* elfxx-target.h (USE_REL): Don't define as 1.
[deliverable/binutils-gdb.git] / bfd / elf32-arm.h
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 #ifndef USE_REL
21 #define USE_REL 0
22 #endif
23
24 typedef unsigned long int insn32;
25 typedef unsigned short int insn16;
26
27 static boolean elf32_arm_set_private_flags
28 PARAMS ((bfd *, flagword));
29 static boolean elf32_arm_copy_private_bfd_data
30 PARAMS ((bfd *, bfd *));
31 static boolean elf32_arm_merge_private_bfd_data
32 PARAMS ((bfd *, bfd *));
33 static boolean elf32_arm_print_private_bfd_data
34 PARAMS ((bfd *, PTR));
35 static int elf32_arm_get_symbol_type
36 PARAMS (( Elf_Internal_Sym *, int));
37 static struct bfd_link_hash_table *elf32_arm_link_hash_table_create
38 PARAMS ((bfd *));
39 static bfd_reloc_status_type elf32_arm_final_link_relocate
40 PARAMS ((reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
41 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
42 const char *, int, struct elf_link_hash_entry *));
43 static insn32 insert_thumb_branch
44 PARAMS ((insn32, int));
45 static struct elf_link_hash_entry *find_thumb_glue
46 PARAMS ((struct bfd_link_info *, const char *, bfd *));
47 static struct elf_link_hash_entry *find_arm_glue
48 PARAMS ((struct bfd_link_info *, const char *, bfd *));
49 static void elf32_arm_post_process_headers
50 PARAMS ((bfd *, struct bfd_link_info *));
51 static int elf32_arm_to_thumb_stub
52 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
53 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
54 static int elf32_thumb_to_arm_stub
55 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
56 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
57 static boolean elf32_arm_relocate_section
58 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
59 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
60 static asection * elf32_arm_gc_mark_hook
61 PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
62 struct elf_link_hash_entry *, Elf_Internal_Sym *));
63 static boolean elf32_arm_gc_sweep_hook
64 PARAMS ((bfd *, struct bfd_link_info *, asection *,
65 const Elf_Internal_Rela *));
66 static boolean elf32_arm_check_relocs
67 PARAMS ((bfd *, struct bfd_link_info *, asection *,
68 const Elf_Internal_Rela *));
69 static boolean elf32_arm_find_nearest_line
70 PARAMS ((bfd *, asection *, asymbol **, bfd_vma, const char **,
71 const char **, unsigned int *));
72 static boolean elf32_arm_adjust_dynamic_symbol
73 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
74 static boolean elf32_arm_size_dynamic_sections
75 PARAMS ((bfd *, struct bfd_link_info *));
76 static boolean elf32_arm_finish_dynamic_symbol
77 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
78 Elf_Internal_Sym *));
79 static boolean elf32_arm_finish_dynamic_sections
80 PARAMS ((bfd *, struct bfd_link_info *));
81 static struct bfd_hash_entry * elf32_arm_link_hash_newfunc
82 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
83 #if USE_REL
84 static void arm_add_to_rel
85 PARAMS ((bfd *, bfd_byte *, reloc_howto_type *, bfd_signed_vma));
86 #endif
87 static enum elf_reloc_type_class elf32_arm_reloc_type_class
88 PARAMS ((const Elf_Internal_Rela *));
89
90 #ifndef ELFARM_NABI_C_INCLUDED
91 static void record_arm_to_thumb_glue
92 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
93 static void record_thumb_to_arm_glue
94 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
95 boolean bfd_elf32_arm_allocate_interworking_sections
96 PARAMS ((struct bfd_link_info *));
97 boolean bfd_elf32_arm_get_bfd_for_interworking
98 PARAMS ((bfd *, struct bfd_link_info *));
99 boolean bfd_elf32_arm_process_before_allocation
100 PARAMS ((bfd *, struct bfd_link_info *, int));
101 #endif
102
103
104 #define INTERWORK_FLAG(abfd) (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK)
105
106 /* The linker script knows the section names for placement.
107 The entry_names are used to do simple name mangling on the stubs.
108 Given a function name, and its type, the stub can be found. The
109 name can be changed. The only requirement is the %s be present. */
110 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
111 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
112
113 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
114 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
115
116 /* The name of the dynamic interpreter. This is put in the .interp
117 section. */
118 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
119
120 /* The size in bytes of an entry in the procedure linkage table. */
121 #define PLT_ENTRY_SIZE 16
122
123 /* The first entry in a procedure linkage table looks like
124 this. It is set up so that any shared library function that is
125 called before the relocation has been set up calls the dynamic
126 linker first. */
127 static const bfd_vma elf32_arm_plt0_entry [PLT_ENTRY_SIZE / 4] =
128 {
129 0xe52de004, /* str lr, [sp, #-4]! */
130 0xe59fe010, /* ldr lr, [pc, #16] */
131 0xe08fe00e, /* add lr, pc, lr */
132 0xe5bef008 /* ldr pc, [lr, #8]! */
133 };
134
135 /* Subsequent entries in a procedure linkage table look like
136 this. */
137 static const bfd_vma elf32_arm_plt_entry [PLT_ENTRY_SIZE / 4] =
138 {
139 0xe59fc004, /* ldr ip, [pc, #4] */
140 0xe08fc00c, /* add ip, pc, ip */
141 0xe59cf000, /* ldr pc, [ip] */
142 0x00000000 /* offset to symbol in got */
143 };
144
145 /* The ARM linker needs to keep track of the number of relocs that it
146 decides to copy in check_relocs for each symbol. This is so that
147 it can discard PC relative relocs if it doesn't need them when
148 linking with -Bsymbolic. We store the information in a field
149 extending the regular ELF linker hash table. */
150
151 /* This structure keeps track of the number of PC relative relocs we
152 have copied for a given symbol. */
153 struct elf32_arm_pcrel_relocs_copied
154 {
155 /* Next section. */
156 struct elf32_arm_pcrel_relocs_copied * next;
157 /* A section in dynobj. */
158 asection * section;
159 /* Number of relocs copied in this section. */
160 bfd_size_type count;
161 };
162
163 /* Arm ELF linker hash entry. */
164 struct elf32_arm_link_hash_entry
165 {
166 struct elf_link_hash_entry root;
167
168 /* Number of PC relative relocs copied for this symbol. */
169 struct elf32_arm_pcrel_relocs_copied * pcrel_relocs_copied;
170 };
171
172 /* Declare this now that the above structures are defined. */
173 static boolean elf32_arm_discard_copies
174 PARAMS ((struct elf32_arm_link_hash_entry *, PTR));
175
176 /* Traverse an arm ELF linker hash table. */
177 #define elf32_arm_link_hash_traverse(table, func, info) \
178 (elf_link_hash_traverse \
179 (&(table)->root, \
180 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
181 (info)))
182
183 /* Get the ARM elf linker hash table from a link_info structure. */
184 #define elf32_arm_hash_table(info) \
185 ((struct elf32_arm_link_hash_table *) ((info)->hash))
186
187 /* ARM ELF linker hash table. */
188 struct elf32_arm_link_hash_table
189 {
190 /* The main hash table. */
191 struct elf_link_hash_table root;
192
193 /* The size in bytes of the section containg the Thumb-to-ARM glue. */
194 bfd_size_type thumb_glue_size;
195
196 /* The size in bytes of the section containg the ARM-to-Thumb glue. */
197 bfd_size_type arm_glue_size;
198
199 /* An arbitary input BFD chosen to hold the glue sections. */
200 bfd * bfd_of_glue_owner;
201
202 /* A boolean indicating whether knowledge of the ARM's pipeline
203 length should be applied by the linker. */
204 int no_pipeline_knowledge;
205 };
206
207 /* Create an entry in an ARM ELF linker hash table. */
208
209 static struct bfd_hash_entry *
210 elf32_arm_link_hash_newfunc (entry, table, string)
211 struct bfd_hash_entry * entry;
212 struct bfd_hash_table * table;
213 const char * string;
214 {
215 struct elf32_arm_link_hash_entry * ret =
216 (struct elf32_arm_link_hash_entry *) entry;
217
218 /* Allocate the structure if it has not already been allocated by a
219 subclass. */
220 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
221 ret = ((struct elf32_arm_link_hash_entry *)
222 bfd_hash_allocate (table,
223 sizeof (struct elf32_arm_link_hash_entry)));
224 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
225 return (struct bfd_hash_entry *) ret;
226
227 /* Call the allocation method of the superclass. */
228 ret = ((struct elf32_arm_link_hash_entry *)
229 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
230 table, string));
231 if (ret != (struct elf32_arm_link_hash_entry *) NULL)
232 ret->pcrel_relocs_copied = NULL;
233
234 return (struct bfd_hash_entry *) ret;
235 }
236
237 /* Create an ARM elf linker hash table. */
238
239 static struct bfd_link_hash_table *
240 elf32_arm_link_hash_table_create (abfd)
241 bfd *abfd;
242 {
243 struct elf32_arm_link_hash_table *ret;
244 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
245
246 ret = (struct elf32_arm_link_hash_table *) bfd_malloc (amt);
247 if (ret == (struct elf32_arm_link_hash_table *) NULL)
248 return NULL;
249
250 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
251 elf32_arm_link_hash_newfunc))
252 {
253 free (ret);
254 return NULL;
255 }
256
257 ret->thumb_glue_size = 0;
258 ret->arm_glue_size = 0;
259 ret->bfd_of_glue_owner = NULL;
260 ret->no_pipeline_knowledge = 0;
261
262 return &ret->root.root;
263 }
264
265 /* Locate the Thumb encoded calling stub for NAME. */
266
267 static struct elf_link_hash_entry *
268 find_thumb_glue (link_info, name, input_bfd)
269 struct bfd_link_info *link_info;
270 const char *name;
271 bfd *input_bfd;
272 {
273 char *tmp_name;
274 struct elf_link_hash_entry *hash;
275 struct elf32_arm_link_hash_table *hash_table;
276
277 /* We need a pointer to the armelf specific hash table. */
278 hash_table = elf32_arm_hash_table (link_info);
279
280 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
281 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
282
283 BFD_ASSERT (tmp_name);
284
285 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
286
287 hash = elf_link_hash_lookup
288 (&(hash_table)->root, tmp_name, false, false, true);
289
290 if (hash == NULL)
291 /* xgettext:c-format */
292 (*_bfd_error_handler) (_("%s: unable to find THUMB glue '%s' for `%s'"),
293 bfd_archive_filename (input_bfd), tmp_name, name);
294
295 free (tmp_name);
296
297 return hash;
298 }
299
300 /* Locate the ARM encoded calling stub for NAME. */
301
302 static struct elf_link_hash_entry *
303 find_arm_glue (link_info, name, input_bfd)
304 struct bfd_link_info *link_info;
305 const char *name;
306 bfd *input_bfd;
307 {
308 char *tmp_name;
309 struct elf_link_hash_entry *myh;
310 struct elf32_arm_link_hash_table *hash_table;
311
312 /* We need a pointer to the elfarm specific hash table. */
313 hash_table = elf32_arm_hash_table (link_info);
314
315 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
316 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
317
318 BFD_ASSERT (tmp_name);
319
320 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
321
322 myh = elf_link_hash_lookup
323 (&(hash_table)->root, tmp_name, false, false, true);
324
325 if (myh == NULL)
326 /* xgettext:c-format */
327 (*_bfd_error_handler) (_("%s: unable to find ARM glue '%s' for `%s'"),
328 bfd_archive_filename (input_bfd), tmp_name, name);
329
330 free (tmp_name);
331
332 return myh;
333 }
334
335 /* ARM->Thumb glue:
336
337 .arm
338 __func_from_arm:
339 ldr r12, __func_addr
340 bx r12
341 __func_addr:
342 .word func @ behave as if you saw a ARM_32 reloc. */
343
344 #define ARM2THUMB_GLUE_SIZE 12
345 static const insn32 a2t1_ldr_insn = 0xe59fc000;
346 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
347 static const insn32 a2t3_func_addr_insn = 0x00000001;
348
349 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
350
351 .thumb .thumb
352 .align 2 .align 2
353 __func_from_thumb: __func_from_thumb:
354 bx pc push {r6, lr}
355 nop ldr r6, __func_addr
356 .arm mov lr, pc
357 __func_change_to_arm: bx r6
358 b func .arm
359 __func_back_to_thumb:
360 ldmia r13! {r6, lr}
361 bx lr
362 __func_addr:
363 .word func */
364
365 #define THUMB2ARM_GLUE_SIZE 8
366 static const insn16 t2a1_bx_pc_insn = 0x4778;
367 static const insn16 t2a2_noop_insn = 0x46c0;
368 static const insn32 t2a3_b_insn = 0xea000000;
