Do not rightshift recomputed addend during relocatable link if not USE_REL.
[deliverable/binutils-gdb.git] / bfd / elf32-arm.h
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 typedef unsigned long int insn32;
21 typedef unsigned short int insn16;
22
23 static boolean elf32_arm_set_private_flags
24 PARAMS ((bfd *, flagword));
25 static boolean elf32_arm_copy_private_bfd_data
26 PARAMS ((bfd *, bfd *));
27 static boolean elf32_arm_merge_private_bfd_data
28 PARAMS ((bfd *, bfd *));
29 static boolean elf32_arm_print_private_bfd_data
30 PARAMS ((bfd *, PTR));
31 static int elf32_arm_get_symbol_type
32 PARAMS (( Elf_Internal_Sym *, int));
33 static struct bfd_link_hash_table *elf32_arm_link_hash_table_create
34 PARAMS ((bfd *));
35 static bfd_reloc_status_type elf32_arm_final_link_relocate
36 PARAMS ((reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
37 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
38 const char *, unsigned char, struct elf_link_hash_entry *));
39 static insn32 insert_thumb_branch
40 PARAMS ((insn32, int));
41 static struct elf_link_hash_entry *find_thumb_glue
42 PARAMS ((struct bfd_link_info *, const char *, bfd *));
43 static struct elf_link_hash_entry *find_arm_glue
44 PARAMS ((struct bfd_link_info *, const char *, bfd *));
45 static void record_arm_to_thumb_glue
46 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
47 static void record_thumb_to_arm_glue
48 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
49 static void elf32_arm_post_process_headers
50 PARAMS ((bfd *, struct bfd_link_info *));
51 static int elf32_arm_to_thumb_stub
52 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
53 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
54 static int elf32_thumb_to_arm_stub
55 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
56 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
57 static boolean elf32_arm_relocate_section
58 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
59 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
60 static asection * elf32_arm_gc_mark_hook
61 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
62 struct elf_link_hash_entry *, Elf_Internal_Sym *));
63 static boolean elf32_arm_gc_sweep_hook
64 PARAMS ((bfd *, struct bfd_link_info *, asection *,
65 const Elf_Internal_Rela *));
66 static boolean elf32_arm_check_relocs
67 PARAMS ((bfd *, struct bfd_link_info *, asection *,
68 const Elf_Internal_Rela *));
69 static boolean elf32_arm_find_nearest_line
70 PARAMS ((bfd *, asection *, asymbol **, bfd_vma, const char **,
71 const char **, unsigned int *));
72 static boolean elf32_arm_adjust_dynamic_symbol
73 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
74 static boolean elf32_arm_size_dynamic_sections
75 PARAMS ((bfd *, struct bfd_link_info *));
76 static boolean elf32_arm_finish_dynamic_symbol
77 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
78 Elf_Internal_Sym *));
79 static boolean elf32_arm_finish_dynamic_sections
80 PARAMS ((bfd *, struct bfd_link_info *));
81 static struct bfd_hash_entry * elf32_arm_link_hash_newfunc
82 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
83 #ifdef USE_REL
84 static void arm_add_to_rel
85 PARAMS ((bfd *, bfd_byte *, reloc_howto_type *, bfd_signed_vma));
86 #endif
87
88 boolean bfd_elf32_arm_allocate_interworking_sections
89 PARAMS ((struct bfd_link_info *));
90 boolean bfd_elf32_arm_get_bfd_for_interworking
91 PARAMS ((bfd *, struct bfd_link_info *));
92 boolean bfd_elf32_arm_process_before_allocation
93 PARAMS ((bfd *, struct bfd_link_info *, int));
94 static enum elf_reloc_type_class elf32_arm_reloc_type_class
95 PARAMS ((int));
96
97 #define INTERWORK_FLAG(abfd) (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK)
98
99 /* The linker script knows the section names for placement.
100 The entry_names are used to do simple name mangling on the stubs.
101 Given a function name, and its type, the stub can be found. The
102 name can be changed. The only requirement is the %s be present. */
103 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
104 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
105
106 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
107 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
108
109 /* The name of the dynamic interpreter. This is put in the .interp
110 section. */
111 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
112
113 /* The size in bytes of an entry in the procedure linkage table. */
114 #define PLT_ENTRY_SIZE 16
115
116 /* The first entry in a procedure linkage table looks like
117 this. It is set up so that any shared library function that is
118 called before the relocation has been set up calls the dynamic
119 linker first. */
120 static const unsigned long elf32_arm_plt0_entry [PLT_ENTRY_SIZE / 4] =
121 {
122 0xe52de004, /* str lr, [sp, #-4]! */
123 0xe59fe010, /* ldr lr, [pc, #16] */
124 0xe08fe00e, /* add lr, pc, lr */
125 0xe5bef008 /* ldr pc, [lr, #8]! */
126 };
127
128 /* Subsequent entries in a procedure linkage table look like
129 this. */
130 static const unsigned long elf32_arm_plt_entry [PLT_ENTRY_SIZE / 4] =
131 {
132 0xe59fc004, /* ldr ip, [pc, #4] */
133 0xe08fc00c, /* add ip, pc, ip */
134 0xe59cf000, /* ldr pc, [ip] */
135 0x00000000 /* offset to symbol in got */
136 };
137
138 /* The ARM linker needs to keep track of the number of relocs that it
139 decides to copy in check_relocs for each symbol. This is so that
140 it can discard PC relative relocs if it doesn't need them when
141 linking with -Bsymbolic. We store the information in a field
142 extending the regular ELF linker hash table. */
143
144 /* This structure keeps track of the number of PC relative relocs we
145 have copied for a given symbol. */
146 struct elf32_arm_pcrel_relocs_copied
147 {
148 /* Next section. */
149 struct elf32_arm_pcrel_relocs_copied * next;
150 /* A section in dynobj. */
151 asection * section;
152 /* Number of relocs copied in this section. */
153 bfd_size_type count;
154 };
155
156 /* Arm ELF linker hash entry. */
157 struct elf32_arm_link_hash_entry
158 {
159 struct elf_link_hash_entry root;
160
161 /* Number of PC relative relocs copied for this symbol. */
162 struct elf32_arm_pcrel_relocs_copied * pcrel_relocs_copied;
163 };
164
165 /* Declare this now that the above structures are defined. */
166 static boolean elf32_arm_discard_copies
167 PARAMS ((struct elf32_arm_link_hash_entry *, PTR));
168
169 /* Traverse an arm ELF linker hash table. */
170 #define elf32_arm_link_hash_traverse(table, func, info) \
171 (elf_link_hash_traverse \
172 (&(table)->root, \
173 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
174 (info)))
175
176 /* Get the ARM elf linker hash table from a link_info structure. */
177 #define elf32_arm_hash_table(info) \
178 ((struct elf32_arm_link_hash_table *) ((info)->hash))
179
180 /* ARM ELF linker hash table. */
181 struct elf32_arm_link_hash_table
182 {
183 /* The main hash table. */
184 struct elf_link_hash_table root;
185
186 /* The size in bytes of the section containg the Thumb-to-ARM glue. */
187 long int thumb_glue_size;
188
189 /* The size in bytes of the section containg the ARM-to-Thumb glue. */
190 long int arm_glue_size;
191
192 /* An arbitary input BFD chosen to hold the glue sections. */
193 bfd * bfd_of_glue_owner;
194
195 /* A boolean indicating whether knowledge of the ARM's pipeline
196 length should be applied by the linker. */
197 int no_pipeline_knowledge;
198 };
199
200 /* Create an entry in an ARM ELF linker hash table. */
201
202 static struct bfd_hash_entry *
203 elf32_arm_link_hash_newfunc (entry, table, string)
204 struct bfd_hash_entry * entry;
205 struct bfd_hash_table * table;
206 const char * string;
207 {
208 struct elf32_arm_link_hash_entry * ret =
209 (struct elf32_arm_link_hash_entry *) entry;
210
211 /* Allocate the structure if it has not already been allocated by a
212 subclass. */
213 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
214 ret = ((struct elf32_arm_link_hash_entry *)
215 bfd_hash_allocate (table,
216 sizeof (struct elf32_arm_link_hash_entry)));
217 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
218 return (struct bfd_hash_entry *) ret;
219
220 /* Call the allocation method of the superclass. */
221 ret = ((struct elf32_arm_link_hash_entry *)
222 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
223 table, string));
224 if (ret != (struct elf32_arm_link_hash_entry *) NULL)
225 ret->pcrel_relocs_copied = NULL;
226
227 return (struct bfd_hash_entry *) ret;
228 }
229
230 /* Create an ARM elf linker hash table. */
231
232 static struct bfd_link_hash_table *
233 elf32_arm_link_hash_table_create (abfd)
234 bfd *abfd;
235 {
236 struct elf32_arm_link_hash_table *ret;
237
238 ret = ((struct elf32_arm_link_hash_table *)
239 bfd_alloc (abfd, sizeof (struct elf32_arm_link_hash_table)));
240 if (ret == (struct elf32_arm_link_hash_table *) NULL)
241 return NULL;
242
243 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
244 elf32_arm_link_hash_newfunc))
245 {
246 bfd_release (abfd, ret);
247 return NULL;
248 }
249
250 ret->thumb_glue_size = 0;
251 ret->arm_glue_size = 0;
252 ret->bfd_of_glue_owner = NULL;
253 ret->no_pipeline_knowledge = 0;
254
255 return &ret->root.root;
256 }
257
258 /* Locate the Thumb encoded calling stub for NAME. */
259
260 static struct elf_link_hash_entry *
261 find_thumb_glue (link_info, name, input_bfd)
262 struct bfd_link_info *link_info;
263 const char *name;
264 bfd *input_bfd;
265 {
266 char *tmp_name;
267 struct elf_link_hash_entry *hash;
268 struct elf32_arm_link_hash_table *hash_table;
269
270 /* We need a pointer to the armelf specific hash table. */
271 hash_table = elf32_arm_hash_table (link_info);
272
273 tmp_name = ((char *)
274 bfd_malloc (strlen (name) + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1));
275
276 BFD_ASSERT (tmp_name);
277
278 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
279
280 hash = elf_link_hash_lookup
281 (&(hash_table)->root, tmp_name, false, false, true);
282
283 if (hash == NULL)
284 /* xgettext:c-format */
285 _bfd_error_handler (_("%s: unable to find THUMB glue '%s' for `%s'"),
286 bfd_get_filename (input_bfd), tmp_name, name);
287
288 free (tmp_name);
289
290 return hash;
291 }
292
293 /* Locate the ARM encoded calling stub for NAME. */
294
295 static struct elf_link_hash_entry *
296 find_arm_glue (link_info, name, input_bfd)
297 struct bfd_link_info *link_info;
298 const char *name;
299 bfd *input_bfd;
300 {
301 char *tmp_name;
302 struct elf_link_hash_entry *myh;
303 struct elf32_arm_link_hash_table *hash_table;
304
305 /* We need a pointer to the elfarm specific hash table. */
306 hash_table = elf32_arm_hash_table (link_info);
307
308 tmp_name = ((char *)
309 bfd_malloc (strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1));
310
311 BFD_ASSERT (tmp_name);
312
313 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
314
315 myh = elf_link_hash_lookup
316 (&(hash_table)->root, tmp_name, false, false, true);
317
318 if (myh == NULL)
319 /* xgettext:c-format */
320 _bfd_error_handler (_("%s: unable to find ARM glue '%s' for `%s'"),
321 bfd_get_filename (input_bfd), tmp_name, name);
322
323 free (tmp_name);
324
325 return myh;
326 }
327
328 /* ARM->Thumb glue:
329
330 .arm
331 __func_from_arm:
332 ldr r12, __func_addr
333 bx r12
334 __func_addr:
335 .word func @ behave as if you saw a ARM_32 reloc. */
336
337 #define ARM2THUMB_GLUE_SIZE 12
338 static const insn32 a2t1_ldr_insn = 0xe59fc000;
339 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
340 static const insn32 a2t3_func_addr_insn = 0x00000001;
341
342 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
343
344 .thumb .thumb
345 .align 2 .align 2
346 __func_from_thumb: __func_from_thumb:
347 bx pc push {r6, lr}
348 nop ldr r6, __func_addr
349 .arm mov lr, pc
350 __func_change_to_arm: bx r6
351 b func .arm
352 __func_back_to_thumb:
353 ldmia r13! {r6, lr}
354 bx lr
355 __func_addr:
356 .word func */
357
358 #define THUMB2ARM_GLUE_SIZE 8
359 static const insn16 t2a1_bx_pc_insn = 0x4778;
360 static const insn16 t2a2_noop_insn = 0x46c0;
361 static const insn32 t2a3_b_insn = 0xea000000;
362
363 static const insn16 t2a1_push_insn = 0xb540;
364 static const insn16 t2a2_ldr_insn = 0x4e03;
365 static const insn16 t2a3_mov_insn = 0x46fe;
366 static const insn16 t2a4_bx_insn = 0x4730;
367 static const insn32 t2a5_pop_insn = 0xe8bd4040;
368 static const insn32 t2a6_bx_insn = 0xe12fff1e;
369
370 boolean
371 bfd_elf32_arm_allocate_interworking_sections (info)
372 struct bfd_link_info * info;
373 {
374 asection * s;
375 bfd_byte * foo;
376 struct elf32_arm_link_hash_table * globals;
377
378 globals = elf32_arm_hash_table (info);
379
380 BFD_ASSERT (globals != NULL);
381
382 if (globals->arm_glue_size != 0)
383 {
384 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
385
386 s = bfd_get_section_by_name
387 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
388
389 BFD_ASSERT (s != NULL);
390
391 foo = (bfd_byte *) bfd_alloc
392 (globals->bfd_of_glue_owner, globals->arm_glue_size);
393
394 s->_raw_size = s->_cooked_size = globals->arm_glue_size;
395 s->contents = foo;
396 }
397
398 if (globals->thumb_glue_size != 0)
399 {
400 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
401
402 s = bfd_get_section_by_name
403 (globals->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
404
405 BFD_ASSERT (s != NULL);
406
407 foo = (bfd_byte *) bfd_alloc
408 (globals->bfd_of_glue_owner, globals->thumb_glue_size);
409
410 s->_raw_size = s->_cooked_size = globals->thumb_glue_size;
411 s->contents = foo;
412 }
413
414 return true;
415 }
416
417 static void
418 record_arm_to_thumb_glue (link_info, h)
419 struct bfd_link_info * link_info;
420 struct elf_link_hash_entry * h;
421 {
422 const char * name = h->root.root.string;
423 register asection * s;
424 char * tmp_name;
425 struct elf_link_hash_entry * myh;
426 struct elf32_arm_link_hash_table * globals;
427
428 globals = elf32_arm_hash_table (link_info);
429
430 BFD_ASSERT (globals != NULL);
431 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
432
433 s = bfd_get_section_by_name
434 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
435
436 BFD_ASSERT (s != NULL);
437
438 tmp_name = ((char *)
439 bfd_malloc (strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1));
440
441 BFD_ASSERT (tmp_name);
442
443 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
444
445 myh = elf_link_hash_lookup
446 (&(globals)->root, tmp_name, false, false, true);
447
448 if (myh != NULL)
449 {
450 /* We've already seen this guy. */
451 free (tmp_name);
452 return;
453 }
454
455 /* The only trick here is using hash_table->arm_glue_size as the value. Even
456 though the section isn't allocated yet, this is where we will be putting
457 it. */
458 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner, tmp_name,
459 BSF_GLOBAL,
460 s, globals->arm_glue_size + 1,
461 NULL, true, false,
462 (struct bfd_link_hash_entry **) &myh);
463
464 free (tmp_name);
465
466 globals->arm_glue_size += ARM2THUMB_GLUE_SIZE;
467
468 return;
469 }
470
471 static void
472 record_thumb_to_arm_glue (link_info, h)
473 struct bfd_link_info *link_info;
474 struct elf_link_hash_entry *h;
475 {
476 const char *name = h->root.root.string;
477 register asection *s;
478 char *tmp_name;
479 struct elf_link_hash_entry *myh;
480 struct elf32_arm_link_hash_table *hash_table;
481 char bind;
482
483 hash_table = elf32_arm_hash_table (link_info);
484
485 BFD_ASSERT (hash_table != NULL);
486 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
487
488 s = bfd_get_section_by_name
489 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
490
491 BFD_ASSERT (s != NULL);
492
493 tmp_name = (char *) bfd_malloc (strlen (name) + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
494
495 BFD_ASSERT (tmp_name);
496
497 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
498
499 myh = elf_link_hash_lookup
500 (&(hash_table)->root, tmp_name, false, false, true);
501
502 if (myh != NULL)
503 {
504 /* We've already seen this guy. */
505 free (tmp_name);
506 return;
507 }
508
509 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner, tmp_name,
510 BSF_GLOBAL, s, hash_table->thumb_glue_size + 1,
511 NULL, true, false,
512 (struct bfd_link_hash_entry **) &myh);
513
514 /* If we mark it 'Thumb', the disassembler will do a better job. */
515 bind = ELF_ST_BIND (myh->type);
516 myh->type = ELF_ST_INFO (bind, STT_ARM_TFUNC);
517
518 free (tmp_name);
519
520 #define CHANGE_TO_ARM "__%s_change_to_arm"
521 #define BACK_FROM_ARM "__%s_back_from_arm"
522
523 /* Allocate another symbol to mark where we switch to Arm mode. */
524 tmp_name = (char *) bfd_malloc (strlen (name) + strlen (CHANGE_TO_ARM) + 1);
525
526 BFD_ASSERT (tmp_name);
527
528 sprintf (tmp_name, CHANGE_TO_ARM, name);
529
530 myh = NULL;
531
532 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner, tmp_name,
533 BSF_LOCAL, s, hash_table->thumb_glue_size + 4,
534 NULL, true, false,
535 (struct bfd_link_hash_entry **) &myh);
536
537 free (tmp_name);
538
539 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
540
541 return;
542 }
543
544 /* Select a BFD to be used to hold the sections used by the glue code.
