The patch below adds binutils support for the SHT_ARM_EXIDX, as defined by
[deliverable/binutils-gdb.git] / bfd / elf32-arm.h
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #ifndef USE_REL
22 #define USE_REL 0
23 #endif
24
25 typedef unsigned long int insn32;
26 typedef unsigned short int insn16;
27
28 /* In leiu of proper flags, assume all EABIv3 objects are interworkable. */
29 #define INTERWORK_FLAG(abfd) \
30 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) == EF_ARM_EABI_VER3 \
31 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK))
32
33 /* The linker script knows the section names for placement.
34 The entry_names are used to do simple name mangling on the stubs.
35 Given a function name, and its type, the stub can be found. The
36 name can be changed. The only requirement is the %s be present. */
37 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
38 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
39
40 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
41 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
42
43 /* The name of the dynamic interpreter. This is put in the .interp
44 section. */
45 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
46
47 #ifdef FOUR_WORD_PLT
48
49 /* The first entry in a procedure linkage table looks like
50 this. It is set up so that any shared library function that is
51 called before the relocation has been set up calls the dynamic
52 linker first. */
53 static const bfd_vma elf32_arm_plt0_entry [] =
54 {
55 0xe52de004, /* str lr, [sp, #-4]! */
56 0xe59fe010, /* ldr lr, [pc, #16] */
57 0xe08fe00e, /* add lr, pc, lr */
58 0xe5bef008, /* ldr pc, [lr, #8]! */
59 };
60
61 /* Subsequent entries in a procedure linkage table look like
62 this. */
63 static const bfd_vma elf32_arm_plt_entry [] =
64 {
65 0xe28fc600, /* add ip, pc, #NN */
66 0xe28cca00, /* add ip, ip, #NN */
67 0xe5bcf000, /* ldr pc, [ip, #NN]! */
68 0x00000000, /* unused */
69 };
70
71 #else
72
73 /* The first entry in a procedure linkage table looks like
74 this. It is set up so that any shared library function that is
75 called before the relocation has been set up calls the dynamic
76 linker first. */
77 static const bfd_vma elf32_arm_plt0_entry [] =
78 {
79 0xe52de004, /* str lr, [sp, #-4]! */
80 0xe59fe004, /* ldr lr, [pc, #4] */
81 0xe08fe00e, /* add lr, pc, lr */
82 0xe5bef008, /* ldr pc, [lr, #8]! */
83 0x00000000, /* &GOT[0] - . */
84 };
85
86 /* Subsequent entries in a procedure linkage table look like
87 this. */
88 static const bfd_vma elf32_arm_plt_entry [] =
89 {
90 0xe28fc600, /* add ip, pc, #0xNN00000 */
91 0xe28cca00, /* add ip, ip, #0xNN000 */
92 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
93 };
94
95 #endif
96
97 /* The entries in a PLT when using a DLL-based target with multiple
98 address spaces. */
99 static const bfd_vma elf32_arm_symbian_plt_entry [] =
100 {
101 0xe51ff004, /* ldr pr, [pc, #-4] */
102 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
103 };
104
105 /* Used to build a map of a section. This is required for mixed-endian
106 code/data. */
107
108 typedef struct elf32_elf_section_map
109 {
110 bfd_vma vma;
111 char type;
112 }
113 elf32_arm_section_map;
114
115 struct _arm_elf_section_data
116 {
117 struct bfd_elf_section_data elf;
118 int mapcount;
119 elf32_arm_section_map *map;
120 };
121
122 #define elf32_arm_section_data(sec) \
123 ((struct _arm_elf_section_data *) elf_section_data (sec))
124
125 /* The ARM linker needs to keep track of the number of relocs that it
126 decides to copy in check_relocs for each symbol. This is so that
127 it can discard PC relative relocs if it doesn't need them when
128 linking with -Bsymbolic. We store the information in a field
129 extending the regular ELF linker hash table. */
130
131 /* This structure keeps track of the number of PC relative relocs we
132 have copied for a given symbol. */
133 struct elf32_arm_relocs_copied
134 {
135 /* Next section. */
136 struct elf32_arm_relocs_copied * next;
137 /* A section in dynobj. */
138 asection * section;
139 /* Number of relocs copied in this section. */
140 bfd_size_type count;
141 };
142
143 /* Arm ELF linker hash entry. */
144 struct elf32_arm_link_hash_entry
145 {
146 struct elf_link_hash_entry root;
147
148 /* Number of PC relative relocs copied for this symbol. */
149 struct elf32_arm_relocs_copied * relocs_copied;
150 };
151
152 /* Traverse an arm ELF linker hash table. */
153 #define elf32_arm_link_hash_traverse(table, func, info) \
154 (elf_link_hash_traverse \
155 (&(table)->root, \
156 (bfd_boolean (*) (struct elf_link_hash_entry *, void *))) (func), \
157 (info)))
158
159 /* Get the ARM elf linker hash table from a link_info structure. */
160 #define elf32_arm_hash_table(info) \
161 ((struct elf32_arm_link_hash_table *) ((info)->hash))
162
163 /* ARM ELF linker hash table. */
164 struct elf32_arm_link_hash_table
165 {
166 /* The main hash table. */
167 struct elf_link_hash_table root;
168
169 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
170 bfd_size_type thumb_glue_size;
171
172 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
173 bfd_size_type arm_glue_size;
174
175 /* An arbitrary input BFD chosen to hold the glue sections. */
176 bfd * bfd_of_glue_owner;
177
178 /* A boolean indicating whether knowledge of the ARM's pipeline
179 length should be applied by the linker. */
180 int no_pipeline_knowledge;
181
182 /* Nonzero to output a BE8 image. */
183 int byteswap_code;
184
185 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
186 Nonzero if R_ARM_TARGET1 means R_ARM_ABS32. */
187 int target1_is_rel;
188
189 /* The relocation to use for R_ARM_TARGET2 relocations. */
190 int target2_reloc;
191
192 /* The number of bytes in the initial entry in the PLT. */
193 bfd_size_type plt_header_size;
194
195 /* The number of bytes in the subsequent PLT etries. */
196 bfd_size_type plt_entry_size;
197
198 /* True if the target system is Symbian OS. */
199 int symbian_p;
200
201 /* Short-cuts to get to dynamic linker sections. */
202 asection *sgot;
203 asection *sgotplt;
204 asection *srelgot;
205 asection *splt;
206 asection *srelplt;
207 asection *sdynbss;
208 asection *srelbss;
209
210 /* Small local sym to section mapping cache. */
211 struct sym_sec_cache sym_sec;
212 };
213
214 /* Create an entry in an ARM ELF linker hash table. */
215
216 static struct bfd_hash_entry *
217 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
218 struct bfd_hash_table * table,
219 const char * string)
220 {
221 struct elf32_arm_link_hash_entry * ret =
222 (struct elf32_arm_link_hash_entry *) entry;
223
224 /* Allocate the structure if it has not already been allocated by a
225 subclass. */
226 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
227 ret = bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
228 if (ret == NULL)
229 return (struct bfd_hash_entry *) ret;
230
231 /* Call the allocation method of the superclass. */
232 ret = ((struct elf32_arm_link_hash_entry *)
233 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
234 table, string));
235 if (ret != NULL)
236 ret->relocs_copied = NULL;
237
238 return (struct bfd_hash_entry *) ret;
239 }
240
241 /* Create .got, .gotplt, and .rel.got sections in DYNOBJ, and set up
242 shortcuts to them in our hash table. */
243
244 static bfd_boolean
245 create_got_section (bfd *dynobj, struct bfd_link_info *info)
246 {
247 struct elf32_arm_link_hash_table *htab;
248
249 htab = elf32_arm_hash_table (info);
250 /* BPABI objects never have a GOT, or associated sections. */
251 if (htab->symbian_p)
252 return TRUE;
253
254 if (! _bfd_elf_create_got_section (dynobj, info))
255 return FALSE;
256
257 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
258 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
259 if (!htab->sgot || !htab->sgotplt)
260 abort ();
261
262 htab->srelgot = bfd_make_section (dynobj, ".rel.got");
263 if (htab->srelgot == NULL
264 || ! bfd_set_section_flags (dynobj, htab->srelgot,
265 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
266 | SEC_IN_MEMORY | SEC_LINKER_CREATED
267 | SEC_READONLY))
268 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
269 return FALSE;
270 return TRUE;
271 }
272
273 /* Create .plt, .rel.plt, .got, .got.plt, .rel.got, .dynbss, and
274 .rel.bss sections in DYNOBJ, and set up shortcuts to them in our
275 hash table. */
276
277 static bfd_boolean
278 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
279 {
280 struct elf32_arm_link_hash_table *htab;
281
282 htab = elf32_arm_hash_table (info);
283 if (!htab->sgot && !create_got_section (dynobj, info))
284 return FALSE;
285
286 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
287 return FALSE;
288
289 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
290 htab->srelplt = bfd_get_section_by_name (dynobj, ".rel.plt");
291 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
292 if (!info->shared)
293 htab->srelbss = bfd_get_section_by_name (dynobj, ".rel.bss");
294
295 if (!htab->splt
296 || !htab->srelplt
297 || !htab->sdynbss
298 || (!info->shared && !htab->srelbss))
299 abort ();
300
301 return TRUE;
302 }
303
304 /* Copy the extra info we tack onto an elf_link_hash_entry. */
305
306 static void
307 elf32_arm_copy_indirect_symbol (const struct elf_backend_data *bed,
308 struct elf_link_hash_entry *dir,
309 struct elf_link_hash_entry *ind)
310 {
311 struct elf32_arm_link_hash_entry *edir, *eind;
312
313 edir = (struct elf32_arm_link_hash_entry *) dir;
314 eind = (struct elf32_arm_link_hash_entry *) ind;
315
316 if (eind->relocs_copied != NULL)
317 {
318 if (edir->relocs_copied != NULL)
319 {
320 struct elf32_arm_relocs_copied **pp;
321 struct elf32_arm_relocs_copied *p;
322
323 if (ind->root.type == bfd_link_hash_indirect)
324 abort ();
325
326 /* Add reloc counts against the weak sym to the strong sym
327 list. Merge any entries against the same section. */
328 for (pp = &eind->relocs_copied; (p = *pp) != NULL; )
329 {
330 struct elf32_arm_relocs_copied *q;
331
332 for (q = edir->relocs_copied; q != NULL; q = q->next)
333 if (q->section == p->section)
334 {
335 q->count += p->count;
336 *pp = p->next;
337 break;
338 }
339 if (q == NULL)
340 pp = &p->next;
341 }
342 *pp = edir->relocs_copied;
343 }
344
345 edir->relocs_copied = eind->relocs_copied;
346 eind->relocs_copied = NULL;
347 }
348
349 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
350 }
351
352 /* Create an ARM elf linker hash table. */
353
354 static struct bfd_link_hash_table *
355 elf32_arm_link_hash_table_create (bfd *abfd)
356 {
357 struct elf32_arm_link_hash_table *ret;
358 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
359
360 ret = bfd_malloc (amt);
361 if (ret == NULL)
362 return NULL;
363
364 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
365 elf32_arm_link_hash_newfunc))
366 {
367 free (ret);
368 return NULL;
369 }
370
371 ret->sgot = NULL;
372 ret->sgotplt = NULL;
373 ret->srelgot = NULL;
374 ret->splt = NULL;
375 ret->srelplt = NULL;
376 ret->sdynbss = NULL;
377 ret->srelbss = NULL;
378 ret->thumb_glue_size = 0;
379 ret->arm_glue_size = 0;
380 ret->bfd_of_glue_owner = NULL;
381 ret->no_pipeline_knowledge = 0;
382 ret->byteswap_code = 0;
383 ret->target1_is_rel = 0;
384 ret->target2_reloc = R_ARM_NONE;
385 #ifdef FOUR_WORD_PLT
386 ret->plt_header_size = 16;
387 ret->plt_entry_size = 16;
388 #else
389 ret->plt_header_size = 20;
390 ret->plt_entry_size = 12;
391 #endif
392 ret->symbian_p = 0;
393 ret->sym_sec.abfd = NULL;
394
395 return &ret->root.root;
396 }
397
398 /* Locate the Thumb encoded calling stub for NAME. */
399
400 static struct elf_link_hash_entry *
401 find_thumb_glue (struct bfd_link_info *link_info,
402 const char *name,
403 bfd *input_bfd)
404 {
405 char *tmp_name;
406 struct elf_link_hash_entry *hash;
407 struct elf32_arm_link_hash_table *hash_table;
408
409 /* We need a pointer to the armelf specific hash table. */
410 hash_table = elf32_arm_hash_table (link_info);
411
412 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
413 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
414
415 BFD_ASSERT (tmp_name);
416
417 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
418
419 hash = elf_link_hash_lookup
420 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
421
422 if (hash == NULL)
423 /* xgettext:c-format */
424 (*_bfd_error_handler) (_("%B: unable to find THUMB glue '%s' for `%s'"),
425 input_bfd, tmp_name, name);
426
427 free (tmp_name);
428
429 return hash;
430 }
431
432 /* Locate the ARM encoded calling stub for NAME. */
433
434 static struct elf_link_hash_entry *
435 find_arm_glue (struct bfd_link_info *link_info,
436 const char *name,
437 bfd *input_bfd)
438 {
439 char *tmp_name;
440 struct elf_link_hash_entry *myh;
441 struct elf32_arm_link_hash_table *hash_table;
442
443 /* We need a pointer to the elfarm specific hash table. */
444 hash_table = elf32_arm_hash_table (link_info);
445
446 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
447 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
448
449 BFD_ASSERT (tmp_name);
450
451 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
452
453 myh = elf_link_hash_lookup
454 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
455
456 if (myh == NULL)
457 /* xgettext:c-format */
458 (*_bfd_error_handler) (_("%B: unable to find ARM glue '%s' for `%s'"),
459 input_bfd, tmp_name, name);
460
461 free (tmp_name);
462
463 return myh;
464 }
465
466 /* ARM->Thumb glue:
467
468 .arm
469 __func_from_arm:
470 ldr r12, __func_addr
471 bx r12
472 __func_addr:
473 .word func @ behave as if you saw a ARM_32 reloc. */
474
475 #define ARM2THUMB_GLUE_SIZE 12
476 static const insn32 a2t1_ldr_insn = 0xe59fc000;
477 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
478 static const insn32 a2t3_func_addr_insn = 0x00000001;
479
480 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
481
482 .thumb .thumb
483 .align 2 .align 2
484 __func_from_thumb: __func_from_thumb:
485 bx pc push {r6, lr}
486 nop ldr r6, __func_addr
487 .arm mov lr, pc
488 __func_change_to_arm: bx r6
489 b func .arm
490 __func_back_to_thumb:
491 ldmia r13! {r6, lr}
492 bx lr
493 __func_addr:
494 .word func */
495
496 #define THUMB2ARM_GLUE_SIZE 8
497 static const insn16 t2a1_bx_pc_insn = 0x4778;
498 static const insn16 t2a2_noop_insn = 0x46c0;
499 static const insn32 t2a3_b_insn = 0xea000000;
500
501 #ifndef ELFARM_NABI_C_INCLUDED
502 bfd_boolean
503 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
504 {
505 asection * s;
506 bfd_byte * foo;
507 struct elf32_arm_link_hash_table * globals;
508
509 globals = elf32_arm_hash_table (info);
510
511 BFD_ASSERT (globals != NULL);
512
513 if (globals->arm_glue_size != 0)
514 {
515 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
516
517 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
518 ARM2THUMB_GLUE_SECTION_NAME);
519
520 BFD_ASSERT (s != NULL);
521
522 foo = bfd_alloc (globals->bfd_of_glue_owner, globals->arm_glue_size);
523
524 s->size = globals->arm_glue_size;
525 s->contents = foo;
526 }
527
528 if (globals->thumb_glue_size != 0)
529 {
530 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
531
532 s = bfd_get_section_by_name
533 (globals->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
534
535 BFD_ASSERT (s != NULL);
536
537 foo = bfd_alloc (globals->bfd_of_glue_owner, globals->thumb_glue_size);
538
539 s->size = globals->thumb_glue_size;
540 s->contents = foo;
541 }
542
543 return TRUE;
544 }
545
546 static void
547 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
548 struct elf_link_hash_entry * h)
549 {
550 const char * name = h->root.root.string;
551 asection * s;
552 char * tmp_name;
553 struct elf_link_hash_entry * myh;
554 struct bfd_link_hash_entry * bh;
555 struct elf32_arm_link_hash_table * globals;
556 bfd_vma val;
557
558 globals = elf32_arm_hash_table (link_info);
559
560 BFD_ASSERT (globals != NULL);
561 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
562
563 s = bfd_get_section_by_name
564 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
565
566 BFD_ASSERT (s != NULL);
567
568 tmp_name = bfd_malloc ((bfd_size_type) strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
569
570 BFD_ASSERT (tmp_name);
571
572 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
573
574 myh = elf_link_hash_lookup
575 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
576
577 if (myh != NULL)
578 {
579 /* We've already seen this guy. */
580 free (tmp_name);
581 return;
582 }
583
584 /* The only trick here is using hash_table->arm_glue_size as the value.
