Fixes to improve the ability to translate messages in the binutils tools
[deliverable/binutils-gdb.git] / bfd / elf32-arm.h
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 typedef unsigned long int insn32;
21 typedef unsigned short int insn16;
22
23 static boolean elf32_arm_set_private_flags
24 PARAMS ((bfd *, flagword));
25 static boolean elf32_arm_copy_private_bfd_data
26 PARAMS ((bfd *, bfd *));
27 static boolean elf32_arm_merge_private_bfd_data
28 PARAMS ((bfd *, bfd *));
29 static boolean elf32_arm_print_private_bfd_data
30 PARAMS ((bfd *, PTR));
31 static int elf32_arm_get_symbol_type
32 PARAMS (( Elf_Internal_Sym *, int));
33 static struct bfd_link_hash_table *elf32_arm_link_hash_table_create
34 PARAMS ((bfd *));
35 static bfd_reloc_status_type elf32_arm_final_link_relocate
36 PARAMS ((reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
37 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
38 const char *, int, struct elf_link_hash_entry *));
39 static insn32 insert_thumb_branch
40 PARAMS ((insn32, int));
41 static struct elf_link_hash_entry *find_thumb_glue
42 PARAMS ((struct bfd_link_info *, const char *, bfd *));
43 static struct elf_link_hash_entry *find_arm_glue
44 PARAMS ((struct bfd_link_info *, const char *, bfd *));
45 static void record_arm_to_thumb_glue
46 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
47 static void record_thumb_to_arm_glue
48 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
49 static void elf32_arm_post_process_headers
50 PARAMS ((bfd *, struct bfd_link_info *));
51 static int elf32_arm_to_thumb_stub
52 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
53 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
54 static int elf32_thumb_to_arm_stub
55 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
56 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
57 static boolean elf32_arm_relocate_section
58 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
59 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
60 static asection * elf32_arm_gc_mark_hook
61 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
62 struct elf_link_hash_entry *, Elf_Internal_Sym *));
63 static boolean elf32_arm_gc_sweep_hook
64 PARAMS ((bfd *, struct bfd_link_info *, asection *,
65 const Elf_Internal_Rela *));
66 static boolean elf32_arm_check_relocs
67 PARAMS ((bfd *, struct bfd_link_info *, asection *,
68 const Elf_Internal_Rela *));
69 static boolean elf32_arm_find_nearest_line
70 PARAMS ((bfd *, asection *, asymbol **, bfd_vma, const char **,
71 const char **, unsigned int *));
72 static boolean elf32_arm_adjust_dynamic_symbol
73 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
74 static boolean elf32_arm_size_dynamic_sections
75 PARAMS ((bfd *, struct bfd_link_info *));
76 static boolean elf32_arm_finish_dynamic_symbol
77 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
78 Elf_Internal_Sym *));
79 static boolean elf32_arm_finish_dynamic_sections
80 PARAMS ((bfd *, struct bfd_link_info *));
81 static struct bfd_hash_entry * elf32_arm_link_hash_newfunc
82 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
83 #ifdef USE_REL
84 static void arm_add_to_rel
85 PARAMS ((bfd *, bfd_byte *, reloc_howto_type *, bfd_signed_vma));
86 #endif
87
88 boolean bfd_elf32_arm_allocate_interworking_sections
89 PARAMS ((struct bfd_link_info *));
90 boolean bfd_elf32_arm_get_bfd_for_interworking
91 PARAMS ((bfd *, struct bfd_link_info *));
92 boolean bfd_elf32_arm_process_before_allocation
93 PARAMS ((bfd *, struct bfd_link_info *, int));
94 static enum elf_reloc_type_class elf32_arm_reloc_type_class
95 PARAMS ((const Elf_Internal_Rela *));
96
97 #define INTERWORK_FLAG(abfd) (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK)
98
99 /* The linker script knows the section names for placement.
100 The entry_names are used to do simple name mangling on the stubs.
101 Given a function name, and its type, the stub can be found. The
102 name can be changed. The only requirement is the %s be present. */
103 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
104 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
105
106 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
107 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
108
109 /* The name of the dynamic interpreter. This is put in the .interp
110 section. */
111 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
112
113 /* The size in bytes of an entry in the procedure linkage table. */
114 #define PLT_ENTRY_SIZE 16
115
116 /* The first entry in a procedure linkage table looks like
117 this. It is set up so that any shared library function that is
118 called before the relocation has been set up calls the dynamic
119 linker first. */
120 static const bfd_vma elf32_arm_plt0_entry [PLT_ENTRY_SIZE / 4] =
121 {
122 0xe52de004, /* str lr, [sp, #-4]! */
123 0xe59fe010, /* ldr lr, [pc, #16] */
124 0xe08fe00e, /* add lr, pc, lr */
125 0xe5bef008 /* ldr pc, [lr, #8]! */
126 };
127
128 /* Subsequent entries in a procedure linkage table look like
129 this. */
130 static const bfd_vma elf32_arm_plt_entry [PLT_ENTRY_SIZE / 4] =
131 {
132 0xe59fc004, /* ldr ip, [pc, #4] */
133 0xe08fc00c, /* add ip, pc, ip */
134 0xe59cf000, /* ldr pc, [ip] */
135 0x00000000 /* offset to symbol in got */
136 };
137
138 /* The ARM linker needs to keep track of the number of relocs that it
139 decides to copy in check_relocs for each symbol. This is so that
140 it can discard PC relative relocs if it doesn't need them when
141 linking with -Bsymbolic. We store the information in a field
142 extending the regular ELF linker hash table. */
143
144 /* This structure keeps track of the number of PC relative relocs we
145 have copied for a given symbol. */
146 struct elf32_arm_pcrel_relocs_copied
147 {
148 /* Next section. */
149 struct elf32_arm_pcrel_relocs_copied * next;
150 /* A section in dynobj. */
151 asection * section;
152 /* Number of relocs copied in this section. */
153 bfd_size_type count;
154 };
155
156 /* Arm ELF linker hash entry. */
157 struct elf32_arm_link_hash_entry
158 {
159 struct elf_link_hash_entry root;
160
161 /* Number of PC relative relocs copied for this symbol. */
162 struct elf32_arm_pcrel_relocs_copied * pcrel_relocs_copied;
163 };
164
165 /* Declare this now that the above structures are defined. */
166 static boolean elf32_arm_discard_copies
167 PARAMS ((struct elf32_arm_link_hash_entry *, PTR));
168
169 /* Traverse an arm ELF linker hash table. */
170 #define elf32_arm_link_hash_traverse(table, func, info) \
171 (elf_link_hash_traverse \
172 (&(table)->root, \
173 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
174 (info)))
175
176 /* Get the ARM elf linker hash table from a link_info structure. */
177 #define elf32_arm_hash_table(info) \
178 ((struct elf32_arm_link_hash_table *) ((info)->hash))
179
180 /* ARM ELF linker hash table. */
181 struct elf32_arm_link_hash_table
182 {
183 /* The main hash table. */
184 struct elf_link_hash_table root;
185
186 /* The size in bytes of the section containg the Thumb-to-ARM glue. */
187 bfd_size_type thumb_glue_size;
188
189 /* The size in bytes of the section containg the ARM-to-Thumb glue. */
190 bfd_size_type arm_glue_size;
191
192 /* An arbitary input BFD chosen to hold the glue sections. */
193 bfd * bfd_of_glue_owner;
194
195 /* A boolean indicating whether knowledge of the ARM's pipeline
196 length should be applied by the linker. */
197 int no_pipeline_knowledge;
198 };
199
200 /* Create an entry in an ARM ELF linker hash table. */
201
202 static struct bfd_hash_entry *
203 elf32_arm_link_hash_newfunc (entry, table, string)
204 struct bfd_hash_entry * entry;
205 struct bfd_hash_table * table;
206 const char * string;
207 {
208 struct elf32_arm_link_hash_entry * ret =
209 (struct elf32_arm_link_hash_entry *) entry;
210
211 /* Allocate the structure if it has not already been allocated by a
212 subclass. */
213 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
214 ret = ((struct elf32_arm_link_hash_entry *)
215 bfd_hash_allocate (table,
216 sizeof (struct elf32_arm_link_hash_entry)));
217 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
218 return (struct bfd_hash_entry *) ret;
219
220 /* Call the allocation method of the superclass. */
221 ret = ((struct elf32_arm_link_hash_entry *)
222 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
223 table, string));
224 if (ret != (struct elf32_arm_link_hash_entry *) NULL)
225 ret->pcrel_relocs_copied = NULL;
226
227 return (struct bfd_hash_entry *) ret;
228 }
229
230 /* Create an ARM elf linker hash table. */
231
232 static struct bfd_link_hash_table *
233 elf32_arm_link_hash_table_create (abfd)
234 bfd *abfd;
235 {
236 struct elf32_arm_link_hash_table *ret;
237 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
238
239 ret = (struct elf32_arm_link_hash_table *) bfd_alloc (abfd, amt);
240 if (ret == (struct elf32_arm_link_hash_table *) NULL)
241 return NULL;
242
243 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
244 elf32_arm_link_hash_newfunc))
245 {
246 bfd_release (abfd, ret);
247 return NULL;
248 }
249
250 ret->thumb_glue_size = 0;
251 ret->arm_glue_size = 0;
252 ret->bfd_of_glue_owner = NULL;
253 ret->no_pipeline_knowledge = 0;
254
255 return &ret->root.root;
256 }
257
258 /* Locate the Thumb encoded calling stub for NAME. */
259
260 static struct elf_link_hash_entry *
261 find_thumb_glue (link_info, name, input_bfd)
262 struct bfd_link_info *link_info;
263 const char *name;
264 bfd *input_bfd;
265 {
266 char *tmp_name;
267 struct elf_link_hash_entry *hash;
268 struct elf32_arm_link_hash_table *hash_table;
269
270 /* We need a pointer to the armelf specific hash table. */
271 hash_table = elf32_arm_hash_table (link_info);
272
273 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
274 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
275
276 BFD_ASSERT (tmp_name);
277
278 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
279
280 hash = elf_link_hash_lookup
281 (&(hash_table)->root, tmp_name, false, false, true);
282
283 if (hash == NULL)
284 /* xgettext:c-format */
285 (*_bfd_error_handler) (_("%s: unable to find THUMB glue '%s' for `%s'"),
286 bfd_archive_filename (input_bfd), tmp_name, name);
287
288 free (tmp_name);
289
290 return hash;
291 }
292
293 /* Locate the ARM encoded calling stub for NAME. */
294
295 static struct elf_link_hash_entry *
296 find_arm_glue (link_info, name, input_bfd)
297 struct bfd_link_info *link_info;
298 const char *name;
299 bfd *input_bfd;
300 {
301 char *tmp_name;
302 struct elf_link_hash_entry *myh;
303 struct elf32_arm_link_hash_table *hash_table;
304
305 /* We need a pointer to the elfarm specific hash table. */
306 hash_table = elf32_arm_hash_table (link_info);
307
308 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
309 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
310
311 BFD_ASSERT (tmp_name);
312
313 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
314
315 myh = elf_link_hash_lookup
316 (&(hash_table)->root, tmp_name, false, false, true);
317
318 if (myh == NULL)
319 /* xgettext:c-format */
320 (*_bfd_error_handler) (_("%s: unable to find ARM glue '%s' for `%s'"),
321 bfd_archive_filename (input_bfd), tmp_name, name);
322
323 free (tmp_name);
324
325 return myh;
326 }
327
328 /* ARM->Thumb glue:
329
330 .arm
331 __func_from_arm:
332 ldr r12, __func_addr
333 bx r12
334 __func_addr:
335 .word func @ behave as if you saw a ARM_32 reloc. */
336
337 #define ARM2THUMB_GLUE_SIZE 12
338 static const insn32 a2t1_ldr_insn = 0xe59fc000;
339 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
340 static const insn32 a2t3_func_addr_insn = 0x00000001;
341
342 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
343
344 .thumb .thumb
345 .align 2 .align 2
346 __func_from_thumb: __func_from_thumb:
347 bx pc push {r6, lr}
348 nop ldr r6, __func_addr
349 .arm mov lr, pc
350 __func_change_to_arm: bx r6
351 b func .arm
352 __func_back_to_thumb:
353 ldmia r13! {r6, lr}
354 bx lr
355 __func_addr:
356 .word func */
357
358 #define THUMB2ARM_GLUE_SIZE 8
359 static const insn16 t2a1_bx_pc_insn = 0x4778;
360 static const insn16 t2a2_noop_insn = 0x46c0;
361 static const insn32 t2a3_b_insn = 0xea000000;
362
363 static const insn16 t2a1_push_insn = 0xb540;
364 static const insn16 t2a2_ldr_insn = 0x4e03;
365 static const insn16 t2a3_mov_insn = 0x46fe;
366 static const insn16 t2a4_bx_insn = 0x4730;
367 static const insn32 t2a5_pop_insn = 0xe8bd4040;
368 static const insn32 t2a6_bx_insn = 0xe12fff1e;
369
370 boolean
371 bfd_elf32_arm_allocate_interworking_sections (info)
372 struct bfd_link_info * info;
373 {
374 asection * s;
375 bfd_byte * foo;
376 struct elf32_arm_link_hash_table * globals;
377
378 globals = elf32_arm_hash_table (info);
379
380 BFD_ASSERT (globals != NULL);
381
382 if (globals->arm_glue_size != 0)
383 {
384 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
385
386 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
387 ARM2THUMB_GLUE_SECTION_NAME);
388
389 BFD_ASSERT (s != NULL);
390
391 foo = (bfd_byte *) bfd_alloc (globals->bfd_of_glue_owner,
392 globals->arm_glue_size);
393
394 s->_raw_size = s->_cooked_size = globals->arm_glue_size;
395 s->contents = foo;
396 }
397
398 if (globals->thumb_glue_size != 0)
399 {
400 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
401
402 s = bfd_get_section_by_name
403 (globals->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
404
405 BFD_ASSERT (s != NULL);
406
407 foo = (bfd_byte *) bfd_alloc (globals->bfd_of_glue_owner,
408 globals->thumb_glue_size);
409
410 s->_raw_size = s->_cooked_size = globals->thumb_glue_size;
411 s->contents = foo;
412 }
413
414 return true;
415 }
416
417 static void
418 record_arm_to_thumb_glue (link_info, h)
419 struct bfd_link_info * link_info;
420 struct elf_link_hash_entry * h;
421 {
422 const char * name = h->root.root.string;
423 asection * s;
424 char * tmp_name;
425 struct elf_link_hash_entry * myh;
426 struct elf32_arm_link_hash_table * globals;
427 bfd_vma val;
428
429 globals = elf32_arm_hash_table (link_info);
430
431 BFD_ASSERT (globals != NULL);
432 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
433
434 s = bfd_get_section_by_name
435 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
436
437 BFD_ASSERT (s != NULL);
438
439 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
440 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
441
442 BFD_ASSERT (tmp_name);
443
444 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
445
446 myh = elf_link_hash_lookup
447 (&(globals)->root, tmp_name, false, false, true);
448
449 if (myh != NULL)
450 {
451 /* We've already seen this guy. */
452 free (tmp_name);
453 return;
454 }
455
456 /* The only trick here is using hash_table->arm_glue_size as the value. Even
457 though the section isn't allocated yet, this is where we will be putting
458 it. */
459 val = globals->arm_glue_size + 1;
460 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
461 tmp_name, BSF_GLOBAL, s, val,
462 NULL, true, false,
463 (struct bfd_link_hash_entry **) &myh);
464
465 free (tmp_name);
466
467 globals->arm_glue_size += ARM2THUMB_GLUE_SIZE;
468
469 return;
470 }
471
472 static void
473 record_thumb_to_arm_glue (link_info, h)
474 struct bfd_link_info *link_info;
475 struct elf_link_hash_entry *h;
476 {
477 const char *name = h->root.root.string;
478 asection *s;
479 char *tmp_name;
480 struct elf_link_hash_entry *myh;
481 struct elf32_arm_link_hash_table *hash_table;
482 char bind;
483 bfd_vma val;
484
485 hash_table = elf32_arm_hash_table (link_info);
486
487 BFD_ASSERT (hash_table != NULL);
488 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
489
490 s = bfd_get_section_by_name
491 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
492
493 BFD_ASSERT (s != NULL);
494
495 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
496 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
497
498 BFD_ASSERT (tmp_name);
499
500 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
501
502 myh = elf_link_hash_lookup
503 (&(hash_table)->root, tmp_name, false, false, true);
504
505 if (myh != NULL)
506 {
507 /* We've already seen this guy. */
508 free (tmp_name);
509 return;
510 }
511
512 val = hash_table->thumb_glue_size + 1;
513 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
514 tmp_name, BSF_GLOBAL, s, val,
515 NULL, true, false,
516 (struct bfd_link_hash_entry **) &myh);
517
518 /* If we mark it 'Thumb', the disassembler will do a better job. */
519 bind = ELF_ST_BIND (myh->type);
520 myh->type = ELF_ST_INFO (bind, STT_ARM_TFUNC);
521
522 free (tmp_name);
523
524 #define CHANGE_TO_ARM "__%s_change_to_arm"
525 #define BACK_FROM_ARM "__%s_back_from_arm"
526
527 /* Allocate another symbol to mark where we switch to Arm mode. */
528 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
529 + strlen (CHANGE_TO_ARM) + 1);
530
531 BFD_ASSERT (tmp_name);
532
533 sprintf (tmp_name, CHANGE_TO_ARM, name);
534
535 myh = NULL;
536
537 val = hash_table->thumb_glue_size + 4,
538 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
539 tmp_name, BSF_LOCAL, s, val,
540 NULL, true, false,
541 (struct bfd_link_hash_entry **) &myh);
542
543 free (tmp_name);
544
545 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
546
547 return;
548 }
549
550 /* Select a BFD to be used to hold the sections used by the glue code.