545 This function is called from the linker scripts in ld/emultempl/
546 {armelf/pe}.em */
547
548 boolean
549 bfd_elf32_arm_get_bfd_for_interworking (abfd, info)
550 bfd *abfd;
551 struct bfd_link_info *info;
552 {
553 struct elf32_arm_link_hash_table *globals;
554 flagword flags;
555 asection *sec;
556
557 /* If we are only performing a partial link do not bother
558 getting a bfd to hold the glue. */
559 if (info->relocateable)
560 return true;
561
562 globals = elf32_arm_hash_table (info);
563
564 BFD_ASSERT (globals != NULL);
565
566 if (globals->bfd_of_glue_owner != NULL)
567 return true;
568
569 sec = bfd_get_section_by_name (abfd, ARM2THUMB_GLUE_SECTION_NAME);
570
571 if (sec == NULL)
572 {
573 /* Note: we do not include the flag SEC_LINKER_CREATED, as this
574 will prevent elf_link_input_bfd() from processing the contents
575 of this section. */
576 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
577
578 sec = bfd_make_section (abfd, ARM2THUMB_GLUE_SECTION_NAME);
579
580 if (sec == NULL
581 || !bfd_set_section_flags (abfd, sec, flags)
582 || !bfd_set_section_alignment (abfd, sec, 2))
583 return false;
584
585 /* Set the gc mark to prevent the section from being removed by garbage
586 collection, despite the fact that no relocs refer to this section. */
587 sec->gc_mark = 1;
588 }
589
590 sec = bfd_get_section_by_name (abfd, THUMB2ARM_GLUE_SECTION_NAME);
591
592 if (sec == NULL)
593 {
594 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
595
596 sec = bfd_make_section (abfd, THUMB2ARM_GLUE_SECTION_NAME);
597
598 if (sec == NULL
599 || !bfd_set_section_flags (abfd, sec, flags)
600 || !bfd_set_section_alignment (abfd, sec, 2))
601 return false;
602
603 sec->gc_mark = 1;
604 }
605
606 /* Save the bfd for later use. */
607 globals->bfd_of_glue_owner = abfd;
608
609 return true;
610 }
611
612 boolean
613 bfd_elf32_arm_process_before_allocation (abfd, link_info, no_pipeline_knowledge)
614 bfd *abfd;
615 struct bfd_link_info *link_info;
616 int no_pipeline_knowledge;
617 {
618 Elf_Internal_Shdr *symtab_hdr;
619 Elf_Internal_Rela *free_relocs = NULL;
620 Elf_Internal_Rela *irel, *irelend;
621 bfd_byte *contents = NULL;
622 bfd_byte *free_contents = NULL;
623 Elf32_External_Sym *extsyms = NULL;
624 Elf32_External_Sym *free_extsyms = NULL;
625
626 asection *sec;
627 struct elf32_arm_link_hash_table *globals;
628
629 /* If we are only performing a partial link do not bother
630 to construct any glue. */
631 if (link_info->relocateable)
632 return true;
633
634 /* Here we have a bfd that is to be included on the link. We have a hook
635 to do reloc rummaging, before section sizes are nailed down. */
636 globals = elf32_arm_hash_table (link_info);
637
638 BFD_ASSERT (globals != NULL);
639 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
640
641 globals->no_pipeline_knowledge = no_pipeline_knowledge;
642
643 /* Rummage around all the relocs and map the glue vectors. */
644 sec = abfd->sections;
645
646 if (sec == NULL)
647 return true;
648
649 for (; sec != NULL; sec = sec->next)
650 {
651 if (sec->reloc_count == 0)
652 continue;
653
654 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
655
656 /* Load the relocs. */
657 irel = (_bfd_elf32_link_read_relocs (abfd, sec, (PTR) NULL,
658 (Elf_Internal_Rela *) NULL, false));
659
660 BFD_ASSERT (irel != 0);
661
662 irelend = irel + sec->reloc_count;
663 for (; irel < irelend; irel++)
664 {
665 long r_type;
666 unsigned long r_index;
667
668 struct elf_link_hash_entry *h;
669
670 r_type = ELF32_R_TYPE (irel->r_info);
671 r_index = ELF32_R_SYM (irel->r_info);
672
673 /* These are the only relocation types we care about. */
674 if ( r_type != R_ARM_PC24
675 && r_type != R_ARM_THM_PC22)
676 continue;
677
678 /* Get the section contents if we haven't done so already. */
679 if (contents == NULL)
680 {
681 /* Get cached copy if it exists. */
682 if (elf_section_data (sec)->this_hdr.contents != NULL)
683 contents = elf_section_data (sec)->this_hdr.contents;
684 else
685 {
686 /* Go get them off disk. */
687 contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
688 if (contents == NULL)
689 goto error_return;
690
691 free_contents = contents;
692
693 if (!bfd_get_section_contents (abfd, sec, contents,
694 (file_ptr) 0, sec->_raw_size))
695 goto error_return;
696 }
697 }
698
699 /* Read this BFD's symbols if we haven't done so already. */
700 if (extsyms == NULL)
701 {
702 /* Get cached copy if it exists. */
703 if (symtab_hdr->contents != NULL)
704 extsyms = (Elf32_External_Sym *) symtab_hdr->contents;
705 else
706 {
707 /* Go get them off disk. */
708 extsyms = ((Elf32_External_Sym *)
709 bfd_malloc (symtab_hdr->sh_size));
710 if (extsyms == NULL)
711 goto error_return;
712
713 free_extsyms = extsyms;
714
715 if (bfd_seek (abfd, symtab_hdr->sh_offset, SEEK_SET) != 0
716 || (bfd_read (extsyms, 1, symtab_hdr->sh_size, abfd)
717 != symtab_hdr->sh_size))
718 goto error_return;
719 }
720 }
721
722 /* If the relocation is not against a symbol it cannot concern us. */
723 h = NULL;
724
725 /* We don't care about local symbols. */
726 if (r_index < symtab_hdr->sh_info)
727 continue;
728
729 /* This is an external symbol. */
730 r_index -= symtab_hdr->sh_info;
731 h = (struct elf_link_hash_entry *)
732 elf_sym_hashes (abfd)[r_index];
733
734 /* If the relocation is against a static symbol it must be within
735 the current section and so cannot be a cross ARM/Thumb relocation. */
736 if (h == NULL)
737 continue;
738
739 switch (r_type)
740 {
741 case R_ARM_PC24:
742 /* This one is a call from arm code. We need to look up
743 the target of the call. If it is a thumb target, we
744 insert glue. */
745 if (ELF_ST_TYPE(h->type) == STT_ARM_TFUNC)
746 record_arm_to_thumb_glue (link_info, h);
747 break;
748
749 case R_ARM_THM_PC22:
750 /* This one is a call from thumb code. We look
751 up the target of the call. If it is not a thumb
752 target, we insert glue. */
753 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC)
754 record_thumb_to_arm_glue (link_info, h);
755 break;
756
757 default:
758 break;
759 }
760 }
761 }
762
763 return true;
764
765 error_return:
766 if (free_relocs != NULL)
767 free (free_relocs);
768 if (free_contents != NULL)
769 free (free_contents);
770 if (free_extsyms != NULL)
771 free (free_extsyms);
772
773 return false;
774 }
775
776 /* The thumb form of a long branch is a bit finicky, because the offset
777 encoding is split over two fields, each in it's own instruction. They
778 can occur in any order. So given a thumb form of long branch, and an
779 offset, insert the offset into the thumb branch and return finished
780 instruction.
781
782 It takes two thumb instructions to encode the target address. Each has
783 11 bits to invest. The upper 11 bits are stored in one (identifed by
784 H-0.. see below), the lower 11 bits are stored in the other (identified
785 by H-1).
786
787 Combine together and shifted left by 1 (it's a half word address) and
788 there you have it.
