* defs.h [!FOPEN_RB]: Include "fopen-bin.h" instead of
[deliverable/binutils-gdb.git] / bfd / elf32-arm.h
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #ifndef USE_REL
22 #define USE_REL 0
23 #endif
24
25 typedef unsigned long int insn32;
26 typedef unsigned short int insn16;
27
28 /* In lieu of proper flags, assume all EABIv3 objects are interworkable. */
29 #define INTERWORK_FLAG(abfd) \
30 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) == EF_ARM_EABI_VER3 \
31 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK))
32
33 /* The linker script knows the section names for placement.
34 The entry_names are used to do simple name mangling on the stubs.
35 Given a function name, and its type, the stub can be found. The
36 name can be changed. The only requirement is the %s be present. */
37 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
38 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
39
40 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
41 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
42
43 /* The name of the dynamic interpreter. This is put in the .interp
44 section. */
45 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
46
47 #ifdef FOUR_WORD_PLT
48
49 /* The first entry in a procedure linkage table looks like
50 this. It is set up so that any shared library function that is
51 called before the relocation has been set up calls the dynamic
52 linker first. */
53 static const bfd_vma elf32_arm_plt0_entry [] =
54 {
55 0xe52de004, /* str lr, [sp, #-4]! */
56 0xe59fe010, /* ldr lr, [pc, #16] */
57 0xe08fe00e, /* add lr, pc, lr */
58 0xe5bef008, /* ldr pc, [lr, #8]! */
59 };
60
61 /* Subsequent entries in a procedure linkage table look like
62 this. */
63 static const bfd_vma elf32_arm_plt_entry [] =
64 {
65 0xe28fc600, /* add ip, pc, #NN */
66 0xe28cca00, /* add ip, ip, #NN */
67 0xe5bcf000, /* ldr pc, [ip, #NN]! */
68 0x00000000, /* unused */
69 };
70
71 #else
72
73 /* The first entry in a procedure linkage table looks like
74 this. It is set up so that any shared library function that is
75 called before the relocation has been set up calls the dynamic
76 linker first. */
77 static const bfd_vma elf32_arm_plt0_entry [] =
78 {
79 0xe52de004, /* str lr, [sp, #-4]! */
80 0xe59fe004, /* ldr lr, [pc, #4] */
81 0xe08fe00e, /* add lr, pc, lr */
82 0xe5bef008, /* ldr pc, [lr, #8]! */
83 0x00000000, /* &GOT[0] - . */
84 };
85
86 /* Subsequent entries in a procedure linkage table look like
87 this. */
88 static const bfd_vma elf32_arm_plt_entry [] =
89 {
90 0xe28fc600, /* add ip, pc, #0xNN00000 */
91 0xe28cca00, /* add ip, ip, #0xNN000 */
92 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
93 };
94
95 #endif
96
97 /* The entries in a PLT when using a DLL-based target with multiple
98 address spaces. */
99 static const bfd_vma elf32_arm_symbian_plt_entry [] =
100 {
101 0xe51ff004, /* ldr pr, [pc, #-4] */
102 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
103 };
104
105 /* Used to build a map of a section. This is required for mixed-endian
106 code/data. */
107
108 typedef struct elf32_elf_section_map
109 {
110 bfd_vma vma;
111 char type;
112 }
113 elf32_arm_section_map;
114
115 struct _arm_elf_section_data
116 {
117 struct bfd_elf_section_data elf;
118 int mapcount;
119 elf32_arm_section_map *map;
120 };
121
122 #define elf32_arm_section_data(sec) \
123 ((struct _arm_elf_section_data *) elf_section_data (sec))
124
125 /* The ARM linker needs to keep track of the number of relocs that it
126 decides to copy in check_relocs for each symbol. This is so that
127 it can discard PC relative relocs if it doesn't need them when
128 linking with -Bsymbolic. We store the information in a field
129 extending the regular ELF linker hash table. */
130
131 /* This structure keeps track of the number of PC relative relocs we
132 have copied for a given symbol. */
133 struct elf32_arm_relocs_copied
134 {
135 /* Next section. */
136 struct elf32_arm_relocs_copied * next;
137 /* A section in dynobj. */
138 asection * section;
139 /* Number of relocs copied in this section. */
140 bfd_size_type count;
141 };
142
143 /* Arm ELF linker hash entry. */
144 struct elf32_arm_link_hash_entry
145 {
146 struct elf_link_hash_entry root;
147
148 /* Number of PC relative relocs copied for this symbol. */
149 struct elf32_arm_relocs_copied * relocs_copied;
150 };
151
152 /* Traverse an arm ELF linker hash table. */
153 #define elf32_arm_link_hash_traverse(table, func, info) \
154 (elf_link_hash_traverse \
155 (&(table)->root, \
156 (bfd_boolean (*) (struct elf_link_hash_entry *, void *))) (func), \
157 (info)))
158
159 /* Get the ARM elf linker hash table from a link_info structure. */
160 #define elf32_arm_hash_table(info) \
161 ((struct elf32_arm_link_hash_table *) ((info)->hash))
162
163 /* ARM ELF linker hash table. */
164 struct elf32_arm_link_hash_table
165 {
166 /* The main hash table. */
167 struct elf_link_hash_table root;
168
169 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
170 bfd_size_type thumb_glue_size;
171
172 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
173 bfd_size_type arm_glue_size;
174
175 /* An arbitrary input BFD chosen to hold the glue sections. */
176 bfd * bfd_of_glue_owner;
177
178 /* A boolean indicating whether knowledge of the ARM's pipeline
179 length should be applied by the linker. */
180 int no_pipeline_knowledge;
181
182 /* Nonzero to output a BE8 image. */
183 int byteswap_code;
184
185 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
186 Nonzero if R_ARM_TARGET1 means R_ARM_ABS32. */
187 int target1_is_rel;
188
189 /* The relocation to use for R_ARM_TARGET2 relocations. */
190 int target2_reloc;
191
192 /* The number of bytes in the initial entry in the PLT. */
193 bfd_size_type plt_header_size;
194
195 /* The number of bytes in the subsequent PLT etries. */
196 bfd_size_type plt_entry_size;
197
198 /* True if the target system is Symbian OS. */
199 int symbian_p;
200
201 /* Short-cuts to get to dynamic linker sections. */
202 asection *sgot;
203 asection *sgotplt;
204 asection *srelgot;
205 asection *splt;
206 asection *srelplt;
207 asection *sdynbss;
208 asection *srelbss;
209
210 /* Small local sym to section mapping cache. */
211 struct sym_sec_cache sym_sec;
212 };
213
214 /* Create an entry in an ARM ELF linker hash table. */
215
216 static struct bfd_hash_entry *
217 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
218 struct bfd_hash_table * table,
219 const char * string)
220 {
221 struct elf32_arm_link_hash_entry * ret =
222 (struct elf32_arm_link_hash_entry *) entry;
223
224 /* Allocate the structure if it has not already been allocated by a
225 subclass. */
226 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
227 ret = bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
228 if (ret == NULL)
229 return (struct bfd_hash_entry *) ret;
230
231 /* Call the allocation method of the superclass. */
232 ret = ((struct elf32_arm_link_hash_entry *)
233 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
234 table, string));
235 if (ret != NULL)
236 ret->relocs_copied = NULL;
237
238 return (struct bfd_hash_entry *) ret;
239 }
240
241 /* Create .got, .gotplt, and .rel.got sections in DYNOBJ, and set up
242 shortcuts to them in our hash table. */
243
244 static bfd_boolean
245 create_got_section (bfd *dynobj, struct bfd_link_info *info)
246 {
247 struct elf32_arm_link_hash_table *htab;
248
249 htab = elf32_arm_hash_table (info);
250 /* BPABI objects never have a GOT, or associated sections. */
251 if (htab->symbian_p)
252 return TRUE;
253
254 if (! _bfd_elf_create_got_section (dynobj, info))
255 return FALSE;
256
257 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
258 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
259 if (!htab->sgot || !htab->sgotplt)
260 abort ();
261
262 htab->srelgot = bfd_make_section (dynobj, ".rel.got");
263 if (htab->srelgot == NULL
264 || ! bfd_set_section_flags (dynobj, htab->srelgot,
265 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
266 | SEC_IN_MEMORY | SEC_LINKER_CREATED
267 | SEC_READONLY))
268 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
269 return FALSE;
270 return TRUE;
271 }
272
273 /* Create .plt, .rel.plt, .got, .got.plt, .rel.got, .dynbss, and
274 .rel.bss sections in DYNOBJ, and set up shortcuts to them in our
275 hash table. */
276
277 static bfd_boolean
278 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
279 {
280 struct elf32_arm_link_hash_table *htab;
281
282 htab = elf32_arm_hash_table (info);
283 if (!htab->sgot && !create_got_section (dynobj, info))
284 return FALSE;
285
286 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
287 return FALSE;
288
289 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
290 htab->srelplt = bfd_get_section_by_name (dynobj, ".rel.plt");
291 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
292 if (!info->shared)
293 htab->srelbss = bfd_get_section_by_name (dynobj, ".rel.bss");
294
295 if (!htab->splt
296 || !htab->srelplt
297 || !htab->sdynbss
298 || (!info->shared && !htab->srelbss))
299 abort ();
300
301 return TRUE;
302 }
303
304 /* Copy the extra info we tack onto an elf_link_hash_entry. */
305
306 static void
307 elf32_arm_copy_indirect_symbol (const struct elf_backend_data *bed,
308 struct elf_link_hash_entry *dir,
309 struct elf_link_hash_entry *ind)
310 {
311 struct elf32_arm_link_hash_entry *edir, *eind;
312
313 edir = (struct elf32_arm_link_hash_entry *) dir;
314 eind = (struct elf32_arm_link_hash_entry *) ind;
315
316 if (eind->relocs_copied != NULL)
317 {
318 if (edir->relocs_copied != NULL)
319 {
320 struct elf32_arm_relocs_copied **pp;
321 struct elf32_arm_relocs_copied *p;
322
323 if (ind->root.type == bfd_link_hash_indirect)
324 abort ();
325
326 /* Add reloc counts against the weak sym to the strong sym
327 list. Merge any entries against the same section. */
328 for (pp = &eind->relocs_copied; (p = *pp) != NULL; )
329 {
330 struct elf32_arm_relocs_copied *q;
331
332 for (q = edir->relocs_copied; q != NULL; q = q->next)
333 if (q->section == p->section)
334 {
335 q->count += p->count;
336 *pp = p->next;
337 break;
338 }
339 if (q == NULL)
340 pp = &p->next;
341 }
342 *pp = edir->relocs_copied;
343 }
344
345 edir->relocs_copied = eind->relocs_copied;
346 eind->relocs_copied = NULL;
347 }
348
349 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
350 }
351
352 /* Create an ARM elf linker hash table. */
353
354 static struct bfd_link_hash_table *
355 elf32_arm_link_hash_table_create (bfd *abfd)
356 {
357 struct elf32_arm_link_hash_table *ret;
358 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
359
360 ret = bfd_malloc (amt);
361 if (ret == NULL)
362 return NULL;
363
364 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
365 elf32_arm_link_hash_newfunc))
366 {
367 free (ret);
368 return NULL;
369 }
370
371 ret->sgot = NULL;
372 ret->sgotplt = NULL;
373 ret->srelgot = NULL;
374 ret->splt = NULL;
375 ret->srelplt = NULL;
376 ret->sdynbss = NULL;
377 ret->srelbss = NULL;
378 ret->thumb_glue_size = 0;
379 ret->arm_glue_size = 0;
380 ret->bfd_of_glue_owner = NULL;
381 ret->no_pipeline_knowledge = 0;
382 ret->byteswap_code = 0;
383 ret->target1_is_rel = 0;
384 ret->target2_reloc = R_ARM_NONE;
385 #ifdef FOUR_WORD_PLT
386 ret->plt_header_size = 16;
387 ret->plt_entry_size = 16;
388 #else
389 ret->plt_header_size = 20;
390 ret->plt_entry_size = 12;
391 #endif
392 ret->symbian_p = 0;
393 ret->sym_sec.abfd = NULL;
394
395 return &ret->root.root;
396 }
397
398 /* Locate the Thumb encoded calling stub for NAME. */
399
400 static struct elf_link_hash_entry *
401 find_thumb_glue (struct bfd_link_info *link_info,
402 const char *name,
403 bfd *input_bfd)
404 {
405 char *tmp_name;
406 struct elf_link_hash_entry *hash;
407 struct elf32_arm_link_hash_table *hash_table;
408
409 /* We need a pointer to the armelf specific hash table. */
410 hash_table = elf32_arm_hash_table (link_info);
411
412 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
413 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
414
415 BFD_ASSERT (tmp_name);
416
417 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
418
419 hash = elf_link_hash_lookup
420 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
421
422 if (hash == NULL)
423 /* xgettext:c-format */
424 (*_bfd_error_handler) (_("%B: unable to find THUMB glue '%s' for `%s'"),
425 input_bfd, tmp_name, name);
426
427 free (tmp_name);
428
429 return hash;
430 }
431
432 /* Locate the ARM encoded calling stub for NAME. */
433
434 static struct elf_link_hash_entry *
435 find_arm_glue (struct bfd_link_info *link_info,
436 const char *name,
437 bfd *input_bfd)
438 {
439 char *tmp_name;
440 struct elf_link_hash_entry *myh;
441 struct elf32_arm_link_hash_table *hash_table;
442
443 /* We need a pointer to the elfarm specific hash table. */
444 hash_table = elf32_arm_hash_table (link_info);
445
446 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
447 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
448
449 BFD_ASSERT (tmp_name);
450
451 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
452
453 myh = elf_link_hash_lookup
454 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
455
456 if (myh == NULL)
457 /* xgettext:c-format */
458 (*_bfd_error_handler) (_("%B: unable to find ARM glue '%s' for `%s'"),
459 input_bfd, tmp_name, name);
460
461 free (tmp_name);
462
463 return myh;
464 }
465
466 /* ARM->Thumb glue:
467
468 .arm
469 __func_from_arm:
470 ldr r12, __func_addr
471 bx r12
472 __func_addr:
473 .word func @ behave as if you saw a ARM_32 reloc. */
474
475 #define ARM2THUMB_GLUE_SIZE 12
476 static const insn32 a2t1_ldr_insn = 0xe59fc000;
477 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
478 static const insn32 a2t3_func_addr_insn = 0x00000001;
479
480 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
481
482 .thumb .thumb
483 .align 2 .align 2
484 __func_from_thumb: __func_from_thumb:
485 bx pc push {r6, lr}
486 nop ldr r6, __func_addr
487 .arm mov lr, pc
488 __func_change_to_arm: bx r6
489 b func .arm
490 __func_back_to_thumb:
491 ldmia r13! {r6, lr}
492 bx lr
493 __func_addr:
494 .word func */
495
496 #define THUMB2ARM_GLUE_SIZE 8
497 static const insn16 t2a1_bx_pc_insn = 0x4778;
498 static const insn16 t2a2_noop_insn = 0x46c0;
499 static const insn32 t2a3_b_insn = 0xea000000;
500
501 #ifndef ELFARM_NABI_C_INCLUDED
502 bfd_boolean
503 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
504 {
505 asection * s;
506 bfd_byte * foo;
507 struct elf32_arm_link_hash_table * globals;
508
509 globals = elf32_arm_hash_table (info);
510
511 BFD_ASSERT (globals != NULL);
512
513 if (globals->arm_glue_size != 0)
514 {
515 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
516
517 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
518 ARM2THUMB_GLUE_SECTION_NAME);
519
520 BFD_ASSERT (s != NULL);
521
522 foo = bfd_alloc (globals->bfd_of_glue_owner, globals->arm_glue_size);
523
524 s->size = globals->arm_glue_size;
525 s->contents = foo;
526 }
527
528 if (globals->thumb_glue_size != 0)
529 {
530 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
531
532 s = bfd_get_section_by_name
533 (globals->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
534
535 BFD_ASSERT (s != NULL);
536
537 foo = bfd_alloc (globals->bfd_of_glue_owner, globals->thumb_glue_size);
538
539 s->size = globals->thumb_glue_size;
540 s->contents = foo;
541 }
542
543 return TRUE;
544 }
545
546 static void
547 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
548 struct elf_link_hash_entry * h)
549 {
550 const char * name = h->root.root.string;
551 asection * s;
552 char * tmp_name;
553 struct elf_link_hash_entry * myh;
554 struct bfd_link_hash_entry * bh;
555 struct elf32_arm_link_hash_table * globals;
556 bfd_vma val;
557
558 globals = elf32_arm_hash_table (link_info);
559
560 BFD_ASSERT (globals != NULL);
561 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
562
563 s = bfd_get_section_by_name
564 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
565
566 BFD_ASSERT (s != NULL);
567
568 tmp_name = bfd_malloc ((bfd_size_type) strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
569
570 BFD_ASSERT (tmp_name);
571
572 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
573
574 myh = elf_link_hash_lookup
575 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
576
577 if (myh != NULL)
578 {
579 /* We've already seen this guy. */
580 free (tmp_name);
581 return;
582 }
583
584 /* The only trick here is using hash_table->arm_glue_size as the value.