585 Even though the section isn't allocated yet, this is where we will be
586 putting it. */
587 bh = NULL;
588 val = globals->arm_glue_size + 1;
589 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
590 tmp_name, BSF_GLOBAL, s, val,
591 NULL, TRUE, FALSE, &bh);
592
593 free (tmp_name);
594
595 globals->arm_glue_size += ARM2THUMB_GLUE_SIZE;
596
597 return;
598 }
599
600 static void
601 record_thumb_to_arm_glue (struct bfd_link_info *link_info,
602 struct elf_link_hash_entry *h)
603 {
604 const char *name = h->root.root.string;
605 asection *s;
606 char *tmp_name;
607 struct elf_link_hash_entry *myh;
608 struct bfd_link_hash_entry *bh;
609 struct elf32_arm_link_hash_table *hash_table;
610 char bind;
611 bfd_vma val;
612
613 hash_table = elf32_arm_hash_table (link_info);
614
615 BFD_ASSERT (hash_table != NULL);
616 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
617
618 s = bfd_get_section_by_name
619 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
620
621 BFD_ASSERT (s != NULL);
622
623 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
624 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
625
626 BFD_ASSERT (tmp_name);
627
628 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
629
630 myh = elf_link_hash_lookup
631 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
632
633 if (myh != NULL)
634 {
635 /* We've already seen this guy. */
636 free (tmp_name);
637 return;
638 }
639
640 bh = NULL;
641 val = hash_table->thumb_glue_size + 1;
642 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
643 tmp_name, BSF_GLOBAL, s, val,
644 NULL, TRUE, FALSE, &bh);
645
646 /* If we mark it 'Thumb', the disassembler will do a better job. */
647 myh = (struct elf_link_hash_entry *) bh;
648 bind = ELF_ST_BIND (myh->type);
649 myh->type = ELF_ST_INFO (bind, STT_ARM_TFUNC);
650
651 free (tmp_name);
652
653 #define CHANGE_TO_ARM "__%s_change_to_arm"
654 #define BACK_FROM_ARM "__%s_back_from_arm"
655
656 /* Allocate another symbol to mark where we switch to Arm mode. */
657 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
658 + strlen (CHANGE_TO_ARM) + 1);
659
660 BFD_ASSERT (tmp_name);
661
662 sprintf (tmp_name, CHANGE_TO_ARM, name);
663
664 bh = NULL;
665 val = hash_table->thumb_glue_size + 4,
666 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
667 tmp_name, BSF_LOCAL, s, val,
668 NULL, TRUE, FALSE, &bh);
669
670 free (tmp_name);
671
672 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
673
674 return;
675 }
676
677 /* Add the glue sections to ABFD. This function is called from the
678 linker scripts in ld/emultempl/{armelf}.em. */
679
680 bfd_boolean
681 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
682 struct bfd_link_info *info)
683 {
684 flagword flags;
685 asection *sec;
686
687 /* If we are only performing a partial
688 link do not bother adding the glue. */
689 if (info->relocatable)
690 return TRUE;
691
692 sec = bfd_get_section_by_name (abfd, ARM2THUMB_GLUE_SECTION_NAME);
693
694 if (sec == NULL)
695 {
696 /* Note: we do not include the flag SEC_LINKER_CREATED, as this
697 will prevent elf_link_input_bfd() from processing the contents
698 of this section. */
699 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
700
701 sec = bfd_make_section (abfd, ARM2THUMB_GLUE_SECTION_NAME);
702
703 if (sec == NULL
704 || !bfd_set_section_flags (abfd, sec, flags)
705 || !bfd_set_section_alignment (abfd, sec, 2))
706 return FALSE;
707
708 /* Set the gc mark to prevent the section from being removed by garbage
709 collection, despite the fact that no relocs refer to this section. */
710 sec->gc_mark = 1;
711 }
712
713 sec = bfd_get_section_by_name (abfd, THUMB2ARM_GLUE_SECTION_NAME);
714
715 if (sec == NULL)
716 {
717 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
718 | SEC_CODE | SEC_READONLY;
719
720 sec = bfd_make_section (abfd, THUMB2ARM_GLUE_SECTION_NAME);
721
722 if (sec == NULL
723 || !bfd_set_section_flags (abfd, sec, flags)
724 || !bfd_set_section_alignment (abfd, sec, 2))
725 return FALSE;
726
727 sec->gc_mark = 1;
728 }
729
730 return TRUE;
731 }
732
733 /* Select a BFD to be used to hold the sections used by the glue code.
734 This function is called from the linker scripts in ld/emultempl/
735 {armelf/pe}.em */
736
737 bfd_boolean
738 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
739 {
740 struct elf32_arm_link_hash_table *globals;
741
742 /* If we are only performing a partial link
743 do not bother getting a bfd to hold the glue. */
744 if (info->relocatable)
745 return TRUE;
746
747 globals = elf32_arm_hash_table (info);
748
749 BFD_ASSERT (globals != NULL);
750
751 if (globals->bfd_of_glue_owner != NULL)
752 return TRUE;
753
754 /* Save the bfd for later use. */
755 globals->bfd_of_glue_owner = abfd;
756
757 return TRUE;
758 }
759
760 bfd_boolean
761 bfd_elf32_arm_process_before_allocation (bfd *abfd,
762 struct bfd_link_info *link_info,
763 int no_pipeline_knowledge,
764 int byteswap_code)
765 {
766 Elf_Internal_Shdr *symtab_hdr;
767 Elf_Internal_Rela *internal_relocs = NULL;
768 Elf_Internal_Rela *irel, *irelend;
769 bfd_byte *contents = NULL;
770
771 asection *sec;
772 struct elf32_arm_link_hash_table *globals;
773
774 /* If we are only performing a partial link do not bother
775 to construct any glue. */
776 if (link_info->relocatable)
777 return TRUE;
778
779 /* Here we have a bfd that is to be included on the link. We have a hook
780 to do reloc rummaging, before section sizes are nailed down. */
781 globals = elf32_arm_hash_table (link_info);
782
783 BFD_ASSERT (globals != NULL);
784 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
785
786 globals->no_pipeline_knowledge = no_pipeline_knowledge;
787
788 if (byteswap_code && !bfd_big_endian (abfd))
789 {
790 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
791 abfd);
792 return FALSE;
793 }
794 globals->byteswap_code = byteswap_code;
795
796 /* Rummage around all the relocs and map the glue vectors. */
797 sec = abfd->sections;
798
799 if (sec == NULL)
800 return TRUE;
801
802 for (; sec != NULL; sec = sec->next)
803 {
804 if (sec->reloc_count == 0)
805 continue;
806
807 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
808
809 /* Load the relocs. */
810 internal_relocs
811 = _bfd_elf_link_read_relocs (abfd, sec, (void *) NULL,
812 (Elf_Internal_Rela *) NULL, FALSE);
813
814 if (internal_relocs == NULL)
815 goto error_return;
816
817 irelend = internal_relocs + sec->reloc_count;
818 for (irel = internal_relocs; irel < irelend; irel++)
819 {
820 long r_type;
821 unsigned long r_index;
822
823 struct elf_link_hash_entry *h;
824
825 r_type = ELF32_R_TYPE (irel->r_info);
826 r_index = ELF32_R_SYM (irel->r_info);
827
828 /* These are the only relocation types we care about. */
829 if ( r_type != R_ARM_PC24
830 && r_type != R_ARM_THM_PC22)
831 continue;
832
833 /* Get the section contents if we haven't done so already. */
834 if (contents == NULL)
835 {
836 /* Get cached copy if it exists. */
837 if (elf_section_data (sec)->this_hdr.contents != NULL)
838 contents = elf_section_data (sec)->this_hdr.contents;
839 else
840 {
841 /* Go get them off disk. */
842 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
843 goto error_return;
844 }
845 }
846
847 /* If the relocation is not against a symbol it cannot concern us. */
848 h = NULL;
849
850 /* We don't care about local symbols. */
851 if (r_index < symtab_hdr->sh_info)
852 continue;
853
854 /* This is an external symbol. */
855 r_index -= symtab_hdr->sh_info;
856 h = (struct elf_link_hash_entry *)
857 elf_sym_hashes (abfd)[r_index];
858
859 /* If the relocation is against a static symbol it must be within
860 the current section and so cannot be a cross ARM/Thumb relocation. */
861 if (h == NULL)
862 continue;
863
864 switch (r_type)
865 {
866 case R_ARM_PC24:
867 /* This one is a call from arm code. We need to look up
868 the target of the call. If it is a thumb target, we
869 insert glue. */
870 if (ELF_ST_TYPE(h->type) == STT_ARM_TFUNC)
871 record_arm_to_thumb_glue (link_info, h);
872 break;
873
874 case R_ARM_THM_PC22:
875 /* This one is a call from thumb code. We look
876 up the target of the call. If it is not a thumb
877 target, we insert glue. */
878 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC)
879 record_thumb_to_arm_glue (link_info, h);
880 break;
881
882 default:
883 break;
884 }
885 }
886
887 if (contents != NULL
888 && elf_section_data (sec)->this_hdr.contents != contents)
889 free (contents);
890 contents = NULL;
891
892 if (internal_relocs != NULL
893 && elf_section_data (sec)->relocs != internal_relocs)
894 free (internal_relocs);
895 internal_relocs = NULL;
896 }
897
898 return TRUE;
899
900 error_return:
901 if (contents != NULL
902 && elf_section_data (sec)->this_hdr.contents != contents)
903 free (contents);
904 if (internal_relocs != NULL
905 && elf_section_data (sec)->relocs != internal_relocs)
906 free (internal_relocs);
907
908 return FALSE;
909 }
910 #endif
911
912
913 #ifndef OLD_ARM_ABI
914 /* Set target relocation values needed during linking. */
915
916 void
917 bfd_elf32_arm_set_target_relocs (struct bfd_link_info *link_info,
918 int target1_is_rel,
919 char * target2_type)
920 {
921 struct elf32_arm_link_hash_table *globals;
922
923 globals = elf32_arm_hash_table (link_info);
924
925 globals->target1_is_rel = target1_is_rel;
926 if (strcmp (target2_type, "rel") == 0)
927 globals->target2_reloc = R_ARM_REL32;
928 else if (strcmp (target2_type, "abs") == 0)
929 globals->target2_reloc = R_ARM_ABS32;
930 else if (strcmp (target2_type, "got-rel") == 0)
931 globals->target2_reloc = R_ARM_GOT_PREL;
932 else
933 {
934 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
935 target2_type);
936 }
937 }
938 #endif
939
940 /* The thumb form of a long branch is a bit finicky, because the offset
941 encoding is split over two fields, each in it's own instruction. They
942 can occur in any order. So given a thumb form of long branch, and an
943 offset, insert the offset into the thumb branch and return finished
944 instruction.
945
946 It takes two thumb instructions to encode the target address. Each has
947 11 bits to invest. The upper 11 bits are stored in one (identified by
948 H-0.. see below), the lower 11 bits are stored in the other (identified
949 by H-1).
950
951 Combine together and shifted left by 1 (it's a half word address) and
952 there you have it.
953
954 Op: 1111 = F,
955 H-0, upper address-0 = 000
956 Op: 1111 = F,
957 H-1, lower address-0 = 800
958
959 They can be ordered either way, but the arm tools I've seen always put
960 the lower one first. It probably doesn't matter. krk@cygnus.com
961
962 XXX: Actually the order does matter. The second instruction (H-1)
963 moves the computed address into the PC, so it must be the second one
964 in the sequence. The problem, however is that whilst little endian code
965 stores the instructions in HI then LOW order, big endian code does the
966 reverse. nickc@cygnus.com. */
967
968 #define LOW_HI_ORDER 0xF800F000
969 #define HI_LOW_ORDER 0xF000F800
970
971 static insn32
972 insert_thumb_branch (insn32 br_insn, int rel_off)
973 {
974 unsigned int low_bits;
975 unsigned int high_bits;
976
977 BFD_ASSERT ((rel_off & 1) != 1);
978
979 rel_off >>= 1; /* Half word aligned address. */
980 low_bits = rel_off & 0x000007FF; /* The bottom 11 bits. */
981 high_bits = (rel_off >> 11) & 0x000007FF; /* The top 11 bits. */
982
983 if ((br_insn & LOW_HI_ORDER) == LOW_HI_ORDER)
984 br_insn = LOW_HI_ORDER | (low_bits << 16) | high_bits;
985 else if ((br_insn & HI_LOW_ORDER) == HI_LOW_ORDER)
986 br_insn = HI_LOW_ORDER | (high_bits << 16) | low_bits;
987 else
988 /* FIXME: abort is probably not the right call. krk@cygnus.com */
989 abort (); /* Error - not a valid branch instruction form. */
990
991 return br_insn;
992 }
993
994 /* Thumb code calling an ARM function. */
995
996 static int
997 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
998 const char * name,
999 bfd * input_bfd,
1000 bfd * output_bfd,
1001 asection * input_section,
1002 bfd_byte * hit_data,
1003 asection * sym_sec,
1004 bfd_vma offset,
1005 bfd_signed_vma addend,
1006 bfd_vma val)
1007 {
1008 asection * s = 0;
1009 bfd_vma my_offset;
1010 unsigned long int tmp;
1011 long int ret_offset;
1012 struct elf_link_hash_entry * myh;
1013 struct elf32_arm_link_hash_table * globals;
1014
1015 myh = find_thumb_glue (info, name, input_bfd);
1016 if (myh == NULL)
1017 return FALSE;
1018
1019 globals = elf32_arm_hash_table (info);
1020
1021 BFD_ASSERT (globals != NULL);
1022 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
1023
1024 my_offset = myh->root.u.def.value;
1025
1026 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
1027 THUMB2ARM_GLUE_SECTION_NAME);
1028
1029 BFD_ASSERT (s != NULL);
1030 BFD_ASSERT (s->contents != NULL);
1031 BFD_ASSERT (s->output_section != NULL);
1032
1033 if ((my_offset & 0x01) == 0x01)
1034 {
1035 if (sym_sec != NULL
1036 && sym_sec->owner != NULL
1037 && !INTERWORK_FLAG (sym_sec->owner))
1038 {
1039 (*_bfd_error_handler)
1040 (_("%B(%s): warning: interworking not enabled.\n"
1041 " first occurrence: %B: thumb call to arm"),
1042 sym_sec->owner, input_bfd, name);
1043
1044 return FALSE;
1045 }
1046
1047 --my_offset;
1048 myh->root.u.def.value = my_offset;
1049
1050 bfd_put_16 (output_bfd, (bfd_vma) t2a1_bx_pc_insn,
1051 s->contents + my_offset);
1052
1053 bfd_put_16 (output_bfd, (bfd_vma) t2a2_noop_insn,
1054 s->contents + my_offset + 2);
1055
1056 ret_offset =
1057 /* Address of destination of the stub. */
1058 ((bfd_signed_vma) val)
1059 - ((bfd_signed_vma)
1060 /* Offset from the start of the current section
1061 to the start of the stubs. */
1062 (s->output_offset
1063 /* Offset of the start of this stub from the start of the stubs. */
1064 + my_offset
1065 /* Address of the start of the current section. */
1066 + s->output_section->vma)
1067 /* The branch instruction is 4 bytes into the stub. */
1068 + 4
1069 /* ARM branches work from the pc of the instruction + 8. */
1070 + 8);
1071
1072 bfd_put_32 (output_bfd,
1073 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
1074 s->contents + my_offset + 4);
1075 }
1076
1077 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
1078
1079 /* Now go back and fix up the original BL insn to point to here. */
1080 ret_offset =
1081 /* Address of where the stub is located. */
1082 (s->output_section->vma + s->output_offset + my_offset)
1083 /* Address of where the BL is located. */
1084 - (input_section->output_section->vma + input_section->output_offset
1085 + offset)
1086 /* Addend in the relocation. */
1087 - addend
1088 /* Biassing for PC-relative addressing. */
1089 - 8;
1090
1091 tmp = bfd_get_32 (input_bfd, hit_data
1092 - input_section->vma);
1093
1094 bfd_put_32 (output_bfd,
1095 (bfd_vma) insert_thumb_branch (tmp, ret_offset),
1096 hit_data - input_section->vma);
1097
1098 return TRUE;
1099 }
1100
1101 /* Arm code calling a Thumb function. */
1102
1103 static int
1104 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
1105 const char * name,
1106 bfd * input_bfd,
1107 bfd * output_bfd,
1108 asection * input_section,
1109 bfd_byte * hit_data,
1110 asection * sym_sec,
1111 bfd_vma offset,
1112 bfd_signed_vma addend,
1113 bfd_vma val)
1114 {
1115 unsigned long int tmp;
1116 bfd_vma my_offset;
1117 asection * s;
1118 long int ret_offset;
1119 struct elf_link_hash_entry * myh;
1120 struct elf32_arm_link_hash_table * globals;
1121
1122 myh = find_arm_glue (info, name, input_bfd);
1123 if (myh == NULL)
1124 return FALSE;
1125
1126 globals = elf32_arm_hash_table (info);
1127
1128 BFD_ASSERT (globals != NULL);
1129 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
1130
1131 my_offset = myh->root.u.def.value;
1132 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
1133 ARM2THUMB_GLUE_SECTION_NAME);
1134 BFD_ASSERT (s != NULL);
1135 BFD_ASSERT (s->contents != NULL);
1136 BFD_ASSERT (s->output_section != NULL);
1137
1138 if ((my_offset & 0x01) == 0x01)
1139 {
1140 if (sym_sec != NULL
1141 && sym_sec->owner != NULL
1142 && !INTERWORK_FLAG (sym_sec->owner))
1143 {
1144 (*_bfd_error_handler)
1145 (_("%B(%s): warning: interworking not enabled.\n"
1146 " first occurrence: %B: arm call to thumb"),
1147 sym_sec->owner, input_bfd, name);
1148 }
1149
1150 --my_offset;
1151 myh->root.u.def.value = my_offset;
1152
1153 bfd_put_32 (output_bfd, (bfd_vma) a2t1_ldr_insn,
1154 s->contents + my_offset);
1155
1156 bfd_put_32 (output_bfd, (bfd_vma) a2t2_bx_r12_insn,
1157 s->contents + my_offset + 4);
1158
1159 /* It's a thumb address. Add the low order bit. */
1160 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
1161 s->contents + my_offset + 8);
1162 }
1163
1164 BFD_ASSERT (my_offset <= globals->arm_glue_size);
1165
1166 tmp = bfd_get_32 (input_bfd, hit_data);
1167 tmp = tmp & 0xFF000000;
1168
1169 /* Somehow these are both 4 too far, so subtract 8. */
1170 ret_offset = (s->output_offset
1171 + my_offset
1172 + s->output_section->vma
1173 - (input_section->output_offset
1174 + input_section->output_section->vma
1175 + offset + addend)
1176 - 8);
1177
1178 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
1179
1180 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
1181
1182 return TRUE;
1183 }
1184
1185
1186 #ifndef OLD_ARM_ABI
1187 /* Some relocations map to different relocations depending on the
1188 target. Return the real relocation. */
1189 static int
1190 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
1191 int r_type)
1192 {
1193 switch (r_type)
1194 {
1195 case R_ARM_TARGET1:
1196 if (globals->target1_is_rel)
1197 return R_ARM_REL32;
1198 else
1199 return R_ARM_ABS32;
1200
1201 case R_ARM_TARGET2:
1202 return globals->target2_reloc;
1203
1204 default:
1205 return r_type;
1206 }
1207 }
1208 #endif /* OLD_ARM_ABI */
1209
1210
1211 /* Perform a relocation as part of a final link. */
1212
1213 static bfd_reloc_status_type
1214 elf32_arm_final_link_relocate (reloc_howto_type * howto,
1215 bfd * input_bfd,
1216 bfd * output_bfd,
1217 asection * input_section,
1218 bfd_byte * contents,
1219 Elf_Internal_Rela * rel,
1220 bfd_vma value,
1221 struct bfd_link_info * info,
1222 asection * sym_sec,
1223 const char * sym_name,
1224 int sym_flags,
1225 struct elf_link_hash_entry * h)
1226 {
1227 unsigned long r_type = howto->type;
1228 unsigned long r_symndx;
1229 bfd_byte * hit_data = contents + rel->r_offset;
1230 bfd * dynobj = NULL;
1231 Elf_Internal_Shdr * symtab_hdr;
1232 struct elf_link_hash_entry ** sym_hashes;
1233 bfd_vma * local_got_offsets;
1234 asection * sgot = NULL;
1235 asection * splt = NULL;
1236 asection * sreloc = NULL;
1237 bfd_vma addend;
1238 bfd_signed_vma signed_addend;
1239 struct elf32_arm_link_hash_table * globals;
1240
1241 globals = elf32_arm_hash_table (info);
1242
1243 #ifndef OLD_ARM_ABI
1244 /* Some relocation type map to different relocations depending on the
1245 target. We pick the right one here. */
1246 r_type = arm_real_reloc_type (globals, r_type);
1247 if (r_type != howto->type)
1248 howto = elf32_arm_howto_from_type (r_type);
1249 #endif /* OLD_ARM_ABI */
1250
1251 /* If the start address has been set, then set the EF_ARM_HASENTRY
1252 flag. Setting this more than once is redundant, but the cost is
1253 not too high, and it keeps the code simple.
