2002-04-04 Daniel Jacobowitz <drow@mvista.com>
[deliverable/binutils-gdb.git] / bfd / elf32-arm.h
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 typedef unsigned long int insn32;
21 typedef unsigned short int insn16;
22
23 static boolean elf32_arm_set_private_flags
24 PARAMS ((bfd *, flagword));
25 static boolean elf32_arm_copy_private_bfd_data
26 PARAMS ((bfd *, bfd *));
27 static boolean elf32_arm_merge_private_bfd_data
28 PARAMS ((bfd *, bfd *));
29 static boolean elf32_arm_print_private_bfd_data
30 PARAMS ((bfd *, PTR));
31 static int elf32_arm_get_symbol_type
32 PARAMS (( Elf_Internal_Sym *, int));
33 static struct bfd_link_hash_table *elf32_arm_link_hash_table_create
34 PARAMS ((bfd *));
35 static bfd_reloc_status_type elf32_arm_final_link_relocate
36 PARAMS ((reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
37 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
38 const char *, int, struct elf_link_hash_entry *));
39 static insn32 insert_thumb_branch
40 PARAMS ((insn32, int));
41 static struct elf_link_hash_entry *find_thumb_glue
42 PARAMS ((struct bfd_link_info *, const char *, bfd *));
43 static struct elf_link_hash_entry *find_arm_glue
44 PARAMS ((struct bfd_link_info *, const char *, bfd *));
45 static void record_arm_to_thumb_glue
46 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
47 static void record_thumb_to_arm_glue
48 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
49 static void elf32_arm_post_process_headers
50 PARAMS ((bfd *, struct bfd_link_info *));
51 static int elf32_arm_to_thumb_stub
52 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
53 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
54 static int elf32_thumb_to_arm_stub
55 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
56 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
57 static boolean elf32_arm_relocate_section
58 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
59 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
60 static asection * elf32_arm_gc_mark_hook
61 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
62 struct elf_link_hash_entry *, Elf_Internal_Sym *));
63 static boolean elf32_arm_gc_sweep_hook
64 PARAMS ((bfd *, struct bfd_link_info *, asection *,
65 const Elf_Internal_Rela *));
66 static boolean elf32_arm_check_relocs
67 PARAMS ((bfd *, struct bfd_link_info *, asection *,
68 const Elf_Internal_Rela *));
69 static boolean elf32_arm_find_nearest_line
70 PARAMS ((bfd *, asection *, asymbol **, bfd_vma, const char **,
71 const char **, unsigned int *));
72 static boolean elf32_arm_adjust_dynamic_symbol
73 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
74 static boolean elf32_arm_size_dynamic_sections
75 PARAMS ((bfd *, struct bfd_link_info *));
76 static boolean elf32_arm_finish_dynamic_symbol
77 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
78 Elf_Internal_Sym *));
79 static boolean elf32_arm_finish_dynamic_sections
80 PARAMS ((bfd *, struct bfd_link_info *));
81 static struct bfd_hash_entry * elf32_arm_link_hash_newfunc
82 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
83 #ifdef USE_REL
84 static void arm_add_to_rel
85 PARAMS ((bfd *, bfd_byte *, reloc_howto_type *, bfd_signed_vma));
86 #endif
87
88 boolean bfd_elf32_arm_allocate_interworking_sections
89 PARAMS ((struct bfd_link_info *));
90 boolean bfd_elf32_arm_get_bfd_for_interworking
91 PARAMS ((bfd *, struct bfd_link_info *));
92 boolean bfd_elf32_arm_process_before_allocation
93 PARAMS ((bfd *, struct bfd_link_info *, int));
94 static enum elf_reloc_type_class elf32_arm_reloc_type_class
95 PARAMS ((const Elf_Internal_Rela *));
96
97 #define INTERWORK_FLAG(abfd) (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK)
98
99 /* The linker script knows the section names for placement.
100 The entry_names are used to do simple name mangling on the stubs.
101 Given a function name, and its type, the stub can be found. The
102 name can be changed. The only requirement is the %s be present. */
103 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
104 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
105
106 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
107 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
108
109 /* The name of the dynamic interpreter. This is put in the .interp
110 section. */
111 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
112
113 /* The size in bytes of an entry in the procedure linkage table. */
114 #define PLT_ENTRY_SIZE 16
115
116 /* The first entry in a procedure linkage table looks like
117 this. It is set up so that any shared library function that is
118 called before the relocation has been set up calls the dynamic
119 linker first. */
120 static const bfd_vma elf32_arm_plt0_entry [PLT_ENTRY_SIZE / 4] =
121 {
122 0xe52de004, /* str lr, [sp, #-4]! */
123 0xe59fe010, /* ldr lr, [pc, #16] */
124 0xe08fe00e, /* add lr, pc, lr */
125 0xe5bef008 /* ldr pc, [lr, #8]! */
126 };
127
128 /* Subsequent entries in a procedure linkage table look like
129 this. */
130 static const bfd_vma elf32_arm_plt_entry [PLT_ENTRY_SIZE / 4] =
131 {
132 0xe59fc004, /* ldr ip, [pc, #4] */
133 0xe08fc00c, /* add ip, pc, ip */
134 0xe59cf000, /* ldr pc, [ip] */
135 0x00000000 /* offset to symbol in got */
136 };
137
138 /* The ARM linker needs to keep track of the number of relocs that it
139 decides to copy in check_relocs for each symbol. This is so that
140 it can discard PC relative relocs if it doesn't need them when
141 linking with -Bsymbolic. We store the information in a field
142 extending the regular ELF linker hash table. */
143
144 /* This structure keeps track of the number of PC relative relocs we
145 have copied for a given symbol. */
146 struct elf32_arm_pcrel_relocs_copied
147 {
148 /* Next section. */
149 struct elf32_arm_pcrel_relocs_copied * next;
150 /* A section in dynobj. */
151 asection * section;
152 /* Number of relocs copied in this section. */
153 bfd_size_type count;
154 };
155
156 /* Arm ELF linker hash entry. */
157 struct elf32_arm_link_hash_entry
158 {
159 struct elf_link_hash_entry root;
160
161 /* Number of PC relative relocs copied for this symbol. */
162 struct elf32_arm_pcrel_relocs_copied * pcrel_relocs_copied;
163 };
164
165 /* Declare this now that the above structures are defined. */
166 static boolean elf32_arm_discard_copies
167 PARAMS ((struct elf32_arm_link_hash_entry *, PTR));
168
169 /* Traverse an arm ELF linker hash table. */
170 #define elf32_arm_link_hash_traverse(table, func, info) \
171 (elf_link_hash_traverse \
172 (&(table)->root, \
173 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
174 (info)))
175
176 /* Get the ARM elf linker hash table from a link_info structure. */
177 #define elf32_arm_hash_table(info) \
178 ((struct elf32_arm_link_hash_table *) ((info)->hash))
179
180 /* ARM ELF linker hash table. */
181 struct elf32_arm_link_hash_table
182 {
183 /* The main hash table. */
184 struct elf_link_hash_table root;
185
186 /* The size in bytes of the section containg the Thumb-to-ARM glue. */
187 bfd_size_type thumb_glue_size;
188
189 /* The size in bytes of the section containg the ARM-to-Thumb glue. */
190 bfd_size_type arm_glue_size;
191
192 /* An arbitary input BFD chosen to hold the glue sections. */
193 bfd * bfd_of_glue_owner;
194
195 /* A boolean indicating whether knowledge of the ARM's pipeline
196 length should be applied by the linker. */
197 int no_pipeline_knowledge;
198 };
199
200 /* Create an entry in an ARM ELF linker hash table. */
201
202 static struct bfd_hash_entry *
203 elf32_arm_link_hash_newfunc (entry, table, string)
204 struct bfd_hash_entry * entry;
205 struct bfd_hash_table * table;
206 const char * string;
207 {
208 struct elf32_arm_link_hash_entry * ret =
209 (struct elf32_arm_link_hash_entry *) entry;
210
211 /* Allocate the structure if it has not already been allocated by a
212 subclass. */
213 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
214 ret = ((struct elf32_arm_link_hash_entry *)
215 bfd_hash_allocate (table,
216 sizeof (struct elf32_arm_link_hash_entry)));
217 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
218 return (struct bfd_hash_entry *) ret;
219
220 /* Call the allocation method of the superclass. */
221 ret = ((struct elf32_arm_link_hash_entry *)
222 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
223 table, string));
224 if (ret != (struct elf32_arm_link_hash_entry *) NULL)
225 ret->pcrel_relocs_copied = NULL;
226
227 return (struct bfd_hash_entry *) ret;
228 }
229
230 /* Create an ARM elf linker hash table. */
231
232 static struct bfd_link_hash_table *
233 elf32_arm_link_hash_table_create (abfd)
234 bfd *abfd;
235 {
236 struct elf32_arm_link_hash_table *ret;
237 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
238
239 ret = (struct elf32_arm_link_hash_table *) bfd_malloc (amt);
240 if (ret == (struct elf32_arm_link_hash_table *) NULL)
241 return NULL;
242
243 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
244 elf32_arm_link_hash_newfunc))
245 {
246 free (ret);
247 return NULL;
248 }
249
250 ret->thumb_glue_size = 0;
251 ret->arm_glue_size = 0;
252 ret->bfd_of_glue_owner = NULL;
253 ret->no_pipeline_knowledge = 0;
254
255 return &ret->root.root;
256 }
257
258 /* Locate the Thumb encoded calling stub for NAME. */
259
260 static struct elf_link_hash_entry *
261 find_thumb_glue (link_info, name, input_bfd)
262 struct bfd_link_info *link_info;
263 const char *name;
264 bfd *input_bfd;
265 {
266 char *tmp_name;
267 struct elf_link_hash_entry *hash;
268 struct elf32_arm_link_hash_table *hash_table;
269
270 /* We need a pointer to the armelf specific hash table. */
271 hash_table = elf32_arm_hash_table (link_info);
272
273 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
274 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
275
276 BFD_ASSERT (tmp_name);
277
278 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
279
280 hash = elf_link_hash_lookup
281 (&(hash_table)->root, tmp_name, false, false, true);
282
283 if (hash == NULL)
284 /* xgettext:c-format */
285 (*_bfd_error_handler) (_("%s: unable to find THUMB glue '%s' for `%s'"),
286 bfd_archive_filename (input_bfd), tmp_name, name);
287
288 free (tmp_name);
289
290 return hash;
291 }
292
293 /* Locate the ARM encoded calling stub for NAME. */
294
295 static struct elf_link_hash_entry *
296 find_arm_glue (link_info, name, input_bfd)
297 struct bfd_link_info *link_info;
298 const char *name;
299 bfd *input_bfd;
300 {
301 char *tmp_name;
302 struct elf_link_hash_entry *myh;
303 struct elf32_arm_link_hash_table *hash_table;
304
305 /* We need a pointer to the elfarm specific hash table. */
306 hash_table = elf32_arm_hash_table (link_info);
307
308 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
309 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
310
311 BFD_ASSERT (tmp_name);
312
313 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
314
315 myh = elf_link_hash_lookup
316 (&(hash_table)->root, tmp_name, false, false, true);
317
318 if (myh == NULL)
319 /* xgettext:c-format */
320 (*_bfd_error_handler) (_("%s: unable to find ARM glue '%s' for `%s'"),
321 bfd_archive_filename (input_bfd), tmp_name, name);
322
323 free (tmp_name);
324
325 return myh;
326 }
327
328 /* ARM->Thumb glue:
329
330 .arm
331 __func_from_arm:
332 ldr r12, __func_addr
333 bx r12
334 __func_addr:
335 .word func @ behave as if you saw a ARM_32 reloc. */
336
337 #define ARM2THUMB_GLUE_SIZE 12
338 static const insn32 a2t1_ldr_insn = 0xe59fc000;
339 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
340 static const insn32 a2t3_func_addr_insn = 0x00000001;
341
342 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
343
344 .thumb .thumb
345 .align 2 .align 2
346 __func_from_thumb: __func_from_thumb:
347 bx pc push {r6, lr}
348 nop ldr r6, __func_addr
349 .arm mov lr, pc
350 __func_change_to_arm: bx r6
351 b func .arm
352 __func_back_to_thumb:
353 ldmia r13! {r6, lr}
354 bx lr
355 __func_addr:
356 .word func */
357
358 #define THUMB2ARM_GLUE_SIZE 8
359 static const insn16 t2a1_bx_pc_insn = 0x4778;
360 static const insn16 t2a2_noop_insn = 0x46c0;
361 static const insn32 t2a3_b_insn = 0xea000000;
362
363 static const insn16 t2a1_push_insn = 0xb540;
364 static const insn16 t2a2_ldr_insn = 0x4e03;
365 static const insn16 t2a3_mov_insn = 0x46fe;
366 static const insn16 t2a4_bx_insn = 0x4730;
367 static const insn32 t2a5_pop_insn = 0xe8bd4040;
368 static const insn32 t2a6_bx_insn = 0xe12fff1e;
369
370 boolean
371 bfd_elf32_arm_allocate_interworking_sections (info)
372 struct bfd_link_info * info;
373 {
374 asection * s;
375 bfd_byte * foo;
376 struct elf32_arm_link_hash_table * globals;
377
378 globals = elf32_arm_hash_table (info);
379
380 BFD_ASSERT (globals != NULL);
381
382 if (globals->arm_glue_size != 0)
383 {
384 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
385
386 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
387 ARM2THUMB_GLUE_SECTION_NAME);
388
389 BFD_ASSERT (s != NULL);
390
391 foo = (bfd_byte *) bfd_alloc (globals->bfd_of_glue_owner,
392 globals->arm_glue_size);
393
394 s->_raw_size = s->_cooked_size = globals->arm_glue_size;
395 s->contents = foo;
396 }
397
398 if (globals->thumb_glue_size != 0)
399 {
400 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
401
402 s = bfd_get_section_by_name
403 (globals->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
404
405 BFD_ASSERT (s != NULL);
406
407 foo = (bfd_byte *) bfd_alloc (globals->bfd_of_glue_owner,
408 globals->thumb_glue_size);
409
410 s->_raw_size = s->_cooked_size = globals->thumb_glue_size;
411 s->contents = foo;
412 }
413
414 return true;
415 }
416
417 static void
418 record_arm_to_thumb_glue (link_info, h)
419 struct bfd_link_info * link_info;
420 struct elf_link_hash_entry * h;
421 {
422 const char * name = h->root.root.string;
423 asection * s;
424 char * tmp_name;
425 struct elf_link_hash_entry * myh;
426 struct elf32_arm_link_hash_table * globals;
427 bfd_vma val;
428
429 globals = elf32_arm_hash_table (link_info);
430
431 BFD_ASSERT (globals != NULL);
432 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
433
434 s = bfd_get_section_by_name
435 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
436
437 BFD_ASSERT (s != NULL);
438
439 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
440 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
441
442 BFD_ASSERT (tmp_name);
443
444 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
445
446 myh = elf_link_hash_lookup
447 (&(globals)->root, tmp_name, false, false, true);
448
449 if (myh != NULL)
450 {
451 /* We've already seen this guy. */
452 free (tmp_name);
453 return;
454 }
455
456 /* The only trick here is using hash_table->arm_glue_size as the value. Even
457 though the section isn't allocated yet, this is where we will be putting
458 it. */
459 val = globals->arm_glue_size + 1;
460 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
461 tmp_name, BSF_GLOBAL, s, val,
462 NULL, true, false,
463 (struct bfd_link_hash_entry **) &myh);
464
465 free (tmp_name);
466
467 globals->arm_glue_size += ARM2THUMB_GLUE_SIZE;
468
469 return;
470 }
471
472 static void
473 record_thumb_to_arm_glue (link_info, h)
474 struct bfd_link_info *link_info;
475 struct elf_link_hash_entry *h;
476 {
477 const char *name = h->root.root.string;
478 asection *s;
479 char *tmp_name;
480 struct elf_link_hash_entry *myh;
481 struct elf32_arm_link_hash_table *hash_table;
482 char bind;
483 bfd_vma val;
484
485 hash_table = elf32_arm_hash_table (link_info);
486
487 BFD_ASSERT (hash_table != NULL);
488 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
489
490 s = bfd_get_section_by_name
491 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
492
493 BFD_ASSERT (s != NULL);
494
495 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
496 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
497
498 BFD_ASSERT (tmp_name);
499
500 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
501
502 myh = elf_link_hash_lookup
503 (&(hash_table)->root, tmp_name, false, false, true);
504
505 if (myh != NULL)
506 {
507 /* We've already seen this guy. */
508 free (tmp_name);
509 return;
510 }
511
512 val = hash_table->thumb_glue_size + 1;
513 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
514 tmp_name, BSF_GLOBAL, s, val,
515 NULL, true, false,
516 (struct bfd_link_hash_entry **) &myh);
517
518 /* If we mark it 'Thumb', the disassembler will do a better job. */
519 bind = ELF_ST_BIND (myh->type);
520 myh->type = ELF_ST_INFO (bind, STT_ARM_TFUNC);
521
522 free (tmp_name);
523
524 #define CHANGE_TO_ARM "__%s_change_to_arm"
525 #define BACK_FROM_ARM "__%s_back_from_arm"
526
527 /* Allocate another symbol to mark where we switch to Arm mode. */
528 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
529 + strlen (CHANGE_TO_ARM) + 1);
530
531 BFD_ASSERT (tmp_name);
532
533 sprintf (tmp_name, CHANGE_TO_ARM, name);
534
535 myh = NULL;
536
537 val = hash_table->thumb_glue_size + 4,
538 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
539 tmp_name, BSF_LOCAL, s, val,
540 NULL, true, false,
541 (struct bfd_link_hash_entry **) &myh);
542
543 free (tmp_name);
544
545 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
546
547 return;
548 }
549
550 /* Select a BFD to be used to hold the sections used by the glue code.
