2004-05-14 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / bfd / elf32-arm.h
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #ifndef USE_REL
22 #define USE_REL 0
23 #endif
24
25 typedef unsigned long int insn32;
26 typedef unsigned short int insn16;
27
28 static bfd_boolean elf32_arm_set_private_flags
29 PARAMS ((bfd *, flagword));
30 static bfd_boolean elf32_arm_copy_private_bfd_data
31 PARAMS ((bfd *, bfd *));
32 static bfd_boolean elf32_arm_merge_private_bfd_data
33 PARAMS ((bfd *, bfd *));
34 static bfd_boolean elf32_arm_print_private_bfd_data
35 PARAMS ((bfd *, PTR));
36 static int elf32_arm_get_symbol_type
37 PARAMS (( Elf_Internal_Sym *, int));
38 static struct bfd_link_hash_table *elf32_arm_link_hash_table_create
39 PARAMS ((bfd *));
40 static bfd_reloc_status_type elf32_arm_final_link_relocate
41 PARAMS ((reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
42 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
43 const char *, int, struct elf_link_hash_entry *));
44 static insn32 insert_thumb_branch
45 PARAMS ((insn32, int));
46 static struct elf_link_hash_entry *find_thumb_glue
47 PARAMS ((struct bfd_link_info *, const char *, bfd *));
48 static struct elf_link_hash_entry *find_arm_glue
49 PARAMS ((struct bfd_link_info *, const char *, bfd *));
50 static void elf32_arm_post_process_headers
51 PARAMS ((bfd *, struct bfd_link_info *));
52 static int elf32_arm_to_thumb_stub
53 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
54 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
55 static int elf32_thumb_to_arm_stub
56 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
57 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
58 static bfd_boolean elf32_arm_relocate_section
59 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
60 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
61 static asection * elf32_arm_gc_mark_hook
62 PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
63 struct elf_link_hash_entry *, Elf_Internal_Sym *));
64 static bfd_boolean elf32_arm_gc_sweep_hook
65 PARAMS ((bfd *, struct bfd_link_info *, asection *,
66 const Elf_Internal_Rela *));
67 static bfd_boolean elf32_arm_check_relocs
68 PARAMS ((bfd *, struct bfd_link_info *, asection *,
69 const Elf_Internal_Rela *));
70 static bfd_boolean elf32_arm_find_nearest_line
71 PARAMS ((bfd *, asection *, asymbol **, bfd_vma, const char **,
72 const char **, unsigned int *));
73 static bfd_boolean elf32_arm_adjust_dynamic_symbol
74 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
75 static bfd_boolean elf32_arm_size_dynamic_sections
76 PARAMS ((bfd *, struct bfd_link_info *));
77 static bfd_boolean elf32_arm_finish_dynamic_symbol
78 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
79 Elf_Internal_Sym *));
80 static bfd_boolean elf32_arm_finish_dynamic_sections
81 PARAMS ((bfd *, struct bfd_link_info *));
82 static struct bfd_hash_entry * elf32_arm_link_hash_newfunc
83 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
84 #if USE_REL
85 static void arm_add_to_rel
86 PARAMS ((bfd *, bfd_byte *, reloc_howto_type *, bfd_signed_vma));
87 #endif
88 static bfd_boolean allocate_dynrelocs
89 PARAMS ((struct elf_link_hash_entry *h, PTR inf));
90 static bfd_boolean create_got_section
91 PARAMS ((bfd * dynobj, struct bfd_link_info * info));
92 static bfd_boolean elf32_arm_create_dynamic_sections
93 PARAMS ((bfd * dynobj, struct bfd_link_info * info));
94 static enum elf_reloc_type_class elf32_arm_reloc_type_class
95 PARAMS ((const Elf_Internal_Rela *));
96 static bfd_boolean elf32_arm_object_p
97 PARAMS ((bfd *));
98
99 #ifndef ELFARM_NABI_C_INCLUDED
100 static void record_arm_to_thumb_glue
101 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
102 static void record_thumb_to_arm_glue
103 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
104 bfd_boolean bfd_elf32_arm_allocate_interworking_sections
105 PARAMS ((struct bfd_link_info *));
106 bfd_boolean bfd_elf32_arm_get_bfd_for_interworking
107 PARAMS ((bfd *, struct bfd_link_info *));
108 bfd_boolean bfd_elf32_arm_process_before_allocation
109 PARAMS ((bfd *, struct bfd_link_info *, int, int));
110 #endif
111
112
113 #define INTERWORK_FLAG(abfd) (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK)
114
115 /* The linker script knows the section names for placement.
116 The entry_names are used to do simple name mangling on the stubs.
117 Given a function name, and its type, the stub can be found. The
118 name can be changed. The only requirement is the %s be present. */
119 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
120 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
121
122 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
123 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
124
125 /* The name of the dynamic interpreter. This is put in the .interp
126 section. */
127 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
128
129 #ifdef FOUR_WORD_PLT
130
131 /* The size in bytes of the special first entry in the procedure
132 linkage table. */
133 #define PLT_HEADER_SIZE 16
134
135 /* The size in bytes of an entry in the procedure linkage table. */
136 #define PLT_ENTRY_SIZE 16
137
138 /* The first entry in a procedure linkage table looks like
139 this. It is set up so that any shared library function that is
140 called before the relocation has been set up calls the dynamic
141 linker first. */
142 static const bfd_vma elf32_arm_plt0_entry [PLT_HEADER_SIZE / 4] =
143 {
144 0xe52de004, /* str lr, [sp, #-4]! */
145 0xe59fe010, /* ldr lr, [pc, #16] */
146 0xe08fe00e, /* add lr, pc, lr */
147 0xe5bef008, /* ldr pc, [lr, #8]! */
148 };
149
150 /* Subsequent entries in a procedure linkage table look like
151 this. */
152 static const bfd_vma elf32_arm_plt_entry [PLT_ENTRY_SIZE / 4] =
153 {
154 0xe28fc600, /* add ip, pc, #NN */
155 0xe28cca00, /* add ip, ip, #NN */
156 0xe5bcf000, /* ldr pc, [ip, #NN]! */
157 0x00000000, /* unused */
158 };
159
160 #else
161
162 /* The size in bytes of the special first entry in the procedure
163 linkage table. */
164 #define PLT_HEADER_SIZE 20
165
166 /* The size in bytes of an entry in the procedure linkage table. */
167 #define PLT_ENTRY_SIZE 12
168
169 /* The first entry in a procedure linkage table looks like
170 this. It is set up so that any shared library function that is
171 called before the relocation has been set up calls the dynamic
172 linker first. */
173 static const bfd_vma elf32_arm_plt0_entry [PLT_HEADER_SIZE / 4] =
174 {
175 0xe52de004, /* str lr, [sp, #-4]! */
176 0xe59fe004, /* ldr lr, [pc, #4] */
177 0xe08fe00e, /* add lr, pc, lr */
178 0xe5bef008, /* ldr pc, [lr, #8]! */
179 0x00000000, /* &GOT[0] - . */
180 };
181
182 /* Subsequent entries in a procedure linkage table look like
183 this. */
184 static const bfd_vma elf32_arm_plt_entry [PLT_ENTRY_SIZE / 4] =
185 {
186 0xe28fc600, /* add ip, pc, #0xNN00000 */
187 0xe28cca00, /* add ip, ip, #0xNN000 */
188 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
189 };
190
191 #endif
192
193 /* Used to build a map of a section. This is required for mixed-endian
194 code/data. */
195
196 typedef struct elf32_elf_section_map
197 {
198 bfd_vma vma;
199 char type;
200 }
201 elf32_arm_section_map;
202
203 struct _arm_elf_section_data
204 {
205 struct bfd_elf_section_data elf;
206 int mapcount;
207 elf32_arm_section_map *map;
208 };
209
210 #define elf32_arm_section_data(sec) \
211 ((struct _arm_elf_section_data *) elf_section_data (sec))
212
213 /* The ARM linker needs to keep track of the number of relocs that it
214 decides to copy in check_relocs for each symbol. This is so that
215 it can discard PC relative relocs if it doesn't need them when
216 linking with -Bsymbolic. We store the information in a field
217 extending the regular ELF linker hash table. */
218
219 /* This structure keeps track of the number of PC relative relocs we
220 have copied for a given symbol. */
221 struct elf32_arm_relocs_copied
222 {
223 /* Next section. */
224 struct elf32_arm_relocs_copied * next;
225 /* A section in dynobj. */
226 asection * section;
227 /* Number of relocs copied in this section. */
228 bfd_size_type count;
229 };
230
231 /* Arm ELF linker hash entry. */
232 struct elf32_arm_link_hash_entry
233 {
234 struct elf_link_hash_entry root;
235
236 /* Number of PC relative relocs copied for this symbol. */
237 struct elf32_arm_relocs_copied * relocs_copied;
238 };
239
240 /* Traverse an arm ELF linker hash table. */
241 #define elf32_arm_link_hash_traverse(table, func, info) \
242 (elf_link_hash_traverse \
243 (&(table)->root, \
244 (bfd_boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
245 (info)))
246
247 /* Get the ARM elf linker hash table from a link_info structure. */
248 #define elf32_arm_hash_table(info) \
249 ((struct elf32_arm_link_hash_table *) ((info)->hash))
250
251 /* ARM ELF linker hash table. */
252 struct elf32_arm_link_hash_table
253 {
254 /* The main hash table. */
255 struct elf_link_hash_table root;
256
257 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
258 bfd_size_type thumb_glue_size;
259
260 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
261 bfd_size_type arm_glue_size;
262
263 /* An arbitrary input BFD chosen to hold the glue sections. */
264 bfd * bfd_of_glue_owner;
265
266 /* A boolean indicating whether knowledge of the ARM's pipeline
267 length should be applied by the linker. */
268 int no_pipeline_knowledge;
269
270 /* Nonzero to output a BE8 image. */
271 int byteswap_code;
272
273 /* Short-cuts to get to dynamic linker sections. */
274 asection *sgot;
275 asection *sgotplt;
276 asection *srelgot;
277 asection *splt;
278 asection *srelplt;
279 asection *sdynbss;
280 asection *srelbss;
281
282 /* Small local sym to section mapping cache. */
283 struct sym_sec_cache sym_sec;
284 };
285
286 /* Create an entry in an ARM ELF linker hash table. */
287
288 static struct bfd_hash_entry *
289 elf32_arm_link_hash_newfunc (entry, table, string)
290 struct bfd_hash_entry * entry;
291 struct bfd_hash_table * table;
292 const char * string;
293 {
294 struct elf32_arm_link_hash_entry * ret =
295 (struct elf32_arm_link_hash_entry *) entry;
296
297 /* Allocate the structure if it has not already been allocated by a
298 subclass. */
299 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
300 ret = ((struct elf32_arm_link_hash_entry *)
301 bfd_hash_allocate (table,
302 sizeof (struct elf32_arm_link_hash_entry)));
303 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
304 return (struct bfd_hash_entry *) ret;
305
306 /* Call the allocation method of the superclass. */
307 ret = ((struct elf32_arm_link_hash_entry *)
308 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
309 table, string));
310 if (ret != (struct elf32_arm_link_hash_entry *) NULL)
311 ret->relocs_copied = NULL;
312
313 return (struct bfd_hash_entry *) ret;
314 }
315
316 /* Create .got, .gotplt, and .rel.got sections in DYNOBJ, and set up
317 shortcuts to them in our hash table. */
318
319 static bfd_boolean
320 create_got_section (dynobj, info)
321 bfd *dynobj;
322 struct bfd_link_info *info;
323 {
324 struct elf32_arm_link_hash_table *htab;
325
326 if (! _bfd_elf_create_got_section (dynobj, info))
327 return FALSE;
328
329 htab = elf32_arm_hash_table (info);
330 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
331 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
332 if (!htab->sgot || !htab->sgotplt)
333 abort ();
334
335 htab->srelgot = bfd_make_section (dynobj, ".rel.got");
336 if (htab->srelgot == NULL
337 || ! bfd_set_section_flags (dynobj, htab->srelgot,
338 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
339 | SEC_IN_MEMORY | SEC_LINKER_CREATED
340 | SEC_READONLY))
341 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
342 return FALSE;
343 return TRUE;
344 }
345
346 /* Create .plt, .rel.plt, .got, .got.plt, .rel.got, .dynbss, and
347 .rel.bss sections in DYNOBJ, and set up shortcuts to them in our
348 hash table. */
349
350 static bfd_boolean
351 elf32_arm_create_dynamic_sections (dynobj, info)
352 bfd *dynobj;
353 struct bfd_link_info *info;
354 {
355 struct elf32_arm_link_hash_table *htab;
356
357 htab = elf32_arm_hash_table (info);
358 if (!htab->sgot && !create_got_section (dynobj, info))
359 return FALSE;
360
361 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
362 return FALSE;
363
364 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
365 htab->srelplt = bfd_get_section_by_name (dynobj, ".rel.plt");
366 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
367 if (!info->shared)
368 htab->srelbss = bfd_get_section_by_name (dynobj, ".rel.bss");
369
370 if (!htab->splt || !htab->srelplt || !htab->sdynbss
371 || (!info->shared && !htab->srelbss))
372 abort ();
373
374 return TRUE;
375 }
376
377 /* Copy the extra info we tack onto an elf_link_hash_entry. */
378
379 static void
380 elf32_arm_copy_indirect_symbol (const struct elf_backend_data *bed,
381 struct elf_link_hash_entry *dir,
382 struct elf_link_hash_entry *ind)
383 {
384 struct elf32_arm_link_hash_entry *edir, *eind;
385
386 edir = (struct elf32_arm_link_hash_entry *) dir;
387 eind = (struct elf32_arm_link_hash_entry *) ind;
388
389 if (eind->relocs_copied != NULL)
390 {
391 if (edir->relocs_copied != NULL)
392 {
393 struct elf32_arm_relocs_copied **pp;
394 struct elf32_arm_relocs_copied *p;
395
396 if (ind->root.type == bfd_link_hash_indirect)
397 abort ();
398
399 /* Add reloc counts against the weak sym to the strong sym
400 list. Merge any entries against the same section. */
401 for (pp = &eind->relocs_copied; (p = *pp) != NULL; )
402 {
403 struct elf32_arm_relocs_copied *q;
404
405 for (q = edir->relocs_copied; q != NULL; q = q->next)
406 if (q->section == p->section)
407 {
408 q->count += p->count;
409 *pp = p->next;
410 break;
411 }
412 if (q == NULL)
413 pp = &p->next;
414 }
415 *pp = edir->relocs_copied;
416 }
417
418 edir->relocs_copied = eind->relocs_copied;
419 eind->relocs_copied = NULL;
420 }
421
422 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
423 }
424
425 /* Create an ARM elf linker hash table. */
426
427 static struct bfd_link_hash_table *
428 elf32_arm_link_hash_table_create (abfd)
429 bfd *abfd;
430 {
431 struct elf32_arm_link_hash_table *ret;
432 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
433
434 ret = (struct elf32_arm_link_hash_table *) bfd_malloc (amt);
435 if (ret == (struct elf32_arm_link_hash_table *) NULL)
436 return NULL;
437
438 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
439 elf32_arm_link_hash_newfunc))
440 {
441 free (ret);
442 return NULL;
443 }
444
445 ret->sgot = NULL;
446 ret->sgotplt = NULL;
447 ret->srelgot = NULL;
448 ret->splt = NULL;
449 ret->srelplt = NULL;
450 ret->sdynbss = NULL;
451 ret->srelbss = NULL;
452 ret->thumb_glue_size = 0;
453 ret->arm_glue_size = 0;
454 ret->bfd_of_glue_owner = NULL;
455 ret->no_pipeline_knowledge = 0;
456 ret->byteswap_code = 0;
457 ret->sym_sec.abfd = NULL;
458
459 return &ret->root.root;
460 }
461
462 /* Locate the Thumb encoded calling stub for NAME. */
463
464 static struct elf_link_hash_entry *