1254
1255 The test is done here, rather than somewhere else, because the
1256 start address is only set just before the final link commences.
1257
1258 Note - if the user deliberately sets a start address of 0, the
1259 flag will not be set. */
1260 if (bfd_get_start_address (output_bfd) != 0)
1261 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
1262
1263 dynobj = elf_hash_table (info)->dynobj;
1264 if (dynobj)
1265 {
1266 sgot = bfd_get_section_by_name (dynobj, ".got");
1267 splt = bfd_get_section_by_name (dynobj, ".plt");
1268 }
1269 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1270 sym_hashes = elf_sym_hashes (input_bfd);
1271 local_got_offsets = elf_local_got_offsets (input_bfd);
1272 r_symndx = ELF32_R_SYM (rel->r_info);
1273
1274 #if USE_REL
1275 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
1276
1277 if (addend & ((howto->src_mask + 1) >> 1))
1278 {
1279 signed_addend = -1;
1280 signed_addend &= ~ howto->src_mask;
1281 signed_addend |= addend;
1282 }
1283 else
1284 signed_addend = addend;
1285 #else
1286 addend = signed_addend = rel->r_addend;
1287 #endif
1288
1289 switch (r_type)
1290 {
1291 case R_ARM_NONE:
1292 return bfd_reloc_ok;
1293
1294 case R_ARM_PC24:
1295 case R_ARM_ABS32:
1296 case R_ARM_REL32:
1297 #ifndef OLD_ARM_ABI
1298 case R_ARM_XPC25:
1299 case R_ARM_PREL31:
1300 #endif
1301 case R_ARM_PLT32:
1302 /* r_symndx will be zero only for relocs against symbols
1303 from removed linkonce sections, or sections discarded by
1304 a linker script. */
1305 if (r_symndx == 0)
1306 return bfd_reloc_ok;
1307
1308 /* Handle relocations which should use the PLT entry. ABS32/REL32
1309 will use the symbol's value, which may point to a PLT entry, but we
1310 don't need to handle that here. If we created a PLT entry, all
1311 branches in this object should go to it. */
1312 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
1313 #ifndef OLD_ARM_ABI
1314 && r_type != R_ARM_PREL31
1315 #endif
1316 )
1317 && h != NULL
1318 && splt != NULL
1319 && h->plt.offset != (bfd_vma) -1)
1320 {
1321 /* If we've created a .plt section, and assigned a PLT entry to
1322 this function, it should not be known to bind locally. If
1323 it were, we would have cleared the PLT entry. */
1324 BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info, h));
1325
1326 value = (splt->output_section->vma
1327 + splt->output_offset
1328 + h->plt.offset);
1329 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1330 contents, rel->r_offset, value,
1331 (bfd_vma) 0);
1332 }
1333
1334 /* When generating a shared object, these relocations are copied
1335 into the output file to be resolved at run time. */
1336 if (info->shared
1337 && (input_section->flags & SEC_ALLOC)
1338 && ((r_type != R_ARM_REL32
1339 #ifndef OLD_ARM_ABI
1340 && r_type != R_ARM_PREL31
1341 #endif
1342 ) || !SYMBOL_CALLS_LOCAL (info, h))
1343 && (h == NULL
1344 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
1345 || h->root.type != bfd_link_hash_undefweak)
1346 && r_type != R_ARM_PC24
1347 && r_type != R_ARM_PLT32)
1348 {
1349 Elf_Internal_Rela outrel;
1350 bfd_byte *loc;
1351 bfd_boolean skip, relocate;
1352
1353 if (sreloc == NULL)
1354 {
1355 const char * name;
1356
1357 name = (bfd_elf_string_from_elf_section
1358 (input_bfd,
1359 elf_elfheader (input_bfd)->e_shstrndx,
1360 elf_section_data (input_section)->rel_hdr.sh_name));
1361 if (name == NULL)
1362 return bfd_reloc_notsupported;
1363
1364 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
1365 && strcmp (bfd_get_section_name (input_bfd,
1366 input_section),
1367 name + 4) == 0);
1368
1369 sreloc = bfd_get_section_by_name (dynobj, name);
1370 BFD_ASSERT (sreloc != NULL);
1371 }
1372
1373 skip = FALSE;
1374 relocate = FALSE;
1375
1376 outrel.r_offset =
1377 _bfd_elf_section_offset (output_bfd, info, input_section,
1378 rel->r_offset);
1379 if (outrel.r_offset == (bfd_vma) -1)
1380 skip = TRUE;
1381 else if (outrel.r_offset == (bfd_vma) -2)
1382 skip = TRUE, relocate = TRUE;
1383 outrel.r_offset += (input_section->output_section->vma
1384 + input_section->output_offset);
1385
1386 if (skip)
1387 memset (&outrel, 0, sizeof outrel);
1388 else if (h != NULL
1389 && h->dynindx != -1
1390 && (!info->shared
1391 || !info->symbolic
1392 || !h->def_regular))
1393 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
1394 else
1395 {
1396 /* This symbol is local, or marked to become local. */
1397 relocate = TRUE;
1398 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1399 }
1400
1401 loc = sreloc->contents;
1402 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rel);
1403 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
1404
1405 /* If this reloc is against an external symbol, we do not want to
1406 fiddle with the addend. Otherwise, we need to include the symbol
1407 value so that it becomes an addend for the dynamic reloc. */
1408 if (! relocate)
1409 return bfd_reloc_ok;
1410
1411 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1412 contents, rel->r_offset, value,
1413 (bfd_vma) 0);
1414 }
1415 else switch (r_type)
1416 {
1417 #ifndef OLD_ARM_ABI
1418 case R_ARM_XPC25: /* Arm BLX instruction. */
1419 #endif
1420 case R_ARM_PC24: /* Arm B/BL instruction */
1421 case R_ARM_PLT32:
1422 #ifndef OLD_ARM_ABI
1423 if (r_type == R_ARM_XPC25)
1424 {
1425 /* Check for Arm calling Arm function. */
1426 /* FIXME: Should we translate the instruction into a BL
1427 instruction instead ? */
1428 if (sym_flags != STT_ARM_TFUNC)
1429 (*_bfd_error_handler)
1430 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
1431 input_bfd,
1432 h ? h->root.root.string : "(local)");
1433 }
1434 else
1435 #endif
1436 {
1437 /* Check for Arm calling Thumb function. */
1438 if (sym_flags == STT_ARM_TFUNC)
1439 {
1440 elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
1441 output_bfd, input_section,
1442 hit_data, sym_sec, rel->r_offset,
1443 signed_addend, value);
1444 return bfd_reloc_ok;
1445 }
1446 }
1447
1448 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1449 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0)
1450 {
1451 /* The old way of doing things. Trearing the addend as a
1452 byte sized field and adding in the pipeline offset. */
1453 value -= (input_section->output_section->vma
1454 + input_section->output_offset);
1455 value -= rel->r_offset;
1456 value += addend;
1457
1458 if (! globals->no_pipeline_knowledge)
1459 value -= 8;
1460 }
1461 else
1462 {
1463 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
1464 where:
1465 S is the address of the symbol in the relocation.
1466 P is address of the instruction being relocated.
1467 A is the addend (extracted from the instruction) in bytes.
1468
1469 S is held in 'value'.
1470 P is the base address of the section containing the
1471 instruction plus the offset of the reloc into that
1472 section, ie:
1473 (input_section->output_section->vma +
1474 input_section->output_offset +
1475 rel->r_offset).
1476 A is the addend, converted into bytes, ie:
1477 (signed_addend * 4)
1478
1479 Note: None of these operations have knowledge of the pipeline
1480 size of the processor, thus it is up to the assembler to
1481 encode this information into the addend. */
1482 value -= (input_section->output_section->vma
1483 + input_section->output_offset);
1484 value -= rel->r_offset;
1485 value += (signed_addend << howto->size);
1486
1487 /* Previous versions of this code also used to add in the
1488 pipeline offset here. This is wrong because the linker is
1489 not supposed to know about such things, and one day it might
1490 change. In order to support old binaries that need the old
1491 behaviour however, so we attempt to detect which ABI was
1492 used to create the reloc. */
1493 if (! globals->no_pipeline_knowledge)
1494 {
1495 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form */
1496
1497 i_ehdrp = elf_elfheader (input_bfd);
1498
1499 if (i_ehdrp->e_ident[EI_OSABI] == 0)
1500 value -= 8;
1501 }
1502 }
1503
1504 signed_addend = value;
1505 signed_addend >>= howto->rightshift;
1506
1507 /* It is not an error for an undefined weak reference to be
1508 out of range. Any program that branches to such a symbol
1509 is going to crash anyway, so there is no point worrying
1510 about getting the destination exactly right. */
1511 if (! h || h->root.type != bfd_link_hash_undefweak)
1512 {
1513 /* Perform a signed range check. */
1514 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
1515 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
1516 return bfd_reloc_overflow;
1517 }
1518
1519 #ifndef OLD_ARM_ABI
1520 /* If necessary set the H bit in the BLX instruction. */
1521 if (r_type == R_ARM_XPC25 && ((value & 2) == 2))
1522 value = (signed_addend & howto->dst_mask)
1523 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask))
1524 | (1 << 24);
1525 else
1526 #endif
1527 value = (signed_addend & howto->dst_mask)
1528 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
1529 break;
1530
1531 case R_ARM_ABS32:
1532 value += addend;
1533 if (sym_flags == STT_ARM_TFUNC)
1534 value |= 1;
1535 break;
1536
1537 case R_ARM_REL32:
1538 value -= (input_section->output_section->vma
1539 + input_section->output_offset + rel->r_offset);
1540 value += addend;
1541 break;
1542
1543 #ifndef OLD_ARM_ABI
1544 case R_ARM_PREL31:
1545 value -= (input_section->output_section->vma
1546 + input_section->output_offset + rel->r_offset);
1547 value += signed_addend;
1548 if (! h || h->root.type != bfd_link_hash_undefweak)
1549 {
1550 /* Check for overflow */
1551 if ((value ^ (value >> 1)) & (1 << 30))
1552 return bfd_reloc_overflow;
1553 }
1554 value &= 0x7fffffff;
1555 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
1556 if (sym_flags == STT_ARM_TFUNC)
1557 value |= 1;
1558 break;
1559 #endif
1560 }
1561
1562 bfd_put_32 (input_bfd, value, hit_data);
1563 return bfd_reloc_ok;
1564
1565 case R_ARM_ABS8:
1566 value += addend;
1567 if ((long) value > 0x7f || (long) value < -0x80)
1568 return bfd_reloc_overflow;
1569
1570 bfd_put_8 (input_bfd, value, hit_data);
1571 return bfd_reloc_ok;
1572
1573 case R_ARM_ABS16:
1574 value += addend;
1575
1576 if ((long) value > 0x7fff || (long) value < -0x8000)
1577 return bfd_reloc_overflow;
1578
1579 bfd_put_16 (input_bfd, value, hit_data);
1580 return bfd_reloc_ok;
1581
1582 case R_ARM_ABS12:
1583 /* Support ldr and str instruction for the arm */
1584 /* Also thumb b (unconditional branch). ??? Really? */
1585 value += addend;
1586
1587 if ((long) value > 0x7ff || (long) value < -0x800)
1588 return bfd_reloc_overflow;
1589
1590 value |= (bfd_get_32 (input_bfd, hit_data) & 0xfffff000);
1591 bfd_put_32 (input_bfd, value, hit_data);
1592 return bfd_reloc_ok;
1593
1594 case R_ARM_THM_ABS5:
1595 /* Support ldr and str instructions for the thumb. */
1596 #if USE_REL
1597 /* Need to refetch addend. */
1598 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
1599 /* ??? Need to determine shift amount from operand size. */
1600 addend >>= howto->rightshift;
1601 #endif
1602 value += addend;
1603
1604 /* ??? Isn't value unsigned? */
1605 if ((long) value > 0x1f || (long) value < -0x10)
1606 return bfd_reloc_overflow;
1607
1608 /* ??? Value needs to be properly shifted into place first. */
1609 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
1610 bfd_put_16 (input_bfd, value, hit_data);
1611 return bfd_reloc_ok;
1612
1613 #ifndef OLD_ARM_ABI
1614 case R_ARM_THM_XPC22:
1615 #endif
1616 case R_ARM_THM_PC22:
1617 /* Thumb BL (branch long instruction). */
1618 {
1619 bfd_vma relocation;
1620 bfd_boolean overflow = FALSE;
1621 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
1622 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
1623 bfd_signed_vma reloc_signed_max = ((1 << (howto->bitsize - 1)) - 1) >> howto->rightshift;
1624 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
1625 bfd_vma check;
1626 bfd_signed_vma signed_check;
1627
1628 #if USE_REL
1629 /* Need to refetch the addend and squish the two 11 bit pieces
1630 together. */
1631 {
1632 bfd_vma upper = upper_insn & 0x7ff;
1633 bfd_vma lower = lower_insn & 0x7ff;
1634 upper = (upper ^ 0x400) - 0x400; /* Sign extend. */
1635 addend = (upper << 12) | (lower << 1);
1636 signed_addend = addend;
1637 }
1638 #endif
1639 #ifndef OLD_ARM_ABI
1640 if (r_type == R_ARM_THM_XPC22)
1641 {
1642 /* Check for Thumb to Thumb call. */
1643 /* FIXME: Should we translate the instruction into a BL
1644 instruction instead ? */
1645 if (sym_flags == STT_ARM_TFUNC)
1646 (*_bfd_error_handler)
1647 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
1648 input_bfd,
1649 h ? h->root.root.string : "(local)");
1650 }
1651 else
1652 #endif
1653 {
1654 /* If it is not a call to Thumb, assume call to Arm.