369
370 static const insn16 t2a1_push_insn = 0xb540;
371 static const insn16 t2a2_ldr_insn = 0x4e03;
372 static const insn16 t2a3_mov_insn = 0x46fe;
373 static const insn16 t2a4_bx_insn = 0x4730;
374 static const insn32 t2a5_pop_insn = 0xe8bd4040;
375 static const insn32 t2a6_bx_insn = 0xe12fff1e;
376
377 #ifndef ELFARM_NABI_C_INCLUDED
378 boolean
379 bfd_elf32_arm_allocate_interworking_sections (info)
380 struct bfd_link_info * info;
381 {
382 asection * s;
383 bfd_byte * foo;
384 struct elf32_arm_link_hash_table * globals;
385
386 globals = elf32_arm_hash_table (info);
387
388 BFD_ASSERT (globals != NULL);
389
390 if (globals->arm_glue_size != 0)
391 {
392 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
393
394 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
395 ARM2THUMB_GLUE_SECTION_NAME);
396
397 BFD_ASSERT (s != NULL);
398
399 foo = (bfd_byte *) bfd_alloc (globals->bfd_of_glue_owner,
400 globals->arm_glue_size);
401
402 s->_raw_size = s->_cooked_size = globals->arm_glue_size;
403 s->contents = foo;
404 }
405
406 if (globals->thumb_glue_size != 0)
407 {
408 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
409
410 s = bfd_get_section_by_name
411 (globals->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
412
413 BFD_ASSERT (s != NULL);
414
415 foo = (bfd_byte *) bfd_alloc (globals->bfd_of_glue_owner,
416 globals->thumb_glue_size);
417
418 s->_raw_size = s->_cooked_size = globals->thumb_glue_size;
419 s->contents = foo;
420 }
421
422 return true;
423 }
424
425 static void
426 record_arm_to_thumb_glue (link_info, h)
427 struct bfd_link_info * link_info;
428 struct elf_link_hash_entry * h;
429 {
430 const char * name = h->root.root.string;
431 asection * s;
432 char * tmp_name;
433 struct elf_link_hash_entry * myh;
434 struct bfd_link_hash_entry * bh;
435 struct elf32_arm_link_hash_table * globals;
436 bfd_vma val;
437
438 globals = elf32_arm_hash_table (link_info);
439
440 BFD_ASSERT (globals != NULL);
441 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
442
443 s = bfd_get_section_by_name
444 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
445
446 BFD_ASSERT (s != NULL);
447
448 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
449 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
450
451 BFD_ASSERT (tmp_name);
452
453 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
454
455 myh = elf_link_hash_lookup
456 (&(globals)->root, tmp_name, false, false, true);
457
458 if (myh != NULL)
459 {
460 /* We've already seen this guy. */
461 free (tmp_name);
462 return;
463 }
464
465 /* The only trick here is using hash_table->arm_glue_size as the value. Even
466 though the section isn't allocated yet, this is where we will be putting
467 it. */
468 bh = NULL;
469 val = globals->arm_glue_size + 1;
470 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
471 tmp_name, BSF_GLOBAL, s, val,
472 NULL, true, false, &bh);
473
474 free (tmp_name);
475
476 globals->arm_glue_size += ARM2THUMB_GLUE_SIZE;
477
478 return;
479 }
480
481 static void
482 record_thumb_to_arm_glue (link_info, h)
483 struct bfd_link_info *link_info;
484 struct elf_link_hash_entry *h;
485 {
486 const char *name = h->root.root.string;
487 asection *s;
488 char *tmp_name;
489 struct elf_link_hash_entry *myh;
490 struct bfd_link_hash_entry *bh;
491 struct elf32_arm_link_hash_table *hash_table;
492 char bind;
493 bfd_vma val;
494
495 hash_table = elf32_arm_hash_table (link_info);
496
497 BFD_ASSERT (hash_table != NULL);
498 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
499
500 s = bfd_get_section_by_name
501 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
502
503 BFD_ASSERT (s != NULL);
504
505 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
506 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
507
508 BFD_ASSERT (tmp_name);
509
510 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
511
512 myh = elf_link_hash_lookup
513 (&(hash_table)->root, tmp_name, false, false, true);
514
515 if (myh != NULL)
516 {
517 /* We've already seen this guy. */
518 free (tmp_name);
519 return;
520 }
521
522 bh = NULL;
523 val = hash_table->thumb_glue_size + 1;
524 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
525 tmp_name, BSF_GLOBAL, s, val,
526 NULL, true, false, &bh);
527
528 /* If we mark it 'Thumb', the disassembler will do a better job. */
529 myh = (struct elf_link_hash_entry *) bh;
530 bind = ELF_ST_BIND (myh->type);
531 myh->type = ELF_ST_INFO (bind, STT_ARM_TFUNC);
532
533 free (tmp_name);
534
535 #define CHANGE_TO_ARM "__%s_change_to_arm"
536 #define BACK_FROM_ARM "__%s_back_from_arm"
537
538 /* Allocate another symbol to mark where we switch to Arm mode. */
539 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
540 + strlen (CHANGE_TO_ARM) + 1);
541
542 BFD_ASSERT (tmp_name);
543
544 sprintf (tmp_name, CHANGE_TO_ARM, name);
545
546 bh = NULL;
547 val = hash_table->thumb_glue_size + 4,
548 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
549 tmp_name, BSF_LOCAL, s, val,
550 NULL, true, false, &bh);
551
552 free (tmp_name);
553
554 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
555
556 return;
557 }
558
559 /* Add the glue sections to ABFD. This function is called from the
560 linker scripts in ld/emultempl/{armelf}.em. */
561
562 boolean
563 bfd_elf32_arm_add_glue_sections_to_bfd (abfd, info)
564 bfd *abfd;
565 struct bfd_link_info *info;
566 {
567 flagword flags;
568 asection *sec;
569
570 /* If we are only performing a partial
571 link do not bother adding the glue. */
572 if (info->relocateable)
573 return true;
574
575 sec = bfd_get_section_by_name (abfd, ARM2THUMB_GLUE_SECTION_NAME);
576
577 if (sec == NULL)
578 {
579 /* Note: we do not include the flag SEC_LINKER_CREATED, as this
580 will prevent elf_link_input_bfd() from processing the contents
581 of this section. */
582 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
583
584 sec = bfd_make_section (abfd, ARM2THUMB_GLUE_SECTION_NAME);
585
586 if (sec == NULL
587 || !bfd_set_section_flags (abfd, sec, flags)
588 || !bfd_set_section_alignment (abfd, sec, 2))
589 return false;
590
591 /* Set the gc mark to prevent the section from being removed by garbage
592 collection, despite the fact that no relocs refer to this section. */
593 sec->gc_mark = 1;
594 }
595
596 sec = bfd_get_section_by_name (abfd, THUMB2ARM_GLUE_SECTION_NAME);
597
598 if (sec == NULL)
599 {
600 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
601
602 sec = bfd_make_section (abfd, THUMB2ARM_GLUE_SECTION_NAME);
603
604 if (sec == NULL
605 || !bfd_set_section_flags (abfd, sec, flags)
606 || !bfd_set_section_alignment (abfd, sec, 2))
607 return false;
608
609 sec->gc_mark = 1;
610 }
611
612 return true;
613 }
614
615 /* Select a BFD to be used to hold the sections used by the glue code.
616 This function is called from the linker scripts in ld/emultempl/
617 {armelf/pe}.em */
618
619 boolean
620 bfd_elf32_arm_get_bfd_for_interworking (abfd, info)
621 bfd *abfd;
622 struct bfd_link_info *info;
623 {
624 struct elf32_arm_link_hash_table *globals;
625
626 /* If we are only performing a partial link
627 do not bother getting a bfd to hold the glue. */
628 if (info->relocateable)
629 return true;
630
631 globals = elf32_arm_hash_table (info);
632
633 BFD_ASSERT (globals != NULL);
634
635 if (globals->bfd_of_glue_owner != NULL)
636 return true;
637
638 /* Save the bfd for later use. */
639 globals->bfd_of_glue_owner = abfd;
640
641 return true;
642 }
643
644 boolean
645 bfd_elf32_arm_process_before_allocation (abfd, link_info, no_pipeline_knowledge)
646 bfd *abfd;
647 struct bfd_link_info *link_info;
648 int no_pipeline_knowledge;
649 {
650 Elf_Internal_Shdr *symtab_hdr;
651 Elf_Internal_Rela *internal_relocs = NULL;
652 Elf_Internal_Rela *irel, *irelend;
653 bfd_byte *contents = NULL;
654
655 asection *sec;
656 struct elf32_arm_link_hash_table *globals;
657
658 /* If we are only performing a partial link do not bother
659 to construct any glue. */
660 if (link_info->relocateable)
661 return true;
662
663 /* Here we have a bfd that is to be included on the link. We have a hook
664 to do reloc rummaging, before section sizes are nailed down. */
665 globals = elf32_arm_hash_table (link_info);
666
667 BFD_ASSERT (globals != NULL);
668 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
669
670 globals->no_pipeline_knowledge = no_pipeline_knowledge;
671
672 /* Rummage around all the relocs and map the glue vectors. */
673 sec = abfd->sections;
674
675 if (sec == NULL)
676 return true;
677
678 for (; sec != NULL; sec = sec->next)
679 {
680 if (sec->reloc_count == 0)
681 continue;
682
683 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
684
685 /* Load the relocs. */
686 internal_relocs
687 = _bfd_elf32_link_read_relocs (abfd, sec, (PTR) NULL,
688 (Elf_Internal_Rela *) NULL, false);
689
690 if (internal_relocs == NULL)
691 goto error_return;
692
693 irelend = internal_relocs + sec->reloc_count;
694 for (irel = internal_relocs; irel < irelend; irel++)
695 {
696 long r_type;
697 unsigned long r_index;
698
699 struct elf_link_hash_entry *h;
700
701 r_type = ELF32_R_TYPE (irel->r_info);
702 r_index = ELF32_R_SYM (irel->r_info);
703
704 /* These are the only relocation types we care about. */
705 if ( r_type != R_ARM_PC24
706 && r_type != R_ARM_THM_PC22)
707 continue;
708
709 /* Get the section contents if we haven't done so already. */
710 if (contents == NULL)
711 {
712 /* Get cached copy if it exists. */
713 if (elf_section_data (sec)->this_hdr.contents != NULL)
714 contents = elf_section_data (sec)->this_hdr.contents;
715 else
716 {
717 /* Go get them off disk. */
718 contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
719 if (contents == NULL)
720 goto error_return;
721
722 if (!bfd_get_section_contents (abfd, sec, contents,
723 (file_ptr) 0, sec->_raw_size))
724 goto error_return;
725 }
726 }
727
728 /* If the relocation is not against a symbol it cannot concern us. */
729 h = NULL;
730
731 /* We don't care about local symbols. */
732 if (r_index < symtab_hdr->sh_info)
733 continue;
734
735 /* This is an external symbol. */
736 r_index -= symtab_hdr->sh_info;
737 h = (struct elf_link_hash_entry *)
738 elf_sym_hashes (abfd)[r_index];
739
740 /* If the relocation is against a static symbol it must be within
741 the current section and so cannot be a cross ARM/Thumb relocation. */
742 if (h == NULL)
743 continue;
744
745 switch (r_type)
746 {
747 case R_ARM_PC24:
748 /* This one is a call from arm code. We need to look up
749 the target of the call. If it is a thumb target, we
750 insert glue. */
751 if (ELF_ST_TYPE(h->type) == STT_ARM_TFUNC)
752 record_arm_to_thumb_glue (link_info, h);
753 break;
754
755 case R_ARM_THM_PC22:
756 /* This one is a call from thumb code. We look
757 up the target of the call. If it is not a thumb
758 target, we insert glue. */
759 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC)
760 record_thumb_to_arm_glue (link_info, h);
761 break;
762
763 default:
764 break;
765 }
766 }
767
768 if (contents != NULL
769 && elf_section_data (sec)->this_hdr.contents != contents)
770 free (contents);
771 contents = NULL;
772
773 if (internal_relocs != NULL
774 && elf_section_data (sec)->relocs != internal_relocs)
775 free (internal_relocs);
776 internal_relocs = NULL;
777 }
778
779 return true;
780
781 error_return:
782 if (contents != NULL
783 && elf_section_data (sec)->this_hdr.contents != contents)
784 free (contents);
785 if (internal_relocs != NULL
786 && elf_section_data (sec)->relocs != internal_relocs)
787 free (internal_relocs);
788
789 return false;
790 }
791 #endif
792
793 /* The thumb form of a long branch is a bit finicky, because the offset
794 encoding is split over two fields, each in it's own instruction. They
795 can occur in any order. So given a thumb form of long branch, and an
796 offset, insert the offset into the thumb branch and return finished
797 instruction.
798
799 It takes two thumb instructions to encode the target address. Each has
800 11 bits to invest. The upper 11 bits are stored in one (identifed by
801 H-0.. see below), the lower 11 bits are stored in the other (identified
802 by H-1).
803
804 Combine together and shifted left by 1 (it's a half word address) and
805 there you have it.