465 find_thumb_glue (link_info, name, input_bfd)
466 struct bfd_link_info *link_info;
467 const char *name;
468 bfd *input_bfd;
469 {
470 char *tmp_name;
471 struct elf_link_hash_entry *hash;
472 struct elf32_arm_link_hash_table *hash_table;
473
474 /* We need a pointer to the armelf specific hash table. */
475 hash_table = elf32_arm_hash_table (link_info);
476
477 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
478 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
479
480 BFD_ASSERT (tmp_name);
481
482 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
483
484 hash = elf_link_hash_lookup
485 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
486
487 if (hash == NULL)
488 /* xgettext:c-format */
489 (*_bfd_error_handler) (_("%s: unable to find THUMB glue '%s' for `%s'"),
490 bfd_archive_filename (input_bfd), tmp_name, name);
491
492 free (tmp_name);
493
494 return hash;
495 }
496
497 /* Locate the ARM encoded calling stub for NAME. */
498
499 static struct elf_link_hash_entry *
500 find_arm_glue (link_info, name, input_bfd)
501 struct bfd_link_info *link_info;
502 const char *name;
503 bfd *input_bfd;
504 {
505 char *tmp_name;
506 struct elf_link_hash_entry *myh;
507 struct elf32_arm_link_hash_table *hash_table;
508
509 /* We need a pointer to the elfarm specific hash table. */
510 hash_table = elf32_arm_hash_table (link_info);
511
512 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
513 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
514
515 BFD_ASSERT (tmp_name);
516
517 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
518
519 myh = elf_link_hash_lookup
520 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
521
522 if (myh == NULL)
523 /* xgettext:c-format */
524 (*_bfd_error_handler) (_("%s: unable to find ARM glue '%s' for `%s'"),
525 bfd_archive_filename (input_bfd), tmp_name, name);
526
527 free (tmp_name);
528
529 return myh;
530 }
531
532 /* ARM->Thumb glue:
533
534 .arm
535 __func_from_arm:
536 ldr r12, __func_addr
537 bx r12
538 __func_addr:
539 .word func @ behave as if you saw a ARM_32 reloc. */
540
541 #define ARM2THUMB_GLUE_SIZE 12
542 static const insn32 a2t1_ldr_insn = 0xe59fc000;
543 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
544 static const insn32 a2t3_func_addr_insn = 0x00000001;
545
546 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
547
548 .thumb .thumb
549 .align 2 .align 2
550 __func_from_thumb: __func_from_thumb:
551 bx pc push {r6, lr}
552 nop ldr r6, __func_addr
553 .arm mov lr, pc
554 __func_change_to_arm: bx r6
555 b func .arm
556 __func_back_to_thumb:
557 ldmia r13! {r6, lr}
558 bx lr
559 __func_addr:
560 .word func */
561
562 #define THUMB2ARM_GLUE_SIZE 8
563 static const insn16 t2a1_bx_pc_insn = 0x4778;
564 static const insn16 t2a2_noop_insn = 0x46c0;
565 static const insn32 t2a3_b_insn = 0xea000000;
566
567 #ifndef ELFARM_NABI_C_INCLUDED
568 bfd_boolean
569 bfd_elf32_arm_allocate_interworking_sections (info)
570 struct bfd_link_info * info;
571 {
572 asection * s;
573 bfd_byte * foo;
574 struct elf32_arm_link_hash_table * globals;
575
576 globals = elf32_arm_hash_table (info);
577
578 BFD_ASSERT (globals != NULL);
579
580 if (globals->arm_glue_size != 0)
581 {
582 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
583
584 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
585 ARM2THUMB_GLUE_SECTION_NAME);
586
587 BFD_ASSERT (s != NULL);
588
589 foo = (bfd_byte *) bfd_alloc (globals->bfd_of_glue_owner,
590 globals->arm_glue_size);
591
592 s->_raw_size = s->_cooked_size = globals->arm_glue_size;
593 s->contents = foo;
594 }
595
596 if (globals->thumb_glue_size != 0)
597 {
598 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
599
600 s = bfd_get_section_by_name
601 (globals->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
602
603 BFD_ASSERT (s != NULL);
604
605 foo = (bfd_byte *) bfd_alloc (globals->bfd_of_glue_owner,
606 globals->thumb_glue_size);
607
608 s->_raw_size = s->_cooked_size = globals->thumb_glue_size;
609 s->contents = foo;
610 }
611
612 return TRUE;
613 }
614
615 static void
616 record_arm_to_thumb_glue (link_info, h)
617 struct bfd_link_info * link_info;
618 struct elf_link_hash_entry * h;
619 {
620 const char * name = h->root.root.string;
621 asection * s;
622 char * tmp_name;
623 struct elf_link_hash_entry * myh;
624 struct bfd_link_hash_entry * bh;
625 struct elf32_arm_link_hash_table * globals;
626 bfd_vma val;
627
628 globals = elf32_arm_hash_table (link_info);
629
630 BFD_ASSERT (globals != NULL);
631 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
632
633 s = bfd_get_section_by_name
634 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
635
636 BFD_ASSERT (s != NULL);
637
638 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
639 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
640
641 BFD_ASSERT (tmp_name);
642
643 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
644
645 myh = elf_link_hash_lookup
646 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
647
648 if (myh != NULL)
649 {
650 /* We've already seen this guy. */
651 free (tmp_name);
652 return;
653 }
654
655 /* The only trick here is using hash_table->arm_glue_size as the value. Even
656 though the section isn't allocated yet, this is where we will be putting
657 it. */
658 bh = NULL;
659 val = globals->arm_glue_size + 1;
660 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
661 tmp_name, BSF_GLOBAL, s, val,
662 NULL, TRUE, FALSE, &bh);
663
664 free (tmp_name);
665
666 globals->arm_glue_size += ARM2THUMB_GLUE_SIZE;
667
668 return;
669 }
670
671 static void
672 record_thumb_to_arm_glue (link_info, h)
673 struct bfd_link_info *link_info;
674 struct elf_link_hash_entry *h;
675 {
676 const char *name = h->root.root.string;
677 asection *s;
678 char *tmp_name;
679 struct elf_link_hash_entry *myh;
680 struct bfd_link_hash_entry *bh;
681 struct elf32_arm_link_hash_table *hash_table;
682 char bind;
683 bfd_vma val;
684
685 hash_table = elf32_arm_hash_table (link_info);
686
687 BFD_ASSERT (hash_table != NULL);
688 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
689
690 s = bfd_get_section_by_name
691 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
692
693 BFD_ASSERT (s != NULL);
694
695 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
696 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
697
698 BFD_ASSERT (tmp_name);
699
700 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
701
702 myh = elf_link_hash_lookup
703 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
704
705 if (myh != NULL)
706 {
707 /* We've already seen this guy. */
708 free (tmp_name);
709 return;
710 }
711
712 bh = NULL;
713 val = hash_table->thumb_glue_size + 1;
714 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
715 tmp_name, BSF_GLOBAL, s, val,
716 NULL, TRUE, FALSE, &bh);
717
718 /* If we mark it 'Thumb', the disassembler will do a better job. */
719 myh = (struct elf_link_hash_entry *) bh;
720 bind = ELF_ST_BIND (myh->type);
721 myh->type = ELF_ST_INFO (bind, STT_ARM_TFUNC);
722
723 free (tmp_name);
724
725 #define CHANGE_TO_ARM "__%s_change_to_arm"
726 #define BACK_FROM_ARM "__%s_back_from_arm"
727
728 /* Allocate another symbol to mark where we switch to Arm mode. */
729 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
730 + strlen (CHANGE_TO_ARM) + 1);
731
732 BFD_ASSERT (tmp_name);
733
734 sprintf (tmp_name, CHANGE_TO_ARM, name);
735
736 bh = NULL;
737 val = hash_table->thumb_glue_size + 4,
738 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
739 tmp_name, BSF_LOCAL, s, val,
740 NULL, TRUE, FALSE, &bh);
741
742 free (tmp_name);
743
744 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
745
746 return;
747 }
748
749 /* Add the glue sections to ABFD. This function is called from the
750 linker scripts in ld/emultempl/{armelf}.em. */
751
752 bfd_boolean
753 bfd_elf32_arm_add_glue_sections_to_bfd (abfd, info)
754 bfd *abfd;
755 struct bfd_link_info *info;
756 {
757 flagword flags;
758 asection *sec;
759
760 /* If we are only performing a partial
761 link do not bother adding the glue. */
762 if (info->relocatable)
763 return TRUE;
764
765 sec = bfd_get_section_by_name (abfd, ARM2THUMB_GLUE_SECTION_NAME);
766
767 if (sec == NULL)
768 {
769 /* Note: we do not include the flag SEC_LINKER_CREATED, as this
770 will prevent elf_link_input_bfd() from processing the contents
771 of this section. */
772 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
773
774 sec = bfd_make_section (abfd, ARM2THUMB_GLUE_SECTION_NAME);
775
776 if (sec == NULL
777 || !bfd_set_section_flags (abfd, sec, flags)
778 || !bfd_set_section_alignment (abfd, sec, 2))
779 return FALSE;
780
781 /* Set the gc mark to prevent the section from being removed by garbage
782 collection, despite the fact that no relocs refer to this section. */
783 sec->gc_mark = 1;
784 }
785
786 sec = bfd_get_section_by_name (abfd, THUMB2ARM_GLUE_SECTION_NAME);
787
788 if (sec == NULL)
789 {
790 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
791
792 sec = bfd_make_section (abfd, THUMB2ARM_GLUE_SECTION_NAME);
793
794 if (sec == NULL
795 || !bfd_set_section_flags (abfd, sec, flags)
796 || !bfd_set_section_alignment (abfd, sec, 2))
797 return FALSE;
798
799 sec->gc_mark = 1;
800 }
801
802 return TRUE;
803 }
804
805 /* Select a BFD to be used to hold the sections used by the glue code.
806 This function is called from the linker scripts in ld/emultempl/
807 {armelf/pe}.em */
808
809 bfd_boolean
810 bfd_elf32_arm_get_bfd_for_interworking (abfd, info)
811 bfd *abfd;
812 struct bfd_link_info *info;
813 {
814 struct elf32_arm_link_hash_table *globals;
815
816 /* If we are only performing a partial link
817 do not bother getting a bfd to hold the glue. */
818 if (info->relocatable)
819 return TRUE;
820
821 globals = elf32_arm_hash_table (info);
822
823 BFD_ASSERT (globals != NULL);
824
825 if (globals->bfd_of_glue_owner != NULL)
826 return TRUE;
827
828 /* Save the bfd for later use. */
829 globals->bfd_of_glue_owner = abfd;
830
831 return TRUE;
832 }
833
834 bfd_boolean
835 bfd_elf32_arm_process_before_allocation (abfd, link_info,
836 no_pipeline_knowledge,
837 byteswap_code)
838 bfd *abfd;
839 struct bfd_link_info *link_info;
840 int no_pipeline_knowledge;
841 int byteswap_code;
842 {
843 Elf_Internal_Shdr *symtab_hdr;
844 Elf_Internal_Rela *internal_relocs = NULL;
845 Elf_Internal_Rela *irel, *irelend;
846 bfd_byte *contents = NULL;
847
848 asection *sec;
849 struct elf32_arm_link_hash_table *globals;
850
851 /* If we are only performing a partial link do not bother
852 to construct any glue. */
853 if (link_info->relocatable)
854 return TRUE;
855
856 /* Here we have a bfd that is to be included on the link. We have a hook
857 to do reloc rummaging, before section sizes are nailed down. */
858 globals = elf32_arm_hash_table (link_info);
859
860 BFD_ASSERT (globals != NULL);
861 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
862
863 globals->no_pipeline_knowledge = no_pipeline_knowledge;
864 if (byteswap_code && !bfd_big_endian (abfd))
865 {
866 _bfd_error_handler (
867 _("%s: BE8 images only valid in big-endian mode."),
868 bfd_archive_filename (abfd));
869 return FALSE;
870 }
871 globals->byteswap_code = byteswap_code;
872
873 /* Rummage around all the relocs and map the glue vectors. */
874 sec = abfd->sections;
875
876 if (sec == NULL)
877 return TRUE;
878
879 for (; sec != NULL; sec = sec->next)
880 {
881 if (sec->reloc_count == 0)
882 continue;
883
884 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
885
886 /* Load the relocs. */
887 internal_relocs
888 = _bfd_elf_link_read_relocs (abfd, sec, (PTR) NULL,
889 (Elf_Internal_Rela *) NULL, FALSE);
890
891 if (internal_relocs == NULL)
892 goto error_return;
893
894 irelend = internal_relocs + sec->reloc_count;
895 for (irel = internal_relocs; irel < irelend; irel++)
896 {
897 long r_type;
898 unsigned long r_index;
899
900 struct elf_link_hash_entry *h;
901
902 r_type = ELF32_R_TYPE (irel->r_info);
903 r_index = ELF32_R_SYM (irel->r_info);
904
905 /* These are the only relocation types we care about. */
906 if ( r_type != R_ARM_PC24
907 && r_type != R_ARM_THM_PC22)
908 continue;
909
910 /* Get the section contents if we haven't done so already. */
911 if (contents == NULL)
912 {
913 /* Get cached copy if it exists. */
914 if (elf_section_data (sec)->this_hdr.contents != NULL)
915 contents = elf_section_data (sec)->this_hdr.contents;
916 else
917 {
918 /* Go get them off disk. */
919 contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
920 if (contents == NULL)
921 goto error_return;
922
923 if (!bfd_get_section_contents (abfd, sec, contents,
924 (file_ptr) 0, sec->_raw_size))
925 goto error_return;
926 }
927 }
928
929 /* If the relocation is not against a symbol it cannot concern us. */
930 h = NULL;
931
932 /* We don't care about local symbols. */
933 if (r_index < symtab_hdr->sh_info)
934 continue;
935
936 /* This is an external symbol. */
937 r_index -= symtab_hdr->sh_info;
938 h = (struct elf_link_hash_entry *)
939 elf_sym_hashes (abfd)[r_index];
940
941 /* If the relocation is against a static symbol it must be within
942 the current section and so cannot be a cross ARM/Thumb relocation. */
943 if (h == NULL)
944 continue;
945
946 switch (r_type)
947 {
948 case R_ARM_PC24:
949 /* This one is a call from arm code. We need to look up
950 the target of the call. If it is a thumb target, we
951 insert glue. */
952 if (ELF_ST_TYPE(h->type) == STT_ARM_TFUNC)
953 record_arm_to_thumb_glue (link_info, h);
954 break;
955
956 case R_ARM_THM_PC22:
957 /* This one is a call from thumb code. We look
958 up the target of the call. If it is not a thumb
959 target, we insert glue. */
960 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC)
961 record_thumb_to_arm_glue (link_info, h);
962 break;
963
964 default:
965 break;
966 }
967 }
968
969 if (contents != NULL
970 && elf_section_data (sec)->this_hdr.contents != contents)
971 free (contents);
972 contents = NULL;
973
974 if (internal_relocs != NULL
975 && elf_section_data (sec)->relocs != internal_relocs)
976 free (internal_relocs);
977 internal_relocs = NULL;
978 }
979
980 return TRUE;
981
982 error_return:
983 if (contents != NULL
984 && elf_section_data (sec)->this_hdr.contents != contents)
985 free (contents);
986 if (internal_relocs != NULL
987 && elf_section_data (sec)->relocs != internal_relocs)
988 free (internal_relocs);
989
990 return FALSE;
991 }
992 #endif
993
994 /* The thumb form of a long branch is a bit finicky, because the offset
995 encoding is split over two fields, each in it's own instruction. They
996 can occur in any order. So given a thumb form of long branch, and an
997 offset, insert the offset into the thumb branch and return finished
998 instruction.
999
1000 It takes two thumb instructions to encode the target address. Each has
1001 11 bits to invest. The upper 11 bits are stored in one (identified by
1002 H-0.. see below), the lower 11 bits are stored in the other (identified
1003 by H-1).
1004
1005 Combine together and shifted left by 1 (it's a half word address) and
1006 there you have it.
