2001-02-28 Philip Blundell <pb@futuretv.com>
[deliverable/binutils-gdb.git] / bfd / elf32-arm.h
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 typedef unsigned long int insn32;
21 typedef unsigned short int insn16;
22
23 static boolean elf32_arm_set_private_flags
24 PARAMS ((bfd *, flagword));
25 static boolean elf32_arm_copy_private_bfd_data
26 PARAMS ((bfd *, bfd *));
27 static boolean elf32_arm_merge_private_bfd_data
28 PARAMS ((bfd *, bfd *));
29 static boolean elf32_arm_print_private_bfd_data
30 PARAMS ((bfd *, PTR));
31 static int elf32_arm_get_symbol_type
32 PARAMS (( Elf_Internal_Sym *, int));
33 static struct bfd_link_hash_table *elf32_arm_link_hash_table_create
34 PARAMS ((bfd *));
35 static bfd_reloc_status_type elf32_arm_final_link_relocate
36 PARAMS ((reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
37 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
38 const char *, unsigned char, struct elf_link_hash_entry *));
39 static insn32 insert_thumb_branch
40 PARAMS ((insn32, int));
41 static struct elf_link_hash_entry *find_thumb_glue
42 PARAMS ((struct bfd_link_info *, CONST char *, bfd *));
43 static struct elf_link_hash_entry *find_arm_glue
44 PARAMS ((struct bfd_link_info *, CONST char *, bfd *));
45 static void record_arm_to_thumb_glue
46 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
47 static void record_thumb_to_arm_glue
48 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
49 static void elf32_arm_post_process_headers
50 PARAMS ((bfd *, struct bfd_link_info *));
51 static int elf32_arm_to_thumb_stub
52 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
53 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
54 static int elf32_thumb_to_arm_stub
55 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
56 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
57
58 #define INTERWORK_FLAG(abfd) (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK)
59
60 /* The linker script knows the section names for placement.
61 The entry_names are used to do simple name mangling on the stubs.
62 Given a function name, and its type, the stub can be found. The
63 name can be changed. The only requirement is the %s be present. */
64 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
65 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
66
67 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
68 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
69
70 /* The name of the dynamic interpreter. This is put in the .interp
71 section. */
72 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
73
74 /* The size in bytes of an entry in the procedure linkage table. */
75 #define PLT_ENTRY_SIZE 16
76
77 /* The first entry in a procedure linkage table looks like
78 this. It is set up so that any shared library function that is
79 called before the relocation has been set up calls the dynamic
80 linker first. */
81 static const bfd_byte elf32_arm_plt0_entry [PLT_ENTRY_SIZE] =
82 {
83 0x04, 0xe0, 0x2d, 0xe5, /* str lr, [sp, #-4]! */
84 0x10, 0xe0, 0x9f, 0xe5, /* ldr lr, [pc, #16] */
85 0x0e, 0xe0, 0x8f, 0xe0, /* adr lr, pc, lr */
86 0x08, 0xf0, 0xbe, 0xe5 /* ldr pc, [lr, #8]! */
87 };
88
89 /* Subsequent entries in a procedure linkage table look like
90 this. */
91 static const bfd_byte elf32_arm_plt_entry [PLT_ENTRY_SIZE] =
92 {
93 0x04, 0xc0, 0x9f, 0xe5, /* ldr ip, [pc, #4] */
94 0x0c, 0xc0, 0x8f, 0xe0, /* add ip, pc, ip */
95 0x00, 0xf0, 0x9c, 0xe5, /* ldr pc, [ip] */
96 0x00, 0x00, 0x00, 0x00 /* offset to symbol in got */
97 };
98
99 /* The ARM linker needs to keep track of the number of relocs that it
100 decides to copy in check_relocs for each symbol. This is so that
101 it can discard PC relative relocs if it doesn't need them when
102 linking with -Bsymbolic. We store the information in a field
103 extending the regular ELF linker hash table. */
104
105 /* This structure keeps track of the number of PC relative relocs we
106 have copied for a given symbol. */
107 struct elf32_arm_pcrel_relocs_copied
108 {
109 /* Next section. */
110 struct elf32_arm_pcrel_relocs_copied * next;
111 /* A section in dynobj. */
112 asection * section;
113 /* Number of relocs copied in this section. */
114 bfd_size_type count;
115 };
116
117 /* Arm ELF linker hash entry. */
118 struct elf32_arm_link_hash_entry
119 {
120 struct elf_link_hash_entry root;
121
122 /* Number of PC relative relocs copied for this symbol. */
123 struct elf32_arm_pcrel_relocs_copied * pcrel_relocs_copied;
124 };
125
126 /* Declare this now that the above structures are defined. */
127 static boolean elf32_arm_discard_copies
128 PARAMS ((struct elf32_arm_link_hash_entry *, PTR));
129
130 /* Traverse an arm ELF linker hash table. */
131 #define elf32_arm_link_hash_traverse(table, func, info) \
132 (elf_link_hash_traverse \
133 (&(table)->root, \
134 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
135 (info)))
136
137 /* Get the ARM elf linker hash table from a link_info structure. */
138 #define elf32_arm_hash_table(info) \
139 ((struct elf32_arm_link_hash_table *) ((info)->hash))
140
141 /* ARM ELF linker hash table. */
142 struct elf32_arm_link_hash_table
143 {
144 /* The main hash table. */
145 struct elf_link_hash_table root;
146
147 /* The size in bytes of the section containg the Thumb-to-ARM glue. */
148 long int thumb_glue_size;
149
150 /* The size in bytes of the section containg the ARM-to-Thumb glue. */
151 long int arm_glue_size;
152
153 /* An arbitary input BFD chosen to hold the glue sections. */
154 bfd * bfd_of_glue_owner;
155
156 /* A boolean indicating whether knowledge of the ARM's pipeline
157 length should be applied by the linker. */
158 int no_pipeline_knowledge;
159 };
160
161 /* Create an entry in an ARM ELF linker hash table. */
162
163 static struct bfd_hash_entry *
164 elf32_arm_link_hash_newfunc (entry, table, string)
165 struct bfd_hash_entry * entry;
166 struct bfd_hash_table * table;
167 const char * string;
168 {
169 struct elf32_arm_link_hash_entry * ret =
170 (struct elf32_arm_link_hash_entry *) entry;
171
172 /* Allocate the structure if it has not already been allocated by a
173 subclass. */
174 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
175 ret = ((struct elf32_arm_link_hash_entry *)
176 bfd_hash_allocate (table,
177 sizeof (struct elf32_arm_link_hash_entry)));
178 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
179 return (struct bfd_hash_entry *) ret;
180
181 /* Call the allocation method of the superclass. */
182 ret = ((struct elf32_arm_link_hash_entry *)
183 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
184 table, string));
185 if (ret != (struct elf32_arm_link_hash_entry *) NULL)
186 ret->pcrel_relocs_copied = NULL;
187
188 return (struct bfd_hash_entry *) ret;
189 }
190
191 /* Create an ARM elf linker hash table. */
192
193 static struct bfd_link_hash_table *
194 elf32_arm_link_hash_table_create (abfd)
195 bfd *abfd;
196 {
197 struct elf32_arm_link_hash_table *ret;
198
199 ret = ((struct elf32_arm_link_hash_table *)
200 bfd_alloc (abfd, sizeof (struct elf32_arm_link_hash_table)));
201 if (ret == (struct elf32_arm_link_hash_table *) NULL)
202 return NULL;
203
204 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
205 elf32_arm_link_hash_newfunc))
206 {
207 bfd_release (abfd, ret);
208 return NULL;
209 }
210
211 ret->thumb_glue_size = 0;
212 ret->arm_glue_size = 0;
213 ret->bfd_of_glue_owner = NULL;
214 ret->no_pipeline_knowledge = 0;
215
216 return &ret->root.root;
217 }
218
219 /* Locate the Thumb encoded calling stub for NAME. */
220
221 static struct elf_link_hash_entry *
222 find_thumb_glue (link_info, name, input_bfd)
223 struct bfd_link_info *link_info;
224 CONST char *name;
225 bfd *input_bfd;
226 {
227 char *tmp_name;
228 struct elf_link_hash_entry *hash;
229 struct elf32_arm_link_hash_table *hash_table;
230
231 /* We need a pointer to the armelf specific hash table. */
232 hash_table = elf32_arm_hash_table (link_info);
233
234 tmp_name = ((char *)
235 bfd_malloc (strlen (name) + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1));
236
237 BFD_ASSERT (tmp_name);
238
239 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
240
241 hash = elf_link_hash_lookup
242 (&(hash_table)->root, tmp_name, false, false, true);
243
244 if (hash == NULL)
245 /* xgettext:c-format */
246 _bfd_error_handler (_("%s: unable to find THUMB glue '%s' for `%s'"),
247 bfd_get_filename (input_bfd), tmp_name, name);
248
249 free (tmp_name);
250
251 return hash;
252 }
253
254 /* Locate the ARM encoded calling stub for NAME. */
255
256 static struct elf_link_hash_entry *
257 find_arm_glue (link_info, name, input_bfd)
258 struct bfd_link_info *link_info;
259 CONST char *name;
260 bfd *input_bfd;
261 {
262 char *tmp_name;
263 struct elf_link_hash_entry *myh;
264 struct elf32_arm_link_hash_table *hash_table;
265
266 /* We need a pointer to the elfarm specific hash table. */
267 hash_table = elf32_arm_hash_table (link_info);
268
269 tmp_name = ((char *)
270 bfd_malloc (strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1));
271
272 BFD_ASSERT (tmp_name);
273
274 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
275
276 myh = elf_link_hash_lookup
277 (&(hash_table)->root, tmp_name, false, false, true);
278
279 if (myh == NULL)
280 /* xgettext:c-format */
281 _bfd_error_handler (_("%s: unable to find ARM glue '%s' for `%s'"),
282 bfd_get_filename (input_bfd), tmp_name, name);
283
284 free (tmp_name);
285
286 return myh;
287 }
288
289 /* ARM->Thumb glue:
290
291 .arm
292 __func_from_arm:
293 ldr r12, __func_addr
294 bx r12
295 __func_addr:
296 .word func @ behave as if you saw a ARM_32 reloc. */
297
298 #define ARM2THUMB_GLUE_SIZE 12
299 static const insn32 a2t1_ldr_insn = 0xe59fc000;
300 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
301 static const insn32 a2t3_func_addr_insn = 0x00000001;
302
303 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
304
305 .thumb .thumb
306 .align 2 .align 2
307 __func_from_thumb: __func_from_thumb:
308 bx pc push {r6, lr}
309 nop ldr r6, __func_addr
310 .arm mov lr, pc
311 __func_change_to_arm: bx r6
312 b func .arm
313 __func_back_to_thumb:
314 ldmia r13! {r6, lr}
315 bx lr
316 __func_addr:
317 .word func */
318
319 #define THUMB2ARM_GLUE_SIZE 8
320 static const insn16 t2a1_bx_pc_insn = 0x4778;
321 static const insn16 t2a2_noop_insn = 0x46c0;
322 static const insn32 t2a3_b_insn = 0xea000000;
323
324 static const insn16 t2a1_push_insn = 0xb540;
325 static const insn16 t2a2_ldr_insn = 0x4e03;
326 static const insn16 t2a3_mov_insn = 0x46fe;
327 static const insn16 t2a4_bx_insn = 0x4730;
328 static const insn32 t2a5_pop_insn = 0xe8bd4040;
329 static const insn32 t2a6_bx_insn = 0xe12fff1e;
330
331 boolean
332 bfd_elf32_arm_allocate_interworking_sections (info)
333 struct bfd_link_info * info;
334 {
335 asection * s;
336 bfd_byte * foo;
337 struct elf32_arm_link_hash_table * globals;
338
339 globals = elf32_arm_hash_table (info);
340
341 BFD_ASSERT (globals != NULL);
342
343 if (globals->arm_glue_size != 0)
344 {
345 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
346
347 s = bfd_get_section_by_name
348 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
349
350 BFD_ASSERT (s != NULL);
351
352 foo = (bfd_byte *) bfd_alloc
353 (globals->bfd_of_glue_owner, globals->arm_glue_size);
354
355 s->_raw_size = s->_cooked_size = globals->arm_glue_size;
356 s->contents = foo;
357 }
358
359 if (globals->thumb_glue_size != 0)
360 {
361 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
362
363 s = bfd_get_section_by_name
364 (globals->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
365
366 BFD_ASSERT (s != NULL);
367
368 foo = (bfd_byte *) bfd_alloc
369 (globals->bfd_of_glue_owner, globals->thumb_glue_size);
370
371 s->_raw_size = s->_cooked_size = globals->thumb_glue_size;
372 s->contents = foo;
373 }
374
375 return true;
376 }
377
378 static void
379 record_arm_to_thumb_glue (link_info, h)
380 struct bfd_link_info * link_info;
381 struct elf_link_hash_entry * h;
382 {
383 const char * name = h->root.root.string;
384 register asection * s;
385 char * tmp_name;
386 struct elf_link_hash_entry * myh;
387 struct elf32_arm_link_hash_table * globals;
388
389 globals = elf32_arm_hash_table (link_info);
390
391 BFD_ASSERT (globals != NULL);
392 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
393
394 s = bfd_get_section_by_name
395 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
396
397 BFD_ASSERT (s != NULL);
398
399 tmp_name = ((char *)
400 bfd_malloc (strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1));
401
402 BFD_ASSERT (tmp_name);
403
404 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
405
406 myh = elf_link_hash_lookup
407 (&(globals)->root, tmp_name, false, false, true);
408
409 if (myh != NULL)
410 {
411 /* We've already seen this guy. */
412 free (tmp_name);
413 return;
414 }
415
416 /* The only trick here is using hash_table->arm_glue_size as the value. Even
417 though the section isn't allocated yet, this is where we will be putting
418 it. */
419 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner, tmp_name,
420 BSF_GLOBAL,
421 s, globals->arm_glue_size + 1,
422 NULL, true, false,
423 (struct bfd_link_hash_entry **) &myh);
424
425 free (tmp_name);
426
427 globals->arm_glue_size += ARM2THUMB_GLUE_SIZE;
428
429 return;
430 }
431
432 static void
433 record_thumb_to_arm_glue (link_info, h)
434 struct bfd_link_info *link_info;
435 struct elf_link_hash_entry *h;
436 {
437 const char *name = h->root.root.string;
438 register asection *s;
439 char *tmp_name;
440 struct elf_link_hash_entry *myh;
441 struct elf32_arm_link_hash_table *hash_table;
442 char bind;
443
444 hash_table = elf32_arm_hash_table (link_info);
445
446 BFD_ASSERT (hash_table != NULL);
447 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
448
449 s = bfd_get_section_by_name
450 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
451
452 BFD_ASSERT (s != NULL);
453
454 tmp_name = (char *) bfd_malloc (strlen (name) + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
455
456 BFD_ASSERT (tmp_name);
457
458 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
459
460 myh = elf_link_hash_lookup
461 (&(hash_table)->root, tmp_name, false, false, true);
462
463 if (myh != NULL)
464 {
465 /* We've already seen this guy. */
466 free (tmp_name);
467 return;
468 }
469
470 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner, tmp_name,
471 BSF_GLOBAL, s, hash_table->thumb_glue_size + 1,
472 NULL, true, false,
473 (struct bfd_link_hash_entry **) &myh);
474
475 /* If we mark it 'Thumb', the disassembler will do a better job. */
476 bind = ELF_ST_BIND (myh->type);
477 myh->type = ELF_ST_INFO (bind, STT_ARM_TFUNC);
478
479 free (tmp_name);
480
481 #define CHANGE_TO_ARM "__%s_change_to_arm"
482 #define BACK_FROM_ARM "__%s_back_from_arm"
483
484 /* Allocate another symbol to mark where we switch to Arm mode. */
485 tmp_name = (char *) bfd_malloc (strlen (name) + strlen (CHANGE_TO_ARM) + 1);
486
487 BFD_ASSERT (tmp_name);
488
489 sprintf (tmp_name, CHANGE_TO_ARM, name);
490
491 myh = NULL;
492
493 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner, tmp_name,
494 BSF_LOCAL, s, hash_table->thumb_glue_size + 4,
495 NULL, true, false,
496 (struct bfd_link_hash_entry **) &myh);
497
498 free (tmp_name);
499
500 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
501
502 return;
503 }
504
505 /* Select a BFD to be used to hold the sections used by the glue code.