806
807 Op: 1111 = F,
808 H-0, upper address-0 = 000
809 Op: 1111 = F,
810 H-1, lower address-0 = 800
811
812 They can be ordered either way, but the arm tools I've seen always put
813 the lower one first. It probably doesn't matter. krk@cygnus.com
814
815 XXX: Actually the order does matter. The second instruction (H-1)
816 moves the computed address into the PC, so it must be the second one
817 in the sequence. The problem, however is that whilst little endian code
818 stores the instructions in HI then LOW order, big endian code does the
819 reverse. nickc@cygnus.com. */
820
821 #define LOW_HI_ORDER 0xF800F000
822 #define HI_LOW_ORDER 0xF000F800
823
824 static insn32
825 insert_thumb_branch (br_insn, rel_off)
826 insn32 br_insn;
827 int rel_off;
828 {
829 unsigned int low_bits;
830 unsigned int high_bits;
831
832 BFD_ASSERT ((rel_off & 1) != 1);
833
834 rel_off >>= 1; /* Half word aligned address. */
835 low_bits = rel_off & 0x000007FF; /* The bottom 11 bits. */
836 high_bits = (rel_off >> 11) & 0x000007FF; /* The top 11 bits. */
837
838 if ((br_insn & LOW_HI_ORDER) == LOW_HI_ORDER)
839 br_insn = LOW_HI_ORDER | (low_bits << 16) | high_bits;
840 else if ((br_insn & HI_LOW_ORDER) == HI_LOW_ORDER)
841 br_insn = HI_LOW_ORDER | (high_bits << 16) | low_bits;
842 else
843 /* FIXME: abort is probably not the right call. krk@cygnus.com */
844 abort (); /* error - not a valid branch instruction form. */
845
846 return br_insn;
847 }
848
849 /* Thumb code calling an ARM function. */
850
851 static int
852 elf32_thumb_to_arm_stub (info, name, input_bfd, output_bfd, input_section,
853 hit_data, sym_sec, offset, addend, val)
854 struct bfd_link_info * info;
855 const char * name;
856 bfd * input_bfd;
857 bfd * output_bfd;
858 asection * input_section;
859 bfd_byte * hit_data;
860 asection * sym_sec;
861 bfd_vma offset;
862 bfd_signed_vma addend;
863 bfd_vma val;
864 {
865 asection * s = 0;
866 bfd_vma my_offset;
867 unsigned long int tmp;
868 long int ret_offset;
869 struct elf_link_hash_entry * myh;
870 struct elf32_arm_link_hash_table * globals;
871
872 myh = find_thumb_glue (info, name, input_bfd);
873 if (myh == NULL)
874 return false;
875
876 globals = elf32_arm_hash_table (info);
877
878 BFD_ASSERT (globals != NULL);
879 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
880
881 my_offset = myh->root.u.def.value;
882
883 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
884 THUMB2ARM_GLUE_SECTION_NAME);
885
886 BFD_ASSERT (s != NULL);
887 BFD_ASSERT (s->contents != NULL);
888 BFD_ASSERT (s->output_section != NULL);
889
890 if ((my_offset & 0x01) == 0x01)
891 {
892 if (sym_sec != NULL
893 && sym_sec->owner != NULL
894 && !INTERWORK_FLAG (sym_sec->owner))
895 {
896 (*_bfd_error_handler)
897 (_("%s(%s): warning: interworking not enabled."),
898 bfd_archive_filename (sym_sec->owner), name);
899 (*_bfd_error_handler)
900 (_(" first occurrence: %s: thumb call to arm"),
901 bfd_archive_filename (input_bfd));
902
903 return false;
904 }
905
906 --my_offset;
907 myh->root.u.def.value = my_offset;
908
909 bfd_put_16 (output_bfd, (bfd_vma) t2a1_bx_pc_insn,
910 s->contents + my_offset);
911
912 bfd_put_16 (output_bfd, (bfd_vma) t2a2_noop_insn,
913 s->contents + my_offset + 2);
914
915 ret_offset =
916 /* Address of destination of the stub. */
917 ((bfd_signed_vma) val)
918 - ((bfd_signed_vma)
919 /* Offset from the start of the current section to the start of the stubs. */
920 (s->output_offset
921 /* Offset of the start of this stub from the start of the stubs. */
922 + my_offset
923 /* Address of the start of the current section. */
924 + s->output_section->vma)
925 /* The branch instruction is 4 bytes into the stub. */
926 + 4
927 /* ARM branches work from the pc of the instruction + 8. */
928 + 8);
929
930 bfd_put_32 (output_bfd,
931 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
932 s->contents + my_offset + 4);
933 }
934
935 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
936
937 /* Now go back and fix up the original BL insn to point
938 to here. */
939 ret_offset = (s->output_offset
940 + my_offset
941 - (input_section->output_offset
942 + offset + addend)
943 - 8);
944
945 tmp = bfd_get_32 (input_bfd, hit_data
946 - input_section->vma);
947
948 bfd_put_32 (output_bfd,
949 (bfd_vma) insert_thumb_branch (tmp, ret_offset),
950 hit_data - input_section->vma);
951
952 return true;
953 }
954
955 /* Arm code calling a Thumb function. */
956
957 static int
958 elf32_arm_to_thumb_stub (info, name, input_bfd, output_bfd, input_section,
959 hit_data, sym_sec, offset, addend, val)
960 struct bfd_link_info * info;
961 const char * name;
962 bfd * input_bfd;
963 bfd * output_bfd;
964 asection * input_section;
965 bfd_byte * hit_data;
966 asection * sym_sec;
967 bfd_vma offset;
968 bfd_signed_vma addend;
969 bfd_vma val;
970 {
971 unsigned long int tmp;
972 bfd_vma my_offset;
973 asection * s;
974 long int ret_offset;
975 struct elf_link_hash_entry * myh;
976 struct elf32_arm_link_hash_table * globals;
977
978 myh = find_arm_glue (info, name, input_bfd);
979 if (myh == NULL)
980 return false;
981
982 globals = elf32_arm_hash_table (info);
983
984 BFD_ASSERT (globals != NULL);
985 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
986
987 my_offset = myh->root.u.def.value;
988 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
989 ARM2THUMB_GLUE_SECTION_NAME);
990 BFD_ASSERT (s != NULL);
991 BFD_ASSERT (s->contents != NULL);
992 BFD_ASSERT (s->output_section != NULL);
993
994 if ((my_offset & 0x01) == 0x01)
995 {
996 if (sym_sec != NULL
997 && sym_sec->owner != NULL
998 && !INTERWORK_FLAG (sym_sec->owner))
999 {
1000 (*_bfd_error_handler)
1001 (_("%s(%s): warning: interworking not enabled."),
1002 bfd_archive_filename (sym_sec->owner), name);
1003 (*_bfd_error_handler)
1004 (_(" first occurrence: %s: arm call to thumb"),
1005 bfd_archive_filename (input_bfd));
1006 }
1007
1008 --my_offset;
1009 myh->root.u.def.value = my_offset;
1010
1011 bfd_put_32 (output_bfd, (bfd_vma) a2t1_ldr_insn,
1012 s->contents + my_offset);
1013
1014 bfd_put_32 (output_bfd, (bfd_vma) a2t2_bx_r12_insn,
1015 s->contents + my_offset + 4);
1016
1017 /* It's a thumb address. Add the low order bit. */
1018 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
1019 s->contents + my_offset + 8);
1020 }
1021
1022 BFD_ASSERT (my_offset <= globals->arm_glue_size);
1023
1024 tmp = bfd_get_32 (input_bfd, hit_data);
1025 tmp = tmp & 0xFF000000;
1026
1027 /* Somehow these are both 4 too far, so subtract 8. */
1028 ret_offset = (s->output_offset
1029 + my_offset
1030 + s->output_section->vma
1031 - (input_section->output_offset
1032 + input_section->output_section->vma
1033 + offset + addend)
1034 - 8);
1035
1036 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
1037
1038 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
1039
1040 return true;
1041 }
1042
1043 /* Perform a relocation as part of a final link. */
1044
1045 static bfd_reloc_status_type
1046 elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
1047 input_section, contents, rel, value,
1048 info, sym_sec, sym_name, sym_flags, h)
1049 reloc_howto_type * howto;
1050 bfd * input_bfd;
1051 bfd * output_bfd;
1052 asection * input_section;
1053 bfd_byte * contents;
1054 Elf_Internal_Rela * rel;
1055 bfd_vma value;
1056 struct bfd_link_info * info;
1057 asection * sym_sec;
1058 const char * sym_name;
1059 int sym_flags;
1060 struct elf_link_hash_entry * h;
1061 {
1062 unsigned long r_type = howto->type;
1063 unsigned long r_symndx;
1064 bfd_byte * hit_data = contents + rel->r_offset;
1065 bfd * dynobj = NULL;
1066 Elf_Internal_Shdr * symtab_hdr;
1067 struct elf_link_hash_entry ** sym_hashes;
1068 bfd_vma * local_got_offsets;
1069 asection * sgot = NULL;
1070 asection * splt = NULL;
1071 asection * sreloc = NULL;
1072 bfd_vma addend;
1073 bfd_signed_vma signed_addend;
1074 struct elf32_arm_link_hash_table * globals;
1075
1076 /* If the start address has been set, then set the EF_ARM_HASENTRY
1077 flag. Setting this more than once is redundant, but the cost is
1078 not too high, and it keeps the code simple.
1079
1080 The test is done here, rather than somewhere else, because the
1081 start address is only set just before the final link commences.
1082
1083 Note - if the user deliberately sets a start address of 0, the
1084 flag will not be set. */
1085 if (bfd_get_start_address (output_bfd) != 0)
1086 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
1087
1088 globals = elf32_arm_hash_table (info);
1089
1090 dynobj = elf_hash_table (info)->dynobj;
1091 if (dynobj)
1092 {
1093 sgot = bfd_get_section_by_name (dynobj, ".got");
1094 splt = bfd_get_section_by_name (dynobj, ".plt");
1095 }
1096 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1097 sym_hashes = elf_sym_hashes (input_bfd);
1098 local_got_offsets = elf_local_got_offsets (input_bfd);
1099 r_symndx = ELF32_R_SYM (rel->r_info);
1100
1101 #if USE_REL
1102 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
1103
1104 if (addend & ((howto->src_mask + 1) >> 1))
1105 {
1106 signed_addend = -1;
1107 signed_addend &= ~ howto->src_mask;
1108 signed_addend |= addend;
1109 }
1110 else
1111 signed_addend = addend;
1112 #else
1113 addend = signed_addend = rel->r_addend;
1114 #endif
1115
1116 switch (r_type)
1117 {
1118 case R_ARM_NONE:
1119 return bfd_reloc_ok;
1120
1121 case R_ARM_PC24:
1122 case R_ARM_ABS32:
1123 case R_ARM_REL32:
1124 #ifndef OLD_ARM_ABI
1125 case R_ARM_XPC25:
1126 #endif
1127 /* When generating a shared object, these relocations are copied
1128 into the output file to be resolved at run time. */
1129 if (info->shared
1130 && r_symndx != 0
1131 && (r_type != R_ARM_PC24
1132 || (h != NULL
1133 && h->dynindx != -1
1134 && (! info->symbolic
1135 || (h->elf_link_hash_flags
1136 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1137 {
1138 Elf_Internal_Rel outrel;
1139 boolean skip, relocate;
1140
1141 if (sreloc == NULL)
1142 {
1143 const char * name;
1144
1145 name = (bfd_elf_string_from_elf_section
1146 (input_bfd,
1147 elf_elfheader (input_bfd)->e_shstrndx,
1148 elf_section_data (input_section)->rel_hdr.sh_name));
1149 if (name == NULL)
1150 return bfd_reloc_notsupported;
1151
1152 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
1153 && strcmp (bfd_get_section_name (input_bfd,
1154 input_section),
1155 name + 4) == 0);
1156
1157 sreloc = bfd_get_section_by_name (dynobj, name);
1158 BFD_ASSERT (sreloc != NULL);
1159 }
1160
1161 skip = false;
1162 relocate = false;
1163
1164 outrel.r_offset =
1165 _bfd_elf_section_offset (output_bfd, info, input_section,
1166 rel->r_offset);
1167 if (outrel.r_offset == (bfd_vma) -1)
1168 skip = true;
1169 else if (outrel.r_offset == (bfd_vma) -2)
1170 skip = true, relocate = true;
1171 outrel.r_offset += (input_section->output_section->vma
1172 + input_section->output_offset);
1173
1174 if (skip)
1175 memset (&outrel, 0, sizeof outrel);
1176 else if (r_type == R_ARM_PC24)
1177 {
1178 BFD_ASSERT (h != NULL && h->dynindx != -1);
1179 if ((input_section->flags & SEC_ALLOC) == 0)
1180 relocate = true;
1181 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_PC24);
1182 }
1183 else
1184 {
1185 if (h == NULL
1186 || ((info->symbolic || h->dynindx == -1)
1187 && (h->elf_link_hash_flags
1188 & ELF_LINK_HASH_DEF_REGULAR) != 0))
1189 {
1190 relocate = true;
1191 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1192 }
1193 else
1194 {
1195 BFD_ASSERT (h->dynindx != -1);
1196 if ((input_section->flags & SEC_ALLOC) == 0)
1197 relocate = true;
1198 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_ABS32);
1199 }
1200 }
1201
1202 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1203 (((Elf32_External_Rel *)
1204 sreloc->contents)
1205 + sreloc->reloc_count));
1206 ++sreloc->reloc_count;
1207
1208 /* If this reloc is against an external symbol, we do not want to
1209 fiddle with the addend. Otherwise, we need to include the symbol
1210 value so that it becomes an addend for the dynamic reloc. */
1211 if (! relocate)
1212 return bfd_reloc_ok;
1213
1214 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1215 contents, rel->r_offset, value,
1216 (bfd_vma) 0);
1217 }
1218 else switch (r_type)
1219 {
1220 #ifndef OLD_ARM_ABI
1221 case R_ARM_XPC25: /* Arm BLX instruction. */
1222 #endif
1223 case R_ARM_PC24: /* Arm B/BL instruction */
1224 #ifndef OLD_ARM_ABI
1225 if (r_type == R_ARM_XPC25)
1226 {
1227 /* Check for Arm calling Arm function. */
1228 /* FIXME: Should we translate the instruction into a BL
1229 instruction instead ? */
1230 if (sym_flags != STT_ARM_TFUNC)
1231 (*_bfd_error_handler) (_("\
1232 %s: Warning: Arm BLX instruction targets Arm function '%s'."),
1233 bfd_archive_filename (input_bfd),
1234 h ? h->root.root.string : "(local)");
1235 }
1236 else
1237 #endif
1238 {
1239 /* Check for Arm calling Thumb function. */
1240 if (sym_flags == STT_ARM_TFUNC)
1241 {
1242 elf32_arm_to_thumb_stub (info, sym_name, input_bfd, output_bfd,
1243 input_section, hit_data, sym_sec, rel->r_offset,
1244 signed_addend, value);
1245 return bfd_reloc_ok;
1246 }
1247 }
1248
1249 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1250 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0)
1251 {
1252 /* The old way of doing things. Trearing the addend as a
1253 byte sized field and adding in the pipeline offset. */
1254 value -= (input_section->output_section->vma
1255 + input_section->output_offset);
1256 value -= rel->r_offset;
1257 value += addend;
1258
1259 if (! globals->no_pipeline_knowledge)
1260 value -= 8;
1261 }
1262 else
1263 {
1264 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
1265 where:
1266 S is the address of the symbol in the relocation.
1267 P is address of the instruction being relocated.
1268 A is the addend (extracted from the instruction) in bytes.
1269
1270 S is held in 'value'.
1271 P is the base address of the section containing the instruction
1272 plus the offset of the reloc into that section, ie:
1273 (input_section->output_section->vma +
1274 input_section->output_offset +
1275 rel->r_offset).
1276 A is the addend, converted into bytes, ie:
1277 (signed_addend * 4)
1278
1279 Note: None of these operations have knowledge of the pipeline
1280 size of the processor, thus it is up to the assembler to encode
1281 this information into the addend. */
1282 value -= (input_section->output_section->vma
1283 + input_section->output_offset);
1284 value -= rel->r_offset;
1285 value += (signed_addend << howto->size);
1286
1287 /* Previous versions of this code also used to add in the pipeline
1288 offset here. This is wrong because the linker is not supposed
1289 to know about such things, and one day it might change. In order
1290 to support old binaries that need the old behaviour however, so
1291 we attempt to detect which ABI was used to create the reloc. */
1292 if (! globals->no_pipeline_knowledge)
1293 {
1294 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form */
1295
1296 i_ehdrp = elf_elfheader (input_bfd);
1297
1298 if (i_ehdrp->e_ident[EI_OSABI] == 0)
1299 value -= 8;
1300 }
1301 }
1302
1303 signed_addend = value;
1304 signed_addend >>= howto->rightshift;
1305
1306 /* It is not an error for an undefined weak reference to be
1307 out of range. Any program that branches to such a symbol
1308 is going to crash anyway, so there is no point worrying
1309 about getting the destination exactly right. */
1310 if (! h || h->root.type != bfd_link_hash_undefweak)
1311 {
1312 /* Perform a signed range check. */
1313 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
1314 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
1315 return bfd_reloc_overflow;
1316 }
1317
1318 #ifndef OLD_ARM_ABI
1319 /* If necessary set the H bit in the BLX instruction. */
1320 if (r_type == R_ARM_XPC25 && ((value & 2) == 2))
1321 value = (signed_addend & howto->dst_mask)
1322 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask))
1323 | (1 << 24);
1324 else
1325 #endif
1326 value = (signed_addend & howto->dst_mask)
1327 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
1328 break;
1329
1330 case R_ARM_ABS32:
1331 value += addend;
1332 if (sym_flags == STT_ARM_TFUNC)
1333 value |= 1;
1334 break;
1335
1336 case R_ARM_REL32:
1337 value -= (input_section->output_section->vma
1338 + input_section->output_offset + rel->r_offset);
1339 value += addend;
1340 break;
1341 }
1342
1343 bfd_put_32 (input_bfd, value, hit_data);
1344 return bfd_reloc_ok;
1345
1346 case R_ARM_ABS8:
1347 value += addend;
1348 if ((long) value > 0x7f || (long) value < -0x80)
1349 return bfd_reloc_overflow;
1350
1351 bfd_put_8 (input_bfd, value, hit_data);
1352 return bfd_reloc_ok;
1353
1354 case R_ARM_ABS16:
1355 value += addend;
1356
1357 if ((long) value > 0x7fff || (long) value < -0x8000)
1358 return bfd_reloc_overflow;
1359
1360 bfd_put_16 (input_bfd, value, hit_data);
1361 return bfd_reloc_ok;
1362
1363 case R_ARM_ABS12:
1364 /* Support ldr and str instruction for the arm */
1365 /* Also thumb b (unconditional branch). ??? Really? */
1366 value += addend;
1367
1368 if ((long) value > 0x7ff || (long) value < -0x800)
1369 return bfd_reloc_overflow;
1370
1371 value |= (bfd_get_32 (input_bfd, hit_data) & 0xfffff000);
1372 bfd_put_32 (input_bfd, value, hit_data);
1373 return bfd_reloc_ok;
1374
1375 case R_ARM_THM_ABS5:
1376 /* Support ldr and str instructions for the thumb. */
1377 #if USE_REL
1378 /* Need to refetch addend. */
1379 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
1380 /* ??? Need to determine shift amount from operand size. */
1381 addend >>= howto->rightshift;
1382 #endif
1383 value += addend;
1384
1385 /* ??? Isn't value unsigned? */
1386 if ((long) value > 0x1f || (long) value < -0x10)
1387 return bfd_reloc_overflow;
1388
1389 /* ??? Value needs to be properly shifted into place first. */
1390 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
1391 bfd_put_16 (input_bfd, value, hit_data);
1392 return bfd_reloc_ok;
1393
1394 #ifndef OLD_ARM_ABI
1395 case R_ARM_THM_XPC22:
1396 #endif
1397 case R_ARM_THM_PC22:
1398 /* Thumb BL (branch long instruction). */
1399 {
1400 bfd_vma relocation;
1401 boolean overflow = false;
1402 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
1403 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
1404 bfd_signed_vma reloc_signed_max = ((1 << (howto->bitsize - 1)) - 1) >> howto->rightshift;
1405 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
1406 bfd_vma check;
1407 bfd_signed_vma signed_check;
1408
1409 #if USE_REL
1410 /* Need to refetch the addend and squish the two 11 bit pieces
1411 together. */
1412 {
1413 bfd_vma upper = upper_insn & 0x7ff;
1414 bfd_vma lower = lower_insn & 0x7ff;
1415 upper = (upper ^ 0x400) - 0x400; /* Sign extend. */
1416 addend = (upper << 12) | (lower << 1);
1417 signed_addend = addend;
1418 }
1419 #endif
1420 #ifndef OLD_ARM_ABI
1421 if (r_type == R_ARM_THM_XPC22)
1422 {
1423 /* Check for Thumb to Thumb call. */
1424 /* FIXME: Should we translate the instruction into a BL
1425 instruction instead ? */
1426 if (sym_flags == STT_ARM_TFUNC)
1427 (*_bfd_error_handler) (_("\
1428 %s: Warning: Thumb BLX instruction targets thumb function '%s'."),
1429 bfd_archive_filename (input_bfd),
1430 h ? h->root.root.string : "(local)");
1431 }
1432 else
1433 #endif
1434 {
1435 /* If it is not a call to Thumb, assume call to Arm.