1007
1008 Op: 1111 = F,
1009 H-0, upper address-0 = 000
1010 Op: 1111 = F,
1011 H-1, lower address-0 = 800
1012
1013 They can be ordered either way, but the arm tools I've seen always put
1014 the lower one first. It probably doesn't matter. krk@cygnus.com
1015
1016 XXX: Actually the order does matter. The second instruction (H-1)
1017 moves the computed address into the PC, so it must be the second one
1018 in the sequence. The problem, however is that whilst little endian code
1019 stores the instructions in HI then LOW order, big endian code does the
1020 reverse. nickc@cygnus.com. */
1021
1022 #define LOW_HI_ORDER 0xF800F000
1023 #define HI_LOW_ORDER 0xF000F800
1024
1025 static insn32
1026 insert_thumb_branch (br_insn, rel_off)
1027 insn32 br_insn;
1028 int rel_off;
1029 {
1030 unsigned int low_bits;
1031 unsigned int high_bits;
1032
1033 BFD_ASSERT ((rel_off & 1) != 1);
1034
1035 rel_off >>= 1; /* Half word aligned address. */
1036 low_bits = rel_off & 0x000007FF; /* The bottom 11 bits. */
1037 high_bits = (rel_off >> 11) & 0x000007FF; /* The top 11 bits. */
1038
1039 if ((br_insn & LOW_HI_ORDER) == LOW_HI_ORDER)
1040 br_insn = LOW_HI_ORDER | (low_bits << 16) | high_bits;
1041 else if ((br_insn & HI_LOW_ORDER) == HI_LOW_ORDER)
1042 br_insn = HI_LOW_ORDER | (high_bits << 16) | low_bits;
1043 else
1044 /* FIXME: abort is probably not the right call. krk@cygnus.com */
1045 abort (); /* error - not a valid branch instruction form. */
1046
1047 return br_insn;
1048 }
1049
1050 /* Thumb code calling an ARM function. */
1051
1052 static int
1053 elf32_thumb_to_arm_stub (info, name, input_bfd, output_bfd, input_section,
1054 hit_data, sym_sec, offset, addend, val)
1055 struct bfd_link_info * info;
1056 const char * name;
1057 bfd * input_bfd;
1058 bfd * output_bfd;
1059 asection * input_section;
1060 bfd_byte * hit_data;
1061 asection * sym_sec;
1062 bfd_vma offset;
1063 bfd_signed_vma addend;
1064 bfd_vma val;
1065 {
1066 asection * s = 0;
1067 bfd_vma my_offset;
1068 unsigned long int tmp;
1069 long int ret_offset;
1070 struct elf_link_hash_entry * myh;
1071 struct elf32_arm_link_hash_table * globals;
1072
1073 myh = find_thumb_glue (info, name, input_bfd);
1074 if (myh == NULL)
1075 return FALSE;
1076
1077 globals = elf32_arm_hash_table (info);
1078
1079 BFD_ASSERT (globals != NULL);
1080 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
1081
1082 my_offset = myh->root.u.def.value;
1083
1084 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
1085 THUMB2ARM_GLUE_SECTION_NAME);
1086
1087 BFD_ASSERT (s != NULL);
1088 BFD_ASSERT (s->contents != NULL);
1089 BFD_ASSERT (s->output_section != NULL);
1090
1091 if ((my_offset & 0x01) == 0x01)
1092 {
1093 if (sym_sec != NULL
1094 && sym_sec->owner != NULL
1095 && !INTERWORK_FLAG (sym_sec->owner))
1096 {
1097 (*_bfd_error_handler)
1098 (_("%s(%s): warning: interworking not enabled."),
1099 bfd_archive_filename (sym_sec->owner), name);
1100 (*_bfd_error_handler)
1101 (_(" first occurrence: %s: thumb call to arm"),
1102 bfd_archive_filename (input_bfd));
1103
1104 return FALSE;
1105 }
1106
1107 --my_offset;
1108 myh->root.u.def.value = my_offset;
1109
1110 bfd_put_16 (output_bfd, (bfd_vma) t2a1_bx_pc_insn,
1111 s->contents + my_offset);
1112
1113 bfd_put_16 (output_bfd, (bfd_vma) t2a2_noop_insn,
1114 s->contents + my_offset + 2);
1115
1116 ret_offset =
1117 /* Address of destination of the stub. */
1118 ((bfd_signed_vma) val)
1119 - ((bfd_signed_vma)
1120 /* Offset from the start of the current section to the start of the stubs. */
1121 (s->output_offset
1122 /* Offset of the start of this stub from the start of the stubs. */
1123 + my_offset
1124 /* Address of the start of the current section. */
1125 + s->output_section->vma)
1126 /* The branch instruction is 4 bytes into the stub. */
1127 + 4
1128 /* ARM branches work from the pc of the instruction + 8. */
1129 + 8);
1130
1131 bfd_put_32 (output_bfd,
1132 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
1133 s->contents + my_offset + 4);
1134 }
1135
1136 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
1137
1138 /* Now go back and fix up the original BL insn to point to here. */
1139 ret_offset =
1140 /* Address of where the stub is located. */
1141 (s->output_section->vma + s->output_offset + my_offset)
1142 /* Address of where the BL is located. */
1143 - (input_section->output_section->vma + input_section->output_offset + offset)
1144 /* Addend in the relocation. */
1145 - addend
1146 /* Biassing for PC-relative addressing. */
1147 - 8;
1148
1149 tmp = bfd_get_32 (input_bfd, hit_data
1150 - input_section->vma);
1151
1152 bfd_put_32 (output_bfd,
1153 (bfd_vma) insert_thumb_branch (tmp, ret_offset),
1154 hit_data - input_section->vma);
1155
1156 return TRUE;
1157 }
1158
1159 /* Arm code calling a Thumb function. */
1160
1161 static int
1162 elf32_arm_to_thumb_stub (info, name, input_bfd, output_bfd, input_section,
1163 hit_data, sym_sec, offset, addend, val)
1164 struct bfd_link_info * info;
1165 const char * name;
1166 bfd * input_bfd;
1167 bfd * output_bfd;
1168 asection * input_section;
1169 bfd_byte * hit_data;
1170 asection * sym_sec;
1171 bfd_vma offset;
1172 bfd_signed_vma addend;
1173 bfd_vma val;
1174 {
1175 unsigned long int tmp;
1176 bfd_vma my_offset;
1177 asection * s;
1178 long int ret_offset;
1179 struct elf_link_hash_entry * myh;
1180 struct elf32_arm_link_hash_table * globals;
1181
1182 myh = find_arm_glue (info, name, input_bfd);
1183 if (myh == NULL)
1184 return FALSE;
1185
1186 globals = elf32_arm_hash_table (info);
1187
1188 BFD_ASSERT (globals != NULL);
1189 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
1190
1191 my_offset = myh->root.u.def.value;
1192 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
1193 ARM2THUMB_GLUE_SECTION_NAME);
1194 BFD_ASSERT (s != NULL);
1195 BFD_ASSERT (s->contents != NULL);
1196 BFD_ASSERT (s->output_section != NULL);
1197
1198 if ((my_offset & 0x01) == 0x01)
1199 {
1200 if (sym_sec != NULL
1201 && sym_sec->owner != NULL
1202 && !INTERWORK_FLAG (sym_sec->owner))
1203 {
1204 (*_bfd_error_handler)
1205 (_("%s(%s): warning: interworking not enabled."),
1206 bfd_archive_filename (sym_sec->owner), name);
1207 (*_bfd_error_handler)
1208 (_(" first occurrence: %s: arm call to thumb"),
1209 bfd_archive_filename (input_bfd));
1210 }
1211
1212 --my_offset;
1213 myh->root.u.def.value = my_offset;
1214
1215 bfd_put_32 (output_bfd, (bfd_vma) a2t1_ldr_insn,
1216 s->contents + my_offset);
1217
1218 bfd_put_32 (output_bfd, (bfd_vma) a2t2_bx_r12_insn,
1219 s->contents + my_offset + 4);
1220
1221 /* It's a thumb address. Add the low order bit. */
1222 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
1223 s->contents + my_offset + 8);
1224 }
1225
1226 BFD_ASSERT (my_offset <= globals->arm_glue_size);
1227
1228 tmp = bfd_get_32 (input_bfd, hit_data);
1229 tmp = tmp & 0xFF000000;
1230
1231 /* Somehow these are both 4 too far, so subtract 8. */
1232 ret_offset = (s->output_offset
1233 + my_offset
1234 + s->output_section->vma
1235 - (input_section->output_offset
1236 + input_section->output_section->vma
1237 + offset + addend)
1238 - 8);
1239
1240 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
1241
1242 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
1243
1244 return TRUE;
1245 }
1246
1247 /* Perform a relocation as part of a final link. */
1248
1249 static bfd_reloc_status_type
1250 elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
1251 input_section, contents, rel, value,
1252 info, sym_sec, sym_name, sym_flags, h)
1253 reloc_howto_type * howto;
1254 bfd * input_bfd;
1255 bfd * output_bfd;
1256 asection * input_section;
1257 bfd_byte * contents;
1258 Elf_Internal_Rela * rel;
1259 bfd_vma value;
1260 struct bfd_link_info * info;
1261 asection * sym_sec;
1262 const char * sym_name;
1263 int sym_flags;
1264 struct elf_link_hash_entry * h;
1265 {
1266 unsigned long r_type = howto->type;
1267 unsigned long r_symndx;
1268 bfd_byte * hit_data = contents + rel->r_offset;
1269 bfd * dynobj = NULL;
1270 Elf_Internal_Shdr * symtab_hdr;
1271 struct elf_link_hash_entry ** sym_hashes;
1272 bfd_vma * local_got_offsets;
1273 asection * sgot = NULL;
1274 asection * splt = NULL;
1275 asection * sreloc = NULL;
1276 bfd_vma addend;
1277 bfd_signed_vma signed_addend;
1278 struct elf32_arm_link_hash_table * globals;
1279
1280 /* If the start address has been set, then set the EF_ARM_HASENTRY
1281 flag. Setting this more than once is redundant, but the cost is
1282 not too high, and it keeps the code simple.
1283
1284 The test is done here, rather than somewhere else, because the
1285 start address is only set just before the final link commences.
1286
1287 Note - if the user deliberately sets a start address of 0, the
1288 flag will not be set. */
1289 if (bfd_get_start_address (output_bfd) != 0)
1290 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
1291
1292 globals = elf32_arm_hash_table (info);
1293
1294 dynobj = elf_hash_table (info)->dynobj;
1295 if (dynobj)
1296 {
1297 sgot = bfd_get_section_by_name (dynobj, ".got");
1298 splt = bfd_get_section_by_name (dynobj, ".plt");
1299 }
1300 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1301 sym_hashes = elf_sym_hashes (input_bfd);
1302 local_got_offsets = elf_local_got_offsets (input_bfd);
1303 r_symndx = ELF32_R_SYM (rel->r_info);
1304
1305 #if USE_REL
1306 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
1307
1308 if (addend & ((howto->src_mask + 1) >> 1))
1309 {
1310 signed_addend = -1;
1311 signed_addend &= ~ howto->src_mask;
1312 signed_addend |= addend;
1313 }
1314 else
1315 signed_addend = addend;
1316 #else
1317 addend = signed_addend = rel->r_addend;
1318 #endif
1319
1320 switch (r_type)
1321 {
1322 case R_ARM_NONE:
1323 return bfd_reloc_ok;
1324
1325 case R_ARM_PC24:
1326 case R_ARM_ABS32:
1327 case R_ARM_REL32:
1328 #ifndef OLD_ARM_ABI
1329 case R_ARM_XPC25:
1330 #endif
1331 case R_ARM_PLT32:
1332 /* r_symndx will be zero only for relocs against symbols
1333 from removed linkonce sections, or sections discarded by
1334 a linker script. */
1335 if (r_symndx == 0)
1336 return bfd_reloc_ok;
1337
1338 /* Handle relocations which should use the PLT entry. ABS32/REL32
1339 will use the symbol's value, which may point to a PLT entry, but we
1340 don't need to handle that here. If we created a PLT entry, all
1341 branches in this object should go to it. */
1342 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32)
1343 && h != NULL
1344 && splt != NULL
1345 && h->plt.offset != (bfd_vma) -1)
1346 {
1347 /* If we've created a .plt section, and assigned a PLT entry to
1348 this function, it should not be known to bind locally. If
1349 it were, we would have cleared the PLT entry. */
1350 BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info, h));
1351
1352 value = (splt->output_section->vma
1353 + splt->output_offset
1354 + h->plt.offset);
1355 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1356 contents, rel->r_offset, value,
1357 (bfd_vma) 0);
1358 }
1359
1360 /* When generating a shared object, these relocations are copied
1361 into the output file to be resolved at run time. */
1362 if (info->shared
1363 && (input_section->flags & SEC_ALLOC)
1364 && (r_type != R_ARM_REL32
1365 || !SYMBOL_CALLS_LOCAL (info, h))
1366 && (h == NULL
1367 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
1368 || h->root.type != bfd_link_hash_undefweak)
1369 && r_type != R_ARM_PC24
1370 && r_type != R_ARM_PLT32)
1371 {
1372 Elf_Internal_Rela outrel;
1373 bfd_byte *loc;
1374 bfd_boolean skip, relocate;
1375
1376 if (sreloc == NULL)
1377 {
1378 const char * name;
1379
1380 name = (bfd_elf_string_from_elf_section
1381 (input_bfd,
1382 elf_elfheader (input_bfd)->e_shstrndx,
1383 elf_section_data (input_section)->rel_hdr.sh_name));
1384 if (name == NULL)
1385 return bfd_reloc_notsupported;
1386
1387 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
1388 && strcmp (bfd_get_section_name (input_bfd,
1389 input_section),
1390 name + 4) == 0);
1391
1392 sreloc = bfd_get_section_by_name (dynobj, name);
1393 BFD_ASSERT (sreloc != NULL);
1394 }
1395
1396 skip = FALSE;
1397 relocate = FALSE;
1398
1399 outrel.r_offset =
1400 _bfd_elf_section_offset (output_bfd, info, input_section,
1401 rel->r_offset);
1402 if (outrel.r_offset == (bfd_vma) -1)
1403 skip = TRUE;
1404 else if (outrel.r_offset == (bfd_vma) -2)
1405 skip = TRUE, relocate = TRUE;
1406 outrel.r_offset += (input_section->output_section->vma
1407 + input_section->output_offset);
1408
1409 if (skip)
1410 memset (&outrel, 0, sizeof outrel);
1411 else if (h != NULL
1412 && h->dynindx != -1
1413 && (!info->shared
1414 || !info->symbolic
1415 || (h->elf_link_hash_flags
1416 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1417 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
1418 else
1419 {
1420 /* This symbol is local, or marked to become local. */
1421 relocate = TRUE;
1422 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1423 }
1424
1425 loc = sreloc->contents;
1426 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rel);
1427 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
1428
1429 /* If this reloc is against an external symbol, we do not want to
1430 fiddle with the addend. Otherwise, we need to include the symbol
1431 value so that it becomes an addend for the dynamic reloc. */
1432 if (! relocate)
1433 return bfd_reloc_ok;
1434
1435 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1436 contents, rel->r_offset, value,
1437 (bfd_vma) 0);
1438 }
1439 else switch (r_type)
1440 {
1441 #ifndef OLD_ARM_ABI
1442 case R_ARM_XPC25: /* Arm BLX instruction. */
1443 #endif
1444 case R_ARM_PC24: /* Arm B/BL instruction */
1445 case R_ARM_PLT32:
1446 #ifndef OLD_ARM_ABI
1447 if (r_type == R_ARM_XPC25)
1448 {
1449 /* Check for Arm calling Arm function. */
1450 /* FIXME: Should we translate the instruction into a BL
1451 instruction instead ? */
1452 if (sym_flags != STT_ARM_TFUNC)
1453 (*_bfd_error_handler) (_("\
1454 %s: Warning: Arm BLX instruction targets Arm function '%s'."),
1455 bfd_archive_filename (input_bfd),
1456 h ? h->root.root.string : "(local)");
1457 }
1458 else
1459 #endif
1460 {
1461 /* Check for Arm calling Thumb function. */
1462 if (sym_flags == STT_ARM_TFUNC)
1463 {
1464 elf32_arm_to_thumb_stub (info, sym_name, input_bfd, output_bfd,
1465 input_section, hit_data, sym_sec, rel->r_offset,
1466 signed_addend, value);
1467 return bfd_reloc_ok;
1468 }
1469 }
1470
1471 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1472 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0)
1473 {
1474 /* The old way of doing things. Trearing the addend as a
1475 byte sized field and adding in the pipeline offset. */
1476 value -= (input_section->output_section->vma
1477 + input_section->output_offset);
1478 value -= rel->r_offset;
1479 value += addend;
1480
1481 if (! globals->no_pipeline_knowledge)
1482 value -= 8;
1483 }
1484 else
1485 {
1486 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
1487 where:
1488 S is the address of the symbol in the relocation.
1489 P is address of the instruction being relocated.
1490 A is the addend (extracted from the instruction) in bytes.
1491
1492 S is held in 'value'.
1493 P is the base address of the section containing the instruction
1494 plus the offset of the reloc into that section, ie:
1495 (input_section->output_section->vma +
1496 input_section->output_offset +
1497 rel->r_offset).
1498 A is the addend, converted into bytes, ie:
1499 (signed_addend * 4)
1500
1501 Note: None of these operations have knowledge of the pipeline
1502 size of the processor, thus it is up to the assembler to encode
1503 this information into the addend. */
1504 value -= (input_section->output_section->vma
1505 + input_section->output_offset);
1506 value -= rel->r_offset;
1507 value += (signed_addend << howto->size);
1508
1509 /* Previous versions of this code also used to add in the pipeline
1510 offset here. This is wrong because the linker is not supposed
1511 to know about such things, and one day it might change. In order
1512 to support old binaries that need the old behaviour however, so
1513 we attempt to detect which ABI was used to create the reloc. */
1514 if (! globals->no_pipeline_knowledge)
1515 {
1516 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form */
1517
1518 i_ehdrp = elf_elfheader (input_bfd);
1519
1520 if (i_ehdrp->e_ident[EI_OSABI] == 0)
1521 value -= 8;
1522 }
1523 }
1524
1525 signed_addend = value;
1526 signed_addend >>= howto->rightshift;
1527
1528 /* It is not an error for an undefined weak reference to be
1529 out of range. Any program that branches to such a symbol
1530 is going to crash anyway, so there is no point worrying
1531 about getting the destination exactly right. */
1532 if (! h || h->root.type != bfd_link_hash_undefweak)
1533 {
1534 /* Perform a signed range check. */
1535 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
1536 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
1537 return bfd_reloc_overflow;
1538 }
1539
1540 #ifndef OLD_ARM_ABI
1541 /* If necessary set the H bit in the BLX instruction. */
1542 if (r_type == R_ARM_XPC25 && ((value & 2) == 2))
1543 value = (signed_addend & howto->dst_mask)
1544 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask))
1545 | (1 << 24);
1546 else
1547 #endif
1548 value = (signed_addend & howto->dst_mask)
1549 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
1550 break;
1551
1552 case R_ARM_ABS32:
1553 value += addend;
1554 if (sym_flags == STT_ARM_TFUNC)
1555 value |= 1;
1556 break;
1557
1558 case R_ARM_REL32:
1559 value -= (input_section->output_section->vma
1560 + input_section->output_offset + rel->r_offset);
1561 value += addend;
1562 break;
1563 }
1564
1565 bfd_put_32 (input_bfd, value, hit_data);
1566 return bfd_reloc_ok;
1567
1568 case R_ARM_ABS8:
1569 value += addend;
1570 if ((long) value > 0x7f || (long) value < -0x80)
1571 return bfd_reloc_overflow;
1572
1573 bfd_put_8 (input_bfd, value, hit_data);
1574 return bfd_reloc_ok;
1575
1576 case R_ARM_ABS16:
1577 value += addend;
1578
1579 if ((long) value > 0x7fff || (long) value < -0x8000)
1580 return bfd_reloc_overflow;
1581
1582 bfd_put_16 (input_bfd, value, hit_data);
1583 return bfd_reloc_ok;
1584
1585 case R_ARM_ABS12:
1586 /* Support ldr and str instruction for the arm */
1587 /* Also thumb b (unconditional branch). ??? Really? */
1588 value += addend;
1589
1590 if ((long) value > 0x7ff || (long) value < -0x800)
1591 return bfd_reloc_overflow;
1592
1593 value |= (bfd_get_32 (input_bfd, hit_data) & 0xfffff000);
1594 bfd_put_32 (input_bfd, value, hit_data);
1595 return bfd_reloc_ok;
1596
1597 case R_ARM_THM_ABS5:
1598 /* Support ldr and str instructions for the thumb. */
1599 #if USE_REL
1600 /* Need to refetch addend. */
1601 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
1602 /* ??? Need to determine shift amount from operand size. */
1603 addend >>= howto->rightshift;
1604 #endif
1605 value += addend;
1606
1607 /* ??? Isn't value unsigned? */
1608 if ((long) value > 0x1f || (long) value < -0x10)
1609 return bfd_reloc_overflow;
1610
1611 /* ??? Value needs to be properly shifted into place first. */
1612 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
1613 bfd_put_16 (input_bfd, value, hit_data);
1614 return bfd_reloc_ok;
1615
1616 #ifndef OLD_ARM_ABI
1617 case R_ARM_THM_XPC22:
1618 #endif
1619 case R_ARM_THM_PC22:
1620 /* Thumb BL (branch long instruction). */
1621 {
1622 bfd_vma relocation;
1623 bfd_boolean overflow = FALSE;
1624 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
1625 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
1626 bfd_signed_vma reloc_signed_max = ((1 << (howto->bitsize - 1)) - 1) >> howto->rightshift;
1627 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
1628 bfd_vma check;
1629 bfd_signed_vma signed_check;
1630
1631 #if USE_REL
1632 /* Need to refetch the addend and squish the two 11 bit pieces
1633 together. */
1634 {
1635 bfd_vma upper = upper_insn & 0x7ff;
1636 bfd_vma lower = lower_insn & 0x7ff;
1637 upper = (upper ^ 0x400) - 0x400; /* Sign extend. */
1638 addend = (upper << 12) | (lower << 1);
1639 signed_addend = addend;
1640 }
1641 #endif
1642 #ifndef OLD_ARM_ABI
1643 if (r_type == R_ARM_THM_XPC22)
1644 {
1645 /* Check for Thumb to Thumb call. */
1646 /* FIXME: Should we translate the instruction into a BL
1647 instruction instead ? */
1648 if (sym_flags == STT_ARM_TFUNC)
1649 (*_bfd_error_handler) (_("\
1650 %s: Warning: Thumb BLX instruction targets thumb function '%s'."),
1651 bfd_archive_filename (input_bfd),
1652 h ? h->root.root.string : "(local)");
1653 }
1654 else
1655 #endif
1656 {
1657 /* If it is not a call to Thumb, assume call to Arm.
