f3b2a44ecbd21aaa9b99cfb80291f1a6723abc6b
[deliverable/binutils-gdb.git] / bfd / elf32-arm.h
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20
21 typedef unsigned long int insn32;
22 typedef unsigned short int insn16;
23
24 static boolean elf32_arm_set_private_flags
25 PARAMS ((bfd *, flagword));
26 static boolean elf32_arm_copy_private_bfd_data
27 PARAMS ((bfd *, bfd *));
28 static boolean elf32_arm_merge_private_bfd_data
29 PARAMS ((bfd *, bfd *));
30 static boolean elf32_arm_print_private_bfd_data
31 PARAMS ((bfd *, PTR));
32 static int elf32_arm_get_symbol_type
33 PARAMS (( Elf_Internal_Sym *, int));
34 static struct bfd_link_hash_table *elf32_arm_link_hash_table_create
35 PARAMS ((bfd *));
36 static bfd_reloc_status_type elf32_arm_final_link_relocate
37 PARAMS ((reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
38 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
39 const char *, unsigned char, struct elf_link_hash_entry *));
40 static insn32 insert_thumb_branch
41 PARAMS ((insn32, int));
42 static struct elf_link_hash_entry *find_thumb_glue
43 PARAMS ((struct bfd_link_info *, CONST char *, bfd *));
44 static struct elf_link_hash_entry *find_arm_glue
45 PARAMS ((struct bfd_link_info *, CONST char *, bfd *));
46 static void record_arm_to_thumb_glue
47 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
48 static void record_thumb_to_arm_glue
49 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
50 static void elf32_arm_post_process_headers
51 PARAMS ((bfd *, struct bfd_link_info *));
52 static int elf32_arm_to_thumb_stub
53 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
54 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
55 static int elf32_thumb_to_arm_stub
56 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
57 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
58
59 #define INTERWORK_FLAG(abfd) (elf_elfheader (abfd)->e_flags & EF_INTERWORK)
60
61 /* The linker script knows the section names for placement.
62 The entry_names are used to do simple name mangling on the stubs.
63 Given a function name, and its type, the stub can be found. The
64 name can be changed. The only requirement is the %s be present. */
65 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
66 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
67
68 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
69 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
70
71 /* The name of the dynamic interpreter. This is put in the .interp
72 section. */
73 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
74
75 /* The size in bytes of an entry in the procedure linkage table. */
76 #define PLT_ENTRY_SIZE 16
77
78 /* The first entry in a procedure linkage table looks like
79 this. It is set up so that any shared library function that is
80 called before the relocation has been set up calls the dynamic
81 linker first. */
82 static const bfd_byte elf32_arm_plt0_entry [PLT_ENTRY_SIZE] =
83 {
84 0x04, 0xe0, 0x2d, 0xe5, /* str lr, [sp, #-4]! */
85 0x10, 0xe0, 0x9f, 0xe5, /* ldr lr, [pc, #16] */
86 0x0e, 0xe0, 0x8f, 0xe0, /* adr lr, pc, lr */
87 0x08, 0xf0, 0xbe, 0xe5 /* ldr pc, [lr, #8]! */
88 };
89
90 /* Subsequent entries in a procedure linkage table look like
91 this. */
92 static const bfd_byte elf32_arm_plt_entry [PLT_ENTRY_SIZE] =
93 {
94 0x04, 0xc0, 0x9f, 0xe5, /* ldr ip, [pc, #4] */
95 0x0c, 0xc0, 0x8f, 0xe0, /* add ip, pc, ip */
96 0x00, 0xf0, 0x9c, 0xe5, /* ldr pc, [ip] */
97 0x00, 0x00, 0x00, 0x00 /* offset to symbol in got */
98 };
99
100 /* The ARM linker needs to keep track of the number of relocs that it
101 decides to copy in check_relocs for each symbol. This is so that
102 it can discard PC relative relocs if it doesn't need them when
103 linking with -Bsymbolic. We store the information in a field
104 extending the regular ELF linker hash table. */
105
106 /* This structure keeps track of the number of PC relative relocs we
107 have copied for a given symbol. */
108 struct elf32_arm_pcrel_relocs_copied
109 {
110 /* Next section. */
111 struct elf32_arm_pcrel_relocs_copied * next;
112 /* A section in dynobj. */
113 asection * section;
114 /* Number of relocs copied in this section. */
115 bfd_size_type count;
116 };
117
118 /* Arm ELF linker hash entry. */
119 struct elf32_arm_link_hash_entry
120 {
121 struct elf_link_hash_entry root;
122
123 /* Number of PC relative relocs copied for this symbol. */
124 struct elf32_arm_pcrel_relocs_copied * pcrel_relocs_copied;
125 };
126
127 /* Declare this now that the above structures are defined. */
128 static boolean elf32_arm_discard_copies
129 PARAMS ((struct elf32_arm_link_hash_entry *, PTR));
130
131 /* Traverse an arm ELF linker hash table. */
132 #define elf32_arm_link_hash_traverse(table, func, info) \
133 (elf_link_hash_traverse \
134 (&(table)->root, \
135 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
136 (info)))
137
138 /* Get the ARM elf linker hash table from a link_info structure. */
139 #define elf32_arm_hash_table(info) \
140 ((struct elf32_arm_link_hash_table *) ((info)->hash))
141
142 /* ARM ELF linker hash table. */
143 struct elf32_arm_link_hash_table
144 {
145 /* The main hash table. */
146 struct elf_link_hash_table root;
147
148 /* The size in bytes of the section containg the Thumb-to-ARM glue. */
149 long int thumb_glue_size;
150
151 /* The size in bytes of the section containg the ARM-to-Thumb glue. */
152 long int arm_glue_size;
153
154 /* An arbitary input BFD chosen to hold the glue sections. */
155 bfd * bfd_of_glue_owner;
156
157 /* A boolean indicating whether knowledge of the ARM's pipeline
158 length should be applied by the linker. */
159 int no_pipeline_knowledge;
160 };
161
162
163 /* Create an entry in an ARM ELF linker hash table. */
164
165 static struct bfd_hash_entry *
166 elf32_arm_link_hash_newfunc (entry, table, string)
167 struct bfd_hash_entry * entry;
168 struct bfd_hash_table * table;
169 const char * string;
170 {
171 struct elf32_arm_link_hash_entry * ret =
172 (struct elf32_arm_link_hash_entry *) entry;
173
174 /* Allocate the structure if it has not already been allocated by a
175 subclass. */
176 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
177 ret = ((struct elf32_arm_link_hash_entry *)
178 bfd_hash_allocate (table,
179 sizeof (struct elf32_arm_link_hash_entry)));
180 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
181 return (struct bfd_hash_entry *) ret;
182
183 /* Call the allocation method of the superclass. */
184 ret = ((struct elf32_arm_link_hash_entry *)
185 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
186 table, string));
187 if (ret != (struct elf32_arm_link_hash_entry *) NULL)
188 ret->pcrel_relocs_copied = NULL;
189
190 return (struct bfd_hash_entry *) ret;
191 }
192
193 /* Create an ARM elf linker hash table. */
194
195 static struct bfd_link_hash_table *
196 elf32_arm_link_hash_table_create (abfd)
197 bfd *abfd;
198 {
199 struct elf32_arm_link_hash_table *ret;
200
201 ret = ((struct elf32_arm_link_hash_table *)
202 bfd_alloc (abfd, sizeof (struct elf32_arm_link_hash_table)));
203 if (ret == (struct elf32_arm_link_hash_table *) NULL)
204 return NULL;
205
206 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
207 elf32_arm_link_hash_newfunc))
208 {
209 bfd_release (abfd, ret);
210 return NULL;
211 }
212
213 ret->thumb_glue_size = 0;
214 ret->arm_glue_size = 0;
215 ret->bfd_of_glue_owner = NULL;
216 ret->no_pipeline_knowledge = 0;
217
218 return &ret->root.root;
219 }
220
221 /* Locate the Thumb encoded calling stub for NAME. */
222
223 static struct elf_link_hash_entry *
224 find_thumb_glue (link_info, name, input_bfd)
225 struct bfd_link_info *link_info;
226 CONST char *name;
227 bfd *input_bfd;
228 {
229 char *tmp_name;
230 struct elf_link_hash_entry *hash;
231 struct elf32_arm_link_hash_table *hash_table;
232
233 /* We need a pointer to the armelf specific hash table. */
234 hash_table = elf32_arm_hash_table (link_info);
235
236 tmp_name = ((char *)
237 bfd_malloc (strlen (name) + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1));
238
239 BFD_ASSERT (tmp_name);
240
241 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
242
243 hash = elf_link_hash_lookup
244 (&(hash_table)->root, tmp_name, false, false, true);
245
246 if (hash == NULL)
247 /* xgettext:c-format */
248 _bfd_error_handler (_("%s: unable to find THUMB glue '%s' for `%s'"),
249 bfd_get_filename (input_bfd), tmp_name, name);
250
251 free (tmp_name);
252
253 return hash;
254 }
255
256 /* Locate the ARM encoded calling stub for NAME. */
257
258 static struct elf_link_hash_entry *
259 find_arm_glue (link_info, name, input_bfd)
260 struct bfd_link_info *link_info;
261 CONST char *name;
262 bfd *input_bfd;
263 {
264 char *tmp_name;
265 struct elf_link_hash_entry *myh;
266 struct elf32_arm_link_hash_table *hash_table;
267
268 /* We need a pointer to the elfarm specific hash table. */
269 hash_table = elf32_arm_hash_table (link_info);
270
271 tmp_name = ((char *)
272 bfd_malloc (strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1));
273
274 BFD_ASSERT (tmp_name);
275
276 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
277
278 myh = elf_link_hash_lookup
279 (&(hash_table)->root, tmp_name, false, false, true);
280
281 if (myh == NULL)
282 /* xgettext:c-format */
283 _bfd_error_handler (_("%s: unable to find ARM glue '%s' for `%s'"),
284 bfd_get_filename (input_bfd), tmp_name, name);
285
286 free (tmp_name);
287
288 return myh;
289 }
290
291 /* ARM->Thumb glue:
292
293 .arm
294 __func_from_arm:
295 ldr r12, __func_addr
296 bx r12
297 __func_addr:
298 .word func @ behave as if you saw a ARM_32 reloc. */
299
300 #define ARM2THUMB_GLUE_SIZE 12
301 static const insn32 a2t1_ldr_insn = 0xe59fc000;
302 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
303 static const insn32 a2t3_func_addr_insn = 0x00000001;
304
305 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
306
307 .thumb .thumb
308 .align 2 .align 2
309 __func_from_thumb: __func_from_thumb:
310 bx pc push {r6, lr}
311 nop ldr r6, __func_addr
312 .arm mov lr, pc
313 __func_change_to_arm: bx r6
314 b func .arm
315 __func_back_to_thumb:
316 ldmia r13! {r6, lr}
317 bx lr
318 __func_addr:
319 .word func */
320
321 #define THUMB2ARM_GLUE_SIZE 8
322 static const insn16 t2a1_bx_pc_insn = 0x4778;
323 static const insn16 t2a2_noop_insn = 0x46c0;
324 static const insn32 t2a3_b_insn = 0xea000000;
325
326 static const insn16 t2a1_push_insn = 0xb540;
327 static const insn16 t2a2_ldr_insn = 0x4e03;
328 static const insn16 t2a3_mov_insn = 0x46fe;
329 static const insn16 t2a4_bx_insn = 0x4730;
330 static const insn32 t2a5_pop_insn = 0xe8bd4040;
331 static const insn32 t2a6_bx_insn = 0xe12fff1e;
332
333 boolean
334 bfd_elf32_arm_allocate_interworking_sections (info)
335 struct bfd_link_info * info;
336 {
337 asection * s;
338 bfd_byte * foo;
339 struct elf32_arm_link_hash_table * globals;
340
341 globals = elf32_arm_hash_table (info);
342
343 BFD_ASSERT (globals != NULL);
344
345 if (globals->arm_glue_size != 0)
346 {
347 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
348
349 s = bfd_get_section_by_name
350 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
351
352 BFD_ASSERT (s != NULL);
353
354 foo = (bfd_byte *) bfd_alloc
355 (globals->bfd_of_glue_owner, globals->arm_glue_size);
356
357 s->_raw_size = s->_cooked_size = globals->arm_glue_size;
358 s->contents = foo;
359 }
360
361 if (globals->thumb_glue_size != 0)
362 {
363 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
364
365 s = bfd_get_section_by_name
366 (globals->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
367
368 BFD_ASSERT (s != NULL);
369
370 foo = (bfd_byte *) bfd_alloc
371 (globals->bfd_of_glue_owner, globals->thumb_glue_size);
372
373 s->_raw_size = s->_cooked_size = globals->thumb_glue_size;
374 s->contents = foo;
375 }
376
377 return true;
378 }
379
380 static void
381 record_arm_to_thumb_glue (link_info, h)
382 struct bfd_link_info * link_info;
383 struct elf_link_hash_entry * h;
384 {
385 const char * name = h->root.root.string;
386 register asection * s;
387 char * tmp_name;
388 struct elf_link_hash_entry * myh;
389 struct elf32_arm_link_hash_table * globals;
390
391 globals = elf32_arm_hash_table (link_info);
392
393 BFD_ASSERT (globals != NULL);
394 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
395
396 s = bfd_get_section_by_name
397 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
398
399 BFD_ASSERT (s != NULL);
400
401 tmp_name = ((char *)
402 bfd_malloc (strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1));
403
404 BFD_ASSERT (tmp_name);
405
406 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
407
408 myh = elf_link_hash_lookup
409 (&(globals)->root, tmp_name, false, false, true);
410
411 if (myh != NULL)
412 {
413 /* We've already seen this guy. */
414 free (tmp_name);
415 return;
416 }
417
418 /* The only trick here is using hash_table->arm_glue_size as the value. Even
419 though the section isn't allocated yet, this is where we will be putting
420 it. */
421 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner, tmp_name,
422 BSF_GLOBAL,
423 s, globals->arm_glue_size + 1,
424 NULL, true, false,
425 (struct bfd_link_hash_entry **) &myh);
426
427 free (tmp_name);
428
429 globals->arm_glue_size += ARM2THUMB_GLUE_SIZE;
430
431 return;
432 }
433
434 static void
435 record_thumb_to_arm_glue (link_info, h)
436 struct bfd_link_info *link_info;
437 struct elf_link_hash_entry *h;
438 {
439 const char *name = h->root.root.string;
440 register asection *s;
441 char *tmp_name;
442 struct elf_link_hash_entry *myh;
443 struct elf32_arm_link_hash_table *hash_table;
444 char bind;
445
446 hash_table = elf32_arm_hash_table (link_info);
447
448 BFD_ASSERT (hash_table != NULL);
449 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
450
451 s = bfd_get_section_by_name
452 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
453
454 BFD_ASSERT (s != NULL);
455
456 tmp_name = (char *) bfd_malloc (strlen (name) + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
457
458 BFD_ASSERT (tmp_name);
459
460 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
461
462 myh = elf_link_hash_lookup
463 (&(hash_table)->root, tmp_name, false, false, true);
464
465 if (myh != NULL)
466 {
467 /* We've already seen this guy. */
468 free (tmp_name);
469 return;
470 }
471
472 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner, tmp_name,
473 BSF_GLOBAL, s, hash_table->thumb_glue_size + 1,
474 NULL, true, false,
475 (struct bfd_link_hash_entry **) &myh);
476
477 /* If we mark it 'Thumb', the disassembler will do a better job. */
478 bind = ELF_ST_BIND (myh->type);
479 myh->type = ELF_ST_INFO (bind, STT_ARM_TFUNC);
480
481 free (tmp_name);
482
483 #define CHANGE_TO_ARM "__%s_change_to_arm"
484 #define BACK_FROM_ARM "__%s_back_from_arm"
485
486 /* Allocate another symbol to mark where we switch to Arm mode. */
487 tmp_name = (char *) bfd_malloc (strlen (name) + strlen (CHANGE_TO_ARM) + 1);
488
489 BFD_ASSERT (tmp_name);
490
491 sprintf (tmp_name, CHANGE_TO_ARM, name);
492
493 myh = NULL;
494
495 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner, tmp_name,
496 BSF_LOCAL, s, hash_table->thumb_glue_size + 4,
497 NULL, true, false,
498 (struct bfd_link_hash_entry **) &myh);
499
500 free (tmp_name);
501
502 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
503
504 return;
505 }
506
507 /* Select a BFD to be used to hold the sections used by the glue code.
