Fix numerous occurrences of
[deliverable/binutils-gdb.git] / bfd / elf32-arm.h
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 typedef unsigned long int insn32;
21 typedef unsigned short int insn16;
22
23 static boolean elf32_arm_set_private_flags
24 PARAMS ((bfd *, flagword));
25 static boolean elf32_arm_copy_private_bfd_data
26 PARAMS ((bfd *, bfd *));
27 static boolean elf32_arm_merge_private_bfd_data
28 PARAMS ((bfd *, bfd *));
29 static boolean elf32_arm_print_private_bfd_data
30 PARAMS ((bfd *, PTR));
31 static int elf32_arm_get_symbol_type
32 PARAMS (( Elf_Internal_Sym *, int));
33 static struct bfd_link_hash_table *elf32_arm_link_hash_table_create
34 PARAMS ((bfd *));
35 static bfd_reloc_status_type elf32_arm_final_link_relocate
36 PARAMS ((reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
37 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
38 const char *, int, struct elf_link_hash_entry *));
39 static insn32 insert_thumb_branch
40 PARAMS ((insn32, int));
41 static struct elf_link_hash_entry *find_thumb_glue
42 PARAMS ((struct bfd_link_info *, const char *, bfd *));
43 static struct elf_link_hash_entry *find_arm_glue
44 PARAMS ((struct bfd_link_info *, const char *, bfd *));
45 static void elf32_arm_post_process_headers
46 PARAMS ((bfd *, struct bfd_link_info *));
47 static int elf32_arm_to_thumb_stub
48 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
49 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
50 static int elf32_thumb_to_arm_stub
51 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
52 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
53 static boolean elf32_arm_relocate_section
54 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
55 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
56 static asection * elf32_arm_gc_mark_hook
57 PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
58 struct elf_link_hash_entry *, Elf_Internal_Sym *));
59 static boolean elf32_arm_gc_sweep_hook
60 PARAMS ((bfd *, struct bfd_link_info *, asection *,
61 const Elf_Internal_Rela *));
62 static boolean elf32_arm_check_relocs
63 PARAMS ((bfd *, struct bfd_link_info *, asection *,
64 const Elf_Internal_Rela *));
65 static boolean elf32_arm_find_nearest_line
66 PARAMS ((bfd *, asection *, asymbol **, bfd_vma, const char **,
67 const char **, unsigned int *));
68 static boolean elf32_arm_adjust_dynamic_symbol
69 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
70 static boolean elf32_arm_size_dynamic_sections
71 PARAMS ((bfd *, struct bfd_link_info *));
72 static boolean elf32_arm_finish_dynamic_symbol
73 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
74 Elf_Internal_Sym *));
75 static boolean elf32_arm_finish_dynamic_sections
76 PARAMS ((bfd *, struct bfd_link_info *));
77 static struct bfd_hash_entry * elf32_arm_link_hash_newfunc
78 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
79 #ifdef USE_REL
80 static void arm_add_to_rel
81 PARAMS ((bfd *, bfd_byte *, reloc_howto_type *, bfd_signed_vma));
82 #endif
83 static enum elf_reloc_type_class elf32_arm_reloc_type_class
84 PARAMS ((const Elf_Internal_Rela *));
85
86 #ifndef ELFARM_NABI_C_INCLUDED
87 static void record_arm_to_thumb_glue
88 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
89 static void record_thumb_to_arm_glue
90 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
91 boolean bfd_elf32_arm_allocate_interworking_sections
92 PARAMS ((struct bfd_link_info *));
93 boolean bfd_elf32_arm_get_bfd_for_interworking
94 PARAMS ((bfd *, struct bfd_link_info *));
95 boolean bfd_elf32_arm_process_before_allocation
96 PARAMS ((bfd *, struct bfd_link_info *, int));
97 #endif
98
99
100 #define INTERWORK_FLAG(abfd) (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK)
101
102 /* The linker script knows the section names for placement.
103 The entry_names are used to do simple name mangling on the stubs.
104 Given a function name, and its type, the stub can be found. The
105 name can be changed. The only requirement is the %s be present. */
106 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
107 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
108
109 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
110 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
111
112 /* The name of the dynamic interpreter. This is put in the .interp
113 section. */
114 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
115
116 /* The size in bytes of an entry in the procedure linkage table. */
117 #define PLT_ENTRY_SIZE 16
118
119 /* The first entry in a procedure linkage table looks like
120 this. It is set up so that any shared library function that is
121 called before the relocation has been set up calls the dynamic
122 linker first. */
123 static const bfd_vma elf32_arm_plt0_entry [PLT_ENTRY_SIZE / 4] =
124 {
125 0xe52de004, /* str lr, [sp, #-4]! */
126 0xe59fe010, /* ldr lr, [pc, #16] */
127 0xe08fe00e, /* add lr, pc, lr */
128 0xe5bef008 /* ldr pc, [lr, #8]! */
129 };
130
131 /* Subsequent entries in a procedure linkage table look like
132 this. */
133 static const bfd_vma elf32_arm_plt_entry [PLT_ENTRY_SIZE / 4] =
134 {
135 0xe59fc004, /* ldr ip, [pc, #4] */
136 0xe08fc00c, /* add ip, pc, ip */
137 0xe59cf000, /* ldr pc, [ip] */
138 0x00000000 /* offset to symbol in got */
139 };
140
141 /* The ARM linker needs to keep track of the number of relocs that it
142 decides to copy in check_relocs for each symbol. This is so that
143 it can discard PC relative relocs if it doesn't need them when
144 linking with -Bsymbolic. We store the information in a field
145 extending the regular ELF linker hash table. */
146
147 /* This structure keeps track of the number of PC relative relocs we
148 have copied for a given symbol. */
149 struct elf32_arm_pcrel_relocs_copied
150 {
151 /* Next section. */
152 struct elf32_arm_pcrel_relocs_copied * next;
153 /* A section in dynobj. */
154 asection * section;
155 /* Number of relocs copied in this section. */
156 bfd_size_type count;
157 };
158
159 /* Arm ELF linker hash entry. */
160 struct elf32_arm_link_hash_entry
161 {
162 struct elf_link_hash_entry root;
163
164 /* Number of PC relative relocs copied for this symbol. */
165 struct elf32_arm_pcrel_relocs_copied * pcrel_relocs_copied;
166 };
167
168 /* Declare this now that the above structures are defined. */
169 static boolean elf32_arm_discard_copies
170 PARAMS ((struct elf32_arm_link_hash_entry *, PTR));
171
172 /* Traverse an arm ELF linker hash table. */
173 #define elf32_arm_link_hash_traverse(table, func, info) \
174 (elf_link_hash_traverse \
175 (&(table)->root, \
176 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
177 (info)))
178
179 /* Get the ARM elf linker hash table from a link_info structure. */
180 #define elf32_arm_hash_table(info) \
181 ((struct elf32_arm_link_hash_table *) ((info)->hash))
182
183 /* ARM ELF linker hash table. */
184 struct elf32_arm_link_hash_table
185 {
186 /* The main hash table. */
187 struct elf_link_hash_table root;
188
189 /* The size in bytes of the section containg the Thumb-to-ARM glue. */
190 bfd_size_type thumb_glue_size;
191
192 /* The size in bytes of the section containg the ARM-to-Thumb glue. */
193 bfd_size_type arm_glue_size;
194
195 /* An arbitary input BFD chosen to hold the glue sections. */
196 bfd * bfd_of_glue_owner;
197
198 /* A boolean indicating whether knowledge of the ARM's pipeline
199 length should be applied by the linker. */
200 int no_pipeline_knowledge;
201 };
202
203 /* Create an entry in an ARM ELF linker hash table. */
204
205 static struct bfd_hash_entry *
206 elf32_arm_link_hash_newfunc (entry, table, string)
207 struct bfd_hash_entry * entry;
208 struct bfd_hash_table * table;
209 const char * string;
210 {
211 struct elf32_arm_link_hash_entry * ret =
212 (struct elf32_arm_link_hash_entry *) entry;
213
214 /* Allocate the structure if it has not already been allocated by a
215 subclass. */
216 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
217 ret = ((struct elf32_arm_link_hash_entry *)
218 bfd_hash_allocate (table,
219 sizeof (struct elf32_arm_link_hash_entry)));
220 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
221 return (struct bfd_hash_entry *) ret;
222
223 /* Call the allocation method of the superclass. */
224 ret = ((struct elf32_arm_link_hash_entry *)
225 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
226 table, string));
227 if (ret != (struct elf32_arm_link_hash_entry *) NULL)
228 ret->pcrel_relocs_copied = NULL;
229
230 return (struct bfd_hash_entry *) ret;
231 }
232
233 /* Create an ARM elf linker hash table. */
234
235 static struct bfd_link_hash_table *
236 elf32_arm_link_hash_table_create (abfd)
237 bfd *abfd;
238 {
239 struct elf32_arm_link_hash_table *ret;
240 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
241
242 ret = (struct elf32_arm_link_hash_table *) bfd_malloc (amt);
243 if (ret == (struct elf32_arm_link_hash_table *) NULL)
244 return NULL;
245
246 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
247 elf32_arm_link_hash_newfunc))
248 {
249 free (ret);
250 return NULL;
251 }
252
253 ret->thumb_glue_size = 0;
254 ret->arm_glue_size = 0;
255 ret->bfd_of_glue_owner = NULL;
256 ret->no_pipeline_knowledge = 0;
257
258 return &ret->root.root;
259 }
260
261 /* Locate the Thumb encoded calling stub for NAME. */
262
263 static struct elf_link_hash_entry *
264 find_thumb_glue (link_info, name, input_bfd)
265 struct bfd_link_info *link_info;
266 const char *name;
267 bfd *input_bfd;
268 {
269 char *tmp_name;
270 struct elf_link_hash_entry *hash;
271 struct elf32_arm_link_hash_table *hash_table;
272
273 /* We need a pointer to the armelf specific hash table. */
274 hash_table = elf32_arm_hash_table (link_info);
275
276 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
277 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
278
279 BFD_ASSERT (tmp_name);
280
281 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
282
283 hash = elf_link_hash_lookup
284 (&(hash_table)->root, tmp_name, false, false, true);
285
286 if (hash == NULL)
287 /* xgettext:c-format */
288 (*_bfd_error_handler) (_("%s: unable to find THUMB glue '%s' for `%s'"),
289 bfd_archive_filename (input_bfd), tmp_name, name);
290
291 free (tmp_name);
292
293 return hash;
294 }
295
296 /* Locate the ARM encoded calling stub for NAME. */
297
298 static struct elf_link_hash_entry *
299 find_arm_glue (link_info, name, input_bfd)
300 struct bfd_link_info *link_info;
301 const char *name;
302 bfd *input_bfd;
303 {
304 char *tmp_name;
305 struct elf_link_hash_entry *myh;
306 struct elf32_arm_link_hash_table *hash_table;
307
308 /* We need a pointer to the elfarm specific hash table. */
309 hash_table = elf32_arm_hash_table (link_info);
310
311 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
312 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
313
314 BFD_ASSERT (tmp_name);
315
316 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
317
318 myh = elf_link_hash_lookup
319 (&(hash_table)->root, tmp_name, false, false, true);
320
321 if (myh == NULL)
322 /* xgettext:c-format */
323 (*_bfd_error_handler) (_("%s: unable to find ARM glue '%s' for `%s'"),
324 bfd_archive_filename (input_bfd), tmp_name, name);
325
326 free (tmp_name);
327
328 return myh;
329 }
330
331 /* ARM->Thumb glue:
332
333 .arm
334 __func_from_arm:
335 ldr r12, __func_addr
336 bx r12
337 __func_addr:
338 .word func @ behave as if you saw a ARM_32 reloc. */
339
340 #define ARM2THUMB_GLUE_SIZE 12
341 static const insn32 a2t1_ldr_insn = 0xe59fc000;
342 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
343 static const insn32 a2t3_func_addr_insn = 0x00000001;
344
345 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
346
347 .thumb .thumb
348 .align 2 .align 2
349 __func_from_thumb: __func_from_thumb:
350 bx pc push {r6, lr}
351 nop ldr r6, __func_addr
352 .arm mov lr, pc
353 __func_change_to_arm: bx r6
354 b func .arm
355 __func_back_to_thumb:
356 ldmia r13! {r6, lr}
357 bx lr
358 __func_addr:
359 .word func */
360
361 #define THUMB2ARM_GLUE_SIZE 8
362 static const insn16 t2a1_bx_pc_insn = 0x4778;
363 static const insn16 t2a2_noop_insn = 0x46c0;
364 static const insn32 t2a3_b_insn = 0xea000000;
365