1658 If it is a call relative to a section name, then it is not a
1659 function call at all, but rather a long jump. */
1660 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION)
1661 {
1662 if (elf32_thumb_to_arm_stub
1663 (info, sym_name, input_bfd, output_bfd, input_section,
1664 hit_data, sym_sec, rel->r_offset, signed_addend, value))
1665 return bfd_reloc_ok;
1666 else
1667 return bfd_reloc_dangerous;
1668 }
1669 }
1670
1671 relocation = value + signed_addend;
1672
1673 relocation -= (input_section->output_section->vma
1674 + input_section->output_offset
1675 + rel->r_offset);
1676
1677 if (! globals->no_pipeline_knowledge)
1678 {
1679 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form. */
1680
1681 i_ehdrp = elf_elfheader (input_bfd);
1682
1683 /* Previous versions of this code also used to add in the pipline
1684 offset here. This is wrong because the linker is not supposed
1685 to know about such things, and one day it might change. In order
1686 to support old binaries that need the old behaviour however, so
1687 we attempt to detect which ABI was used to create the reloc. */
1688 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1689 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0
1690 || i_ehdrp->e_ident[EI_OSABI] == 0)
1691 relocation += 4;
1692 }
1693
1694 check = relocation >> howto->rightshift;
1695
1696 /* If this is a signed value, the rightshift just dropped
1697 leading 1 bits (assuming twos complement). */
1698 if ((bfd_signed_vma) relocation >= 0)
1699 signed_check = check;
1700 else
1701 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
1702
1703 /* Assumes two's complement. */
1704 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
1705 overflow = TRUE;
1706
1707 #ifndef OLD_ARM_ABI
1708 if (r_type == R_ARM_THM_XPC22
1709 && ((lower_insn & 0x1800) == 0x0800))
1710 /* For a BLX instruction, make sure that the relocation is rounded up
1711 to a word boundary. This follows the semantics of the instruction
1712 which specifies that bit 1 of the target address will come from bit
1713 1 of the base address. */
1714 relocation = (relocation + 2) & ~ 3;
1715 #endif
1716 /* Put RELOCATION back into the insn. */
1717 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 12) & 0x7ff);
1718 lower_insn = (lower_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 1) & 0x7ff);
1719
1720 /* Put the relocated value back in the object file: */
1721 bfd_put_16 (input_bfd, upper_insn, hit_data);
1722 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
1723
1724 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
1725 }
1726 break;
1727
1728 case R_ARM_THM_PC11:
1729 /* Thumb B (branch) instruction). */
1730 {
1731 bfd_signed_vma relocation;
1732 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
1733 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
1734 bfd_signed_vma signed_check;
1735
1736 #if USE_REL
1737 /* Need to refetch addend. */
1738 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
1739 if (addend & ((howto->src_mask + 1) >> 1))
1740 {
1741 signed_addend = -1;
1742 signed_addend &= ~ howto->src_mask;
1743 signed_addend |= addend;
1744 }
1745 else
1746 signed_addend = addend;
1747 /* The value in the insn has been right shifted. We need to
1748 undo this, so that we can perform the address calculation
1749 in terms of bytes. */
1750 signed_addend <<= howto->rightshift;
1751 #endif
1752 relocation = value + signed_addend;
1753
1754 relocation -= (input_section->output_section->vma
1755 + input_section->output_offset
1756 + rel->r_offset);
1757
1758 relocation >>= howto->rightshift;
1759 signed_check = relocation;
1760 relocation &= howto->dst_mask;
1761 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
1762
1763 bfd_put_16 (input_bfd, relocation, hit_data);
1764
1765 /* Assumes two's complement. */
1766 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
1767 return bfd_reloc_overflow;
1768
1769 return bfd_reloc_ok;
1770 }
1771
1772 #ifndef OLD_ARM_ABI
1773 case R_ARM_ALU_PCREL7_0:
1774 case R_ARM_ALU_PCREL15_8:
1775 case R_ARM_ALU_PCREL23_15:
1776 {
1777 bfd_vma insn;
1778 bfd_vma relocation;
1779
1780 insn = bfd_get_32 (input_bfd, hit_data);
1781 #if USE_REL
1782 /* Extract the addend. */
1783 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
1784 signed_addend = addend;
1785 #endif
1786 relocation = value + signed_addend;
1787
1788 relocation -= (input_section->output_section->vma
1789 + input_section->output_offset
1790 + rel->r_offset);
1791 insn = (insn & ~0xfff)
1792 | ((howto->bitpos << 7) & 0xf00)
1793 | ((relocation >> howto->bitpos) & 0xff);
1794 bfd_put_32 (input_bfd, value, hit_data);
1795 }
1796 return bfd_reloc_ok;
1797 #endif
1798
1799 case R_ARM_GNU_VTINHERIT:
1800 case R_ARM_GNU_VTENTRY:
1801 return bfd_reloc_ok;
1802
1803 case R_ARM_COPY:
1804 return bfd_reloc_notsupported;
1805
1806 case R_ARM_GLOB_DAT:
1807 return bfd_reloc_notsupported;
1808
1809 case R_ARM_JUMP_SLOT:
1810 return bfd_reloc_notsupported;
1811
1812 case R_ARM_RELATIVE:
1813 return bfd_reloc_notsupported;
1814
1815 case R_ARM_GOTOFF:
1816 /* Relocation is relative to the start of the
1817 global offset table. */
1818
1819 BFD_ASSERT (sgot != NULL);
1820 if (sgot == NULL)
1821 return bfd_reloc_notsupported;
1822
1823 /* If we are addressing a Thumb function, we need to adjust the
1824 address by one, so that attempts to call the function pointer will
1825 correctly interpret it as Thumb code. */
1826 if (sym_flags == STT_ARM_TFUNC)
1827 value += 1;
1828
1829 /* Note that sgot->output_offset is not involved in this
1830 calculation. We always want the start of .got. If we
1831 define _GLOBAL_OFFSET_TABLE in a different way, as is
1832 permitted by the ABI, we might have to change this
1833 calculation. */
1834 value -= sgot->output_section->vma;
1835 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1836 contents, rel->r_offset, value,
1837 (bfd_vma) 0);
1838
1839 case R_ARM_GOTPC:
1840 /* Use global offset table as symbol value. */
1841 BFD_ASSERT (sgot != NULL);
1842
1843 if (sgot == NULL)
1844 return bfd_reloc_notsupported;
1845
1846 value = sgot->output_section->vma;
1847 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1848 contents, rel->r_offset, value,
1849 (bfd_vma) 0);
1850
1851 case R_ARM_GOT32:
1852 /* Relocation is to the entry for this symbol in the
1853 global offset table. */
1854 if (sgot == NULL)
1855 return bfd_reloc_notsupported;
1856
1857 if (h != NULL)
1858 {
1859 bfd_vma off;
1860 bfd_boolean dyn;
1861
1862 off = h->got.offset;
1863 BFD_ASSERT (off != (bfd_vma) -1);
1864 dyn = globals->root.dynamic_sections_created;
1865
1866 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
1867 || (info->shared
1868 && SYMBOL_REFERENCES_LOCAL (info, h))
1869 || (ELF_ST_VISIBILITY (h->other)
1870 && h->root.type == bfd_link_hash_undefweak))
1871 {
1872 /* This is actually a static link, or it is a -Bsymbolic link
1873 and the symbol is defined locally. We must initialize this
1874 entry in the global offset table. Since the offset must
1875 always be a multiple of 4, we use the least significant bit
1876 to record whether we have initialized it already.
1877
1878 When doing a dynamic link, we create a .rel.got relocation
1879 entry to initialize the value. This is done in the
1880 finish_dynamic_symbol routine. */
1881 if ((off & 1) != 0)
1882 off &= ~1;
1883 else
1884 {
1885 /* If we are addressing a Thumb function, we need to
1886 adjust the address by one, so that attempts to
1887 call the function pointer will correctly
1888 interpret it as Thumb code. */
1889 if (sym_flags == STT_ARM_TFUNC)
1890 value |= 1;
1891
1892 bfd_put_32 (output_bfd, value, sgot->contents + off);
1893 h->got.offset |= 1;
1894 }
1895 }
1896
1897 value = sgot->output_offset + off;
1898 }
1899 else
1900 {
1901 bfd_vma off;
1902
1903 BFD_ASSERT (local_got_offsets != NULL &&
1904 local_got_offsets[r_symndx] != (bfd_vma) -1);
1905
1906 off = local_got_offsets[r_symndx];
1907
1908 /* The offset must always be a multiple of 4. We use the
1909 least significant bit to record whether we have already
1910 generated the necessary reloc. */
1911 if ((off & 1) != 0)
1912 off &= ~1;
1913 else
1914 {
1915 bfd_put_32 (output_bfd, value, sgot->contents + off);
1916
1917 if (info->shared)
1918 {
1919 asection * srelgot;
1920 Elf_Internal_Rela outrel;
1921 bfd_byte *loc;
1922
1923 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
1924 BFD_ASSERT (srelgot != NULL);
1925
1926 outrel.r_offset = (sgot->output_section->vma
1927 + sgot->output_offset
1928 + off);
1929 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1930 loc = srelgot->contents;
1931 loc += srelgot->reloc_count++ * sizeof (Elf32_External_Rel);
1932 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
1933 }
1934
1935 local_got_offsets[r_symndx] |= 1;
1936 }
1937
1938 value = sgot->output_offset + off;
1939 }
1940
1941 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1942 contents, rel->r_offset, value,
1943 (bfd_vma) 0);
1944
1945 case R_ARM_SBREL32:
1946 return bfd_reloc_notsupported;
1947
1948 case R_ARM_AMP_VCALL9:
1949 return bfd_reloc_notsupported;
1950
1951 case R_ARM_RSBREL32:
1952 return bfd_reloc_notsupported;
1953
1954 case R_ARM_THM_RPC22:
1955 return bfd_reloc_notsupported;
1956
1957 case R_ARM_RREL32:
1958 return bfd_reloc_notsupported;
1959
1960 case R_ARM_RABS32:
1961 return bfd_reloc_notsupported;
1962
1963 case R_ARM_RPC24:
1964 return bfd_reloc_notsupported;
1965
1966 case R_ARM_RBASE:
1967 return bfd_reloc_notsupported;
1968
1969 default:
1970 return bfd_reloc_notsupported;
1971 }
1972 }
1973
1974 #if USE_REL
1975 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
1976 static void
1977 arm_add_to_rel (abfd, address, howto, increment)
1978 bfd * abfd;
1979 bfd_byte * address;
1980 reloc_howto_type * howto;
1981 bfd_signed_vma increment;
1982 {
1983 bfd_signed_vma addend;
1984
1985 if (howto->type == R_ARM_THM_PC22)
1986 {
1987 int upper_insn, lower_insn;
1988 int upper, lower;
1989
1990 upper_insn = bfd_get_16 (abfd, address);
1991 lower_insn = bfd_get_16 (abfd, address + 2);
1992 upper = upper_insn & 0x7ff;
1993 lower = lower_insn & 0x7ff;
1994
1995 addend = (upper << 12) | (lower << 1);
1996 addend += increment;
1997 addend >>= 1;
1998
1999 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
2000 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
2001
2002 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
2003 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
2004 }
2005 else
2006 {
2007 bfd_vma contents;
2008
2009 contents = bfd_get_32 (abfd, address);
2010
2011 /* Get the (signed) value from the instruction. */
2012 addend = contents & howto->src_mask;
2013 if (addend & ((howto->src_mask + 1) >> 1))
2014 {
2015 bfd_signed_vma mask;
2016
2017 mask = -1;
2018 mask &= ~ howto->src_mask;
2019 addend |= mask;
2020 }
2021
2022 /* Add in the increment, (which is a byte value). */
2023 switch (howto->type)
2024 {
2025 default:
2026 addend += increment;
2027 break;
2028
2029 case R_ARM_PC24:
2030 addend <<= howto->size;
2031 addend += increment;
2032
2033 /* Should we check for overflow here ? */
2034
2035 /* Drop any undesired bits. */
2036 addend >>= howto->rightshift;
2037 break;
2038 }
2039
2040 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
2041
2042 bfd_put_32 (abfd, contents, address);
2043 }
2044 }
2045 #endif /* USE_REL */
2046
2047 /* Relocate an ARM ELF section. */
2048 static bfd_boolean
2049 elf32_arm_relocate_section (output_bfd, info, input_bfd, input_section,
2050 contents, relocs, local_syms, local_sections)
2051 bfd *output_bfd;
2052 struct bfd_link_info *info;
2053 bfd *input_bfd;
2054 asection *input_section;
2055 bfd_byte *contents;
2056 Elf_Internal_Rela *relocs;
2057 Elf_Internal_Sym *local_syms;
2058 asection **local_sections;
2059 {
2060 Elf_Internal_Shdr *symtab_hdr;
2061 struct elf_link_hash_entry **sym_hashes;
2062 Elf_Internal_Rela *rel;
2063 Elf_Internal_Rela *relend;
2064 const char *name;
2065
2066 #if !USE_REL
2067 if (info->relocatable)
2068 return TRUE;
2069 #endif
2070
2071 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
2072 sym_hashes = elf_sym_hashes (input_bfd);
2073
2074 rel = relocs;
2075 relend = relocs + input_section->reloc_count;
2076 for (; rel < relend; rel++)
2077 {
2078 int r_type;
2079 reloc_howto_type * howto;
2080 unsigned long r_symndx;
2081 Elf_Internal_Sym * sym;
2082 asection * sec;
2083 struct elf_link_hash_entry * h;
2084 bfd_vma relocation;
2085 bfd_reloc_status_type r;
2086 arelent bfd_reloc;
2087
2088 r_symndx = ELF32_R_SYM (rel->r_info);
2089 r_type = ELF32_R_TYPE (rel->r_info);
2090
2091 if ( r_type == R_ARM_GNU_VTENTRY
2092 || r_type == R_ARM_GNU_VTINHERIT)
2093 continue;
2094
2095 elf32_arm_info_to_howto (input_bfd, & bfd_reloc, rel);
2096 howto = bfd_reloc.howto;
2097
2098 #if USE_REL
2099 if (info->relocatable)
2100 {
2101 /* This is a relocatable link. We don't have to change
2102 anything, unless the reloc is against a section symbol,
2103 in which case we have to adjust according to where the
2104 section symbol winds up in the output section. */
2105 if (r_symndx < symtab_hdr->sh_info)
2106 {
2107 sym = local_syms + r_symndx;
2108 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2109 {
2110 sec = local_sections[r_symndx];
2111 arm_add_to_rel (input_bfd, contents + rel->r_offset,
2112 howto,
2113 (bfd_signed_vma) (sec->output_offset
2114 + sym->st_value));
2115 }
2116 }
2117
2118 continue;
2119 }
2120 #endif
2121
2122 /* This is a final link. */
2123 h = NULL;
2124 sym = NULL;
2125 sec = NULL;
2126
2127 if (r_symndx < symtab_hdr->sh_info)
2128 {
2129 sym = local_syms + r_symndx;
2130 sec = local_sections[r_symndx];
2131 #if USE_REL
2132 relocation = (sec->output_section->vma
2133 + sec->output_offset
2134 + sym->st_value);
2135 if ((sec->flags & SEC_MERGE)
2136 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2137 {
2138 asection *msec;
2139 bfd_vma addend, value;
2140
2141 if (howto->rightshift)
2142 {
2143 (*_bfd_error_handler)
2144 (_("%s(%s+0x%lx): %s relocation against SEC_MERGE section"),
2145 bfd_archive_filename (input_bfd),
2146 bfd_get_section_name (input_bfd, input_section),
2147 (long) rel->r_offset, howto->name);
2148 return FALSE;
2149 }
2150
2151 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
2152
2153 /* Get the (signed) value from the instruction. */
2154 addend = value & howto->src_mask;
2155 if (addend & ((howto->src_mask + 1) >> 1))
2156 {
2157 bfd_signed_vma mask;
2158
2159 mask = -1;
2160 mask &= ~ howto->src_mask;
2161 addend |= mask;
2162 }
2163 msec = sec;
2164 addend =
2165 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
2166 - relocation;
2167 addend += msec->output_section->vma + msec->output_offset;
2168 value = (value & ~ howto->dst_mask) | (addend & howto->dst_mask);
2169 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
2170 }
2171 #else
2172 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2173 #endif
2174 }
2175 else
2176 {
2177 bfd_boolean warned;
2178 bfd_boolean unresolved_reloc;
2179
2180 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2181 r_symndx, symtab_hdr, sym_hashes,
2182 h, sec, relocation,
2183 unresolved_reloc, warned);
2184
2185 if (unresolved_reloc || relocation != 0)
2186 {
2187 /* In these cases, we don't need the relocation value.