789
790 Op: 1111 = F,
791 H-0, upper address-0 = 000
792 Op: 1111 = F,
793 H-1, lower address-0 = 800
794
795 They can be ordered either way, but the arm tools I've seen always put
796 the lower one first. It probably doesn't matter. krk@cygnus.com
797
798 XXX: Actually the order does matter. The second instruction (H-1)
799 moves the computed address into the PC, so it must be the second one
800 in the sequence. The problem, however is that whilst little endian code
801 stores the instructions in HI then LOW order, big endian code does the
802 reverse. nickc@cygnus.com. */
803
804 #define LOW_HI_ORDER 0xF800F000
805 #define HI_LOW_ORDER 0xF000F800
806
807 static insn32
808 insert_thumb_branch (br_insn, rel_off)
809 insn32 br_insn;
810 int rel_off;
811 {
812 unsigned int low_bits;
813 unsigned int high_bits;
814
815 BFD_ASSERT ((rel_off & 1) != 1);
816
817 rel_off >>= 1; /* Half word aligned address. */
818 low_bits = rel_off & 0x000007FF; /* The bottom 11 bits. */
819 high_bits = (rel_off >> 11) & 0x000007FF; /* The top 11 bits. */
820
821 if ((br_insn & LOW_HI_ORDER) == LOW_HI_ORDER)
822 br_insn = LOW_HI_ORDER | (low_bits << 16) | high_bits;
823 else if ((br_insn & HI_LOW_ORDER) == HI_LOW_ORDER)
824 br_insn = HI_LOW_ORDER | (high_bits << 16) | low_bits;
825 else
826 /* FIXME: abort is probably not the right call. krk@cygnus.com */
827 abort (); /* error - not a valid branch instruction form. */
828
829 return br_insn;
830 }
831
832 /* Thumb code calling an ARM function. */
833
834 static int
835 elf32_thumb_to_arm_stub (info, name, input_bfd, output_bfd, input_section,
836 hit_data, sym_sec, offset, addend, val)
837 struct bfd_link_info * info;
838 const char * name;
839 bfd * input_bfd;
840 bfd * output_bfd;
841 asection * input_section;
842 bfd_byte * hit_data;
843 asection * sym_sec;
844 bfd_vma offset;
845 bfd_signed_vma addend;
846 bfd_vma val;
847 {
848 asection * s = 0;
849 long int my_offset;
850 unsigned long int tmp;
851 long int ret_offset;
852 struct elf_link_hash_entry * myh;
853 struct elf32_arm_link_hash_table * globals;
854
855 myh = find_thumb_glue (info, name, input_bfd);
856 if (myh == NULL)
857 return false;
858
859 globals = elf32_arm_hash_table (info);
860
861 BFD_ASSERT (globals != NULL);
862 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
863
864 my_offset = myh->root.u.def.value;
865
866 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
867 THUMB2ARM_GLUE_SECTION_NAME);
868
869 BFD_ASSERT (s != NULL);
870 BFD_ASSERT (s->contents != NULL);
871 BFD_ASSERT (s->output_section != NULL);
872
873 if ((my_offset & 0x01) == 0x01)
874 {
875 if (sym_sec != NULL
876 && sym_sec->owner != NULL
877 && !INTERWORK_FLAG (sym_sec->owner))
878 {
879 _bfd_error_handler
880 (_("%s(%s): warning: interworking not enabled."),
881 bfd_get_filename (sym_sec->owner), name);
882 _bfd_error_handler
883 (_(" first occurrence: %s: thumb call to arm"),
884 bfd_get_filename (input_bfd));
885
886 return false;
887 }
888
889 --my_offset;
890 myh->root.u.def.value = my_offset;
891
892 bfd_put_16 (output_bfd, t2a1_bx_pc_insn,
893 s->contents + my_offset);
894
895 bfd_put_16 (output_bfd, t2a2_noop_insn,
896 s->contents + my_offset + 2);
897
898 ret_offset =
899 /* Address of destination of the stub. */
900 ((bfd_signed_vma) val)
901 - ((bfd_signed_vma)
902 /* Offset from the start of the current section to the start of the stubs. */
903 (s->output_offset
904 /* Offset of the start of this stub from the start of the stubs. */
905 + my_offset
906 /* Address of the start of the current section. */
907 + s->output_section->vma)
908 /* The branch instruction is 4 bytes into the stub. */
909 + 4
910 /* ARM branches work from the pc of the instruction + 8. */
911 + 8);
912
913 bfd_put_32 (output_bfd,
914 t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
915 s->contents + my_offset + 4);
916 }
917
918 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
919
920 /* Now go back and fix up the original BL insn to point
921 to here. */
922 ret_offset =
923 s->output_offset
924 + my_offset
925 - (input_section->output_offset
926 + offset + addend)
927 - 8;
928
929 tmp = bfd_get_32 (input_bfd, hit_data
930 - input_section->vma);
931
932 bfd_put_32 (output_bfd,
933 insert_thumb_branch (tmp, ret_offset),
934 hit_data - input_section->vma);
935
936 return true;
937 }
938
939 /* Arm code calling a Thumb function. */
940
941 static int
942 elf32_arm_to_thumb_stub (info, name, input_bfd, output_bfd, input_section,
943 hit_data, sym_sec, offset, addend, val)
944 struct bfd_link_info * info;
945 const char * name;
946 bfd * input_bfd;
947 bfd * output_bfd;
948 asection * input_section;
949 bfd_byte * hit_data;
950 asection * sym_sec;
951 bfd_vma offset;
952 bfd_signed_vma addend;
953 bfd_vma val;
954 {
955 unsigned long int tmp;
956 long int my_offset;
957 asection * s;
958 long int ret_offset;
959 struct elf_link_hash_entry * myh;
960 struct elf32_arm_link_hash_table * globals;
961
962 myh = find_arm_glue (info, name, input_bfd);
963 if (myh == NULL)
964 return false;
965
966 globals = elf32_arm_hash_table (info);
967
968 BFD_ASSERT (globals != NULL);
969 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
970
971 my_offset = myh->root.u.def.value;
972 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
973 ARM2THUMB_GLUE_SECTION_NAME);
974 BFD_ASSERT (s != NULL);
975 BFD_ASSERT (s->contents != NULL);
976 BFD_ASSERT (s->output_section != NULL);
977
978 if ((my_offset & 0x01) == 0x01)
979 {
980 if (sym_sec != NULL
981 && sym_sec->owner != NULL
982 && !INTERWORK_FLAG (sym_sec->owner))
983 {
984 _bfd_error_handler
985 (_("%s(%s): warning: interworking not enabled."),
986 bfd_get_filename (sym_sec->owner), name);
987 _bfd_error_handler
988 (_(" first occurrence: %s: arm call to thumb"),
989 bfd_get_filename (input_bfd));
990 }
991
992 --my_offset;
993 myh->root.u.def.value = my_offset;
994
995 bfd_put_32 (output_bfd, a2t1_ldr_insn,
996 s->contents + my_offset);
997
998 bfd_put_32 (output_bfd, a2t2_bx_r12_insn,
999 s->contents + my_offset + 4);
1000
1001 /* It's a thumb address. Add the low order bit. */
1002 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
1003 s->contents + my_offset + 8);
1004 }
1005
1006 BFD_ASSERT (my_offset <= globals->arm_glue_size);
1007
1008 tmp = bfd_get_32 (input_bfd, hit_data);
1009 tmp = tmp & 0xFF000000;
1010
1011 /* Somehow these are both 4 too far, so subtract 8. */
1012 ret_offset = s->output_offset
1013 + my_offset
1014 + s->output_section->vma
1015 - (input_section->output_offset
1016 + input_section->output_section->vma
1017 + offset + addend)
1018 - 8;
1019
1020 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
1021
1022 bfd_put_32 (output_bfd, tmp, hit_data
1023 - input_section->vma);
1024
1025 return true;
1026 }
1027
1028 /* Perform a relocation as part of a final link. */
1029
1030 static bfd_reloc_status_type
1031 elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
1032 input_section, contents, rel, value,
1033 info, sym_sec, sym_name, sym_flags, h)
1034 reloc_howto_type * howto;
1035 bfd * input_bfd;
1036 bfd * output_bfd;
1037 asection * input_section;
1038 bfd_byte * contents;
1039 Elf_Internal_Rela * rel;
1040 bfd_vma value;
1041 struct bfd_link_info * info;
1042 asection * sym_sec;
1043 const char * sym_name;
1044 unsigned char sym_flags;
1045 struct elf_link_hash_entry * h;
1046 {
1047 unsigned long r_type = howto->type;
1048 unsigned long r_symndx;
1049 bfd_byte * hit_data = contents + rel->r_offset;
1050 bfd * dynobj = NULL;
1051 Elf_Internal_Shdr * symtab_hdr;
1052 struct elf_link_hash_entry ** sym_hashes;
1053 bfd_vma * local_got_offsets;
1054 asection * sgot = NULL;
1055 asection * splt = NULL;
1056 asection * sreloc = NULL;
1057 bfd_vma addend;
1058 bfd_signed_vma signed_addend;
1059 struct elf32_arm_link_hash_table * globals;
1060
1061 /* If the start address has been set, then set the EF_ARM_HASENTRY
1062 flag. Setting this more than once is redundant, but the cost is
1063 not too high, and it keeps the code simple.
1064
1065 The test is done here, rather than somewhere else, because the
1066 start address is only set just before the final link commences.
1067
1068 Note - if the user deliberately sets a start address of 0, the
1069 flag will not be set. */
1070 if (bfd_get_start_address (output_bfd) != 0)
1071 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
1072
1073 globals = elf32_arm_hash_table (info);
1074
1075 dynobj = elf_hash_table (info)->dynobj;
1076 if (dynobj)
1077 {
1078 sgot = bfd_get_section_by_name (dynobj, ".got");
1079 splt = bfd_get_section_by_name (dynobj, ".plt");
1080 }
1081 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1082 sym_hashes = elf_sym_hashes (input_bfd);
1083 local_got_offsets = elf_local_got_offsets (input_bfd);
1084 r_symndx = ELF32_R_SYM (rel->r_info);
1085
1086 #ifdef USE_REL
1087 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
1088
1089 if (addend & ((howto->src_mask + 1) >> 1))
1090 {
1091 signed_addend = -1;
1092 signed_addend &= ~ howto->src_mask;
1093 signed_addend |= addend;
1094 }
1095 else
1096 signed_addend = addend;
1097 #else
1098 addend = signed_addend = rel->r_addend;
1099 #endif
1100
1101 switch (r_type)
1102 {
1103 case R_ARM_NONE:
1104 return bfd_reloc_ok;
1105
1106 case R_ARM_PC24:
1107 case R_ARM_ABS32:
1108 case R_ARM_REL32:
1109 #ifndef OLD_ARM_ABI
1110 case R_ARM_XPC25:
1111 #endif
1112 /* When generating a shared object, these relocations are copied
1113 into the output file to be resolved at run time. */
1114 if (info->shared
1115 && (r_type != R_ARM_PC24
1116 || (h != NULL
1117 && h->dynindx != -1
1118 && (! info->symbolic
1119 || (h->elf_link_hash_flags
1120 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1121 {
1122 Elf_Internal_Rel outrel;
1123 boolean skip, relocate;
1124
1125 if (sreloc == NULL)
1126 {
1127 const char * name;
1128
1129 name = (bfd_elf_string_from_elf_section
1130 (input_bfd,
1131 elf_elfheader (input_bfd)->e_shstrndx,
1132 elf_section_data (input_section)->rel_hdr.sh_name));
1133 if (name == NULL)
1134 return bfd_reloc_notsupported;
1135
1136 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
1137 && strcmp (bfd_get_section_name (input_bfd,
1138 input_section),
1139 name + 4) == 0);
1140
1141 sreloc = bfd_get_section_by_name (dynobj, name);
1142 BFD_ASSERT (sreloc != NULL);
1143 }
1144
1145 skip = false;
1146
1147 if (elf_section_data (input_section)->stab_info == NULL)
1148 outrel.r_offset = rel->r_offset;
1149 else
1150 {
1151 bfd_vma off;
1152
1153 off = (_bfd_stab_section_offset
1154 (output_bfd, &elf_hash_table (info)->stab_info,
1155 input_section,
1156 & elf_section_data (input_section)->stab_info,
1157 rel->r_offset));
1158 if (off == (bfd_vma) -1)
1159 skip = true;
1160 outrel.r_offset = off;
1161 }
1162
1163 outrel.r_offset += (input_section->output_section->vma
1164 + input_section->output_offset);
1165
1166 if (skip)
1167 {
1168 memset (&outrel, 0, sizeof outrel);
1169 relocate = false;
1170 }
1171 else if (r_type == R_ARM_PC24)
1172 {
1173 BFD_ASSERT (h != NULL && h->dynindx != -1);
1174 if ((input_section->flags & SEC_ALLOC) != 0)
1175 relocate = false;
1176 else
1177 relocate = true;
1178 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_PC24);
1179 }
1180 else
1181 {
1182 if (h == NULL
1183 || ((info->symbolic || h->dynindx == -1)
1184 && (h->elf_link_hash_flags
1185 & ELF_LINK_HASH_DEF_REGULAR) != 0))
1186 {
1187 relocate = true;
1188 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1189 }
1190 else
1191 {
1192 BFD_ASSERT (h->dynindx != -1);
1193 if ((input_section->flags & SEC_ALLOC) != 0)
1194 relocate = false;
1195 else
1196 relocate = true;
1197 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_ABS32);
1198 }
1199 }
1200
1201 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1202 (((Elf32_External_Rel *)
1203 sreloc->contents)
1204 + sreloc->reloc_count));
1205 ++sreloc->reloc_count;
1206
1207 /* If this reloc is against an external symbol, we do not want to
1208 fiddle with the addend. Otherwise, we need to include the symbol
1209 value so that it becomes an addend for the dynamic reloc. */
1210 if (! relocate)
1211 return bfd_reloc_ok;
1212
1213 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1214 contents, rel->r_offset, value,
1215 (bfd_vma) 0);
1216 }
1217 else switch (r_type)
1218 {
1219 #ifndef OLD_ARM_ABI
1220 case R_ARM_XPC25: /* Arm BLX instruction. */
1221 #endif
1222 case R_ARM_PC24: /* Arm B/BL instruction */
1223 #ifndef OLD_ARM_ABI
1224 if (r_type == R_ARM_XPC25)
1225 {
1226 /* Check for Arm calling Arm function. */
1227 /* FIXME: Should we translate the instruction into a BL
1228 instruction instead ? */
1229 if (sym_flags != STT_ARM_TFUNC)
1230 _bfd_error_handler (_("\
1231 %s: Warning: Arm BLX instruction targets Arm function '%s'."),
1232 bfd_get_filename (input_bfd),
1233 h ? h->root.root.string : "(local)");
1234 }
1235 else
1236 #endif
1237 {
1238 /* Check for Arm calling Thumb function. */
1239 if (sym_flags == STT_ARM_TFUNC)
1240 {
1241 elf32_arm_to_thumb_stub (info, sym_name, input_bfd, output_bfd,
1242 input_section, hit_data, sym_sec, rel->r_offset,
1243 signed_addend, value);
1244 return bfd_reloc_ok;
1245 }
1246 }
1247
1248 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1249 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0)
1250 {
1251 /* The old way of doing things. Trearing the addend as a
1252 byte sized field and adding in the pipeline offset. */
1253 value -= (input_section->output_section->vma
1254 + input_section->output_offset);
1255 value -= rel->r_offset;
1256 value += addend;
1257
1258 if (! globals->no_pipeline_knowledge)
1259 value -= 8;
1260 }
1261 else
1262 {
1263 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
1264 where:
1265 S is the address of the symbol in the relocation.
1266 P is address of the instruction being relocated.
1267 A is the addend (extracted from the instruction) in bytes.
1268
1269 S is held in 'value'.
1270 P is the base address of the section containing the instruction
1271 plus the offset of the reloc into that section, ie:
1272 (input_section->output_section->vma +
1273 input_section->output_offset +
1274 rel->r_offset).
