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
12634 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
12635 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
12636 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
12637 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
12638 /* These sections do not need to be writable as the SymbianOS
12639 postlinker will arrange things so that no dynamic relocation is
12640 required. */
12641 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
12642 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
12643 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
12644 { NULL, 0, 0, 0, 0 }
12645 };
12646
12647 static void
12648 elf32_arm_symbian_begin_write_processing (bfd *abfd,
12649 struct bfd_link_info *link_info)
12650 {
12651 /* BPABI objects are never loaded directly by an OS kernel; they are
12652 processed by a postlinker first, into an OS-specific format. If
12653 the D_PAGED bit is set on the file, BFD will align segments on
12654 page boundaries, so that an OS can directly map the file. With
12655 BPABI objects, that just results in wasted space. In addition,
12656 because we clear the D_PAGED bit, map_sections_to_segments will
12657 recognize that the program headers should not be mapped into any
12658 loadable segment. */
12659 abfd->flags &= ~D_PAGED;
12660 elf32_arm_begin_write_processing (abfd, link_info);
12661 }
12662
12663 static bfd_boolean
12664 elf32_arm_symbian_modify_segment_map (bfd *abfd,
12665 struct bfd_link_info *info)
12666 {
12667 struct elf_segment_map *m;
12668 asection *dynsec;
12669
12670 /* BPABI shared libraries and executables should have a PT_DYNAMIC
12671 segment. However, because the .dynamic section is not marked
12672 with SEC_LOAD, the generic ELF code will not create such a
12673 segment. */
12674 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
12675 if (dynsec)
12676 {
12677 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
12678 if (m->p_type == PT_DYNAMIC)
12679 break;
12680
12681 if (m == NULL)
12682 {
12683 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
12684 m->next = elf_tdata (abfd)->segment_map;
12685 elf_tdata (abfd)->segment_map = m;
12686 }
12687 }
12688
12689 /* Also call the generic arm routine. */
12690 return elf32_arm_modify_segment_map (abfd, info);
12691 }
12692
12693 /* Return address for Ith PLT stub in section PLT, for relocation REL
12694 or (bfd_vma) -1 if it should not be included. */
12695
12696 static bfd_vma
12697 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
12698 const arelent *rel ATTRIBUTE_UNUSED)
12699 {
12700 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
12701 }
12702
12703
12704 #undef elf32_bed
12705 #define elf32_bed elf32_arm_symbian_bed
12706
12707 /* The dynamic sections are not allocated on SymbianOS; the postlinker
12708 will process them and then discard them. */
12709 #undef ELF_DYNAMIC_SEC_FLAGS
12710 #define ELF_DYNAMIC_SEC_FLAGS \
12711 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
12712
12713 #undef elf_backend_add_symbol_hook
12714 #undef elf_backend_emit_relocs
12715
12716 #undef bfd_elf32_bfd_link_hash_table_create
12717 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
12718 #undef elf_backend_special_sections
12719 #define elf_backend_special_sections elf32_arm_symbian_special_sections
12720 #undef elf_backend_begin_write_processing
12721 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
12722 #undef elf_backend_final_write_processing
12723 #define elf_backend_final_write_processing elf32_arm_final_write_processing
12724
12725 #undef elf_backend_modify_segment_map
12726 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
12727
12728 /* There is no .got section for BPABI objects, and hence no header. */
12729 #undef elf_backend_got_header_size
12730 #define elf_backend_got_header_size 0
12731
12732 /* Similarly, there is no .got.plt section. */
12733 #undef elf_backend_want_got_plt
12734 #define elf_backend_want_got_plt 0
12735
12736 #undef elf_backend_plt_sym_val
12737 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
12738
12739 #undef elf_backend_may_use_rel_p
12740 #define elf_backend_may_use_rel_p 1
12741 #undef elf_backend_may_use_rela_p
12742 #define elf_backend_may_use_rela_p 0
12743 #undef elf_backend_default_use_rela_p
12744 #define elf_backend_default_use_rela_p 0
12745 #undef elf_backend_want_plt_sym
12746 #define elf_backend_want_plt_sym 0
12747 #undef ELF_MAXPAGESIZE
12748 #define ELF_MAXPAGESIZE 0x8000
12749
12750 #include "elf32-target.h"
This page took 0.298515 seconds and 5 git commands to generate.