2188 We check specially because in some obscure cases
2189 sec->output_section will be NULL. */
2190 switch (r_type)
2191 {
2192 case R_ARM_PC24:
2193 case R_ARM_ABS32:
2194 case R_ARM_THM_PC22:
2195 case R_ARM_PLT32:
2196
2197 if (info->shared
2198 && (
2199 (!info->symbolic && h->dynindx != -1)
2200 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
2201 )
2202 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2203 && ((input_section->flags & SEC_ALLOC) != 0
2204 /* DWARF will emit R_ARM_ABS32 relocations in its
2205 sections against symbols defined externally
2206 in shared libraries. We can't do anything
2207 with them here. */
2208 || ((input_section->flags & SEC_DEBUGGING) != 0
2209 && (h->elf_link_hash_flags
2210 & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
2211 )
2212 relocation = 0;
2213 break;
2214
2215 case R_ARM_GOTPC:
2216 relocation = 0;
2217 break;
2218
2219 case R_ARM_GOT32:
2220 if ((WILL_CALL_FINISH_DYNAMIC_SYMBOL
2221 (elf_hash_table (info)->dynamic_sections_created,
2222 info->shared, h))
2223 && (!info->shared
2224 || (!info->symbolic && h->dynindx != -1)
2225 || (h->elf_link_hash_flags
2226 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2227 relocation = 0;
2228 break;
2229
2230 default:
2231 if (unresolved_reloc)
2232 _bfd_error_handler
2233 (_("%s: warning: unresolvable relocation %d against symbol `%s' from %s section"),
2234 bfd_archive_filename (input_bfd),
2235 r_type,
2236 h->root.root.string,
2237 bfd_get_section_name (input_bfd, input_section));
2238 break;
2239 }
2240 }
2241 }
2242
2243 if (h != NULL)
2244 name = h->root.root.string;
2245 else
2246 {
2247 name = (bfd_elf_string_from_elf_section
2248 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2249 if (name == NULL || *name == '\0')
2250 name = bfd_section_name (input_bfd, sec);
2251 }
2252
2253 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
2254 input_section, contents, rel,
2255 relocation, info, sec, name,
2256 (h ? ELF_ST_TYPE (h->type) :
2257 ELF_ST_TYPE (sym->st_info)), h);
2258
2259 if (r != bfd_reloc_ok)
2260 {
2261 const char * msg = (const char *) 0;
2262
2263 switch (r)
2264 {
2265 case bfd_reloc_overflow:
2266 /* If the overflowing reloc was to an undefined symbol,
2267 we have already printed one error message and there
2268 is no point complaining again. */
2269 if ((! h ||
2270 h->root.type != bfd_link_hash_undefined)
2271 && (!((*info->callbacks->reloc_overflow)
2272 (info, name, howto->name, (bfd_vma) 0,
2273 input_bfd, input_section, rel->r_offset))))
2274 return FALSE;
2275 break;
2276
2277 case bfd_reloc_undefined:
2278 if (!((*info->callbacks->undefined_symbol)
2279 (info, name, input_bfd, input_section,
2280 rel->r_offset, TRUE)))
2281 return FALSE;
2282 break;
2283
2284 case bfd_reloc_outofrange:
2285 msg = _("internal error: out of range error");
2286 goto common_error;
2287
2288 case bfd_reloc_notsupported:
2289 msg = _("internal error: unsupported relocation error");
2290 goto common_error;
2291
2292 case bfd_reloc_dangerous:
2293 msg = _("internal error: dangerous error");
2294 goto common_error;
2295
2296 default:
2297 msg = _("internal error: unknown error");
2298 /* fall through */
2299
2300 common_error:
2301 if (!((*info->callbacks->warning)
2302 (info, msg, name, input_bfd, input_section,
2303 rel->r_offset)))
2304 return FALSE;
2305 break;
2306 }
2307 }
2308 }
2309
2310 return TRUE;
2311 }
2312
2313 /* Set the right machine number. */
2314
2315 static bfd_boolean
2316 elf32_arm_object_p (abfd)
2317 bfd *abfd;
2318 {
2319 unsigned int mach;
2320
2321 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
2322
2323 if (mach != bfd_mach_arm_unknown)
2324 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
2325
2326 else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
2327 bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
2328
2329 else
2330 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
2331
2332 return TRUE;
2333 }
2334
2335 /* Function to keep ARM specific flags in the ELF header. */
2336 static bfd_boolean
2337 elf32_arm_set_private_flags (abfd, flags)
2338 bfd *abfd;
2339 flagword flags;
2340 {
2341 if (elf_flags_init (abfd)
2342 && elf_elfheader (abfd)->e_flags != flags)
2343 {
2344 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
2345 {
2346 if (flags & EF_ARM_INTERWORK)
2347 (*_bfd_error_handler) (_("\
2348 Warning: Not setting interworking flag of %s since it has already been specified as non-interworking"),
2349 bfd_archive_filename (abfd));
2350 else
2351 _bfd_error_handler (_("\
2352 Warning: Clearing the interworking flag of %s due to outside request"),
2353 bfd_archive_filename (abfd));
2354 }
2355 }
2356 else
2357 {
2358 elf_elfheader (abfd)->e_flags = flags;
2359 elf_flags_init (abfd) = TRUE;
2360 }
2361
2362 return TRUE;
2363 }
2364
2365 /* Copy backend specific data from one object module to another. */
2366
2367 static bfd_boolean
2368 elf32_arm_copy_private_bfd_data (ibfd, obfd)
2369 bfd *ibfd;
2370 bfd *obfd;
2371 {
2372 flagword in_flags;
2373 flagword out_flags;
2374
2375 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2376 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2377 return TRUE;
2378
2379 in_flags = elf_elfheader (ibfd)->e_flags;
2380 out_flags = elf_elfheader (obfd)->e_flags;
2381
2382 if (elf_flags_init (obfd)
2383 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
2384 && in_flags != out_flags)
2385 {
2386 /* Cannot mix APCS26 and APCS32 code. */
2387 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2388 return FALSE;
2389
2390 /* Cannot mix float APCS and non-float APCS code. */
2391 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2392 return FALSE;
2393
2394 /* If the src and dest have different interworking flags
2395 then turn off the interworking bit. */
2396 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2397 {
2398 if (out_flags & EF_ARM_INTERWORK)
2399 _bfd_error_handler (_("\
2400 Warning: Clearing the interworking flag of %s because non-interworking code in %s has been linked with it"),
2401 bfd_get_filename (obfd),
2402 bfd_archive_filename (ibfd));
2403
2404 in_flags &= ~EF_ARM_INTERWORK;
2405 }
2406
2407 /* Likewise for PIC, though don't warn for this case. */
2408 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
2409 in_flags &= ~EF_ARM_PIC;
2410 }
2411
2412 elf_elfheader (obfd)->e_flags = in_flags;
2413 elf_flags_init (obfd) = TRUE;
2414
2415 return TRUE;
2416 }
2417
2418 /* Merge backend specific data from an object file to the output
2419 object file when linking. */
2420
2421 static bfd_boolean
2422 elf32_arm_merge_private_bfd_data (ibfd, obfd)
2423 bfd * ibfd;
2424 bfd * obfd;
2425 {
2426 flagword out_flags;
2427 flagword in_flags;
2428 bfd_boolean flags_compatible = TRUE;
2429 asection *sec;
2430
2431 /* Check if we have the same endianess. */
2432 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
2433 return FALSE;
2434
2435 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2436 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2437 return TRUE;
2438
2439 /* The input BFD must have had its flags initialised. */
2440 /* The following seems bogus to me -- The flags are initialized in
2441 the assembler but I don't think an elf_flags_init field is
2442 written into the object. */
2443 /* BFD_ASSERT (elf_flags_init (ibfd)); */
2444
2445 in_flags = elf_elfheader (ibfd)->e_flags;
2446 out_flags = elf_elfheader (obfd)->e_flags;
2447
2448 if (!elf_flags_init (obfd))
2449 {
2450 /* If the input is the default architecture and had the default
2451 flags then do not bother setting the flags for the output
2452 architecture, instead allow future merges to do this. If no
2453 future merges ever set these flags then they will retain their
2454 uninitialised values, which surprise surprise, correspond
2455 to the default values. */
2456 if (bfd_get_arch_info (ibfd)->the_default
2457 && elf_elfheader (ibfd)->e_flags == 0)
2458 return TRUE;
2459
2460 elf_flags_init (obfd) = TRUE;
2461 elf_elfheader (obfd)->e_flags = in_flags;
2462
2463 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2464 && bfd_get_arch_info (obfd)->the_default)
2465 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
2466
2467 return TRUE;
2468 }
2469
2470 /* Determine what should happen if the input ARM architecture
2471 does not match the output ARM architecture. */
2472 if (! bfd_arm_merge_machines (ibfd, obfd))
2473 return FALSE;
2474
2475 /* Identical flags must be compatible. */
2476 if (in_flags == out_flags)
2477 return TRUE;
2478
2479 /* Check to see if the input BFD actually contains any sections. If
2480 not, its flags may not have been initialised either, but it
2481 cannot actually cause any incompatibility. Do not short-circuit
2482 dynamic objects; their section list may be emptied by
2483 elf_link_add_object_symbols.
2484
2485 Also check to see if there are no code sections in the input.
2486 In this case there is no need to check for code specific flags.
2487 XXX - do we need to worry about floating-point format compatability
2488 in data sections ? */
2489 if (!(ibfd->flags & DYNAMIC))
2490 {
2491 bfd_boolean null_input_bfd = TRUE;
2492 bfd_boolean only_data_sections = TRUE;
2493
2494 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2495 {
2496 /* Ignore synthetic glue sections. */
2497 if (strcmp (sec->name, ".glue_7")
2498 && strcmp (sec->name, ".glue_7t"))
2499 {
2500 if ((bfd_get_section_flags (ibfd, sec)
2501 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
2502 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
2503 only_data_sections = FALSE;
2504
2505 null_input_bfd = FALSE;
2506 break;
2507 }
2508 }
2509
2510 if (null_input_bfd || only_data_sections)
2511 return TRUE;
2512 }
2513
2514 /* Complain about various flag mismatches. */
2515 if (EF_ARM_EABI_VERSION (in_flags) != EF_ARM_EABI_VERSION (out_flags))
2516 {
2517 _bfd_error_handler (_("\
2518 ERROR: %s is compiled for EABI version %d, whereas %s is compiled for version %d"),
2519 bfd_archive_filename (ibfd),
2520 (in_flags & EF_ARM_EABIMASK) >> 24,
2521 bfd_get_filename (obfd),
2522 (out_flags & EF_ARM_EABIMASK) >> 24);
2523 return FALSE;
2524 }
2525
2526 /* Not sure what needs to be checked for EABI versions >= 1. */
2527 if (EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
2528 {
2529 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2530 {
2531 _bfd_error_handler (_("\
2532 ERROR: %s is compiled for APCS-%d, whereas target %s uses APCS-%d"),
2533 bfd_archive_filename (ibfd),
2534 in_flags & EF_ARM_APCS_26 ? 26 : 32,
2535 bfd_get_filename (obfd),
2536 out_flags & EF_ARM_APCS_26 ? 26 : 32);
2537 flags_compatible = FALSE;
2538 }
2539
2540 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2541 {
2542 if (in_flags & EF_ARM_APCS_FLOAT)
2543 _bfd_error_handler (_("\
2544 ERROR: %s passes floats in float registers, whereas %s passes them in integer registers"),
2545 bfd_archive_filename (ibfd),
2546 bfd_get_filename (obfd));
2547 else
2548 _bfd_error_handler (_("\
2549 ERROR: %s passes floats in integer registers, whereas %s passes them in float registers"),
2550 bfd_archive_filename (ibfd),
2551 bfd_get_filename (obfd));
2552
2553 flags_compatible = FALSE;
2554 }
2555
2556 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
2557 {
2558 if (in_flags & EF_ARM_VFP_FLOAT)
2559 _bfd_error_handler (_("\
2560 ERROR: %s uses VFP instructions, whereas %s does not"),
2561 bfd_archive_filename (ibfd),
2562 bfd_get_filename (obfd));
2563 else
2564 _bfd_error_handler (_("\
2565 ERROR: %s uses FPA instructions, whereas %s does not"),
2566 bfd_archive_filename (ibfd),
2567 bfd_get_filename (obfd));
2568
2569 flags_compatible = FALSE;
2570 }
2571
2572 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
2573 {
2574 if (in_flags & EF_ARM_MAVERICK_FLOAT)
2575 _bfd_error_handler (_("\
2576 ERROR: %s uses Maverick instructions, whereas %s does not"),
2577 bfd_archive_filename (ibfd),
2578 bfd_get_filename (obfd));
2579 else
2580 _bfd_error_handler (_("\
2581 ERROR: %s does not use Maverick instructions, whereas %s does"),
2582 bfd_archive_filename (ibfd),
2583 bfd_get_filename (obfd));
2584
2585 flags_compatible = FALSE;
2586 }
2587
2588 #ifdef EF_ARM_SOFT_FLOAT
2589 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
2590 {
2591 /* We can allow interworking between code that is VFP format
2592 layout, and uses either soft float or integer regs for
2593 passing floating point arguments and results. We already
2594 know that the APCS_FLOAT flags match; similarly for VFP
2595 flags. */
2596 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
2597 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
2598 {
2599 if (in_flags & EF_ARM_SOFT_FLOAT)
2600 _bfd_error_handler (_("\
2601 ERROR: %s uses software FP, whereas %s uses hardware FP"),
2602 bfd_archive_filename (ibfd),
2603 bfd_get_filename (obfd));
2604 else
2605 _bfd_error_handler (_("\
2606 ERROR: %s uses hardware FP, whereas %s uses software FP"),
2607 bfd_archive_filename (ibfd),
2608 bfd_get_filename (obfd));
2609
2610 flags_compatible = FALSE;
2611 }
2612 }
2613 #endif
2614
2615 /* Interworking mismatch is only a warning. */
2616 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2617 {
2618 if (in_flags & EF_ARM_INTERWORK)
2619 {
2620 _bfd_error_handler (_("\
2621 Warning: %s supports interworking, whereas %s does not"),
2622 bfd_archive_filename (ibfd),
2623 bfd_get_filename (obfd));
2624 }
2625 else
2626 {
2627 _bfd_error_handler (_("\
2628 Warning: %s does not support interworking, whereas %s does"),
2629 bfd_archive_filename (ibfd),
2630 bfd_get_filename (obfd));
2631 }
2632 }
2633 }
2634
2635 return flags_compatible;
2636 }
2637
2638 /* Display the flags field. */
2639
2640 static bfd_boolean
2641 elf32_arm_print_private_bfd_data (abfd, ptr)
2642 bfd *abfd;
2643 PTR ptr;
2644 {
2645 FILE * file = (FILE *) ptr;
2646 unsigned long flags;
2647
2648 BFD_ASSERT (abfd != NULL && ptr != NULL);
2649
2650 /* Print normal ELF private data. */
2651 _bfd_elf_print_private_bfd_data (abfd, ptr);
2652
2653 flags = elf_elfheader (abfd)->e_flags;
2654 /* Ignore init flag - it may not be set, despite the flags field
2655 containing valid data. */
2656
2657 /* xgettext:c-format */
2658 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
2659
2660 switch (EF_ARM_EABI_VERSION (flags))
2661 {
2662 case EF_ARM_EABI_UNKNOWN:
2663 /* The following flag bits are GNU extensions and not part of the
2664 official ARM ELF extended ABI. Hence they are only decoded if
2665 the EABI version is not set. */
2666 if (flags & EF_ARM_INTERWORK)
2667 fprintf (file, _(" [interworking enabled]"));
2668
2669 if (flags & EF_ARM_APCS_26)
2670 fprintf (file, " [APCS-26]");
2671 else
2672 fprintf (file, " [APCS-32]");
2673
2674 if (flags & EF_ARM_VFP_FLOAT)
2675 fprintf (file, _(" [VFP float format]"));
2676 else if (flags & EF_ARM_MAVERICK_FLOAT)
2677 fprintf (file, _(" [Maverick float format]"));
2678 else
2679 fprintf (file, _(" [FPA float format]"));
2680
2681 if (flags & EF_ARM_APCS_FLOAT)
2682 fprintf (file, _(" [floats passed in float registers]"));
2683
2684 if (flags & EF_ARM_PIC)
2685 fprintf (file, _(" [position independent]"));
2686
2687 if (flags & EF_ARM_NEW_ABI)
2688 fprintf (file, _(" [new ABI]"));
2689
2690 if (flags & EF_ARM_OLD_ABI)
2691 fprintf (file, _(" [old ABI]"));
2692
2693 if (flags & EF_ARM_SOFT_FLOAT)
2694 fprintf (file, _(" [software FP]"));
2695
2696 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
2697 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
2698 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
2699 | EF_ARM_MAVERICK_FLOAT);
2700 break;
2701
2702 case EF_ARM_EABI_VER1:
2703 fprintf (file, _(" [Version1 EABI]"));
2704
2705 if (flags & EF_ARM_SYMSARESORTED)
2706 fprintf (file, _(" [sorted symbol table]"));
2707 else
2708 fprintf (file, _(" [unsorted symbol table]"));
2709
2710 flags &= ~ EF_ARM_SYMSARESORTED;
2711 break;
2712
2713 case EF_ARM_EABI_VER2:
2714 fprintf (file, _(" [Version2 EABI]"));
2715
2716 if (flags & EF_ARM_SYMSARESORTED)
2717 fprintf (file, _(" [sorted symbol table]"));
2718 else
2719 fprintf (file, _(" [unsorted symbol table]"));
2720
2721 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
2722 fprintf (file, _(" [dynamic symbols use segment index]"));
2723
2724 if (flags & EF_ARM_MAPSYMSFIRST)
2725 fprintf (file, _(" [mapping symbols precede others]"));
2726
2727 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
2728 | EF_ARM_MAPSYMSFIRST);
2729 break;
2730
2731 case EF_ARM_EABI_VER3:
2732 fprintf (file, _(" [Version3 EABI]"));
2733
2734 if (flags & EF_ARM_BE8)
2735 fprintf (file, _(" [BE8]"));
2736
2737 if (flags & EF_ARM_LE8)