585 Even though the section isn't allocated yet, this is where we will be
586 putting it. */
587 bh = NULL;
588 val = globals->arm_glue_size + 1;
589 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
590 tmp_name, BSF_GLOBAL, s, val,
591 NULL, TRUE, FALSE, &bh);
592
593 free (tmp_name);
594
595 globals->arm_glue_size += ARM2THUMB_GLUE_SIZE;
596
597 return;
598 }
599
600 static void
601 record_thumb_to_arm_glue (struct bfd_link_info *link_info,
602 struct elf_link_hash_entry *h)
603 {
604 const char *name = h->root.root.string;
605 asection *s;
606 char *tmp_name;
607 struct elf_link_hash_entry *myh;
608 struct bfd_link_hash_entry *bh;
609 struct elf32_arm_link_hash_table *hash_table;
610 char bind;
611 bfd_vma val;
612
613 hash_table = elf32_arm_hash_table (link_info);
614
615 BFD_ASSERT (hash_table != NULL);
616 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
617
618 s = bfd_get_section_by_name
619 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
620
621 BFD_ASSERT (s != NULL);
622
623 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
624 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
625
626 BFD_ASSERT (tmp_name);
627
628 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
629
630 myh = elf_link_hash_lookup
631 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
632
633 if (myh != NULL)
634 {
635 /* We've already seen this guy. */
636 free (tmp_name);
637 return;
638 }
639
640 bh = NULL;
641 val = hash_table->thumb_glue_size + 1;
642 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
643 tmp_name, BSF_GLOBAL, s, val,
644 NULL, TRUE, FALSE, &bh);
645
646 /* If we mark it 'Thumb', the disassembler will do a better job. */
647 myh = (struct elf_link_hash_entry *) bh;
648 bind = ELF_ST_BIND (myh->type);
649 myh->type = ELF_ST_INFO (bind, STT_ARM_TFUNC);
650
651 free (tmp_name);
652
653 #define CHANGE_TO_ARM "__%s_change_to_arm"
654 #define BACK_FROM_ARM "__%s_back_from_arm"
655
656 /* Allocate another symbol to mark where we switch to Arm mode. */
657 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
658 + strlen (CHANGE_TO_ARM) + 1);
659
660 BFD_ASSERT (tmp_name);
661
662 sprintf (tmp_name, CHANGE_TO_ARM, name);
663
664 bh = NULL;
665 val = hash_table->thumb_glue_size + 4,
666 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
667 tmp_name, BSF_LOCAL, s, val,
668 NULL, TRUE, FALSE, &bh);
669
670 free (tmp_name);
671
672 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
673
674 return;
675 }
676
677 /* Add the glue sections to ABFD. This function is called from the
678 linker scripts in ld/emultempl/{armelf}.em. */
679
680 bfd_boolean
681 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
682 struct bfd_link_info *info)
683 {
684 flagword flags;
685 asection *sec;
686
687 /* If we are only performing a partial
688 link do not bother adding the glue. */
689 if (info->relocatable)
690 return TRUE;
691
692 sec = bfd_get_section_by_name (abfd, ARM2THUMB_GLUE_SECTION_NAME);
693
694 if (sec == NULL)
695 {
696 /* Note: we do not include the flag SEC_LINKER_CREATED, as this
697 will prevent elf_link_input_bfd() from processing the contents
698 of this section. */
699 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
700
701 sec = bfd_make_section (abfd, ARM2THUMB_GLUE_SECTION_NAME);
702
703 if (sec == NULL
704 || !bfd_set_section_flags (abfd, sec, flags)
705 || !bfd_set_section_alignment (abfd, sec, 2))
706 return FALSE;
707
708 /* Set the gc mark to prevent the section from being removed by garbage
709 collection, despite the fact that no relocs refer to this section. */
710 sec->gc_mark = 1;
711 }
712
713 sec = bfd_get_section_by_name (abfd, THUMB2ARM_GLUE_SECTION_NAME);
714
715 if (sec == NULL)
716 {
717 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
718 | SEC_CODE | SEC_READONLY;
719
720 sec = bfd_make_section (abfd, THUMB2ARM_GLUE_SECTION_NAME);
721
722 if (sec == NULL
723 || !bfd_set_section_flags (abfd, sec, flags)
724 || !bfd_set_section_alignment (abfd, sec, 2))
725 return FALSE;
726
727 sec->gc_mark = 1;
728 }
729
730 return TRUE;
731 }
732
733 /* Select a BFD to be used to hold the sections used by the glue code.
734 This function is called from the linker scripts in ld/emultempl/
735 {armelf/pe}.em */
736
737 bfd_boolean
738 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
739 {
740 struct elf32_arm_link_hash_table *globals;
741
742 /* If we are only performing a partial link
743 do not bother getting a bfd to hold the glue. */
744 if (info->relocatable)
745 return TRUE;
746
747 globals = elf32_arm_hash_table (info);
748
749 BFD_ASSERT (globals != NULL);
750
751 if (globals->bfd_of_glue_owner != NULL)
752 return TRUE;
753
754 /* Save the bfd for later use. */
755 globals->bfd_of_glue_owner = abfd;
756
757 return TRUE;
758 }
759
760 bfd_boolean
761 bfd_elf32_arm_process_before_allocation (bfd *abfd,
762 struct bfd_link_info *link_info,
763 int no_pipeline_knowledge,
764 int byteswap_code)
765 {
766 Elf_Internal_Shdr *symtab_hdr;
767 Elf_Internal_Rela *internal_relocs = NULL;
768 Elf_Internal_Rela *irel, *irelend;
769 bfd_byte *contents = NULL;
770
771 asection *sec;
772 struct elf32_arm_link_hash_table *globals;
773
774 /* If we are only performing a partial link do not bother
775 to construct any glue. */
776 if (link_info->relocatable)
777 return TRUE;
778
779 /* Here we have a bfd that is to be included on the link. We have a hook
780 to do reloc rummaging, before section sizes are nailed down. */
781 globals = elf32_arm_hash_table (link_info);
782
783 BFD_ASSERT (globals != NULL);
784 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
785
786 globals->no_pipeline_knowledge = no_pipeline_knowledge;
787
788 if (byteswap_code && !bfd_big_endian (abfd))
789 {
790 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
791 abfd);
792 return FALSE;
793 }
794 globals->byteswap_code = byteswap_code;
795
796 /* Rummage around all the relocs and map the glue vectors. */
797 sec = abfd->sections;
798
799 if (sec == NULL)
800 return TRUE;
801
802 for (; sec != NULL; sec = sec->next)
803 {
804 if (sec->reloc_count == 0)
805 continue;
806
807 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
808
809 /* Load the relocs. */
810 internal_relocs
811 = _bfd_elf_link_read_relocs (abfd, sec, (void *) NULL,
812 (Elf_Internal_Rela *) NULL, FALSE);
813
814 if (internal_relocs == NULL)
815 goto error_return;
816
817 irelend = internal_relocs + sec->reloc_count;
818 for (irel = internal_relocs; irel < irelend; irel++)
819 {
820 long r_type;
821 unsigned long r_index;
822
823 struct elf_link_hash_entry *h;
824
825 r_type = ELF32_R_TYPE (irel->r_info);
826 r_index = ELF32_R_SYM (irel->r_info);
827
828 /* These are the only relocation types we care about. */
829 if ( r_type != R_ARM_PC24
830 && r_type != R_ARM_THM_PC22)
831 continue;
832
833 /* Get the section contents if we haven't done so already. */
834 if (contents == NULL)
835 {
836 /* Get cached copy if it exists. */
837 if (elf_section_data (sec)->this_hdr.contents != NULL)
838 contents = elf_section_data (sec)->this_hdr.contents;
839 else
840 {
841 /* Go get them off disk. */
842 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
843 goto error_return;
844 }
845 }
846
847 /* If the relocation is not against a symbol it cannot concern us. */
848 h = NULL;
849
850 /* We don't care about local symbols. */
851 if (r_index < symtab_hdr->sh_info)
852 continue;
853
854 /* This is an external symbol. */
855 r_index -= symtab_hdr->sh_info;
856 h = (struct elf_link_hash_entry *)
857 elf_sym_hashes (abfd)[r_index];
858
859 /* If the relocation is against a static symbol it must be within
860 the current section and so cannot be a cross ARM/Thumb relocation. */
861 if (h == NULL)
862 continue;
863
864 switch (r_type)
865 {
866 case R_ARM_PC24:
867 /* This one is a call from arm code. We need to look up
868 the target of the call. If it is a thumb target, we
869 insert glue. */
870 if (ELF_ST_TYPE(h->type) == STT_ARM_TFUNC)
871 record_arm_to_thumb_glue (link_info, h);
872 break;
873
874 case R_ARM_THM_PC22:
875 /* This one is a call from thumb code. We look
876 up the target of the call. If it is not a thumb
877 target, we insert glue. */
878 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC)
879 record_thumb_to_arm_glue (link_info, h);
880 break;
881
882 default:
883 break;
884 }
885 }
886
887 if (contents != NULL
888 && elf_section_data (sec)->this_hdr.contents != contents)
889 free (contents);
890 contents = NULL;
891
892 if (internal_relocs != NULL
893 && elf_section_data (sec)->relocs != internal_relocs)
894 free (internal_relocs);
895 internal_relocs = NULL;
896 }
897
898 return TRUE;
899
900 error_return:
901 if (contents != NULL
902 && elf_section_data (sec)->this_hdr.contents != contents)
903 free (contents);
904 if (internal_relocs != NULL
905 && elf_section_data (sec)->relocs != internal_relocs)
906 free (internal_relocs);
907
908 return FALSE;
909 }
910 #endif
911
912
913 #ifndef OLD_ARM_ABI
914 /* Set target relocation values needed during linking. */
915
916 void
917 bfd_elf32_arm_set_target_relocs (struct bfd_link_info *link_info,
918 int target1_is_rel,
919 char * target2_type)
920 {
921 struct elf32_arm_link_hash_table *globals;
922
923 globals = elf32_arm_hash_table (link_info);
924
925 globals->target1_is_rel = target1_is_rel;
926 if (strcmp (target2_type, "rel") == 0)
927 globals->target2_reloc = R_ARM_REL32;
928 else if (strcmp (target2_type, "abs") == 0)
929 globals->target2_reloc = R_ARM_ABS32;
930 else if (strcmp (target2_type, "got-rel") == 0)
931 globals->target2_reloc = R_ARM_GOT_PREL;
932 else
933 {
934 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
935 target2_type);
936 }
937 }
938 #endif
939
940 /* The thumb form of a long branch is a bit finicky, because the offset
941 encoding is split over two fields, each in it's own instruction. They
942 can occur in any order. So given a thumb form of long branch, and an
943 offset, insert the offset into the thumb branch and return finished
944 instruction.
945
946 It takes two thumb instructions to encode the target address. Each has
947 11 bits to invest. The upper 11 bits are stored in one (identified by
948 H-0.. see below), the lower 11 bits are stored in the other (identified
949 by H-1).
950
951 Combine together and shifted left by 1 (it's a half word address) and
952 there you have it.
953
954 Op: 1111 = F,
955 H-0, upper address-0 = 000
956 Op: 1111 = F,
957 H-1, lower address-0 = 800
958
959 They can be ordered either way, but the arm tools I've seen always put
960 the lower one first. It probably doesn't matter. krk@cygnus.com
961
962 XXX: Actually the order does matter. The second instruction (H-1)
963 moves the computed address into the PC, so it must be the second one
964 in the sequence. The problem, however is that whilst little endian code
965 stores the instructions in HI then LOW order, big endian code does the
966 reverse. nickc@cygnus.com. */
967
968 #define LOW_HI_ORDER 0xF800F000
969 #define HI_LOW_ORDER 0xF000F800
970
971 static insn32
972 insert_thumb_branch (insn32 br_insn, int rel_off)
973 {
974 unsigned int low_bits;
975 unsigned int high_bits;
976
977 BFD_ASSERT ((rel_off & 1) != 1);
978
979 rel_off >>= 1; /* Half word aligned address. */
980 low_bits = rel_off & 0x000007FF; /* The bottom 11 bits. */
981 high_bits = (rel_off >> 11) & 0x000007FF; /* The top 11 bits. */
982
983 if ((br_insn & LOW_HI_ORDER) == LOW_HI_ORDER)
984 br_insn = LOW_HI_ORDER | (low_bits << 16) | high_bits;
985 else if ((br_insn & HI_LOW_ORDER) == HI_LOW_ORDER)
986 br_insn = HI_LOW_ORDER | (high_bits << 16) | low_bits;
987 else
988 /* FIXME: abort is probably not the right call. krk@cygnus.com */
989 abort (); /* Error - not a valid branch instruction form. */
990
991 return br_insn;
992 }
993
994 /* Thumb code calling an ARM function. */
995
996 static int
997 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
998 const char * name,
999 bfd * input_bfd,
1000 bfd * output_bfd,
1001 asection * input_section,
1002 bfd_byte * hit_data,
1003 asection * sym_sec,
1004 bfd_vma offset,
1005 bfd_signed_vma addend,
1006 bfd_vma val)
1007 {
1008 asection * s = 0;
1009 bfd_vma my_offset;
1010 unsigned long int tmp;
1011 long int ret_offset;
1012 struct elf_link_hash_entry * myh;
1013 struct elf32_arm_link_hash_table * globals;
1014
1015 myh = find_thumb_glue (info, name, input_bfd);
1016 if (myh == NULL)
1017 return FALSE;
1018
1019 globals = elf32_arm_hash_table (info);
1020
1021 BFD_ASSERT (globals != NULL);
1022 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
1023
1024 my_offset = myh->root.u.def.value;
1025
1026 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
1027 THUMB2ARM_GLUE_SECTION_NAME);
1028
1029 BFD_ASSERT (s != NULL);
1030 BFD_ASSERT (s->contents != NULL);
1031 BFD_ASSERT (s->output_section != NULL);
1032
1033 if ((my_offset & 0x01) == 0x01)
1034 {
1035 if (sym_sec != NULL
1036 && sym_sec->owner != NULL
1037 && !INTERWORK_FLAG (sym_sec->owner))
1038 {
1039 (*_bfd_error_handler)
1040 (_("%B(%s): warning: interworking not enabled.\n"
1041 " first occurrence: %B: thumb call to arm"),
1042 sym_sec->owner, input_bfd, name);
1043
1044 return FALSE;
1045 }
1046
1047 --my_offset;
1048 myh->root.u.def.value = my_offset;
1049
1050 bfd_put_16 (output_bfd, (bfd_vma) t2a1_bx_pc_insn,
1051 s->contents + my_offset);
1052
1053 bfd_put_16 (output_bfd, (bfd_vma) t2a2_noop_insn,
1054 s->contents + my_offset + 2);
1055
1056 ret_offset =
1057 /* Address of destination of the stub. */
1058 ((bfd_signed_vma) val)
1059 - ((bfd_signed_vma)
1060 /* Offset from the start of the current section
1061 to the start of the stubs. */
1062 (s->output_offset
1063 /* Offset of the start of this stub from the start of the stubs. */
1064 + my_offset
1065 /* Address of the start of the current section. */
1066 + s->output_section->vma)
1067 /* The branch instruction is 4 bytes into the stub. */
1068 + 4
1069 /* ARM branches work from the pc of the instruction + 8. */
1070 + 8);
1071
1072 bfd_put_32 (output_bfd,
1073 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
1074 s->contents + my_offset + 4);
1075 }
1076
1077 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
1078
1079 /* Now go back and fix up the original BL insn to point to here. */
1080 ret_offset =
1081 /* Address of where the stub is located. */
1082 (s->output_section->vma + s->output_offset + my_offset)
1083 /* Address of where the BL is located. */
1084 - (input_section->output_section->vma + input_section->output_offset
1085 + offset)
1086 /* Addend in the relocation. */
1087 - addend
1088 /* Biassing for PC-relative addressing. */
1089 - 8;
1090
1091 tmp = bfd_get_32 (input_bfd, hit_data
1092 - input_section->vma);
1093
1094 bfd_put_32 (output_bfd,
1095 (bfd_vma) insert_thumb_branch (tmp, ret_offset),
1096 hit_data - input_section->vma);
1097
1098 return TRUE;
1099 }
1100
1101 /* Arm code calling a Thumb function. */
1102
1103 static int
1104 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
1105 const char * name,
1106 bfd * input_bfd,
1107 bfd * output_bfd,
1108 asection * input_section,
1109 bfd_byte * hit_data,
1110 asection * sym_sec,
1111 bfd_vma offset,
1112 bfd_signed_vma addend,
1113 bfd_vma val)
1114 {
1115 unsigned long int tmp;
1116 bfd_vma my_offset;
1117 asection * s;
1118 long int ret_offset;
1119 struct elf_link_hash_entry * myh;
1120 struct elf32_arm_link_hash_table * globals;
1121
1122 myh = find_arm_glue (info, name, input_bfd);
1123 if (myh == NULL)
1124 return FALSE;
1125
1126 globals = elf32_arm_hash_table (info);
1127
1128 BFD_ASSERT (globals != NULL);
1129 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
1130
1131 my_offset = myh->root.u.def.value;
1132 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
1133 ARM2THUMB_GLUE_SECTION_NAME);
1134 BFD_ASSERT (s != NULL);
1135 BFD_ASSERT (s->contents != NULL);
1136 BFD_ASSERT (s->output_section != NULL);
1137
1138 if ((my_offset & 0x01) == 0x01)
1139 {
1140 if (sym_sec != NULL
1141 && sym_sec->owner != NULL
1142 && !INTERWORK_FLAG (sym_sec->owner))
1143 {
1144 (*_bfd_error_handler)
1145 (_("%B(%s): warning: interworking not enabled.\n"
1146 " first occurrence: %B: arm call to thumb"),
1147 sym_sec->owner, input_bfd, name);
1148 }
1149
1150 --my_offset;
1151 myh->root.u.def.value = my_offset;
1152
1153 bfd_put_32 (output_bfd, (bfd_vma) a2t1_ldr_insn,
1154 s->contents + my_offset);
1155
1156 bfd_put_32 (output_bfd, (bfd_vma) a2t2_bx_r12_insn,
1157 s->contents + my_offset + 4);
1158
1159 /* It's a thumb address. Add the low order bit. */
1160 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
1161 s->contents + my_offset + 8);
1162 }
1163
1164 BFD_ASSERT (my_offset <= globals->arm_glue_size);
1165
1166 tmp = bfd_get_32 (input_bfd, hit_data);
1167 tmp = tmp & 0xFF000000;
1168
1169 /* Somehow these are both 4 too far, so subtract 8. */
1170 ret_offset = (s->output_offset
1171 + my_offset
1172 + s->output_section->vma
1173 - (input_section->output_offset
1174 + input_section->output_section->vma
1175 + offset + addend)
1176 - 8);
1177
1178 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
1179
1180 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
1181
1182 return TRUE;
1183 }
1184
1185
1186 #ifndef OLD_ARM_ABI
1187 /* Some relocations map to different relocations depending on the
1188 target. Return the real relocation. */
1189 static int
1190 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
1191 int r_type)
1192 {
1193 switch (r_type)
1194 {
1195 case R_ARM_TARGET1:
1196 if (globals->target1_is_rel)
1197 return R_ARM_REL32;
1198 else
1199 return R_ARM_ABS32;
1200
1201 case R_ARM_TARGET2:
1202 return globals->target2_reloc;
1203
1204 default:
1205 return r_type;
1206 }
1207 }
1208 #endif /* OLD_ARM_ABI */
1209
1210
1211 /* Perform a relocation as part of a final link. */
1212
1213 static bfd_reloc_status_type
1214 elf32_arm_final_link_relocate (reloc_howto_type * howto,
1215 bfd * input_bfd,
1216 bfd * output_bfd,
1217 asection * input_section,
1218 bfd_byte * contents,
1219 Elf_Internal_Rela * rel,
1220 bfd_vma value,
1221 struct bfd_link_info * info,
1222 asection * sym_sec,
1223 const char * sym_name,
1224 int sym_flags,
1225 struct elf_link_hash_entry * h)
1226 {
1227 unsigned long r_type = howto->type;
1228 unsigned long r_symndx;
1229 bfd_byte * hit_data = contents + rel->r_offset;
1230 bfd * dynobj = NULL;
1231 Elf_Internal_Shdr * symtab_hdr;
1232 struct elf_link_hash_entry ** sym_hashes;
1233 bfd_vma * local_got_offsets;
1234 asection * sgot = NULL;
1235 asection * splt = NULL;
1236 asection * sreloc = NULL;
1237 bfd_vma addend;
1238 bfd_signed_vma signed_addend;
1239 struct elf32_arm_link_hash_table * globals;
1240
1241 globals = elf32_arm_hash_table (info);
1242
1243 #ifndef OLD_ARM_ABI
1244 /* Some relocation type map to different relocations depending on the
1245 target. We pick the right one here. */
1246 r_type = arm_real_reloc_type (globals, r_type);
1247 if (r_type != howto->type)
1248 howto = elf32_arm_howto_from_type (r_type);
1249 #endif /* OLD_ARM_ABI */
1250
1251 /* If the start address has been set, then set the EF_ARM_HASENTRY
1252 flag. Setting this more than once is redundant, but the cost is
1253 not too high, and it keeps the code simple.