551 This function is called from the linker scripts in ld/emultempl/
552 {armelf/pe}.em */
553
554 boolean
555 bfd_elf32_arm_get_bfd_for_interworking (abfd, info)
556 bfd *abfd;
557 struct bfd_link_info *info;
558 {
559 struct elf32_arm_link_hash_table *globals;
560 flagword flags;
561 asection *sec;
562
563 /* If we are only performing a partial link do not bother
564 getting a bfd to hold the glue. */
565 if (info->relocateable)
566 return true;
567
568 globals = elf32_arm_hash_table (info);
569
570 BFD_ASSERT (globals != NULL);
571
572 if (globals->bfd_of_glue_owner != NULL)
573 return true;
574
575 sec = bfd_get_section_by_name (abfd, ARM2THUMB_GLUE_SECTION_NAME);
576
577 if (sec == NULL)
578 {
579 /* Note: we do not include the flag SEC_LINKER_CREATED, as this
580 will prevent elf_link_input_bfd() from processing the contents
581 of this section. */
582 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
583
584 sec = bfd_make_section (abfd, ARM2THUMB_GLUE_SECTION_NAME);
585
586 if (sec == NULL
587 || !bfd_set_section_flags (abfd, sec, flags)
588 || !bfd_set_section_alignment (abfd, sec, 2))
589 return false;
590
591 /* Set the gc mark to prevent the section from being removed by garbage
592 collection, despite the fact that no relocs refer to this section. */
593 sec->gc_mark = 1;
594 }
595
596 sec = bfd_get_section_by_name (abfd, THUMB2ARM_GLUE_SECTION_NAME);
597
598 if (sec == NULL)
599 {
600 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
601
602 sec = bfd_make_section (abfd, THUMB2ARM_GLUE_SECTION_NAME);
603
604 if (sec == NULL
605 || !bfd_set_section_flags (abfd, sec, flags)
606 || !bfd_set_section_alignment (abfd, sec, 2))
607 return false;
608
609 sec->gc_mark = 1;
610 }
611
612 /* Save the bfd for later use. */
613 globals->bfd_of_glue_owner = abfd;
614
615 return true;
616 }
617
618 boolean
619 bfd_elf32_arm_process_before_allocation (abfd, link_info, no_pipeline_knowledge)
620 bfd *abfd;
621 struct bfd_link_info *link_info;
622 int no_pipeline_knowledge;
623 {
624 Elf_Internal_Shdr *symtab_hdr;
625 Elf_Internal_Rela *free_relocs = NULL;
626 Elf_Internal_Rela *irel, *irelend;
627 bfd_byte *contents = NULL;
628 bfd_byte *free_contents = NULL;
629 Elf32_External_Sym *extsyms = NULL;
630 Elf32_External_Sym *free_extsyms = NULL;
631
632 asection *sec;
633 struct elf32_arm_link_hash_table *globals;
634
635 /* If we are only performing a partial link do not bother
636 to construct any glue. */
637 if (link_info->relocateable)
638 return true;
639
640 /* Here we have a bfd that is to be included on the link. We have a hook
641 to do reloc rummaging, before section sizes are nailed down. */
642 globals = elf32_arm_hash_table (link_info);
643
644 BFD_ASSERT (globals != NULL);
645 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
646
647 globals->no_pipeline_knowledge = no_pipeline_knowledge;
648
649 /* Rummage around all the relocs and map the glue vectors. */
650 sec = abfd->sections;
651
652 if (sec == NULL)
653 return true;
654
655 for (; sec != NULL; sec = sec->next)
656 {
657 if (sec->reloc_count == 0)
658 continue;
659
660 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
661
662 /* Load the relocs. */
663 irel = (_bfd_elf32_link_read_relocs (abfd, sec, (PTR) NULL,
664 (Elf_Internal_Rela *) NULL, false));
665
666 BFD_ASSERT (irel != 0);
667
668 irelend = irel + sec->reloc_count;
669 for (; irel < irelend; irel++)
670 {
671 long r_type;
672 unsigned long r_index;
673
674 struct elf_link_hash_entry *h;
675
676 r_type = ELF32_R_TYPE (irel->r_info);
677 r_index = ELF32_R_SYM (irel->r_info);
678
679 /* These are the only relocation types we care about. */
680 if ( r_type != R_ARM_PC24
681 && r_type != R_ARM_THM_PC22)
682 continue;
683
684 /* Get the section contents if we haven't done so already. */
685 if (contents == NULL)
686 {
687 /* Get cached copy if it exists. */
688 if (elf_section_data (sec)->this_hdr.contents != NULL)
689 contents = elf_section_data (sec)->this_hdr.contents;
690 else
691 {
692 /* Go get them off disk. */
693 contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
694 if (contents == NULL)
695 goto error_return;
696
697 free_contents = contents;
698
699 if (!bfd_get_section_contents (abfd, sec, contents,
700 (file_ptr) 0, sec->_raw_size))
701 goto error_return;
702 }
703 }
704
705 /* Read this BFD's symbols if we haven't done so already. */
706 if (extsyms == NULL)
707 {
708 /* Get cached copy if it exists. */
709 if (symtab_hdr->contents != NULL)
710 extsyms = (Elf32_External_Sym *) symtab_hdr->contents;
711 else
712 {
713 /* Go get them off disk. */
714 extsyms = ((Elf32_External_Sym *)
715 bfd_malloc (symtab_hdr->sh_size));
716 if (extsyms == NULL)
717 goto error_return;
718
719 free_extsyms = extsyms;
720
721 if (bfd_seek (abfd, symtab_hdr->sh_offset, SEEK_SET) != 0
722 || (bfd_bread (extsyms, symtab_hdr->sh_size, abfd)
723 != symtab_hdr->sh_size))
724 goto error_return;
725 }
726 }
727
728 /* If the relocation is not against a symbol it cannot concern us. */
729 h = NULL;
730
731 /* We don't care about local symbols. */
732 if (r_index < symtab_hdr->sh_info)
733 continue;
734
735 /* This is an external symbol. */
736 r_index -= symtab_hdr->sh_info;
737 h = (struct elf_link_hash_entry *)
738 elf_sym_hashes (abfd)[r_index];
739
740 /* If the relocation is against a static symbol it must be within
741 the current section and so cannot be a cross ARM/Thumb relocation. */
742 if (h == NULL)
743 continue;
744
745 switch (r_type)
746 {
747 case R_ARM_PC24:
748 /* This one is a call from arm code. We need to look up
749 the target of the call. If it is a thumb target, we
750 insert glue. */
751 if (ELF_ST_TYPE(h->type) == STT_ARM_TFUNC)
752 record_arm_to_thumb_glue (link_info, h);
753 break;
754
755 case R_ARM_THM_PC22:
756 /* This one is a call from thumb code. We look
757 up the target of the call. If it is not a thumb
758 target, we insert glue. */
759 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC)
760 record_thumb_to_arm_glue (link_info, h);
761 break;
762
763 default:
764 break;
765 }
766 }
767 }
768
769 return true;
770
771 error_return:
772 if (free_relocs != NULL)
773 free (free_relocs);
774 if (free_contents != NULL)
775 free (free_contents);
776 if (free_extsyms != NULL)
777 free (free_extsyms);
778
779 return false;
780 }
781
782 /* The thumb form of a long branch is a bit finicky, because the offset
783 encoding is split over two fields, each in it's own instruction. They
784 can occur in any order. So given a thumb form of long branch, and an
785 offset, insert the offset into the thumb branch and return finished
786 instruction.
787
788 It takes two thumb instructions to encode the target address. Each has
789 11 bits to invest. The upper 11 bits are stored in one (identifed by
790 H-0.. see below), the lower 11 bits are stored in the other (identified
791 by H-1).
792
793 Combine together and shifted left by 1 (it's a half word address) and
794 there you have it.