366 static const insn16 t2a1_push_insn = 0xb540;
367 static const insn16 t2a2_ldr_insn = 0x4e03;
368 static const insn16 t2a3_mov_insn = 0x46fe;
369 static const insn16 t2a4_bx_insn = 0x4730;
370 static const insn32 t2a5_pop_insn = 0xe8bd4040;
371 static const insn32 t2a6_bx_insn = 0xe12fff1e;
372
373 #ifndef ELFARM_NABI_C_INCLUDED
374 boolean
375 bfd_elf32_arm_allocate_interworking_sections (info)
376 struct bfd_link_info * info;
377 {
378 asection * s;
379 bfd_byte * foo;
380 struct elf32_arm_link_hash_table * globals;
381
382 globals = elf32_arm_hash_table (info);
383
384 BFD_ASSERT (globals != NULL);
385
386 if (globals->arm_glue_size != 0)
387 {
388 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
389
390 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
391 ARM2THUMB_GLUE_SECTION_NAME);
392
393 BFD_ASSERT (s != NULL);
394
395 foo = (bfd_byte *) bfd_alloc (globals->bfd_of_glue_owner,
396 globals->arm_glue_size);
397
398 s->_raw_size = s->_cooked_size = globals->arm_glue_size;
399 s->contents = foo;
400 }
401
402 if (globals->thumb_glue_size != 0)
403 {
404 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
405
406 s = bfd_get_section_by_name
407 (globals->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
408
409 BFD_ASSERT (s != NULL);
410
411 foo = (bfd_byte *) bfd_alloc (globals->bfd_of_glue_owner,
412 globals->thumb_glue_size);
413
414 s->_raw_size = s->_cooked_size = globals->thumb_glue_size;
415 s->contents = foo;
416 }
417
418 return true;
419 }
420
421 static void
422 record_arm_to_thumb_glue (link_info, h)
423 struct bfd_link_info * link_info;
424 struct elf_link_hash_entry * h;
425 {
426 const char * name = h->root.root.string;
427 asection * s;
428 char * tmp_name;
429 struct elf_link_hash_entry * myh;
430 struct bfd_link_hash_entry * bh;
431 struct elf32_arm_link_hash_table * globals;
432 bfd_vma val;
433
434 globals = elf32_arm_hash_table (link_info);
435
436 BFD_ASSERT (globals != NULL);
437 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
438
439 s = bfd_get_section_by_name
440 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
441
442 BFD_ASSERT (s != NULL);
443
444 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
445 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
446
447 BFD_ASSERT (tmp_name);
448
449 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
450
451 myh = elf_link_hash_lookup
452 (&(globals)->root, tmp_name, false, false, true);
453
454 if (myh != NULL)
455 {
456 /* We've already seen this guy. */
457 free (tmp_name);
458 return;
459 }
460
461 /* The only trick here is using hash_table->arm_glue_size as the value. Even
462 though the section isn't allocated yet, this is where we will be putting
463 it. */
464 bh = NULL;
465 val = globals->arm_glue_size + 1;
466 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
467 tmp_name, BSF_GLOBAL, s, val,
468 NULL, true, false, &bh);
469
470 free (tmp_name);
471
472 globals->arm_glue_size += ARM2THUMB_GLUE_SIZE;
473
474 return;
475 }
476
477 static void
478 record_thumb_to_arm_glue (link_info, h)
479 struct bfd_link_info *link_info;
480 struct elf_link_hash_entry *h;
481 {
482 const char *name = h->root.root.string;
483 asection *s;
484 char *tmp_name;
485 struct elf_link_hash_entry *myh;
486 struct bfd_link_hash_entry *bh;
487 struct elf32_arm_link_hash_table *hash_table;
488 char bind;
489 bfd_vma val;
490
491 hash_table = elf32_arm_hash_table (link_info);
492
493 BFD_ASSERT (hash_table != NULL);
494 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
495
496 s = bfd_get_section_by_name
497 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
498
499 BFD_ASSERT (s != NULL);
500
501 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
502 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
503
504 BFD_ASSERT (tmp_name);
505
506 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
507
508 myh = elf_link_hash_lookup
509 (&(hash_table)->root, tmp_name, false, false, true);
510
511 if (myh != NULL)
512 {
513 /* We've already seen this guy. */
514 free (tmp_name);
515 return;
516 }
517
518 bh = NULL;
519 val = hash_table->thumb_glue_size + 1;
520 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
521 tmp_name, BSF_GLOBAL, s, val,
522 NULL, true, false, &bh);
523
524 /* If we mark it 'Thumb', the disassembler will do a better job. */
525 myh = (struct elf_link_hash_entry *) bh;
526 bind = ELF_ST_BIND (myh->type);
527 myh->type = ELF_ST_INFO (bind, STT_ARM_TFUNC);
528
529 free (tmp_name);
530
531 #define CHANGE_TO_ARM "__%s_change_to_arm"
532 #define BACK_FROM_ARM "__%s_back_from_arm"
533
534 /* Allocate another symbol to mark where we switch to Arm mode. */
535 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
536 + strlen (CHANGE_TO_ARM) + 1);
537
538 BFD_ASSERT (tmp_name);
539
540 sprintf (tmp_name, CHANGE_TO_ARM, name);
541
542 bh = NULL;
543 val = hash_table->thumb_glue_size + 4,
544 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
545 tmp_name, BSF_LOCAL, s, val,
546 NULL, true, false, &bh);
547
548 free (tmp_name);
549
550 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
551
552 return;
553 }
554
555 /* Add the glue sections to ABFD. This function is called from the
556 linker scripts in ld/emultempl/{armelf}.em. */
557
558 boolean
559 bfd_elf32_arm_add_glue_sections_to_bfd (abfd, info)
560 bfd *abfd;
561 struct bfd_link_info *info;
562 {
563 flagword flags;
564 asection *sec;
565
566 /* If we are only performing a partial
567 link do not bother adding the glue. */
568 if (info->relocateable)
569 return true;
570
571 sec = bfd_get_section_by_name (abfd, ARM2THUMB_GLUE_SECTION_NAME);
572
573 if (sec == NULL)
574 {
575 /* Note: we do not include the flag SEC_LINKER_CREATED, as this
576 will prevent elf_link_input_bfd() from processing the contents
577 of this section. */
578 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
579
580 sec = bfd_make_section (abfd, ARM2THUMB_GLUE_SECTION_NAME);
581
582 if (sec == NULL
583 || !bfd_set_section_flags (abfd, sec, flags)
584 || !bfd_set_section_alignment (abfd, sec, 2))
585 return false;
586
587 /* Set the gc mark to prevent the section from being removed by garbage
588 collection, despite the fact that no relocs refer to this section. */
589 sec->gc_mark = 1;
590 }
591
592 sec = bfd_get_section_by_name (abfd, THUMB2ARM_GLUE_SECTION_NAME);
593
594 if (sec == NULL)
595 {
596 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
597
598 sec = bfd_make_section (abfd, THUMB2ARM_GLUE_SECTION_NAME);
599
600 if (sec == NULL
601 || !bfd_set_section_flags (abfd, sec, flags)
602 || !bfd_set_section_alignment (abfd, sec, 2))
603 return false;
604
605 sec->gc_mark = 1;
606 }
607
608 return true;
609 }
610
611 /* Select a BFD to be used to hold the sections used by the glue code.
612 This function is called from the linker scripts in ld/emultempl/
613 {armelf/pe}.em */
614
615 boolean
616 bfd_elf32_arm_get_bfd_for_interworking (abfd, info)
617 bfd *abfd;
618 struct bfd_link_info *info;
619 {
620 struct elf32_arm_link_hash_table *globals;
621
622 /* If we are only performing a partial link
623 do not bother getting a bfd to hold the glue. */
624 if (info->relocateable)
625 return true;
626
627 globals = elf32_arm_hash_table (info);
628
629 BFD_ASSERT (globals != NULL);
630
631 if (globals->bfd_of_glue_owner != NULL)
632 return true;
633
634 /* Save the bfd for later use. */
635 globals->bfd_of_glue_owner = abfd;
636
637 return true;
638 }
639
640 boolean
641 bfd_elf32_arm_process_before_allocation (abfd, link_info, no_pipeline_knowledge)
642 bfd *abfd;
643 struct bfd_link_info *link_info;
644 int no_pipeline_knowledge;
645 {
646 Elf_Internal_Shdr *symtab_hdr;
647 Elf_Internal_Rela *internal_relocs = NULL;
648 Elf_Internal_Rela *irel, *irelend;
649 bfd_byte *contents = NULL;
650
651 asection *sec;
652 struct elf32_arm_link_hash_table *globals;
653
654 /* If we are only performing a partial link do not bother
655 to construct any glue. */
656 if (link_info->relocateable)
657 return true;
658
659 /* Here we have a bfd that is to be included on the link. We have a hook
660 to do reloc rummaging, before section sizes are nailed down. */
661 globals = elf32_arm_hash_table (link_info);
662
663 BFD_ASSERT (globals != NULL);
664 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
665
666 globals->no_pipeline_knowledge = no_pipeline_knowledge;
667
668 /* Rummage around all the relocs and map the glue vectors. */
669 sec = abfd->sections;
670
671 if (sec == NULL)
672 return true;
673
674 for (; sec != NULL; sec = sec->next)
675 {
676 if (sec->reloc_count == 0)
677 continue;
678
679 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
680
681 /* Load the relocs. */
682 internal_relocs
683 = _bfd_elf32_link_read_relocs (abfd, sec, (PTR) NULL,
684 (Elf_Internal_Rela *) NULL, false);
685
686 if (internal_relocs == NULL)
687 goto error_return;
688
689 irelend = internal_relocs + sec->reloc_count;
690 for (irel = internal_relocs; irel < irelend; irel++)
691 {
692 long r_type;
693 unsigned long r_index;
694
695 struct elf_link_hash_entry *h;
696
697 r_type = ELF32_R_TYPE (irel->r_info);
698 r_index = ELF32_R_SYM (irel->r_info);
699
700 /* These are the only relocation types we care about. */
701 if ( r_type != R_ARM_PC24
702 && r_type != R_ARM_THM_PC22)
703 continue;
704
705 /* Get the section contents if we haven't done so already. */
706 if (contents == NULL)
707 {
708 /* Get cached copy if it exists. */
709 if (elf_section_data (sec)->this_hdr.contents != NULL)
710 contents = elf_section_data (sec)->this_hdr.contents;
711 else
712 {
713 /* Go get them off disk. */
714 contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
715 if (contents == NULL)
716 goto error_return;
717
718 if (!bfd_get_section_contents (abfd, sec, contents,
719 (file_ptr) 0, sec->_raw_size))
720 goto error_return;
721 }
722 }
723
724 /* If the relocation is not against a symbol it cannot concern us. */
725 h = NULL;
726
727 /* We don't care about local symbols. */
728 if (r_index < symtab_hdr->sh_info)
729 continue;
730
731 /* This is an external symbol. */
732 r_index -= symtab_hdr->sh_info;
733 h = (struct elf_link_hash_entry *)
734 elf_sym_hashes (abfd)[r_index];
735
736 /* If the relocation is against a static symbol it must be within
737 the current section and so cannot be a cross ARM/Thumb relocation. */
738 if (h == NULL)
739 continue;
740
741 switch (r_type)
742 {
743 case R_ARM_PC24:
744 /* This one is a call from arm code. We need to look up
745 the target of the call. If it is a thumb target, we
746 insert glue. */
747 if (ELF_ST_TYPE(h->type) == STT_ARM_TFUNC)
748 record_arm_to_thumb_glue (link_info, h);
749 break;
750
751 case R_ARM_THM_PC22:
752 /* This one is a call from thumb code. We look
753 up the target of the call. If it is not a thumb
754 target, we insert glue. */
755 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC)
756 record_thumb_to_arm_glue (link_info, h);
757 break;
758
759 default:
760 break;
761 }
762 }
763
764 if (contents != NULL
765 && elf_section_data (sec)->this_hdr.contents != contents)
766 free (contents);
767 contents = NULL;
768
769 if (internal_relocs != NULL
770 && elf_section_data (sec)->relocs != internal_relocs)
771 free (internal_relocs);
772 internal_relocs = NULL;
773 }
774
775 return true;
776
777 error_return:
778 if (contents != NULL
779 && elf_section_data (sec)->this_hdr.contents != contents)
780 free (contents);
781 if (internal_relocs != NULL
782 && elf_section_data (sec)->relocs != internal_relocs)
783 free (internal_relocs);
784
785 return false;
786 }
787 #endif
788
789 /* The thumb form of a long branch is a bit finicky, because the offset
790 encoding is split over two fields, each in it's own instruction. They
791 can occur in any order. So given a thumb form of long branch, and an
792 offset, insert the offset into the thumb branch and return finished
793 instruction.
794
795 It takes two thumb instructions to encode the target address. Each has
796 11 bits to invest. The upper 11 bits are stored in one (identifed by
797 H-0.. see below), the lower 11 bits are stored in the other (identified
798 by H-1).
799
800 Combine together and shifted left by 1 (it's a half word address) and
801 there you have it.