1655 If it is a call relative to a section name, then it is not a
1656 function call at all, but rather a long jump. */
1657 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION)
1658 {
1659 if (elf32_thumb_to_arm_stub
1660 (info, sym_name, input_bfd, output_bfd, input_section,
1661 hit_data, sym_sec, rel->r_offset, signed_addend, value))
1662 return bfd_reloc_ok;
1663 else
1664 return bfd_reloc_dangerous;
1665 }
1666 }
1667
1668 relocation = value + signed_addend;
1669
1670 relocation -= (input_section->output_section->vma
1671 + input_section->output_offset
1672 + rel->r_offset);
1673
1674 if (! globals->no_pipeline_knowledge)
1675 {
1676 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form. */
1677
1678 i_ehdrp = elf_elfheader (input_bfd);
1679
1680 /* Previous versions of this code also used to add in the pipline
1681 offset here. This is wrong because the linker is not supposed
1682 to know about such things, and one day it might change. In order
1683 to support old binaries that need the old behaviour however, so
1684 we attempt to detect which ABI was used to create the reloc. */
1685 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1686 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0
1687 || i_ehdrp->e_ident[EI_OSABI] == 0)
1688 relocation += 4;
1689 }
1690
1691 check = relocation >> howto->rightshift;
1692
1693 /* If this is a signed value, the rightshift just dropped
1694 leading 1 bits (assuming twos complement). */
1695 if ((bfd_signed_vma) relocation >= 0)
1696 signed_check = check;
1697 else
1698 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
1699
1700 /* Assumes two's complement. */
1701 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
1702 overflow = TRUE;
1703
1704 #ifndef OLD_ARM_ABI
1705 if (r_type == R_ARM_THM_XPC22
1706 && ((lower_insn & 0x1800) == 0x0800))
1707 /* For a BLX instruction, make sure that the relocation is rounded up
1708 to a word boundary. This follows the semantics of the instruction
1709 which specifies that bit 1 of the target address will come from bit
1710 1 of the base address. */
1711 relocation = (relocation + 2) & ~ 3;
1712 #endif
1713 /* Put RELOCATION back into the insn. */
1714 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 12) & 0x7ff);
1715 lower_insn = (lower_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 1) & 0x7ff);
1716
1717 /* Put the relocated value back in the object file: */
1718 bfd_put_16 (input_bfd, upper_insn, hit_data);
1719 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
1720
1721 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
1722 }
1723 break;
1724
1725 case R_ARM_THM_PC11:
1726 /* Thumb B (branch) instruction). */
1727 {
1728 bfd_signed_vma relocation;
1729 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
1730 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
1731 bfd_signed_vma signed_check;
1732
1733 #if USE_REL
1734 /* Need to refetch addend. */
1735 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
1736 if (addend & ((howto->src_mask + 1) >> 1))
1737 {
1738 signed_addend = -1;
1739 signed_addend &= ~ howto->src_mask;
1740 signed_addend |= addend;
1741 }
1742 else
1743 signed_addend = addend;
1744 /* The value in the insn has been right shifted. We need to
1745 undo this, so that we can perform the address calculation
1746 in terms of bytes. */
1747 signed_addend <<= howto->rightshift;
1748 #endif
1749 relocation = value + signed_addend;
1750
1751 relocation -= (input_section->output_section->vma
1752 + input_section->output_offset
1753 + rel->r_offset);
1754
1755 relocation >>= howto->rightshift;
1756 signed_check = relocation;
1757 relocation &= howto->dst_mask;
1758 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
1759
1760 bfd_put_16 (input_bfd, relocation, hit_data);
1761
1762 /* Assumes two's complement. */
1763 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
1764 return bfd_reloc_overflow;
1765
1766 return bfd_reloc_ok;
1767 }
1768
1769 #ifndef OLD_ARM_ABI
1770 case R_ARM_ALU_PCREL7_0:
1771 case R_ARM_ALU_PCREL15_8:
1772 case R_ARM_ALU_PCREL23_15:
1773 {
1774 bfd_vma insn;
1775 bfd_vma relocation;
1776
1777 insn = bfd_get_32 (input_bfd, hit_data);
1778 #if USE_REL
1779 /* Extract the addend. */
1780 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
1781 signed_addend = addend;
1782 #endif
1783 relocation = value + signed_addend;
1784
1785 relocation -= (input_section->output_section->vma
1786 + input_section->output_offset
1787 + rel->r_offset);
1788 insn = (insn & ~0xfff)
1789 | ((howto->bitpos << 7) & 0xf00)
1790 | ((relocation >> howto->bitpos) & 0xff);
1791 bfd_put_32 (input_bfd, value, hit_data);
1792 }
1793 return bfd_reloc_ok;
1794 #endif
1795
1796 case R_ARM_GNU_VTINHERIT:
1797 case R_ARM_GNU_VTENTRY:
1798 return bfd_reloc_ok;
1799
1800 case R_ARM_COPY:
1801 return bfd_reloc_notsupported;
1802
1803 case R_ARM_GLOB_DAT:
1804 return bfd_reloc_notsupported;
1805
1806 case R_ARM_JUMP_SLOT:
1807 return bfd_reloc_notsupported;
1808
1809 case R_ARM_RELATIVE:
1810 return bfd_reloc_notsupported;
1811
1812 case R_ARM_GOTOFF:
1813 /* Relocation is relative to the start of the
1814 global offset table. */
1815
1816 BFD_ASSERT (sgot != NULL);
1817 if (sgot == NULL)
1818 return bfd_reloc_notsupported;
1819
1820 /* If we are addressing a Thumb function, we need to adjust the
1821 address by one, so that attempts to call the function pointer will
1822 correctly interpret it as Thumb code. */
1823 if (sym_flags == STT_ARM_TFUNC)
1824 value += 1;
1825
1826 /* Note that sgot->output_offset is not involved in this
1827 calculation. We always want the start of .got. If we
1828 define _GLOBAL_OFFSET_TABLE in a different way, as is
1829 permitted by the ABI, we might have to change this
1830 calculation. */
1831 value -= sgot->output_section->vma;
1832 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1833 contents, rel->r_offset, value,
1834 (bfd_vma) 0);
1835
1836 case R_ARM_GOTPC:
1837 /* Use global offset table as symbol value. */
1838 BFD_ASSERT (sgot != NULL);
1839
1840 if (sgot == NULL)
1841 return bfd_reloc_notsupported;
1842
1843 value = sgot->output_section->vma;
1844 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1845 contents, rel->r_offset, value,
1846 (bfd_vma) 0);
1847
1848 case R_ARM_GOT32:
1849 #ifndef OLD_ARM_ABI
1850 case R_ARM_GOT_PREL:
1851 #endif
1852 /* Relocation is to the entry for this symbol in the
1853 global offset table. */
1854 if (sgot == NULL)
1855 return bfd_reloc_notsupported;
1856
1857 if (h != NULL)
1858 {
1859 bfd_vma off;
1860 bfd_boolean dyn;
1861
1862 off = h->got.offset;
1863 BFD_ASSERT (off != (bfd_vma) -1);
1864 dyn = globals->root.dynamic_sections_created;
1865
1866 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
1867 || (info->shared
1868 && SYMBOL_REFERENCES_LOCAL (info, h))
1869 || (ELF_ST_VISIBILITY (h->other)
1870 && h->root.type == bfd_link_hash_undefweak))
1871 {
1872 /* This is actually a static link, or it is a -Bsymbolic link
1873 and the symbol is defined locally. We must initialize this
1874 entry in the global offset table. Since the offset must
1875 always be a multiple of 4, we use the least significant bit
1876 to record whether we have initialized it already.
1877
1878 When doing a dynamic link, we create a .rel.got relocation
1879 entry to initialize the value. This is done in the
1880 finish_dynamic_symbol routine. */
1881 if ((off & 1) != 0)
1882 off &= ~1;
1883 else
1884 {
1885 /* If we are addressing a Thumb function, we need to
1886 adjust the address by one, so that attempts to
1887 call the function pointer will correctly
1888 interpret it as Thumb code. */
1889 if (sym_flags == STT_ARM_TFUNC)
1890 value |= 1;
1891
1892 bfd_put_32 (output_bfd, value, sgot->contents + off);
1893 h->got.offset |= 1;
1894 }
1895 }
1896
1897 value = sgot->output_offset + off;
1898 }
1899 else
1900 {
1901 bfd_vma off;
1902
1903 BFD_ASSERT (local_got_offsets != NULL &&
1904 local_got_offsets[r_symndx] != (bfd_vma) -1);
1905
1906 off = local_got_offsets[r_symndx];
1907
1908 /* The offset must always be a multiple of 4. We use the
1909 least significant bit to record whether we have already
1910 generated the necessary reloc. */
1911 if ((off & 1) != 0)
1912 off &= ~1;
1913 else
1914 {
1915 bfd_put_32 (output_bfd, value, sgot->contents + off);
1916
1917 if (info->shared)
1918 {
1919 asection * srelgot;
1920 Elf_Internal_Rela outrel;
1921 bfd_byte *loc;
1922
1923 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
1924 BFD_ASSERT (srelgot != NULL);
1925
1926 outrel.r_offset = (sgot->output_section->vma
1927 + sgot->output_offset
1928 + off);
1929 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1930 loc = srelgot->contents;
1931 loc += srelgot->reloc_count++ * sizeof (Elf32_External_Rel);
1932 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
1933 }
1934
1935 local_got_offsets[r_symndx] |= 1;
1936 }
1937
1938 value = sgot->output_offset + off;
1939 }
1940 if (r_type != R_ARM_GOT32)
1941 value += sgot->output_section->vma;
1942
1943 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1944 contents, rel->r_offset, value,
1945 (bfd_vma) 0);
1946
1947 case R_ARM_SBREL32:
1948 return bfd_reloc_notsupported;
1949
1950 case R_ARM_AMP_VCALL9:
1951 return bfd_reloc_notsupported;
1952
1953 case R_ARM_RSBREL32:
1954 return bfd_reloc_notsupported;
1955
1956 case R_ARM_THM_RPC22:
1957 return bfd_reloc_notsupported;
1958
1959 case R_ARM_RREL32:
1960 return bfd_reloc_notsupported;
1961
1962 case R_ARM_RABS32:
1963 return bfd_reloc_notsupported;
1964
1965 case R_ARM_RPC24:
1966 return bfd_reloc_notsupported;
1967
1968 case R_ARM_RBASE:
1969 return bfd_reloc_notsupported;
1970
1971 default:
1972 return bfd_reloc_notsupported;
1973 }
1974 }
1975
1976 #if USE_REL
1977 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
1978 static void
1979 arm_add_to_rel (bfd * abfd,
1980 bfd_byte * address,
1981 reloc_howto_type * howto,
1982 bfd_signed_vma increment)
1983 {
1984 bfd_signed_vma addend;
1985
1986 if (howto->type == R_ARM_THM_PC22)
1987 {
1988 int upper_insn, lower_insn;
1989 int upper, lower;
1990
1991 upper_insn = bfd_get_16 (abfd, address);
1992 lower_insn = bfd_get_16 (abfd, address + 2);
1993 upper = upper_insn & 0x7ff;
1994 lower = lower_insn & 0x7ff;
1995
1996 addend = (upper << 12) | (lower << 1);
1997 addend += increment;
1998 addend >>= 1;
1999
2000 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
2001 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
2002
2003 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
2004 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
2005 }
2006 else
2007 {
2008 bfd_vma contents;
2009
2010 contents = bfd_get_32 (abfd, address);
2011
2012 /* Get the (signed) value from the instruction. */
2013 addend = contents & howto->src_mask;
2014 if (addend & ((howto->src_mask + 1) >> 1))
2015 {
2016 bfd_signed_vma mask;
2017
2018 mask = -1;
2019 mask &= ~ howto->src_mask;
2020 addend |= mask;
2021 }
2022
2023 /* Add in the increment, (which is a byte value). */
2024 switch (howto->type)
2025 {
2026 default:
2027 addend += increment;
2028 break;
2029
2030 case R_ARM_PC24:
2031 addend <<= howto->size;
2032 addend += increment;
2033
2034 /* Should we check for overflow here ? */
2035
2036 /* Drop any undesired bits. */
2037 addend >>= howto->rightshift;
2038 break;
2039 }
2040
2041 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
2042
2043 bfd_put_32 (abfd, contents, address);
2044 }
2045 }
2046 #endif /* USE_REL */
2047
2048 /* Relocate an ARM ELF section. */
2049 static bfd_boolean
2050 elf32_arm_relocate_section (bfd * output_bfd,
2051 struct bfd_link_info * info,
2052 bfd * input_bfd,
2053 asection * input_section,
2054 bfd_byte * contents,
2055 Elf_Internal_Rela * relocs,
2056 Elf_Internal_Sym * local_syms,
2057 asection ** local_sections)
2058 {
2059 Elf_Internal_Shdr *symtab_hdr;
2060 struct elf_link_hash_entry **sym_hashes;
2061 Elf_Internal_Rela *rel;
2062 Elf_Internal_Rela *relend;
2063 const char *name;
2064
2065 #if !USE_REL
2066 if (info->relocatable)
2067 return TRUE;
2068 #endif
2069
2070 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
2071 sym_hashes = elf_sym_hashes (input_bfd);
2072
2073 rel = relocs;
2074 relend = relocs + input_section->reloc_count;
2075 for (; rel < relend; rel++)
2076 {
2077 int r_type;
2078 reloc_howto_type * howto;
2079 unsigned long r_symndx;
2080 Elf_Internal_Sym * sym;
2081 asection * sec;
2082 struct elf_link_hash_entry * h;
2083 bfd_vma relocation;
2084 bfd_reloc_status_type r;
2085 arelent bfd_reloc;
2086
2087 r_symndx = ELF32_R_SYM (rel->r_info);
2088 r_type = ELF32_R_TYPE (rel->r_info);
2089
2090 if ( r_type == R_ARM_GNU_VTENTRY
2091 || r_type == R_ARM_GNU_VTINHERIT)
2092 continue;
2093
2094 elf32_arm_info_to_howto (input_bfd, & bfd_reloc, rel);
2095 howto = bfd_reloc.howto;
2096
2097 #if USE_REL
2098 if (info->relocatable)
2099 {
2100 /* This is a relocatable link. We don't have to change
2101 anything, unless the reloc is against a section symbol,
2102 in which case we have to adjust according to where the
2103 section symbol winds up in the output section. */
2104 if (r_symndx < symtab_hdr->sh_info)
2105 {
2106 sym = local_syms + r_symndx;
2107 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2108 {
2109 sec = local_sections[r_symndx];
2110 arm_add_to_rel (input_bfd, contents + rel->r_offset,
2111 howto,
2112 (bfd_signed_vma) (sec->output_offset
2113 + sym->st_value));
2114 }
2115 }
2116
2117 continue;
2118 }
2119 #endif
2120
2121 /* This is a final link. */
2122 h = NULL;
2123 sym = NULL;
2124 sec = NULL;
2125
2126 if (r_symndx < symtab_hdr->sh_info)
2127 {
2128 sym = local_syms + r_symndx;
2129 sec = local_sections[r_symndx];
2130 #if USE_REL
2131 relocation = (sec->output_section->vma
2132 + sec->output_offset
2133 + sym->st_value);
2134 if ((sec->flags & SEC_MERGE)
2135 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2136 {
2137 asection *msec;
2138 bfd_vma addend, value;
2139
2140 if (howto->rightshift)
2141 {
2142 (*_bfd_error_handler)
2143 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
2144 input_bfd, input_section,
2145 (long) rel->r_offset, howto->name);
2146 return FALSE;
2147 }
2148
2149 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
2150
2151 /* Get the (signed) value from the instruction. */
2152 addend = value & howto->src_mask;
2153 if (addend & ((howto->src_mask + 1) >> 1))
2154 {
2155 bfd_signed_vma mask;
2156
2157 mask = -1;
2158 mask &= ~ howto->src_mask;
2159 addend |= mask;
2160 }
2161 msec = sec;
2162 addend =
2163 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
2164 - relocation;
2165 addend += msec->output_section->vma + msec->output_offset;
2166 value = (value & ~ howto->dst_mask) | (addend & howto->dst_mask);
2167 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
2168 }
2169 #else
2170 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2171 #endif
2172 }
2173 else
2174 {
2175 bfd_boolean warned;
2176 bfd_boolean unresolved_reloc;
2177
2178 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2179 r_symndx, symtab_hdr, sym_hashes,
2180 h, sec, relocation,
2181 unresolved_reloc, warned);
2182
2183 if (unresolved_reloc || relocation != 0)
2184 {
2185 /* In these cases, we don't need the relocation value.