795
796 Op: 1111 = F,
797 H-0, upper address-0 = 000
798 Op: 1111 = F,
799 H-1, lower address-0 = 800
800
801 They can be ordered either way, but the arm tools I've seen always put
802 the lower one first. It probably doesn't matter. krk@cygnus.com
803
804 XXX: Actually the order does matter. The second instruction (H-1)
805 moves the computed address into the PC, so it must be the second one
806 in the sequence. The problem, however is that whilst little endian code
807 stores the instructions in HI then LOW order, big endian code does the
808 reverse. nickc@cygnus.com. */
809
810 #define LOW_HI_ORDER 0xF800F000
811 #define HI_LOW_ORDER 0xF000F800
812
813 static insn32
814 insert_thumb_branch (br_insn, rel_off)
815 insn32 br_insn;
816 int rel_off;
817 {
818 unsigned int low_bits;
819 unsigned int high_bits;
820
821 BFD_ASSERT ((rel_off & 1) != 1);
822
823 rel_off >>= 1; /* Half word aligned address. */
824 low_bits = rel_off & 0x000007FF; /* The bottom 11 bits. */
825 high_bits = (rel_off >> 11) & 0x000007FF; /* The top 11 bits. */
826
827 if ((br_insn & LOW_HI_ORDER) == LOW_HI_ORDER)
828 br_insn = LOW_HI_ORDER | (low_bits << 16) | high_bits;
829 else if ((br_insn & HI_LOW_ORDER) == HI_LOW_ORDER)
830 br_insn = HI_LOW_ORDER | (high_bits << 16) | low_bits;
831 else
832 /* FIXME: abort is probably not the right call. krk@cygnus.com */
833 abort (); /* error - not a valid branch instruction form. */
834
835 return br_insn;
836 }
837
838 /* Thumb code calling an ARM function. */
839
840 static int
841 elf32_thumb_to_arm_stub (info, name, input_bfd, output_bfd, input_section,
842 hit_data, sym_sec, offset, addend, val)
843 struct bfd_link_info * info;
844 const char * name;
845 bfd * input_bfd;
846 bfd * output_bfd;
847 asection * input_section;
848 bfd_byte * hit_data;
849 asection * sym_sec;
850 bfd_vma offset;
851 bfd_signed_vma addend;
852 bfd_vma val;
853 {
854 asection * s = 0;
855 bfd_vma my_offset;
856 unsigned long int tmp;
857 long int ret_offset;
858 struct elf_link_hash_entry * myh;
859 struct elf32_arm_link_hash_table * globals;
860
861 myh = find_thumb_glue (info, name, input_bfd);
862 if (myh == NULL)
863 return false;
864
865 globals = elf32_arm_hash_table (info);
866
867 BFD_ASSERT (globals != NULL);
868 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
869
870 my_offset = myh->root.u.def.value;
871
872 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
873 THUMB2ARM_GLUE_SECTION_NAME);
874
875 BFD_ASSERT (s != NULL);
876 BFD_ASSERT (s->contents != NULL);
877 BFD_ASSERT (s->output_section != NULL);
878
879 if ((my_offset & 0x01) == 0x01)
880 {
881 if (sym_sec != NULL
882 && sym_sec->owner != NULL
883 && !INTERWORK_FLAG (sym_sec->owner))
884 {
885 (*_bfd_error_handler)
886 (_("%s(%s): warning: interworking not enabled."),
887 bfd_archive_filename (sym_sec->owner), name);
888 (*_bfd_error_handler)
889 (_(" first occurrence: %s: thumb call to arm"),
890 bfd_archive_filename (input_bfd));
891
892 return false;
893 }
894
895 --my_offset;
896 myh->root.u.def.value = my_offset;
897
898 bfd_put_16 (output_bfd, (bfd_vma) t2a1_bx_pc_insn,
899 s->contents + my_offset);
900
901 bfd_put_16 (output_bfd, (bfd_vma) t2a2_noop_insn,
902 s->contents + my_offset + 2);
903
904 ret_offset =
905 /* Address of destination of the stub. */
906 ((bfd_signed_vma) val)
907 - ((bfd_signed_vma)
908 /* Offset from the start of the current section to the start of the stubs. */
909 (s->output_offset
910 /* Offset of the start of this stub from the start of the stubs. */
911 + my_offset
912 /* Address of the start of the current section. */
913 + s->output_section->vma)
914 /* The branch instruction is 4 bytes into the stub. */
915 + 4
916 /* ARM branches work from the pc of the instruction + 8. */
917 + 8);
918
919 bfd_put_32 (output_bfd,
920 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
921 s->contents + my_offset + 4);
922 }
923
924 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
925
926 /* Now go back and fix up the original BL insn to point
927 to here. */
928 ret_offset = (s->output_offset
929 + my_offset
930 - (input_section->output_offset
931 + offset + addend)
932 - 8);
933
934 tmp = bfd_get_32 (input_bfd, hit_data
935 - input_section->vma);
936
937 bfd_put_32 (output_bfd,
938 (bfd_vma) insert_thumb_branch (tmp, ret_offset),
939 hit_data - input_section->vma);
940
941 return true;
942 }
943
944 /* Arm code calling a Thumb function. */
945
946 static int
947 elf32_arm_to_thumb_stub (info, name, input_bfd, output_bfd, input_section,
948 hit_data, sym_sec, offset, addend, val)
949 struct bfd_link_info * info;
950 const char * name;
951 bfd * input_bfd;
952 bfd * output_bfd;
953 asection * input_section;
954 bfd_byte * hit_data;
955 asection * sym_sec;
956 bfd_vma offset;
957 bfd_signed_vma addend;
958 bfd_vma val;
959 {
960 unsigned long int tmp;
961 bfd_vma my_offset;
962 asection * s;
963 long int ret_offset;
964 struct elf_link_hash_entry * myh;
965 struct elf32_arm_link_hash_table * globals;
966
967 myh = find_arm_glue (info, name, input_bfd);
968 if (myh == NULL)
969 return false;
970
971 globals = elf32_arm_hash_table (info);
972
973 BFD_ASSERT (globals != NULL);
974 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
975
976 my_offset = myh->root.u.def.value;
977 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
978 ARM2THUMB_GLUE_SECTION_NAME);
979 BFD_ASSERT (s != NULL);
980 BFD_ASSERT (s->contents != NULL);
981 BFD_ASSERT (s->output_section != NULL);
982
983 if ((my_offset & 0x01) == 0x01)
984 {
985 if (sym_sec != NULL
986 && sym_sec->owner != NULL
987 && !INTERWORK_FLAG (sym_sec->owner))
988 {
989 (*_bfd_error_handler)
990 (_("%s(%s): warning: interworking not enabled."),
991 bfd_archive_filename (sym_sec->owner), name);
992 (*_bfd_error_handler)
993 (_(" first occurrence: %s: arm call to thumb"),
994 bfd_archive_filename (input_bfd));
995 }
996
997 --my_offset;
998 myh->root.u.def.value = my_offset;
999
1000 bfd_put_32 (output_bfd, (bfd_vma) a2t1_ldr_insn,
1001 s->contents + my_offset);
1002
1003 bfd_put_32 (output_bfd, (bfd_vma) a2t2_bx_r12_insn,
1004 s->contents + my_offset + 4);
1005
1006 /* It's a thumb address. Add the low order bit. */
1007 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
1008 s->contents + my_offset + 8);
1009 }
1010
1011 BFD_ASSERT (my_offset <= globals->arm_glue_size);
1012
1013 tmp = bfd_get_32 (input_bfd, hit_data);
1014 tmp = tmp & 0xFF000000;
1015
1016 /* Somehow these are both 4 too far, so subtract 8. */
1017 ret_offset = (s->output_offset
1018 + my_offset
1019 + s->output_section->vma
1020 - (input_section->output_offset
1021 + input_section->output_section->vma
1022 + offset + addend)
1023 - 8);
1024
1025 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
1026
1027 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
1028
1029 return true;
1030 }
1031
1032 /* Perform a relocation as part of a final link. */
1033
1034 static bfd_reloc_status_type
1035 elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
1036 input_section, contents, rel, value,
1037 info, sym_sec, sym_name, sym_flags, h)
1038 reloc_howto_type * howto;
1039 bfd * input_bfd;
1040 bfd * output_bfd;
1041 asection * input_section;
1042 bfd_byte * contents;
1043 Elf_Internal_Rela * rel;
1044 bfd_vma value;
1045 struct bfd_link_info * info;
1046 asection * sym_sec;
1047 const char * sym_name;
1048 int sym_flags;
1049 struct elf_link_hash_entry * h;
1050 {
1051 unsigned long r_type = howto->type;
1052 unsigned long r_symndx;
1053 bfd_byte * hit_data = contents + rel->r_offset;
1054 bfd * dynobj = NULL;
1055 Elf_Internal_Shdr * symtab_hdr;
1056 struct elf_link_hash_entry ** sym_hashes;
1057 bfd_vma * local_got_offsets;
1058 asection * sgot = NULL;
1059 asection * splt = NULL;
1060 asection * sreloc = NULL;
1061 bfd_vma addend;
1062 bfd_signed_vma signed_addend;
1063 struct elf32_arm_link_hash_table * globals;
1064
1065 /* If the start address has been set, then set the EF_ARM_HASENTRY
1066 flag. Setting this more than once is redundant, but the cost is
1067 not too high, and it keeps the code simple.
1068
1069 The test is done here, rather than somewhere else, because the
1070 start address is only set just before the final link commences.
1071
1072 Note - if the user deliberately sets a start address of 0, the
1073 flag will not be set. */
1074 if (bfd_get_start_address (output_bfd) != 0)
1075 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
1076
1077 globals = elf32_arm_hash_table (info);
1078
1079 dynobj = elf_hash_table (info)->dynobj;
1080 if (dynobj)
1081 {
1082 sgot = bfd_get_section_by_name (dynobj, ".got");
1083 splt = bfd_get_section_by_name (dynobj, ".plt");
1084 }
1085 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1086 sym_hashes = elf_sym_hashes (input_bfd);
1087 local_got_offsets = elf_local_got_offsets (input_bfd);
1088 r_symndx = ELF32_R_SYM (rel->r_info);
1089
1090 #ifdef USE_REL
1091 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
1092
1093 if (addend & ((howto->src_mask + 1) >> 1))
1094 {
1095 signed_addend = -1;
1096 signed_addend &= ~ howto->src_mask;
1097 signed_addend |= addend;
1098 }
1099 else
1100 signed_addend = addend;
1101 #else
1102 addend = signed_addend = rel->r_addend;
1103 #endif
1104
1105 switch (r_type)
1106 {
1107 case R_ARM_NONE:
1108 return bfd_reloc_ok;
1109
1110 case R_ARM_PC24:
1111 case R_ARM_ABS32:
1112 case R_ARM_REL32:
1113 #ifndef OLD_ARM_ABI
1114 case R_ARM_XPC25:
1115 #endif
1116 /* When generating a shared object, these relocations are copied
1117 into the output file to be resolved at run time. */
1118 if (info->shared
1119 && r_symndx != 0
1120 && (r_type != R_ARM_PC24
1121 || (h != NULL
1122 && h->dynindx != -1
1123 && (! info->symbolic
1124 || (h->elf_link_hash_flags
1125 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1126 {
1127 Elf_Internal_Rel outrel;
1128 boolean skip, relocate;
1129
1130 if (sreloc == NULL)
1131 {
1132 const char * name;
1133
1134 name = (bfd_elf_string_from_elf_section
1135 (input_bfd,
1136 elf_elfheader (input_bfd)->e_shstrndx,
1137 elf_section_data (input_section)->rel_hdr.sh_name));
1138 if (name == NULL)
1139 return bfd_reloc_notsupported;
1140
1141 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
1142 && strcmp (bfd_get_section_name (input_bfd,
1143 input_section),
1144 name + 4) == 0);
1145
1146 sreloc = bfd_get_section_by_name (dynobj, name);
1147 BFD_ASSERT (sreloc != NULL);
1148 }
1149
1150 skip = false;
1151 relocate = false;
1152
1153 outrel.r_offset =
1154 _bfd_elf_section_offset (output_bfd, info, input_section,
1155 rel->r_offset);
1156 if (outrel.r_offset == (bfd_vma) -1)
1157 skip = true;
1158 else if (outrel.r_offset == (bfd_vma) -2)
1159 skip = true, relocate = true;
1160 outrel.r_offset += (input_section->output_section->vma
1161 + input_section->output_offset);
1162
1163 if (skip)
1164 memset (&outrel, 0, sizeof outrel);
1165 else if (r_type == R_ARM_PC24)
1166 {
1167 BFD_ASSERT (h != NULL && h->dynindx != -1);
1168 if ((input_section->flags & SEC_ALLOC) == 0)
1169 relocate = true;
1170 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_PC24);
1171 }
1172 else
1173 {
1174 if (h == NULL
1175 || ((info->symbolic || h->dynindx == -1)
1176 && (h->elf_link_hash_flags
1177 & ELF_LINK_HASH_DEF_REGULAR) != 0))
1178 {
1179 relocate = true;
1180 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1181 }
1182 else
1183 {
1184 BFD_ASSERT (h->dynindx != -1);
1185 if ((input_section->flags & SEC_ALLOC) == 0)
1186 relocate = true;
1187 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_ABS32);
1188 }
1189 }
1190
1191 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1192 (((Elf32_External_Rel *)
1193 sreloc->contents)
1194 + sreloc->reloc_count));
1195 ++sreloc->reloc_count;
1196
1197 /* If this reloc is against an external symbol, we do not want to
1198 fiddle with the addend. Otherwise, we need to include the symbol
1199 value so that it becomes an addend for the dynamic reloc. */
1200 if (! relocate)
1201 return bfd_reloc_ok;
1202
1203 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1204 contents, rel->r_offset, value,
1205 (bfd_vma) 0);
1206 }
1207 else switch (r_type)
1208 {
1209 #ifndef OLD_ARM_ABI
1210 case R_ARM_XPC25: /* Arm BLX instruction. */
1211 #endif
1212 case R_ARM_PC24: /* Arm B/BL instruction */
1213 #ifndef OLD_ARM_ABI
1214 if (r_type == R_ARM_XPC25)
1215 {
1216 /* Check for Arm calling Arm function. */
1217 /* FIXME: Should we translate the instruction into a BL
1218 instruction instead ? */
1219 if (sym_flags != STT_ARM_TFUNC)
1220 (*_bfd_error_handler) (_("\
1221 %s: Warning: Arm BLX instruction targets Arm function '%s'."),
1222 bfd_archive_filename (input_bfd),
1223 h ? h->root.root.string : "(local)");
1224 }
1225 else
1226 #endif
1227 {
1228 /* Check for Arm calling Thumb function. */
1229 if (sym_flags == STT_ARM_TFUNC)
1230 {
1231 elf32_arm_to_thumb_stub (info, sym_name, input_bfd, output_bfd,
1232 input_section, hit_data, sym_sec, rel->r_offset,
1233 signed_addend, value);
1234 return bfd_reloc_ok;
1235 }
1236 }
1237
1238 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1239 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0)
1240 {
1241 /* The old way of doing things. Trearing the addend as a
1242 byte sized field and adding in the pipeline offset. */
1243 value -= (input_section->output_section->vma
1244 + input_section->output_offset);
1245 value -= rel->r_offset;
1246 value += addend;
1247
1248 if (! globals->no_pipeline_knowledge)
1249 value -= 8;
1250 }
1251 else
1252 {
1253 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
1254 where:
1255 S is the address of the symbol in the relocation.
1256 P is address of the instruction being relocated.
1257 A is the addend (extracted from the instruction) in bytes.
1258
1259 S is held in 'value'.
1260 P is the base address of the section containing the instruction
1261 plus the offset of the reloc into that section, ie:
1262 (input_section->output_section->vma +
1263 input_section->output_offset +
1264 rel->r_offset).
1265 A is the addend, converted into bytes, ie:
1266 (signed_addend * 4)
1267
1268 Note: None of these operations have knowledge of the pipeline
1269 size of the processor, thus it is up to the assembler to encode
1270 this information into the addend. */
1271 value -= (input_section->output_section->vma
1272 + input_section->output_offset);
1273 value -= rel->r_offset;
1274 value += (signed_addend << howto->size);
1275
1276 /* Previous versions of this code also used to add in the pipeline
1277 offset here. This is wrong because the linker is not supposed
1278 to know about such things, and one day it might change. In order
1279 to support old binaries that need the old behaviour however, so
1280 we attempt to detect which ABI was used to create the reloc. */
1281 if (! globals->no_pipeline_knowledge)
1282 {
1283 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form */
1284
1285 i_ehdrp = elf_elfheader (input_bfd);
1286
1287 if (i_ehdrp->e_ident[EI_OSABI] == 0)
1288 value -= 8;
1289 }
1290 }
1291
1292 signed_addend = value;
1293 signed_addend >>= howto->rightshift;
1294
1295 /* It is not an error for an undefined weak reference to be
1296 out of range. Any program that branches to such a symbol
1297 is going to crash anyway, so there is no point worrying
1298 about getting the destination exactly right. */
1299 if (! h || h->root.type != bfd_link_hash_undefweak)
1300 {
1301 /* Perform a signed range check. */
1302 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
1303 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
1304 return bfd_reloc_overflow;
1305 }
1306
1307 #ifndef OLD_ARM_ABI
1308 /* If necessary set the H bit in the BLX instruction. */
1309 if (r_type == R_ARM_XPC25 && ((value & 2) == 2))
1310 value = (signed_addend & howto->dst_mask)
1311 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask))
1312 | (1 << 24);
1313 else
1314 #endif
1315 value = (signed_addend & howto->dst_mask)
1316 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
1317 break;
1318
1319 case R_ARM_ABS32:
1320 value += addend;
1321 if (sym_flags == STT_ARM_TFUNC)
1322 value |= 1;
1323 break;
1324
1325 case R_ARM_REL32:
1326 value -= (input_section->output_section->vma
1327 + input_section->output_offset + rel->r_offset);
1328 value += addend;
1329 break;
1330 }
1331
1332 bfd_put_32 (input_bfd, value, hit_data);
1333 return bfd_reloc_ok;
1334
1335 case R_ARM_ABS8:
1336 value += addend;
1337 if ((long) value > 0x7f || (long) value < -0x80)
1338 return bfd_reloc_overflow;
1339
1340 bfd_put_8 (input_bfd, value, hit_data);
1341 return bfd_reloc_ok;
1342
1343 case R_ARM_ABS16:
1344 value += addend;
1345
1346 if ((long) value > 0x7fff || (long) value < -0x8000)
1347 return bfd_reloc_overflow;
1348
1349 bfd_put_16 (input_bfd, value, hit_data);
1350 return bfd_reloc_ok;
1351
1352 case R_ARM_ABS12:
1353 /* Support ldr and str instruction for the arm */
1354 /* Also thumb b (unconditional branch). ??? Really? */
1355 value += addend;
1356
1357 if ((long) value > 0x7ff || (long) value < -0x800)
1358 return bfd_reloc_overflow;
1359
1360 value |= (bfd_get_32 (input_bfd, hit_data) & 0xfffff000);
1361 bfd_put_32 (input_bfd, value, hit_data);
1362 return bfd_reloc_ok;
1363
1364 case R_ARM_THM_ABS5:
1365 /* Support ldr and str instructions for the thumb. */
1366 #ifdef USE_REL
1367 /* Need to refetch addend. */
1368 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
1369 /* ??? Need to determine shift amount from operand size. */
1370 addend >>= howto->rightshift;
1371 #endif
1372 value += addend;
1373
1374 /* ??? Isn't value unsigned? */
1375 if ((long) value > 0x1f || (long) value < -0x10)
1376 return bfd_reloc_overflow;
1377
1378 /* ??? Value needs to be properly shifted into place first. */
1379 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
1380 bfd_put_16 (input_bfd, value, hit_data);
1381 return bfd_reloc_ok;
1382
1383 #ifndef OLD_ARM_ABI
1384 case R_ARM_THM_XPC22:
1385 #endif
1386 case R_ARM_THM_PC22:
1387 /* Thumb BL (branch long instruction). */
1388 {
1389 bfd_vma relocation;
1390 boolean overflow = false;
1391 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
1392 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
1393 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
1394 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
1395 bfd_vma check;
1396 bfd_signed_vma signed_check;
1397
1398 #ifdef USE_REL
1399 /* Need to refetch the addend and squish the two 11 bit pieces
1400 together. */
1401 {
1402 bfd_vma upper = upper_insn & 0x7ff;
1403 bfd_vma lower = lower_insn & 0x7ff;
1404 upper = (upper ^ 0x400) - 0x400; /* Sign extend. */
1405 addend = (upper << 12) | (lower << 1);
1406 signed_addend = addend;
1407 }
1408 #endif
1409 #ifndef OLD_ARM_ABI
1410 if (r_type == R_ARM_THM_XPC22)
1411 {
1412 /* Check for Thumb to Thumb call. */
1413 /* FIXME: Should we translate the instruction into a BL
1414 instruction instead ? */
1415 if (sym_flags == STT_ARM_TFUNC)
1416 (*_bfd_error_handler) (_("\
1417 %s: Warning: Thumb BLX instruction targets thumb function '%s'."),
1418 bfd_archive_filename (input_bfd),
1419 h ? h->root.root.string : "(local)");
1420 }
1421 else
1422 #endif
1423 {
1424 /* If it is not a call to Thumb, assume call to Arm.