802
803 Op: 1111 = F,
804 H-0, upper address-0 = 000
805 Op: 1111 = F,
806 H-1, lower address-0 = 800
807
808 They can be ordered either way, but the arm tools I've seen always put
809 the lower one first. It probably doesn't matter. krk@cygnus.com
810
811 XXX: Actually the order does matter. The second instruction (H-1)
812 moves the computed address into the PC, so it must be the second one
813 in the sequence. The problem, however is that whilst little endian code
814 stores the instructions in HI then LOW order, big endian code does the
815 reverse. nickc@cygnus.com. */
816
817 #define LOW_HI_ORDER 0xF800F000
818 #define HI_LOW_ORDER 0xF000F800
819
820 static insn32
821 insert_thumb_branch (br_insn, rel_off)
822 insn32 br_insn;
823 int rel_off;
824 {
825 unsigned int low_bits;
826 unsigned int high_bits;
827
828 BFD_ASSERT ((rel_off & 1) != 1);
829
830 rel_off >>= 1; /* Half word aligned address. */
831 low_bits = rel_off & 0x000007FF; /* The bottom 11 bits. */
832 high_bits = (rel_off >> 11) & 0x000007FF; /* The top 11 bits. */
833
834 if ((br_insn & LOW_HI_ORDER) == LOW_HI_ORDER)
835 br_insn = LOW_HI_ORDER | (low_bits << 16) | high_bits;
836 else if ((br_insn & HI_LOW_ORDER) == HI_LOW_ORDER)
837 br_insn = HI_LOW_ORDER | (high_bits << 16) | low_bits;
838 else
839 /* FIXME: abort is probably not the right call. krk@cygnus.com */
840 abort (); /* error - not a valid branch instruction form. */
841
842 return br_insn;
843 }
844
845 /* Thumb code calling an ARM function. */
846
847 static int
848 elf32_thumb_to_arm_stub (info, name, input_bfd, output_bfd, input_section,
849 hit_data, sym_sec, offset, addend, val)
850 struct bfd_link_info * info;
851 const char * name;
852 bfd * input_bfd;
853 bfd * output_bfd;
854 asection * input_section;
855 bfd_byte * hit_data;
856 asection * sym_sec;
857 bfd_vma offset;
858 bfd_signed_vma addend;
859 bfd_vma val;
860 {
861 asection * s = 0;
862 bfd_vma my_offset;
863 unsigned long int tmp;
864 long int ret_offset;
865 struct elf_link_hash_entry * myh;
866 struct elf32_arm_link_hash_table * globals;
867
868 myh = find_thumb_glue (info, name, input_bfd);
869 if (myh == NULL)
870 return false;
871
872 globals = elf32_arm_hash_table (info);
873
874 BFD_ASSERT (globals != NULL);
875 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
876
877 my_offset = myh->root.u.def.value;
878
879 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
880 THUMB2ARM_GLUE_SECTION_NAME);
881
882 BFD_ASSERT (s != NULL);
883 BFD_ASSERT (s->contents != NULL);
884 BFD_ASSERT (s->output_section != NULL);
885
886 if ((my_offset & 0x01) == 0x01)
887 {
888 if (sym_sec != NULL
889 && sym_sec->owner != NULL
890 && !INTERWORK_FLAG (sym_sec->owner))
891 {
892 (*_bfd_error_handler)
893 (_("%s(%s): warning: interworking not enabled."),
894 bfd_archive_filename (sym_sec->owner), name);
895 (*_bfd_error_handler)
896 (_(" first occurrence: %s: thumb call to arm"),
897 bfd_archive_filename (input_bfd));
898
899 return false;
900 }
901
902 --my_offset;
903 myh->root.u.def.value = my_offset;
904
905 bfd_put_16 (output_bfd, (bfd_vma) t2a1_bx_pc_insn,
906 s->contents + my_offset);
907
908 bfd_put_16 (output_bfd, (bfd_vma) t2a2_noop_insn,
909 s->contents + my_offset + 2);
910
911 ret_offset =
912 /* Address of destination of the stub. */
913 ((bfd_signed_vma) val)
914 - ((bfd_signed_vma)
915 /* Offset from the start of the current section to the start of the stubs. */
916 (s->output_offset
917 /* Offset of the start of this stub from the start of the stubs. */
918 + my_offset
919 /* Address of the start of the current section. */
920 + s->output_section->vma)
921 /* The branch instruction is 4 bytes into the stub. */
922 + 4
923 /* ARM branches work from the pc of the instruction + 8. */
924 + 8);
925
926 bfd_put_32 (output_bfd,
927 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
928 s->contents + my_offset + 4);
929 }
930
931 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
932
933 /* Now go back and fix up the original BL insn to point
934 to here. */
935 ret_offset = (s->output_offset
936 + my_offset
937 - (input_section->output_offset
938 + offset + addend)
939 - 8);
940
941 tmp = bfd_get_32 (input_bfd, hit_data
942 - input_section->vma);
943
944 bfd_put_32 (output_bfd,
945 (bfd_vma) insert_thumb_branch (tmp, ret_offset),
946 hit_data - input_section->vma);
947
948 return true;
949 }
950
951 /* Arm code calling a Thumb function. */
952
953 static int
954 elf32_arm_to_thumb_stub (info, name, input_bfd, output_bfd, input_section,
955 hit_data, sym_sec, offset, addend, val)
956 struct bfd_link_info * info;
957 const char * name;
958 bfd * input_bfd;
959 bfd * output_bfd;
960 asection * input_section;
961 bfd_byte * hit_data;
962 asection * sym_sec;
963 bfd_vma offset;
964 bfd_signed_vma addend;
965 bfd_vma val;
966 {
967 unsigned long int tmp;
968 bfd_vma my_offset;
969 asection * s;
970 long int ret_offset;
971 struct elf_link_hash_entry * myh;
972 struct elf32_arm_link_hash_table * globals;
973
974 myh = find_arm_glue (info, name, input_bfd);
975 if (myh == NULL)
976 return false;
977
978 globals = elf32_arm_hash_table (info);
979
980 BFD_ASSERT (globals != NULL);
981 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
982
983 my_offset = myh->root.u.def.value;
984 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
985 ARM2THUMB_GLUE_SECTION_NAME);
986 BFD_ASSERT (s != NULL);
987 BFD_ASSERT (s->contents != NULL);
988 BFD_ASSERT (s->output_section != NULL);
989
990 if ((my_offset & 0x01) == 0x01)
991 {
992 if (sym_sec != NULL
993 && sym_sec->owner != NULL
994 && !INTERWORK_FLAG (sym_sec->owner))
995 {
996 (*_bfd_error_handler)
997 (_("%s(%s): warning: interworking not enabled."),
998 bfd_archive_filename (sym_sec->owner), name);
999 (*_bfd_error_handler)
1000 (_(" first occurrence: %s: arm call to thumb"),
1001 bfd_archive_filename (input_bfd));
1002 }
1003
1004 --my_offset;
1005 myh->root.u.def.value = my_offset;
1006
1007 bfd_put_32 (output_bfd, (bfd_vma) a2t1_ldr_insn,
1008 s->contents + my_offset);
1009
1010 bfd_put_32 (output_bfd, (bfd_vma) a2t2_bx_r12_insn,
1011 s->contents + my_offset + 4);
1012
1013 /* It's a thumb address. Add the low order bit. */
1014 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
1015 s->contents + my_offset + 8);
1016 }
1017
1018 BFD_ASSERT (my_offset <= globals->arm_glue_size);
1019
1020 tmp = bfd_get_32 (input_bfd, hit_data);
1021 tmp = tmp & 0xFF000000;
1022
1023 /* Somehow these are both 4 too far, so subtract 8. */
1024 ret_offset = (s->output_offset
1025 + my_offset
1026 + s->output_section->vma
1027 - (input_section->output_offset
1028 + input_section->output_section->vma
1029 + offset + addend)
1030 - 8);
1031
1032 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
1033
1034 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
1035
1036 return true;
1037 }
1038
1039 /* Perform a relocation as part of a final link. */
1040
1041 static bfd_reloc_status_type
1042 elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
1043 input_section, contents, rel, value,
1044 info, sym_sec, sym_name, sym_flags, h)
1045 reloc_howto_type * howto;
1046 bfd * input_bfd;
1047 bfd * output_bfd;
1048 asection * input_section;
1049 bfd_byte * contents;
1050 Elf_Internal_Rela * rel;
1051 bfd_vma value;
1052 struct bfd_link_info * info;
1053 asection * sym_sec;
1054 const char * sym_name;
1055 int sym_flags;
1056 struct elf_link_hash_entry * h;
1057 {
1058 unsigned long r_type = howto->type;
1059 unsigned long r_symndx;
1060 bfd_byte * hit_data = contents + rel->r_offset;
1061 bfd * dynobj = NULL;
1062 Elf_Internal_Shdr * symtab_hdr;
1063 struct elf_link_hash_entry ** sym_hashes;
1064 bfd_vma * local_got_offsets;
1065 asection * sgot = NULL;
1066 asection * splt = NULL;
1067 asection * sreloc = NULL;
1068 bfd_vma addend;
1069 bfd_signed_vma signed_addend;
1070 struct elf32_arm_link_hash_table * globals;
1071
1072 /* If the start address has been set, then set the EF_ARM_HASENTRY
1073 flag. Setting this more than once is redundant, but the cost is
1074 not too high, and it keeps the code simple.
1075
1076 The test is done here, rather than somewhere else, because the
1077 start address is only set just before the final link commences.
1078
1079 Note - if the user deliberately sets a start address of 0, the
1080 flag will not be set. */
1081 if (bfd_get_start_address (output_bfd) != 0)
1082 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
1083
1084 globals = elf32_arm_hash_table (info);
1085
1086 dynobj = elf_hash_table (info)->dynobj;
1087 if (dynobj)
1088 {
1089 sgot = bfd_get_section_by_name (dynobj, ".got");
1090 splt = bfd_get_section_by_name (dynobj, ".plt");
1091 }
1092 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1093 sym_hashes = elf_sym_hashes (input_bfd);
1094 local_got_offsets = elf_local_got_offsets (input_bfd);
1095 r_symndx = ELF32_R_SYM (rel->r_info);
1096
1097 #ifdef USE_REL
1098 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
1099
1100 if (addend & ((howto->src_mask + 1) >> 1))
1101 {
1102 signed_addend = -1;
1103 signed_addend &= ~ howto->src_mask;
1104 signed_addend |= addend;
1105 }
1106 else
1107 signed_addend = addend;
1108 #else
1109 addend = signed_addend = rel->r_addend;
1110 #endif
1111
1112 switch (r_type)
1113 {
1114 case R_ARM_NONE:
1115 return bfd_reloc_ok;
1116
1117 case R_ARM_PC24:
1118 case R_ARM_ABS32:
1119 case R_ARM_REL32:
1120 #ifndef OLD_ARM_ABI
1121 case R_ARM_XPC25:
1122 #endif
1123 /* When generating a shared object, these relocations are copied
1124 into the output file to be resolved at run time. */
1125 if (info->shared
1126 && r_symndx != 0
1127 && (r_type != R_ARM_PC24
1128 || (h != NULL
1129 && h->dynindx != -1
1130 && (! info->symbolic
1131 || (h->elf_link_hash_flags
1132 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1133 {
1134 Elf_Internal_Rel outrel;
1135 boolean skip, relocate;
1136
1137 if (sreloc == NULL)
1138 {
1139 const char * name;
1140
1141 name = (bfd_elf_string_from_elf_section
1142 (input_bfd,
1143 elf_elfheader (input_bfd)->e_shstrndx,
1144 elf_section_data (input_section)->rel_hdr.sh_name));
1145 if (name == NULL)
1146 return bfd_reloc_notsupported;
1147
1148 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
1149 && strcmp (bfd_get_section_name (input_bfd,
1150 input_section),
1151 name + 4) == 0);
1152
1153 sreloc = bfd_get_section_by_name (dynobj, name);
1154 BFD_ASSERT (sreloc != NULL);
1155 }
1156
1157 skip = false;
1158 relocate = false;
1159
1160 outrel.r_offset =
1161 _bfd_elf_section_offset (output_bfd, info, input_section,
1162 rel->r_offset);
1163 if (outrel.r_offset == (bfd_vma) -1)
1164 skip = true;
1165 else if (outrel.r_offset == (bfd_vma) -2)
1166 skip = true, relocate = true;
1167 outrel.r_offset += (input_section->output_section->vma
1168 + input_section->output_offset);
1169
1170 if (skip)
1171 memset (&outrel, 0, sizeof outrel);
1172 else if (r_type == R_ARM_PC24)
1173 {
1174 BFD_ASSERT (h != NULL && h->dynindx != -1);
1175 if ((input_section->flags & SEC_ALLOC) == 0)
1176 relocate = true;
1177 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_PC24);
1178 }
1179 else
1180 {
1181 if (h == NULL
1182 || ((info->symbolic || h->dynindx == -1)
1183 && (h->elf_link_hash_flags
1184 & ELF_LINK_HASH_DEF_REGULAR) != 0))
1185 {
1186 relocate = true;
1187 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1188 }
1189 else
1190 {
1191 BFD_ASSERT (h->dynindx != -1);
1192 if ((input_section->flags & SEC_ALLOC) == 0)
1193 relocate = true;
1194 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_ABS32);
1195 }
1196 }
1197
1198 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1199 (((Elf32_External_Rel *)
1200 sreloc->contents)
1201 + sreloc->reloc_count));
1202 ++sreloc->reloc_count;
1203
1204 /* If this reloc is against an external symbol, we do not want to
1205 fiddle with the addend. Otherwise, we need to include the symbol
1206 value so that it becomes an addend for the dynamic reloc. */
1207 if (! relocate)
1208 return bfd_reloc_ok;
1209
1210 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1211 contents, rel->r_offset, value,
1212 (bfd_vma) 0);
1213 }
1214 else switch (r_type)
1215 {
1216 #ifndef OLD_ARM_ABI
1217 case R_ARM_XPC25: /* Arm BLX instruction. */
1218 #endif
1219 case R_ARM_PC24: /* Arm B/BL instruction */
1220 #ifndef OLD_ARM_ABI
1221 if (r_type == R_ARM_XPC25)
1222 {
1223 /* Check for Arm calling Arm function. */
1224 /* FIXME: Should we translate the instruction into a BL
1225 instruction instead ? */
1226 if (sym_flags != STT_ARM_TFUNC)
1227 (*_bfd_error_handler) (_("\
1228 %s: Warning: Arm BLX instruction targets Arm function '%s'."),
1229 bfd_archive_filename (input_bfd),
1230 h ? h->root.root.string : "(local)");
1231 }
1232 else
1233 #endif
1234 {
1235 /* Check for Arm calling Thumb function. */
1236 if (sym_flags == STT_ARM_TFUNC)
1237 {
1238 elf32_arm_to_thumb_stub (info, sym_name, input_bfd, output_bfd,
1239 input_section, hit_data, sym_sec, rel->r_offset,
1240 signed_addend, value);
1241 return bfd_reloc_ok;
1242 }
1243 }
1244
1245 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1246 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0)
1247 {
1248 /* The old way of doing things. Trearing the addend as a
1249 byte sized field and adding in the pipeline offset. */
1250 value -= (input_section->output_section->vma
1251 + input_section->output_offset);
1252 value -= rel->r_offset;
1253 value += addend;
1254
1255 if (! globals->no_pipeline_knowledge)
1256 value -= 8;
1257 }
1258 else
1259 {
1260 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
1261 where:
1262 S is the address of the symbol in the relocation.
1263 P is address of the instruction being relocated.
1264 A is the addend (extracted from the instruction) in bytes.
1265
1266 S is held in 'value'.
1267 P is the base address of the section containing the instruction
1268 plus the offset of the reloc into that section, ie:
1269 (input_section->output_section->vma +
1270 input_section->output_offset +
1271 rel->r_offset).
1272 A is the addend, converted into bytes, ie:
1273 (signed_addend * 4)
1274
1275 Note: None of these operations have knowledge of the pipeline
1276 size of the processor, thus it is up to the assembler to encode
1277 this information into the addend. */
1278 value -= (input_section->output_section->vma
1279 + input_section->output_offset);
1280 value -= rel->r_offset;
1281 value += (signed_addend << howto->size);
1282
1283 /* Previous versions of this code also used to add in the pipeline
1284 offset here. This is wrong because the linker is not supposed
1285 to know about such things, and one day it might change. In order
1286 to support old binaries that need the old behaviour however, so
1287 we attempt to detect which ABI was used to create the reloc. */
1288 if (! globals->no_pipeline_knowledge)
1289 {
1290 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form */
1291
1292 i_ehdrp = elf_elfheader (input_bfd);
1293
1294 if (i_ehdrp->e_ident[EI_OSABI] == 0)
1295 value -= 8;
1296 }
1297 }
1298
1299 signed_addend = value;
1300 signed_addend >>= howto->rightshift;
1301
1302 /* It is not an error for an undefined weak reference to be
1303 out of range. Any program that branches to such a symbol
1304 is going to crash anyway, so there is no point worrying
1305 about getting the destination exactly right. */
1306 if (! h || h->root.type != bfd_link_hash_undefweak)
1307 {
1308 /* Perform a signed range check. */
1309 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
1310 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
1311 return bfd_reloc_overflow;
1312 }
1313
1314 #ifndef OLD_ARM_ABI
1315 /* If necessary set the H bit in the BLX instruction. */
1316 if (r_type == R_ARM_XPC25 && ((value & 2) == 2))
1317 value = (signed_addend & howto->dst_mask)
1318 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask))
1319 | (1 << 24);
1320 else
1321 #endif
1322 value = (signed_addend & howto->dst_mask)
1323 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
1324 break;
1325
1326 case R_ARM_ABS32:
1327 value += addend;
1328 if (sym_flags == STT_ARM_TFUNC)
1329 value |= 1;
1330 break;
1331
1332 case R_ARM_REL32:
1333 value -= (input_section->output_section->vma
1334 + input_section->output_offset + rel->r_offset);
1335 value += addend;
1336 break;
1337 }
1338
1339 bfd_put_32 (input_bfd, value, hit_data);
1340 return bfd_reloc_ok;
1341
1342 case R_ARM_ABS8:
1343 value += addend;
1344 if ((long) value > 0x7f || (long) value < -0x80)
1345 return bfd_reloc_overflow;
1346
1347 bfd_put_8 (input_bfd, value, hit_data);
1348 return bfd_reloc_ok;
1349
1350 case R_ARM_ABS16:
1351 value += addend;
1352
1353 if ((long) value > 0x7fff || (long) value < -0x8000)
1354 return bfd_reloc_overflow;
1355
1356 bfd_put_16 (input_bfd, value, hit_data);
1357 return bfd_reloc_ok;
1358
1359 case R_ARM_ABS12:
1360 /* Support ldr and str instruction for the arm */
1361 /* Also thumb b (unconditional branch). ??? Really? */
1362 value += addend;
1363
1364 if ((long) value > 0x7ff || (long) value < -0x800)
1365 return bfd_reloc_overflow;
1366
1367 value |= (bfd_get_32 (input_bfd, hit_data) & 0xfffff000);
1368 bfd_put_32 (input_bfd, value, hit_data);
1369 return bfd_reloc_ok;
1370
1371 case R_ARM_THM_ABS5:
1372 /* Support ldr and str instructions for the thumb. */
1373 #ifdef USE_REL
1374 /* Need to refetch addend. */
1375 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
1376 /* ??? Need to determine shift amount from operand size. */
1377 addend >>= howto->rightshift;
1378 #endif
1379 value += addend;
1380
1381 /* ??? Isn't value unsigned? */
1382 if ((long) value > 0x1f || (long) value < -0x10)
1383 return bfd_reloc_overflow;
1384
1385 /* ??? Value needs to be properly shifted into place first. */
1386 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
1387 bfd_put_16 (input_bfd, value, hit_data);
1388 return bfd_reloc_ok;
1389
1390 #ifndef OLD_ARM_ABI
1391 case R_ARM_THM_XPC22:
1392 #endif
1393 case R_ARM_THM_PC22:
1394 /* Thumb BL (branch long instruction). */
1395 {
1396 bfd_vma relocation;
1397 boolean overflow = false;
1398 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
1399 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
1400 bfd_signed_vma reloc_signed_max = ((1 << (howto->bitsize - 1)) - 1) >> howto->rightshift;
1401 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
1402 bfd_vma check;
1403 bfd_signed_vma signed_check;
1404
1405 #ifdef USE_REL
1406 /* Need to refetch the addend and squish the two 11 bit pieces
1407 together. */
1408 {
1409 bfd_vma upper = upper_insn & 0x7ff;
1410 bfd_vma lower = lower_insn & 0x7ff;
1411 upper = (upper ^ 0x400) - 0x400; /* Sign extend. */
1412 addend = (upper << 12) | (lower << 1);
1413 signed_addend = addend;
1414 }
1415 #endif
1416 #ifndef OLD_ARM_ABI
1417 if (r_type == R_ARM_THM_XPC22)
1418 {
1419 /* Check for Thumb to Thumb call. */
1420 /* FIXME: Should we translate the instruction into a BL
1421 instruction instead ? */
1422 if (sym_flags == STT_ARM_TFUNC)
1423 (*_bfd_error_handler) (_("\
1424 %s: Warning: Thumb BLX instruction targets thumb function '%s'."),
1425 bfd_archive_filename (input_bfd),
1426 h ? h->root.root.string : "(local)");
1427 }
1428 else
1429 #endif
1430 {
1431 /* If it is not a call to Thumb, assume call to Arm.
