-Wimplicit-fallthrough warning fixes
[deliverable/binutils-gdb.git] / bfd / elf32-avr.c
1 /* AVR-specific support for 32-bit ELF
2 Copyright (C) 1999-2016 Free Software Foundation, Inc.
3 Contributed by Denis Chertykov <denisc@overta.ru>
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "elf/avr.h"
27 #include "elf32-avr.h"
28 #include "bfd_stdint.h"
29
30 /* Enable debugging printout at stdout with this variable. */
31 static bfd_boolean debug_relax = FALSE;
32
33 /* Enable debugging printout at stdout with this variable. */
34 static bfd_boolean debug_stubs = FALSE;
35
36 static bfd_reloc_status_type
37 bfd_elf_avr_diff_reloc (bfd *, arelent *, asymbol *, void *,
38 asection *, bfd *, char **);
39
40 /* Hash table initialization and handling. Code is taken from the hppa port
41 and adapted to the needs of AVR. */
42
43 /* We use two hash tables to hold information for linking avr objects.
44
45 The first is the elf32_avr_link_hash_table which is derived from the
46 stanard ELF linker hash table. We use this as a place to attach the other
47 hash table and some static information.
48
49 The second is the stub hash table which is derived from the base BFD
50 hash table. The stub hash table holds the information on the linker
51 stubs. */
52
53 struct elf32_avr_stub_hash_entry
54 {
55 /* Base hash table entry structure. */
56 struct bfd_hash_entry bh_root;
57
58 /* Offset within stub_sec of the beginning of this stub. */
59 bfd_vma stub_offset;
60
61 /* Given the symbol's value and its section we can determine its final
62 value when building the stubs (so the stub knows where to jump). */
63 bfd_vma target_value;
64
65 /* This way we could mark stubs to be no longer necessary. */
66 bfd_boolean is_actually_needed;
67 };
68
69 struct elf32_avr_link_hash_table
70 {
71 /* The main hash table. */
72 struct elf_link_hash_table etab;
73
74 /* The stub hash table. */
75 struct bfd_hash_table bstab;
76
77 bfd_boolean no_stubs;
78
79 /* Linker stub bfd. */
80 bfd *stub_bfd;
81
82 /* The stub section. */
83 asection *stub_sec;
84
85 /* Usually 0, unless we are generating code for a bootloader. Will
86 be initialized by elf32_avr_size_stubs to the vma offset of the
87 output section associated with the stub section. */
88 bfd_vma vector_base;
89
90 /* Assorted information used by elf32_avr_size_stubs. */
91 unsigned int bfd_count;
92 unsigned int top_index;
93 asection ** input_list;
94 Elf_Internal_Sym ** all_local_syms;
95
96 /* Tables for mapping vma beyond the 128k boundary to the address of the
97 corresponding stub. (AMT)
98 "amt_max_entry_cnt" reflects the number of entries that memory is allocated
99 for in the "amt_stub_offsets" and "amt_destination_addr" arrays.
100 "amt_entry_cnt" informs how many of these entries actually contain
101 useful data. */
102 unsigned int amt_entry_cnt;
103 unsigned int amt_max_entry_cnt;
104 bfd_vma * amt_stub_offsets;
105 bfd_vma * amt_destination_addr;
106 };
107
108 /* Various hash macros and functions. */
109 #define avr_link_hash_table(p) \
110 /* PR 3874: Check that we have an AVR style hash table before using it. */\
111 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
112 == AVR_ELF_DATA ? ((struct elf32_avr_link_hash_table *) ((p)->hash)) : NULL)
113
114 #define avr_stub_hash_entry(ent) \
115 ((struct elf32_avr_stub_hash_entry *)(ent))
116
117 #define avr_stub_hash_lookup(table, string, create, copy) \
118 ((struct elf32_avr_stub_hash_entry *) \
119 bfd_hash_lookup ((table), (string), (create), (copy)))
120
121 static reloc_howto_type elf_avr_howto_table[] =
122 {
123 HOWTO (R_AVR_NONE, /* type */
124 0, /* rightshift */
125 3, /* size (0 = byte, 1 = short, 2 = long) */
126 0, /* bitsize */
127 FALSE, /* pc_relative */
128 0, /* bitpos */
129 complain_overflow_dont, /* complain_on_overflow */
130 bfd_elf_generic_reloc, /* special_function */
131 "R_AVR_NONE", /* name */
132 FALSE, /* partial_inplace */
133 0, /* src_mask */
134 0, /* dst_mask */
135 FALSE), /* pcrel_offset */
136
137 HOWTO (R_AVR_32, /* type */
138 0, /* rightshift */
139 2, /* size (0 = byte, 1 = short, 2 = long) */
140 32, /* bitsize */
141 FALSE, /* pc_relative */
142 0, /* bitpos */
143 complain_overflow_bitfield, /* complain_on_overflow */
144 bfd_elf_generic_reloc, /* special_function */
145 "R_AVR_32", /* name */
146 FALSE, /* partial_inplace */
147 0xffffffff, /* src_mask */
148 0xffffffff, /* dst_mask */
149 FALSE), /* pcrel_offset */
150
151 /* A 7 bit PC relative relocation. */
152 HOWTO (R_AVR_7_PCREL, /* type */
153 1, /* rightshift */
154 1, /* size (0 = byte, 1 = short, 2 = long) */
155 7, /* bitsize */
156 TRUE, /* pc_relative */
157 3, /* bitpos */
158 complain_overflow_bitfield, /* complain_on_overflow */
159 bfd_elf_generic_reloc, /* special_function */
160 "R_AVR_7_PCREL", /* name */
161 FALSE, /* partial_inplace */
162 0xffff, /* src_mask */
163 0xffff, /* dst_mask */
164 TRUE), /* pcrel_offset */
165
166 /* A 13 bit PC relative relocation. */
167 HOWTO (R_AVR_13_PCREL, /* type */
168 1, /* rightshift */
169 1, /* size (0 = byte, 1 = short, 2 = long) */
170 13, /* bitsize */
171 TRUE, /* pc_relative */
172 0, /* bitpos */
173 complain_overflow_bitfield, /* complain_on_overflow */
174 bfd_elf_generic_reloc, /* special_function */
175 "R_AVR_13_PCREL", /* name */
176 FALSE, /* partial_inplace */
177 0xfff, /* src_mask */
178 0xfff, /* dst_mask */
179 TRUE), /* pcrel_offset */
180
181 /* A 16 bit absolute relocation. */
182 HOWTO (R_AVR_16, /* type */
183 0, /* rightshift */
184 1, /* size (0 = byte, 1 = short, 2 = long) */
185 16, /* bitsize */
186 FALSE, /* pc_relative */
187 0, /* bitpos */
188 complain_overflow_dont, /* complain_on_overflow */
189 bfd_elf_generic_reloc, /* special_function */
190 "R_AVR_16", /* name */
191 FALSE, /* partial_inplace */
192 0xffff, /* src_mask */
193 0xffff, /* dst_mask */
194 FALSE), /* pcrel_offset */
195
196 /* A 16 bit absolute relocation for command address
197 Will be changed when linker stubs are needed. */
198 HOWTO (R_AVR_16_PM, /* type */
199 1, /* rightshift */
200 1, /* size (0 = byte, 1 = short, 2 = long) */
201 16, /* bitsize */
202 FALSE, /* pc_relative */
203 0, /* bitpos */
204 complain_overflow_bitfield, /* complain_on_overflow */
205 bfd_elf_generic_reloc, /* special_function */
206 "R_AVR_16_PM", /* name */
207 FALSE, /* partial_inplace */
208 0xffff, /* src_mask */
209 0xffff, /* dst_mask */
210 FALSE), /* pcrel_offset */
211 /* A low 8 bit absolute relocation of 16 bit address.
212 For LDI command. */
213 HOWTO (R_AVR_LO8_LDI, /* type */
214 0, /* rightshift */
215 1, /* size (0 = byte, 1 = short, 2 = long) */
216 8, /* bitsize */
217 FALSE, /* pc_relative */
218 0, /* bitpos */
219 complain_overflow_dont, /* complain_on_overflow */
220 bfd_elf_generic_reloc, /* special_function */
221 "R_AVR_LO8_LDI", /* name */
222 FALSE, /* partial_inplace */
223 0xffff, /* src_mask */
224 0xffff, /* dst_mask */
225 FALSE), /* pcrel_offset */
226 /* A high 8 bit absolute relocation of 16 bit address.
227 For LDI command. */
228 HOWTO (R_AVR_HI8_LDI, /* type */
229 8, /* rightshift */
230 1, /* size (0 = byte, 1 = short, 2 = long) */
231 8, /* bitsize */
232 FALSE, /* pc_relative */
233 0, /* bitpos */
234 complain_overflow_dont, /* complain_on_overflow */
235 bfd_elf_generic_reloc, /* special_function */
236 "R_AVR_HI8_LDI", /* name */
237 FALSE, /* partial_inplace */
238 0xffff, /* src_mask */
239 0xffff, /* dst_mask */
240 FALSE), /* pcrel_offset */
241 /* A high 6 bit absolute relocation of 22 bit address.
242 For LDI command. As well second most significant 8 bit value of
243 a 32 bit link-time constant. */
244 HOWTO (R_AVR_HH8_LDI, /* type */
245 16, /* rightshift */
246 1, /* size (0 = byte, 1 = short, 2 = long) */
247 8, /* bitsize */
248 FALSE, /* pc_relative */
249 0, /* bitpos */
250 complain_overflow_dont, /* complain_on_overflow */
251 bfd_elf_generic_reloc, /* special_function */
252 "R_AVR_HH8_LDI", /* name */
253 FALSE, /* partial_inplace */
254 0xffff, /* src_mask */
255 0xffff, /* dst_mask */
256 FALSE), /* pcrel_offset */
257 /* A negative low 8 bit absolute relocation of 16 bit address.
258 For LDI command. */
259 HOWTO (R_AVR_LO8_LDI_NEG, /* type */
260 0, /* rightshift */
261 1, /* size (0 = byte, 1 = short, 2 = long) */
262 8, /* bitsize */
263 FALSE, /* pc_relative */
264 0, /* bitpos */
265 complain_overflow_dont, /* complain_on_overflow */
266 bfd_elf_generic_reloc, /* special_function */
267 "R_AVR_LO8_LDI_NEG", /* name */
268 FALSE, /* partial_inplace */
269 0xffff, /* src_mask */
270 0xffff, /* dst_mask */
271 FALSE), /* pcrel_offset */
272 /* A negative high 8 bit absolute relocation of 16 bit address.
273 For LDI command. */
274 HOWTO (R_AVR_HI8_LDI_NEG, /* type */
275 8, /* rightshift */
276 1, /* size (0 = byte, 1 = short, 2 = long) */
277 8, /* bitsize */
278 FALSE, /* pc_relative */
279 0, /* bitpos */
280 complain_overflow_dont, /* complain_on_overflow */
281 bfd_elf_generic_reloc, /* special_function */
282 "R_AVR_HI8_LDI_NEG", /* name */
283 FALSE, /* partial_inplace */
284 0xffff, /* src_mask */
285 0xffff, /* dst_mask */
286 FALSE), /* pcrel_offset */
287 /* A negative high 6 bit absolute relocation of 22 bit address.
288 For LDI command. */
289 HOWTO (R_AVR_HH8_LDI_NEG, /* type */
290 16, /* rightshift */
291 1, /* size (0 = byte, 1 = short, 2 = long) */
292 8, /* bitsize */
293 FALSE, /* pc_relative */
294 0, /* bitpos */
295 complain_overflow_dont, /* complain_on_overflow */
296 bfd_elf_generic_reloc, /* special_function */
297 "R_AVR_HH8_LDI_NEG", /* name */
298 FALSE, /* partial_inplace */
299 0xffff, /* src_mask */
300 0xffff, /* dst_mask */
301 FALSE), /* pcrel_offset */
302 /* A low 8 bit absolute relocation of 24 bit program memory address.
303 For LDI command. Will not be changed when linker stubs are needed. */
304 HOWTO (R_AVR_LO8_LDI_PM, /* type */
305 1, /* rightshift */
306 1, /* size (0 = byte, 1 = short, 2 = long) */
307 8, /* bitsize */
308 FALSE, /* pc_relative */
309 0, /* bitpos */
310 complain_overflow_dont, /* complain_on_overflow */
311 bfd_elf_generic_reloc, /* special_function */
312 "R_AVR_LO8_LDI_PM", /* name */
313 FALSE, /* partial_inplace */
314 0xffff, /* src_mask */
315 0xffff, /* dst_mask */
316 FALSE), /* pcrel_offset */
317 /* A low 8 bit absolute relocation of 24 bit program memory address.