551 This function is called from the linker scripts in ld/emultempl/
552 {armelf/pe}.em */
553
554 boolean
555 bfd_elf32_arm_get_bfd_for_interworking (abfd, info)
556 bfd *abfd;
557 struct bfd_link_info *info;
558 {
559 struct elf32_arm_link_hash_table *globals;
560 flagword flags;
561 asection *sec;
562
563 /* If we are only performing a partial link do not bother
564 getting a bfd to hold the glue. */
565 if (info->relocateable)
566 return true;
567
568 globals = elf32_arm_hash_table (info);
569
570 BFD_ASSERT (globals != NULL);
571
572 if (globals->bfd_of_glue_owner != NULL)
573 return true;
574
575 sec = bfd_get_section_by_name (abfd, ARM2THUMB_GLUE_SECTION_NAME);
576
577 if (sec == NULL)
578 {
579 /* Note: we do not include the flag SEC_LINKER_CREATED, as this
580 will prevent elf_link_input_bfd() from processing the contents
581 of this section. */
582 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
583
584 sec = bfd_make_section (abfd, ARM2THUMB_GLUE_SECTION_NAME);
585
586 if (sec == NULL
587 || !bfd_set_section_flags (abfd, sec, flags)
588 || !bfd_set_section_alignment (abfd, sec, 2))
589 return false;
590
591 /* Set the gc mark to prevent the section from being removed by garbage
592 collection, despite the fact that no relocs refer to this section. */
593 sec->gc_mark = 1;
594 }
595
596 sec = bfd_get_section_by_name (abfd, THUMB2ARM_GLUE_SECTION_NAME);
597
598 if (sec == NULL)
599 {
600 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
601
602 sec = bfd_make_section (abfd, THUMB2ARM_GLUE_SECTION_NAME);
603
604 if (sec == NULL
605 || !bfd_set_section_flags (abfd, sec, flags)
606 || !bfd_set_section_alignment (abfd, sec, 2))
607 return false;
608
609 sec->gc_mark = 1;
610 }
611
612 /* Save the bfd for later use. */
613 globals->bfd_of_glue_owner = abfd;
614
615 return true;
616 }
617
618 boolean
619 bfd_elf32_arm_process_before_allocation (abfd, link_info, no_pipeline_knowledge)
620 bfd *abfd;
621 struct bfd_link_info *link_info;
622 int no_pipeline_knowledge;
623 {
624 Elf_Internal_Shdr *symtab_hdr;
625 Elf_Internal_Rela *free_relocs = NULL;
626 Elf_Internal_Rela *irel, *irelend;
627 bfd_byte *contents = NULL;
628 bfd_byte *free_contents = NULL;
629 Elf32_External_Sym *extsyms = NULL;
630 Elf32_External_Sym *free_extsyms = NULL;
631
632 asection *sec;
633 struct elf32_arm_link_hash_table *globals;
634
635 /* If we are only performing a partial link do not bother
636 to construct any glue. */
637 if (link_info->relocateable)
638 return true;
639
640 /* Here we have a bfd that is to be included on the link. We have a hook
641 to do reloc rummaging, before section sizes are nailed down. */
642 globals = elf32_arm_hash_table (link_info);
643
644 BFD_ASSERT (globals != NULL);
645 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
646
647 globals->no_pipeline_knowledge = no_pipeline_knowledge;
648
649 /* Rummage around all the relocs and map the glue vectors. */
650 sec = abfd->sections;
651
652 if (sec == NULL)
653 return true;
654
655 for (; sec != NULL; sec = sec->next)
656 {
657 if (sec->reloc_count == 0)
658 continue;
659
660 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
661
662 /* Load the relocs. */
663 irel = (_bfd_elf32_link_read_relocs (abfd, sec, (PTR) NULL,
664 (Elf_Internal_Rela *) NULL, false));
665
666 BFD_ASSERT (irel != 0);
667
668 irelend = irel + sec->reloc_count;
669 for (; irel < irelend; irel++)
670 {
671 long r_type;
672 unsigned long r_index;
673
674 struct elf_link_hash_entry *h;
675
676 r_type = ELF32_R_TYPE (irel->r_info);
677 r_index = ELF32_R_SYM (irel->r_info);
678
679 /* These are the only relocation types we care about. */
680 if ( r_type != R_ARM_PC24
681 && r_type != R_ARM_THM_PC22)
682 continue;
683
684 /* Get the section contents if we haven't done so already. */
685 if (contents == NULL)
686 {
687 /* Get cached copy if it exists. */
688 if (elf_section_data (sec)->this_hdr.contents != NULL)
689 contents = elf_section_data (sec)->this_hdr.contents;
690 else
691 {
692 /* Go get them off disk. */
693 contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
694 if (contents == NULL)
695 goto error_return;
696
697 free_contents = contents;
698
699 if (!bfd_get_section_contents (abfd, sec, contents,
700 (file_ptr) 0, sec->_raw_size))
701 goto error_return;
702 }
703 }
704
705 /* Read this BFD's symbols if we haven't done so already. */
706 if (extsyms == NULL)
707 {
708 /* Get cached copy if it exists. */
709 if (symtab_hdr->contents != NULL)
710 extsyms = (Elf32_External_Sym *) symtab_hdr->contents;
711 else
712 {
713 /* Go get them off disk. */
714 extsyms = ((Elf32_External_Sym *)
715 bfd_malloc (symtab_hdr->sh_size));
716 if (extsyms == NULL)
717 goto error_return;
718
719 free_extsyms = extsyms;
720
721 if (bfd_seek (abfd, symtab_hdr->sh_offset, SEEK_SET) != 0
722 || (bfd_bread (extsyms, symtab_hdr->sh_size, abfd)
723 != symtab_hdr->sh_size))
724 goto error_return;
725 }
726 }
727
728 /* If the relocation is not against a symbol it cannot concern us. */
729 h = NULL;
730
731 /* We don't care about local symbols. */
732 if (r_index < symtab_hdr->sh_info)
733 continue;
734
735 /* This is an external symbol. */
736 r_index -= symtab_hdr->sh_info;
737 h = (struct elf_link_hash_entry *)
738 elf_sym_hashes (abfd)[r_index];
739
740 /* If the relocation is against a static symbol it must be within
741 the current section and so cannot be a cross ARM/Thumb relocation. */
742 if (h == NULL)
743 continue;
744
745 switch (r_type)
746 {
747 case R_ARM_PC24:
748 /* This one is a call from arm code. We need to look up
749 the target of the call. If it is a thumb target, we
750 insert glue. */
751 if (ELF_ST_TYPE(h->type) == STT_ARM_TFUNC)
752 record_arm_to_thumb_glue (link_info, h);
753 break;
754
755 case R_ARM_THM_PC22:
756 /* This one is a call from thumb code. We look
757 up the target of the call. If it is not a thumb
758 target, we insert glue. */
759 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC)
760 record_thumb_to_arm_glue (link_info, h);
761 break;
762
763 default:
764 break;
765 }
766 }
767 }
768
769 return true;
770
771 error_return:
772 if (free_relocs != NULL)
773 free (free_relocs);
774 if (free_contents != NULL)
775 free (free_contents);
776 if (free_extsyms != NULL)
777 free (free_extsyms);
778
779 return false;
780 }
781
782 /* The thumb form of a long branch is a bit finicky, because the offset
783 encoding is split over two fields, each in it's own instruction. They
784 can occur in any order. So given a thumb form of long branch, and an
785 offset, insert the offset into the thumb branch and return finished
786 instruction.
787
788 It takes two thumb instructions to encode the target address. Each has
789 11 bits to invest. The upper 11 bits are stored in one (identifed by
790 H-0.. see below), the lower 11 bits are stored in the other (identified
791 by H-1).
792
793 Combine together and shifted left by 1 (it's a half word address) and
794 there you have it.