1425 If it is a call relative to a section name, then it is not a
1426 function call at all, but rather a long jump. */
1427 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION)
1428 {
1429 if (elf32_thumb_to_arm_stub
1430 (info, sym_name, input_bfd, output_bfd, input_section,
1431 hit_data, sym_sec, rel->r_offset, signed_addend, value))
1432 return bfd_reloc_ok;
1433 else
1434 return bfd_reloc_dangerous;
1435 }
1436 }
1437
1438 relocation = value + signed_addend;
1439
1440 relocation -= (input_section->output_section->vma
1441 + input_section->output_offset
1442 + rel->r_offset);
1443
1444 if (! globals->no_pipeline_knowledge)
1445 {
1446 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form. */
1447
1448 i_ehdrp = elf_elfheader (input_bfd);
1449
1450 /* Previous versions of this code also used to add in the pipline
1451 offset here. This is wrong because the linker is not supposed
1452 to know about such things, and one day it might change. In order
1453 to support old binaries that need the old behaviour however, so
1454 we attempt to detect which ABI was used to create the reloc. */
1455 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1456 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0
1457 || i_ehdrp->e_ident[EI_OSABI] == 0)
1458 relocation += 4;
1459 }
1460
1461 check = relocation >> howto->rightshift;
1462
1463 /* If this is a signed value, the rightshift just dropped
1464 leading 1 bits (assuming twos complement). */
1465 if ((bfd_signed_vma) relocation >= 0)
1466 signed_check = check;
1467 else
1468 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
1469
1470 /* Assumes two's complement. */
1471 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
1472 overflow = true;
1473
1474 /* Put RELOCATION back into the insn. */
1475 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 12) & 0x7ff);
1476 lower_insn = (lower_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 1) & 0x7ff);
1477
1478 #ifndef OLD_ARM_ABI
1479 if (r_type == R_ARM_THM_XPC22
1480 && ((lower_insn & 0x1800) == 0x0800))
1481 /* Remove bit zero of the adjusted offset. Bit zero can only be
1482 set if the upper insn is at a half-word boundary, since the
1483 destination address, an ARM instruction, must always be on a
1484 word boundary. The semantics of the BLX (1) instruction, however,
1485 are that bit zero in the offset must always be zero, and the
1486 corresponding bit one in the target address will be set from bit
1487 one of the source address. */
1488 lower_insn &= ~1;
1489 #endif
1490 /* Put the relocated value back in the object file: */
1491 bfd_put_16 (input_bfd, upper_insn, hit_data);
1492 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
1493
1494 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
1495 }
1496 break;
1497
1498 case R_ARM_THM_PC11:
1499 /* Thumb B (branch) instruction). */
1500 {
1501 bfd_vma relocation;
1502 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
1503 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
1504 bfd_vma check;
1505 bfd_signed_vma signed_check;
1506
1507 #ifdef USE_REL
1508 /* Need to refetch addend. */
1509 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
1510 /* ??? Need to determine shift amount from operand size. */
1511 addend >>= howto->rightshift;
1512 #endif
1513 relocation = value + addend;
1514
1515 relocation -= (input_section->output_section->vma
1516 + input_section->output_offset
1517 + rel->r_offset);
1518
1519 check = relocation >> howto->rightshift;
1520
1521 /* If this is a signed value, the rightshift just
1522 dropped leading 1 bits (assuming twos complement). */
1523 if ((bfd_signed_vma) relocation >= 0)
1524 signed_check = check;
1525 else
1526 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
1527
1528 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
1529
1530 bfd_put_16 (input_bfd, relocation, hit_data);
1531
1532 /* Assumes two's complement. */
1533 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
1534 return bfd_reloc_overflow;
1535
1536 return bfd_reloc_ok;
1537 }
1538
1539 case R_ARM_GNU_VTINHERIT:
1540 case R_ARM_GNU_VTENTRY:
1541 return bfd_reloc_ok;
1542
1543 case R_ARM_COPY:
1544 return bfd_reloc_notsupported;
1545
1546 case R_ARM_GLOB_DAT:
1547 return bfd_reloc_notsupported;
1548
1549 case R_ARM_JUMP_SLOT:
1550 return bfd_reloc_notsupported;
1551
1552 case R_ARM_RELATIVE:
1553 return bfd_reloc_notsupported;
1554
1555 case R_ARM_GOTOFF:
1556 /* Relocation is relative to the start of the
1557 global offset table. */
1558
1559 BFD_ASSERT (sgot != NULL);
1560 if (sgot == NULL)
1561 return bfd_reloc_notsupported;
1562
1563 /* If we are addressing a Thumb function, we need to adjust the
1564 address by one, so that attempts to call the function pointer will
1565 correctly interpret it as Thumb code. */
1566 if (sym_flags == STT_ARM_TFUNC)
1567 value += 1;
1568
1569 /* Note that sgot->output_offset is not involved in this
1570 calculation. We always want the start of .got. If we
1571 define _GLOBAL_OFFSET_TABLE in a different way, as is
1572 permitted by the ABI, we might have to change this
1573 calculation. */
1574 value -= sgot->output_section->vma;
1575 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1576 contents, rel->r_offset, value,
1577 (bfd_vma) 0);
1578
1579 case R_ARM_GOTPC:
1580 /* Use global offset table as symbol value. */
1581 BFD_ASSERT (sgot != NULL);
1582
1583 if (sgot == NULL)
1584 return bfd_reloc_notsupported;
1585
1586 value = sgot->output_section->vma;
1587 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1588 contents, rel->r_offset, value,
1589 (bfd_vma) 0);
1590
1591 case R_ARM_GOT32:
1592 /* Relocation is to the entry for this symbol in the
1593 global offset table. */
1594 if (sgot == NULL)
1595 return bfd_reloc_notsupported;
1596
1597 if (h != NULL)
1598 {
1599 bfd_vma off;
1600
1601 off = h->got.offset;
1602 BFD_ASSERT (off != (bfd_vma) -1);
1603
1604 if (!elf_hash_table (info)->dynamic_sections_created ||
1605 (info->shared && (info->symbolic || h->dynindx == -1)
1606 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1607 {
1608 /* This is actually a static link, or it is a -Bsymbolic link
1609 and the symbol is defined locally. We must initialize this
1610 entry in the global offset table. Since the offset must
1611 always be a multiple of 4, we use the least significant bit
1612 to record whether we have initialized it already.
1613
1614 When doing a dynamic link, we create a .rel.got relocation
1615 entry to initialize the value. This is done in the
1616 finish_dynamic_symbol routine. */
1617 if ((off & 1) != 0)
1618 off &= ~1;
1619 else
1620 {
1621 /* If we are addressing a Thumb function, we need to
1622 adjust the address by one, so that attempts to
1623 call the function pointer will correctly
1624 interpret it as Thumb code. */
1625 if (sym_flags == STT_ARM_TFUNC)
1626 value |= 1;
1627
1628 bfd_put_32 (output_bfd, value, sgot->contents + off);
1629 h->got.offset |= 1;
1630 }
1631 }
1632
1633 value = sgot->output_offset + off;
1634 }
1635 else
1636 {
1637 bfd_vma off;
1638
1639 BFD_ASSERT (local_got_offsets != NULL &&
1640 local_got_offsets[r_symndx] != (bfd_vma) -1);
1641
1642 off = local_got_offsets[r_symndx];
1643
1644 /* The offset must always be a multiple of 4. We use the
1645 least significant bit to record whether we have already
1646 generated the necessary reloc. */
1647 if ((off & 1) != 0)
1648 off &= ~1;
1649 else
1650 {
1651 bfd_put_32 (output_bfd, value, sgot->contents + off);
1652
1653 if (info->shared)
1654 {
1655 asection * srelgot;
1656 Elf_Internal_Rel outrel;
1657
1658 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
1659 BFD_ASSERT (srelgot != NULL);
1660
1661 outrel.r_offset = (sgot->output_section->vma
1662 + sgot->output_offset
1663 + off);
1664 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1665 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1666 (((Elf32_External_Rel *)
1667 srelgot->contents)
1668 + srelgot->reloc_count));
1669 ++srelgot->reloc_count;
1670 }
1671
1672 local_got_offsets[r_symndx] |= 1;
1673 }
1674
1675 value = sgot->output_offset + off;
1676 }
1677
1678 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1679 contents, rel->r_offset, value,
1680 (bfd_vma) 0);
1681
1682 case R_ARM_PLT32:
1683 /* Relocation is to the entry for this symbol in the
1684 procedure linkage table. */
1685
1686 /* Resolve a PLT32 reloc against a local symbol directly,
1687 without using the procedure linkage table. */
1688 if (h == NULL)
1689 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1690 contents, rel->r_offset, value,
1691 (bfd_vma) 0);
1692
1693 if (h->plt.offset == (bfd_vma) -1)
1694 /* We didn't make a PLT entry for this symbol. This
1695 happens when statically linking PIC code, or when
1696 using -Bsymbolic. */
1697 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1698 contents, rel->r_offset, value,
1699 (bfd_vma) 0);
1700
1701 BFD_ASSERT(splt != NULL);
1702 if (splt == NULL)
1703 return bfd_reloc_notsupported;
1704
1705 value = (splt->output_section->vma
1706 + splt->output_offset
1707 + h->plt.offset);
1708 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1709 contents, rel->r_offset, value,
1710 (bfd_vma) 0);
1711
1712 case R_ARM_SBREL32:
1713 return bfd_reloc_notsupported;
1714
1715 case R_ARM_AMP_VCALL9:
1716 return bfd_reloc_notsupported;
1717
1718 case R_ARM_RSBREL32:
1719 return bfd_reloc_notsupported;
1720
1721 case R_ARM_THM_RPC22:
1722 return bfd_reloc_notsupported;
1723
1724 case R_ARM_RREL32:
1725 return bfd_reloc_notsupported;
1726
1727 case R_ARM_RABS32:
1728 return bfd_reloc_notsupported;
1729
1730 case R_ARM_RPC24:
1731 return bfd_reloc_notsupported;
1732
1733 case R_ARM_RBASE:
1734 return bfd_reloc_notsupported;
1735
1736 default:
1737 return bfd_reloc_notsupported;
1738 }
1739 }
1740
1741 #ifdef USE_REL
1742 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
1743 static void
1744 arm_add_to_rel (abfd, address, howto, increment)
1745 bfd * abfd;
1746 bfd_byte * address;
1747 reloc_howto_type * howto;
1748 bfd_signed_vma increment;
1749 {
1750 bfd_signed_vma addend;
1751
1752 if (howto->type == R_ARM_THM_PC22)
1753 {
1754 int upper_insn, lower_insn;
1755 int upper, lower;
1756
1757 upper_insn = bfd_get_16 (abfd, address);
1758 lower_insn = bfd_get_16 (abfd, address + 2);
1759 upper = upper_insn & 0x7ff;
1760 lower = lower_insn & 0x7ff;
1761
1762 addend = (upper << 12) | (lower << 1);
1763 addend += increment;
1764 addend >>= 1;
1765
1766 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
1767 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
1768
1769 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
1770 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
1771 }
1772 else
1773 {
1774 bfd_vma contents;
1775
1776 contents = bfd_get_32 (abfd, address);
1777
1778 /* Get the (signed) value from the instruction. */
1779 addend = contents & howto->src_mask;
1780 if (addend & ((howto->src_mask + 1) >> 1))
1781 {
1782 bfd_signed_vma mask;
1783
1784 mask = -1;
1785 mask &= ~ howto->src_mask;
1786 addend |= mask;
1787 }
1788
1789 /* Add in the increment, (which is a byte value). */
1790 switch (howto->type)
1791 {
1792 default:
1793 addend += increment;
1794 break;
1795
1796 case R_ARM_PC24:
1797 addend <<= howto->size;
1798 addend += increment;
1799
1800 /* Should we check for overflow here ? */
1801
1802 /* Drop any undesired bits. */
1803 addend >>= howto->rightshift;
1804 break;
1805 }
1806
1807 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
1808
1809 bfd_put_32 (abfd, contents, address);
1810 }
1811 }
1812 #endif /* USE_REL */
1813
1814 /* Relocate an ARM ELF section. */
1815 static boolean
1816 elf32_arm_relocate_section (output_bfd, info, input_bfd, input_section,
1817 contents, relocs, local_syms, local_sections)
1818 bfd * output_bfd;
1819 struct bfd_link_info * info;
1820 bfd * input_bfd;
1821 asection * input_section;
1822 bfd_byte * contents;
1823 Elf_Internal_Rela * relocs;
1824 Elf_Internal_Sym * local_syms;
1825 asection ** local_sections;
1826 {
1827 Elf_Internal_Shdr * symtab_hdr;
1828 struct elf_link_hash_entry ** sym_hashes;
1829 Elf_Internal_Rela * rel;
1830 Elf_Internal_Rela * relend;
1831 const char * name;
1832
1833 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1834 sym_hashes = elf_sym_hashes (input_bfd);
1835
1836 rel = relocs;
1837 relend = relocs + input_section->reloc_count;
1838 for (; rel < relend; rel++)
1839 {
1840 int r_type;
1841 reloc_howto_type * howto;
1842 unsigned long r_symndx;
1843 Elf_Internal_Sym * sym;
1844 asection * sec;
1845 struct elf_link_hash_entry * h;
1846 bfd_vma relocation;
1847 bfd_reloc_status_type r;
1848 arelent bfd_reloc;
1849
1850 r_symndx = ELF32_R_SYM (rel->r_info);
1851 r_type = ELF32_R_TYPE (rel->r_info);
1852
1853 if ( r_type == R_ARM_GNU_VTENTRY
1854 || r_type == R_ARM_GNU_VTINHERIT)
1855 continue;
1856
1857 #ifdef USE_REL
1858 elf32_arm_info_to_howto (input_bfd, & bfd_reloc,
1859 (Elf_Internal_Rel *) rel);
1860 #else
1861 elf32_arm_info_to_howto (input_bfd, & bfd_reloc, rel);
1862 #endif
1863 howto = bfd_reloc.howto;
1864
1865 if (info->relocateable)
1866 {
1867 /* This is a relocateable link. We don't have to change
1868 anything, unless the reloc is against a section symbol,
1869 in which case we have to adjust according to where the
1870 section symbol winds up in the output section. */
1871 if (r_symndx < symtab_hdr->sh_info)
1872 {
1873 sym = local_syms + r_symndx;
1874 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1875 {
1876 sec = local_sections[r_symndx];
1877 #ifdef USE_REL
1878 arm_add_to_rel (input_bfd, contents + rel->r_offset,
1879 howto,
1880 (bfd_signed_vma) (sec->output_offset
1881 + sym->st_value));
1882 #else
1883 rel->r_addend += (sec->output_offset + sym->st_value);
1884 #endif
1885 }
1886 }
1887
1888 continue;
1889 }
1890
1891 /* This is a final link. */
1892 h = NULL;
1893 sym = NULL;
1894 sec = NULL;
1895
1896 if (r_symndx < symtab_hdr->sh_info)
1897 {
1898 sym = local_syms + r_symndx;
1899 sec = local_sections[r_symndx];
1900 #ifdef USE_REL
1901 relocation = (sec->output_section->vma
1902 + sec->output_offset
1903 + sym->st_value);
1904 if ((sec->flags & SEC_MERGE)
1905 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1906 {
1907 asection *msec;
1908 bfd_vma addend, value;
1909
1910 if (howto->rightshift)
1911 {
1912 (*_bfd_error_handler)
1913 (_("%s(%s+0x%lx): %s relocation against SEC_MERGE section"),
1914 bfd_archive_filename (input_bfd),
1915 bfd_get_section_name (input_bfd, input_section),
1916 (long) rel->r_offset, howto->name);
1917 return false;
1918 }
1919
1920 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
1921
1922 /* Get the (signed) value from the instruction. */
1923 addend = value & howto->src_mask;
1924 if (addend & ((howto->src_mask + 1) >> 1))
1925 {
1926 bfd_signed_vma mask;
1927
1928 mask = -1;
1929 mask &= ~ howto->src_mask;
1930 addend |= mask;
1931 }
1932 msec = sec;
1933 addend =
1934 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
1935 - relocation;
1936 addend += msec->output_section->vma + msec->output_offset;
1937 value = (value & ~ howto->dst_mask) | (addend & howto->dst_mask);
1938 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
1939 }
1940 #else
1941 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sec, rel);
1942 #endif
1943 }
1944 else
1945 {
1946 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1947
1948 while ( h->root.type == bfd_link_hash_indirect
1949 || h->root.type == bfd_link_hash_warning)
1950 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1951
1952 if ( h->root.type == bfd_link_hash_defined
1953 || h->root.type == bfd_link_hash_defweak)
1954 {
1955 int relocation_needed = 1;
1956
1957 sec = h->root.u.def.section;
1958
1959 /* In these cases, we don't need the relocation value.