318 For LDI command. Will not be changed when linker stubs are needed. */
319 HOWTO (R_AVR_HI8_LDI_PM, /* type */
320 9, /* rightshift */
321 1, /* size (0 = byte, 1 = short, 2 = long) */
322 8, /* bitsize */
323 FALSE, /* pc_relative */
324 0, /* bitpos */
325 complain_overflow_dont, /* complain_on_overflow */
326 bfd_elf_generic_reloc, /* special_function */
327 "R_AVR_HI8_LDI_PM", /* name */
328 FALSE, /* partial_inplace */
329 0xffff, /* src_mask */
330 0xffff, /* dst_mask */
331 FALSE), /* pcrel_offset */
332 /* A low 8 bit absolute relocation of 24 bit program memory address.
333 For LDI command. Will not be changed when linker stubs are needed. */
334 HOWTO (R_AVR_HH8_LDI_PM, /* type */
335 17, /* rightshift */
336 1, /* size (0 = byte, 1 = short, 2 = long) */
337 8, /* bitsize */
338 FALSE, /* pc_relative */
339 0, /* bitpos */
340 complain_overflow_dont, /* complain_on_overflow */
341 bfd_elf_generic_reloc, /* special_function */
342 "R_AVR_HH8_LDI_PM", /* name */
343 FALSE, /* partial_inplace */
344 0xffff, /* src_mask */
345 0xffff, /* dst_mask */
346 FALSE), /* pcrel_offset */
347 /* A low 8 bit absolute relocation of 24 bit program memory address.
348 For LDI command. Will not be changed when linker stubs are needed. */
349 HOWTO (R_AVR_LO8_LDI_PM_NEG, /* type */
350 1, /* rightshift */
351 1, /* size (0 = byte, 1 = short, 2 = long) */
352 8, /* bitsize */
353 FALSE, /* pc_relative */
354 0, /* bitpos */
355 complain_overflow_dont, /* complain_on_overflow */
356 bfd_elf_generic_reloc, /* special_function */
357 "R_AVR_LO8_LDI_PM_NEG", /* name */
358 FALSE, /* partial_inplace */
359 0xffff, /* src_mask */
360 0xffff, /* dst_mask */
361 FALSE), /* pcrel_offset */
362 /* A low 8 bit absolute relocation of 24 bit program memory address.
363 For LDI command. Will not be changed when linker stubs are needed. */
364 HOWTO (R_AVR_HI8_LDI_PM_NEG, /* type */
365 9, /* rightshift */
366 1, /* size (0 = byte, 1 = short, 2 = long) */
367 8, /* bitsize */
368 FALSE, /* pc_relative */
369 0, /* bitpos */
370 complain_overflow_dont, /* complain_on_overflow */
371 bfd_elf_generic_reloc, /* special_function */
372 "R_AVR_HI8_LDI_PM_NEG", /* name */
373 FALSE, /* partial_inplace */
374 0xffff, /* src_mask */
375 0xffff, /* dst_mask */
376 FALSE), /* pcrel_offset */
377 /* A low 8 bit absolute relocation of 24 bit program memory address.
378 For LDI command. Will not be changed when linker stubs are needed. */
379 HOWTO (R_AVR_HH8_LDI_PM_NEG, /* type */
380 17, /* rightshift */
381 1, /* size (0 = byte, 1 = short, 2 = long) */
382 8, /* bitsize */
383 FALSE, /* pc_relative */
384 0, /* bitpos */
385 complain_overflow_dont, /* complain_on_overflow */
386 bfd_elf_generic_reloc, /* special_function */
387 "R_AVR_HH8_LDI_PM_NEG", /* name */
388 FALSE, /* partial_inplace */
389 0xffff, /* src_mask */
390 0xffff, /* dst_mask */
391 FALSE), /* pcrel_offset */
392 /* Relocation for CALL command in ATmega. */
393 HOWTO (R_AVR_CALL, /* type */
394 1, /* rightshift */
395 2, /* size (0 = byte, 1 = short, 2 = long) */
396 23, /* bitsize */
397 FALSE, /* pc_relative */
398 0, /* bitpos */
399 complain_overflow_dont,/* complain_on_overflow */
400 bfd_elf_generic_reloc, /* special_function */
401 "R_AVR_CALL", /* name */
402 FALSE, /* partial_inplace */
403 0xffffffff, /* src_mask */
404 0xffffffff, /* dst_mask */
405 FALSE), /* pcrel_offset */
406 /* A 16 bit absolute relocation of 16 bit address.
407 For LDI command. */
408 HOWTO (R_AVR_LDI, /* type */
409 0, /* rightshift */
410 1, /* size (0 = byte, 1 = short, 2 = long) */
411 16, /* bitsize */
412 FALSE, /* pc_relative */
413 0, /* bitpos */
414 complain_overflow_dont,/* complain_on_overflow */
415 bfd_elf_generic_reloc, /* special_function */
416 "R_AVR_LDI", /* name */
417 FALSE, /* partial_inplace */
418 0xffff, /* src_mask */
419 0xffff, /* dst_mask */
420 FALSE), /* pcrel_offset */
421 /* A 6 bit absolute relocation of 6 bit offset.
422 For ldd/sdd command. */
423 HOWTO (R_AVR_6, /* type */
424 0, /* rightshift */
425 0, /* size (0 = byte, 1 = short, 2 = long) */
426 6, /* bitsize */
427 FALSE, /* pc_relative */
428 0, /* bitpos */
429 complain_overflow_dont,/* complain_on_overflow */
430 bfd_elf_generic_reloc, /* special_function */
431 "R_AVR_6", /* name */
432 FALSE, /* partial_inplace */
433 0xffff, /* src_mask */
434 0xffff, /* dst_mask */
435 FALSE), /* pcrel_offset */
436 /* A 6 bit absolute relocation of 6 bit offset.
437 For sbiw/adiw command. */
438 HOWTO (R_AVR_6_ADIW, /* type */
439 0, /* rightshift */
440 0, /* size (0 = byte, 1 = short, 2 = long) */
441 6, /* bitsize */
442 FALSE, /* pc_relative */
443 0, /* bitpos */
444 complain_overflow_dont,/* complain_on_overflow */
445 bfd_elf_generic_reloc, /* special_function */
446 "R_AVR_6_ADIW", /* name */
447 FALSE, /* partial_inplace */
448 0xffff, /* src_mask */
449 0xffff, /* dst_mask */
450 FALSE), /* pcrel_offset */
451 /* Most significant 8 bit value of a 32 bit link-time constant. */
452 HOWTO (R_AVR_MS8_LDI, /* type */
453 24, /* rightshift */
454 1, /* size (0 = byte, 1 = short, 2 = long) */
455 8, /* bitsize */
456 FALSE, /* pc_relative */
457 0, /* bitpos */
458 complain_overflow_dont, /* complain_on_overflow */
459 bfd_elf_generic_reloc, /* special_function */
460 "R_AVR_MS8_LDI", /* name */
461 FALSE, /* partial_inplace */
462 0xffff, /* src_mask */
463 0xffff, /* dst_mask */
464 FALSE), /* pcrel_offset */
465 /* Negative most significant 8 bit value of a 32 bit link-time constant. */
466 HOWTO (R_AVR_MS8_LDI_NEG, /* type */
467 24, /* rightshift */
468 1, /* size (0 = byte, 1 = short, 2 = long) */
469 8, /* bitsize */
470 FALSE, /* pc_relative */
471 0, /* bitpos */
472 complain_overflow_dont, /* complain_on_overflow */
473 bfd_elf_generic_reloc, /* special_function */
474 "R_AVR_MS8_LDI_NEG", /* name */
475 FALSE, /* partial_inplace */
476 0xffff, /* src_mask */
477 0xffff, /* dst_mask */
478 FALSE), /* pcrel_offset */
479 /* A low 8 bit absolute relocation of 24 bit program memory address.
480 For LDI command. Will be changed when linker stubs are needed. */
481 HOWTO (R_AVR_LO8_LDI_GS, /* type */
482 1, /* rightshift */
483 1, /* size (0 = byte, 1 = short, 2 = long) */
484 8, /* bitsize */
485 FALSE, /* pc_relative */
486 0, /* bitpos */
487 complain_overflow_dont, /* complain_on_overflow */
488 bfd_elf_generic_reloc, /* special_function */
489 "R_AVR_LO8_LDI_GS", /* name */
490 FALSE, /* partial_inplace */
491 0xffff, /* src_mask */
492 0xffff, /* dst_mask */
493 FALSE), /* pcrel_offset */
494 /* A low 8 bit absolute relocation of 24 bit program memory address.
495 For LDI command. Will be changed when linker stubs are needed. */
496 HOWTO (R_AVR_HI8_LDI_GS, /* type */
497 9, /* rightshift */
498 1, /* size (0 = byte, 1 = short, 2 = long) */
499 8, /* bitsize */
500 FALSE, /* pc_relative */
501 0, /* bitpos */
502 complain_overflow_dont, /* complain_on_overflow */
503 bfd_elf_generic_reloc, /* special_function */
504 "R_AVR_HI8_LDI_GS", /* name */
505 FALSE, /* partial_inplace */
506 0xffff, /* src_mask */
507 0xffff, /* dst_mask */
508 FALSE), /* pcrel_offset */
509 /* 8 bit offset. */
510 HOWTO (R_AVR_8, /* type */
511 0, /* rightshift */
512 0, /* size (0 = byte, 1 = short, 2 = long) */
513 8, /* bitsize */
514 FALSE, /* pc_relative */
515 0, /* bitpos */
516 complain_overflow_bitfield,/* complain_on_overflow */
517 bfd_elf_generic_reloc, /* special_function */
518 "R_AVR_8", /* name */
519 FALSE, /* partial_inplace */
520 0x000000ff, /* src_mask */
521 0x000000ff, /* dst_mask */
522 FALSE), /* pcrel_offset */
523 /* lo8-part to use in .byte lo8(sym). */
524 HOWTO (R_AVR_8_LO8, /* type */
525 0, /* rightshift */
526 0, /* size (0 = byte, 1 = short, 2 = long) */
527 8, /* bitsize */
528 FALSE, /* pc_relative */
529 0, /* bitpos */
530 complain_overflow_dont,/* complain_on_overflow */
531 bfd_elf_generic_reloc, /* special_function */
532 "R_AVR_8_LO8", /* name */
533 FALSE, /* partial_inplace */
534 0xffffff, /* src_mask */
535 0xffffff, /* dst_mask */
536 FALSE), /* pcrel_offset */
537 /* hi8-part to use in .byte hi8(sym). */
538 HOWTO (R_AVR_8_HI8, /* type */
539 8, /* rightshift */
540 0, /* size (0 = byte, 1 = short, 2 = long) */
541 8, /* bitsize */
542 FALSE, /* pc_relative */
543 0, /* bitpos */
544 complain_overflow_dont,/* complain_on_overflow */
545 bfd_elf_generic_reloc, /* special_function */
546 "R_AVR_8_HI8", /* name */
547 FALSE, /* partial_inplace */
548 0xffffff, /* src_mask */
549 0xffffff, /* dst_mask */
550 FALSE), /* pcrel_offset */
551 /* hlo8-part to use in .byte hlo8(sym). */
552 HOWTO (R_AVR_8_HLO8, /* type */
553 16, /* rightshift */
554 0, /* size (0 = byte, 1 = short, 2 = long) */
555 8, /* bitsize */
556 FALSE, /* pc_relative */
557 0, /* bitpos */
558 complain_overflow_dont,/* complain_on_overflow */
559 bfd_elf_generic_reloc, /* special_function */
560 "R_AVR_8_HLO8", /* name */
561 FALSE, /* partial_inplace */
562 0xffffff, /* src_mask */
563 0xffffff, /* dst_mask */
564 FALSE), /* pcrel_offset */
565 HOWTO (R_AVR_DIFF8, /* type */
566 0, /* rightshift */
567 0, /* size (0 = byte, 1 = short, 2 = long) */
568 8, /* bitsize */
569 FALSE, /* pc_relative */
570 0, /* bitpos */
571 complain_overflow_bitfield, /* complain_on_overflow */
572 bfd_elf_avr_diff_reloc, /* special_function */
573 "R_AVR_DIFF8", /* name */
574 FALSE, /* partial_inplace */
575 0, /* src_mask */
576 0xff, /* dst_mask */
577 FALSE), /* pcrel_offset */
578 HOWTO (R_AVR_DIFF16, /* type */
579 0, /* rightshift */
580 1, /* size (0 = byte, 1 = short, 2 = long) */
581 16, /* bitsize */
582 FALSE, /* pc_relative */
583 0, /* bitpos */
584 complain_overflow_bitfield, /* complain_on_overflow */
585 bfd_elf_avr_diff_reloc,/* special_function */
586 "R_AVR_DIFF16", /* name */
587 FALSE, /* partial_inplace */
588 0, /* src_mask */
589 0xffff, /* dst_mask */
590 FALSE), /* pcrel_offset */
591 HOWTO (R_AVR_DIFF32, /* type */
592 0, /* rightshift */
593 2, /* size (0 = byte, 1 = short, 2 = long) */
594 32, /* bitsize */
595 FALSE, /* pc_relative */
596 0, /* bitpos */
597 complain_overflow_bitfield, /* complain_on_overflow */
598 bfd_elf_avr_diff_reloc,/* special_function */
599 "R_AVR_DIFF32", /* name */
600 FALSE, /* partial_inplace */
601 0, /* src_mask */
602 0xffffffff, /* dst_mask */
603 FALSE), /* pcrel_offset */
604 /* 7 bit immediate for LDS/STS in Tiny core. */
605 HOWTO (R_AVR_LDS_STS_16, /* type */
606 0, /* rightshift */
607 1, /* size (0 = byte, 1 = short, 2 = long) */
608 7, /* bitsize */
609 FALSE, /* pc_relative */
610 0, /* bitpos */
611 complain_overflow_dont,/* complain_on_overflow */
612 bfd_elf_generic_reloc, /* special_function */
613 "R_AVR_LDS_STS_16", /* name */
614 FALSE, /* partial_inplace */
615 0xffff, /* src_mask */
616 0xffff, /* dst_mask */
617 FALSE), /* pcrel_offset */
