(elf32_thumb_to_arm_stub): Include section VMAs in computation of offset to
[deliverable/binutils-gdb.git] / bfd / elf32-arm.h
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 #ifndef USE_REL
21 #define USE_REL 0
22 #endif
23
24 typedef unsigned long int insn32;
25 typedef unsigned short int insn16;
26
27 static bfd_boolean elf32_arm_set_private_flags
28 PARAMS ((bfd *, flagword));
29 static bfd_boolean elf32_arm_copy_private_bfd_data
30 PARAMS ((bfd *, bfd *));
31 static bfd_boolean elf32_arm_merge_private_bfd_data
32 PARAMS ((bfd *, bfd *));
33 static bfd_boolean elf32_arm_print_private_bfd_data
34 PARAMS ((bfd *, PTR));
35 static int elf32_arm_get_symbol_type
36 PARAMS (( Elf_Internal_Sym *, int));
37 static struct bfd_link_hash_table *elf32_arm_link_hash_table_create
38 PARAMS ((bfd *));
39 static bfd_reloc_status_type elf32_arm_final_link_relocate
40 PARAMS ((reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
41 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
42 const char *, int, struct elf_link_hash_entry *));
43 static insn32 insert_thumb_branch
44 PARAMS ((insn32, int));
45 static struct elf_link_hash_entry *find_thumb_glue
46 PARAMS ((struct bfd_link_info *, const char *, bfd *));
47 static struct elf_link_hash_entry *find_arm_glue
48 PARAMS ((struct bfd_link_info *, const char *, bfd *));
49 static void elf32_arm_post_process_headers
50 PARAMS ((bfd *, struct bfd_link_info *));
51 static int elf32_arm_to_thumb_stub
52 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
53 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
54 static int elf32_thumb_to_arm_stub
55 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
56 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
57 static bfd_boolean elf32_arm_relocate_section
58 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
59 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
60 static asection * elf32_arm_gc_mark_hook
61 PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
62 struct elf_link_hash_entry *, Elf_Internal_Sym *));
63 static bfd_boolean elf32_arm_gc_sweep_hook
64 PARAMS ((bfd *, struct bfd_link_info *, asection *,
65 const Elf_Internal_Rela *));
66 static bfd_boolean elf32_arm_check_relocs
67 PARAMS ((bfd *, struct bfd_link_info *, asection *,
68 const Elf_Internal_Rela *));
69 static bfd_boolean elf32_arm_find_nearest_line
70 PARAMS ((bfd *, asection *, asymbol **, bfd_vma, const char **,
71 const char **, unsigned int *));
72 static bfd_boolean elf32_arm_adjust_dynamic_symbol
73 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
74 static bfd_boolean elf32_arm_size_dynamic_sections
75 PARAMS ((bfd *, struct bfd_link_info *));
76 static bfd_boolean elf32_arm_finish_dynamic_symbol
77 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
78 Elf_Internal_Sym *));
79 static bfd_boolean elf32_arm_finish_dynamic_sections
80 PARAMS ((bfd *, struct bfd_link_info *));
81 static struct bfd_hash_entry * elf32_arm_link_hash_newfunc
82 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
83 #if USE_REL
84 static void arm_add_to_rel
85 PARAMS ((bfd *, bfd_byte *, reloc_howto_type *, bfd_signed_vma));
86 #endif
87 static enum elf_reloc_type_class elf32_arm_reloc_type_class
88 PARAMS ((const Elf_Internal_Rela *));
89 static bfd_boolean elf32_arm_object_p
90 PARAMS ((bfd *));
91
92 #ifndef ELFARM_NABI_C_INCLUDED
93 static void record_arm_to_thumb_glue
94 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
95 static void record_thumb_to_arm_glue
96 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
97 bfd_boolean bfd_elf32_arm_allocate_interworking_sections
98 PARAMS ((struct bfd_link_info *));
99 bfd_boolean bfd_elf32_arm_get_bfd_for_interworking
100 PARAMS ((bfd *, struct bfd_link_info *));
101 bfd_boolean bfd_elf32_arm_process_before_allocation
102 PARAMS ((bfd *, struct bfd_link_info *, int));
103 #endif
104
105
106 #define INTERWORK_FLAG(abfd) (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK)
107
108 /* The linker script knows the section names for placement.
109 The entry_names are used to do simple name mangling on the stubs.
110 Given a function name, and its type, the stub can be found. The
111 name can be changed. The only requirement is the %s be present. */
112 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
113 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
114
115 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
116 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
117
118 /* The name of the dynamic interpreter. This is put in the .interp
119 section. */
120 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
121
122 /* The size in bytes of an entry in the procedure linkage table. */
123 #define PLT_ENTRY_SIZE 16
124
125 /* The first entry in a procedure linkage table looks like
126 this. It is set up so that any shared library function that is
127 called before the relocation has been set up calls the dynamic
128 linker first. */
129 static const bfd_vma elf32_arm_plt0_entry [PLT_ENTRY_SIZE / 4] =
130 {
131 0xe52de004, /* str lr, [sp, #-4]! */
132 0xe59fe010, /* ldr lr, [pc, #16] */
133 0xe08fe00e, /* add lr, pc, lr */
134 0xe5bef008 /* ldr pc, [lr, #8]! */
135 };
136
137 /* Subsequent entries in a procedure linkage table look like
138 this. */
139 static const bfd_vma elf32_arm_plt_entry [PLT_ENTRY_SIZE / 4] =
140 {
141 0xe59fc004, /* ldr ip, [pc, #4] */
142 0xe08fc00c, /* add ip, pc, ip */
143 0xe59cf000, /* ldr pc, [ip] */
144 0x00000000 /* offset to symbol in got */
145 };
146
147 /* The ARM linker needs to keep track of the number of relocs that it
148 decides to copy in check_relocs for each symbol. This is so that
149 it can discard PC relative relocs if it doesn't need them when
150 linking with -Bsymbolic. We store the information in a field
151 extending the regular ELF linker hash table. */
152
153 /* This structure keeps track of the number of PC relative relocs we
154 have copied for a given symbol. */
155 struct elf32_arm_pcrel_relocs_copied
156 {
157 /* Next section. */
158 struct elf32_arm_pcrel_relocs_copied * next;
159 /* A section in dynobj. */
160 asection * section;
161 /* Number of relocs copied in this section. */
162 bfd_size_type count;
163 };
164
165 /* Arm ELF linker hash entry. */
166 struct elf32_arm_link_hash_entry
167 {
168 struct elf_link_hash_entry root;
169
170 /* Number of PC relative relocs copied for this symbol. */
171 struct elf32_arm_pcrel_relocs_copied * pcrel_relocs_copied;
172 };
173
174 /* Declare this now that the above structures are defined. */
175 static bfd_boolean elf32_arm_discard_copies
176 PARAMS ((struct elf32_arm_link_hash_entry *, PTR));
177
178 /* Traverse an arm ELF linker hash table. */
179 #define elf32_arm_link_hash_traverse(table, func, info) \
180 (elf_link_hash_traverse \
181 (&(table)->root, \
182 (bfd_boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
183 (info)))
184
185 /* Get the ARM elf linker hash table from a link_info structure. */
186 #define elf32_arm_hash_table(info) \
187 ((struct elf32_arm_link_hash_table *) ((info)->hash))
188
189 /* ARM ELF linker hash table. */
190 struct elf32_arm_link_hash_table
191 {
192 /* The main hash table. */
193 struct elf_link_hash_table root;
194
195 /* The size in bytes of the section containg the Thumb-to-ARM glue. */
196 bfd_size_type thumb_glue_size;
197
198 /* The size in bytes of the section containg the ARM-to-Thumb glue. */
199 bfd_size_type arm_glue_size;
200
201 /* An arbitary input BFD chosen to hold the glue sections. */
202 bfd * bfd_of_glue_owner;
203
204 /* A boolean indicating whether knowledge of the ARM's pipeline
205 length should be applied by the linker. */
206 int no_pipeline_knowledge;
207 };
208
209 /* Create an entry in an ARM ELF linker hash table. */
210
211 static struct bfd_hash_entry *
212 elf32_arm_link_hash_newfunc (entry, table, string)
213 struct bfd_hash_entry * entry;
214 struct bfd_hash_table * table;
215 const char * string;
216 {
217 struct elf32_arm_link_hash_entry * ret =
218 (struct elf32_arm_link_hash_entry *) entry;
219
220 /* Allocate the structure if it has not already been allocated by a
221 subclass. */
222 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
223 ret = ((struct elf32_arm_link_hash_entry *)
224 bfd_hash_allocate (table,
225 sizeof (struct elf32_arm_link_hash_entry)));
226 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
227 return (struct bfd_hash_entry *) ret;
228
229 /* Call the allocation method of the superclass. */
230 ret = ((struct elf32_arm_link_hash_entry *)
231 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
232 table, string));
233 if (ret != (struct elf32_arm_link_hash_entry *) NULL)
234 ret->pcrel_relocs_copied = NULL;
235
236 return (struct bfd_hash_entry *) ret;
237 }
238
239 /* Create an ARM elf linker hash table. */
240
241 static struct bfd_link_hash_table *
242 elf32_arm_link_hash_table_create (abfd)
243 bfd *abfd;
244 {
245 struct elf32_arm_link_hash_table *ret;
246 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
247
248 ret = (struct elf32_arm_link_hash_table *) bfd_malloc (amt);
249 if (ret == (struct elf32_arm_link_hash_table *) NULL)
250 return NULL;
251
252 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
253 elf32_arm_link_hash_newfunc))
254 {
255 free (ret);
256 return NULL;
257 }
258
259 ret->thumb_glue_size = 0;
260 ret->arm_glue_size = 0;
261 ret->bfd_of_glue_owner = NULL;
262 ret->no_pipeline_knowledge = 0;
263
264 return &ret->root.root;
265 }
266
267 /* Locate the Thumb encoded calling stub for NAME. */
268
269 static struct elf_link_hash_entry *
270 find_thumb_glue (link_info, name, input_bfd)
271 struct bfd_link_info *link_info;
272 const char *name;
273 bfd *input_bfd;
274 {
275 char *tmp_name;
276 struct elf_link_hash_entry *hash;
277 struct elf32_arm_link_hash_table *hash_table;
278
279 /* We need a pointer to the armelf specific hash table. */
280 hash_table = elf32_arm_hash_table (link_info);
281
282 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
283 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
284
285 BFD_ASSERT (tmp_name);
286
287 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
288
289 hash = elf_link_hash_lookup
290 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
291
292 if (hash == NULL)
293 /* xgettext:c-format */
294 (*_bfd_error_handler) (_("%s: unable to find THUMB glue '%s' for `%s'"),
295 bfd_archive_filename (input_bfd), tmp_name, name);
296
297 free (tmp_name);
298
299 return hash;
300 }
301
302 /* Locate the ARM encoded calling stub for NAME. */
303
304 static struct elf_link_hash_entry *
305 find_arm_glue (link_info, name, input_bfd)
306 struct bfd_link_info *link_info;
307 const char *name;
308 bfd *input_bfd;
309 {
310 char *tmp_name;
311 struct elf_link_hash_entry *myh;
312 struct elf32_arm_link_hash_table *hash_table;
313
314 /* We need a pointer to the elfarm specific hash table. */
315 hash_table = elf32_arm_hash_table (link_info);
316
317 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
318 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
319
320 BFD_ASSERT (tmp_name);
321
322 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
323
324 myh = elf_link_hash_lookup
325 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
326
327 if (myh == NULL)
328 /* xgettext:c-format */
329 (*_bfd_error_handler) (_("%s: unable to find ARM glue '%s' for `%s'"),
330 bfd_archive_filename (input_bfd), tmp_name, name);
331
332 free (tmp_name);
333
334 return myh;
335 }
336
337 /* ARM->Thumb glue:
338
339 .arm
340 __func_from_arm:
341 ldr r12, __func_addr
342 bx r12
343 __func_addr:
344 .word func @ behave as if you saw a ARM_32 reloc. */
345
346 #define ARM2THUMB_GLUE_SIZE 12
347 static const insn32 a2t1_ldr_insn = 0xe59fc000;
348 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
349 static const insn32 a2t3_func_addr_insn = 0x00000001;
350
351 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
352
353 .thumb .thumb
354 .align 2 .align 2
355 __func_from_thumb: __func_from_thumb:
356 bx pc push {r6, lr}
357 nop ldr r6, __func_addr
358 .arm mov lr, pc
359 __func_change_to_arm: bx r6
360 b func .arm
361 __func_back_to_thumb:
362 ldmia r13! {r6, lr}
363 bx lr
364 __func_addr:
365 .word func */
366
367 #define THUMB2ARM_GLUE_SIZE 8
368 static const insn16 t2a1_bx_pc_insn = 0x4778;
369 static const insn16 t2a2_noop_insn = 0x46c0;
370 static const insn32 t2a3_b_insn = 0xea000000;
371
372 #ifndef ELFARM_NABI_C_INCLUDED
373 bfd_boolean
374 bfd_elf32_arm_allocate_interworking_sections (info)
375 struct bfd_link_info * info;
376 {
377 asection * s;
378 bfd_byte * foo;
379 struct elf32_arm_link_hash_table * globals;
380
381 globals = elf32_arm_hash_table (info);
382
383 BFD_ASSERT (globals != NULL);
384
385 if (globals->arm_glue_size != 0)
386 {
387 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
388
389 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
390 ARM2THUMB_GLUE_SECTION_NAME);
391
392 BFD_ASSERT (s != NULL);
393
394 foo = (bfd_byte *) bfd_alloc (globals->bfd_of_glue_owner,
395 globals->arm_glue_size);
396
397 s->_raw_size = s->_cooked_size = globals->arm_glue_size;
398 s->contents = foo;
399 }
400
401 if (globals->thumb_glue_size != 0)
402 {
403 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
404
405 s = bfd_get_section_by_name
406 (globals->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
407
408 BFD_ASSERT (s != NULL);
409
410 foo = (bfd_byte *) bfd_alloc (globals->bfd_of_glue_owner,
411 globals->thumb_glue_size);
412
413 s->_raw_size = s->_cooked_size = globals->thumb_glue_size;
414 s->contents = foo;
415 }
416
417 return TRUE;
418 }
419
420 static void
421 record_arm_to_thumb_glue (link_info, h)
422 struct bfd_link_info * link_info;
423 struct elf_link_hash_entry * h;
424 {
425 const char * name = h->root.root.string;
426 asection * s;
427 char * tmp_name;
428 struct elf_link_hash_entry * myh;
429 struct bfd_link_hash_entry * bh;
430 struct elf32_arm_link_hash_table * globals;
431 bfd_vma val;
432
433 globals = elf32_arm_hash_table (link_info);
434
435 BFD_ASSERT (globals != NULL);
436 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
437
438 s = bfd_get_section_by_name
439 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
440
441 BFD_ASSERT (s != NULL);
442
443 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
444 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
445
446 BFD_ASSERT (tmp_name);
447
448 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
449
450 myh = elf_link_hash_lookup
451 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
452
453 if (myh != NULL)
454 {
455 /* We've already seen this guy. */
456 free (tmp_name);
457 return;
458 }
459
460 /* The only trick here is using hash_table->arm_glue_size as the value. Even
461 though the section isn't allocated yet, this is where we will be putting
462 it. */
463 bh = NULL;
464 val = globals->arm_glue_size + 1;
465 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
466 tmp_name, BSF_GLOBAL, s, val,
467 NULL, TRUE, FALSE, &bh);
468
469 free (tmp_name);
470
471 globals->arm_glue_size += ARM2THUMB_GLUE_SIZE;
472
473 return;
474 }
475
476 static void
477 record_thumb_to_arm_glue (link_info, h)
478 struct bfd_link_info *link_info;
479 struct elf_link_hash_entry *h;
480 {
481 const char *name = h->root.root.string;
482 asection *s;
483 char *tmp_name;
484 struct elf_link_hash_entry *myh;
485 struct bfd_link_hash_entry *bh;
486 struct elf32_arm_link_hash_table *hash_table;
487 char bind;
488 bfd_vma val;
489
490 hash_table = elf32_arm_hash_table (link_info);
491
492 BFD_ASSERT (hash_table != NULL);
493 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
494
495 s = bfd_get_section_by_name
496 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
497
498 BFD_ASSERT (s != NULL);
499
500 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
501 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
502
503 BFD_ASSERT (tmp_name);
504
505 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
506
507 myh = elf_link_hash_lookup
508 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
509
510 if (myh != NULL)
511 {
512 /* We've already seen this guy. */
513 free (tmp_name);
514 return;
515 }
516
517 bh = NULL;
518 val = hash_table->thumb_glue_size + 1;
519 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
520 tmp_name, BSF_GLOBAL, s, val,
521 NULL, TRUE, FALSE, &bh);
522
523 /* If we mark it 'Thumb', the disassembler will do a better job. */
524 myh = (struct elf_link_hash_entry *) bh;
525 bind = ELF_ST_BIND (myh->type);
526 myh->type = ELF_ST_INFO (bind, STT_ARM_TFUNC);
527
528 free (tmp_name);
529
530 #define CHANGE_TO_ARM "__%s_change_to_arm"
531 #define BACK_FROM_ARM "__%s_back_from_arm"
532
533 /* Allocate another symbol to mark where we switch to Arm mode. */
534 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
535 + strlen (CHANGE_TO_ARM) + 1);
536
537 BFD_ASSERT (tmp_name);
538
539 sprintf (tmp_name, CHANGE_TO_ARM, name);
540
541 bh = NULL;
542 val = hash_table->thumb_glue_size + 4,
543 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
544 tmp_name, BSF_LOCAL, s, val,
545 NULL, TRUE, FALSE, &bh);
546
547 free (tmp_name);
548
549 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
550
551 return;
552 }
553
554 /* Add the glue sections to ABFD. This function is called from the
555 linker scripts in ld/emultempl/{armelf}.em. */
556
557 bfd_boolean
558 bfd_elf32_arm_add_glue_sections_to_bfd (abfd, info)
559 bfd *abfd;
560 struct bfd_link_info *info;
561 {
562 flagword flags;
563 asection *sec;
564
565 /* If we are only performing a partial
566 link do not bother adding the glue. */
567 if (info->relocateable)
568 return TRUE;
569
570 sec = bfd_get_section_by_name (abfd, ARM2THUMB_GLUE_SECTION_NAME);
571
572 if (sec == NULL)
573 {
574 /* Note: we do not include the flag SEC_LINKER_CREATED, as this
575 will prevent elf_link_input_bfd() from processing the contents
576 of this section. */
577 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
578
579 sec = bfd_make_section (abfd, ARM2THUMB_GLUE_SECTION_NAME);
580
581 if (sec == NULL
582 || !bfd_set_section_flags (abfd, sec, flags)
583 || !bfd_set_section_alignment (abfd, sec, 2))
584 return FALSE;
585
586 /* Set the gc mark to prevent the section from being removed by garbage
587 collection, despite the fact that no relocs refer to this section. */
588 sec->gc_mark = 1;
589 }
590
591 sec = bfd_get_section_by_name (abfd, THUMB2ARM_GLUE_SECTION_NAME);
592
593 if (sec == NULL)
594 {
595 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
596
597 sec = bfd_make_section (abfd, THUMB2ARM_GLUE_SECTION_NAME);
598
599 if (sec == NULL
600 || !bfd_set_section_flags (abfd, sec, flags)
601 || !bfd_set_section_alignment (abfd, sec, 2))
602 return FALSE;
603
604 sec->gc_mark = 1;
605 }
606
607 return TRUE;
608 }
609
610 /* Select a BFD to be used to hold the sections used by the glue code.