1275 A is the addend, converted into bytes, ie:
1276 (signed_addend * 4)
1277
1278 Note: None of these operations have knowledge of the pipeline
1279 size of the processor, thus it is up to the assembler to encode
1280 this information into the addend. */
1281 value -= (input_section->output_section->vma
1282 + input_section->output_offset);
1283 value -= rel->r_offset;
1284 value += (signed_addend << howto->size);
1285
1286 /* Previous versions of this code also used to add in the pipeline
1287 offset here. This is wrong because the linker is not supposed
1288 to know about such things, and one day it might change. In order
1289 to support old binaries that need the old behaviour however, so
1290 we attempt to detect which ABI was used to create the reloc. */
1291 if (! globals->no_pipeline_knowledge)
1292 {
1293 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form */
1294
1295 i_ehdrp = elf_elfheader (input_bfd);
1296
1297 if (i_ehdrp->e_ident[EI_OSABI] == 0)
1298 value -= 8;
1299 }
1300 }
1301
1302 signed_addend = value;
1303 signed_addend >>= howto->rightshift;
1304
1305 /* It is not an error for an undefined weak reference to be
1306 out of range. Any program that branches to such a symbol
1307 is going to crash anyway, so there is no point worrying
1308 about getting the destination exactly right. */
1309 if (! h || h->root.type != bfd_link_hash_undefweak)
1310 {
1311 /* Perform a signed range check. */
1312 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
1313 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
1314 return bfd_reloc_overflow;
1315 }
1316
1317 #ifndef OLD_ARM_ABI
1318 /* If necessary set the H bit in the BLX instruction. */
1319 if (r_type == R_ARM_XPC25 && ((value & 2) == 2))
1320 value = (signed_addend & howto->dst_mask)
1321 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask))
1322 | (1 << 24);
1323 else
1324 #endif
1325 value = (signed_addend & howto->dst_mask)
1326 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
1327 break;
1328
1329 case R_ARM_ABS32:
1330 value += addend;
1331 if (sym_flags == STT_ARM_TFUNC)
1332 value |= 1;
1333 break;
1334
1335 case R_ARM_REL32:
1336 value -= (input_section->output_section->vma
1337 + input_section->output_offset + rel->r_offset);
1338 value += addend;
1339 break;
1340 }
1341
1342 bfd_put_32 (input_bfd, value, hit_data);
1343 return bfd_reloc_ok;
1344
1345 case R_ARM_ABS8:
1346 value += addend;
1347 if ((long) value > 0x7f || (long) value < -0x80)
1348 return bfd_reloc_overflow;
1349
1350 bfd_put_8 (input_bfd, value, hit_data);
1351 return bfd_reloc_ok;
1352
1353 case R_ARM_ABS16:
1354 value += addend;
1355
1356 if ((long) value > 0x7fff || (long) value < -0x8000)
1357 return bfd_reloc_overflow;
1358
1359 bfd_put_16 (input_bfd, value, hit_data);
1360 return bfd_reloc_ok;
1361
1362 case R_ARM_ABS12:
1363 /* Support ldr and str instruction for the arm */
1364 /* Also thumb b (unconditional branch). ??? Really? */
1365 value += addend;
1366
1367 if ((long) value > 0x7ff || (long) value < -0x800)
1368 return bfd_reloc_overflow;
1369
1370 value |= (bfd_get_32 (input_bfd, hit_data) & 0xfffff000);
1371 bfd_put_32 (input_bfd, value, hit_data);
1372 return bfd_reloc_ok;
1373
1374 case R_ARM_THM_ABS5:
1375 /* Support ldr and str instructions for the thumb. */
1376 #ifdef USE_REL
1377 /* Need to refetch addend. */
1378 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
1379 /* ??? Need to determine shift amount from operand size. */
1380 addend >>= howto->rightshift;
1381 #endif
1382 value += addend;
1383
1384 /* ??? Isn't value unsigned? */
1385 if ((long) value > 0x1f || (long) value < -0x10)
1386 return bfd_reloc_overflow;
1387
1388 /* ??? Value needs to be properly shifted into place first. */
1389 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
1390 bfd_put_16 (input_bfd, value, hit_data);
1391 return bfd_reloc_ok;
1392
1393 #ifndef OLD_ARM_ABI
1394 case R_ARM_THM_XPC22:
1395 #endif
1396 case R_ARM_THM_PC22:
1397 /* Thumb BL (branch long instruction). */
1398 {
1399 bfd_vma relocation;
1400 boolean overflow = false;
1401 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
1402 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
1403 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
1404 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
1405 bfd_vma check;
1406 bfd_signed_vma signed_check;
1407
1408 #ifdef USE_REL
1409 /* Need to refetch the addend and squish the two 11 bit pieces
1410 together. */
1411 {
1412 bfd_vma upper = upper_insn & 0x7ff;
1413 bfd_vma lower = lower_insn & 0x7ff;
1414 upper = (upper ^ 0x400) - 0x400; /* Sign extend. */
1415 addend = (upper << 12) | (lower << 1);
1416 signed_addend = addend;
1417 }
1418 #endif
1419 #ifndef OLD_ARM_ABI
1420 if (r_type == R_ARM_THM_XPC22)
1421 {
1422 /* Check for Thumb to Thumb call. */
1423 /* FIXME: Should we translate the instruction into a BL
1424 instruction instead ? */
1425 if (sym_flags == STT_ARM_TFUNC)
1426 _bfd_error_handler (_("\
1427 %s: Warning: Thumb BLX instruction targets thumb function '%s'."),
1428 bfd_get_filename (input_bfd),
1429 h ? h->root.root.string : "(local)");
1430 }
1431 else
1432 #endif
1433 {
1434 /* If it is not a call to Thumb, assume call to Arm.
1435 If it is a call relative to a section name, then it is not a
1436 function call at all, but rather a long jump. */
1437 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION)
1438 {
1439 if (elf32_thumb_to_arm_stub
1440 (info, sym_name, input_bfd, output_bfd, input_section,
1441 hit_data, sym_sec, rel->r_offset, signed_addend, value))
1442 return bfd_reloc_ok;
1443 else
1444 return bfd_reloc_dangerous;
1445 }
1446 }
1447
1448 relocation = value + signed_addend;
1449
1450 relocation -= (input_section->output_section->vma
1451 + input_section->output_offset
1452 + rel->r_offset);
1453
1454 if (! globals->no_pipeline_knowledge)
1455 {
1456 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form. */
1457
1458 i_ehdrp = elf_elfheader (input_bfd);
1459
1460 /* Previous versions of this code also used to add in the pipline
1461 offset here. This is wrong because the linker is not supposed
1462 to know about such things, and one day it might change. In order
1463 to support old binaries that need the old behaviour however, so
1464 we attempt to detect which ABI was used to create the reloc. */
1465 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1466 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0
1467 || i_ehdrp->e_ident[EI_OSABI] == 0)
1468 relocation += 4;
1469 }
1470
1471 check = relocation >> howto->rightshift;
1472
1473 /* If this is a signed value, the rightshift just dropped
1474 leading 1 bits (assuming twos complement). */
1475 if ((bfd_signed_vma) relocation >= 0)
1476 signed_check = check;
1477 else
1478 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
1479
1480 /* Assumes two's complement. */
1481 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
1482 overflow = true;
1483
1484 /* Put RELOCATION back into the insn. */
1485 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 12) & 0x7ff);
1486 lower_insn = (lower_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 1) & 0x7ff);
1487
1488 #ifndef OLD_ARM_ABI
1489 if (r_type == R_ARM_THM_XPC22
1490 && ((lower_insn & 0x1800) == 0x0800))
1491 /* Remove bit zero of the adjusted offset. Bit zero can only be
1492 set if the upper insn is at a half-word boundary, since the
1493 destination address, an ARM instruction, must always be on a
1494 word boundary. The semantics of the BLX (1) instruction, however,
1495 are that bit zero in the offset must always be zero, and the
1496 corresponding bit one in the target address will be set from bit
1497 one of the source address. */
1498 lower_insn &= ~1;
1499 #endif
1500 /* Put the relocated value back in the object file: */
1501 bfd_put_16 (input_bfd, upper_insn, hit_data);
1502 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
1503
1504 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
1505 }
1506 break;
1507
1508 case R_ARM_GNU_VTINHERIT:
1509 case R_ARM_GNU_VTENTRY:
1510 return bfd_reloc_ok;
1511
1512 case R_ARM_COPY:
1513 return bfd_reloc_notsupported;
1514
1515 case R_ARM_GLOB_DAT:
1516 return bfd_reloc_notsupported;
1517
1518 case R_ARM_JUMP_SLOT:
1519 return bfd_reloc_notsupported;
1520
1521 case R_ARM_RELATIVE:
1522 return bfd_reloc_notsupported;
1523
1524 case R_ARM_GOTOFF:
1525 /* Relocation is relative to the start of the
1526 global offset table. */
1527
1528 BFD_ASSERT (sgot != NULL);
1529 if (sgot == NULL)
1530 return bfd_reloc_notsupported;
1531
1532 /* Note that sgot->output_offset is not involved in this
1533 calculation. We always want the start of .got. If we
1534 define _GLOBAL_OFFSET_TABLE in a different way, as is
1535 permitted by the ABI, we might have to change this
1536 calculation. */
1537 value -= sgot->output_section->vma;
1538 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1539 contents, rel->r_offset, value,
1540 (bfd_vma) 0);
1541
1542 case R_ARM_GOTPC:
1543 /* Use global offset table as symbol value. */
1544 BFD_ASSERT (sgot != NULL);
1545
1546 if (sgot == NULL)
1547 return bfd_reloc_notsupported;
1548
1549 value = sgot->output_section->vma;
1550 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1551 contents, rel->r_offset, value,
1552 (bfd_vma) 0);
1553
1554 case R_ARM_GOT32:
1555 /* Relocation is to the entry for this symbol in the
1556 global offset table. */
1557 if (sgot == NULL)
1558 return bfd_reloc_notsupported;
1559
1560 if (h != NULL)
1561 {
1562 bfd_vma off;
1563
1564 off = h->got.offset;
1565 BFD_ASSERT (off != (bfd_vma) -1);
1566
1567 if (!elf_hash_table (info)->dynamic_sections_created ||
1568 (info->shared && (info->symbolic || h->dynindx == -1)
1569 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1570 {
1571 /* This is actually a static link, or it is a -Bsymbolic link
1572 and the symbol is defined locally. We must initialize this
1573 entry in the global offset table. Since the offset must
1574 always be a multiple of 4, we use the least significant bit
1575 to record whether we have initialized it already.
1576
1577 When doing a dynamic link, we create a .rel.got relocation
1578 entry to initialize the value. This is done in the
1579 finish_dynamic_symbol routine. */
1580 if ((off & 1) != 0)
1581 off &= ~1;
1582 else
1583 {
1584 bfd_put_32 (output_bfd, value, sgot->contents + off);
1585 h->got.offset |= 1;
1586 }
1587 }
1588
1589 value = sgot->output_offset + off;
1590 }
1591 else
1592 {
1593 bfd_vma off;
1594
1595 BFD_ASSERT (local_got_offsets != NULL &&
1596 local_got_offsets[r_symndx] != (bfd_vma) -1);
1597
1598 off = local_got_offsets[r_symndx];
1599
1600 /* The offset must always be a multiple of 4. We use the
1601 least significant bit to record whether we have already
1602 generated the necessary reloc. */
1603 if ((off & 1) != 0)
1604 off &= ~1;
1605 else
1606 {
1607 bfd_put_32 (output_bfd, value, sgot->contents + off);
1608
1609 if (info->shared)
1610 {
1611 asection * srelgot;
1612 Elf_Internal_Rel outrel;
1613
1614 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
1615 BFD_ASSERT (srelgot != NULL);
1616
1617 outrel.r_offset = (sgot->output_section->vma
1618 + sgot->output_offset
1619 + off);
1620 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1621 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1622 (((Elf32_External_Rel *)
1623 srelgot->contents)
1624 + srelgot->reloc_count));
1625 ++srelgot->reloc_count;
1626 }
1627
1628 local_got_offsets[r_symndx] |= 1;
1629 }
1630
1631 value = sgot->output_offset + off;
1632 }
1633
1634 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1635 contents, rel->r_offset, value,
1636 (bfd_vma) 0);
1637
1638 case R_ARM_PLT32:
1639 /* Relocation is to the entry for this symbol in the
1640 procedure linkage table. */
1641
1642 /* Resolve a PLT32 reloc against a local symbol directly,
1643 without using the procedure linkage table. */
1644 if (h == NULL)
1645 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1646 contents, rel->r_offset, value,
1647 (bfd_vma) 0);
1648
1649 if (h->plt.offset == (bfd_vma) -1)
1650 /* We didn't make a PLT entry for this symbol. This
1651 happens when statically linking PIC code, or when
1652 using -Bsymbolic. */
1653 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1654 contents, rel->r_offset, value,
1655 (bfd_vma) 0);
1656
1657 BFD_ASSERT(splt != NULL);
1658 if (splt == NULL)
1659 return bfd_reloc_notsupported;
1660
1661 value = (splt->output_section->vma
1662 + splt->output_offset
1663 + h->plt.offset);
1664 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1665 contents, rel->r_offset, value,
1666 (bfd_vma) 0);
1667
1668 case R_ARM_SBREL32:
1669 return bfd_reloc_notsupported;
1670
1671 case R_ARM_AMP_VCALL9:
1672 return bfd_reloc_notsupported;
1673
1674 case R_ARM_RSBREL32:
1675 return bfd_reloc_notsupported;
1676
1677 case R_ARM_THM_RPC22:
1678 return bfd_reloc_notsupported;
1679
1680 case R_ARM_RREL32:
1681 return bfd_reloc_notsupported;
1682
1683 case R_ARM_RABS32:
1684 return bfd_reloc_notsupported;
1685
1686 case R_ARM_RPC24:
1687 return bfd_reloc_notsupported;
1688
1689 case R_ARM_RBASE:
1690 return bfd_reloc_notsupported;
1691
1692 default:
1693 return bfd_reloc_notsupported;
1694 }
1695 }
1696
1697 #ifdef USE_REL
1698 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
1699 static void
1700 arm_add_to_rel (abfd, address, howto, increment)
1701 bfd * abfd;
1702 bfd_byte * address;
1703 reloc_howto_type * howto;
1704 bfd_signed_vma increment;
1705 {
1706 bfd_signed_vma addend;
1707
1708 if (howto->type == R_ARM_THM_PC22)
1709 {
1710 int upper_insn, lower_insn;
1711 int upper, lower;
1712
1713 upper_insn = bfd_get_16 (abfd, address);
1714 lower_insn = bfd_get_16 (abfd, address + 2);
1715 upper = upper_insn & 0x7ff;
1716 lower = lower_insn & 0x7ff;
1717
1718 addend = (upper << 12) | (lower << 1);
1719 addend += increment;
1720 addend >>= 1;
1721
1722 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
1723 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
1724
1725 bfd_put_16 (abfd, upper_insn, address);
1726 bfd_put_16 (abfd, lower_insn, address + 2);
1727 }
1728 else
1729 {
1730 bfd_vma contents;
1731
1732 contents = bfd_get_32 (abfd, address);
1733
1734 /* Get the (signed) value from the instruction. */
1735 addend = contents & howto->src_mask;
1736 if (addend & ((howto->src_mask + 1) >> 1))
1737 {
1738 bfd_signed_vma mask;
1739
1740 mask = -1;
1741 mask &= ~ howto->src_mask;
1742 addend |= mask;
1743 }
1744
1745 /* Add in the increment, (which is a byte value). */
1746 switch (howto->type)
1747 {
1748 default:
1749 addend += increment;
1750 break;
1751
1752 case R_ARM_PC24:
1753 addend <<= howto->size;
1754 addend += increment;
1755
1756 /* Should we check for overflow here ? */
1757
1758 /* Drop any undesired bits. */
1759 addend >>= howto->rightshift;
1760 break;
1761 }
1762
1763 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
1764
1765 bfd_put_32 (abfd, contents, address);
1766 }
1767 }
1768 #endif /* USE_REL */
1769
1770 /* Relocate an ARM ELF section. */
1771 static boolean
1772 elf32_arm_relocate_section (output_bfd, info, input_bfd, input_section,
1773 contents, relocs, local_syms, local_sections)
1774 bfd * output_bfd;
1775 struct bfd_link_info * info;
1776 bfd * input_bfd;
1777 asection * input_section;
1778 bfd_byte * contents;
1779 Elf_Internal_Rela * relocs;
1780 Elf_Internal_Sym * local_syms;
1781 asection ** local_sections;
1782 {
1783 Elf_Internal_Shdr * symtab_hdr;
1784 struct elf_link_hash_entry ** sym_hashes;
1785 Elf_Internal_Rela * rel;
1786 Elf_Internal_Rela * relend;
1787 const char * name;
1788
1789 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1790 sym_hashes = elf_sym_hashes (input_bfd);
1791
1792 rel = relocs;
1793 relend = relocs + input_section->reloc_count;
1794 for (; rel < relend; rel++)
1795 {
1796 int r_type;
1797 reloc_howto_type * howto;
1798 unsigned long r_symndx;
1799 Elf_Internal_Sym * sym;
1800 asection * sec;
1801 struct elf_link_hash_entry * h;
1802 bfd_vma relocation;
1803 bfd_reloc_status_type r;
1804 arelent bfd_reloc;
1805
1806 r_symndx = ELF32_R_SYM (rel->r_info);
1807 r_type = ELF32_R_TYPE (rel->r_info);
1808
1809 if ( r_type == R_ARM_GNU_VTENTRY
1810 || r_type == R_ARM_GNU_VTINHERIT)
1811 continue;
1812
1813 elf32_arm_info_to_howto (input_bfd, & bfd_reloc, (Elf32_Internal_Rel *) rel);
1814 howto = bfd_reloc.howto;
1815
1816 if (info->relocateable)
1817 {
1818 /* This is a relocateable link. We don't have to change
1819 anything, unless the reloc is against a section symbol,
1820 in which case we have to adjust according to where the
1821 section symbol winds up in the output section. */
1822 if (r_symndx < symtab_hdr->sh_info)
1823 {
1824 sym = local_syms + r_symndx;
1825 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1826 {
1827 sec = local_sections[r_symndx];
1828 #ifdef USE_REL
1829 arm_add_to_rel (input_bfd, contents + rel->r_offset,
1830 howto, sec->output_offset + sym->st_value);
1831 #else
1832 rel->r_addend += (sec->output_offset + sym->st_value);
1833 #endif
1834 }
1835 }
1836
1837 continue;
1838 }
1839
1840 /* This is a final link. */
1841 h = NULL;
1842 sym = NULL;
1843 sec = NULL;
1844
1845 if (r_symndx < symtab_hdr->sh_info)
1846 {
1847 sym = local_syms + r_symndx;
1848 sec = local_sections[r_symndx];
1849 relocation = (sec->output_section->vma
1850 + sec->output_offset
1851 + sym->st_value);
1852 }
1853 else
1854 {
1855 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1856
1857 while ( h->root.type == bfd_link_hash_indirect
1858 || h->root.type == bfd_link_hash_warning)
1859 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1860
1861 if ( h->root.type == bfd_link_hash_defined
1862 || h->root.type == bfd_link_hash_defweak)
1863 {
1864 int relocation_needed = 1;
1865
1866 sec = h->root.u.def.section;
1867
1868 /* In these cases, we don't need the relocation value.