1432 If it is a call relative to a section name, then it is not a
1433 function call at all, but rather a long jump. */
1434 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION)
1435 {
1436 if (elf32_thumb_to_arm_stub
1437 (info, sym_name, input_bfd, output_bfd, input_section,
1438 hit_data, sym_sec, rel->r_offset, signed_addend, value))
1439 return bfd_reloc_ok;
1440 else
1441 return bfd_reloc_dangerous;
1442 }
1443 }
1444
1445 relocation = value + signed_addend;
1446
1447 relocation -= (input_section->output_section->vma
1448 + input_section->output_offset
1449 + rel->r_offset);
1450
1451 if (! globals->no_pipeline_knowledge)
1452 {
1453 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form. */
1454
1455 i_ehdrp = elf_elfheader (input_bfd);
1456
1457 /* Previous versions of this code also used to add in the pipline
1458 offset here. This is wrong because the linker is not supposed
1459 to know about such things, and one day it might change. In order
1460 to support old binaries that need the old behaviour however, so
1461 we attempt to detect which ABI was used to create the reloc. */
1462 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1463 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0
1464 || i_ehdrp->e_ident[EI_OSABI] == 0)
1465 relocation += 4;
1466 }
1467
1468 check = relocation >> howto->rightshift;
1469
1470 /* If this is a signed value, the rightshift just dropped
1471 leading 1 bits (assuming twos complement). */
1472 if ((bfd_signed_vma) relocation >= 0)
1473 signed_check = check;
1474 else
1475 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
1476
1477 /* Assumes two's complement. */
1478 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
1479 overflow = true;
1480
1481 #ifndef OLD_ARM_ABI
1482 if (r_type == R_ARM_THM_XPC22
1483 && ((lower_insn & 0x1800) == 0x0800))
1484 /* For a BLX instruction, make sure that the relocation is rounded up
1485 to a word boundary. This follows the semantics of the instruction
1486 which specifies that bit 1 of the target address will come from bit
1487 1 of the base address. */
1488 relocation = (relocation + 2) & ~ 3;
1489 #endif
1490 /* Put RELOCATION back into the insn. */
1491 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 12) & 0x7ff);
1492 lower_insn = (lower_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 1) & 0x7ff);
1493
1494 /* Put the relocated value back in the object file: */
1495 bfd_put_16 (input_bfd, upper_insn, hit_data);
1496 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
1497
1498 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
1499 }
1500 break;
1501
1502 case R_ARM_THM_PC11:
1503 /* Thumb B (branch) instruction). */
1504 {
1505 bfd_signed_vma relocation;
1506 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
1507 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
1508 bfd_signed_vma signed_check;
1509
1510 #ifdef USE_REL
1511 /* Need to refetch addend. */
1512 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
1513 if (addend & ((howto->src_mask + 1) >> 1))
1514 {
1515 signed_addend = -1;
1516 signed_addend &= ~ howto->src_mask;
1517 signed_addend |= addend;
1518 }
1519 else
1520 signed_addend = addend;
1521 /* The value in the insn has been right shifted. We need to
1522 undo this, so that we can perform the address calculation
1523 in terms of bytes. */
1524 signed_addend <<= howto->rightshift;
1525 #endif
1526 relocation = value + signed_addend;
1527
1528 relocation -= (input_section->output_section->vma
1529 + input_section->output_offset
1530 + rel->r_offset);
1531
1532 relocation >>= howto->rightshift;
1533 signed_check = relocation;
1534 relocation &= howto->dst_mask;
1535 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
1536
1537 bfd_put_16 (input_bfd, relocation, hit_data);
1538
1539 /* Assumes two's complement. */
1540 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
1541 return bfd_reloc_overflow;
1542
1543 return bfd_reloc_ok;
1544 }
1545
1546 case R_ARM_GNU_VTINHERIT:
1547 case R_ARM_GNU_VTENTRY:
1548 return bfd_reloc_ok;
1549
1550 case R_ARM_COPY:
1551 return bfd_reloc_notsupported;
1552
1553 case R_ARM_GLOB_DAT:
1554 return bfd_reloc_notsupported;
1555
1556 case R_ARM_JUMP_SLOT:
1557 return bfd_reloc_notsupported;
1558
1559 case R_ARM_RELATIVE:
1560 return bfd_reloc_notsupported;
1561
1562 case R_ARM_GOTOFF:
1563 /* Relocation is relative to the start of the
1564 global offset table. */
1565
1566 BFD_ASSERT (sgot != NULL);
1567 if (sgot == NULL)
1568 return bfd_reloc_notsupported;
1569
1570 /* If we are addressing a Thumb function, we need to adjust the
1571 address by one, so that attempts to call the function pointer will
1572 correctly interpret it as Thumb code. */
1573 if (sym_flags == STT_ARM_TFUNC)
1574 value += 1;
1575
1576 /* Note that sgot->output_offset is not involved in this
1577 calculation. We always want the start of .got. If we
1578 define _GLOBAL_OFFSET_TABLE in a different way, as is
1579 permitted by the ABI, we might have to change this
1580 calculation. */
1581 value -= sgot->output_section->vma;
1582 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1583 contents, rel->r_offset, value,
1584 (bfd_vma) 0);
1585
1586 case R_ARM_GOTPC:
1587 /* Use global offset table as symbol value. */
1588 BFD_ASSERT (sgot != NULL);
1589
1590 if (sgot == NULL)
1591 return bfd_reloc_notsupported;
1592
1593 value = sgot->output_section->vma;
1594 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1595 contents, rel->r_offset, value,
1596 (bfd_vma) 0);
1597
1598 case R_ARM_GOT32:
1599 /* Relocation is to the entry for this symbol in the
1600 global offset table. */
1601 if (sgot == NULL)
1602 return bfd_reloc_notsupported;
1603
1604 if (h != NULL)
1605 {
1606 bfd_vma off;
1607
1608 off = h->got.offset;
1609 BFD_ASSERT (off != (bfd_vma) -1);
1610
1611 if (!elf_hash_table (info)->dynamic_sections_created ||
1612 (info->shared && (info->symbolic || h->dynindx == -1)
1613 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1614 {
1615 /* This is actually a static link, or it is a -Bsymbolic link
1616 and the symbol is defined locally. We must initialize this
1617 entry in the global offset table. Since the offset must
1618 always be a multiple of 4, we use the least significant bit
1619 to record whether we have initialized it already.
1620
1621 When doing a dynamic link, we create a .rel.got relocation
1622 entry to initialize the value. This is done in the
1623 finish_dynamic_symbol routine. */
1624 if ((off & 1) != 0)
1625 off &= ~1;
1626 else
1627 {
1628 /* If we are addressing a Thumb function, we need to
1629 adjust the address by one, so that attempts to
1630 call the function pointer will correctly
1631 interpret it as Thumb code. */
1632 if (sym_flags == STT_ARM_TFUNC)
1633 value |= 1;
1634
1635 bfd_put_32 (output_bfd, value, sgot->contents + off);
1636 h->got.offset |= 1;
1637 }
1638 }
1639
1640 value = sgot->output_offset + off;
1641 }
1642 else
1643 {
1644 bfd_vma off;
1645
1646 BFD_ASSERT (local_got_offsets != NULL &&
1647 local_got_offsets[r_symndx] != (bfd_vma) -1);
1648
1649 off = local_got_offsets[r_symndx];
1650
1651 /* The offset must always be a multiple of 4. We use the
1652 least significant bit to record whether we have already
1653 generated the necessary reloc. */
1654 if ((off & 1) != 0)
1655 off &= ~1;
1656 else
1657 {
1658 bfd_put_32 (output_bfd, value, sgot->contents + off);
1659
1660 if (info->shared)
1661 {
1662 asection * srelgot;
1663 Elf_Internal_Rel outrel;
1664
1665 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
1666 BFD_ASSERT (srelgot != NULL);
1667
1668 outrel.r_offset = (sgot->output_section->vma
1669 + sgot->output_offset
1670 + off);
1671 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1672 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1673 (((Elf32_External_Rel *)
1674 srelgot->contents)
1675 + srelgot->reloc_count));
1676 ++srelgot->reloc_count;
1677 }
1678
1679 local_got_offsets[r_symndx] |= 1;
1680 }
1681
1682 value = sgot->output_offset + off;
1683 }
1684
1685 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1686 contents, rel->r_offset, value,
1687 (bfd_vma) 0);
1688
1689 case R_ARM_PLT32:
1690 /* Relocation is to the entry for this symbol in the
1691 procedure linkage table. */
1692
1693 /* Resolve a PLT32 reloc against a local symbol directly,
1694 without using the procedure linkage table. */
1695 if (h == NULL)
1696 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1697 contents, rel->r_offset, value,
1698 (bfd_vma) 0);
1699
1700 if (h->plt.offset == (bfd_vma) -1)
1701 /* We didn't make a PLT entry for this symbol. This
1702 happens when statically linking PIC code, or when
1703 using -Bsymbolic. */
1704 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1705 contents, rel->r_offset, value,
1706 (bfd_vma) 0);
1707
1708 BFD_ASSERT(splt != NULL);
1709 if (splt == NULL)
1710 return bfd_reloc_notsupported;
1711
1712 value = (splt->output_section->vma
1713 + splt->output_offset
1714 + h->plt.offset);
1715 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1716 contents, rel->r_offset, value,
1717 (bfd_vma) 0);
1718
1719 case R_ARM_SBREL32:
1720 return bfd_reloc_notsupported;
1721
1722 case R_ARM_AMP_VCALL9:
1723 return bfd_reloc_notsupported;
1724
1725 case R_ARM_RSBREL32:
1726 return bfd_reloc_notsupported;
1727
1728 case R_ARM_THM_RPC22:
1729 return bfd_reloc_notsupported;
1730
1731 case R_ARM_RREL32:
1732 return bfd_reloc_notsupported;
1733
1734 case R_ARM_RABS32:
1735 return bfd_reloc_notsupported;
1736
1737 case R_ARM_RPC24:
1738 return bfd_reloc_notsupported;
1739
1740 case R_ARM_RBASE:
1741 return bfd_reloc_notsupported;
1742
1743 default:
1744 return bfd_reloc_notsupported;
1745 }
1746 }
1747
1748 #ifdef USE_REL
1749 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
1750 static void
1751 arm_add_to_rel (abfd, address, howto, increment)
1752 bfd * abfd;
1753 bfd_byte * address;
1754 reloc_howto_type * howto;
1755 bfd_signed_vma increment;
1756 {
1757 bfd_signed_vma addend;
1758
1759 if (howto->type == R_ARM_THM_PC22)
1760 {
1761 int upper_insn, lower_insn;
1762 int upper, lower;
1763
1764 upper_insn = bfd_get_16 (abfd, address);
1765 lower_insn = bfd_get_16 (abfd, address + 2);
1766 upper = upper_insn & 0x7ff;
1767 lower = lower_insn & 0x7ff;
1768
1769 addend = (upper << 12) | (lower << 1);
1770 addend += increment;
1771 addend >>= 1;
1772
1773 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
1774 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
1775
1776 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
1777 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
1778 }
1779 else
1780 {
1781 bfd_vma contents;
1782
1783 contents = bfd_get_32 (abfd, address);
1784
1785 /* Get the (signed) value from the instruction. */
1786 addend = contents & howto->src_mask;
1787 if (addend & ((howto->src_mask + 1) >> 1))
1788 {
1789 bfd_signed_vma mask;
1790
1791 mask = -1;
1792 mask &= ~ howto->src_mask;
1793 addend |= mask;
1794 }
1795
1796 /* Add in the increment, (which is a byte value). */
1797 switch (howto->type)
1798 {
1799 default:
1800 addend += increment;
1801 break;
1802
1803 case R_ARM_PC24:
1804 addend <<= howto->size;
1805 addend += increment;
1806
1807 /* Should we check for overflow here ? */
1808
1809 /* Drop any undesired bits. */
1810 addend >>= howto->rightshift;
1811 break;
1812 }
1813
1814 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
1815
1816 bfd_put_32 (abfd, contents, address);
1817 }
1818 }
1819 #endif /* USE_REL */
1820
1821 /* Relocate an ARM ELF section. */
1822 static boolean
1823 elf32_arm_relocate_section (output_bfd, info, input_bfd, input_section,
1824 contents, relocs, local_syms, local_sections)
1825 bfd * output_bfd;
1826 struct bfd_link_info * info;
1827 bfd * input_bfd;
1828 asection * input_section;
1829 bfd_byte * contents;
1830 Elf_Internal_Rela * relocs;
1831 Elf_Internal_Sym * local_syms;
1832 asection ** local_sections;
1833 {
1834 Elf_Internal_Shdr * symtab_hdr;
1835 struct elf_link_hash_entry ** sym_hashes;
1836 Elf_Internal_Rela * rel;
1837 Elf_Internal_Rela * relend;
1838 const char * name;
1839
1840 #ifndef USE_REL
1841 if (info->relocateable)
1842 return true;
1843 #endif
1844
1845 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1846 sym_hashes = elf_sym_hashes (input_bfd);
1847
1848 rel = relocs;
1849 relend = relocs + input_section->reloc_count;
1850 for (; rel < relend; rel++)
1851 {
1852 int r_type;
1853 reloc_howto_type * howto;
1854 unsigned long r_symndx;
1855 Elf_Internal_Sym * sym;
1856 asection * sec;
1857 struct elf_link_hash_entry * h;
1858 bfd_vma relocation;
1859 bfd_reloc_status_type r;
1860 arelent bfd_reloc;
1861
1862 r_symndx = ELF32_R_SYM (rel->r_info);
1863 r_type = ELF32_R_TYPE (rel->r_info);
1864
1865 if ( r_type == R_ARM_GNU_VTENTRY
1866 || r_type == R_ARM_GNU_VTINHERIT)
1867 continue;
1868
1869 #ifdef USE_REL
1870 elf32_arm_info_to_howto (input_bfd, & bfd_reloc,
1871 (Elf_Internal_Rel *) rel);
1872 #else
1873 elf32_arm_info_to_howto (input_bfd, & bfd_reloc, rel);
1874 #endif
1875 howto = bfd_reloc.howto;
1876
1877 #ifdef USE_REL
1878 if (info->relocateable)
1879 {
1880 /* This is a relocateable link. We don't have to change
1881 anything, unless the reloc is against a section symbol,
1882 in which case we have to adjust according to where the
1883 section symbol winds up in the output section. */
1884 if (r_symndx < symtab_hdr->sh_info)
1885 {
1886 sym = local_syms + r_symndx;
1887 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1888 {
1889 sec = local_sections[r_symndx];
1890 arm_add_to_rel (input_bfd, contents + rel->r_offset,
1891 howto,
1892 (bfd_signed_vma) (sec->output_offset
1893 + sym->st_value));
1894 }
1895 }
1896
1897 continue;
1898 }
1899 #endif
1900
1901 /* This is a final link. */
1902 h = NULL;
1903 sym = NULL;
1904 sec = NULL;
1905
1906 if (r_symndx < symtab_hdr->sh_info)
1907 {
1908 sym = local_syms + r_symndx;
1909 sec = local_sections[r_symndx];
1910 #ifdef USE_REL
1911 relocation = (sec->output_section->vma
1912 + sec->output_offset
1913 + sym->st_value);
1914 if ((sec->flags & SEC_MERGE)
1915 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1916 {
1917 asection *msec;
1918 bfd_vma addend, value;
1919
1920 if (howto->rightshift)
1921 {
1922 (*_bfd_error_handler)
1923 (_("%s(%s+0x%lx): %s relocation against SEC_MERGE section"),
1924 bfd_archive_filename (input_bfd),
1925 bfd_get_section_name (input_bfd, input_section),
1926 (long) rel->r_offset, howto->name);
1927 return false;
1928 }
1929
1930 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
1931
1932 /* Get the (signed) value from the instruction. */
1933 addend = value & howto->src_mask;
1934 if (addend & ((howto->src_mask + 1) >> 1))
1935 {
1936 bfd_signed_vma mask;
1937
1938 mask = -1;
1939 mask &= ~ howto->src_mask;
1940 addend |= mask;
1941 }
1942 msec = sec;
1943 addend =
1944 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
1945 - relocation;
1946 addend += msec->output_section->vma + msec->output_offset;
1947 value = (value & ~ howto->dst_mask) | (addend & howto->dst_mask);
1948 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
1949 }
1950 #else
1951 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sec, rel);
1952 #endif
1953 }
1954 else
1955 {
1956 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1957
1958 while ( h->root.type == bfd_link_hash_indirect
1959 || h->root.type == bfd_link_hash_warning)
1960 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1961
1962 if ( h->root.type == bfd_link_hash_defined
1963 || h->root.type == bfd_link_hash_defweak)
1964 {
1965 int relocation_needed = 1;
1966
1967 sec = h->root.u.def.section;
1968
1969 /* In these cases, we don't need the relocation value.