1436 If it is a call relative to a section name, then it is not a
1437 function call at all, but rather a long jump. */
1438 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION)
1439 {
1440 if (elf32_thumb_to_arm_stub
1441 (info, sym_name, input_bfd, output_bfd, input_section,
1442 hit_data, sym_sec, rel->r_offset, signed_addend, value))
1443 return bfd_reloc_ok;
1444 else
1445 return bfd_reloc_dangerous;
1446 }
1447 }
1448
1449 relocation = value + signed_addend;
1450
1451 relocation -= (input_section->output_section->vma
1452 + input_section->output_offset
1453 + rel->r_offset);
1454
1455 if (! globals->no_pipeline_knowledge)
1456 {
1457 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form. */
1458
1459 i_ehdrp = elf_elfheader (input_bfd);
1460
1461 /* Previous versions of this code also used to add in the pipline
1462 offset here. This is wrong because the linker is not supposed
1463 to know about such things, and one day it might change. In order
1464 to support old binaries that need the old behaviour however, so
1465 we attempt to detect which ABI was used to create the reloc. */
1466 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1467 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0
1468 || i_ehdrp->e_ident[EI_OSABI] == 0)
1469 relocation += 4;
1470 }
1471
1472 check = relocation >> howto->rightshift;
1473
1474 /* If this is a signed value, the rightshift just dropped
1475 leading 1 bits (assuming twos complement). */
1476 if ((bfd_signed_vma) relocation >= 0)
1477 signed_check = check;
1478 else
1479 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
1480
1481 /* Assumes two's complement. */
1482 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
1483 overflow = true;
1484
1485 #ifndef OLD_ARM_ABI
1486 if (r_type == R_ARM_THM_XPC22
1487 && ((lower_insn & 0x1800) == 0x0800))
1488 /* For a BLX instruction, make sure that the relocation is rounded up
1489 to a word boundary. This follows the semantics of the instruction
1490 which specifies that bit 1 of the target address will come from bit
1491 1 of the base address. */
1492 relocation = (relocation + 2) & ~ 3;
1493 #endif
1494 /* Put RELOCATION back into the insn. */
1495 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 12) & 0x7ff);
1496 lower_insn = (lower_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 1) & 0x7ff);
1497
1498 /* Put the relocated value back in the object file: */
1499 bfd_put_16 (input_bfd, upper_insn, hit_data);
1500 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
1501
1502 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
1503 }
1504 break;
1505
1506 case R_ARM_THM_PC11:
1507 /* Thumb B (branch) instruction). */
1508 {
1509 bfd_signed_vma relocation;
1510 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
1511 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
1512 bfd_signed_vma signed_check;
1513
1514 #if USE_REL
1515 /* Need to refetch addend. */
1516 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
1517 if (addend & ((howto->src_mask + 1) >> 1))
1518 {
1519 signed_addend = -1;
1520 signed_addend &= ~ howto->src_mask;
1521 signed_addend |= addend;
1522 }
1523 else
1524 signed_addend = addend;
1525 /* The value in the insn has been right shifted. We need to
1526 undo this, so that we can perform the address calculation
1527 in terms of bytes. */
1528 signed_addend <<= howto->rightshift;
1529 #endif
1530 relocation = value + signed_addend;
1531
1532 relocation -= (input_section->output_section->vma
1533 + input_section->output_offset
1534 + rel->r_offset);
1535
1536 relocation >>= howto->rightshift;
1537 signed_check = relocation;
1538 relocation &= howto->dst_mask;
1539 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
1540
1541 bfd_put_16 (input_bfd, relocation, hit_data);
1542
1543 /* Assumes two's complement. */
1544 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
1545 return bfd_reloc_overflow;
1546
1547 return bfd_reloc_ok;
1548 }
1549
1550 case R_ARM_GNU_VTINHERIT:
1551 case R_ARM_GNU_VTENTRY:
1552 return bfd_reloc_ok;
1553
1554 case R_ARM_COPY:
1555 return bfd_reloc_notsupported;
1556
1557 case R_ARM_GLOB_DAT:
1558 return bfd_reloc_notsupported;
1559
1560 case R_ARM_JUMP_SLOT:
1561 return bfd_reloc_notsupported;
1562
1563 case R_ARM_RELATIVE:
1564 return bfd_reloc_notsupported;
1565
1566 case R_ARM_GOTOFF:
1567 /* Relocation is relative to the start of the
1568 global offset table. */
1569
1570 BFD_ASSERT (sgot != NULL);
1571 if (sgot == NULL)
1572 return bfd_reloc_notsupported;
1573
1574 /* If we are addressing a Thumb function, we need to adjust the
1575 address by one, so that attempts to call the function pointer will
1576 correctly interpret it as Thumb code. */
1577 if (sym_flags == STT_ARM_TFUNC)
1578 value += 1;
1579
1580 /* Note that sgot->output_offset is not involved in this
1581 calculation. We always want the start of .got. If we
1582 define _GLOBAL_OFFSET_TABLE in a different way, as is
1583 permitted by the ABI, we might have to change this
1584 calculation. */
1585 value -= sgot->output_section->vma;
1586 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1587 contents, rel->r_offset, value,
1588 (bfd_vma) 0);
1589
1590 case R_ARM_GOTPC:
1591 /* Use global offset table as symbol value. */
1592 BFD_ASSERT (sgot != NULL);
1593
1594 if (sgot == NULL)
1595 return bfd_reloc_notsupported;
1596
1597 value = sgot->output_section->vma;
1598 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1599 contents, rel->r_offset, value,
1600 (bfd_vma) 0);
1601
1602 case R_ARM_GOT32:
1603 /* Relocation is to the entry for this symbol in the
1604 global offset table. */
1605 if (sgot == NULL)
1606 return bfd_reloc_notsupported;
1607
1608 if (h != NULL)
1609 {
1610 bfd_vma off;
1611
1612 off = h->got.offset;
1613 BFD_ASSERT (off != (bfd_vma) -1);
1614
1615 if (!elf_hash_table (info)->dynamic_sections_created ||
1616 (info->shared && (info->symbolic || h->dynindx == -1)
1617 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1618 {
1619 /* This is actually a static link, or it is a -Bsymbolic link
1620 and the symbol is defined locally. We must initialize this
1621 entry in the global offset table. Since the offset must
1622 always be a multiple of 4, we use the least significant bit
1623 to record whether we have initialized it already.
1624
1625 When doing a dynamic link, we create a .rel.got relocation
1626 entry to initialize the value. This is done in the
1627 finish_dynamic_symbol routine. */
1628 if ((off & 1) != 0)
1629 off &= ~1;
1630 else
1631 {
1632 /* If we are addressing a Thumb function, we need to
1633 adjust the address by one, so that attempts to
1634 call the function pointer will correctly
1635 interpret it as Thumb code. */
1636 if (sym_flags == STT_ARM_TFUNC)
1637 value |= 1;
1638
1639 bfd_put_32 (output_bfd, value, sgot->contents + off);
1640 h->got.offset |= 1;
1641 }
1642 }
1643
1644 value = sgot->output_offset + off;
1645 }
1646 else
1647 {
1648 bfd_vma off;
1649
1650 BFD_ASSERT (local_got_offsets != NULL &&
1651 local_got_offsets[r_symndx] != (bfd_vma) -1);
1652
1653 off = local_got_offsets[r_symndx];
1654
1655 /* The offset must always be a multiple of 4. We use the
1656 least significant bit to record whether we have already
1657 generated the necessary reloc. */
1658 if ((off & 1) != 0)
1659 off &= ~1;
1660 else
1661 {
1662 bfd_put_32 (output_bfd, value, sgot->contents + off);
1663
1664 if (info->shared)
1665 {
1666 asection * srelgot;
1667 Elf_Internal_Rel outrel;
1668
1669 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
1670 BFD_ASSERT (srelgot != NULL);
1671
1672 outrel.r_offset = (sgot->output_section->vma
1673 + sgot->output_offset
1674 + off);
1675 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1676 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1677 (((Elf32_External_Rel *)
1678 srelgot->contents)
1679 + srelgot->reloc_count));
1680 ++srelgot->reloc_count;
1681 }
1682
1683 local_got_offsets[r_symndx] |= 1;
1684 }
1685
1686 value = sgot->output_offset + off;
1687 }
1688
1689 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1690 contents, rel->r_offset, value,
1691 (bfd_vma) 0);
1692
1693 case R_ARM_PLT32:
1694 /* Relocation is to the entry for this symbol in the
1695 procedure linkage table. */
1696
1697 /* Resolve a PLT32 reloc against a local symbol directly,
1698 without using the procedure linkage table. */
1699 if (h == NULL)
1700 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1701 contents, rel->r_offset, value,
1702 (bfd_vma) 0);
1703
1704 if (h->plt.offset == (bfd_vma) -1)
1705 /* We didn't make a PLT entry for this symbol. This
1706 happens when statically linking PIC code, or when
1707 using -Bsymbolic. */
1708 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1709 contents, rel->r_offset, value,
1710 (bfd_vma) 0);
1711
1712 BFD_ASSERT(splt != NULL);
1713 if (splt == NULL)
1714 return bfd_reloc_notsupported;
1715
1716 value = (splt->output_section->vma
1717 + splt->output_offset
1718 + h->plt.offset);
1719 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1720 contents, rel->r_offset, value,
1721 (bfd_vma) 0);
1722
1723 case R_ARM_SBREL32:
1724 return bfd_reloc_notsupported;
1725
1726 case R_ARM_AMP_VCALL9:
1727 return bfd_reloc_notsupported;
1728
1729 case R_ARM_RSBREL32:
1730 return bfd_reloc_notsupported;
1731
1732 case R_ARM_THM_RPC22:
1733 return bfd_reloc_notsupported;
1734
1735 case R_ARM_RREL32:
1736 return bfd_reloc_notsupported;
1737
1738 case R_ARM_RABS32:
1739 return bfd_reloc_notsupported;
1740
1741 case R_ARM_RPC24:
1742 return bfd_reloc_notsupported;
1743
1744 case R_ARM_RBASE:
1745 return bfd_reloc_notsupported;
1746
1747 default:
1748 return bfd_reloc_notsupported;
1749 }
1750 }
1751
1752 #if USE_REL
1753 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
1754 static void
1755 arm_add_to_rel (abfd, address, howto, increment)
1756 bfd * abfd;
1757 bfd_byte * address;
1758 reloc_howto_type * howto;
1759 bfd_signed_vma increment;
1760 {
1761 bfd_signed_vma addend;
1762
1763 if (howto->type == R_ARM_THM_PC22)
1764 {
1765 int upper_insn, lower_insn;
1766 int upper, lower;
1767
1768 upper_insn = bfd_get_16 (abfd, address);
1769 lower_insn = bfd_get_16 (abfd, address + 2);
1770 upper = upper_insn & 0x7ff;
1771 lower = lower_insn & 0x7ff;
1772
1773 addend = (upper << 12) | (lower << 1);
1774 addend += increment;
1775 addend >>= 1;
1776
1777 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
1778 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
1779
1780 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
1781 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
1782 }
1783 else
1784 {
1785 bfd_vma contents;
1786
1787 contents = bfd_get_32 (abfd, address);
1788
1789 /* Get the (signed) value from the instruction. */
1790 addend = contents & howto->src_mask;
1791 if (addend & ((howto->src_mask + 1) >> 1))
1792 {
1793 bfd_signed_vma mask;
1794
1795 mask = -1;
1796 mask &= ~ howto->src_mask;
1797 addend |= mask;
1798 }
1799
1800 /* Add in the increment, (which is a byte value). */
1801 switch (howto->type)
1802 {
1803 default:
1804 addend += increment;
1805 break;
1806
1807 case R_ARM_PC24:
1808 addend <<= howto->size;
1809 addend += increment;
1810
1811 /* Should we check for overflow here ? */
1812
1813 /* Drop any undesired bits. */
1814 addend >>= howto->rightshift;
1815 break;
1816 }
1817
1818 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
1819
1820 bfd_put_32 (abfd, contents, address);
1821 }
1822 }
1823 #endif /* USE_REL */
1824
1825 /* Relocate an ARM ELF section. */
1826 static boolean
1827 elf32_arm_relocate_section (output_bfd, info, input_bfd, input_section,
1828 contents, relocs, local_syms, local_sections)
1829 bfd * output_bfd;
1830 struct bfd_link_info * info;
1831 bfd * input_bfd;
1832 asection * input_section;
1833 bfd_byte * contents;
1834 Elf_Internal_Rela * relocs;
1835 Elf_Internal_Sym * local_syms;
1836 asection ** local_sections;
1837 {
1838 Elf_Internal_Shdr * symtab_hdr;
1839 struct elf_link_hash_entry ** sym_hashes;
1840 Elf_Internal_Rela * rel;
1841 Elf_Internal_Rela * relend;
1842 const char * name;
1843
1844 #if !USE_REL
1845 if (info->relocateable)
1846 return true;
1847 #endif
1848
1849 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1850 sym_hashes = elf_sym_hashes (input_bfd);
1851
1852 rel = relocs;
1853 relend = relocs + input_section->reloc_count;
1854 for (; rel < relend; rel++)
1855 {
1856 int r_type;
1857 reloc_howto_type * howto;
1858 unsigned long r_symndx;
1859 Elf_Internal_Sym * sym;
1860 asection * sec;
1861 struct elf_link_hash_entry * h;
1862 bfd_vma relocation;
1863 bfd_reloc_status_type r;
1864 arelent bfd_reloc;
1865
1866 r_symndx = ELF32_R_SYM (rel->r_info);
1867 r_type = ELF32_R_TYPE (rel->r_info);
1868
1869 if ( r_type == R_ARM_GNU_VTENTRY
1870 || r_type == R_ARM_GNU_VTINHERIT)
1871 continue;
1872
1873 #if USE_REL
1874 elf32_arm_info_to_howto (input_bfd, & bfd_reloc,
1875 (Elf_Internal_Rel *) rel);
1876 #else
1877 elf32_arm_info_to_howto (input_bfd, & bfd_reloc, rel);
1878 #endif
1879 howto = bfd_reloc.howto;
1880
1881 #if USE_REL
1882 if (info->relocateable)
1883 {
1884 /* This is a relocateable link. We don't have to change
1885 anything, unless the reloc is against a section symbol,
1886 in which case we have to adjust according to where the
1887 section symbol winds up in the output section. */
1888 if (r_symndx < symtab_hdr->sh_info)
1889 {
1890 sym = local_syms + r_symndx;
1891 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1892 {
1893 sec = local_sections[r_symndx];
1894 arm_add_to_rel (input_bfd, contents + rel->r_offset,
1895 howto,
1896 (bfd_signed_vma) (sec->output_offset
1897 + sym->st_value));
1898 }
1899 }
1900
1901 continue;
1902 }
1903 #endif
1904
1905 /* This is a final link. */
1906 h = NULL;
1907 sym = NULL;
1908 sec = NULL;
1909
1910 if (r_symndx < symtab_hdr->sh_info)
1911 {
1912 sym = local_syms + r_symndx;
1913 sec = local_sections[r_symndx];
1914 #if USE_REL
1915 relocation = (sec->output_section->vma
1916 + sec->output_offset
1917 + sym->st_value);
1918 if ((sec->flags & SEC_MERGE)
1919 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1920 {
1921 asection *msec;
1922 bfd_vma addend, value;
1923
1924 if (howto->rightshift)
1925 {
1926 (*_bfd_error_handler)
1927 (_("%s(%s+0x%lx): %s relocation against SEC_MERGE section"),
1928 bfd_archive_filename (input_bfd),
1929 bfd_get_section_name (input_bfd, input_section),
1930 (long) rel->r_offset, howto->name);
1931 return false;
1932 }
1933
1934 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
1935
1936 /* Get the (signed) value from the instruction. */
1937 addend = value & howto->src_mask;
1938 if (addend & ((howto->src_mask + 1) >> 1))
1939 {
1940 bfd_signed_vma mask;
1941
1942 mask = -1;
1943 mask &= ~ howto->src_mask;
1944 addend |= mask;
1945 }
1946 msec = sec;
1947 addend =
1948 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
1949 - relocation;
1950 addend += msec->output_section->vma + msec->output_offset;
1951 value = (value & ~ howto->dst_mask) | (addend & howto->dst_mask);
1952 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
1953 }
1954 #else
1955 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sec, rel);
1956 #endif
1957 }
1958 else
1959 {
1960 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1961
1962 while ( h->root.type == bfd_link_hash_indirect
1963 || h->root.type == bfd_link_hash_warning)
1964 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1965
1966 if ( h->root.type == bfd_link_hash_defined
1967 || h->root.type == bfd_link_hash_defweak)
1968 {
1969 int relocation_needed = 1;
1970
1971 sec = h->root.u.def.section;
1972
1973 /* In these cases, we don't need the relocation value.