611 This function is called from the linker scripts in ld/emultempl/
612 {armelf/pe}.em */
613
614 bfd_boolean
615 bfd_elf32_arm_get_bfd_for_interworking (abfd, info)
616 bfd *abfd;
617 struct bfd_link_info *info;
618 {
619 struct elf32_arm_link_hash_table *globals;
620
621 /* If we are only performing a partial link
622 do not bother getting a bfd to hold the glue. */
623 if (info->relocateable)
624 return TRUE;
625
626 globals = elf32_arm_hash_table (info);
627
628 BFD_ASSERT (globals != NULL);
629
630 if (globals->bfd_of_glue_owner != NULL)
631 return TRUE;
632
633 /* Save the bfd for later use. */
634 globals->bfd_of_glue_owner = abfd;
635
636 return TRUE;
637 }
638
639 bfd_boolean
640 bfd_elf32_arm_process_before_allocation (abfd, link_info, no_pipeline_knowledge)
641 bfd *abfd;
642 struct bfd_link_info *link_info;
643 int no_pipeline_knowledge;
644 {
645 Elf_Internal_Shdr *symtab_hdr;
646 Elf_Internal_Rela *internal_relocs = NULL;
647 Elf_Internal_Rela *irel, *irelend;
648 bfd_byte *contents = NULL;
649
650 asection *sec;
651 struct elf32_arm_link_hash_table *globals;
652
653 /* If we are only performing a partial link do not bother
654 to construct any glue. */
655 if (link_info->relocateable)
656 return TRUE;
657
658 /* Here we have a bfd that is to be included on the link. We have a hook
659 to do reloc rummaging, before section sizes are nailed down. */
660 globals = elf32_arm_hash_table (link_info);
661
662 BFD_ASSERT (globals != NULL);
663 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
664
665 globals->no_pipeline_knowledge = no_pipeline_knowledge;
666
667 /* Rummage around all the relocs and map the glue vectors. */
668 sec = abfd->sections;
669
670 if (sec == NULL)
671 return TRUE;
672
673 for (; sec != NULL; sec = sec->next)
674 {
675 if (sec->reloc_count == 0)
676 continue;
677
678 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
679
680 /* Load the relocs. */
681 internal_relocs
682 = _bfd_elf32_link_read_relocs (abfd, sec, (PTR) NULL,
683 (Elf_Internal_Rela *) NULL, FALSE);
684
685 if (internal_relocs == NULL)
686 goto error_return;
687
688 irelend = internal_relocs + sec->reloc_count;
689 for (irel = internal_relocs; irel < irelend; irel++)
690 {
691 long r_type;
692 unsigned long r_index;
693
694 struct elf_link_hash_entry *h;
695
696 r_type = ELF32_R_TYPE (irel->r_info);
697 r_index = ELF32_R_SYM (irel->r_info);
698
699 /* These are the only relocation types we care about. */
700 if ( r_type != R_ARM_PC24
701 && r_type != R_ARM_THM_PC22)
702 continue;
703
704 /* Get the section contents if we haven't done so already. */
705 if (contents == NULL)
706 {
707 /* Get cached copy if it exists. */
708 if (elf_section_data (sec)->this_hdr.contents != NULL)
709 contents = elf_section_data (sec)->this_hdr.contents;
710 else
711 {
712 /* Go get them off disk. */
713 contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
714 if (contents == NULL)
715 goto error_return;
716
717 if (!bfd_get_section_contents (abfd, sec, contents,
718 (file_ptr) 0, sec->_raw_size))
719 goto error_return;
720 }
721 }
722
723 /* If the relocation is not against a symbol it cannot concern us. */
724 h = NULL;
725
726 /* We don't care about local symbols. */
727 if (r_index < symtab_hdr->sh_info)
728 continue;
729
730 /* This is an external symbol. */
731 r_index -= symtab_hdr->sh_info;
732 h = (struct elf_link_hash_entry *)
733 elf_sym_hashes (abfd)[r_index];
734
735 /* If the relocation is against a static symbol it must be within
736 the current section and so cannot be a cross ARM/Thumb relocation. */
737 if (h == NULL)
738 continue;
739
740 switch (r_type)
741 {
742 case R_ARM_PC24:
743 /* This one is a call from arm code. We need to look up
744 the target of the call. If it is a thumb target, we
745 insert glue. */
746 if (ELF_ST_TYPE(h->type) == STT_ARM_TFUNC)
747 record_arm_to_thumb_glue (link_info, h);
748 break;
749
750 case R_ARM_THM_PC22:
751 /* This one is a call from thumb code. We look
752 up the target of the call. If it is not a thumb
753 target, we insert glue. */
754 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC)
755 record_thumb_to_arm_glue (link_info, h);
756 break;
757
758 default:
759 break;
760 }
761 }
762
763 if (contents != NULL
764 && elf_section_data (sec)->this_hdr.contents != contents)
765 free (contents);
766 contents = NULL;
767
768 if (internal_relocs != NULL
769 && elf_section_data (sec)->relocs != internal_relocs)
770 free (internal_relocs);
771 internal_relocs = NULL;
772 }
773
774 return TRUE;
775
776 error_return:
777 if (contents != NULL
778 && elf_section_data (sec)->this_hdr.contents != contents)
779 free (contents);
780 if (internal_relocs != NULL
781 && elf_section_data (sec)->relocs != internal_relocs)
782 free (internal_relocs);
783
784 return FALSE;
785 }
786 #endif
787
788 /* The thumb form of a long branch is a bit finicky, because the offset
789 encoding is split over two fields, each in it's own instruction. They
790 can occur in any order. So given a thumb form of long branch, and an
791 offset, insert the offset into the thumb branch and return finished
792 instruction.
793
794 It takes two thumb instructions to encode the target address. Each has
795 11 bits to invest. The upper 11 bits are stored in one (identifed by
796 H-0.. see below), the lower 11 bits are stored in the other (identified
797 by H-1).
798
799 Combine together and shifted left by 1 (it's a half word address) and
800 there you have it.
801
802 Op: 1111 = F,
803 H-0, upper address-0 = 000
804 Op: 1111 = F,
805 H-1, lower address-0 = 800
806
807 They can be ordered either way, but the arm tools I've seen always put
808 the lower one first. It probably doesn't matter. krk@cygnus.com
809
810 XXX: Actually the order does matter. The second instruction (H-1)
811 moves the computed address into the PC, so it must be the second one
812 in the sequence. The problem, however is that whilst little endian code
813 stores the instructions in HI then LOW order, big endian code does the
814 reverse. nickc@cygnus.com. */
815
816 #define LOW_HI_ORDER 0xF800F000
817 #define HI_LOW_ORDER 0xF000F800
818
819 static insn32
820 insert_thumb_branch (br_insn, rel_off)
821 insn32 br_insn;
822 int rel_off;
823 {
824 unsigned int low_bits;
825 unsigned int high_bits;
826
827 BFD_ASSERT ((rel_off & 1) != 1);
828
829 rel_off >>= 1; /* Half word aligned address. */
830 low_bits = rel_off & 0x000007FF; /* The bottom 11 bits. */
831 high_bits = (rel_off >> 11) & 0x000007FF; /* The top 11 bits. */
832
833 if ((br_insn & LOW_HI_ORDER) == LOW_HI_ORDER)
834 br_insn = LOW_HI_ORDER | (low_bits << 16) | high_bits;
835 else if ((br_insn & HI_LOW_ORDER) == HI_LOW_ORDER)
836 br_insn = HI_LOW_ORDER | (high_bits << 16) | low_bits;
837 else
838 /* FIXME: abort is probably not the right call. krk@cygnus.com */
839 abort (); /* error - not a valid branch instruction form. */
840
841 return br_insn;
842 }
843
844 /* Thumb code calling an ARM function. */
845
846 static int
847 elf32_thumb_to_arm_stub (info, name, input_bfd, output_bfd, input_section,
848 hit_data, sym_sec, offset, addend, val)
849 struct bfd_link_info * info;
850 const char * name;
851 bfd * input_bfd;
852 bfd * output_bfd;
853 asection * input_section;
854 bfd_byte * hit_data;
855 asection * sym_sec;
856 bfd_vma offset;
857 bfd_signed_vma addend;
858 bfd_vma val;
859 {
860 asection * s = 0;
861 bfd_vma my_offset;
862 unsigned long int tmp;
863 long int ret_offset;
864 struct elf_link_hash_entry * myh;
865 struct elf32_arm_link_hash_table * globals;
866
867 myh = find_thumb_glue (info, name, input_bfd);
868 if (myh == NULL)
869 return FALSE;
870
871 globals = elf32_arm_hash_table (info);
872
873 BFD_ASSERT (globals != NULL);
874 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
875
876 my_offset = myh->root.u.def.value;
877
878 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
879 THUMB2ARM_GLUE_SECTION_NAME);
880
881 BFD_ASSERT (s != NULL);
882 BFD_ASSERT (s->contents != NULL);
883 BFD_ASSERT (s->output_section != NULL);
884
885 if ((my_offset & 0x01) == 0x01)
886 {
887 if (sym_sec != NULL
888 && sym_sec->owner != NULL
889 && !INTERWORK_FLAG (sym_sec->owner))
890 {
891 (*_bfd_error_handler)
892 (_("%s(%s): warning: interworking not enabled."),
893 bfd_archive_filename (sym_sec->owner), name);
894 (*_bfd_error_handler)
895 (_(" first occurrence: %s: thumb call to arm"),
896 bfd_archive_filename (input_bfd));
897
898 return FALSE;
899 }
900
901 --my_offset;
902 myh->root.u.def.value = my_offset;
903
904 bfd_put_16 (output_bfd, (bfd_vma) t2a1_bx_pc_insn,
905 s->contents + my_offset);
906
907 bfd_put_16 (output_bfd, (bfd_vma) t2a2_noop_insn,
908 s->contents + my_offset + 2);
909
910 ret_offset =
911 /* Address of destination of the stub. */
912 ((bfd_signed_vma) val)
913 - ((bfd_signed_vma)
914 /* Offset from the start of the current section to the start of the stubs. */
915 (s->output_offset
916 /* Offset of the start of this stub from the start of the stubs. */
917 + my_offset
918 /* Address of the start of the current section. */
919 + s->output_section->vma)
920 /* The branch instruction is 4 bytes into the stub. */
921 + 4
922 /* ARM branches work from the pc of the instruction + 8. */
923 + 8);
924
925 bfd_put_32 (output_bfd,
926 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
927 s->contents + my_offset + 4);
928 }
929
930 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
931
932 /* Now go back and fix up the original BL insn to point to here. */
933 ret_offset =
934 /* Address of where the stub is located. */
935 (s->output_section->vma + s->output_offset + my_offset)
936 /* Address of where the BL is located. */
937 - (input_section->output_section->vma + input_section->output_offset + offset)
938 /* Addend in the relocation. */
939 - addend
940 /* Biassing for PC-relative addressing. */
941 - 8;
942
943 tmp = bfd_get_32 (input_bfd, hit_data
944 - input_section->vma);
945
946 bfd_put_32 (output_bfd,
947 (bfd_vma) insert_thumb_branch (tmp, ret_offset),
948 hit_data - input_section->vma);
949
950 return TRUE;
951 }
952
953 /* Arm code calling a Thumb function. */
954
955 static int
956 elf32_arm_to_thumb_stub (info, name, input_bfd, output_bfd, input_section,
957 hit_data, sym_sec, offset, addend, val)
958 struct bfd_link_info * info;
959 const char * name;
960 bfd * input_bfd;
961 bfd * output_bfd;
962 asection * input_section;
963 bfd_byte * hit_data;
964 asection * sym_sec;
965 bfd_vma offset;
966 bfd_signed_vma addend;
967 bfd_vma val;
968 {
969 unsigned long int tmp;
970 bfd_vma my_offset;
971 asection * s;
972 long int ret_offset;
973 struct elf_link_hash_entry * myh;
974 struct elf32_arm_link_hash_table * globals;
975
976 myh = find_arm_glue (info, name, input_bfd);
977 if (myh == NULL)
978 return FALSE;
979
980 globals = elf32_arm_hash_table (info);
981
982 BFD_ASSERT (globals != NULL);
983 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
984
985 my_offset = myh->root.u.def.value;
986 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
987 ARM2THUMB_GLUE_SECTION_NAME);
988 BFD_ASSERT (s != NULL);
989 BFD_ASSERT (s->contents != NULL);
990 BFD_ASSERT (s->output_section != NULL);
991
992 if ((my_offset & 0x01) == 0x01)
993 {
994 if (sym_sec != NULL
995 && sym_sec->owner != NULL
996 && !INTERWORK_FLAG (sym_sec->owner))
997 {
998 (*_bfd_error_handler)
999 (_("%s(%s): warning: interworking not enabled."),
1000 bfd_archive_filename (sym_sec->owner), name);
1001 (*_bfd_error_handler)
1002 (_(" first occurrence: %s: arm call to thumb"),
1003 bfd_archive_filename (input_bfd));
1004 }
1005
1006 --my_offset;
1007 myh->root.u.def.value = my_offset;
1008
1009 bfd_put_32 (output_bfd, (bfd_vma) a2t1_ldr_insn,
1010 s->contents + my_offset);
1011
1012 bfd_put_32 (output_bfd, (bfd_vma) a2t2_bx_r12_insn,
1013 s->contents + my_offset + 4);
1014
1015 /* It's a thumb address. Add the low order bit. */
1016 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
1017 s->contents + my_offset + 8);
1018 }
1019
1020 BFD_ASSERT (my_offset <= globals->arm_glue_size);
1021
1022 tmp = bfd_get_32 (input_bfd, hit_data);
1023 tmp = tmp & 0xFF000000;
1024
1025 /* Somehow these are both 4 too far, so subtract 8. */
1026 ret_offset = (s->output_offset
1027 + my_offset
1028 + s->output_section->vma
1029 - (input_section->output_offset
1030 + input_section->output_section->vma
1031 + offset + addend)
1032 - 8);
1033
1034 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
1035
1036 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