1254
1255 The test is done here, rather than somewhere else, because the
1256 start address is only set just before the final link commences.
1257
1258 Note - if the user deliberately sets a start address of 0, the
1259 flag will not be set. */
1260 if (bfd_get_start_address (output_bfd) != 0)
1261 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
1262
1263 dynobj = elf_hash_table (info)->dynobj;
1264 if (dynobj)
1265 {
1266 sgot = bfd_get_section_by_name (dynobj, ".got");
1267 splt = bfd_get_section_by_name (dynobj, ".plt");
1268 }
1269 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1270 sym_hashes = elf_sym_hashes (input_bfd);
1271 local_got_offsets = elf_local_got_offsets (input_bfd);
1272 r_symndx = ELF32_R_SYM (rel->r_info);
1273
1274 #if USE_REL
1275 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
1276
1277 if (addend & ((howto->src_mask + 1) >> 1))
1278 {
1279 signed_addend = -1;
1280 signed_addend &= ~ howto->src_mask;
1281 signed_addend |= addend;
1282 }
1283 else
1284 signed_addend = addend;
1285 #else
1286 addend = signed_addend = rel->r_addend;
1287 #endif
1288
1289 switch (r_type)
1290 {
1291 case R_ARM_NONE:
1292 return bfd_reloc_ok;
1293
1294 case R_ARM_PC24:
1295 case R_ARM_ABS32:
1296 case R_ARM_REL32:
1297 #ifndef OLD_ARM_ABI
1298 case R_ARM_XPC25:
1299 case R_ARM_PREL31:
1300 #endif
1301 case R_ARM_PLT32:
1302 /* r_symndx will be zero only for relocs against symbols
1303 from removed linkonce sections, or sections discarded by
1304 a linker script. */
1305 if (r_symndx == 0)
1306 return bfd_reloc_ok;
1307
1308 /* Handle relocations which should use the PLT entry. ABS32/REL32
1309 will use the symbol's value, which may point to a PLT entry, but we
1310 don't need to handle that here. If we created a PLT entry, all
1311 branches in this object should go to it. */
1312 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
1313 #ifndef OLD_ARM_ABI
1314 && r_type != R_ARM_PREL31
1315 #endif
1316 )
1317 && h != NULL
1318 && splt != NULL
1319 && h->plt.offset != (bfd_vma) -1)
1320 {
1321 /* If we've created a .plt section, and assigned a PLT entry to
1322 this function, it should not be known to bind locally. If
1323 it were, we would have cleared the PLT entry. */
1324 BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info, h));
1325
1326 value = (splt->output_section->vma
1327 + splt->output_offset
1328 + h->plt.offset);
1329 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1330 contents, rel->r_offset, value,
1331 (bfd_vma) 0);
1332 }
1333
1334 /* When generating a shared object, these relocations are copied
1335 into the output file to be resolved at run time. */
1336 if (info->shared
1337 && (input_section->flags & SEC_ALLOC)
1338 && ((r_type != R_ARM_REL32
1339 #ifndef OLD_ARM_ABI
1340 && r_type != R_ARM_PREL31
1341 #endif
1342 ) || !SYMBOL_CALLS_LOCAL (info, h))
1343 && (h == NULL
1344 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
1345 || h->root.type != bfd_link_hash_undefweak)
1346 && r_type != R_ARM_PC24
1347 && r_type != R_ARM_PLT32)
1348 {
1349 Elf_Internal_Rela outrel;
1350 bfd_byte *loc;
1351 bfd_boolean skip, relocate;
1352
1353 if (sreloc == NULL)
1354 {
1355 const char * name;
1356
1357 name = (bfd_elf_string_from_elf_section
1358 (input_bfd,
1359 elf_elfheader (input_bfd)->e_shstrndx,
1360 elf_section_data (input_section)->rel_hdr.sh_name));
1361 if (name == NULL)
1362 return bfd_reloc_notsupported;
1363
1364 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
1365 && strcmp (bfd_get_section_name (input_bfd,
1366 input_section),
1367 name + 4) == 0);
1368
1369 sreloc = bfd_get_section_by_name (dynobj, name);
1370 BFD_ASSERT (sreloc != NULL);
1371 }
1372
1373 skip = FALSE;
1374 relocate = FALSE;
1375
1376 outrel.r_offset =
1377 _bfd_elf_section_offset (output_bfd, info, input_section,
1378 rel->r_offset);
1379 if (outrel.r_offset == (bfd_vma) -1)
1380 skip = TRUE;
1381 else if (outrel.r_offset == (bfd_vma) -2)
1382 skip = TRUE, relocate = TRUE;
1383 outrel.r_offset += (input_section->output_section->vma
1384 + input_section->output_offset);
1385
1386 if (skip)
1387 memset (&outrel, 0, sizeof outrel);
1388 else if (h != NULL
1389 && h->dynindx != -1
1390 && (!info->shared
1391 || !info->symbolic
1392 || !h->def_regular))
1393 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
1394 else
1395 {
1396 /* This symbol is local, or marked to become local. */
1397 relocate = TRUE;
1398 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1399 }
1400
1401 loc = sreloc->contents;
1402 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rel);
1403 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
1404
1405 /* If this reloc is against an external symbol, we do not want to
1406 fiddle with the addend. Otherwise, we need to include the symbol
1407 value so that it becomes an addend for the dynamic reloc. */
1408 if (! relocate)
1409 return bfd_reloc_ok;
1410
1411 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1412 contents, rel->r_offset, value,
1413 (bfd_vma) 0);
1414 }
1415 else switch (r_type)
1416 {
1417 #ifndef OLD_ARM_ABI
1418 case R_ARM_XPC25: /* Arm BLX instruction. */
1419 #endif
1420 case R_ARM_PC24: /* Arm B/BL instruction */
1421 case R_ARM_PLT32:
1422 #ifndef OLD_ARM_ABI
1423 if (r_type == R_ARM_XPC25)
1424 {
1425 /* Check for Arm calling Arm function. */
1426 /* FIXME: Should we translate the instruction into a BL
1427 instruction instead ? */
1428 if (sym_flags != STT_ARM_TFUNC)
1429 (*_bfd_error_handler)
1430 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
1431 input_bfd,
1432 h ? h->root.root.string : "(local)");
1433 }
1434 else
1435 #endif
1436 {
1437 /* Check for Arm calling Thumb function. */
1438 if (sym_flags == STT_ARM_TFUNC)
1439 {
1440 elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
1441 output_bfd, input_section,
1442 hit_data, sym_sec, rel->r_offset,
1443 signed_addend, value);
1444 return bfd_reloc_ok;
1445 }
1446 }
1447
1448 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1449 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0)
1450 {
1451 /* The old way of doing things. Trearing the addend as a
1452 byte sized field and adding in the pipeline offset. */
1453 value -= (input_section->output_section->vma
1454 + input_section->output_offset);
1455 value -= rel->r_offset;
1456 value += addend;
1457
1458 if (! globals->no_pipeline_knowledge)
1459 value -= 8;
1460 }
1461 else
1462 {
1463 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
1464 where:
1465 S is the address of the symbol in the relocation.
1466 P is address of the instruction being relocated.
1467 A is the addend (extracted from the instruction) in bytes.
1468
1469 S is held in 'value'.
1470 P is the base address of the section containing the
1471 instruction plus the offset of the reloc into that
1472 section, ie:
1473 (input_section->output_section->vma +
1474 input_section->output_offset +
1475 rel->r_offset).
1476 A is the addend, converted into bytes, ie:
1477 (signed_addend * 4)
1478
1479 Note: None of these operations have knowledge of the pipeline
1480 size of the processor, thus it is up to the assembler to
1481 encode this information into the addend. */
1482 value -= (input_section->output_section->vma
1483 + input_section->output_offset);
1484 value -= rel->r_offset;
1485 value += (signed_addend << howto->size);
1486
1487 /* Previous versions of this code also used to add in the
1488 pipeline offset here. This is wrong because the linker is
1489 not supposed to know about such things, and one day it might
1490 change. In order to support old binaries that need the old
1491 behaviour however, so we attempt to detect which ABI was
1492 used to create the reloc. */
1493 if (! globals->no_pipeline_knowledge)
1494 {
1495 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form */
1496
1497 i_ehdrp = elf_elfheader (input_bfd);
1498
1499 if (i_ehdrp->e_ident[EI_OSABI] == 0)
1500 value -= 8;
1501 }
1502 }
1503
1504 signed_addend = value;
1505 signed_addend >>= howto->rightshift;
1506
1507 /* It is not an error for an undefined weak reference to be
1508 out of range. Any program that branches to such a symbol
1509 is going to crash anyway, so there is no point worrying
1510 about getting the destination exactly right. */
1511 if (! h || h->root.type != bfd_link_hash_undefweak)
1512 {
1513 /* Perform a signed range check. */
1514 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
1515 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
1516 return bfd_reloc_overflow;
1517 }
1518
1519 #ifndef OLD_ARM_ABI
1520 /* If necessary set the H bit in the BLX instruction. */
1521 if (r_type == R_ARM_XPC25 && ((value & 2) == 2))
1522 value = (signed_addend & howto->dst_mask)
1523 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask))
1524 | (1 << 24);
1525 else
1526 #endif
1527 value = (signed_addend & howto->dst_mask)
1528 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
1529 break;
1530
1531 case R_ARM_ABS32:
1532 value += addend;
1533 if (sym_flags == STT_ARM_TFUNC)
1534 value |= 1;
1535 break;
1536
1537 case R_ARM_REL32:
1538 value -= (input_section->output_section->vma
1539 + input_section->output_offset + rel->r_offset);
1540 value += addend;
1541 break;
1542
1543 #ifndef OLD_ARM_ABI
1544 case R_ARM_PREL31:
1545 value -= (input_section->output_section->vma
1546 + input_section->output_offset + rel->r_offset);
1547 value += signed_addend;
1548 if (! h || h->root.type != bfd_link_hash_undefweak)
1549 {
1550 /* Check for overflow */
1551 if ((value ^ (value >> 1)) & (1 << 30))
1552 return bfd_reloc_overflow;
1553 }
1554 value &= 0x7fffffff;
1555 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
1556 if (sym_flags == STT_ARM_TFUNC)
1557 value |= 1;
1558 break;
1559 #endif
1560 }
1561
1562 bfd_put_32 (input_bfd, value, hit_data);
1563 return bfd_reloc_ok;
1564
1565 case R_ARM_ABS8:
1566 value += addend;
1567 if ((long) value > 0x7f || (long) value < -0x80)
1568 return bfd_reloc_overflow;
1569
1570 bfd_put_8 (input_bfd, value, hit_data);
1571 return bfd_reloc_ok;
1572
1573 case R_ARM_ABS16:
1574 value += addend;
1575
1576 if ((long) value > 0x7fff || (long) value < -0x8000)
1577 return bfd_reloc_overflow;
1578
1579 bfd_put_16 (input_bfd, value, hit_data);
1580 return bfd_reloc_ok;
1581
1582 case R_ARM_ABS12:
1583 /* Support ldr and str instruction for the arm */
1584 /* Also thumb b (unconditional branch). ??? Really? */
1585 value += addend;
1586
1587 if ((long) value > 0x7ff || (long) value < -0x800)
1588 return bfd_reloc_overflow;
1589
1590 value |= (bfd_get_32 (input_bfd, hit_data) & 0xfffff000);
1591 bfd_put_32 (input_bfd, value, hit_data);
1592 return bfd_reloc_ok;
1593
1594 case R_ARM_THM_ABS5:
1595 /* Support ldr and str instructions for the thumb. */
1596 #if USE_REL
1597 /* Need to refetch addend. */
1598 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
1599 /* ??? Need to determine shift amount from operand size. */
1600 addend >>= howto->rightshift;
1601 #endif
1602 value += addend;
1603
1604 /* ??? Isn't value unsigned? */
1605 if ((long) value > 0x1f || (long) value < -0x10)
1606 return bfd_reloc_overflow;
1607
1608 /* ??? Value needs to be properly shifted into place first. */
1609 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
1610 bfd_put_16 (input_bfd, value, hit_data);
1611 return bfd_reloc_ok;
1612
1613 #ifndef OLD_ARM_ABI
1614 case R_ARM_THM_XPC22:
1615 #endif
1616 case R_ARM_THM_PC22:
1617 /* Thumb BL (branch long instruction). */
1618 {
1619 bfd_vma relocation;
1620 bfd_boolean overflow = FALSE;
1621 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
1622 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
1623 bfd_signed_vma reloc_signed_max = ((1 << (howto->bitsize - 1)) - 1) >> howto->rightshift;
1624 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
1625 bfd_vma check;
1626 bfd_signed_vma signed_check;
1627
1628 #if USE_REL
1629 /* Need to refetch the addend and squish the two 11 bit pieces
1630 together. */
1631 {
1632 bfd_vma upper = upper_insn & 0x7ff;
1633 bfd_vma lower = lower_insn & 0x7ff;
1634 upper = (upper ^ 0x400) - 0x400; /* Sign extend. */
1635 addend = (upper << 12) | (lower << 1);
1636 signed_addend = addend;
1637 }
1638 #endif
1639 #ifndef OLD_ARM_ABI
1640 if (r_type == R_ARM_THM_XPC22)
1641 {
1642 /* Check for Thumb to Thumb call. */
1643 /* FIXME: Should we translate the instruction into a BL
1644 instruction instead ? */
1645 if (sym_flags == STT_ARM_TFUNC)
1646 (*_bfd_error_handler)
1647 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
1648 input_bfd,
1649 h ? h->root.root.string : "(local)");
1650 }
1651 else
1652 #endif
1653 {
1654 /* If it is not a call to Thumb, assume call to Arm.