506 This function is called from the linker scripts in ld/emultempl/
507 {armelf/pe}.em */
508
509 boolean
510 bfd_elf32_arm_get_bfd_for_interworking (abfd, info)
511 bfd *abfd;
512 struct bfd_link_info *info;
513 {
514 struct elf32_arm_link_hash_table *globals;
515 flagword flags;
516 asection *sec;
517
518 /* If we are only performing a partial link do not bother
519 getting a bfd to hold the glue. */
520 if (info->relocateable)
521 return true;
522
523 globals = elf32_arm_hash_table (info);
524
525 BFD_ASSERT (globals != NULL);
526
527 if (globals->bfd_of_glue_owner != NULL)
528 return true;
529
530 sec = bfd_get_section_by_name (abfd, ARM2THUMB_GLUE_SECTION_NAME);
531
532 if (sec == NULL)
533 {
534 /* Note: we do not include the flag SEC_LINKER_CREATED, as this
535 will prevent elf_link_input_bfd() from processing the contents
536 of this section. */
537 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
538
539 sec = bfd_make_section (abfd, ARM2THUMB_GLUE_SECTION_NAME);
540
541 if (sec == NULL
542 || !bfd_set_section_flags (abfd, sec, flags)
543 || !bfd_set_section_alignment (abfd, sec, 2))
544 return false;
545
546 /* Set the gc mark to prevent the section from being removed by garbage
547 collection, despite the fact that no relocs refer to this section. */
548 sec->gc_mark = 1;
549 }
550
551 sec = bfd_get_section_by_name (abfd, THUMB2ARM_GLUE_SECTION_NAME);
552
553 if (sec == NULL)
554 {
555 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
556
557 sec = bfd_make_section (abfd, THUMB2ARM_GLUE_SECTION_NAME);
558
559 if (sec == NULL
560 || !bfd_set_section_flags (abfd, sec, flags)
561 || !bfd_set_section_alignment (abfd, sec, 2))
562 return false;
563
564 sec->gc_mark = 1;
565 }
566
567 /* Save the bfd for later use. */
568 globals->bfd_of_glue_owner = abfd;
569
570 return true;
571 }
572
573 boolean
574 bfd_elf32_arm_process_before_allocation (abfd, link_info, no_pipeline_knowledge)
575 bfd *abfd;
576 struct bfd_link_info *link_info;
577 int no_pipeline_knowledge;
578 {
579 Elf_Internal_Shdr *symtab_hdr;
580 Elf_Internal_Rela *free_relocs = NULL;
581 Elf_Internal_Rela *irel, *irelend;
582 bfd_byte *contents = NULL;
583 bfd_byte *free_contents = NULL;
584 Elf32_External_Sym *extsyms = NULL;
585 Elf32_External_Sym *free_extsyms = NULL;
586
587 asection *sec;
588 struct elf32_arm_link_hash_table *globals;
589
590 /* If we are only performing a partial link do not bother
591 to construct any glue. */
592 if (link_info->relocateable)
593 return true;
594
595 /* Here we have a bfd that is to be included on the link. We have a hook
596 to do reloc rummaging, before section sizes are nailed down. */
597 globals = elf32_arm_hash_table (link_info);
598
599 BFD_ASSERT (globals != NULL);
600 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
601
602 globals->no_pipeline_knowledge = no_pipeline_knowledge;
603
604 /* Rummage around all the relocs and map the glue vectors. */
605 sec = abfd->sections;
606
607 if (sec == NULL)
608 return true;
609
610 for (; sec != NULL; sec = sec->next)
611 {
612 if (sec->reloc_count == 0)
613 continue;
614
615 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
616
617 /* Load the relocs. */
618 irel = (_bfd_elf32_link_read_relocs (abfd, sec, (PTR) NULL,
619 (Elf_Internal_Rela *) NULL, false));
620
621 BFD_ASSERT (irel != 0);
622
623 irelend = irel + sec->reloc_count;
624 for (; irel < irelend; irel++)
625 {
626 long r_type;
627 unsigned long r_index;
628
629 struct elf_link_hash_entry *h;
630
631 r_type = ELF32_R_TYPE (irel->r_info);
632 r_index = ELF32_R_SYM (irel->r_info);
633
634 /* These are the only relocation types we care about. */
635 if ( r_type != R_ARM_PC24
636 && r_type != R_ARM_THM_PC22)
637 continue;
638
639 /* Get the section contents if we haven't done so already. */
640 if (contents == NULL)
641 {
642 /* Get cached copy if it exists. */
643 if (elf_section_data (sec)->this_hdr.contents != NULL)
644 contents = elf_section_data (sec)->this_hdr.contents;
645 else
646 {
647 /* Go get them off disk. */
648 contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
649 if (contents == NULL)
650 goto error_return;
651
652 free_contents = contents;
653
654 if (!bfd_get_section_contents (abfd, sec, contents,
655 (file_ptr) 0, sec->_raw_size))
656 goto error_return;
657 }
658 }
659
660 /* Read this BFD's symbols if we haven't done so already. */
661 if (extsyms == NULL)
662 {
663 /* Get cached copy if it exists. */
664 if (symtab_hdr->contents != NULL)
665 extsyms = (Elf32_External_Sym *) symtab_hdr->contents;
666 else
667 {
668 /* Go get them off disk. */
669 extsyms = ((Elf32_External_Sym *)
670 bfd_malloc (symtab_hdr->sh_size));
671 if (extsyms == NULL)
672 goto error_return;
673
674 free_extsyms = extsyms;
675
676 if (bfd_seek (abfd, symtab_hdr->sh_offset, SEEK_SET) != 0
677 || (bfd_read (extsyms, 1, symtab_hdr->sh_size, abfd)
678 != symtab_hdr->sh_size))
679 goto error_return;
680 }
681 }
682
683 /* If the relocation is not against a symbol it cannot concern us. */
684 h = NULL;
685
686 /* We don't care about local symbols. */
687 if (r_index < symtab_hdr->sh_info)
688 continue;
689
690 /* This is an external symbol. */
691 r_index -= symtab_hdr->sh_info;
692 h = (struct elf_link_hash_entry *)
693 elf_sym_hashes (abfd)[r_index];
694
695 /* If the relocation is against a static symbol it must be within
696 the current section and so cannot be a cross ARM/Thumb relocation. */
697 if (h == NULL)
698 continue;
699
700 switch (r_type)
701 {
702 case R_ARM_PC24:
703 /* This one is a call from arm code. We need to look up
704 the target of the call. If it is a thumb target, we
705 insert glue. */
706 if (ELF_ST_TYPE(h->type) == STT_ARM_TFUNC)
707 record_arm_to_thumb_glue (link_info, h);
708 break;
709
710 case R_ARM_THM_PC22:
711 /* This one is a call from thumb code. We look
712 up the target of the call. If it is not a thumb
713 target, we insert glue. */
714 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC)
715 record_thumb_to_arm_glue (link_info, h);
716 break;
717
718 default:
719 break;
720 }
721 }
722 }
723
724 return true;
725
726 error_return:
727 if (free_relocs != NULL)
728 free (free_relocs);
729 if (free_contents != NULL)
730 free (free_contents);
731 if (free_extsyms != NULL)
732 free (free_extsyms);
733
734 return false;
735 }
736
737 /* The thumb form of a long branch is a bit finicky, because the offset
738 encoding is split over two fields, each in it's own instruction. They
739 can occur in any order. So given a thumb form of long branch, and an
740 offset, insert the offset into the thumb branch and return finished
741 instruction.
742
743 It takes two thumb instructions to encode the target address. Each has
744 11 bits to invest. The upper 11 bits are stored in one (identifed by
745 H-0.. see below), the lower 11 bits are stored in the other (identified
746 by H-1).
747
748 Combine together and shifted left by 1 (it's a half word address) and
749 there you have it.