618
619 HOWTO (R_AVR_PORT6, /* type */
620 0, /* rightshift */
621 0, /* size (0 = byte, 1 = short, 2 = long) */
622 6, /* bitsize */
623 FALSE, /* pc_relative */
624 0, /* bitpos */
625 complain_overflow_dont,/* complain_on_overflow */
626 bfd_elf_generic_reloc, /* special_function */
627 "R_AVR_PORT6", /* name */
628 FALSE, /* partial_inplace */
629 0xffffff, /* src_mask */
630 0xffffff, /* dst_mask */
631 FALSE), /* pcrel_offset */
632 HOWTO (R_AVR_PORT5, /* type */
633 0, /* rightshift */
634 0, /* size (0 = byte, 1 = short, 2 = long) */
635 5, /* bitsize */
636 FALSE, /* pc_relative */
637 0, /* bitpos */
638 complain_overflow_dont,/* complain_on_overflow */
639 bfd_elf_generic_reloc, /* special_function */
640 "R_AVR_PORT5", /* name */
641 FALSE, /* partial_inplace */
642 0xffffff, /* src_mask */
643 0xffffff, /* dst_mask */
644 FALSE), /* pcrel_offset */
645
646 /* A 32 bit PC relative relocation. */
647 HOWTO (R_AVR_32_PCREL, /* type */
648 0, /* rightshift */
649 2, /* size (0 = byte, 1 = short, 2 = long) */
650 32, /* bitsize */
651 TRUE, /* pc_relative */
652 0, /* bitpos */
653 complain_overflow_bitfield, /* complain_on_overflow */
654 bfd_elf_generic_reloc, /* special_function */
655 "R_AVR_32_PCREL", /* name */
656 FALSE, /* partial_inplace */
657 0xffffffff, /* src_mask */
658 0xffffffff, /* dst_mask */
659 TRUE), /* pcrel_offset */
660 };
661
662 /* Map BFD reloc types to AVR ELF reloc types. */
663
664 struct avr_reloc_map
665 {
666 bfd_reloc_code_real_type bfd_reloc_val;
667 unsigned int elf_reloc_val;
668 };
669
670 static const struct avr_reloc_map avr_reloc_map[] =
671 {
672 { BFD_RELOC_NONE, R_AVR_NONE },
673 { BFD_RELOC_32, R_AVR_32 },
674 { BFD_RELOC_AVR_7_PCREL, R_AVR_7_PCREL },
675 { BFD_RELOC_AVR_13_PCREL, R_AVR_13_PCREL },
676 { BFD_RELOC_16, R_AVR_16 },
677 { BFD_RELOC_AVR_16_PM, R_AVR_16_PM },
678 { BFD_RELOC_AVR_LO8_LDI, R_AVR_LO8_LDI},
679 { BFD_RELOC_AVR_HI8_LDI, R_AVR_HI8_LDI },
680 { BFD_RELOC_AVR_HH8_LDI, R_AVR_HH8_LDI },
681 { BFD_RELOC_AVR_MS8_LDI, R_AVR_MS8_LDI },
682 { BFD_RELOC_AVR_LO8_LDI_NEG, R_AVR_LO8_LDI_NEG },
683 { BFD_RELOC_AVR_HI8_LDI_NEG, R_AVR_HI8_LDI_NEG },
684 { BFD_RELOC_AVR_HH8_LDI_NEG, R_AVR_HH8_LDI_NEG },
685 { BFD_RELOC_AVR_MS8_LDI_NEG, R_AVR_MS8_LDI_NEG },
686 { BFD_RELOC_AVR_LO8_LDI_PM, R_AVR_LO8_LDI_PM },
687 { BFD_RELOC_AVR_LO8_LDI_GS, R_AVR_LO8_LDI_GS },
688 { BFD_RELOC_AVR_HI8_LDI_PM, R_AVR_HI8_LDI_PM },
689 { BFD_RELOC_AVR_HI8_LDI_GS, R_AVR_HI8_LDI_GS },
690 { BFD_RELOC_AVR_HH8_LDI_PM, R_AVR_HH8_LDI_PM },
691 { BFD_RELOC_AVR_LO8_LDI_PM_NEG, R_AVR_LO8_LDI_PM_NEG },
692 { BFD_RELOC_AVR_HI8_LDI_PM_NEG, R_AVR_HI8_LDI_PM_NEG },
693 { BFD_RELOC_AVR_HH8_LDI_PM_NEG, R_AVR_HH8_LDI_PM_NEG },
694 { BFD_RELOC_AVR_CALL, R_AVR_CALL },
695 { BFD_RELOC_AVR_LDI, R_AVR_LDI },
696 { BFD_RELOC_AVR_6, R_AVR_6 },
697 { BFD_RELOC_AVR_6_ADIW, R_AVR_6_ADIW },
698 { BFD_RELOC_8, R_AVR_8 },
699 { BFD_RELOC_AVR_8_LO, R_AVR_8_LO8 },
700 { BFD_RELOC_AVR_8_HI, R_AVR_8_HI8 },
701 { BFD_RELOC_AVR_8_HLO, R_AVR_8_HLO8 },
702 { BFD_RELOC_AVR_DIFF8, R_AVR_DIFF8 },
703 { BFD_RELOC_AVR_DIFF16, R_AVR_DIFF16 },
704 { BFD_RELOC_AVR_DIFF32, R_AVR_DIFF32 },
705 { BFD_RELOC_AVR_LDS_STS_16, R_AVR_LDS_STS_16},
706 { BFD_RELOC_AVR_PORT6, R_AVR_PORT6},
707 { BFD_RELOC_AVR_PORT5, R_AVR_PORT5},
708 { BFD_RELOC_32_PCREL, R_AVR_32_PCREL}
709 };
710
711 /* Meant to be filled one day with the wrap around address for the
712 specific device. I.e. should get the value 0x4000 for 16k devices,
713 0x8000 for 32k devices and so on.
714
715 We initialize it here with a value of 0x1000000 resulting in
716 that we will never suggest a wrap-around jump during relaxation.
717 The logic of the source code later on assumes that in
718 avr_pc_wrap_around one single bit is set. */
719 static bfd_vma avr_pc_wrap_around = 0x10000000;
720
721 /* If this variable holds a value different from zero, the linker relaxation
722 machine will try to optimize call/ret sequences by a single jump
723 instruction. This option could be switched off by a linker switch. */
724 static int avr_replace_call_ret_sequences = 1;
725 \f
726
727 /* Per-section relaxation related information for avr. */
728
729 struct avr_relax_info
730 {
731 /* Track the avr property records that apply to this section. */
732
733 struct
734 {
735 /* Number of records in the list. */
736 unsigned count;
737
738 /* How many records worth of space have we allocated. */
739 unsigned allocated;
740
741 /* The records, only COUNT records are initialised. */
742 struct avr_property_record *items;
743 } records;
744 };
745
746 /* Per section data, specialised for avr. */
747
748 struct elf_avr_section_data
749 {
750 /* The standard data must appear first. */
751 struct bfd_elf_section_data elf;
752
753 /* Relaxation related information. */
754 struct avr_relax_info relax_info;
755 };
756
757 /* Possibly initialise avr specific data for new section SEC from ABFD. */
758
759 static bfd_boolean
760 elf_avr_new_section_hook (bfd *abfd, asection *sec)
761 {
762 if (!sec->used_by_bfd)
763 {
764 struct elf_avr_section_data *sdata;
765 bfd_size_type amt = sizeof (*sdata);
766
767 sdata = bfd_zalloc (abfd, amt);
768 if (sdata == NULL)
769 return FALSE;
770 sec->used_by_bfd = sdata;
771 }
772
773 return _bfd_elf_new_section_hook (abfd, sec);
774 }
775
776 /* Return a pointer to the relaxation information for SEC. */
777
778 static struct avr_relax_info *
779 get_avr_relax_info (asection *sec)
780 {
781 struct elf_avr_section_data *section_data;
782
783 /* No info available if no section or if it is an output section. */
784 if (!sec || sec == sec->output_section)
785 return NULL;
786
787 section_data = (struct elf_avr_section_data *) elf_section_data (sec);
788 return &section_data->relax_info;
789 }
790
791 /* Initialise the per section relaxation information for SEC. */
792
793 static void
794 init_avr_relax_info (asection *sec)
795 {
796 struct avr_relax_info *relax_info = get_avr_relax_info (sec);
797
798 relax_info->records.count = 0;
799 relax_info->records.allocated = 0;
800 relax_info->records.items = NULL;
801 }
802
803 /* Initialize an entry in the stub hash table. */
804
805 static struct bfd_hash_entry *
806 stub_hash_newfunc (struct bfd_hash_entry *entry,
807 struct bfd_hash_table *table,
808 const char *string)
809 {
810 /* Allocate the structure if it has not already been allocated by a
811 subclass. */
812 if (entry == NULL)
813 {
814 entry = bfd_hash_allocate (table,
815 sizeof (struct elf32_avr_stub_hash_entry));
816 if (entry == NULL)
817 return entry;
818 }
819
820 /* Call the allocation method of the superclass. */
821 entry = bfd_hash_newfunc (entry, table, string);
822 if (entry != NULL)
823 {
824 struct elf32_avr_stub_hash_entry *hsh;
825
826 /* Initialize the local fields. */
827 hsh = avr_stub_hash_entry (entry);
828 hsh->stub_offset = 0;
829 hsh->target_value = 0;
830 }
831
832 return entry;
833 }
834
835 /* This function is just a straight passthrough to the real
836 function in linker.c. Its prupose is so that its address
837 can be compared inside the avr_link_hash_table macro. */
838
839 static struct bfd_hash_entry *
840 elf32_avr_link_hash_newfunc (struct bfd_hash_entry * entry,
841 struct bfd_hash_table * table,
842 const char * string)
843 {
844 return _bfd_elf_link_hash_newfunc (entry, table, string);
845 }
846
847 /* Free the derived linker hash table. */
848
849 static void
850 elf32_avr_link_hash_table_free (bfd *obfd)
851 {
852 struct elf32_avr_link_hash_table *htab
853 = (struct elf32_avr_link_hash_table *) obfd->link.hash;
854
855 /* Free the address mapping table. */
856 if (htab->amt_stub_offsets != NULL)
857 free (htab->amt_stub_offsets);
858 if (htab->amt_destination_addr != NULL)
859 free (htab->amt_destination_addr);
860
861 bfd_hash_table_free (&htab->bstab);
862 _bfd_elf_link_hash_table_free (obfd);
863 }
864
865 /* Create the derived linker hash table. The AVR ELF port uses the derived
866 hash table to keep information specific to the AVR ELF linker (without
867 using static variables). */
868
869 static struct bfd_link_hash_table *
870 elf32_avr_link_hash_table_create (bfd *abfd)
871 {
872 struct elf32_avr_link_hash_table *htab;
873 bfd_size_type amt = sizeof (*htab);
874
875 htab = bfd_zmalloc (amt);
876 if (htab == NULL)
877 return NULL;
878
879 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd,
880 elf32_avr_link_hash_newfunc,
881 sizeof (struct elf_link_hash_entry),
882 AVR_ELF_DATA))
883 {
884 free (htab);
885 return NULL;
886 }
887
888 /* Init the stub hash table too. */
889 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
890 sizeof (struct elf32_avr_stub_hash_entry)))
891 {
892 _bfd_elf_link_hash_table_free (abfd);
893 return NULL;
894 }
895 htab->etab.root.hash_table_free = elf32_avr_link_hash_table_free;
896
897 return &htab->etab.root;
898 }
899
900 /* Calculates the effective distance of a pc relative jump/call. */
901
902 static int
903 avr_relative_distance_considering_wrap_around (unsigned int distance)
904 {
905 unsigned int wrap_around_mask = avr_pc_wrap_around - 1;
906 int dist_with_wrap_around = distance & wrap_around_mask;
907
908 if (dist_with_wrap_around > ((int) (avr_pc_wrap_around >> 1)))
909 dist_with_wrap_around -= avr_pc_wrap_around;
910
911 return dist_with_wrap_around;
912 }
913
914
915 static reloc_howto_type *
916 bfd_elf32_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
917 bfd_reloc_code_real_type code)
918 {
919 unsigned int i;
920
921 for (i = 0;
922 i < sizeof (avr_reloc_map) / sizeof (struct avr_reloc_map);
923 i++)
924 if (avr_reloc_map[i].bfd_reloc_val == code)
925 return &elf_avr_howto_table[avr_reloc_map[i].elf_reloc_val];
926
927 return NULL;
928 }
929
930 static reloc_howto_type *
931 bfd_elf32_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
932 const char *r_name)
933 {
934 unsigned int i;
935
936 for (i = 0;
937 i < sizeof (elf_avr_howto_table) / sizeof (elf_avr_howto_table[0]);
938 i++)
939 if (elf_avr_howto_table[i].name != NULL
940 && strcasecmp (elf_avr_howto_table[i].name, r_name) == 0)
941 return &elf_avr_howto_table[i];
942
943 return NULL;
944 }
945
946 /* Set the howto pointer for an AVR ELF reloc. */
947
948 static void
949 avr_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
950 arelent *cache_ptr,
951 Elf_Internal_Rela *dst)
952 {
953 unsigned int r_type;
954
955 r_type = ELF32_R_TYPE (dst->r_info);
956 if (r_type >= (unsigned int) R_AVR_max)
957 {
958 _bfd_error_handler (_("%B: invalid AVR reloc number: %d"), abfd, r_type);
959 r_type = 0;
960 }
961 cache_ptr->howto = &elf_avr_howto_table[r_type];
962 }
963
964 static bfd_boolean
965 avr_stub_is_required_for_16_bit_reloc (bfd_vma relocation)
966 {
967 return (relocation >= 0x020000);
968 }
969
970 /* Returns the address of the corresponding stub if there is one.