1869 We check specially because in some obscure cases
1870 sec->output_section will be NULL. */
1871 switch (r_type)
1872 {
1873 case R_ARM_PC24:
1874 case R_ARM_ABS32:
1875 if (info->shared
1876 && (
1877 (!info->symbolic && h->dynindx != -1)
1878 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1879 )
1880 && ((input_section->flags & SEC_ALLOC) != 0
1881 /* DWARF will emit R_ARM_ABS32 relocations in its
1882 sections against symbols defined externally
1883 in shared libraries. We can't do anything
1884 with them here. */
1885 || ((input_section->flags & SEC_DEBUGGING) != 0
1886 && (h->elf_link_hash_flags
1887 & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
1888 )
1889 relocation_needed = 0;
1890 break;
1891
1892 case R_ARM_GOTPC:
1893 relocation_needed = 0;
1894 break;
1895
1896 case R_ARM_GOT32:
1897 if (elf_hash_table(info)->dynamic_sections_created
1898 && (!info->shared
1899 || (!info->symbolic && h->dynindx != -1)
1900 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1901 )
1902 )
1903 relocation_needed = 0;
1904 break;
1905
1906 case R_ARM_PLT32:
1907 if (h->plt.offset != (bfd_vma)-1)
1908 relocation_needed = 0;
1909 break;
1910
1911 default:
1912 if (sec->output_section == NULL)
1913 {
1914 (*_bfd_error_handler)
1915 (_("%s: warning: unresolvable relocation against symbol `%s' from %s section"),
1916 bfd_get_filename (input_bfd), h->root.root.string,
1917 bfd_get_section_name (input_bfd, input_section));
1918 relocation_needed = 0;
1919 }
1920 }
1921
1922 if (relocation_needed)
1923 relocation = h->root.u.def.value
1924 + sec->output_section->vma
1925 + sec->output_offset;
1926 else
1927 relocation = 0;
1928 }
1929 else if (h->root.type == bfd_link_hash_undefweak)
1930 relocation = 0;
1931 else if (info->shared && !info->symbolic
1932 && !info->no_undefined
1933 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1934 relocation = 0;
1935 else
1936 {
1937 if (!((*info->callbacks->undefined_symbol)
1938 (info, h->root.root.string, input_bfd,
1939 input_section, rel->r_offset,
1940 (!info->shared || info->no_undefined
1941 || ELF_ST_VISIBILITY (h->other)))))
1942 return false;
1943 relocation = 0;
1944 }
1945 }
1946
1947 if (h != NULL)
1948 name = h->root.root.string;
1949 else
1950 {
1951 name = (bfd_elf_string_from_elf_section
1952 (input_bfd, symtab_hdr->sh_link, sym->st_name));
1953 if (name == NULL || *name == '\0')
1954 name = bfd_section_name (input_bfd, sec);
1955 }
1956
1957 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
1958 input_section, contents, rel,
1959 relocation, info, sec, name,
1960 (h ? ELF_ST_TYPE (h->type) :
1961 ELF_ST_TYPE (sym->st_info)), h);
1962
1963 if (r != bfd_reloc_ok)
1964 {
1965 const char * msg = (const char *) 0;
1966
1967 switch (r)
1968 {
1969 case bfd_reloc_overflow:
1970 /* If the overflowing reloc was to an undefined symbol,
1971 we have already printed one error message and there
1972 is no point complaining again. */
1973 if ((! h ||
1974 h->root.type != bfd_link_hash_undefined)
1975 && (!((*info->callbacks->reloc_overflow)
1976 (info, name, howto->name, (bfd_vma) 0,
1977 input_bfd, input_section, rel->r_offset))))
1978 return false;
1979 break;
1980
1981 case bfd_reloc_undefined:
1982 if (!((*info->callbacks->undefined_symbol)
1983 (info, name, input_bfd, input_section,
1984 rel->r_offset, true)))
1985 return false;
1986 break;
1987
1988 case bfd_reloc_outofrange:
1989 msg = _("internal error: out of range error");
1990 goto common_error;
1991
1992 case bfd_reloc_notsupported:
1993 msg = _("internal error: unsupported relocation error");
1994 goto common_error;
1995
1996 case bfd_reloc_dangerous:
1997 msg = _("internal error: dangerous error");
1998 goto common_error;
1999
2000 default:
2001 msg = _("internal error: unknown error");
2002 /* fall through */
2003
2004 common_error:
2005 if (!((*info->callbacks->warning)
2006 (info, msg, name, input_bfd, input_section,
2007 rel->r_offset)))
2008 return false;
2009 break;
2010 }
2011 }
2012 }
2013
2014 return true;
2015 }
2016
2017 /* Function to keep ARM specific flags in the ELF header. */
2018 static boolean
2019 elf32_arm_set_private_flags (abfd, flags)
2020 bfd *abfd;
2021 flagword flags;
2022 {
2023 if (elf_flags_init (abfd)
2024 && elf_elfheader (abfd)->e_flags != flags)
2025 {
2026 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
2027 {
2028 if (flags & EF_ARM_INTERWORK)
2029 _bfd_error_handler (_("\
2030 Warning: Not setting interwork flag of %s since it has already been specified as non-interworking"),
2031 bfd_get_filename (abfd));
2032 else
2033 _bfd_error_handler (_("\
2034 Warning: Clearing the interwork flag of %s due to outside request"),
2035 bfd_get_filename (abfd));
2036 }
2037 }
2038 else
2039 {
2040 elf_elfheader (abfd)->e_flags = flags;
2041 elf_flags_init (abfd) = true;
2042 }
2043
2044 return true;
2045 }
2046
2047 /* Copy backend specific data from one object module to another. */
2048
2049 static boolean
2050 elf32_arm_copy_private_bfd_data (ibfd, obfd)
2051 bfd *ibfd;
2052 bfd *obfd;
2053 {
2054 flagword in_flags;
2055 flagword out_flags;
2056
2057 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2058 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2059 return true;
2060
2061 in_flags = elf_elfheader (ibfd)->e_flags;
2062 out_flags = elf_elfheader (obfd)->e_flags;
2063
2064 if (elf_flags_init (obfd)
2065 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
2066 && in_flags != out_flags)
2067 {
2068 /* Cannot mix APCS26 and APCS32 code. */
2069 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2070 return false;
2071
2072 /* Cannot mix float APCS and non-float APCS code. */
2073 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2074 return false;
2075
2076 /* If the src and dest have different interworking flags
2077 then turn off the interworking bit. */
2078 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2079 {
2080 if (out_flags & EF_ARM_INTERWORK)
2081 _bfd_error_handler (_("\
2082 Warning: Clearing the interwork flag in %s because non-interworking code in %s has been linked with it"),
2083 bfd_get_filename (obfd), bfd_get_filename (ibfd));
2084
2085 in_flags &= ~EF_ARM_INTERWORK;
2086 }
2087
2088 /* Likewise for PIC, though don't warn for this case. */
2089 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
2090 in_flags &= ~EF_ARM_PIC;
2091 }
2092
2093 elf_elfheader (obfd)->e_flags = in_flags;
2094 elf_flags_init (obfd) = true;
2095
2096 return true;
2097 }
2098
2099 /* Merge backend specific data from an object file to the output
2100 object file when linking. */
2101
2102 static boolean
2103 elf32_arm_merge_private_bfd_data (ibfd, obfd)
2104 bfd * ibfd;
2105 bfd * obfd;
2106 {
2107 flagword out_flags;
2108 flagword in_flags;
2109 boolean flags_compatible = true;
2110 boolean null_input_bfd = true;
2111 asection *sec;
2112
2113 /* Check if we have the same endianess. */
2114 if (_bfd_generic_verify_endian_match (ibfd, obfd) == false)
2115 return false;
2116
2117 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2118 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2119 return true;
2120
2121 /* The input BFD must have had its flags initialised. */
2122 /* The following seems bogus to me -- The flags are initialized in
2123 the assembler but I don't think an elf_flags_init field is
2124 written into the object. */
2125 /* BFD_ASSERT (elf_flags_init (ibfd)); */
2126
2127 in_flags = elf_elfheader (ibfd)->e_flags;
2128 out_flags = elf_elfheader (obfd)->e_flags;
2129
2130 if (!elf_flags_init (obfd))
2131 {
2132 /* If the input is the default architecture and had the default
2133 flags then do not bother setting the flags for the output
2134 architecture, instead allow future merges to do this. If no
2135 future merges ever set these flags then they will retain their
2136 uninitialised values, which surprise surprise, correspond
2137 to the default values. */
2138 if (bfd_get_arch_info (ibfd)->the_default
2139 && elf_elfheader (ibfd)->e_flags == 0)
2140 return true;
2141
2142 elf_flags_init (obfd) = true;
2143 elf_elfheader (obfd)->e_flags = in_flags;
2144
2145 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2146 && bfd_get_arch_info (obfd)->the_default)
2147 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
2148
2149 return true;
2150 }
2151
2152 /* Identical flags must be compatible. */
2153 if (in_flags == out_flags)
2154 return true;
2155
2156 /* Check to see if the input BFD actually contains any sections.