750
751 Op: 1111 = F,
752 H-0, upper address-0 = 000
753 Op: 1111 = F,
754 H-1, lower address-0 = 800
755
756 They can be ordered either way, but the arm tools I've seen always put
757 the lower one first. It probably doesn't matter. krk@cygnus.com
758
759 XXX: Actually the order does matter. The second instruction (H-1)
760 moves the computed address into the PC, so it must be the second one
761 in the sequence. The problem, however is that whilst little endian code
762 stores the instructions in HI then LOW order, big endian code does the
763 reverse. nickc@cygnus.com. */
764
765 #define LOW_HI_ORDER 0xF800F000
766 #define HI_LOW_ORDER 0xF000F800
767
768 static insn32
769 insert_thumb_branch (br_insn, rel_off)
770 insn32 br_insn;
771 int rel_off;
772 {
773 unsigned int low_bits;
774 unsigned int high_bits;
775
776 BFD_ASSERT ((rel_off & 1) != 1);
777
778 rel_off >>= 1; /* Half word aligned address. */
779 low_bits = rel_off & 0x000007FF; /* The bottom 11 bits. */
780 high_bits = (rel_off >> 11) & 0x000007FF; /* The top 11 bits. */
781
782 if ((br_insn & LOW_HI_ORDER) == LOW_HI_ORDER)
783 br_insn = LOW_HI_ORDER | (low_bits << 16) | high_bits;
784 else if ((br_insn & HI_LOW_ORDER) == HI_LOW_ORDER)
785 br_insn = HI_LOW_ORDER | (high_bits << 16) | low_bits;
786 else
787 /* FIXME: abort is probably not the right call. krk@cygnus.com */
788 abort (); /* error - not a valid branch instruction form. */
789
790 return br_insn;
791 }
792
793 /* Thumb code calling an ARM function. */
794
795 static int
796 elf32_thumb_to_arm_stub (info, name, input_bfd, output_bfd, input_section,
797 hit_data, sym_sec, offset, addend, val)
798 struct bfd_link_info * info;
799 const char * name;
800 bfd * input_bfd;
801 bfd * output_bfd;
802 asection * input_section;
803 bfd_byte * hit_data;
804 asection * sym_sec;
805 bfd_vma offset;
806 bfd_signed_vma addend;
807 bfd_vma val;
808 {
809 asection * s = 0;
810 long int my_offset;
811 unsigned long int tmp;
812 long int ret_offset;
813 struct elf_link_hash_entry * myh;
814 struct elf32_arm_link_hash_table * globals;
815
816 myh = find_thumb_glue (info, name, input_bfd);
817 if (myh == NULL)
818 return false;
819
820 globals = elf32_arm_hash_table (info);
821
822 BFD_ASSERT (globals != NULL);
823 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
824
825 my_offset = myh->root.u.def.value;
826
827 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
828 THUMB2ARM_GLUE_SECTION_NAME);
829
830 BFD_ASSERT (s != NULL);
831 BFD_ASSERT (s->contents != NULL);
832 BFD_ASSERT (s->output_section != NULL);
833
834 if ((my_offset & 0x01) == 0x01)
835 {
836 if (sym_sec != NULL
837 && sym_sec->owner != NULL
838 && !INTERWORK_FLAG (sym_sec->owner))
839 {
840 _bfd_error_handler
841 (_("%s(%s): warning: interworking not enabled."),
842 bfd_get_filename (sym_sec->owner), name);
843 _bfd_error_handler
844 (_(" first occurrence: %s: thumb call to arm"),
845 bfd_get_filename (input_bfd));
846
847 return false;
848 }
849
850 --my_offset;
851 myh->root.u.def.value = my_offset;
852
853 bfd_put_16 (output_bfd, t2a1_bx_pc_insn,
854 s->contents + my_offset);
855
856 bfd_put_16 (output_bfd, t2a2_noop_insn,
857 s->contents + my_offset + 2);
858
859 ret_offset =
860 /* Address of destination of the stub. */
861 ((bfd_signed_vma) val)
862 - ((bfd_signed_vma)
863 /* Offset from the start of the current section to the start of the stubs. */
864 (s->output_offset
865 /* Offset of the start of this stub from the start of the stubs. */
866 + my_offset
867 /* Address of the start of the current section. */
868 + s->output_section->vma)
869 /* The branch instruction is 4 bytes into the stub. */
870 + 4
871 /* ARM branches work from the pc of the instruction + 8. */
872 + 8);
873
874 bfd_put_32 (output_bfd,
875 t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
876 s->contents + my_offset + 4);
877 }
878
879 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
880
881 /* Now go back and fix up the original BL insn to point
882 to here. */
883 ret_offset =
884 s->output_offset
885 + my_offset
886 - (input_section->output_offset
887 + offset + addend)
888 - 8;
889
890 tmp = bfd_get_32 (input_bfd, hit_data
891 - input_section->vma);
892
893 bfd_put_32 (output_bfd,
894 insert_thumb_branch (tmp, ret_offset),
895 hit_data - input_section->vma);
896
897 return true;
898 }
899
900 /* Arm code calling a Thumb function. */
901
902 static int
903 elf32_arm_to_thumb_stub (info, name, input_bfd, output_bfd, input_section,
904 hit_data, sym_sec, offset, addend, val)
905 struct bfd_link_info * info;
906 const char * name;
907 bfd * input_bfd;
908 bfd * output_bfd;
909 asection * input_section;
910 bfd_byte * hit_data;
911 asection * sym_sec;
912 bfd_vma offset;
913 bfd_signed_vma addend;
914 bfd_vma val;
915 {
916 unsigned long int tmp;
917 long int my_offset;
918 asection * s;
919 long int ret_offset;
920 struct elf_link_hash_entry * myh;
921 struct elf32_arm_link_hash_table * globals;
922
923 myh = find_arm_glue (info, name, input_bfd);
924 if (myh == NULL)
925 return false;
926
927 globals = elf32_arm_hash_table (info);
928
929 BFD_ASSERT (globals != NULL);
930 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
931
932 my_offset = myh->root.u.def.value;
933 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
934 ARM2THUMB_GLUE_SECTION_NAME);
935 BFD_ASSERT (s != NULL);
936 BFD_ASSERT (s->contents != NULL);
937 BFD_ASSERT (s->output_section != NULL);
938
939 if ((my_offset & 0x01) == 0x01)
940 {
941 if (sym_sec != NULL
942 && sym_sec->owner != NULL
943 && !INTERWORK_FLAG (sym_sec->owner))
944 {
945 _bfd_error_handler
946 (_("%s(%s): warning: interworking not enabled."),
947 bfd_get_filename (sym_sec->owner), name);
948 _bfd_error_handler
949 (_(" first occurrence: %s: arm call to thumb"),
950 bfd_get_filename (input_bfd));
951 }
952
953 --my_offset;
954 myh->root.u.def.value = my_offset;
955
956 bfd_put_32 (output_bfd, a2t1_ldr_insn,
957 s->contents + my_offset);
958
959 bfd_put_32 (output_bfd, a2t2_bx_r12_insn,
960 s->contents + my_offset + 4);
961
962 /* It's a thumb address. Add the low order bit. */
963 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
964 s->contents + my_offset + 8);
965 }
966
967 BFD_ASSERT (my_offset <= globals->arm_glue_size);
968
969 tmp = bfd_get_32 (input_bfd, hit_data);
970 tmp = tmp & 0xFF000000;
971
972 /* Somehow these are both 4 too far, so subtract 8. */
973 ret_offset = s->output_offset
974 + my_offset
975 + s->output_section->vma
976 - (input_section->output_offset
977 + input_section->output_section->vma
978 + offset + addend)
979 - 8;
980
981 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
982
983 bfd_put_32 (output_bfd, tmp, hit_data
984 - input_section->vma);
985
986 return true;
987 }
988
989 /* Perform a relocation as part of a final link. */
990
991 static bfd_reloc_status_type
992 elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
993 input_section, contents, rel, value,
994 info, sym_sec, sym_name, sym_flags, h)
995 reloc_howto_type * howto;
996 bfd * input_bfd;
997 bfd * output_bfd;
998 asection * input_section;
999 bfd_byte * contents;
1000 Elf_Internal_Rela * rel;
1001 bfd_vma value;
1002 struct bfd_link_info * info;
1003 asection * sym_sec;
1004 const char * sym_name;
1005 unsigned char sym_flags;
1006 struct elf_link_hash_entry * h;
1007 {
1008 unsigned long r_type = howto->type;
1009 unsigned long r_symndx;
1010 bfd_byte * hit_data = contents + rel->r_offset;
1011 bfd * dynobj = NULL;
1012 Elf_Internal_Shdr * symtab_hdr;
1013 struct elf_link_hash_entry ** sym_hashes;
1014 bfd_vma * local_got_offsets;
1015 asection * sgot = NULL;
1016 asection * splt = NULL;
1017 asection * sreloc = NULL;
1018 bfd_vma addend;
1019 bfd_signed_vma signed_addend;
1020 struct elf32_arm_link_hash_table * globals;
1021
1022 globals = elf32_arm_hash_table (info);
1023
1024 dynobj = elf_hash_table (info)->dynobj;
1025 if (dynobj)
1026 {
1027 sgot = bfd_get_section_by_name (dynobj, ".got");
1028 splt = bfd_get_section_by_name (dynobj, ".plt");
1029 }
1030 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1031 sym_hashes = elf_sym_hashes (input_bfd);
1032 local_got_offsets = elf_local_got_offsets (input_bfd);
1033 r_symndx = ELF32_R_SYM (rel->r_info);
1034
1035 #ifdef USE_REL
1036 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
1037
1038 if (addend & ((howto->src_mask + 1) >> 1))
1039 {
1040 signed_addend = -1;
1041 signed_addend &= ~ howto->src_mask;
1042 signed_addend |= addend;
1043 }
1044 else
1045 signed_addend = addend;
1046 #else
1047 addend = signed_addend = rel->r_addend;
1048 #endif
1049
1050 switch (r_type)
1051 {
1052 case R_ARM_NONE:
1053 return bfd_reloc_ok;
1054
1055 case R_ARM_PC24:
1056 case R_ARM_ABS32:
1057 case R_ARM_REL32:
1058 #ifndef OLD_ARM_ABI
1059 case R_ARM_XPC25:
1060 #endif
1061 /* When generating a shared object, these relocations are copied
1062 into the output file to be resolved at run time. */
1063 if (info->shared
1064 && (r_type != R_ARM_PC24
1065 || (h != NULL
1066 && h->dynindx != -1
1067 && (! info->symbolic
1068 || (h->elf_link_hash_flags
1069 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1070 {
1071 Elf_Internal_Rel outrel;
1072 boolean skip, relocate;
1073
1074 if (sreloc == NULL)
1075 {
1076 const char * name;
1077
1078 name = (bfd_elf_string_from_elf_section
1079 (input_bfd,
1080 elf_elfheader (input_bfd)->e_shstrndx,
1081 elf_section_data (input_section)->rel_hdr.sh_name));
1082 if (name == NULL)
1083 return bfd_reloc_notsupported;
1084
1085 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
1086 && strcmp (bfd_get_section_name (input_bfd,
1087 input_section),
1088 name + 4) == 0);
1089
1090 sreloc = bfd_get_section_by_name (dynobj, name);
1091 BFD_ASSERT (sreloc != NULL);
1092 }
1093
1094 skip = false;
1095
1096 if (elf_section_data (input_section)->stab_info == NULL)
1097 outrel.r_offset = rel->r_offset;
1098 else
1099 {
1100 bfd_vma off;
1101
1102 off = (_bfd_stab_section_offset
1103 (output_bfd, &elf_hash_table (info)->stab_info,
1104 input_section,
1105 & elf_section_data (input_section)->stab_info,
1106 rel->r_offset));
1107 if (off == (bfd_vma) -1)
1108 skip = true;
1109 outrel.r_offset = off;
1110 }
1111
1112 outrel.r_offset += (input_section->output_section->vma
1113 + input_section->output_offset);
1114
1115 if (skip)
1116 {
1117 memset (&outrel, 0, sizeof outrel);
1118 relocate = false;
1119 }
1120 else if (r_type == R_ARM_PC24)
1121 {
1122 BFD_ASSERT (h != NULL && h->dynindx != -1);
1123 if ((input_section->flags & SEC_ALLOC) != 0)
1124 relocate = false;
1125 else
1126 relocate = true;
1127 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_PC24);
1128 }
1129 else
1130 {
1131 if (h == NULL
1132 || ((info->symbolic || h->dynindx == -1)
1133 && (h->elf_link_hash_flags
1134 & ELF_LINK_HASH_DEF_REGULAR) != 0))
1135 {
1136 relocate = true;
1137 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1138 }
1139 else
1140 {
1141 BFD_ASSERT (h->dynindx != -1);
1142 if ((input_section->flags & SEC_ALLOC) != 0)
1143 relocate = false;
1144 else
1145 relocate = true;
1146 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_ABS32);
1147 }
1148 }
1149
1150 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1151 (((Elf32_External_Rel *)
1152 sreloc->contents)
1153 + sreloc->reloc_count));
1154 ++sreloc->reloc_count;
1155
1156 /* If this reloc is against an external symbol, we do not want to
1157 fiddle with the addend. Otherwise, we need to include the symbol
1158 value so that it becomes an addend for the dynamic reloc. */
1159 if (! relocate)
1160 return bfd_reloc_ok;
1161
1162 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1163 contents, rel->r_offset, value,
1164 (bfd_vma) 0);
1165 }
1166 else switch (r_type)
1167 {
1168 #ifndef OLD_ARM_ABI
1169 case R_ARM_XPC25: /* Arm BLX instruction. */
1170 #endif
1171 case R_ARM_PC24: /* Arm B/BL instruction */
1172 #ifndef OLD_ARM_ABI
1173 if (r_type == R_ARM_XPC25)
1174 {
1175 /* Check for Arm calling Arm function. */
1176 /* FIXME: Should we translate the instruction into a BL
1177 instruction instead ? */
1178 if (sym_flags != STT_ARM_TFUNC)
1179 _bfd_error_handler (_("\
1180 %s: Warning: Arm BLX instruction targets Arm function '%s'."),
1181 bfd_get_filename (input_bfd),
1182 h ? h->root.root.string : "(local)");
1183 }
1184 else
1185 #endif
1186 {
1187 /* Check for Arm calling Thumb function. */
1188 if (sym_flags == STT_ARM_TFUNC)
1189 {
1190 elf32_arm_to_thumb_stub (info, sym_name, input_bfd, output_bfd,
1191 input_section, hit_data, sym_sec, rel->r_offset,
1192 signed_addend, value);
1193 return bfd_reloc_ok;
1194 }
1195 }
1196
1197 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1198 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0)
1199 {
1200 /* The old way of doing things. Trearing the addend as a
1201 byte sized field and adding in the pipeline offset. */
1202 value -= (input_section->output_section->vma
1203 + input_section->output_offset);
1204 value -= rel->r_offset;
1205 value += addend;
1206
1207 if (! globals->no_pipeline_knowledge)
1208 value -= 8;
1209 }
1210 else
1211 {
1212 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
1213 where:
1214 S is the address of the symbol in the relocation.
1215 P is address of the instruction being relocated.
1216 A is the addend (extracted from the instruction) in bytes.
1217
1218 S is held in 'value'.
1219 P is the base address of the section containing the instruction
1220 plus the offset of the reloc into that section, ie:
1221 (input_section->output_section->vma +
1222 input_section->output_offset +
1223 rel->r_offset).