1974 We check specially because in some obscure cases
1975 sec->output_section will be NULL. */
1976 switch (r_type)
1977 {
1978 case R_ARM_PC24:
1979 case R_ARM_ABS32:
1980 case R_ARM_THM_PC22:
1981 if (info->shared
1982 && (
1983 (!info->symbolic && h->dynindx != -1)
1984 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1985 )
1986 && ((input_section->flags & SEC_ALLOC) != 0
1987 /* DWARF will emit R_ARM_ABS32 relocations in its
1988 sections against symbols defined externally
1989 in shared libraries. We can't do anything
1990 with them here. */
1991 || ((input_section->flags & SEC_DEBUGGING) != 0
1992 && (h->elf_link_hash_flags
1993 & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
1994 )
1995 relocation_needed = 0;
1996 break;
1997
1998 case R_ARM_GOTPC:
1999 relocation_needed = 0;
2000 break;
2001
2002 case R_ARM_GOT32:
2003 if (elf_hash_table(info)->dynamic_sections_created
2004 && (!info->shared
2005 || (!info->symbolic && h->dynindx != -1)
2006 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
2007 )
2008 )
2009 relocation_needed = 0;
2010 break;
2011
2012 case R_ARM_PLT32:
2013 if (h->plt.offset != (bfd_vma)-1)
2014 relocation_needed = 0;
2015 break;
2016
2017 default:
2018 if (sec->output_section == NULL)
2019 {
2020 (*_bfd_error_handler)
2021 (_("%s: warning: unresolvable relocation %d against symbol `%s' from %s section"),
2022 bfd_archive_filename (input_bfd),
2023 r_type,
2024 h->root.root.string,
2025 bfd_get_section_name (input_bfd, input_section));
2026 relocation_needed = 0;
2027 }
2028 }
2029
2030 if (relocation_needed)
2031 relocation = h->root.u.def.value
2032 + sec->output_section->vma
2033 + sec->output_offset;
2034 else
2035 relocation = 0;
2036 }
2037 else if (h->root.type == bfd_link_hash_undefweak)
2038 relocation = 0;
2039 else if (info->shared && !info->symbolic
2040 && !info->no_undefined
2041 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2042 relocation = 0;
2043 else
2044 {
2045 if (!((*info->callbacks->undefined_symbol)
2046 (info, h->root.root.string, input_bfd,
2047 input_section, rel->r_offset,
2048 (!info->shared || info->no_undefined
2049 || ELF_ST_VISIBILITY (h->other)))))
2050 return false;
2051 relocation = 0;
2052 }
2053 }
2054
2055 if (h != NULL)
2056 name = h->root.root.string;
2057 else
2058 {
2059 name = (bfd_elf_string_from_elf_section
2060 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2061 if (name == NULL || *name == '\0')
2062 name = bfd_section_name (input_bfd, sec);
2063 }
2064
2065 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
2066 input_section, contents, rel,
2067 relocation, info, sec, name,
2068 (h ? ELF_ST_TYPE (h->type) :
2069 ELF_ST_TYPE (sym->st_info)), h);
2070
2071 if (r != bfd_reloc_ok)
2072 {
2073 const char * msg = (const char *) 0;
2074
2075 switch (r)
2076 {
2077 case bfd_reloc_overflow:
2078 /* If the overflowing reloc was to an undefined symbol,
2079 we have already printed one error message and there
2080 is no point complaining again. */
2081 if ((! h ||
2082 h->root.type != bfd_link_hash_undefined)
2083 && (!((*info->callbacks->reloc_overflow)
2084 (info, name, howto->name, (bfd_vma) 0,
2085 input_bfd, input_section, rel->r_offset))))
2086 return false;
2087 break;
2088
2089 case bfd_reloc_undefined:
2090 if (!((*info->callbacks->undefined_symbol)
2091 (info, name, input_bfd, input_section,
2092 rel->r_offset, true)))
2093 return false;
2094 break;
2095
2096 case bfd_reloc_outofrange:
2097 msg = _("internal error: out of range error");
2098 goto common_error;
2099
2100 case bfd_reloc_notsupported:
2101 msg = _("internal error: unsupported relocation error");
2102 goto common_error;
2103
2104 case bfd_reloc_dangerous:
2105 msg = _("internal error: dangerous error");
2106 goto common_error;
2107
2108 default:
2109 msg = _("internal error: unknown error");
2110 /* fall through */
2111
2112 common_error:
2113 if (!((*info->callbacks->warning)
2114 (info, msg, name, input_bfd, input_section,
2115 rel->r_offset)))
2116 return false;
2117 break;
2118 }
2119 }
2120 }
2121
2122 return true;
2123 }
2124
2125 /* Function to keep ARM specific flags in the ELF header. */
2126 static boolean
2127 elf32_arm_set_private_flags (abfd, flags)
2128 bfd *abfd;
2129 flagword flags;
2130 {
2131 if (elf_flags_init (abfd)
2132 && elf_elfheader (abfd)->e_flags != flags)
2133 {
2134 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
2135 {
2136 if (flags & EF_ARM_INTERWORK)
2137 (*_bfd_error_handler) (_("\
2138 Warning: Not setting interworking flag of %s since it has already been specified as non-interworking"),
2139 bfd_archive_filename (abfd));
2140 else
2141 _bfd_error_handler (_("\
2142 Warning: Clearing the interworking flag of %s due to outside request"),
2143 bfd_archive_filename (abfd));
2144 }
2145 }
2146 else
2147 {
2148 elf_elfheader (abfd)->e_flags = flags;
2149 elf_flags_init (abfd) = true;
2150 }
2151
2152 return true;
2153 }
2154
2155 /* Copy backend specific data from one object module to another. */
2156
2157 static boolean
2158 elf32_arm_copy_private_bfd_data (ibfd, obfd)
2159 bfd *ibfd;
2160 bfd *obfd;
2161 {
2162 flagword in_flags;
2163 flagword out_flags;
2164
2165 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2166 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2167 return true;
2168
2169 in_flags = elf_elfheader (ibfd)->e_flags;
2170 out_flags = elf_elfheader (obfd)->e_flags;
2171
2172 if (elf_flags_init (obfd)
2173 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
2174 && in_flags != out_flags)
2175 {
2176 /* Cannot mix APCS26 and APCS32 code. */
2177 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2178 return false;
2179
2180 /* Cannot mix float APCS and non-float APCS code. */
2181 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2182 return false;
2183
2184 /* If the src and dest have different interworking flags
2185 then turn off the interworking bit. */
2186 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2187 {
2188 if (out_flags & EF_ARM_INTERWORK)
2189 _bfd_error_handler (_("\
2190 Warning: Clearing the interworking flag of %s because non-interworking code in %s has been linked with it"),
2191 bfd_get_filename (obfd),
2192 bfd_archive_filename (ibfd));
2193
2194 in_flags &= ~EF_ARM_INTERWORK;
2195 }
2196
2197 /* Likewise for PIC, though don't warn for this case. */
2198 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
2199 in_flags &= ~EF_ARM_PIC;
2200 }
2201
2202 elf_elfheader (obfd)->e_flags = in_flags;
2203 elf_flags_init (obfd) = true;
2204
2205 return true;
2206 }
2207
2208 /* Merge backend specific data from an object file to the output
2209 object file when linking. */
2210
2211 static boolean
2212 elf32_arm_merge_private_bfd_data (ibfd, obfd)
2213 bfd * ibfd;
2214 bfd * obfd;
2215 {
2216 flagword out_flags;
2217 flagword in_flags;
2218 boolean flags_compatible = true;
2219 boolean null_input_bfd = true;
2220 asection *sec;
2221
2222 /* Check if we have the same endianess. */
2223 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
2224 return false;
2225
2226 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2227 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2228 return true;
2229
2230 /* The input BFD must have had its flags initialised. */
2231 /* The following seems bogus to me -- The flags are initialized in
2232 the assembler but I don't think an elf_flags_init field is
2233 written into the object. */
2234 /* BFD_ASSERT (elf_flags_init (ibfd)); */
2235
2236 in_flags = elf_elfheader (ibfd)->e_flags;
2237 out_flags = elf_elfheader (obfd)->e_flags;
2238
2239 if (!elf_flags_init (obfd))
2240 {
2241 /* If the input is the default architecture and had the default
2242 flags then do not bother setting the flags for the output
2243 architecture, instead allow future merges to do this. If no
2244 future merges ever set these flags then they will retain their
2245 uninitialised values, which surprise surprise, correspond
2246 to the default values. */
2247 if (bfd_get_arch_info (ibfd)->the_default
2248 && elf_elfheader (ibfd)->e_flags == 0)
2249 return true;
2250
2251 elf_flags_init (obfd) = true;
2252 elf_elfheader (obfd)->e_flags = in_flags;
2253
2254 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2255 && bfd_get_arch_info (obfd)->the_default)
2256 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
2257
2258 return true;
2259 }
2260
2261 /* Identical flags must be compatible. */
2262 if (in_flags == out_flags)
2263 return true;
2264
2265 /* Check to see if the input BFD actually contains any sections.