2186 We check specially because in some obscure cases
2187 sec->output_section will be NULL. */
2188 switch (r_type)
2189 {
2190 case R_ARM_PC24:
2191 case R_ARM_ABS32:
2192 case R_ARM_THM_PC22:
2193 case R_ARM_PLT32:
2194
2195 if (info->shared
2196 && ((!info->symbolic && h->dynindx != -1)
2197 || !h->def_regular)
2198 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2199 && ((input_section->flags & SEC_ALLOC) != 0
2200 /* DWARF will emit R_ARM_ABS32 relocations in its
2201 sections against symbols defined externally
2202 in shared libraries. We can't do anything
2203 with them here. */
2204 || ((input_section->flags & SEC_DEBUGGING) != 0
2205 && h->def_dynamic))
2206 )
2207 relocation = 0;
2208 break;
2209
2210 case R_ARM_GOTPC:
2211 relocation = 0;
2212 break;
2213
2214 case R_ARM_GOT32:
2215 #ifndef OLD_ARM_ABI
2216 case R_ARM_GOT_PREL:
2217 #endif
2218 if ((WILL_CALL_FINISH_DYNAMIC_SYMBOL
2219 (elf_hash_table (info)->dynamic_sections_created,
2220 info->shared, h))
2221 && (!info->shared
2222 || (!info->symbolic && h->dynindx != -1)
2223 || !h->def_regular))
2224 relocation = 0;
2225 break;
2226
2227 default:
2228 if (unresolved_reloc)
2229 _bfd_error_handler
2230 (_("%B(%A): warning: unresolvable relocation %d against symbol `%s'"),
2231 input_bfd, input_section,
2232 r_type,
2233 h->root.root.string);
2234 break;
2235 }
2236 }
2237 }
2238
2239 if (h != NULL)
2240 name = h->root.root.string;
2241 else
2242 {
2243 name = (bfd_elf_string_from_elf_section
2244 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2245 if (name == NULL || *name == '\0')
2246 name = bfd_section_name (input_bfd, sec);
2247 }
2248
2249 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
2250 input_section, contents, rel,
2251 relocation, info, sec, name,
2252 (h ? ELF_ST_TYPE (h->type) :
2253 ELF_ST_TYPE (sym->st_info)), h);
2254
2255 if (r != bfd_reloc_ok)
2256 {
2257 const char * msg = (const char *) 0;
2258
2259 switch (r)
2260 {
2261 case bfd_reloc_overflow:
2262 /* If the overflowing reloc was to an undefined symbol,
2263 we have already printed one error message and there
2264 is no point complaining again. */
2265 if ((! h ||
2266 h->root.type != bfd_link_hash_undefined)
2267 && (!((*info->callbacks->reloc_overflow)
2268 (info, name, howto->name, (bfd_vma) 0,
2269 input_bfd, input_section, rel->r_offset))))
2270 return FALSE;
2271 break;
2272
2273 case bfd_reloc_undefined:
2274 if (!((*info->callbacks->undefined_symbol)
2275 (info, name, input_bfd, input_section,
2276 rel->r_offset, TRUE)))
2277 return FALSE;
2278 break;
2279
2280 case bfd_reloc_outofrange:
2281 msg = _("internal error: out of range error");
2282 goto common_error;
2283
2284 case bfd_reloc_notsupported:
2285 msg = _("internal error: unsupported relocation error");
2286 goto common_error;
2287
2288 case bfd_reloc_dangerous:
2289 msg = _("internal error: dangerous error");
2290 goto common_error;
2291
2292 default:
2293 msg = _("internal error: unknown error");
2294 /* fall through */
2295
2296 common_error:
2297 if (!((*info->callbacks->warning)
2298 (info, msg, name, input_bfd, input_section,
2299 rel->r_offset)))
2300 return FALSE;
2301 break;
2302 }
2303 }
2304 }
2305
2306 return TRUE;
2307 }
2308
2309 /* Set the right machine number. */
2310
2311 static bfd_boolean
2312 elf32_arm_object_p (bfd *abfd)
2313 {
2314 unsigned int mach;
2315
2316 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
2317
2318 if (mach != bfd_mach_arm_unknown)
2319 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
2320
2321 else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
2322 bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
2323
2324 else
2325 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
2326
2327 return TRUE;
2328 }
2329
2330 /* Function to keep ARM specific flags in the ELF header. */
2331 static bfd_boolean
2332 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
2333 {
2334 if (elf_flags_init (abfd)
2335 && elf_elfheader (abfd)->e_flags != flags)
2336 {
2337 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
2338 {
2339 if (flags & EF_ARM_INTERWORK)
2340 (*_bfd_error_handler)
2341 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
2342 abfd);
2343 else
2344 _bfd_error_handler
2345 (_("Warning: Clearing the interworking flag of %B due to outside request"),
2346 abfd);
2347 }
2348 }
2349 else
2350 {
2351 elf_elfheader (abfd)->e_flags = flags;
2352 elf_flags_init (abfd) = TRUE;
2353 }
2354
2355 return TRUE;
2356 }
2357
2358 /* Copy backend specific data from one object module to another. */
2359
2360 static bfd_boolean
2361 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
2362 {
2363 flagword in_flags;
2364 flagword out_flags;
2365
2366 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2367 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2368 return TRUE;
2369
2370 in_flags = elf_elfheader (ibfd)->e_flags;
2371 out_flags = elf_elfheader (obfd)->e_flags;
2372
2373 if (elf_flags_init (obfd)
2374 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
2375 && in_flags != out_flags)
2376 {
2377 /* Cannot mix APCS26 and APCS32 code. */
2378 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2379 return FALSE;
2380
2381 /* Cannot mix float APCS and non-float APCS code. */
2382 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2383 return FALSE;
2384
2385 /* If the src and dest have different interworking flags
2386 then turn off the interworking bit. */
2387 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2388 {
2389 if (out_flags & EF_ARM_INTERWORK)
2390 _bfd_error_handler
2391 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
2392 obfd, ibfd);
2393
2394 in_flags &= ~EF_ARM_INTERWORK;
2395 }
2396
2397 /* Likewise for PIC, though don't warn for this case. */
2398 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
2399 in_flags &= ~EF_ARM_PIC;
2400 }
2401
2402 elf_elfheader (obfd)->e_flags = in_flags;
2403 elf_flags_init (obfd) = TRUE;
2404
2405 return TRUE;
2406 }
2407
2408 /* Merge backend specific data from an object file to the output
2409 object file when linking. */
2410
2411 static bfd_boolean
2412 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
2413 {
2414 flagword out_flags;
2415 flagword in_flags;
2416 bfd_boolean flags_compatible = TRUE;
2417 asection *sec;
2418
2419 /* Check if we have the same endianess. */
2420 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
2421 return FALSE;
2422
2423 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2424 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2425 return TRUE;
2426
2427 /* The input BFD must have had its flags initialised. */
2428 /* The following seems bogus to me -- The flags are initialized in
2429 the assembler but I don't think an elf_flags_init field is
2430 written into the object. */
2431 /* BFD_ASSERT (elf_flags_init (ibfd)); */
2432
2433 in_flags = elf_elfheader (ibfd)->e_flags;
2434 out_flags = elf_elfheader (obfd)->e_flags;
2435
2436 if (!elf_flags_init (obfd))
2437 {
2438 /* If the input is the default architecture and had the default
2439 flags then do not bother setting the flags for the output
2440 architecture, instead allow future merges to do this. If no
2441 future merges ever set these flags then they will retain their
2442 uninitialised values, which surprise surprise, correspond
2443 to the default values. */
2444 if (bfd_get_arch_info (ibfd)->the_default
2445 && elf_elfheader (ibfd)->e_flags == 0)
2446 return TRUE;
2447
2448 elf_flags_init (obfd) = TRUE;
2449 elf_elfheader (obfd)->e_flags = in_flags;
2450
2451 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2452 && bfd_get_arch_info (obfd)->the_default)
2453 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
2454
2455 return TRUE;
2456 }
2457
2458 /* Determine what should happen if the input ARM architecture
2459 does not match the output ARM architecture. */
2460 if (! bfd_arm_merge_machines (ibfd, obfd))
2461 return FALSE;
2462
2463 /* Identical flags must be compatible. */
2464 if (in_flags == out_flags)
2465 return TRUE;
2466
2467 /* Check to see if the input BFD actually contains any sections. If
2468 not, its flags may not have been initialised either, but it
2469 cannot actually cause any incompatibility. Do not short-circuit
2470 dynamic objects; their section list may be emptied by
2471 elf_link_add_object_symbols.
2472
2473 Also check to see if there are no code sections in the input.
2474 In this case there is no need to check for code specific flags.
2475 XXX - do we need to worry about floating-point format compatability
2476 in data sections ? */
2477 if (!(ibfd->flags & DYNAMIC))
2478 {
2479 bfd_boolean null_input_bfd = TRUE;
2480 bfd_boolean only_data_sections = TRUE;
2481
2482 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2483 {
2484 /* Ignore synthetic glue sections. */
2485 if (strcmp (sec->name, ".glue_7")
2486 && strcmp (sec->name, ".glue_7t"))
2487 {
2488 if ((bfd_get_section_flags (ibfd, sec)
2489 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
2490 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
2491 only_data_sections = FALSE;
2492
2493 null_input_bfd = FALSE;
2494 break;
2495 }
2496 }
2497
2498 if (null_input_bfd || only_data_sections)
2499 return TRUE;
2500 }
2501
2502 /* Complain about various flag mismatches. */
2503 if (EF_ARM_EABI_VERSION (in_flags) != EF_ARM_EABI_VERSION (out_flags))
2504 {
2505 _bfd_error_handler
2506 (_("ERROR: %B is compiled for EABI version %d, whereas %B is compiled for version %d"),
2507 ibfd, obfd,
2508 (in_flags & EF_ARM_EABIMASK) >> 24,
2509 (out_flags & EF_ARM_EABIMASK) >> 24);
2510 return FALSE;
2511 }
2512
2513 /* Not sure what needs to be checked for EABI versions >= 1. */
2514 if (EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
2515 {
2516 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2517 {
2518 _bfd_error_handler
2519 (_("ERROR: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
2520 ibfd, obfd,
2521 in_flags & EF_ARM_APCS_26 ? 26 : 32,
2522 out_flags & EF_ARM_APCS_26 ? 26 : 32);
2523 flags_compatible = FALSE;
2524 }
2525
2526 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2527 {
2528 if (in_flags & EF_ARM_APCS_FLOAT)
2529 _bfd_error_handler
2530 (_("ERROR: %B passes floats in float registers, whereas %B passes them in integer registers"),
2531 ibfd, obfd);
2532 else
2533 _bfd_error_handler
2534 (_("ERROR: %B passes floats in integer registers, whereas %B passes them in float registers"),
2535 ibfd, obfd);
2536
2537 flags_compatible = FALSE;
2538 }
2539
2540 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
2541 {
2542 if (in_flags & EF_ARM_VFP_FLOAT)
2543 _bfd_error_handler
2544 (_("ERROR: %B uses VFP instructions, whereas %B does not"),
2545 ibfd, obfd);
2546 else
2547 _bfd_error_handler
2548 (_("ERROR: %B uses FPA instructions, whereas %B does not"),
2549 ibfd, obfd);
2550
2551 flags_compatible = FALSE;
2552 }
2553
2554 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
2555 {
2556 if (in_flags & EF_ARM_MAVERICK_FLOAT)
2557 _bfd_error_handler
2558 (_("ERROR: %B uses Maverick instructions, whereas %B does not"),
2559 ibfd, obfd);
2560 else
2561 _bfd_error_handler
2562 (_("ERROR: %B does not use Maverick instructions, whereas %B does"),
2563 ibfd, obfd);
2564
2565 flags_compatible = FALSE;
2566 }
2567
2568 #ifdef EF_ARM_SOFT_FLOAT
2569 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
2570 {
2571 /* We can allow interworking between code that is VFP format
2572 layout, and uses either soft float or integer regs for
2573 passing floating point arguments and results. We already
2574 know that the APCS_FLOAT flags match; similarly for VFP
2575 flags. */
2576 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
2577 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
2578 {
2579 if (in_flags & EF_ARM_SOFT_FLOAT)
2580 _bfd_error_handler
2581 (_("ERROR: %B uses software FP, whereas %B uses hardware FP"),
2582 ibfd, obfd);
2583 else
2584 _bfd_error_handler
2585 (_("ERROR: %B uses hardware FP, whereas %B uses software FP"),
2586 ibfd, obfd);
2587
2588 flags_compatible = FALSE;
2589 }
2590 }
2591 #endif
2592
2593 /* Interworking mismatch is only a warning. */
2594 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2595 {
2596 if (in_flags & EF_ARM_INTERWORK)
2597 {
2598 _bfd_error_handler
2599 (_("Warning: %B supports interworking, whereas %B does not"),
2600 ibfd, obfd);
2601 }
2602 else
2603 {
2604 _bfd_error_handler
2605 (_("Warning: %B does not support interworking, whereas %B does"),
2606 ibfd, obfd);
2607 }
2608 }
2609 }
2610
2611 return flags_compatible;
2612 }
2613
2614 /* Display the flags field. */
2615
2616 static bfd_boolean
2617 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
2618 {
2619 FILE * file = (FILE *) ptr;
2620 unsigned long flags;
2621
2622 BFD_ASSERT (abfd != NULL && ptr != NULL);
2623
2624 /* Print normal ELF private data. */
2625 _bfd_elf_print_private_bfd_data (abfd, ptr);
2626
2627 flags = elf_elfheader (abfd)->e_flags;
2628 /* Ignore init flag - it may not be set, despite the flags field
2629 containing valid data. */
2630
2631 /* xgettext:c-format */
2632 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
2633
2634 switch (EF_ARM_EABI_VERSION (flags))
2635 {
2636 case EF_ARM_EABI_UNKNOWN:
2637 /* The following flag bits are GNU extensions and not part of the
2638 official ARM ELF extended ABI. Hence they are only decoded if
2639 the EABI version is not set. */
2640 if (flags & EF_ARM_INTERWORK)
2641 fprintf (file, _(" [interworking enabled]"));
2642
2643 if (flags & EF_ARM_APCS_26)
2644 fprintf (file, " [APCS-26]");
2645 else
2646 fprintf (file, " [APCS-32]");
2647
2648 if (flags & EF_ARM_VFP_FLOAT)
2649 fprintf (file, _(" [VFP float format]"));
2650 else if (flags & EF_ARM_MAVERICK_FLOAT)
2651 fprintf (file, _(" [Maverick float format]"));
2652 else
2653 fprintf (file, _(" [FPA float format]"));
2654
2655 if (flags & EF_ARM_APCS_FLOAT)
2656 fprintf (file, _(" [floats passed in float registers]"));
2657
2658 if (flags & EF_ARM_PIC)
2659 fprintf (file, _(" [position independent]"));
2660
2661 if (flags & EF_ARM_NEW_ABI)
2662 fprintf (file, _(" [new ABI]"));
2663
2664 if (flags & EF_ARM_OLD_ABI)
2665 fprintf (file, _(" [old ABI]"));
2666
2667 if (flags & EF_ARM_SOFT_FLOAT)
2668 fprintf (file, _(" [software FP]"));
2669
2670 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
2671 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
2672 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
2673 | EF_ARM_MAVERICK_FLOAT);
2674 break;
2675
2676 case EF_ARM_EABI_VER1:
2677 fprintf (file, _(" [Version1 EABI]"));
2678
2679 if (flags & EF_ARM_SYMSARESORTED)
2680 fprintf (file, _(" [sorted symbol table]"));
2681 else
2682 fprintf (file, _(" [unsorted symbol table]"));
2683
2684 flags &= ~ EF_ARM_SYMSARESORTED;
2685 break;
2686
2687 case EF_ARM_EABI_VER2:
2688 fprintf (file, _(" [Version2 EABI]"));
2689
2690 if (flags & EF_ARM_SYMSARESORTED)
2691 fprintf (file, _(" [sorted symbol table]"));
2692 else
2693 fprintf (file, _(" [unsorted symbol table]"));
2694
2695 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
2696 fprintf (file, _(" [dynamic symbols use segment index]"));
2697
2698 if (flags & EF_ARM_MAPSYMSFIRST)
2699 fprintf (file, _(" [mapping symbols precede others]"));
2700
2701 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
2702 | EF_ARM_MAPSYMSFIRST);
2703 break;
2704
2705 case EF_ARM_EABI_VER3:
2706 fprintf (file, _(" [Version3 EABI]"));
2707
2708 if (flags & EF_ARM_BE8)
2709 fprintf (file, _(" [BE8]"));
2710
2711 if (flags & EF_ARM_LE8)
2712 fprintf (file, _(" [LE8]"));
2713
2714 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
2715 break;
2716
2717 default:
2718 fprintf (file, _(" <EABI version unrecognised>"));
2719 break;
2720 }
2721
2722 flags &= ~ EF_ARM_EABIMASK;
2723
2724 if (flags & EF_ARM_RELEXEC)
2725 fprintf (file, _(" [relocatable executable]"));
2726
2727 if (flags & EF_ARM_HASENTRY)
2728 fprintf (file, _(" [has entry point]"));
2729
2730 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
2731
2732 if (flags)
2733 fprintf (file, _("<Unrecognised flag bits set>"));
2734
2735 fputc ('\n', file);
2736
2737 return TRUE;
2738 }
2739
2740 static int
2741 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
2742 {
2743 switch (ELF_ST_TYPE (elf_sym->st_info))
2744 {
2745 case STT_ARM_TFUNC:
2746 return ELF_ST_TYPE (elf_sym->st_info);
2747
2748 case STT_ARM_16BIT:
2749 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
2750 This allows us to distinguish between data used by Thumb instructions
2751 and non-data (which is probably code) inside Thumb regions of an
2752 executable. */
2753 if (type != STT_OBJECT)
2754 return ELF_ST_TYPE (elf_sym->st_info);
2755 break;
2756
2757 default:
2758 break;
2759 }
2760
2761 return type;
2762 }
2763
2764 static asection *
2765 elf32_arm_gc_mark_hook (asection * sec,
2766 struct bfd_link_info * info ATTRIBUTE_UNUSED,
2767 Elf_Internal_Rela * rel,
2768 struct elf_link_hash_entry * h,
2769 Elf_Internal_Sym * sym)
2770 {
2771 if (h != NULL)
2772 {
2773 switch (ELF32_R_TYPE (rel->r_info))
2774 {
2775 case R_ARM_GNU_VTINHERIT:
2776 case R_ARM_GNU_VTENTRY:
2777 break;
2778
2779 default:
2780 switch (h->root.type)
2781 {
2782 case bfd_link_hash_defined:
2783 case bfd_link_hash_defweak:
2784 return h->root.u.def.section;
2785
2786 case bfd_link_hash_common:
2787 return h->root.u.c.p->section;
2788
2789 default:
2790 break;
2791 }
2792 }
2793 }
2794 else
2795 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
2796
2797 return NULL;
2798 }
2799
2800 /* Update the got entry reference counts for the section being removed. */
2801
2802 static bfd_boolean
2803 elf32_arm_gc_sweep_hook (bfd * abfd ATTRIBUTE_UNUSED,
2804 struct bfd_link_info * info ATTRIBUTE_UNUSED,
2805 asection * sec ATTRIBUTE_UNUSED,
2806 const Elf_Internal_Rela * relocs ATTRIBUTE_UNUSED)
2807 {
2808 Elf_Internal_Shdr *symtab_hdr;
2809 struct elf_link_hash_entry **sym_hashes;
2810 bfd_signed_vma *local_got_refcounts;
2811 const Elf_Internal_Rela *rel, *relend;
2812 unsigned long r_symndx;
2813 struct elf_link_hash_entry *h;
2814 struct elf32_arm_link_hash_table * globals;
2815
2816 globals = elf32_arm_hash_table (info);
2817
2818 elf_section_data (sec)->local_dynrel = NULL;
2819
2820 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2821 sym_hashes = elf_sym_hashes (abfd);
2822 local_got_refcounts = elf_local_got_refcounts (abfd);
2823
2824 relend = relocs + sec->reloc_count;
2825 for (rel = relocs; rel < relend; rel++)
2826 {
2827 int r_type;
2828
2829 r_type = ELF32_R_TYPE (rel->r_info);
2830 #ifndef OLD_ARM_ABI
2831 r_type = arm_real_reloc_type (globals, r_type);
2832 #endif
2833 switch (r_type)
2834 {
2835 case R_ARM_GOT32:
2836 #ifndef OLD_ARM_ABI
2837 case R_ARM_GOT_PREL:
2838 #endif
2839 r_symndx = ELF32_R_SYM (rel->r_info);
2840 if (r_symndx >= symtab_hdr->sh_info)
2841 {
2842 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2843 if (h->got.refcount > 0)
2844 h->got.refcount -= 1;
2845 }
2846 else if (local_got_refcounts != NULL)
2847 {
2848 if (local_got_refcounts[r_symndx] > 0)
2849 local_got_refcounts[r_symndx] -= 1;
2850 }
2851 break;
2852
2853 case R_ARM_ABS32:
2854 case R_ARM_REL32:
2855 case R_ARM_PC24:
2856 case R_ARM_PLT32:
2857 #ifndef OLD_ARM_ABI
2858 case R_ARM_PREL31:
2859 #endif
2860 r_symndx = ELF32_R_SYM (rel->r_info);
2861 if (r_symndx >= symtab_hdr->sh_info)
2862 {
2863 struct elf32_arm_link_hash_entry *eh;
2864 struct elf32_arm_relocs_copied **pp;
2865 struct elf32_arm_relocs_copied *p;
2866
2867 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2868
2869 if (h->plt.refcount > 0)
2870 h->plt.refcount -= 1;
2871
2872 if (r_type == R_ARM_ABS32
2873 #ifndef OLD_ARM_ABI
2874 || r_type == R_ARM_PREL31
2875 #endif
2876 || r_type == R_ARM_REL32)
2877 {
2878 eh = (struct elf32_arm_link_hash_entry *) h;
2879
2880 for (pp = &eh->relocs_copied; (p = *pp) != NULL;
2881 pp = &p->next)
2882 if (p->section == sec)
2883 {
2884 p->count -= 1;
2885 if (p->count == 0)
2886 *pp = p->next;
2887 break;
2888 }
2889 }
2890 }
2891 break;
2892
2893 default:
2894 break;
2895 }
2896 }
2897
2898 return TRUE;
2899 }
2900
2901 /* Look through the relocs for a section during the first phase. */
2902
2903 static bfd_boolean
2904 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
2905 asection *sec, const Elf_Internal_Rela *relocs)
2906 {
2907 Elf_Internal_Shdr *symtab_hdr;
2908 struct elf_link_hash_entry **sym_hashes;
2909 struct elf_link_hash_entry **sym_hashes_end;
2910 const Elf_Internal_Rela *rel;
2911 const Elf_Internal_Rela *rel_end;
2912 bfd *dynobj;
2913 asection *sreloc;
2914 bfd_vma *local_got_offsets;
2915 struct elf32_arm_link_hash_table *htab;
2916
2917 if (info->relocatable)
2918 return TRUE;
2919
2920 htab = elf32_arm_hash_table (info);
2921 sreloc = NULL;
2922
2923 dynobj = elf_hash_table (info)->dynobj;
2924 local_got_offsets = elf_local_got_offsets (abfd);
2925
2926 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2927 sym_hashes = elf_sym_hashes (abfd);
2928 sym_hashes_end = sym_hashes
2929 + symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
2930
2931 if (!elf_bad_symtab (abfd))
2932 sym_hashes_end -= symtab_hdr->sh_info;
2933
2934 rel_end = relocs + sec->reloc_count;
2935 for (rel = relocs; rel < rel_end; rel++)
2936 {
2937 struct elf_link_hash_entry *h;
2938 unsigned long r_symndx;
2939 int r_type;
2940
2941 r_symndx = ELF32_R_SYM (rel->r_info);
2942 r_type = ELF32_R_TYPE (rel->r_info);
2943 #ifndef OLD_ARM_ABI
2944 r_type = arm_real_reloc_type (htab, r_type);
2945 #endif
2946 if (r_symndx < symtab_hdr->sh_info)
2947 h = NULL;
2948 else
2949 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2950
2951 switch (r_type)
2952 {
2953 case R_ARM_GOT32:
2954 #ifndef OLD_ARM_ABI
2955 case R_ARM_GOT_PREL:
2956 #endif
2957 /* This symbol requires a global offset table entry. */
2958 if (h != NULL)
2959 {
2960 h->got.refcount++;
2961 }
2962 else
2963 {
2964 bfd_signed_vma *local_got_refcounts;
2965
2966 /* This is a global offset table entry for a local symbol. */
2967 local_got_refcounts = elf_local_got_refcounts (abfd);
2968 if (local_got_refcounts == NULL)
2969 {
2970 bfd_size_type size;
2971
2972 size = symtab_hdr->sh_info;
2973 size *= (sizeof (bfd_signed_vma) + sizeof (char));
2974 local_got_refcounts = bfd_zalloc (abfd, size);
2975 if (local_got_refcounts == NULL)
2976 return FALSE;
2977 elf_local_got_refcounts (abfd) = local_got_refcounts;
2978 }
2979 local_got_refcounts[r_symndx] += 1;
2980 }
2981 if (r_type == R_ARM_GOT32)
2982 break;
2983 /* Fall through. */
2984
2985 case R_ARM_GOTOFF:
2986 case R_ARM_GOTPC:
2987 if (htab->sgot == NULL)
2988 {
2989 if (htab->root.dynobj == NULL)
2990 htab->root.dynobj = abfd;
2991 if (!create_got_section (htab->root.dynobj, info))
2992 return FALSE;
2993 }
2994 break;
2995
2996 case R_ARM_ABS32:
2997 case R_ARM_REL32:
2998 case R_ARM_PC24:
2999 case R_ARM_PLT32:
3000 #ifndef OLD_ARM_ABI
3001 case R_ARM_PREL31:
3002 #endif
3003 if (h != NULL)
3004 {
3005 /* If this reloc is in a read-only section, we might
3006 need a copy reloc. We can't check reliably at this
3007 stage whether the section is read-only, as input
3008 sections have not yet been mapped to output sections.