795
796 Op: 1111 = F,
797 H-0, upper address-0 = 000
798 Op: 1111 = F,
799 H-1, lower address-0 = 800
800
801 They can be ordered either way, but the arm tools I've seen always put
802 the lower one first. It probably doesn't matter. krk@cygnus.com
803
804 XXX: Actually the order does matter. The second instruction (H-1)
805 moves the computed address into the PC, so it must be the second one
806 in the sequence. The problem, however is that whilst little endian code
807 stores the instructions in HI then LOW order, big endian code does the
808 reverse. nickc@cygnus.com. */
809
810 #define LOW_HI_ORDER 0xF800F000
811 #define HI_LOW_ORDER 0xF000F800
812
813 static insn32
814 insert_thumb_branch (br_insn, rel_off)
815 insn32 br_insn;
816 int rel_off;
817 {
818 unsigned int low_bits;
819 unsigned int high_bits;
820
821 BFD_ASSERT ((rel_off & 1) != 1);
822
823 rel_off >>= 1; /* Half word aligned address. */
824 low_bits = rel_off & 0x000007FF; /* The bottom 11 bits. */
825 high_bits = (rel_off >> 11) & 0x000007FF; /* The top 11 bits. */
826
827 if ((br_insn & LOW_HI_ORDER) == LOW_HI_ORDER)
828 br_insn = LOW_HI_ORDER | (low_bits << 16) | high_bits;
829 else if ((br_insn & HI_LOW_ORDER) == HI_LOW_ORDER)
830 br_insn = HI_LOW_ORDER | (high_bits << 16) | low_bits;
831 else
832 /* FIXME: abort is probably not the right call. krk@cygnus.com */
833 abort (); /* error - not a valid branch instruction form. */
834
835 return br_insn;
836 }
837
838 /* Thumb code calling an ARM function. */
839
840 static int
841 elf32_thumb_to_arm_stub (info, name, input_bfd, output_bfd, input_section,
842 hit_data, sym_sec, offset, addend, val)
843 struct bfd_link_info * info;
844 const char * name;
845 bfd * input_bfd;
846 bfd * output_bfd;
847 asection * input_section;
848 bfd_byte * hit_data;
849 asection * sym_sec;
850 bfd_vma offset;
851 bfd_signed_vma addend;
852 bfd_vma val;
853 {
854 asection * s = 0;
855 bfd_vma my_offset;
856 unsigned long int tmp;
857 long int ret_offset;
858 struct elf_link_hash_entry * myh;
859 struct elf32_arm_link_hash_table * globals;
860
861 myh = find_thumb_glue (info, name, input_bfd);
862 if (myh == NULL)
863 return false;
864
865 globals = elf32_arm_hash_table (info);
866
867 BFD_ASSERT (globals != NULL);
868 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
869
870 my_offset = myh->root.u.def.value;
871
872 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
873 THUMB2ARM_GLUE_SECTION_NAME);
874
875 BFD_ASSERT (s != NULL);
876 BFD_ASSERT (s->contents != NULL);
877 BFD_ASSERT (s->output_section != NULL);
878
879 if ((my_offset & 0x01) == 0x01)
880 {
881 if (sym_sec != NULL
882 && sym_sec->owner != NULL
883 && !INTERWORK_FLAG (sym_sec->owner))
884 {
885 (*_bfd_error_handler)
886 (_("%s(%s): warning: interworking not enabled."),
887 bfd_archive_filename (sym_sec->owner), name);
888 (*_bfd_error_handler)
889 (_(" first occurrence: %s: thumb call to arm"),
890 bfd_archive_filename (input_bfd));
891
892 return false;
893 }
894
895 --my_offset;
896 myh->root.u.def.value = my_offset;
897
898 bfd_put_16 (output_bfd, (bfd_vma) t2a1_bx_pc_insn,
899 s->contents + my_offset);
900
901 bfd_put_16 (output_bfd, (bfd_vma) t2a2_noop_insn,
902 s->contents + my_offset + 2);
903
904 ret_offset =
905 /* Address of destination of the stub. */
906 ((bfd_signed_vma) val)
907 - ((bfd_signed_vma)
908 /* Offset from the start of the current section to the start of the stubs. */
909 (s->output_offset
910 /* Offset of the start of this stub from the start of the stubs. */
911 + my_offset
912 /* Address of the start of the current section. */
913 + s->output_section->vma)
914 /* The branch instruction is 4 bytes into the stub. */
915 + 4
916 /* ARM branches work from the pc of the instruction + 8. */
917 + 8);
918
919 bfd_put_32 (output_bfd,
920 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
921 s->contents + my_offset + 4);
922 }
923
924 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
925
926 /* Now go back and fix up the original BL insn to point
927 to here. */
928 ret_offset = (s->output_offset
929 + my_offset
930 - (input_section->output_offset
931 + offset + addend)
932 - 8);
933
934 tmp = bfd_get_32 (input_bfd, hit_data
935 - input_section->vma);
936
937 bfd_put_32 (output_bfd,
938 (bfd_vma) insert_thumb_branch (tmp, ret_offset),
939 hit_data - input_section->vma);
940
941 return true;
942 }
943
944 /* Arm code calling a Thumb function. */
945
946 static int
947 elf32_arm_to_thumb_stub (info, name, input_bfd, output_bfd, input_section,
948 hit_data, sym_sec, offset, addend, val)
949 struct bfd_link_info * info;
950 const char * name;
951 bfd * input_bfd;
952 bfd * output_bfd;
953 asection * input_section;
954 bfd_byte * hit_data;
955 asection * sym_sec;
956 bfd_vma offset;
957 bfd_signed_vma addend;
958 bfd_vma val;
959 {
960 unsigned long int tmp;
961 bfd_vma my_offset;
962 asection * s;
963 long int ret_offset;
964 struct elf_link_hash_entry * myh;
965 struct elf32_arm_link_hash_table * globals;
966
967 myh = find_arm_glue (info, name, input_bfd);
968 if (myh == NULL)
969 return false;
970
971 globals = elf32_arm_hash_table (info);
972
973 BFD_ASSERT (globals != NULL);
974 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
975
976 my_offset = myh->root.u.def.value;
977 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
978 ARM2THUMB_GLUE_SECTION_NAME);
979 BFD_ASSERT (s != NULL);
980 BFD_ASSERT (s->contents != NULL);
981 BFD_ASSERT (s->output_section != NULL);
982
983 if ((my_offset & 0x01) == 0x01)
984 {
985 if (sym_sec != NULL
986 && sym_sec->owner != NULL
987 && !INTERWORK_FLAG (sym_sec->owner))
988 {
989 (*_bfd_error_handler)
990 (_("%s(%s): warning: interworking not enabled."),
991 bfd_archive_filename (sym_sec->owner), name);
992 (*_bfd_error_handler)
993 (_(" first occurrence: %s: arm call to thumb"),
994 bfd_archive_filename (input_bfd));
995 }
996
997 --my_offset;
998 myh->root.u.def.value = my_offset;
999
1000 bfd_put_32 (output_bfd, (bfd_vma) a2t1_ldr_insn,
1001 s->contents + my_offset);
1002
1003 bfd_put_32 (output_bfd, (bfd_vma) a2t2_bx_r12_insn,
1004 s->contents + my_offset + 4);
1005
1006 /* It's a thumb address. Add the low order bit. */
1007 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
1008 s->contents + my_offset + 8);
1009 }
1010
1011 BFD_ASSERT (my_offset <= globals->arm_glue_size);
1012
1013 tmp = bfd_get_32 (input_bfd, hit_data);
1014 tmp = tmp & 0xFF000000;
1015
1016 /* Somehow these are both 4 too far, so subtract 8. */
1017 ret_offset = (s->output_offset
1018 + my_offset
1019 + s->output_section->vma
1020 - (input_section->output_offset
1021 + input_section->output_section->vma
1022 + offset + addend)
1023 - 8);
1024
1025 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
1026
1027 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
1028
1029 return true;
1030 }
1031
1032 /* Perform a relocation as part of a final link. */
1033
1034 static bfd_reloc_status_type
1035 elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
1036 input_section, contents, rel, value,
1037 info, sym_sec, sym_name, sym_flags, h)
1038 reloc_howto_type * howto;
1039 bfd * input_bfd;
1040 bfd * output_bfd;
1041 asection * input_section;
1042 bfd_byte * contents;
1043 Elf_Internal_Rela * rel;
1044 bfd_vma value;
1045 struct bfd_link_info * info;
1046 asection * sym_sec;
1047 const char * sym_name;
1048 int sym_flags;
1049 struct elf_link_hash_entry * h;
1050 {
1051 unsigned long r_type = howto->type;
1052 unsigned long r_symndx;
1053 bfd_byte * hit_data = contents + rel->r_offset;
1054 bfd * dynobj = NULL;
1055 Elf_Internal_Shdr * symtab_hdr;
1056 struct elf_link_hash_entry ** sym_hashes;
1057 bfd_vma * local_got_offsets;
1058 asection * sgot = NULL;
1059 asection * splt = NULL;
1060 asection * sreloc = NULL;
1061 bfd_vma addend;
1062 bfd_signed_vma signed_addend;
1063 struct elf32_arm_link_hash_table * globals;
1064
1065 /* If the start address has been set, then set the EF_ARM_HASENTRY
1066 flag. Setting this more than once is redundant, but the cost is
1067 not too high, and it keeps the code simple.
1068
1069 The test is done here, rather than somewhere else, because the
1070 start address is only set just before the final link commences.
1071
1072 Note - if the user deliberately sets a start address of 0, the
1073 flag will not be set. */
1074 if (bfd_get_start_address (output_bfd) != 0)
1075 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
1076
1077 globals = elf32_arm_hash_table (info);
1078
1079 dynobj = elf_hash_table (info)->dynobj;
1080 if (dynobj)
1081 {
1082 sgot = bfd_get_section_by_name (dynobj, ".got");
1083 splt = bfd_get_section_by_name (dynobj, ".plt");
1084 }
1085 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1086 sym_hashes = elf_sym_hashes (input_bfd);
1087 local_got_offsets = elf_local_got_offsets (input_bfd);
1088 r_symndx = ELF32_R_SYM (rel->r_info);
1089
1090 #ifdef USE_REL
1091 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
1092
1093 if (addend & ((howto->src_mask + 1) >> 1))
1094 {
1095 signed_addend = -1;
1096 signed_addend &= ~ howto->src_mask;
1097 signed_addend |= addend;
1098 }
1099 else
1100 signed_addend = addend;
1101 #else
1102 addend = signed_addend = rel->r_addend;
1103 #endif
1104
1105 switch (r_type)
1106 {
1107 case R_ARM_NONE:
1108 return bfd_reloc_ok;
1109
1110 case R_ARM_PC24:
1111 case R_ARM_ABS32:
1112 case R_ARM_REL32:
1113 #ifndef OLD_ARM_ABI
1114 case R_ARM_XPC25:
1115 #endif
1116 /* When generating a shared object, these relocations are copied
1117 into the output file to be resolved at run time. */
1118 if (info->shared
1119 && r_symndx != 0
1120 && (r_type != R_ARM_PC24
1121 || (h != NULL
1122 && h->dynindx != -1
1123 && (! info->symbolic
1124 || (h->elf_link_hash_flags
1125 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1126 {
1127 Elf_Internal_Rel outrel;
1128 boolean skip, relocate;
1129
1130 if (sreloc == NULL)
1131 {
1132 const char * name;
1133
1134 name = (bfd_elf_string_from_elf_section
1135 (input_bfd,
1136 elf_elfheader (input_bfd)->e_shstrndx,
1137 elf_section_data (input_section)->rel_hdr.sh_name));
1138 if (name == NULL)
1139 return bfd_reloc_notsupported;
1140
1141 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
1142 && strcmp (bfd_get_section_name (input_bfd,
1143 input_section),
1144 name + 4) == 0);
1145
1146 sreloc = bfd_get_section_by_name (dynobj, name);
1147 BFD_ASSERT (sreloc != NULL);
1148 }
1149
1150 skip = false;
1151
1152 if (elf_section_data (input_section)->stab_info == NULL)
1153 outrel.r_offset = rel->r_offset;
1154 else
1155 {
1156 bfd_vma off;
1157
1158 off = (_bfd_stab_section_offset
1159 (output_bfd, &elf_hash_table (info)->stab_info,
1160 input_section,
1161 & elf_section_data (input_section)->stab_info,
1162 rel->r_offset));
1163 if (off == (bfd_vma) -1)
1164 skip = true;
1165 outrel.r_offset = off;
1166 }
1167
1168 outrel.r_offset += (input_section->output_section->vma
1169 + input_section->output_offset);
1170
1171 if (skip)
1172 {
1173 memset (&outrel, 0, sizeof outrel);
1174 relocate = false;
1175 }
1176 else if (r_type == R_ARM_PC24)
1177 {
1178 BFD_ASSERT (h != NULL && h->dynindx != -1);
1179 if ((input_section->flags & SEC_ALLOC) != 0)
1180 relocate = false;
1181 else
1182 relocate = true;
1183 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_PC24);
1184 }
1185 else
1186 {
1187 if (h == NULL
1188 || ((info->symbolic || h->dynindx == -1)
1189 && (h->elf_link_hash_flags
1190 & ELF_LINK_HASH_DEF_REGULAR) != 0))
1191 {
1192 relocate = true;
1193 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1194 }
1195 else
1196 {
1197 BFD_ASSERT (h->dynindx != -1);
1198 if ((input_section->flags & SEC_ALLOC) != 0)
1199 relocate = false;
1200 else
1201 relocate = true;
1202 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_ABS32);
1203 }
1204 }
1205
1206 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1207 (((Elf32_External_Rel *)
1208 sreloc->contents)
1209 + sreloc->reloc_count));
1210 ++sreloc->reloc_count;
1211
1212 /* If this reloc is against an external symbol, we do not want to
1213 fiddle with the addend. Otherwise, we need to include the symbol
1214 value so that it becomes an addend for the dynamic reloc. */
1215 if (! relocate)
1216 return bfd_reloc_ok;
1217
1218 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1219 contents, rel->r_offset, value,
1220 (bfd_vma) 0);
1221 }
1222 else switch (r_type)
1223 {
1224 #ifndef OLD_ARM_ABI
1225 case R_ARM_XPC25: /* Arm BLX instruction. */
1226 #endif
1227 case R_ARM_PC24: /* Arm B/BL instruction */
1228 #ifndef OLD_ARM_ABI
1229 if (r_type == R_ARM_XPC25)
1230 {
1231 /* Check for Arm calling Arm function. */
1232 /* FIXME: Should we translate the instruction into a BL
1233 instruction instead ? */
1234 if (sym_flags != STT_ARM_TFUNC)
1235 (*_bfd_error_handler) (_("\
1236 %s: Warning: Arm BLX instruction targets Arm function '%s'."),
1237 bfd_archive_filename (input_bfd),
1238 h ? h->root.root.string : "(local)");
1239 }
1240 else
1241 #endif
1242 {
1243 /* Check for Arm calling Thumb function. */
1244 if (sym_flags == STT_ARM_TFUNC)
1245 {
1246 elf32_arm_to_thumb_stub (info, sym_name, input_bfd, output_bfd,
1247 input_section, hit_data, sym_sec, rel->r_offset,
1248 signed_addend, value);
1249 return bfd_reloc_ok;
1250 }
1251 }
1252
1253 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1254 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0)
1255 {
1256 /* The old way of doing things. Trearing the addend as a
1257 byte sized field and adding in the pipeline offset. */
1258 value -= (input_section->output_section->vma
1259 + input_section->output_offset);
1260 value -= rel->r_offset;
1261 value += addend;
1262
1263 if (! globals->no_pipeline_knowledge)
1264 value -= 8;
1265 }
1266 else
1267 {
1268 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
1269 where:
1270 S is the address of the symbol in the relocation.
1271 P is address of the instruction being relocated.
1272 A is the addend (extracted from the instruction) in bytes.
1273
1274 S is held in 'value'.
1275 P is the base address of the section containing the instruction
1276 plus the offset of the reloc into that section, ie:
1277 (input_section->output_section->vma +
1278 input_section->output_offset +
1279 rel->r_offset).