1037
1038 return TRUE;
1039 }
1040
1041 /* Perform a relocation as part of a final link. */
1042
1043 static bfd_reloc_status_type
1044 elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
1045 input_section, contents, rel, value,
1046 info, sym_sec, sym_name, sym_flags, h)
1047 reloc_howto_type * howto;
1048 bfd * input_bfd;
1049 bfd * output_bfd;
1050 asection * input_section;
1051 bfd_byte * contents;
1052 Elf_Internal_Rela * rel;
1053 bfd_vma value;
1054 struct bfd_link_info * info;
1055 asection * sym_sec;
1056 const char * sym_name;
1057 int sym_flags;
1058 struct elf_link_hash_entry * h;
1059 {
1060 unsigned long r_type = howto->type;
1061 unsigned long r_symndx;
1062 bfd_byte * hit_data = contents + rel->r_offset;
1063 bfd * dynobj = NULL;
1064 Elf_Internal_Shdr * symtab_hdr;
1065 struct elf_link_hash_entry ** sym_hashes;
1066 bfd_vma * local_got_offsets;
1067 asection * sgot = NULL;
1068 asection * splt = NULL;
1069 asection * sreloc = NULL;
1070 bfd_vma addend;
1071 bfd_signed_vma signed_addend;
1072 struct elf32_arm_link_hash_table * globals;
1073
1074 /* If the start address has been set, then set the EF_ARM_HASENTRY
1075 flag. Setting this more than once is redundant, but the cost is
1076 not too high, and it keeps the code simple.
1077
1078 The test is done here, rather than somewhere else, because the
1079 start address is only set just before the final link commences.
1080
1081 Note - if the user deliberately sets a start address of 0, the
1082 flag will not be set. */
1083 if (bfd_get_start_address (output_bfd) != 0)
1084 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
1085
1086 globals = elf32_arm_hash_table (info);
1087
1088 dynobj = elf_hash_table (info)->dynobj;
1089 if (dynobj)
1090 {
1091 sgot = bfd_get_section_by_name (dynobj, ".got");
1092 splt = bfd_get_section_by_name (dynobj, ".plt");
1093 }
1094 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1095 sym_hashes = elf_sym_hashes (input_bfd);
1096 local_got_offsets = elf_local_got_offsets (input_bfd);
1097 r_symndx = ELF32_R_SYM (rel->r_info);
1098
1099 #if USE_REL
1100 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
1101
1102 if (addend & ((howto->src_mask + 1) >> 1))
1103 {
1104 signed_addend = -1;
1105 signed_addend &= ~ howto->src_mask;
1106 signed_addend |= addend;
1107 }
1108 else
1109 signed_addend = addend;
1110 #else
1111 addend = signed_addend = rel->r_addend;
1112 #endif
1113
1114 switch (r_type)
1115 {
1116 case R_ARM_NONE:
1117 return bfd_reloc_ok;
1118
1119 case R_ARM_PC24:
1120 case R_ARM_ABS32:
1121 case R_ARM_REL32:
1122 #ifndef OLD_ARM_ABI
1123 case R_ARM_XPC25:
1124 #endif
1125 /* When generating a shared object, these relocations are copied
1126 into the output file to be resolved at run time. */
1127 if (info->shared
1128 && r_symndx != 0
1129 && (r_type != R_ARM_PC24
1130 || (h != NULL
1131 && h->dynindx != -1
1132 && (! info->symbolic
1133 || (h->elf_link_hash_flags
1134 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1135 {
1136 Elf_Internal_Rela outrel;
1137 bfd_byte *loc;
1138 bfd_boolean skip, relocate;
1139
1140 if (sreloc == NULL)
1141 {
1142 const char * name;
1143
1144 name = (bfd_elf_string_from_elf_section
1145 (input_bfd,
1146 elf_elfheader (input_bfd)->e_shstrndx,
1147 elf_section_data (input_section)->rel_hdr.sh_name));
1148 if (name == NULL)
1149 return bfd_reloc_notsupported;
1150
1151 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
1152 && strcmp (bfd_get_section_name (input_bfd,
1153 input_section),
1154 name + 4) == 0);
1155
1156 sreloc = bfd_get_section_by_name (dynobj, name);
1157 BFD_ASSERT (sreloc != NULL);
1158 }
1159
1160 skip = FALSE;
1161 relocate = FALSE;
1162
1163 outrel.r_offset =
1164 _bfd_elf_section_offset (output_bfd, info, input_section,
1165 rel->r_offset);
1166 if (outrel.r_offset == (bfd_vma) -1)
1167 skip = TRUE;
1168 else if (outrel.r_offset == (bfd_vma) -2)
1169 skip = TRUE, relocate = TRUE;
1170 outrel.r_offset += (input_section->output_section->vma
1171 + input_section->output_offset);
1172
1173 if (skip)
1174 memset (&outrel, 0, sizeof outrel);
1175 else if (r_type == R_ARM_PC24)
1176 {
1177 BFD_ASSERT (h != NULL && h->dynindx != -1);
1178 if ((input_section->flags & SEC_ALLOC) == 0)
1179 relocate = TRUE;
1180 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_PC24);
1181 }
1182 else
1183 {
1184 if (h == NULL
1185 || ((info->symbolic || h->dynindx == -1)
1186 && (h->elf_link_hash_flags
1187 & ELF_LINK_HASH_DEF_REGULAR) != 0))
1188 {
1189 relocate = TRUE;
1190 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1191 }
1192 else
1193 {
1194 BFD_ASSERT (h->dynindx != -1);
1195 if ((input_section->flags & SEC_ALLOC) == 0)
1196 relocate = TRUE;
1197 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_ABS32);
1198 }
1199 }
1200
1201 loc = sreloc->contents;
1202 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rel);
1203 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
1204
1205 /* If this reloc is against an external symbol, we do not want to
1206 fiddle with the addend. Otherwise, we need to include the symbol
1207 value so that it becomes an addend for the dynamic reloc. */
1208 if (! relocate)
1209 return bfd_reloc_ok;
1210
1211 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1212 contents, rel->r_offset, value,
1213 (bfd_vma) 0);
1214 }
1215 else switch (r_type)
1216 {
1217 #ifndef OLD_ARM_ABI
1218 case R_ARM_XPC25: /* Arm BLX instruction. */
1219 #endif
1220 case R_ARM_PC24: /* Arm B/BL instruction */
1221 #ifndef OLD_ARM_ABI
1222 if (r_type == R_ARM_XPC25)
1223 {
1224 /* Check for Arm calling Arm function. */
1225 /* FIXME: Should we translate the instruction into a BL
1226 instruction instead ? */
1227 if (sym_flags != STT_ARM_TFUNC)
1228 (*_bfd_error_handler) (_("\
1229 %s: Warning: Arm BLX instruction targets Arm function '%s'."),
1230 bfd_archive_filename (input_bfd),
1231 h ? h->root.root.string : "(local)");
1232 }
1233 else
1234 #endif
1235 {
1236 /* Check for Arm calling Thumb function. */
1237 if (sym_flags == STT_ARM_TFUNC)
1238 {
1239 elf32_arm_to_thumb_stub (info, sym_name, input_bfd, output_bfd,
1240 input_section, hit_data, sym_sec, rel->r_offset,
1241 signed_addend, value);
1242 return bfd_reloc_ok;
1243 }
1244 }
1245
1246 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1247 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0)
1248 {
1249 /* The old way of doing things. Trearing the addend as a
1250 byte sized field and adding in the pipeline offset. */
1251 value -= (input_section->output_section->vma
1252 + input_section->output_offset);
1253 value -= rel->r_offset;
1254 value += addend;
1255
1256 if (! globals->no_pipeline_knowledge)
1257 value -= 8;
1258 }
1259 else
1260 {
1261 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
1262 where:
1263 S is the address of the symbol in the relocation.
1264 P is address of the instruction being relocated.
1265 A is the addend (extracted from the instruction) in bytes.
1266
1267 S is held in 'value'.
1268 P is the base address of the section containing the instruction
1269 plus the offset of the reloc into that section, ie:
1270 (input_section->output_section->vma +
1271 input_section->output_offset +
1272 rel->r_offset).
1273 A is the addend, converted into bytes, ie:
1274 (signed_addend * 4)
1275
1276 Note: None of these operations have knowledge of the pipeline
1277 size of the processor, thus it is up to the assembler to encode
1278 this information into the addend. */
1279 value -= (input_section->output_section->vma
1280 + input_section->output_offset);
1281 value -= rel->r_offset;
1282 value += (signed_addend << howto->size);
1283
1284 /* Previous versions of this code also used to add in the pipeline
1285 offset here. This is wrong because the linker is not supposed
1286 to know about such things, and one day it might change. In order
1287 to support old binaries that need the old behaviour however, so
1288 we attempt to detect which ABI was used to create the reloc. */
1289 if (! globals->no_pipeline_knowledge)
1290 {
1291 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form */
1292
1293 i_ehdrp = elf_elfheader (input_bfd);
1294
1295 if (i_ehdrp->e_ident[EI_OSABI] == 0)
1296 value -= 8;
1297 }
1298 }
1299
1300 signed_addend = value;
1301 signed_addend >>= howto->rightshift;
1302
1303 /* It is not an error for an undefined weak reference to be
1304 out of range. Any program that branches to such a symbol
1305 is going to crash anyway, so there is no point worrying
1306 about getting the destination exactly right. */
1307 if (! h || h->root.type != bfd_link_hash_undefweak)
1308 {
1309 /* Perform a signed range check. */
1310 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
1311 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
1312 return bfd_reloc_overflow;
1313 }
1314
1315 #ifndef OLD_ARM_ABI
1316 /* If necessary set the H bit in the BLX instruction. */
1317 if (r_type == R_ARM_XPC25 && ((value & 2) == 2))
1318 value = (signed_addend & howto->dst_mask)
1319 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask))
1320 | (1 << 24);
1321 else
1322 #endif
1323 value = (signed_addend & howto->dst_mask)
1324 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
1325 break;
1326
1327 case R_ARM_ABS32:
1328 value += addend;
1329 if (sym_flags == STT_ARM_TFUNC)
1330 value |= 1;
1331 break;
1332
1333 case R_ARM_REL32:
1334 value -= (input_section->output_section->vma
1335 + input_section->output_offset + rel->r_offset);
1336 value += addend;
1337 break;
1338 }
1339
1340 bfd_put_32 (input_bfd, value, hit_data);
1341 return bfd_reloc_ok;
1342
1343 case R_ARM_ABS8:
1344 value += addend;
1345 if ((long) value > 0x7f || (long) value < -0x80)
1346 return bfd_reloc_overflow;
1347
1348 bfd_put_8 (input_bfd, value, hit_data);
1349 return bfd_reloc_ok;
1350
1351 case R_ARM_ABS16:
1352 value += addend;
1353
1354 if ((long) value > 0x7fff || (long) value < -0x8000)
1355 return bfd_reloc_overflow;
1356
1357 bfd_put_16 (input_bfd, value, hit_data);
1358 return bfd_reloc_ok;
1359
1360 case R_ARM_ABS12:
1361 /* Support ldr and str instruction for the arm */
1362 /* Also thumb b (unconditional branch). ??? Really? */
1363 value += addend;
1364
1365 if ((long) value > 0x7ff || (long) value < -0x800)
1366 return bfd_reloc_overflow;
1367
1368 value |= (bfd_get_32 (input_bfd, hit_data) & 0xfffff000);
1369 bfd_put_32 (input_bfd, value, hit_data);
1370 return bfd_reloc_ok;
1371
1372 case R_ARM_THM_ABS5:
1373 /* Support ldr and str instructions for the thumb. */
1374 #if USE_REL
1375 /* Need to refetch addend. */
1376 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
1377 /* ??? Need to determine shift amount from operand size. */
1378 addend >>= howto->rightshift;
1379 #endif
1380 value += addend;
1381
1382 /* ??? Isn't value unsigned? */
1383 if ((long) value > 0x1f || (long) value < -0x10)
1384 return bfd_reloc_overflow;
1385
1386 /* ??? Value needs to be properly shifted into place first. */
1387 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
1388 bfd_put_16 (input_bfd, value, hit_data);
1389 return bfd_reloc_ok;
1390
1391 #ifndef OLD_ARM_ABI
1392 case R_ARM_THM_XPC22:
1393 #endif
1394 case R_ARM_THM_PC22:
1395 /* Thumb BL (branch long instruction). */
1396 {
1397 bfd_vma relocation;
1398 bfd_boolean overflow = FALSE;
1399 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
1400 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
1401 bfd_signed_vma reloc_signed_max = ((1 << (howto->bitsize - 1)) - 1) >> howto->rightshift;
1402 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
1403 bfd_vma check;
1404 bfd_signed_vma signed_check;
1405
1406 #if USE_REL
1407 /* Need to refetch the addend and squish the two 11 bit pieces
1408 together. */
1409 {
1410 bfd_vma upper = upper_insn & 0x7ff;
1411 bfd_vma lower = lower_insn & 0x7ff;
1412 upper = (upper ^ 0x400) - 0x400; /* Sign extend. */
1413 addend = (upper << 12) | (lower << 1);
1414 signed_addend = addend;
1415 }
1416 #endif
1417 #ifndef OLD_ARM_ABI
1418 if (r_type == R_ARM_THM_XPC22)
1419 {
1420 /* Check for Thumb to Thumb call. */
1421 /* FIXME: Should we translate the instruction into a BL
1422 instruction instead ? */
1423 if (sym_flags == STT_ARM_TFUNC)
1424 (*_bfd_error_handler) (_("\
1425 %s: Warning: Thumb BLX instruction targets thumb function '%s'."),
1426 bfd_archive_filename (input_bfd),
1427 h ? h->root.root.string : "(local)");
1428 }
1429 else
1430 #endif
1431 {
1432 /* If it is not a call to Thumb, assume call to Arm.