3009 Tentatively set the flag for now, and correct in
3010 adjust_dynamic_symbol. */
3011 if (!info->shared)
3012 h->non_got_ref = 1;
3013
3014 /* We may need a .plt entry if the function this reloc
3015 refers to is in a different object. We can't tell for
3016 sure yet, because something later might force the
3017 symbol local. */
3018 if (r_type == R_ARM_PC24
3019 || r_type == R_ARM_PLT32)
3020 h->needs_plt = 1;
3021
3022 /* If we create a PLT entry, this relocation will reference
3023 it, even if it's an ABS32 relocation. */
3024 h->plt.refcount += 1;
3025 }
3026
3027 /* If we are creating a shared library, and this is a reloc
3028 against a global symbol, or a non PC relative reloc
3029 against a local symbol, then we need to copy the reloc
3030 into the shared library. However, if we are linking with
3031 -Bsymbolic, we do not need to copy a reloc against a
3032 global symbol which is defined in an object we are
3033 including in the link (i.e., DEF_REGULAR is set). At
3034 this point we have not seen all the input files, so it is
3035 possible that DEF_REGULAR is not set now but will be set
3036 later (it is never cleared). We account for that
3037 possibility below by storing information in the
3038 relocs_copied field of the hash table entry. */
3039 if (info->shared
3040 && (sec->flags & SEC_ALLOC) != 0
3041 && ((r_type != R_ARM_PC24
3042 && r_type != R_ARM_PLT32
3043 #ifndef OLD_ARM_ABI
3044 && r_type != R_ARM_PREL31
3045 #endif
3046 && r_type != R_ARM_REL32)
3047 || (h != NULL
3048 && (! info->symbolic
3049 || !h->def_regular))))
3050 {
3051 struct elf32_arm_relocs_copied *p, **head;
3052
3053 /* When creating a shared object, we must copy these
3054 reloc types into the output file. We create a reloc
3055 section in dynobj and make room for this reloc. */
3056 if (sreloc == NULL)
3057 {
3058 const char * name;
3059
3060 name = (bfd_elf_string_from_elf_section
3061 (abfd,
3062 elf_elfheader (abfd)->e_shstrndx,
3063 elf_section_data (sec)->rel_hdr.sh_name));
3064 if (name == NULL)
3065 return FALSE;
3066
3067 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
3068 && strcmp (bfd_get_section_name (abfd, sec),
3069 name + 4) == 0);
3070
3071 sreloc = bfd_get_section_by_name (dynobj, name);
3072 if (sreloc == NULL)
3073 {
3074 flagword flags;
3075
3076 sreloc = bfd_make_section (dynobj, name);
3077 flags = (SEC_HAS_CONTENTS | SEC_READONLY
3078 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3079 if ((sec->flags & SEC_ALLOC) != 0
3080 /* BPABI objects never have dynamic
3081 relocations mapped. */
3082 && !htab->symbian_p)
3083 flags |= SEC_ALLOC | SEC_LOAD;
3084 if (sreloc == NULL
3085 || ! bfd_set_section_flags (dynobj, sreloc, flags)
3086 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
3087 return FALSE;
3088 }
3089
3090 elf_section_data (sec)->sreloc = sreloc;
3091 }
3092
3093 /* If this is a global symbol, we count the number of
3094 relocations we need for this symbol. */
3095 if (h != NULL)
3096 {
3097 head = &((struct elf32_arm_link_hash_entry *) h)->relocs_copied;
3098 }
3099 else
3100 {
3101 /* Track dynamic relocs needed for local syms too.
3102 We really need local syms available to do this
3103 easily. Oh well. */
3104
3105 asection *s;
3106 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
3107 sec, r_symndx);
3108 if (s == NULL)
3109 return FALSE;
3110
3111 head = ((struct elf32_arm_relocs_copied **)
3112 &elf_section_data (s)->local_dynrel);
3113 }
3114
3115 p = *head;
3116 if (p == NULL || p->section != sec)
3117 {
3118 bfd_size_type amt = sizeof *p;
3119
3120 p = bfd_alloc (htab->root.dynobj, amt);
3121 if (p == NULL)
3122 return FALSE;
3123 p->next = *head;
3124 *head = p;
3125 p->section = sec;
3126 p->count = 0;
3127 }
3128
3129 if (r_type == R_ARM_ABS32
3130 #ifndef OLD_ARM_ABI
3131 || r_type == R_ARM_PREL31
3132 #endif
3133 || r_type == R_ARM_REL32)
3134 p->count += 1;
3135 }
3136 break;
3137
3138 /* This relocation describes the C++ object vtable hierarchy.
3139 Reconstruct it for later use during GC. */
3140 case R_ARM_GNU_VTINHERIT:
3141 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
3142 return FALSE;
3143 break;
3144
3145 /* This relocation describes which C++ vtable entries are actually
3146 used. Record for later use during GC. */
3147 case R_ARM_GNU_VTENTRY:
3148 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
3149 return FALSE;
3150 break;
3151 }
3152 }
3153
3154 return TRUE;
3155 }
3156
3157 static bfd_boolean
3158 is_arm_mapping_symbol_name (const char * name)
3159 {
3160 return (name != NULL)
3161 && (name[0] == '$')
3162 && ((name[1] == 'a') || (name[1] == 't') || (name[1] == 'd'))
3163 && (name[2] == 0);
3164 }
3165
3166 /* This is a copy of elf_find_function() from elf.c except that
3167 ARM mapping symbols are ignored when looking for function names
3168 and STT_ARM_TFUNC is considered to a function type. */
3169
3170 static bfd_boolean
3171 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
3172 asection * section,
3173 asymbol ** symbols,
3174 bfd_vma offset,
3175 const char ** filename_ptr,
3176 const char ** functionname_ptr)
3177 {
3178 const char * filename = NULL;
3179 asymbol * func = NULL;
3180 bfd_vma low_func = 0;
3181 asymbol ** p;
3182
3183 for (p = symbols; *p != NULL; p++)
3184 {
3185 elf_symbol_type *q;
3186
3187 q = (elf_symbol_type *) *p;
3188
3189 if (bfd_get_section (&q->symbol) != section)
3190 continue;
3191
3192 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
3193 {
3194 default:
3195 break;
3196 case STT_FILE:
3197 filename = bfd_asymbol_name (&q->symbol);
3198 break;
3199 case STT_FUNC:
3200 case STT_ARM_TFUNC:
3201 /* Skip $a and $t symbols. */
3202 if ((q->symbol.flags & BSF_LOCAL)
3203 && is_arm_mapping_symbol_name (q->symbol.name))
3204 continue;
3205 /* Fall through. */
3206 case STT_NOTYPE:
3207 if (q->symbol.section == section
3208 && q->symbol.value >= low_func
3209 && q->symbol.value <= offset)
3210 {
3211 func = (asymbol *) q;
3212 low_func = q->symbol.value;
3213 }
3214 break;
3215 }
3216 }
3217
3218 if (func == NULL)
3219 return FALSE;
3220
3221 if (filename_ptr)
3222 *filename_ptr = filename;
3223 if (functionname_ptr)
3224 *functionname_ptr = bfd_asymbol_name (func);
3225
3226 return TRUE;
3227 }
3228
3229
3230 /* Find the nearest line to a particular section and offset, for error
3231 reporting. This code is a duplicate of the code in elf.c, except
3232 that it uses arm_elf_find_function. */
3233
3234 static bfd_boolean
3235 elf32_arm_find_nearest_line (bfd * abfd,
3236 asection * section,
3237 asymbol ** symbols,
3238 bfd_vma offset,
3239 const char ** filename_ptr,
3240 const char ** functionname_ptr,
3241 unsigned int * line_ptr)
3242 {
3243 bfd_boolean found = FALSE;
3244
3245 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
3246
3247 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
3248 filename_ptr, functionname_ptr,
3249 line_ptr, 0,
3250 & elf_tdata (abfd)->dwarf2_find_line_info))
3251 {
3252 if (!*functionname_ptr)
3253 arm_elf_find_function (abfd, section, symbols, offset,
3254 *filename_ptr ? NULL : filename_ptr,
3255 functionname_ptr);
3256
3257 return TRUE;
3258 }
3259
3260 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
3261 & found, filename_ptr,
3262 functionname_ptr, line_ptr,
3263 & elf_tdata (abfd)->line_info))
3264 return FALSE;
3265
3266 if (found && (*functionname_ptr || *line_ptr))
3267 return TRUE;
3268
3269 if (symbols == NULL)
3270 return FALSE;
3271
3272 if (! arm_elf_find_function (abfd, section, symbols, offset,
3273 filename_ptr, functionname_ptr))
3274 return FALSE;
3275
3276 *line_ptr = 0;
3277 return TRUE;
3278 }
3279
3280 /* Adjust a symbol defined by a dynamic object and referenced by a
3281 regular object. The current definition is in some section of the
3282 dynamic object, but we're not including those sections. We have to
3283 change the definition to something the rest of the link can
3284 understand. */
3285
3286 static bfd_boolean
3287 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
3288 struct elf_link_hash_entry * h)
3289 {
3290 bfd * dynobj;
3291 asection * s;
3292 unsigned int power_of_two;
3293
3294 dynobj = elf_hash_table (info)->dynobj;
3295
3296 /* Make sure we know what is going on here. */
3297 BFD_ASSERT (dynobj != NULL
3298 && (h->needs_plt
3299 || h->u.weakdef != NULL
3300 || (h->def_dynamic
3301 && h->ref_regular
3302 && !h->def_regular)));
3303
3304 /* If this is a function, put it in the procedure linkage table. We
3305 will fill in the contents of the procedure linkage table later,
3306 when we know the address of the .got section. */
3307 if (h->type == STT_FUNC
3308 || h->needs_plt)
3309 {
3310 if (h->plt.refcount <= 0
3311 || SYMBOL_CALLS_LOCAL (info, h)
3312 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
3313 && h->root.type == bfd_link_hash_undefweak))
3314 {
3315 /* This case can occur if we saw a PLT32 reloc in an input
3316 file, but the symbol was never referred to by a dynamic
3317 object, or if all references were garbage collected. In
3318 such a case, we don't actually need to build a procedure
3319 linkage table, and we can just do a PC24 reloc instead. */
3320 h->plt.offset = (bfd_vma) -1;
3321 h->needs_plt = 0;
3322 }
3323
3324 return TRUE;
3325 }
3326 else
3327 /* It's possible that we incorrectly decided a .plt reloc was
3328 needed for an R_ARM_PC24 reloc to a non-function sym in
3329 check_relocs. We can't decide accurately between function and
3330 non-function syms in check-relocs; Objects loaded later in
3331 the link may change h->type. So fix it now. */
3332 h->plt.offset = (bfd_vma) -1;
3333
3334 /* If this is a weak symbol, and there is a real definition, the
3335 processor independent code will have arranged for us to see the
3336 real definition first, and we can just use the same value. */
3337 if (h->u.weakdef != NULL)
3338 {
3339 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
3340 || h->u.weakdef->root.type == bfd_link_hash_defweak);
3341 h->root.u.def.section = h->u.weakdef->root.u.def.section;
3342 h->root.u.def.value = h->u.weakdef->root.u.def.value;
3343 return TRUE;
3344 }
3345
3346 /* This is a reference to a symbol defined by a dynamic object which
3347 is not a function. */
3348
3349 /* If we are creating a shared library, we must presume that the
3350 only references to the symbol are via the global offset table.
3351 For such cases we need not do anything here; the relocations will
3352 be handled correctly by relocate_section. */
3353 if (info->shared)
3354 return TRUE;
3355
3356 /* We must allocate the symbol in our .dynbss section, which will
3357 become part of the .bss section of the executable. There will be
3358 an entry for this symbol in the .dynsym section. The dynamic
3359 object will contain position independent code, so all references
3360 from the dynamic object to this symbol will go through the global
3361 offset table. The dynamic linker will use the .dynsym entry to
3362 determine the address it must put in the global offset table, so
3363 both the dynamic object and the regular object will refer to the
3364 same memory location for the variable. */
3365 s = bfd_get_section_by_name (dynobj, ".dynbss");
3366 BFD_ASSERT (s != NULL);
3367
3368 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
3369 copy the initial value out of the dynamic object and into the
3370 runtime process image. We need to remember the offset into the
3371 .rel.bss section we are going to use. */
3372 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
3373 {
3374 asection *srel;
3375
3376 srel = bfd_get_section_by_name (dynobj, ".rel.bss");
3377 BFD_ASSERT (srel != NULL);
3378 srel->size += sizeof (Elf32_External_Rel);
3379 h->needs_copy = 1;
3380 }
3381
3382 /* We need to figure out the alignment required for this symbol. I
3383 have no idea how ELF linkers handle this. */
3384 power_of_two = bfd_log2 (h->size);
3385 if (power_of_two > 3)
3386 power_of_two = 3;
3387
3388 /* Apply the required alignment. */
3389 s->size = BFD_ALIGN (s->size, (bfd_size_type) (1 << power_of_two));
3390 if (power_of_two > bfd_get_section_alignment (dynobj, s))
3391 {
3392 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
3393 return FALSE;
3394 }
3395
3396 /* Define the symbol as being at this point in the section. */
3397 h->root.u.def.section = s;
3398 h->root.u.def.value = s->size;
3399
3400 /* Increment the section size to make room for the symbol. */
3401 s->size += h->size;
3402
3403 return TRUE;
3404 }
3405
3406 /* Allocate space in .plt, .got and associated reloc sections for
3407 dynamic relocs. */
3408
3409 static bfd_boolean
3410 allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
3411 {
3412 struct bfd_link_info *info;
3413 struct elf32_arm_link_hash_table *htab;
3414 struct elf32_arm_link_hash_entry *eh;
3415 struct elf32_arm_relocs_copied *p;
3416
3417 if (h->root.type == bfd_link_hash_indirect)
3418 return TRUE;
3419
3420 if (h->root.type == bfd_link_hash_warning)
3421 /* When warning symbols are created, they **replace** the "real"
3422 entry in the hash table, thus we never get to see the real
3423 symbol in a hash traversal. So look at it now. */
3424 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3425
3426 info = (struct bfd_link_info *) inf;
3427 htab = elf32_arm_hash_table (info);
3428
3429 if (htab->root.dynamic_sections_created
3430 && h->plt.refcount > 0)
3431 {
3432 /* Make sure this symbol is output as a dynamic symbol.