1280 A is the addend, converted into bytes, ie:
1281 (signed_addend * 4)
1282
1283 Note: None of these operations have knowledge of the pipeline
1284 size of the processor, thus it is up to the assembler to encode
1285 this information into the addend. */
1286 value -= (input_section->output_section->vma
1287 + input_section->output_offset);
1288 value -= rel->r_offset;
1289 value += (signed_addend << howto->size);
1290
1291 /* Previous versions of this code also used to add in the pipeline
1292 offset here. This is wrong because the linker is not supposed
1293 to know about such things, and one day it might change. In order
1294 to support old binaries that need the old behaviour however, so
1295 we attempt to detect which ABI was used to create the reloc. */
1296 if (! globals->no_pipeline_knowledge)
1297 {
1298 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form */
1299
1300 i_ehdrp = elf_elfheader (input_bfd);
1301
1302 if (i_ehdrp->e_ident[EI_OSABI] == 0)
1303 value -= 8;
1304 }
1305 }
1306
1307 signed_addend = value;
1308 signed_addend >>= howto->rightshift;
1309
1310 /* It is not an error for an undefined weak reference to be
1311 out of range. Any program that branches to such a symbol
1312 is going to crash anyway, so there is no point worrying
1313 about getting the destination exactly right. */
1314 if (! h || h->root.type != bfd_link_hash_undefweak)
1315 {
1316 /* Perform a signed range check. */
1317 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
1318 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
1319 return bfd_reloc_overflow;
1320 }
1321
1322 #ifndef OLD_ARM_ABI
1323 /* If necessary set the H bit in the BLX instruction. */
1324 if (r_type == R_ARM_XPC25 && ((value & 2) == 2))
1325 value = (signed_addend & howto->dst_mask)
1326 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask))
1327 | (1 << 24);
1328 else
1329 #endif
1330 value = (signed_addend & howto->dst_mask)
1331 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
1332 break;
1333
1334 case R_ARM_ABS32:
1335 value += addend;
1336 if (sym_flags == STT_ARM_TFUNC)
1337 value |= 1;
1338 break;
1339
1340 case R_ARM_REL32:
1341 value -= (input_section->output_section->vma
1342 + input_section->output_offset + rel->r_offset);
1343 value += addend;
1344 break;
1345 }
1346
1347 bfd_put_32 (input_bfd, value, hit_data);
1348 return bfd_reloc_ok;
1349
1350 case R_ARM_ABS8:
1351 value += addend;
1352 if ((long) value > 0x7f || (long) value < -0x80)
1353 return bfd_reloc_overflow;
1354
1355 bfd_put_8 (input_bfd, value, hit_data);
1356 return bfd_reloc_ok;
1357
1358 case R_ARM_ABS16:
1359 value += addend;
1360
1361 if ((long) value > 0x7fff || (long) value < -0x8000)
1362 return bfd_reloc_overflow;
1363
1364 bfd_put_16 (input_bfd, value, hit_data);
1365 return bfd_reloc_ok;
1366
1367 case R_ARM_ABS12:
1368 /* Support ldr and str instruction for the arm */
1369 /* Also thumb b (unconditional branch). ??? Really? */
1370 value += addend;
1371
1372 if ((long) value > 0x7ff || (long) value < -0x800)
1373 return bfd_reloc_overflow;
1374
1375 value |= (bfd_get_32 (input_bfd, hit_data) & 0xfffff000);
1376 bfd_put_32 (input_bfd, value, hit_data);
1377 return bfd_reloc_ok;
1378
1379 case R_ARM_THM_ABS5:
1380 /* Support ldr and str instructions for the thumb. */
1381 #ifdef USE_REL
1382 /* Need to refetch addend. */
1383 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
1384 /* ??? Need to determine shift amount from operand size. */
1385 addend >>= howto->rightshift;
1386 #endif
1387 value += addend;
1388
1389 /* ??? Isn't value unsigned? */
1390 if ((long) value > 0x1f || (long) value < -0x10)
1391 return bfd_reloc_overflow;
1392
1393 /* ??? Value needs to be properly shifted into place first. */
1394 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
1395 bfd_put_16 (input_bfd, value, hit_data);
1396 return bfd_reloc_ok;
1397
1398 #ifndef OLD_ARM_ABI
1399 case R_ARM_THM_XPC22:
1400 #endif
1401 case R_ARM_THM_PC22:
1402 /* Thumb BL (branch long instruction). */
1403 {
1404 bfd_vma relocation;
1405 boolean overflow = false;
1406 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
1407 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
1408 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
1409 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
1410 bfd_vma check;
1411 bfd_signed_vma signed_check;
1412
1413 #ifdef USE_REL
1414 /* Need to refetch the addend and squish the two 11 bit pieces
1415 together. */
1416 {
1417 bfd_vma upper = upper_insn & 0x7ff;
1418 bfd_vma lower = lower_insn & 0x7ff;
1419 upper = (upper ^ 0x400) - 0x400; /* Sign extend. */
1420 addend = (upper << 12) | (lower << 1);
1421 signed_addend = addend;
1422 }
1423 #endif
1424 #ifndef OLD_ARM_ABI
1425 if (r_type == R_ARM_THM_XPC22)
1426 {
1427 /* Check for Thumb to Thumb call. */
1428 /* FIXME: Should we translate the instruction into a BL
1429 instruction instead ? */
1430 if (sym_flags == STT_ARM_TFUNC)
1431 (*_bfd_error_handler) (_("\
1432 %s: Warning: Thumb BLX instruction targets thumb function '%s'."),
1433 bfd_archive_filename (input_bfd),
1434 h ? h->root.root.string : "(local)");
1435 }
1436 else
1437 #endif
1438 {
1439 /* If it is not a call to Thumb, assume call to Arm.
1440 If it is a call relative to a section name, then it is not a
1441 function call at all, but rather a long jump. */
1442 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION)
1443 {
1444 if (elf32_thumb_to_arm_stub
1445 (info, sym_name, input_bfd, output_bfd, input_section,
1446 hit_data, sym_sec, rel->r_offset, signed_addend, value))
1447 return bfd_reloc_ok;
1448 else
1449 return bfd_reloc_dangerous;
1450 }
1451 }
1452
1453 relocation = value + signed_addend;
1454
1455 relocation -= (input_section->output_section->vma
1456 + input_section->output_offset
1457 + rel->r_offset);
1458
1459 if (! globals->no_pipeline_knowledge)
1460 {
1461 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form. */
1462
1463 i_ehdrp = elf_elfheader (input_bfd);
1464
1465 /* Previous versions of this code also used to add in the pipline
1466 offset here. This is wrong because the linker is not supposed
1467 to know about such things, and one day it might change. In order
1468 to support old binaries that need the old behaviour however, so
1469 we attempt to detect which ABI was used to create the reloc. */
1470 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1471 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0
1472 || i_ehdrp->e_ident[EI_OSABI] == 0)
1473 relocation += 4;
1474 }
1475
1476 check = relocation >> howto->rightshift;
1477
1478 /* If this is a signed value, the rightshift just dropped
1479 leading 1 bits (assuming twos complement). */
1480 if ((bfd_signed_vma) relocation >= 0)
1481 signed_check = check;
1482 else
1483 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
1484
1485 /* Assumes two's complement. */
1486 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
1487 overflow = true;
1488
1489 /* Put RELOCATION back into the insn. */
1490 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 12) & 0x7ff);
1491 lower_insn = (lower_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 1) & 0x7ff);
1492
1493 #ifndef OLD_ARM_ABI
1494 if (r_type == R_ARM_THM_XPC22
1495 && ((lower_insn & 0x1800) == 0x0800))
1496 /* Remove bit zero of the adjusted offset. Bit zero can only be
1497 set if the upper insn is at a half-word boundary, since the
1498 destination address, an ARM instruction, must always be on a
1499 word boundary. The semantics of the BLX (1) instruction, however,
1500 are that bit zero in the offset must always be zero, and the
1501 corresponding bit one in the target address will be set from bit
1502 one of the source address. */
1503 lower_insn &= ~1;
1504 #endif
1505 /* Put the relocated value back in the object file: */
1506 bfd_put_16 (input_bfd, upper_insn, hit_data);
1507 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
1508
1509 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
1510 }
1511 break;
1512
1513 case R_ARM_GNU_VTINHERIT:
1514 case R_ARM_GNU_VTENTRY:
1515 return bfd_reloc_ok;
1516
1517 case R_ARM_COPY:
1518 return bfd_reloc_notsupported;
1519
1520 case R_ARM_GLOB_DAT:
1521 return bfd_reloc_notsupported;
1522
1523 case R_ARM_JUMP_SLOT:
1524 return bfd_reloc_notsupported;
1525
1526 case R_ARM_RELATIVE:
1527 return bfd_reloc_notsupported;
1528
1529 case R_ARM_GOTOFF:
1530 /* Relocation is relative to the start of the
1531 global offset table. */
1532
1533 BFD_ASSERT (sgot != NULL);
1534 if (sgot == NULL)
1535 return bfd_reloc_notsupported;
1536
1537 /* Note that sgot->output_offset is not involved in this
1538 calculation. We always want the start of .got. If we
1539 define _GLOBAL_OFFSET_TABLE in a different way, as is
1540 permitted by the ABI, we might have to change this
1541 calculation. */
1542 value -= sgot->output_section->vma;
1543 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1544 contents, rel->r_offset, value,
1545 (bfd_vma) 0);
1546
1547 case R_ARM_GOTPC:
1548 /* Use global offset table as symbol value. */
1549 BFD_ASSERT (sgot != NULL);
1550
1551 if (sgot == NULL)
1552 return bfd_reloc_notsupported;
1553
1554 value = sgot->output_section->vma;
1555 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1556 contents, rel->r_offset, value,
1557 (bfd_vma) 0);
1558
1559 case R_ARM_GOT32:
1560 /* Relocation is to the entry for this symbol in the
1561 global offset table. */
1562 if (sgot == NULL)
1563 return bfd_reloc_notsupported;
1564
1565 if (h != NULL)
1566 {
1567 bfd_vma off;
1568
1569 off = h->got.offset;
1570 BFD_ASSERT (off != (bfd_vma) -1);
1571
1572 if (!elf_hash_table (info)->dynamic_sections_created ||
1573 (info->shared && (info->symbolic || h->dynindx == -1)
1574 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1575 {
1576 /* This is actually a static link, or it is a -Bsymbolic link
1577 and the symbol is defined locally. We must initialize this
1578 entry in the global offset table. Since the offset must
1579 always be a multiple of 4, we use the least significant bit
1580 to record whether we have initialized it already.
1581
1582 When doing a dynamic link, we create a .rel.got relocation
1583 entry to initialize the value. This is done in the
1584 finish_dynamic_symbol routine. */
1585 if ((off & 1) != 0)
1586 off &= ~1;
1587 else
1588 {
1589 bfd_put_32 (output_bfd, value, sgot->contents + off);
1590 h->got.offset |= 1;
1591 }
1592 }
1593
1594 value = sgot->output_offset + off;
1595 }
1596 else
1597 {
1598 bfd_vma off;
1599
1600 BFD_ASSERT (local_got_offsets != NULL &&
1601 local_got_offsets[r_symndx] != (bfd_vma) -1);
1602
1603 off = local_got_offsets[r_symndx];
1604
1605 /* The offset must always be a multiple of 4. We use the
1606 least significant bit to record whether we have already
1607 generated the necessary reloc. */
1608 if ((off & 1) != 0)
1609 off &= ~1;
1610 else
1611 {
1612 bfd_put_32 (output_bfd, value, sgot->contents + off);
1613
1614 if (info->shared)
1615 {
1616 asection * srelgot;
1617 Elf_Internal_Rel outrel;
1618
1619 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
1620 BFD_ASSERT (srelgot != NULL);
1621
1622 outrel.r_offset = (sgot->output_section->vma
1623 + sgot->output_offset
1624 + off);
1625 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1626 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1627 (((Elf32_External_Rel *)
1628 srelgot->contents)
1629 + srelgot->reloc_count));
1630 ++srelgot->reloc_count;
1631 }
1632
1633 local_got_offsets[r_symndx] |= 1;
1634 }
1635
1636 value = sgot->output_offset + off;
1637 }
1638
1639 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1640 contents, rel->r_offset, value,
1641 (bfd_vma) 0);
1642
1643 case R_ARM_PLT32:
1644 /* Relocation is to the entry for this symbol in the
1645 procedure linkage table. */
1646
1647 /* Resolve a PLT32 reloc against a local symbol directly,
1648 without using the procedure linkage table. */
1649 if (h == NULL)
1650 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1651 contents, rel->r_offset, value,
1652 (bfd_vma) 0);
1653
1654 if (h->plt.offset == (bfd_vma) -1)
1655 /* We didn't make a PLT entry for this symbol. This
1656 happens when statically linking PIC code, or when
1657 using -Bsymbolic. */
1658 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1659 contents, rel->r_offset, value,
1660 (bfd_vma) 0);
1661
1662 BFD_ASSERT(splt != NULL);
1663 if (splt == NULL)
1664 return bfd_reloc_notsupported;
1665
1666 value = (splt->output_section->vma
1667 + splt->output_offset
1668 + h->plt.offset);
1669 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1670 contents, rel->r_offset, value,
1671 (bfd_vma) 0);
1672
1673 case R_ARM_SBREL32:
1674 return bfd_reloc_notsupported;
1675
1676 case R_ARM_AMP_VCALL9:
1677 return bfd_reloc_notsupported;
1678
1679 case R_ARM_RSBREL32:
1680 return bfd_reloc_notsupported;
1681
1682 case R_ARM_THM_RPC22:
1683 return bfd_reloc_notsupported;
1684
1685 case R_ARM_RREL32:
1686 return bfd_reloc_notsupported;
1687
1688 case R_ARM_RABS32:
1689 return bfd_reloc_notsupported;
1690
1691 case R_ARM_RPC24:
1692 return bfd_reloc_notsupported;
1693
1694 case R_ARM_RBASE:
1695 return bfd_reloc_notsupported;
1696
1697 default:
1698 return bfd_reloc_notsupported;
1699 }
1700 }
1701
1702 #ifdef USE_REL
1703 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
1704 static void
1705 arm_add_to_rel (abfd, address, howto, increment)
1706 bfd * abfd;
1707 bfd_byte * address;
1708 reloc_howto_type * howto;
1709 bfd_signed_vma increment;
1710 {
1711 bfd_signed_vma addend;
1712
1713 if (howto->type == R_ARM_THM_PC22)
1714 {
1715 int upper_insn, lower_insn;
1716 int upper, lower;
1717
1718 upper_insn = bfd_get_16 (abfd, address);
1719 lower_insn = bfd_get_16 (abfd, address + 2);
1720 upper = upper_insn & 0x7ff;
1721 lower = lower_insn & 0x7ff;
1722
1723 addend = (upper << 12) | (lower << 1);
1724 addend += increment;
1725 addend >>= 1;
1726