2157 If not, its flags may not have been initialised either, but it cannot
2158 actually cause any incompatibility. */
2159 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2160 {
2161 /* Ignore synthetic glue sections. */
2162 if (strcmp (sec->name, ".glue_7")
2163 && strcmp (sec->name, ".glue_7t"))
2164 {
2165 null_input_bfd = false;
2166 break;
2167 }
2168 }
2169 if (null_input_bfd)
2170 return true;
2171
2172 /* Complain about various flag mismatches. */
2173 if (EF_ARM_EABI_VERSION (in_flags) != EF_ARM_EABI_VERSION (out_flags))
2174 {
2175 _bfd_error_handler (_("\
2176 Error: %s compiled for EABI version %d, whereas %s is compiled for version %d"),
2177 bfd_get_filename (ibfd),
2178 (in_flags & EF_ARM_EABIMASK) >> 24,
2179 bfd_get_filename (obfd),
2180 (out_flags & EF_ARM_EABIMASK) >> 24);
2181 return false;
2182 }
2183
2184 /* Not sure what needs to be checked for EABI versions >= 1. */
2185 if (EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
2186 {
2187 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2188 {
2189 _bfd_error_handler (_("\
2190 Error: %s compiled for APCS-%d, whereas %s is compiled for APCS-%d"),
2191 bfd_get_filename (ibfd),
2192 in_flags & EF_ARM_APCS_26 ? 26 : 32,
2193 bfd_get_filename (obfd),
2194 out_flags & EF_ARM_APCS_26 ? 26 : 32);
2195 flags_compatible = false;
2196 }
2197
2198 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2199 {
2200 _bfd_error_handler (_("\
2201 Error: %s passes floats in %s registers, whereas %s passes them in %s registers"),
2202 bfd_get_filename (ibfd),
2203 in_flags & EF_ARM_APCS_FLOAT ? _("float") : _("integer"),
2204 bfd_get_filename (obfd),
2205 out_flags & EF_ARM_APCS_26 ? _("float") : _("integer"));
2206 flags_compatible = false;
2207 }
2208
2209 #ifdef EF_ARM_SOFT_FLOAT
2210 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
2211 {
2212 _bfd_error_handler (_ ("\
2213 Error: %s uses %s floating point, whereas %s uses %s floating point"),
2214 bfd_get_filename (ibfd),
2215 in_flags & EF_ARM_SOFT_FLOAT ? _("soft") : _("hard"),
2216 bfd_get_filename (obfd),
2217 out_flags & EF_ARM_SOFT_FLOAT ? _("soft") : _("hard"));
2218 flags_compatible = false;
2219 }
2220 #endif
2221
2222 /* Interworking mismatch is only a warning. */
2223 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2224 _bfd_error_handler (_("\
2225 Warning: %s %s interworking, whereas %s %s"),
2226 bfd_get_filename (ibfd),
2227 in_flags & EF_ARM_INTERWORK ? _("supports") : _("does not support"),
2228 bfd_get_filename (obfd),
2229 out_flags & EF_ARM_INTERWORK ? _("does") : _("does not"));
2230 }
2231
2232 return flags_compatible;
2233 }
2234
2235 /* Display the flags field. */
2236
2237 static boolean
2238 elf32_arm_print_private_bfd_data (abfd, ptr)
2239 bfd *abfd;
2240 PTR ptr;
2241 {
2242 FILE * file = (FILE *) ptr;
2243 unsigned long flags;
2244
2245 BFD_ASSERT (abfd != NULL && ptr != NULL);
2246
2247 /* Print normal ELF private data. */
2248 _bfd_elf_print_private_bfd_data (abfd, ptr);
2249
2250 flags = elf_elfheader (abfd)->e_flags;
2251 /* Ignore init flag - it may not be set, despite the flags field
2252 containing valid data. */
2253
2254 /* xgettext:c-format */
2255 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
2256
2257 switch (EF_ARM_EABI_VERSION (flags))
2258 {
2259 case EF_ARM_EABI_UNKNOWN:
2260 /* The following flag bits are GNU extenstions and not part of the
2261 official ARM ELF extended ABI. Hence they are only decoded if
2262 the EABI version is not set. */
2263 if (flags & EF_ARM_INTERWORK)
2264 fprintf (file, _(" [interworking enabled]"));
2265
2266 if (flags & EF_ARM_APCS_26)
2267 fprintf (file, _(" [APCS-26]"));
2268 else
2269 fprintf (file, _(" [APCS-32]"));
2270
2271 if (flags & EF_ARM_APCS_FLOAT)
2272 fprintf (file, _(" [floats passed in float registers]"));
2273
2274 if (flags & EF_ARM_PIC)
2275 fprintf (file, _(" [position independent]"));
2276
2277 if (flags & EF_ARM_NEW_ABI)
2278 fprintf (file, _(" [new ABI]"));
2279
2280 if (flags & EF_ARM_OLD_ABI)
2281 fprintf (file, _(" [old ABI]"));
2282
2283 if (flags & EF_ARM_SOFT_FLOAT)
2284 fprintf (file, _(" [software FP]"));
2285
2286 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT | EF_ARM_PIC
2287 | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI | EF_ARM_SOFT_FLOAT);
2288 break;
2289
2290 case EF_ARM_EABI_VER1:
2291 fprintf (file, _(" [Version1 EABI]"));
2292
2293 if (flags & EF_ARM_SYMSARESORTED)
2294 fprintf (file, _(" [sorted symbol table]"));
2295 else
2296 fprintf (file, _(" [unsorted symbol table]"));
2297
2298 flags &= ~ EF_ARM_SYMSARESORTED;
2299 break;
2300
2301 case EF_ARM_EABI_VER2:
2302 fprintf (file, _(" [Version2 EABI]"));
2303
2304 if (flags & EF_ARM_SYMSARESORTED)
2305 fprintf (file, _(" [sorted symbol table]"));
2306 else
2307 fprintf (file, _(" [unsorted symbol table]"));
2308
2309 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
2310 fprintf (file, _(" [dynamic symbols use segment index]"));
2311
2312 if (flags & EF_ARM_MAPSYMSFIRST)
2313 fprintf (file, _(" [mapping symbols precede others]"));
2314
2315 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
2316 | EF_ARM_MAPSYMSFIRST);
2317 break;
2318
2319 default:
2320 fprintf (file, _(" <EABI version unrecognised>"));
2321 break;
2322 }
2323
2324 flags &= ~ EF_ARM_EABIMASK;
2325
2326 if (flags & EF_ARM_RELEXEC)
2327 fprintf (file, _(" [relocatable executable]"));
2328
2329 if (flags & EF_ARM_HASENTRY)
2330 fprintf (file, _(" [has entry point]"));
2331
2332 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
2333
2334 if (flags)
2335 fprintf (file, _("<Unrecognised flag bits set>"));
2336
2337 fputc ('\n', file);
2338
2339 return true;
2340 }
2341
2342 static int
2343 elf32_arm_get_symbol_type (elf_sym, type)
2344 Elf_Internal_Sym * elf_sym;
2345 int type;
2346 {
2347 switch (ELF_ST_TYPE (elf_sym->st_info))
2348 {
2349 case STT_ARM_TFUNC:
2350 return ELF_ST_TYPE (elf_sym->st_info);
2351
2352 case STT_ARM_16BIT:
2353 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
2354 This allows us to distinguish between data used by Thumb instructions
2355 and non-data (which is probably code) inside Thumb regions of an
2356 executable. */
2357 if (type != STT_OBJECT)
2358 return ELF_ST_TYPE (elf_sym->st_info);
2359 break;
2360
2361 default:
2362 break;
2363 }
2364
2365 return type;
2366 }
2367
2368 static asection *
2369 elf32_arm_gc_mark_hook (abfd, info, rel, h, sym)
2370 bfd *abfd;
2371 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2372 Elf_Internal_Rela *rel;
2373 struct elf_link_hash_entry *h;
2374 Elf_Internal_Sym *sym;
2375 {
2376 if (h != NULL)
2377 {
2378 switch (ELF32_R_TYPE (rel->r_info))
2379 {
2380 case R_ARM_GNU_VTINHERIT:
2381 case R_ARM_GNU_VTENTRY:
2382 break;
2383
2384 default:
2385 switch (h->root.type)
2386 {
2387 case bfd_link_hash_defined:
2388 case bfd_link_hash_defweak:
2389 return h->root.u.def.section;
2390
2391 case bfd_link_hash_common:
2392 return h->root.u.c.p->section;
2393
2394 default:
2395 break;
2396 }
2397 }
2398 }
2399 else
2400 {
2401 if (!(elf_bad_symtab (abfd)
2402 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
2403 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
2404 && sym->st_shndx != SHN_COMMON))
2405 {
2406 return bfd_section_from_elf_index (abfd, sym->st_shndx);
2407 }
2408 }
2409 return NULL;
2410 }
2411
2412 /* Update the got entry reference counts for the section being removed. */
2413
2414 static boolean
2415 elf32_arm_gc_sweep_hook (abfd, info, sec, relocs)
2416 bfd *abfd ATTRIBUTE_UNUSED;
2417 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2418 asection *sec ATTRIBUTE_UNUSED;
2419 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
2420 {
2421 /* We don't support garbage collection of GOT and PLT relocs yet. */
2422 return true;
2423 }
2424
2425 /* Look through the relocs for a section during the first phase. */
2426
2427 static boolean
2428 elf32_arm_check_relocs (abfd, info, sec, relocs)
2429 bfd * abfd;
2430 struct bfd_link_info * info;
2431 asection * sec;
2432 const Elf_Internal_Rela * relocs;
2433 {
2434 Elf_Internal_Shdr * symtab_hdr;
2435 struct elf_link_hash_entry ** sym_hashes;
2436 struct elf_link_hash_entry ** sym_hashes_end;
2437 const Elf_Internal_Rela * rel;
2438 const Elf_Internal_Rela * rel_end;
2439 bfd * dynobj;
2440 asection * sgot, *srelgot, *sreloc;
2441 bfd_vma * local_got_offsets;
2442
2443 if (info->relocateable)
2444 return true;
2445
2446 sgot = srelgot = sreloc = NULL;
2447
2448 dynobj = elf_hash_table (info)->dynobj;
2449 local_got_offsets = elf_local_got_offsets (abfd);
2450
2451 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2452 sym_hashes = elf_sym_hashes (abfd);
2453 sym_hashes_end = sym_hashes
2454 + symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
2455
2456 if (!elf_bad_symtab (abfd))
2457 sym_hashes_end -= symtab_hdr->sh_info;
2458
2459 rel_end = relocs + sec->reloc_count;
2460 for (rel = relocs; rel < rel_end; rel++)
2461 {
2462 struct elf_link_hash_entry *h;
2463 unsigned long r_symndx;
2464
2465 r_symndx = ELF32_R_SYM (rel->r_info);
2466 if (r_symndx < symtab_hdr->sh_info)
2467 h = NULL;
2468 else
2469 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2470
2471 /* Some relocs require a global offset table. */
2472 if (dynobj == NULL)
2473 {
2474 switch (ELF32_R_TYPE (rel->r_info))
2475 {
2476 case R_ARM_GOT32:
2477 case R_ARM_GOTOFF:
2478 case R_ARM_GOTPC:
2479 elf_hash_table (info)->dynobj = dynobj = abfd;
2480 if (! _bfd_elf_create_got_section (dynobj, info))
2481 return false;
2482 break;
2483
2484 default:
2485 break;
2486 }
2487 }
2488
2489 switch (ELF32_R_TYPE (rel->r_info))
2490 {
2491 case R_ARM_GOT32:
2492 /* This symbol requires a global offset table entry. */
2493 if (sgot == NULL)
2494 {
2495 sgot = bfd_get_section_by_name (dynobj, ".got");
2496 BFD_ASSERT (sgot != NULL);
2497 }
2498
2499 /* Get the got relocation section if necessary. */
2500 if (srelgot == NULL
2501 && (h != NULL || info->shared))
2502 {
2503 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
2504
2505 /* If no got relocation section, make one and initialize. */
2506 if (srelgot == NULL)
2507 {
2508 srelgot = bfd_make_section (dynobj, ".rel.got");
2509 if (srelgot == NULL
2510 || ! bfd_set_section_flags (dynobj, srelgot,
2511 (SEC_ALLOC
2512 | SEC_LOAD
2513 | SEC_HAS_CONTENTS
2514 | SEC_IN_MEMORY
2515 | SEC_LINKER_CREATED
2516 | SEC_READONLY))
2517 || ! bfd_set_section_alignment (dynobj, srelgot, 2))
2518 return false;
2519 }
2520 }
2521
2522 if (h != NULL)
2523 {
2524 if (h->got.offset != (bfd_vma) -1)
2525 /* We have already allocated space in the .got. */
2526 break;
2527
2528 h->got.offset = sgot->_raw_size;
2529
2530 /* Make sure this symbol is output as a dynamic symbol. */
2531 if (h->dynindx == -1)
2532 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2533 return false;
2534
2535 srelgot->_raw_size += sizeof (Elf32_External_Rel);
2536 }
2537 else
2538 {
2539 /* This is a global offset table entry for a local
2540 symbol. */
2541 if (local_got_offsets == NULL)
2542 {
2543 size_t size;
2544 register unsigned int i;
2545
2546 size = symtab_hdr->sh_info * sizeof (bfd_vma);
2547 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
2548 if (local_got_offsets == NULL)
2549 return false;
2550 elf_local_got_offsets (abfd) = local_got_offsets;
2551 for (i = 0; i < symtab_hdr->sh_info; i++)
2552 local_got_offsets[i] = (bfd_vma) -1;
2553 }
2554
2555 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
2556 /* We have already allocated space in the .got. */
2557 break;
2558
2559 local_got_offsets[r_symndx] = sgot->_raw_size;
2560
2561 if (info->shared)
2562 /* If we are generating a shared object, we need to
2563 output a R_ARM_RELATIVE reloc so that the dynamic
2564 linker can adjust this GOT entry. */
2565 srelgot->_raw_size += sizeof (Elf32_External_Rel);
2566 }
2567
2568 sgot->_raw_size += 4;
2569 break;
2570
2571 case R_ARM_PLT32:
2572 /* This symbol requires a procedure linkage table entry. We
2573 actually build the entry in adjust_dynamic_symbol,
2574 because this might be a case of linking PIC code which is
2575 never referenced by a dynamic object, in which case we
2576 don't need to generate a procedure linkage table entry
2577 after all. */
2578
2579 /* If this is a local symbol, we resolve it directly without
2580 creating a procedure linkage table entry. */
2581 if (h == NULL)
2582 continue;
2583
2584 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
2585 break;
2586
2587 case R_ARM_ABS32:
2588 case R_ARM_REL32:
2589 case R_ARM_PC24:
2590 /* If we are creating a shared library, and this is a reloc
2591 against a global symbol, or a non PC relative reloc
2592 against a local symbol, then we need to copy the reloc
2593 into the shared library. However, if we are linking with
2594 -Bsymbolic, we do not need to copy a reloc against a
2595 global symbol which is defined in an object we are
2596 including in the link (i.e., DEF_REGULAR is set). At
2597 this point we have not seen all the input files, so it is
2598 possible that DEF_REGULAR is not set now but will be set
2599 later (it is never cleared). We account for that
2600 possibility below by storing information in the
2601 pcrel_relocs_copied field of the hash table entry. */
2602 if (info->shared
2603 && (ELF32_R_TYPE (rel->r_info) != R_ARM_PC24
2604 || (h != NULL
2605 && (! info->symbolic
2606 || (h->elf_link_hash_flags
2607 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
2608 {
2609 /* When creating a shared object, we must copy these
2610 reloc types into the output file. We create a reloc
2611 section in dynobj and make room for this reloc. */
2612 if (sreloc == NULL)
2613 {
2614 const char * name;
2615
2616 name = (bfd_elf_string_from_elf_section
2617 (abfd,
2618 elf_elfheader (abfd)->e_shstrndx,
2619 elf_section_data (sec)->rel_hdr.sh_name));
2620 if (name == NULL)
2621 return false;
2622
2623 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
2624 && strcmp (bfd_get_section_name (abfd, sec),
2625 name + 4) == 0);
2626
2627 sreloc = bfd_get_section_by_name (dynobj, name);
2628 if (sreloc == NULL)
2629 {
2630 flagword flags;
2631
2632 sreloc = bfd_make_section (dynobj, name);
2633 flags = (SEC_HAS_CONTENTS | SEC_READONLY
2634 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2635 if ((sec->flags & SEC_ALLOC) != 0)
2636 flags |= SEC_ALLOC | SEC_LOAD;
2637 if (sreloc == NULL
2638 || ! bfd_set_section_flags (dynobj, sreloc, flags)
2639 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
2640 return false;
2641 }
2642 if (sec->flags & SEC_READONLY)
2643 info->flags |= DF_TEXTREL;
2644 }
2645
2646 sreloc->_raw_size += sizeof (Elf32_External_Rel);
2647 /* If we are linking with -Bsymbolic, and this is a
2648 global symbol, we count the number of PC relative
2649 relocations we have entered for this symbol, so that
2650 we can discard them again if the symbol is later
2651 defined by a regular object. Note that this function
2652 is only called if we are using an elf_i386 linker
2653 hash table, which means that h is really a pointer to
2654 an elf_i386_link_hash_entry. */
2655 if (h != NULL && info->symbolic
2656 && ELF32_R_TYPE (rel->r_info) == R_ARM_PC24)
2657 {
2658 struct elf32_arm_link_hash_entry * eh;
2659 struct elf32_arm_pcrel_relocs_copied * p;
2660
2661 eh = (struct elf32_arm_link_hash_entry *) h;
2662
2663 for (p = eh->pcrel_relocs_copied; p != NULL; p = p->next)
2664 if (p->section == sreloc)
2665 break;
2666
2667 if (p == NULL)
2668 {
2669 p = ((struct elf32_arm_pcrel_relocs_copied *)
2670 bfd_alloc (dynobj, sizeof * p));
2671
2672 if (p == NULL)
2673 return false;
2674 p->next = eh->pcrel_relocs_copied;
2675 eh->pcrel_relocs_copied = p;
2676 p->section = sreloc;
2677 p->count = 0;
2678 }
2679
2680 ++p->count;
2681 }
2682 }
2683 break;
2684
2685 /* This relocation describes the C++ object vtable hierarchy.