971 Returns otherwise an address above 0x020000. This function
972 could also be used, if there is no knowledge on the section where
973 the destination is found. */
974
975 static bfd_vma
976 avr_get_stub_addr (bfd_vma srel,
977 struct elf32_avr_link_hash_table *htab)
978 {
979 unsigned int sindex;
980 bfd_vma stub_sec_addr =
981 (htab->stub_sec->output_section->vma +
982 htab->stub_sec->output_offset);
983
984 for (sindex = 0; sindex < htab->amt_max_entry_cnt; sindex ++)
985 if (htab->amt_destination_addr[sindex] == srel)
986 return htab->amt_stub_offsets[sindex] + stub_sec_addr;
987
988 /* Return an address that could not be reached by 16 bit relocs. */
989 return 0x020000;
990 }
991
992 /* Perform a diff relocation. Nothing to do, as the difference value is already
993 written into the section's contents. */
994
995 static bfd_reloc_status_type
996 bfd_elf_avr_diff_reloc (bfd *abfd ATTRIBUTE_UNUSED,
997 arelent *reloc_entry ATTRIBUTE_UNUSED,
998 asymbol *symbol ATTRIBUTE_UNUSED,
999 void *data ATTRIBUTE_UNUSED,
1000 asection *input_section ATTRIBUTE_UNUSED,
1001 bfd *output_bfd ATTRIBUTE_UNUSED,
1002 char **error_message ATTRIBUTE_UNUSED)
1003 {
1004 return bfd_reloc_ok;
1005 }
1006
1007
1008 /* Perform a single relocation. By default we use the standard BFD
1009 routines, but a few relocs, we have to do them ourselves. */
1010
1011 static bfd_reloc_status_type
1012 avr_final_link_relocate (reloc_howto_type * howto,
1013 bfd * input_bfd,
1014 asection * input_section,
1015 bfd_byte * contents,
1016 Elf_Internal_Rela * rel,
1017 bfd_vma relocation,
1018 struct elf32_avr_link_hash_table * htab)
1019 {
1020 bfd_reloc_status_type r = bfd_reloc_ok;
1021 bfd_vma x;
1022 bfd_signed_vma srel;
1023 bfd_signed_vma reloc_addr;
1024 bfd_boolean use_stubs = FALSE;
1025 /* Usually is 0, unless we are generating code for a bootloader. */
1026 bfd_signed_vma base_addr = htab->vector_base;
1027
1028 /* Absolute addr of the reloc in the final excecutable. */
1029 reloc_addr = rel->r_offset + input_section->output_section->vma
1030 + input_section->output_offset;
1031
1032 switch (howto->type)
1033 {
1034 case R_AVR_7_PCREL:
1035 contents += rel->r_offset;
1036 srel = (bfd_signed_vma) relocation;
1037 srel += rel->r_addend;
1038 srel -= rel->r_offset;
1039 srel -= 2; /* Branch instructions add 2 to the PC... */
1040 srel -= (input_section->output_section->vma +
1041 input_section->output_offset);
1042
1043 if (srel & 1)
1044 return bfd_reloc_outofrange;
1045 if (srel > ((1 << 7) - 1) || (srel < - (1 << 7)))
1046 return bfd_reloc_overflow;
1047 x = bfd_get_16 (input_bfd, contents);
1048 x = (x & 0xfc07) | (((srel >> 1) << 3) & 0x3f8);
1049 bfd_put_16 (input_bfd, x, contents);
1050 break;
1051
1052 case R_AVR_13_PCREL:
1053 contents += rel->r_offset;
1054 srel = (bfd_signed_vma) relocation;
1055 srel += rel->r_addend;
1056 srel -= rel->r_offset;
1057 srel -= 2; /* Branch instructions add 2 to the PC... */
1058 srel -= (input_section->output_section->vma +
1059 input_section->output_offset);
1060
1061 if (srel & 1)
1062 return bfd_reloc_outofrange;
1063
1064 srel = avr_relative_distance_considering_wrap_around (srel);
1065
1066 /* AVR addresses commands as words. */
1067 srel >>= 1;
1068
1069 /* Check for overflow. */
1070 if (srel < -2048 || srel > 2047)
1071 {
1072 /* Relative distance is too large. */
1073
1074 /* Always apply WRAPAROUND for avr2, avr25, and avr4. */
1075 switch (bfd_get_mach (input_bfd))
1076 {
1077 case bfd_mach_avr2:
1078 case bfd_mach_avr25:
1079 case bfd_mach_avr4:
1080 break;
1081
1082 default:
1083 return bfd_reloc_overflow;
1084 }
1085 }
1086
1087 x = bfd_get_16 (input_bfd, contents);
1088 x = (x & 0xf000) | (srel & 0xfff);
1089 bfd_put_16 (input_bfd, x, contents);
1090 break;
1091
1092 case R_AVR_LO8_LDI:
1093 contents += rel->r_offset;
1094 srel = (bfd_signed_vma) relocation + rel->r_addend;
1095 x = bfd_get_16 (input_bfd, contents);
1096 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1097 bfd_put_16 (input_bfd, x, contents);
1098 break;
1099
1100 case R_AVR_LDI:
1101 contents += rel->r_offset;
1102 srel = (bfd_signed_vma) relocation + rel->r_addend;
1103 if (((srel > 0) && (srel & 0xffff) > 255)
1104 || ((srel < 0) && ((-srel) & 0xffff) > 128))
1105 /* Remove offset for data/eeprom section. */
1106 return bfd_reloc_overflow;
1107
1108 x = bfd_get_16 (input_bfd, contents);
1109 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1110 bfd_put_16 (input_bfd, x, contents);
1111 break;
1112
1113 case R_AVR_6:
1114 contents += rel->r_offset;
1115 srel = (bfd_signed_vma) relocation + rel->r_addend;
1116 if (((srel & 0xffff) > 63) || (srel < 0))
1117 /* Remove offset for data/eeprom section. */
1118 return bfd_reloc_overflow;
1119 x = bfd_get_16 (input_bfd, contents);
1120 x = (x & 0xd3f8) | ((srel & 7) | ((srel & (3 << 3)) << 7)
1121 | ((srel & (1 << 5)) << 8));
1122 bfd_put_16 (input_bfd, x, contents);
1123 break;
1124
1125 case R_AVR_6_ADIW:
1126 contents += rel->r_offset;
1127 srel = (bfd_signed_vma) relocation + rel->r_addend;
1128 if (((srel & 0xffff) > 63) || (srel < 0))
1129 /* Remove offset for data/eeprom section. */
1130 return bfd_reloc_overflow;
1131 x = bfd_get_16 (input_bfd, contents);
1132 x = (x & 0xff30) | (srel & 0xf) | ((srel & 0x30) << 2);
1133 bfd_put_16 (input_bfd, x, contents);
1134 break;
1135
1136 case R_AVR_HI8_LDI:
1137 contents += rel->r_offset;
1138 srel = (bfd_signed_vma) relocation + rel->r_addend;
1139 srel = (srel >> 8) & 0xff;
1140 x = bfd_get_16 (input_bfd, contents);
1141 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1142 bfd_put_16 (input_bfd, x, contents);
1143 break;
1144
1145 case R_AVR_HH8_LDI:
1146 contents += rel->r_offset;
1147 srel = (bfd_signed_vma) relocation + rel->r_addend;
1148 srel = (srel >> 16) & 0xff;
1149 x = bfd_get_16 (input_bfd, contents);
1150 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1151 bfd_put_16 (input_bfd, x, contents);
1152 break;
1153
1154 case R_AVR_MS8_LDI:
1155 contents += rel->r_offset;
1156 srel = (bfd_signed_vma) relocation + rel->r_addend;
1157 srel = (srel >> 24) & 0xff;
1158 x = bfd_get_16 (input_bfd, contents);
1159 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1160 bfd_put_16 (input_bfd, x, contents);
1161 break;
1162
1163 case R_AVR_LO8_LDI_NEG:
1164 contents += rel->r_offset;
1165 srel = (bfd_signed_vma) relocation + rel->r_addend;
1166 srel = -srel;
1167 x = bfd_get_16 (input_bfd, contents);
1168 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1169 bfd_put_16 (input_bfd, x, contents);
1170 break;
1171
1172 case R_AVR_HI8_LDI_NEG:
1173 contents += rel->r_offset;
1174 srel = (bfd_signed_vma) relocation + rel->r_addend;
1175 srel = -srel;
1176 srel = (srel >> 8) & 0xff;
1177 x = bfd_get_16 (input_bfd, contents);
1178 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1179 bfd_put_16 (input_bfd, x, contents);
1180 break;
1181
1182 case R_AVR_HH8_LDI_NEG:
1183 contents += rel->r_offset;
1184 srel = (bfd_signed_vma) relocation + rel->r_addend;
1185 srel = -srel;
1186 srel = (srel >> 16) & 0xff;
1187 x = bfd_get_16 (input_bfd, contents);
1188 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1189 bfd_put_16 (input_bfd, x, contents);
1190 break;
1191
1192 case R_AVR_MS8_LDI_NEG:
1193 contents += rel->r_offset;
1194 srel = (bfd_signed_vma) relocation + rel->r_addend;
1195 srel = -srel;
1196 srel = (srel >> 24) & 0xff;
1197 x = bfd_get_16 (input_bfd, contents);
1198 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1199 bfd_put_16 (input_bfd, x, contents);
1200 break;
1201
1202 case R_AVR_LO8_LDI_GS:
1203 use_stubs = (!htab->no_stubs);
1204 /* Fall through. */
1205 case R_AVR_LO8_LDI_PM:
1206 contents += rel->r_offset;
1207 srel = (bfd_signed_vma) relocation + rel->r_addend;
1208
1209 if (use_stubs
1210 && avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1211 {
1212 bfd_vma old_srel = srel;
1213
1214 /* We need to use the address of the stub instead. */
1215 srel = avr_get_stub_addr (srel, htab);
1216 if (debug_stubs)
1217 printf ("LD: Using jump stub (at 0x%x) with destination 0x%x for "
1218 "reloc at address 0x%x.\n",
1219 (unsigned int) srel,
1220 (unsigned int) old_srel,
1221 (unsigned int) reloc_addr);
1222
1223 if (avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1224 return bfd_reloc_outofrange;
1225 }
1226
1227 if (srel & 1)
1228 return bfd_reloc_outofrange;
1229 srel = srel >> 1;
1230 x = bfd_get_16 (input_bfd, contents);
1231 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1232 bfd_put_16 (input_bfd, x, contents);
1233 break;
1234
1235 case R_AVR_HI8_LDI_GS:
1236 use_stubs = (!htab->no_stubs);
1237 /* Fall through. */
1238 case R_AVR_HI8_LDI_PM:
1239 contents += rel->r_offset;
1240 srel = (bfd_signed_vma) relocation + rel->r_addend;
1241
1242 if (use_stubs
1243 && avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1244 {
1245 bfd_vma old_srel = srel;
1246
1247 /* We need to use the address of the stub instead. */
1248 srel = avr_get_stub_addr (srel, htab);
1249 if (debug_stubs)
1250 printf ("LD: Using jump stub (at 0x%x) with destination 0x%x for "
1251 "reloc at address 0x%x.\n",
1252 (unsigned int) srel,
1253 (unsigned int) old_srel,
1254 (unsigned int) reloc_addr);
1255
1256 if (avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1257 return bfd_reloc_outofrange;
1258 }
1259
1260 if (srel & 1)
1261 return bfd_reloc_outofrange;
1262 srel = srel >> 1;
1263 srel = (srel >> 8) & 0xff;
1264 x = bfd_get_16 (input_bfd, contents);
1265 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1266 bfd_put_16 (input_bfd, x, contents);
1267 break;
1268