1224 A is the addend, converted into bytes, ie:
1225 (signed_addend * 4)
1226
1227 Note: None of these operations have knowledge of the pipeline
1228 size of the processor, thus it is up to the assembler to encode
1229 this information into the addend. */
1230 value -= (input_section->output_section->vma
1231 + input_section->output_offset);
1232 value -= rel->r_offset;
1233 value += (signed_addend << howto->size);
1234
1235 /* Previous versions of this code also used to add in the pipeline
1236 offset here. This is wrong because the linker is not supposed
1237 to know about such things, and one day it might change. In order
1238 to support old binaries that need the old behaviour however, so
1239 we attempt to detect which ABI was used to create the reloc. */
1240 if (! globals->no_pipeline_knowledge)
1241 {
1242 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form */
1243
1244 i_ehdrp = elf_elfheader (input_bfd);
1245
1246 if (i_ehdrp->e_ident[EI_OSABI] == 0)
1247 value -= 8;
1248 }
1249 }
1250
1251 signed_addend = value;
1252 signed_addend >>= howto->rightshift;
1253
1254 /* It is not an error for an undefined weak reference to be
1255 out of range. Any program that branches to such a symbol
1256 is going to crash anyway, so there is no point worrying
1257 about getting the destination exactly right. */
1258 if (! h || h->root.type != bfd_link_hash_undefweak)
1259 {
1260 /* Perform a signed range check. */
1261 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
1262 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
1263 return bfd_reloc_overflow;
1264 }
1265
1266 #ifndef OLD_ARM_ABI
1267 /* If necessary set the H bit in the BLX instruction. */
1268 if (r_type == R_ARM_XPC25 && ((value & 2) == 2))
1269 value = (signed_addend & howto->dst_mask)
1270 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask))
1271 | (1 << 24);
1272 else
1273 #endif
1274 value = (signed_addend & howto->dst_mask)
1275 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
1276 break;
1277
1278 case R_ARM_ABS32:
1279 value += addend;
1280 if (sym_flags == STT_ARM_TFUNC)
1281 value |= 1;
1282 break;
1283
1284 case R_ARM_REL32:
1285 value -= (input_section->output_section->vma
1286 + input_section->output_offset);
1287 value += addend;
1288 break;
1289 }
1290
1291 bfd_put_32 (input_bfd, value, hit_data);
1292 return bfd_reloc_ok;
1293
1294 case R_ARM_ABS8:
1295 value += addend;
1296 if ((long) value > 0x7f || (long) value < -0x80)
1297 return bfd_reloc_overflow;
1298
1299 bfd_put_8 (input_bfd, value, hit_data);
1300 return bfd_reloc_ok;
1301
1302 case R_ARM_ABS16:
1303 value += addend;
1304
1305 if ((long) value > 0x7fff || (long) value < -0x8000)
1306 return bfd_reloc_overflow;
1307
1308 bfd_put_16 (input_bfd, value, hit_data);
1309 return bfd_reloc_ok;
1310
1311 case R_ARM_ABS12:
1312 /* Support ldr and str instruction for the arm */
1313 /* Also thumb b (unconditional branch). ??? Really? */
1314 value += addend;
1315
1316 if ((long) value > 0x7ff || (long) value < -0x800)
1317 return bfd_reloc_overflow;
1318
1319 value |= (bfd_get_32 (input_bfd, hit_data) & 0xfffff000);
1320 bfd_put_32 (input_bfd, value, hit_data);
1321 return bfd_reloc_ok;
1322
1323 case R_ARM_THM_ABS5:
1324 /* Support ldr and str instructions for the thumb. */
1325 #ifdef USE_REL
1326 /* Need to refetch addend. */
1327 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
1328 /* ??? Need to determine shift amount from operand size. */
1329 addend >>= howto->rightshift;
1330 #endif
1331 value += addend;
1332
1333 /* ??? Isn't value unsigned? */
1334 if ((long) value > 0x1f || (long) value < -0x10)
1335 return bfd_reloc_overflow;
1336
1337 /* ??? Value needs to be properly shifted into place first. */
1338 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
1339 bfd_put_16 (input_bfd, value, hit_data);
1340 return bfd_reloc_ok;
1341
1342 #ifndef OLD_ARM_ABI
1343 case R_ARM_THM_XPC22:
1344 #endif
1345 case R_ARM_THM_PC22:
1346 /* Thumb BL (branch long instruction). */
1347 {
1348 bfd_vma relocation;
1349 boolean overflow = false;
1350 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
1351 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
1352 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
1353 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
1354 bfd_vma check;
1355 bfd_signed_vma signed_check;
1356
1357 #ifdef USE_REL
1358 /* Need to refetch the addend and squish the two 11 bit pieces
1359 together. */
1360 {
1361 bfd_vma upper = upper_insn & 0x7ff;
1362 bfd_vma lower = lower_insn & 0x7ff;
1363 upper = (upper ^ 0x400) - 0x400; /* Sign extend. */
1364 addend = (upper << 12) | (lower << 1);
1365 signed_addend = addend;
1366 }
1367 #endif
1368 #ifndef OLD_ARM_ABI
1369 if (r_type == R_ARM_THM_XPC22)
1370 {
1371 /* Check for Thumb to Thumb call. */
1372 /* FIXME: Should we translate the instruction into a BL
1373 instruction instead ? */
1374 if (sym_flags == STT_ARM_TFUNC)
1375 _bfd_error_handler (_("\
1376 %s: Warning: Thumb BLX instruction targets thumb function '%s'."),
1377 bfd_get_filename (input_bfd),
1378 h ? h->root.root.string : "(local)");
1379 }
1380 else
1381 #endif
1382 {
1383 /* If it is not a call to Thumb, assume call to Arm.
1384 If it is a call relative to a section name, then it is not a
1385 function call at all, but rather a long jump. */
1386 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION)
1387 {
1388 if (elf32_thumb_to_arm_stub
1389 (info, sym_name, input_bfd, output_bfd, input_section,
1390 hit_data, sym_sec, rel->r_offset, signed_addend, value))
1391 return bfd_reloc_ok;
1392 else
1393 return bfd_reloc_dangerous;
1394 }
1395 }
1396
1397 relocation = value + signed_addend;
1398
1399 relocation -= (input_section->output_section->vma
1400 + input_section->output_offset
1401 + rel->r_offset);
1402
1403 if (! globals->no_pipeline_knowledge)
1404 {
1405 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form. */
1406
1407 i_ehdrp = elf_elfheader (input_bfd);
1408
1409 /* Previous versions of this code also used to add in the pipline
1410 offset here. This is wrong because the linker is not supposed
1411 to know about such things, and one day it might change. In order
1412 to support old binaries that need the old behaviour however, so
1413 we attempt to detect which ABI was used to create the reloc. */
1414 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1415 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0
1416 || i_ehdrp->e_ident[EI_OSABI] == 0)
1417 relocation += 4;
1418 }
1419
1420 check = relocation >> howto->rightshift;
1421
1422 /* If this is a signed value, the rightshift just dropped
1423 leading 1 bits (assuming twos complement). */
1424 if ((bfd_signed_vma) relocation >= 0)
1425 signed_check = check;
1426 else
1427 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
1428
1429 /* Assumes two's complement. */
1430 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
1431 overflow = true;
1432
1433 /* Put RELOCATION back into the insn. */
1434 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 12) & 0x7ff);
1435 lower_insn = (lower_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 1) & 0x7ff);
1436
1437 /* Put the relocated value back in the object file: */
1438 bfd_put_16 (input_bfd, upper_insn, hit_data);
1439 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
1440
1441 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
1442 }
1443 break;
1444
1445 case R_ARM_GNU_VTINHERIT:
1446 case R_ARM_GNU_VTENTRY:
1447 return bfd_reloc_ok;
1448
1449 case R_ARM_COPY:
1450 return bfd_reloc_notsupported;
1451
1452 case R_ARM_GLOB_DAT:
1453 return bfd_reloc_notsupported;
1454
1455 case R_ARM_JUMP_SLOT:
1456 return bfd_reloc_notsupported;
1457
1458 case R_ARM_RELATIVE:
1459 return bfd_reloc_notsupported;
1460
1461 case R_ARM_GOTOFF:
1462 /* Relocation is relative to the start of the
1463 global offset table. */
1464
1465 BFD_ASSERT (sgot != NULL);
1466 if (sgot == NULL)
1467 return bfd_reloc_notsupported;
1468
1469 /* Note that sgot->output_offset is not involved in this
1470 calculation. We always want the start of .got. If we
1471 define _GLOBAL_OFFSET_TABLE in a different way, as is
1472 permitted by the ABI, we might have to change this
1473 calculation. */
1474 value -= sgot->output_section->vma;
1475 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1476 contents, rel->r_offset, value,
1477 (bfd_vma) 0);
1478
1479 case R_ARM_GOTPC:
1480 /* Use global offset table as symbol value. */
1481 BFD_ASSERT (sgot != NULL);
1482
1483 if (sgot == NULL)
1484 return bfd_reloc_notsupported;
1485
1486 value = sgot->output_section->vma;
1487 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1488 contents, rel->r_offset, value,
1489 (bfd_vma) 0);
1490
1491 case R_ARM_GOT32:
1492 /* Relocation is to the entry for this symbol in the
1493 global offset table. */
1494 if (sgot == NULL)
1495 return bfd_reloc_notsupported;
1496
1497 if (h != NULL)
1498 {
1499 bfd_vma off;
1500
1501 off = h->got.offset;
1502 BFD_ASSERT (off != (bfd_vma) -1);
1503
1504 if (!elf_hash_table (info)->dynamic_sections_created ||
1505 (info->shared && (info->symbolic || h->dynindx == -1)
1506 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1507 {
1508 /* This is actually a static link, or it is a -Bsymbolic link
1509 and the symbol is defined locally. We must initialize this
1510 entry in the global offset table. Since the offset must
1511 always be a multiple of 4, we use the least significant bit
1512 to record whether we have initialized it already.
1513
1514 When doing a dynamic link, we create a .rel.got relocation
1515 entry to initialize the value. This is done in the
1516 finish_dynamic_symbol routine. */
1517 if ((off & 1) != 0)
1518 off &= ~1;
1519 else
1520 {
1521 bfd_put_32 (output_bfd, value, sgot->contents + off);
1522 h->got.offset |= 1;
1523 }
1524 }
1525
1526 value = sgot->output_offset + off;
1527 }
1528 else
1529 {
1530 bfd_vma off;
1531
1532 BFD_ASSERT (local_got_offsets != NULL &&
1533 local_got_offsets[r_symndx] != (bfd_vma) -1);
1534
1535 off = local_got_offsets[r_symndx];
1536
1537 /* The offset must always be a multiple of 4. We use the
1538 least significant bit to record whether we have already
1539 generated the necessary reloc. */
1540 if ((off & 1) != 0)
1541 off &= ~1;
1542 else
1543 {
1544 bfd_put_32 (output_bfd, value, sgot->contents + off);
1545
1546 if (info->shared)
1547 {
1548 asection * srelgot;
1549 Elf_Internal_Rel outrel;
1550
1551 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
1552 BFD_ASSERT (srelgot != NULL);
1553
1554 outrel.r_offset = (sgot->output_section->vma
1555 + sgot->output_offset
1556 + off);
1557 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1558 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1559 (((Elf32_External_Rel *)
1560 srelgot->contents)
1561 + srelgot->reloc_count));
1562 ++srelgot->reloc_count;
1563 }
1564
1565 local_got_offsets[r_symndx] |= 1;
1566 }
1567
1568 value = sgot->output_offset + off;
1569 }
1570
1571 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1572 contents, rel->r_offset, value,
1573 (bfd_vma) 0);
1574
1575 case R_ARM_PLT32:
1576 /* Relocation is to the entry for this symbol in the
1577 procedure linkage table. */
1578
1579 /* Resolve a PLT32 reloc against a local symbol directly,
1580 without using the procedure linkage table. */
1581 if (h == NULL)
1582 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1583 contents, rel->r_offset, value,
1584 (bfd_vma) 0);
1585
1586 if (h->plt.offset == (bfd_vma) -1)
1587 /* We didn't make a PLT entry for this symbol. This
1588 happens when statically linking PIC code, or when
1589 using -Bsymbolic. */
1590 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1591 contents, rel->r_offset, value,
1592 (bfd_vma) 0);
1593
1594 BFD_ASSERT(splt != NULL);
1595 if (splt == NULL)
1596 return bfd_reloc_notsupported;
1597
1598 value = (splt->output_section->vma
1599 + splt->output_offset
1600 + h->plt.offset);
1601 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1602 contents, rel->r_offset, value,
1603 (bfd_vma) 0);
1604
1605 case R_ARM_SBREL32:
1606 return bfd_reloc_notsupported;
1607
1608 case R_ARM_AMP_VCALL9:
1609 return bfd_reloc_notsupported;
1610
1611 case R_ARM_RSBREL32:
1612 return bfd_reloc_notsupported;
1613
1614 case R_ARM_THM_RPC22:
1615 return bfd_reloc_notsupported;
1616
1617 case R_ARM_RREL32:
1618 return bfd_reloc_notsupported;
1619
1620 case R_ARM_RABS32:
1621 return bfd_reloc_notsupported;
1622
1623 case R_ARM_RPC24:
1624 return bfd_reloc_notsupported;
1625
1626 case R_ARM_RBASE:
1627 return bfd_reloc_notsupported;
1628
1629 default:
1630 return bfd_reloc_notsupported;
1631 }
1632 }
1633
1634 #ifdef USE_REL
1635 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
1636 static void
1637 arm_add_to_rel (abfd, address, howto, increment)
1638 bfd * abfd;
1639 bfd_byte * address;
1640 reloc_howto_type * howto;
1641 bfd_signed_vma increment;
1642 {
1643 bfd_signed_vma addend;
1644
1645 if (howto->type == R_ARM_THM_PC22)
1646 {
1647 int upper_insn, lower_insn;
1648 int upper, lower;
1649
1650 upper_insn = bfd_get_16 (abfd, address);
1651 lower_insn = bfd_get_16 (abfd, address + 2);
1652 upper = upper_insn & 0x7ff;
1653 lower = lower_insn & 0x7ff;
1654
1655 addend = (upper << 12) | (lower << 1);
1656 addend += increment;
1657 addend >>= 1;
1658
1659 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
1660 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
1661
1662 bfd_put_16 (abfd, upper_insn, address);
1663 bfd_put_16 (abfd, lower_insn, address + 2);
1664 }
1665 else
1666 {
1667 bfd_vma contents;
1668
1669 contents = bfd_get_32 (abfd, address);
1670
1671 /* Get the (signed) value from the instruction. */
1672 addend = contents & howto->src_mask;
1673 if (addend & ((howto->src_mask + 1) >> 1))
1674 {
1675 bfd_signed_vma mask;
1676
1677 mask = -1;
1678 mask &= ~ howto->src_mask;
1679 addend |= mask;
1680 }
1681
1682 /* Add in the increment, (which is a byte value). */
1683 switch (howto->type)
1684 {
1685 default:
1686 addend += increment;
1687 break;
1688
1689 case R_ARM_PC24:
1690 addend <<= howto->size;
1691 addend += increment;
1692
1693 /* Should we check for overflow here ? */
1694
1695 /* Drop any undesired bits. */
1696 addend >>= howto->rightshift;
1697 break;
1698 }
1699
1700 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
1701
1702 bfd_put_32 (abfd, contents, address);
1703 }
1704 }
1705 #endif /* USE_REL */
1706
1707 /* Relocate an ARM ELF section. */
1708 static boolean
1709 elf32_arm_relocate_section (output_bfd, info, input_bfd, input_section,
1710 contents, relocs, local_syms, local_sections)
1711 bfd * output_bfd;
1712 struct bfd_link_info * info;
1713 bfd * input_bfd;
1714 asection * input_section;
1715 bfd_byte * contents;
1716 Elf_Internal_Rela * relocs;
1717 Elf_Internal_Sym * local_syms;
1718 asection ** local_sections;
1719 {
1720 Elf_Internal_Shdr * symtab_hdr;
1721 struct elf_link_hash_entry ** sym_hashes;
1722 Elf_Internal_Rela * rel;
1723 Elf_Internal_Rela * relend;
1724 const char * name;
1725
1726 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1727 sym_hashes = elf_sym_hashes (input_bfd);
1728
1729 rel = relocs;
1730 relend = relocs + input_section->reloc_count;
1731 for (; rel < relend; rel++)
1732 {
1733 int r_type;
1734 reloc_howto_type * howto;
1735 unsigned long r_symndx;
1736 Elf_Internal_Sym * sym;
1737 asection * sec;
1738 struct elf_link_hash_entry * h;
1739 bfd_vma relocation;
1740 bfd_reloc_status_type r;
1741 arelent bfd_reloc;
1742
1743 r_symndx = ELF32_R_SYM (rel->r_info);
1744 r_type = ELF32_R_TYPE (rel->r_info);
1745
1746 if ( r_type == R_ARM_GNU_VTENTRY
1747 || r_type == R_ARM_GNU_VTINHERIT)
1748 continue;
1749
1750 elf32_arm_info_to_howto (input_bfd, & bfd_reloc, rel);
1751 howto = bfd_reloc.howto;
1752
1753 if (info->relocateable)
1754 {
1755 /* This is a relocateable link. We don't have to change
1756 anything, unless the reloc is against a section symbol,
1757 in which case we have to adjust according to where the
1758 section symbol winds up in the output section. */
1759 if (r_symndx < symtab_hdr->sh_info)
1760 {
1761 sym = local_syms + r_symndx;
1762 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1763 {
1764 sec = local_sections[r_symndx];
1765 #ifdef USE_REL
1766 arm_add_to_rel (input_bfd, contents + rel->r_offset,
1767 howto, sec->output_offset + sym->st_value);
1768 #else
1769 rel->r_addend += (sec->output_offset + sym->st_value)
1770 >> howto->rightshift;
1771 #endif
1772 }
1773 }
1774
1775 continue;
1776 }
1777
1778 /* This is a final link. */
1779 h = NULL;
1780 sym = NULL;
1781 sec = NULL;
1782
1783 if (r_symndx < symtab_hdr->sh_info)
1784 {
1785 sym = local_syms + r_symndx;
1786 sec = local_sections[r_symndx];
1787 relocation = (sec->output_section->vma
1788 + sec->output_offset
1789 + sym->st_value);
1790 }
1791 else
1792 {
1793 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1794
1795 while ( h->root.type == bfd_link_hash_indirect
1796 || h->root.type == bfd_link_hash_warning)
1797 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1798
1799 if ( h->root.type == bfd_link_hash_defined
1800 || h->root.type == bfd_link_hash_defweak)
1801 {
1802 int relocation_needed = 1;
1803
1804 sec = h->root.u.def.section;
1805
1806 /* In these cases, we don't need the relocation value.