1655 If it is a call relative to a section name, then it is not a
1656 function call at all, but rather a long jump. */
1657 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION)
1658 {
1659 if (elf32_thumb_to_arm_stub
1660 (info, sym_name, input_bfd, output_bfd, input_section,
1661 hit_data, sym_sec, rel->r_offset, signed_addend, value))
1662 return bfd_reloc_ok;
1663 else
1664 return bfd_reloc_dangerous;
1665 }
1666 }
1667
1668 relocation = value + signed_addend;
1669
1670 relocation -= (input_section->output_section->vma
1671 + input_section->output_offset
1672 + rel->r_offset);
1673
1674 if (! globals->no_pipeline_knowledge)
1675 {
1676 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form. */
1677
1678 i_ehdrp = elf_elfheader (input_bfd);
1679
1680 /* Previous versions of this code also used to add in the pipline
1681 offset here. This is wrong because the linker is not supposed
1682 to know about such things, and one day it might change. In order
1683 to support old binaries that need the old behaviour however, so
1684 we attempt to detect which ABI was used to create the reloc. */
1685 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1686 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0
1687 || i_ehdrp->e_ident[EI_OSABI] == 0)
1688 relocation += 4;
1689 }
1690
1691 check = relocation >> howto->rightshift;
1692
1693 /* If this is a signed value, the rightshift just dropped
1694 leading 1 bits (assuming twos complement). */
1695 if ((bfd_signed_vma) relocation >= 0)
1696 signed_check = check;
1697 else
1698 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
1699
1700 /* Assumes two's complement. */
1701 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
1702 overflow = TRUE;
1703
1704 #ifndef OLD_ARM_ABI
1705 if (r_type == R_ARM_THM_XPC22
1706 && ((lower_insn & 0x1800) == 0x0800))
1707 /* For a BLX instruction, make sure that the relocation is rounded up
1708 to a word boundary. This follows the semantics of the instruction
1709 which specifies that bit 1 of the target address will come from bit
1710 1 of the base address. */
1711 relocation = (relocation + 2) & ~ 3;
1712 #endif
1713 /* Put RELOCATION back into the insn. */
1714 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 12) & 0x7ff);
1715 lower_insn = (lower_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 1) & 0x7ff);
1716
1717 /* Put the relocated value back in the object file: */
1718 bfd_put_16 (input_bfd, upper_insn, hit_data);
1719 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
1720
1721 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
1722 }
1723 break;
1724
1725 case R_ARM_THM_PC11:
1726 /* Thumb B (branch) instruction). */
1727 {
1728 bfd_signed_vma relocation;
1729 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
1730 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
1731 bfd_signed_vma signed_check;
1732
1733 #if USE_REL
1734 /* Need to refetch addend. */
1735 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
1736 if (addend & ((howto->src_mask + 1) >> 1))
1737 {
1738 signed_addend = -1;
1739 signed_addend &= ~ howto->src_mask;
1740 signed_addend |= addend;
1741 }
1742 else
1743 signed_addend = addend;
1744 /* The value in the insn has been right shifted. We need to
1745 undo this, so that we can perform the address calculation
1746 in terms of bytes. */
1747 signed_addend <<= howto->rightshift;
1748 #endif
1749 relocation = value + signed_addend;
1750
1751 relocation -= (input_section->output_section->vma
1752 + input_section->output_offset
1753 + rel->r_offset);
1754
1755 relocation >>= howto->rightshift;
1756 signed_check = relocation;
1757 relocation &= howto->dst_mask;
1758 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
1759
1760 bfd_put_16 (input_bfd, relocation, hit_data);
1761
1762 /* Assumes two's complement. */
1763 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
1764 return bfd_reloc_overflow;
1765
1766 return bfd_reloc_ok;
1767 }
1768
1769 #ifndef OLD_ARM_ABI
1770 case R_ARM_ALU_PCREL7_0:
1771 case R_ARM_ALU_PCREL15_8:
1772 case R_ARM_ALU_PCREL23_15:
1773 {
1774 bfd_vma insn;
1775 bfd_vma relocation;
1776
1777 insn = bfd_get_32 (input_bfd, hit_data);
1778 #if USE_REL
1779 /* Extract the addend. */
1780 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
1781 signed_addend = addend;
1782 #endif
1783 relocation = value + signed_addend;
1784
1785 relocation -= (input_section->output_section->vma
1786 + input_section->output_offset
1787 + rel->r_offset);
1788 insn = (insn & ~0xfff)
1789 | ((howto->bitpos << 7) & 0xf00)
1790 | ((relocation >> howto->bitpos) & 0xff);
1791 bfd_put_32 (input_bfd, value, hit_data);
1792 }
1793 return bfd_reloc_ok;
1794 #endif
1795
1796 case R_ARM_GNU_VTINHERIT:
1797 case R_ARM_GNU_VTENTRY:
1798 return bfd_reloc_ok;
1799
1800 case R_ARM_COPY:
1801 return bfd_reloc_notsupported;
1802
1803 case R_ARM_GLOB_DAT:
1804 return bfd_reloc_notsupported;
1805
1806 case R_ARM_JUMP_SLOT:
1807 return bfd_reloc_notsupported;
1808
1809 case R_ARM_RELATIVE:
1810 return bfd_reloc_notsupported;
1811
1812 case R_ARM_GOTOFF:
1813 /* Relocation is relative to the start of the
1814 global offset table. */
1815
1816 BFD_ASSERT (sgot != NULL);
1817 if (sgot == NULL)
1818 return bfd_reloc_notsupported;
1819
1820 /* If we are addressing a Thumb function, we need to adjust the
1821 address by one, so that attempts to call the function pointer will
1822 correctly interpret it as Thumb code. */
1823 if (sym_flags == STT_ARM_TFUNC)
1824 value += 1;
1825
1826 /* Note that sgot->output_offset is not involved in this
1827 calculation. We always want the start of .got. If we
1828 define _GLOBAL_OFFSET_TABLE in a different way, as is
1829 permitted by the ABI, we might have to change this
1830 calculation. */
1831 value -= sgot->output_section->vma;
1832 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1833 contents, rel->r_offset, value,
1834 (bfd_vma) 0);
1835
1836 case R_ARM_GOTPC:
1837 /* Use global offset table as symbol value. */
1838 BFD_ASSERT (sgot != NULL);
1839
1840 if (sgot == NULL)
1841 return bfd_reloc_notsupported;
1842
1843 value = sgot->output_section->vma;
1844 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1845 contents, rel->r_offset, value,
1846 (bfd_vma) 0);
1847
1848 case R_ARM_GOT32:
1849 #ifndef OLD_ARM_ABI
1850 case R_ARM_GOT_PREL:
1851 #endif
1852 /* Relocation is to the entry for this symbol in the
1853 global offset table. */
1854 if (sgot == NULL)
1855 return bfd_reloc_notsupported;
1856
1857 if (h != NULL)
1858 {
1859 bfd_vma off;
1860 bfd_boolean dyn;
1861
1862 off = h->got.offset;
1863 BFD_ASSERT (off != (bfd_vma) -1);
1864 dyn = globals->root.dynamic_sections_created;
1865
1866 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
1867 || (info->shared
1868 && SYMBOL_REFERENCES_LOCAL (info, h))
1869 || (ELF_ST_VISIBILITY (h->other)
1870 && h->root.type == bfd_link_hash_undefweak))
1871 {
1872 /* This is actually a static link, or it is a -Bsymbolic link
1873 and the symbol is defined locally. We must initialize this
1874 entry in the global offset table. Since the offset must
1875 always be a multiple of 4, we use the least significant bit
1876 to record whether we have initialized it already.
1877
1878 When doing a dynamic link, we create a .rel.got relocation
1879 entry to initialize the value. This is done in the
1880 finish_dynamic_symbol routine. */
1881 if ((off & 1) != 0)
1882 off &= ~1;
1883 else
1884 {
1885 /* If we are addressing a Thumb function, we need to
1886 adjust the address by one, so that attempts to
1887 call the function pointer will correctly
1888 interpret it as Thumb code. */
1889 if (sym_flags == STT_ARM_TFUNC)
1890 value |= 1;
1891
1892 bfd_put_32 (output_bfd, value, sgot->contents + off);
1893 h->got.offset |= 1;
1894 }
1895 }
1896
1897 value = sgot->output_offset + off;
1898 }
1899 else
1900 {
1901 bfd_vma off;
1902
1903 BFD_ASSERT (local_got_offsets != NULL &&
1904 local_got_offsets[r_symndx] != (bfd_vma) -1);
1905
1906 off = local_got_offsets[r_symndx];
1907
1908 /* The offset must always be a multiple of 4. We use the
1909 least significant bit to record whether we have already
1910 generated the necessary reloc. */
1911 if ((off & 1) != 0)
1912 off &= ~1;
1913 else
1914 {
1915 bfd_put_32 (output_bfd, value, sgot->contents + off);
1916
1917 if (info->shared)
1918 {
1919 asection * srelgot;
1920 Elf_Internal_Rela outrel;
1921 bfd_byte *loc;
1922
1923 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
1924 BFD_ASSERT (srelgot != NULL);
1925
1926 outrel.r_offset = (sgot->output_section->vma
1927 + sgot->output_offset
1928 + off);
1929 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1930 loc = srelgot->contents;
1931 loc += srelgot->reloc_count++ * sizeof (Elf32_External_Rel);
1932 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
1933 }
1934
1935 local_got_offsets[r_symndx] |= 1;
1936 }
1937
1938 value = sgot->output_offset + off;
1939 }
1940 if (r_type != R_ARM_GOT32)
1941 value += sgot->output_section->vma;
1942
1943 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1944 contents, rel->r_offset, value,
1945 (bfd_vma) 0);
1946
1947 case R_ARM_SBREL32:
1948 return bfd_reloc_notsupported;
1949
1950 case R_ARM_AMP_VCALL9:
1951 return bfd_reloc_notsupported;
1952
1953 case R_ARM_RSBREL32:
1954 return bfd_reloc_notsupported;
1955
1956 case R_ARM_THM_RPC22:
1957 return bfd_reloc_notsupported;
1958
1959 case R_ARM_RREL32:
1960 return bfd_reloc_notsupported;
1961
1962 case R_ARM_RABS32:
1963 return bfd_reloc_notsupported;
1964
1965 case R_ARM_RPC24:
1966 return bfd_reloc_notsupported;
1967
1968 case R_ARM_RBASE:
1969 return bfd_reloc_notsupported;
1970
1971 default:
1972 return bfd_reloc_notsupported;
1973 }
1974 }
1975
1976 #if USE_REL
1977 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
1978 static void
1979 arm_add_to_rel (bfd * abfd,
1980 bfd_byte * address,
1981 reloc_howto_type * howto,
1982 bfd_signed_vma increment)
1983 {
1984 bfd_signed_vma addend;
1985
1986 if (howto->type == R_ARM_THM_PC22)
1987 {
1988 int upper_insn, lower_insn;
1989 int upper, lower;
1990
1991 upper_insn = bfd_get_16 (abfd, address);
1992 lower_insn = bfd_get_16 (abfd, address + 2);
1993 upper = upper_insn & 0x7ff;
1994 lower = lower_insn & 0x7ff;
1995
1996 addend = (upper << 12) | (lower << 1);
1997 addend += increment;
1998 addend >>= 1;
1999
2000 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
2001 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
2002
2003 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
2004 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
2005 }
2006 else
2007 {
2008 bfd_vma contents;
2009
2010 contents = bfd_get_32 (abfd, address);
2011
2012 /* Get the (signed) value from the instruction. */
2013 addend = contents & howto->src_mask;
2014 if (addend & ((howto->src_mask + 1) >> 1))
2015 {
2016 bfd_signed_vma mask;
2017
2018 mask = -1;
2019 mask &= ~ howto->src_mask;
2020 addend |= mask;
2021 }
2022
2023 /* Add in the increment, (which is a byte value). */
2024 switch (howto->type)
2025 {
2026 default:
2027 addend += increment;
2028 break;
2029
2030 case R_ARM_PC24:
2031 addend <<= howto->size;
2032 addend += increment;
2033
2034 /* Should we check for overflow here ? */
2035
2036 /* Drop any undesired bits. */
2037 addend >>= howto->rightshift;
2038 break;
2039 }
2040
2041 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
2042
2043 bfd_put_32 (abfd, contents, address);
2044 }
2045 }
2046 #endif /* USE_REL */
2047
2048 /* Relocate an ARM ELF section. */
2049 static bfd_boolean
2050 elf32_arm_relocate_section (bfd * output_bfd,
2051 struct bfd_link_info * info,
2052 bfd * input_bfd,
2053 asection * input_section,
2054 bfd_byte * contents,
2055 Elf_Internal_Rela * relocs,
2056 Elf_Internal_Sym * local_syms,
2057 asection ** local_sections)
2058 {
2059 Elf_Internal_Shdr *symtab_hdr;
2060 struct elf_link_hash_entry **sym_hashes;
2061 Elf_Internal_Rela *rel;
2062 Elf_Internal_Rela *relend;
2063 const char *name;
2064
2065 #if !USE_REL
2066 if (info->relocatable)
2067 return TRUE;
2068 #endif
2069
2070 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
2071 sym_hashes = elf_sym_hashes (input_bfd);
2072
2073 rel = relocs;
2074 relend = relocs + input_section->reloc_count;
2075 for (; rel < relend; rel++)
2076 {
2077 int r_type;
2078 reloc_howto_type * howto;
2079 unsigned long r_symndx;
2080 Elf_Internal_Sym * sym;
2081 asection * sec;
2082 struct elf_link_hash_entry * h;
2083 bfd_vma relocation;
2084 bfd_reloc_status_type r;
2085 arelent bfd_reloc;
2086
2087 r_symndx = ELF32_R_SYM (rel->r_info);
2088 r_type = ELF32_R_TYPE (rel->r_info);
2089
2090 if ( r_type == R_ARM_GNU_VTENTRY
2091 || r_type == R_ARM_GNU_VTINHERIT)
2092 continue;
2093
2094 elf32_arm_info_to_howto (input_bfd, & bfd_reloc, rel);
2095 howto = bfd_reloc.howto;
2096
2097 #if USE_REL
2098 if (info->relocatable)
2099 {
2100 /* This is a relocatable link. We don't have to change
2101 anything, unless the reloc is against a section symbol,
2102 in which case we have to adjust according to where the
2103 section symbol winds up in the output section. */
2104 if (r_symndx < symtab_hdr->sh_info)
2105 {
2106 sym = local_syms + r_symndx;
2107 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2108 {
2109 sec = local_sections[r_symndx];
2110 arm_add_to_rel (input_bfd, contents + rel->r_offset,
2111 howto,
2112 (bfd_signed_vma) (sec->output_offset
2113 + sym->st_value));
2114 }
2115 }
2116
2117 continue;
2118 }
2119 #endif
2120
2121 /* This is a final link. */
2122 h = NULL;
2123 sym = NULL;
2124 sec = NULL;
2125
2126 if (r_symndx < symtab_hdr->sh_info)
2127 {
2128 sym = local_syms + r_symndx;
2129 sec = local_sections[r_symndx];
2130 #if USE_REL
2131 relocation = (sec->output_section->vma
2132 + sec->output_offset
2133 + sym->st_value);
2134 if ((sec->flags & SEC_MERGE)
2135 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2136 {
2137 asection *msec;
2138 bfd_vma addend, value;
2139
2140 if (howto->rightshift)
2141 {
2142 (*_bfd_error_handler)
2143 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
2144 input_bfd, input_section,
2145 (long) rel->r_offset, howto->name);
2146 return FALSE;
2147 }
2148
2149 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
2150
2151 /* Get the (signed) value from the instruction. */
2152 addend = value & howto->src_mask;
2153 if (addend & ((howto->src_mask + 1) >> 1))
2154 {
2155 bfd_signed_vma mask;
2156
2157 mask = -1;
2158 mask &= ~ howto->src_mask;
2159 addend |= mask;
2160 }
2161 msec = sec;
2162 addend =
2163 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
2164 - relocation;
2165 addend += msec->output_section->vma + msec->output_offset;
2166 value = (value & ~ howto->dst_mask) | (addend & howto->dst_mask);
2167 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
2168 }
2169 #else
2170 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2171 #endif
2172 }
2173 else
2174 {
2175 bfd_boolean warned;
2176 bfd_boolean unresolved_reloc;
2177
2178 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2179 r_symndx, symtab_hdr, sym_hashes,
2180 h, sec, relocation,
2181 unresolved_reloc, warned);
2182
2183 if (unresolved_reloc || relocation != 0)
2184 {
2185 /* In these cases, we don't need the relocation value.