1960 We check specially because in some obscure cases
1961 sec->output_section will be NULL. */
1962 switch (r_type)
1963 {
1964 case R_ARM_PC24:
1965 case R_ARM_ABS32:
1966 case R_ARM_THM_PC22:
1967 if (info->shared
1968 && (
1969 (!info->symbolic && h->dynindx != -1)
1970 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1971 )
1972 && ((input_section->flags & SEC_ALLOC) != 0
1973 /* DWARF will emit R_ARM_ABS32 relocations in its
1974 sections against symbols defined externally
1975 in shared libraries. We can't do anything
1976 with them here. */
1977 || ((input_section->flags & SEC_DEBUGGING) != 0
1978 && (h->elf_link_hash_flags
1979 & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
1980 )
1981 relocation_needed = 0;
1982 break;
1983
1984 case R_ARM_GOTPC:
1985 relocation_needed = 0;
1986 break;
1987
1988 case R_ARM_GOT32:
1989 if (elf_hash_table(info)->dynamic_sections_created
1990 && (!info->shared
1991 || (!info->symbolic && h->dynindx != -1)
1992 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1993 )
1994 )
1995 relocation_needed = 0;
1996 break;
1997
1998 case R_ARM_PLT32:
1999 if (h->plt.offset != (bfd_vma)-1)
2000 relocation_needed = 0;
2001 break;
2002
2003 default:
2004 if (sec->output_section == NULL)
2005 {
2006 (*_bfd_error_handler)
2007 (_("%s: warning: unresolvable relocation %d against symbol `%s' from %s section"),
2008 bfd_archive_filename (input_bfd),
2009 r_type,
2010 h->root.root.string,
2011 bfd_get_section_name (input_bfd, input_section));
2012 relocation_needed = 0;
2013 }
2014 }
2015
2016 if (relocation_needed)
2017 relocation = h->root.u.def.value
2018 + sec->output_section->vma
2019 + sec->output_offset;
2020 else
2021 relocation = 0;
2022 }
2023 else if (h->root.type == bfd_link_hash_undefweak)
2024 relocation = 0;
2025 else if (info->shared && !info->symbolic
2026 && !info->no_undefined
2027 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2028 relocation = 0;
2029 else
2030 {
2031 if (!((*info->callbacks->undefined_symbol)
2032 (info, h->root.root.string, input_bfd,
2033 input_section, rel->r_offset,
2034 (!info->shared || info->no_undefined
2035 || ELF_ST_VISIBILITY (h->other)))))
2036 return false;
2037 relocation = 0;
2038 }
2039 }
2040
2041 if (h != NULL)
2042 name = h->root.root.string;
2043 else
2044 {
2045 name = (bfd_elf_string_from_elf_section
2046 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2047 if (name == NULL || *name == '\0')
2048 name = bfd_section_name (input_bfd, sec);
2049 }
2050
2051 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
2052 input_section, contents, rel,
2053 relocation, info, sec, name,
2054 (h ? ELF_ST_TYPE (h->type) :
2055 ELF_ST_TYPE (sym->st_info)), h);
2056
2057 if (r != bfd_reloc_ok)
2058 {
2059 const char * msg = (const char *) 0;
2060
2061 switch (r)
2062 {
2063 case bfd_reloc_overflow:
2064 /* If the overflowing reloc was to an undefined symbol,
2065 we have already printed one error message and there
2066 is no point complaining again. */
2067 if ((! h ||
2068 h->root.type != bfd_link_hash_undefined)
2069 && (!((*info->callbacks->reloc_overflow)
2070 (info, name, howto->name, (bfd_vma) 0,
2071 input_bfd, input_section, rel->r_offset))))
2072 return false;
2073 break;
2074
2075 case bfd_reloc_undefined:
2076 if (!((*info->callbacks->undefined_symbol)
2077 (info, name, input_bfd, input_section,
2078 rel->r_offset, true)))
2079 return false;
2080 break;
2081
2082 case bfd_reloc_outofrange:
2083 msg = _("internal error: out of range error");
2084 goto common_error;
2085
2086 case bfd_reloc_notsupported:
2087 msg = _("internal error: unsupported relocation error");
2088 goto common_error;
2089
2090 case bfd_reloc_dangerous:
2091 msg = _("internal error: dangerous error");
2092 goto common_error;
2093
2094 default:
2095 msg = _("internal error: unknown error");
2096 /* fall through */
2097
2098 common_error:
2099 if (!((*info->callbacks->warning)
2100 (info, msg, name, input_bfd, input_section,
2101 rel->r_offset)))
2102 return false;
2103 break;
2104 }
2105 }
2106 }
2107
2108 return true;
2109 }
2110
2111 /* Function to keep ARM specific flags in the ELF header. */
2112 static boolean
2113 elf32_arm_set_private_flags (abfd, flags)
2114 bfd *abfd;
2115 flagword flags;
2116 {
2117 if (elf_flags_init (abfd)
2118 && elf_elfheader (abfd)->e_flags != flags)
2119 {
2120 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
2121 {
2122 if (flags & EF_ARM_INTERWORK)
2123 (*_bfd_error_handler) (_("\
2124 Warning: Not setting interworking flag of %s since it has already been specified as non-interworking"),
2125 bfd_archive_filename (abfd));
2126 else
2127 _bfd_error_handler (_("\
2128 Warning: Clearing the interworking flag of %s due to outside request"),
2129 bfd_archive_filename (abfd));
2130 }
2131 }
2132 else
2133 {
2134 elf_elfheader (abfd)->e_flags = flags;
2135 elf_flags_init (abfd) = true;
2136 }
2137
2138 return true;
2139 }
2140
2141 /* Copy backend specific data from one object module to another. */
2142
2143 static boolean
2144 elf32_arm_copy_private_bfd_data (ibfd, obfd)
2145 bfd *ibfd;
2146 bfd *obfd;
2147 {
2148 flagword in_flags;
2149 flagword out_flags;
2150
2151 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2152 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2153 return true;
2154
2155 in_flags = elf_elfheader (ibfd)->e_flags;
2156 out_flags = elf_elfheader (obfd)->e_flags;
2157
2158 if (elf_flags_init (obfd)
2159 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
2160 && in_flags != out_flags)
2161 {
2162 /* Cannot mix APCS26 and APCS32 code. */
2163 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2164 return false;
2165
2166 /* Cannot mix float APCS and non-float APCS code. */
2167 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2168 return false;
2169
2170 /* If the src and dest have different interworking flags
2171 then turn off the interworking bit. */
2172 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2173 {
2174 if (out_flags & EF_ARM_INTERWORK)
2175 _bfd_error_handler (_("\
2176 Warning: Clearing the interworking flag of %s because non-interworking code in %s has been linked with it"),
2177 bfd_get_filename (obfd),
2178 bfd_archive_filename (ibfd));
2179
2180 in_flags &= ~EF_ARM_INTERWORK;
2181 }
2182
2183 /* Likewise for PIC, though don't warn for this case. */
2184 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
2185 in_flags &= ~EF_ARM_PIC;
2186 }
2187
2188 elf_elfheader (obfd)->e_flags = in_flags;
2189 elf_flags_init (obfd) = true;
2190
2191 return true;
2192 }
2193
2194 /* Merge backend specific data from an object file to the output
2195 object file when linking. */
2196
2197 static boolean
2198 elf32_arm_merge_private_bfd_data (ibfd, obfd)
2199 bfd * ibfd;
2200 bfd * obfd;
2201 {
2202 flagword out_flags;
2203 flagword in_flags;
2204 boolean flags_compatible = true;
2205 boolean null_input_bfd = true;
2206 asection *sec;
2207
2208 /* Check if we have the same endianess. */
2209 if (_bfd_generic_verify_endian_match (ibfd, obfd) == false)
2210 return false;
2211
2212 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2213 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2214 return true;
2215
2216 /* The input BFD must have had its flags initialised. */
2217 /* The following seems bogus to me -- The flags are initialized in
2218 the assembler but I don't think an elf_flags_init field is
2219 written into the object. */
2220 /* BFD_ASSERT (elf_flags_init (ibfd)); */
2221
2222 in_flags = elf_elfheader (ibfd)->e_flags;
2223 out_flags = elf_elfheader (obfd)->e_flags;
2224
2225 if (!elf_flags_init (obfd))
2226 {
2227 /* If the input is the default architecture and had the default
2228 flags then do not bother setting the flags for the output
2229 architecture, instead allow future merges to do this. If no
2230 future merges ever set these flags then they will retain their
2231 uninitialised values, which surprise surprise, correspond
2232 to the default values. */
2233 if (bfd_get_arch_info (ibfd)->the_default
2234 && elf_elfheader (ibfd)->e_flags == 0)
2235 return true;
2236
2237 elf_flags_init (obfd) = true;
2238 elf_elfheader (obfd)->e_flags = in_flags;
2239
2240 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2241 && bfd_get_arch_info (obfd)->the_default)
2242 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
2243
2244 return true;
2245 }
2246
2247 /* Identical flags must be compatible. */
2248 if (in_flags == out_flags)
2249 return true;
2250
2251 /* Check to see if the input BFD actually contains any sections.