1807 We check specially because in some obscure cases
1808 sec->output_section will be NULL. */
1809 switch (r_type)
1810 {
1811 case R_ARM_PC24:
1812 case R_ARM_ABS32:
1813 if (info->shared
1814 && (
1815 (!info->symbolic && h->dynindx != -1)
1816 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1817 )
1818 && ((input_section->flags & SEC_ALLOC) != 0
1819 /* DWARF will emit R_ARM_ABS32 relocations in its
1820 sections against symbols defined externally
1821 in shared libraries. We can't do anything
1822 with them here. */
1823 || ((input_section->flags & SEC_DEBUGGING) != 0
1824 && (h->elf_link_hash_flags
1825 & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
1826 )
1827 relocation_needed = 0;
1828 break;
1829
1830 case R_ARM_GOTPC:
1831 relocation_needed = 0;
1832 break;
1833
1834 case R_ARM_GOT32:
1835 if (elf_hash_table(info)->dynamic_sections_created
1836 && (!info->shared
1837 || (!info->symbolic && h->dynindx != -1)
1838 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1839 )
1840 )
1841 relocation_needed = 0;
1842 break;
1843
1844 case R_ARM_PLT32:
1845 if (h->plt.offset != (bfd_vma)-1)
1846 relocation_needed = 0;
1847 break;
1848
1849 default:
1850 if (sec->output_section == NULL)
1851 {
1852 (*_bfd_error_handler)
1853 (_("%s: warning: unresolvable relocation against symbol `%s' from %s section"),
1854 bfd_get_filename (input_bfd), h->root.root.string,
1855 bfd_get_section_name (input_bfd, input_section));
1856 relocation_needed = 0;
1857 }
1858 }
1859
1860 if (relocation_needed)
1861 relocation = h->root.u.def.value
1862 + sec->output_section->vma
1863 + sec->output_offset;
1864 else
1865 relocation = 0;
1866 }
1867 else if (h->root.type == bfd_link_hash_undefweak)
1868 relocation = 0;
1869 else if (info->shared && !info->symbolic
1870 && !info->no_undefined
1871 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1872 relocation = 0;
1873 else
1874 {
1875 if (!((*info->callbacks->undefined_symbol)
1876 (info, h->root.root.string, input_bfd,
1877 input_section, rel->r_offset,
1878 (!info->shared || info->no_undefined
1879 || ELF_ST_VISIBILITY (h->other)))))
1880 return false;
1881 relocation = 0;
1882 }
1883 }
1884
1885 if (h != NULL)
1886 name = h->root.root.string;
1887 else
1888 {
1889 name = (bfd_elf_string_from_elf_section
1890 (input_bfd, symtab_hdr->sh_link, sym->st_name));
1891 if (name == NULL || *name == '\0')
1892 name = bfd_section_name (input_bfd, sec);
1893 }
1894
1895 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
1896 input_section, contents, rel,
1897 relocation, info, sec, name,
1898 (h ? ELF_ST_TYPE (h->type) :
1899 ELF_ST_TYPE (sym->st_info)), h);
1900
1901 if (r != bfd_reloc_ok)
1902 {
1903 const char * msg = (const char *) 0;
1904
1905 switch (r)
1906 {
1907 case bfd_reloc_overflow:
1908 /* If the overflowing reloc was to an undefined symbol,
1909 we have already printed one error message and there
1910 is no point complaining again. */
1911 if ((! h ||
1912 h->root.type != bfd_link_hash_undefined)
1913 && (!((*info->callbacks->reloc_overflow)
1914 (info, name, howto->name, (bfd_vma) 0,
1915 input_bfd, input_section, rel->r_offset))))
1916 return false;
1917 break;
1918
1919 case bfd_reloc_undefined:
1920 if (!((*info->callbacks->undefined_symbol)
1921 (info, name, input_bfd, input_section,
1922 rel->r_offset, true)))
1923 return false;
1924 break;
1925
1926 case bfd_reloc_outofrange:
1927 msg = _("internal error: out of range error");
1928 goto common_error;
1929
1930 case bfd_reloc_notsupported:
1931 msg = _("internal error: unsupported relocation error");
1932 goto common_error;
1933
1934 case bfd_reloc_dangerous:
1935 msg = _("internal error: dangerous error");
1936 goto common_error;
1937
1938 default:
1939 msg = _("internal error: unknown error");
1940 /* fall through */
1941
1942 common_error:
1943 if (!((*info->callbacks->warning)
1944 (info, msg, name, input_bfd, input_section,
1945 rel->r_offset)))
1946 return false;
1947 break;
1948 }
1949 }
1950 }
1951
1952 return true;
1953 }
1954
1955 /* Function to keep ARM specific flags in the ELF header. */
1956 static boolean
1957 elf32_arm_set_private_flags (abfd, flags)
1958 bfd *abfd;
1959 flagword flags;
1960 {
1961 if (elf_flags_init (abfd)
1962 && elf_elfheader (abfd)->e_flags != flags)
1963 {
1964 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
1965 {
1966 if (flags & EF_ARM_INTERWORK)
1967 _bfd_error_handler (_("\
1968 Warning: Not setting interwork flag of %s since it has already been specified as non-interworking"),
1969 bfd_get_filename (abfd));
1970 else
1971 _bfd_error_handler (_("\
1972 Warning: Clearing the interwork flag of %s due to outside request"),
1973 bfd_get_filename (abfd));
1974 }
1975 }
1976 else
1977 {
1978 elf_elfheader (abfd)->e_flags = flags;
1979 elf_flags_init (abfd) = true;
1980 }
1981
1982 return true;
1983 }
1984
1985 /* Copy backend specific data from one object module to another. */
1986
1987 static boolean
1988 elf32_arm_copy_private_bfd_data (ibfd, obfd)
1989 bfd *ibfd;
1990 bfd *obfd;
1991 {
1992 flagword in_flags;
1993 flagword out_flags;
1994
1995 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1996 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1997 return true;
1998
1999 in_flags = elf_elfheader (ibfd)->e_flags;
2000 out_flags = elf_elfheader (obfd)->e_flags;
2001
2002 if (elf_flags_init (obfd)
2003 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
2004 && in_flags != out_flags)
2005 {
2006 /* Cannot mix APCS26 and APCS32 code. */
2007 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2008 return false;
2009
2010 /* Cannot mix float APCS and non-float APCS code. */
2011 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2012 return false;
2013
2014 /* If the src and dest have different interworking flags
2015 then turn off the interworking bit. */
2016 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2017 {
2018 if (out_flags & EF_ARM_INTERWORK)
2019 _bfd_error_handler (_("\
2020 Warning: Clearing the interwork flag in %s because non-interworking code in %s has been linked with it"),
2021 bfd_get_filename (obfd), bfd_get_filename (ibfd));
2022
2023 in_flags &= ~EF_ARM_INTERWORK;
2024 }
2025
2026 /* Likewise for PIC, though don't warn for this case. */
2027 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
2028 in_flags &= ~EF_ARM_PIC;
2029 }
2030
2031 elf_elfheader (obfd)->e_flags = in_flags;
2032 elf_flags_init (obfd) = true;
2033
2034 return true;
2035 }
2036
2037 /* Merge backend specific data from an object file to the output
2038 object file when linking. */
2039
2040 static boolean
2041 elf32_arm_merge_private_bfd_data (ibfd, obfd)
2042 bfd * ibfd;
2043 bfd * obfd;
2044 {
2045 flagword out_flags;
2046 flagword in_flags;
2047 boolean flags_compatible = true;
2048 boolean null_input_bfd = true;
2049 asection *sec;
2050
2051 /* Check if we have the same endianess. */
2052 if (_bfd_generic_verify_endian_match (ibfd, obfd) == false)
2053 return false;
2054
2055 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2056 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2057 return true;
2058
2059 /* The input BFD must have had its flags initialised. */
2060 /* The following seems bogus to me -- The flags are initialized in
2061 the assembler but I don't think an elf_flags_init field is
2062 written into the object. */
2063 /* BFD_ASSERT (elf_flags_init (ibfd)); */
2064
2065 in_flags = elf_elfheader (ibfd)->e_flags;
2066 out_flags = elf_elfheader (obfd)->e_flags;
2067
2068 if (!elf_flags_init (obfd))
2069 {
2070 /* If the input is the default architecture and had the default
2071 flags then do not bother setting the flags for the output
2072 architecture, instead allow future merges to do this. If no
2073 future merges ever set these flags then they will retain their
2074 uninitialised values, which surprise surprise, correspond
2075 to the default values. */
2076 if (bfd_get_arch_info (ibfd)->the_default
2077 && elf_elfheader (ibfd)->e_flags == 0)
2078 return true;
2079
2080 elf_flags_init (obfd) = true;
2081 elf_elfheader (obfd)->e_flags = in_flags;
2082
2083 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2084 && bfd_get_arch_info (obfd)->the_default)
2085 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
2086
2087 return true;
2088 }
2089
2090 /* Identical flags must be compatible. */
2091 if (in_flags == out_flags)
2092 return true;
2093
2094 /* Check to see if the input BFD actually contains any sections.