2686 Reconstruct it for later use during GC. */
2687 case R_ARM_GNU_VTINHERIT:
2688 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2689 return false;
2690 break;
2691
2692 /* This relocation describes which C++ vtable entries are actually
2693 used. Record for later use during GC. */
2694 case R_ARM_GNU_VTENTRY:
2695 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
2696 return false;
2697 break;
2698 }
2699 }
2700
2701 return true;
2702 }
2703
2704 /* Find the nearest line to a particular section and offset, for error
2705 reporting. This code is a duplicate of the code in elf.c, except
2706 that it also accepts STT_ARM_TFUNC as a symbol that names a function. */
2707
2708 static boolean
2709 elf32_arm_find_nearest_line
2710 (abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr)
2711 bfd * abfd;
2712 asection * section;
2713 asymbol ** symbols;
2714 bfd_vma offset;
2715 const char ** filename_ptr;
2716 const char ** functionname_ptr;
2717 unsigned int * line_ptr;
2718 {
2719 boolean found;
2720 const char * filename;
2721 asymbol * func;
2722 bfd_vma low_func;
2723 asymbol ** p;
2724
2725 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
2726 filename_ptr, functionname_ptr,
2727 line_ptr, 0,
2728 &elf_tdata (abfd)->dwarf2_find_line_info))
2729 return true;
2730
2731 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
2732 &found, filename_ptr,
2733 functionname_ptr, line_ptr,
2734 &elf_tdata (abfd)->line_info))
2735 return false;
2736
2737 if (found)
2738 return true;
2739
2740 if (symbols == NULL)
2741 return false;
2742
2743 filename = NULL;
2744 func = NULL;
2745 low_func = 0;
2746
2747 for (p = symbols; *p != NULL; p++)
2748 {
2749 elf_symbol_type *q;
2750
2751 q = (elf_symbol_type *) *p;
2752
2753 if (bfd_get_section (&q->symbol) != section)
2754 continue;
2755
2756 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
2757 {
2758 default:
2759 break;
2760 case STT_FILE:
2761 filename = bfd_asymbol_name (&q->symbol);
2762 break;
2763 case STT_NOTYPE:
2764 case STT_FUNC:
2765 case STT_ARM_TFUNC:
2766 if (q->symbol.section == section
2767 && q->symbol.value >= low_func
2768 && q->symbol.value <= offset)
2769 {
2770 func = (asymbol *) q;
2771 low_func = q->symbol.value;
2772 }
2773 break;
2774 }
2775 }
2776
2777 if (func == NULL)
2778 return false;
2779
2780 *filename_ptr = filename;
2781 *functionname_ptr = bfd_asymbol_name (func);
2782 *line_ptr = 0;
2783
2784 return true;
2785 }
2786
2787 /* Adjust a symbol defined by a dynamic object and referenced by a
2788 regular object. The current definition is in some section of the
2789 dynamic object, but we're not including those sections. We have to
2790 change the definition to something the rest of the link can
2791 understand. */
2792
2793 static boolean
2794 elf32_arm_adjust_dynamic_symbol (info, h)
2795 struct bfd_link_info * info;
2796 struct elf_link_hash_entry * h;
2797 {
2798 bfd * dynobj;
2799 asection * s;
2800 unsigned int power_of_two;
2801
2802 dynobj = elf_hash_table (info)->dynobj;
2803
2804 /* Make sure we know what is going on here. */
2805 BFD_ASSERT (dynobj != NULL
2806 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
2807 || h->weakdef != NULL
2808 || ((h->elf_link_hash_flags
2809 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2810 && (h->elf_link_hash_flags
2811 & ELF_LINK_HASH_REF_REGULAR) != 0
2812 && (h->elf_link_hash_flags
2813 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
2814
2815 /* If this is a function, put it in the procedure linkage table. We
2816 will fill in the contents of the procedure linkage table later,
2817 when we know the address of the .got section. */
2818 if (h->type == STT_FUNC
2819 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
2820 {
2821 if (! info->shared
2822 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
2823 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0)
2824 {
2825 /* This case can occur if we saw a PLT32 reloc in an input
2826 file, but the symbol was never referred to by a dynamic
2827 object. In such a case, we don't actually need to build
2828 a procedure linkage table, and we can just do a PC32
2829 reloc instead. */
2830 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
2831 return true;
2832 }
2833
2834 /* Make sure this symbol is output as a dynamic symbol. */
2835 if (h->dynindx == -1)
2836 {
2837 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2838 return false;
2839 }
2840
2841 s = bfd_get_section_by_name (dynobj, ".plt");
2842 BFD_ASSERT (s != NULL);
2843
2844 /* If this is the first .plt entry, make room for the special
2845 first entry. */
2846 if (s->_raw_size == 0)
2847 s->_raw_size += PLT_ENTRY_SIZE;
2848
2849 /* If this symbol is not defined in a regular file, and we are
2850 not generating a shared library, then set the symbol to this
2851 location in the .plt. This is required to make function
2852 pointers compare as equal between the normal executable and
2853 the shared library. */
2854 if (! info->shared
2855 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2856 {
2857 h->root.u.def.section = s;
2858 h->root.u.def.value = s->_raw_size;
2859 }
2860
2861 h->plt.offset = s->_raw_size;
2862
2863 /* Make room for this entry. */
2864 s->_raw_size += PLT_ENTRY_SIZE;
2865
2866 /* We also need to make an entry in the .got.plt section, which
2867 will be placed in the .got section by the linker script. */
2868 s = bfd_get_section_by_name (dynobj, ".got.plt");
2869 BFD_ASSERT (s != NULL);
2870 s->_raw_size += 4;
2871
2872 /* We also need to make an entry in the .rel.plt section. */
2873
2874 s = bfd_get_section_by_name (dynobj, ".rel.plt");
2875 BFD_ASSERT (s != NULL);
2876 s->_raw_size += sizeof (Elf32_External_Rel);
2877
2878 return true;
2879 }
2880
2881 /* If this is a weak symbol, and there is a real definition, the
2882 processor independent code will have arranged for us to see the
2883 real definition first, and we can just use the same value. */
2884 if (h->weakdef != NULL)
2885 {
2886 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
2887 || h->weakdef->root.type == bfd_link_hash_defweak);
2888 h->root.u.def.section = h->weakdef->root.u.def.section;
2889 h->root.u.def.value = h->weakdef->root.u.def.value;
2890 return true;
2891 }
2892
2893 /* This is a reference to a symbol defined by a dynamic object which
2894 is not a function. */
2895
2896 /* If we are creating a shared library, we must presume that the
2897 only references to the symbol are via the global offset table.
2898 For such cases we need not do anything here; the relocations will
2899 be handled correctly by relocate_section. */
2900 if (info->shared)
2901 return true;
2902
2903 /* We must allocate the symbol in our .dynbss section, which will
2904 become part of the .bss section of the executable. There will be
2905 an entry for this symbol in the .dynsym section. The dynamic
2906 object will contain position independent code, so all references
2907 from the dynamic object to this symbol will go through the global
2908 offset table. The dynamic linker will use the .dynsym entry to
2909 determine the address it must put in the global offset table, so
2910 both the dynamic object and the regular object will refer to the
2911 same memory location for the variable. */
2912 s = bfd_get_section_by_name (dynobj, ".dynbss");
2913 BFD_ASSERT (s != NULL);
2914
2915 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
2916 copy the initial value out of the dynamic object and into the
2917 runtime process image. We need to remember the offset into the
2918 .rel.bss section we are going to use. */
2919 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
2920 {
2921 asection *srel;
2922
2923 srel = bfd_get_section_by_name (dynobj, ".rel.bss");
2924 BFD_ASSERT (srel != NULL);
2925 srel->_raw_size += sizeof (Elf32_External_Rel);
2926 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
2927 }
2928
2929 /* We need to figure out the alignment required for this symbol. I
2930 have no idea how ELF linkers handle this. */
2931 power_of_two = bfd_log2 (h->size);
2932 if (power_of_two > 3)
2933 power_of_two = 3;
2934
2935 /* Apply the required alignment. */
2936 s->_raw_size = BFD_ALIGN (s->_raw_size,
2937 (bfd_size_type) (1 << power_of_two));
2938 if (power_of_two > bfd_get_section_alignment (dynobj, s))
2939 {
2940 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
2941 return false;
2942 }
2943
2944 /* Define the symbol as being at this point in the section. */
2945 h->root.u.def.section = s;
2946 h->root.u.def.value = s->_raw_size;
2947
2948 /* Increment the section size to make room for the symbol. */
2949 s->_raw_size += h->size;
2950
2951 return true;
2952 }
2953
2954 /* Set the sizes of the dynamic sections. */
2955
2956 static boolean
2957 elf32_arm_size_dynamic_sections (output_bfd, info)
2958 bfd * output_bfd ATTRIBUTE_UNUSED;
2959 struct bfd_link_info * info;
2960 {
2961 bfd * dynobj;
2962 asection * s;
2963 boolean plt;
2964 boolean relocs;
2965
2966 dynobj = elf_hash_table (info)->dynobj;
2967 BFD_ASSERT (dynobj != NULL);
2968
2969 if (elf_hash_table (info)->dynamic_sections_created)
2970 {
2971 /* Set the contents of the .interp section to the interpreter. */
2972 if (! info->shared)
2973 {
2974 s = bfd_get_section_by_name (dynobj, ".interp");
2975 BFD_ASSERT (s != NULL);
2976 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
2977 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2978 }
2979 }
2980 else
2981 {
2982 /* We may have created entries in the .rel.got section.
2983 However, if we are not creating the dynamic sections, we will
2984 not actually use these entries. Reset the size of .rel.got,
2985 which will cause it to get stripped from the output file
2986 below. */
2987 s = bfd_get_section_by_name (dynobj, ".rel.got");
2988 if (s != NULL)
2989 s->_raw_size = 0;