2186 We check specially because in some obscure cases
2187 sec->output_section will be NULL. */
2188 switch (r_type)
2189 {
2190 case R_ARM_PC24:
2191 case R_ARM_ABS32:
2192 case R_ARM_THM_PC22:
2193 case R_ARM_PLT32:
2194
2195 if (info->shared
2196 && ((!info->symbolic && h->dynindx != -1)
2197 || !h->def_regular)
2198 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2199 && ((input_section->flags & SEC_ALLOC) != 0
2200 /* DWARF will emit R_ARM_ABS32 relocations in its
2201 sections against symbols defined externally
2202 in shared libraries. We can't do anything
2203 with them here. */
2204 || ((input_section->flags & SEC_DEBUGGING) != 0
2205 && h->def_dynamic))
2206 )
2207 relocation = 0;
2208 break;
2209
2210 case R_ARM_GOTPC:
2211 relocation = 0;
2212 break;
2213
2214 case R_ARM_GOT32:
2215 #ifndef OLD_ARM_ABI
2216 case R_ARM_GOT_PREL:
2217 #endif
2218 if ((WILL_CALL_FINISH_DYNAMIC_SYMBOL
2219 (elf_hash_table (info)->dynamic_sections_created,
2220 info->shared, h))
2221 && (!info->shared
2222 || (!info->symbolic && h->dynindx != -1)
2223 || !h->def_regular))
2224 relocation = 0;
2225 break;
2226
2227 default:
2228 if (unresolved_reloc)
2229 _bfd_error_handler
2230 (_("%B(%A): warning: unresolvable relocation %d against symbol `%s'"),
2231 input_bfd, input_section,
2232 r_type,
2233 h->root.root.string);
2234 break;
2235 }
2236 }
2237 }
2238
2239 if (h != NULL)
2240 name = h->root.root.string;
2241 else
2242 {
2243 name = (bfd_elf_string_from_elf_section
2244 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2245 if (name == NULL || *name == '\0')
2246 name = bfd_section_name (input_bfd, sec);
2247 }
2248
2249 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
2250 input_section, contents, rel,
2251 relocation, info, sec, name,
2252 (h ? ELF_ST_TYPE (h->type) :
2253 ELF_ST_TYPE (sym->st_info)), h);
2254
2255 if (r != bfd_reloc_ok)
2256 {
2257 const char * msg = (const char *) 0;
2258
2259 switch (r)
2260 {
2261 case bfd_reloc_overflow:
2262 /* If the overflowing reloc was to an undefined symbol,
2263 we have already printed one error message and there
2264 is no point complaining again. */
2265 if ((! h ||
2266 h->root.type != bfd_link_hash_undefined)
2267 && (!((*info->callbacks->reloc_overflow)
2268 (info, name, howto->name, (bfd_vma) 0,
2269 input_bfd, input_section, rel->r_offset))))
2270 return FALSE;
2271 break;
2272
2273 case bfd_reloc_undefined:
2274 if (!((*info->callbacks->undefined_symbol)
2275 (info, name, input_bfd, input_section,
2276 rel->r_offset, TRUE)))
2277 return FALSE;
2278 break;
2279
2280 case bfd_reloc_outofrange:
2281 msg = _("internal error: out of range error");
2282 goto common_error;
2283
2284 case bfd_reloc_notsupported:
2285 msg = _("internal error: unsupported relocation error");
2286 goto common_error;
2287
2288 case bfd_reloc_dangerous:
2289 msg = _("internal error: dangerous error");
2290 goto common_error;
2291
2292 default:
2293 msg = _("internal error: unknown error");
2294 /* fall through */
2295
2296 common_error:
2297 if (!((*info->callbacks->warning)
2298 (info, msg, name, input_bfd, input_section,
2299 rel->r_offset)))
2300 return FALSE;
2301 break;
2302 }
2303 }
2304 }
2305
2306 return TRUE;
2307 }
2308
2309 /* Set the right machine number. */
2310
2311 static bfd_boolean
2312 elf32_arm_object_p (bfd *abfd)
2313 {
2314 unsigned int mach;
2315
2316 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
2317
2318 if (mach != bfd_mach_arm_unknown)
2319 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
2320
2321 else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
2322 bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
2323
2324 else
2325 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
2326
2327 return TRUE;
2328 }
2329
2330 /* Function to keep ARM specific flags in the ELF header. */
2331
2332 static bfd_boolean
2333 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
2334 {
2335 if (elf_flags_init (abfd)
2336 && elf_elfheader (abfd)->e_flags != flags)
2337 {
2338 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
2339 {
2340 if (flags & EF_ARM_INTERWORK)
2341 (*_bfd_error_handler)
2342 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
2343 abfd);
2344 else
2345 _bfd_error_handler
2346 (_("Warning: Clearing the interworking flag of %B due to outside request"),
2347 abfd);
2348 }
2349 }
2350 else
2351 {
2352 elf_elfheader (abfd)->e_flags = flags;
2353 elf_flags_init (abfd) = TRUE;
2354 }
2355
2356 return TRUE;
2357 }
2358
2359 /* Copy backend specific data from one object module to another. */
2360
2361 static bfd_boolean
2362 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
2363 {
2364 flagword in_flags;
2365 flagword out_flags;
2366
2367 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2368 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2369 return TRUE;
2370
2371 in_flags = elf_elfheader (ibfd)->e_flags;
2372 out_flags = elf_elfheader (obfd)->e_flags;
2373
2374 if (elf_flags_init (obfd)
2375 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
2376 && in_flags != out_flags)
2377 {
2378 /* Cannot mix APCS26 and APCS32 code. */
2379 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2380 return FALSE;
2381
2382 /* Cannot mix float APCS and non-float APCS code. */
2383 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2384 return FALSE;
2385
2386 /* If the src and dest have different interworking flags
2387 then turn off the interworking bit. */
2388 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2389 {
2390 if (out_flags & EF_ARM_INTERWORK)
2391 _bfd_error_handler
2392 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
2393 obfd, ibfd);
2394
2395 in_flags &= ~EF_ARM_INTERWORK;
2396 }
2397
2398 /* Likewise for PIC, though don't warn for this case. */
2399 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
2400 in_flags &= ~EF_ARM_PIC;
2401 }
2402
2403 elf_elfheader (obfd)->e_flags = in_flags;
2404 elf_flags_init (obfd) = TRUE;
2405
2406 return TRUE;
2407 }
2408
2409 /* Merge backend specific data from an object file to the output
2410 object file when linking. */
2411
2412 static bfd_boolean
2413 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
2414 {
2415 flagword out_flags;
2416 flagword in_flags;
2417 bfd_boolean flags_compatible = TRUE;
2418 asection *sec;
2419
2420 /* Check if we have the same endianess. */
2421 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
2422 return FALSE;
2423
2424 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2425 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2426 return TRUE;
2427
2428 /* The input BFD must have had its flags initialised. */
2429 /* The following seems bogus to me -- The flags are initialized in
2430 the assembler but I don't think an elf_flags_init field is
2431 written into the object. */
2432 /* BFD_ASSERT (elf_flags_init (ibfd)); */
2433
2434 in_flags = elf_elfheader (ibfd)->e_flags;
2435 out_flags = elf_elfheader (obfd)->e_flags;
2436
2437 if (!elf_flags_init (obfd))
2438 {
2439 /* If the input is the default architecture and had the default
2440 flags then do not bother setting the flags for the output
2441 architecture, instead allow future merges to do this. If no
2442 future merges ever set these flags then they will retain their
2443 uninitialised values, which surprise surprise, correspond
2444 to the default values. */
2445 if (bfd_get_arch_info (ibfd)->the_default
2446 && elf_elfheader (ibfd)->e_flags == 0)
2447 return TRUE;
2448
2449 elf_flags_init (obfd) = TRUE;
2450 elf_elfheader (obfd)->e_flags = in_flags;
2451
2452 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2453 && bfd_get_arch_info (obfd)->the_default)
2454 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
2455
2456 return TRUE;
2457 }
2458
2459 /* Determine what should happen if the input ARM architecture
2460 does not match the output ARM architecture. */
2461 if (! bfd_arm_merge_machines (ibfd, obfd))
2462 return FALSE;
2463
2464 /* Identical flags must be compatible. */
2465 if (in_flags == out_flags)
2466 return TRUE;
2467
2468 /* Check to see if the input BFD actually contains any sections. If
2469 not, its flags may not have been initialised either, but it
2470 cannot actually cause any incompatibility. Do not short-circuit
2471 dynamic objects; their section list may be emptied by
2472 elf_link_add_object_symbols.
2473
2474 Also check to see if there are no code sections in the input.
2475 In this case there is no need to check for code specific flags.
2476 XXX - do we need to worry about floating-point format compatability
2477 in data sections ? */
2478 if (!(ibfd->flags & DYNAMIC))
2479 {
2480 bfd_boolean null_input_bfd = TRUE;
2481 bfd_boolean only_data_sections = TRUE;
2482
2483 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2484 {
2485 /* Ignore synthetic glue sections. */
2486 if (strcmp (sec->name, ".glue_7")
2487 && strcmp (sec->name, ".glue_7t"))
2488 {
2489 if ((bfd_get_section_flags (ibfd, sec)
2490 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
2491 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
2492 only_data_sections = FALSE;
2493
2494 null_input_bfd = FALSE;
2495 break;
2496 }
2497 }
2498
2499 if (null_input_bfd || only_data_sections)
2500 return TRUE;
2501 }
2502
2503 /* Complain about various flag mismatches. */
2504 if (EF_ARM_EABI_VERSION (in_flags) != EF_ARM_EABI_VERSION (out_flags))
2505 {
2506 _bfd_error_handler
2507 (_("ERROR: %B is compiled for EABI version %d, whereas %B is compiled for version %d"),
2508 ibfd, obfd,
2509 (in_flags & EF_ARM_EABIMASK) >> 24,
2510 (out_flags & EF_ARM_EABIMASK) >> 24);
2511 return FALSE;
2512 }
2513
2514 /* Not sure what needs to be checked for EABI versions >= 1. */
2515 if (EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
2516 {
2517 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2518 {
2519 _bfd_error_handler
2520 (_("ERROR: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
2521 ibfd, obfd,
2522 in_flags & EF_ARM_APCS_26 ? 26 : 32,
2523 out_flags & EF_ARM_APCS_26 ? 26 : 32);
2524 flags_compatible = FALSE;
2525 }
2526
2527 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2528 {
2529 if (in_flags & EF_ARM_APCS_FLOAT)
2530 _bfd_error_handler
2531 (_("ERROR: %B passes floats in float registers, whereas %B passes them in integer registers"),
2532 ibfd, obfd);
2533 else
2534 _bfd_error_handler
2535 (_("ERROR: %B passes floats in integer registers, whereas %B passes them in float registers"),
2536 ibfd, obfd);
2537
2538 flags_compatible = FALSE;
2539 }
2540
2541 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
2542 {
2543 if (in_flags & EF_ARM_VFP_FLOAT)
2544 _bfd_error_handler
2545 (_("ERROR: %B uses VFP instructions, whereas %B does not"),
2546 ibfd, obfd);
2547 else
2548 _bfd_error_handler
2549 (_("ERROR: %B uses FPA instructions, whereas %B does not"),
2550 ibfd, obfd);
2551
2552 flags_compatible = FALSE;
2553 }
2554
2555 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
2556 {
2557 if (in_flags & EF_ARM_MAVERICK_FLOAT)
2558 _bfd_error_handler
2559 (_("ERROR: %B uses Maverick instructions, whereas %B does not"),
2560 ibfd, obfd);
2561 else
2562 _bfd_error_handler
2563 (_("ERROR: %B does not use Maverick instructions, whereas %B does"),
2564 ibfd, obfd);
2565
2566 flags_compatible = FALSE;
2567 }
2568
2569 #ifdef EF_ARM_SOFT_FLOAT
2570 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
2571 {
2572 /* We can allow interworking between code that is VFP format
2573 layout, and uses either soft float or integer regs for
2574 passing floating point arguments and results. We already
2575 know that the APCS_FLOAT flags match; similarly for VFP
2576 flags. */
2577 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
2578 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
2579 {
2580 if (in_flags & EF_ARM_SOFT_FLOAT)
2581 _bfd_error_handler
2582 (_("ERROR: %B uses software FP, whereas %B uses hardware FP"),
2583 ibfd, obfd);
2584 else
2585 _bfd_error_handler
2586 (_("ERROR: %B uses hardware FP, whereas %B uses software FP"),
2587 ibfd, obfd);
2588
2589 flags_compatible = FALSE;
2590 }
2591 }
2592 #endif
2593
2594 /* Interworking mismatch is only a warning. */
2595 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2596 {
2597 if (in_flags & EF_ARM_INTERWORK)
2598 {
2599 _bfd_error_handler
2600 (_("Warning: %B supports interworking, whereas %B does not"),
2601 ibfd, obfd);
2602 }
2603 else
2604 {
2605 _bfd_error_handler
2606 (_("Warning: %B does not support interworking, whereas %B does"),
2607 ibfd, obfd);
2608 }
2609 }
2610 }
2611
2612 return flags_compatible;
2613 }
2614
2615 /* Display the flags field. */
2616
2617 static bfd_boolean
2618 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
2619 {
2620 FILE * file = (FILE *) ptr;
2621 unsigned long flags;
2622
2623 BFD_ASSERT (abfd != NULL && ptr != NULL);
2624
2625 /* Print normal ELF private data. */
2626 _bfd_elf_print_private_bfd_data (abfd, ptr);
2627
2628 flags = elf_elfheader (abfd)->e_flags;
2629 /* Ignore init flag - it may not be set, despite the flags field
2630 containing valid data. */
2631
2632 /* xgettext:c-format */
2633 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
2634
2635 switch (EF_ARM_EABI_VERSION (flags))
2636 {
2637 case EF_ARM_EABI_UNKNOWN:
2638 /* The following flag bits are GNU extensions and not part of the
2639 official ARM ELF extended ABI. Hence they are only decoded if
2640 the EABI version is not set. */
2641 if (flags & EF_ARM_INTERWORK)
2642 fprintf (file, _(" [interworking enabled]"));
2643
2644 if (flags & EF_ARM_APCS_26)
2645 fprintf (file, " [APCS-26]");
2646 else
2647 fprintf (file, " [APCS-32]");
2648
2649 if (flags & EF_ARM_VFP_FLOAT)
2650 fprintf (file, _(" [VFP float format]"));
2651 else if (flags & EF_ARM_MAVERICK_FLOAT)
2652 fprintf (file, _(" [Maverick float format]"));
2653 else
2654 fprintf (file, _(" [FPA float format]"));
2655
2656 if (flags & EF_ARM_APCS_FLOAT)
2657 fprintf (file, _(" [floats passed in float registers]"));
2658
2659 if (flags & EF_ARM_PIC)
2660 fprintf (file, _(" [position independent]"));
2661
2662 if (flags & EF_ARM_NEW_ABI)
2663 fprintf (file, _(" [new ABI]"));
2664
2665 if (flags & EF_ARM_OLD_ABI)
2666 fprintf (file, _(" [old ABI]"));
2667
2668 if (flags & EF_ARM_SOFT_FLOAT)
2669 fprintf (file, _(" [software FP]"));
2670
2671 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
2672 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
2673 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
2674 | EF_ARM_MAVERICK_FLOAT);
2675 break;
2676
2677 case EF_ARM_EABI_VER1:
2678 fprintf (file, _(" [Version1 EABI]"));
2679
2680 if (flags & EF_ARM_SYMSARESORTED)
2681 fprintf (file, _(" [sorted symbol table]"));
2682 else
2683 fprintf (file, _(" [unsorted symbol table]"));
2684
2685 flags &= ~ EF_ARM_SYMSARESORTED;
2686 break;
2687
2688 case EF_ARM_EABI_VER2:
2689 fprintf (file, _(" [Version2 EABI]"));
2690
2691 if (flags & EF_ARM_SYMSARESORTED)
2692 fprintf (file, _(" [sorted symbol table]"));
2693 else
2694 fprintf (file, _(" [unsorted symbol table]"));
2695
2696 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
2697 fprintf (file, _(" [dynamic symbols use segment index]"));
2698
2699 if (flags & EF_ARM_MAPSYMSFIRST)
2700 fprintf (file, _(" [mapping symbols precede others]"));
2701
2702 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
2703 | EF_ARM_MAPSYMSFIRST);
2704 break;
2705
2706 case EF_ARM_EABI_VER3:
2707 fprintf (file, _(" [Version3 EABI]"));
2708
2709 if (flags & EF_ARM_BE8)
2710 fprintf (file, _(" [BE8]"));
2711
2712 if (flags & EF_ARM_LE8)
2713 fprintf (file, _(" [LE8]"));
2714
2715 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
2716 break;
2717
2718 default:
2719 fprintf (file, _(" <EABI version unrecognised>"));
2720 break;
2721 }
2722
2723 flags &= ~ EF_ARM_EABIMASK;
2724
2725 if (flags & EF_ARM_RELEXEC)
2726 fprintf (file, _(" [relocatable executable]"));
2727
2728 if (flags & EF_ARM_HASENTRY)
2729 fprintf (file, _(" [has entry point]"));
2730
2731 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
2732
2733 if (flags)
2734 fprintf (file, _("<Unrecognised flag bits set>"));
2735
2736 fputc ('\n', file);
2737
2738 return TRUE;
2739 }
2740
2741 static int
2742 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
2743 {
2744 switch (ELF_ST_TYPE (elf_sym->st_info))
2745 {
2746 case STT_ARM_TFUNC:
2747 return ELF_ST_TYPE (elf_sym->st_info);
2748
2749 case STT_ARM_16BIT:
2750 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
2751 This allows us to distinguish between data used by Thumb instructions
2752 and non-data (which is probably code) inside Thumb regions of an
2753 executable. */
2754 if (type != STT_OBJECT)
2755 return ELF_ST_TYPE (elf_sym->st_info);
2756 break;
2757
2758 default:
2759 break;
2760 }
2761
2762 return type;
2763 }
2764
2765 static asection *
2766 elf32_arm_gc_mark_hook (asection * sec,
2767 struct bfd_link_info * info ATTRIBUTE_UNUSED,
2768 Elf_Internal_Rela * rel,
2769 struct elf_link_hash_entry * h,
2770 Elf_Internal_Sym * sym)
2771 {
2772 if (h != NULL)
2773 {
2774 switch (ELF32_R_TYPE (rel->r_info))
2775 {
2776 case R_ARM_GNU_VTINHERIT:
2777 case R_ARM_GNU_VTENTRY:
2778 break;
2779
2780 default:
2781 switch (h->root.type)
2782 {
2783 case bfd_link_hash_defined:
2784 case bfd_link_hash_defweak:
2785 return h->root.u.def.section;
2786
2787 case bfd_link_hash_common:
2788 return h->root.u.c.p->section;
2789
2790 default:
2791 break;
2792 }
2793 }
2794 }
2795 else
2796 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
2797
2798 return NULL;
2799 }
2800
2801 /* Update the got entry reference counts for the section being removed. */
2802
2803 static bfd_boolean
2804 elf32_arm_gc_sweep_hook (bfd * abfd ATTRIBUTE_UNUSED,
2805 struct bfd_link_info * info ATTRIBUTE_UNUSED,
2806 asection * sec ATTRIBUTE_UNUSED,
2807 const Elf_Internal_Rela * relocs ATTRIBUTE_UNUSED)
2808 {
2809 Elf_Internal_Shdr *symtab_hdr;
2810 struct elf_link_hash_entry **sym_hashes;
2811 bfd_signed_vma *local_got_refcounts;
2812 const Elf_Internal_Rela *rel, *relend;
2813 unsigned long r_symndx;
2814 struct elf_link_hash_entry *h;
2815 struct elf32_arm_link_hash_table * globals;
2816
2817 globals = elf32_arm_hash_table (info);
2818
2819 elf_section_data (sec)->local_dynrel = NULL;
2820
2821 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2822 sym_hashes = elf_sym_hashes (abfd);
2823 local_got_refcounts = elf_local_got_refcounts (abfd);
2824
2825 relend = relocs + sec->reloc_count;
2826 for (rel = relocs; rel < relend; rel++)
2827 {
2828 int r_type;
2829
2830 r_type = ELF32_R_TYPE (rel->r_info);
2831 #ifndef OLD_ARM_ABI
2832 r_type = arm_real_reloc_type (globals, r_type);
2833 #endif
2834 switch (r_type)
2835 {
2836 case R_ARM_GOT32:
2837 #ifndef OLD_ARM_ABI
2838 case R_ARM_GOT_PREL:
2839 #endif
2840 r_symndx = ELF32_R_SYM (rel->r_info);
2841 if (r_symndx >= symtab_hdr->sh_info)
2842 {
2843 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2844 if (h->got.refcount > 0)
2845 h->got.refcount -= 1;
2846 }
2847 else if (local_got_refcounts != NULL)
2848 {
2849 if (local_got_refcounts[r_symndx] > 0)
2850 local_got_refcounts[r_symndx] -= 1;
2851 }
2852 break;
2853
2854 case R_ARM_ABS32:
2855 case R_ARM_REL32:
2856 case R_ARM_PC24:
2857 case R_ARM_PLT32:
2858 #ifndef OLD_ARM_ABI
2859 case R_ARM_PREL31:
2860 #endif
2861 r_symndx = ELF32_R_SYM (rel->r_info);
2862 if (r_symndx >= symtab_hdr->sh_info)
2863 {
2864 struct elf32_arm_link_hash_entry *eh;
2865 struct elf32_arm_relocs_copied **pp;
2866 struct elf32_arm_relocs_copied *p;
2867
2868 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2869
2870 if (h->plt.refcount > 0)
2871 h->plt.refcount -= 1;
2872
2873 if (r_type == R_ARM_ABS32
2874 #ifndef OLD_ARM_ABI
2875 || r_type == R_ARM_PREL31
2876 #endif
2877 || r_type == R_ARM_REL32)
2878 {
2879 eh = (struct elf32_arm_link_hash_entry *) h;
2880
2881 for (pp = &eh->relocs_copied; (p = *pp) != NULL;
2882 pp = &p->next)
2883 if (p->section == sec)
2884 {
2885 p->count -= 1;
2886 if (p->count == 0)
2887 *pp = p->next;
2888 break;
2889 }
2890 }
2891 }
2892 break;
2893
2894 default:
2895 break;
2896 }
2897 }
2898
2899 return TRUE;
2900 }
2901
2902 /* Look through the relocs for a section during the first phase. */
2903
2904 static bfd_boolean
2905 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
2906 asection *sec, const Elf_Internal_Rela *relocs)
2907 {
2908 Elf_Internal_Shdr *symtab_hdr;
2909 struct elf_link_hash_entry **sym_hashes;
2910 struct elf_link_hash_entry **sym_hashes_end;
2911 const Elf_Internal_Rela *rel;
2912 const Elf_Internal_Rela *rel_end;
2913 bfd *dynobj;
2914 asection *sreloc;
2915 bfd_vma *local_got_offsets;
2916 struct elf32_arm_link_hash_table *htab;
2917
2918 if (info->relocatable)
2919 return TRUE;
2920
2921 htab = elf32_arm_hash_table (info);
2922 sreloc = NULL;
2923
2924 dynobj = elf_hash_table (info)->dynobj;
2925 local_got_offsets = elf_local_got_offsets (abfd);
2926
2927 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2928 sym_hashes = elf_sym_hashes (abfd);
2929 sym_hashes_end = sym_hashes
2930 + symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
2931
2932 if (!elf_bad_symtab (abfd))
2933 sym_hashes_end -= symtab_hdr->sh_info;
2934
2935 rel_end = relocs + sec->reloc_count;
2936 for (rel = relocs; rel < rel_end; rel++)
2937 {
2938 struct elf_link_hash_entry *h;
2939 unsigned long r_symndx;
2940 int r_type;
2941
2942 r_symndx = ELF32_R_SYM (rel->r_info);
2943 r_type = ELF32_R_TYPE (rel->r_info);
2944 #ifndef OLD_ARM_ABI
2945 r_type = arm_real_reloc_type (htab, r_type);
2946 #endif
2947 if (r_symndx < symtab_hdr->sh_info)
2948 h = NULL;
2949 else
2950 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2951
2952 switch (r_type)
2953 {
2954 case R_ARM_GOT32:
2955 #ifndef OLD_ARM_ABI
2956 case R_ARM_GOT_PREL:
2957 #endif
2958 /* This symbol requires a global offset table entry. */
2959 if (h != NULL)
2960 {
2961 h->got.refcount++;
2962 }
2963 else
2964 {
2965 bfd_signed_vma *local_got_refcounts;
2966
2967 /* This is a global offset table entry for a local symbol. */
2968 local_got_refcounts = elf_local_got_refcounts (abfd);
2969 if (local_got_refcounts == NULL)
2970 {
2971 bfd_size_type size;
2972
2973 size = symtab_hdr->sh_info;
2974 size *= (sizeof (bfd_signed_vma) + sizeof (char));
2975 local_got_refcounts = bfd_zalloc (abfd, size);
2976 if (local_got_refcounts == NULL)
2977 return FALSE;
2978 elf_local_got_refcounts (abfd) = local_got_refcounts;
2979 }
2980 local_got_refcounts[r_symndx] += 1;
2981 }
2982 if (r_type == R_ARM_GOT32)
2983 break;
2984 /* Fall through. */
2985
2986 case R_ARM_GOTOFF:
2987 case R_ARM_GOTPC:
2988 if (htab->sgot == NULL)
2989 {
2990 if (htab->root.dynobj == NULL)
2991 htab->root.dynobj = abfd;
2992 if (!create_got_section (htab->root.dynobj, info))
2993 return FALSE;
2994 }
2995 break;
2996
2997 case R_ARM_ABS32:
2998 case R_ARM_REL32:
2999 case R_ARM_PC24:
3000 case R_ARM_PLT32:
3001 #ifndef OLD_ARM_ABI
3002 case R_ARM_PREL31:
3003 #endif
3004 if (h != NULL)
3005 {
3006 /* If this reloc is in a read-only section, we might
3007 need a copy reloc. We can't check reliably at this
3008 stage whether the section is read-only, as input
3009 sections have not yet been mapped to output sections.