2252 If not, its flags may not have been initialised either, but it cannot
2253 actually cause any incompatibility. */
2254 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2255 {
2256 /* Ignore synthetic glue sections. */
2257 if (strcmp (sec->name, ".glue_7")
2258 && strcmp (sec->name, ".glue_7t"))
2259 {
2260 null_input_bfd = false;
2261 break;
2262 }
2263 }
2264 if (null_input_bfd)
2265 return true;
2266
2267 /* Complain about various flag mismatches. */
2268 if (EF_ARM_EABI_VERSION (in_flags) != EF_ARM_EABI_VERSION (out_flags))
2269 {
2270 _bfd_error_handler (_("\
2271 ERROR: %s is compiled for EABI version %d, whereas %s is compiled for version %d"),
2272 bfd_archive_filename (ibfd),
2273 (in_flags & EF_ARM_EABIMASK) >> 24,
2274 bfd_get_filename (obfd),
2275 (out_flags & EF_ARM_EABIMASK) >> 24);
2276 return false;
2277 }
2278
2279 /* Not sure what needs to be checked for EABI versions >= 1. */
2280 if (EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
2281 {
2282 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2283 {
2284 _bfd_error_handler (_("\
2285 ERROR: %s is compiled for APCS-%d, whereas target %s uses APCS-%d"),
2286 bfd_archive_filename (ibfd),
2287 in_flags & EF_ARM_APCS_26 ? 26 : 32,
2288 bfd_get_filename (obfd),
2289 out_flags & EF_ARM_APCS_26 ? 26 : 32);
2290 flags_compatible = false;
2291 }
2292
2293 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2294 {
2295 if (in_flags & EF_ARM_APCS_FLOAT)
2296 _bfd_error_handler (_("\
2297 ERROR: %s passes floats in float registers, whereas %s passes them in integer registers"),
2298 bfd_archive_filename (ibfd),
2299 bfd_get_filename (obfd));
2300 else
2301 _bfd_error_handler (_("\
2302 ERROR: %s passes floats in integer registers, whereas %s passes them in float registers"),
2303 bfd_archive_filename (ibfd),
2304 bfd_get_filename (obfd));
2305
2306 flags_compatible = false;
2307 }
2308
2309 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
2310 {
2311 if (in_flags & EF_ARM_VFP_FLOAT)
2312 _bfd_error_handler (_("\
2313 ERROR: %s uses VFP instructions, whereas %s uses FPA instructions"),
2314 bfd_archive_filename (ibfd),
2315 bfd_get_filename (obfd));
2316 else
2317 _bfd_error_handler (_("\
2318 ERROR: %s uses FPA instructions, whereas %s uses VFP instructions"),
2319 bfd_archive_filename (ibfd),
2320 bfd_get_filename (obfd));
2321
2322 flags_compatible = false;
2323 }
2324
2325 #ifdef EF_ARM_SOFT_FLOAT
2326 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
2327 {
2328 /* We can allow interworking between code that is VFP format
2329 layout, and uses either soft float or integer regs for
2330 passing floating point arguments and results. We already
2331 know that the APCS_FLOAT flags match; similarly for VFP
2332 flags. */
2333 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
2334 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
2335 {
2336 if (in_flags & EF_ARM_SOFT_FLOAT)
2337 _bfd_error_handler (_("\
2338 ERROR: %s uses software FP, whereas %s uses hardware FP"),
2339 bfd_archive_filename (ibfd),
2340 bfd_get_filename (obfd));
2341 else
2342 _bfd_error_handler (_("\
2343 ERROR: %s uses hardware FP, whereas %s uses software FP"),
2344 bfd_archive_filename (ibfd),
2345 bfd_get_filename (obfd));
2346
2347 flags_compatible = false;
2348 }
2349 }
2350 #endif
2351
2352 /* Interworking mismatch is only a warning. */
2353 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2354 {
2355 if (in_flags & EF_ARM_INTERWORK)
2356 {
2357 _bfd_error_handler (_("\
2358 Warning: %s supports interworking, whereas %s does not"),
2359 bfd_archive_filename (ibfd),
2360 bfd_get_filename (obfd));
2361 }
2362 else
2363 {
2364 _bfd_error_handler (_("\
2365 Warning: %s does not support interworking, whereas %s does"),
2366 bfd_archive_filename (ibfd),
2367 bfd_get_filename (obfd));
2368 }
2369 }
2370 }
2371
2372 return flags_compatible;
2373 }
2374
2375 /* Display the flags field. */
2376
2377 static boolean
2378 elf32_arm_print_private_bfd_data (abfd, ptr)
2379 bfd *abfd;
2380 PTR ptr;
2381 {
2382 FILE * file = (FILE *) ptr;
2383 unsigned long flags;
2384
2385 BFD_ASSERT (abfd != NULL && ptr != NULL);
2386
2387 /* Print normal ELF private data. */
2388 _bfd_elf_print_private_bfd_data (abfd, ptr);
2389
2390 flags = elf_elfheader (abfd)->e_flags;
2391 /* Ignore init flag - it may not be set, despite the flags field
2392 containing valid data. */
2393
2394 /* xgettext:c-format */
2395 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
2396
2397 switch (EF_ARM_EABI_VERSION (flags))
2398 {
2399 case EF_ARM_EABI_UNKNOWN:
2400 /* The following flag bits are GNU extenstions and not part of the
2401 official ARM ELF extended ABI. Hence they are only decoded if
2402 the EABI version is not set. */
2403 if (flags & EF_ARM_INTERWORK)
2404 fprintf (file, _(" [interworking enabled]"));
2405
2406 if (flags & EF_ARM_APCS_26)
2407 fprintf (file, " [APCS-26]");
2408 else
2409 fprintf (file, " [APCS-32]");
2410
2411 if (flags & EF_ARM_VFP_FLOAT)
2412 fprintf (file, _(" [VFP float format]"));
2413 else
2414 fprintf (file, _(" [FPA float format]"));
2415
2416 if (flags & EF_ARM_APCS_FLOAT)
2417 fprintf (file, _(" [floats passed in float registers]"));
2418
2419 if (flags & EF_ARM_PIC)
2420 fprintf (file, _(" [position independent]"));
2421
2422 if (flags & EF_ARM_NEW_ABI)
2423 fprintf (file, _(" [new ABI]"));
2424
2425 if (flags & EF_ARM_OLD_ABI)
2426 fprintf (file, _(" [old ABI]"));
2427
2428 if (flags & EF_ARM_SOFT_FLOAT)
2429 fprintf (file, _(" [software FP]"));
2430
2431 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
2432 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
2433 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT);
2434 break;
2435
2436 case EF_ARM_EABI_VER1:
2437 fprintf (file, _(" [Version1 EABI]"));
2438
2439 if (flags & EF_ARM_SYMSARESORTED)
2440 fprintf (file, _(" [sorted symbol table]"));
2441 else
2442 fprintf (file, _(" [unsorted symbol table]"));
2443
2444 flags &= ~ EF_ARM_SYMSARESORTED;
2445 break;
2446
2447 case EF_ARM_EABI_VER2:
2448 fprintf (file, _(" [Version2 EABI]"));
2449
2450 if (flags & EF_ARM_SYMSARESORTED)
2451 fprintf (file, _(" [sorted symbol table]"));
2452 else
2453 fprintf (file, _(" [unsorted symbol table]"));
2454
2455 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
2456 fprintf (file, _(" [dynamic symbols use segment index]"));
2457
2458 if (flags & EF_ARM_MAPSYMSFIRST)
2459 fprintf (file, _(" [mapping symbols precede others]"));
2460
2461 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
2462 | EF_ARM_MAPSYMSFIRST);
2463 break;
2464
2465 default:
2466 fprintf (file, _(" <EABI version unrecognised>"));
2467 break;
2468 }
2469
2470 flags &= ~ EF_ARM_EABIMASK;
2471
2472 if (flags & EF_ARM_RELEXEC)
2473 fprintf (file, _(" [relocatable executable]"));
2474
2475 if (flags & EF_ARM_HASENTRY)
2476 fprintf (file, _(" [has entry point]"));
2477
2478 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
2479
2480 if (flags)
2481 fprintf (file, _("<Unrecognised flag bits set>"));
2482
2483 fputc ('\n', file);
2484
2485 return true;
2486 }
2487
2488 static int
2489 elf32_arm_get_symbol_type (elf_sym, type)
2490 Elf_Internal_Sym * elf_sym;
2491 int type;
2492 {
2493 switch (ELF_ST_TYPE (elf_sym->st_info))
2494 {
2495 case STT_ARM_TFUNC:
2496 return ELF_ST_TYPE (elf_sym->st_info);
2497
2498 case STT_ARM_16BIT:
2499 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
2500 This allows us to distinguish between data used by Thumb instructions
2501 and non-data (which is probably code) inside Thumb regions of an
2502 executable. */
2503 if (type != STT_OBJECT)
2504 return ELF_ST_TYPE (elf_sym->st_info);
2505 break;
2506
2507 default:
2508 break;
2509 }
2510
2511 return type;
2512 }
2513
2514 static asection *
2515 elf32_arm_gc_mark_hook (abfd, info, rel, h, sym)
2516 bfd *abfd;
2517 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2518 Elf_Internal_Rela *rel;
2519 struct elf_link_hash_entry *h;
2520 Elf_Internal_Sym *sym;
2521 {
2522 if (h != NULL)
2523 {
2524 switch (ELF32_R_TYPE (rel->r_info))
2525 {
2526 case R_ARM_GNU_VTINHERIT:
2527 case R_ARM_GNU_VTENTRY:
2528 break;
2529
2530 default:
2531 switch (h->root.type)
2532 {
2533 case bfd_link_hash_defined:
2534 case bfd_link_hash_defweak:
2535 return h->root.u.def.section;
2536
2537 case bfd_link_hash_common:
2538 return h->root.u.c.p->section;
2539
2540 default:
2541 break;
2542 }
2543 }
2544 }
2545 else
2546 {
2547 return bfd_section_from_elf_index (abfd, sym->st_shndx);
2548 }
2549
2550 return NULL;
2551 }
2552
2553 /* Update the got entry reference counts for the section being removed. */
2554
2555 static boolean
2556 elf32_arm_gc_sweep_hook (abfd, info, sec, relocs)
2557 bfd *abfd ATTRIBUTE_UNUSED;
2558 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2559 asection *sec ATTRIBUTE_UNUSED;
2560 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
2561 {
2562 /* We don't support garbage collection of GOT and PLT relocs yet. */
2563 return true;
2564 }
2565
2566 /* Look through the relocs for a section during the first phase. */
2567
2568 static boolean
2569 elf32_arm_check_relocs (abfd, info, sec, relocs)
2570 bfd * abfd;
2571 struct bfd_link_info * info;
2572 asection * sec;
2573 const Elf_Internal_Rela * relocs;
2574 {
2575 Elf_Internal_Shdr * symtab_hdr;
2576 struct elf_link_hash_entry ** sym_hashes;
2577 struct elf_link_hash_entry ** sym_hashes_end;
2578 const Elf_Internal_Rela * rel;
2579 const Elf_Internal_Rela * rel_end;
2580 bfd * dynobj;
2581 asection * sgot, *srelgot, *sreloc;
2582 bfd_vma * local_got_offsets;
2583
2584 if (info->relocateable)
2585 return true;
2586
2587 sgot = srelgot = sreloc = NULL;
2588
2589 dynobj = elf_hash_table (info)->dynobj;
2590 local_got_offsets = elf_local_got_offsets (abfd);
2591
2592 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2593 sym_hashes = elf_sym_hashes (abfd);
2594 sym_hashes_end = sym_hashes
2595 + symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
2596
2597 if (!elf_bad_symtab (abfd))
2598 sym_hashes_end -= symtab_hdr->sh_info;
2599
2600 rel_end = relocs + sec->reloc_count;
2601 for (rel = relocs; rel < rel_end; rel++)
2602 {
2603 struct elf_link_hash_entry *h;
2604 unsigned long r_symndx;
2605
2606 r_symndx = ELF32_R_SYM (rel->r_info);
2607 if (r_symndx < symtab_hdr->sh_info)
2608 h = NULL;
2609 else
2610 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2611
2612 /* Some relocs require a global offset table. */
2613 if (dynobj == NULL)
2614 {
2615 switch (ELF32_R_TYPE (rel->r_info))
2616 {
2617 case R_ARM_GOT32:
2618 case R_ARM_GOTOFF:
2619 case R_ARM_GOTPC:
2620 elf_hash_table (info)->dynobj = dynobj = abfd;
2621 if (! _bfd_elf_create_got_section (dynobj, info))
2622 return false;
2623 break;
2624
2625 default:
2626 break;
2627 }
2628 }
2629
2630 switch (ELF32_R_TYPE (rel->r_info))
2631 {
2632 case R_ARM_GOT32:
2633 /* This symbol requires a global offset table entry. */
2634 if (sgot == NULL)
2635 {
2636 sgot = bfd_get_section_by_name (dynobj, ".got");
2637 BFD_ASSERT (sgot != NULL);
2638 }
2639
2640 /* Get the got relocation section if necessary. */
2641 if (srelgot == NULL
2642 && (h != NULL || info->shared))
2643 {
2644 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
2645
2646 /* If no got relocation section, make one and initialize. */
2647 if (srelgot == NULL)
2648 {
2649 srelgot = bfd_make_section (dynobj, ".rel.got");
2650 if (srelgot == NULL
2651 || ! bfd_set_section_flags (dynobj, srelgot,
2652 (SEC_ALLOC
2653 | SEC_LOAD
2654 | SEC_HAS_CONTENTS
2655 | SEC_IN_MEMORY
2656 | SEC_LINKER_CREATED
2657 | SEC_READONLY))
2658 || ! bfd_set_section_alignment (dynobj, srelgot, 2))
2659 return false;
2660 }
2661 }
2662
2663 if (h != NULL)
2664 {
2665 if (h->got.offset != (bfd_vma) -1)
2666 /* We have already allocated space in the .got. */
2667 break;
2668
2669 h->got.offset = sgot->_raw_size;
2670
2671 /* Make sure this symbol is output as a dynamic symbol. */
2672 if (h->dynindx == -1)
2673 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2674 return false;
2675
2676 srelgot->_raw_size += sizeof (Elf32_External_Rel);
2677 }
2678 else
2679 {
2680 /* This is a global offset table entry for a local
2681 symbol. */
2682 if (local_got_offsets == NULL)
2683 {
2684 bfd_size_type size;
2685 unsigned int i;
2686
2687 size = symtab_hdr->sh_info;
2688 size *= sizeof (bfd_vma);
2689 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
2690 if (local_got_offsets == NULL)
2691 return false;
2692 elf_local_got_offsets (abfd) = local_got_offsets;
2693 for (i = 0; i < symtab_hdr->sh_info; i++)
2694 local_got_offsets[i] = (bfd_vma) -1;
2695 }
2696
2697 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
2698 /* We have already allocated space in the .got. */
2699 break;
2700
2701 local_got_offsets[r_symndx] = sgot->_raw_size;
2702
2703 if (info->shared)
2704 /* If we are generating a shared object, we need to
2705 output a R_ARM_RELATIVE reloc so that the dynamic
2706 linker can adjust this GOT entry. */
2707 srelgot->_raw_size += sizeof (Elf32_External_Rel);
2708 }
2709
2710 sgot->_raw_size += 4;
2711 break;
2712
2713 case R_ARM_PLT32:
2714 /* This symbol requires a procedure linkage table entry. We
2715 actually build the entry in adjust_dynamic_symbol,
2716 because this might be a case of linking PIC code which is
2717 never referenced by a dynamic object, in which case we
2718 don't need to generate a procedure linkage table entry
2719 after all. */
2720
2721 /* If this is a local symbol, we resolve it directly without
2722 creating a procedure linkage table entry. */
2723 if (h == NULL)
2724 continue;
2725
2726 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
2727 break;
2728
2729 case R_ARM_ABS32:
2730 case R_ARM_REL32:
2731 case R_ARM_PC24:
2732 /* If we are creating a shared library, and this is a reloc
2733 against a global symbol, or a non PC relative reloc
2734 against a local symbol, then we need to copy the reloc
2735 into the shared library. However, if we are linking with
2736 -Bsymbolic, we do not need to copy a reloc against a
2737 global symbol which is defined in an object we are
2738 including in the link (i.e., DEF_REGULAR is set). At
2739 this point we have not seen all the input files, so it is
2740 possible that DEF_REGULAR is not set now but will be set
2741 later (it is never cleared). We account for that
2742 possibility below by storing information in the
2743 pcrel_relocs_copied field of the hash table entry. */
2744 if (info->shared
2745 && (ELF32_R_TYPE (rel->r_info) != R_ARM_PC24
2746 || (h != NULL
2747 && (! info->symbolic
2748 || (h->elf_link_hash_flags
2749 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
2750 {
2751 /* When creating a shared object, we must copy these
2752 reloc types into the output file. We create a reloc
2753 section in dynobj and make room for this reloc. */
2754 if (sreloc == NULL)
2755 {
2756 const char * name;
2757
2758 name = (bfd_elf_string_from_elf_section
2759 (abfd,
2760 elf_elfheader (abfd)->e_shstrndx,
2761 elf_section_data (sec)->rel_hdr.sh_name));
2762 if (name == NULL)
2763 return false;
2764
2765 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
2766 && strcmp (bfd_get_section_name (abfd, sec),
2767 name + 4) == 0);
2768
2769 sreloc = bfd_get_section_by_name (dynobj, name);
2770 if (sreloc == NULL)
2771 {
2772 flagword flags;
2773
2774 sreloc = bfd_make_section (dynobj, name);
2775 flags = (SEC_HAS_CONTENTS | SEC_READONLY
2776 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2777 if ((sec->flags & SEC_ALLOC) != 0)
2778 flags |= SEC_ALLOC | SEC_LOAD;
2779 if (sreloc == NULL
2780 || ! bfd_set_section_flags (dynobj, sreloc, flags)
2781 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
2782 return false;
2783 }
2784 if (sec->flags & SEC_READONLY)
2785 info->flags |= DF_TEXTREL;
2786 }
2787
2788 sreloc->_raw_size += sizeof (Elf32_External_Rel);
2789 /* If we are linking with -Bsymbolic, and this is a
2790 global symbol, we count the number of PC relative
2791 relocations we have entered for this symbol, so that
2792 we can discard them again if the symbol is later
2793 defined by a regular object. Note that this function
2794 is only called if we are using an elf_i386 linker
2795 hash table, which means that h is really a pointer to
2796 an elf_i386_link_hash_entry. */
2797 if (h != NULL && info->symbolic
2798 && ELF32_R_TYPE (rel->r_info) == R_ARM_PC24)
2799 {
2800 struct elf32_arm_link_hash_entry * eh;
2801 struct elf32_arm_pcrel_relocs_copied * p;
2802
2803 eh = (struct elf32_arm_link_hash_entry *) h;
2804
2805 for (p = eh->pcrel_relocs_copied; p != NULL; p = p->next)
2806 if (p->section == sreloc)
2807 break;
2808
2809 if (p == NULL)
2810 {
2811 p = ((struct elf32_arm_pcrel_relocs_copied *)
2812 bfd_alloc (dynobj, (bfd_size_type) sizeof * p));
2813 if (p == NULL)
2814 return false;
2815 p->next = eh->pcrel_relocs_copied;
2816 eh->pcrel_relocs_copied = p;
2817 p->section = sreloc;
2818 p->count = 0;
2819 }
2820
2821 ++p->count;
2822 }
2823 }
2824 break;
2825
2826 /* This relocation describes the C++ object vtable hierarchy.