2266 If not, its flags may not have been initialised either, but it cannot
2267 actually cause any incompatibility. */
2268 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2269 {
2270 /* Ignore synthetic glue sections. */
2271 if (strcmp (sec->name, ".glue_7")
2272 && strcmp (sec->name, ".glue_7t"))
2273 {
2274 null_input_bfd = false;
2275 break;
2276 }
2277 }
2278 if (null_input_bfd)
2279 return true;
2280
2281 /* Complain about various flag mismatches. */
2282 if (EF_ARM_EABI_VERSION (in_flags) != EF_ARM_EABI_VERSION (out_flags))
2283 {
2284 _bfd_error_handler (_("\
2285 ERROR: %s is compiled for EABI version %d, whereas %s is compiled for version %d"),
2286 bfd_archive_filename (ibfd),
2287 (in_flags & EF_ARM_EABIMASK) >> 24,
2288 bfd_get_filename (obfd),
2289 (out_flags & EF_ARM_EABIMASK) >> 24);
2290 return false;
2291 }
2292
2293 /* Not sure what needs to be checked for EABI versions >= 1. */
2294 if (EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
2295 {
2296 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2297 {
2298 _bfd_error_handler (_("\
2299 ERROR: %s is compiled for APCS-%d, whereas target %s uses APCS-%d"),
2300 bfd_archive_filename (ibfd),
2301 in_flags & EF_ARM_APCS_26 ? 26 : 32,
2302 bfd_get_filename (obfd),
2303 out_flags & EF_ARM_APCS_26 ? 26 : 32);
2304 flags_compatible = false;
2305 }
2306
2307 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2308 {
2309 if (in_flags & EF_ARM_APCS_FLOAT)
2310 _bfd_error_handler (_("\
2311 ERROR: %s passes floats in float registers, whereas %s passes them in integer registers"),
2312 bfd_archive_filename (ibfd),
2313 bfd_get_filename (obfd));
2314 else
2315 _bfd_error_handler (_("\
2316 ERROR: %s passes floats in integer registers, whereas %s passes them in float registers"),
2317 bfd_archive_filename (ibfd),
2318 bfd_get_filename (obfd));
2319
2320 flags_compatible = false;
2321 }
2322
2323 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
2324 {
2325 if (in_flags & EF_ARM_VFP_FLOAT)
2326 _bfd_error_handler (_("\
2327 ERROR: %s uses VFP instructions, whereas %s uses FPA instructions"),
2328 bfd_archive_filename (ibfd),
2329 bfd_get_filename (obfd));
2330 else
2331 _bfd_error_handler (_("\
2332 ERROR: %s uses FPA instructions, whereas %s uses VFP instructions"),
2333 bfd_archive_filename (ibfd),
2334 bfd_get_filename (obfd));
2335
2336 flags_compatible = false;
2337 }
2338
2339 #ifdef EF_ARM_SOFT_FLOAT
2340 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
2341 {
2342 /* We can allow interworking between code that is VFP format
2343 layout, and uses either soft float or integer regs for
2344 passing floating point arguments and results. We already
2345 know that the APCS_FLOAT flags match; similarly for VFP
2346 flags. */
2347 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
2348 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
2349 {
2350 if (in_flags & EF_ARM_SOFT_FLOAT)
2351 _bfd_error_handler (_("\
2352 ERROR: %s uses software FP, whereas %s uses hardware FP"),
2353 bfd_archive_filename (ibfd),
2354 bfd_get_filename (obfd));
2355 else
2356 _bfd_error_handler (_("\
2357 ERROR: %s uses hardware FP, whereas %s uses software FP"),
2358 bfd_archive_filename (ibfd),
2359 bfd_get_filename (obfd));
2360
2361 flags_compatible = false;
2362 }
2363 }
2364 #endif
2365
2366 /* Interworking mismatch is only a warning. */
2367 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2368 {
2369 if (in_flags & EF_ARM_INTERWORK)
2370 {
2371 _bfd_error_handler (_("\
2372 Warning: %s supports interworking, whereas %s does not"),
2373 bfd_archive_filename (ibfd),
2374 bfd_get_filename (obfd));
2375 }
2376 else
2377 {
2378 _bfd_error_handler (_("\
2379 Warning: %s does not support interworking, whereas %s does"),
2380 bfd_archive_filename (ibfd),
2381 bfd_get_filename (obfd));
2382 }
2383 }
2384 }
2385
2386 return flags_compatible;
2387 }
2388
2389 /* Display the flags field. */
2390
2391 static boolean
2392 elf32_arm_print_private_bfd_data (abfd, ptr)
2393 bfd *abfd;
2394 PTR ptr;
2395 {
2396 FILE * file = (FILE *) ptr;
2397 unsigned long flags;
2398
2399 BFD_ASSERT (abfd != NULL && ptr != NULL);
2400
2401 /* Print normal ELF private data. */
2402 _bfd_elf_print_private_bfd_data (abfd, ptr);
2403
2404 flags = elf_elfheader (abfd)->e_flags;
2405 /* Ignore init flag - it may not be set, despite the flags field
2406 containing valid data. */
2407
2408 /* xgettext:c-format */
2409 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
2410
2411 switch (EF_ARM_EABI_VERSION (flags))
2412 {
2413 case EF_ARM_EABI_UNKNOWN:
2414 /* The following flag bits are GNU extenstions and not part of the
2415 official ARM ELF extended ABI. Hence they are only decoded if
2416 the EABI version is not set. */
2417 if (flags & EF_ARM_INTERWORK)
2418 fprintf (file, _(" [interworking enabled]"));
2419
2420 if (flags & EF_ARM_APCS_26)
2421 fprintf (file, " [APCS-26]");
2422 else
2423 fprintf (file, " [APCS-32]");
2424
2425 if (flags & EF_ARM_VFP_FLOAT)
2426 fprintf (file, _(" [VFP float format]"));
2427 else
2428 fprintf (file, _(" [FPA float format]"));
2429
2430 if (flags & EF_ARM_APCS_FLOAT)
2431 fprintf (file, _(" [floats passed in float registers]"));
2432
2433 if (flags & EF_ARM_PIC)
2434 fprintf (file, _(" [position independent]"));
2435
2436 if (flags & EF_ARM_NEW_ABI)
2437 fprintf (file, _(" [new ABI]"));
2438
2439 if (flags & EF_ARM_OLD_ABI)
2440 fprintf (file, _(" [old ABI]"));
2441
2442 if (flags & EF_ARM_SOFT_FLOAT)
2443 fprintf (file, _(" [software FP]"));
2444
2445 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
2446 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
2447 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT);
2448 break;
2449
2450 case EF_ARM_EABI_VER1:
2451 fprintf (file, _(" [Version1 EABI]"));
2452
2453 if (flags & EF_ARM_SYMSARESORTED)
2454 fprintf (file, _(" [sorted symbol table]"));
2455 else
2456 fprintf (file, _(" [unsorted symbol table]"));
2457
2458 flags &= ~ EF_ARM_SYMSARESORTED;
2459 break;
2460
2461 case EF_ARM_EABI_VER2:
2462 fprintf (file, _(" [Version2 EABI]"));
2463
2464 if (flags & EF_ARM_SYMSARESORTED)
2465 fprintf (file, _(" [sorted symbol table]"));
2466 else
2467 fprintf (file, _(" [unsorted symbol table]"));
2468
2469 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
2470 fprintf (file, _(" [dynamic symbols use segment index]"));
2471
2472 if (flags & EF_ARM_MAPSYMSFIRST)
2473 fprintf (file, _(" [mapping symbols precede others]"));
2474
2475 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
2476 | EF_ARM_MAPSYMSFIRST);
2477 break;
2478
2479 default:
2480 fprintf (file, _(" <EABI version unrecognised>"));
2481 break;
2482 }
2483
2484 flags &= ~ EF_ARM_EABIMASK;
2485
2486 if (flags & EF_ARM_RELEXEC)
2487 fprintf (file, _(" [relocatable executable]"));
2488
2489 if (flags & EF_ARM_HASENTRY)
2490 fprintf (file, _(" [has entry point]"));
2491
2492 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
2493
2494 if (flags)
2495 fprintf (file, _("<Unrecognised flag bits set>"));
2496
2497 fputc ('\n', file);
2498
2499 return true;
2500 }
2501
2502 static int
2503 elf32_arm_get_symbol_type (elf_sym, type)
2504 Elf_Internal_Sym * elf_sym;
2505 int type;
2506 {
2507 switch (ELF_ST_TYPE (elf_sym->st_info))
2508 {
2509 case STT_ARM_TFUNC:
2510 return ELF_ST_TYPE (elf_sym->st_info);
2511
2512 case STT_ARM_16BIT:
2513 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
2514 This allows us to distinguish between data used by Thumb instructions
2515 and non-data (which is probably code) inside Thumb regions of an
2516 executable. */
2517 if (type != STT_OBJECT)
2518 return ELF_ST_TYPE (elf_sym->st_info);
2519 break;
2520
2521 default:
2522 break;
2523 }
2524
2525 return type;
2526 }
2527
2528 static asection *
2529 elf32_arm_gc_mark_hook (sec, info, rel, h, sym)
2530 asection *sec;
2531 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2532 Elf_Internal_Rela *rel;
2533 struct elf_link_hash_entry *h;
2534 Elf_Internal_Sym *sym;
2535 {
2536 if (h != NULL)
2537 {
2538 switch (ELF32_R_TYPE (rel->r_info))
2539 {
2540 case R_ARM_GNU_VTINHERIT:
2541 case R_ARM_GNU_VTENTRY:
2542 break;
2543
2544 default:
2545 switch (h->root.type)
2546 {
2547 case bfd_link_hash_defined:
2548 case bfd_link_hash_defweak:
2549 return h->root.u.def.section;
2550
2551 case bfd_link_hash_common:
2552 return h->root.u.c.p->section;
2553
2554 default:
2555 break;
2556 }
2557 }
2558 }
2559 else
2560 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
2561
2562 return NULL;
2563 }
2564
2565 /* Update the got entry reference counts for the section being removed. */
2566
2567 static boolean
2568 elf32_arm_gc_sweep_hook (abfd, info, sec, relocs)
2569 bfd *abfd ATTRIBUTE_UNUSED;
2570 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2571 asection *sec ATTRIBUTE_UNUSED;
2572 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
2573 {
2574 /* We don't support garbage collection of GOT and PLT relocs yet. */
2575 return true;
2576 }
2577
2578 /* Look through the relocs for a section during the first phase. */
2579
2580 static boolean
2581 elf32_arm_check_relocs (abfd, info, sec, relocs)
2582 bfd * abfd;
2583 struct bfd_link_info * info;
2584 asection * sec;
2585 const Elf_Internal_Rela * relocs;
2586 {
2587 Elf_Internal_Shdr * symtab_hdr;
2588 struct elf_link_hash_entry ** sym_hashes;
2589 struct elf_link_hash_entry ** sym_hashes_end;
2590 const Elf_Internal_Rela * rel;
2591 const Elf_Internal_Rela * rel_end;
2592 bfd * dynobj;
2593 asection * sgot, *srelgot, *sreloc;
2594 bfd_vma * local_got_offsets;
2595
2596 if (info->relocateable)
2597 return true;
2598
2599 sgot = srelgot = sreloc = NULL;
2600
2601 dynobj = elf_hash_table (info)->dynobj;
2602 local_got_offsets = elf_local_got_offsets (abfd);
2603
2604 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2605 sym_hashes = elf_sym_hashes (abfd);
2606 sym_hashes_end = sym_hashes
2607 + symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
2608
2609 if (!elf_bad_symtab (abfd))
2610 sym_hashes_end -= symtab_hdr->sh_info;
2611
2612 rel_end = relocs + sec->reloc_count;
2613 for (rel = relocs; rel < rel_end; rel++)
2614 {
2615 struct elf_link_hash_entry *h;
2616 unsigned long r_symndx;
2617
2618 r_symndx = ELF32_R_SYM (rel->r_info);
2619 if (r_symndx < symtab_hdr->sh_info)
2620 h = NULL;
2621 else
2622 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2623
2624 /* Some relocs require a global offset table. */
2625 if (dynobj == NULL)
2626 {
2627 switch (ELF32_R_TYPE (rel->r_info))
2628 {
2629 case R_ARM_GOT32:
2630 case R_ARM_GOTOFF:
2631 case R_ARM_GOTPC:
2632 elf_hash_table (info)->dynobj = dynobj = abfd;
2633 if (! _bfd_elf_create_got_section (dynobj, info))
2634 return false;
2635 break;
2636
2637 default:
2638 break;
2639 }
2640 }
2641
2642 switch (ELF32_R_TYPE (rel->r_info))
2643 {
2644 case R_ARM_GOT32:
2645 /* This symbol requires a global offset table entry. */
2646 if (sgot == NULL)
2647 {
2648 sgot = bfd_get_section_by_name (dynobj, ".got");
2649 BFD_ASSERT (sgot != NULL);
2650 }
2651
2652 /* Get the got relocation section if necessary. */
2653 if (srelgot == NULL
2654 && (h != NULL || info->shared))
2655 {
2656 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
2657
2658 /* If no got relocation section, make one and initialize. */
2659 if (srelgot == NULL)
2660 {
2661 srelgot = bfd_make_section (dynobj, ".rel.got");
2662 if (srelgot == NULL
2663 || ! bfd_set_section_flags (dynobj, srelgot,
2664 (SEC_ALLOC
2665 | SEC_LOAD
2666 | SEC_HAS_CONTENTS
2667 | SEC_IN_MEMORY
2668 | SEC_LINKER_CREATED
2669 | SEC_READONLY))
2670 || ! bfd_set_section_alignment (dynobj, srelgot, 2))
2671 return false;
2672 }
2673 }
2674
2675 if (h != NULL)
2676 {
2677 if (h->got.offset != (bfd_vma) -1)
2678 /* We have already allocated space in the .got. */
2679 break;
2680
2681 h->got.offset = sgot->_raw_size;
2682
2683 /* Make sure this symbol is output as a dynamic symbol. */
2684 if (h->dynindx == -1)
2685 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2686 return false;
2687
2688 srelgot->_raw_size += sizeof (Elf32_External_Rel);
2689 }
2690 else
2691 {
2692 /* This is a global offset table entry for a local
2693 symbol. */
2694 if (local_got_offsets == NULL)
2695 {
2696 bfd_size_type size;
2697 unsigned int i;
2698
2699 size = symtab_hdr->sh_info;
2700 size *= sizeof (bfd_vma);
2701 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
2702 if (local_got_offsets == NULL)
2703 return false;
2704 elf_local_got_offsets (abfd) = local_got_offsets;
2705 for (i = 0; i < symtab_hdr->sh_info; i++)
2706 local_got_offsets[i] = (bfd_vma) -1;
2707 }
2708
2709 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
2710 /* We have already allocated space in the .got. */
2711 break;
2712
2713 local_got_offsets[r_symndx] = sgot->_raw_size;
2714
2715 if (info->shared)
2716 /* If we are generating a shared object, we need to
2717 output a R_ARM_RELATIVE reloc so that the dynamic
2718 linker can adjust this GOT entry. */
2719 srelgot->_raw_size += sizeof (Elf32_External_Rel);
2720 }
2721
2722 sgot->_raw_size += 4;
2723 break;
2724
2725 case R_ARM_PLT32:
2726 /* This symbol requires a procedure linkage table entry. We
2727 actually build the entry in adjust_dynamic_symbol,
2728 because this might be a case of linking PIC code which is
2729 never referenced by a dynamic object, in which case we
2730 don't need to generate a procedure linkage table entry
2731 after all. */
2732
2733 /* If this is a local symbol, we resolve it directly without
2734 creating a procedure linkage table entry. */
2735 if (h == NULL)
2736 continue;
2737
2738 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
2739 break;
2740
2741 case R_ARM_ABS32:
2742 case R_ARM_REL32:
2743 case R_ARM_PC24:
2744 /* If we are creating a shared library, and this is a reloc
2745 against a global symbol, or a non PC relative reloc
2746 against a local symbol, then we need to copy the reloc
2747 into the shared library. However, if we are linking with
2748 -Bsymbolic, we do not need to copy a reloc against a
2749 global symbol which is defined in an object we are
2750 including in the link (i.e., DEF_REGULAR is set). At
2751 this point we have not seen all the input files, so it is
2752 possible that DEF_REGULAR is not set now but will be set
2753 later (it is never cleared). We account for that
2754 possibility below by storing information in the
2755 pcrel_relocs_copied field of the hash table entry. */
2756 if (info->shared
2757 && (ELF32_R_TYPE (rel->r_info) != R_ARM_PC24
2758 || (h != NULL
2759 && (! info->symbolic
2760 || (h->elf_link_hash_flags
2761 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
2762 {
2763 /* When creating a shared object, we must copy these
2764 reloc types into the output file. We create a reloc
2765 section in dynobj and make room for this reloc. */
2766 if (sreloc == NULL)
2767 {
2768 const char * name;
2769
2770 name = (bfd_elf_string_from_elf_section
2771 (abfd,
2772 elf_elfheader (abfd)->e_shstrndx,
2773 elf_section_data (sec)->rel_hdr.sh_name));
2774 if (name == NULL)
2775 return false;
2776
2777 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
2778 && strcmp (bfd_get_section_name (abfd, sec),
2779 name + 4) == 0);
2780
2781 sreloc = bfd_get_section_by_name (dynobj, name);
2782 if (sreloc == NULL)
2783 {
2784 flagword flags;
2785
2786 sreloc = bfd_make_section (dynobj, name);
2787 flags = (SEC_HAS_CONTENTS | SEC_READONLY
2788 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2789 if ((sec->flags & SEC_ALLOC) != 0)
2790 flags |= SEC_ALLOC | SEC_LOAD;
2791 if (sreloc == NULL
2792 || ! bfd_set_section_flags (dynobj, sreloc, flags)
2793 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
2794 return false;
2795 }
2796 if (sec->flags & SEC_READONLY)
2797 info->flags |= DF_TEXTREL;
2798 }
2799
2800 sreloc->_raw_size += sizeof (Elf32_External_Rel);
2801 /* If we are linking with -Bsymbolic, and this is a
2802 global symbol, we count the number of PC relative
2803 relocations we have entered for this symbol, so that
2804 we can discard them again if the symbol is later
2805 defined by a regular object. Note that this function
2806 is only called if we are using an elf_i386 linker
2807 hash table, which means that h is really a pointer to
2808 an elf_i386_link_hash_entry. */
2809 if (h != NULL && info->symbolic
2810 && ELF32_R_TYPE (rel->r_info) == R_ARM_PC24)
2811 {
2812 struct elf32_arm_link_hash_entry * eh;
2813 struct elf32_arm_pcrel_relocs_copied * p;
2814
2815 eh = (struct elf32_arm_link_hash_entry *) h;
2816
2817 for (p = eh->pcrel_relocs_copied; p != NULL; p = p->next)
2818 if (p->section == sreloc)
2819 break;
2820
2821 if (p == NULL)
2822 {
2823 p = ((struct elf32_arm_pcrel_relocs_copied *)
2824 bfd_alloc (dynobj, (bfd_size_type) sizeof * p));
2825 if (p == NULL)
2826 return false;
2827 p->next = eh->pcrel_relocs_copied;
2828 eh->pcrel_relocs_copied = p;
2829 p->section = sreloc;
2830 p->count = 0;
2831 }
2832
2833 ++p->count;
2834 }
2835 }
2836 break;
2837
2838 /* This relocation describes the C++ object vtable hierarchy.