3433 Undefined weak syms won't yet be marked as dynamic. */
3434 if (h->dynindx == -1
3435 && !h->forced_local)
3436 {
3437 if (! bfd_elf_link_record_dynamic_symbol (info, h))
3438 return FALSE;
3439 }
3440
3441 if (info->shared
3442 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
3443 {
3444 asection *s = htab->splt;
3445
3446 /* If this is the first .plt entry, make room for the special
3447 first entry. */
3448 if (s->size == 0)
3449 s->size += htab->plt_header_size;
3450
3451 h->plt.offset = s->size;
3452
3453 /* If this symbol is not defined in a regular file, and we are
3454 not generating a shared library, then set the symbol to this
3455 location in the .plt. This is required to make function
3456 pointers compare as equal between the normal executable and
3457 the shared library. */
3458 if (! info->shared
3459 && !h->def_regular)
3460 {
3461 h->root.u.def.section = s;
3462 h->root.u.def.value = h->plt.offset;
3463 }
3464
3465 /* Make room for this entry. */
3466 s->size += htab->plt_entry_size;
3467
3468 if (!htab->symbian_p)
3469 /* We also need to make an entry in the .got.plt section, which
3470 will be placed in the .got section by the linker script. */
3471 htab->sgotplt->size += 4;
3472
3473 /* We also need to make an entry in the .rel.plt section. */
3474 htab->srelplt->size += sizeof (Elf32_External_Rel);
3475 }
3476 else
3477 {
3478 h->plt.offset = (bfd_vma) -1;
3479 h->needs_plt = 0;
3480 }
3481 }
3482 else
3483 {
3484 h->plt.offset = (bfd_vma) -1;
3485 h->needs_plt = 0;
3486 }
3487
3488 if (h->got.refcount > 0)
3489 {
3490 asection *s;
3491 bfd_boolean dyn;
3492
3493 /* Make sure this symbol is output as a dynamic symbol.
3494 Undefined weak syms won't yet be marked as dynamic. */
3495 if (h->dynindx == -1
3496 && !h->forced_local)
3497 {
3498 if (! bfd_elf_link_record_dynamic_symbol (info, h))
3499 return FALSE;
3500 }
3501
3502 if (!htab->symbian_p)
3503 {
3504 s = htab->sgot;
3505 h->got.offset = s->size;
3506 s->size += 4;
3507 dyn = htab->root.dynamic_sections_created;
3508 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3509 || h->root.type != bfd_link_hash_undefweak)
3510 && (info->shared
3511 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
3512 htab->srelgot->size += sizeof (Elf32_External_Rel);
3513 }
3514 }
3515 else
3516 h->got.offset = (bfd_vma) -1;
3517
3518 eh = (struct elf32_arm_link_hash_entry *) h;
3519 if (eh->relocs_copied == NULL)
3520 return TRUE;
3521
3522 /* In the shared -Bsymbolic case, discard space allocated for
3523 dynamic pc-relative relocs against symbols which turn out to be
3524 defined in regular objects. For the normal shared case, discard
3525 space for pc-relative relocs that have become local due to symbol
3526 visibility changes. */
3527
3528 if (info->shared)
3529 {
3530 /* Discard relocs on undefined weak syms with non-default
3531 visibility. */
3532 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
3533 && h->root.type == bfd_link_hash_undefweak)
3534 eh->relocs_copied = NULL;
3535 }
3536 else
3537 {
3538 /* For the non-shared case, discard space for relocs against
3539 symbols which turn out to need copy relocs or are not
3540 dynamic. */
3541
3542 if (!h->non_got_ref
3543 && ((h->def_dynamic
3544 && !h->def_regular)
3545 || (htab->root.dynamic_sections_created
3546 && (h->root.type == bfd_link_hash_undefweak
3547 || h->root.type == bfd_link_hash_undefined))))
3548 {
3549 /* Make sure this symbol is output as a dynamic symbol.
3550 Undefined weak syms won't yet be marked as dynamic. */
3551 if (h->dynindx == -1
3552 && !h->forced_local)
3553 {
3554 if (! bfd_elf_link_record_dynamic_symbol (info, h))
3555 return FALSE;
3556 }
3557
3558 /* If that succeeded, we know we'll be keeping all the
3559 relocs. */
3560 if (h->dynindx != -1)
3561 goto keep;
3562 }
3563
3564 eh->relocs_copied = NULL;
3565
3566 keep: ;
3567 }
3568
3569 /* Finally, allocate space. */
3570 for (p = eh->relocs_copied; p != NULL; p = p->next)
3571 {
3572 asection *sreloc = elf_section_data (p->section)->sreloc;
3573 sreloc->size += p->count * sizeof (Elf32_External_Rel);
3574 }
3575
3576 return TRUE;
3577 }
3578
3579 /* Set the sizes of the dynamic sections. */
3580
3581 static bfd_boolean
3582 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
3583 struct bfd_link_info * info)
3584 {
3585 bfd * dynobj;
3586 asection * s;
3587 bfd_boolean plt;
3588 bfd_boolean relocs;
3589 bfd *ibfd;
3590 struct elf32_arm_link_hash_table *htab;
3591
3592 htab = elf32_arm_hash_table (info);
3593 dynobj = elf_hash_table (info)->dynobj;
3594 BFD_ASSERT (dynobj != NULL);
3595
3596 if (elf_hash_table (info)->dynamic_sections_created)
3597 {
3598 /* Set the contents of the .interp section to the interpreter. */
3599 if (info->executable)
3600 {
3601 s = bfd_get_section_by_name (dynobj, ".interp");
3602 BFD_ASSERT (s != NULL);
3603 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
3604 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
3605 }
3606 }
3607
3608 /* Set up .got offsets for local syms, and space for local dynamic
3609 relocs. */
3610 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
3611 {
3612 bfd_signed_vma *local_got;
3613 bfd_signed_vma *end_local_got;
3614 char *local_tls_type;
3615 bfd_size_type locsymcount;
3616 Elf_Internal_Shdr *symtab_hdr;
3617 asection *srel;
3618
3619 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
3620 continue;
3621
3622 for (s = ibfd->sections; s != NULL; s = s->next)
3623 {
3624 struct elf32_arm_relocs_copied *p;
3625
3626 for (p = *((struct elf32_arm_relocs_copied **)
3627 &elf_section_data (s)->local_dynrel);
3628 p != NULL;
3629 p = p->next)
3630 {
3631 if (!bfd_is_abs_section (p->section)
3632 && bfd_is_abs_section (p->section->output_section))
3633 {
3634 /* Input section has been discarded, either because
3635 it is a copy of a linkonce section or due to
3636 linker script /DISCARD/, so we'll be discarding
3637 the relocs too. */
3638 }
3639 else if (p->count != 0)
3640 {
3641 srel = elf_section_data (p->section)->sreloc;
3642 srel->size += p->count * sizeof (Elf32_External_Rel);
3643 if ((p->section->output_section->flags & SEC_READONLY) != 0)
3644 info->flags |= DF_TEXTREL;
3645 }
3646 }
3647 }
3648
3649 local_got = elf_local_got_refcounts (ibfd);
3650 if (!local_got)
3651 continue;
3652
3653 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
3654 locsymcount = symtab_hdr->sh_info;
3655 end_local_got = local_got + locsymcount;
3656 s = htab->sgot;
3657 srel = htab->srelgot;
3658 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
3659 {
3660 if (*local_got > 0)
3661 {
3662 *local_got = s->size;
3663 s->size += 4;
3664 if (info->shared)
3665 srel->size += sizeof (Elf32_External_Rel);
3666 }
3667 else
3668 *local_got = (bfd_vma) -1;
3669 }
3670 }
3671
3672 /* Allocate global sym .plt and .got entries, and space for global
3673 sym dynamic relocs. */
3674 elf_link_hash_traverse (& htab->root, allocate_dynrelocs, info);
3675
3676 /* The check_relocs and adjust_dynamic_symbol entry points have
3677 determined the sizes of the various dynamic sections. Allocate
3678 memory for them. */
3679 plt = FALSE;
3680 relocs = FALSE;
3681 for (s = dynobj->sections; s != NULL; s = s->next)
3682 {
3683 const char * name;
3684 bfd_boolean strip;
3685
3686 if ((s->flags & SEC_LINKER_CREATED) == 0)
3687 continue;
3688
3689 /* It's OK to base decisions on the section name, because none
3690 of the dynobj section names depend upon the input files. */
3691 name = bfd_get_section_name (dynobj, s);
3692
3693 strip = FALSE;
3694
3695 if (strcmp (name, ".plt") == 0)
3696 {
3697 if (s->size == 0)
3698 {
3699 /* Strip this section if we don't need it; see the
3700 comment below. */
3701 strip = TRUE;
3702 }
3703 else
3704 {
3705 /* Remember whether there is a PLT. */
3706 plt = TRUE;
3707 }
3708 }
3709 else if (strncmp (name, ".rel", 4) == 0)
3710 {
3711 if (s->size == 0)
3712 {
3713 /* If we don't need this section, strip it from the
3714 output file. This is mostly to handle .rel.bss and
3715 .rel.plt. We must create both sections in
3716 create_dynamic_sections, because they must be created
3717 before the linker maps input sections to output
3718 sections. The linker does that before
3719 adjust_dynamic_symbol is called, and it is that
3720 function which decides whether anything needs to go
3721 into these sections. */
3722 strip = TRUE;
3723 }
3724 else
3725 {
3726 /* Remember whether there are any reloc sections other
3727 than .rel.plt. */
3728 if (strcmp (name, ".rel.plt") != 0)
3729 relocs = TRUE;
3730
3731 /* We use the reloc_count field as a counter if we need
3732 to copy relocs into the output file. */
3733 s->reloc_count = 0;
3734 }
3735 }
3736 else if (strncmp (name, ".got", 4) != 0)
3737 {
3738 /* It's not one of our sections, so don't allocate space. */
3739 continue;
3740 }
3741
3742 if (strip)
3743 {
3744 _bfd_strip_section_from_output (info, s);
3745 continue;
3746 }
3747
3748 /* Allocate memory for the section contents. */
3749 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
3750 if (s->contents == NULL && s->size != 0)
3751 return FALSE;
3752 }
3753
3754 if (elf_hash_table (info)->dynamic_sections_created)
3755 {
3756 /* Add some entries to the .dynamic section. We fill in the
3757 values later, in elf32_arm_finish_dynamic_sections, but we
3758 must add the entries now so that we get the correct size for
3759 the .dynamic section. The DT_DEBUG entry is filled in by the
3760 dynamic linker and used by the debugger. */
3761 #define add_dynamic_entry(TAG, VAL) \
3762 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
3763
3764 if (!info->shared)
3765 {
3766 if (!add_dynamic_entry (DT_DEBUG, 0))
3767 return FALSE;
3768 }
3769
3770 if (plt)
3771 {
3772 if ( !add_dynamic_entry (DT_PLTGOT, 0)
3773 || !add_dynamic_entry (DT_PLTRELSZ, 0)
3774 || !add_dynamic_entry (DT_PLTREL, DT_REL)
3775 || !add_dynamic_entry (DT_JMPREL, 0))
3776 return FALSE;
3777 }
3778
3779 if (relocs)
3780 {
3781 if ( !add_dynamic_entry (DT_REL, 0)
3782 || !add_dynamic_entry (DT_RELSZ, 0)
3783 || !add_dynamic_entry (DT_RELENT, sizeof (Elf32_External_Rel)))
3784 return FALSE;
3785 }
3786
3787 if ((info->flags & DF_TEXTREL) != 0)
3788 {
3789 if (!add_dynamic_entry (DT_TEXTREL, 0))
3790 return FALSE;
3791 info->flags |= DF_TEXTREL;
3792 }
3793 }
3794 #undef add_synamic_entry
3795
3796 return TRUE;
3797 }
3798
3799 /* Finish up dynamic symbol handling. We set the contents of various
3800 dynamic sections here. */
3801
3802 static bfd_boolean
3803 elf32_arm_finish_dynamic_symbol (bfd * output_bfd, struct bfd_link_info * info,
3804 struct elf_link_hash_entry * h, Elf_Internal_Sym * sym)
3805 {
3806 bfd * dynobj;
3807 struct elf32_arm_link_hash_table *htab;
3808
3809 dynobj = elf_hash_table (info)->dynobj;
3810 htab = elf32_arm_hash_table (info);
3811
3812 if (h->plt.offset != (bfd_vma) -1)
3813 {
3814 asection * splt;
3815 asection * srel;
3816 bfd_byte *loc;
3817 bfd_vma plt_index;
3818 Elf_Internal_Rela rel;
3819
3820 /* This symbol has an entry in the procedure linkage table. Set
3821 it up. */
3822
3823 BFD_ASSERT (h->dynindx != -1);
3824
3825 splt = bfd_get_section_by_name (dynobj, ".plt");
3826 srel = bfd_get_section_by_name (dynobj, ".rel.plt");
3827 BFD_ASSERT (splt != NULL && srel != NULL);
3828
3829 /* Get the index in the procedure linkage table which
3830 corresponds to this symbol. This is the index of this symbol
3831 in all the symbols for which we are making plt entries. The
3832 first entry in the procedure linkage table is reserved. */
3833 plt_index = ((h->plt.offset - htab->plt_header_size)
3834 / htab->plt_entry_size);
3835
3836 /* Fill in the entry in the procedure linkage table. */
3837 if (htab->symbian_p)
3838 {
3839 unsigned i;
3840 for (i = 0; i < htab->plt_entry_size / 4; ++i)
3841 bfd_put_32 (output_bfd,
3842 elf32_arm_symbian_plt_entry[i],
3843 splt->contents + h->plt.offset + 4 * i);
3844
3845 /* Fill in the entry in the .rel.plt section. */
3846 rel.r_offset = (splt->output_offset
3847 + h->plt.offset + 4 * (i - 1));
3848 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
3849 }
3850 else
3851 {
3852 bfd_vma got_offset;
3853 bfd_vma got_displacement;
3854 asection * sgot;
3855
3856 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3857 BFD_ASSERT (sgot != NULL);
3858
3859 /* Get the offset into the .got table of the entry that
3860 corresponds to this function. Each .got entry is 4 bytes.
3861 The first three are reserved. */
3862 got_offset = (plt_index + 3) * 4;
3863
3864 /* Calculate the displacement between the PLT slot and the
3865 entry in the GOT. */
3866 got_displacement = (sgot->output_section->vma
3867 + sgot->output_offset
3868 + got_offset
3869 - splt->output_section->vma
3870 - splt->output_offset
3871 - h->plt.offset
3872 - 8);
3873
3874 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
3875
3876 bfd_put_32 (output_bfd, elf32_arm_plt_entry[0] | ((got_displacement & 0x0ff00000) >> 20),
3877 splt->contents + h->plt.offset + 0);
3878 bfd_put_32 (output_bfd, elf32_arm_plt_entry[1] | ((got_displacement & 0x000ff000) >> 12),
3879 splt->contents + h->plt.offset + 4);
3880 bfd_put_32 (output_bfd, elf32_arm_plt_entry[2] | (got_displacement & 0x00000fff),
3881 splt->contents + h->plt.offset + 8);
3882 #ifdef FOUR_WORD_PLT
3883 bfd_put_32 (output_bfd, elf32_arm_plt_entry[3],
3884 splt->contents + h->plt.offset + 12);
3885 #endif
3886
3887 /* Fill in the entry in the global offset table. */
3888 bfd_put_32 (output_bfd,
3889 (splt->output_section->vma
3890 + splt->output_offset),
3891 sgot->contents + got_offset);
3892
3893 /* Fill in the entry in the .rel.plt section. */
3894 rel.r_offset = (sgot->output_section->vma
3895 + sgot->output_offset
3896 + got_offset);
3897 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
3898 }
3899
3900 loc = srel->contents + plt_index * sizeof (Elf32_External_Rel);
3901 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
3902
3903 if (!h->def_regular)
3904 {
3905 /* Mark the symbol as undefined, rather than as defined in
3906 the .plt section. Leave the value alone. */
3907 sym->st_shndx = SHN_UNDEF;
3908 /* If the symbol is weak, we do need to clear the value.
3909 Otherwise, the PLT entry would provide a definition for
3910 the symbol even if the symbol wasn't defined anywhere,
3911 and so the symbol would never be NULL. */
3912 if (!h->ref_regular_nonweak)
3913 sym->st_value = 0;
3914 }
3915 }
3916
3917 if (h->got.offset != (bfd_vma) -1)
3918 {
3919 asection * sgot;
3920 asection * srel;
3921 Elf_Internal_Rela rel;
3922 bfd_byte *loc;
3923
3924 /* This symbol has an entry in the global offset table. Set it
3925 up. */
3926 sgot = bfd_get_section_by_name (dynobj, ".got");
3927 srel = bfd_get_section_by_name (dynobj, ".rel.got");
3928 BFD_ASSERT (sgot != NULL && srel != NULL);
3929
3930 rel.r_offset = (sgot->output_section->vma
3931 + sgot->output_offset
3932 + (h->got.offset &~ (bfd_vma) 1));
3933
3934 /* If this is a static link, or it is a -Bsymbolic link and the
3935 symbol is defined locally or was forced to be local because
3936 of a version file, we just want to emit a RELATIVE reloc.