2827 Reconstruct it for later use during GC. */
2828 case R_ARM_GNU_VTINHERIT:
2829 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2830 return false;
2831 break;
2832
2833 /* This relocation describes which C++ vtable entries are actually
2834 used. Record for later use during GC. */
2835 case R_ARM_GNU_VTENTRY:
2836 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
2837 return false;
2838 break;
2839 }
2840 }
2841
2842 return true;
2843 }
2844
2845 /* Find the nearest line to a particular section and offset, for error
2846 reporting. This code is a duplicate of the code in elf.c, except
2847 that it also accepts STT_ARM_TFUNC as a symbol that names a function. */
2848
2849 static boolean
2850 elf32_arm_find_nearest_line
2851 (abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr)
2852 bfd * abfd;
2853 asection * section;
2854 asymbol ** symbols;
2855 bfd_vma offset;
2856 const char ** filename_ptr;
2857 const char ** functionname_ptr;
2858 unsigned int * line_ptr;
2859 {
2860 boolean found;
2861 const char * filename;
2862 asymbol * func;
2863 bfd_vma low_func;
2864 asymbol ** p;
2865
2866 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
2867 filename_ptr, functionname_ptr,
2868 line_ptr, 0,
2869 &elf_tdata (abfd)->dwarf2_find_line_info))
2870 return true;
2871
2872 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
2873 &found, filename_ptr,
2874 functionname_ptr, line_ptr,
2875 &elf_tdata (abfd)->line_info))
2876 return false;
2877
2878 if (found)
2879 return true;
2880
2881 if (symbols == NULL)
2882 return false;
2883
2884 filename = NULL;
2885 func = NULL;
2886 low_func = 0;
2887
2888 for (p = symbols; *p != NULL; p++)
2889 {
2890 elf_symbol_type *q;
2891
2892 q = (elf_symbol_type *) *p;
2893
2894 if (bfd_get_section (&q->symbol) != section)
2895 continue;
2896
2897 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
2898 {
2899 default:
2900 break;
2901 case STT_FILE:
2902 filename = bfd_asymbol_name (&q->symbol);
2903 break;
2904 case STT_NOTYPE:
2905 case STT_FUNC:
2906 case STT_ARM_TFUNC:
2907 if (q->symbol.section == section
2908 && q->symbol.value >= low_func
2909 && q->symbol.value <= offset)
2910 {
2911 func = (asymbol *) q;
2912 low_func = q->symbol.value;
2913 }
2914 break;
2915 }
2916 }
2917
2918 if (func == NULL)
2919 return false;
2920
2921 *filename_ptr = filename;
2922 *functionname_ptr = bfd_asymbol_name (func);
2923 *line_ptr = 0;
2924
2925 return true;
2926 }
2927
2928 /* Adjust a symbol defined by a dynamic object and referenced by a
2929 regular object. The current definition is in some section of the
2930 dynamic object, but we're not including those sections. We have to
2931 change the definition to something the rest of the link can
2932 understand. */
2933
2934 static boolean
2935 elf32_arm_adjust_dynamic_symbol (info, h)
2936 struct bfd_link_info * info;
2937 struct elf_link_hash_entry * h;
2938 {
2939 bfd * dynobj;
2940 asection * s;
2941 unsigned int power_of_two;
2942
2943 dynobj = elf_hash_table (info)->dynobj;
2944
2945 /* Make sure we know what is going on here. */
2946 BFD_ASSERT (dynobj != NULL
2947 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
2948 || h->weakdef != NULL
2949 || ((h->elf_link_hash_flags
2950 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2951 && (h->elf_link_hash_flags
2952 & ELF_LINK_HASH_REF_REGULAR) != 0
2953 && (h->elf_link_hash_flags
2954 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
2955
2956 /* If this is a function, put it in the procedure linkage table. We
2957 will fill in the contents of the procedure linkage table later,
2958 when we know the address of the .got section. */
2959 if (h->type == STT_FUNC
2960 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
2961 {
2962 if (! info->shared
2963 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
2964 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0)
2965 {
2966 /* This case can occur if we saw a PLT32 reloc in an input
2967 file, but the symbol was never referred to by a dynamic
2968 object. In such a case, we don't actually need to build
2969 a procedure linkage table, and we can just do a PC32
2970 reloc instead. */
2971 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
2972 return true;
2973 }
2974
2975 /* Make sure this symbol is output as a dynamic symbol. */
2976 if (h->dynindx == -1)
2977 {
2978 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2979 return false;
2980 }
2981
2982 s = bfd_get_section_by_name (dynobj, ".plt");
2983 BFD_ASSERT (s != NULL);
2984
2985 /* If this is the first .plt entry, make room for the special
2986 first entry. */
2987 if (s->_raw_size == 0)
2988 s->_raw_size += PLT_ENTRY_SIZE;
2989
2990 /* If this symbol is not defined in a regular file, and we are
2991 not generating a shared library, then set the symbol to this
2992 location in the .plt. This is required to make function
2993 pointers compare as equal between the normal executable and
2994 the shared library. */
2995 if (! info->shared
2996 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2997 {
2998 h->root.u.def.section = s;
2999 h->root.u.def.value = s->_raw_size;
3000 }
3001
3002 h->plt.offset = s->_raw_size;
3003
3004 /* Make room for this entry. */
3005 s->_raw_size += PLT_ENTRY_SIZE;
3006
3007 /* We also need to make an entry in the .got.plt section, which
3008 will be placed in the .got section by the linker script. */
3009 s = bfd_get_section_by_name (dynobj, ".got.plt");
3010 BFD_ASSERT (s != NULL);
3011 s->_raw_size += 4;
3012
3013 /* We also need to make an entry in the .rel.plt section. */
3014
3015 s = bfd_get_section_by_name (dynobj, ".rel.plt");
3016 BFD_ASSERT (s != NULL);
3017 s->_raw_size += sizeof (Elf32_External_Rel);
3018
3019 return true;
3020 }
3021
3022 /* If this is a weak symbol, and there is a real definition, the
3023 processor independent code will have arranged for us to see the
3024 real definition first, and we can just use the same value. */
3025 if (h->weakdef != NULL)
3026 {
3027 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
3028 || h->weakdef->root.type == bfd_link_hash_defweak);
3029 h->root.u.def.section = h->weakdef->root.u.def.section;
3030 h->root.u.def.value = h->weakdef->root.u.def.value;
3031 return true;
3032 }
3033
3034 /* This is a reference to a symbol defined by a dynamic object which
3035 is not a function. */
3036
3037 /* If we are creating a shared library, we must presume that the
3038 only references to the symbol are via the global offset table.
3039 For such cases we need not do anything here; the relocations will
3040 be handled correctly by relocate_section. */
3041 if (info->shared)
3042 return true;
3043
3044 /* We must allocate the symbol in our .dynbss section, which will
3045 become part of the .bss section of the executable. There will be
3046 an entry for this symbol in the .dynsym section. The dynamic
3047 object will contain position independent code, so all references
3048 from the dynamic object to this symbol will go through the global
3049 offset table. The dynamic linker will use the .dynsym entry to
3050 determine the address it must put in the global offset table, so
3051 both the dynamic object and the regular object will refer to the
3052 same memory location for the variable. */
3053 s = bfd_get_section_by_name (dynobj, ".dynbss");
3054 BFD_ASSERT (s != NULL);
3055
3056 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
3057 copy the initial value out of the dynamic object and into the
3058 runtime process image. We need to remember the offset into the
3059 .rel.bss section we are going to use. */
3060 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
3061 {
3062 asection *srel;
3063
3064 srel = bfd_get_section_by_name (dynobj, ".rel.bss");
3065 BFD_ASSERT (srel != NULL);
3066 srel->_raw_size += sizeof (Elf32_External_Rel);
3067 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
3068 }
3069
3070 /* We need to figure out the alignment required for this symbol. I
3071 have no idea how ELF linkers handle this. */
3072 power_of_two = bfd_log2 (h->size);
3073 if (power_of_two > 3)
3074 power_of_two = 3;
3075
3076 /* Apply the required alignment. */
3077 s->_raw_size = BFD_ALIGN (s->_raw_size,
3078 (bfd_size_type) (1 << power_of_two));
3079 if (power_of_two > bfd_get_section_alignment (dynobj, s))
3080 {
3081 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
3082 return false;
3083 }
3084
3085 /* Define the symbol as being at this point in the section. */
3086 h->root.u.def.section = s;
3087 h->root.u.def.value = s->_raw_size;
3088
3089 /* Increment the section size to make room for the symbol. */
3090 s->_raw_size += h->size;
3091
3092 return true;
3093 }
3094
3095 /* Set the sizes of the dynamic sections. */
3096
3097 static boolean
3098 elf32_arm_size_dynamic_sections (output_bfd, info)
3099 bfd * output_bfd ATTRIBUTE_UNUSED;
3100 struct bfd_link_info * info;
3101 {
3102 bfd * dynobj;
3103 asection * s;
3104 boolean plt;
3105 boolean relocs;
3106
3107 dynobj = elf_hash_table (info)->dynobj;
3108 BFD_ASSERT (dynobj != NULL);
3109
3110 if (elf_hash_table (info)->dynamic_sections_created)
3111 {
3112 /* Set the contents of the .interp section to the interpreter. */
3113 if (! info->shared)
3114 {
3115 s = bfd_get_section_by_name (dynobj, ".interp");
3116 BFD_ASSERT (s != NULL);
3117 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
3118 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
3119 }
3120 }
3121 else
3122 {
3123 /* We may have created entries in the .rel.got section.