1433 If it is a call relative to a section name, then it is not a
1434 function call at all, but rather a long jump. */
1435 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION)
1436 {
1437 if (elf32_thumb_to_arm_stub
1438 (info, sym_name, input_bfd, output_bfd, input_section,
1439 hit_data, sym_sec, rel->r_offset, signed_addend, value))
1440 return bfd_reloc_ok;
1441 else
1442 return bfd_reloc_dangerous;
1443 }
1444 }
1445
1446 relocation = value + signed_addend;
1447
1448 relocation -= (input_section->output_section->vma
1449 + input_section->output_offset
1450 + rel->r_offset);
1451
1452 if (! globals->no_pipeline_knowledge)
1453 {
1454 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form. */
1455
1456 i_ehdrp = elf_elfheader (input_bfd);
1457
1458 /* Previous versions of this code also used to add in the pipline
1459 offset here. This is wrong because the linker is not supposed
1460 to know about such things, and one day it might change. In order
1461 to support old binaries that need the old behaviour however, so
1462 we attempt to detect which ABI was used to create the reloc. */
1463 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1464 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0
1465 || i_ehdrp->e_ident[EI_OSABI] == 0)
1466 relocation += 4;
1467 }
1468
1469 check = relocation >> howto->rightshift;
1470
1471 /* If this is a signed value, the rightshift just dropped
1472 leading 1 bits (assuming twos complement). */
1473 if ((bfd_signed_vma) relocation >= 0)
1474 signed_check = check;
1475 else
1476 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
1477
1478 /* Assumes two's complement. */
1479 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
1480 overflow = TRUE;
1481
1482 #ifndef OLD_ARM_ABI
1483 if (r_type == R_ARM_THM_XPC22
1484 && ((lower_insn & 0x1800) == 0x0800))
1485 /* For a BLX instruction, make sure that the relocation is rounded up
1486 to a word boundary. This follows the semantics of the instruction
1487 which specifies that bit 1 of the target address will come from bit
1488 1 of the base address. */
1489 relocation = (relocation + 2) & ~ 3;
1490 #endif
1491 /* Put RELOCATION back into the insn. */
1492 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 12) & 0x7ff);
1493 lower_insn = (lower_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 1) & 0x7ff);
1494
1495 /* Put the relocated value back in the object file: */
1496 bfd_put_16 (input_bfd, upper_insn, hit_data);
1497 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
1498
1499 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
1500 }
1501 break;
1502
1503 case R_ARM_THM_PC11:
1504 /* Thumb B (branch) instruction). */
1505 {
1506 bfd_signed_vma relocation;
1507 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
1508 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
1509 bfd_signed_vma signed_check;
1510
1511 #if USE_REL
1512 /* Need to refetch addend. */
1513 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
1514 if (addend & ((howto->src_mask + 1) >> 1))
1515 {
1516 signed_addend = -1;
1517 signed_addend &= ~ howto->src_mask;
1518 signed_addend |= addend;
1519 }
1520 else
1521 signed_addend = addend;
1522 /* The value in the insn has been right shifted. We need to
1523 undo this, so that we can perform the address calculation
1524 in terms of bytes. */
1525 signed_addend <<= howto->rightshift;
1526 #endif
1527 relocation = value + signed_addend;
1528
1529 relocation -= (input_section->output_section->vma
1530 + input_section->output_offset
1531 + rel->r_offset);
1532
1533 relocation >>= howto->rightshift;
1534 signed_check = relocation;
1535 relocation &= howto->dst_mask;
1536 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
1537
1538 bfd_put_16 (input_bfd, relocation, hit_data);
1539
1540 /* Assumes two's complement. */
1541 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
1542 return bfd_reloc_overflow;
1543
1544 return bfd_reloc_ok;
1545 }
1546
1547 case R_ARM_GNU_VTINHERIT:
1548 case R_ARM_GNU_VTENTRY:
1549 return bfd_reloc_ok;
1550
1551 case R_ARM_COPY:
1552 return bfd_reloc_notsupported;
1553
1554 case R_ARM_GLOB_DAT:
1555 return bfd_reloc_notsupported;
1556
1557 case R_ARM_JUMP_SLOT:
1558 return bfd_reloc_notsupported;
1559
1560 case R_ARM_RELATIVE:
1561 return bfd_reloc_notsupported;
1562
1563 case R_ARM_GOTOFF:
1564 /* Relocation is relative to the start of the
1565 global offset table. */
1566
1567 BFD_ASSERT (sgot != NULL);
1568 if (sgot == NULL)
1569 return bfd_reloc_notsupported;
1570
1571 /* If we are addressing a Thumb function, we need to adjust the
1572 address by one, so that attempts to call the function pointer will
1573 correctly interpret it as Thumb code. */
1574 if (sym_flags == STT_ARM_TFUNC)
1575 value += 1;
1576
1577 /* Note that sgot->output_offset is not involved in this
1578 calculation. We always want the start of .got. If we
1579 define _GLOBAL_OFFSET_TABLE in a different way, as is
1580 permitted by the ABI, we might have to change this
1581 calculation. */
1582 value -= sgot->output_section->vma;
1583 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1584 contents, rel->r_offset, value,
1585 (bfd_vma) 0);
1586
1587 case R_ARM_GOTPC:
1588 /* Use global offset table as symbol value. */
1589 BFD_ASSERT (sgot != NULL);
1590
1591 if (sgot == NULL)
1592 return bfd_reloc_notsupported;
1593
1594 value = sgot->output_section->vma;
1595 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1596 contents, rel->r_offset, value,
1597 (bfd_vma) 0);
1598
1599 case R_ARM_GOT32:
1600 /* Relocation is to the entry for this symbol in the
1601 global offset table. */
1602 if (sgot == NULL)
1603 return bfd_reloc_notsupported;
1604
1605 if (h != NULL)
1606 {
1607 bfd_vma off;
1608
1609 off = h->got.offset;
1610 BFD_ASSERT (off != (bfd_vma) -1);
1611
1612 if (!elf_hash_table (info)->dynamic_sections_created ||
1613 (info->shared && (info->symbolic || h->dynindx == -1)
1614 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1615 {
1616 /* This is actually a static link, or it is a -Bsymbolic link
1617 and the symbol is defined locally. We must initialize this
1618 entry in the global offset table. Since the offset must
1619 always be a multiple of 4, we use the least significant bit
1620 to record whether we have initialized it already.
1621
1622 When doing a dynamic link, we create a .rel.got relocation
1623 entry to initialize the value. This is done in the
1624 finish_dynamic_symbol routine. */
1625 if ((off & 1) != 0)
1626 off &= ~1;
1627 else
1628 {
1629 /* If we are addressing a Thumb function, we need to
1630 adjust the address by one, so that attempts to
1631 call the function pointer will correctly
1632 interpret it as Thumb code. */
1633 if (sym_flags == STT_ARM_TFUNC)
1634 value |= 1;
1635
1636 bfd_put_32 (output_bfd, value, sgot->contents + off);
1637 h->got.offset |= 1;
1638 }
1639 }
1640
1641 value = sgot->output_offset + off;
1642 }
1643 else
1644 {
1645 bfd_vma off;
1646
1647 BFD_ASSERT (local_got_offsets != NULL &&
1648 local_got_offsets[r_symndx] != (bfd_vma) -1);
1649
1650 off = local_got_offsets[r_symndx];
1651
1652 /* The offset must always be a multiple of 4. We use the
1653 least significant bit to record whether we have already
1654 generated the necessary reloc. */
1655 if ((off & 1) != 0)
1656 off &= ~1;
1657 else
1658 {
1659 bfd_put_32 (output_bfd, value, sgot->contents + off);
1660
1661 if (info->shared)
1662 {
1663 asection * srelgot;
1664 Elf_Internal_Rela outrel;
1665 bfd_byte *loc;
1666
1667 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
1668 BFD_ASSERT (srelgot != NULL);
1669
1670 outrel.r_offset = (sgot->output_section->vma
1671 + sgot->output_offset
1672 + off);
1673 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1674 loc = srelgot->contents;
1675 loc += srelgot->reloc_count++ * sizeof (Elf32_External_Rel);
1676 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
1677 }
1678
1679 local_got_offsets[r_symndx] |= 1;
1680 }
1681
1682 value = sgot->output_offset + off;
1683 }
1684
1685 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1686 contents, rel->r_offset, value,
1687 (bfd_vma) 0);
1688
1689 case R_ARM_PLT32:
1690 /* Relocation is to the entry for this symbol in the
1691 procedure linkage table. */
1692
1693 /* Resolve a PLT32 reloc against a local symbol directly,
1694 without using the procedure linkage table. */
1695 if (h == NULL)
1696 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1697 contents, rel->r_offset, value,
1698 (bfd_vma) 0);
1699
1700 if (h->plt.offset == (bfd_vma) -1)
1701 /* We didn't make a PLT entry for this symbol. This
1702 happens when statically linking PIC code, or when
1703 using -Bsymbolic. */
1704 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1705 contents, rel->r_offset, value,
1706 (bfd_vma) 0);
1707
1708 BFD_ASSERT(splt != NULL);
1709 if (splt == NULL)
1710 return bfd_reloc_notsupported;
1711
1712 value = (splt->output_section->vma
1713 + splt->output_offset
1714 + h->plt.offset);
1715 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1716 contents, rel->r_offset, value,
1717 (bfd_vma) 0);
1718
1719 case R_ARM_SBREL32:
1720 return bfd_reloc_notsupported;
1721
1722 case R_ARM_AMP_VCALL9:
1723 return bfd_reloc_notsupported;
1724
1725 case R_ARM_RSBREL32:
1726 return bfd_reloc_notsupported;
1727
1728 case R_ARM_THM_RPC22:
1729 return bfd_reloc_notsupported;
1730
1731 case R_ARM_RREL32:
1732 return bfd_reloc_notsupported;
1733
1734 case R_ARM_RABS32:
1735 return bfd_reloc_notsupported;
1736
1737 case R_ARM_RPC24:
1738 return bfd_reloc_notsupported;
1739
1740 case R_ARM_RBASE:
1741 return bfd_reloc_notsupported;
1742
1743 default:
1744 return bfd_reloc_notsupported;
1745 }
1746 }
1747
1748 #if USE_REL
1749 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
1750 static void
1751 arm_add_to_rel (abfd, address, howto, increment)
1752 bfd * abfd;
1753 bfd_byte * address;
1754 reloc_howto_type * howto;
1755 bfd_signed_vma increment;
1756 {
1757 bfd_signed_vma addend;
1758
1759 if (howto->type == R_ARM_THM_PC22)
1760 {
1761 int upper_insn, lower_insn;
1762 int upper, lower;
1763
1764 upper_insn = bfd_get_16 (abfd, address);
1765 lower_insn = bfd_get_16 (abfd, address + 2);
1766 upper = upper_insn & 0x7ff;
1767 lower = lower_insn & 0x7ff;
1768
1769 addend = (upper << 12) | (lower << 1);
1770 addend += increment;
1771 addend >>= 1;
1772
1773 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
1774 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
1775
1776 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
1777 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
1778 }
1779 else
1780 {
1781 bfd_vma contents;
1782
1783 contents = bfd_get_32 (abfd, address);
1784
1785 /* Get the (signed) value from the instruction. */
1786 addend = contents & howto->src_mask;
1787 if (addend & ((howto->src_mask + 1) >> 1))
1788 {
1789 bfd_signed_vma mask;
1790
1791 mask = -1;
1792 mask &= ~ howto->src_mask;
1793 addend |= mask;
1794 }
1795
1796 /* Add in the increment, (which is a byte value). */
1797 switch (howto->type)
1798 {
1799 default:
1800 addend += increment;
1801 break;
1802
1803 case R_ARM_PC24:
1804 addend <<= howto->size;
1805 addend += increment;
1806
1807 /* Should we check for overflow here ? */
1808
1809 /* Drop any undesired bits. */
1810 addend >>= howto->rightshift;
1811 break;
1812 }
1813
1814 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
1815
1816 bfd_put_32 (abfd, contents, address);
1817 }
1818 }
1819 #endif /* USE_REL */
1820
1821 /* Relocate an ARM ELF section. */
1822 static bfd_boolean
1823 elf32_arm_relocate_section (output_bfd, info, input_bfd, input_section,
1824 contents, relocs, local_syms, local_sections)
1825 bfd *output_bfd;
1826 struct bfd_link_info *info;
1827 bfd *input_bfd;
1828 asection *input_section;
1829 bfd_byte *contents;
1830 Elf_Internal_Rela *relocs;
1831 Elf_Internal_Sym *local_syms;
1832 asection **local_sections;
1833 {
1834 Elf_Internal_Shdr *symtab_hdr;
1835 struct elf_link_hash_entry **sym_hashes;
1836 Elf_Internal_Rela *rel;
1837 Elf_Internal_Rela *relend;
1838 const char *name;
1839
1840 #if !USE_REL
1841 if (info->relocateable)
1842 return TRUE;
1843 #endif
1844
1845 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1846 sym_hashes = elf_sym_hashes (input_bfd);
1847
1848 rel = relocs;
1849 relend = relocs + input_section->reloc_count;
1850 for (; rel < relend; rel++)
1851 {
1852 int r_type;
1853 reloc_howto_type * howto;
1854 unsigned long r_symndx;
1855 Elf_Internal_Sym * sym;
1856 asection * sec;
1857 struct elf_link_hash_entry * h;
1858 bfd_vma relocation;
1859 bfd_reloc_status_type r;
1860 arelent bfd_reloc;
1861
1862 r_symndx = ELF32_R_SYM (rel->r_info);
1863 r_type = ELF32_R_TYPE (rel->r_info);
1864
1865 if ( r_type == R_ARM_GNU_VTENTRY
1866 || r_type == R_ARM_GNU_VTINHERIT)
1867 continue;
1868
1869 elf32_arm_info_to_howto (input_bfd, & bfd_reloc, rel);
1870 howto = bfd_reloc.howto;
1871
1872 #if USE_REL
1873 if (info->relocateable)
1874 {
1875 /* This is a relocateable link. We don't have to change
1876 anything, unless the reloc is against a section symbol,
1877 in which case we have to adjust according to where the
1878 section symbol winds up in the output section. */
1879 if (r_symndx < symtab_hdr->sh_info)
1880 {
1881 sym = local_syms + r_symndx;
1882 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1883 {
1884 sec = local_sections[r_symndx];
1885 arm_add_to_rel (input_bfd, contents + rel->r_offset,
1886 howto,
1887 (bfd_signed_vma) (sec->output_offset
1888 + sym->st_value));
1889 }
1890 }
1891
1892 continue;
1893 }
1894 #endif
1895
1896 /* This is a final link. */
1897 h = NULL;
1898 sym = NULL;
1899 sec = NULL;
1900
1901 if (r_symndx < symtab_hdr->sh_info)
1902 {
1903 sym = local_syms + r_symndx;
1904 sec = local_sections[r_symndx];
1905 #if USE_REL
1906 relocation = (sec->output_section->vma
1907 + sec->output_offset
1908 + sym->st_value);
1909 if ((sec->flags & SEC_MERGE)
1910 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1911 {
1912 asection *msec;
1913 bfd_vma addend, value;
1914
1915 if (howto->rightshift)
1916 {
1917 (*_bfd_error_handler)
1918 (_("%s(%s+0x%lx): %s relocation against SEC_MERGE section"),
1919 bfd_archive_filename (input_bfd),
1920 bfd_get_section_name (input_bfd, input_section),
1921 (long) rel->r_offset, howto->name);
1922 return FALSE;
1923 }
1924
1925 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
1926
1927 /* Get the (signed) value from the instruction. */
1928 addend = value & howto->src_mask;
1929 if (addend & ((howto->src_mask + 1) >> 1))
1930 {
1931 bfd_signed_vma mask;
1932
1933 mask = -1;
1934 mask &= ~ howto->src_mask;
1935 addend |= mask;
1936 }
1937 msec = sec;
1938 addend =
1939 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
1940 - relocation;
1941 addend += msec->output_section->vma + msec->output_offset;
1942 value = (value & ~ howto->dst_mask) | (addend & howto->dst_mask);
1943 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
1944 }
1945 #else
1946 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sec, rel);
1947 #endif
1948 }
1949 else
1950 {
1951 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1952
1953 while ( h->root.type == bfd_link_hash_indirect
1954 || h->root.type == bfd_link_hash_warning)
1955 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1956
1957 if ( h->root.type == bfd_link_hash_defined
1958 || h->root.type == bfd_link_hash_defweak)
1959 {
1960 int relocation_needed = 1;
1961
1962 sec = h->root.u.def.section;
1963
1964 /* In these cases, we don't need the relocation value.