2839 Reconstruct it for later use during GC. */
2840 case R_ARM_GNU_VTINHERIT:
2841 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2842 return false;
2843 break;
2844
2845 /* This relocation describes which C++ vtable entries are actually
2846 used. Record for later use during GC. */
2847 case R_ARM_GNU_VTENTRY:
2848 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
2849 return false;
2850 break;
2851 }
2852 }
2853
2854 return true;
2855 }
2856
2857 /* Find the nearest line to a particular section and offset, for error
2858 reporting. This code is a duplicate of the code in elf.c, except
2859 that it also accepts STT_ARM_TFUNC as a symbol that names a function. */
2860
2861 static boolean
2862 elf32_arm_find_nearest_line
2863 (abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr)
2864 bfd * abfd;
2865 asection * section;
2866 asymbol ** symbols;
2867 bfd_vma offset;
2868 const char ** filename_ptr;
2869 const char ** functionname_ptr;
2870 unsigned int * line_ptr;
2871 {
2872 boolean found;
2873 const char * filename;
2874 asymbol * func;
2875 bfd_vma low_func;
2876 asymbol ** p;
2877
2878 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
2879 filename_ptr, functionname_ptr,
2880 line_ptr, 0,
2881 &elf_tdata (abfd)->dwarf2_find_line_info))
2882 return true;
2883
2884 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
2885 &found, filename_ptr,
2886 functionname_ptr, line_ptr,
2887 &elf_tdata (abfd)->line_info))
2888 return false;
2889
2890 if (found)
2891 return true;
2892
2893 if (symbols == NULL)
2894 return false;
2895
2896 filename = NULL;
2897 func = NULL;
2898 low_func = 0;
2899
2900 for (p = symbols; *p != NULL; p++)
2901 {
2902 elf_symbol_type *q;
2903
2904 q = (elf_symbol_type *) *p;
2905
2906 if (bfd_get_section (&q->symbol) != section)
2907 continue;
2908
2909 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
2910 {
2911 default:
2912 break;
2913 case STT_FILE:
2914 filename = bfd_asymbol_name (&q->symbol);
2915 break;
2916 case STT_NOTYPE:
2917 case STT_FUNC:
2918 case STT_ARM_TFUNC:
2919 if (q->symbol.section == section
2920 && q->symbol.value >= low_func
2921 && q->symbol.value <= offset)
2922 {
2923 func = (asymbol *) q;
2924 low_func = q->symbol.value;
2925 }
2926 break;
2927 }
2928 }
2929
2930 if (func == NULL)
2931 return false;
2932
2933 *filename_ptr = filename;
2934 *functionname_ptr = bfd_asymbol_name (func);
2935 *line_ptr = 0;
2936
2937 return true;
2938 }
2939
2940 /* Adjust a symbol defined by a dynamic object and referenced by a
2941 regular object. The current definition is in some section of the
2942 dynamic object, but we're not including those sections. We have to
2943 change the definition to something the rest of the link can
2944 understand. */
2945
2946 static boolean
2947 elf32_arm_adjust_dynamic_symbol (info, h)
2948 struct bfd_link_info * info;
2949 struct elf_link_hash_entry * h;
2950 {
2951 bfd * dynobj;
2952 asection * s;
2953 unsigned int power_of_two;
2954
2955 dynobj = elf_hash_table (info)->dynobj;
2956
2957 /* Make sure we know what is going on here. */
2958 BFD_ASSERT (dynobj != NULL
2959 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
2960 || h->weakdef != NULL
2961 || ((h->elf_link_hash_flags
2962 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2963 && (h->elf_link_hash_flags
2964 & ELF_LINK_HASH_REF_REGULAR) != 0
2965 && (h->elf_link_hash_flags
2966 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
2967
2968 /* If this is a function, put it in the procedure linkage table. We
2969 will fill in the contents of the procedure linkage table later,
2970 when we know the address of the .got section. */
2971 if (h->type == STT_FUNC
2972 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
2973 {
2974 /* If we link a program (not a DSO), we'll get rid of unnecessary
2975 PLT entries; we point to the actual symbols -- even for pic
2976 relocs, because a program built with -fpic should have the same
2977 result as one built without -fpic, specifically considering weak
2978 symbols.
2979 FIXME: m68k and i386 differ here, for unclear reasons. */
2980 if (! info->shared
2981 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0)
2982 {
2983 /* This case can occur if we saw a PLT32 reloc in an input
2984 file, but the symbol was not defined by a dynamic object.
2985 In such a case, we don't actually need to build a
2986 procedure linkage table, and we can just do a PC32 reloc
2987 instead. */
2988 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
2989 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2990 return true;
2991 }
2992
2993 /* Make sure this symbol is output as a dynamic symbol. */
2994 if (h->dynindx == -1)
2995 {
2996 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2997 return false;
2998 }
2999
3000 s = bfd_get_section_by_name (dynobj, ".plt");
3001 BFD_ASSERT (s != NULL);
3002
3003 /* If this is the first .plt entry, make room for the special
3004 first entry. */
3005 if (s->_raw_size == 0)
3006 s->_raw_size += PLT_ENTRY_SIZE;
3007
3008 /* If this symbol is not defined in a regular file, and we are
3009 not generating a shared library, then set the symbol to this
3010 location in the .plt. This is required to make function
3011 pointers compare as equal between the normal executable and
3012 the shared library. */
3013 if (! info->shared
3014 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3015 {
3016 h->root.u.def.section = s;
3017 h->root.u.def.value = s->_raw_size;
3018 }
3019
3020 h->plt.offset = s->_raw_size;
3021
3022 /* Make room for this entry. */
3023 s->_raw_size += PLT_ENTRY_SIZE;
3024
3025 /* We also need to make an entry in the .got.plt section, which
3026 will be placed in the .got section by the linker script. */
3027 s = bfd_get_section_by_name (dynobj, ".got.plt");
3028 BFD_ASSERT (s != NULL);
3029 s->_raw_size += 4;
3030
3031 /* We also need to make an entry in the .rel.plt section. */
3032
3033 s = bfd_get_section_by_name (dynobj, ".rel.plt");
3034 BFD_ASSERT (s != NULL);
3035 s->_raw_size += sizeof (Elf32_External_Rel);
3036
3037 return true;
3038 }
3039
3040 /* If this is a weak symbol, and there is a real definition, the
3041 processor independent code will have arranged for us to see the
3042 real definition first, and we can just use the same value. */
3043 if (h->weakdef != NULL)
3044 {
3045 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
3046 || h->weakdef->root.type == bfd_link_hash_defweak);
3047 h->root.u.def.section = h->weakdef->root.u.def.section;
3048 h->root.u.def.value = h->weakdef->root.u.def.value;
3049 return true;
3050 }
3051
3052 /* This is a reference to a symbol defined by a dynamic object which
3053 is not a function. */
3054
3055 /* If we are creating a shared library, we must presume that the
3056 only references to the symbol are via the global offset table.
3057 For such cases we need not do anything here; the relocations will
3058 be handled correctly by relocate_section. */
3059 if (info->shared)
3060 return true;
3061
3062 /* We must allocate the symbol in our .dynbss section, which will
3063 become part of the .bss section of the executable. There will be
3064 an entry for this symbol in the .dynsym section. The dynamic
3065 object will contain position independent code, so all references
3066 from the dynamic object to this symbol will go through the global
3067 offset table. The dynamic linker will use the .dynsym entry to
3068 determine the address it must put in the global offset table, so
3069 both the dynamic object and the regular object will refer to the
3070 same memory location for the variable. */
3071 s = bfd_get_section_by_name (dynobj, ".dynbss");
3072 BFD_ASSERT (s != NULL);
3073
3074 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
3075 copy the initial value out of the dynamic object and into the
3076 runtime process image. We need to remember the offset into the
3077 .rel.bss section we are going to use. */
3078 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
3079 {
3080 asection *srel;
3081
3082 srel = bfd_get_section_by_name (dynobj, ".rel.bss");
3083 BFD_ASSERT (srel != NULL);
3084 srel->_raw_size += sizeof (Elf32_External_Rel);
3085 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
3086 }
3087
3088 /* We need to figure out the alignment required for this symbol. I
3089 have no idea how ELF linkers handle this. */
3090 power_of_two = bfd_log2 (h->size);
3091 if (power_of_two > 3)
3092 power_of_two = 3;
3093
3094 /* Apply the required alignment. */
3095 s->_raw_size = BFD_ALIGN (s->_raw_size,
3096 (bfd_size_type) (1 << power_of_two));
3097 if (power_of_two > bfd_get_section_alignment (dynobj, s))
3098 {
3099 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
3100 return false;
3101 }
3102
3103 /* Define the symbol as being at this point in the section. */
3104 h->root.u.def.section = s;
3105 h->root.u.def.value = s->_raw_size;
3106
3107 /* Increment the section size to make room for the symbol. */
3108 s->_raw_size += h->size;
3109
3110 return true;
3111 }
3112
3113 /* Set the sizes of the dynamic sections. */
3114
3115 static boolean
3116 elf32_arm_size_dynamic_sections (output_bfd, info)
3117 bfd * output_bfd ATTRIBUTE_UNUSED;
3118 struct bfd_link_info * info;
3119 {
3120 bfd * dynobj;
3121 asection * s;
3122 boolean plt;
3123 boolean relocs;
3124
3125 dynobj = elf_hash_table (info)->dynobj;
3126 BFD_ASSERT (dynobj != NULL);
3127
3128 if (elf_hash_table (info)->dynamic_sections_created)
3129 {
3130 /* Set the contents of the .interp section to the interpreter. */
3131 if (! info->shared)
3132 {
3133 s = bfd_get_section_by_name (dynobj, ".interp");
3134 BFD_ASSERT (s != NULL);
3135 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
3136 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
3137 }
3138 }
3139 else
3140 {
3141 /* We may have created entries in the .rel.got section.
3142 However, if we are not creating the dynamic sections, we will
3143 not actually use these entries. Reset the size of .rel.got,
3144 which will cause it to get stripped from the output file
3145 below. */
3146 s = bfd_get_section_by_name (dynobj, ".rel.got");
3147 if (s != NULL)
3148 s->_raw_size = 0;