1269 case R_AVR_HH8_LDI_PM:
1270 contents += rel->r_offset;
1271 srel = (bfd_signed_vma) relocation + rel->r_addend;
1272 if (srel & 1)
1273 return bfd_reloc_outofrange;
1274 srel = srel >> 1;
1275 srel = (srel >> 16) & 0xff;
1276 x = bfd_get_16 (input_bfd, contents);
1277 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1278 bfd_put_16 (input_bfd, x, contents);
1279 break;
1280
1281 case R_AVR_LO8_LDI_PM_NEG:
1282 contents += rel->r_offset;
1283 srel = (bfd_signed_vma) relocation + rel->r_addend;
1284 srel = -srel;
1285 if (srel & 1)
1286 return bfd_reloc_outofrange;
1287 srel = srel >> 1;
1288 x = bfd_get_16 (input_bfd, contents);
1289 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1290 bfd_put_16 (input_bfd, x, contents);
1291 break;
1292
1293 case R_AVR_HI8_LDI_PM_NEG:
1294 contents += rel->r_offset;
1295 srel = (bfd_signed_vma) relocation + rel->r_addend;
1296 srel = -srel;
1297 if (srel & 1)
1298 return bfd_reloc_outofrange;
1299 srel = srel >> 1;
1300 srel = (srel >> 8) & 0xff;
1301 x = bfd_get_16 (input_bfd, contents);
1302 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1303 bfd_put_16 (input_bfd, x, contents);
1304 break;
1305
1306 case R_AVR_HH8_LDI_PM_NEG:
1307 contents += rel->r_offset;
1308 srel = (bfd_signed_vma) relocation + rel->r_addend;
1309 srel = -srel;
1310 if (srel & 1)
1311 return bfd_reloc_outofrange;
1312 srel = srel >> 1;
1313 srel = (srel >> 16) & 0xff;
1314 x = bfd_get_16 (input_bfd, contents);
1315 x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
1316 bfd_put_16 (input_bfd, x, contents);
1317 break;
1318
1319 case R_AVR_CALL:
1320 contents += rel->r_offset;
1321 srel = (bfd_signed_vma) relocation + rel->r_addend;
1322 if (srel & 1)
1323 return bfd_reloc_outofrange;
1324 srel = srel >> 1;
1325 x = bfd_get_16 (input_bfd, contents);
1326 x |= ((srel & 0x10000) | ((srel << 3) & 0x1f00000)) >> 16;
1327 bfd_put_16 (input_bfd, x, contents);
1328 bfd_put_16 (input_bfd, (bfd_vma) srel & 0xffff, contents+2);
1329 break;
1330
1331 case R_AVR_16_PM:
1332 use_stubs = (!htab->no_stubs);
1333 contents += rel->r_offset;
1334 srel = (bfd_signed_vma) relocation + rel->r_addend;
1335
1336 if (use_stubs
1337 && avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1338 {
1339 bfd_vma old_srel = srel;
1340
1341 /* We need to use the address of the stub instead. */
1342 srel = avr_get_stub_addr (srel,htab);
1343 if (debug_stubs)
1344 printf ("LD: Using jump stub (at 0x%x) with destination 0x%x for "
1345 "reloc at address 0x%x.\n",
1346 (unsigned int) srel,
1347 (unsigned int) old_srel,
1348 (unsigned int) reloc_addr);
1349
1350 if (avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
1351 return bfd_reloc_outofrange;
1352 }
1353
1354 if (srel & 1)
1355 return bfd_reloc_outofrange;
1356 srel = srel >> 1;
1357 bfd_put_16 (input_bfd, (bfd_vma) srel &0x00ffff, contents);
1358 break;
1359
1360 case R_AVR_DIFF8:
1361 case R_AVR_DIFF16:
1362 case R_AVR_DIFF32:
1363 /* Nothing to do here, as contents already contains the diff value. */
1364 r = bfd_reloc_ok;
1365 break;
1366
1367 case R_AVR_LDS_STS_16:
1368 contents += rel->r_offset;
1369 srel = (bfd_signed_vma) relocation + rel->r_addend;
1370 if ((srel & 0xFFFF) < 0x40 || (srel & 0xFFFF) > 0xbf)
1371 return bfd_reloc_outofrange;
1372 srel = srel & 0x7f;
1373 x = bfd_get_16 (input_bfd, contents);
1374 x |= (srel & 0x0f) | ((srel & 0x30) << 5) | ((srel & 0x40) << 2);
1375 bfd_put_16 (input_bfd, x, contents);
1376 break;
1377
1378 case R_AVR_PORT6:
1379 contents += rel->r_offset;
1380 srel = (bfd_signed_vma) relocation + rel->r_addend;
1381 if ((srel & 0xffff) > 0x3f)
1382 return bfd_reloc_outofrange;
1383 x = bfd_get_16 (input_bfd, contents);
1384 x = (x & 0xf9f0) | ((srel & 0x30) << 5) | (srel & 0x0f);
1385 bfd_put_16 (input_bfd, x, contents);
1386 break;
1387
1388 case R_AVR_PORT5:
1389 contents += rel->r_offset;
1390 srel = (bfd_signed_vma) relocation + rel->r_addend;
1391 if ((srel & 0xffff) > 0x1f)
1392 return bfd_reloc_outofrange;
1393 x = bfd_get_16 (input_bfd, contents);
1394 x = (x & 0xff07) | ((srel & 0x1f) << 3);
1395 bfd_put_16 (input_bfd, x, contents);
1396 break;
1397
1398 default:
1399 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1400 contents, rel->r_offset,
1401 relocation, rel->r_addend);
1402 }
1403
1404 return r;
1405 }
1406
1407 /* Relocate an AVR ELF section. */
1408
1409 static bfd_boolean
1410 elf32_avr_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
1411 struct bfd_link_info *info,
1412 bfd *input_bfd,
1413 asection *input_section,
1414 bfd_byte *contents,
1415 Elf_Internal_Rela *relocs,
1416 Elf_Internal_Sym *local_syms,
1417 asection **local_sections)
1418 {
1419 Elf_Internal_Shdr * symtab_hdr;
1420 struct elf_link_hash_entry ** sym_hashes;
1421 Elf_Internal_Rela * rel;
1422 Elf_Internal_Rela * relend;
1423 struct elf32_avr_link_hash_table * htab = avr_link_hash_table (info);
1424
1425 if (htab == NULL)
1426 return FALSE;
1427
1428 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1429 sym_hashes = elf_sym_hashes (input_bfd);
1430 relend = relocs + input_section->reloc_count;
1431
1432 for (rel = relocs; rel < relend; rel ++)
1433 {
1434 reloc_howto_type * howto;
1435 unsigned long r_symndx;
1436 Elf_Internal_Sym * sym;
1437 asection * sec;
1438 struct elf_link_hash_entry * h;
1439 bfd_vma relocation;
1440 bfd_reloc_status_type r;
1441 const char * name;
1442 int r_type;
1443
1444 r_type = ELF32_R_TYPE (rel->r_info);
1445 r_symndx = ELF32_R_SYM (rel->r_info);
1446 howto = elf_avr_howto_table + r_type;
1447 h = NULL;
1448 sym = NULL;
1449 sec = NULL;
1450
1451 if (r_symndx < symtab_hdr->sh_info)
1452 {
1453 sym = local_syms + r_symndx;
1454 sec = local_sections [r_symndx];
1455 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1456
1457 name = bfd_elf_string_from_elf_section
1458 (input_bfd, symtab_hdr->sh_link, sym->st_name);
1459 name = (name == NULL) ? bfd_section_name (input_bfd, sec) : name;
1460 }
1461 else
1462 {
1463 bfd_boolean unresolved_reloc, warned, ignored;
1464
1465 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1466 r_symndx, symtab_hdr, sym_hashes,
1467 h, sec, relocation,
1468 unresolved_reloc, warned, ignored);
1469
1470 name = h->root.root.string;
1471 }
1472
1473 if (sec != NULL && discarded_section (sec))
1474 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
1475 rel, 1, relend, howto, 0, contents);
1476
1477 if (bfd_link_relocatable (info))
1478 continue;
1479
1480 r = avr_final_link_relocate (howto, input_bfd, input_section,
1481 contents, rel, relocation, htab);
1482
1483 if (r != bfd_reloc_ok)
1484 {
1485 const char * msg = (const char *) NULL;
1486
1487 switch (r)
1488 {
1489 case bfd_reloc_overflow:
1490 (*info->callbacks->reloc_overflow)
1491 (info, (h ? &h->root : NULL), name, howto->name,
1492 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
1493 break;
1494
1495 case bfd_reloc_undefined:
1496 (*info->callbacks->undefined_symbol)
1497 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
1498 break;
1499
1500 case bfd_reloc_outofrange:
1501 msg = _("internal error: out of range error");
1502 break;
1503
1504 case bfd_reloc_notsupported:
1505 msg = _("internal error: unsupported relocation error");
1506 break;
1507
1508 case bfd_reloc_dangerous:
1509 msg = _("internal error: dangerous relocation");
1510 break;
1511
1512 default:
1513 msg = _("internal error: unknown error");
1514 break;
1515 }
1516
1517 if (msg)
1518 (*info->callbacks->warning) (info, msg, name, input_bfd,
1519 input_section, rel->r_offset);
1520 }
1521 }
1522
1523 return TRUE;
1524 }
1525
1526 /* The final processing done just before writing out a AVR ELF object
1527 file. This gets the AVR architecture right based on the machine
1528 number. */
1529
1530 static void
1531 bfd_elf_avr_final_write_processing (bfd *abfd,
1532 bfd_boolean linker ATTRIBUTE_UNUSED)
1533 {
1534 unsigned long val;
1535
1536 switch (bfd_get_mach (abfd))
1537 {
1538 default:
1539 case bfd_mach_avr2:
1540 val = E_AVR_MACH_AVR2;
1541 break;
1542
1543 case bfd_mach_avr1:
1544 val = E_AVR_MACH_AVR1;
1545 break;
1546
1547 case bfd_mach_avr25:
1548 val = E_AVR_MACH_AVR25;
1549 break;
1550
1551 case bfd_mach_avr3:
1552 val = E_AVR_MACH_AVR3;
1553 break;
1554
1555 case bfd_mach_avr31:
1556 val = E_AVR_MACH_AVR31;
1557 break;
1558
1559 case bfd_mach_avr35:
1560 val = E_AVR_MACH_AVR35;
1561 break;
1562
1563 case bfd_mach_avr4:
1564 val = E_AVR_MACH_AVR4;
1565 break;
1566
1567 case bfd_mach_avr5:
1568 val = E_AVR_MACH_AVR5;
1569 break;
1570
1571 case bfd_mach_avr51:
1572 val = E_AVR_MACH_AVR51;
1573 break;
1574
1575 case bfd_mach_avr6:
1576 val = E_AVR_MACH_AVR6;
1577 break;
1578
1579 case bfd_mach_avrxmega1:
1580 val = E_AVR_MACH_XMEGA1;
1581 break;
1582
1583 case bfd_mach_avrxmega2:
1584 val = E_AVR_MACH_XMEGA2;
1585 break;
1586
1587 case bfd_mach_avrxmega3:
1588 val = E_AVR_MACH_XMEGA3;
1589 break;
1590
1591 case bfd_mach_avrxmega4:
1592 val = E_AVR_MACH_XMEGA4;
1593 break;
1594
1595 case bfd_mach_avrxmega5:
1596 val = E_AVR_MACH_XMEGA5;
1597 break;
1598
1599 case bfd_mach_avrxmega6:
1600 val = E_AVR_MACH_XMEGA6;
1601 break;
1602
1603 case bfd_mach_avrxmega7:
1604 val = E_AVR_MACH_XMEGA7;
1605 break;
1606
1607 case bfd_mach_avrtiny:
1608 val = E_AVR_MACH_AVRTINY;
1609 break;
1610 }
1611
1612 elf_elfheader (abfd)->e_machine = EM_AVR;
1613 elf_elfheader (abfd)->e_flags &= ~ EF_AVR_MACH;
1614 elf_elfheader (abfd)->e_flags |= val;
1615 }
1616
1617 /* Set the right machine number. */
1618
1619 static bfd_boolean
1620 elf32_avr_object_p (bfd *abfd)
1621 {
1622 unsigned int e_set = bfd_mach_avr2;
1623
1624 if (elf_elfheader (abfd)->e_machine == EM_AVR