1970 We check specially because in some obscure cases
1971 sec->output_section will be NULL. */
1972 switch (r_type)
1973 {
1974 case R_ARM_PC24:
1975 case R_ARM_ABS32:
1976 case R_ARM_THM_PC22:
1977 if (info->shared
1978 && (
1979 (!info->symbolic && h->dynindx != -1)
1980 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1981 )
1982 && ((input_section->flags & SEC_ALLOC) != 0
1983 /* DWARF will emit R_ARM_ABS32 relocations in its
1984 sections against symbols defined externally
1985 in shared libraries. We can't do anything
1986 with them here. */
1987 || ((input_section->flags & SEC_DEBUGGING) != 0
1988 && (h->elf_link_hash_flags
1989 & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
1990 )
1991 relocation_needed = 0;
1992 break;
1993
1994 case R_ARM_GOTPC:
1995 relocation_needed = 0;
1996 break;
1997
1998 case R_ARM_GOT32:
1999 if (elf_hash_table(info)->dynamic_sections_created
2000 && (!info->shared
2001 || (!info->symbolic && h->dynindx != -1)
2002 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
2003 )
2004 )
2005 relocation_needed = 0;
2006 break;
2007
2008 case R_ARM_PLT32:
2009 if (h->plt.offset != (bfd_vma)-1)
2010 relocation_needed = 0;
2011 break;
2012
2013 default:
2014 if (sec->output_section == NULL)
2015 {
2016 (*_bfd_error_handler)
2017 (_("%s: warning: unresolvable relocation %d against symbol `%s' from %s section"),
2018 bfd_archive_filename (input_bfd),
2019 r_type,
2020 h->root.root.string,
2021 bfd_get_section_name (input_bfd, input_section));
2022 relocation_needed = 0;
2023 }
2024 }
2025
2026 if (relocation_needed)
2027 relocation = h->root.u.def.value
2028 + sec->output_section->vma
2029 + sec->output_offset;
2030 else
2031 relocation = 0;
2032 }
2033 else if (h->root.type == bfd_link_hash_undefweak)
2034 relocation = 0;
2035 else if (info->shared && !info->symbolic
2036 && !info->no_undefined
2037 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2038 relocation = 0;
2039 else
2040 {
2041 if (!((*info->callbacks->undefined_symbol)
2042 (info, h->root.root.string, input_bfd,
2043 input_section, rel->r_offset,
2044 (!info->shared || info->no_undefined
2045 || ELF_ST_VISIBILITY (h->other)))))
2046 return false;
2047 relocation = 0;
2048 }
2049 }
2050
2051 if (h != NULL)
2052 name = h->root.root.string;
2053 else
2054 {
2055 name = (bfd_elf_string_from_elf_section
2056 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2057 if (name == NULL || *name == '\0')
2058 name = bfd_section_name (input_bfd, sec);
2059 }
2060
2061 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
2062 input_section, contents, rel,
2063 relocation, info, sec, name,
2064 (h ? ELF_ST_TYPE (h->type) :
2065 ELF_ST_TYPE (sym->st_info)), h);
2066
2067 if (r != bfd_reloc_ok)
2068 {
2069 const char * msg = (const char *) 0;
2070
2071 switch (r)
2072 {
2073 case bfd_reloc_overflow:
2074 /* If the overflowing reloc was to an undefined symbol,
2075 we have already printed one error message and there
2076 is no point complaining again. */
2077 if ((! h ||
2078 h->root.type != bfd_link_hash_undefined)
2079 && (!((*info->callbacks->reloc_overflow)
2080 (info, name, howto->name, (bfd_vma) 0,
2081 input_bfd, input_section, rel->r_offset))))
2082 return false;
2083 break;
2084
2085 case bfd_reloc_undefined:
2086 if (!((*info->callbacks->undefined_symbol)
2087 (info, name, input_bfd, input_section,
2088 rel->r_offset, true)))
2089 return false;
2090 break;
2091
2092 case bfd_reloc_outofrange:
2093 msg = _("internal error: out of range error");
2094 goto common_error;
2095
2096 case bfd_reloc_notsupported:
2097 msg = _("internal error: unsupported relocation error");
2098 goto common_error;
2099
2100 case bfd_reloc_dangerous:
2101 msg = _("internal error: dangerous error");
2102 goto common_error;
2103
2104 default:
2105 msg = _("internal error: unknown error");
2106 /* fall through */
2107
2108 common_error:
2109 if (!((*info->callbacks->warning)
2110 (info, msg, name, input_bfd, input_section,
2111 rel->r_offset)))
2112 return false;
2113 break;
2114 }
2115 }
2116 }
2117
2118 return true;
2119 }
2120
2121 /* Function to keep ARM specific flags in the ELF header. */
2122 static boolean
2123 elf32_arm_set_private_flags (abfd, flags)
2124 bfd *abfd;
2125 flagword flags;
2126 {
2127 if (elf_flags_init (abfd)
2128 && elf_elfheader (abfd)->e_flags != flags)
2129 {
2130 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
2131 {
2132 if (flags & EF_ARM_INTERWORK)
2133 (*_bfd_error_handler) (_("\
2134 Warning: Not setting interworking flag of %s since it has already been specified as non-interworking"),
2135 bfd_archive_filename (abfd));
2136 else
2137 _bfd_error_handler (_("\
2138 Warning: Clearing the interworking flag of %s due to outside request"),
2139 bfd_archive_filename (abfd));
2140 }
2141 }
2142 else
2143 {
2144 elf_elfheader (abfd)->e_flags = flags;
2145 elf_flags_init (abfd) = true;
2146 }
2147
2148 return true;
2149 }
2150
2151 /* Copy backend specific data from one object module to another. */
2152
2153 static boolean
2154 elf32_arm_copy_private_bfd_data (ibfd, obfd)
2155 bfd *ibfd;
2156 bfd *obfd;
2157 {
2158 flagword in_flags;
2159 flagword out_flags;
2160
2161 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2162 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2163 return true;
2164
2165 in_flags = elf_elfheader (ibfd)->e_flags;
2166 out_flags = elf_elfheader (obfd)->e_flags;
2167
2168 if (elf_flags_init (obfd)
2169 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
2170 && in_flags != out_flags)
2171 {
2172 /* Cannot mix APCS26 and APCS32 code. */
2173 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2174 return false;
2175
2176 /* Cannot mix float APCS and non-float APCS code. */
2177 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2178 return false;
2179
2180 /* If the src and dest have different interworking flags
2181 then turn off the interworking bit. */
2182 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2183 {
2184 if (out_flags & EF_ARM_INTERWORK)
2185 _bfd_error_handler (_("\
2186 Warning: Clearing the interworking flag of %s because non-interworking code in %s has been linked with it"),
2187 bfd_get_filename (obfd),
2188 bfd_archive_filename (ibfd));
2189
2190 in_flags &= ~EF_ARM_INTERWORK;
2191 }
2192
2193 /* Likewise for PIC, though don't warn for this case. */
2194 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
2195 in_flags &= ~EF_ARM_PIC;
2196 }
2197
2198 elf_elfheader (obfd)->e_flags = in_flags;
2199 elf_flags_init (obfd) = true;
2200
2201 return true;
2202 }
2203
2204 /* Merge backend specific data from an object file to the output
2205 object file when linking. */
2206
2207 static boolean
2208 elf32_arm_merge_private_bfd_data (ibfd, obfd)
2209 bfd * ibfd;
2210 bfd * obfd;
2211 {
2212 flagword out_flags;
2213 flagword in_flags;
2214 boolean flags_compatible = true;
2215 boolean null_input_bfd = true;
2216 asection *sec;
2217
2218 /* Check if we have the same endianess. */
2219 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
2220 return false;
2221
2222 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2223 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2224 return true;
2225
2226 /* The input BFD must have had its flags initialised. */
2227 /* The following seems bogus to me -- The flags are initialized in
2228 the assembler but I don't think an elf_flags_init field is
2229 written into the object. */
2230 /* BFD_ASSERT (elf_flags_init (ibfd)); */
2231
2232 in_flags = elf_elfheader (ibfd)->e_flags;
2233 out_flags = elf_elfheader (obfd)->e_flags;
2234
2235 if (!elf_flags_init (obfd))
2236 {
2237 /* If the input is the default architecture and had the default
2238 flags then do not bother setting the flags for the output
2239 architecture, instead allow future merges to do this. If no
2240 future merges ever set these flags then they will retain their
2241 uninitialised values, which surprise surprise, correspond
2242 to the default values. */
2243 if (bfd_get_arch_info (ibfd)->the_default
2244 && elf_elfheader (ibfd)->e_flags == 0)
2245 return true;
2246
2247 elf_flags_init (obfd) = true;
2248 elf_elfheader (obfd)->e_flags = in_flags;
2249
2250 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2251 && bfd_get_arch_info (obfd)->the_default)
2252 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
2253
2254 return true;
2255 }
2256
2257 /* Identical flags must be compatible. */
2258 if (in_flags == out_flags)
2259 return true;
2260
2261 /* Check to see if the input BFD actually contains any sections.