1965 We check specially because in some obscure cases
1966 sec->output_section will be NULL. */
1967 switch (r_type)
1968 {
1969 case R_ARM_PC24:
1970 case R_ARM_ABS32:
1971 case R_ARM_THM_PC22:
1972 if (info->shared
1973 && (
1974 (!info->symbolic && h->dynindx != -1)
1975 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1976 )
1977 && ((input_section->flags & SEC_ALLOC) != 0
1978 /* DWARF will emit R_ARM_ABS32 relocations in its
1979 sections against symbols defined externally
1980 in shared libraries. We can't do anything
1981 with them here. */
1982 || ((input_section->flags & SEC_DEBUGGING) != 0
1983 && (h->elf_link_hash_flags
1984 & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
1985 )
1986 relocation_needed = 0;
1987 break;
1988
1989 case R_ARM_GOTPC:
1990 relocation_needed = 0;
1991 break;
1992
1993 case R_ARM_GOT32:
1994 if (elf_hash_table(info)->dynamic_sections_created
1995 && (!info->shared
1996 || (!info->symbolic && h->dynindx != -1)
1997 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1998 )
1999 )
2000 relocation_needed = 0;
2001 break;
2002
2003 case R_ARM_PLT32:
2004 if (h->plt.offset != (bfd_vma)-1)
2005 relocation_needed = 0;
2006 break;
2007
2008 default:
2009 if (sec->output_section == NULL)
2010 {
2011 (*_bfd_error_handler)
2012 (_("%s: warning: unresolvable relocation %d against symbol `%s' from %s section"),
2013 bfd_archive_filename (input_bfd),
2014 r_type,
2015 h->root.root.string,
2016 bfd_get_section_name (input_bfd, input_section));
2017 relocation_needed = 0;
2018 }
2019 }
2020
2021 if (relocation_needed)
2022 relocation = h->root.u.def.value
2023 + sec->output_section->vma
2024 + sec->output_offset;
2025 else
2026 relocation = 0;
2027 }
2028 else if (h->root.type == bfd_link_hash_undefweak)
2029 relocation = 0;
2030 else if (info->shared && !info->symbolic
2031 && !info->no_undefined
2032 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2033 relocation = 0;
2034 else
2035 {
2036 if (!((*info->callbacks->undefined_symbol)
2037 (info, h->root.root.string, input_bfd,
2038 input_section, rel->r_offset,
2039 (!info->shared || info->no_undefined
2040 || ELF_ST_VISIBILITY (h->other)))))
2041 return FALSE;
2042 relocation = 0;
2043 }
2044 }
2045
2046 if (h != NULL)
2047 name = h->root.root.string;
2048 else
2049 {
2050 name = (bfd_elf_string_from_elf_section
2051 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2052 if (name == NULL || *name == '\0')
2053 name = bfd_section_name (input_bfd, sec);
2054 }
2055
2056 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
2057 input_section, contents, rel,
2058 relocation, info, sec, name,
2059 (h ? ELF_ST_TYPE (h->type) :
2060 ELF_ST_TYPE (sym->st_info)), h);
2061
2062 if (r != bfd_reloc_ok)
2063 {
2064 const char * msg = (const char *) 0;
2065
2066 switch (r)
2067 {
2068 case bfd_reloc_overflow:
2069 /* If the overflowing reloc was to an undefined symbol,
2070 we have already printed one error message and there
2071 is no point complaining again. */
2072 if ((! h ||
2073 h->root.type != bfd_link_hash_undefined)
2074 && (!((*info->callbacks->reloc_overflow)
2075 (info, name, howto->name, (bfd_vma) 0,
2076 input_bfd, input_section, rel->r_offset))))
2077 return FALSE;
2078 break;
2079
2080 case bfd_reloc_undefined:
2081 if (!((*info->callbacks->undefined_symbol)
2082 (info, name, input_bfd, input_section,
2083 rel->r_offset, TRUE)))
2084 return FALSE;
2085 break;
2086
2087 case bfd_reloc_outofrange:
2088 msg = _("internal error: out of range error");
2089 goto common_error;
2090
2091 case bfd_reloc_notsupported:
2092 msg = _("internal error: unsupported relocation error");
2093 goto common_error;
2094
2095 case bfd_reloc_dangerous:
2096 msg = _("internal error: dangerous error");
2097 goto common_error;
2098
2099 default:
2100 msg = _("internal error: unknown error");
2101 /* fall through */
2102
2103 common_error:
2104 if (!((*info->callbacks->warning)
2105 (info, msg, name, input_bfd, input_section,
2106 rel->r_offset)))
2107 return FALSE;
2108 break;
2109 }
2110 }
2111 }
2112
2113 return TRUE;
2114 }
2115
2116 /* Set the right machine number. */
2117
2118 static bfd_boolean
2119 elf32_arm_object_p (abfd)
2120 bfd *abfd;
2121 {
2122 /* XXX - we ought to examine a .note section here. */
2123
2124 if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
2125 bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
2126
2127 return TRUE;
2128 }
2129
2130 /* Function to keep ARM specific flags in the ELF header. */
2131 static bfd_boolean
2132 elf32_arm_set_private_flags (abfd, flags)
2133 bfd *abfd;
2134 flagword flags;
2135 {
2136 if (elf_flags_init (abfd)
2137 && elf_elfheader (abfd)->e_flags != flags)
2138 {
2139 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
2140 {
2141 if (flags & EF_ARM_INTERWORK)
2142 (*_bfd_error_handler) (_("\
2143 Warning: Not setting interworking flag of %s since it has already been specified as non-interworking"),
2144 bfd_archive_filename (abfd));
2145 else
2146 _bfd_error_handler (_("\
2147 Warning: Clearing the interworking flag of %s due to outside request"),
2148 bfd_archive_filename (abfd));
2149 }
2150 }
2151 else
2152 {
2153 elf_elfheader (abfd)->e_flags = flags;
2154 elf_flags_init (abfd) = TRUE;
2155 }
2156
2157 return TRUE;
2158 }
2159
2160 /* Copy backend specific data from one object module to another. */
2161
2162 static bfd_boolean
2163 elf32_arm_copy_private_bfd_data (ibfd, obfd)
2164 bfd *ibfd;
2165 bfd *obfd;
2166 {
2167 flagword in_flags;
2168 flagword out_flags;
2169
2170 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2171 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2172 return TRUE;
2173
2174 in_flags = elf_elfheader (ibfd)->e_flags;
2175 out_flags = elf_elfheader (obfd)->e_flags;
2176
2177 if (elf_flags_init (obfd)
2178 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
2179 && in_flags != out_flags)
2180 {
2181 /* Cannot mix APCS26 and APCS32 code. */
2182 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2183 return FALSE;
2184
2185 /* Cannot mix float APCS and non-float APCS code. */
2186 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2187 return FALSE;
2188
2189 /* If the src and dest have different interworking flags
2190 then turn off the interworking bit. */
2191 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2192 {
2193 if (out_flags & EF_ARM_INTERWORK)
2194 _bfd_error_handler (_("\
2195 Warning: Clearing the interworking flag of %s because non-interworking code in %s has been linked with it"),
2196 bfd_get_filename (obfd),
2197 bfd_archive_filename (ibfd));
2198
2199 in_flags &= ~EF_ARM_INTERWORK;
2200 }
2201
2202 /* Likewise for PIC, though don't warn for this case. */
2203 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
2204 in_flags &= ~EF_ARM_PIC;
2205 }
2206
2207 elf_elfheader (obfd)->e_flags = in_flags;
2208 elf_flags_init (obfd) = TRUE;
2209
2210 return TRUE;
2211 }
2212
2213 /* Merge backend specific data from an object file to the output
2214 object file when linking. */
2215
2216 static bfd_boolean
2217 elf32_arm_merge_private_bfd_data (ibfd, obfd)
2218 bfd * ibfd;
2219 bfd * obfd;
2220 {
2221 flagword out_flags;
2222 flagword in_flags;
2223 bfd_boolean flags_compatible = TRUE;
2224 bfd_boolean null_input_bfd = TRUE;
2225 asection *sec;
2226
2227 /* Check if we have the same endianess. */
2228 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
2229 return FALSE;
2230
2231 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2232 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2233 return TRUE;
2234
2235 /* The input BFD must have had its flags initialised. */
2236 /* The following seems bogus to me -- The flags are initialized in
2237 the assembler but I don't think an elf_flags_init field is
2238 written into the object. */
2239 /* BFD_ASSERT (elf_flags_init (ibfd)); */
2240
2241 in_flags = elf_elfheader (ibfd)->e_flags;
2242 out_flags = elf_elfheader (obfd)->e_flags;
2243
2244 if (!elf_flags_init (obfd))
2245 {
2246 /* If the input is the default architecture and had the default
2247 flags then do not bother setting the flags for the output
2248 architecture, instead allow future merges to do this. If no
2249 future merges ever set these flags then they will retain their
2250 uninitialised values, which surprise surprise, correspond
2251 to the default values. */
2252 if (bfd_get_arch_info (ibfd)->the_default
2253 && elf_elfheader (ibfd)->e_flags == 0)
2254 return TRUE;
2255
2256 elf_flags_init (obfd) = TRUE;
2257 elf_elfheader (obfd)->e_flags = in_flags;
2258
2259 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2260 && bfd_get_arch_info (obfd)->the_default)
2261 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
2262
2263 return TRUE;
2264 }
2265
2266 /* Identical flags must be compatible. */
2267 if (in_flags == out_flags)
2268 return TRUE;
2269
2270 /* Check to see if the input BFD actually contains any sections.