1625 || elf_elfheader (abfd)->e_machine == EM_AVR_OLD)
1626 {
1627 int e_mach = elf_elfheader (abfd)->e_flags & EF_AVR_MACH;
1628
1629 switch (e_mach)
1630 {
1631 default:
1632 case E_AVR_MACH_AVR2:
1633 e_set = bfd_mach_avr2;
1634 break;
1635
1636 case E_AVR_MACH_AVR1:
1637 e_set = bfd_mach_avr1;
1638 break;
1639
1640 case E_AVR_MACH_AVR25:
1641 e_set = bfd_mach_avr25;
1642 break;
1643
1644 case E_AVR_MACH_AVR3:
1645 e_set = bfd_mach_avr3;
1646 break;
1647
1648 case E_AVR_MACH_AVR31:
1649 e_set = bfd_mach_avr31;
1650 break;
1651
1652 case E_AVR_MACH_AVR35:
1653 e_set = bfd_mach_avr35;
1654 break;
1655
1656 case E_AVR_MACH_AVR4:
1657 e_set = bfd_mach_avr4;
1658 break;
1659
1660 case E_AVR_MACH_AVR5:
1661 e_set = bfd_mach_avr5;
1662 break;
1663
1664 case E_AVR_MACH_AVR51:
1665 e_set = bfd_mach_avr51;
1666 break;
1667
1668 case E_AVR_MACH_AVR6:
1669 e_set = bfd_mach_avr6;
1670 break;
1671
1672 case E_AVR_MACH_XMEGA1:
1673 e_set = bfd_mach_avrxmega1;
1674 break;
1675
1676 case E_AVR_MACH_XMEGA2:
1677 e_set = bfd_mach_avrxmega2;
1678 break;
1679
1680 case E_AVR_MACH_XMEGA3:
1681 e_set = bfd_mach_avrxmega3;
1682 break;
1683
1684 case E_AVR_MACH_XMEGA4:
1685 e_set = bfd_mach_avrxmega4;
1686 break;
1687
1688 case E_AVR_MACH_XMEGA5:
1689 e_set = bfd_mach_avrxmega5;
1690 break;
1691
1692 case E_AVR_MACH_XMEGA6:
1693 e_set = bfd_mach_avrxmega6;
1694 break;
1695
1696 case E_AVR_MACH_XMEGA7:
1697 e_set = bfd_mach_avrxmega7;
1698 break;
1699
1700 case E_AVR_MACH_AVRTINY:
1701 e_set = bfd_mach_avrtiny;
1702 break;
1703 }
1704 }
1705 return bfd_default_set_arch_mach (abfd, bfd_arch_avr,
1706 e_set);
1707 }
1708
1709 /* Returns whether the relocation type passed is a diff reloc. */
1710
1711 static bfd_boolean
1712 elf32_avr_is_diff_reloc (Elf_Internal_Rela *irel)
1713 {
1714 return (ELF32_R_TYPE (irel->r_info) == R_AVR_DIFF8
1715 ||ELF32_R_TYPE (irel->r_info) == R_AVR_DIFF16
1716 || ELF32_R_TYPE (irel->r_info) == R_AVR_DIFF32);
1717 }
1718
1719 /* Reduce the diff value written in the section by count if the shrinked
1720 insn address happens to fall between the two symbols for which this
1721 diff reloc was emitted. */
1722
1723 static void
1724 elf32_avr_adjust_diff_reloc_value (bfd *abfd,
1725 struct bfd_section *isec,
1726 Elf_Internal_Rela *irel,
1727 bfd_vma symval,
1728 bfd_vma shrinked_insn_address,
1729 int count)
1730 {
1731 unsigned char *reloc_contents = NULL;
1732 unsigned char *isec_contents = elf_section_data (isec)->this_hdr.contents;
1733 if (isec_contents == NULL)
1734 {
1735 if (! bfd_malloc_and_get_section (abfd, isec, &isec_contents))
1736 return;
1737
1738 elf_section_data (isec)->this_hdr.contents = isec_contents;
1739 }
1740
1741 reloc_contents = isec_contents + irel->r_offset;
1742
1743 /* Read value written in object file. */
1744 bfd_vma x = 0;
1745 switch (ELF32_R_TYPE (irel->r_info))
1746 {
1747 case R_AVR_DIFF8:
1748 {
1749 x = *reloc_contents;
1750 break;
1751 }
1752 case R_AVR_DIFF16:
1753 {
1754 x = bfd_get_16 (abfd, reloc_contents);
1755 break;
1756 }
1757 case R_AVR_DIFF32:
1758 {
1759 x = bfd_get_32 (abfd, reloc_contents);
1760 break;
1761 }
1762 default:
1763 {
1764 BFD_FAIL();
1765 }
1766 }
1767
1768 /* For a diff reloc sym1 - sym2 the diff at assembly time (x) is written
1769 into the object file at the reloc offset. sym2's logical value is
1770 symval (<start_of_section>) + reloc addend. Compute the start and end
1771 addresses and check if the shrinked insn falls between sym1 and sym2. */
1772
1773 bfd_vma end_address = symval + irel->r_addend;
1774 bfd_vma start_address = end_address - x;
1775
1776 /* Reduce the diff value by count bytes and write it back into section
1777 contents. */
1778
1779 if (shrinked_insn_address >= start_address
1780 && shrinked_insn_address <= end_address)
1781 {
1782 switch (ELF32_R_TYPE (irel->r_info))
1783 {
1784 case R_AVR_DIFF8:
1785 {
1786 *reloc_contents = (x - count);
1787 break;
1788 }
1789 case R_AVR_DIFF16:
1790 {
1791 bfd_put_16 (abfd, (x - count) & 0xFFFF, reloc_contents);
1792 break;
1793 }
1794 case R_AVR_DIFF32:
1795 {
1796 bfd_put_32 (abfd, (x - count) & 0xFFFFFFFF, reloc_contents);
1797 break;
1798 }
1799 default:
1800 {
1801 BFD_FAIL();
1802 }
1803 }
1804
1805 }
1806 }
1807
1808 /* Delete some bytes from a section while changing the size of an instruction.
1809 The parameter "addr" denotes the section-relative offset pointing just
1810 behind the shrinked instruction. "addr+count" point at the first
1811 byte just behind the original unshrinked instruction. If delete_shrinks_insn
1812 is FALSE, we are deleting redundant padding bytes from relax_info prop
1813 record handling. In that case, addr is section-relative offset of start
1814 of padding, and count is the number of padding bytes to delete. */
1815
1816 static bfd_boolean
1817 elf32_avr_relax_delete_bytes (bfd *abfd,
1818 asection *sec,
1819 bfd_vma addr,
1820 int count,
1821 bfd_boolean delete_shrinks_insn)
1822 {
1823 Elf_Internal_Shdr *symtab_hdr;
1824 unsigned int sec_shndx;
1825 bfd_byte *contents;
1826 Elf_Internal_Rela *irel, *irelend;
1827 Elf_Internal_Sym *isym;
1828 Elf_Internal_Sym *isymbuf = NULL;
1829 bfd_vma toaddr, reloc_toaddr;
1830 struct elf_link_hash_entry **sym_hashes;
1831 struct elf_link_hash_entry **end_hashes;
1832 unsigned int symcount;
1833 struct avr_relax_info *relax_info;
1834 struct avr_property_record *prop_record = NULL;
1835 bfd_boolean did_shrink = FALSE;
1836 bfd_boolean did_pad = FALSE;
1837
1838 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1839 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
1840 contents = elf_section_data (sec)->this_hdr.contents;
1841 relax_info = get_avr_relax_info (sec);
1842
1843 toaddr = sec->size;
1844
1845 if (relax_info->records.count > 0)
1846 {
1847 /* There should be no property record within the range of deleted
1848 bytes, however, there might be a property record for ADDR, this is
1849 how we handle alignment directives.
1850 Find the next (if any) property record after the deleted bytes. */
1851 unsigned int i;
1852
1853 for (i = 0; i < relax_info->records.count; ++i)
1854 {
1855 bfd_vma offset = relax_info->records.items [i].offset;
1856
1857 BFD_ASSERT (offset <= addr || offset >= (addr + count));
1858 if (offset >= (addr + count))
1859 {
1860 prop_record = &relax_info->records.items [i];
1861 toaddr = offset;
1862 break;
1863 }
1864 }
1865 }
1866
1867 /* We need to look at all relocs with offsets less than toaddr. prop
1868 records handling adjusts toaddr downwards to avoid moving syms at the
1869 address of the property record, but all relocs with offsets between addr
1870 and the current value of toaddr need to have their offsets adjusted.
1871 Assume addr = 0, toaddr = 4 and count = 2. After prop records handling,
1872 toaddr becomes 2, but relocs with offsets 2 and 3 still need to be
1873 adjusted (to 0 and 1 respectively), as the first 2 bytes are now gone.
1874 So record the current value of toaddr here, and use it when adjusting
1875 reloc offsets. */
1876 reloc_toaddr = toaddr;
1877
1878 irel = elf_section_data (sec)->relocs;
1879 irelend = irel + sec->reloc_count;
1880
1881 /* Actually delete the bytes. */
1882 if (toaddr - addr - count > 0)
1883 {
1884 memmove (contents + addr, contents + addr + count,
1885 (size_t) (toaddr - addr - count));
1886 did_shrink = TRUE;
1887 }
1888 if (prop_record == NULL)
1889 {
1890 sec->size -= count;
1891 did_shrink = TRUE;
1892 }
1893 else
1894 {
1895 /* Use the property record to fill in the bytes we've opened up. */
1896 int fill = 0;
1897 switch (prop_record->type)
1898 {
1899 case RECORD_ORG_AND_FILL:
1900 fill = prop_record->data.org.fill;
1901 /* Fall through. */
1902 case RECORD_ORG:
1903 break;
1904 case RECORD_ALIGN_AND_FILL:
1905 fill = prop_record->data.align.fill;
1906 /* Fall through. */
1907 case RECORD_ALIGN:
1908 prop_record->data.align.preceding_deleted += count;
1909 break;
1910 };
1911 /* If toaddr == (addr + count), then we didn't delete anything, yet
1912 we fill count bytes backwards from toaddr. This is still ok - we
1913 end up overwriting the bytes we would have deleted. We just need
1914 to remember we didn't delete anything i.e. don't set did_shrink,
1915 so that we don't corrupt reloc offsets or symbol values.*/
1916 memset (contents + toaddr - count, fill, count);
1917 did_pad = TRUE;
1918
1919 /* Adjust the TOADDR to avoid moving symbols located at the address
1920 of the property record, which has not moved. */
1921 toaddr -= count;
1922 }
1923
1924 if (!did_shrink)
1925 return TRUE;
1926
1927 /* Adjust all the reloc addresses. */
1928 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
1929 {
1930 bfd_vma old_reloc_address;
1931
1932 old_reloc_address = (sec->output_section->vma
1933 + sec->output_offset + irel->r_offset);
1934
1935 /* Get the new reloc address. */
1936 if ((irel->r_offset > addr
1937 && irel->r_offset < reloc_toaddr))
1938 {
1939 if (debug_relax)
1940 printf ("Relocation at address 0x%x needs to be moved.\n"
1941 "Old section offset: 0x%x, New section offset: 0x%x \n",
1942 (unsigned int) old_reloc_address,
1943 (unsigned int) irel->r_offset,
1944 (unsigned int) ((irel->r_offset) - count));
1945
1946 irel->r_offset -= count;
1947 }
1948
1949 }
1950
1951 /* The reloc's own addresses are now ok. However, we need to readjust
1952 the reloc's addend, i.e. the reloc's value if two conditions are met:
1953 1.) the reloc is relative to a symbol in this section that
1954 is located in front of the shrinked instruction
1955 2.) symbol plus addend end up behind the shrinked instruction.