1727 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
1728 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
1729
1730 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
1731 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
1732 }
1733 else
1734 {
1735 bfd_vma contents;
1736
1737 contents = bfd_get_32 (abfd, address);
1738
1739 /* Get the (signed) value from the instruction. */
1740 addend = contents & howto->src_mask;
1741 if (addend & ((howto->src_mask + 1) >> 1))
1742 {
1743 bfd_signed_vma mask;
1744
1745 mask = -1;
1746 mask &= ~ howto->src_mask;
1747 addend |= mask;
1748 }
1749
1750 /* Add in the increment, (which is a byte value). */
1751 switch (howto->type)
1752 {
1753 default:
1754 addend += increment;
1755 break;
1756
1757 case R_ARM_PC24:
1758 addend <<= howto->size;
1759 addend += increment;
1760
1761 /* Should we check for overflow here ? */
1762
1763 /* Drop any undesired bits. */
1764 addend >>= howto->rightshift;
1765 break;
1766 }
1767
1768 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
1769
1770 bfd_put_32 (abfd, contents, address);
1771 }
1772 }
1773 #endif /* USE_REL */
1774
1775 /* Relocate an ARM ELF section. */
1776 static boolean
1777 elf32_arm_relocate_section (output_bfd, info, input_bfd, input_section,
1778 contents, relocs, local_syms, local_sections)
1779 bfd * output_bfd;
1780 struct bfd_link_info * info;
1781 bfd * input_bfd;
1782 asection * input_section;
1783 bfd_byte * contents;
1784 Elf_Internal_Rela * relocs;
1785 Elf_Internal_Sym * local_syms;
1786 asection ** local_sections;
1787 {
1788 Elf_Internal_Shdr * symtab_hdr;
1789 struct elf_link_hash_entry ** sym_hashes;
1790 Elf_Internal_Rela * rel;
1791 Elf_Internal_Rela * relend;
1792 const char * name;
1793
1794 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1795 sym_hashes = elf_sym_hashes (input_bfd);
1796
1797 rel = relocs;
1798 relend = relocs + input_section->reloc_count;
1799 for (; rel < relend; rel++)
1800 {
1801 int r_type;
1802 reloc_howto_type * howto;
1803 unsigned long r_symndx;
1804 Elf_Internal_Sym * sym;
1805 asection * sec;
1806 struct elf_link_hash_entry * h;
1807 bfd_vma relocation;
1808 bfd_reloc_status_type r;
1809 arelent bfd_reloc;
1810
1811 r_symndx = ELF32_R_SYM (rel->r_info);
1812 r_type = ELF32_R_TYPE (rel->r_info);
1813
1814 if ( r_type == R_ARM_GNU_VTENTRY
1815 || r_type == R_ARM_GNU_VTINHERIT)
1816 continue;
1817
1818 #ifdef USE_REL
1819 elf32_arm_info_to_howto (input_bfd, & bfd_reloc,
1820 (Elf_Internal_Rel *) rel);
1821 #else
1822 elf32_arm_info_to_howto (input_bfd, & bfd_reloc, rel);
1823 #endif
1824 howto = bfd_reloc.howto;
1825
1826 if (info->relocateable)
1827 {
1828 /* This is a relocateable link. We don't have to change
1829 anything, unless the reloc is against a section symbol,
1830 in which case we have to adjust according to where the
1831 section symbol winds up in the output section. */
1832 if (r_symndx < symtab_hdr->sh_info)
1833 {
1834 sym = local_syms + r_symndx;
1835 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1836 {
1837 sec = local_sections[r_symndx];
1838 #ifdef USE_REL
1839 arm_add_to_rel (input_bfd, contents + rel->r_offset,
1840 howto,
1841 (bfd_signed_vma) (sec->output_offset
1842 + sym->st_value));
1843 #else
1844 rel->r_addend += (sec->output_offset + sym->st_value);
1845 #endif
1846 }
1847 }
1848
1849 continue;
1850 }
1851
1852 /* This is a final link. */
1853 h = NULL;
1854 sym = NULL;
1855 sec = NULL;
1856
1857 if (r_symndx < symtab_hdr->sh_info)
1858 {
1859 sym = local_syms + r_symndx;
1860 sec = local_sections[r_symndx];
1861 #ifdef USE_REL
1862 relocation = (sec->output_section->vma
1863 + sec->output_offset
1864 + sym->st_value);
1865 if ((sec->flags & SEC_MERGE)
1866 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1867 {
1868 asection *msec;
1869 bfd_vma addend, value;
1870
1871 if (howto->rightshift)
1872 {
1873 (*_bfd_error_handler)
1874 (_("%s(%s+0x%lx): %s relocation against SEC_MERGE section"),
1875 bfd_archive_filename (input_bfd),
1876 bfd_get_section_name (input_bfd, input_section),
1877 (long) rel->r_offset, howto->name);
1878 return false;
1879 }
1880
1881 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
1882
1883 /* Get the (signed) value from the instruction. */
1884 addend = value & howto->src_mask;
1885 if (addend & ((howto->src_mask + 1) >> 1))
1886 {
1887 bfd_signed_vma mask;
1888
1889 mask = -1;
1890 mask &= ~ howto->src_mask;
1891 addend |= mask;
1892 }
1893 msec = sec;
1894 addend =
1895 _bfd_merged_section_offset (output_bfd, &msec,
1896 elf_section_data (sec)->merge_info,
1897 sym->st_value + addend, (bfd_vma) 0)
1898 - relocation;
1899 addend += msec->output_section->vma + msec->output_offset;
1900 value = (value & ~ howto->dst_mask) | (addend & howto->dst_mask);
1901 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
1902 }
1903 #else
1904 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sec, rel);
1905 #endif
1906 }
1907 else
1908 {
1909 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1910
1911 while ( h->root.type == bfd_link_hash_indirect
1912 || h->root.type == bfd_link_hash_warning)
1913 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1914
1915 if ( h->root.type == bfd_link_hash_defined
1916 || h->root.type == bfd_link_hash_defweak)
1917 {
1918 int relocation_needed = 1;
1919
1920 sec = h->root.u.def.section;
1921
1922 /* In these cases, we don't need the relocation value.
1923 We check specially because in some obscure cases
1924 sec->output_section will be NULL. */
1925 switch (r_type)
1926 {
1927 case R_ARM_PC24:
1928 case R_ARM_ABS32:
1929 case R_ARM_THM_PC22:
1930 if (info->shared
1931 && (
1932 (!info->symbolic && h->dynindx != -1)
1933 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1934 )
1935 && ((input_section->flags & SEC_ALLOC) != 0
1936 /* DWARF will emit R_ARM_ABS32 relocations in its
1937 sections against symbols defined externally
1938 in shared libraries. We can't do anything
1939 with them here. */
1940 || ((input_section->flags & SEC_DEBUGGING) != 0
1941 && (h->elf_link_hash_flags
1942 & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
1943 )
1944 relocation_needed = 0;
1945 break;
1946
1947 case R_ARM_GOTPC:
1948 relocation_needed = 0;
1949 break;
1950
1951 case R_ARM_GOT32:
1952 if (elf_hash_table(info)->dynamic_sections_created
1953 && (!info->shared
1954 || (!info->symbolic && h->dynindx != -1)
1955 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1956 )
1957 )
1958 relocation_needed = 0;
1959 break;
1960
1961 case R_ARM_PLT32:
1962 if (h->plt.offset != (bfd_vma)-1)
1963 relocation_needed = 0;
1964 break;
1965
1966 default:
1967 if (sec->output_section == NULL)
1968 {
1969 (*_bfd_error_handler)
1970 (_("%s: warning: unresolvable relocation %d against symbol `%s' from %s section"),
1971 bfd_archive_filename (input_bfd),
1972 r_type,
1973 h->root.root.string,
1974 bfd_get_section_name (input_bfd, input_section));
1975 relocation_needed = 0;
1976 }
1977 }
1978
1979 if (relocation_needed)
1980 relocation = h->root.u.def.value
1981 + sec->output_section->vma
1982 + sec->output_offset;
1983 else
1984 relocation = 0;
1985 }
1986 else if (h->root.type == bfd_link_hash_undefweak)
1987 relocation = 0;
1988 else if (info->shared && !info->symbolic
1989 && !info->no_undefined
1990 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1991 relocation = 0;
1992 else
1993 {
1994 if (!((*info->callbacks->undefined_symbol)
1995 (info, h->root.root.string, input_bfd,
1996 input_section, rel->r_offset,
1997 (!info->shared || info->no_undefined
1998 || ELF_ST_VISIBILITY (h->other)))))
1999 return false;
2000 relocation = 0;
2001 }
2002 }
2003
2004 if (h != NULL)
2005 name = h->root.root.string;
2006 else
2007 {
2008 name = (bfd_elf_string_from_elf_section
2009 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2010 if (name == NULL || *name == '\0')
2011 name = bfd_section_name (input_bfd, sec);
2012 }
2013
2014 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
2015 input_section, contents, rel,
2016 relocation, info, sec, name,
2017 (h ? ELF_ST_TYPE (h->type) :
2018 ELF_ST_TYPE (sym->st_info)), h);
2019
2020 if (r != bfd_reloc_ok)
2021 {
2022 const char * msg = (const char *) 0;
2023
2024 switch (r)
2025 {
2026 case bfd_reloc_overflow:
2027 /* If the overflowing reloc was to an undefined symbol,
2028 we have already printed one error message and there
2029 is no point complaining again. */
2030 if ((! h ||
2031 h->root.type != bfd_link_hash_undefined)
2032 && (!((*info->callbacks->reloc_overflow)
2033 (info, name, howto->name, (bfd_vma) 0,
2034 input_bfd, input_section, rel->r_offset))))
2035 return false;
2036 break;
2037
2038 case bfd_reloc_undefined:
2039 if (!((*info->callbacks->undefined_symbol)
2040 (info, name, input_bfd, input_section,
2041 rel->r_offset, true)))
2042 return false;
2043 break;
2044
2045 case bfd_reloc_outofrange:
2046 msg = _("internal error: out of range error");
2047 goto common_error;
2048
2049 case bfd_reloc_notsupported:
2050 msg = _("internal error: unsupported relocation error");
2051 goto common_error;
2052
2053 case bfd_reloc_dangerous:
2054 msg = _("internal error: dangerous error");
2055 goto common_error;
2056
2057 default:
2058 msg = _("internal error: unknown error");
2059 /* fall through */
2060
2061 common_error:
2062 if (!((*info->callbacks->warning)
2063 (info, msg, name, input_bfd, input_section,
2064 rel->r_offset)))
2065 return false;
2066 break;
2067 }
2068 }
2069 }
2070
2071 return true;
2072 }
2073
2074 /* Function to keep ARM specific flags in the ELF header. */
2075 static boolean
2076 elf32_arm_set_private_flags (abfd, flags)
2077 bfd *abfd;
2078 flagword flags;
2079 {
2080 if (elf_flags_init (abfd)
2081 && elf_elfheader (abfd)->e_flags != flags)
2082 {
2083 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
2084 {
2085 if (flags & EF_ARM_INTERWORK)
2086 (*_bfd_error_handler) (_("\
2087 Warning: Not setting interwork flag of %s since it has already been specified as non-interworking"),
2088 bfd_archive_filename (abfd));
2089 else
2090 _bfd_error_handler (_("\
2091 Warning: Clearing the interwork flag of %s due to outside request"),
2092 bfd_archive_filename (abfd));
2093 }
2094 }
2095 else
2096 {
2097 elf_elfheader (abfd)->e_flags = flags;
2098 elf_flags_init (abfd) = true;
2099 }
2100
2101 return true;
2102 }
2103
2104 /* Copy backend specific data from one object module to another. */
2105
2106 static boolean
2107 elf32_arm_copy_private_bfd_data (ibfd, obfd)
2108 bfd *ibfd;
2109 bfd *obfd;
2110 {
2111 flagword in_flags;
2112 flagword out_flags;
2113
2114 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2115 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2116 return true;
2117
2118 in_flags = elf_elfheader (ibfd)->e_flags;
2119 out_flags = elf_elfheader (obfd)->e_flags;
2120
2121 if (elf_flags_init (obfd)
2122 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
2123 && in_flags != out_flags)
2124 {
2125 /* Cannot mix APCS26 and APCS32 code. */
2126 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2127 return false;
2128
2129 /* Cannot mix float APCS and non-float APCS code. */
2130 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2131 return false;
2132
2133 /* If the src and dest have different interworking flags
2134 then turn off the interworking bit. */
2135 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2136 {
2137 if (out_flags & EF_ARM_INTERWORK)
2138 _bfd_error_handler (_("\
2139 Warning: Clearing the interwork flag in %s because non-interworking code in %s has been linked with it"),
2140 bfd_get_filename (obfd),
2141 bfd_archive_filename (ibfd));
2142
2143 in_flags &= ~EF_ARM_INTERWORK;
2144 }
2145
2146 /* Likewise for PIC, though don't warn for this case. */
2147 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
2148 in_flags &= ~EF_ARM_PIC;
2149 }
2150
2151 elf_elfheader (obfd)->e_flags = in_flags;
2152 elf_flags_init (obfd) = true;
2153
2154 return true;
2155 }
2156
2157 /* Merge backend specific data from an object file to the output
2158 object file when linking. */
2159
2160 static boolean
2161 elf32_arm_merge_private_bfd_data (ibfd, obfd)
2162 bfd * ibfd;
2163 bfd * obfd;
2164 {
2165 flagword out_flags;
2166 flagword in_flags;
2167 boolean flags_compatible = true;
2168 boolean null_input_bfd = true;
2169 asection *sec;
2170
2171 /* Check if we have the same endianess. */
2172 if (_bfd_generic_verify_endian_match (ibfd, obfd) == false)
2173 return false;
2174
2175 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2176 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2177 return true;
2178
2179 /* The input BFD must have had its flags initialised. */
2180 /* The following seems bogus to me -- The flags are initialized in
2181 the assembler but I don't think an elf_flags_init field is
2182 written into the object. */
2183 /* BFD_ASSERT (elf_flags_init (ibfd)); */
2184
2185 in_flags = elf_elfheader (ibfd)->e_flags;
2186 out_flags = elf_elfheader (obfd)->e_flags;
2187
2188 if (!elf_flags_init (obfd))
2189 {
2190 /* If the input is the default architecture and had the default
2191 flags then do not bother setting the flags for the output
2192 architecture, instead allow future merges to do this. If no
2193 future merges ever set these flags then they will retain their
2194 uninitialised values, which surprise surprise, correspond
2195 to the default values. */
2196 if (bfd_get_arch_info (ibfd)->the_default
2197 && elf_elfheader (ibfd)->e_flags == 0)
2198 return true;
2199
2200 elf_flags_init (obfd) = true;
2201 elf_elfheader (obfd)->e_flags = in_flags;
2202
2203 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2204 && bfd_get_arch_info (obfd)->the_default)
2205 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
2206
2207 return true;
2208 }
2209
2210 /* Identical flags must be compatible. */
2211 if (in_flags == out_flags)
2212 return true;
2213
2214 /* Check to see if the input BFD actually contains any sections.