2271 If not, its flags may not have been initialised either, but it cannot
2272 actually cause any incompatibility. */
2273 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2274 {
2275 /* Ignore synthetic glue sections. */
2276 if (strcmp (sec->name, ".glue_7")
2277 && strcmp (sec->name, ".glue_7t"))
2278 {
2279 null_input_bfd = FALSE;
2280 break;
2281 }
2282 }
2283 if (null_input_bfd)
2284 return TRUE;
2285
2286 /* Complain about various flag mismatches. */
2287 if (EF_ARM_EABI_VERSION (in_flags) != EF_ARM_EABI_VERSION (out_flags))
2288 {
2289 _bfd_error_handler (_("\
2290 ERROR: %s is compiled for EABI version %d, whereas %s is compiled for version %d"),
2291 bfd_archive_filename (ibfd),
2292 (in_flags & EF_ARM_EABIMASK) >> 24,
2293 bfd_get_filename (obfd),
2294 (out_flags & EF_ARM_EABIMASK) >> 24);
2295 return FALSE;
2296 }
2297
2298 /* Not sure what needs to be checked for EABI versions >= 1. */
2299 if (EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
2300 {
2301 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2302 {
2303 _bfd_error_handler (_("\
2304 ERROR: %s is compiled for APCS-%d, whereas target %s uses APCS-%d"),
2305 bfd_archive_filename (ibfd),
2306 in_flags & EF_ARM_APCS_26 ? 26 : 32,
2307 bfd_get_filename (obfd),
2308 out_flags & EF_ARM_APCS_26 ? 26 : 32);
2309 flags_compatible = FALSE;
2310 }
2311
2312 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2313 {
2314 if (in_flags & EF_ARM_APCS_FLOAT)
2315 _bfd_error_handler (_("\
2316 ERROR: %s passes floats in float registers, whereas %s passes them in integer registers"),
2317 bfd_archive_filename (ibfd),
2318 bfd_get_filename (obfd));
2319 else
2320 _bfd_error_handler (_("\
2321 ERROR: %s passes floats in integer registers, whereas %s passes them in float registers"),
2322 bfd_archive_filename (ibfd),
2323 bfd_get_filename (obfd));
2324
2325 flags_compatible = FALSE;
2326 }
2327
2328 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
2329 {
2330 if (in_flags & EF_ARM_VFP_FLOAT)
2331 _bfd_error_handler (_("\
2332 ERROR: %s uses VFP instructions, whereas %s does not"),
2333 bfd_archive_filename (ibfd),
2334 bfd_get_filename (obfd));
2335 else
2336 _bfd_error_handler (_("\
2337 ERROR: %s uses FPA instructions, whereas %s does not"),
2338 bfd_archive_filename (ibfd),
2339 bfd_get_filename (obfd));
2340
2341 flags_compatible = FALSE;
2342 }
2343
2344 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
2345 {
2346 if (in_flags & EF_ARM_MAVERICK_FLOAT)
2347 _bfd_error_handler (_("\
2348 ERROR: %s uses Maverick instructions, whereas %s does not"),
2349 bfd_archive_filename (ibfd),
2350 bfd_get_filename (obfd));
2351 else
2352 _bfd_error_handler (_("\
2353 ERROR: %s uses Maverick instructions, whereas %s does not"),
2354 bfd_archive_filename (ibfd),
2355 bfd_get_filename (obfd));
2356
2357 flags_compatible = FALSE;
2358 }
2359
2360 #ifdef EF_ARM_SOFT_FLOAT
2361 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
2362 {
2363 /* We can allow interworking between code that is VFP format
2364 layout, and uses either soft float or integer regs for
2365 passing floating point arguments and results. We already
2366 know that the APCS_FLOAT flags match; similarly for VFP
2367 flags. */
2368 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
2369 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
2370 {
2371 if (in_flags & EF_ARM_SOFT_FLOAT)
2372 _bfd_error_handler (_("\
2373 ERROR: %s uses software FP, whereas %s uses hardware FP"),
2374 bfd_archive_filename (ibfd),
2375 bfd_get_filename (obfd));
2376 else
2377 _bfd_error_handler (_("\
2378 ERROR: %s uses hardware FP, whereas %s uses software FP"),
2379 bfd_archive_filename (ibfd),
2380 bfd_get_filename (obfd));
2381
2382 flags_compatible = FALSE;
2383 }
2384 }
2385 #endif
2386
2387 /* Interworking mismatch is only a warning. */
2388 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2389 {
2390 if (in_flags & EF_ARM_INTERWORK)
2391 {
2392 _bfd_error_handler (_("\
2393 Warning: %s supports interworking, whereas %s does not"),
2394 bfd_archive_filename (ibfd),
2395 bfd_get_filename (obfd));
2396 }
2397 else
2398 {
2399 _bfd_error_handler (_("\
2400 Warning: %s does not support interworking, whereas %s does"),
2401 bfd_archive_filename (ibfd),
2402 bfd_get_filename (obfd));
2403 }
2404 }
2405 }
2406
2407 return flags_compatible;
2408 }
2409
2410 /* Display the flags field. */
2411
2412 static bfd_boolean
2413 elf32_arm_print_private_bfd_data (abfd, ptr)
2414 bfd *abfd;
2415 PTR ptr;
2416 {
2417 FILE * file = (FILE *) ptr;
2418 unsigned long flags;
2419
2420 BFD_ASSERT (abfd != NULL && ptr != NULL);
2421
2422 /* Print normal ELF private data. */
2423 _bfd_elf_print_private_bfd_data (abfd, ptr);
2424
2425 flags = elf_elfheader (abfd)->e_flags;
2426 /* Ignore init flag - it may not be set, despite the flags field
2427 containing valid data. */
2428
2429 /* xgettext:c-format */
2430 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
2431
2432 switch (EF_ARM_EABI_VERSION (flags))
2433 {
2434 case EF_ARM_EABI_UNKNOWN:
2435 /* The following flag bits are GNU extenstions and not part of the
2436 official ARM ELF extended ABI. Hence they are only decoded if
2437 the EABI version is not set. */
2438 if (flags & EF_ARM_INTERWORK)
2439 fprintf (file, _(" [interworking enabled]"));
2440
2441 if (flags & EF_ARM_APCS_26)
2442 fprintf (file, " [APCS-26]");
2443 else
2444 fprintf (file, " [APCS-32]");
2445
2446 if (flags & EF_ARM_VFP_FLOAT)
2447 fprintf (file, _(" [VFP float format]"));
2448 else if (flags & EF_ARM_MAVERICK_FLOAT)
2449 fprintf (file, _(" [Maverick float format]"));
2450 else
2451 fprintf (file, _(" [FPA float format]"));
2452
2453 if (flags & EF_ARM_APCS_FLOAT)
2454 fprintf (file, _(" [floats passed in float registers]"));
2455
2456 if (flags & EF_ARM_PIC)
2457 fprintf (file, _(" [position independent]"));
2458
2459 if (flags & EF_ARM_NEW_ABI)
2460 fprintf (file, _(" [new ABI]"));
2461
2462 if (flags & EF_ARM_OLD_ABI)
2463 fprintf (file, _(" [old ABI]"));
2464
2465 if (flags & EF_ARM_SOFT_FLOAT)
2466 fprintf (file, _(" [software FP]"));
2467
2468 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
2469 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
2470 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
2471 | EF_ARM_MAVERICK_FLOAT);
2472 break;
2473
2474 case EF_ARM_EABI_VER1:
2475 fprintf (file, _(" [Version1 EABI]"));
2476
2477 if (flags & EF_ARM_SYMSARESORTED)
2478 fprintf (file, _(" [sorted symbol table]"));
2479 else
2480 fprintf (file, _(" [unsorted symbol table]"));
2481
2482 flags &= ~ EF_ARM_SYMSARESORTED;
2483 break;
2484
2485 case EF_ARM_EABI_VER2:
2486 fprintf (file, _(" [Version2 EABI]"));
2487
2488 if (flags & EF_ARM_SYMSARESORTED)
2489 fprintf (file, _(" [sorted symbol table]"));
2490 else
2491 fprintf (file, _(" [unsorted symbol table]"));
2492
2493 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
2494 fprintf (file, _(" [dynamic symbols use segment index]"));
2495
2496 if (flags & EF_ARM_MAPSYMSFIRST)
2497 fprintf (file, _(" [mapping symbols precede others]"));
2498
2499 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
2500 | EF_ARM_MAPSYMSFIRST);
2501 break;
2502
2503 default:
2504 fprintf (file, _(" <EABI version unrecognised>"));
2505 break;
2506 }
2507
2508 flags &= ~ EF_ARM_EABIMASK;
2509
2510 if (flags & EF_ARM_RELEXEC)
2511 fprintf (file, _(" [relocatable executable]"));
2512
2513 if (flags & EF_ARM_HASENTRY)
2514 fprintf (file, _(" [has entry point]"));
2515
2516 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
2517
2518 if (flags)
2519 fprintf (file, _("<Unrecognised flag bits set>"));
2520
2521 fputc ('\n', file);
2522
2523 return TRUE;
2524 }
2525
2526 static int
2527 elf32_arm_get_symbol_type (elf_sym, type)
2528 Elf_Internal_Sym * elf_sym;
2529 int type;
2530 {
2531 switch (ELF_ST_TYPE (elf_sym->st_info))
2532 {
2533 case STT_ARM_TFUNC:
2534 return ELF_ST_TYPE (elf_sym->st_info);
2535
2536 case STT_ARM_16BIT:
2537 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
2538 This allows us to distinguish between data used by Thumb instructions
2539 and non-data (which is probably code) inside Thumb regions of an
2540 executable. */
2541 if (type != STT_OBJECT)
2542 return ELF_ST_TYPE (elf_sym->st_info);
2543 break;
2544
2545 default:
2546 break;
2547 }
2548
2549 return type;
2550 }
2551
2552 static asection *
2553 elf32_arm_gc_mark_hook (sec, info, rel, h, sym)
2554 asection *sec;
2555 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2556 Elf_Internal_Rela *rel;
2557 struct elf_link_hash_entry *h;
2558 Elf_Internal_Sym *sym;
2559 {
2560 if (h != NULL)
2561 {
2562 switch (ELF32_R_TYPE (rel->r_info))
2563 {
2564 case R_ARM_GNU_VTINHERIT:
2565 case R_ARM_GNU_VTENTRY:
2566 break;
2567
2568 default:
2569 switch (h->root.type)
2570 {
2571 case bfd_link_hash_defined:
2572 case bfd_link_hash_defweak:
2573 return h->root.u.def.section;
2574
2575 case bfd_link_hash_common:
2576 return h->root.u.c.p->section;
2577
2578 default:
2579 break;
2580 }
2581 }
2582 }
2583 else
2584 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
2585
2586 return NULL;
2587 }
2588
2589 /* Update the got entry reference counts for the section being removed. */
2590
2591 static bfd_boolean
2592 elf32_arm_gc_sweep_hook (abfd, info, sec, relocs)
2593 bfd *abfd ATTRIBUTE_UNUSED;
2594 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2595 asection *sec ATTRIBUTE_UNUSED;
2596 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
2597 {
2598 /* We don't support garbage collection of GOT and PLT relocs yet. */
2599 return TRUE;
2600 }
2601
2602 /* Look through the relocs for a section during the first phase. */
2603
2604 static bfd_boolean
2605 elf32_arm_check_relocs (abfd, info, sec, relocs)
2606 bfd *abfd;
2607 struct bfd_link_info *info;
2608 asection *sec;
2609 const Elf_Internal_Rela *relocs;
2610 {
2611 Elf_Internal_Shdr *symtab_hdr;
2612 struct elf_link_hash_entry **sym_hashes;
2613 struct elf_link_hash_entry **sym_hashes_end;
2614 const Elf_Internal_Rela *rel;
2615 const Elf_Internal_Rela *rel_end;
2616 bfd *dynobj;
2617 asection *sgot, *srelgot, *sreloc;
2618 bfd_vma *local_got_offsets;
2619
2620 if (info->relocateable)
2621 return TRUE;
2622
2623 sgot = srelgot = sreloc = NULL;
2624
2625 dynobj = elf_hash_table (info)->dynobj;
2626 local_got_offsets = elf_local_got_offsets (abfd);
2627
2628 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2629 sym_hashes = elf_sym_hashes (abfd);
2630 sym_hashes_end = sym_hashes
2631 + symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
2632
2633 if (!elf_bad_symtab (abfd))
2634 sym_hashes_end -= symtab_hdr->sh_info;
2635
2636 rel_end = relocs + sec->reloc_count;
2637 for (rel = relocs; rel < rel_end; rel++)
2638 {
2639 struct elf_link_hash_entry *h;
2640 unsigned long r_symndx;
2641
2642 r_symndx = ELF32_R_SYM (rel->r_info);
2643 if (r_symndx < symtab_hdr->sh_info)
2644 h = NULL;
2645 else
2646 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2647
2648 /* Some relocs require a global offset table. */
2649 if (dynobj == NULL)
2650 {
2651 switch (ELF32_R_TYPE (rel->r_info))
2652 {
2653 case R_ARM_GOT32:
2654 case R_ARM_GOTOFF:
2655 case R_ARM_GOTPC:
2656 elf_hash_table (info)->dynobj = dynobj = abfd;
2657 if (! _bfd_elf_create_got_section (dynobj, info))
2658 return FALSE;
2659 break;
2660
2661 default:
2662 break;
2663 }
2664 }
2665
2666 switch (ELF32_R_TYPE (rel->r_info))
2667 {
2668 case R_ARM_GOT32:
2669 /* This symbol requires a global offset table entry. */
2670 if (sgot == NULL)
2671 {
2672 sgot = bfd_get_section_by_name (dynobj, ".got");
2673 BFD_ASSERT (sgot != NULL);
2674 }
2675
2676 /* Get the got relocation section if necessary. */
2677 if (srelgot == NULL
2678 && (h != NULL || info->shared))
2679 {
2680 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
2681
2682 /* If no got relocation section, make one and initialize. */
2683 if (srelgot == NULL)
2684 {
2685 srelgot = bfd_make_section (dynobj, ".rel.got");
2686 if (srelgot == NULL
2687 || ! bfd_set_section_flags (dynobj, srelgot,
2688 (SEC_ALLOC
2689 | SEC_LOAD
2690 | SEC_HAS_CONTENTS
2691 | SEC_IN_MEMORY
2692 | SEC_LINKER_CREATED
2693 | SEC_READONLY))
2694 || ! bfd_set_section_alignment (dynobj, srelgot, 2))
2695 return FALSE;
2696 }
2697 }
2698
2699 if (h != NULL)
2700 {
2701 if (h->got.offset != (bfd_vma) -1)
2702 /* We have already allocated space in the .got. */
2703 break;
2704
2705 h->got.offset = sgot->_raw_size;
2706
2707 /* Make sure this symbol is output as a dynamic symbol. */
2708 if (h->dynindx == -1)
2709 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2710 return FALSE;
2711
2712 srelgot->_raw_size += sizeof (Elf32_External_Rel);
2713 }
2714 else
2715 {
2716 /* This is a global offset table entry for a local
2717 symbol. */
2718 if (local_got_offsets == NULL)
2719 {
2720 bfd_size_type size;
2721 unsigned int i;
2722
2723 size = symtab_hdr->sh_info;
2724 size *= sizeof (bfd_vma);
2725 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
2726 if (local_got_offsets == NULL)
2727 return FALSE;
2728 elf_local_got_offsets (abfd) = local_got_offsets;
2729 for (i = 0; i < symtab_hdr->sh_info; i++)
2730 local_got_offsets[i] = (bfd_vma) -1;
2731 }
2732
2733 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
2734 /* We have already allocated space in the .got. */
2735 break;
2736
2737 local_got_offsets[r_symndx] = sgot->_raw_size;
2738
2739 if (info->shared)
2740 /* If we are generating a shared object, we need to
2741 output a R_ARM_RELATIVE reloc so that the dynamic
2742 linker can adjust this GOT entry. */
2743 srelgot->_raw_size += sizeof (Elf32_External_Rel);
2744 }
2745
2746 sgot->_raw_size += 4;
2747 break;
2748
2749 case R_ARM_PLT32:
2750 /* This symbol requires a procedure linkage table entry. We
2751 actually build the entry in adjust_dynamic_symbol,
2752 because this might be a case of linking PIC code which is
2753 never referenced by a dynamic object, in which case we
2754 don't need to generate a procedure linkage table entry
2755 after all. */
2756
2757 /* If this is a local symbol, we resolve it directly without
2758 creating a procedure linkage table entry. */
2759 if (h == NULL)
2760 continue;
2761
2762 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
2763 break;
2764
2765 case R_ARM_ABS32:
2766 case R_ARM_REL32:
2767 case R_ARM_PC24:
2768 /* If we are creating a shared library, and this is a reloc
2769 against a global symbol, or a non PC relative reloc
2770 against a local symbol, then we need to copy the reloc
2771 into the shared library. However, if we are linking with
2772 -Bsymbolic, we do not need to copy a reloc against a
2773 global symbol which is defined in an object we are
2774 including in the link (i.e., DEF_REGULAR is set). At
2775 this point we have not seen all the input files, so it is
2776 possible that DEF_REGULAR is not set now but will be set
2777 later (it is never cleared). We account for that
2778 possibility below by storing information in the
2779 pcrel_relocs_copied field of the hash table entry. */
2780 if (info->shared
2781 && (ELF32_R_TYPE (rel->r_info) != R_ARM_PC24
2782 || (h != NULL
2783 && (! info->symbolic
2784 || (h->elf_link_hash_flags
2785 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
2786 {
2787 /* When creating a shared object, we must copy these
2788 reloc types into the output file. We create a reloc
2789 section in dynobj and make room for this reloc. */
2790 if (sreloc == NULL)
2791 {
2792 const char * name;
2793
2794 name = (bfd_elf_string_from_elf_section
2795 (abfd,
2796 elf_elfheader (abfd)->e_shstrndx,
2797 elf_section_data (sec)->rel_hdr.sh_name));
2798 if (name == NULL)
2799 return FALSE;
2800
2801 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
2802 && strcmp (bfd_get_section_name (abfd, sec),
2803 name + 4) == 0);
2804
2805 sreloc = bfd_get_section_by_name (dynobj, name);
2806 if (sreloc == NULL)
2807 {
2808 flagword flags;
2809
2810 sreloc = bfd_make_section (dynobj, name);
2811 flags = (SEC_HAS_CONTENTS | SEC_READONLY
2812 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2813 if ((sec->flags & SEC_ALLOC) != 0)
2814 flags |= SEC_ALLOC | SEC_LOAD;
2815 if (sreloc == NULL
2816 || ! bfd_set_section_flags (dynobj, sreloc, flags)
2817 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
2818 return FALSE;
2819 }
2820 if (sec->flags & SEC_READONLY)
2821 info->flags |= DF_TEXTREL;
2822 }
2823
2824 sreloc->_raw_size += sizeof (Elf32_External_Rel);
2825 /* If we are linking with -Bsymbolic, and this is a
2826 global symbol, we count the number of PC relative
2827 relocations we have entered for this symbol, so that
2828 we can discard them again if the symbol is later
2829 defined by a regular object. Note that this function
2830 is only called if we are using an elf_i386 linker
2831 hash table, which means that h is really a pointer to
2832 an elf_i386_link_hash_entry. */
2833 if (h != NULL && info->symbolic
2834 && ELF32_R_TYPE (rel->r_info) == R_ARM_PC24)
2835 {
2836 struct elf32_arm_link_hash_entry * eh;
2837 struct elf32_arm_pcrel_relocs_copied * p;
2838
2839 eh = (struct elf32_arm_link_hash_entry *) h;
2840
2841 for (p = eh->pcrel_relocs_copied; p != NULL; p = p->next)
2842 if (p->section == sreloc)
2843 break;
2844
2845 if (p == NULL)
2846 {
2847 p = ((struct elf32_arm_pcrel_relocs_copied *)
2848 bfd_alloc (dynobj, (bfd_size_type) sizeof * p));
2849 if (p == NULL)
2850 return FALSE;
2851 p->next = eh->pcrel_relocs_copied;
2852 eh->pcrel_relocs_copied = p;
2853 p->section = sreloc;
2854 p->count = 0;
2855 }
2856
2857 ++p->count;
2858 }
2859 }
2860 break;
2861
2862 /* This relocation describes the C++ object vtable hierarchy.