1956
1957 The most common case where this happens are relocs relative to
1958 the section-start symbol.
1959
1960 This step needs to be done for all of the sections of the bfd. */
1961
1962 {
1963 struct bfd_section *isec;
1964
1965 for (isec = abfd->sections; isec; isec = isec->next)
1966 {
1967 bfd_vma symval;
1968 bfd_vma shrinked_insn_address;
1969
1970 if (isec->reloc_count == 0)
1971 continue;
1972
1973 shrinked_insn_address = (sec->output_section->vma
1974 + sec->output_offset + addr);
1975 if (delete_shrinks_insn)
1976 shrinked_insn_address -= count;
1977
1978 irel = elf_section_data (isec)->relocs;
1979 /* PR 12161: Read in the relocs for this section if necessary. */
1980 if (irel == NULL)
1981 irel = _bfd_elf_link_read_relocs (abfd, isec, NULL, NULL, TRUE);
1982
1983 for (irelend = irel + isec->reloc_count;
1984 irel < irelend;
1985 irel++)
1986 {
1987 /* Read this BFD's local symbols if we haven't done
1988 so already. */
1989 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
1990 {
1991 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
1992 if (isymbuf == NULL)
1993 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
1994 symtab_hdr->sh_info, 0,
1995 NULL, NULL, NULL);
1996 if (isymbuf == NULL)
1997 return FALSE;
1998 }
1999
2000 /* Get the value of the symbol referred to by the reloc. */
2001 if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
2002 {
2003 /* A local symbol. */
2004 asection *sym_sec;
2005
2006 isym = isymbuf + ELF32_R_SYM (irel->r_info);
2007 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
2008 symval = isym->st_value;
2009 /* If the reloc is absolute, it will not have
2010 a symbol or section associated with it. */
2011 if (sym_sec == sec)
2012 {
2013 /* If there is an alignment boundary, we only need to
2014 adjust addends that end up below the boundary. */
2015 bfd_vma shrink_boundary = (reloc_toaddr
2016 + sec->output_section->vma
2017 + sec->output_offset);
2018 bfd_boolean addend_within_shrink_boundary = FALSE;
2019
2020 symval += sym_sec->output_section->vma
2021 + sym_sec->output_offset;
2022
2023 if (debug_relax)
2024 printf ("Checking if the relocation's "
2025 "addend needs corrections.\n"
2026 "Address of anchor symbol: 0x%x \n"
2027 "Address of relocation target: 0x%x \n"
2028 "Address of relaxed insn: 0x%x \n",
2029 (unsigned int) symval,
2030 (unsigned int) (symval + irel->r_addend),
2031 (unsigned int) shrinked_insn_address);
2032
2033 /* If we padded bytes, then the boundary didn't change,
2034 so there's no need to adjust addends pointing at the boundary.
2035 If we didn't pad, then we actually shrank the boundary, so
2036 addends pointing at the boundary need to be adjusted too. */
2037 addend_within_shrink_boundary = did_pad
2038 ? ((symval + irel->r_addend) < shrink_boundary)
2039 : ((symval + irel->r_addend) <= shrink_boundary);
2040
2041 if (symval <= shrinked_insn_address
2042 && (symval + irel->r_addend) > shrinked_insn_address
2043 && addend_within_shrink_boundary)
2044 {
2045 if (elf32_avr_is_diff_reloc (irel))
2046 {
2047 elf32_avr_adjust_diff_reloc_value (abfd, isec, irel,
2048 symval,
2049 shrinked_insn_address,
2050 count);
2051 }
2052
2053 irel->r_addend -= count;
2054
2055 if (debug_relax)
2056 printf ("Relocation's addend needed to be fixed \n");
2057 }
2058 }
2059 /* else...Reference symbol is absolute. No adjustment needed. */
2060 }
2061 /* else...Reference symbol is extern. No need for adjusting
2062 the addend. */
2063 }
2064 }
2065 }
2066
2067 /* Adjust the local symbols defined in this section. */
2068 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
2069 /* Fix PR 9841, there may be no local symbols. */
2070 if (isym != NULL)
2071 {
2072 Elf_Internal_Sym *isymend;
2073
2074 isymend = isym + symtab_hdr->sh_info;
2075 for (; isym < isymend; isym++)
2076 {
2077 if (isym->st_shndx == sec_shndx)
2078 {
2079 if (isym->st_value > addr
2080 && isym->st_value <= toaddr)
2081 isym->st_value -= count;
2082
2083 if (isym->st_value <= addr
2084 && isym->st_value + isym->st_size > addr)
2085 {
2086 /* If this assert fires then we have a symbol that ends
2087 part way through an instruction. Does that make
2088 sense? */
2089 BFD_ASSERT (isym->st_value + isym->st_size >= addr + count);
2090 isym->st_size -= count;
2091 }
2092 }
2093 }
2094 }
2095
2096 /* Now adjust the global symbols defined in this section. */
2097 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2098 - symtab_hdr->sh_info);
2099 sym_hashes = elf_sym_hashes (abfd);
2100 end_hashes = sym_hashes + symcount;
2101 for (; sym_hashes < end_hashes; sym_hashes++)
2102 {
2103 struct elf_link_hash_entry *sym_hash = *sym_hashes;
2104 if ((sym_hash->root.type == bfd_link_hash_defined
2105 || sym_hash->root.type == bfd_link_hash_defweak)
2106 && sym_hash->root.u.def.section == sec)
2107 {
2108 if (sym_hash->root.u.def.value > addr
2109 && sym_hash->root.u.def.value <= toaddr)
2110 sym_hash->root.u.def.value -= count;
2111
2112 if (sym_hash->root.u.def.value <= addr
2113 && (sym_hash->root.u.def.value + sym_hash->size > addr))
2114 {
2115 /* If this assert fires then we have a symbol that ends
2116 part way through an instruction. Does that make
2117 sense? */
2118 BFD_ASSERT (sym_hash->root.u.def.value + sym_hash->size
2119 >= addr + count);
2120 sym_hash->size -= count;
2121 }
2122 }
2123 }
2124
2125 return TRUE;
2126 }
2127
2128 static Elf_Internal_Sym *
2129 retrieve_local_syms (bfd *input_bfd)
2130 {
2131 Elf_Internal_Shdr *symtab_hdr;
2132 Elf_Internal_Sym *isymbuf;
2133 size_t locsymcount;
2134
2135 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2136 locsymcount = symtab_hdr->sh_info;
2137
2138 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2139 if (isymbuf == NULL && locsymcount != 0)
2140 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
2141 NULL, NULL, NULL);
2142
2143 /* Save the symbols for this input file so they won't be read again. */
2144 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
2145 symtab_hdr->contents = (unsigned char *) isymbuf;
2146
2147 return isymbuf;
2148 }
2149
2150 /* Get the input section for a given symbol index.
2151 If the symbol is:
2152 . a section symbol, return the section;
2153 . a common symbol, return the common section;
2154 . an undefined symbol, return the undefined section;
2155 . an indirect symbol, follow the links;
2156 . an absolute value, return the absolute section. */
2157
2158 static asection *
2159 get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
2160 {
2161 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2162 asection *target_sec = NULL;
2163 if (r_symndx < symtab_hdr->sh_info)
2164 {
2165 Elf_Internal_Sym *isymbuf;
2166 unsigned int section_index;
2167
2168 isymbuf = retrieve_local_syms (abfd);
2169 section_index = isymbuf[r_symndx].st_shndx;
2170
2171 if (section_index == SHN_UNDEF)
2172 target_sec = bfd_und_section_ptr;
2173 else if (section_index == SHN_ABS)
2174 target_sec = bfd_abs_section_ptr;
2175 else if (section_index == SHN_COMMON)
2176 target_sec = bfd_com_section_ptr;
2177 else
2178 target_sec = bfd_section_from_elf_index (abfd, section_index);
2179 }
2180 else
2181 {
2182 unsigned long indx = r_symndx - symtab_hdr->sh_info;
2183 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
2184
2185 while (h->root.type == bfd_link_hash_indirect
2186 || h->root.type == bfd_link_hash_warning)
2187 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2188
2189 switch (h->root.type)
2190 {
2191 case bfd_link_hash_defined:
2192 case bfd_link_hash_defweak:
2193 target_sec = h->root.u.def.section;
2194 break;
2195 case bfd_link_hash_common:
2196 target_sec = bfd_com_section_ptr;
2197 break;
2198 case bfd_link_hash_undefined:
2199 case bfd_link_hash_undefweak:
2200 target_sec = bfd_und_section_ptr;
2201 break;
2202 default: /* New indirect warning. */
2203 target_sec = bfd_und_section_ptr;
2204 break;
2205 }
2206 }
2207 return target_sec;
2208 }
2209
2210 /* Get the section-relative offset for a symbol number. */
2211
2212 static bfd_vma
2213 get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
2214 {
2215 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2216 bfd_vma offset = 0;
2217
2218 if (r_symndx < symtab_hdr->sh_info)
2219 {
2220 Elf_Internal_Sym *isymbuf;
2221 isymbuf = retrieve_local_syms (abfd);
2222 offset = isymbuf[r_symndx].st_value;
2223 }
2224 else
2225 {
2226 unsigned long indx = r_symndx - symtab_hdr->sh_info;
2227 struct elf_link_hash_entry *h =
2228 elf_sym_hashes (abfd)[indx];
2229
2230 while (h->root.type == bfd_link_hash_indirect
2231 || h->root.type == bfd_link_hash_warning)
2232 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2233 if (h->root.type == bfd_link_hash_defined
2234 || h->root.type == bfd_link_hash_defweak)
2235 offset = h->root.u.def.value;
2236 }
2237 return offset;
2238 }
2239
2240 /* Iterate over the property records in R_LIST, and copy each record into
2241 the list of records within the relaxation information for the section to
2242 which the record applies. */
2243
2244 static void
2245 avr_elf32_assign_records_to_sections (struct avr_property_record_list *r_list)
2246 {
2247 unsigned int i;
2248
2249 for (i = 0; i < r_list->record_count; ++i)
2250 {
2251 struct avr_relax_info *relax_info;
2252
2253 relax_info = get_avr_relax_info (r_list->records [i].section);
2254 BFD_ASSERT (relax_info != NULL);
2255
2256 if (relax_info->records.count
2257 == relax_info->records.allocated)
2258 {
2259 /* Allocate more space. */
2260 bfd_size_type size;
2261
2262 relax_info->records.allocated += 10;
2263 size = (sizeof (struct avr_property_record)
2264 * relax_info->records.allocated);
2265 relax_info->records.items
2266 = bfd_realloc (relax_info->records.items, size);
2267 }
2268
2269 memcpy (&relax_info->records.items [relax_info->records.count],
2270 &r_list->records [i],
2271 sizeof (struct avr_property_record));
2272 relax_info->records.count++;
2273 }
2274 }
2275
2276 /* Compare two STRUCT AVR_PROPERTY_RECORD in AP and BP, used as the
2277 ordering callback from QSORT. */
2278
2279 static int
2280 avr_property_record_compare (const void *ap, const void *bp)
2281 {
2282 const struct avr_property_record *a
2283 = (struct avr_property_record *) ap;
2284 const struct avr_property_record *b
2285 = (struct avr_property_record *) bp;
2286
2287 if (a->offset != b->offset)
2288 return (a->offset - b->offset);
2289
2290 if (a->section != b->section)
2291 return (bfd_get_section_vma (a->section->owner, a->section)
2292 - bfd_get_section_vma (b->section->owner, b->section));
2293
2294 return (a->type - b->type);
2295 }
2296
2297 /* Load all of the avr property sections from all of the bfd objects
2298 referenced from LINK_INFO. All of the records within each property
2299 section are assigned to the STRUCT AVR_RELAX_INFO within the section
2300 specific data of the appropriate section. */
2301
2302 static void
2303 avr_load_all_property_sections (struct bfd_link_info *link_info)
2304 {
2305 bfd *abfd;
2306 asection *sec;
2307
2308 /* Initialize the per-section relaxation info. */
2309 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
2310 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2311 {
2312 init_avr_relax_info (sec);
2313 }
2314
2315 /* Load the descriptor tables from .avr.prop sections. */
2316 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
2317 {
2318 struct avr_property_record_list *r_list;
2319
2320 r_list = avr_elf32_load_property_records (abfd);
2321 if (r_list != NULL)
2322 avr_elf32_assign_records_to_sections (r_list);
2323
2324 free (r_list);
2325 }
2326
2327 /* Now, for every section, ensure that the descriptor list in the
2328 relaxation data is sorted by ascending offset within the section. */
2329 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
2330 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2331 {
2332 struct avr_relax_info *relax_info = get_avr_relax_info (sec);
2333 if (relax_info && relax_info->records.count > 0)
2334 {
2335 unsigned int i;
2336
2337 qsort (relax_info->records.items,
2338 relax_info->records.count,
2339 sizeof (struct avr_property_record),
2340 avr_property_record_compare);
2341
2342 /* For debug purposes, list all the descriptors. */
2343 for (i = 0; i < relax_info->records.count; ++i)
2344 {
2345 switch (relax_info->records.items [i].type)
2346 {
2347 case RECORD_ORG:
2348 break;
2349 case RECORD_ORG_AND_FILL:
2350 break;
2351 case RECORD_ALIGN:
2352 break;
2353 case RECORD_ALIGN_AND_FILL:
2354 break;
2355 };
2356 }
2357 }
2358 }
2359 }
2360
2361 /* This function handles relaxing for the avr.