508 This function is called from the linker scripts in ld/emultempl/
509 {armelf/pe}.em */
510
511 boolean
512 bfd_elf32_arm_get_bfd_for_interworking (abfd, info)
513 bfd *abfd;
514 struct bfd_link_info *info;
515 {
516 struct elf32_arm_link_hash_table *globals;
517 flagword flags;
518 asection *sec;
519
520 /* If we are only performing a partial link do not bother
521 getting a bfd to hold the glue. */
522 if (info->relocateable)
523 return true;
524
525 globals = elf32_arm_hash_table (info);
526
527 BFD_ASSERT (globals != NULL);
528
529 if (globals->bfd_of_glue_owner != NULL)
530 return true;
531
532 sec = bfd_get_section_by_name (abfd, ARM2THUMB_GLUE_SECTION_NAME);
533
534 if (sec == NULL)
535 {
536 /* Note: we do not include the flag SEC_LINKER_CREATED, as this
537 will prevent elf_link_input_bfd() from processing the contents
538 of this section. */
539 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
540
541 sec = bfd_make_section (abfd, ARM2THUMB_GLUE_SECTION_NAME);
542
543 if (sec == NULL
544 || !bfd_set_section_flags (abfd, sec, flags)
545 || !bfd_set_section_alignment (abfd, sec, 2))
546 return false;
547
548 /* Set the gc mark to prevent the section from being removed by garbage
549 collection, despite the fact that no relocs refer to this section. */
550 sec->gc_mark = 1;
551 }
552
553 sec = bfd_get_section_by_name (abfd, THUMB2ARM_GLUE_SECTION_NAME);
554
555 if (sec == NULL)
556 {
557 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
558
559 sec = bfd_make_section (abfd, THUMB2ARM_GLUE_SECTION_NAME);
560
561 if (sec == NULL
562 || !bfd_set_section_flags (abfd, sec, flags)
563 || !bfd_set_section_alignment (abfd, sec, 2))
564 return false;
565
566 sec->gc_mark = 1;
567 }
568
569 /* Save the bfd for later use. */
570 globals->bfd_of_glue_owner = abfd;
571
572 return true;
573 }
574
575 boolean
576 bfd_elf32_arm_process_before_allocation (abfd, link_info, no_pipeline_knowledge)
577 bfd *abfd;
578 struct bfd_link_info *link_info;
579 int no_pipeline_knowledge;
580 {
581 Elf_Internal_Shdr *symtab_hdr;
582 Elf_Internal_Rela *free_relocs = NULL;
583 Elf_Internal_Rela *irel, *irelend;
584 bfd_byte *contents = NULL;
585 bfd_byte *free_contents = NULL;
586 Elf32_External_Sym *extsyms = NULL;
587 Elf32_External_Sym *free_extsyms = NULL;
588
589 asection *sec;
590 struct elf32_arm_link_hash_table *globals;
591
592 /* If we are only performing a partial link do not bother
593 to construct any glue. */
594 if (link_info->relocateable)
595 return true;
596
597 /* Here we have a bfd that is to be included on the link. We have a hook
598 to do reloc rummaging, before section sizes are nailed down. */
599 globals = elf32_arm_hash_table (link_info);
600
601 BFD_ASSERT (globals != NULL);
602 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
603
604 globals->no_pipeline_knowledge = no_pipeline_knowledge;
605
606 /* Rummage around all the relocs and map the glue vectors. */
607 sec = abfd->sections;
608
609 if (sec == NULL)
610 return true;
611
612 for (; sec != NULL; sec = sec->next)
613 {
614 if (sec->reloc_count == 0)
615 continue;
616
617 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
618
619 /* Load the relocs. */
620 irel = (_bfd_elf32_link_read_relocs (abfd, sec, (PTR) NULL,
621 (Elf_Internal_Rela *) NULL, false));
622
623 BFD_ASSERT (irel != 0);
624
625 irelend = irel + sec->reloc_count;
626 for (; irel < irelend; irel++)
627 {
628 long r_type;
629 unsigned long r_index;
630
631 struct elf_link_hash_entry *h;
632
633 r_type = ELF32_R_TYPE (irel->r_info);
634 r_index = ELF32_R_SYM (irel->r_info);
635
636 /* These are the only relocation types we care about. */
637 if ( r_type != R_ARM_PC24
638 && r_type != R_ARM_THM_PC22)
639 continue;
640
641 /* Get the section contents if we haven't done so already. */
642 if (contents == NULL)
643 {
644 /* Get cached copy if it exists. */
645 if (elf_section_data (sec)->this_hdr.contents != NULL)
646 contents = elf_section_data (sec)->this_hdr.contents;
647 else
648 {
649 /* Go get them off disk. */
650 contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
651 if (contents == NULL)
652 goto error_return;
653
654 free_contents = contents;
655
656 if (!bfd_get_section_contents (abfd, sec, contents,
657 (file_ptr) 0, sec->_raw_size))
658 goto error_return;
659 }
660 }
661
662 /* Read this BFD's symbols if we haven't done so already. */
663 if (extsyms == NULL)
664 {
665 /* Get cached copy if it exists. */
666 if (symtab_hdr->contents != NULL)
667 extsyms = (Elf32_External_Sym *) symtab_hdr->contents;
668 else
669 {
670 /* Go get them off disk. */
671 extsyms = ((Elf32_External_Sym *)
672 bfd_malloc (symtab_hdr->sh_size));
673 if (extsyms == NULL)
674 goto error_return;
675
676 free_extsyms = extsyms;
677
678 if (bfd_seek (abfd, symtab_hdr->sh_offset, SEEK_SET) != 0
679 || (bfd_read (extsyms, 1, symtab_hdr->sh_size, abfd)
680 != symtab_hdr->sh_size))
681 goto error_return;
682 }
683 }
684
685 /* If the relocation is not against a symbol it cannot concern us. */
686 h = NULL;
687
688 /* We don't care about local symbols. */
689 if (r_index < symtab_hdr->sh_info)
690 continue;
691
692 /* This is an external symbol. */
693 r_index -= symtab_hdr->sh_info;
694 h = (struct elf_link_hash_entry *)
695 elf_sym_hashes (abfd)[r_index];
696
697 /* If the relocation is against a static symbol it must be within
698 the current section and so cannot be a cross ARM/Thumb relocation. */
699 if (h == NULL)
700 continue;
701
702 switch (r_type)
703 {
704 case R_ARM_PC24:
705 /* This one is a call from arm code. We need to look up
706 the target of the call. If it is a thumb target, we
707 insert glue. */
708 if (ELF_ST_TYPE(h->type) == STT_ARM_TFUNC)
709 record_arm_to_thumb_glue (link_info, h);
710 break;
711
712 case R_ARM_THM_PC22:
713 /* This one is a call from thumb code. We look
714 up the target of the call. If it is not a thumb
715 target, we insert glue. */
716 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC)
717 record_thumb_to_arm_glue (link_info, h);
718 break;
719
720 default:
721 break;
722 }
723 }
724 }
725
726 return true;
727
728 error_return:
729 if (free_relocs != NULL)
730 free (free_relocs);
731 if (free_contents != NULL)
732 free (free_contents);
733 if (free_extsyms != NULL)
734 free (free_extsyms);
735
736 return false;
737 }
738
739 /* The thumb form of a long branch is a bit finicky, because the offset
740 encoding is split over two fields, each in it's own instruction. They
741 can occur in any order. So given a thumb form of long branch, and an
742 offset, insert the offset into the thumb branch and return finished
743 instruction.
744
745 It takes two thumb instructions to encode the target address. Each has
746 11 bits to invest. The upper 11 bits are stored in one (identifed by
747 H-0.. see below), the lower 11 bits are stored in the other (identified
748 by H-1).
749
750 Combine together and shifted left by 1 (it's a half word address) and
751 there you have it.