2738 fprintf (file, _(" [LE8]"));
2739
2740 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
2741 break;
2742
2743 default:
2744 fprintf (file, _(" <EABI version unrecognised>"));
2745 break;
2746 }
2747
2748 flags &= ~ EF_ARM_EABIMASK;
2749
2750 if (flags & EF_ARM_RELEXEC)
2751 fprintf (file, _(" [relocatable executable]"));
2752
2753 if (flags & EF_ARM_HASENTRY)
2754 fprintf (file, _(" [has entry point]"));
2755
2756 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
2757
2758 if (flags)
2759 fprintf (file, _("<Unrecognised flag bits set>"));
2760
2761 fputc ('\n', file);
2762
2763 return TRUE;
2764 }
2765
2766 static int
2767 elf32_arm_get_symbol_type (elf_sym, type)
2768 Elf_Internal_Sym * elf_sym;
2769 int type;
2770 {
2771 switch (ELF_ST_TYPE (elf_sym->st_info))
2772 {
2773 case STT_ARM_TFUNC:
2774 return ELF_ST_TYPE (elf_sym->st_info);
2775
2776 case STT_ARM_16BIT:
2777 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
2778 This allows us to distinguish between data used by Thumb instructions
2779 and non-data (which is probably code) inside Thumb regions of an
2780 executable. */
2781 if (type != STT_OBJECT)
2782 return ELF_ST_TYPE (elf_sym->st_info);
2783 break;
2784
2785 default:
2786 break;
2787 }
2788
2789 return type;
2790 }
2791
2792 static asection *
2793 elf32_arm_gc_mark_hook (sec, info, rel, h, sym)
2794 asection *sec;
2795 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2796 Elf_Internal_Rela *rel;
2797 struct elf_link_hash_entry *h;
2798 Elf_Internal_Sym *sym;
2799 {
2800 if (h != NULL)
2801 {
2802 switch (ELF32_R_TYPE (rel->r_info))
2803 {
2804 case R_ARM_GNU_VTINHERIT:
2805 case R_ARM_GNU_VTENTRY:
2806 break;
2807
2808 default:
2809 switch (h->root.type)
2810 {
2811 case bfd_link_hash_defined:
2812 case bfd_link_hash_defweak:
2813 return h->root.u.def.section;
2814
2815 case bfd_link_hash_common:
2816 return h->root.u.c.p->section;
2817
2818 default:
2819 break;
2820 }
2821 }
2822 }
2823 else
2824 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
2825
2826 return NULL;
2827 }
2828
2829 /* Update the got entry reference counts for the section being removed. */
2830
2831 static bfd_boolean
2832 elf32_arm_gc_sweep_hook (abfd, info, sec, relocs)
2833 bfd *abfd ATTRIBUTE_UNUSED;
2834 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2835 asection *sec ATTRIBUTE_UNUSED;
2836 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
2837 {
2838 Elf_Internal_Shdr *symtab_hdr;
2839 struct elf_link_hash_entry **sym_hashes;
2840 bfd_signed_vma *local_got_refcounts;
2841 const Elf_Internal_Rela *rel, *relend;
2842 unsigned long r_symndx;
2843 struct elf_link_hash_entry *h;
2844
2845 elf_section_data (sec)->local_dynrel = NULL;
2846
2847 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2848 sym_hashes = elf_sym_hashes (abfd);
2849 local_got_refcounts = elf_local_got_refcounts (abfd);
2850
2851 relend = relocs + sec->reloc_count;
2852 for (rel = relocs; rel < relend; rel++)
2853 switch (ELF32_R_TYPE (rel->r_info))
2854 {
2855 case R_ARM_GOT32:
2856 r_symndx = ELF32_R_SYM (rel->r_info);
2857 if (r_symndx >= symtab_hdr->sh_info)
2858 {
2859 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2860 if (h->got.refcount > 0)
2861 h->got.refcount -= 1;
2862 }
2863 else if (local_got_refcounts != NULL)
2864 {
2865 if (local_got_refcounts[r_symndx] > 0)
2866 local_got_refcounts[r_symndx] -= 1;
2867 }
2868 break;
2869
2870 case R_ARM_ABS32:
2871 case R_ARM_REL32:
2872 case R_ARM_PC24:
2873 case R_ARM_PLT32:
2874 r_symndx = ELF32_R_SYM (rel->r_info);
2875 if (r_symndx >= symtab_hdr->sh_info)
2876 {
2877 struct elf32_arm_link_hash_entry *eh;
2878 struct elf32_arm_relocs_copied **pp;
2879 struct elf32_arm_relocs_copied *p;
2880
2881 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2882
2883 if (h->plt.refcount > 0)
2884 h->plt.refcount -= 1;
2885
2886 if (ELF32_R_TYPE (rel->r_info) == R_ARM_ABS32
2887 || ELF32_R_TYPE (rel->r_info) == R_ARM_REL32)
2888 {
2889 eh = (struct elf32_arm_link_hash_entry *) h;
2890
2891 for (pp = &eh->relocs_copied; (p = *pp) != NULL;
2892 pp = &p->next)
2893 if (p->section == sec)
2894 {
2895 p->count -= 1;
2896 if (p->count == 0)
2897 *pp = p->next;
2898 break;
2899 }
2900 }
2901 }
2902 break;
2903
2904 default:
2905 break;
2906 }
2907
2908 return TRUE;
2909 }
2910
2911 /* Look through the relocs for a section during the first phase. */
2912
2913 static bfd_boolean
2914 elf32_arm_check_relocs (abfd, info, sec, relocs)
2915 bfd *abfd;
2916 struct bfd_link_info *info;
2917 asection *sec;
2918 const Elf_Internal_Rela *relocs;
2919 {
2920 Elf_Internal_Shdr *symtab_hdr;
2921 struct elf_link_hash_entry **sym_hashes;
2922 struct elf_link_hash_entry **sym_hashes_end;
2923 const Elf_Internal_Rela *rel;
2924 const Elf_Internal_Rela *rel_end;
2925 bfd *dynobj;
2926 asection *sreloc;
2927 bfd_vma *local_got_offsets;
2928 struct elf32_arm_link_hash_table *htab;
2929
2930 if (info->relocatable)
2931 return TRUE;
2932
2933 htab = elf32_arm_hash_table (info);
2934 sreloc = NULL;
2935
2936 dynobj = elf_hash_table (info)->dynobj;
2937 local_got_offsets = elf_local_got_offsets (abfd);
2938
2939 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2940 sym_hashes = elf_sym_hashes (abfd);
2941 sym_hashes_end = sym_hashes
2942 + symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
2943
2944 if (!elf_bad_symtab (abfd))
2945 sym_hashes_end -= symtab_hdr->sh_info;
2946
2947 rel_end = relocs + sec->reloc_count;
2948 for (rel = relocs; rel < rel_end; rel++)
2949 {
2950 struct elf_link_hash_entry *h;
2951 unsigned long r_symndx;
2952
2953 r_symndx = ELF32_R_SYM (rel->r_info);
2954 if (r_symndx < symtab_hdr->sh_info)
2955 h = NULL;
2956 else
2957 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2958
2959 switch (ELF32_R_TYPE (rel->r_info))
2960 {
2961 case R_ARM_GOT32:
2962 /* This symbol requires a global offset table entry. */
2963 if (h != NULL)
2964 {
2965 h->got.refcount++;
2966 }
2967 else
2968 {
2969 bfd_signed_vma *local_got_refcounts;
2970
2971 /* This is a global offset table entry for a local symbol. */
2972 local_got_refcounts = elf_local_got_refcounts (abfd);
2973 if (local_got_refcounts == NULL)
2974 {
2975 bfd_size_type size;
2976
2977 size = symtab_hdr->sh_info;
2978 size *= (sizeof (bfd_signed_vma) + sizeof(char));
2979 local_got_refcounts = ((bfd_signed_vma *)
2980 bfd_zalloc (abfd, size));
2981 if (local_got_refcounts == NULL)
2982 return FALSE;
2983 elf_local_got_refcounts (abfd) = local_got_refcounts;
2984 }
2985 local_got_refcounts[r_symndx] += 1;
2986 }
2987 break;
2988
2989 case R_ARM_GOTOFF:
2990 case R_ARM_GOTPC:
2991 if (htab->sgot == NULL)
2992 {
2993 if (htab->root.dynobj == NULL)
2994 htab->root.dynobj = abfd;
2995 if (!create_got_section (htab->root.dynobj, info))
2996 return FALSE;
2997 }
2998 break;
2999
3000 case R_ARM_ABS32:
3001 case R_ARM_REL32:
3002 case R_ARM_PC24:
3003 case R_ARM_PLT32:
3004 if (h != NULL)
3005 {
3006 /* If this reloc is in a read-only section, we might
3007 need a copy reloc. We can't check reliably at this
3008 stage whether the section is read-only, as input
3009 sections have not yet been mapped to output sections.
3010 Tentatively set the flag for now, and correct in
3011 adjust_dynamic_symbol. */
3012 if (!info->shared)
3013 h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
3014
3015 /* We may need a .plt entry if the function this reloc
3016 refers to is in a different object. We can't tell for
3017 sure yet, because something later might force the
3018 symbol local. */
3019 if (ELF32_R_TYPE (rel->r_info) == R_ARM_PC24
3020 || ELF32_R_TYPE (rel->r_info) == R_ARM_PLT32)
3021 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
3022
3023 /* If we create a PLT entry, this relocation will reference
3024 it, even if it's an ABS32 relocation. */
3025 h->plt.refcount += 1;
3026 }
3027
3028 /* If we are creating a shared library, and this is a reloc
3029 against a global symbol, or a non PC relative reloc
3030 against a local symbol, then we need to copy the reloc
3031 into the shared library. However, if we are linking with
3032 -Bsymbolic, we do not need to copy a reloc against a
3033 global symbol which is defined in an object we are
3034 including in the link (i.e., DEF_REGULAR is set). At
3035 this point we have not seen all the input files, so it is
3036 possible that DEF_REGULAR is not set now but will be set
3037 later (it is never cleared). We account for that
3038 possibility below by storing information in the
3039 relocs_copied field of the hash table entry. */
3040 if (info->shared
3041 && (sec->flags & SEC_ALLOC) != 0
3042 && ((ELF32_R_TYPE (rel->r_info) != R_ARM_PC24
3043 && ELF32_R_TYPE (rel->r_info) != R_ARM_PLT32
3044 && ELF32_R_TYPE (rel->r_info) != R_ARM_REL32)
3045 || (h != NULL
3046 && (! info->symbolic
3047 || (h->elf_link_hash_flags
3048 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
3049 {
3050 struct elf32_arm_relocs_copied *p, **head;
3051
3052 /* When creating a shared object, we must copy these
3053 reloc types into the output file. We create a reloc
3054 section in dynobj and make room for this reloc. */
3055 if (sreloc == NULL)
3056 {
3057 const char * name;
3058
3059 name = (bfd_elf_string_from_elf_section
3060 (abfd,
3061 elf_elfheader (abfd)->e_shstrndx,
3062 elf_section_data (sec)->rel_hdr.sh_name));
3063 if (name == NULL)
3064 return FALSE;
3065
3066 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
3067 && strcmp (bfd_get_section_name (abfd, sec),
3068 name + 4) == 0);
3069
3070 sreloc = bfd_get_section_by_name (dynobj, name);
3071 if (sreloc == NULL)
3072 {
3073 flagword flags;
3074
3075 sreloc = bfd_make_section (dynobj, name);
3076 flags = (SEC_HAS_CONTENTS | SEC_READONLY
3077 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3078 if ((sec->flags & SEC_ALLOC) != 0)
3079 flags |= SEC_ALLOC | SEC_LOAD;
3080 if (sreloc == NULL
3081 || ! bfd_set_section_flags (dynobj, sreloc, flags)
3082 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
3083 return FALSE;
3084 }
3085
3086 elf_section_data (sec)->sreloc = sreloc;
3087 }
3088
3089 /* If this is a global symbol, we count the number of
3090 relocations we need for this symbol. */
3091 if (h != NULL)
3092 {
3093 head = &((struct elf32_arm_link_hash_entry *) h)->relocs_copied;
3094 }
3095 else
3096 {
3097 /* Track dynamic relocs needed for local syms too.
3098 We really need local syms available to do this
3099 easily. Oh well. */
3100
3101 asection *s;
3102 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
3103 sec, r_symndx);
3104 if (s == NULL)
3105 return FALSE;
3106
3107 head = ((struct elf32_arm_relocs_copied **)
3108 &elf_section_data (s)->local_dynrel);
3109 }
3110
3111 p = *head;
3112 if (p == NULL || p->section != sec)
3113 {
3114 bfd_size_type amt = sizeof *p;
3115 p = bfd_alloc (htab->root.dynobj, amt);
3116 if (p == NULL)
3117 return FALSE;
3118 p->next = *head;
3119 *head = p;
3120 p->section = sec;
3121 p->count = 0;
3122 }
3123
3124 if (ELF32_R_TYPE (rel->r_info) == R_ARM_ABS32
3125 || ELF32_R_TYPE (rel->r_info) == R_ARM_REL32)
3126 p->count += 1;
3127 }
3128 break;
3129
3130 /* This relocation describes the C++ object vtable hierarchy.
3131 Reconstruct it for later use during GC. */
3132 case R_ARM_GNU_VTINHERIT:
3133 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
3134 return FALSE;
3135 break;
3136
3137 /* This relocation describes which C++ vtable entries are actually
3138 used. Record for later use during GC. */
3139 case R_ARM_GNU_VTENTRY:
3140 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
3141 return FALSE;
3142 break;
3143 }
3144 }
3145
3146 return TRUE;
3147 }
3148
3149 /* Find the nearest line to a particular section and offset, for error
3150 reporting. This code is a duplicate of the code in elf.c, except
3151 that it also accepts STT_ARM_TFUNC as a symbol that names a function. */
3152
3153 static bfd_boolean
3154 elf32_arm_find_nearest_line
3155 (abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr)
3156 bfd *abfd;
3157 asection *section;
3158 asymbol **symbols;
3159 bfd_vma offset;
3160 const char **filename_ptr;
3161 const char **functionname_ptr;
3162 unsigned int *line_ptr;
3163 {
3164 bfd_boolean found;
3165 const char *filename;
3166 asymbol *func;
3167 bfd_vma low_func;
3168 asymbol **p;
3169
3170 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
3171 filename_ptr, functionname_ptr,
3172 line_ptr, 0,
3173 &elf_tdata (abfd)->dwarf2_find_line_info))
3174 return TRUE;
3175
3176 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
3177 &found, filename_ptr,
3178 functionname_ptr, line_ptr,
3179 &elf_tdata (abfd)->line_info))
3180 return FALSE;
3181
3182 if (found)
3183 return TRUE;
3184
3185 if (symbols == NULL)
3186 return FALSE;
3187
3188 filename = NULL;
3189 func = NULL;
3190 low_func = 0;
3191
3192 for (p = symbols; *p != NULL; p++)
3193 {
3194 elf_symbol_type *q;
3195
3196 q = (elf_symbol_type *) *p;
3197
3198 if (bfd_get_section (&q->symbol) != section)
3199 continue;
3200
3201 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
3202 {
3203 default:
3204 break;
3205 case STT_FILE:
3206 filename = bfd_asymbol_name (&q->symbol);
3207 break;
3208 case STT_NOTYPE:
3209 case STT_FUNC:
3210 case STT_ARM_TFUNC:
3211 if (q->symbol.section == section
3212 && q->symbol.value >= low_func
3213 && q->symbol.value <= offset)
3214 {
3215 func = (asymbol *) q;
3216 low_func = q->symbol.value;
3217 }
3218 break;
3219 }
3220 }
3221
3222 if (func == NULL)
3223 return FALSE;
3224
3225 *filename_ptr = filename;
3226 *functionname_ptr = bfd_asymbol_name (func);
3227 *line_ptr = 0;
3228
3229 return TRUE;
3230 }
3231
3232 /* Adjust a symbol defined by a dynamic object and referenced by a
3233 regular object. The current definition is in some section of the
3234 dynamic object, but we're not including those sections. We have to
3235 change the definition to something the rest of the link can
3236 understand. */
3237
3238 static bfd_boolean
3239 elf32_arm_adjust_dynamic_symbol (info, h)
3240 struct bfd_link_info * info;
3241 struct elf_link_hash_entry * h;
3242 {
3243 bfd * dynobj;
3244 asection * s;
3245 unsigned int power_of_two;
3246
3247 dynobj = elf_hash_table (info)->dynobj;
3248
3249 /* Make sure we know what is going on here. */
3250 BFD_ASSERT (dynobj != NULL
3251 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
3252 || h->weakdef != NULL
3253 || ((h->elf_link_hash_flags
3254 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3255 && (h->elf_link_hash_flags
3256 & ELF_LINK_HASH_REF_REGULAR) != 0
3257 && (h->elf_link_hash_flags
3258 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
3259
3260 /* If this is a function, put it in the procedure linkage table. We
3261 will fill in the contents of the procedure linkage table later,
3262 when we know the address of the .got section. */
3263 if (h->type == STT_FUNC
3264 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
3265 {
3266 if (h->plt.refcount <= 0
3267 || SYMBOL_CALLS_LOCAL (info, h)
3268 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
3269 && h->root.type == bfd_link_hash_undefweak))
3270 {
3271 /* This case can occur if we saw a PLT32 reloc in an input
3272 file, but the symbol was never referred to by a dynamic
3273 object, or if all references were garbage collected. In
3274 such a case, we don't actually need to build a procedure
3275 linkage table, and we can just do a PC24 reloc instead. */
3276 h->plt.offset = (bfd_vma) -1;
3277 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
3278 }
3279
3280 return TRUE;
3281 }
3282 else
3283 /* It's possible that we incorrectly decided a .plt reloc was
3284 needed for an R_ARM_PC24 reloc to a non-function sym in
3285 check_relocs. We can't decide accurately between function and
3286 non-function syms in check-relocs; Objects loaded later in
3287 the link may change h->type. So fix it now. */
3288 h->plt.offset = (bfd_vma) -1;
3289
3290 /* If this is a weak symbol, and there is a real definition, the
3291 processor independent code will have arranged for us to see the
3292 real definition first, and we can just use the same value. */
3293 if (h->weakdef != NULL)
3294 {
3295 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
3296 || h->weakdef->root.type == bfd_link_hash_defweak);
3297 h->root.u.def.section = h->weakdef->root.u.def.section;
3298 h->root.u.def.value = h->weakdef->root.u.def.value;
3299 return TRUE;
3300 }
3301
3302 /* This is a reference to a symbol defined by a dynamic object which
3303 is not a function. */
3304
3305 /* If we are creating a shared library, we must presume that the
3306 only references to the symbol are via the global offset table.