2215 If not, its flags may not have been initialised either, but it cannot
2216 actually cause any incompatibility. */
2217 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2218 {
2219 /* Ignore synthetic glue sections. */
2220 if (strcmp (sec->name, ".glue_7")
2221 && strcmp (sec->name, ".glue_7t"))
2222 {
2223 null_input_bfd = false;
2224 break;
2225 }
2226 }
2227 if (null_input_bfd)
2228 return true;
2229
2230 /* Complain about various flag mismatches. */
2231 if (EF_ARM_EABI_VERSION (in_flags) != EF_ARM_EABI_VERSION (out_flags))
2232 {
2233 _bfd_error_handler (_("\
2234 Error: %s compiled for EABI version %d, whereas %s is compiled for version %d"),
2235 bfd_archive_filename (ibfd),
2236 (in_flags & EF_ARM_EABIMASK) >> 24,
2237 bfd_get_filename (obfd),
2238 (out_flags & EF_ARM_EABIMASK) >> 24);
2239 return false;
2240 }
2241
2242 /* Not sure what needs to be checked for EABI versions >= 1. */
2243 if (EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
2244 {
2245 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2246 {
2247 _bfd_error_handler (_("\
2248 Error: %s compiled for APCS-%d, whereas %s is compiled for APCS-%d"),
2249 bfd_archive_filename (ibfd),
2250 in_flags & EF_ARM_APCS_26 ? 26 : 32,
2251 bfd_get_filename (obfd),
2252 out_flags & EF_ARM_APCS_26 ? 26 : 32);
2253 flags_compatible = false;
2254 }
2255
2256 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2257 {
2258 char *s1 = in_flags & EF_ARM_APCS_FLOAT ? _("float") : _("integer");
2259 char *s2 = out_flags & EF_ARM_APCS_FLOAT ? _("float") : _("integer");
2260
2261 _bfd_error_handler (_("\
2262 Error: %s passes floats in %s registers, whereas %s passes them in %s registers"),
2263 bfd_archive_filename (ibfd), s1,
2264 bfd_get_filename (obfd), s2);
2265 flags_compatible = false;
2266 }
2267
2268 #ifdef EF_ARM_SOFT_FLOAT
2269 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
2270 {
2271 char *s1 = in_flags & EF_ARM_SOFT_FLOAT ? _("soft") : _("hard");
2272 char *s2 = out_flags & EF_ARM_SOFT_FLOAT ? _("soft") : _("hard");
2273
2274 _bfd_error_handler (_ ("\
2275 Error: %s uses %s floating point, whereas %s uses %s floating point"),
2276 bfd_archive_filename (ibfd), s1,
2277 bfd_get_filename (obfd), s2);
2278 flags_compatible = false;
2279 }
2280 #endif
2281
2282 /* Interworking mismatch is only a warning. */
2283 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2284 {
2285 if (in_flags & EF_ARM_INTERWORK)
2286 {
2287 _bfd_error_handler (_("\
2288 Warning: %s supports interworking, whereas %s does not"),
2289 bfd_archive_filename (ibfd),
2290 bfd_get_filename (obfd));
2291 }
2292 else
2293 {
2294 _bfd_error_handler (_("\
2295 Warning: %s does not support interworking, whereas %s does"),
2296 bfd_archive_filename (ibfd),
2297 bfd_get_filename (obfd));
2298 }
2299 }
2300 }
2301
2302 return flags_compatible;
2303 }
2304
2305 /* Display the flags field. */
2306
2307 static boolean
2308 elf32_arm_print_private_bfd_data (abfd, ptr)
2309 bfd *abfd;
2310 PTR ptr;
2311 {
2312 FILE * file = (FILE *) ptr;
2313 unsigned long flags;
2314
2315 BFD_ASSERT (abfd != NULL && ptr != NULL);
2316
2317 /* Print normal ELF private data. */
2318 _bfd_elf_print_private_bfd_data (abfd, ptr);
2319
2320 flags = elf_elfheader (abfd)->e_flags;
2321 /* Ignore init flag - it may not be set, despite the flags field
2322 containing valid data. */
2323
2324 /* xgettext:c-format */
2325 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
2326
2327 switch (EF_ARM_EABI_VERSION (flags))
2328 {
2329 case EF_ARM_EABI_UNKNOWN:
2330 /* The following flag bits are GNU extenstions and not part of the
2331 official ARM ELF extended ABI. Hence they are only decoded if
2332 the EABI version is not set. */
2333 if (flags & EF_ARM_INTERWORK)
2334 fprintf (file, _(" [interworking enabled]"));
2335
2336 if (flags & EF_ARM_APCS_26)
2337 fprintf (file, _(" [APCS-26]"));
2338 else
2339 fprintf (file, _(" [APCS-32]"));
2340
2341 if (flags & EF_ARM_APCS_FLOAT)
2342 fprintf (file, _(" [floats passed in float registers]"));
2343
2344 if (flags & EF_ARM_PIC)
2345 fprintf (file, _(" [position independent]"));
2346
2347 if (flags & EF_ARM_NEW_ABI)
2348 fprintf (file, _(" [new ABI]"));
2349
2350 if (flags & EF_ARM_OLD_ABI)
2351 fprintf (file, _(" [old ABI]"));
2352
2353 if (flags & EF_ARM_SOFT_FLOAT)
2354 fprintf (file, _(" [software FP]"));
2355
2356 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT | EF_ARM_PIC
2357 | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI | EF_ARM_SOFT_FLOAT);
2358 break;
2359
2360 case EF_ARM_EABI_VER1:
2361 fprintf (file, _(" [Version1 EABI]"));
2362
2363 if (flags & EF_ARM_SYMSARESORTED)
2364 fprintf (file, _(" [sorted symbol table]"));
2365 else
2366 fprintf (file, _(" [unsorted symbol table]"));
2367
2368 flags &= ~ EF_ARM_SYMSARESORTED;
2369 break;
2370
2371 case EF_ARM_EABI_VER2:
2372 fprintf (file, _(" [Version2 EABI]"));
2373
2374 if (flags & EF_ARM_SYMSARESORTED)
2375 fprintf (file, _(" [sorted symbol table]"));
2376 else
2377 fprintf (file, _(" [unsorted symbol table]"));
2378
2379 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
2380 fprintf (file, _(" [dynamic symbols use segment index]"));
2381
2382 if (flags & EF_ARM_MAPSYMSFIRST)
2383 fprintf (file, _(" [mapping symbols precede others]"));
2384
2385 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
2386 | EF_ARM_MAPSYMSFIRST);
2387 break;
2388
2389 default:
2390 fprintf (file, _(" <EABI version unrecognised>"));
2391 break;
2392 }
2393
2394 flags &= ~ EF_ARM_EABIMASK;
2395
2396 if (flags & EF_ARM_RELEXEC)
2397 fprintf (file, _(" [relocatable executable]"));
2398
2399 if (flags & EF_ARM_HASENTRY)
2400 fprintf (file, _(" [has entry point]"));
2401
2402 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
2403
2404 if (flags)
2405 fprintf (file, _("<Unrecognised flag bits set>"));
2406
2407 fputc ('\n', file);
2408
2409 return true;
2410 }
2411
2412 static int
2413 elf32_arm_get_symbol_type (elf_sym, type)
2414 Elf_Internal_Sym * elf_sym;
2415 int type;
2416 {
2417 switch (ELF_ST_TYPE (elf_sym->st_info))
2418 {
2419 case STT_ARM_TFUNC:
2420 return ELF_ST_TYPE (elf_sym->st_info);
2421
2422 case STT_ARM_16BIT:
2423 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
2424 This allows us to distinguish between data used by Thumb instructions
2425 and non-data (which is probably code) inside Thumb regions of an
2426 executable. */
2427 if (type != STT_OBJECT)
2428 return ELF_ST_TYPE (elf_sym->st_info);
2429 break;
2430
2431 default:
2432 break;
2433 }
2434
2435 return type;
2436 }
2437
2438 static asection *
2439 elf32_arm_gc_mark_hook (abfd, info, rel, h, sym)
2440 bfd *abfd;
2441 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2442 Elf_Internal_Rela *rel;
2443 struct elf_link_hash_entry *h;
2444 Elf_Internal_Sym *sym;
2445 {
2446 if (h != NULL)
2447 {
2448 switch (ELF32_R_TYPE (rel->r_info))
2449 {
2450 case R_ARM_GNU_VTINHERIT:
2451 case R_ARM_GNU_VTENTRY:
2452 break;
2453
2454 default:
2455 switch (h->root.type)
2456 {
2457 case bfd_link_hash_defined:
2458 case bfd_link_hash_defweak:
2459 return h->root.u.def.section;
2460
2461 case bfd_link_hash_common:
2462 return h->root.u.c.p->section;
2463
2464 default:
2465 break;
2466 }
2467 }
2468 }
2469 else
2470 {
2471 if (!(elf_bad_symtab (abfd)
2472 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
2473 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
2474 && sym->st_shndx != SHN_COMMON))
2475 {
2476 return bfd_section_from_elf_index (abfd, sym->st_shndx);
2477 }
2478 }
2479 return NULL;
2480 }
2481
2482 /* Update the got entry reference counts for the section being removed. */
2483
2484 static boolean
2485 elf32_arm_gc_sweep_hook (abfd, info, sec, relocs)
2486 bfd *abfd ATTRIBUTE_UNUSED;
2487 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2488 asection *sec ATTRIBUTE_UNUSED;
2489 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
2490 {
2491 /* We don't support garbage collection of GOT and PLT relocs yet. */
2492 return true;
2493 }
2494
2495 /* Look through the relocs for a section during the first phase. */
2496
2497 static boolean
2498 elf32_arm_check_relocs (abfd, info, sec, relocs)
2499 bfd * abfd;
2500 struct bfd_link_info * info;
2501 asection * sec;
2502 const Elf_Internal_Rela * relocs;
2503 {
2504 Elf_Internal_Shdr * symtab_hdr;
2505 struct elf_link_hash_entry ** sym_hashes;
2506 struct elf_link_hash_entry ** sym_hashes_end;
2507 const Elf_Internal_Rela * rel;
2508 const Elf_Internal_Rela * rel_end;
2509 bfd * dynobj;
2510 asection * sgot, *srelgot, *sreloc;
2511 bfd_vma * local_got_offsets;
2512
2513 if (info->relocateable)
2514 return true;
2515
2516 sgot = srelgot = sreloc = NULL;
2517
2518 dynobj = elf_hash_table (info)->dynobj;
2519 local_got_offsets = elf_local_got_offsets (abfd);
2520
2521 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2522 sym_hashes = elf_sym_hashes (abfd);
2523 sym_hashes_end = sym_hashes
2524 + symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
2525
2526 if (!elf_bad_symtab (abfd))
2527 sym_hashes_end -= symtab_hdr->sh_info;
2528
2529 rel_end = relocs + sec->reloc_count;
2530 for (rel = relocs; rel < rel_end; rel++)
2531 {
2532 struct elf_link_hash_entry *h;
2533 unsigned long r_symndx;
2534
2535 r_symndx = ELF32_R_SYM (rel->r_info);
2536 if (r_symndx < symtab_hdr->sh_info)
2537 h = NULL;
2538 else
2539 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2540
2541 /* Some relocs require a global offset table. */
2542 if (dynobj == NULL)
2543 {
2544 switch (ELF32_R_TYPE (rel->r_info))
2545 {
2546 case R_ARM_GOT32:
2547 case R_ARM_GOTOFF:
2548 case R_ARM_GOTPC:
2549 elf_hash_table (info)->dynobj = dynobj = abfd;
2550 if (! _bfd_elf_create_got_section (dynobj, info))
2551 return false;
2552 break;
2553
2554 default:
2555 break;
2556 }
2557 }
2558
2559 switch (ELF32_R_TYPE (rel->r_info))
2560 {
2561 case R_ARM_GOT32:
2562 /* This symbol requires a global offset table entry. */
2563 if (sgot == NULL)
2564 {
2565 sgot = bfd_get_section_by_name (dynobj, ".got");
2566 BFD_ASSERT (sgot != NULL);
2567 }
2568
2569 /* Get the got relocation section if necessary. */
2570 if (srelgot == NULL
2571 && (h != NULL || info->shared))
2572 {
2573 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
2574
2575 /* If no got relocation section, make one and initialize. */
2576 if (srelgot == NULL)
2577 {
2578 srelgot = bfd_make_section (dynobj, ".rel.got");
2579 if (srelgot == NULL
2580 || ! bfd_set_section_flags (dynobj, srelgot,
2581 (SEC_ALLOC
2582 | SEC_LOAD
2583 | SEC_HAS_CONTENTS
2584 | SEC_IN_MEMORY
2585 | SEC_LINKER_CREATED
2586 | SEC_READONLY))
2587 || ! bfd_set_section_alignment (dynobj, srelgot, 2))
2588 return false;
2589 }
2590 }
2591
2592 if (h != NULL)
2593 {
2594 if (h->got.offset != (bfd_vma) -1)
2595 /* We have already allocated space in the .got. */
2596 break;
2597
2598 h->got.offset = sgot->_raw_size;
2599
2600 /* Make sure this symbol is output as a dynamic symbol. */
2601 if (h->dynindx == -1)
2602 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2603 return false;
2604
2605 srelgot->_raw_size += sizeof (Elf32_External_Rel);
2606 }
2607 else
2608 {
2609 /* This is a global offset table entry for a local
2610 symbol. */
2611 if (local_got_offsets == NULL)
2612 {
2613 bfd_size_type size;
2614 unsigned int i;
2615
2616 size = symtab_hdr->sh_info;
2617 size *= sizeof (bfd_vma);
2618 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
2619 if (local_got_offsets == NULL)
2620 return false;
2621 elf_local_got_offsets (abfd) = local_got_offsets;
2622 for (i = 0; i < symtab_hdr->sh_info; i++)
2623 local_got_offsets[i] = (bfd_vma) -1;
2624 }
2625
2626 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
2627 /* We have already allocated space in the .got. */
2628 break;
2629
2630 local_got_offsets[r_symndx] = sgot->_raw_size;
2631
2632 if (info->shared)
2633 /* If we are generating a shared object, we need to
2634 output a R_ARM_RELATIVE reloc so that the dynamic
2635 linker can adjust this GOT entry. */
2636 srelgot->_raw_size += sizeof (Elf32_External_Rel);
2637 }
2638
2639 sgot->_raw_size += 4;
2640 break;
2641
2642 case R_ARM_PLT32:
2643 /* This symbol requires a procedure linkage table entry. We
2644 actually build the entry in adjust_dynamic_symbol,
2645 because this might be a case of linking PIC code which is
2646 never referenced by a dynamic object, in which case we
2647 don't need to generate a procedure linkage table entry
2648 after all. */
2649
2650 /* If this is a local symbol, we resolve it directly without
2651 creating a procedure linkage table entry. */
2652 if (h == NULL)
2653 continue;
2654
2655 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
2656 break;
2657
2658 case R_ARM_ABS32:
2659 case R_ARM_REL32:
2660 case R_ARM_PC24:
2661 /* If we are creating a shared library, and this is a reloc
2662 against a global symbol, or a non PC relative reloc
2663 against a local symbol, then we need to copy the reloc
2664 into the shared library. However, if we are linking with
2665 -Bsymbolic, we do not need to copy a reloc against a
2666 global symbol which is defined in an object we are
2667 including in the link (i.e., DEF_REGULAR is set). At
2668 this point we have not seen all the input files, so it is
2669 possible that DEF_REGULAR is not set now but will be set
2670 later (it is never cleared). We account for that
2671 possibility below by storing information in the
2672 pcrel_relocs_copied field of the hash table entry. */
2673 if (info->shared
2674 && (ELF32_R_TYPE (rel->r_info) != R_ARM_PC24
2675 || (h != NULL
2676 && (! info->symbolic
2677 || (h->elf_link_hash_flags
2678 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
2679 {
2680 /* When creating a shared object, we must copy these
2681 reloc types into the output file. We create a reloc
2682 section in dynobj and make room for this reloc. */
2683 if (sreloc == NULL)
2684 {
2685 const char * name;
2686
2687 name = (bfd_elf_string_from_elf_section
2688 (abfd,
2689 elf_elfheader (abfd)->e_shstrndx,
2690 elf_section_data (sec)->rel_hdr.sh_name));
2691 if (name == NULL)
2692 return false;
2693
2694 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
2695 && strcmp (bfd_get_section_name (abfd, sec),
2696 name + 4) == 0);
2697
2698 sreloc = bfd_get_section_by_name (dynobj, name);
2699 if (sreloc == NULL)
2700 {
2701 flagword flags;
2702
2703 sreloc = bfd_make_section (dynobj, name);
2704 flags = (SEC_HAS_CONTENTS | SEC_READONLY
2705 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2706 if ((sec->flags & SEC_ALLOC) != 0)
2707 flags |= SEC_ALLOC | SEC_LOAD;
2708 if (sreloc == NULL
2709 || ! bfd_set_section_flags (dynobj, sreloc, flags)
2710 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
2711 return false;
2712 }
2713 if (sec->flags & SEC_READONLY)
2714 info->flags |= DF_TEXTREL;
2715 }
2716
2717 sreloc->_raw_size += sizeof (Elf32_External_Rel);
2718 /* If we are linking with -Bsymbolic, and this is a
2719 global symbol, we count the number of PC relative
2720 relocations we have entered for this symbol, so that
2721 we can discard them again if the symbol is later
2722 defined by a regular object. Note that this function
2723 is only called if we are using an elf_i386 linker
2724 hash table, which means that h is really a pointer to
2725 an elf_i386_link_hash_entry. */
2726 if (h != NULL && info->symbolic
2727 && ELF32_R_TYPE (rel->r_info) == R_ARM_PC24)
2728 {
2729 struct elf32_arm_link_hash_entry * eh;
2730 struct elf32_arm_pcrel_relocs_copied * p;
2731
2732 eh = (struct elf32_arm_link_hash_entry *) h;
2733
2734 for (p = eh->pcrel_relocs_copied; p != NULL; p = p->next)
2735 if (p->section == sreloc)
2736 break;
2737
2738 if (p == NULL)
2739 {
2740 p = ((struct elf32_arm_pcrel_relocs_copied *)
2741 bfd_alloc (dynobj, (bfd_size_type) sizeof * p));
2742 if (p == NULL)
2743 return false;
2744 p->next = eh->pcrel_relocs_copied;
2745 eh->pcrel_relocs_copied = p;
2746 p->section = sreloc;
2747 p->count = 0;
2748 }
2749
2750 ++p->count;
2751 }
2752 }
2753 break;
2754
2755 /* This relocation describes the C++ object vtable hierarchy.