3149 }
3150
3151 /* If this is a -Bsymbolic shared link, then we need to discard all
3152 PC relative relocs against symbols defined in a regular object.
3153 We allocated space for them in the check_relocs routine, but we
3154 will not fill them in in the relocate_section routine. */
3155 if (info->shared && info->symbolic)
3156 elf32_arm_link_hash_traverse (elf32_arm_hash_table (info),
3157 elf32_arm_discard_copies,
3158 (PTR) NULL);
3159
3160 /* The check_relocs and adjust_dynamic_symbol entry points have
3161 determined the sizes of the various dynamic sections. Allocate
3162 memory for them. */
3163 plt = false;
3164 relocs = false;
3165 for (s = dynobj->sections; s != NULL; s = s->next)
3166 {
3167 const char * name;
3168 boolean strip;
3169
3170 if ((s->flags & SEC_LINKER_CREATED) == 0)
3171 continue;
3172
3173 /* It's OK to base decisions on the section name, because none
3174 of the dynobj section names depend upon the input files. */
3175 name = bfd_get_section_name (dynobj, s);
3176
3177 strip = false;
3178
3179 if (strcmp (name, ".plt") == 0)
3180 {
3181 if (s->_raw_size == 0)
3182 {
3183 /* Strip this section if we don't need it; see the
3184 comment below. */
3185 strip = true;
3186 }
3187 else
3188 {
3189 /* Remember whether there is a PLT. */
3190 plt = true;
3191 }
3192 }
3193 else if (strncmp (name, ".rel", 4) == 0)
3194 {
3195 if (s->_raw_size == 0)
3196 {
3197 /* If we don't need this section, strip it from the
3198 output file. This is mostly to handle .rel.bss and
3199 .rel.plt. We must create both sections in
3200 create_dynamic_sections, because they must be created
3201 before the linker maps input sections to output
3202 sections. The linker does that before
3203 adjust_dynamic_symbol is called, and it is that
3204 function which decides whether anything needs to go
3205 into these sections. */
3206 strip = true;
3207 }
3208 else
3209 {
3210 /* Remember whether there are any reloc sections other
3211 than .rel.plt. */
3212 if (strcmp (name, ".rel.plt") != 0)
3213 relocs = true;
3214
3215 /* We use the reloc_count field as a counter if we need
3216 to copy relocs into the output file. */
3217 s->reloc_count = 0;
3218 }
3219 }
3220 else if (strncmp (name, ".got", 4) != 0)
3221 {
3222 /* It's not one of our sections, so don't allocate space. */
3223 continue;
3224 }
3225
3226 if (strip)
3227 {
3228 asection ** spp;
3229
3230 for (spp = &s->output_section->owner->sections;
3231 *spp != NULL;
3232 spp = &(*spp)->next)
3233 {
3234 if (*spp == s->output_section)
3235 {
3236 bfd_section_list_remove (s->output_section->owner, spp);
3237 --s->output_section->owner->section_count;
3238 break;
3239 }
3240 }
3241 continue;
3242 }
3243
3244 /* Allocate memory for the section contents. */
3245 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
3246 if (s->contents == NULL && s->_raw_size != 0)
3247 return false;
3248 }
3249
3250 if (elf_hash_table (info)->dynamic_sections_created)
3251 {
3252 /* Add some entries to the .dynamic section. We fill in the
3253 values later, in elf32_arm_finish_dynamic_sections, but we
3254 must add the entries now so that we get the correct size for
3255 the .dynamic section. The DT_DEBUG entry is filled in by the
3256 dynamic linker and used by the debugger. */
3257 #define add_dynamic_entry(TAG, VAL) \
3258 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
3259
3260 if (!info->shared)
3261 {
3262 if (!add_dynamic_entry (DT_DEBUG, 0))
3263 return false;
3264 }
3265
3266 if (plt)
3267 {
3268 if ( !add_dynamic_entry (DT_PLTGOT, 0)
3269 || !add_dynamic_entry (DT_PLTRELSZ, 0)
3270 || !add_dynamic_entry (DT_PLTREL, DT_REL)
3271 || !add_dynamic_entry (DT_JMPREL, 0))
3272 return false;
3273 }
3274
3275 if (relocs)
3276 {
3277 if ( !add_dynamic_entry (DT_REL, 0)
3278 || !add_dynamic_entry (DT_RELSZ, 0)
3279 || !add_dynamic_entry (DT_RELENT, sizeof (Elf32_External_Rel)))
3280 return false;
3281 }
3282
3283 if ((info->flags & DF_TEXTREL) != 0)
3284 {
3285 if (!add_dynamic_entry (DT_TEXTREL, 0))
3286 return false;
3287 info->flags |= DF_TEXTREL;
3288 }
3289 }
3290 #undef add_synamic_entry
3291
3292 return true;
3293 }
3294
3295 /* This function is called via elf32_arm_link_hash_traverse if we are
3296 creating a shared object with -Bsymbolic. It discards the space
3297 allocated to copy PC relative relocs against symbols which are
3298 defined in regular objects. We allocated space for them in the
3299 check_relocs routine, but we won't fill them in in the
3300 relocate_section routine. */
3301
3302 static boolean
3303 elf32_arm_discard_copies (h, ignore)
3304 struct elf32_arm_link_hash_entry * h;
3305 PTR ignore ATTRIBUTE_UNUSED;
3306 {
3307 struct elf32_arm_pcrel_relocs_copied * s;
3308
3309 if (h->root.root.type == bfd_link_hash_warning)
3310 h = (struct elf32_arm_link_hash_entry *) h->root.root.u.i.link;
3311
3312 /* We only discard relocs for symbols defined in a regular object. */
3313 if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3314 return true;
3315
3316 for (s = h->pcrel_relocs_copied; s != NULL; s = s->next)
3317 s->section->_raw_size -= s->count * sizeof (Elf32_External_Rel);
3318
3319 return true;
3320 }
3321
3322 /* Finish up dynamic symbol handling. We set the contents of various
3323 dynamic sections here. */
3324
3325 static boolean
3326 elf32_arm_finish_dynamic_symbol (output_bfd, info, h, sym)
3327 bfd * output_bfd;
3328 struct bfd_link_info * info;
3329 struct elf_link_hash_entry * h;
3330 Elf_Internal_Sym * sym;
3331 {
3332 bfd * dynobj;
3333
3334 dynobj = elf_hash_table (info)->dynobj;
3335
3336 if (h->plt.offset != (bfd_vma) -1)
3337 {
3338 asection * splt;
3339 asection * sgot;
3340 asection * srel;
3341 bfd_vma plt_index;
3342 bfd_vma got_offset;
3343 Elf_Internal_Rel rel;
3344
3345 /* This symbol has an entry in the procedure linkage table. Set
3346 it up. */
3347
3348 BFD_ASSERT (h->dynindx != -1);
3349
3350 splt = bfd_get_section_by_name (dynobj, ".plt");
3351 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3352 srel = bfd_get_section_by_name (dynobj, ".rel.plt");
3353 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
3354
3355 /* Get the index in the procedure linkage table which
3356 corresponds to this symbol. This is the index of this symbol
3357 in all the symbols for which we are making plt entries. The
3358 first entry in the procedure linkage table is reserved. */
3359 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3360
3361 /* Get the offset into the .got table of the entry that
3362 corresponds to this function. Each .got entry is 4 bytes.
3363 The first three are reserved. */
3364 got_offset = (plt_index + 3) * 4;
3365
3366 /* Fill in the entry in the procedure linkage table. */
3367 bfd_put_32 (output_bfd, elf32_arm_plt_entry[0],
3368 splt->contents + h->plt.offset + 0);
3369 bfd_put_32 (output_bfd, elf32_arm_plt_entry[1],
3370 splt->contents + h->plt.offset + 4);
3371 bfd_put_32 (output_bfd, elf32_arm_plt_entry[2],
3372 splt->contents + h->plt.offset + 8);
3373 bfd_put_32 (output_bfd,
3374 (sgot->output_section->vma
3375 + sgot->output_offset
3376 + got_offset
3377 - splt->output_section->vma
3378 - splt->output_offset
3379 - h->plt.offset - 12),
3380 splt->contents + h->plt.offset + 12);
3381
3382 /* Fill in the entry in the global offset table. */
3383 bfd_put_32 (output_bfd,
3384 (splt->output_section->vma
3385 + splt->output_offset),
3386 sgot->contents + got_offset);
3387
3388 /* Fill in the entry in the .rel.plt section. */
3389 rel.r_offset = (sgot->output_section->vma
3390 + sgot->output_offset
3391 + got_offset);
3392 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
3393 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3394 ((Elf32_External_Rel *) srel->contents
3395 + plt_index));
3396
3397 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3398 {
3399 /* Mark the symbol as undefined, rather than as defined in
3400 the .plt section. Leave the value alone. */
3401 sym->st_shndx = SHN_UNDEF;
3402 /* If the symbol is weak, we do need to clear the value.
3403 Otherwise, the PLT entry would provide a definition for
3404 the symbol even if the symbol wasn't defined anywhere,
3405 and so the symbol would never be NULL. */
3406 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
3407 == 0)
3408 sym->st_value = 0;
3409 }
3410 }
3411
3412 if (h->got.offset != (bfd_vma) -1)
3413 {
3414 asection * sgot;
3415 asection * srel;
3416 Elf_Internal_Rel rel;
3417
3418 /* This symbol has an entry in the global offset table. Set it
3419 up. */
3420 sgot = bfd_get_section_by_name (dynobj, ".got");
3421 srel = bfd_get_section_by_name (dynobj, ".rel.got");
3422 BFD_ASSERT (sgot != NULL && srel != NULL);
3423
3424 rel.r_offset = (sgot->output_section->vma
3425 + sgot->output_offset
3426 + (h->got.offset &~ (bfd_vma) 1));
3427
3428 /* If this is a -Bsymbolic link, and the symbol is defined
3429 locally, we just want to emit a RELATIVE reloc. The entry in
3430 the global offset table will already have been initialized in
3431 the relocate_section function. */
3432 if (info->shared
3433 && (info->symbolic || h->dynindx == -1)
3434 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
3435 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
3436 else
3437 {
3438 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
3439 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
3440 }
3441
3442 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3443 ((Elf32_External_Rel *) srel->contents
3444 + srel->reloc_count));
3445 ++srel->reloc_count;
3446 }
3447
3448 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
3449 {
3450 asection * s;
3451 Elf_Internal_Rel rel;
3452
3453 /* This symbol needs a copy reloc. Set it up. */
3454 BFD_ASSERT (h->dynindx != -1
3455 && (h->root.type == bfd_link_hash_defined
3456 || h->root.type == bfd_link_hash_defweak));
3457
3458 s = bfd_get_section_by_name (h->root.u.def.section->owner,
3459 ".rel.bss");
3460 BFD_ASSERT (s != NULL);
3461
3462 rel.r_offset = (h->root.u.def.value
3463 + h->root.u.def.section->output_section->vma
3464 + h->root.u.def.section->output_offset);
3465 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
3466 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3467 ((Elf32_External_Rel *) s->contents
3468 + s->reloc_count));
3469 ++s->reloc_count;
3470 }
3471
3472 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3473 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
3474 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3475 sym->st_shndx = SHN_ABS;
3476
3477 return true;
3478 }
3479
3480 /* Finish up the dynamic sections. */
3481
3482 static boolean
3483 elf32_arm_finish_dynamic_sections (output_bfd, info)
3484 bfd * output_bfd;
3485 struct bfd_link_info * info;
3486 {
3487 bfd * dynobj;
3488 asection * sgot;
3489 asection * sdyn;
3490
3491 dynobj = elf_hash_table (info)->dynobj;
3492
3493 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3494 BFD_ASSERT (sgot != NULL);
3495 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3496
3497 if (elf_hash_table (info)->dynamic_sections_created)
3498 {
3499 asection *splt;
3500 Elf32_External_Dyn *dyncon, *dynconend;
3501
3502 splt = bfd_get_section_by_name (dynobj, ".plt");
3503 BFD_ASSERT (splt != NULL && sdyn != NULL);
3504
3505 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3506 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
3507
3508 for (; dyncon < dynconend; dyncon++)
3509 {
3510 Elf_Internal_Dyn dyn;
3511 const char * name;
3512 asection * s;
3513
3514 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3515
3516 switch (dyn.d_tag)
3517 {
3518 default:
3519 break;
3520
3521 case DT_PLTGOT:
3522 name = ".got";
3523 goto get_vma;
3524 case DT_JMPREL:
3525 name = ".rel.plt";
3526 get_vma:
3527 s = bfd_get_section_by_name (output_bfd, name);
3528 BFD_ASSERT (s != NULL);
3529 dyn.d_un.d_ptr = s->vma;
3530 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3531 break;
3532
3533 case DT_PLTRELSZ:
3534 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3535 BFD_ASSERT (s != NULL);
3536 if (s->_cooked_size != 0)
3537 dyn.d_un.d_val = s->_cooked_size;
3538 else
3539 dyn.d_un.d_val = s->_raw_size;
3540 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3541 break;
3542
3543 case DT_RELSZ:
3544 /* My reading of the SVR4 ABI indicates that the
3545 procedure linkage table relocs (DT_JMPREL) should be
3546 included in the overall relocs (DT_REL). This is
3547 what Solaris does. However, UnixWare can not handle
3548 that case. Therefore, we override the DT_RELSZ entry
3549 here to make it not include the JMPREL relocs. Since
3550 the linker script arranges for .rel.plt to follow all
3551 other relocation sections, we don't have to worry
3552 about changing the DT_REL entry. */
3553 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3554 if (s != NULL)
3555 {
3556 if (s->_cooked_size != 0)
3557 dyn.d_un.d_val -= s->_cooked_size;
3558 else
3559 dyn.d_un.d_val -= s->_raw_size;
3560 }
3561 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3562 break;
3563
3564 /* Set the bottom bit of DT_INIT/FINI if the
3565 corresponding function is Thumb. */
3566 case DT_INIT:
3567 name = info->init_function;
3568 goto get_sym;
3569 case DT_FINI:
3570 name = info->fini_function;
3571 get_sym:
3572 /* If it wasn't set by elf_bfd_final_link
3573 then there is nothing to ajdust. */
3574 if (dyn.d_un.d_val != 0)
3575 {
3576 struct elf_link_hash_entry * eh;
3577
3578 eh = elf_link_hash_lookup (elf_hash_table (info), name,
3579 false, false, true);
3580 if (eh != (struct elf_link_hash_entry *) NULL
3581 && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
3582 {
3583 dyn.d_un.d_val |= 1;
3584 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3585 }
3586 }
3587 break;
3588 }
3589 }
3590
3591 /* Fill in the first entry in the procedure linkage table. */
3592 if (splt->_raw_size > 0)
3593 {
3594 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[0], splt->contents + 0);
3595 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[1], splt->contents + 4);
3596 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[2], splt->contents + 8);
3597 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[3], splt->contents + 12);
3598 }
3599
3600 /* UnixWare sets the entsize of .plt to 4, although that doesn't
3601 really seem like the right value. */
3602 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
3603 }
3604
3605 /* Fill in the first three entries in the global offset table. */
3606 if (sgot->_raw_size > 0)
3607 {
3608 if (sdyn == NULL)
3609 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
3610 else
3611 bfd_put_32 (output_bfd,
3612 sdyn->output_section->vma + sdyn->output_offset,
3613 sgot->contents);
3614 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
3615 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
3616 }
3617
3618 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
3619
3620 return true;
3621 }
3622
3623 static void
3624 elf32_arm_post_process_headers (abfd, link_info)
3625 bfd * abfd;
3626 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
3627 {
3628 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
3629
3630 i_ehdrp = elf_elfheader (abfd);
3631
3632 i_ehdrp->e_ident[EI_OSABI] = ARM_ELF_OS_ABI_VERSION;
3633 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
3634 }
3635
3636 static enum elf_reloc_type_class
3637 elf32_arm_reloc_type_class (rela)
3638 const Elf_Internal_Rela *rela;
3639 {
3640 switch ((int) ELF32_R_TYPE (rela->r_info))
3641 {
3642 case R_ARM_RELATIVE:
3643 return reloc_class_relative;
3644 case R_ARM_JUMP_SLOT:
3645 return reloc_class_plt;
3646 case R_ARM_COPY:
3647 return reloc_class_copy;
3648 default:
3649 return reloc_class_normal;
3650 }
3651 }
3652
3653
3654 #define ELF_ARCH bfd_arch_arm
3655 #define ELF_MACHINE_CODE EM_ARM
3656 #define ELF_MAXPAGESIZE 0x8000
3657
3658 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
3659 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
3660 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
3661 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
3662 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
3663 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
3664 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
3665
3666 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
3667 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
3668 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
3669 #define elf_backend_check_relocs elf32_arm_check_relocs
3670 #define elf_backend_relocate_section elf32_arm_relocate_section
3671 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
3672 #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
3673 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
3674 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
3675 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
3676 #define elf_backend_post_process_headers elf32_arm_post_process_headers
3677 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
3678
3679 #define elf_backend_can_gc_sections 1
3680 #define elf_backend_plt_readonly 1
3681 #define elf_backend_want_got_plt 1
3682 #define elf_backend_want_plt_sym 0
3683 #if !USE_REL
3684 #define elf_backend_rela_normal 1
3685 #endif
3686
3687 #define elf_backend_got_header_size 12
3688 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
3689
3690 #include "elf32-target.h"
3691
This page took 0.169593 seconds and 4 git commands to generate.