752
753 Op: 1111 = F,
754 H-0, upper address-0 = 000
755 Op: 1111 = F,
756 H-1, lower address-0 = 800
757
758 They can be ordered either way, but the arm tools I've seen always put
759 the lower one first. It probably doesn't matter. krk@cygnus.com
760
761 XXX: Actually the order does matter. The second instruction (H-1)
762 moves the computed address into the PC, so it must be the second one
763 in the sequence. The problem, however is that whilst little endian code
764 stores the instructions in HI then LOW order, big endian code does the
765 reverse. nickc@cygnus.com. */
766
767 #define LOW_HI_ORDER 0xF800F000
768 #define HI_LOW_ORDER 0xF000F800
769
770 static insn32
771 insert_thumb_branch (br_insn, rel_off)
772 insn32 br_insn;
773 int rel_off;
774 {
775 unsigned int low_bits;
776 unsigned int high_bits;
777
778 BFD_ASSERT ((rel_off & 1) != 1);
779
780 rel_off >>= 1; /* Half word aligned address. */
781 low_bits = rel_off & 0x000007FF; /* The bottom 11 bits. */
782 high_bits = (rel_off >> 11) & 0x000007FF; /* The top 11 bits. */
783
784 if ((br_insn & LOW_HI_ORDER) == LOW_HI_ORDER)
785 br_insn = LOW_HI_ORDER | (low_bits << 16) | high_bits;
786 else if ((br_insn & HI_LOW_ORDER) == HI_LOW_ORDER)
787 br_insn = HI_LOW_ORDER | (high_bits << 16) | low_bits;
788 else
789 /* FIXME: abort is probably not the right call. krk@cygnus.com */
790 abort (); /* error - not a valid branch instruction form. */
791
792 return br_insn;
793 }
794
795 /* Thumb code calling an ARM function. */
796
797 static int
798 elf32_thumb_to_arm_stub (info, name, input_bfd, output_bfd, input_section,
799 hit_data, sym_sec, offset, addend, val)
800 struct bfd_link_info * info;
801 const char * name;
802 bfd * input_bfd;
803 bfd * output_bfd;
804 asection * input_section;
805 bfd_byte * hit_data;
806 asection * sym_sec;
807 bfd_vma offset;
808 bfd_signed_vma addend;
809 bfd_vma val;
810 {
811 asection * s = 0;
812 long int my_offset;
813 unsigned long int tmp;
814 long int ret_offset;
815 struct elf_link_hash_entry * myh;
816 struct elf32_arm_link_hash_table * globals;
817
818 myh = find_thumb_glue (info, name, input_bfd);
819 if (myh == NULL)
820 return false;
821
822 globals = elf32_arm_hash_table (info);
823
824 BFD_ASSERT (globals != NULL);
825 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
826
827 my_offset = myh->root.u.def.value;
828
829 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
830 THUMB2ARM_GLUE_SECTION_NAME);
831
832 BFD_ASSERT (s != NULL);
833 BFD_ASSERT (s->contents != NULL);
834 BFD_ASSERT (s->output_section != NULL);
835
836 if ((my_offset & 0x01) == 0x01)
837 {
838 if (sym_sec != NULL
839 && sym_sec->owner != NULL
840 && !INTERWORK_FLAG (sym_sec->owner))
841 {
842 _bfd_error_handler
843 (_("%s(%s): warning: interworking not enabled."),
844 bfd_get_filename (sym_sec->owner), name);
845 _bfd_error_handler
846 (_(" first occurrence: %s: thumb call to arm"),
847 bfd_get_filename (input_bfd));
848
849 return false;
850 }
851
852 --my_offset;
853 myh->root.u.def.value = my_offset;
854
855 bfd_put_16 (output_bfd, t2a1_bx_pc_insn,
856 s->contents + my_offset);
857
858 bfd_put_16 (output_bfd, t2a2_noop_insn,
859 s->contents + my_offset + 2);
860
861 ret_offset =
862 /* Address of destination of the stub. */
863 ((bfd_signed_vma) val)
864 - ((bfd_signed_vma)
865 /* Offset from the start of the current section to the start of the stubs. */
866 (s->output_offset
867 /* Offset of the start of this stub from the start of the stubs. */
868 + my_offset
869 /* Address of the start of the current section. */
870 + s->output_section->vma)
871 /* The branch instruction is 4 bytes into the stub. */
872 + 4
873 /* ARM branches work from the pc of the instruction + 8. */
874 + 8);
875
876 bfd_put_32 (output_bfd,
877 t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
878 s->contents + my_offset + 4);
879 }
880
881 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
882
883 /* Now go back and fix up the original BL insn to point
884 to here. */
885 ret_offset =
886 s->output_offset
887 + my_offset
888 - (input_section->output_offset
889 + offset + addend)
890 - 8;
891
892 tmp = bfd_get_32 (input_bfd, hit_data
893 - input_section->vma);
894
895 bfd_put_32 (output_bfd,
896 insert_thumb_branch (tmp, ret_offset),
897 hit_data - input_section->vma);
898
899 return true;
900 }
901
902 /* Arm code calling a Thumb function. */
903
904 static int
905 elf32_arm_to_thumb_stub (info, name, input_bfd, output_bfd, input_section,
906 hit_data, sym_sec, offset, addend, val)
907 struct bfd_link_info * info;
908 const char * name;
909 bfd * input_bfd;
910 bfd * output_bfd;
911 asection * input_section;
912 bfd_byte * hit_data;
913 asection * sym_sec;
914 bfd_vma offset;
915 bfd_signed_vma addend;
916 bfd_vma val;
917 {
918 unsigned long int tmp;
919 long int my_offset;
920 asection * s;
921 long int ret_offset;
922 struct elf_link_hash_entry * myh;
923 struct elf32_arm_link_hash_table * globals;
924
925 myh = find_arm_glue (info, name, input_bfd);
926 if (myh == NULL)
927 return false;
928
929 globals = elf32_arm_hash_table (info);
930
931 BFD_ASSERT (globals != NULL);
932 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
933
934 my_offset = myh->root.u.def.value;
935 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
936 ARM2THUMB_GLUE_SECTION_NAME);
937 BFD_ASSERT (s != NULL);
938 BFD_ASSERT (s->contents != NULL);
939 BFD_ASSERT (s->output_section != NULL);
940
941 if ((my_offset & 0x01) == 0x01)
942 {
943 if (sym_sec != NULL
944 && sym_sec->owner != NULL
945 && !INTERWORK_FLAG (sym_sec->owner))
946 {
947 _bfd_error_handler
948 (_("%s(%s): warning: interworking not enabled."),
949 bfd_get_filename (sym_sec->owner), name);
950 _bfd_error_handler
951 (_(" first occurrence: %s: arm call to thumb"),
952 bfd_get_filename (input_bfd));
953 }
954
955 --my_offset;
956 myh->root.u.def.value = my_offset;
957
958 bfd_put_32 (output_bfd, a2t1_ldr_insn,
959 s->contents + my_offset);
960
961 bfd_put_32 (output_bfd, a2t2_bx_r12_insn,
962 s->contents + my_offset + 4);
963
964 /* It's a thumb address. Add the low order bit. */
965 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
966 s->contents + my_offset + 8);
967 }
968
969 BFD_ASSERT (my_offset <= globals->arm_glue_size);
970
971 tmp = bfd_get_32 (input_bfd, hit_data);
972 tmp = tmp & 0xFF000000;
973
974 /* Somehow these are both 4 too far, so subtract 8. */
975 ret_offset = s->output_offset
976 + my_offset
977 + s->output_section->vma
978 - (input_section->output_offset
979 + input_section->output_section->vma
980 + offset + addend)
981 - 8;
982
983 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
984
985 bfd_put_32 (output_bfd, tmp, hit_data
986 - input_section->vma);
987
988 return true;
989 }
990
991 /* Perform a relocation as part of a final link. */
992
993 static bfd_reloc_status_type
994 elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
995 input_section, contents, rel, value,
996 info, sym_sec, sym_name, sym_flags, h)
997 reloc_howto_type * howto;
998 bfd * input_bfd;
999 bfd * output_bfd;
1000 asection * input_section;
1001 bfd_byte * contents;
1002 Elf_Internal_Rela * rel;
1003 bfd_vma value;
1004 struct bfd_link_info * info;
1005 asection * sym_sec;
1006 const char * sym_name;
1007 unsigned char sym_flags;
1008 struct elf_link_hash_entry * h;
1009 {
1010 unsigned long r_type = howto->type;
1011 unsigned long r_symndx;
1012 bfd_byte * hit_data = contents + rel->r_offset;
1013 bfd * dynobj = NULL;
1014 Elf_Internal_Shdr * symtab_hdr;
1015 struct elf_link_hash_entry ** sym_hashes;
1016 bfd_vma * local_got_offsets;
1017 asection * sgot = NULL;
1018 asection * splt = NULL;
1019 asection * sreloc = NULL;
1020 bfd_vma addend;
1021 bfd_signed_vma signed_addend;
1022 struct elf32_arm_link_hash_table * globals;
1023
1024 globals = elf32_arm_hash_table (info);
1025
1026 dynobj = elf_hash_table (info)->dynobj;
1027 if (dynobj)
1028 {
1029 sgot = bfd_get_section_by_name (dynobj, ".got");
1030 splt = bfd_get_section_by_name (dynobj, ".plt");
1031 }
1032 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1033 sym_hashes = elf_sym_hashes (input_bfd);
1034 local_got_offsets = elf_local_got_offsets (input_bfd);
1035 r_symndx = ELF32_R_SYM (rel->r_info);
1036
1037 #ifdef USE_REL
1038 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
1039
1040 if (addend & ((howto->src_mask + 1) >> 1))
1041 {
1042 signed_addend = -1;
1043 signed_addend &= ~ howto->src_mask;
1044 signed_addend |= addend;
1045 }
1046 else
1047 signed_addend = addend;
1048 #else
1049 addend = signed_addend = rel->r_addend;
1050 #endif
1051
1052 switch (r_type)
1053 {
1054 case R_ARM_NONE:
1055 return bfd_reloc_ok;
1056
1057 case R_ARM_PC24:
1058 case R_ARM_ABS32:
1059 case R_ARM_REL32:
1060 #ifndef OLD_ARM_ABI
1061 case R_ARM_XPC25:
1062 #endif
1063 /* When generating a shared object, these relocations are copied
1064 into the output file to be resolved at run time. */
1065 if (info->shared
1066 && (r_type != R_ARM_PC24
1067 || (h != NULL
1068 && h->dynindx != -1
1069 && (! info->symbolic
1070 || (h->elf_link_hash_flags
1071 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1072 {
1073 Elf_Internal_Rel outrel;
1074 boolean skip, relocate;
1075
1076 if (sreloc == NULL)
1077 {
1078 const char * name;
1079
1080 name = (bfd_elf_string_from_elf_section
1081 (input_bfd,
1082 elf_elfheader (input_bfd)->e_shstrndx,
1083 elf_section_data (input_section)->rel_hdr.sh_name));
1084 if (name == NULL)
1085 return bfd_reloc_notsupported;
1086
1087 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
1088 && strcmp (bfd_get_section_name (input_bfd,
1089 input_section),
1090 name + 4) == 0);
1091
1092 sreloc = bfd_get_section_by_name (dynobj, name);
1093 BFD_ASSERT (sreloc != NULL);
1094 }
1095
1096 skip = false;
1097
1098 if (elf_section_data (input_section)->stab_info == NULL)
1099 outrel.r_offset = rel->r_offset;
1100 else
1101 {
1102 bfd_vma off;
1103
1104 off = (_bfd_stab_section_offset
1105 (output_bfd, &elf_hash_table (info)->stab_info,
1106 input_section,
1107 & elf_section_data (input_section)->stab_info,
1108 rel->r_offset));
1109 if (off == (bfd_vma) -1)
1110 skip = true;
1111 outrel.r_offset = off;
1112 }
1113
1114 outrel.r_offset += (input_section->output_section->vma
1115 + input_section->output_offset);
1116
1117 if (skip)
1118 {
1119 memset (&outrel, 0, sizeof outrel);
1120 relocate = false;
1121 }
1122 else if (r_type == R_ARM_PC24)
1123 {
1124 BFD_ASSERT (h != NULL && h->dynindx != -1);
1125 if ((input_section->flags & SEC_ALLOC) != 0)
1126 relocate = false;
1127 else
1128 relocate = true;
1129 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_PC24);
1130 }
1131 else
1132 {
1133 if (h == NULL
1134 || ((info->symbolic || h->dynindx == -1)
1135 && (h->elf_link_hash_flags
1136 & ELF_LINK_HASH_DEF_REGULAR) != 0))
1137 {
1138 relocate = true;
1139 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1140 }
1141 else
1142 {
1143 BFD_ASSERT (h->dynindx != -1);
1144 if ((input_section->flags & SEC_ALLOC) != 0)
1145 relocate = false;
1146 else
1147 relocate = true;
1148 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_ABS32);
1149 }
1150 }
1151
1152 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1153 (((Elf32_External_Rel *)
1154 sreloc->contents)
1155 + sreloc->reloc_count));
1156 ++sreloc->reloc_count;
1157
1158 /* If this reloc is against an external symbol, we do not want to
1159 fiddle with the addend. Otherwise, we need to include the symbol
1160 value so that it becomes an addend for the dynamic reloc. */
1161 if (! relocate)
1162 return bfd_reloc_ok;
1163
1164 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1165 contents, rel->r_offset, value,
1166 (bfd_vma) 0);
1167 }
1168 else switch (r_type)
1169 {
1170 #ifndef OLD_ARM_ABI
1171 case R_ARM_XPC25: /* Arm BLX instruction. */
1172 #endif
1173 case R_ARM_PC24: /* Arm B/BL instruction */
1174 #ifndef OLD_ARM_ABI
1175 if (r_type == R_ARM_XPC25)
1176 {
1177 /* Check for Arm calling Arm function. */
1178 /* FIXME: Should we translate the instruction into a BL
1179 instruction instead ? */
1180 if (sym_flags != STT_ARM_TFUNC)
1181 _bfd_error_handler (_("\
1182 %s: Warning: Arm BLX instruction targets Arm function '%s'."),
1183 bfd_get_filename (input_bfd),
1184 h ? h->root.root.string : "(local)");
1185 }
1186 else
1187 #endif
1188 {
1189 /* Check for Arm calling Thumb function. */
1190 if (sym_flags == STT_ARM_TFUNC)
1191 {
1192 elf32_arm_to_thumb_stub (info, sym_name, input_bfd, output_bfd,
1193 input_section, hit_data, sym_sec, rel->r_offset,
1194 signed_addend, value);
1195 return bfd_reloc_ok;
1196 }
1197 }
1198
1199 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1200 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0)
1201 {
1202 /* The old way of doing things. Trearing the addend as a
1203 byte sized field and adding in the pipeline offset. */
1204 value -= (input_section->output_section->vma
1205 + input_section->output_offset);
1206 value -= rel->r_offset;
1207 value += addend;
1208
1209 if (! globals->no_pipeline_knowledge)
1210 value -= 8;
1211 }
1212 else
1213 {
1214 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
1215 where:
1216 S is the address of the symbol in the relocation.
1217 P is address of the instruction being relocated.
1218 A is the addend (extracted from the instruction) in bytes.
1219
1220 S is held in 'value'.
1221 P is the base address of the section containing the instruction
1222 plus the offset of the reloc into that section, ie:
1223 (input_section->output_section->vma +
1224 input_section->output_offset +
1225 rel->r_offset).