2863 Reconstruct it for later use during GC. */
2864 case R_ARM_GNU_VTINHERIT:
2865 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2866 return FALSE;
2867 break;
2868
2869 /* This relocation describes which C++ vtable entries are actually
2870 used. Record for later use during GC. */
2871 case R_ARM_GNU_VTENTRY:
2872 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
2873 return FALSE;
2874 break;
2875 }
2876 }
2877
2878 return TRUE;
2879 }
2880
2881 /* Find the nearest line to a particular section and offset, for error
2882 reporting. This code is a duplicate of the code in elf.c, except
2883 that it also accepts STT_ARM_TFUNC as a symbol that names a function. */
2884
2885 static bfd_boolean
2886 elf32_arm_find_nearest_line
2887 (abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr)
2888 bfd *abfd;
2889 asection *section;
2890 asymbol **symbols;
2891 bfd_vma offset;
2892 const char **filename_ptr;
2893 const char **functionname_ptr;
2894 unsigned int *line_ptr;
2895 {
2896 bfd_boolean found;
2897 const char *filename;
2898 asymbol *func;
2899 bfd_vma low_func;
2900 asymbol **p;
2901
2902 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
2903 filename_ptr, functionname_ptr,
2904 line_ptr, 0,
2905 &elf_tdata (abfd)->dwarf2_find_line_info))
2906 return TRUE;
2907
2908 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
2909 &found, filename_ptr,
2910 functionname_ptr, line_ptr,
2911 &elf_tdata (abfd)->line_info))
2912 return FALSE;
2913
2914 if (found)
2915 return TRUE;
2916
2917 if (symbols == NULL)
2918 return FALSE;
2919
2920 filename = NULL;
2921 func = NULL;
2922 low_func = 0;
2923
2924 for (p = symbols; *p != NULL; p++)
2925 {
2926 elf_symbol_type *q;
2927
2928 q = (elf_symbol_type *) *p;
2929
2930 if (bfd_get_section (&q->symbol) != section)
2931 continue;
2932
2933 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
2934 {
2935 default:
2936 break;
2937 case STT_FILE:
2938 filename = bfd_asymbol_name (&q->symbol);
2939 break;
2940 case STT_NOTYPE:
2941 case STT_FUNC:
2942 case STT_ARM_TFUNC:
2943 if (q->symbol.section == section
2944 && q->symbol.value >= low_func
2945 && q->symbol.value <= offset)
2946 {
2947 func = (asymbol *) q;
2948 low_func = q->symbol.value;
2949 }
2950 break;
2951 }
2952 }
2953
2954 if (func == NULL)
2955 return FALSE;
2956
2957 *filename_ptr = filename;
2958 *functionname_ptr = bfd_asymbol_name (func);
2959 *line_ptr = 0;
2960
2961 return TRUE;
2962 }
2963
2964 /* Adjust a symbol defined by a dynamic object and referenced by a
2965 regular object. The current definition is in some section of the
2966 dynamic object, but we're not including those sections. We have to
2967 change the definition to something the rest of the link can
2968 understand. */
2969
2970 static bfd_boolean
2971 elf32_arm_adjust_dynamic_symbol (info, h)
2972 struct bfd_link_info * info;
2973 struct elf_link_hash_entry * h;
2974 {
2975 bfd * dynobj;
2976 asection * s;
2977 unsigned int power_of_two;
2978
2979 dynobj = elf_hash_table (info)->dynobj;
2980
2981 /* Make sure we know what is going on here. */
2982 BFD_ASSERT (dynobj != NULL
2983 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
2984 || h->weakdef != NULL
2985 || ((h->elf_link_hash_flags
2986 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2987 && (h->elf_link_hash_flags
2988 & ELF_LINK_HASH_REF_REGULAR) != 0
2989 && (h->elf_link_hash_flags
2990 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
2991
2992 /* If this is a function, put it in the procedure linkage table. We
2993 will fill in the contents of the procedure linkage table later,
2994 when we know the address of the .got section. */
2995 if (h->type == STT_FUNC
2996 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
2997 {
2998 /* If we link a program (not a DSO), we'll get rid of unnecessary
2999 PLT entries; we point to the actual symbols -- even for pic
3000 relocs, because a program built with -fpic should have the same
3001 result as one built without -fpic, specifically considering weak
3002 symbols.
3003 FIXME: m68k and i386 differ here, for unclear reasons. */
3004 if (! info->shared
3005 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0)
3006 {
3007 /* This case can occur if we saw a PLT32 reloc in an input
3008 file, but the symbol was not defined by a dynamic object.
3009 In such a case, we don't actually need to build a
3010 procedure linkage table, and we can just do a PC32 reloc
3011 instead. */
3012 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
3013 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
3014 return TRUE;
3015 }
3016
3017 /* Make sure this symbol is output as a dynamic symbol. */
3018 if (h->dynindx == -1)
3019 {
3020 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
3021 return FALSE;
3022 }
3023
3024 s = bfd_get_section_by_name (dynobj, ".plt");
3025 BFD_ASSERT (s != NULL);
3026
3027 /* If this is the first .plt entry, make room for the special
3028 first entry. */
3029 if (s->_raw_size == 0)
3030 s->_raw_size += PLT_ENTRY_SIZE;
3031
3032 /* If this symbol is not defined in a regular file, and we are
3033 not generating a shared library, then set the symbol to this
3034 location in the .plt. This is required to make function
3035 pointers compare as equal between the normal executable and
3036 the shared library. */
3037 if (! info->shared
3038 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3039 {
3040 h->root.u.def.section = s;
3041 h->root.u.def.value = s->_raw_size;
3042 }
3043
3044 h->plt.offset = s->_raw_size;
3045
3046 /* Make room for this entry. */
3047 s->_raw_size += PLT_ENTRY_SIZE;
3048
3049 /* We also need to make an entry in the .got.plt section, which
3050 will be placed in the .got section by the linker script. */
3051 s = bfd_get_section_by_name (dynobj, ".got.plt");
3052 BFD_ASSERT (s != NULL);
3053 s->_raw_size += 4;
3054
3055 /* We also need to make an entry in the .rel.plt section. */
3056
3057 s = bfd_get_section_by_name (dynobj, ".rel.plt");
3058 BFD_ASSERT (s != NULL);
3059 s->_raw_size += sizeof (Elf32_External_Rel);
3060
3061 return TRUE;
3062 }
3063
3064 /* If this is a weak symbol, and there is a real definition, the
3065 processor independent code will have arranged for us to see the
3066 real definition first, and we can just use the same value. */
3067 if (h->weakdef != NULL)
3068 {
3069 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
3070 || h->weakdef->root.type == bfd_link_hash_defweak);
3071 h->root.u.def.section = h->weakdef->root.u.def.section;
3072 h->root.u.def.value = h->weakdef->root.u.def.value;
3073 return TRUE;
3074 }
3075
3076 /* This is a reference to a symbol defined by a dynamic object which
3077 is not a function. */
3078
3079 /* If we are creating a shared library, we must presume that the
3080 only references to the symbol are via the global offset table.
3081 For such cases we need not do anything here; the relocations will
3082 be handled correctly by relocate_section. */
3083 if (info->shared)
3084 return TRUE;
3085
3086 /* We must allocate the symbol in our .dynbss section, which will
3087 become part of the .bss section of the executable. There will be
3088 an entry for this symbol in the .dynsym section. The dynamic
3089 object will contain position independent code, so all references
3090 from the dynamic object to this symbol will go through the global
3091 offset table. The dynamic linker will use the .dynsym entry to
3092 determine the address it must put in the global offset table, so
3093 both the dynamic object and the regular object will refer to the
3094 same memory location for the variable. */
3095 s = bfd_get_section_by_name (dynobj, ".dynbss");
3096 BFD_ASSERT (s != NULL);
3097
3098 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
3099 copy the initial value out of the dynamic object and into the
3100 runtime process image. We need to remember the offset into the
3101 .rel.bss section we are going to use. */
3102 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
3103 {
3104 asection *srel;
3105
3106 srel = bfd_get_section_by_name (dynobj, ".rel.bss");
3107 BFD_ASSERT (srel != NULL);
3108 srel->_raw_size += sizeof (Elf32_External_Rel);
3109 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
3110 }
3111
3112 /* We need to figure out the alignment required for this symbol. I
3113 have no idea how ELF linkers handle this. */
3114 power_of_two = bfd_log2 (h->size);
3115 if (power_of_two > 3)
3116 power_of_two = 3;
3117
3118 /* Apply the required alignment. */
3119 s->_raw_size = BFD_ALIGN (s->_raw_size,
3120 (bfd_size_type) (1 << power_of_two));
3121 if (power_of_two > bfd_get_section_alignment (dynobj, s))
3122 {
3123 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
3124 return FALSE;
3125 }
3126
3127 /* Define the symbol as being at this point in the section. */
3128 h->root.u.def.section = s;
3129 h->root.u.def.value = s->_raw_size;
3130
3131 /* Increment the section size to make room for the symbol. */
3132 s->_raw_size += h->size;
3133
3134 return TRUE;
3135 }
3136
3137 /* Set the sizes of the dynamic sections. */
3138
3139 static bfd_boolean
3140 elf32_arm_size_dynamic_sections (output_bfd, info)
3141 bfd * output_bfd ATTRIBUTE_UNUSED;
3142 struct bfd_link_info * info;
3143 {
3144 bfd * dynobj;
3145 asection * s;
3146 bfd_boolean plt;
3147 bfd_boolean relocs;
3148
3149 dynobj = elf_hash_table (info)->dynobj;
3150 BFD_ASSERT (dynobj != NULL);
3151
3152 if (elf_hash_table (info)->dynamic_sections_created)
3153 {
3154 /* Set the contents of the .interp section to the interpreter. */
3155 if (! info->shared)
3156 {
3157 s = bfd_get_section_by_name (dynobj, ".interp");
3158 BFD_ASSERT (s != NULL);
3159 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
3160 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
3161 }
3162 }
3163 else
3164 {
3165 /* We may have created entries in the .rel.got section.
3166 However, if we are not creating the dynamic sections, we will
3167 not actually use these entries. Reset the size of .rel.got,
3168 which will cause it to get stripped from the output file
3169 below. */
3170 s = bfd_get_section_by_name (dynobj, ".rel.got");
3171 if (s != NULL)
3172 s->_raw_size = 0;