3307 For such cases we need not do anything here; the relocations will
3308 be handled correctly by relocate_section. */
3309 if (info->shared)
3310 return TRUE;
3311
3312 /* We must allocate the symbol in our .dynbss section, which will
3313 become part of the .bss section of the executable. There will be
3314 an entry for this symbol in the .dynsym section. The dynamic
3315 object will contain position independent code, so all references
3316 from the dynamic object to this symbol will go through the global
3317 offset table. The dynamic linker will use the .dynsym entry to
3318 determine the address it must put in the global offset table, so
3319 both the dynamic object and the regular object will refer to the
3320 same memory location for the variable. */
3321 s = bfd_get_section_by_name (dynobj, ".dynbss");
3322 BFD_ASSERT (s != NULL);
3323
3324 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
3325 copy the initial value out of the dynamic object and into the
3326 runtime process image. We need to remember the offset into the
3327 .rel.bss section we are going to use. */
3328 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
3329 {
3330 asection *srel;
3331
3332 srel = bfd_get_section_by_name (dynobj, ".rel.bss");
3333 BFD_ASSERT (srel != NULL);
3334 srel->_raw_size += sizeof (Elf32_External_Rel);
3335 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
3336 }
3337
3338 /* We need to figure out the alignment required for this symbol. I
3339 have no idea how ELF linkers handle this. */
3340 power_of_two = bfd_log2 (h->size);
3341 if (power_of_two > 3)
3342 power_of_two = 3;
3343
3344 /* Apply the required alignment. */
3345 s->_raw_size = BFD_ALIGN (s->_raw_size,
3346 (bfd_size_type) (1 << power_of_two));
3347 if (power_of_two > bfd_get_section_alignment (dynobj, s))
3348 {
3349 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
3350 return FALSE;
3351 }
3352
3353 /* Define the symbol as being at this point in the section. */
3354 h->root.u.def.section = s;
3355 h->root.u.def.value = s->_raw_size;
3356
3357 /* Increment the section size to make room for the symbol. */
3358 s->_raw_size += h->size;
3359
3360 return TRUE;
3361 }
3362
3363 /* Allocate space in .plt, .got and associated reloc sections for
3364 dynamic relocs. */
3365
3366 static bfd_boolean
3367 allocate_dynrelocs (h, inf)
3368 struct elf_link_hash_entry *h;
3369 PTR inf;
3370 {
3371 struct bfd_link_info *info;
3372 struct elf32_arm_link_hash_table *htab;
3373 struct elf32_arm_link_hash_entry *eh;
3374 struct elf32_arm_relocs_copied *p;
3375
3376 if (h->root.type == bfd_link_hash_indirect)
3377 return TRUE;
3378
3379 if (h->root.type == bfd_link_hash_warning)
3380 /* When warning symbols are created, they **replace** the "real"
3381 entry in the hash table, thus we never get to see the real
3382 symbol in a hash traversal. So look at it now. */
3383 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3384
3385 info = (struct bfd_link_info *) inf;
3386 htab = elf32_arm_hash_table (info);
3387
3388 if (htab->root.dynamic_sections_created
3389 && h->plt.refcount > 0)
3390 {
3391 /* Make sure this symbol is output as a dynamic symbol.
3392 Undefined weak syms won't yet be marked as dynamic. */
3393 if (h->dynindx == -1
3394 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
3395 {
3396 if (! bfd_elf_link_record_dynamic_symbol (info, h))
3397 return FALSE;
3398 }
3399
3400 if (info->shared
3401 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
3402 {
3403 asection *s = htab->splt;
3404
3405 /* If this is the first .plt entry, make room for the special
3406 first entry. */
3407 if (s->_raw_size == 0)
3408 s->_raw_size += PLT_HEADER_SIZE;
3409
3410 h->plt.offset = s->_raw_size;
3411
3412 /* If this symbol is not defined in a regular file, and we are
3413 not generating a shared library, then set the symbol to this
3414 location in the .plt. This is required to make function
3415 pointers compare as equal between the normal executable and
3416 the shared library. */
3417 if (! info->shared
3418 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3419 {
3420 h->root.u.def.section = s;
3421 h->root.u.def.value = h->plt.offset;
3422 }
3423
3424 /* Make room for this entry. */
3425 s->_raw_size += PLT_ENTRY_SIZE;
3426
3427 /* We also need to make an entry in the .got.plt section, which
3428 will be placed in the .got section by the linker script. */
3429 htab->sgotplt->_raw_size += 4;
3430
3431 /* We also need to make an entry in the .rel.plt section. */
3432 htab->srelplt->_raw_size += sizeof (Elf32_External_Rel);
3433 }
3434 else
3435 {
3436 h->plt.offset = (bfd_vma) -1;
3437 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
3438 }
3439 }
3440 else
3441 {
3442 h->plt.offset = (bfd_vma) -1;
3443 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
3444 }
3445
3446 if (h->got.refcount > 0)
3447 {
3448 asection *s;
3449 bfd_boolean dyn;
3450
3451 /* Make sure this symbol is output as a dynamic symbol.
3452 Undefined weak syms won't yet be marked as dynamic. */
3453 if (h->dynindx == -1
3454 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
3455 {
3456 if (! bfd_elf_link_record_dynamic_symbol (info, h))
3457 return FALSE;
3458 }
3459
3460 s = htab->sgot;
3461 h->got.offset = s->_raw_size;
3462 s->_raw_size += 4;
3463 dyn = htab->root.dynamic_sections_created;
3464 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3465 || h->root.type != bfd_link_hash_undefweak)
3466 && (info->shared
3467 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
3468 htab->srelgot->_raw_size += sizeof (Elf32_External_Rel);
3469 }
3470 else
3471 h->got.offset = (bfd_vma) -1;
3472
3473 eh = (struct elf32_arm_link_hash_entry *) h;
3474 if (eh->relocs_copied == NULL)
3475 return TRUE;
3476
3477 /* In the shared -Bsymbolic case, discard space allocated for
3478 dynamic pc-relative relocs against symbols which turn out to be
3479 defined in regular objects. For the normal shared case, discard
3480 space for pc-relative relocs that have become local due to symbol
3481 visibility changes. */
3482
3483 if (info->shared)
3484 {
3485 /* Discard relocs on undefined weak syms with non-default
3486 visibility. */
3487 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
3488 && h->root.type == bfd_link_hash_undefweak)
3489 eh->relocs_copied = NULL;
3490 }
3491 else
3492 {
3493 /* For the non-shared case, discard space for relocs against
3494 symbols which turn out to need copy relocs or are not
3495 dynamic. */
3496
3497 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
3498 && (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3499 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3500 || (htab->root.dynamic_sections_created
3501 && (h->root.type == bfd_link_hash_undefweak
3502 || h->root.type == bfd_link_hash_undefined))))
3503 {
3504 /* Make sure this symbol is output as a dynamic symbol.
3505 Undefined weak syms won't yet be marked as dynamic. */
3506 if (h->dynindx == -1
3507 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
3508 {
3509 if (! bfd_elf_link_record_dynamic_symbol (info, h))
3510 return FALSE;
3511 }
3512
3513 /* If that succeeded, we know we'll be keeping all the
3514 relocs. */
3515 if (h->dynindx != -1)
3516 goto keep;
3517 }
3518
3519 eh->relocs_copied = NULL;
3520
3521 keep: ;
3522 }
3523
3524 /* Finally, allocate space. */
3525 for (p = eh->relocs_copied; p != NULL; p = p->next)
3526 {
3527 asection *sreloc = elf_section_data (p->section)->sreloc;
3528 sreloc->_raw_size += p->count * sizeof (Elf32_External_Rel);
3529 }
3530
3531 return TRUE;
3532 }
3533
3534 /* Set the sizes of the dynamic sections. */
3535
3536 static bfd_boolean
3537 elf32_arm_size_dynamic_sections (output_bfd, info)
3538 bfd * output_bfd ATTRIBUTE_UNUSED;
3539 struct bfd_link_info * info;
3540 {
3541 bfd * dynobj;
3542 asection * s;
3543 bfd_boolean plt;
3544 bfd_boolean relocs;
3545 bfd *ibfd;
3546 struct elf32_arm_link_hash_table *htab;
3547
3548 htab = elf32_arm_hash_table (info);
3549 dynobj = elf_hash_table (info)->dynobj;
3550 BFD_ASSERT (dynobj != NULL);
3551
3552 if (elf_hash_table (info)->dynamic_sections_created)
3553 {
3554 /* Set the contents of the .interp section to the interpreter. */
3555 if (info->executable)
3556 {
3557 s = bfd_get_section_by_name (dynobj, ".interp");
3558 BFD_ASSERT (s != NULL);
3559 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
3560 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
3561 }
3562 }
3563
3564 /* Set up .got offsets for local syms, and space for local dynamic
3565 relocs. */
3566 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
3567 {
3568 bfd_signed_vma *local_got;
3569 bfd_signed_vma *end_local_got;
3570 char *local_tls_type;
3571 bfd_size_type locsymcount;
3572 Elf_Internal_Shdr *symtab_hdr;
3573 asection *srel;
3574
3575 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
3576 continue;
3577
3578 for (s = ibfd->sections; s != NULL; s = s->next)
3579 {
3580 struct elf32_arm_relocs_copied *p;
3581
3582 for (p = *((struct elf32_arm_relocs_copied **)
3583 &elf_section_data (s)->local_dynrel);
3584 p != NULL;
3585 p = p->next)
3586 {
3587 if (!bfd_is_abs_section (p->section)
3588 && bfd_is_abs_section (p->section->output_section))
3589 {
3590 /* Input section has been discarded, either because
3591 it is a copy of a linkonce section or due to
3592 linker script /DISCARD/, so we'll be discarding
3593 the relocs too. */
3594 }
3595 else if (p->count != 0)
3596 {
3597 srel = elf_section_data (p->section)->sreloc;
3598 srel->_raw_size += p->count * sizeof (Elf32_External_Rel);
3599 if ((p->section->output_section->flags & SEC_READONLY) != 0)
3600 info->flags |= DF_TEXTREL;
3601 }
3602 }
3603 }
3604
3605 local_got = elf_local_got_refcounts (ibfd);
3606 if (!local_got)
3607 continue;
3608
3609 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
3610 locsymcount = symtab_hdr->sh_info;
3611 end_local_got = local_got + locsymcount;
3612 s = htab->sgot;
3613 srel = htab->srelgot;
3614 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
3615 {
3616 if (*local_got > 0)
3617 {
3618 *local_got = s->_raw_size;
3619 s->_raw_size += 4;
3620 if (info->shared)
3621 srel->_raw_size += sizeof (Elf32_External_Rel);
3622 }
3623 else
3624 *local_got = (bfd_vma) -1;
3625 }
3626 }
3627
3628 /* Allocate global sym .plt and .got entries, and space for global
3629 sym dynamic relocs. */
3630 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, (PTR) info);
3631
3632 /* The check_relocs and adjust_dynamic_symbol entry points have
3633 determined the sizes of the various dynamic sections. Allocate
3634 memory for them. */
3635 plt = FALSE;
3636 relocs = FALSE;
3637 for (s = dynobj->sections; s != NULL; s = s->next)
3638 {
3639 const char * name;
3640 bfd_boolean strip;
3641
3642 if ((s->flags & SEC_LINKER_CREATED) == 0)
3643 continue;
3644
3645 /* It's OK to base decisions on the section name, because none
3646 of the dynobj section names depend upon the input files. */
3647 name = bfd_get_section_name (dynobj, s);
3648
3649 strip = FALSE;
3650
3651 if (strcmp (name, ".plt") == 0)
3652 {
3653 if (s->_raw_size == 0)
3654 {
3655 /* Strip this section if we don't need it; see the
3656 comment below. */
3657 strip = TRUE;
3658 }
3659 else
3660 {
3661 /* Remember whether there is a PLT. */
3662 plt = TRUE;
3663 }
3664 }
3665 else if (strncmp (name, ".rel", 4) == 0)
3666 {
3667 if (s->_raw_size == 0)
3668 {
3669 /* If we don't need this section, strip it from the
3670 output file. This is mostly to handle .rel.bss and
3671 .rel.plt. We must create both sections in
3672 create_dynamic_sections, because they must be created
3673 before the linker maps input sections to output
3674 sections. The linker does that before
3675 adjust_dynamic_symbol is called, and it is that
3676 function which decides whether anything needs to go
3677 into these sections. */
3678 strip = TRUE;
3679 }
3680 else
3681 {
3682 /* Remember whether there are any reloc sections other
3683 than .rel.plt. */
3684 if (strcmp (name, ".rel.plt") != 0)
3685 relocs = TRUE;
3686
3687 /* We use the reloc_count field as a counter if we need
3688 to copy relocs into the output file. */
3689 s->reloc_count = 0;
3690 }
3691 }
3692 else if (strncmp (name, ".got", 4) != 0)
3693 {
3694 /* It's not one of our sections, so don't allocate space. */
3695 continue;
3696 }
3697
3698 if (strip)
3699 {
3700 _bfd_strip_section_from_output (info, s);
3701 continue;
3702 }
3703
3704 /* Allocate memory for the section contents. */
3705 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
3706 if (s->contents == NULL && s->_raw_size != 0)
3707 return FALSE;
3708 }
3709
3710 if (elf_hash_table (info)->dynamic_sections_created)
3711 {
3712 /* Add some entries to the .dynamic section. We fill in the
3713 values later, in elf32_arm_finish_dynamic_sections, but we
3714 must add the entries now so that we get the correct size for
3715 the .dynamic section. The DT_DEBUG entry is filled in by the
3716 dynamic linker and used by the debugger. */
3717 #define add_dynamic_entry(TAG, VAL) \
3718 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
3719
3720 if (!info->shared)
3721 {
3722 if (!add_dynamic_entry (DT_DEBUG, 0))
3723 return FALSE;
3724 }
3725
3726 if (plt)
3727 {
3728 if ( !add_dynamic_entry (DT_PLTGOT, 0)
3729 || !add_dynamic_entry (DT_PLTRELSZ, 0)
3730 || !add_dynamic_entry (DT_PLTREL, DT_REL)
3731 || !add_dynamic_entry (DT_JMPREL, 0))
3732 return FALSE;
3733 }
3734
3735 if (relocs)
3736 {
3737 if ( !add_dynamic_entry (DT_REL, 0)
3738 || !add_dynamic_entry (DT_RELSZ, 0)
3739 || !add_dynamic_entry (DT_RELENT, sizeof (Elf32_External_Rel)))
3740 return FALSE;
3741 }
3742
3743 if ((info->flags & DF_TEXTREL) != 0)
3744 {
3745 if (!add_dynamic_entry (DT_TEXTREL, 0))
3746 return FALSE;
3747 info->flags |= DF_TEXTREL;
3748 }
3749 }
3750 #undef add_synamic_entry
3751
3752 return TRUE;
3753 }
3754
3755 /* Finish up dynamic symbol handling. We set the contents of various
3756 dynamic sections here. */
3757
3758 static bfd_boolean
3759 elf32_arm_finish_dynamic_symbol (output_bfd, info, h, sym)
3760 bfd * output_bfd;
3761 struct bfd_link_info * info;
3762 struct elf_link_hash_entry * h;
3763 Elf_Internal_Sym * sym;
3764 {
3765 bfd * dynobj;
3766
3767 dynobj = elf_hash_table (info)->dynobj;
3768
3769 if (h->plt.offset != (bfd_vma) -1)
3770 {
3771 asection * splt;
3772 asection * sgot;
3773 asection * srel;
3774 bfd_vma plt_index;
3775 bfd_vma got_offset;
3776 Elf_Internal_Rela rel;
3777 bfd_byte *loc;
3778 bfd_vma got_displacement;
3779
3780 /* This symbol has an entry in the procedure linkage table. Set
3781 it up. */
3782
3783 BFD_ASSERT (h->dynindx != -1);
3784
3785 splt = bfd_get_section_by_name (dynobj, ".plt");
3786 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3787 srel = bfd_get_section_by_name (dynobj, ".rel.plt");
3788 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
3789
3790 /* Get the index in the procedure linkage table which
3791 corresponds to this symbol. This is the index of this symbol
3792 in all the symbols for which we are making plt entries. The
3793 first entry in the procedure linkage table is reserved. */
3794 plt_index = (h->plt.offset - PLT_HEADER_SIZE) / PLT_ENTRY_SIZE;
3795
3796 /* Get the offset into the .got table of the entry that
3797 corresponds to this function. Each .got entry is 4 bytes.