1226 A is the addend, converted into bytes, ie:
1227 (signed_addend * 4)
1228
1229 Note: None of these operations have knowledge of the pipeline
1230 size of the processor, thus it is up to the assembler to encode
1231 this information into the addend. */
1232 value -= (input_section->output_section->vma
1233 + input_section->output_offset);
1234 value -= rel->r_offset;
1235 value += (signed_addend << howto->size);
1236
1237 /* Previous versions of this code also used to add in the pipeline
1238 offset here. This is wrong because the linker is not supposed
1239 to know about such things, and one day it might change. In order
1240 to support old binaries that need the old behaviour however, so
1241 we attempt to detect which ABI was used to create the reloc. */
1242 if (! globals->no_pipeline_knowledge)
1243 {
1244 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form */
1245
1246 i_ehdrp = elf_elfheader (input_bfd);
1247
1248 if (i_ehdrp->e_ident[EI_OSABI] == 0)
1249 value -= 8;
1250 }
1251 }
1252
1253 signed_addend = value;
1254 signed_addend >>= howto->rightshift;
1255
1256 /* It is not an error for an undefined weak reference to be
1257 out of range. Any program that branches to such a symbol
1258 is going to crash anyway, so there is no point worrying
1259 about getting the destination exactly right. */
1260 if (! h || h->root.type != bfd_link_hash_undefweak)
1261 {
1262 /* Perform a signed range check. */
1263 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
1264 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
1265 return bfd_reloc_overflow;
1266 }
1267
1268 #ifndef OLD_ARM_ABI
1269 /* If necessary set the H bit in the BLX instruction. */
1270 if (r_type == R_ARM_XPC25 && ((value & 2) == 2))
1271 value = (signed_addend & howto->dst_mask)
1272 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask))
1273 | (1 << 24);
1274 else
1275 #endif
1276 value = (signed_addend & howto->dst_mask)
1277 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
1278 break;
1279
1280 case R_ARM_ABS32:
1281 value += addend;
1282 if (sym_flags == STT_ARM_TFUNC)
1283 value |= 1;
1284 break;
1285
1286 case R_ARM_REL32:
1287 value -= (input_section->output_section->vma
1288 + input_section->output_offset);
1289 value += addend;
1290 break;
1291 }
1292
1293 bfd_put_32 (input_bfd, value, hit_data);
1294 return bfd_reloc_ok;
1295
1296 case R_ARM_ABS8:
1297 value += addend;
1298 if ((long) value > 0x7f || (long) value < -0x80)
1299 return bfd_reloc_overflow;
1300
1301 bfd_put_8 (input_bfd, value, hit_data);
1302 return bfd_reloc_ok;
1303
1304 case R_ARM_ABS16:
1305 value += addend;
1306
1307 if ((long) value > 0x7fff || (long) value < -0x8000)
1308 return bfd_reloc_overflow;
1309
1310 bfd_put_16 (input_bfd, value, hit_data);
1311 return bfd_reloc_ok;
1312
1313 case R_ARM_ABS12:
1314 /* Support ldr and str instruction for the arm */
1315 /* Also thumb b (unconditional branch). ??? Really? */
1316 value += addend;
1317
1318 if ((long) value > 0x7ff || (long) value < -0x800)
1319 return bfd_reloc_overflow;
1320
1321 value |= (bfd_get_32 (input_bfd, hit_data) & 0xfffff000);
1322 bfd_put_32 (input_bfd, value, hit_data);
1323 return bfd_reloc_ok;
1324
1325 case R_ARM_THM_ABS5:
1326 /* Support ldr and str instructions for the thumb. */
1327 #ifdef USE_REL
1328 /* Need to refetch addend. */
1329 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
1330 /* ??? Need to determine shift amount from operand size. */
1331 addend >>= howto->rightshift;
1332 #endif
1333 value += addend;
1334
1335 /* ??? Isn't value unsigned? */
1336 if ((long) value > 0x1f || (long) value < -0x10)
1337 return bfd_reloc_overflow;
1338
1339 /* ??? Value needs to be properly shifted into place first. */
1340 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
1341 bfd_put_16 (input_bfd, value, hit_data);
1342 return bfd_reloc_ok;
1343
1344 #ifndef OLD_ARM_ABI
1345 case R_ARM_THM_XPC22:
1346 #endif
1347 case R_ARM_THM_PC22:
1348 /* Thumb BL (branch long instruction). */
1349 {
1350 bfd_vma relocation;
1351 boolean overflow = false;
1352 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
1353 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
1354 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
1355 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
1356 bfd_vma check;
1357 bfd_signed_vma signed_check;
1358
1359 #ifdef USE_REL
1360 /* Need to refetch the addend and squish the two 11 bit pieces
1361 together. */
1362 {
1363 bfd_vma upper = upper_insn & 0x7ff;
1364 bfd_vma lower = lower_insn & 0x7ff;
1365 upper = (upper ^ 0x400) - 0x400; /* Sign extend. */
1366 addend = (upper << 12) | (lower << 1);
1367 signed_addend = addend;
1368 }
1369 #endif
1370 #ifndef OLD_ARM_ABI
1371 if (r_type == R_ARM_THM_XPC22)
1372 {
1373 /* Check for Thumb to Thumb call. */
1374 /* FIXME: Should we translate the instruction into a BL
1375 instruction instead ? */
1376 if (sym_flags == STT_ARM_TFUNC)
1377 _bfd_error_handler (_("\
1378 %s: Warning: Thumb BLX instruction targets thumb function '%s'."),
1379 bfd_get_filename (input_bfd),
1380 h ? h->root.root.string : "(local)");
1381 }
1382 else
1383 #endif
1384 {
1385 /* If it is not a call to Thumb, assume call to Arm.
1386 If it is a call relative to a section name, then it is not a
1387 function call at all, but rather a long jump. */
1388 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION)
1389 {
1390 if (elf32_thumb_to_arm_stub
1391 (info, sym_name, input_bfd, output_bfd, input_section,
1392 hit_data, sym_sec, rel->r_offset, signed_addend, value))
1393 return bfd_reloc_ok;
1394 else
1395 return bfd_reloc_dangerous;
1396 }
1397 }
1398
1399 relocation = value + signed_addend;
1400
1401 relocation -= (input_section->output_section->vma
1402 + input_section->output_offset
1403 + rel->r_offset);
1404
1405 if (! globals->no_pipeline_knowledge)
1406 {
1407 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form. */
1408
1409 i_ehdrp = elf_elfheader (input_bfd);
1410
1411 /* Previous versions of this code also used to add in the pipline
1412 offset here. This is wrong because the linker is not supposed
1413 to know about such things, and one day it might change. In order
1414 to support old binaries that need the old behaviour however, so
1415 we attempt to detect which ABI was used to create the reloc. */
1416 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1417 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0
1418 || i_ehdrp->e_ident[EI_OSABI] == 0)
1419 relocation += 4;
1420 }
1421
1422 check = relocation >> howto->rightshift;
1423
1424 /* If this is a signed value, the rightshift just dropped
1425 leading 1 bits (assuming twos complement). */
1426 if ((bfd_signed_vma) relocation >= 0)
1427 signed_check = check;
1428 else
1429 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
1430
1431 /* Assumes two's complement. */
1432 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
1433 overflow = true;
1434
1435 /* Put RELOCATION back into the insn. */
1436 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 12) & 0x7ff);
1437 lower_insn = (lower_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 1) & 0x7ff);
1438
1439 /* Put the relocated value back in the object file: */
1440 bfd_put_16 (input_bfd, upper_insn, hit_data);
1441 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
1442
1443 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
1444 }
1445 break;
1446
1447 case R_ARM_GNU_VTINHERIT:
1448 case R_ARM_GNU_VTENTRY:
1449 return bfd_reloc_ok;
1450
1451 case R_ARM_COPY:
1452 return bfd_reloc_notsupported;
1453
1454 case R_ARM_GLOB_DAT:
1455 return bfd_reloc_notsupported;
1456
1457 case R_ARM_JUMP_SLOT:
1458 return bfd_reloc_notsupported;
1459
1460 case R_ARM_RELATIVE:
1461 return bfd_reloc_notsupported;
1462
1463 case R_ARM_GOTOFF:
1464 /* Relocation is relative to the start of the
1465 global offset table. */
1466
1467 BFD_ASSERT (sgot != NULL);
1468 if (sgot == NULL)
1469 return bfd_reloc_notsupported;
1470
1471 /* Note that sgot->output_offset is not involved in this
1472 calculation. We always want the start of .got. If we
1473 define _GLOBAL_OFFSET_TABLE in a different way, as is
1474 permitted by the ABI, we might have to change this
1475 calculation. */
1476 value -= sgot->output_section->vma;
1477 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1478 contents, rel->r_offset, value,
1479 (bfd_vma) 0);
1480
1481 case R_ARM_GOTPC:
1482 /* Use global offset table as symbol value. */
1483 BFD_ASSERT (sgot != NULL);
1484
1485 if (sgot == NULL)
1486 return bfd_reloc_notsupported;
1487
1488 value = sgot->output_section->vma;
1489 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1490 contents, rel->r_offset, value,
1491 (bfd_vma) 0);
1492
1493 case R_ARM_GOT32:
1494 /* Relocation is to the entry for this symbol in the
1495 global offset table. */
1496 if (sgot == NULL)
1497 return bfd_reloc_notsupported;
1498
1499 if (h != NULL)
1500 {
1501 bfd_vma off;
1502
1503 off = h->got.offset;
1504 BFD_ASSERT (off != (bfd_vma) -1);
1505
1506 if (!elf_hash_table (info)->dynamic_sections_created ||
1507 (info->shared && (info->symbolic || h->dynindx == -1)
1508 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1509 {
1510 /* This is actually a static link, or it is a -Bsymbolic link
1511 and the symbol is defined locally. We must initialize this
1512 entry in the global offset table. Since the offset must
1513 always be a multiple of 4, we use the least significant bit
1514 to record whether we have initialized it already.
1515
1516 When doing a dynamic link, we create a .rel.got relocation
1517 entry to initialize the value. This is done in the
1518 finish_dynamic_symbol routine. */
1519 if ((off & 1) != 0)
1520 off &= ~1;
1521 else
1522 {
1523 bfd_put_32 (output_bfd, value, sgot->contents + off);
1524 h->got.offset |= 1;
1525 }
1526 }
1527
1528 value = sgot->output_offset + off;
1529 }
1530 else
1531 {
1532 bfd_vma off;
1533
1534 BFD_ASSERT (local_got_offsets != NULL &&
1535 local_got_offsets[r_symndx] != (bfd_vma) -1);
1536
1537 off = local_got_offsets[r_symndx];
1538
1539 /* The offset must always be a multiple of 4. We use the
1540 least significant bit to record whether we have already
1541 generated the necessary reloc. */
1542 if ((off & 1) != 0)
1543 off &= ~1;
1544 else
1545 {
1546 bfd_put_32 (output_bfd, value, sgot->contents + off);
1547
1548 if (info->shared)
1549 {
1550 asection * srelgot;
1551 Elf_Internal_Rel outrel;
1552
1553 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
1554 BFD_ASSERT (srelgot != NULL);
1555
1556 outrel.r_offset = (sgot->output_section->vma
1557 + sgot->output_offset
1558 + off);
1559 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1560 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1561 (((Elf32_External_Rel *)
1562 srelgot->contents)
1563 + srelgot->reloc_count));
1564 ++srelgot->reloc_count;
1565 }
1566
1567 local_got_offsets[r_symndx] |= 1;
1568 }
1569
1570 value = sgot->output_offset + off;
1571 }
1572
1573 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1574 contents, rel->r_offset, value,
1575 (bfd_vma) 0);
1576
1577 case R_ARM_PLT32:
1578 /* Relocation is to the entry for this symbol in the
1579 procedure linkage table. */
1580
1581 /* Resolve a PLT32 reloc against a local symbol directly,
1582 without using the procedure linkage table. */
1583 if (h == NULL)
1584 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1585 contents, rel->r_offset, value,
1586 (bfd_vma) 0);
1587
1588 if (h->plt.offset == (bfd_vma) -1)
1589 /* We didn't make a PLT entry for this symbol. This
1590 happens when statically linking PIC code, or when
1591 using -Bsymbolic. */
1592 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1593 contents, rel->r_offset, value,
1594 (bfd_vma) 0);
1595
1596 BFD_ASSERT(splt != NULL);
1597 if (splt == NULL)
1598 return bfd_reloc_notsupported;
1599
1600 value = (splt->output_section->vma
1601 + splt->output_offset
1602 + h->plt.offset);
1603 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1604 contents, rel->r_offset, value,
1605 (bfd_vma) 0);
1606
1607 case R_ARM_SBREL32:
1608 return bfd_reloc_notsupported;
1609
1610 case R_ARM_AMP_VCALL9:
1611 return bfd_reloc_notsupported;
1612
1613 case R_ARM_RSBREL32:
1614 return bfd_reloc_notsupported;
1615
1616 case R_ARM_THM_RPC22:
1617 return bfd_reloc_notsupported;
1618
1619 case R_ARM_RREL32:
1620 return bfd_reloc_notsupported;
1621
1622 case R_ARM_RABS32:
1623 return bfd_reloc_notsupported;
1624
1625 case R_ARM_RPC24:
1626 return bfd_reloc_notsupported;
1627
1628 case R_ARM_RBASE:
1629 return bfd_reloc_notsupported;
1630
1631 default:
1632 return bfd_reloc_notsupported;
1633 }
1634 }
1635
1636 #ifdef USE_REL
1637 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
1638 static void
1639 arm_add_to_rel (abfd, address, howto, increment)
1640 bfd * abfd;
1641 bfd_byte * address;
1642 reloc_howto_type * howto;
1643 bfd_signed_vma increment;
1644 {
1645 bfd_vma contents;
1646 bfd_signed_vma addend;
1647
1648 contents = bfd_get_32 (abfd, address);
1649
1650 /* Get the (signed) value from the instruction. */
1651 addend = contents & howto->src_mask;
1652 if (addend & ((howto->src_mask + 1) >> 1))
1653 {
1654 bfd_signed_vma mask;
1655
1656 mask = -1;
1657 mask &= ~ howto->src_mask;
1658 addend |= mask;
1659 }
1660
1661 /* Add in the increment, (which is a byte value). */
1662 switch (howto->type)
1663 {
1664 case R_ARM_THM_PC22:
1665 default:
1666 addend += increment;
1667 break;
1668
1669 case R_ARM_PC24:
1670 addend <<= howto->size;
1671 addend += increment;
1672
1673 /* Should we check for overflow here ? */
1674
1675 /* Drop any undesired bits. */
1676 addend >>= howto->rightshift;
1677 break;
1678 }
1679
1680 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
1681
1682 bfd_put_32 (abfd, contents, address);
1683 }
1684 #endif /* USE_REL */
1685
1686 /* Relocate an ARM ELF section. */
1687 static boolean
1688 elf32_arm_relocate_section (output_bfd, info, input_bfd, input_section,
1689 contents, relocs, local_syms, local_sections)
1690 bfd * output_bfd;
1691 struct bfd_link_info * info;
1692 bfd * input_bfd;
1693 asection * input_section;
1694 bfd_byte * contents;
1695 Elf_Internal_Rela * relocs;
1696 Elf_Internal_Sym * local_syms;
1697 asection ** local_sections;
1698 {
1699 Elf_Internal_Shdr * symtab_hdr;
1700 struct elf_link_hash_entry ** sym_hashes;
1701 Elf_Internal_Rela * rel;
1702 Elf_Internal_Rela * relend;
1703 const char * name;
1704
1705 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1706 sym_hashes = elf_sym_hashes (input_bfd);
1707
1708 rel = relocs;
1709 relend = relocs + input_section->reloc_count;
1710 for (; rel < relend; rel++)
1711 {
1712 int r_type;
1713 reloc_howto_type * howto;
1714 unsigned long r_symndx;
1715 Elf_Internal_Sym * sym;
1716 asection * sec;
1717 struct elf_link_hash_entry * h;
1718 bfd_vma relocation;
1719 bfd_reloc_status_type r;
1720 arelent bfd_reloc;
1721
1722 r_symndx = ELF32_R_SYM (rel->r_info);
1723 r_type = ELF32_R_TYPE (rel->r_info);
1724
1725 if ( r_type == R_ARM_GNU_VTENTRY
1726 || r_type == R_ARM_GNU_VTINHERIT)
1727 continue;
1728
1729 elf32_arm_info_to_howto (input_bfd, & bfd_reloc, rel);
1730 howto = bfd_reloc.howto;
1731
1732 if (info->relocateable)
1733 {
1734 /* This is a relocateable link. We don't have to change
1735 anything, unless the reloc is against a section symbol,
1736 in which case we have to adjust according to where the
1737 section symbol winds up in the output section. */
1738 if (r_symndx < symtab_hdr->sh_info)
1739 {
1740 sym = local_syms + r_symndx;
1741 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1742 {
1743 sec = local_sections[r_symndx];
1744 #ifdef USE_REL
1745 arm_add_to_rel (input_bfd, contents + rel->r_offset,
1746 howto, sec->output_offset + sym->st_value);
1747 #else
1748 rel->r_addend += (sec->output_offset + sym->st_value)
1749 >> howto->rightshift;
1750 #endif
1751 }
1752 }
1753
1754 continue;
1755 }
1756
1757 /* This is a final link. */
1758 h = NULL;
1759 sym = NULL;
1760 sec = NULL;
1761
1762 if (r_symndx < symtab_hdr->sh_info)
1763 {
1764 sym = local_syms + r_symndx;
1765 sec = local_sections[r_symndx];
1766 relocation = (sec->output_section->vma
1767 + sec->output_offset
1768 + sym->st_value);
1769 }
1770 else
1771 {
1772 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1773
1774 while ( h->root.type == bfd_link_hash_indirect
1775 || h->root.type == bfd_link_hash_warning)
1776 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1777
1778 if ( h->root.type == bfd_link_hash_defined
1779 || h->root.type == bfd_link_hash_defweak)
1780 {
1781 int relocation_needed = 1;
1782
1783 sec = h->root.u.def.section;
1784
1785 /* In these cases, we don't need the relocation value.