2095 If not, its flags may not have been initialised either, but it cannot
2096 actually cause any incompatibility. */
2097 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2098 {
2099 /* Ignore synthetic glue sections. */
2100 if (strcmp (sec->name, ".glue_7")
2101 && strcmp (sec->name, ".glue_7t"))
2102 {
2103 null_input_bfd = false;
2104 break;
2105 }
2106 }
2107 if (null_input_bfd)
2108 return true;
2109
2110 /* Complain about various flag mismatches. */
2111 if (EF_ARM_EABI_VERSION (in_flags) != EF_ARM_EABI_VERSION (out_flags))
2112 {
2113 _bfd_error_handler (_("\
2114 Error: %s compiled for EABI version %d, whereas %s is compiled for version %d"),
2115 bfd_get_filename (ibfd),
2116 (in_flags & EF_ARM_EABIMASK) >> 24,
2117 bfd_get_filename (obfd),
2118 (out_flags & EF_ARM_EABIMASK) >> 24);
2119 return false;
2120 }
2121
2122 /* Not sure what needs to be checked for EABI versions >= 1. */
2123 if (EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
2124 {
2125 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2126 {
2127 _bfd_error_handler (_("\
2128 Error: %s compiled for APCS-%d, whereas %s is compiled for APCS-%d"),
2129 bfd_get_filename (ibfd),
2130 in_flags & EF_ARM_APCS_26 ? 26 : 32,
2131 bfd_get_filename (obfd),
2132 out_flags & EF_ARM_APCS_26 ? 26 : 32);
2133 flags_compatible = false;
2134 }
2135
2136 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2137 {
2138 _bfd_error_handler (_("\
2139 Error: %s passes floats in %s registers, whereas %s passes them in %s registers"),
2140 bfd_get_filename (ibfd),
2141 in_flags & EF_ARM_APCS_FLOAT ? _("float") : _("integer"),
2142 bfd_get_filename (obfd),
2143 out_flags & EF_ARM_APCS_26 ? _("float") : _("integer"));
2144 flags_compatible = false;
2145 }
2146
2147 #ifdef EF_ARM_SOFT_FLOAT
2148 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
2149 {
2150 _bfd_error_handler (_ ("\
2151 Error: %s uses %s floating point, whereas %s uses %s floating point"),
2152 bfd_get_filename (ibfd),
2153 in_flags & EF_ARM_SOFT_FLOAT ? _("soft") : _("hard"),
2154 bfd_get_filename (obfd),
2155 out_flags & EF_ARM_SOFT_FLOAT ? _("soft") : _("hard"));
2156 flags_compatible = false;
2157 }
2158 #endif
2159
2160 /* Interworking mismatch is only a warning. */
2161 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2162 _bfd_error_handler (_("\
2163 Warning: %s %s interworking, whereas %s %s"),
2164 bfd_get_filename (ibfd),
2165 in_flags & EF_ARM_INTERWORK ? _("supports") : _("does not support"),
2166 bfd_get_filename (obfd),
2167 out_flags & EF_ARM_INTERWORK ? _("does not") : _("does"));
2168 }
2169
2170 return flags_compatible;
2171 }
2172
2173 /* Display the flags field. */
2174
2175 static boolean
2176 elf32_arm_print_private_bfd_data (abfd, ptr)
2177 bfd *abfd;
2178 PTR ptr;
2179 {
2180 FILE * file = (FILE *) ptr;
2181 unsigned long flags;
2182
2183 BFD_ASSERT (abfd != NULL && ptr != NULL);
2184
2185 /* Print normal ELF private data. */
2186 _bfd_elf_print_private_bfd_data (abfd, ptr);
2187
2188 flags = elf_elfheader (abfd)->e_flags;
2189 /* Ignore init flag - it may not be set, despite the flags field
2190 containing valid data. */
2191
2192 /* xgettext:c-format */
2193 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
2194
2195 switch (EF_ARM_EABI_VERSION (flags))
2196 {
2197 case EF_ARM_EABI_UNKNOWN:
2198 /* The following flag bits are GNU extenstions and not part of the
2199 official ARM ELF extended ABI. Hence they are only decoded if
2200 the EABI version is not set. */
2201 if (flags & EF_ARM_INTERWORK)
2202 fprintf (file, _(" [interworking enabled]"));
2203
2204 if (flags & EF_ARM_APCS_26)
2205 fprintf (file, _(" [APCS-26]"));
2206 else
2207 fprintf (file, _(" [APCS-32]"));
2208
2209 if (flags & EF_ARM_APCS_FLOAT)
2210 fprintf (file, _(" [floats passed in float registers]"));
2211
2212 if (flags & EF_ARM_PIC)
2213 fprintf (file, _(" [position independent]"));
2214
2215 if (flags & EF_ARM_NEW_ABI)
2216 fprintf (file, _(" [new ABI]"));
2217
2218 if (flags & EF_ARM_OLD_ABI)
2219 fprintf (file, _(" [old ABI]"));
2220
2221 if (flags & EF_ARM_SOFT_FLOAT)
2222 fprintf (file, _(" [software FP]"));
2223
2224 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT | EF_ARM_PIC
2225 | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI | EF_ARM_SOFT_FLOAT);
2226 break;
2227
2228 case EF_ARM_EABI_VER1:
2229 fprintf (file, _(" [Version1 EABI]"));
2230
2231 if (flags & EF_ARM_SYMSARESORTED)
2232 fprintf (file, _(" [sorted symbol table]"));
2233 else
2234 fprintf (file, _(" [unsorted symbol table]"));
2235
2236 flags &= ~ EF_ARM_SYMSARESORTED;
2237 break;
2238
2239 case EF_ARM_EABI_VER2:
2240 fprintf (file, _(" [Version2 EABI]"));
2241
2242 if (flags & EF_ARM_SYMSARESORTED)
2243 fprintf (file, _(" [sorted symbol table]"));
2244 else
2245 fprintf (file, _(" [unsorted symbol table]"));
2246
2247 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
2248 fprintf (file, _(" [dynamic symbols use segment index]"));
2249
2250 if (flags & EF_ARM_MAPSYMSFIRST)
2251 fprintf (file, _(" [mapping symbols precede others]"));
2252
2253 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
2254 | EF_ARM_MAPSYMSFIRST);
2255 break;
2256
2257 default:
2258 fprintf (file, _(" <EABI version unrecognised>"));
2259 break;
2260 }
2261
2262 flags &= ~ EF_ARM_EABIMASK;
2263
2264 if (flags & EF_ARM_RELEXEC)
2265 fprintf (file, _(" [relocatable executable]"));
2266
2267 if (flags & EF_ARM_HASENTRY)
2268 fprintf (file, _(" [has entry point]"));
2269
2270 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
2271
2272 if (flags)
2273 fprintf (file, _("<Unrecognised flag bits set>"));
2274
2275 fputc ('\n', file);
2276
2277 return true;
2278 }
2279
2280 static int
2281 elf32_arm_get_symbol_type (elf_sym, type)
2282 Elf_Internal_Sym * elf_sym;
2283 int type;
2284 {
2285 switch (ELF_ST_TYPE (elf_sym->st_info))
2286 {
2287 case STT_ARM_TFUNC:
2288 return ELF_ST_TYPE (elf_sym->st_info);
2289
2290 case STT_ARM_16BIT:
2291 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
2292 This allows us to distinguish between data used by Thumb instructions
2293 and non-data (which is probably code) inside Thumb regions of an
2294 executable. */
2295 if (type != STT_OBJECT)
2296 return ELF_ST_TYPE (elf_sym->st_info);
2297 break;
2298
2299 default:
2300 break;
2301 }
2302
2303 return type;
2304 }
2305
2306 static asection *
2307 elf32_arm_gc_mark_hook (abfd, info, rel, h, sym)
2308 bfd *abfd;
2309 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2310 Elf_Internal_Rela *rel;
2311 struct elf_link_hash_entry *h;
2312 Elf_Internal_Sym *sym;
2313 {
2314 if (h != NULL)
2315 {
2316 switch (ELF32_R_TYPE (rel->r_info))
2317 {
2318 case R_ARM_GNU_VTINHERIT:
2319 case R_ARM_GNU_VTENTRY:
2320 break;
2321
2322 default:
2323 switch (h->root.type)
2324 {
2325 case bfd_link_hash_defined:
2326 case bfd_link_hash_defweak:
2327 return h->root.u.def.section;
2328
2329 case bfd_link_hash_common:
2330 return h->root.u.c.p->section;
2331
2332 default:
2333 break;
2334 }
2335 }
2336 }
2337 else
2338 {
2339 if (!(elf_bad_symtab (abfd)
2340 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
2341 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
2342 && sym->st_shndx != SHN_COMMON))
2343 {
2344 return bfd_section_from_elf_index (abfd, sym->st_shndx);
2345 }
2346 }
2347 return NULL;
2348 }
2349
2350 /* Update the got entry reference counts for the section being removed. */
2351
2352 static boolean
2353 elf32_arm_gc_sweep_hook (abfd, info, sec, relocs)
2354 bfd *abfd ATTRIBUTE_UNUSED;
2355 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2356 asection *sec ATTRIBUTE_UNUSED;
2357 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
2358 {
2359 /* We don't support garbage collection of GOT and PLT relocs yet. */
2360 return true;
2361 }
2362
2363 /* Look through the relocs for a section during the first phase. */
2364
2365 static boolean
2366 elf32_arm_check_relocs (abfd, info, sec, relocs)
2367 bfd * abfd;
2368 struct bfd_link_info * info;
2369 asection * sec;
2370 const Elf_Internal_Rela * relocs;
2371 {
2372 Elf_Internal_Shdr * symtab_hdr;
2373 struct elf_link_hash_entry ** sym_hashes;
2374 struct elf_link_hash_entry ** sym_hashes_end;
2375 const Elf_Internal_Rela * rel;
2376 const Elf_Internal_Rela * rel_end;
2377 bfd * dynobj;
2378 asection * sgot, *srelgot, *sreloc;
2379 bfd_vma * local_got_offsets;
2380
2381 if (info->relocateable)
2382 return true;
2383
2384 sgot = srelgot = sreloc = NULL;
2385
2386 dynobj = elf_hash_table (info)->dynobj;
2387 local_got_offsets = elf_local_got_offsets (abfd);
2388
2389 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2390 sym_hashes = elf_sym_hashes (abfd);
2391 sym_hashes_end = sym_hashes
2392 + symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
2393
2394 if (!elf_bad_symtab (abfd))
2395 sym_hashes_end -= symtab_hdr->sh_info;
2396
2397 rel_end = relocs + sec->reloc_count;
2398 for (rel = relocs; rel < rel_end; rel++)
2399 {
2400 struct elf_link_hash_entry *h;
2401 unsigned long r_symndx;
2402
2403 r_symndx = ELF32_R_SYM (rel->r_info);
2404 if (r_symndx < symtab_hdr->sh_info)
2405 h = NULL;
2406 else
2407 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2408
2409 /* Some relocs require a global offset table. */
2410 if (dynobj == NULL)
2411 {
2412 switch (ELF32_R_TYPE (rel->r_info))
2413 {
2414 case R_ARM_GOT32:
2415 case R_ARM_GOTOFF:
2416 case R_ARM_GOTPC:
2417 elf_hash_table (info)->dynobj = dynobj = abfd;
2418 if (! _bfd_elf_create_got_section (dynobj, info))
2419 return false;
2420 break;
2421
2422 default:
2423 break;
2424 }
2425 }
2426
2427 switch (ELF32_R_TYPE (rel->r_info))
2428 {
2429 case R_ARM_GOT32:
2430 /* This symbol requires a global offset table entry. */
2431 if (sgot == NULL)
2432 {
2433 sgot = bfd_get_section_by_name (dynobj, ".got");
2434 BFD_ASSERT (sgot != NULL);
2435 }
2436
2437 /* Get the got relocation section if necessary. */
2438 if (srelgot == NULL
2439 && (h != NULL || info->shared))
2440 {
2441 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
2442
2443 /* If no got relocation section, make one and initialize. */
2444 if (srelgot == NULL)
2445 {
2446 srelgot = bfd_make_section (dynobj, ".rel.got");
2447 if (srelgot == NULL
2448 || ! bfd_set_section_flags (dynobj, srelgot,
2449 (SEC_ALLOC
2450 | SEC_LOAD
2451 | SEC_HAS_CONTENTS
2452 | SEC_IN_MEMORY
2453 | SEC_LINKER_CREATED
2454 | SEC_READONLY))
2455 || ! bfd_set_section_alignment (dynobj, srelgot, 2))
2456 return false;
2457 }
2458 }
2459
2460 if (h != NULL)
2461 {
2462 if (h->got.offset != (bfd_vma) -1)
2463 /* We have already allocated space in the .got. */
2464 break;
2465
2466 h->got.offset = sgot->_raw_size;
2467
2468 /* Make sure this symbol is output as a dynamic symbol. */
2469 if (h->dynindx == -1)
2470 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2471 return false;
2472
2473 srelgot->_raw_size += sizeof (Elf32_External_Rel);
2474 }
2475 else
2476 {
2477 /* This is a global offset table entry for a local
2478 symbol. */
2479 if (local_got_offsets == NULL)
2480 {
2481 size_t size;
2482 register unsigned int i;
2483
2484 size = symtab_hdr->sh_info * sizeof (bfd_vma);
2485 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
2486 if (local_got_offsets == NULL)
2487 return false;
2488 elf_local_got_offsets (abfd) = local_got_offsets;
2489 for (i = 0; i < symtab_hdr->sh_info; i++)
2490 local_got_offsets[i] = (bfd_vma) -1;
2491 }
2492
2493 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
2494 /* We have already allocated space in the .got. */
2495 break;
2496
2497 local_got_offsets[r_symndx] = sgot->_raw_size;
2498
2499 if (info->shared)
2500 /* If we are generating a shared object, we need to
2501 output a R_ARM_RELATIVE reloc so that the dynamic
2502 linker can adjust this GOT entry. */
2503 srelgot->_raw_size += sizeof (Elf32_External_Rel);
2504 }
2505
2506 sgot->_raw_size += 4;
2507 break;
2508
2509 case R_ARM_PLT32:
2510 /* This symbol requires a procedure linkage table entry. We
2511 actually build the entry in adjust_dynamic_symbol,
2512 because this might be a case of linking PIC code which is
2513 never referenced by a dynamic object, in which case we
2514 don't need to generate a procedure linkage table entry
2515 after all. */
2516
2517 /* If this is a local symbol, we resolve it directly without
2518 creating a procedure linkage table entry. */
2519 if (h == NULL)
2520 continue;
2521
2522 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
2523 break;
2524
2525 case R_ARM_ABS32:
2526 case R_ARM_REL32:
2527 case R_ARM_PC24:
2528 /* If we are creating a shared library, and this is a reloc
2529 against a global symbol, or a non PC relative reloc
2530 against a local symbol, then we need to copy the reloc
2531 into the shared library. However, if we are linking with
2532 -Bsymbolic, we do not need to copy a reloc against a
2533 global symbol which is defined in an object we are
2534 including in the link (i.e., DEF_REGULAR is set). At
2535 this point we have not seen all the input files, so it is
2536 possible that DEF_REGULAR is not set now but will be set
2537 later (it is never cleared). We account for that
2538 possibility below by storing information in the
2539 pcrel_relocs_copied field of the hash table entry. */
2540 if (info->shared
2541 && (ELF32_R_TYPE (rel->r_info) != R_ARM_PC24
2542 || (h != NULL
2543 && (! info->symbolic
2544 || (h->elf_link_hash_flags
2545 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
2546 {
2547 /* When creating a shared object, we must copy these
2548 reloc types into the output file. We create a reloc
2549 section in dynobj and make room for this reloc. */
2550 if (sreloc == NULL)
2551 {
2552 const char * name;
2553
2554 name = (bfd_elf_string_from_elf_section
2555 (abfd,
2556 elf_elfheader (abfd)->e_shstrndx,
2557 elf_section_data (sec)->rel_hdr.sh_name));
2558 if (name == NULL)
2559 return false;
2560
2561 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
2562 && strcmp (bfd_get_section_name (abfd, sec),
2563 name + 4) == 0);
2564
2565 sreloc = bfd_get_section_by_name (dynobj, name);
2566 if (sreloc == NULL)
2567 {
2568 flagword flags;
2569
2570 sreloc = bfd_make_section (dynobj, name);
2571 flags = (SEC_HAS_CONTENTS | SEC_READONLY
2572 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2573 if ((sec->flags & SEC_ALLOC) != 0)
2574 flags |= SEC_ALLOC | SEC_LOAD;
2575 if (sreloc == NULL
2576 || ! bfd_set_section_flags (dynobj, sreloc, flags)
2577 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
2578 return false;
2579 }
2580 }
2581
2582 sreloc->_raw_size += sizeof (Elf32_External_Rel);
2583 /* If we are linking with -Bsymbolic, and this is a
2584 global symbol, we count the number of PC relative
2585 relocations we have entered for this symbol, so that
2586 we can discard them again if the symbol is later
2587 defined by a regular object. Note that this function
2588 is only called if we are using an elf_i386 linker
2589 hash table, which means that h is really a pointer to
2590 an elf_i386_link_hash_entry. */
2591 if (h != NULL && info->symbolic
2592 && ELF32_R_TYPE (rel->r_info) == R_ARM_PC24)
2593 {
2594 struct elf32_arm_link_hash_entry * eh;
2595 struct elf32_arm_pcrel_relocs_copied * p;
2596
2597 eh = (struct elf32_arm_link_hash_entry *) h;
2598
2599 for (p = eh->pcrel_relocs_copied; p != NULL; p = p->next)
2600 if (p->section == sreloc)
2601 break;
2602
2603 if (p == NULL)
2604 {
2605 p = ((struct elf32_arm_pcrel_relocs_copied *)
2606 bfd_alloc (dynobj, sizeof * p));
2607
2608 if (p == NULL)
2609 return false;
2610 p->next = eh->pcrel_relocs_copied;
2611 eh->pcrel_relocs_copied = p;
2612 p->section = sreloc;
2613 p->count = 0;
2614 }
2615
2616 ++p->count;
2617 }
2618 }
2619 break;
2620
2621 /* This relocation describes the C++ object vtable hierarchy.