2990 }
2991
2992 /* If this is a -Bsymbolic shared link, then we need to discard all
2993 PC relative relocs against symbols defined in a regular object.
2994 We allocated space for them in the check_relocs routine, but we
2995 will not fill them in in the relocate_section routine. */
2996 if (info->shared && info->symbolic)
2997 elf32_arm_link_hash_traverse (elf32_arm_hash_table (info),
2998 elf32_arm_discard_copies,
2999 (PTR) NULL);
3000
3001 /* The check_relocs and adjust_dynamic_symbol entry points have
3002 determined the sizes of the various dynamic sections. Allocate
3003 memory for them. */
3004 plt = false;
3005 relocs = false;
3006 for (s = dynobj->sections; s != NULL; s = s->next)
3007 {
3008 const char * name;
3009 boolean strip;
3010
3011 if ((s->flags & SEC_LINKER_CREATED) == 0)
3012 continue;
3013
3014 /* It's OK to base decisions on the section name, because none
3015 of the dynobj section names depend upon the input files. */
3016 name = bfd_get_section_name (dynobj, s);
3017
3018 strip = false;
3019
3020 if (strcmp (name, ".plt") == 0)
3021 {
3022 if (s->_raw_size == 0)
3023 {
3024 /* Strip this section if we don't need it; see the
3025 comment below. */
3026 strip = true;
3027 }
3028 else
3029 {
3030 /* Remember whether there is a PLT. */
3031 plt = true;
3032 }
3033 }
3034 else if (strncmp (name, ".rel", 4) == 0)
3035 {
3036 if (s->_raw_size == 0)
3037 {
3038 /* If we don't need this section, strip it from the
3039 output file. This is mostly to handle .rel.bss and
3040 .rel.plt. We must create both sections in
3041 create_dynamic_sections, because they must be created
3042 before the linker maps input sections to output
3043 sections. The linker does that before
3044 adjust_dynamic_symbol is called, and it is that
3045 function which decides whether anything needs to go
3046 into these sections. */
3047 strip = true;
3048 }
3049 else
3050 {
3051 /* Remember whether there are any reloc sections other
3052 than .rel.plt. */
3053 if (strcmp (name, ".rel.plt") != 0)
3054 relocs = true;
3055
3056 /* We use the reloc_count field as a counter if we need
3057 to copy relocs into the output file. */
3058 s->reloc_count = 0;
3059 }
3060 }
3061 else if (strncmp (name, ".got", 4) != 0)
3062 {
3063 /* It's not one of our sections, so don't allocate space. */
3064 continue;
3065 }
3066
3067 if (strip)
3068 {
3069 asection ** spp;
3070
3071 for (spp = &s->output_section->owner->sections;
3072 *spp != s->output_section;
3073 spp = &(*spp)->next)
3074 ;
3075 *spp = s->output_section->next;
3076 --s->output_section->owner->section_count;
3077
3078 continue;
3079 }
3080
3081 /* Allocate memory for the section contents. */
3082 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
3083 if (s->contents == NULL && s->_raw_size != 0)
3084 return false;
3085 }
3086
3087 if (elf_hash_table (info)->dynamic_sections_created)
3088 {
3089 /* Add some entries to the .dynamic section. We fill in the
3090 values later, in elf32_arm_finish_dynamic_sections, but we
3091 must add the entries now so that we get the correct size for
3092 the .dynamic section. The DT_DEBUG entry is filled in by the
3093 dynamic linker and used by the debugger. */
3094 if (! info->shared)
3095 {
3096 if (! bfd_elf32_add_dynamic_entry (info, DT_DEBUG, 0))
3097 return false;
3098 }
3099
3100 if (plt)
3101 {
3102 if ( ! bfd_elf32_add_dynamic_entry (info, DT_PLTGOT, 0)
3103 || ! bfd_elf32_add_dynamic_entry (info, DT_PLTRELSZ, 0)
3104 || ! bfd_elf32_add_dynamic_entry (info, DT_PLTREL, DT_REL)
3105 || ! bfd_elf32_add_dynamic_entry (info, DT_JMPREL, 0))
3106 return false;
3107 }
3108
3109 if (relocs)
3110 {
3111 if ( ! bfd_elf32_add_dynamic_entry (info, DT_REL, 0)
3112 || ! bfd_elf32_add_dynamic_entry (info, DT_RELSZ, 0)
3113 || ! bfd_elf32_add_dynamic_entry (info, DT_RELENT,
3114 sizeof (Elf32_External_Rel)))
3115 return false;
3116 }
3117
3118 if ((info->flags & DF_TEXTREL) != 0)
3119 {
3120 if (! bfd_elf32_add_dynamic_entry (info, DT_TEXTREL, 0))
3121 return false;
3122 info->flags |= DF_TEXTREL;
3123 }
3124 }
3125
3126 return true;
3127 }
3128
3129 /* This function is called via elf32_arm_link_hash_traverse if we are
3130 creating a shared object with -Bsymbolic. It discards the space
3131 allocated to copy PC relative relocs against symbols which are
3132 defined in regular objects. We allocated space for them in the
3133 check_relocs routine, but we won't fill them in in the
3134 relocate_section routine. */
3135
3136 static boolean
3137 elf32_arm_discard_copies (h, ignore)
3138 struct elf32_arm_link_hash_entry * h;
3139 PTR ignore ATTRIBUTE_UNUSED;
3140 {
3141 struct elf32_arm_pcrel_relocs_copied * s;
3142
3143 /* We only discard relocs for symbols defined in a regular object. */
3144 if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3145 return true;
3146
3147 for (s = h->pcrel_relocs_copied; s != NULL; s = s->next)
3148 s->section->_raw_size -= s->count * sizeof (Elf32_External_Rel);
3149
3150 return true;
3151 }
3152
3153 /* Finish up dynamic symbol handling. We set the contents of various
3154 dynamic sections here. */
3155
3156 static boolean
3157 elf32_arm_finish_dynamic_symbol (output_bfd, info, h, sym)
3158 bfd * output_bfd;
3159 struct bfd_link_info * info;
3160 struct elf_link_hash_entry * h;
3161 Elf_Internal_Sym * sym;
3162 {
3163 bfd * dynobj;
3164
3165 dynobj = elf_hash_table (info)->dynobj;
3166
3167 if (h->plt.offset != (bfd_vma) -1)
3168 {
3169 asection * splt;
3170 asection * sgot;
3171 asection * srel;
3172 bfd_vma plt_index;
3173 bfd_vma got_offset;
3174 Elf_Internal_Rel rel;
3175
3176 /* This symbol has an entry in the procedure linkage table. Set
3177 it up. */
3178
3179 BFD_ASSERT (h->dynindx != -1);
3180
3181 splt = bfd_get_section_by_name (dynobj, ".plt");
3182 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3183 srel = bfd_get_section_by_name (dynobj, ".rel.plt");
3184 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
3185
3186 /* Get the index in the procedure linkage table which
3187 corresponds to this symbol. This is the index of this symbol
3188 in all the symbols for which we are making plt entries. The
3189 first entry in the procedure linkage table is reserved. */
3190 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3191
3192 /* Get the offset into the .got table of the entry that
3193 corresponds to this function. Each .got entry is 4 bytes.
3194 The first three are reserved. */
3195 got_offset = (plt_index + 3) * 4;
3196
3197 /* Fill in the entry in the procedure linkage table. */
3198 bfd_put_32 (output_bfd, elf32_arm_plt_entry[0],
3199 splt->contents + h->plt.offset + 0);
3200 bfd_put_32 (output_bfd, elf32_arm_plt_entry[1],
3201 splt->contents + h->plt.offset + 4);
3202 bfd_put_32 (output_bfd, elf32_arm_plt_entry[2],
3203 splt->contents + h->plt.offset + 8);
3204 bfd_put_32 (output_bfd,
3205 (sgot->output_section->vma
3206 + sgot->output_offset
3207 + got_offset
3208 - splt->output_section->vma
3209 - splt->output_offset
3210 - h->plt.offset - 12),
3211 splt->contents + h->plt.offset + 12);
3212
3213 /* Fill in the entry in the global offset table. */
3214 bfd_put_32 (output_bfd,
3215 (splt->output_section->vma
3216 + splt->output_offset),
3217 sgot->contents + got_offset);
3218
3219 /* Fill in the entry in the .rel.plt section. */
3220 rel.r_offset = (sgot->output_section->vma
3221 + sgot->output_offset
3222 + got_offset);
3223 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
3224 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3225 ((Elf32_External_Rel *) srel->contents
3226 + plt_index));
3227
3228 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3229 {
3230 /* Mark the symbol as undefined, rather than as defined in
3231 the .plt section. Leave the value alone. */
3232 sym->st_shndx = SHN_UNDEF;
3233 /* If the symbol is weak, we do need to clear the value.
3234 Otherwise, the PLT entry would provide a definition for
3235 the symbol even if the symbol wasn't defined anywhere,
3236 and so the symbol would never be NULL. */
3237 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
3238 == 0)
3239 sym->st_value = 0;
3240 }
3241 }
3242
3243 if (h->got.offset != (bfd_vma) -1)
3244 {
3245 asection * sgot;
3246 asection * srel;
3247 Elf_Internal_Rel rel;
3248
3249 /* This symbol has an entry in the global offset table. Set it
3250 up. */
3251 sgot = bfd_get_section_by_name (dynobj, ".got");
3252 srel = bfd_get_section_by_name (dynobj, ".rel.got");
3253 BFD_ASSERT (sgot != NULL && srel != NULL);
3254
3255 rel.r_offset = (sgot->output_section->vma
3256 + sgot->output_offset
3257 + (h->got.offset &~ 1));
3258
3259 /* If this is a -Bsymbolic link, and the symbol is defined
3260 locally, we just want to emit a RELATIVE reloc. The entry in
3261 the global offset table will already have been initialized in
3262 the relocate_section function. */
3263 if (info->shared
3264 && (info->symbolic || h->dynindx == -1)
3265 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
3266 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
3267 else
3268 {
3269 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
3270 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
3271 }
3272
3273 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3274 ((Elf32_External_Rel *) srel->contents
3275 + srel->reloc_count));
3276 ++srel->reloc_count;
3277 }
3278
3279 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
3280 {
3281 asection * s;
3282 Elf_Internal_Rel rel;
3283
3284 /* This symbol needs a copy reloc. Set it up. */
3285 BFD_ASSERT (h->dynindx != -1
3286 && (h->root.type == bfd_link_hash_defined
3287 || h->root.type == bfd_link_hash_defweak));
3288
3289 s = bfd_get_section_by_name (h->root.u.def.section->owner,
3290 ".rel.bss");
3291 BFD_ASSERT (s != NULL);
3292
3293 rel.r_offset = (h->root.u.def.value
3294 + h->root.u.def.section->output_section->vma
3295 + h->root.u.def.section->output_offset);
3296 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
3297 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3298 ((Elf32_External_Rel *) s->contents
3299 + s->reloc_count));
3300 ++s->reloc_count;
3301 }
3302
3303 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3304 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
3305 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3306 sym->st_shndx = SHN_ABS;
3307
3308 return true;
3309 }
3310
3311 /* Finish up the dynamic sections. */
3312
3313 static boolean
3314 elf32_arm_finish_dynamic_sections (output_bfd, info)
3315 bfd * output_bfd;
3316 struct bfd_link_info * info;
3317 {
3318 bfd * dynobj;
3319 asection * sgot;
3320 asection * sdyn;
3321
3322 dynobj = elf_hash_table (info)->dynobj;
3323
3324 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3325 BFD_ASSERT (sgot != NULL);
3326 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3327
3328 if (elf_hash_table (info)->dynamic_sections_created)
3329 {
3330 asection *splt;
3331 Elf32_External_Dyn *dyncon, *dynconend;
3332
3333 splt = bfd_get_section_by_name (dynobj, ".plt");
3334 BFD_ASSERT (splt != NULL && sdyn != NULL);
3335
3336 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3337 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
3338
3339 for (; dyncon < dynconend; dyncon++)
3340 {
3341 Elf_Internal_Dyn dyn;
3342 const char * name;
3343 asection * s;
3344
3345 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3346
3347 switch (dyn.d_tag)
3348 {
3349 default:
3350 break;
3351
3352 case DT_PLTGOT:
3353 name = ".got";
3354 goto get_vma;
3355 case DT_JMPREL:
3356 name = ".rel.plt";
3357 get_vma:
3358 s = bfd_get_section_by_name (output_bfd, name);
3359 BFD_ASSERT (s != NULL);
3360 dyn.d_un.d_ptr = s->vma;
3361 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3362 break;
3363
3364 case DT_PLTRELSZ:
3365 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3366 BFD_ASSERT (s != NULL);
3367 if (s->_cooked_size != 0)
3368 dyn.d_un.d_val = s->_cooked_size;
3369 else
3370 dyn.d_un.d_val = s->_raw_size;
3371 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3372 break;
3373
3374 case DT_RELSZ:
3375 /* My reading of the SVR4 ABI indicates that the
3376 procedure linkage table relocs (DT_JMPREL) should be
3377 included in the overall relocs (DT_REL). This is
3378 what Solaris does. However, UnixWare can not handle
3379 that case. Therefore, we override the DT_RELSZ entry
3380 here to make it not include the JMPREL relocs. Since
3381 the linker script arranges for .rel.plt to follow all
3382 other relocation sections, we don't have to worry
3383 about changing the DT_REL entry. */
3384 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3385 if (s != NULL)
3386 {
3387 if (s->_cooked_size != 0)
3388 dyn.d_un.d_val -= s->_cooked_size;
3389 else
3390 dyn.d_un.d_val -= s->_raw_size;
3391 }
3392 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3393 break;
3394 }
3395 }
3396
3397 /* Fill in the first entry in the procedure linkage table. */
3398 if (splt->_raw_size > 0)
3399 {
3400 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[0], splt->contents + 0);
3401 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[1], splt->contents + 4);
3402 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[2], splt->contents + 8);
3403 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[3], splt->contents + 12);
3404 }
3405
3406 /* UnixWare sets the entsize of .plt to 4, although that doesn't
3407 really seem like the right value. */
3408 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
3409 }
3410
3411 /* Fill in the first three entries in the global offset table. */
3412 if (sgot->_raw_size > 0)
3413 {
3414 if (sdyn == NULL)
3415 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
3416 else
3417 bfd_put_32 (output_bfd,
3418 sdyn->output_section->vma + sdyn->output_offset,
3419 sgot->contents);
3420 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
3421 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
3422 }
3423
3424 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
3425
3426 return true;
3427 }
3428
3429 static void
3430 elf32_arm_post_process_headers (abfd, link_info)
3431 bfd * abfd;
3432 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
3433 {
3434 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
3435
3436 i_ehdrp = elf_elfheader (abfd);
3437
3438 i_ehdrp->e_ident[EI_OSABI] = ARM_ELF_OS_ABI_VERSION;
3439 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
3440 }
3441
3442 static enum elf_reloc_type_class
3443 elf32_arm_reloc_type_class (type)
3444 int type;
3445 {
3446 switch (type)
3447 {
3448 case R_ARM_RELATIVE:
3449 return reloc_class_relative;
3450 case R_ARM_JUMP_SLOT:
3451 return reloc_class_plt;
3452 case R_ARM_COPY:
3453 return reloc_class_copy;
3454 default:
3455 return reloc_class_normal;
3456 }
3457 }
3458
3459
3460 #define ELF_ARCH bfd_arch_arm
3461 #define ELF_MACHINE_CODE EM_ARM
3462 #define ELF_MAXPAGESIZE 0x8000
3463
3464 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
3465 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
3466 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
3467 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
3468 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
3469 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
3470 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
3471
3472 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
3473 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
3474 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
3475 #define elf_backend_check_relocs elf32_arm_check_relocs
3476 #define elf_backend_relocate_section elf32_arm_relocate_section
3477 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
3478 #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
3479 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
3480 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
3481 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
3482 #define elf_backend_post_process_headers elf32_arm_post_process_headers
3483 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
3484
3485 #define elf_backend_can_gc_sections 1
3486 #define elf_backend_plt_readonly 1
3487 #define elf_backend_want_got_plt 1
3488 #define elf_backend_want_plt_sym 0
3489
3490 #define elf_backend_got_header_size 12
3491 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
3492
3493 #include "elf32-target.h"
This page took 0.097217 seconds and 5 git commands to generate.