2756 Reconstruct it for later use during GC. */
2757 case R_ARM_GNU_VTINHERIT:
2758 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2759 return false;
2760 break;
2761
2762 /* This relocation describes which C++ vtable entries are actually
2763 used. Record for later use during GC. */
2764 case R_ARM_GNU_VTENTRY:
2765 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
2766 return false;
2767 break;
2768 }
2769 }
2770
2771 return true;
2772 }
2773
2774 /* Find the nearest line to a particular section and offset, for error
2775 reporting. This code is a duplicate of the code in elf.c, except
2776 that it also accepts STT_ARM_TFUNC as a symbol that names a function. */
2777
2778 static boolean
2779 elf32_arm_find_nearest_line
2780 (abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr)
2781 bfd * abfd;
2782 asection * section;
2783 asymbol ** symbols;
2784 bfd_vma offset;
2785 const char ** filename_ptr;
2786 const char ** functionname_ptr;
2787 unsigned int * line_ptr;
2788 {
2789 boolean found;
2790 const char * filename;
2791 asymbol * func;
2792 bfd_vma low_func;
2793 asymbol ** p;
2794
2795 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
2796 filename_ptr, functionname_ptr,
2797 line_ptr, 0,
2798 &elf_tdata (abfd)->dwarf2_find_line_info))
2799 return true;
2800
2801 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
2802 &found, filename_ptr,
2803 functionname_ptr, line_ptr,
2804 &elf_tdata (abfd)->line_info))
2805 return false;
2806
2807 if (found)
2808 return true;
2809
2810 if (symbols == NULL)
2811 return false;
2812
2813 filename = NULL;
2814 func = NULL;
2815 low_func = 0;
2816
2817 for (p = symbols; *p != NULL; p++)
2818 {
2819 elf_symbol_type *q;
2820
2821 q = (elf_symbol_type *) *p;
2822
2823 if (bfd_get_section (&q->symbol) != section)
2824 continue;
2825
2826 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
2827 {
2828 default:
2829 break;
2830 case STT_FILE:
2831 filename = bfd_asymbol_name (&q->symbol);
2832 break;
2833 case STT_NOTYPE:
2834 case STT_FUNC:
2835 case STT_ARM_TFUNC:
2836 if (q->symbol.section == section
2837 && q->symbol.value >= low_func
2838 && q->symbol.value <= offset)
2839 {
2840 func = (asymbol *) q;
2841 low_func = q->symbol.value;
2842 }
2843 break;
2844 }
2845 }
2846
2847 if (func == NULL)
2848 return false;
2849
2850 *filename_ptr = filename;
2851 *functionname_ptr = bfd_asymbol_name (func);
2852 *line_ptr = 0;
2853
2854 return true;
2855 }
2856
2857 /* Adjust a symbol defined by a dynamic object and referenced by a
2858 regular object. The current definition is in some section of the
2859 dynamic object, but we're not including those sections. We have to
2860 change the definition to something the rest of the link can
2861 understand. */
2862
2863 static boolean
2864 elf32_arm_adjust_dynamic_symbol (info, h)
2865 struct bfd_link_info * info;
2866 struct elf_link_hash_entry * h;
2867 {
2868 bfd * dynobj;
2869 asection * s;
2870 unsigned int power_of_two;
2871
2872 dynobj = elf_hash_table (info)->dynobj;
2873
2874 /* Make sure we know what is going on here. */
2875 BFD_ASSERT (dynobj != NULL
2876 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
2877 || h->weakdef != NULL
2878 || ((h->elf_link_hash_flags
2879 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2880 && (h->elf_link_hash_flags
2881 & ELF_LINK_HASH_REF_REGULAR) != 0
2882 && (h->elf_link_hash_flags
2883 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
2884
2885 /* If this is a function, put it in the procedure linkage table. We
2886 will fill in the contents of the procedure linkage table later,
2887 when we know the address of the .got section. */
2888 if (h->type == STT_FUNC
2889 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
2890 {
2891 if (! info->shared
2892 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
2893 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0)
2894 {
2895 /* This case can occur if we saw a PLT32 reloc in an input
2896 file, but the symbol was never referred to by a dynamic
2897 object. In such a case, we don't actually need to build
2898 a procedure linkage table, and we can just do a PC32
2899 reloc instead. */
2900 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
2901 return true;
2902 }
2903
2904 /* Make sure this symbol is output as a dynamic symbol. */
2905 if (h->dynindx == -1)
2906 {
2907 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2908 return false;
2909 }
2910
2911 s = bfd_get_section_by_name (dynobj, ".plt");
2912 BFD_ASSERT (s != NULL);
2913
2914 /* If this is the first .plt entry, make room for the special
2915 first entry. */
2916 if (s->_raw_size == 0)
2917 s->_raw_size += PLT_ENTRY_SIZE;
2918
2919 /* If this symbol is not defined in a regular file, and we are
2920 not generating a shared library, then set the symbol to this
2921 location in the .plt. This is required to make function
2922 pointers compare as equal between the normal executable and
2923 the shared library. */
2924 if (! info->shared
2925 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2926 {
2927 h->root.u.def.section = s;
2928 h->root.u.def.value = s->_raw_size;
2929 }
2930
2931 h->plt.offset = s->_raw_size;
2932
2933 /* Make room for this entry. */
2934 s->_raw_size += PLT_ENTRY_SIZE;
2935
2936 /* We also need to make an entry in the .got.plt section, which
2937 will be placed in the .got section by the linker script. */
2938 s = bfd_get_section_by_name (dynobj, ".got.plt");
2939 BFD_ASSERT (s != NULL);
2940 s->_raw_size += 4;
2941
2942 /* We also need to make an entry in the .rel.plt section. */
2943
2944 s = bfd_get_section_by_name (dynobj, ".rel.plt");
2945 BFD_ASSERT (s != NULL);
2946 s->_raw_size += sizeof (Elf32_External_Rel);
2947
2948 return true;
2949 }
2950
2951 /* If this is a weak symbol, and there is a real definition, the
2952 processor independent code will have arranged for us to see the
2953 real definition first, and we can just use the same value. */
2954 if (h->weakdef != NULL)
2955 {
2956 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
2957 || h->weakdef->root.type == bfd_link_hash_defweak);
2958 h->root.u.def.section = h->weakdef->root.u.def.section;
2959 h->root.u.def.value = h->weakdef->root.u.def.value;
2960 return true;
2961 }
2962
2963 /* This is a reference to a symbol defined by a dynamic object which
2964 is not a function. */
2965
2966 /* If we are creating a shared library, we must presume that the
2967 only references to the symbol are via the global offset table.
2968 For such cases we need not do anything here; the relocations will
2969 be handled correctly by relocate_section. */
2970 if (info->shared)
2971 return true;
2972
2973 /* We must allocate the symbol in our .dynbss section, which will
2974 become part of the .bss section of the executable. There will be
2975 an entry for this symbol in the .dynsym section. The dynamic
2976 object will contain position independent code, so all references
2977 from the dynamic object to this symbol will go through the global
2978 offset table. The dynamic linker will use the .dynsym entry to
2979 determine the address it must put in the global offset table, so
2980 both the dynamic object and the regular object will refer to the
2981 same memory location for the variable. */
2982 s = bfd_get_section_by_name (dynobj, ".dynbss");
2983 BFD_ASSERT (s != NULL);
2984
2985 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
2986 copy the initial value out of the dynamic object and into the
2987 runtime process image. We need to remember the offset into the
2988 .rel.bss section we are going to use. */
2989 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
2990 {
2991 asection *srel;
2992
2993 srel = bfd_get_section_by_name (dynobj, ".rel.bss");
2994 BFD_ASSERT (srel != NULL);
2995 srel->_raw_size += sizeof (Elf32_External_Rel);
2996 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
2997 }
2998
2999 /* We need to figure out the alignment required for this symbol. I
3000 have no idea how ELF linkers handle this. */
3001 power_of_two = bfd_log2 (h->size);
3002 if (power_of_two > 3)
3003 power_of_two = 3;
3004
3005 /* Apply the required alignment. */
3006 s->_raw_size = BFD_ALIGN (s->_raw_size,
3007 (bfd_size_type) (1 << power_of_two));
3008 if (power_of_two > bfd_get_section_alignment (dynobj, s))
3009 {
3010 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
3011 return false;
3012 }
3013
3014 /* Define the symbol as being at this point in the section. */
3015 h->root.u.def.section = s;
3016 h->root.u.def.value = s->_raw_size;
3017
3018 /* Increment the section size to make room for the symbol. */
3019 s->_raw_size += h->size;
3020
3021 return true;
3022 }
3023
3024 /* Set the sizes of the dynamic sections. */
3025
3026 static boolean
3027 elf32_arm_size_dynamic_sections (output_bfd, info)
3028 bfd * output_bfd ATTRIBUTE_UNUSED;
3029 struct bfd_link_info * info;
3030 {
3031 bfd * dynobj;
3032 asection * s;
3033 boolean plt;
3034 boolean relocs;
3035
3036 dynobj = elf_hash_table (info)->dynobj;
3037 BFD_ASSERT (dynobj != NULL);
3038
3039 if (elf_hash_table (info)->dynamic_sections_created)
3040 {
3041 /* Set the contents of the .interp section to the interpreter. */
3042 if (! info->shared)
3043 {
3044 s = bfd_get_section_by_name (dynobj, ".interp");
3045 BFD_ASSERT (s != NULL);
3046 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
3047 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
3048 }
3049 }
3050 else
3051 {
3052 /* We may have created entries in the .rel.got section.