1786 We check specially because in some obscure cases
1787 sec->output_section will be NULL. */
1788 switch (r_type)
1789 {
1790 case R_ARM_PC24:
1791 case R_ARM_ABS32:
1792 if (info->shared
1793 && (
1794 (!info->symbolic && h->dynindx != -1)
1795 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1796 )
1797 && ((input_section->flags & SEC_ALLOC) != 0
1798 /* DWARF will emit R_ARM_ABS32 relocations in its
1799 sections against symbols defined externally
1800 in shared libraries. We can't do anything
1801 with them here. */
1802 || ((input_section->flags & SEC_DEBUGGING) != 0
1803 && (h->elf_link_hash_flags
1804 & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
1805 )
1806 relocation_needed = 0;
1807 break;
1808
1809 case R_ARM_GOTPC:
1810 relocation_needed = 0;
1811 break;
1812
1813 case R_ARM_GOT32:
1814 if (elf_hash_table(info)->dynamic_sections_created
1815 && (!info->shared
1816 || (!info->symbolic && h->dynindx != -1)
1817 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1818 )
1819 )
1820 relocation_needed = 0;
1821 break;
1822
1823 case R_ARM_PLT32:
1824 if (h->plt.offset != (bfd_vma)-1)
1825 relocation_needed = 0;
1826 break;
1827
1828 default:
1829 if (sec->output_section == NULL)
1830 {
1831 (*_bfd_error_handler)
1832 (_("%s: warning: unresolvable relocation against symbol `%s' from %s section"),
1833 bfd_get_filename (input_bfd), h->root.root.string,
1834 bfd_get_section_name (input_bfd, input_section));
1835 relocation_needed = 0;
1836 }
1837 }
1838
1839 if (relocation_needed)
1840 relocation = h->root.u.def.value
1841 + sec->output_section->vma
1842 + sec->output_offset;
1843 else
1844 relocation = 0;
1845 }
1846 else if (h->root.type == bfd_link_hash_undefweak)
1847 relocation = 0;
1848 else if (info->shared && !info->symbolic
1849 && !info->no_undefined
1850 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1851 relocation = 0;
1852 else
1853 {
1854 if (!((*info->callbacks->undefined_symbol)
1855 (info, h->root.root.string, input_bfd,
1856 input_section, rel->r_offset,
1857 (!info->shared || info->no_undefined
1858 || ELF_ST_VISIBILITY (h->other)))))
1859 return false;
1860 relocation = 0;
1861 }
1862 }
1863
1864 if (h != NULL)
1865 name = h->root.root.string;
1866 else
1867 {
1868 name = (bfd_elf_string_from_elf_section
1869 (input_bfd, symtab_hdr->sh_link, sym->st_name));
1870 if (name == NULL || *name == '\0')
1871 name = bfd_section_name (input_bfd, sec);
1872 }
1873
1874 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
1875 input_section, contents, rel,
1876 relocation, info, sec, name,
1877 (h ? ELF_ST_TYPE (h->type) :
1878 ELF_ST_TYPE (sym->st_info)), h);
1879
1880 if (r != bfd_reloc_ok)
1881 {
1882 const char * msg = (const char *) 0;
1883
1884 switch (r)
1885 {
1886 case bfd_reloc_overflow:
1887 if (!((*info->callbacks->reloc_overflow)
1888 (info, name, howto->name, (bfd_vma) 0,
1889 input_bfd, input_section, rel->r_offset)))
1890 return false;
1891 break;
1892
1893 case bfd_reloc_undefined:
1894 if (!((*info->callbacks->undefined_symbol)
1895 (info, name, input_bfd, input_section,
1896 rel->r_offset, true)))
1897 return false;
1898 break;
1899
1900 case bfd_reloc_outofrange:
1901 msg = _("internal error: out of range error");
1902 goto common_error;
1903
1904 case bfd_reloc_notsupported:
1905 msg = _("internal error: unsupported relocation error");
1906 goto common_error;
1907
1908 case bfd_reloc_dangerous:
1909 msg = _("internal error: dangerous error");
1910 goto common_error;
1911
1912 default:
1913 msg = _("internal error: unknown error");
1914 /* fall through */
1915
1916 common_error:
1917 if (!((*info->callbacks->warning)
1918 (info, msg, name, input_bfd, input_section,
1919 rel->r_offset)))
1920 return false;
1921 break;
1922 }
1923 }
1924 }
1925
1926 return true;
1927 }
1928
1929 /* Function to keep ARM specific flags in the ELF header. */
1930 static boolean
1931 elf32_arm_set_private_flags (abfd, flags)
1932 bfd *abfd;
1933 flagword flags;
1934 {
1935 if (elf_flags_init (abfd)
1936 && elf_elfheader (abfd)->e_flags != flags)
1937 {
1938 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
1939 {
1940 if (flags & EF_INTERWORK)
1941 _bfd_error_handler (_("\
1942 Warning: Not setting interwork flag of %s since it has already been specified as non-interworking"),
1943 bfd_get_filename (abfd));
1944 else
1945 _bfd_error_handler (_("\
1946 Warning: Clearing the interwork flag of %s due to outside request"),
1947 bfd_get_filename (abfd));
1948 }
1949 }
1950 else
1951 {
1952 elf_elfheader (abfd)->e_flags = flags;
1953 elf_flags_init (abfd) = true;
1954 }
1955
1956 return true;
1957 }
1958
1959 /* Copy backend specific data from one object module to another. */
1960
1961 static boolean
1962 elf32_arm_copy_private_bfd_data (ibfd, obfd)
1963 bfd *ibfd;
1964 bfd *obfd;
1965 {
1966 flagword in_flags;
1967 flagword out_flags;
1968
1969 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1970 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1971 return true;
1972
1973 in_flags = elf_elfheader (ibfd)->e_flags;
1974 out_flags = elf_elfheader (obfd)->e_flags;
1975
1976 if (elf_flags_init (obfd)
1977 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
1978 && in_flags != out_flags)
1979 {
1980 /* Cannot mix PIC and non-PIC code. */
1981 if ((in_flags & EF_PIC) != (out_flags & EF_PIC))
1982 return false;
1983
1984 /* Cannot mix APCS26 and APCS32 code. */
1985 if ((in_flags & EF_APCS_26) != (out_flags & EF_APCS_26))
1986 return false;
1987
1988 /* Cannot mix float APCS and non-float APCS code. */
1989 if ((in_flags & EF_APCS_FLOAT) != (out_flags & EF_APCS_FLOAT))
1990 return false;
1991
1992 /* If the src and dest have different interworking flags
1993 then turn off the interworking bit. */
1994 if ((in_flags & EF_INTERWORK) != (out_flags & EF_INTERWORK))
1995 {
1996 if (out_flags & EF_INTERWORK)
1997 _bfd_error_handler (_("\
1998 Warning: Clearing the interwork flag in %s because non-interworking code in %s has been linked with it"),
1999 bfd_get_filename (obfd), bfd_get_filename (ibfd));
2000
2001 in_flags &= ~EF_INTERWORK;
2002 }
2003 }
2004
2005 elf_elfheader (obfd)->e_flags = in_flags;
2006 elf_flags_init (obfd) = true;
2007
2008 return true;
2009 }
2010
2011 /* Merge backend specific data from an object file to the output
2012 object file when linking. */
2013
2014 static boolean
2015 elf32_arm_merge_private_bfd_data (ibfd, obfd)
2016 bfd * ibfd;
2017 bfd * obfd;
2018 {
2019 flagword out_flags;
2020 flagword in_flags;
2021
2022 /* Check if we have the same endianess. */
2023 if (_bfd_generic_verify_endian_match (ibfd, obfd) == false)
2024 return false;
2025
2026 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2027 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2028 return true;
2029
2030 /* The input BFD must have had its flags initialised. */
2031 /* The following seems bogus to me -- The flags are initialized in
2032 the assembler but I don't think an elf_flags_init field is
2033 written into the object. */
2034 /* BFD_ASSERT (elf_flags_init (ibfd)); */
2035
2036 in_flags = elf_elfheader (ibfd)->e_flags;
2037 out_flags = elf_elfheader (obfd)->e_flags;
2038
2039 if (!elf_flags_init (obfd))
2040 {
2041 /* If the input is the default architecture then do not
2042 bother setting the flags for the output architecture,
2043 instead allow future merges to do this. If no future
2044 merges ever set these flags then they will retain their
2045 unitialised values, which surprise surprise, correspond
2046 to the default values. */
2047 if (bfd_get_arch_info (ibfd)->the_default)
2048 return true;
2049
2050 elf_flags_init (obfd) = true;
2051 elf_elfheader (obfd)->e_flags = in_flags;
2052
2053 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2054 && bfd_get_arch_info (obfd)->the_default)
2055 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
2056
2057 return true;
2058 }
2059
2060 /* Check flag compatibility. */
2061 if (in_flags == out_flags)
2062 return true;
2063
2064 /* Complain about various flag mismatches. */
2065 if (EF_ARM_EABI_VERSION (in_flags) != EF_ARM_EABI_VERSION (out_flags))
2066 {
2067 _bfd_error_handler (_("\
2068 Error: %s compiled for EABI version %d, whereas %s is compiled for version %d"),
2069 bfd_get_filename (ibfd),
2070 (in_flags & EF_ARM_EABIMASK) >> 24,
2071 bfd_get_filename (obfd),
2072 (out_flags & EF_ARM_EABIMASK) >> 24);
2073 }
2074 else if (EF_ARM_EABI_VERSION (in_flags) != EF_ARM_EABI_UNKNOWN)
2075 /* Not sure what needs to be checked for EABI versions >= 1. */
2076 return true;
2077
2078 if ((in_flags & EF_APCS_26) != (out_flags & EF_APCS_26))
2079 _bfd_error_handler (_("\
2080 Error: %s compiled for APCS-%d, whereas %s is compiled for APCS-%d"),
2081 bfd_get_filename (ibfd),
2082 in_flags & EF_APCS_26 ? 26 : 32,
2083 bfd_get_filename (obfd),
2084 out_flags & EF_APCS_26 ? 26 : 32);
2085
2086 if ((in_flags & EF_APCS_FLOAT) != (out_flags & EF_APCS_FLOAT))
2087 _bfd_error_handler (_("\
2088 Error: %s passes floats in %s registers, whereas %s passes them in %s registers"),
2089 bfd_get_filename (ibfd),
2090 in_flags & EF_APCS_FLOAT ? _("float") : _("integer"),
2091 bfd_get_filename (obfd),
2092 out_flags & EF_APCS_26 ? _("float") : _("integer"));
2093
2094 if ((in_flags & EF_PIC) != (out_flags & EF_PIC))
2095 _bfd_error_handler (_("\
2096 Error: %s is compiled as position %s code, whereas %s is not"),
2097 bfd_get_filename (ibfd),
2098 in_flags & EF_PIC ? _("independent") : _("dependent"),
2099 bfd_get_filename (obfd));
2100
2101 /* Interworking mismatch is only a warning. */
2102 if ((in_flags & EF_INTERWORK) != (out_flags & EF_INTERWORK))
2103 {
2104 _bfd_error_handler (_("\
2105 Warning: %s %s interworking, whereas %s %s"),
2106 bfd_get_filename (ibfd),
2107 in_flags & EF_INTERWORK ? _("supports") : _("does not support"),
2108 bfd_get_filename (obfd),
2109 out_flags & EF_INTERWORK ? _("does not") : _("does"));
2110 return true;
2111 }
2112
2113 return false;
2114 }
2115
2116 /* Display the flags field. */
2117
2118 static boolean
2119 elf32_arm_print_private_bfd_data (abfd, ptr)
2120 bfd *abfd;
2121 PTR ptr;
2122 {
2123 FILE * file = (FILE *) ptr;
2124 unsigned long flags;
2125
2126 BFD_ASSERT (abfd != NULL && ptr != NULL);
2127
2128 /* Print normal ELF private data. */
2129 _bfd_elf_print_private_bfd_data (abfd, ptr);
2130
2131 flags = elf_elfheader (abfd)->e_flags;
2132 /* Ignore init flag - it may not be set, despite the flags field
2133 containing valid data. */
2134
2135 /* xgettext:c-format */
2136 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
2137
2138 switch (EF_ARM_EABI_VERSION (flags))
2139 {
2140 case EF_ARM_EABI_UNKNOWN:
2141 /* The following flag bits are GNU extenstions and not part of the
2142 official ARM ELF extended ABI. Hence they are only decoded if
2143 the EABI version is not set. */
2144 if (flags & EF_INTERWORK)
2145 fprintf (file, _(" [interworking enabled]"));
2146
2147 if (flags & EF_APCS_26)
2148 fprintf (file, _(" [APCS-26]"));
2149 else
2150 fprintf (file, _(" [APCS-32]"));
2151
2152 if (flags & EF_APCS_FLOAT)
2153 fprintf (file, _(" [floats passed in float registers]"));
2154
2155 if (flags & EF_PIC)
2156 fprintf (file, _(" [position independent]"));
2157
2158 if (flags & EF_NEW_ABI)