2262 If not, its flags may not have been initialised either, but it cannot
2263 actually cause any incompatibility. */
2264 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2265 {
2266 /* Ignore synthetic glue sections. */
2267 if (strcmp (sec->name, ".glue_7")
2268 && strcmp (sec->name, ".glue_7t"))
2269 {
2270 null_input_bfd = false;
2271 break;
2272 }
2273 }
2274 if (null_input_bfd)
2275 return true;
2276
2277 /* Complain about various flag mismatches. */
2278 if (EF_ARM_EABI_VERSION (in_flags) != EF_ARM_EABI_VERSION (out_flags))
2279 {
2280 _bfd_error_handler (_("\
2281 ERROR: %s is compiled for EABI version %d, whereas %s is compiled for version %d"),
2282 bfd_archive_filename (ibfd),
2283 (in_flags & EF_ARM_EABIMASK) >> 24,
2284 bfd_get_filename (obfd),
2285 (out_flags & EF_ARM_EABIMASK) >> 24);
2286 return false;
2287 }
2288
2289 /* Not sure what needs to be checked for EABI versions >= 1. */
2290 if (EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
2291 {
2292 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2293 {
2294 _bfd_error_handler (_("\
2295 ERROR: %s is compiled for APCS-%d, whereas target %s uses APCS-%d"),
2296 bfd_archive_filename (ibfd),
2297 in_flags & EF_ARM_APCS_26 ? 26 : 32,
2298 bfd_get_filename (obfd),
2299 out_flags & EF_ARM_APCS_26 ? 26 : 32);
2300 flags_compatible = false;
2301 }
2302
2303 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2304 {
2305 if (in_flags & EF_ARM_APCS_FLOAT)
2306 _bfd_error_handler (_("\
2307 ERROR: %s passes floats in float registers, whereas %s passes them in integer registers"),
2308 bfd_archive_filename (ibfd),
2309 bfd_get_filename (obfd));
2310 else
2311 _bfd_error_handler (_("\
2312 ERROR: %s passes floats in integer registers, whereas %s passes them in float registers"),
2313 bfd_archive_filename (ibfd),
2314 bfd_get_filename (obfd));
2315
2316 flags_compatible = false;
2317 }
2318
2319 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
2320 {
2321 if (in_flags & EF_ARM_VFP_FLOAT)
2322 _bfd_error_handler (_("\
2323 ERROR: %s uses VFP instructions, whereas %s uses FPA instructions"),
2324 bfd_archive_filename (ibfd),
2325 bfd_get_filename (obfd));
2326 else
2327 _bfd_error_handler (_("\
2328 ERROR: %s uses FPA instructions, whereas %s uses VFP instructions"),
2329 bfd_archive_filename (ibfd),
2330 bfd_get_filename (obfd));
2331
2332 flags_compatible = false;
2333 }
2334
2335 #ifdef EF_ARM_SOFT_FLOAT
2336 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
2337 {
2338 /* We can allow interworking between code that is VFP format
2339 layout, and uses either soft float or integer regs for
2340 passing floating point arguments and results. We already
2341 know that the APCS_FLOAT flags match; similarly for VFP
2342 flags. */
2343 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
2344 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
2345 {
2346 if (in_flags & EF_ARM_SOFT_FLOAT)
2347 _bfd_error_handler (_("\
2348 ERROR: %s uses software FP, whereas %s uses hardware FP"),
2349 bfd_archive_filename (ibfd),
2350 bfd_get_filename (obfd));
2351 else
2352 _bfd_error_handler (_("\
2353 ERROR: %s uses hardware FP, whereas %s uses software FP"),
2354 bfd_archive_filename (ibfd),
2355 bfd_get_filename (obfd));
2356
2357 flags_compatible = false;
2358 }
2359 }
2360 #endif
2361
2362 /* Interworking mismatch is only a warning. */
2363 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2364 {
2365 if (in_flags & EF_ARM_INTERWORK)
2366 {
2367 _bfd_error_handler (_("\
2368 Warning: %s supports interworking, whereas %s does not"),
2369 bfd_archive_filename (ibfd),
2370 bfd_get_filename (obfd));
2371 }
2372 else
2373 {
2374 _bfd_error_handler (_("\
2375 Warning: %s does not support interworking, whereas %s does"),
2376 bfd_archive_filename (ibfd),
2377 bfd_get_filename (obfd));
2378 }
2379 }
2380 }
2381
2382 return flags_compatible;
2383 }
2384
2385 /* Display the flags field. */
2386
2387 static boolean
2388 elf32_arm_print_private_bfd_data (abfd, ptr)
2389 bfd *abfd;
2390 PTR ptr;
2391 {
2392 FILE * file = (FILE *) ptr;
2393 unsigned long flags;
2394
2395 BFD_ASSERT (abfd != NULL && ptr != NULL);
2396
2397 /* Print normal ELF private data. */
2398 _bfd_elf_print_private_bfd_data (abfd, ptr);
2399
2400 flags = elf_elfheader (abfd)->e_flags;
2401 /* Ignore init flag - it may not be set, despite the flags field
2402 containing valid data. */
2403
2404 /* xgettext:c-format */
2405 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
2406
2407 switch (EF_ARM_EABI_VERSION (flags))
2408 {
2409 case EF_ARM_EABI_UNKNOWN:
2410 /* The following flag bits are GNU extenstions and not part of the
2411 official ARM ELF extended ABI. Hence they are only decoded if
2412 the EABI version is not set. */
2413 if (flags & EF_ARM_INTERWORK)
2414 fprintf (file, _(" [interworking enabled]"));
2415
2416 if (flags & EF_ARM_APCS_26)
2417 fprintf (file, " [APCS-26]");
2418 else
2419 fprintf (file, " [APCS-32]");
2420
2421 if (flags & EF_ARM_VFP_FLOAT)
2422 fprintf (file, _(" [VFP float format]"));
2423 else
2424 fprintf (file, _(" [FPA float format]"));
2425
2426 if (flags & EF_ARM_APCS_FLOAT)
2427 fprintf (file, _(" [floats passed in float registers]"));
2428
2429 if (flags & EF_ARM_PIC)
2430 fprintf (file, _(" [position independent]"));
2431
2432 if (flags & EF_ARM_NEW_ABI)
2433 fprintf (file, _(" [new ABI]"));
2434
2435 if (flags & EF_ARM_OLD_ABI)
2436 fprintf (file, _(" [old ABI]"));
2437
2438 if (flags & EF_ARM_SOFT_FLOAT)
2439 fprintf (file, _(" [software FP]"));
2440
2441 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
2442 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
2443 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT);
2444 break;
2445
2446 case EF_ARM_EABI_VER1:
2447 fprintf (file, _(" [Version1 EABI]"));
2448
2449 if (flags & EF_ARM_SYMSARESORTED)
2450 fprintf (file, _(" [sorted symbol table]"));
2451 else
2452 fprintf (file, _(" [unsorted symbol table]"));
2453
2454 flags &= ~ EF_ARM_SYMSARESORTED;
2455 break;
2456
2457 case EF_ARM_EABI_VER2:
2458 fprintf (file, _(" [Version2 EABI]"));
2459
2460 if (flags & EF_ARM_SYMSARESORTED)
2461 fprintf (file, _(" [sorted symbol table]"));
2462 else
2463 fprintf (file, _(" [unsorted symbol table]"));
2464
2465 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
2466 fprintf (file, _(" [dynamic symbols use segment index]"));
2467
2468 if (flags & EF_ARM_MAPSYMSFIRST)
2469 fprintf (file, _(" [mapping symbols precede others]"));
2470
2471 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
2472 | EF_ARM_MAPSYMSFIRST);
2473 break;
2474
2475 default:
2476 fprintf (file, _(" <EABI version unrecognised>"));
2477 break;
2478 }
2479
2480 flags &= ~ EF_ARM_EABIMASK;
2481
2482 if (flags & EF_ARM_RELEXEC)
2483 fprintf (file, _(" [relocatable executable]"));
2484
2485 if (flags & EF_ARM_HASENTRY)
2486 fprintf (file, _(" [has entry point]"));
2487
2488 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
2489
2490 if (flags)
2491 fprintf (file, _("<Unrecognised flag bits set>"));
2492
2493 fputc ('\n', file);
2494
2495 return true;
2496 }
2497
2498 static int
2499 elf32_arm_get_symbol_type (elf_sym, type)
2500 Elf_Internal_Sym * elf_sym;
2501 int type;
2502 {
2503 switch (ELF_ST_TYPE (elf_sym->st_info))
2504 {
2505 case STT_ARM_TFUNC:
2506 return ELF_ST_TYPE (elf_sym->st_info);
2507
2508 case STT_ARM_16BIT:
2509 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
2510 This allows us to distinguish between data used by Thumb instructions
2511 and non-data (which is probably code) inside Thumb regions of an
2512 executable. */
2513 if (type != STT_OBJECT)
2514 return ELF_ST_TYPE (elf_sym->st_info);
2515 break;
2516
2517 default:
2518 break;
2519 }
2520
2521 return type;
2522 }
2523
2524 static asection *
2525 elf32_arm_gc_mark_hook (sec, info, rel, h, sym)
2526 asection *sec;
2527 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2528 Elf_Internal_Rela *rel;
2529 struct elf_link_hash_entry *h;
2530 Elf_Internal_Sym *sym;
2531 {
2532 if (h != NULL)
2533 {
2534 switch (ELF32_R_TYPE (rel->r_info))
2535 {
2536 case R_ARM_GNU_VTINHERIT:
2537 case R_ARM_GNU_VTENTRY:
2538 break;
2539
2540 default:
2541 switch (h->root.type)
2542 {
2543 case bfd_link_hash_defined:
2544 case bfd_link_hash_defweak:
2545 return h->root.u.def.section;
2546
2547 case bfd_link_hash_common:
2548 return h->root.u.c.p->section;
2549
2550 default:
2551 break;
2552 }
2553 }
2554 }
2555 else
2556 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
2557
2558 return NULL;
2559 }
2560
2561 /* Update the got entry reference counts for the section being removed. */
2562
2563 static boolean
2564 elf32_arm_gc_sweep_hook (abfd, info, sec, relocs)
2565 bfd *abfd ATTRIBUTE_UNUSED;
2566 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2567 asection *sec ATTRIBUTE_UNUSED;
2568 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
2569 {
2570 /* We don't support garbage collection of GOT and PLT relocs yet. */
2571 return true;
2572 }
2573
2574 /* Look through the relocs for a section during the first phase. */
2575
2576 static boolean
2577 elf32_arm_check_relocs (abfd, info, sec, relocs)
2578 bfd * abfd;
2579 struct bfd_link_info * info;
2580 asection * sec;
2581 const Elf_Internal_Rela * relocs;
2582 {
2583 Elf_Internal_Shdr * symtab_hdr;
2584 struct elf_link_hash_entry ** sym_hashes;
2585 struct elf_link_hash_entry ** sym_hashes_end;
2586 const Elf_Internal_Rela * rel;
2587 const Elf_Internal_Rela * rel_end;
2588 bfd * dynobj;
2589 asection * sgot, *srelgot, *sreloc;
2590 bfd_vma * local_got_offsets;
2591
2592 if (info->relocateable)
2593 return true;
2594
2595 sgot = srelgot = sreloc = NULL;
2596
2597 dynobj = elf_hash_table (info)->dynobj;
2598 local_got_offsets = elf_local_got_offsets (abfd);
2599
2600 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2601 sym_hashes = elf_sym_hashes (abfd);
2602 sym_hashes_end = sym_hashes
2603 + symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
2604
2605 if (!elf_bad_symtab (abfd))
2606 sym_hashes_end -= symtab_hdr->sh_info;
2607
2608 rel_end = relocs + sec->reloc_count;
2609 for (rel = relocs; rel < rel_end; rel++)
2610 {
2611 struct elf_link_hash_entry *h;
2612 unsigned long r_symndx;
2613
2614 r_symndx = ELF32_R_SYM (rel->r_info);
2615 if (r_symndx < symtab_hdr->sh_info)
2616 h = NULL;
2617 else
2618 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2619
2620 /* Some relocs require a global offset table. */
2621 if (dynobj == NULL)
2622 {
2623 switch (ELF32_R_TYPE (rel->r_info))
2624 {
2625 case R_ARM_GOT32:
2626 case R_ARM_GOTOFF:
2627 case R_ARM_GOTPC:
2628 elf_hash_table (info)->dynobj = dynobj = abfd;
2629 if (! _bfd_elf_create_got_section (dynobj, info))
2630 return false;
2631 break;
2632
2633 default:
2634 break;
2635 }
2636 }
2637
2638 switch (ELF32_R_TYPE (rel->r_info))
2639 {
2640 case R_ARM_GOT32:
2641 /* This symbol requires a global offset table entry. */
2642 if (sgot == NULL)
2643 {
2644 sgot = bfd_get_section_by_name (dynobj, ".got");
2645 BFD_ASSERT (sgot != NULL);
2646 }
2647
2648 /* Get the got relocation section if necessary. */
2649 if (srelgot == NULL
2650 && (h != NULL || info->shared))
2651 {
2652 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
2653
2654 /* If no got relocation section, make one and initialize. */
2655 if (srelgot == NULL)
2656 {
2657 srelgot = bfd_make_section (dynobj, ".rel.got");
2658 if (srelgot == NULL
2659 || ! bfd_set_section_flags (dynobj, srelgot,
2660 (SEC_ALLOC
2661 | SEC_LOAD
2662 | SEC_HAS_CONTENTS
2663 | SEC_IN_MEMORY
2664 | SEC_LINKER_CREATED
2665 | SEC_READONLY))
2666 || ! bfd_set_section_alignment (dynobj, srelgot, 2))
2667 return false;
2668 }
2669 }
2670
2671 if (h != NULL)
2672 {
2673 if (h->got.offset != (bfd_vma) -1)
2674 /* We have already allocated space in the .got. */
2675 break;
2676
2677 h->got.offset = sgot->_raw_size;
2678
2679 /* Make sure this symbol is output as a dynamic symbol. */
2680 if (h->dynindx == -1)
2681 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2682 return false;
2683
2684 srelgot->_raw_size += sizeof (Elf32_External_Rel);
2685 }
2686 else
2687 {
2688 /* This is a global offset table entry for a local
2689 symbol. */
2690 if (local_got_offsets == NULL)
2691 {
2692 bfd_size_type size;
2693 unsigned int i;
2694
2695 size = symtab_hdr->sh_info;
2696 size *= sizeof (bfd_vma);
2697 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
2698 if (local_got_offsets == NULL)
2699 return false;
2700 elf_local_got_offsets (abfd) = local_got_offsets;
2701 for (i = 0; i < symtab_hdr->sh_info; i++)
2702 local_got_offsets[i] = (bfd_vma) -1;
2703 }
2704
2705 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
2706 /* We have already allocated space in the .got. */
2707 break;
2708
2709 local_got_offsets[r_symndx] = sgot->_raw_size;
2710
2711 if (info->shared)
2712 /* If we are generating a shared object, we need to
2713 output a R_ARM_RELATIVE reloc so that the dynamic
2714 linker can adjust this GOT entry. */
2715 srelgot->_raw_size += sizeof (Elf32_External_Rel);
2716 }
2717
2718 sgot->_raw_size += 4;
2719 break;
2720
2721 case R_ARM_PLT32:
2722 /* This symbol requires a procedure linkage table entry. We
2723 actually build the entry in adjust_dynamic_symbol,
2724 because this might be a case of linking PIC code which is
2725 never referenced by a dynamic object, in which case we
2726 don't need to generate a procedure linkage table entry
2727 after all. */
2728
2729 /* If this is a local symbol, we resolve it directly without
2730 creating a procedure linkage table entry. */
2731 if (h == NULL)
2732 continue;
2733
2734 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
2735 break;
2736
2737 case R_ARM_ABS32:
2738 case R_ARM_REL32:
2739 case R_ARM_PC24:
2740 /* If we are creating a shared library, and this is a reloc
2741 against a global symbol, or a non PC relative reloc
2742 against a local symbol, then we need to copy the reloc
2743 into the shared library. However, if we are linking with
2744 -Bsymbolic, we do not need to copy a reloc against a
2745 global symbol which is defined in an object we are
2746 including in the link (i.e., DEF_REGULAR is set). At
2747 this point we have not seen all the input files, so it is
2748 possible that DEF_REGULAR is not set now but will be set
2749 later (it is never cleared). We account for that
2750 possibility below by storing information in the
2751 pcrel_relocs_copied field of the hash table entry. */
2752 if (info->shared
2753 && (ELF32_R_TYPE (rel->r_info) != R_ARM_PC24
2754 || (h != NULL
2755 && (! info->symbolic
2756 || (h->elf_link_hash_flags
2757 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
2758 {
2759 /* When creating a shared object, we must copy these
2760 reloc types into the output file. We create a reloc
2761 section in dynobj and make room for this reloc. */
2762 if (sreloc == NULL)
2763 {
2764 const char * name;
2765
2766 name = (bfd_elf_string_from_elf_section
2767 (abfd,
2768 elf_elfheader (abfd)->e_shstrndx,
2769 elf_section_data (sec)->rel_hdr.sh_name));
2770 if (name == NULL)
2771 return false;
2772
2773 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
2774 && strcmp (bfd_get_section_name (abfd, sec),
2775 name + 4) == 0);
2776
2777 sreloc = bfd_get_section_by_name (dynobj, name);
2778 if (sreloc == NULL)
2779 {
2780 flagword flags;
2781
2782 sreloc = bfd_make_section (dynobj, name);
2783 flags = (SEC_HAS_CONTENTS | SEC_READONLY
2784 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2785 if ((sec->flags & SEC_ALLOC) != 0)
2786 flags |= SEC_ALLOC | SEC_LOAD;
2787 if (sreloc == NULL
2788 || ! bfd_set_section_flags (dynobj, sreloc, flags)
2789 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
2790 return false;
2791 }
2792 if (sec->flags & SEC_READONLY)
2793 info->flags |= DF_TEXTREL;
2794 }
2795
2796 sreloc->_raw_size += sizeof (Elf32_External_Rel);
2797 /* If we are linking with -Bsymbolic, and this is a
2798 global symbol, we count the number of PC relative
2799 relocations we have entered for this symbol, so that
2800 we can discard them again if the symbol is later
2801 defined by a regular object. Note that this function
2802 is only called if we are using an elf_i386 linker
2803 hash table, which means that h is really a pointer to
2804 an elf_i386_link_hash_entry. */
2805 if (h != NULL && info->symbolic
2806 && ELF32_R_TYPE (rel->r_info) == R_ARM_PC24)
2807 {
2808 struct elf32_arm_link_hash_entry * eh;
2809 struct elf32_arm_pcrel_relocs_copied * p;
2810
2811 eh = (struct elf32_arm_link_hash_entry *) h;
2812
2813 for (p = eh->pcrel_relocs_copied; p != NULL; p = p->next)
2814 if (p->section == sreloc)
2815 break;
2816
2817 if (p == NULL)
2818 {
2819 p = ((struct elf32_arm_pcrel_relocs_copied *)
2820 bfd_alloc (dynobj, (bfd_size_type) sizeof * p));
2821 if (p == NULL)
2822 return false;
2823 p->next = eh->pcrel_relocs_copied;
2824 eh->pcrel_relocs_copied = p;
2825 p->section = sreloc;
2826 p->count = 0;
2827 }
2828
2829 ++p->count;
2830 }
2831 }
2832 break;
2833
2834 /* This relocation describes the C++ object vtable hierarchy.