3053 However, if we are not creating the dynamic sections, we will
3054 not actually use these entries. Reset the size of .rel.got,
3055 which will cause it to get stripped from the output file
3056 below. */
3057 s = bfd_get_section_by_name (dynobj, ".rel.got");
3058 if (s != NULL)
3059 s->_raw_size = 0;
3060 }
3061
3062 /* If this is a -Bsymbolic shared link, then we need to discard all
3063 PC relative relocs against symbols defined in a regular object.
3064 We allocated space for them in the check_relocs routine, but we
3065 will not fill them in in the relocate_section routine. */
3066 if (info->shared && info->symbolic)
3067 elf32_arm_link_hash_traverse (elf32_arm_hash_table (info),
3068 elf32_arm_discard_copies,
3069 (PTR) NULL);
3070
3071 /* The check_relocs and adjust_dynamic_symbol entry points have
3072 determined the sizes of the various dynamic sections. Allocate
3073 memory for them. */
3074 plt = false;
3075 relocs = false;
3076 for (s = dynobj->sections; s != NULL; s = s->next)
3077 {
3078 const char * name;
3079 boolean strip;
3080
3081 if ((s->flags & SEC_LINKER_CREATED) == 0)
3082 continue;
3083
3084 /* It's OK to base decisions on the section name, because none
3085 of the dynobj section names depend upon the input files. */
3086 name = bfd_get_section_name (dynobj, s);
3087
3088 strip = false;
3089
3090 if (strcmp (name, ".plt") == 0)
3091 {
3092 if (s->_raw_size == 0)
3093 {
3094 /* Strip this section if we don't need it; see the
3095 comment below. */
3096 strip = true;
3097 }
3098 else
3099 {
3100 /* Remember whether there is a PLT. */
3101 plt = true;
3102 }
3103 }
3104 else if (strncmp (name, ".rel", 4) == 0)
3105 {
3106 if (s->_raw_size == 0)
3107 {
3108 /* If we don't need this section, strip it from the
3109 output file. This is mostly to handle .rel.bss and
3110 .rel.plt. We must create both sections in
3111 create_dynamic_sections, because they must be created
3112 before the linker maps input sections to output
3113 sections. The linker does that before
3114 adjust_dynamic_symbol is called, and it is that
3115 function which decides whether anything needs to go
3116 into these sections. */
3117 strip = true;
3118 }
3119 else
3120 {
3121 /* Remember whether there are any reloc sections other
3122 than .rel.plt. */
3123 if (strcmp (name, ".rel.plt") != 0)
3124 relocs = true;
3125
3126 /* We use the reloc_count field as a counter if we need
3127 to copy relocs into the output file. */
3128 s->reloc_count = 0;
3129 }
3130 }
3131 else if (strncmp (name, ".got", 4) != 0)
3132 {
3133 /* It's not one of our sections, so don't allocate space. */
3134 continue;
3135 }
3136
3137 if (strip)
3138 {
3139 asection ** spp;
3140
3141 for (spp = &s->output_section->owner->sections;
3142 *spp != s->output_section;
3143 spp = &(*spp)->next)
3144 ;
3145 *spp = s->output_section->next;
3146 --s->output_section->owner->section_count;
3147
3148 continue;
3149 }
3150
3151 /* Allocate memory for the section contents. */
3152 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
3153 if (s->contents == NULL && s->_raw_size != 0)
3154 return false;
3155 }
3156
3157 if (elf_hash_table (info)->dynamic_sections_created)
3158 {
3159 /* Add some entries to the .dynamic section. We fill in the
3160 values later, in elf32_arm_finish_dynamic_sections, but we
3161 must add the entries now so that we get the correct size for
3162 the .dynamic section. The DT_DEBUG entry is filled in by the
3163 dynamic linker and used by the debugger. */
3164 #define add_dynamic_entry(TAG, VAL) \
3165 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
3166
3167 if (!info->shared)
3168 {
3169 if (!add_dynamic_entry (DT_DEBUG, 0))
3170 return false;
3171 }
3172
3173 if (plt)
3174 {
3175 if ( !add_dynamic_entry (DT_PLTGOT, 0)
3176 || !add_dynamic_entry (DT_PLTRELSZ, 0)
3177 || !add_dynamic_entry (DT_PLTREL, DT_REL)
3178 || !add_dynamic_entry (DT_JMPREL, 0))
3179 return false;
3180 }
3181
3182 if (relocs)
3183 {
3184 if ( !add_dynamic_entry (DT_REL, 0)
3185 || !add_dynamic_entry (DT_RELSZ, 0)
3186 || !add_dynamic_entry (DT_RELENT, sizeof (Elf32_External_Rel)))
3187 return false;
3188 }
3189
3190 if ((info->flags & DF_TEXTREL) != 0)
3191 {
3192 if (!add_dynamic_entry (DT_TEXTREL, 0))
3193 return false;
3194 info->flags |= DF_TEXTREL;
3195 }
3196 }
3197 #undef add_synamic_entry
3198
3199 return true;
3200 }
3201
3202 /* This function is called via elf32_arm_link_hash_traverse if we are
3203 creating a shared object with -Bsymbolic. It discards the space
3204 allocated to copy PC relative relocs against symbols which are
3205 defined in regular objects. We allocated space for them in the
3206 check_relocs routine, but we won't fill them in in the
3207 relocate_section routine. */
3208
3209 static boolean
3210 elf32_arm_discard_copies (h, ignore)
3211 struct elf32_arm_link_hash_entry * h;
3212 PTR ignore ATTRIBUTE_UNUSED;
3213 {
3214 struct elf32_arm_pcrel_relocs_copied * s;
3215
3216 /* We only discard relocs for symbols defined in a regular object. */
3217 if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3218 return true;
3219
3220 for (s = h->pcrel_relocs_copied; s != NULL; s = s->next)
3221 s->section->_raw_size -= s->count * sizeof (Elf32_External_Rel);
3222
3223 return true;
3224 }
3225
3226 /* Finish up dynamic symbol handling. We set the contents of various
3227 dynamic sections here. */
3228
3229 static boolean
3230 elf32_arm_finish_dynamic_symbol (output_bfd, info, h, sym)
3231 bfd * output_bfd;
3232 struct bfd_link_info * info;
3233 struct elf_link_hash_entry * h;
3234 Elf_Internal_Sym * sym;
3235 {
3236 bfd * dynobj;
3237
3238 dynobj = elf_hash_table (info)->dynobj;
3239
3240 if (h->plt.offset != (bfd_vma) -1)
3241 {
3242 asection * splt;
3243 asection * sgot;
3244 asection * srel;
3245 bfd_vma plt_index;
3246 bfd_vma got_offset;
3247 Elf_Internal_Rel rel;
3248
3249 /* This symbol has an entry in the procedure linkage table. Set
3250 it up. */
3251
3252 BFD_ASSERT (h->dynindx != -1);
3253
3254 splt = bfd_get_section_by_name (dynobj, ".plt");
3255 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3256 srel = bfd_get_section_by_name (dynobj, ".rel.plt");
3257 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
3258
3259 /* Get the index in the procedure linkage table which
3260 corresponds to this symbol. This is the index of this symbol
3261 in all the symbols for which we are making plt entries. The
3262 first entry in the procedure linkage table is reserved. */
3263 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3264
3265 /* Get the offset into the .got table of the entry that
3266 corresponds to this function. Each .got entry is 4 bytes.
3267 The first three are reserved. */
3268 got_offset = (plt_index + 3) * 4;
3269
3270 /* Fill in the entry in the procedure linkage table. */
3271 bfd_put_32 (output_bfd, elf32_arm_plt_entry[0],
3272 splt->contents + h->plt.offset + 0);
3273 bfd_put_32 (output_bfd, elf32_arm_plt_entry[1],
3274 splt->contents + h->plt.offset + 4);
3275 bfd_put_32 (output_bfd, elf32_arm_plt_entry[2],
3276 splt->contents + h->plt.offset + 8);
3277 bfd_put_32 (output_bfd,
3278 (sgot->output_section->vma
3279 + sgot->output_offset
3280 + got_offset
3281 - splt->output_section->vma
3282 - splt->output_offset
3283 - h->plt.offset - 12),
3284 splt->contents + h->plt.offset + 12);
3285
3286 /* Fill in the entry in the global offset table. */
3287 bfd_put_32 (output_bfd,
3288 (splt->output_section->vma
3289 + splt->output_offset),
3290 sgot->contents + got_offset);
3291
3292 /* Fill in the entry in the .rel.plt section. */
3293 rel.r_offset = (sgot->output_section->vma
3294 + sgot->output_offset
3295 + got_offset);
3296 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
3297 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3298 ((Elf32_External_Rel *) srel->contents
3299 + plt_index));
3300
3301 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3302 {
3303 /* Mark the symbol as undefined, rather than as defined in
3304 the .plt section. Leave the value alone. */
3305 sym->st_shndx = SHN_UNDEF;
3306 /* If the symbol is weak, we do need to clear the value.
3307 Otherwise, the PLT entry would provide a definition for
3308 the symbol even if the symbol wasn't defined anywhere,
3309 and so the symbol would never be NULL. */
3310 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
3311 == 0)
3312 sym->st_value = 0;
3313 }
3314 }
3315
3316 if (h->got.offset != (bfd_vma) -1)
3317 {
3318 asection * sgot;
3319 asection * srel;
3320 Elf_Internal_Rel rel;
3321
3322 /* This symbol has an entry in the global offset table. Set it
3323 up. */
3324 sgot = bfd_get_section_by_name (dynobj, ".got");
3325 srel = bfd_get_section_by_name (dynobj, ".rel.got");
3326 BFD_ASSERT (sgot != NULL && srel != NULL);
3327
3328 rel.r_offset = (sgot->output_section->vma
3329 + sgot->output_offset
3330 + (h->got.offset &~ (bfd_vma) 1));
3331
3332 /* If this is a -Bsymbolic link, and the symbol is defined
3333 locally, we just want to emit a RELATIVE reloc. The entry in
3334 the global offset table will already have been initialized in
3335 the relocate_section function. */
3336 if (info->shared
3337 && (info->symbolic || h->dynindx == -1)
3338 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
3339 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
3340 else
3341 {
3342 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
3343 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
3344 }
3345
3346 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3347 ((Elf32_External_Rel *) srel->contents
3348 + srel->reloc_count));
3349 ++srel->reloc_count;
3350 }
3351
3352 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
3353 {
3354 asection * s;
3355 Elf_Internal_Rel rel;
3356
3357 /* This symbol needs a copy reloc. Set it up. */
3358 BFD_ASSERT (h->dynindx != -1
3359 && (h->root.type == bfd_link_hash_defined
3360 || h->root.type == bfd_link_hash_defweak));
3361
3362 s = bfd_get_section_by_name (h->root.u.def.section->owner,
3363 ".rel.bss");
3364 BFD_ASSERT (s != NULL);
3365
3366 rel.r_offset = (h->root.u.def.value
3367 + h->root.u.def.section->output_section->vma
3368 + h->root.u.def.section->output_offset);
3369 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
3370 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3371 ((Elf32_External_Rel *) s->contents
3372 + s->reloc_count));
3373 ++s->reloc_count;
3374 }
3375
3376 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3377 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
3378 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3379 sym->st_shndx = SHN_ABS;
3380
3381 return true;
3382 }
3383
3384 /* Finish up the dynamic sections. */
3385
3386 static boolean
3387 elf32_arm_finish_dynamic_sections (output_bfd, info)
3388 bfd * output_bfd;
3389 struct bfd_link_info * info;
3390 {
3391 bfd * dynobj;
3392 asection * sgot;
3393 asection * sdyn;
3394
3395 dynobj = elf_hash_table (info)->dynobj;
3396
3397 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3398 BFD_ASSERT (sgot != NULL);
3399 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3400
3401 if (elf_hash_table (info)->dynamic_sections_created)
3402 {
3403 asection *splt;
3404 Elf32_External_Dyn *dyncon, *dynconend;
3405
3406 splt = bfd_get_section_by_name (dynobj, ".plt");
3407 BFD_ASSERT (splt != NULL && sdyn != NULL);
3408
3409 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3410 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
3411
3412 for (; dyncon < dynconend; dyncon++)
3413 {
3414 Elf_Internal_Dyn dyn;
3415 const char * name;
3416 asection * s;
3417
3418 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3419
3420 switch (dyn.d_tag)
3421 {
3422 default:
3423 break;
3424
3425 case DT_PLTGOT:
3426 name = ".got";
3427 goto get_vma;
3428 case DT_JMPREL:
3429 name = ".rel.plt";
3430 get_vma:
3431 s = bfd_get_section_by_name (output_bfd, name);
3432 BFD_ASSERT (s != NULL);
3433 dyn.d_un.d_ptr = s->vma;
3434 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3435 break;
3436
3437 case DT_PLTRELSZ:
3438 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3439 BFD_ASSERT (s != NULL);
3440 if (s->_cooked_size != 0)
3441 dyn.d_un.d_val = s->_cooked_size;
3442 else
3443 dyn.d_un.d_val = s->_raw_size;
3444 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3445 break;
3446
3447 case DT_RELSZ:
3448 /* My reading of the SVR4 ABI indicates that the
3449 procedure linkage table relocs (DT_JMPREL) should be
3450 included in the overall relocs (DT_REL). This is
3451 what Solaris does. However, UnixWare can not handle
3452 that case. Therefore, we override the DT_RELSZ entry
3453 here to make it not include the JMPREL relocs. Since
3454 the linker script arranges for .rel.plt to follow all
3455 other relocation sections, we don't have to worry
3456 about changing the DT_REL entry. */
3457 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3458 if (s != NULL)
3459 {
3460 if (s->_cooked_size != 0)
3461 dyn.d_un.d_val -= s->_cooked_size;
3462 else
3463 dyn.d_un.d_val -= s->_raw_size;
3464 }
3465 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3466 break;
3467 }
3468 }
3469
3470 /* Fill in the first entry in the procedure linkage table. */
3471 if (splt->_raw_size > 0)
3472 {
3473 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[0], splt->contents + 0);
3474 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[1], splt->contents + 4);
3475 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[2], splt->contents + 8);
3476 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[3], splt->contents + 12);
3477 }
3478
3479 /* UnixWare sets the entsize of .plt to 4, although that doesn't
3480 really seem like the right value. */
3481 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
3482 }
3483
3484 /* Fill in the first three entries in the global offset table. */
3485 if (sgot->_raw_size > 0)
3486 {
3487 if (sdyn == NULL)
3488 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
3489 else
3490 bfd_put_32 (output_bfd,
3491 sdyn->output_section->vma + sdyn->output_offset,
3492 sgot->contents);
3493 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
3494 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
3495 }
3496
3497 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
3498
3499 return true;
3500 }
3501
3502 static void
3503 elf32_arm_post_process_headers (abfd, link_info)
3504 bfd * abfd;
3505 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
3506 {
3507 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
3508
3509 i_ehdrp = elf_elfheader (abfd);
3510
3511 i_ehdrp->e_ident[EI_OSABI] = ARM_ELF_OS_ABI_VERSION;
3512 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
3513 }
3514
3515 static enum elf_reloc_type_class
3516 elf32_arm_reloc_type_class (rela)
3517 const Elf_Internal_Rela *rela;
3518 {
3519 switch ((int) ELF32_R_TYPE (rela->r_info))
3520 {
3521 case R_ARM_RELATIVE:
3522 return reloc_class_relative;
3523 case R_ARM_JUMP_SLOT:
3524 return reloc_class_plt;
3525 case R_ARM_COPY:
3526 return reloc_class_copy;
3527 default:
3528 return reloc_class_normal;
3529 }
3530 }
3531
3532
3533 #define ELF_ARCH bfd_arch_arm
3534 #define ELF_MACHINE_CODE EM_ARM
3535 #define ELF_MAXPAGESIZE 0x8000
3536
3537 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
3538 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
3539 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
3540 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
3541 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
3542 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
3543 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
3544
3545 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
3546 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
3547 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
3548 #define elf_backend_check_relocs elf32_arm_check_relocs
3549 #define elf_backend_relocate_section elf32_arm_relocate_section
3550 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
3551 #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
3552 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
3553 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
3554 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
3555 #define elf_backend_post_process_headers elf32_arm_post_process_headers
3556 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
3557
3558 #define elf_backend_can_gc_sections 1
3559 #define elf_backend_plt_readonly 1
3560 #define elf_backend_want_got_plt 1
3561 #define elf_backend_want_plt_sym 0
3562
3563 #define elf_backend_got_header_size 12
3564 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
3565
3566 #include "elf32-target.h"
This page took 0.106415 seconds and 5 git commands to generate.