2622 Reconstruct it for later use during GC. */
2623 case R_ARM_GNU_VTINHERIT:
2624 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2625 return false;
2626 break;
2627
2628 /* This relocation describes which C++ vtable entries are actually
2629 used. Record for later use during GC. */
2630 case R_ARM_GNU_VTENTRY:
2631 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
2632 return false;
2633 break;
2634 }
2635 }
2636
2637 return true;
2638 }
2639
2640 /* Find the nearest line to a particular section and offset, for error
2641 reporting. This code is a duplicate of the code in elf.c, except
2642 that it also accepts STT_ARM_TFUNC as a symbol that names a function. */
2643
2644 static boolean
2645 elf32_arm_find_nearest_line
2646 (abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr)
2647 bfd * abfd;
2648 asection * section;
2649 asymbol ** symbols;
2650 bfd_vma offset;
2651 CONST char ** filename_ptr;
2652 CONST char ** functionname_ptr;
2653 unsigned int * line_ptr;
2654 {
2655 boolean found;
2656 const char * filename;
2657 asymbol * func;
2658 bfd_vma low_func;
2659 asymbol ** p;
2660
2661 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
2662 filename_ptr, functionname_ptr,
2663 line_ptr, 0,
2664 &elf_tdata (abfd)->dwarf2_find_line_info))
2665 return true;
2666
2667 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
2668 &found, filename_ptr,
2669 functionname_ptr, line_ptr,
2670 &elf_tdata (abfd)->line_info))
2671 return false;
2672
2673 if (found)
2674 return true;
2675
2676 if (symbols == NULL)
2677 return false;
2678
2679 filename = NULL;
2680 func = NULL;
2681 low_func = 0;
2682
2683 for (p = symbols; *p != NULL; p++)
2684 {
2685 elf_symbol_type *q;
2686
2687 q = (elf_symbol_type *) *p;
2688
2689 if (bfd_get_section (&q->symbol) != section)
2690 continue;
2691
2692 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
2693 {
2694 default:
2695 break;
2696 case STT_FILE:
2697 filename = bfd_asymbol_name (&q->symbol);
2698 break;
2699 case STT_NOTYPE:
2700 case STT_FUNC:
2701 case STT_ARM_TFUNC:
2702 if (q->symbol.section == section
2703 && q->symbol.value >= low_func
2704 && q->symbol.value <= offset)
2705 {
2706 func = (asymbol *) q;
2707 low_func = q->symbol.value;
2708 }
2709 break;
2710 }
2711 }
2712
2713 if (func == NULL)
2714 return false;
2715
2716 *filename_ptr = filename;
2717 *functionname_ptr = bfd_asymbol_name (func);
2718 *line_ptr = 0;
2719
2720 return true;
2721 }
2722
2723 /* Adjust a symbol defined by a dynamic object and referenced by a
2724 regular object. The current definition is in some section of the
2725 dynamic object, but we're not including those sections. We have to
2726 change the definition to something the rest of the link can
2727 understand. */
2728
2729 static boolean
2730 elf32_arm_adjust_dynamic_symbol (info, h)
2731 struct bfd_link_info * info;
2732 struct elf_link_hash_entry * h;
2733 {
2734 bfd * dynobj;
2735 asection * s;
2736 unsigned int power_of_two;
2737
2738 dynobj = elf_hash_table (info)->dynobj;
2739
2740 /* Make sure we know what is going on here. */
2741 BFD_ASSERT (dynobj != NULL
2742 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
2743 || h->weakdef != NULL
2744 || ((h->elf_link_hash_flags
2745 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2746 && (h->elf_link_hash_flags
2747 & ELF_LINK_HASH_REF_REGULAR) != 0
2748 && (h->elf_link_hash_flags
2749 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
2750
2751 /* If this is a function, put it in the procedure linkage table. We
2752 will fill in the contents of the procedure linkage table later,
2753 when we know the address of the .got section. */
2754 if (h->type == STT_FUNC
2755 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
2756 {
2757 if (! info->shared
2758 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
2759 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0)
2760 {
2761 /* This case can occur if we saw a PLT32 reloc in an input
2762 file, but the symbol was never referred to by a dynamic
2763 object. In such a case, we don't actually need to build
2764 a procedure linkage table, and we can just do a PC32
2765 reloc instead. */
2766 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
2767 return true;
2768 }
2769
2770 /* Make sure this symbol is output as a dynamic symbol. */
2771 if (h->dynindx == -1)
2772 {
2773 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2774 return false;
2775 }
2776
2777 s = bfd_get_section_by_name (dynobj, ".plt");
2778 BFD_ASSERT (s != NULL);
2779
2780 /* If this is the first .plt entry, make room for the special
2781 first entry. */
2782 if (s->_raw_size == 0)
2783 s->_raw_size += PLT_ENTRY_SIZE;
2784
2785 /* If this symbol is not defined in a regular file, and we are
2786 not generating a shared library, then set the symbol to this
2787 location in the .plt. This is required to make function
2788 pointers compare as equal between the normal executable and
2789 the shared library. */
2790 if (! info->shared
2791 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2792 {
2793 h->root.u.def.section = s;
2794 h->root.u.def.value = s->_raw_size;
2795 }
2796
2797 h->plt.offset = s->_raw_size;
2798
2799 /* Make room for this entry. */
2800 s->_raw_size += PLT_ENTRY_SIZE;
2801
2802 /* We also need to make an entry in the .got.plt section, which
2803 will be placed in the .got section by the linker script. */
2804 s = bfd_get_section_by_name (dynobj, ".got.plt");
2805 BFD_ASSERT (s != NULL);
2806 s->_raw_size += 4;
2807
2808 /* We also need to make an entry in the .rel.plt section. */
2809
2810 s = bfd_get_section_by_name (dynobj, ".rel.plt");
2811 BFD_ASSERT (s != NULL);
2812 s->_raw_size += sizeof (Elf32_External_Rel);
2813
2814 return true;
2815 }
2816
2817 /* If this is a weak symbol, and there is a real definition, the
2818 processor independent code will have arranged for us to see the
2819 real definition first, and we can just use the same value. */
2820 if (h->weakdef != NULL)
2821 {
2822 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
2823 || h->weakdef->root.type == bfd_link_hash_defweak);
2824 h->root.u.def.section = h->weakdef->root.u.def.section;
2825 h->root.u.def.value = h->weakdef->root.u.def.value;
2826 return true;
2827 }
2828
2829 /* This is a reference to a symbol defined by a dynamic object which
2830 is not a function. */
2831
2832 /* If we are creating a shared library, we must presume that the
2833 only references to the symbol are via the global offset table.
2834 For such cases we need not do anything here; the relocations will
2835 be handled correctly by relocate_section. */
2836 if (info->shared)
2837 return true;
2838
2839 /* We must allocate the symbol in our .dynbss section, which will
2840 become part of the .bss section of the executable. There will be
2841 an entry for this symbol in the .dynsym section. The dynamic
2842 object will contain position independent code, so all references
2843 from the dynamic object to this symbol will go through the global
2844 offset table. The dynamic linker will use the .dynsym entry to
2845 determine the address it must put in the global offset table, so
2846 both the dynamic object and the regular object will refer to the
2847 same memory location for the variable. */
2848 s = bfd_get_section_by_name (dynobj, ".dynbss");
2849 BFD_ASSERT (s != NULL);
2850
2851 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
2852 copy the initial value out of the dynamic object and into the
2853 runtime process image. We need to remember the offset into the
2854 .rel.bss section we are going to use. */
2855 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
2856 {
2857 asection *srel;
2858
2859 srel = bfd_get_section_by_name (dynobj, ".rel.bss");
2860 BFD_ASSERT (srel != NULL);
2861 srel->_raw_size += sizeof (Elf32_External_Rel);
2862 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
2863 }
2864
2865 /* We need to figure out the alignment required for this symbol. I
2866 have no idea how ELF linkers handle this. */
2867 power_of_two = bfd_log2 (h->size);
2868 if (power_of_two > 3)
2869 power_of_two = 3;
2870
2871 /* Apply the required alignment. */
2872 s->_raw_size = BFD_ALIGN (s->_raw_size,
2873 (bfd_size_type) (1 << power_of_two));
2874 if (power_of_two > bfd_get_section_alignment (dynobj, s))
2875 {
2876 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
2877 return false;
2878 }
2879
2880 /* Define the symbol as being at this point in the section. */
2881 h->root.u.def.section = s;
2882 h->root.u.def.value = s->_raw_size;
2883
2884 /* Increment the section size to make room for the symbol. */
2885 s->_raw_size += h->size;
2886
2887 return true;
2888 }
2889
2890 /* Set the sizes of the dynamic sections. */
2891
2892 static boolean
2893 elf32_arm_size_dynamic_sections (output_bfd, info)
2894 bfd * output_bfd;
2895 struct bfd_link_info * info;
2896 {
2897 bfd * dynobj;
2898 asection * s;
2899 boolean plt;
2900 boolean relocs;
2901 boolean reltext;
2902
2903 dynobj = elf_hash_table (info)->dynobj;
2904 BFD_ASSERT (dynobj != NULL);
2905
2906 if (elf_hash_table (info)->dynamic_sections_created)
2907 {
2908 /* Set the contents of the .interp section to the interpreter. */
2909 if (! info->shared)
2910 {
2911 s = bfd_get_section_by_name (dynobj, ".interp");
2912 BFD_ASSERT (s != NULL);
2913 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
2914 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2915 }
2916 }
2917 else
2918 {
2919 /* We may have created entries in the .rel.got section.
2920 However, if we are not creating the dynamic sections, we will
2921 not actually use these entries. Reset the size of .rel.got,
2922 which will cause it to get stripped from the output file
2923 below. */
2924 s = bfd_get_section_by_name (dynobj, ".rel.got");
2925 if (s != NULL)
2926 s->_raw_size = 0;