3124 However, if we are not creating the dynamic sections, we will
3125 not actually use these entries. Reset the size of .rel.got,
3126 which will cause it to get stripped from the output file
3127 below. */
3128 s = bfd_get_section_by_name (dynobj, ".rel.got");
3129 if (s != NULL)
3130 s->_raw_size = 0;
3131 }
3132
3133 /* If this is a -Bsymbolic shared link, then we need to discard all
3134 PC relative relocs against symbols defined in a regular object.
3135 We allocated space for them in the check_relocs routine, but we
3136 will not fill them in in the relocate_section routine. */
3137 if (info->shared && info->symbolic)
3138 elf32_arm_link_hash_traverse (elf32_arm_hash_table (info),
3139 elf32_arm_discard_copies,
3140 (PTR) NULL);
3141
3142 /* The check_relocs and adjust_dynamic_symbol entry points have
3143 determined the sizes of the various dynamic sections. Allocate
3144 memory for them. */
3145 plt = false;
3146 relocs = false;
3147 for (s = dynobj->sections; s != NULL; s = s->next)
3148 {
3149 const char * name;
3150 boolean strip;
3151
3152 if ((s->flags & SEC_LINKER_CREATED) == 0)
3153 continue;
3154
3155 /* It's OK to base decisions on the section name, because none
3156 of the dynobj section names depend upon the input files. */
3157 name = bfd_get_section_name (dynobj, s);
3158
3159 strip = false;
3160
3161 if (strcmp (name, ".plt") == 0)
3162 {
3163 if (s->_raw_size == 0)
3164 {
3165 /* Strip this section if we don't need it; see the
3166 comment below. */
3167 strip = true;
3168 }
3169 else
3170 {
3171 /* Remember whether there is a PLT. */
3172 plt = true;
3173 }
3174 }
3175 else if (strncmp (name, ".rel", 4) == 0)
3176 {
3177 if (s->_raw_size == 0)
3178 {
3179 /* If we don't need this section, strip it from the
3180 output file. This is mostly to handle .rel.bss and
3181 .rel.plt. We must create both sections in
3182 create_dynamic_sections, because they must be created
3183 before the linker maps input sections to output
3184 sections. The linker does that before
3185 adjust_dynamic_symbol is called, and it is that
3186 function which decides whether anything needs to go
3187 into these sections. */
3188 strip = true;
3189 }
3190 else
3191 {
3192 /* Remember whether there are any reloc sections other
3193 than .rel.plt. */
3194 if (strcmp (name, ".rel.plt") != 0)
3195 relocs = true;
3196
3197 /* We use the reloc_count field as a counter if we need
3198 to copy relocs into the output file. */
3199 s->reloc_count = 0;
3200 }
3201 }
3202 else if (strncmp (name, ".got", 4) != 0)
3203 {
3204 /* It's not one of our sections, so don't allocate space. */
3205 continue;
3206 }
3207
3208 if (strip)
3209 {
3210 asection ** spp;
3211
3212 for (spp = &s->output_section->owner->sections;
3213 *spp != NULL;
3214 spp = &(*spp)->next)
3215 {
3216 if (*spp == s->output_section)
3217 {
3218 bfd_section_list_remove (s->output_section->owner, spp);
3219 --s->output_section->owner->section_count;
3220 break;
3221 }
3222 }
3223 continue;
3224 }
3225
3226 /* Allocate memory for the section contents. */
3227 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
3228 if (s->contents == NULL && s->_raw_size != 0)
3229 return false;
3230 }
3231
3232 if (elf_hash_table (info)->dynamic_sections_created)
3233 {
3234 /* Add some entries to the .dynamic section. We fill in the
3235 values later, in elf32_arm_finish_dynamic_sections, but we
3236 must add the entries now so that we get the correct size for
3237 the .dynamic section. The DT_DEBUG entry is filled in by the
3238 dynamic linker and used by the debugger. */
3239 #define add_dynamic_entry(TAG, VAL) \
3240 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
3241
3242 if (!info->shared)
3243 {
3244 if (!add_dynamic_entry (DT_DEBUG, 0))
3245 return false;
3246 }
3247
3248 if (plt)
3249 {
3250 if ( !add_dynamic_entry (DT_PLTGOT, 0)
3251 || !add_dynamic_entry (DT_PLTRELSZ, 0)
3252 || !add_dynamic_entry (DT_PLTREL, DT_REL)
3253 || !add_dynamic_entry (DT_JMPREL, 0))
3254 return false;
3255 }
3256
3257 if (relocs)
3258 {
3259 if ( !add_dynamic_entry (DT_REL, 0)
3260 || !add_dynamic_entry (DT_RELSZ, 0)
3261 || !add_dynamic_entry (DT_RELENT, sizeof (Elf32_External_Rel)))
3262 return false;
3263 }
3264
3265 if ((info->flags & DF_TEXTREL) != 0)
3266 {
3267 if (!add_dynamic_entry (DT_TEXTREL, 0))
3268 return false;
3269 info->flags |= DF_TEXTREL;
3270 }
3271 }
3272 #undef add_synamic_entry
3273
3274 return true;
3275 }
3276
3277 /* This function is called via elf32_arm_link_hash_traverse if we are
3278 creating a shared object with -Bsymbolic. It discards the space
3279 allocated to copy PC relative relocs against symbols which are
3280 defined in regular objects. We allocated space for them in the
3281 check_relocs routine, but we won't fill them in in the
3282 relocate_section routine. */
3283
3284 static boolean
3285 elf32_arm_discard_copies (h, ignore)
3286 struct elf32_arm_link_hash_entry * h;
3287 PTR ignore ATTRIBUTE_UNUSED;
3288 {
3289 struct elf32_arm_pcrel_relocs_copied * s;
3290
3291 if (h->root.root.type == bfd_link_hash_warning)
3292 h = (struct elf32_arm_link_hash_entry *) h->root.root.u.i.link;
3293
3294 /* We only discard relocs for symbols defined in a regular object. */
3295 if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3296 return true;
3297
3298 for (s = h->pcrel_relocs_copied; s != NULL; s = s->next)
3299 s->section->_raw_size -= s->count * sizeof (Elf32_External_Rel);
3300
3301 return true;
3302 }
3303
3304 /* Finish up dynamic symbol handling. We set the contents of various
3305 dynamic sections here. */
3306
3307 static boolean
3308 elf32_arm_finish_dynamic_symbol (output_bfd, info, h, sym)
3309 bfd * output_bfd;
3310 struct bfd_link_info * info;
3311 struct elf_link_hash_entry * h;
3312 Elf_Internal_Sym * sym;
3313 {
3314 bfd * dynobj;
3315
3316 dynobj = elf_hash_table (info)->dynobj;
3317
3318 if (h->plt.offset != (bfd_vma) -1)
3319 {
3320 asection * splt;
3321 asection * sgot;
3322 asection * srel;
3323 bfd_vma plt_index;
3324 bfd_vma got_offset;
3325 Elf_Internal_Rel rel;
3326
3327 /* This symbol has an entry in the procedure linkage table. Set
3328 it up. */
3329
3330 BFD_ASSERT (h->dynindx != -1);
3331
3332 splt = bfd_get_section_by_name (dynobj, ".plt");
3333 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3334 srel = bfd_get_section_by_name (dynobj, ".rel.plt");
3335 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
3336
3337 /* Get the index in the procedure linkage table which
3338 corresponds to this symbol. This is the index of this symbol
3339 in all the symbols for which we are making plt entries. The
3340 first entry in the procedure linkage table is reserved. */
3341 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3342
3343 /* Get the offset into the .got table of the entry that
3344 corresponds to this function. Each .got entry is 4 bytes.
3345 The first three are reserved. */
3346 got_offset = (plt_index + 3) * 4;
3347
3348 /* Fill in the entry in the procedure linkage table. */
3349 bfd_put_32 (output_bfd, elf32_arm_plt_entry[0],
3350 splt->contents + h->plt.offset + 0);
3351 bfd_put_32 (output_bfd, elf32_arm_plt_entry[1],
3352 splt->contents + h->plt.offset + 4);
3353 bfd_put_32 (output_bfd, elf32_arm_plt_entry[2],
3354 splt->contents + h->plt.offset + 8);
3355 bfd_put_32 (output_bfd,
3356 (sgot->output_section->vma
3357 + sgot->output_offset
3358 + got_offset
3359 - splt->output_section->vma
3360 - splt->output_offset
3361 - h->plt.offset - 12),
3362 splt->contents + h->plt.offset + 12);
3363
3364 /* Fill in the entry in the global offset table. */
3365 bfd_put_32 (output_bfd,
3366 (splt->output_section->vma
3367 + splt->output_offset),
3368 sgot->contents + got_offset);
3369
3370 /* Fill in the entry in the .rel.plt section. */
3371 rel.r_offset = (sgot->output_section->vma
3372 + sgot->output_offset
3373 + got_offset);
3374 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
3375 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3376 ((Elf32_External_Rel *) srel->contents
3377 + plt_index));
3378
3379 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3380 {
3381 /* Mark the symbol as undefined, rather than as defined in
3382 the .plt section. Leave the value alone. */
3383 sym->st_shndx = SHN_UNDEF;
3384 /* If the symbol is weak, we do need to clear the value.
3385 Otherwise, the PLT entry would provide a definition for
3386 the symbol even if the symbol wasn't defined anywhere,
3387 and so the symbol would never be NULL. */
3388 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
3389 == 0)
3390 sym->st_value = 0;
3391 }
3392 }
3393
3394 if (h->got.offset != (bfd_vma) -1)
3395 {
3396 asection * sgot;
3397 asection * srel;
3398 Elf_Internal_Rel rel;
3399
3400 /* This symbol has an entry in the global offset table. Set it
3401 up. */
3402 sgot = bfd_get_section_by_name (dynobj, ".got");
3403 srel = bfd_get_section_by_name (dynobj, ".rel.got");
3404 BFD_ASSERT (sgot != NULL && srel != NULL);
3405
3406 rel.r_offset = (sgot->output_section->vma
3407 + sgot->output_offset
3408 + (h->got.offset &~ (bfd_vma) 1));
3409
3410 /* If this is a -Bsymbolic link, and the symbol is defined
3411 locally, we just want to emit a RELATIVE reloc. The entry in
3412 the global offset table will already have been initialized in
3413 the relocate_section function. */
3414 if (info->shared
3415 && (info->symbolic || h->dynindx == -1)
3416 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
3417 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
3418 else
3419 {
3420 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
3421 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
3422 }
3423
3424 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3425 ((Elf32_External_Rel *) srel->contents
3426 + srel->reloc_count));
3427 ++srel->reloc_count;
3428 }
3429
3430 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
3431 {
3432 asection * s;
3433 Elf_Internal_Rel rel;
3434
3435 /* This symbol needs a copy reloc. Set it up. */
3436 BFD_ASSERT (h->dynindx != -1
3437 && (h->root.type == bfd_link_hash_defined
3438 || h->root.type == bfd_link_hash_defweak));
3439
3440 s = bfd_get_section_by_name (h->root.u.def.section->owner,
3441 ".rel.bss");
3442 BFD_ASSERT (s != NULL);
3443
3444 rel.r_offset = (h->root.u.def.value
3445 + h->root.u.def.section->output_section->vma
3446 + h->root.u.def.section->output_offset);
3447 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
3448 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3449 ((Elf32_External_Rel *) s->contents
3450 + s->reloc_count));
3451 ++s->reloc_count;
3452 }
3453
3454 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3455 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
3456 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3457 sym->st_shndx = SHN_ABS;
3458
3459 return true;
3460 }
3461
3462 /* Finish up the dynamic sections. */
3463
3464 static boolean
3465 elf32_arm_finish_dynamic_sections (output_bfd, info)
3466 bfd * output_bfd;
3467 struct bfd_link_info * info;
3468 {
3469 bfd * dynobj;
3470 asection * sgot;
3471 asection * sdyn;
3472
3473 dynobj = elf_hash_table (info)->dynobj;
3474
3475 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3476 BFD_ASSERT (sgot != NULL);
3477 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3478
3479 if (elf_hash_table (info)->dynamic_sections_created)
3480 {
3481 asection *splt;
3482 Elf32_External_Dyn *dyncon, *dynconend;
3483
3484 splt = bfd_get_section_by_name (dynobj, ".plt");
3485 BFD_ASSERT (splt != NULL && sdyn != NULL);
3486
3487 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3488 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
3489
3490 for (; dyncon < dynconend; dyncon++)
3491 {
3492 Elf_Internal_Dyn dyn;
3493 const char * name;
3494 asection * s;
3495
3496 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3497
3498 switch (dyn.d_tag)
3499 {
3500 default:
3501 break;
3502
3503 case DT_PLTGOT:
3504 name = ".got";
3505 goto get_vma;
3506 case DT_JMPREL:
3507 name = ".rel.plt";
3508 get_vma:
3509 s = bfd_get_section_by_name (output_bfd, name);
3510 BFD_ASSERT (s != NULL);
3511 dyn.d_un.d_ptr = s->vma;
3512 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3513 break;
3514
3515 case DT_PLTRELSZ:
3516 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3517 BFD_ASSERT (s != NULL);
3518 if (s->_cooked_size != 0)
3519 dyn.d_un.d_val = s->_cooked_size;
3520 else
3521 dyn.d_un.d_val = s->_raw_size;
3522 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3523 break;
3524
3525 case DT_RELSZ:
3526 /* My reading of the SVR4 ABI indicates that the
3527 procedure linkage table relocs (DT_JMPREL) should be
3528 included in the overall relocs (DT_REL). This is
3529 what Solaris does. However, UnixWare can not handle
3530 that case. Therefore, we override the DT_RELSZ entry
3531 here to make it not include the JMPREL relocs. Since
3532 the linker script arranges for .rel.plt to follow all
3533 other relocation sections, we don't have to worry
3534 about changing the DT_REL entry. */
3535 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3536 if (s != NULL)
3537 {
3538 if (s->_cooked_size != 0)
3539 dyn.d_un.d_val -= s->_cooked_size;
3540 else
3541 dyn.d_un.d_val -= s->_raw_size;
3542 }
3543 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3544 break;
3545 }
3546 }
3547
3548 /* Fill in the first entry in the procedure linkage table. */
3549 if (splt->_raw_size > 0)
3550 {
3551 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[0], splt->contents + 0);
3552 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[1], splt->contents + 4);
3553 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[2], splt->contents + 8);
3554 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[3], splt->contents + 12);
3555 }
3556
3557 /* UnixWare sets the entsize of .plt to 4, although that doesn't
3558 really seem like the right value. */
3559 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
3560 }
3561
3562 /* Fill in the first three entries in the global offset table. */
3563 if (sgot->_raw_size > 0)
3564 {
3565 if (sdyn == NULL)
3566 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
3567 else
3568 bfd_put_32 (output_bfd,
3569 sdyn->output_section->vma + sdyn->output_offset,
3570 sgot->contents);
3571 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
3572 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
3573 }
3574
3575 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
3576
3577 return true;
3578 }
3579
3580 static void
3581 elf32_arm_post_process_headers (abfd, link_info)
3582 bfd * abfd;
3583 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
3584 {
3585 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
3586
3587 i_ehdrp = elf_elfheader (abfd);
3588
3589 i_ehdrp->e_ident[EI_OSABI] = ARM_ELF_OS_ABI_VERSION;
3590 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
3591 }
3592
3593 static enum elf_reloc_type_class
3594 elf32_arm_reloc_type_class (rela)
3595 const Elf_Internal_Rela *rela;
3596 {
3597 switch ((int) ELF32_R_TYPE (rela->r_info))
3598 {
3599 case R_ARM_RELATIVE:
3600 return reloc_class_relative;
3601 case R_ARM_JUMP_SLOT:
3602 return reloc_class_plt;
3603 case R_ARM_COPY:
3604 return reloc_class_copy;
3605 default:
3606 return reloc_class_normal;
3607 }
3608 }
3609
3610
3611 #define ELF_ARCH bfd_arch_arm
3612 #define ELF_MACHINE_CODE EM_ARM
3613 #define ELF_MAXPAGESIZE 0x8000
3614
3615 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
3616 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
3617 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
3618 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
3619 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
3620 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
3621 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
3622
3623 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
3624 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
3625 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
3626 #define elf_backend_check_relocs elf32_arm_check_relocs
3627 #define elf_backend_relocate_section elf32_arm_relocate_section
3628 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
3629 #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
3630 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
3631 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
3632 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
3633 #define elf_backend_post_process_headers elf32_arm_post_process_headers
3634 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
3635
3636 #define elf_backend_can_gc_sections 1
3637 #define elf_backend_plt_readonly 1
3638 #define elf_backend_want_got_plt 1
3639 #define elf_backend_want_plt_sym 0
3640
3641 #define elf_backend_got_header_size 12
3642 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
3643
3644 #include "elf32-target.h"
This page took 0.104607 seconds and 4 git commands to generate.