2159 fprintf (file, _(" [new ABI]"));
2160
2161 if (flags & EF_OLD_ABI)
2162 fprintf (file, _(" [old ABI]"));
2163
2164 if (flags & EF_SOFT_FLOAT)
2165 fprintf (file, _(" [software FP]"));
2166
2167 flags &= ~(EF_INTERWORK | EF_APCS_26 | EF_APCS_FLOAT | EF_PIC
2168 | EF_NEW_ABI | EF_OLD_ABI | EF_SOFT_FLOAT);
2169 break;
2170
2171 case EF_ARM_EABI_VER1:
2172 fprintf (file, _(" [Version1 EABI]"));
2173
2174 if (flags & EF_ARM_SYMSARESORTED)
2175 fprintf (file, _(" [sorted symbol table]"));
2176 else
2177 fprintf (file, _(" [unsorted symbol table]"));
2178
2179 flags &= ~ EF_ARM_SYMSARESORTED;
2180 break;
2181
2182 default:
2183 fprintf (file, _(" <EABI version unrecognised>"));
2184 break;
2185 }
2186
2187 flags &= ~ EF_ARM_EABIMASK;
2188
2189 if (flags & EF_ARM_RELEXEC)
2190 fprintf (file, _(" [relocatable executable]"));
2191
2192 if (flags & EF_ARM_HASENTRY)
2193 fprintf (file, _(" [has entry point]"));
2194
2195 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
2196
2197 if (flags)
2198 fprintf (file, _("<Unrecognised flag bits set>"));
2199
2200 fputc ('\n', file);
2201
2202 return true;
2203 }
2204
2205 static int
2206 elf32_arm_get_symbol_type (elf_sym, type)
2207 Elf_Internal_Sym * elf_sym;
2208 int type;
2209 {
2210 switch (ELF_ST_TYPE (elf_sym->st_info))
2211 {
2212 case STT_ARM_TFUNC:
2213 return ELF_ST_TYPE (elf_sym->st_info);
2214
2215 case STT_ARM_16BIT:
2216 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
2217 This allows us to distinguish between data used by Thumb instructions
2218 and non-data (which is probably code) inside Thumb regions of an
2219 executable. */
2220 if (type != STT_OBJECT)
2221 return ELF_ST_TYPE (elf_sym->st_info);
2222 break;
2223
2224 default:
2225 break;
2226 }
2227
2228 return type;
2229 }
2230
2231 static asection *
2232 elf32_arm_gc_mark_hook (abfd, info, rel, h, sym)
2233 bfd *abfd;
2234 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2235 Elf_Internal_Rela *rel;
2236 struct elf_link_hash_entry *h;
2237 Elf_Internal_Sym *sym;
2238 {
2239 if (h != NULL)
2240 {
2241 switch (ELF32_R_TYPE (rel->r_info))
2242 {
2243 case R_ARM_GNU_VTINHERIT:
2244 case R_ARM_GNU_VTENTRY:
2245 break;
2246
2247 default:
2248 switch (h->root.type)
2249 {
2250 case bfd_link_hash_defined:
2251 case bfd_link_hash_defweak:
2252 return h->root.u.def.section;
2253
2254 case bfd_link_hash_common:
2255 return h->root.u.c.p->section;
2256
2257 default:
2258 break;
2259 }
2260 }
2261 }
2262 else
2263 {
2264 if (!(elf_bad_symtab (abfd)
2265 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
2266 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
2267 && sym->st_shndx != SHN_COMMON))
2268 {
2269 return bfd_section_from_elf_index (abfd, sym->st_shndx);
2270 }
2271 }
2272 return NULL;
2273 }
2274
2275 /* Update the got entry reference counts for the section being removed. */
2276
2277 static boolean
2278 elf32_arm_gc_sweep_hook (abfd, info, sec, relocs)
2279 bfd *abfd ATTRIBUTE_UNUSED;
2280 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2281 asection *sec ATTRIBUTE_UNUSED;
2282 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
2283 {
2284 /* We don't support garbage collection of GOT and PLT relocs yet. */
2285 return true;
2286 }
2287
2288 /* Look through the relocs for a section during the first phase. */
2289
2290 static boolean
2291 elf32_arm_check_relocs (abfd, info, sec, relocs)
2292 bfd * abfd;
2293 struct bfd_link_info * info;
2294 asection * sec;
2295 const Elf_Internal_Rela * relocs;
2296 {
2297 Elf_Internal_Shdr * symtab_hdr;
2298 struct elf_link_hash_entry ** sym_hashes;
2299 struct elf_link_hash_entry ** sym_hashes_end;
2300 const Elf_Internal_Rela * rel;
2301 const Elf_Internal_Rela * rel_end;
2302 bfd * dynobj;
2303 asection * sgot, *srelgot, *sreloc;
2304 bfd_vma * local_got_offsets;
2305
2306 if (info->relocateable)
2307 return true;
2308
2309 sgot = srelgot = sreloc = NULL;
2310
2311 dynobj = elf_hash_table (info)->dynobj;
2312 local_got_offsets = elf_local_got_offsets (abfd);
2313
2314 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2315 sym_hashes = elf_sym_hashes (abfd);
2316 sym_hashes_end = sym_hashes
2317 + symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
2318
2319 if (!elf_bad_symtab (abfd))
2320 sym_hashes_end -= symtab_hdr->sh_info;
2321
2322 rel_end = relocs + sec->reloc_count;
2323 for (rel = relocs; rel < rel_end; rel++)
2324 {
2325 struct elf_link_hash_entry *h;
2326 unsigned long r_symndx;
2327
2328 r_symndx = ELF32_R_SYM (rel->r_info);
2329 if (r_symndx < symtab_hdr->sh_info)
2330 h = NULL;
2331 else
2332 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2333
2334 /* Some relocs require a global offset table. */
2335 if (dynobj == NULL)
2336 {
2337 switch (ELF32_R_TYPE (rel->r_info))
2338 {
2339 case R_ARM_GOT32:
2340 case R_ARM_GOTOFF:
2341 case R_ARM_GOTPC:
2342 elf_hash_table (info)->dynobj = dynobj = abfd;
2343 if (! _bfd_elf_create_got_section (dynobj, info))
2344 return false;
2345 break;
2346
2347 default:
2348 break;
2349 }
2350 }
2351
2352 switch (ELF32_R_TYPE (rel->r_info))
2353 {
2354 case R_ARM_GOT32:
2355 /* This symbol requires a global offset table entry. */
2356 if (sgot == NULL)
2357 {
2358 sgot = bfd_get_section_by_name (dynobj, ".got");
2359 BFD_ASSERT (sgot != NULL);
2360 }
2361
2362 /* Get the got relocation section if necessary. */
2363 if (srelgot == NULL
2364 && (h != NULL || info->shared))
2365 {
2366 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
2367
2368 /* If no got relocation section, make one and initialize. */
2369 if (srelgot == NULL)
2370 {
2371 srelgot = bfd_make_section (dynobj, ".rel.got");
2372 if (srelgot == NULL
2373 || ! bfd_set_section_flags (dynobj, srelgot,
2374 (SEC_ALLOC
2375 | SEC_LOAD
2376 | SEC_HAS_CONTENTS
2377 | SEC_IN_MEMORY
2378 | SEC_LINKER_CREATED
2379 | SEC_READONLY))
2380 || ! bfd_set_section_alignment (dynobj, srelgot, 2))
2381 return false;
2382 }
2383 }
2384
2385 if (h != NULL)
2386 {
2387 if (h->got.offset != (bfd_vma) -1)
2388 /* We have already allocated space in the .got. */
2389 break;
2390
2391 h->got.offset = sgot->_raw_size;
2392
2393 /* Make sure this symbol is output as a dynamic symbol. */
2394 if (h->dynindx == -1)
2395 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2396 return false;
2397
2398 srelgot->_raw_size += sizeof (Elf32_External_Rel);
2399 }
2400 else
2401 {
2402 /* This is a global offset table entry for a local
2403 symbol. */
2404 if (local_got_offsets == NULL)
2405 {
2406 size_t size;
2407 register unsigned int i;
2408
2409 size = symtab_hdr->sh_info * sizeof (bfd_vma);
2410 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
2411 if (local_got_offsets == NULL)
2412 return false;
2413 elf_local_got_offsets (abfd) = local_got_offsets;
2414 for (i = 0; i < symtab_hdr->sh_info; i++)
2415 local_got_offsets[i] = (bfd_vma) -1;
2416 }
2417
2418 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
2419 /* We have already allocated space in the .got. */
2420 break;
2421
2422 local_got_offsets[r_symndx] = sgot->_raw_size;
2423
2424 if (info->shared)
2425 /* If we are generating a shared object, we need to
2426 output a R_ARM_RELATIVE reloc so that the dynamic
2427 linker can adjust this GOT entry. */
2428 srelgot->_raw_size += sizeof (Elf32_External_Rel);
2429 }
2430
2431 sgot->_raw_size += 4;
2432 break;
2433
2434 case R_ARM_PLT32:
2435 /* This symbol requires a procedure linkage table entry. We
2436 actually build the entry in adjust_dynamic_symbol,
2437 because this might be a case of linking PIC code which is
2438 never referenced by a dynamic object, in which case we
2439 don't need to generate a procedure linkage table entry
2440 after all. */
2441
2442 /* If this is a local symbol, we resolve it directly without
2443 creating a procedure linkage table entry. */
2444 if (h == NULL)
2445 continue;
2446
2447 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
2448 break;
2449
2450 case R_ARM_ABS32:
2451 case R_ARM_REL32:
2452 case R_ARM_PC24:
2453 /* If we are creating a shared library, and this is a reloc
2454 against a global symbol, or a non PC relative reloc
2455 against a local symbol, then we need to copy the reloc
2456 into the shared library. However, if we are linking with
2457 -Bsymbolic, we do not need to copy a reloc against a
2458 global symbol which is defined in an object we are
2459 including in the link (i.e., DEF_REGULAR is set). At
2460 this point we have not seen all the input files, so it is
2461 possible that DEF_REGULAR is not set now but will be set
2462 later (it is never cleared). We account for that
2463 possibility below by storing information in the
2464 pcrel_relocs_copied field of the hash table entry. */
2465 if (info->shared
2466 && (ELF32_R_TYPE (rel->r_info) != R_ARM_PC24
2467 || (h != NULL
2468 && (! info->symbolic
2469 || (h->elf_link_hash_flags
2470 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
2471 {
2472 /* When creating a shared object, we must copy these
2473 reloc types into the output file. We create a reloc
2474 section in dynobj and make room for this reloc. */
2475 if (sreloc == NULL)
2476 {
2477 const char * name;
2478
2479 name = (bfd_elf_string_from_elf_section
2480 (abfd,
2481 elf_elfheader (abfd)->e_shstrndx,
2482 elf_section_data (sec)->rel_hdr.sh_name));
2483 if (name == NULL)
2484 return false;
2485
2486 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
2487 && strcmp (bfd_get_section_name (abfd, sec),
2488 name + 4) == 0);
2489
2490 sreloc = bfd_get_section_by_name (dynobj, name);
2491 if (sreloc == NULL)
2492 {
2493 flagword flags;
2494
2495 sreloc = bfd_make_section (dynobj, name);
2496 flags = (SEC_HAS_CONTENTS | SEC_READONLY
2497 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2498 if ((sec->flags & SEC_ALLOC) != 0)
2499 flags |= SEC_ALLOC | SEC_LOAD;
2500 if (sreloc == NULL
2501 || ! bfd_set_section_flags (dynobj, sreloc, flags)
2502 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
2503 return false;
2504 }
2505 }
2506
2507 sreloc->_raw_size += sizeof (Elf32_External_Rel);
2508 /* If we are linking with -Bsymbolic, and this is a
2509 global symbol, we count the number of PC relative
2510 relocations we have entered for this symbol, so that
2511 we can discard them again if the symbol is later
2512 defined by a regular object. Note that this function
2513 is only called if we are using an elf_i386 linker
2514 hash table, which means that h is really a pointer to
2515 an elf_i386_link_hash_entry. */
2516 if (h != NULL && info->symbolic
2517 && ELF32_R_TYPE (rel->r_info) == R_ARM_PC24)
2518 {
2519 struct elf32_arm_link_hash_entry * eh;
2520 struct elf32_arm_pcrel_relocs_copied * p;
2521
2522 eh = (struct elf32_arm_link_hash_entry *) h;
2523
2524 for (p = eh->pcrel_relocs_copied; p != NULL; p = p->next)
2525 if (p->section == sreloc)
2526 break;
2527
2528 if (p == NULL)
2529 {
2530 p = ((struct elf32_arm_pcrel_relocs_copied *)
2531 bfd_alloc (dynobj, sizeof * p));
2532
2533 if (p == NULL)
2534 return false;
2535 p->next = eh->pcrel_relocs_copied;
2536 eh->pcrel_relocs_copied = p;
2537 p->section = sreloc;
2538 p->count = 0;
2539 }
2540
2541 ++p->count;
2542 }
2543 }
2544 break;
2545
2546 /* This relocation describes the C++ object vtable hierarchy.