3010 Tentatively set the flag for now, and correct in
3011 adjust_dynamic_symbol. */
3012 if (!info->shared)
3013 h->non_got_ref = 1;
3014
3015 /* We may need a .plt entry if the function this reloc
3016 refers to is in a different object. We can't tell for
3017 sure yet, because something later might force the
3018 symbol local. */
3019 if (r_type == R_ARM_PC24
3020 || r_type == R_ARM_PLT32)
3021 h->needs_plt = 1;
3022
3023 /* If we create a PLT entry, this relocation will reference
3024 it, even if it's an ABS32 relocation. */
3025 h->plt.refcount += 1;
3026 }
3027
3028 /* If we are creating a shared library, and this is a reloc
3029 against a global symbol, or a non PC relative reloc
3030 against a local symbol, then we need to copy the reloc
3031 into the shared library. However, if we are linking with
3032 -Bsymbolic, we do not need to copy a reloc against a
3033 global symbol which is defined in an object we are
3034 including in the link (i.e., DEF_REGULAR is set). At
3035 this point we have not seen all the input files, so it is
3036 possible that DEF_REGULAR is not set now but will be set
3037 later (it is never cleared). We account for that
3038 possibility below by storing information in the
3039 relocs_copied field of the hash table entry. */
3040 if (info->shared
3041 && (sec->flags & SEC_ALLOC) != 0
3042 && ((r_type != R_ARM_PC24
3043 && r_type != R_ARM_PLT32
3044 #ifndef OLD_ARM_ABI
3045 && r_type != R_ARM_PREL31
3046 #endif
3047 && r_type != R_ARM_REL32)
3048 || (h != NULL
3049 && (! info->symbolic
3050 || !h->def_regular))))
3051 {
3052 struct elf32_arm_relocs_copied *p, **head;
3053
3054 /* When creating a shared object, we must copy these
3055 reloc types into the output file. We create a reloc
3056 section in dynobj and make room for this reloc. */
3057 if (sreloc == NULL)
3058 {
3059 const char * name;
3060
3061 name = (bfd_elf_string_from_elf_section
3062 (abfd,
3063 elf_elfheader (abfd)->e_shstrndx,
3064 elf_section_data (sec)->rel_hdr.sh_name));
3065 if (name == NULL)
3066 return FALSE;
3067
3068 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
3069 && strcmp (bfd_get_section_name (abfd, sec),
3070 name + 4) == 0);
3071
3072 sreloc = bfd_get_section_by_name (dynobj, name);
3073 if (sreloc == NULL)
3074 {
3075 flagword flags;
3076
3077 sreloc = bfd_make_section (dynobj, name);
3078 flags = (SEC_HAS_CONTENTS | SEC_READONLY
3079 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3080 if ((sec->flags & SEC_ALLOC) != 0
3081 /* BPABI objects never have dynamic
3082 relocations mapped. */
3083 && !htab->symbian_p)
3084 flags |= SEC_ALLOC | SEC_LOAD;
3085 if (sreloc == NULL
3086 || ! bfd_set_section_flags (dynobj, sreloc, flags)
3087 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
3088 return FALSE;
3089 }
3090
3091 elf_section_data (sec)->sreloc = sreloc;
3092 }
3093
3094 /* If this is a global symbol, we count the number of
3095 relocations we need for this symbol. */
3096 if (h != NULL)
3097 {
3098 head = &((struct elf32_arm_link_hash_entry *) h)->relocs_copied;
3099 }
3100 else
3101 {
3102 /* Track dynamic relocs needed for local syms too.
3103 We really need local syms available to do this
3104 easily. Oh well. */
3105
3106 asection *s;
3107 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
3108 sec, r_symndx);
3109 if (s == NULL)
3110 return FALSE;
3111
3112 head = ((struct elf32_arm_relocs_copied **)
3113 &elf_section_data (s)->local_dynrel);
3114 }
3115
3116 p = *head;
3117 if (p == NULL || p->section != sec)
3118 {
3119 bfd_size_type amt = sizeof *p;
3120
3121 p = bfd_alloc (htab->root.dynobj, amt);
3122 if (p == NULL)
3123 return FALSE;
3124 p->next = *head;
3125 *head = p;
3126 p->section = sec;
3127 p->count = 0;
3128 }
3129
3130 if (r_type == R_ARM_ABS32
3131 #ifndef OLD_ARM_ABI
3132 || r_type == R_ARM_PREL31
3133 #endif
3134 || r_type == R_ARM_REL32)
3135 p->count += 1;
3136 }
3137 break;
3138
3139 /* This relocation describes the C++ object vtable hierarchy.
3140 Reconstruct it for later use during GC. */
3141 case R_ARM_GNU_VTINHERIT:
3142 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
3143 return FALSE;
3144 break;
3145
3146 /* This relocation describes which C++ vtable entries are actually
3147 used. Record for later use during GC. */
3148 case R_ARM_GNU_VTENTRY:
3149 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
3150 return FALSE;
3151 break;
3152 }
3153 }
3154
3155 return TRUE;
3156 }
3157
3158 static bfd_boolean
3159 is_arm_mapping_symbol_name (const char * name)
3160 {
3161 return (name != NULL)
3162 && (name[0] == '$')
3163 && ((name[1] == 'a') || (name[1] == 't') || (name[1] == 'd'))
3164 && (name[2] == 0);
3165 }
3166
3167 /* Treat mapping symbols as special target symbols. */
3168
3169 static bfd_boolean
3170 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
3171 {
3172 return is_arm_mapping_symbol_name (sym->name);
3173 }
3174
3175 /* This is a copy of elf_find_function() from elf.c except that
3176 ARM mapping symbols are ignored when looking for function names
3177 and STT_ARM_TFUNC is considered to a function type. */
3178
3179 static bfd_boolean
3180 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
3181 asection * section,
3182 asymbol ** symbols,
3183 bfd_vma offset,
3184 const char ** filename_ptr,
3185 const char ** functionname_ptr)
3186 {
3187 const char * filename = NULL;
3188 asymbol * func = NULL;
3189 bfd_vma low_func = 0;
3190 asymbol ** p;
3191
3192 for (p = symbols; *p != NULL; p++)
3193 {
3194 elf_symbol_type *q;
3195
3196 q = (elf_symbol_type *) *p;
3197
3198 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
3199 {
3200 default:
3201 break;
3202 case STT_FILE:
3203 filename = bfd_asymbol_name (&q->symbol);
3204 break;
3205 case STT_FUNC:
3206 case STT_ARM_TFUNC:
3207 /* Skip $a and $t symbols. */
3208 if ((q->symbol.flags & BSF_LOCAL)
3209 && is_arm_mapping_symbol_name (q->symbol.name))
3210 continue;
3211 /* Fall through. */
3212 case STT_NOTYPE:
3213 if (bfd_get_section (&q->symbol) == section
3214 && q->symbol.value >= low_func
3215 && q->symbol.value <= offset)
3216 {
3217 func = (asymbol *) q;
3218 low_func = q->symbol.value;
3219 }
3220 break;
3221 }
3222 }
3223
3224 if (func == NULL)
3225 return FALSE;
3226
3227 if (filename_ptr)
3228 *filename_ptr = filename;
3229 if (functionname_ptr)
3230 *functionname_ptr = bfd_asymbol_name (func);
3231
3232 return TRUE;
3233 }
3234
3235
3236 /* Find the nearest line to a particular section and offset, for error
3237 reporting. This code is a duplicate of the code in elf.c, except
3238 that it uses arm_elf_find_function. */
3239
3240 static bfd_boolean
3241 elf32_arm_find_nearest_line (bfd * abfd,
3242 asection * section,
3243 asymbol ** symbols,
3244 bfd_vma offset,
3245 const char ** filename_ptr,
3246 const char ** functionname_ptr,
3247 unsigned int * line_ptr)
3248 {
3249 bfd_boolean found = FALSE;
3250
3251 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
3252
3253 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
3254 filename_ptr, functionname_ptr,
3255 line_ptr, 0,
3256 & elf_tdata (abfd)->dwarf2_find_line_info))
3257 {
3258 if (!*functionname_ptr)
3259 arm_elf_find_function (abfd, section, symbols, offset,
3260 *filename_ptr ? NULL : filename_ptr,
3261 functionname_ptr);
3262
3263 return TRUE;
3264 }
3265
3266 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
3267 & found, filename_ptr,
3268 functionname_ptr, line_ptr,
3269 & elf_tdata (abfd)->line_info))
3270 return FALSE;
3271
3272 if (found && (*functionname_ptr || *line_ptr))
3273 return TRUE;
3274
3275 if (symbols == NULL)
3276 return FALSE;
3277
3278 if (! arm_elf_find_function (abfd, section, symbols, offset,
3279 filename_ptr, functionname_ptr))
3280 return FALSE;
3281
3282 *line_ptr = 0;
3283 return TRUE;
3284 }
3285
3286 /* Adjust a symbol defined by a dynamic object and referenced by a
3287 regular object. The current definition is in some section of the
3288 dynamic object, but we're not including those sections. We have to
3289 change the definition to something the rest of the link can
3290 understand. */
3291
3292 static bfd_boolean
3293 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
3294 struct elf_link_hash_entry * h)
3295 {
3296 bfd * dynobj;
3297 asection * s;
3298 unsigned int power_of_two;
3299
3300 dynobj = elf_hash_table (info)->dynobj;
3301
3302 /* Make sure we know what is going on here. */
3303 BFD_ASSERT (dynobj != NULL
3304 && (h->needs_plt
3305 || h->u.weakdef != NULL
3306 || (h->def_dynamic
3307 && h->ref_regular
3308 && !h->def_regular)));
3309
3310 /* If this is a function, put it in the procedure linkage table. We
3311 will fill in the contents of the procedure linkage table later,
3312 when we know the address of the .got section. */
3313 if (h->type == STT_FUNC
3314 || h->needs_plt)
3315 {
3316 if (h->plt.refcount <= 0
3317 || SYMBOL_CALLS_LOCAL (info, h)
3318 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
3319 && h->root.type == bfd_link_hash_undefweak))
3320 {
3321 /* This case can occur if we saw a PLT32 reloc in an input
3322 file, but the symbol was never referred to by a dynamic
3323 object, or if all references were garbage collected. In
3324 such a case, we don't actually need to build a procedure
3325 linkage table, and we can just do a PC24 reloc instead. */
3326 h->plt.offset = (bfd_vma) -1;
3327 h->needs_plt = 0;
3328 }
3329
3330 return TRUE;
3331 }
3332 else
3333 /* It's possible that we incorrectly decided a .plt reloc was
3334 needed for an R_ARM_PC24 reloc to a non-function sym in
3335 check_relocs. We can't decide accurately between function and
3336 non-function syms in check-relocs; Objects loaded later in
3337 the link may change h->type. So fix it now. */
3338 h->plt.offset = (bfd_vma) -1;
3339
3340 /* If this is a weak symbol, and there is a real definition, the
3341 processor independent code will have arranged for us to see the
3342 real definition first, and we can just use the same value. */
3343 if (h->u.weakdef != NULL)
3344 {
3345 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
3346 || h->u.weakdef->root.type == bfd_link_hash_defweak);
3347 h->root.u.def.section = h->u.weakdef->root.u.def.section;
3348 h->root.u.def.value = h->u.weakdef->root.u.def.value;
3349 return TRUE;
3350 }
3351
3352 /* This is a reference to a symbol defined by a dynamic object which
3353 is not a function. */
3354
3355 /* If we are creating a shared library, we must presume that the
3356 only references to the symbol are via the global offset table.
3357 For such cases we need not do anything here; the relocations will
3358 be handled correctly by relocate_section. */
3359 if (info->shared)
3360 return TRUE;
3361
3362 /* We must allocate the symbol in our .dynbss section, which will
3363 become part of the .bss section of the executable. There will be
3364 an entry for this symbol in the .dynsym section. The dynamic
3365 object will contain position independent code, so all references
3366 from the dynamic object to this symbol will go through the global
3367 offset table. The dynamic linker will use the .dynsym entry to
3368 determine the address it must put in the global offset table, so
3369 both the dynamic object and the regular object will refer to the
3370 same memory location for the variable. */
3371 s = bfd_get_section_by_name (dynobj, ".dynbss");
3372 BFD_ASSERT (s != NULL);
3373
3374 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
3375 copy the initial value out of the dynamic object and into the
3376 runtime process image. We need to remember the offset into the
3377 .rel.bss section we are going to use. */
3378 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
3379 {
3380 asection *srel;
3381
3382 srel = bfd_get_section_by_name (dynobj, ".rel.bss");
3383 BFD_ASSERT (srel != NULL);
3384 srel->size += sizeof (Elf32_External_Rel);
3385 h->needs_copy = 1;
3386 }
3387
3388 /* We need to figure out the alignment required for this symbol. I
3389 have no idea how ELF linkers handle this. */
3390 power_of_two = bfd_log2 (h->size);
3391 if (power_of_two > 3)
3392 power_of_two = 3;
3393
3394 /* Apply the required alignment. */
3395 s->size = BFD_ALIGN (s->size, (bfd_size_type) (1 << power_of_two));
3396 if (power_of_two > bfd_get_section_alignment (dynobj, s))
3397 {
3398 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
3399 return FALSE;
3400 }
3401
3402 /* Define the symbol as being at this point in the section. */
3403 h->root.u.def.section = s;
3404 h->root.u.def.value = s->size;
3405
3406 /* Increment the section size to make room for the symbol. */
3407 s->size += h->size;
3408
3409 return TRUE;
3410 }
3411
3412 /* Allocate space in .plt, .got and associated reloc sections for
3413 dynamic relocs. */
3414
3415 static bfd_boolean
3416 allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
3417 {
3418 struct bfd_link_info *info;
3419 struct elf32_arm_link_hash_table *htab;
3420 struct elf32_arm_link_hash_entry *eh;
3421 struct elf32_arm_relocs_copied *p;
3422
3423 if (h->root.type == bfd_link_hash_indirect)
3424 return TRUE;
3425
3426 if (h->root.type == bfd_link_hash_warning)
3427 /* When warning symbols are created, they **replace** the "real"
3428 entry in the hash table, thus we never get to see the real
3429 symbol in a hash traversal. So look at it now. */
3430 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3431
3432 info = (struct bfd_link_info *) inf;
3433 htab = elf32_arm_hash_table (info);
3434
3435 if (htab->root.dynamic_sections_created
3436 && h->plt.refcount > 0)
3437 {
3438 /* Make sure this symbol is output as a dynamic symbol.