3937 The entry in the global offset table will already have been
3938 initialized in the relocate_section function. */
3939 if (info->shared
3940 && SYMBOL_REFERENCES_LOCAL (info, h))
3941 {
3942 BFD_ASSERT((h->got.offset & 1) != 0);
3943 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
3944 }
3945 else
3946 {
3947 BFD_ASSERT((h->got.offset & 1) == 0);
3948 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
3949 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
3950 }
3951
3952 loc = srel->contents + srel->reloc_count++ * sizeof (Elf32_External_Rel);
3953 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
3954 }
3955
3956 if (h->needs_copy)
3957 {
3958 asection * s;
3959 Elf_Internal_Rela rel;
3960 bfd_byte *loc;
3961
3962 /* This symbol needs a copy reloc. Set it up. */
3963 BFD_ASSERT (h->dynindx != -1
3964 && (h->root.type == bfd_link_hash_defined
3965 || h->root.type == bfd_link_hash_defweak));
3966
3967 s = bfd_get_section_by_name (h->root.u.def.section->owner,
3968 ".rel.bss");
3969 BFD_ASSERT (s != NULL);
3970
3971 rel.r_offset = (h->root.u.def.value
3972 + h->root.u.def.section->output_section->vma
3973 + h->root.u.def.section->output_offset);
3974 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
3975 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rel);
3976 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
3977 }
3978
3979 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3980 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
3981 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3982 sym->st_shndx = SHN_ABS;
3983
3984 return TRUE;
3985 }
3986
3987 /* Finish up the dynamic sections. */
3988
3989 static bfd_boolean
3990 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
3991 {
3992 bfd * dynobj;
3993 asection * sgot;
3994 asection * sdyn;
3995
3996 dynobj = elf_hash_table (info)->dynobj;
3997
3998 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3999 BFD_ASSERT (elf32_arm_hash_table (info)->symbian_p || sgot != NULL);
4000 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4001
4002 if (elf_hash_table (info)->dynamic_sections_created)
4003 {
4004 asection *splt;
4005 Elf32_External_Dyn *dyncon, *dynconend;
4006 struct elf32_arm_link_hash_table *htab;
4007
4008 htab = elf32_arm_hash_table (info);
4009 splt = bfd_get_section_by_name (dynobj, ".plt");
4010 BFD_ASSERT (splt != NULL && sdyn != NULL);
4011
4012 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4013 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4014
4015 for (; dyncon < dynconend; dyncon++)
4016 {
4017 Elf_Internal_Dyn dyn;
4018 const char * name;
4019 asection * s;
4020
4021 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4022
4023 switch (dyn.d_tag)
4024 {
4025 unsigned int type;
4026
4027 default:
4028 break;
4029
4030 case DT_HASH:
4031 name = ".hash";
4032 goto get_vma_if_bpabi;
4033 case DT_STRTAB:
4034 name = ".dynstr";
4035 goto get_vma_if_bpabi;
4036 case DT_SYMTAB:
4037 name = ".dynsym";
4038 goto get_vma_if_bpabi;
4039
4040 case DT_PLTGOT:
4041 name = ".got";
4042 goto get_vma;
4043 case DT_JMPREL:
4044 name = ".rel.plt";
4045 get_vma:
4046 s = bfd_get_section_by_name (output_bfd, name);
4047 BFD_ASSERT (s != NULL);
4048 if (!htab->symbian_p)
4049 dyn.d_un.d_ptr = s->vma;
4050 else
4051 /* In the BPABI, tags in the PT_DYNAMIC section point
4052 at the file offset, not the memory address, for the
4053 convenience of the post linker. */
4054 dyn.d_un.d_ptr = s->filepos;
4055 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4056 break;
4057
4058 get_vma_if_bpabi:
4059 if (htab->symbian_p)
4060 goto get_vma;
4061 break;
4062
4063 case DT_PLTRELSZ:
4064 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
4065 BFD_ASSERT (s != NULL);
4066 dyn.d_un.d_val = s->size;
4067 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4068 break;
4069
4070 case DT_RELSZ:
4071 if (!htab->symbian_p)
4072 {
4073 /* My reading of the SVR4 ABI indicates that the
4074 procedure linkage table relocs (DT_JMPREL) should be
4075 included in the overall relocs (DT_REL). This is
4076 what Solaris does. However, UnixWare can not handle
4077 that case. Therefore, we override the DT_RELSZ entry
4078 here to make it not include the JMPREL relocs. Since
4079 the linker script arranges for .rel.plt to follow all
4080 other relocation sections, we don't have to worry
4081 about changing the DT_REL entry. */
4082 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
4083 if (s != NULL)
4084 dyn.d_un.d_val -= s->size;
4085 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4086 break;
4087 }
4088 /* Fall through */
4089
4090 case DT_REL:
4091 case DT_RELA:
4092 case DT_RELASZ:
4093 /* In the BPABI, the DT_REL tag must point at the file
4094 offset, not the VMA, of the first relocation
4095 section. So, we use code similar to that in
4096 elflink.c, but do not check for SHF_ALLOC on the
4097 relcoation section, since relocations sections are
4098 never allocated under the BPABI. The comments above
4099 about Unixware notwithstanding, we include all of the
4100 relocations here. */
4101 if (htab->symbian_p)
4102 {
4103 unsigned int i;
4104 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
4105 ? SHT_REL : SHT_RELA);
4106 dyn.d_un.d_val = 0;
4107 for (i = 1; i < elf_numsections (output_bfd); i++)
4108 {
4109 Elf_Internal_Shdr *hdr
4110 = elf_elfsections (output_bfd)[i];
4111 if (hdr->sh_type == type)
4112 {
4113 if (dyn.d_tag == DT_RELSZ
4114 || dyn.d_tag == DT_RELASZ)
4115 dyn.d_un.d_val += hdr->sh_size;
4116 else if (dyn.d_un.d_val == 0
4117 || hdr->sh_offset < dyn.d_un.d_val)
4118 dyn.d_un.d_val = hdr->sh_offset;
4119 }
4120 }
4121 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4122 }
4123 break;
4124
4125 /* Set the bottom bit of DT_INIT/FINI if the
4126 corresponding function is Thumb. */
4127 case DT_INIT:
4128 name = info->init_function;
4129 goto get_sym;
4130 case DT_FINI:
4131 name = info->fini_function;
4132 get_sym:
4133 /* If it wasn't set by elf_bfd_final_link
4134 then there is nothing to adjust. */
4135 if (dyn.d_un.d_val != 0)
4136 {
4137 struct elf_link_hash_entry * eh;
4138
4139 eh = elf_link_hash_lookup (elf_hash_table (info), name,
4140 FALSE, FALSE, TRUE);
4141 if (eh != (struct elf_link_hash_entry *) NULL
4142 && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
4143 {
4144 dyn.d_un.d_val |= 1;
4145 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4146 }
4147 }
4148 break;
4149 }
4150 }
4151
4152 /* Fill in the first entry in the procedure linkage table. */
4153 if (splt->size > 0 && elf32_arm_hash_table (info)->plt_header_size)
4154 {
4155 bfd_vma got_displacement;
4156
4157 /* Calculate the displacement between the PLT slot and &GOT[0]. */
4158 got_displacement = (sgot->output_section->vma
4159 + sgot->output_offset
4160 - splt->output_section->vma
4161 - splt->output_offset
4162 - 16);
4163
4164 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[0], splt->contents + 0);
4165 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[1], splt->contents + 4);
4166 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[2], splt->contents + 8);
4167 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[3], splt->contents + 12);
4168 #ifdef FOUR_WORD_PLT
4169 /* The displacement value goes in the otherwise-unused last word of
4170 the second entry. */
4171 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
4172 #else
4173 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
4174 #endif
4175 }
4176
4177 /* UnixWare sets the entsize of .plt to 4, although that doesn't
4178 really seem like the right value. */
4179 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
4180 }
4181
4182 /* Fill in the first three entries in the global offset table. */
4183 if (sgot)
4184 {
4185 if (sgot->size > 0)
4186 {
4187 if (sdyn == NULL)
4188 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
4189 else
4190 bfd_put_32 (output_bfd,
4191 sdyn->output_section->vma + sdyn->output_offset,
4192 sgot->contents);
4193 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
4194 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
4195 }
4196
4197 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
4198 }
4199
4200 return TRUE;
4201 }
4202
4203 static void
4204 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
4205 {
4206 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
4207 struct elf32_arm_link_hash_table *globals;
4208
4209 i_ehdrp = elf_elfheader (abfd);
4210
4211 i_ehdrp->e_ident[EI_OSABI] = ARM_ELF_OS_ABI_VERSION;
4212 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
4213
4214 if (link_info)
4215 {
4216 globals = elf32_arm_hash_table (link_info);
4217 if (globals->byteswap_code)
4218 i_ehdrp->e_flags |= EF_ARM_BE8;
4219 }
4220 }
4221
4222 static enum elf_reloc_type_class
4223 elf32_arm_reloc_type_class (const Elf_Internal_Rela *rela)
4224 {
4225 switch ((int) ELF32_R_TYPE (rela->r_info))
4226 {
4227 case R_ARM_RELATIVE:
4228 return reloc_class_relative;
4229 case R_ARM_JUMP_SLOT:
4230 return reloc_class_plt;
4231 case R_ARM_COPY:
4232 return reloc_class_copy;
4233 default:
4234 return reloc_class_normal;
4235 }
4236 }
4237
4238 /* Set the right machine number for an Arm ELF file. */
4239
4240 static bfd_boolean
4241 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
4242 {
4243 if (hdr->sh_type == SHT_NOTE)
4244 *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS;
4245
4246 return TRUE;
4247 }
4248
4249 static void
4250 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
4251 {
4252 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
4253 }
4254
4255 /* Return TRUE if this is an unwinding table entry. */
4256
4257 static bfd_boolean
4258 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
4259 {
4260 size_t len1, len2;
4261
4262 len1 = sizeof (ELF_STRING_ARM_unwind) - 1;
4263 len2 = sizeof (ELF_STRING_ARM_unwind_once) - 1;
4264 return (strncmp (name, ELF_STRING_ARM_unwind, len1) == 0
4265 || strncmp (name, ELF_STRING_ARM_unwind_once, len2) == 0);
4266 }
4267
4268
4269 /* Set the type and flags for an ARM section. We do this by
4270 the section name, which is a hack, but ought to work. */
4271
4272 static bfd_boolean
4273 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
4274 {
4275 const char * name;
4276
4277 name = bfd_get_section_name (abfd, sec);
4278
4279 if (is_arm_elf_unwind_section_name (abfd, name))
4280 {
4281 hdr->sh_type = SHT_ARM_EXIDX;
4282 hdr->sh_flags |= SHF_LINK_ORDER;
4283 }
4284 return TRUE;
4285 }
4286
4287 /* Handle an ARM specific section when reading an object file.
4288 This is called when elf.c finds a section with an unknown type. */
4289
4290 static bfd_boolean
4291 elf32_arm_section_from_shdr (bfd *abfd,
4292 Elf_Internal_Shdr * hdr,
4293 const char *name)
4294 {
4295 /* There ought to be a place to keep ELF backend specific flags, but
4296 at the moment there isn't one. We just keep track of the
4297 sections by their name, instead. Fortunately, the ABI gives
4298 names for all the ARM specific sections, so we will probably get
4299 away with this. */
4300 switch (hdr->sh_type)
4301 {
4302 case SHT_ARM_EXIDX:
4303 break;
4304
4305 default:
4306 return FALSE;
4307 }
4308
4309 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
4310 return FALSE;
4311
4312 return TRUE;
4313 }
4314
4315 /* Called for each symbol. Builds a section map based on mapping symbols.
4316 Does not alter any of the symbols. */
4317
4318 static bfd_boolean
4319 elf32_arm_output_symbol_hook (struct bfd_link_info *info,
4320 const char *name,
4321 Elf_Internal_Sym *elfsym,
4322 asection *input_sec,
4323 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
4324 {
4325 int mapcount;
4326 elf32_arm_section_map *map;
4327 struct elf32_arm_link_hash_table *globals;
4328
4329 /* Only do this on final link. */
4330 if (info->relocatable)
4331 return TRUE;
4332
4333 /* Only build a map if we need to byteswap code. */
4334 globals = elf32_arm_hash_table (info);
4335 if (!globals->byteswap_code)
4336 return TRUE;
4337
4338 /* We only want mapping symbols. */
4339 if (! is_arm_mapping_symbol_name (name))
4340 return TRUE;
4341
4342 mapcount = ++(elf32_arm_section_data (input_sec)->mapcount);
4343 map = elf32_arm_section_data (input_sec)->map;
4344 /* TODO: This may be inefficient, but we probably don't usually have many
4345 mapping symbols per section. */
4346 map = bfd_realloc (map, mapcount * sizeof (elf32_arm_section_map));
4347 elf32_arm_section_data (input_sec)->map = map;
4348
4349 map[mapcount - 1].vma = elfsym->st_value;
4350 map[mapcount - 1].type = name[1];
4351 return TRUE;
4352 }
4353
4354
4355 /* Allocate target specific section data. */
4356
4357 static bfd_boolean
4358 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
4359 {
4360 struct _arm_elf_section_data *sdata;
4361 bfd_size_type amt = sizeof (*sdata);
4362
4363 sdata = bfd_zalloc (abfd, amt);
4364 if (sdata == NULL)
4365 return FALSE;
4366 sec->used_by_bfd = sdata;
4367
4368 return _bfd_elf_new_section_hook (abfd, sec);
4369 }
4370
4371
4372 /* Used to order a list of mapping symbols by address. */
4373
4374 static int
4375 elf32_arm_compare_mapping (const void * a, const void * b)
4376 {
4377 return ((const elf32_arm_section_map *) a)->vma
4378 > ((const elf32_arm_section_map *) b)->vma;
4379 }
4380
4381
4382 /* Do code byteswapping. Return FALSE afterwards so that the section is
4383 written out as normal. */
4384
4385 static bfd_boolean
4386 elf32_arm_write_section (bfd *output_bfd ATTRIBUTE_UNUSED, asection *sec,
4387 bfd_byte *contents)
4388 {
4389 int mapcount;
4390 elf32_arm_section_map *map;
4391 bfd_vma ptr;
4392 bfd_vma end;
4393 bfd_vma offset;
4394 bfd_byte tmp;
4395 int i;
4396
4397 mapcount = elf32_arm_section_data (sec)->mapcount;
4398 map = elf32_arm_section_data (sec)->map;
4399
4400 if (mapcount == 0)
4401 return FALSE;
4402
4403 qsort (map, mapcount, sizeof (elf32_arm_section_map),
4404 elf32_arm_compare_mapping);
4405
4406 offset = sec->output_section->vma + sec->output_offset;
4407 ptr = map[0].vma - offset;
4408 for (i = 0; i < mapcount; i++)
4409 {
4410 if (i == mapcount - 1)
4411 end = sec->size;
4412 else
4413 end = map[i + 1].vma - offset;
4414
4415 switch (map[i].type)
4416 {
4417 case 'a':
4418 /* Byte swap code words. */
4419 while (ptr + 3 < end)
4420 {
4421 tmp = contents[ptr];
4422 contents[ptr] = contents[ptr + 3];
4423 contents[ptr + 3] = tmp;
4424 tmp = contents[ptr + 1];
4425 contents[ptr + 1] = contents[ptr + 2];
4426 contents[ptr + 2] = tmp;
4427 ptr += 4;
4428 }
4429 break;
4430
4431 case 't':
4432 /* Byte swap code halfwords. */
4433 while (ptr + 1 < end)
4434 {
4435 tmp = contents[ptr];
4436 contents[ptr] = contents[ptr + 1];
4437 contents[ptr + 1] = tmp;
4438 ptr += 2;
4439 }
4440 break;
4441
4442 case 'd':
4443 /* Leave data alone. */
4444 break;
4445 }
4446 ptr = end;
4447 }
4448 free (map);
4449 return FALSE;
4450 }
4451
4452 #define ELF_ARCH bfd_arch_arm
4453 #define ELF_MACHINE_CODE EM_ARM
4454 #ifdef __QNXTARGET__
4455 #define ELF_MAXPAGESIZE 0x1000
4456 #else
4457 #define ELF_MAXPAGESIZE 0x8000
4458 #endif
4459
4460 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
4461 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
4462 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
4463 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
4464 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
4465 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
4466 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
4467 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
4468
4469 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
4470 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
4471 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
4472 #define elf_backend_check_relocs elf32_arm_check_relocs
4473 #define elf_backend_relocate_section elf32_arm_relocate_section
4474 #define elf_backend_write_section elf32_arm_write_section
4475 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
4476 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
4477 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
4478 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
4479 #define elf_backend_link_output_symbol_hook elf32_arm_output_symbol_hook
4480 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
4481 #define elf_backend_post_process_headers elf32_arm_post_process_headers
4482 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
4483 #define elf_backend_object_p elf32_arm_object_p
4484 #define elf_backend_section_flags elf32_arm_section_flags
4485 #define elf_backend_fake_sections elf32_arm_fake_sections
4486 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
4487 #define elf_backend_final_write_processing elf32_arm_final_write_processing
4488 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
4489
4490 #define elf_backend_can_refcount 1
4491 #define elf_backend_can_gc_sections 1
4492 #define elf_backend_plt_readonly 1
4493 #define elf_backend_want_got_plt 1
4494 #define elf_backend_want_plt_sym 0
4495 #if !USE_REL
4496 #define elf_backend_rela_normal 1
4497 #endif
4498
4499 #define elf_backend_got_header_size 12
4500
4501 #include "elf32-target.h"
This page took 0.180417 seconds and 5 git commands to generate.