2835 Reconstruct it for later use during GC. */
2836 case R_ARM_GNU_VTINHERIT:
2837 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2838 return false;
2839 break;
2840
2841 /* This relocation describes which C++ vtable entries are actually
2842 used. Record for later use during GC. */
2843 case R_ARM_GNU_VTENTRY:
2844 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
2845 return false;
2846 break;
2847 }
2848 }
2849
2850 return true;
2851 }
2852
2853 /* Find the nearest line to a particular section and offset, for error
2854 reporting. This code is a duplicate of the code in elf.c, except
2855 that it also accepts STT_ARM_TFUNC as a symbol that names a function. */
2856
2857 static boolean
2858 elf32_arm_find_nearest_line
2859 (abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr)
2860 bfd * abfd;
2861 asection * section;
2862 asymbol ** symbols;
2863 bfd_vma offset;
2864 const char ** filename_ptr;
2865 const char ** functionname_ptr;
2866 unsigned int * line_ptr;
2867 {
2868 boolean found;
2869 const char * filename;
2870 asymbol * func;
2871 bfd_vma low_func;
2872 asymbol ** p;
2873
2874 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
2875 filename_ptr, functionname_ptr,
2876 line_ptr, 0,
2877 &elf_tdata (abfd)->dwarf2_find_line_info))
2878 return true;
2879
2880 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
2881 &found, filename_ptr,
2882 functionname_ptr, line_ptr,
2883 &elf_tdata (abfd)->line_info))
2884 return false;
2885
2886 if (found)
2887 return true;
2888
2889 if (symbols == NULL)
2890 return false;
2891
2892 filename = NULL;
2893 func = NULL;
2894 low_func = 0;
2895
2896 for (p = symbols; *p != NULL; p++)
2897 {
2898 elf_symbol_type *q;
2899
2900 q = (elf_symbol_type *) *p;
2901
2902 if (bfd_get_section (&q->symbol) != section)
2903 continue;
2904
2905 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
2906 {
2907 default:
2908 break;
2909 case STT_FILE:
2910 filename = bfd_asymbol_name (&q->symbol);
2911 break;
2912 case STT_NOTYPE:
2913 case STT_FUNC:
2914 case STT_ARM_TFUNC:
2915 if (q->symbol.section == section
2916 && q->symbol.value >= low_func
2917 && q->symbol.value <= offset)
2918 {
2919 func = (asymbol *) q;
2920 low_func = q->symbol.value;
2921 }
2922 break;
2923 }
2924 }
2925
2926 if (func == NULL)
2927 return false;
2928
2929 *filename_ptr = filename;
2930 *functionname_ptr = bfd_asymbol_name (func);
2931 *line_ptr = 0;
2932
2933 return true;
2934 }
2935
2936 /* Adjust a symbol defined by a dynamic object and referenced by a
2937 regular object. The current definition is in some section of the
2938 dynamic object, but we're not including those sections. We have to
2939 change the definition to something the rest of the link can
2940 understand. */
2941
2942 static boolean
2943 elf32_arm_adjust_dynamic_symbol (info, h)
2944 struct bfd_link_info * info;
2945 struct elf_link_hash_entry * h;
2946 {
2947 bfd * dynobj;
2948 asection * s;
2949 unsigned int power_of_two;
2950
2951 dynobj = elf_hash_table (info)->dynobj;
2952
2953 /* Make sure we know what is going on here. */
2954 BFD_ASSERT (dynobj != NULL
2955 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
2956 || h->weakdef != NULL
2957 || ((h->elf_link_hash_flags
2958 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2959 && (h->elf_link_hash_flags
2960 & ELF_LINK_HASH_REF_REGULAR) != 0
2961 && (h->elf_link_hash_flags
2962 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
2963
2964 /* If this is a function, put it in the procedure linkage table. We
2965 will fill in the contents of the procedure linkage table later,
2966 when we know the address of the .got section. */
2967 if (h->type == STT_FUNC
2968 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
2969 {
2970 /* If we link a program (not a DSO), we'll get rid of unnecessary
2971 PLT entries; we point to the actual symbols -- even for pic
2972 relocs, because a program built with -fpic should have the same
2973 result as one built without -fpic, specifically considering weak
2974 symbols.
2975 FIXME: m68k and i386 differ here, for unclear reasons. */
2976 if (! info->shared
2977 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0)
2978 {
2979 /* This case can occur if we saw a PLT32 reloc in an input
2980 file, but the symbol was not defined by a dynamic object.
2981 In such a case, we don't actually need to build a
2982 procedure linkage table, and we can just do a PC32 reloc
2983 instead. */
2984 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
2985 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2986 return true;
2987 }
2988
2989 /* Make sure this symbol is output as a dynamic symbol. */
2990 if (h->dynindx == -1)
2991 {
2992 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2993 return false;
2994 }
2995
2996 s = bfd_get_section_by_name (dynobj, ".plt");
2997 BFD_ASSERT (s != NULL);
2998
2999 /* If this is the first .plt entry, make room for the special
3000 first entry. */
3001 if (s->_raw_size == 0)
3002 s->_raw_size += PLT_ENTRY_SIZE;
3003
3004 /* If this symbol is not defined in a regular file, and we are
3005 not generating a shared library, then set the symbol to this
3006 location in the .plt. This is required to make function
3007 pointers compare as equal between the normal executable and
3008 the shared library. */
3009 if (! info->shared
3010 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3011 {
3012 h->root.u.def.section = s;
3013 h->root.u.def.value = s->_raw_size;
3014 }
3015
3016 h->plt.offset = s->_raw_size;
3017
3018 /* Make room for this entry. */
3019 s->_raw_size += PLT_ENTRY_SIZE;
3020
3021 /* We also need to make an entry in the .got.plt section, which
3022 will be placed in the .got section by the linker script. */
3023 s = bfd_get_section_by_name (dynobj, ".got.plt");
3024 BFD_ASSERT (s != NULL);
3025 s->_raw_size += 4;
3026
3027 /* We also need to make an entry in the .rel.plt section. */
3028
3029 s = bfd_get_section_by_name (dynobj, ".rel.plt");
3030 BFD_ASSERT (s != NULL);
3031 s->_raw_size += sizeof (Elf32_External_Rel);
3032
3033 return true;
3034 }
3035
3036 /* If this is a weak symbol, and there is a real definition, the
3037 processor independent code will have arranged for us to see the
3038 real definition first, and we can just use the same value. */
3039 if (h->weakdef != NULL)
3040 {
3041 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
3042 || h->weakdef->root.type == bfd_link_hash_defweak);
3043 h->root.u.def.section = h->weakdef->root.u.def.section;
3044 h->root.u.def.value = h->weakdef->root.u.def.value;
3045 return true;
3046 }
3047
3048 /* This is a reference to a symbol defined by a dynamic object which
3049 is not a function. */
3050
3051 /* If we are creating a shared library, we must presume that the
3052 only references to the symbol are via the global offset table.
3053 For such cases we need not do anything here; the relocations will
3054 be handled correctly by relocate_section. */
3055 if (info->shared)
3056 return true;
3057
3058 /* We must allocate the symbol in our .dynbss section, which will
3059 become part of the .bss section of the executable. There will be
3060 an entry for this symbol in the .dynsym section. The dynamic
3061 object will contain position independent code, so all references
3062 from the dynamic object to this symbol will go through the global
3063 offset table. The dynamic linker will use the .dynsym entry to
3064 determine the address it must put in the global offset table, so
3065 both the dynamic object and the regular object will refer to the
3066 same memory location for the variable. */
3067 s = bfd_get_section_by_name (dynobj, ".dynbss");
3068 BFD_ASSERT (s != NULL);
3069
3070 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
3071 copy the initial value out of the dynamic object and into the
3072 runtime process image. We need to remember the offset into the
3073 .rel.bss section we are going to use. */
3074 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
3075 {
3076 asection *srel;
3077
3078 srel = bfd_get_section_by_name (dynobj, ".rel.bss");
3079 BFD_ASSERT (srel != NULL);
3080 srel->_raw_size += sizeof (Elf32_External_Rel);
3081 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
3082 }
3083
3084 /* We need to figure out the alignment required for this symbol. I
3085 have no idea how ELF linkers handle this. */
3086 power_of_two = bfd_log2 (h->size);
3087 if (power_of_two > 3)
3088 power_of_two = 3;
3089
3090 /* Apply the required alignment. */
3091 s->_raw_size = BFD_ALIGN (s->_raw_size,
3092 (bfd_size_type) (1 << power_of_two));
3093 if (power_of_two > bfd_get_section_alignment (dynobj, s))
3094 {
3095 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
3096 return false;
3097 }
3098
3099 /* Define the symbol as being at this point in the section. */
3100 h->root.u.def.section = s;
3101 h->root.u.def.value = s->_raw_size;
3102
3103 /* Increment the section size to make room for the symbol. */
3104 s->_raw_size += h->size;
3105
3106 return true;
3107 }
3108
3109 /* Set the sizes of the dynamic sections. */
3110
3111 static boolean
3112 elf32_arm_size_dynamic_sections (output_bfd, info)
3113 bfd * output_bfd ATTRIBUTE_UNUSED;
3114 struct bfd_link_info * info;
3115 {
3116 bfd * dynobj;
3117 asection * s;
3118 boolean plt;
3119 boolean relocs;
3120
3121 dynobj = elf_hash_table (info)->dynobj;
3122 BFD_ASSERT (dynobj != NULL);
3123
3124 if (elf_hash_table (info)->dynamic_sections_created)
3125 {
3126 /* Set the contents of the .interp section to the interpreter. */
3127 if (! info->shared)
3128 {
3129 s = bfd_get_section_by_name (dynobj, ".interp");
3130 BFD_ASSERT (s != NULL);
3131 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
3132 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
3133 }
3134 }
3135 else
3136 {
3137 /* We may have created entries in the .rel.got section.
3138 However, if we are not creating the dynamic sections, we will
3139 not actually use these entries. Reset the size of .rel.got,
3140 which will cause it to get stripped from the output file
3141 below. */
3142 s = bfd_get_section_by_name (dynobj, ".rel.got");
3143 if (s != NULL)
3144 s->_raw_size = 0;