3439 Undefined weak syms won't yet be marked as dynamic. */
3440 if (h->dynindx == -1
3441 && !h->forced_local)
3442 {
3443 if (! bfd_elf_link_record_dynamic_symbol (info, h))
3444 return FALSE;
3445 }
3446
3447 if (info->shared
3448 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
3449 {
3450 asection *s = htab->splt;
3451
3452 /* If this is the first .plt entry, make room for the special
3453 first entry. */
3454 if (s->size == 0)
3455 s->size += htab->plt_header_size;
3456
3457 h->plt.offset = s->size;
3458
3459 /* If this symbol is not defined in a regular file, and we are
3460 not generating a shared library, then set the symbol to this
3461 location in the .plt. This is required to make function
3462 pointers compare as equal between the normal executable and
3463 the shared library. */
3464 if (! info->shared
3465 && !h->def_regular)
3466 {
3467 h->root.u.def.section = s;
3468 h->root.u.def.value = h->plt.offset;
3469 }
3470
3471 /* Make room for this entry. */
3472 s->size += htab->plt_entry_size;
3473
3474 if (!htab->symbian_p)
3475 /* We also need to make an entry in the .got.plt section, which
3476 will be placed in the .got section by the linker script. */
3477 htab->sgotplt->size += 4;
3478
3479 /* We also need to make an entry in the .rel.plt section. */
3480 htab->srelplt->size += sizeof (Elf32_External_Rel);
3481 }
3482 else
3483 {
3484 h->plt.offset = (bfd_vma) -1;
3485 h->needs_plt = 0;
3486 }
3487 }
3488 else
3489 {
3490 h->plt.offset = (bfd_vma) -1;
3491 h->needs_plt = 0;
3492 }
3493
3494 if (h->got.refcount > 0)
3495 {
3496 asection *s;
3497 bfd_boolean dyn;
3498
3499 /* Make sure this symbol is output as a dynamic symbol.
3500 Undefined weak syms won't yet be marked as dynamic. */
3501 if (h->dynindx == -1
3502 && !h->forced_local)
3503 {
3504 if (! bfd_elf_link_record_dynamic_symbol (info, h))
3505 return FALSE;
3506 }
3507
3508 if (!htab->symbian_p)
3509 {
3510 s = htab->sgot;
3511 h->got.offset = s->size;
3512 s->size += 4;
3513 dyn = htab->root.dynamic_sections_created;
3514 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3515 || h->root.type != bfd_link_hash_undefweak)
3516 && (info->shared
3517 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
3518 htab->srelgot->size += sizeof (Elf32_External_Rel);
3519 }
3520 }
3521 else
3522 h->got.offset = (bfd_vma) -1;
3523
3524 eh = (struct elf32_arm_link_hash_entry *) h;
3525 if (eh->relocs_copied == NULL)
3526 return TRUE;
3527
3528 /* In the shared -Bsymbolic case, discard space allocated for
3529 dynamic pc-relative relocs against symbols which turn out to be
3530 defined in regular objects. For the normal shared case, discard
3531 space for pc-relative relocs that have become local due to symbol
3532 visibility changes. */
3533
3534 if (info->shared)
3535 {
3536 /* Discard relocs on undefined weak syms with non-default
3537 visibility. */
3538 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
3539 && h->root.type == bfd_link_hash_undefweak)
3540 eh->relocs_copied = NULL;
3541 }
3542 else
3543 {
3544 /* For the non-shared case, discard space for relocs against
3545 symbols which turn out to need copy relocs or are not
3546 dynamic. */
3547
3548 if (!h->non_got_ref
3549 && ((h->def_dynamic
3550 && !h->def_regular)
3551 || (htab->root.dynamic_sections_created
3552 && (h->root.type == bfd_link_hash_undefweak
3553 || h->root.type == bfd_link_hash_undefined))))
3554 {
3555 /* Make sure this symbol is output as a dynamic symbol.
3556 Undefined weak syms won't yet be marked as dynamic. */
3557 if (h->dynindx == -1
3558 && !h->forced_local)
3559 {
3560 if (! bfd_elf_link_record_dynamic_symbol (info, h))
3561 return FALSE;
3562 }
3563
3564 /* If that succeeded, we know we'll be keeping all the
3565 relocs. */
3566 if (h->dynindx != -1)
3567 goto keep;
3568 }
3569
3570 eh->relocs_copied = NULL;
3571
3572 keep: ;
3573 }
3574
3575 /* Finally, allocate space. */
3576 for (p = eh->relocs_copied; p != NULL; p = p->next)
3577 {
3578 asection *sreloc = elf_section_data (p->section)->sreloc;
3579 sreloc->size += p->count * sizeof (Elf32_External_Rel);
3580 }
3581
3582 return TRUE;
3583 }
3584
3585 /* Set the sizes of the dynamic sections. */
3586
3587 static bfd_boolean
3588 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
3589 struct bfd_link_info * info)
3590 {
3591 bfd * dynobj;
3592 asection * s;
3593 bfd_boolean plt;
3594 bfd_boolean relocs;
3595 bfd *ibfd;
3596 struct elf32_arm_link_hash_table *htab;
3597
3598 htab = elf32_arm_hash_table (info);
3599 dynobj = elf_hash_table (info)->dynobj;
3600 BFD_ASSERT (dynobj != NULL);
3601
3602 if (elf_hash_table (info)->dynamic_sections_created)
3603 {
3604 /* Set the contents of the .interp section to the interpreter. */
3605 if (info->executable)
3606 {
3607 s = bfd_get_section_by_name (dynobj, ".interp");
3608 BFD_ASSERT (s != NULL);
3609 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
3610 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
3611 }
3612 }
3613
3614 /* Set up .got offsets for local syms, and space for local dynamic
3615 relocs. */
3616 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
3617 {
3618 bfd_signed_vma *local_got;
3619 bfd_signed_vma *end_local_got;
3620 char *local_tls_type;
3621 bfd_size_type locsymcount;
3622 Elf_Internal_Shdr *symtab_hdr;
3623 asection *srel;
3624
3625 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
3626 continue;
3627
3628 for (s = ibfd->sections; s != NULL; s = s->next)
3629 {
3630 struct elf32_arm_relocs_copied *p;
3631
3632 for (p = *((struct elf32_arm_relocs_copied **)
3633 &elf_section_data (s)->local_dynrel);
3634 p != NULL;
3635 p = p->next)
3636 {
3637 if (!bfd_is_abs_section (p->section)
3638 && bfd_is_abs_section (p->section->output_section))
3639 {
3640 /* Input section has been discarded, either because
3641 it is a copy of a linkonce section or due to
3642 linker script /DISCARD/, so we'll be discarding
3643 the relocs too. */
3644 }
3645 else if (p->count != 0)
3646 {
3647 srel = elf_section_data (p->section)->sreloc;
3648 srel->size += p->count * sizeof (Elf32_External_Rel);
3649 if ((p->section->output_section->flags & SEC_READONLY) != 0)
3650 info->flags |= DF_TEXTREL;
3651 }
3652 }
3653 }
3654
3655 local_got = elf_local_got_refcounts (ibfd);
3656 if (!local_got)
3657 continue;
3658
3659 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
3660 locsymcount = symtab_hdr->sh_info;
3661 end_local_got = local_got + locsymcount;
3662 s = htab->sgot;
3663 srel = htab->srelgot;
3664 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
3665 {
3666 if (*local_got > 0)
3667 {
3668 *local_got = s->size;
3669 s->size += 4;
3670 if (info->shared)
3671 srel->size += sizeof (Elf32_External_Rel);
3672 }
3673 else
3674 *local_got = (bfd_vma) -1;
3675 }
3676 }
3677
3678 /* Allocate global sym .plt and .got entries, and space for global
3679 sym dynamic relocs. */
3680 elf_link_hash_traverse (& htab->root, allocate_dynrelocs, info);
3681
3682 /* The check_relocs and adjust_dynamic_symbol entry points have
3683 determined the sizes of the various dynamic sections. Allocate
3684 memory for them. */
3685 plt = FALSE;
3686 relocs = FALSE;
3687 for (s = dynobj->sections; s != NULL; s = s->next)
3688 {
3689 const char * name;
3690 bfd_boolean strip;
3691
3692 if ((s->flags & SEC_LINKER_CREATED) == 0)
3693 continue;
3694
3695 /* It's OK to base decisions on the section name, because none
3696 of the dynobj section names depend upon the input files. */
3697 name = bfd_get_section_name (dynobj, s);
3698
3699 strip = FALSE;
3700
3701 if (strcmp (name, ".plt") == 0)
3702 {
3703 if (s->size == 0)
3704 {
3705 /* Strip this section if we don't need it; see the
3706 comment below. */
3707 strip = TRUE;
3708 }
3709 else
3710 {
3711 /* Remember whether there is a PLT. */
3712 plt = TRUE;
3713 }
3714 }
3715 else if (strncmp (name, ".rel", 4) == 0)
3716 {
3717 if (s->size == 0)
3718 {
3719 /* If we don't need this section, strip it from the
3720 output file. This is mostly to handle .rel.bss and
3721 .rel.plt. We must create both sections in
3722 create_dynamic_sections, because they must be created
3723 before the linker maps input sections to output
3724 sections. The linker does that before
3725 adjust_dynamic_symbol is called, and it is that
3726 function which decides whether anything needs to go
3727 into these sections. */
3728 strip = TRUE;
3729 }
3730 else
3731 {
3732 /* Remember whether there are any reloc sections other
3733 than .rel.plt. */
3734 if (strcmp (name, ".rel.plt") != 0)
3735 relocs = TRUE;
3736
3737 /* We use the reloc_count field as a counter if we need
3738 to copy relocs into the output file. */
3739 s->reloc_count = 0;
3740 }
3741 }
3742 else if (strncmp (name, ".got", 4) != 0)
3743 {
3744 /* It's not one of our sections, so don't allocate space. */
3745 continue;
3746 }
3747
3748 if (strip)
3749 {
3750 _bfd_strip_section_from_output (info, s);
3751 continue;
3752 }
3753
3754 /* Allocate memory for the section contents. */
3755 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
3756 if (s->contents == NULL && s->size != 0)
3757 return FALSE;
3758 }
3759
3760 if (elf_hash_table (info)->dynamic_sections_created)
3761 {
3762 /* Add some entries to the .dynamic section. We fill in the
3763 values later, in elf32_arm_finish_dynamic_sections, but we
3764 must add the entries now so that we get the correct size for
3765 the .dynamic section. The DT_DEBUG entry is filled in by the
3766 dynamic linker and used by the debugger. */
3767 #define add_dynamic_entry(TAG, VAL) \
3768 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
3769
3770 if (!info->shared)
3771 {
3772 if (!add_dynamic_entry (DT_DEBUG, 0))
3773 return FALSE;
3774 }
3775
3776 if (plt)
3777 {
3778 if ( !add_dynamic_entry (DT_PLTGOT, 0)
3779 || !add_dynamic_entry (DT_PLTRELSZ, 0)
3780 || !add_dynamic_entry (DT_PLTREL, DT_REL)
3781 || !add_dynamic_entry (DT_JMPREL, 0))
3782 return FALSE;
3783 }
3784
3785 if (relocs)
3786 {
3787 if ( !add_dynamic_entry (DT_REL, 0)
3788 || !add_dynamic_entry (DT_RELSZ, 0)
3789 || !add_dynamic_entry (DT_RELENT, sizeof (Elf32_External_Rel)))
3790 return FALSE;
3791 }
3792
3793 if ((info->flags & DF_TEXTREL) != 0)
3794 {
3795 if (!add_dynamic_entry (DT_TEXTREL, 0))
3796 return FALSE;
3797 info->flags |= DF_TEXTREL;
3798 }
3799 }
3800 #undef add_synamic_entry
3801
3802 return TRUE;
3803 }
3804
3805 /* Finish up dynamic symbol handling. We set the contents of various
3806 dynamic sections here. */
3807
3808 static bfd_boolean
3809 elf32_arm_finish_dynamic_symbol (bfd * output_bfd, struct bfd_link_info * info,
3810 struct elf_link_hash_entry * h, Elf_Internal_Sym * sym)
3811 {
3812 bfd * dynobj;
3813 struct elf32_arm_link_hash_table *htab;
3814
3815 dynobj = elf_hash_table (info)->dynobj;
3816 htab = elf32_arm_hash_table (info);
3817
3818 if (h->plt.offset != (bfd_vma) -1)
3819 {
3820 asection * splt;
3821 asection * srel;
3822 bfd_byte *loc;
3823 bfd_vma plt_index;
3824 Elf_Internal_Rela rel;
3825
3826 /* This symbol has an entry in the procedure linkage table. Set
3827 it up. */
3828
3829 BFD_ASSERT (h->dynindx != -1);
3830
3831 splt = bfd_get_section_by_name (dynobj, ".plt");
3832 srel = bfd_get_section_by_name (dynobj, ".rel.plt");
3833 BFD_ASSERT (splt != NULL && srel != NULL);
3834
3835 /* Get the index in the procedure linkage table which
3836 corresponds to this symbol. This is the index of this symbol
3837 in all the symbols for which we are making plt entries. The
3838 first entry in the procedure linkage table is reserved. */
3839 plt_index = ((h->plt.offset - htab->plt_header_size)
3840 / htab->plt_entry_size);
3841
3842 /* Fill in the entry in the procedure linkage table. */
3843 if (htab->symbian_p)
3844 {
3845 unsigned i;
3846 for (i = 0; i < htab->plt_entry_size / 4; ++i)
3847 bfd_put_32 (output_bfd,
3848 elf32_arm_symbian_plt_entry[i],
3849 splt->contents + h->plt.offset + 4 * i);
3850
3851 /* Fill in the entry in the .rel.plt section. */
3852 rel.r_offset = (splt->output_offset
3853 + h->plt.offset + 4 * (i - 1));
3854 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
3855 }
3856 else
3857 {
3858 bfd_vma got_offset;
3859 bfd_vma got_displacement;
3860 asection * sgot;
3861
3862 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3863 BFD_ASSERT (sgot != NULL);
3864
3865 /* Get the offset into the .got table of the entry that
3866 corresponds to this function. Each .got entry is 4 bytes.
3867 The first three are reserved. */
3868 got_offset = (plt_index + 3) * 4;
3869
3870 /* Calculate the displacement between the PLT slot and the
3871 entry in the GOT. */
3872 got_displacement = (sgot->output_section->vma
3873 + sgot->output_offset
3874 + got_offset
3875 - splt->output_section->vma
3876 - splt->output_offset
3877 - h->plt.offset
3878 - 8);
3879
3880 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
3881
3882 bfd_put_32 (output_bfd, elf32_arm_plt_entry[0] | ((got_displacement & 0x0ff00000) >> 20),
3883 splt->contents + h->plt.offset + 0);
3884 bfd_put_32 (output_bfd, elf32_arm_plt_entry[1] | ((got_displacement & 0x000ff000) >> 12),
3885 splt->contents + h->plt.offset + 4);
3886 bfd_put_32 (output_bfd, elf32_arm_plt_entry[2] | (got_displacement & 0x00000fff),
3887 splt->contents + h->plt.offset + 8);
3888 #ifdef FOUR_WORD_PLT
3889 bfd_put_32 (output_bfd, elf32_arm_plt_entry[3],
3890 splt->contents + h->plt.offset + 12);
3891 #endif
3892
3893 /* Fill in the entry in the global offset table. */
3894 bfd_put_32 (output_bfd,
3895 (splt->output_section->vma
3896 + splt->output_offset),
3897 sgot->contents + got_offset);
3898
3899 /* Fill in the entry in the .rel.plt section. */
3900 rel.r_offset = (sgot->output_section->vma
3901 + sgot->output_offset
3902 + got_offset);
3903 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
3904 }
3905
3906 loc = srel->contents + plt_index * sizeof (Elf32_External_Rel);
3907 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
3908
3909 if (!h->def_regular)
3910 {
3911 /* Mark the symbol as undefined, rather than as defined in
3912 the .plt section. Leave the value alone. */
3913 sym->st_shndx = SHN_UNDEF;
3914 /* If the symbol is weak, we do need to clear the value.
3915 Otherwise, the PLT entry would provide a definition for
3916 the symbol even if the symbol wasn't defined anywhere,
3917 and so the symbol would never be NULL. */
3918 if (!h->ref_regular_nonweak)
3919 sym->st_value = 0;
3920 }
3921 }
3922
3923 if (h->got.offset != (bfd_vma) -1)
3924 {
3925 asection * sgot;
3926 asection * srel;
3927 Elf_Internal_Rela rel;
3928 bfd_byte *loc;
3929
3930 /* This symbol has an entry in the global offset table. Set it
3931 up. */
3932 sgot = bfd_get_section_by_name (dynobj, ".got");
3933 srel = bfd_get_section_by_name (dynobj, ".rel.got");
3934 BFD_ASSERT (sgot != NULL && srel != NULL);
3935
3936 rel.r_offset = (sgot->output_section->vma
3937 + sgot->output_offset
3938 + (h->got.offset &~ (bfd_vma) 1));
3939
3940 /* If this is a static link, or it is a -Bsymbolic link and the
3941 symbol is defined locally or was forced to be local because
3942 of a version file, we just want to emit a RELATIVE reloc.