2547 Reconstruct it for later use during GC. */
2548 case R_ARM_GNU_VTINHERIT:
2549 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2550 return false;
2551 break;
2552
2553 /* This relocation describes which C++ vtable entries are actually
2554 used. Record for later use during GC. */
2555 case R_ARM_GNU_VTENTRY:
2556 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
2557 return false;
2558 break;
2559 }
2560 }
2561
2562 return true;
2563 }
2564
2565
2566 /* Find the nearest line to a particular section and offset, for error
2567 reporting. This code is a duplicate of the code in elf.c, except
2568 that it also accepts STT_ARM_TFUNC as a symbol that names a function. */
2569
2570 static boolean
2571 elf32_arm_find_nearest_line
2572 (abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr)
2573 bfd * abfd;
2574 asection * section;
2575 asymbol ** symbols;
2576 bfd_vma offset;
2577 CONST char ** filename_ptr;
2578 CONST char ** functionname_ptr;
2579 unsigned int * line_ptr;
2580 {
2581 boolean found;
2582 const char * filename;
2583 asymbol * func;
2584 bfd_vma low_func;
2585 asymbol ** p;
2586
2587 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
2588 filename_ptr, functionname_ptr,
2589 line_ptr, 0))
2590 return true;
2591
2592 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
2593 &found, filename_ptr,
2594 functionname_ptr, line_ptr,
2595 &elf_tdata (abfd)->line_info))
2596 return false;
2597
2598 if (found)
2599 return true;
2600
2601 if (symbols == NULL)
2602 return false;
2603
2604 filename = NULL;
2605 func = NULL;
2606 low_func = 0;
2607
2608 for (p = symbols; *p != NULL; p++)
2609 {
2610 elf_symbol_type *q;
2611
2612 q = (elf_symbol_type *) *p;
2613
2614 if (bfd_get_section (&q->symbol) != section)
2615 continue;
2616
2617 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
2618 {
2619 default:
2620 break;
2621 case STT_FILE:
2622 filename = bfd_asymbol_name (&q->symbol);
2623 break;
2624 case STT_NOTYPE:
2625 case STT_FUNC:
2626 case STT_ARM_TFUNC:
2627 if (q->symbol.section == section
2628 && q->symbol.value >= low_func
2629 && q->symbol.value <= offset)
2630 {
2631 func = (asymbol *) q;
2632 low_func = q->symbol.value;
2633 }
2634 break;
2635 }
2636 }
2637
2638 if (func == NULL)
2639 return false;
2640
2641 *filename_ptr = filename;
2642 *functionname_ptr = bfd_asymbol_name (func);
2643 *line_ptr = 0;
2644
2645 return true;
2646 }
2647
2648 /* Adjust a symbol defined by a dynamic object and referenced by a
2649 regular object. The current definition is in some section of the
2650 dynamic object, but we're not including those sections. We have to
2651 change the definition to something the rest of the link can
2652 understand. */
2653
2654 static boolean
2655 elf32_arm_adjust_dynamic_symbol (info, h)
2656 struct bfd_link_info * info;
2657 struct elf_link_hash_entry * h;
2658 {
2659 bfd * dynobj;
2660 asection * s;
2661 unsigned int power_of_two;
2662
2663 dynobj = elf_hash_table (info)->dynobj;
2664
2665 /* Make sure we know what is going on here. */
2666 BFD_ASSERT (dynobj != NULL
2667 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
2668 || h->weakdef != NULL
2669 || ((h->elf_link_hash_flags
2670 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2671 && (h->elf_link_hash_flags
2672 & ELF_LINK_HASH_REF_REGULAR) != 0
2673 && (h->elf_link_hash_flags
2674 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
2675
2676 /* If this is a function, put it in the procedure linkage table. We
2677 will fill in the contents of the procedure linkage table later,
2678 when we know the address of the .got section. */
2679 if (h->type == STT_FUNC
2680 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
2681 {
2682 if (! info->shared
2683 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
2684 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0)
2685 {
2686 /* This case can occur if we saw a PLT32 reloc in an input
2687 file, but the symbol was never referred to by a dynamic
2688 object. In such a case, we don't actually need to build
2689 a procedure linkage table, and we can just do a PC32
2690 reloc instead. */
2691 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
2692 return true;
2693 }
2694
2695 /* Make sure this symbol is output as a dynamic symbol. */
2696 if (h->dynindx == -1)
2697 {
2698 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2699 return false;
2700 }
2701
2702 s = bfd_get_section_by_name (dynobj, ".plt");
2703 BFD_ASSERT (s != NULL);
2704
2705 /* If this is the first .plt entry, make room for the special
2706 first entry. */
2707 if (s->_raw_size == 0)
2708 s->_raw_size += PLT_ENTRY_SIZE;
2709
2710 /* If this symbol is not defined in a regular file, and we are
2711 not generating a shared library, then set the symbol to this
2712 location in the .plt. This is required to make function
2713 pointers compare as equal between the normal executable and
2714 the shared library. */
2715 if (! info->shared
2716 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2717 {
2718 h->root.u.def.section = s;
2719 h->root.u.def.value = s->_raw_size;
2720 }
2721
2722 h->plt.offset = s->_raw_size;
2723
2724 /* Make room for this entry. */
2725 s->_raw_size += PLT_ENTRY_SIZE;
2726
2727 /* We also need to make an entry in the .got.plt section, which
2728 will be placed in the .got section by the linker script. */
2729 s = bfd_get_section_by_name (dynobj, ".got.plt");
2730 BFD_ASSERT (s != NULL);
2731 s->_raw_size += 4;
2732
2733 /* We also need to make an entry in the .rel.plt section. */
2734
2735 s = bfd_get_section_by_name (dynobj, ".rel.plt");
2736 BFD_ASSERT (s != NULL);
2737 s->_raw_size += sizeof (Elf32_External_Rel);
2738
2739 return true;
2740 }
2741
2742 /* If this is a weak symbol, and there is a real definition, the
2743 processor independent code will have arranged for us to see the
2744 real definition first, and we can just use the same value. */
2745 if (h->weakdef != NULL)
2746 {
2747 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
2748 || h->weakdef->root.type == bfd_link_hash_defweak);
2749 h->root.u.def.section = h->weakdef->root.u.def.section;
2750 h->root.u.def.value = h->weakdef->root.u.def.value;
2751 return true;
2752 }
2753
2754 /* This is a reference to a symbol defined by a dynamic object which
2755 is not a function. */
2756
2757 /* If we are creating a shared library, we must presume that the
2758 only references to the symbol are via the global offset table.
2759 For such cases we need not do anything here; the relocations will
2760 be handled correctly by relocate_section. */
2761 if (info->shared)
2762 return true;
2763
2764 /* We must allocate the symbol in our .dynbss section, which will
2765 become part of the .bss section of the executable. There will be
2766 an entry for this symbol in the .dynsym section. The dynamic
2767 object will contain position independent code, so all references
2768 from the dynamic object to this symbol will go through the global
2769 offset table. The dynamic linker will use the .dynsym entry to
2770 determine the address it must put in the global offset table, so
2771 both the dynamic object and the regular object will refer to the
2772 same memory location for the variable. */
2773 s = bfd_get_section_by_name (dynobj, ".dynbss");
2774 BFD_ASSERT (s != NULL);
2775
2776 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
2777 copy the initial value out of the dynamic object and into the
2778 runtime process image. We need to remember the offset into the
2779 .rel.bss section we are going to use. */
2780 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
2781 {
2782 asection *srel;
2783
2784 srel = bfd_get_section_by_name (dynobj, ".rel.bss");
2785 BFD_ASSERT (srel != NULL);
2786 srel->_raw_size += sizeof (Elf32_External_Rel);
2787 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
2788 }
2789
2790 /* We need to figure out the alignment required for this symbol. I
2791 have no idea how ELF linkers handle this. */
2792 power_of_two = bfd_log2 (h->size);
2793 if (power_of_two > 3)
2794 power_of_two = 3;
2795
2796 /* Apply the required alignment. */
2797 s->_raw_size = BFD_ALIGN (s->_raw_size,
2798 (bfd_size_type) (1 << power_of_two));
2799 if (power_of_two > bfd_get_section_alignment (dynobj, s))
2800 {
2801 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
2802 return false;
2803 }
2804
2805 /* Define the symbol as being at this point in the section. */
2806 h->root.u.def.section = s;
2807 h->root.u.def.value = s->_raw_size;
2808
2809 /* Increment the section size to make room for the symbol. */
2810 s->_raw_size += h->size;
2811
2812 return true;
2813 }
2814
2815 /* Set the sizes of the dynamic sections. */
2816
2817 static boolean
2818 elf32_arm_size_dynamic_sections (output_bfd, info)
2819 bfd * output_bfd;
2820 struct bfd_link_info * info;
2821 {
2822 bfd * dynobj;
2823 asection * s;
2824 boolean plt;
2825 boolean relocs;
2826 boolean reltext;
2827
2828 dynobj = elf_hash_table (info)->dynobj;
2829 BFD_ASSERT (dynobj != NULL);
2830
2831 if (elf_hash_table (info)->dynamic_sections_created)
2832 {
2833 /* Set the contents of the .interp section to the interpreter. */
2834 if (! info->shared)
2835 {
2836 s = bfd_get_section_by_name (dynobj, ".interp");
2837 BFD_ASSERT (s != NULL);
2838 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
2839 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2840 }
2841 }
2842 else
2843 {
2844 /* We may have created entries in the .rel.got section.
2845 However, if we are not creating the dynamic sections, we will
2846 not actually use these entries. Reset the size of .rel.got,
2847 which will cause it to get stripped from the output file
2848 below. */
2849 s = bfd_get_section_by_name (dynobj, ".rel.got");
2850 if (s != NULL)
2851 s->_raw_size = 0;