2927 }
2928
2929 /* If this is a -Bsymbolic shared link, then we need to discard all
2930 PC relative relocs against symbols defined in a regular object.
2931 We allocated space for them in the check_relocs routine, but we
2932 will not fill them in in the relocate_section routine. */
2933 if (info->shared && info->symbolic)
2934 elf32_arm_link_hash_traverse (elf32_arm_hash_table (info),
2935 elf32_arm_discard_copies,
2936 (PTR) NULL);
2937
2938 /* The check_relocs and adjust_dynamic_symbol entry points have
2939 determined the sizes of the various dynamic sections. Allocate
2940 memory for them. */
2941 plt = false;
2942 relocs = false;
2943 reltext = false;
2944 for (s = dynobj->sections; s != NULL; s = s->next)
2945 {
2946 const char * name;
2947 boolean strip;
2948
2949 if ((s->flags & SEC_LINKER_CREATED) == 0)
2950 continue;
2951
2952 /* It's OK to base decisions on the section name, because none
2953 of the dynobj section names depend upon the input files. */
2954 name = bfd_get_section_name (dynobj, s);
2955
2956 strip = false;
2957
2958 if (strcmp (name, ".plt") == 0)
2959 {
2960 if (s->_raw_size == 0)
2961 {
2962 /* Strip this section if we don't need it; see the
2963 comment below. */
2964 strip = true;
2965 }
2966 else
2967 {
2968 /* Remember whether there is a PLT. */
2969 plt = true;
2970 }
2971 }
2972 else if (strncmp (name, ".rel", 4) == 0)
2973 {
2974 if (s->_raw_size == 0)
2975 {
2976 /* If we don't need this section, strip it from the
2977 output file. This is mostly to handle .rel.bss and
2978 .rel.plt. We must create both sections in
2979 create_dynamic_sections, because they must be created
2980 before the linker maps input sections to output
2981 sections. The linker does that before
2982 adjust_dynamic_symbol is called, and it is that
2983 function which decides whether anything needs to go
2984 into these sections. */
2985 strip = true;
2986 }
2987 else
2988 {
2989 asection * target;
2990
2991 /* Remember whether there are any reloc sections other
2992 than .rel.plt. */
2993 if (strcmp (name, ".rel.plt") != 0)
2994 {
2995 const char *outname;
2996
2997 relocs = true;
2998
2999 /* If this relocation section applies to a read only
3000 section, then we probably need a DT_TEXTREL
3001 entry. The entries in the .rel.plt section
3002 really apply to the .got section, which we
3003 created ourselves and so know is not readonly. */
3004 outname = bfd_get_section_name (output_bfd,
3005 s->output_section);
3006 target = bfd_get_section_by_name (output_bfd, outname + 4);
3007
3008 if (target != NULL
3009 && (target->flags & SEC_READONLY) != 0
3010 && (target->flags & SEC_ALLOC) != 0)
3011 reltext = true;
3012 }
3013
3014 /* We use the reloc_count field as a counter if we need
3015 to copy relocs into the output file. */
3016 s->reloc_count = 0;
3017 }
3018 }
3019 else if (strncmp (name, ".got", 4) != 0)
3020 {
3021 /* It's not one of our sections, so don't allocate space. */
3022 continue;
3023 }
3024
3025 if (strip)
3026 {
3027 asection ** spp;
3028
3029 for (spp = &s->output_section->owner->sections;
3030 *spp != s->output_section;
3031 spp = &(*spp)->next)
3032 ;
3033 *spp = s->output_section->next;
3034 --s->output_section->owner->section_count;
3035
3036 continue;
3037 }
3038
3039 /* Allocate memory for the section contents. */
3040 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
3041 if (s->contents == NULL && s->_raw_size != 0)
3042 return false;
3043 }
3044
3045 if (elf_hash_table (info)->dynamic_sections_created)
3046 {
3047 /* Add some entries to the .dynamic section. We fill in the
3048 values later, in elf32_arm_finish_dynamic_sections, but we
3049 must add the entries now so that we get the correct size for
3050 the .dynamic section. The DT_DEBUG entry is filled in by the
3051 dynamic linker and used by the debugger. */
3052 if (! info->shared)
3053 {
3054 if (! bfd_elf32_add_dynamic_entry (info, DT_DEBUG, 0))
3055 return false;
3056 }
3057
3058 if (plt)
3059 {
3060 if ( ! bfd_elf32_add_dynamic_entry (info, DT_PLTGOT, 0)
3061 || ! bfd_elf32_add_dynamic_entry (info, DT_PLTRELSZ, 0)
3062 || ! bfd_elf32_add_dynamic_entry (info, DT_PLTREL, DT_REL)
3063 || ! bfd_elf32_add_dynamic_entry (info, DT_JMPREL, 0))
3064 return false;
3065 }
3066
3067 if (relocs)
3068 {
3069 if ( ! bfd_elf32_add_dynamic_entry (info, DT_REL, 0)
3070 || ! bfd_elf32_add_dynamic_entry (info, DT_RELSZ, 0)
3071 || ! bfd_elf32_add_dynamic_entry (info, DT_RELENT,
3072 sizeof (Elf32_External_Rel)))
3073 return false;
3074 }
3075
3076 if (reltext)
3077 {
3078 if (! bfd_elf32_add_dynamic_entry (info, DT_TEXTREL, 0))
3079 return false;
3080 info->flags |= DF_TEXTREL;
3081 }
3082 }
3083
3084 return true;
3085 }
3086
3087 /* This function is called via elf32_arm_link_hash_traverse if we are
3088 creating a shared object with -Bsymbolic. It discards the space
3089 allocated to copy PC relative relocs against symbols which are
3090 defined in regular objects. We allocated space for them in the
3091 check_relocs routine, but we won't fill them in in the
3092 relocate_section routine. */
3093
3094 static boolean
3095 elf32_arm_discard_copies (h, ignore)
3096 struct elf32_arm_link_hash_entry * h;
3097 PTR ignore ATTRIBUTE_UNUSED;
3098 {
3099 struct elf32_arm_pcrel_relocs_copied * s;
3100
3101 /* We only discard relocs for symbols defined in a regular object. */
3102 if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3103 return true;
3104
3105 for (s = h->pcrel_relocs_copied; s != NULL; s = s->next)
3106 s->section->_raw_size -= s->count * sizeof (Elf32_External_Rel);
3107
3108 return true;
3109 }
3110
3111 /* Finish up dynamic symbol handling. We set the contents of various
3112 dynamic sections here. */
3113
3114 static boolean
3115 elf32_arm_finish_dynamic_symbol (output_bfd, info, h, sym)
3116 bfd * output_bfd;
3117 struct bfd_link_info * info;
3118 struct elf_link_hash_entry * h;
3119 Elf_Internal_Sym * sym;
3120 {
3121 bfd * dynobj;
3122
3123 dynobj = elf_hash_table (info)->dynobj;
3124
3125 if (h->plt.offset != (bfd_vma) -1)
3126 {
3127 asection * splt;
3128 asection * sgot;
3129 asection * srel;
3130 bfd_vma plt_index;
3131 bfd_vma got_offset;
3132 Elf_Internal_Rel rel;
3133
3134 /* This symbol has an entry in the procedure linkage table. Set
3135 it up. */
3136
3137 BFD_ASSERT (h->dynindx != -1);
3138
3139 splt = bfd_get_section_by_name (dynobj, ".plt");
3140 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3141 srel = bfd_get_section_by_name (dynobj, ".rel.plt");
3142 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
3143
3144 /* Get the index in the procedure linkage table which
3145 corresponds to this symbol. This is the index of this symbol
3146 in all the symbols for which we are making plt entries. The
3147 first entry in the procedure linkage table is reserved. */
3148 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3149
3150 /* Get the offset into the .got table of the entry that
3151 corresponds to this function. Each .got entry is 4 bytes.
3152 The first three are reserved. */
3153 got_offset = (plt_index + 3) * 4;
3154
3155 /* Fill in the entry in the procedure linkage table. */
3156 memcpy (splt->contents + h->plt.offset,
3157 elf32_arm_plt_entry,
3158 PLT_ENTRY_SIZE);
3159 bfd_put_32 (output_bfd,
3160 (sgot->output_section->vma
3161 + sgot->output_offset
3162 + got_offset
3163 - splt->output_section->vma
3164 - splt->output_offset
3165 - h->plt.offset - 12),
3166 splt->contents + h->plt.offset + 12);
3167
3168 /* Fill in the entry in the global offset table. */
3169 bfd_put_32 (output_bfd,
3170 (splt->output_section->vma
3171 + splt->output_offset),
3172 sgot->contents + got_offset);
3173
3174 /* Fill in the entry in the .rel.plt section. */
3175 rel.r_offset = (sgot->output_section->vma
3176 + sgot->output_offset
3177 + got_offset);
3178 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
3179 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3180 ((Elf32_External_Rel *) srel->contents
3181 + plt_index));
3182
3183 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3184 {
3185 /* Mark the symbol as undefined, rather than as defined in
3186 the .plt section. Leave the value alone. */
3187 sym->st_shndx = SHN_UNDEF;
3188 }
3189 }
3190
3191 if (h->got.offset != (bfd_vma) -1)
3192 {
3193 asection * sgot;
3194 asection * srel;
3195 Elf_Internal_Rel rel;
3196
3197 /* This symbol has an entry in the global offset table. Set it
3198 up. */
3199 sgot = bfd_get_section_by_name (dynobj, ".got");
3200 srel = bfd_get_section_by_name (dynobj, ".rel.got");
3201 BFD_ASSERT (sgot != NULL && srel != NULL);
3202
3203 rel.r_offset = (sgot->output_section->vma
3204 + sgot->output_offset
3205 + (h->got.offset &~ 1));
3206
3207 /* If this is a -Bsymbolic link, and the symbol is defined
3208 locally, we just want to emit a RELATIVE reloc. The entry in
3209 the global offset table will already have been initialized in
3210 the relocate_section function. */
3211 if (info->shared
3212 && (info->symbolic || h->dynindx == -1)
3213 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
3214 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
3215 else
3216 {
3217 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
3218 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
3219 }
3220
3221 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3222 ((Elf32_External_Rel *) srel->contents
3223 + srel->reloc_count));
3224 ++srel->reloc_count;
3225 }
3226
3227 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
3228 {
3229 asection * s;
3230 Elf_Internal_Rel rel;
3231
3232 /* This symbol needs a copy reloc. Set it up. */
3233 BFD_ASSERT (h->dynindx != -1
3234 && (h->root.type == bfd_link_hash_defined
3235 || h->root.type == bfd_link_hash_defweak));
3236
3237 s = bfd_get_section_by_name (h->root.u.def.section->owner,
3238 ".rel.bss");
3239 BFD_ASSERT (s != NULL);
3240
3241 rel.r_offset = (h->root.u.def.value
3242 + h->root.u.def.section->output_section->vma
3243 + h->root.u.def.section->output_offset);
3244 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
3245 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3246 ((Elf32_External_Rel *) s->contents
3247 + s->reloc_count));
3248 ++s->reloc_count;
3249 }
3250
3251 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3252 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
3253 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3254 sym->st_shndx = SHN_ABS;
3255
3256 return true;
3257 }
3258
3259 /* Finish up the dynamic sections. */
3260
3261 static boolean
3262 elf32_arm_finish_dynamic_sections (output_bfd, info)
3263 bfd * output_bfd;
3264 struct bfd_link_info * info;
3265 {
3266 bfd * dynobj;
3267 asection * sgot;
3268 asection * sdyn;
3269
3270 dynobj = elf_hash_table (info)->dynobj;
3271
3272 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3273 BFD_ASSERT (sgot != NULL);
3274 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3275
3276 if (elf_hash_table (info)->dynamic_sections_created)
3277 {
3278 asection *splt;
3279 Elf32_External_Dyn *dyncon, *dynconend;
3280
3281 splt = bfd_get_section_by_name (dynobj, ".plt");
3282 BFD_ASSERT (splt != NULL && sdyn != NULL);
3283
3284 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3285 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
3286
3287 for (; dyncon < dynconend; dyncon++)
3288 {
3289 Elf_Internal_Dyn dyn;
3290 const char * name;
3291 asection * s;
3292
3293 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3294
3295 switch (dyn.d_tag)
3296 {
3297 default:
3298 break;
3299
3300 case DT_PLTGOT:
3301 name = ".got";
3302 goto get_vma;
3303 case DT_JMPREL:
3304 name = ".rel.plt";
3305 get_vma:
3306 s = bfd_get_section_by_name (output_bfd, name);
3307 BFD_ASSERT (s != NULL);
3308 dyn.d_un.d_ptr = s->vma;
3309 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3310 break;
3311
3312 case DT_PLTRELSZ:
3313 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3314 BFD_ASSERT (s != NULL);
3315 if (s->_cooked_size != 0)
3316 dyn.d_un.d_val = s->_cooked_size;
3317 else
3318 dyn.d_un.d_val = s->_raw_size;
3319 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3320 break;
3321
3322 case DT_RELSZ:
3323 /* My reading of the SVR4 ABI indicates that the
3324 procedure linkage table relocs (DT_JMPREL) should be
3325 included in the overall relocs (DT_REL). This is
3326 what Solaris does. However, UnixWare can not handle
3327 that case. Therefore, we override the DT_RELSZ entry
3328 here to make it not include the JMPREL relocs. Since
3329 the linker script arranges for .rel.plt to follow all
3330 other relocation sections, we don't have to worry
3331 about changing the DT_REL entry. */
3332 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3333 if (s != NULL)
3334 {
3335 if (s->_cooked_size != 0)
3336 dyn.d_un.d_val -= s->_cooked_size;
3337 else
3338 dyn.d_un.d_val -= s->_raw_size;
3339 }
3340 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3341 break;
3342 }
3343 }
3344
3345 /* Fill in the first entry in the procedure linkage table. */
3346 if (splt->_raw_size > 0)
3347 memcpy (splt->contents, elf32_arm_plt0_entry, PLT_ENTRY_SIZE);
3348
3349 /* UnixWare sets the entsize of .plt to 4, although that doesn't
3350 really seem like the right value. */
3351 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
3352 }
3353
3354 /* Fill in the first three entries in the global offset table. */
3355 if (sgot->_raw_size > 0)
3356 {
3357 if (sdyn == NULL)
3358 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
3359 else
3360 bfd_put_32 (output_bfd,
3361 sdyn->output_section->vma + sdyn->output_offset,
3362 sgot->contents);
3363 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
3364 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
3365 }
3366
3367 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
3368
3369 return true;
3370 }
3371
3372 static void
3373 elf32_arm_post_process_headers (abfd, link_info)
3374 bfd * abfd;
3375 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
3376 {
3377 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
3378
3379 i_ehdrp = elf_elfheader (abfd);
3380
3381 i_ehdrp->e_ident[EI_OSABI] = ARM_ELF_OS_ABI_VERSION;
3382 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
3383 }
3384
3385 #define ELF_ARCH bfd_arch_arm
3386 #define ELF_MACHINE_CODE EM_ARM
3387 #define ELF_MAXPAGESIZE 0x8000
3388
3389 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
3390 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
3391 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
3392 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
3393 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
3394 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
3395 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
3396
3397 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
3398 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
3399 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
3400 #define elf_backend_check_relocs elf32_arm_check_relocs
3401 #define elf_backend_relocate_section elf32_arm_relocate_section
3402 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
3403 #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
3404 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
3405 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
3406 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
3407 #define elf_backend_post_process_headers elf32_arm_post_process_headers
3408
3409 #define elf_backend_can_gc_sections 1
3410 #define elf_backend_plt_readonly 1
3411 #define elf_backend_want_got_plt 1
3412 #define elf_backend_want_plt_sym 0
3413
3414 #define elf_backend_got_header_size 12
3415 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
3416
3417 #include "elf32-target.h"
This page took 0.095768 seconds and 5 git commands to generate.