3145 }
3146
3147 /* If this is a -Bsymbolic shared link, then we need to discard all
3148 PC relative relocs against symbols defined in a regular object.
3149 We allocated space for them in the check_relocs routine, but we
3150 will not fill them in in the relocate_section routine. */
3151 if (info->shared && info->symbolic)
3152 elf32_arm_link_hash_traverse (elf32_arm_hash_table (info),
3153 elf32_arm_discard_copies,
3154 (PTR) NULL);
3155
3156 /* The check_relocs and adjust_dynamic_symbol entry points have
3157 determined the sizes of the various dynamic sections. Allocate
3158 memory for them. */
3159 plt = false;
3160 relocs = false;
3161 for (s = dynobj->sections; s != NULL; s = s->next)
3162 {
3163 const char * name;
3164 boolean strip;
3165
3166 if ((s->flags & SEC_LINKER_CREATED) == 0)
3167 continue;
3168
3169 /* It's OK to base decisions on the section name, because none
3170 of the dynobj section names depend upon the input files. */
3171 name = bfd_get_section_name (dynobj, s);
3172
3173 strip = false;
3174
3175 if (strcmp (name, ".plt") == 0)
3176 {
3177 if (s->_raw_size == 0)
3178 {
3179 /* Strip this section if we don't need it; see the
3180 comment below. */
3181 strip = true;
3182 }
3183 else
3184 {
3185 /* Remember whether there is a PLT. */
3186 plt = true;
3187 }
3188 }
3189 else if (strncmp (name, ".rel", 4) == 0)
3190 {
3191 if (s->_raw_size == 0)
3192 {
3193 /* If we don't need this section, strip it from the
3194 output file. This is mostly to handle .rel.bss and
3195 .rel.plt. We must create both sections in
3196 create_dynamic_sections, because they must be created
3197 before the linker maps input sections to output
3198 sections. The linker does that before
3199 adjust_dynamic_symbol is called, and it is that
3200 function which decides whether anything needs to go
3201 into these sections. */
3202 strip = true;
3203 }
3204 else
3205 {
3206 /* Remember whether there are any reloc sections other
3207 than .rel.plt. */
3208 if (strcmp (name, ".rel.plt") != 0)
3209 relocs = true;
3210
3211 /* We use the reloc_count field as a counter if we need
3212 to copy relocs into the output file. */
3213 s->reloc_count = 0;
3214 }
3215 }
3216 else if (strncmp (name, ".got", 4) != 0)
3217 {
3218 /* It's not one of our sections, so don't allocate space. */
3219 continue;
3220 }
3221
3222 if (strip)
3223 {
3224 asection ** spp;
3225
3226 for (spp = &s->output_section->owner->sections;
3227 *spp != NULL;
3228 spp = &(*spp)->next)
3229 {
3230 if (*spp == s->output_section)
3231 {
3232 bfd_section_list_remove (s->output_section->owner, spp);
3233 --s->output_section->owner->section_count;
3234 break;
3235 }
3236 }
3237 continue;
3238 }
3239
3240 /* Allocate memory for the section contents. */
3241 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
3242 if (s->contents == NULL && s->_raw_size != 0)
3243 return false;
3244 }
3245
3246 if (elf_hash_table (info)->dynamic_sections_created)
3247 {
3248 /* Add some entries to the .dynamic section. We fill in the
3249 values later, in elf32_arm_finish_dynamic_sections, but we
3250 must add the entries now so that we get the correct size for
3251 the .dynamic section. The DT_DEBUG entry is filled in by the
3252 dynamic linker and used by the debugger. */
3253 #define add_dynamic_entry(TAG, VAL) \
3254 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
3255
3256 if (!info->shared)
3257 {
3258 if (!add_dynamic_entry (DT_DEBUG, 0))
3259 return false;
3260 }
3261
3262 if (plt)
3263 {
3264 if ( !add_dynamic_entry (DT_PLTGOT, 0)
3265 || !add_dynamic_entry (DT_PLTRELSZ, 0)
3266 || !add_dynamic_entry (DT_PLTREL, DT_REL)
3267 || !add_dynamic_entry (DT_JMPREL, 0))
3268 return false;
3269 }
3270
3271 if (relocs)
3272 {
3273 if ( !add_dynamic_entry (DT_REL, 0)
3274 || !add_dynamic_entry (DT_RELSZ, 0)
3275 || !add_dynamic_entry (DT_RELENT, sizeof (Elf32_External_Rel)))
3276 return false;
3277 }
3278
3279 if ((info->flags & DF_TEXTREL) != 0)
3280 {
3281 if (!add_dynamic_entry (DT_TEXTREL, 0))
3282 return false;
3283 info->flags |= DF_TEXTREL;
3284 }
3285 }
3286 #undef add_synamic_entry
3287
3288 return true;
3289 }
3290
3291 /* This function is called via elf32_arm_link_hash_traverse if we are
3292 creating a shared object with -Bsymbolic. It discards the space
3293 allocated to copy PC relative relocs against symbols which are
3294 defined in regular objects. We allocated space for them in the
3295 check_relocs routine, but we won't fill them in in the
3296 relocate_section routine. */
3297
3298 static boolean
3299 elf32_arm_discard_copies (h, ignore)
3300 struct elf32_arm_link_hash_entry * h;
3301 PTR ignore ATTRIBUTE_UNUSED;
3302 {
3303 struct elf32_arm_pcrel_relocs_copied * s;
3304
3305 if (h->root.root.type == bfd_link_hash_warning)
3306 h = (struct elf32_arm_link_hash_entry *) h->root.root.u.i.link;
3307
3308 /* We only discard relocs for symbols defined in a regular object. */
3309 if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3310 return true;
3311
3312 for (s = h->pcrel_relocs_copied; s != NULL; s = s->next)
3313 s->section->_raw_size -= s->count * sizeof (Elf32_External_Rel);
3314
3315 return true;
3316 }
3317
3318 /* Finish up dynamic symbol handling. We set the contents of various
3319 dynamic sections here. */
3320
3321 static boolean
3322 elf32_arm_finish_dynamic_symbol (output_bfd, info, h, sym)
3323 bfd * output_bfd;
3324 struct bfd_link_info * info;
3325 struct elf_link_hash_entry * h;
3326 Elf_Internal_Sym * sym;
3327 {
3328 bfd * dynobj;
3329
3330 dynobj = elf_hash_table (info)->dynobj;
3331
3332 if (h->plt.offset != (bfd_vma) -1)
3333 {
3334 asection * splt;
3335 asection * sgot;
3336 asection * srel;
3337 bfd_vma plt_index;
3338 bfd_vma got_offset;
3339 Elf_Internal_Rel rel;
3340
3341 /* This symbol has an entry in the procedure linkage table. Set
3342 it up. */
3343
3344 BFD_ASSERT (h->dynindx != -1);
3345
3346 splt = bfd_get_section_by_name (dynobj, ".plt");
3347 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3348 srel = bfd_get_section_by_name (dynobj, ".rel.plt");
3349 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
3350
3351 /* Get the index in the procedure linkage table which
3352 corresponds to this symbol. This is the index of this symbol
3353 in all the symbols for which we are making plt entries. The
3354 first entry in the procedure linkage table is reserved. */
3355 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3356
3357 /* Get the offset into the .got table of the entry that
3358 corresponds to this function. Each .got entry is 4 bytes.
3359 The first three are reserved. */
3360 got_offset = (plt_index + 3) * 4;
3361
3362 /* Fill in the entry in the procedure linkage table. */
3363 bfd_put_32 (output_bfd, elf32_arm_plt_entry[0],
3364 splt->contents + h->plt.offset + 0);
3365 bfd_put_32 (output_bfd, elf32_arm_plt_entry[1],
3366 splt->contents + h->plt.offset + 4);
3367 bfd_put_32 (output_bfd, elf32_arm_plt_entry[2],
3368 splt->contents + h->plt.offset + 8);
3369 bfd_put_32 (output_bfd,
3370 (sgot->output_section->vma
3371 + sgot->output_offset
3372 + got_offset
3373 - splt->output_section->vma
3374 - splt->output_offset
3375 - h->plt.offset - 12),
3376 splt->contents + h->plt.offset + 12);
3377
3378 /* Fill in the entry in the global offset table. */
3379 bfd_put_32 (output_bfd,
3380 (splt->output_section->vma
3381 + splt->output_offset),
3382 sgot->contents + got_offset);
3383
3384 /* Fill in the entry in the .rel.plt section. */
3385 rel.r_offset = (sgot->output_section->vma
3386 + sgot->output_offset
3387 + got_offset);
3388 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
3389 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3390 ((Elf32_External_Rel *) srel->contents
3391 + plt_index));
3392
3393 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3394 {
3395 /* Mark the symbol as undefined, rather than as defined in
3396 the .plt section. Leave the value alone. */
3397 sym->st_shndx = SHN_UNDEF;
3398 /* If the symbol is weak, we do need to clear the value.
3399 Otherwise, the PLT entry would provide a definition for
3400 the symbol even if the symbol wasn't defined anywhere,
3401 and so the symbol would never be NULL. */
3402 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
3403 == 0)
3404 sym->st_value = 0;
3405 }
3406 }
3407
3408 if (h->got.offset != (bfd_vma) -1)
3409 {
3410 asection * sgot;
3411 asection * srel;
3412 Elf_Internal_Rel rel;
3413
3414 /* This symbol has an entry in the global offset table. Set it
3415 up. */
3416 sgot = bfd_get_section_by_name (dynobj, ".got");
3417 srel = bfd_get_section_by_name (dynobj, ".rel.got");
3418 BFD_ASSERT (sgot != NULL && srel != NULL);
3419
3420 rel.r_offset = (sgot->output_section->vma
3421 + sgot->output_offset
3422 + (h->got.offset &~ (bfd_vma) 1));
3423
3424 /* If this is a -Bsymbolic link, and the symbol is defined
3425 locally, we just want to emit a RELATIVE reloc. The entry in
3426 the global offset table will already have been initialized in
3427 the relocate_section function. */
3428 if (info->shared
3429 && (info->symbolic || h->dynindx == -1)
3430 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
3431 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
3432 else
3433 {
3434 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
3435 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
3436 }
3437
3438 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3439 ((Elf32_External_Rel *) srel->contents
3440 + srel->reloc_count));
3441 ++srel->reloc_count;
3442 }
3443
3444 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
3445 {
3446 asection * s;
3447 Elf_Internal_Rel rel;
3448
3449 /* This symbol needs a copy reloc. Set it up. */
3450 BFD_ASSERT (h->dynindx != -1
3451 && (h->root.type == bfd_link_hash_defined
3452 || h->root.type == bfd_link_hash_defweak));
3453
3454 s = bfd_get_section_by_name (h->root.u.def.section->owner,
3455 ".rel.bss");
3456 BFD_ASSERT (s != NULL);
3457
3458 rel.r_offset = (h->root.u.def.value
3459 + h->root.u.def.section->output_section->vma
3460 + h->root.u.def.section->output_offset);
3461 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
3462 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3463 ((Elf32_External_Rel *) s->contents
3464 + s->reloc_count));
3465 ++s->reloc_count;
3466 }
3467
3468 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3469 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
3470 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3471 sym->st_shndx = SHN_ABS;
3472
3473 return true;
3474 }
3475
3476 /* Finish up the dynamic sections. */
3477
3478 static boolean
3479 elf32_arm_finish_dynamic_sections (output_bfd, info)
3480 bfd * output_bfd;
3481 struct bfd_link_info * info;
3482 {
3483 bfd * dynobj;
3484 asection * sgot;
3485 asection * sdyn;
3486
3487 dynobj = elf_hash_table (info)->dynobj;
3488
3489 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3490 BFD_ASSERT (sgot != NULL);
3491 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3492
3493 if (elf_hash_table (info)->dynamic_sections_created)
3494 {
3495 asection *splt;
3496 Elf32_External_Dyn *dyncon, *dynconend;
3497
3498 splt = bfd_get_section_by_name (dynobj, ".plt");
3499 BFD_ASSERT (splt != NULL && sdyn != NULL);
3500
3501 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3502 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
3503
3504 for (; dyncon < dynconend; dyncon++)
3505 {
3506 Elf_Internal_Dyn dyn;
3507 const char * name;
3508 asection * s;
3509
3510 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3511
3512 switch (dyn.d_tag)
3513 {
3514 default:
3515 break;
3516
3517 case DT_PLTGOT:
3518 name = ".got";
3519 goto get_vma;
3520 case DT_JMPREL:
3521 name = ".rel.plt";
3522 get_vma:
3523 s = bfd_get_section_by_name (output_bfd, name);
3524 BFD_ASSERT (s != NULL);
3525 dyn.d_un.d_ptr = s->vma;
3526 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3527 break;
3528
3529 case DT_PLTRELSZ:
3530 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3531 BFD_ASSERT (s != NULL);
3532 if (s->_cooked_size != 0)
3533 dyn.d_un.d_val = s->_cooked_size;
3534 else
3535 dyn.d_un.d_val = s->_raw_size;
3536 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3537 break;
3538
3539 case DT_RELSZ:
3540 /* My reading of the SVR4 ABI indicates that the
3541 procedure linkage table relocs (DT_JMPREL) should be
3542 included in the overall relocs (DT_REL). This is
3543 what Solaris does. However, UnixWare can not handle
3544 that case. Therefore, we override the DT_RELSZ entry
3545 here to make it not include the JMPREL relocs. Since
3546 the linker script arranges for .rel.plt to follow all
3547 other relocation sections, we don't have to worry
3548 about changing the DT_REL entry. */
3549 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3550 if (s != NULL)
3551 {
3552 if (s->_cooked_size != 0)
3553 dyn.d_un.d_val -= s->_cooked_size;
3554 else
3555 dyn.d_un.d_val -= s->_raw_size;
3556 }
3557 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3558 break;
3559
3560 /* Set the bottom bit of DT_INIT/FINI if the
3561 corresponding function is Thumb. */
3562 case DT_INIT:
3563 name = info->init_function;
3564 goto get_sym;
3565 case DT_FINI:
3566 name = info->fini_function;
3567 get_sym:
3568 /* If it wasn't set by elf_bfd_final_link
3569 then there is nothing to ajdust. */
3570 if (dyn.d_un.d_val != 0)
3571 {
3572 struct elf_link_hash_entry * eh;
3573
3574 eh = elf_link_hash_lookup (elf_hash_table (info), name,
3575 false, false, true);
3576 if (eh != (struct elf_link_hash_entry *) NULL
3577 && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
3578 {
3579 dyn.d_un.d_val |= 1;
3580 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3581 }
3582 }
3583 break;
3584 }
3585 }
3586
3587 /* Fill in the first entry in the procedure linkage table. */
3588 if (splt->_raw_size > 0)
3589 {
3590 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[0], splt->contents + 0);
3591 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[1], splt->contents + 4);
3592 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[2], splt->contents + 8);
3593 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[3], splt->contents + 12);
3594 }
3595
3596 /* UnixWare sets the entsize of .plt to 4, although that doesn't
3597 really seem like the right value. */
3598 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
3599 }
3600
3601 /* Fill in the first three entries in the global offset table. */
3602 if (sgot->_raw_size > 0)
3603 {
3604 if (sdyn == NULL)
3605 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
3606 else
3607 bfd_put_32 (output_bfd,
3608 sdyn->output_section->vma + sdyn->output_offset,
3609 sgot->contents);
3610 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
3611 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
3612 }
3613
3614 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
3615
3616 return true;
3617 }
3618
3619 static void
3620 elf32_arm_post_process_headers (abfd, link_info)
3621 bfd * abfd;
3622 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
3623 {
3624 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
3625
3626 i_ehdrp = elf_elfheader (abfd);
3627
3628 i_ehdrp->e_ident[EI_OSABI] = ARM_ELF_OS_ABI_VERSION;
3629 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
3630 }
3631
3632 static enum elf_reloc_type_class
3633 elf32_arm_reloc_type_class (rela)
3634 const Elf_Internal_Rela *rela;
3635 {
3636 switch ((int) ELF32_R_TYPE (rela->r_info))
3637 {
3638 case R_ARM_RELATIVE:
3639 return reloc_class_relative;
3640 case R_ARM_JUMP_SLOT:
3641 return reloc_class_plt;
3642 case R_ARM_COPY:
3643 return reloc_class_copy;
3644 default:
3645 return reloc_class_normal;
3646 }
3647 }
3648
3649
3650 #define ELF_ARCH bfd_arch_arm
3651 #define ELF_MACHINE_CODE EM_ARM
3652 #ifndef ELF_MAXPAGESIZE
3653 #define ELF_MAXPAGESIZE 0x8000
3654 #endif
3655
3656 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
3657 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
3658 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
3659 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
3660 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
3661 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
3662 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
3663
3664 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
3665 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
3666 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
3667 #define elf_backend_check_relocs elf32_arm_check_relocs
3668 #define elf_backend_relocate_section elf32_arm_relocate_section
3669 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
3670 #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
3671 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
3672 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
3673 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
3674 #define elf_backend_post_process_headers elf32_arm_post_process_headers
3675 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
3676
3677 #define elf_backend_can_gc_sections 1
3678 #define elf_backend_plt_readonly 1
3679 #define elf_backend_want_got_plt 1
3680 #define elf_backend_want_plt_sym 0
3681 #ifndef USE_REL
3682 #define elf_backend_rela_normal 1
3683 #endif
3684
3685 #define elf_backend_got_header_size 12
3686 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
3687
3688 #include "elf32-target.h"
3689
This page took 0.099511 seconds and 5 git commands to generate.