2852 }
2853
2854 /* If this is a -Bsymbolic shared link, then we need to discard all
2855 PC relative relocs against symbols defined in a regular object.
2856 We allocated space for them in the check_relocs routine, but we
2857 will not fill them in in the relocate_section routine. */
2858 if (info->shared && info->symbolic)
2859 elf32_arm_link_hash_traverse (elf32_arm_hash_table (info),
2860 elf32_arm_discard_copies,
2861 (PTR) NULL);
2862
2863 /* The check_relocs and adjust_dynamic_symbol entry points have
2864 determined the sizes of the various dynamic sections. Allocate
2865 memory for them. */
2866 plt = false;
2867 relocs = false;
2868 reltext = false;
2869 for (s = dynobj->sections; s != NULL; s = s->next)
2870 {
2871 const char * name;
2872 boolean strip;
2873
2874 if ((s->flags & SEC_LINKER_CREATED) == 0)
2875 continue;
2876
2877 /* It's OK to base decisions on the section name, because none
2878 of the dynobj section names depend upon the input files. */
2879 name = bfd_get_section_name (dynobj, s);
2880
2881 strip = false;
2882
2883 if (strcmp (name, ".plt") == 0)
2884 {
2885 if (s->_raw_size == 0)
2886 {
2887 /* Strip this section if we don't need it; see the
2888 comment below. */
2889 strip = true;
2890 }
2891 else
2892 {
2893 /* Remember whether there is a PLT. */
2894 plt = true;
2895 }
2896 }
2897 else if (strncmp (name, ".rel", 4) == 0)
2898 {
2899 if (s->_raw_size == 0)
2900 {
2901 /* If we don't need this section, strip it from the
2902 output file. This is mostly to handle .rel.bss and
2903 .rel.plt. We must create both sections in
2904 create_dynamic_sections, because they must be created
2905 before the linker maps input sections to output
2906 sections. The linker does that before
2907 adjust_dynamic_symbol is called, and it is that
2908 function which decides whether anything needs to go
2909 into these sections. */
2910 strip = true;
2911 }
2912 else
2913 {
2914 asection * target;
2915
2916 /* Remember whether there are any reloc sections other
2917 than .rel.plt. */
2918 if (strcmp (name, ".rel.plt") != 0)
2919 {
2920 const char *outname;
2921
2922 relocs = true;
2923
2924 /* If this relocation section applies to a read only
2925 section, then we probably need a DT_TEXTREL
2926 entry. The entries in the .rel.plt section
2927 really apply to the .got section, which we
2928 created ourselves and so know is not readonly. */
2929 outname = bfd_get_section_name (output_bfd,
2930 s->output_section);
2931 target = bfd_get_section_by_name (output_bfd, outname + 4);
2932
2933 if (target != NULL
2934 && (target->flags & SEC_READONLY) != 0
2935 && (target->flags & SEC_ALLOC) != 0)
2936 reltext = true;
2937 }
2938
2939 /* We use the reloc_count field as a counter if we need
2940 to copy relocs into the output file. */
2941 s->reloc_count = 0;
2942 }
2943 }
2944 else if (strncmp (name, ".got", 4) != 0)
2945 {
2946 /* It's not one of our sections, so don't allocate space. */
2947 continue;
2948 }
2949
2950 if (strip)
2951 {
2952 asection ** spp;
2953
2954 for (spp = &s->output_section->owner->sections;
2955 *spp != s->output_section;
2956 spp = &(*spp)->next)
2957 ;
2958 *spp = s->output_section->next;
2959 --s->output_section->owner->section_count;
2960
2961 continue;
2962 }
2963
2964 /* Allocate memory for the section contents. */
2965 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
2966 if (s->contents == NULL && s->_raw_size != 0)
2967 return false;
2968 }
2969
2970 if (elf_hash_table (info)->dynamic_sections_created)
2971 {
2972 /* Add some entries to the .dynamic section. We fill in the
2973 values later, in elf32_arm_finish_dynamic_sections, but we
2974 must add the entries now so that we get the correct size for
2975 the .dynamic section. The DT_DEBUG entry is filled in by the
2976 dynamic linker and used by the debugger. */
2977 if (! info->shared)
2978 {
2979 if (! bfd_elf32_add_dynamic_entry (info, DT_DEBUG, 0))
2980 return false;
2981 }
2982
2983 if (plt)
2984 {
2985 if ( ! bfd_elf32_add_dynamic_entry (info, DT_PLTGOT, 0)
2986 || ! bfd_elf32_add_dynamic_entry (info, DT_PLTRELSZ, 0)
2987 || ! bfd_elf32_add_dynamic_entry (info, DT_PLTREL, DT_REL)
2988 || ! bfd_elf32_add_dynamic_entry (info, DT_JMPREL, 0))
2989 return false;
2990 }
2991
2992 if (relocs)
2993 {
2994 if ( ! bfd_elf32_add_dynamic_entry (info, DT_REL, 0)
2995 || ! bfd_elf32_add_dynamic_entry (info, DT_RELSZ, 0)
2996 || ! bfd_elf32_add_dynamic_entry (info, DT_RELENT,
2997 sizeof (Elf32_External_Rel)))
2998 return false;
2999 }
3000
3001 if (reltext)
3002 {
3003 if (! bfd_elf32_add_dynamic_entry (info, DT_TEXTREL, 0))
3004 return false;
3005 info->flags |= DF_TEXTREL;
3006 }
3007 }
3008
3009 return true;
3010 }
3011
3012 /* This function is called via elf32_arm_link_hash_traverse if we are
3013 creating a shared object with -Bsymbolic. It discards the space
3014 allocated to copy PC relative relocs against symbols which are
3015 defined in regular objects. We allocated space for them in the
3016 check_relocs routine, but we won't fill them in in the
3017 relocate_section routine. */
3018
3019 static boolean
3020 elf32_arm_discard_copies (h, ignore)
3021 struct elf32_arm_link_hash_entry * h;
3022 PTR ignore ATTRIBUTE_UNUSED;
3023 {
3024 struct elf32_arm_pcrel_relocs_copied * s;
3025
3026 /* We only discard relocs for symbols defined in a regular object. */
3027 if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3028 return true;
3029
3030 for (s = h->pcrel_relocs_copied; s != NULL; s = s->next)
3031 s->section->_raw_size -= s->count * sizeof (Elf32_External_Rel);
3032
3033 return true;
3034 }
3035
3036 /* Finish up dynamic symbol handling. We set the contents of various
3037 dynamic sections here. */
3038
3039 static boolean
3040 elf32_arm_finish_dynamic_symbol (output_bfd, info, h, sym)
3041 bfd * output_bfd;
3042 struct bfd_link_info * info;
3043 struct elf_link_hash_entry * h;
3044 Elf_Internal_Sym * sym;
3045 {
3046 bfd * dynobj;
3047
3048 dynobj = elf_hash_table (info)->dynobj;
3049
3050 if (h->plt.offset != (bfd_vma) -1)
3051 {
3052 asection * splt;
3053 asection * sgot;
3054 asection * srel;
3055 bfd_vma plt_index;
3056 bfd_vma got_offset;
3057 Elf_Internal_Rel rel;
3058
3059 /* This symbol has an entry in the procedure linkage table. Set
3060 it up. */
3061
3062 BFD_ASSERT (h->dynindx != -1);
3063
3064 splt = bfd_get_section_by_name (dynobj, ".plt");
3065 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3066 srel = bfd_get_section_by_name (dynobj, ".rel.plt");
3067 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
3068
3069 /* Get the index in the procedure linkage table which
3070 corresponds to this symbol. This is the index of this symbol
3071 in all the symbols for which we are making plt entries. The
3072 first entry in the procedure linkage table is reserved. */
3073 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3074
3075 /* Get the offset into the .got table of the entry that
3076 corresponds to this function. Each .got entry is 4 bytes.
3077 The first three are reserved. */
3078 got_offset = (plt_index + 3) * 4;
3079
3080 /* Fill in the entry in the procedure linkage table. */
3081 memcpy (splt->contents + h->plt.offset,
3082 elf32_arm_plt_entry,
3083 PLT_ENTRY_SIZE);
3084 bfd_put_32 (output_bfd,
3085 (sgot->output_section->vma
3086 + sgot->output_offset
3087 + got_offset
3088 - splt->output_section->vma
3089 - splt->output_offset
3090 - h->plt.offset - 12),
3091 splt->contents + h->plt.offset + 12);
3092
3093 /* Fill in the entry in the global offset table. */
3094 bfd_put_32 (output_bfd,
3095 (splt->output_section->vma
3096 + splt->output_offset),
3097 sgot->contents + got_offset);
3098
3099 /* Fill in the entry in the .rel.plt section. */
3100 rel.r_offset = (sgot->output_section->vma
3101 + sgot->output_offset
3102 + got_offset);
3103 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
3104 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3105 ((Elf32_External_Rel *) srel->contents
3106 + plt_index));
3107
3108 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3109 {
3110 /* Mark the symbol as undefined, rather than as defined in
3111 the .plt section. Leave the value alone. */
3112 sym->st_shndx = SHN_UNDEF;
3113 }
3114 }
3115
3116 if (h->got.offset != (bfd_vma) -1)
3117 {
3118 asection * sgot;
3119 asection * srel;
3120 Elf_Internal_Rel rel;
3121
3122 /* This symbol has an entry in the global offset table. Set it
3123 up. */
3124 sgot = bfd_get_section_by_name (dynobj, ".got");
3125 srel = bfd_get_section_by_name (dynobj, ".rel.got");
3126 BFD_ASSERT (sgot != NULL && srel != NULL);
3127
3128 rel.r_offset = (sgot->output_section->vma
3129 + sgot->output_offset
3130 + (h->got.offset &~ 1));
3131
3132 /* If this is a -Bsymbolic link, and the symbol is defined
3133 locally, we just want to emit a RELATIVE reloc. The entry in
3134 the global offset table will already have been initialized in
3135 the relocate_section function. */
3136 if (info->shared
3137 && (info->symbolic || h->dynindx == -1)
3138 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
3139 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
3140 else
3141 {
3142 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
3143 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
3144 }
3145
3146 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3147 ((Elf32_External_Rel *) srel->contents
3148 + srel->reloc_count));
3149 ++srel->reloc_count;
3150 }
3151
3152 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
3153 {
3154 asection * s;
3155 Elf_Internal_Rel rel;
3156
3157 /* This symbol needs a copy reloc. Set it up. */
3158 BFD_ASSERT (h->dynindx != -1
3159 && (h->root.type == bfd_link_hash_defined
3160 || h->root.type == bfd_link_hash_defweak));
3161
3162 s = bfd_get_section_by_name (h->root.u.def.section->owner,
3163 ".rel.bss");
3164 BFD_ASSERT (s != NULL);
3165
3166 rel.r_offset = (h->root.u.def.value
3167 + h->root.u.def.section->output_section->vma
3168 + h->root.u.def.section->output_offset);
3169 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
3170 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3171 ((Elf32_External_Rel *) s->contents
3172 + s->reloc_count));
3173 ++s->reloc_count;
3174 }
3175
3176 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3177 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
3178 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3179 sym->st_shndx = SHN_ABS;
3180
3181 return true;
3182 }
3183
3184 /* Finish up the dynamic sections. */
3185
3186 static boolean
3187 elf32_arm_finish_dynamic_sections (output_bfd, info)
3188 bfd * output_bfd;
3189 struct bfd_link_info * info;
3190 {
3191 bfd * dynobj;
3192 asection * sgot;
3193 asection * sdyn;
3194
3195 dynobj = elf_hash_table (info)->dynobj;
3196
3197 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3198 BFD_ASSERT (sgot != NULL);
3199 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3200
3201 if (elf_hash_table (info)->dynamic_sections_created)
3202 {
3203 asection *splt;
3204 Elf32_External_Dyn *dyncon, *dynconend;
3205
3206 splt = bfd_get_section_by_name (dynobj, ".plt");
3207 BFD_ASSERT (splt != NULL && sdyn != NULL);
3208
3209 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3210 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
3211
3212 for (; dyncon < dynconend; dyncon++)
3213 {
3214 Elf_Internal_Dyn dyn;
3215 const char * name;
3216 asection * s;
3217
3218 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3219
3220 switch (dyn.d_tag)
3221 {
3222 default:
3223 break;
3224
3225 case DT_PLTGOT:
3226 name = ".got";
3227 goto get_vma;
3228 case DT_JMPREL:
3229 name = ".rel.plt";
3230 get_vma:
3231 s = bfd_get_section_by_name (output_bfd, name);
3232 BFD_ASSERT (s != NULL);
3233 dyn.d_un.d_ptr = s->vma;
3234 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3235 break;
3236
3237 case DT_PLTRELSZ:
3238 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3239 BFD_ASSERT (s != NULL);
3240 if (s->_cooked_size != 0)
3241 dyn.d_un.d_val = s->_cooked_size;
3242 else
3243 dyn.d_un.d_val = s->_raw_size;
3244 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3245 break;
3246
3247 case DT_RELSZ:
3248 /* My reading of the SVR4 ABI indicates that the
3249 procedure linkage table relocs (DT_JMPREL) should be
3250 included in the overall relocs (DT_REL). This is
3251 what Solaris does. However, UnixWare can not handle
3252 that case. Therefore, we override the DT_RELSZ entry
3253 here to make it not include the JMPREL relocs. Since
3254 the linker script arranges for .rel.plt to follow all
3255 other relocation sections, we don't have to worry
3256 about changing the DT_REL entry. */
3257 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3258 if (s != NULL)
3259 {
3260 if (s->_cooked_size != 0)
3261 dyn.d_un.d_val -= s->_cooked_size;
3262 else
3263 dyn.d_un.d_val -= s->_raw_size;
3264 }
3265 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3266 break;
3267 }
3268 }
3269
3270 /* Fill in the first entry in the procedure linkage table. */
3271 if (splt->_raw_size > 0)
3272 memcpy (splt->contents, elf32_arm_plt0_entry, PLT_ENTRY_SIZE);
3273
3274 /* UnixWare sets the entsize of .plt to 4, although that doesn't
3275 really seem like the right value. */
3276 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
3277 }
3278
3279 /* Fill in the first three entries in the global offset table. */
3280 if (sgot->_raw_size > 0)
3281 {
3282 if (sdyn == NULL)
3283 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
3284 else
3285 bfd_put_32 (output_bfd,
3286 sdyn->output_section->vma + sdyn->output_offset,
3287 sgot->contents);
3288 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
3289 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
3290 }
3291
3292 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
3293
3294 return true;
3295 }
3296
3297 static void
3298 elf32_arm_post_process_headers (abfd, link_info)
3299 bfd * abfd;
3300 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
3301 {
3302 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
3303
3304 i_ehdrp = elf_elfheader (abfd);
3305
3306 i_ehdrp->e_ident[EI_OSABI] = ARM_ELF_OS_ABI_VERSION;
3307 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
3308 }
3309
3310
3311 #define ELF_ARCH bfd_arch_arm
3312 #define ELF_MACHINE_CODE EM_ARM
3313 #define ELF_MAXPAGESIZE 0x8000
3314
3315
3316 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
3317 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
3318 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
3319 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
3320 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
3321 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
3322 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
3323
3324 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
3325 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
3326 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
3327 #define elf_backend_check_relocs elf32_arm_check_relocs
3328 #define elf_backend_relocate_section elf32_arm_relocate_section
3329 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
3330 #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
3331 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
3332 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
3333 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
3334 #define elf_backend_post_process_headers elf32_arm_post_process_headers
3335
3336 #define elf_backend_can_gc_sections 1
3337 #define elf_backend_plt_readonly 1
3338 #define elf_backend_want_got_plt 1
3339 #define elf_backend_want_plt_sym 0
3340
3341 #define elf_backend_got_header_size 12
3342 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
3343
3344 #include "elf32-target.h"
This page took 0.116394 seconds and 4 git commands to generate.