3173 }
3174
3175 /* If this is a -Bsymbolic shared link, then we need to discard all
3176 PC relative relocs against symbols defined in a regular object.
3177 We allocated space for them in the check_relocs routine, but we
3178 will not fill them in in the relocate_section routine. */
3179 if (info->shared && info->symbolic)
3180 elf32_arm_link_hash_traverse (elf32_arm_hash_table (info),
3181 elf32_arm_discard_copies,
3182 (PTR) NULL);
3183
3184 /* The check_relocs and adjust_dynamic_symbol entry points have
3185 determined the sizes of the various dynamic sections. Allocate
3186 memory for them. */
3187 plt = FALSE;
3188 relocs = FALSE;
3189 for (s = dynobj->sections; s != NULL; s = s->next)
3190 {
3191 const char * name;
3192 bfd_boolean strip;
3193
3194 if ((s->flags & SEC_LINKER_CREATED) == 0)
3195 continue;
3196
3197 /* It's OK to base decisions on the section name, because none
3198 of the dynobj section names depend upon the input files. */
3199 name = bfd_get_section_name (dynobj, s);
3200
3201 strip = FALSE;
3202
3203 if (strcmp (name, ".plt") == 0)
3204 {
3205 if (s->_raw_size == 0)
3206 {
3207 /* Strip this section if we don't need it; see the
3208 comment below. */
3209 strip = TRUE;
3210 }
3211 else
3212 {
3213 /* Remember whether there is a PLT. */
3214 plt = TRUE;
3215 }
3216 }
3217 else if (strncmp (name, ".rel", 4) == 0)
3218 {
3219 if (s->_raw_size == 0)
3220 {
3221 /* If we don't need this section, strip it from the
3222 output file. This is mostly to handle .rel.bss and
3223 .rel.plt. We must create both sections in
3224 create_dynamic_sections, because they must be created
3225 before the linker maps input sections to output
3226 sections. The linker does that before
3227 adjust_dynamic_symbol is called, and it is that
3228 function which decides whether anything needs to go
3229 into these sections. */
3230 strip = TRUE;
3231 }
3232 else
3233 {
3234 /* Remember whether there are any reloc sections other
3235 than .rel.plt. */
3236 if (strcmp (name, ".rel.plt") != 0)
3237 relocs = TRUE;
3238
3239 /* We use the reloc_count field as a counter if we need
3240 to copy relocs into the output file. */
3241 s->reloc_count = 0;
3242 }
3243 }
3244 else if (strncmp (name, ".got", 4) != 0)
3245 {
3246 /* It's not one of our sections, so don't allocate space. */
3247 continue;
3248 }
3249
3250 if (strip)
3251 {
3252 _bfd_strip_section_from_output (info, s);
3253 continue;
3254 }
3255
3256 /* Allocate memory for the section contents. */
3257 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
3258 if (s->contents == NULL && s->_raw_size != 0)
3259 return FALSE;
3260 }
3261
3262 if (elf_hash_table (info)->dynamic_sections_created)
3263 {
3264 /* Add some entries to the .dynamic section. We fill in the
3265 values later, in elf32_arm_finish_dynamic_sections, but we
3266 must add the entries now so that we get the correct size for
3267 the .dynamic section. The DT_DEBUG entry is filled in by the
3268 dynamic linker and used by the debugger. */
3269 #define add_dynamic_entry(TAG, VAL) \
3270 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
3271
3272 if (!info->shared)
3273 {
3274 if (!add_dynamic_entry (DT_DEBUG, 0))
3275 return FALSE;
3276 }
3277
3278 if (plt)
3279 {
3280 if ( !add_dynamic_entry (DT_PLTGOT, 0)
3281 || !add_dynamic_entry (DT_PLTRELSZ, 0)
3282 || !add_dynamic_entry (DT_PLTREL, DT_REL)
3283 || !add_dynamic_entry (DT_JMPREL, 0))
3284 return FALSE;
3285 }
3286
3287 if (relocs)
3288 {
3289 if ( !add_dynamic_entry (DT_REL, 0)
3290 || !add_dynamic_entry (DT_RELSZ, 0)
3291 || !add_dynamic_entry (DT_RELENT, sizeof (Elf32_External_Rel)))
3292 return FALSE;
3293 }
3294
3295 if ((info->flags & DF_TEXTREL) != 0)
3296 {
3297 if (!add_dynamic_entry (DT_TEXTREL, 0))
3298 return FALSE;
3299 info->flags |= DF_TEXTREL;
3300 }
3301 }
3302 #undef add_synamic_entry
3303
3304 return TRUE;
3305 }
3306
3307 /* This function is called via elf32_arm_link_hash_traverse if we are
3308 creating a shared object with -Bsymbolic. It discards the space
3309 allocated to copy PC relative relocs against symbols which are
3310 defined in regular objects. We allocated space for them in the
3311 check_relocs routine, but we won't fill them in in the
3312 relocate_section routine. */
3313
3314 static bfd_boolean
3315 elf32_arm_discard_copies (h, ignore)
3316 struct elf32_arm_link_hash_entry * h;
3317 PTR ignore ATTRIBUTE_UNUSED;
3318 {
3319 struct elf32_arm_pcrel_relocs_copied * s;
3320
3321 if (h->root.root.type == bfd_link_hash_warning)
3322 h = (struct elf32_arm_link_hash_entry *) h->root.root.u.i.link;
3323
3324 /* We only discard relocs for symbols defined in a regular object. */
3325 if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3326 return TRUE;
3327
3328 for (s = h->pcrel_relocs_copied; s != NULL; s = s->next)
3329 s->section->_raw_size -= s->count * sizeof (Elf32_External_Rel);
3330
3331 return TRUE;
3332 }
3333
3334 /* Finish up dynamic symbol handling. We set the contents of various
3335 dynamic sections here. */
3336
3337 static bfd_boolean
3338 elf32_arm_finish_dynamic_symbol (output_bfd, info, h, sym)
3339 bfd * output_bfd;
3340 struct bfd_link_info * info;
3341 struct elf_link_hash_entry * h;
3342 Elf_Internal_Sym * sym;
3343 {
3344 bfd * dynobj;
3345
3346 dynobj = elf_hash_table (info)->dynobj;
3347
3348 if (h->plt.offset != (bfd_vma) -1)
3349 {
3350 asection * splt;
3351 asection * sgot;
3352 asection * srel;
3353 bfd_vma plt_index;
3354 bfd_vma got_offset;
3355 Elf_Internal_Rela rel;
3356 bfd_byte *loc;
3357
3358 /* This symbol has an entry in the procedure linkage table. Set
3359 it up. */
3360
3361 BFD_ASSERT (h->dynindx != -1);
3362
3363 splt = bfd_get_section_by_name (dynobj, ".plt");
3364 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3365 srel = bfd_get_section_by_name (dynobj, ".rel.plt");
3366 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
3367
3368 /* Get the index in the procedure linkage table which
3369 corresponds to this symbol. This is the index of this symbol
3370 in all the symbols for which we are making plt entries. The
3371 first entry in the procedure linkage table is reserved. */
3372 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3373
3374 /* Get the offset into the .got table of the entry that
3375 corresponds to this function. Each .got entry is 4 bytes.
3376 The first three are reserved. */
3377 got_offset = (plt_index + 3) * 4;
3378
3379 /* Fill in the entry in the procedure linkage table. */
3380 bfd_put_32 (output_bfd, elf32_arm_plt_entry[0],
3381 splt->contents + h->plt.offset + 0);
3382 bfd_put_32 (output_bfd, elf32_arm_plt_entry[1],
3383 splt->contents + h->plt.offset + 4);
3384 bfd_put_32 (output_bfd, elf32_arm_plt_entry[2],
3385 splt->contents + h->plt.offset + 8);
3386 bfd_put_32 (output_bfd,
3387 (sgot->output_section->vma
3388 + sgot->output_offset
3389 + got_offset
3390 - splt->output_section->vma
3391 - splt->output_offset
3392 - h->plt.offset - 12),
3393 splt->contents + h->plt.offset + 12);
3394
3395 /* Fill in the entry in the global offset table. */
3396 bfd_put_32 (output_bfd,
3397 (splt->output_section->vma
3398 + splt->output_offset),
3399 sgot->contents + got_offset);
3400
3401 /* Fill in the entry in the .rel.plt section. */
3402 rel.r_offset = (sgot->output_section->vma
3403 + sgot->output_offset
3404 + got_offset);
3405 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
3406 loc = srel->contents + plt_index * sizeof (Elf32_External_Rel);
3407 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
3408
3409 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3410 {
3411 /* Mark the symbol as undefined, rather than as defined in
3412 the .plt section. Leave the value alone. */
3413 sym->st_shndx = SHN_UNDEF;
3414 /* If the symbol is weak, we do need to clear the value.
3415 Otherwise, the PLT entry would provide a definition for
3416 the symbol even if the symbol wasn't defined anywhere,
3417 and so the symbol would never be NULL. */
3418 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
3419 == 0)
3420 sym->st_value = 0;
3421 }
3422 }
3423
3424 if (h->got.offset != (bfd_vma) -1)
3425 {
3426 asection * sgot;
3427 asection * srel;
3428 Elf_Internal_Rela rel;
3429 bfd_byte *loc;
3430
3431 /* This symbol has an entry in the global offset table. Set it
3432 up. */
3433 sgot = bfd_get_section_by_name (dynobj, ".got");
3434 srel = bfd_get_section_by_name (dynobj, ".rel.got");
3435 BFD_ASSERT (sgot != NULL && srel != NULL);
3436
3437 rel.r_offset = (sgot->output_section->vma
3438 + sgot->output_offset
3439 + (h->got.offset &~ (bfd_vma) 1));
3440
3441 /* If this is a -Bsymbolic link, and the symbol is defined
3442 locally, we just want to emit a RELATIVE reloc. The entry in
3443 the global offset table will already have been initialized in
3444 the relocate_section function. */
3445 if (info->shared
3446 && (info->symbolic || h->dynindx == -1)
3447 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
3448 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
3449 else
3450 {
3451 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
3452 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
3453 }
3454
3455 loc = srel->contents + srel->reloc_count++ * sizeof (Elf32_External_Rel);
3456 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
3457 }
3458
3459 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
3460 {
3461 asection * s;
3462 Elf_Internal_Rela rel;
3463 bfd_byte *loc;
3464
3465 /* This symbol needs a copy reloc. Set it up. */
3466 BFD_ASSERT (h->dynindx != -1
3467 && (h->root.type == bfd_link_hash_defined
3468 || h->root.type == bfd_link_hash_defweak));
3469
3470 s = bfd_get_section_by_name (h->root.u.def.section->owner,
3471 ".rel.bss");
3472 BFD_ASSERT (s != NULL);
3473
3474 rel.r_offset = (h->root.u.def.value
3475 + h->root.u.def.section->output_section->vma
3476 + h->root.u.def.section->output_offset);
3477 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
3478 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rel);
3479 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
3480 }
3481
3482 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3483 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
3484 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3485 sym->st_shndx = SHN_ABS;
3486
3487 return TRUE;
3488 }
3489
3490 /* Finish up the dynamic sections. */
3491
3492 static bfd_boolean
3493 elf32_arm_finish_dynamic_sections (output_bfd, info)
3494 bfd * output_bfd;
3495 struct bfd_link_info * info;
3496 {
3497 bfd * dynobj;
3498 asection * sgot;
3499 asection * sdyn;
3500
3501 dynobj = elf_hash_table (info)->dynobj;
3502
3503 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3504 BFD_ASSERT (sgot != NULL);
3505 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3506
3507 if (elf_hash_table (info)->dynamic_sections_created)
3508 {
3509 asection *splt;
3510 Elf32_External_Dyn *dyncon, *dynconend;
3511
3512 splt = bfd_get_section_by_name (dynobj, ".plt");
3513 BFD_ASSERT (splt != NULL && sdyn != NULL);
3514
3515 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3516 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
3517
3518 for (; dyncon < dynconend; dyncon++)
3519 {
3520 Elf_Internal_Dyn dyn;
3521 const char * name;
3522 asection * s;
3523
3524 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3525
3526 switch (dyn.d_tag)
3527 {
3528 default:
3529 break;
3530
3531 case DT_PLTGOT:
3532 name = ".got";
3533 goto get_vma;
3534 case DT_JMPREL:
3535 name = ".rel.plt";
3536 get_vma:
3537 s = bfd_get_section_by_name (output_bfd, name);
3538 BFD_ASSERT (s != NULL);
3539 dyn.d_un.d_ptr = s->vma;
3540 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3541 break;
3542
3543 case DT_PLTRELSZ:
3544 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3545 BFD_ASSERT (s != NULL);
3546 if (s->_cooked_size != 0)
3547 dyn.d_un.d_val = s->_cooked_size;
3548 else
3549 dyn.d_un.d_val = s->_raw_size;
3550 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3551 break;
3552
3553 case DT_RELSZ:
3554 /* My reading of the SVR4 ABI indicates that the
3555 procedure linkage table relocs (DT_JMPREL) should be
3556 included in the overall relocs (DT_REL). This is
3557 what Solaris does. However, UnixWare can not handle
3558 that case. Therefore, we override the DT_RELSZ entry
3559 here to make it not include the JMPREL relocs. Since
3560 the linker script arranges for .rel.plt to follow all
3561 other relocation sections, we don't have to worry
3562 about changing the DT_REL entry. */
3563 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3564 if (s != NULL)
3565 {
3566 if (s->_cooked_size != 0)
3567 dyn.d_un.d_val -= s->_cooked_size;
3568 else
3569 dyn.d_un.d_val -= s->_raw_size;
3570 }
3571 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3572 break;
3573
3574 /* Set the bottom bit of DT_INIT/FINI if the
3575 corresponding function is Thumb. */
3576 case DT_INIT:
3577 name = info->init_function;
3578 goto get_sym;
3579 case DT_FINI:
3580 name = info->fini_function;
3581 get_sym:
3582 /* If it wasn't set by elf_bfd_final_link
3583 then there is nothing to ajdust. */
3584 if (dyn.d_un.d_val != 0)
3585 {
3586 struct elf_link_hash_entry * eh;
3587
3588 eh = elf_link_hash_lookup (elf_hash_table (info), name,
3589 FALSE, FALSE, TRUE);
3590 if (eh != (struct elf_link_hash_entry *) NULL
3591 && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
3592 {
3593 dyn.d_un.d_val |= 1;
3594 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3595 }
3596 }
3597 break;
3598 }
3599 }
3600
3601 /* Fill in the first entry in the procedure linkage table. */
3602 if (splt->_raw_size > 0)
3603 {
3604 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[0], splt->contents + 0);
3605 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[1], splt->contents + 4);
3606 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[2], splt->contents + 8);
3607 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[3], splt->contents + 12);
3608 }
3609
3610 /* UnixWare sets the entsize of .plt to 4, although that doesn't
3611 really seem like the right value. */
3612 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
3613 }
3614
3615 /* Fill in the first three entries in the global offset table. */
3616 if (sgot->_raw_size > 0)
3617 {
3618 if (sdyn == NULL)
3619 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
3620 else
3621 bfd_put_32 (output_bfd,
3622 sdyn->output_section->vma + sdyn->output_offset,
3623 sgot->contents);
3624 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
3625 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
3626 }
3627
3628 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
3629
3630 return TRUE;
3631 }
3632
3633 static void
3634 elf32_arm_post_process_headers (abfd, link_info)
3635 bfd * abfd;
3636 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
3637 {
3638 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
3639
3640 i_ehdrp = elf_elfheader (abfd);
3641
3642 i_ehdrp->e_ident[EI_OSABI] = ARM_ELF_OS_ABI_VERSION;
3643 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
3644 }
3645
3646 static enum elf_reloc_type_class
3647 elf32_arm_reloc_type_class (rela)
3648 const Elf_Internal_Rela *rela;
3649 {
3650 switch ((int) ELF32_R_TYPE (rela->r_info))
3651 {
3652 case R_ARM_RELATIVE:
3653 return reloc_class_relative;
3654 case R_ARM_JUMP_SLOT:
3655 return reloc_class_plt;
3656 case R_ARM_COPY:
3657 return reloc_class_copy;
3658 default:
3659 return reloc_class_normal;
3660 }
3661 }
3662
3663 #define ELF_ARCH bfd_arch_arm
3664 #define ELF_MACHINE_CODE EM_ARM
3665 #define ELF_MAXPAGESIZE 0x8000
3666
3667 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
3668 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
3669 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
3670 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
3671 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
3672 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
3673 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
3674
3675 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
3676 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
3677 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
3678 #define elf_backend_check_relocs elf32_arm_check_relocs
3679 #define elf_backend_relocate_section elf32_arm_relocate_section
3680 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
3681 #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
3682 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
3683 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
3684 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
3685 #define elf_backend_post_process_headers elf32_arm_post_process_headers
3686 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
3687 #define elf_backend_object_p elf32_arm_object_p
3688
3689 #define elf_backend_can_gc_sections 1
3690 #define elf_backend_plt_readonly 1
3691 #define elf_backend_want_got_plt 1
3692 #define elf_backend_want_plt_sym 0
3693 #if !USE_REL
3694 #define elf_backend_rela_normal 1
3695 #endif
3696
3697 #define elf_backend_got_header_size 12
3698 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
3699
3700 #include "elf32-target.h"
3701
This page took 0.149757 seconds and 5 git commands to generate.