3798 The first three are reserved. */
3799 got_offset = (plt_index + 3) * 4;
3800
3801 /* Calculate the displacement between the PLT slot and the
3802 entry in the GOT. */
3803 got_displacement = (sgot->output_section->vma
3804 + sgot->output_offset
3805 + got_offset
3806 - splt->output_section->vma
3807 - splt->output_offset
3808 - h->plt.offset
3809 - 8);
3810
3811 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
3812
3813 /* Fill in the entry in the procedure linkage table. */
3814 bfd_put_32 (output_bfd, elf32_arm_plt_entry[0] | ((got_displacement & 0x0ff00000) >> 20),
3815 splt->contents + h->plt.offset + 0);
3816 bfd_put_32 (output_bfd, elf32_arm_plt_entry[1] | ((got_displacement & 0x000ff000) >> 12),
3817 splt->contents + h->plt.offset + 4);
3818 bfd_put_32 (output_bfd, elf32_arm_plt_entry[2] | (got_displacement & 0x00000fff),
3819 splt->contents + h->plt.offset + 8);
3820 #ifdef FOUR_WORD_PLT
3821 bfd_put_32 (output_bfd, elf32_arm_plt_entry[3],
3822 splt->contents + h->plt.offset + 12);
3823 #endif
3824
3825 /* Fill in the entry in the global offset table. */
3826 bfd_put_32 (output_bfd,
3827 (splt->output_section->vma
3828 + splt->output_offset),
3829 sgot->contents + got_offset);
3830
3831 /* Fill in the entry in the .rel.plt section. */
3832 rel.r_offset = (sgot->output_section->vma
3833 + sgot->output_offset
3834 + got_offset);
3835 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
3836 loc = srel->contents + plt_index * sizeof (Elf32_External_Rel);
3837 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
3838
3839 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3840 {
3841 /* Mark the symbol as undefined, rather than as defined in
3842 the .plt section. Leave the value alone. */
3843 sym->st_shndx = SHN_UNDEF;
3844 /* If the symbol is weak, we do need to clear the value.
3845 Otherwise, the PLT entry would provide a definition for
3846 the symbol even if the symbol wasn't defined anywhere,
3847 and so the symbol would never be NULL. */
3848 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
3849 == 0)
3850 sym->st_value = 0;
3851 }
3852 }
3853
3854 if (h->got.offset != (bfd_vma) -1)
3855 {
3856 asection * sgot;
3857 asection * srel;
3858 Elf_Internal_Rela rel;
3859 bfd_byte *loc;
3860
3861 /* This symbol has an entry in the global offset table. Set it
3862 up. */
3863 sgot = bfd_get_section_by_name (dynobj, ".got");
3864 srel = bfd_get_section_by_name (dynobj, ".rel.got");
3865 BFD_ASSERT (sgot != NULL && srel != NULL);
3866
3867 rel.r_offset = (sgot->output_section->vma
3868 + sgot->output_offset
3869 + (h->got.offset &~ (bfd_vma) 1));
3870
3871 /* If this is a static link, or it is a -Bsymbolic link and the
3872 symbol is defined locally or was forced to be local because
3873 of a version file, we just want to emit a RELATIVE reloc.
3874 The entry in the global offset table will already have been
3875 initialized in the relocate_section function. */
3876 if (info->shared
3877 && SYMBOL_REFERENCES_LOCAL (info, h))
3878 {
3879 BFD_ASSERT((h->got.offset & 1) != 0);
3880 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
3881 }
3882 else
3883 {
3884 BFD_ASSERT((h->got.offset & 1) == 0);
3885 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
3886 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
3887 }
3888
3889 loc = srel->contents + srel->reloc_count++ * sizeof (Elf32_External_Rel);
3890 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
3891 }
3892
3893 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
3894 {
3895 asection * s;
3896 Elf_Internal_Rela rel;
3897 bfd_byte *loc;
3898
3899 /* This symbol needs a copy reloc. Set it up. */
3900 BFD_ASSERT (h->dynindx != -1
3901 && (h->root.type == bfd_link_hash_defined
3902 || h->root.type == bfd_link_hash_defweak));
3903
3904 s = bfd_get_section_by_name (h->root.u.def.section->owner,
3905 ".rel.bss");
3906 BFD_ASSERT (s != NULL);
3907
3908 rel.r_offset = (h->root.u.def.value
3909 + h->root.u.def.section->output_section->vma
3910 + h->root.u.def.section->output_offset);
3911 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
3912 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rel);
3913 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
3914 }
3915
3916 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3917 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
3918 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3919 sym->st_shndx = SHN_ABS;
3920
3921 return TRUE;
3922 }
3923
3924 /* Finish up the dynamic sections. */
3925
3926 static bfd_boolean
3927 elf32_arm_finish_dynamic_sections (output_bfd, info)
3928 bfd * output_bfd;
3929 struct bfd_link_info * info;
3930 {
3931 bfd * dynobj;
3932 asection * sgot;
3933 asection * sdyn;
3934
3935 dynobj = elf_hash_table (info)->dynobj;
3936
3937 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3938 BFD_ASSERT (sgot != NULL);
3939 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3940
3941 if (elf_hash_table (info)->dynamic_sections_created)
3942 {
3943 asection *splt;
3944 Elf32_External_Dyn *dyncon, *dynconend;
3945
3946 splt = bfd_get_section_by_name (dynobj, ".plt");
3947 BFD_ASSERT (splt != NULL && sdyn != NULL);
3948
3949 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3950 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
3951
3952 for (; dyncon < dynconend; dyncon++)
3953 {
3954 Elf_Internal_Dyn dyn;
3955 const char * name;
3956 asection * s;
3957
3958 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3959
3960 switch (dyn.d_tag)
3961 {
3962 default:
3963 break;
3964
3965 case DT_PLTGOT:
3966 name = ".got";
3967 goto get_vma;
3968 case DT_JMPREL:
3969 name = ".rel.plt";
3970 get_vma:
3971 s = bfd_get_section_by_name (output_bfd, name);
3972 BFD_ASSERT (s != NULL);
3973 dyn.d_un.d_ptr = s->vma;
3974 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3975 break;
3976
3977 case DT_PLTRELSZ:
3978 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3979 BFD_ASSERT (s != NULL);
3980 if (s->_cooked_size != 0)
3981 dyn.d_un.d_val = s->_cooked_size;
3982 else
3983 dyn.d_un.d_val = s->_raw_size;
3984 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3985 break;
3986
3987 case DT_RELSZ:
3988 /* My reading of the SVR4 ABI indicates that the
3989 procedure linkage table relocs (DT_JMPREL) should be
3990 included in the overall relocs (DT_REL). This is
3991 what Solaris does. However, UnixWare can not handle
3992 that case. Therefore, we override the DT_RELSZ entry
3993 here to make it not include the JMPREL relocs. Since
3994 the linker script arranges for .rel.plt to follow all
3995 other relocation sections, we don't have to worry
3996 about changing the DT_REL entry. */
3997 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3998 if (s != NULL)
3999 {
4000 if (s->_cooked_size != 0)
4001 dyn.d_un.d_val -= s->_cooked_size;
4002 else
4003 dyn.d_un.d_val -= s->_raw_size;
4004 }
4005 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4006 break;
4007
4008 /* Set the bottom bit of DT_INIT/FINI if the
4009 corresponding function is Thumb. */
4010 case DT_INIT:
4011 name = info->init_function;
4012 goto get_sym;
4013 case DT_FINI:
4014 name = info->fini_function;
4015 get_sym:
4016 /* If it wasn't set by elf_bfd_final_link
4017 then there is nothing to adjust. */
4018 if (dyn.d_un.d_val != 0)
4019 {
4020 struct elf_link_hash_entry * eh;
4021
4022 eh = elf_link_hash_lookup (elf_hash_table (info), name,
4023 FALSE, FALSE, TRUE);
4024 if (eh != (struct elf_link_hash_entry *) NULL
4025 && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
4026 {
4027 dyn.d_un.d_val |= 1;
4028 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4029 }
4030 }
4031 break;
4032 }
4033 }
4034
4035 /* Fill in the first entry in the procedure linkage table. */
4036 if (splt->_raw_size > 0)
4037 {
4038 bfd_vma got_displacement;
4039
4040 /* Calculate the displacement between the PLT slot and &GOT[0]. */
4041 got_displacement = (sgot->output_section->vma
4042 + sgot->output_offset
4043 - splt->output_section->vma
4044 - splt->output_offset
4045 - 16);
4046
4047 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[0], splt->contents + 0);
4048 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[1], splt->contents + 4);
4049 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[2], splt->contents + 8);
4050 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[3], splt->contents + 12);
4051 #ifdef FOUR_WORD_PLT
4052 /* The displacement value goes in the otherwise-unused last word of
4053 the second entry. */
4054 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
4055 #else
4056 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
4057 #endif
4058 }
4059
4060 /* UnixWare sets the entsize of .plt to 4, although that doesn't
4061 really seem like the right value. */
4062 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
4063 }
4064
4065 /* Fill in the first three entries in the global offset table. */
4066 if (sgot->_raw_size > 0)
4067 {
4068 if (sdyn == NULL)
4069 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
4070 else
4071 bfd_put_32 (output_bfd,
4072 sdyn->output_section->vma + sdyn->output_offset,
4073 sgot->contents);
4074 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
4075 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
4076 }
4077
4078 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
4079
4080 return TRUE;
4081 }
4082
4083 static void
4084 elf32_arm_post_process_headers (abfd, link_info)
4085 bfd * abfd;
4086 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
4087 {
4088 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
4089 struct elf32_arm_link_hash_table *globals;
4090
4091 i_ehdrp = elf_elfheader (abfd);
4092
4093 i_ehdrp->e_ident[EI_OSABI] = ARM_ELF_OS_ABI_VERSION;
4094 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
4095
4096 if (link_info)
4097 {
4098 globals = elf32_arm_hash_table (link_info);
4099 if (globals->byteswap_code)
4100 i_ehdrp->e_flags |= EF_ARM_BE8;
4101 }
4102 }
4103
4104 static enum elf_reloc_type_class
4105 elf32_arm_reloc_type_class (rela)
4106 const Elf_Internal_Rela *rela;
4107 {
4108 switch ((int) ELF32_R_TYPE (rela->r_info))
4109 {
4110 case R_ARM_RELATIVE:
4111 return reloc_class_relative;
4112 case R_ARM_JUMP_SLOT:
4113 return reloc_class_plt;
4114 case R_ARM_COPY:
4115 return reloc_class_copy;
4116 default:
4117 return reloc_class_normal;
4118 }
4119 }
4120
4121 static bfd_boolean elf32_arm_section_flags PARAMS ((flagword *, const Elf_Internal_Shdr *));
4122 static void elf32_arm_final_write_processing PARAMS ((bfd *, bfd_boolean));
4123
4124 /* Set the right machine number for an Arm ELF file. */
4125
4126 static bfd_boolean
4127 elf32_arm_section_flags (flags, hdr)
4128 flagword *flags;
4129 const Elf_Internal_Shdr *hdr;
4130 {
4131 if (hdr->sh_type == SHT_NOTE)
4132 *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS;
4133
4134 return TRUE;
4135 }
4136
4137 static void
4138 elf32_arm_final_write_processing (abfd, linker)
4139 bfd *abfd;
4140 bfd_boolean linker ATTRIBUTE_UNUSED;
4141 {
4142 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
4143 }
4144
4145
4146 /* Called for each symbol. Builds a section map based on mapping symbols.
4147 Does not alter any of the symbols. */
4148
4149 static bfd_boolean
4150 elf32_arm_output_symbol_hook (struct bfd_link_info *info,
4151 const char *name,
4152 Elf_Internal_Sym *elfsym,
4153 asection *input_sec,
4154 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
4155 {
4156 int mapcount;
4157 elf32_arm_section_map *map;
4158 struct elf32_arm_link_hash_table *globals;
4159
4160 /* Only do this on final link. */
4161 if (info->relocatable)
4162 return TRUE;
4163
4164 /* Only build a map if we need to byteswap code. */
4165 globals = elf32_arm_hash_table (info);
4166 if (!globals->byteswap_code)
4167 return TRUE;
4168
4169 /* We only want mapping symbols. */
4170 if (name == NULL
4171 || name[0] != '$'
4172 || (name[1] != 'a'
4173 && name[1] != 't'
4174 && name[1] != 'd'))
4175 return TRUE;
4176
4177 mapcount = ++(elf32_arm_section_data (input_sec)->mapcount);
4178 map = elf32_arm_section_data (input_sec)->map;
4179 /* TODO: This may be inefficient, but we probably don't usually have many
4180 mapping symbols per section. */
4181 map = bfd_realloc (map, mapcount * sizeof (elf32_arm_section_map));
4182 elf32_arm_section_data (input_sec)->map = map;
4183
4184 map[mapcount - 1].vma = elfsym->st_value;
4185 map[mapcount - 1].type = name[1];
4186 return TRUE;
4187 }
4188
4189
4190 /* Allocate target specific section data. */
4191
4192 static bfd_boolean
4193 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
4194 {
4195 struct _arm_elf_section_data *sdata;
4196 bfd_size_type amt = sizeof (*sdata);
4197
4198 sdata = bfd_zalloc (abfd, amt);
4199 if (sdata == NULL)
4200 return FALSE;
4201 sec->used_by_bfd = sdata;
4202
4203 return _bfd_elf_new_section_hook (abfd, sec);
4204 }
4205
4206
4207 /* Used to order a list of mapping symbols by address. */
4208
4209 static int
4210 elf32_arm_compare_mapping (const void * a, const void * b)
4211 {
4212 return ((const elf32_arm_section_map *) a)->vma
4213 > ((const elf32_arm_section_map *) b)->vma;
4214 }
4215
4216
4217 /* Do code byteswapping. Return FALSE afterwards so that the section is
4218 written out as normal. */
4219
4220 static bfd_boolean
4221 elf32_arm_write_section (bfd *output_bfd ATTRIBUTE_UNUSED, asection *sec,
4222 bfd_byte *contents)
4223 {
4224 int mapcount;
4225 elf32_arm_section_map *map;
4226 bfd_vma ptr;
4227 bfd_vma end;
4228 bfd_vma offset;
4229 bfd_byte tmp;
4230 int i;
4231
4232 mapcount = elf32_arm_section_data (sec)->mapcount;
4233 map = elf32_arm_section_data (sec)->map;
4234
4235 if (mapcount == 0)
4236 return FALSE;
4237
4238 qsort (map, mapcount, sizeof (elf32_arm_section_map),
4239 elf32_arm_compare_mapping);
4240
4241 offset = sec->output_section->vma + sec->output_offset;
4242 ptr = map[0].vma - offset;
4243 for (i = 0; i < mapcount; i++)
4244 {
4245 if (i == mapcount - 1)
4246 end = bfd_section_size (output_bfd, sec);
4247 else
4248 end = map[i + 1].vma - offset;
4249
4250 switch (map[i].type)
4251 {
4252 case 'a':
4253 /* Byte swap code words. */
4254 while (ptr + 3 < end)
4255 {
4256 tmp = contents[ptr];
4257 contents[ptr] = contents[ptr + 3];
4258 contents[ptr + 3] = tmp;
4259 tmp = contents[ptr + 1];
4260 contents[ptr + 1] = contents[ptr + 2];
4261 contents[ptr + 2] = tmp;
4262 ptr += 4;
4263 }
4264 break;
4265
4266 case 't':
4267 /* Byte swap code halfwords. */
4268 while (ptr + 1 < end)
4269 {
4270 tmp = contents[ptr];
4271 contents[ptr] = contents[ptr + 1];
4272 contents[ptr + 1] = tmp;
4273 ptr += 2;
4274 }
4275 break;
4276
4277 case 'd':
4278 /* Leave data alone. */
4279 break;
4280 }
4281 ptr = end;
4282 }
4283 free (map);
4284 return FALSE;
4285 }
4286
4287 #define ELF_ARCH bfd_arch_arm
4288 #define ELF_MACHINE_CODE EM_ARM
4289 #ifdef __QNXTARGET__
4290 #define ELF_MAXPAGESIZE 0x1000
4291 #else
4292 #define ELF_MAXPAGESIZE 0x8000
4293 #endif
4294
4295 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
4296 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
4297 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
4298 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
4299 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
4300 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
4301 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
4302 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
4303
4304 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
4305 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
4306 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
4307 #define elf_backend_check_relocs elf32_arm_check_relocs
4308 #define elf_backend_relocate_section elf32_arm_relocate_section
4309 #define elf_backend_write_section elf32_arm_write_section
4310 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
4311 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
4312 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
4313 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
4314 #define elf_backend_link_output_symbol_hook elf32_arm_output_symbol_hook
4315 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
4316 #define elf_backend_post_process_headers elf32_arm_post_process_headers
4317 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
4318 #define elf_backend_object_p elf32_arm_object_p
4319 #define elf_backend_section_flags elf32_arm_section_flags
4320 #define elf_backend_final_write_processing elf32_arm_final_write_processing
4321 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
4322
4323 #define elf_backend_can_refcount 1
4324 #define elf_backend_can_gc_sections 1
4325 #define elf_backend_plt_readonly 1
4326 #define elf_backend_want_got_plt 1
4327 #define elf_backend_want_plt_sym 0
4328 #if !USE_REL
4329 #define elf_backend_rela_normal 1
4330 #endif
4331
4332 #define elf_backend_got_header_size 12
4333
4334 #include "elf32-target.h"
4335
This page took 0.128588 seconds and 4 git commands to generate.