3943 The entry in the global offset table will already have been
3944 initialized in the relocate_section function. */
3945 if (info->shared
3946 && SYMBOL_REFERENCES_LOCAL (info, h))
3947 {
3948 BFD_ASSERT((h->got.offset & 1) != 0);
3949 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
3950 }
3951 else
3952 {
3953 BFD_ASSERT((h->got.offset & 1) == 0);
3954 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
3955 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
3956 }
3957
3958 loc = srel->contents + srel->reloc_count++ * sizeof (Elf32_External_Rel);
3959 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
3960 }
3961
3962 if (h->needs_copy)
3963 {
3964 asection * s;
3965 Elf_Internal_Rela rel;
3966 bfd_byte *loc;
3967
3968 /* This symbol needs a copy reloc. Set it up. */
3969 BFD_ASSERT (h->dynindx != -1
3970 && (h->root.type == bfd_link_hash_defined
3971 || h->root.type == bfd_link_hash_defweak));
3972
3973 s = bfd_get_section_by_name (h->root.u.def.section->owner,
3974 ".rel.bss");
3975 BFD_ASSERT (s != NULL);
3976
3977 rel.r_offset = (h->root.u.def.value
3978 + h->root.u.def.section->output_section->vma
3979 + h->root.u.def.section->output_offset);
3980 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
3981 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rel);
3982 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
3983 }
3984
3985 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3986 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
3987 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3988 sym->st_shndx = SHN_ABS;
3989
3990 return TRUE;
3991 }
3992
3993 /* Finish up the dynamic sections. */
3994
3995 static bfd_boolean
3996 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
3997 {
3998 bfd * dynobj;
3999 asection * sgot;
4000 asection * sdyn;
4001
4002 dynobj = elf_hash_table (info)->dynobj;
4003
4004 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
4005 BFD_ASSERT (elf32_arm_hash_table (info)->symbian_p || sgot != NULL);
4006 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4007
4008 if (elf_hash_table (info)->dynamic_sections_created)
4009 {
4010 asection *splt;
4011 Elf32_External_Dyn *dyncon, *dynconend;
4012 struct elf32_arm_link_hash_table *htab;
4013
4014 htab = elf32_arm_hash_table (info);
4015 splt = bfd_get_section_by_name (dynobj, ".plt");
4016 BFD_ASSERT (splt != NULL && sdyn != NULL);
4017
4018 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4019 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4020
4021 for (; dyncon < dynconend; dyncon++)
4022 {
4023 Elf_Internal_Dyn dyn;
4024 const char * name;
4025 asection * s;
4026
4027 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4028
4029 switch (dyn.d_tag)
4030 {
4031 unsigned int type;
4032
4033 default:
4034 break;
4035
4036 case DT_HASH:
4037 name = ".hash";
4038 goto get_vma_if_bpabi;
4039 case DT_STRTAB:
4040 name = ".dynstr";
4041 goto get_vma_if_bpabi;
4042 case DT_SYMTAB:
4043 name = ".dynsym";
4044 goto get_vma_if_bpabi;
4045
4046 case DT_PLTGOT:
4047 name = ".got";
4048 goto get_vma;
4049 case DT_JMPREL:
4050 name = ".rel.plt";
4051 get_vma:
4052 s = bfd_get_section_by_name (output_bfd, name);
4053 BFD_ASSERT (s != NULL);
4054 if (!htab->symbian_p)
4055 dyn.d_un.d_ptr = s->vma;
4056 else
4057 /* In the BPABI, tags in the PT_DYNAMIC section point
4058 at the file offset, not the memory address, for the
4059 convenience of the post linker. */
4060 dyn.d_un.d_ptr = s->filepos;
4061 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4062 break;
4063
4064 get_vma_if_bpabi:
4065 if (htab->symbian_p)
4066 goto get_vma;
4067 break;
4068
4069 case DT_PLTRELSZ:
4070 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
4071 BFD_ASSERT (s != NULL);
4072 dyn.d_un.d_val = s->size;
4073 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4074 break;
4075
4076 case DT_RELSZ:
4077 if (!htab->symbian_p)
4078 {
4079 /* My reading of the SVR4 ABI indicates that the
4080 procedure linkage table relocs (DT_JMPREL) should be
4081 included in the overall relocs (DT_REL). This is
4082 what Solaris does. However, UnixWare can not handle
4083 that case. Therefore, we override the DT_RELSZ entry
4084 here to make it not include the JMPREL relocs. Since
4085 the linker script arranges for .rel.plt to follow all
4086 other relocation sections, we don't have to worry
4087 about changing the DT_REL entry. */
4088 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
4089 if (s != NULL)
4090 dyn.d_un.d_val -= s->size;
4091 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4092 break;
4093 }
4094 /* Fall through */
4095
4096 case DT_REL:
4097 case DT_RELA:
4098 case DT_RELASZ:
4099 /* In the BPABI, the DT_REL tag must point at the file
4100 offset, not the VMA, of the first relocation
4101 section. So, we use code similar to that in
4102 elflink.c, but do not check for SHF_ALLOC on the
4103 relcoation section, since relocations sections are
4104 never allocated under the BPABI. The comments above
4105 about Unixware notwithstanding, we include all of the
4106 relocations here. */
4107 if (htab->symbian_p)
4108 {
4109 unsigned int i;
4110 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
4111 ? SHT_REL : SHT_RELA);
4112 dyn.d_un.d_val = 0;
4113 for (i = 1; i < elf_numsections (output_bfd); i++)
4114 {
4115 Elf_Internal_Shdr *hdr
4116 = elf_elfsections (output_bfd)[i];
4117 if (hdr->sh_type == type)
4118 {
4119 if (dyn.d_tag == DT_RELSZ
4120 || dyn.d_tag == DT_RELASZ)
4121 dyn.d_un.d_val += hdr->sh_size;
4122 else if (dyn.d_un.d_val == 0
4123 || hdr->sh_offset < dyn.d_un.d_val)
4124 dyn.d_un.d_val = hdr->sh_offset;
4125 }
4126 }
4127 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4128 }
4129 break;
4130
4131 /* Set the bottom bit of DT_INIT/FINI if the
4132 corresponding function is Thumb. */
4133 case DT_INIT:
4134 name = info->init_function;
4135 goto get_sym;
4136 case DT_FINI:
4137 name = info->fini_function;
4138 get_sym:
4139 /* If it wasn't set by elf_bfd_final_link
4140 then there is nothing to adjust. */
4141 if (dyn.d_un.d_val != 0)
4142 {
4143 struct elf_link_hash_entry * eh;
4144
4145 eh = elf_link_hash_lookup (elf_hash_table (info), name,
4146 FALSE, FALSE, TRUE);
4147 if (eh != (struct elf_link_hash_entry *) NULL
4148 && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
4149 {
4150 dyn.d_un.d_val |= 1;
4151 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4152 }
4153 }
4154 break;
4155 }
4156 }
4157
4158 /* Fill in the first entry in the procedure linkage table. */
4159 if (splt->size > 0 && elf32_arm_hash_table (info)->plt_header_size)
4160 {
4161 bfd_vma got_displacement;
4162
4163 /* Calculate the displacement between the PLT slot and &GOT[0]. */
4164 got_displacement = (sgot->output_section->vma
4165 + sgot->output_offset
4166 - splt->output_section->vma
4167 - splt->output_offset
4168 - 16);
4169
4170 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[0], splt->contents + 0);
4171 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[1], splt->contents + 4);
4172 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[2], splt->contents + 8);
4173 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[3], splt->contents + 12);
4174 #ifdef FOUR_WORD_PLT
4175 /* The displacement value goes in the otherwise-unused last word of
4176 the second entry. */
4177 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
4178 #else
4179 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
4180 #endif
4181 }
4182
4183 /* UnixWare sets the entsize of .plt to 4, although that doesn't
4184 really seem like the right value. */
4185 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
4186 }
4187
4188 /* Fill in the first three entries in the global offset table. */
4189 if (sgot)
4190 {
4191 if (sgot->size > 0)
4192 {
4193 if (sdyn == NULL)
4194 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
4195 else
4196 bfd_put_32 (output_bfd,
4197 sdyn->output_section->vma + sdyn->output_offset,
4198 sgot->contents);
4199 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
4200 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
4201 }
4202
4203 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
4204 }
4205
4206 return TRUE;
4207 }
4208
4209 static void
4210 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
4211 {
4212 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
4213 struct elf32_arm_link_hash_table *globals;
4214
4215 i_ehdrp = elf_elfheader (abfd);
4216
4217 i_ehdrp->e_ident[EI_OSABI] = ARM_ELF_OS_ABI_VERSION;
4218 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
4219
4220 if (link_info)
4221 {
4222 globals = elf32_arm_hash_table (link_info);
4223 if (globals->byteswap_code)
4224 i_ehdrp->e_flags |= EF_ARM_BE8;
4225 }
4226 }
4227
4228 static enum elf_reloc_type_class
4229 elf32_arm_reloc_type_class (const Elf_Internal_Rela *rela)
4230 {
4231 switch ((int) ELF32_R_TYPE (rela->r_info))
4232 {
4233 case R_ARM_RELATIVE:
4234 return reloc_class_relative;
4235 case R_ARM_JUMP_SLOT:
4236 return reloc_class_plt;
4237 case R_ARM_COPY:
4238 return reloc_class_copy;
4239 default:
4240 return reloc_class_normal;
4241 }
4242 }
4243
4244 /* Set the right machine number for an Arm ELF file. */
4245
4246 static bfd_boolean
4247 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
4248 {
4249 if (hdr->sh_type == SHT_NOTE)
4250 *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS;
4251
4252 return TRUE;
4253 }
4254
4255 static void
4256 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
4257 {
4258 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
4259 }
4260
4261 /* Return TRUE if this is an unwinding table entry. */
4262
4263 static bfd_boolean
4264 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
4265 {
4266 size_t len1, len2;
4267
4268 len1 = sizeof (ELF_STRING_ARM_unwind) - 1;
4269 len2 = sizeof (ELF_STRING_ARM_unwind_once) - 1;
4270 return (strncmp (name, ELF_STRING_ARM_unwind, len1) == 0
4271 || strncmp (name, ELF_STRING_ARM_unwind_once, len2) == 0);
4272 }
4273
4274
4275 /* Set the type and flags for an ARM section. We do this by
4276 the section name, which is a hack, but ought to work. */
4277
4278 static bfd_boolean
4279 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
4280 {
4281 const char * name;
4282
4283 name = bfd_get_section_name (abfd, sec);
4284
4285 if (is_arm_elf_unwind_section_name (abfd, name))
4286 {
4287 hdr->sh_type = SHT_ARM_EXIDX;
4288 hdr->sh_flags |= SHF_LINK_ORDER;
4289 }
4290 return TRUE;
4291 }
4292
4293 /* Handle an ARM specific section when reading an object file.
4294 This is called when elf.c finds a section with an unknown type. */
4295
4296 static bfd_boolean
4297 elf32_arm_section_from_shdr (bfd *abfd,
4298 Elf_Internal_Shdr * hdr,
4299 const char *name)
4300 {
4301 /* There ought to be a place to keep ELF backend specific flags, but
4302 at the moment there isn't one. We just keep track of the
4303 sections by their name, instead. Fortunately, the ABI gives
4304 names for all the ARM specific sections, so we will probably get
4305 away with this. */
4306 switch (hdr->sh_type)
4307 {
4308 case SHT_ARM_EXIDX:
4309 break;
4310
4311 default:
4312 return FALSE;
4313 }
4314
4315 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
4316 return FALSE;
4317
4318 return TRUE;
4319 }
4320
4321 /* Called for each symbol. Builds a section map based on mapping symbols.
4322 Does not alter any of the symbols. */
4323
4324 static bfd_boolean
4325 elf32_arm_output_symbol_hook (struct bfd_link_info *info,
4326 const char *name,
4327 Elf_Internal_Sym *elfsym,
4328 asection *input_sec,
4329 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
4330 {
4331 int mapcount;
4332 elf32_arm_section_map *map;
4333 struct elf32_arm_link_hash_table *globals;
4334
4335 /* Only do this on final link. */
4336 if (info->relocatable)
4337 return TRUE;
4338
4339 /* Only build a map if we need to byteswap code. */
4340 globals = elf32_arm_hash_table (info);
4341 if (!globals->byteswap_code)
4342 return TRUE;
4343
4344 /* We only want mapping symbols. */
4345 if (! is_arm_mapping_symbol_name (name))
4346 return TRUE;
4347
4348 mapcount = ++(elf32_arm_section_data (input_sec)->mapcount);
4349 map = elf32_arm_section_data (input_sec)->map;
4350 /* TODO: This may be inefficient, but we probably don't usually have many
4351 mapping symbols per section. */
4352 map = bfd_realloc (map, mapcount * sizeof (elf32_arm_section_map));
4353 elf32_arm_section_data (input_sec)->map = map;
4354
4355 map[mapcount - 1].vma = elfsym->st_value;
4356 map[mapcount - 1].type = name[1];
4357 return TRUE;
4358 }
4359
4360
4361 /* Allocate target specific section data. */
4362
4363 static bfd_boolean
4364 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
4365 {
4366 struct _arm_elf_section_data *sdata;
4367 bfd_size_type amt = sizeof (*sdata);
4368
4369 sdata = bfd_zalloc (abfd, amt);
4370 if (sdata == NULL)
4371 return FALSE;
4372 sec->used_by_bfd = sdata;
4373
4374 return _bfd_elf_new_section_hook (abfd, sec);
4375 }
4376
4377
4378 /* Used to order a list of mapping symbols by address. */
4379
4380 static int
4381 elf32_arm_compare_mapping (const void * a, const void * b)
4382 {
4383 return ((const elf32_arm_section_map *) a)->vma
4384 > ((const elf32_arm_section_map *) b)->vma;
4385 }
4386
4387
4388 /* Do code byteswapping. Return FALSE afterwards so that the section is
4389 written out as normal. */
4390
4391 static bfd_boolean
4392 elf32_arm_write_section (bfd *output_bfd ATTRIBUTE_UNUSED, asection *sec,
4393 bfd_byte *contents)
4394 {
4395 int mapcount;
4396 elf32_arm_section_map *map;
4397 bfd_vma ptr;
4398 bfd_vma end;
4399 bfd_vma offset;
4400 bfd_byte tmp;
4401 int i;
4402
4403 mapcount = elf32_arm_section_data (sec)->mapcount;
4404 map = elf32_arm_section_data (sec)->map;
4405
4406 if (mapcount == 0)
4407 return FALSE;
4408
4409 qsort (map, mapcount, sizeof (elf32_arm_section_map),
4410 elf32_arm_compare_mapping);
4411
4412 offset = sec->output_section->vma + sec->output_offset;
4413 ptr = map[0].vma - offset;
4414 for (i = 0; i < mapcount; i++)
4415 {
4416 if (i == mapcount - 1)
4417 end = sec->size;
4418 else
4419 end = map[i + 1].vma - offset;
4420
4421 switch (map[i].type)
4422 {
4423 case 'a':
4424 /* Byte swap code words. */
4425 while (ptr + 3 < end)
4426 {
4427 tmp = contents[ptr];
4428 contents[ptr] = contents[ptr + 3];
4429 contents[ptr + 3] = tmp;
4430 tmp = contents[ptr + 1];
4431 contents[ptr + 1] = contents[ptr + 2];
4432 contents[ptr + 2] = tmp;
4433 ptr += 4;
4434 }
4435 break;
4436
4437 case 't':
4438 /* Byte swap code halfwords. */
4439 while (ptr + 1 < end)
4440 {
4441 tmp = contents[ptr];
4442 contents[ptr] = contents[ptr + 1];
4443 contents[ptr + 1] = tmp;
4444 ptr += 2;
4445 }
4446 break;
4447
4448 case 'd':
4449 /* Leave data alone. */
4450 break;
4451 }
4452 ptr = end;
4453 }
4454 free (map);
4455 return FALSE;
4456 }
4457
4458 #define ELF_ARCH bfd_arch_arm
4459 #define ELF_MACHINE_CODE EM_ARM
4460 #ifdef __QNXTARGET__
4461 #define ELF_MAXPAGESIZE 0x1000
4462 #else
4463 #define ELF_MAXPAGESIZE 0x8000
4464 #endif
4465
4466 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
4467 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
4468 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
4469 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
4470 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
4471 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
4472 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
4473 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
4474 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
4475
4476 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
4477 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
4478 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
4479 #define elf_backend_check_relocs elf32_arm_check_relocs
4480 #define elf_backend_relocate_section elf32_arm_relocate_section
4481 #define elf_backend_write_section elf32_arm_write_section
4482 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
4483 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
4484 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
4485 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
4486 #define elf_backend_link_output_symbol_hook elf32_arm_output_symbol_hook
4487 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
4488 #define elf_backend_post_process_headers elf32_arm_post_process_headers
4489 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
4490 #define elf_backend_object_p elf32_arm_object_p
4491 #define elf_backend_section_flags elf32_arm_section_flags
4492 #define elf_backend_fake_sections elf32_arm_fake_sections
4493 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
4494 #define elf_backend_final_write_processing elf32_arm_final_write_processing
4495 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
4496
4497 #define elf_backend_can_refcount 1
4498 #define elf_backend_can_gc_sections 1
4499 #define elf_backend_plt_readonly 1
4500 #define elf_backend_want_got_plt 1
4501 #define elf_backend_want_plt_sym 0
4502 #if !USE_REL
4503 #define elf_backend_rela_normal 1
4504 #endif
4505
4506 #define elf_backend_got_header_size 12
4507
4508 #include "elf32-target.h"
This page took 0.198669 seconds and 5 git commands to generate.