2362 Many important relaxing opportunities within functions are already
2363 realized by the compiler itself.
2364 Here we try to replace call (4 bytes) -> rcall (2 bytes)
2365 and jump -> rjmp (safes also 2 bytes).
2366 As well we now optimize seqences of
2367 - call/rcall function
2368 - ret
2369 to yield
2370 - jmp/rjmp function
2371 - ret
2372 . In case that within a sequence
2373 - jmp/rjmp label
2374 - ret
2375 the ret could no longer be reached it is optimized away. In order
2376 to check if the ret is no longer needed, it is checked that the ret's address
2377 is not the target of a branch or jump within the same section, it is checked
2378 that there is no skip instruction before the jmp/rjmp and that there
2379 is no local or global label place at the address of the ret.
2380
2381 We refrain from relaxing within sections ".vectors" and
2382 ".jumptables" in order to maintain the position of the instructions.
2383 There, however, we substitute jmp/call by a sequence rjmp,nop/rcall,nop
2384 if possible. (In future one could possibly use the space of the nop
2385 for the first instruction of the irq service function.
2386
2387 The .jumptables sections is meant to be used for a future tablejump variant
2388 for the devices with 3-byte program counter where the table itself
2389 contains 4-byte jump instructions whose relative offset must not
2390 be changed. */
2391
2392 static bfd_boolean
2393 elf32_avr_relax_section (bfd *abfd,
2394 asection *sec,
2395 struct bfd_link_info *link_info,
2396 bfd_boolean *again)
2397 {
2398 Elf_Internal_Shdr *symtab_hdr;
2399 Elf_Internal_Rela *internal_relocs;
2400 Elf_Internal_Rela *irel, *irelend;
2401 bfd_byte *contents = NULL;
2402 Elf_Internal_Sym *isymbuf = NULL;
2403 struct elf32_avr_link_hash_table *htab;
2404 static bfd_boolean relaxation_initialised = FALSE;
2405
2406 if (!relaxation_initialised)
2407 {
2408 relaxation_initialised = TRUE;
2409
2410 /* Load entries from the .avr.prop sections. */
2411 avr_load_all_property_sections (link_info);
2412 }
2413
2414 /* If 'shrinkable' is FALSE, do not shrink by deleting bytes while
2415 relaxing. Such shrinking can cause issues for the sections such
2416 as .vectors and .jumptables. Instead the unused bytes should be
2417 filled with nop instructions. */
2418 bfd_boolean shrinkable = TRUE;
2419
2420 if (!strcmp (sec->name,".vectors")
2421 || !strcmp (sec->name,".jumptables"))
2422 shrinkable = FALSE;
2423
2424 if (bfd_link_relocatable (link_info))
2425 (*link_info->callbacks->einfo)
2426 (_("%P%F: --relax and -r may not be used together\n"));
2427
2428 htab = avr_link_hash_table (link_info);
2429 if (htab == NULL)
2430 return FALSE;
2431
2432 /* Assume nothing changes. */
2433 *again = FALSE;
2434
2435 if ((!htab->no_stubs) && (sec == htab->stub_sec))
2436 {
2437 /* We are just relaxing the stub section.
2438 Let's calculate the size needed again. */
2439 bfd_size_type last_estimated_stub_section_size = htab->stub_sec->size;
2440
2441 if (debug_relax)
2442 printf ("Relaxing the stub section. Size prior to this pass: %i\n",
2443 (int) last_estimated_stub_section_size);
2444
2445 elf32_avr_size_stubs (htab->stub_sec->output_section->owner,
2446 link_info, FALSE);
2447
2448 /* Check if the number of trampolines changed. */
2449 if (last_estimated_stub_section_size != htab->stub_sec->size)
2450 *again = TRUE;
2451
2452 if (debug_relax)
2453 printf ("Size of stub section after this pass: %i\n",
2454 (int) htab->stub_sec->size);
2455
2456 return TRUE;
2457 }
2458
2459 /* We don't have to do anything for a relocatable link, if
2460 this section does not have relocs, or if this is not a
2461 code section. */
2462 if (bfd_link_relocatable (link_info)
2463 || (sec->flags & SEC_RELOC) == 0
2464 || sec->reloc_count == 0
2465 || (sec->flags & SEC_CODE) == 0)
2466 return TRUE;
2467
2468 /* Check if the object file to relax uses internal symbols so that we
2469 could fix up the relocations. */
2470 if (!(elf_elfheader (abfd)->e_flags & EF_AVR_LINKRELAX_PREPARED))
2471 return TRUE;
2472
2473 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2474
2475 /* Get a copy of the native relocations. */
2476 internal_relocs = (_bfd_elf_link_read_relocs
2477 (abfd, sec, NULL, NULL, link_info->keep_memory));
2478 if (internal_relocs == NULL)
2479 goto error_return;
2480
2481 /* Walk through the relocs looking for relaxing opportunities. */
2482 irelend = internal_relocs + sec->reloc_count;
2483 for (irel = internal_relocs; irel < irelend; irel++)
2484 {
2485 bfd_vma symval;
2486
2487 if ( ELF32_R_TYPE (irel->r_info) != R_AVR_13_PCREL
2488 && ELF32_R_TYPE (irel->r_info) != R_AVR_7_PCREL
2489 && ELF32_R_TYPE (irel->r_info) != R_AVR_CALL)
2490 continue;
2491
2492 /* Get the section contents if we haven't done so already. */
2493 if (contents == NULL)
2494 {
2495 /* Get cached copy if it exists. */
2496 if (elf_section_data (sec)->this_hdr.contents != NULL)
2497 contents = elf_section_data (sec)->this_hdr.contents;
2498 else
2499 {
2500 /* Go get them off disk. */
2501 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
2502 goto error_return;
2503 }
2504 }
2505
2506 /* Read this BFD's local symbols if we haven't done so already. */
2507 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
2508 {
2509 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2510 if (isymbuf == NULL)
2511 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
2512 symtab_hdr->sh_info, 0,
2513 NULL, NULL, NULL);
2514 if (isymbuf == NULL)
2515 goto error_return;
2516 }
2517
2518
2519 /* Get the value of the symbol referred to by the reloc. */
2520 if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
2521 {
2522 /* A local symbol. */
2523 Elf_Internal_Sym *isym;
2524 asection *sym_sec;
2525
2526 isym = isymbuf + ELF32_R_SYM (irel->r_info);
2527 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
2528 symval = isym->st_value;
2529 /* If the reloc is absolute, it will not have
2530 a symbol or section associated with it. */
2531 if (sym_sec)
2532 symval += sym_sec->output_section->vma
2533 + sym_sec->output_offset;
2534 }
2535 else
2536 {
2537 unsigned long indx;
2538 struct elf_link_hash_entry *h;
2539
2540 /* An external symbol. */
2541 indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
2542 h = elf_sym_hashes (abfd)[indx];
2543 BFD_ASSERT (h != NULL);
2544 if (h->root.type != bfd_link_hash_defined
2545 && h->root.type != bfd_link_hash_defweak)
2546 /* This appears to be a reference to an undefined
2547 symbol. Just ignore it--it will be caught by the
2548 regular reloc processing. */
2549 continue;
2550
2551 symval = (h->root.u.def.value
2552 + h->root.u.def.section->output_section->vma
2553 + h->root.u.def.section->output_offset);
2554 }
2555
2556 /* For simplicity of coding, we are going to modify the section
2557 contents, the section relocs, and the BFD symbol table. We
2558 must tell the rest of the code not to free up this
2559 information. It would be possible to instead create a table
2560 of changes which have to be made, as is done in coff-mips.c;
2561 that would be more work, but would require less memory when
2562 the linker is run. */
2563 switch (ELF32_R_TYPE (irel->r_info))
2564 {
2565 /* Try to turn a 22-bit absolute call/jump into an 13-bit
2566 pc-relative rcall/rjmp. */
2567 case R_AVR_CALL:
2568 {
2569 bfd_vma value = symval + irel->r_addend;
2570 bfd_vma dot, gap;
2571 int distance_short_enough = 0;
2572
2573 /* Get the address of this instruction. */
2574 dot = (sec->output_section->vma
2575 + sec->output_offset + irel->r_offset);
2576
2577 /* Compute the distance from this insn to the branch target. */
2578 gap = value - dot;
2579
2580 /* Check if the gap falls in the range that can be accommodated
2581 in 13bits signed (It is 12bits when encoded, as we deal with
2582 word addressing). */
2583 if (!shrinkable && ((int) gap >= -4096 && (int) gap <= 4095))
2584 distance_short_enough = 1;
2585 /* If shrinkable, then we can check for a range of distance which
2586 is two bytes farther on both the directions because the call
2587 or jump target will be closer by two bytes after the
2588 relaxation. */
2589 else if (shrinkable && ((int) gap >= -4094 && (int) gap <= 4097))
2590 distance_short_enough = 1;
2591
2592 /* Here we handle the wrap-around case. E.g. for a 16k device
2593 we could use a rjmp to jump from address 0x100 to 0x3d00!
2594 In order to make this work properly, we need to fill the
2595 vaiable avr_pc_wrap_around with the appropriate value.
2596 I.e. 0x4000 for a 16k device. */
2597 {
2598 /* Shrinking the code size makes the gaps larger in the
2599 case of wrap-arounds. So we use a heuristical safety
2600 margin to avoid that during relax the distance gets
2601 again too large for the short jumps. Let's assume
2602 a typical code-size reduction due to relax for a
2603 16k device of 600 bytes. So let's use twice the
2604 typical value as safety margin. */
2605 int rgap;
2606 int safety_margin;
2607
2608 int assumed_shrink = 600;
2609 if (avr_pc_wrap_around > 0x4000)
2610 assumed_shrink = 900;
2611
2612 safety_margin = 2 * assumed_shrink;
2613
2614 rgap = avr_relative_distance_considering_wrap_around (gap);
2615
2616 if (rgap >= (-4092 + safety_margin)
2617 && rgap <= (4094 - safety_margin))
2618 distance_short_enough = 1;
2619 }
2620
2621 if (distance_short_enough)
2622 {
2623 unsigned char code_msb;
2624 unsigned char code_lsb;
2625
2626 if (debug_relax)
2627 printf ("shrinking jump/call instruction at address 0x%x"
2628 " in section %s\n\n",
2629 (int) dot, sec->name);
2630
2631 /* Note that we've changed the relocs, section contents,
2632 etc. */
2633 elf_section_data (sec)->relocs = internal_relocs;
2634 elf_section_data (sec)->this_hdr.contents = contents;
2635 symtab_hdr->contents = (unsigned char *) isymbuf;
2636
2637 /* Get the instruction code for relaxing. */
2638 code_lsb = bfd_get_8 (abfd, contents + irel->r_offset);
2639 code_msb = bfd_get_8 (abfd, contents + irel->r_offset + 1);
2640
2641 /* Mask out the relocation bits. */
2642 code_msb &= 0x94;
2643 code_lsb &= 0x0E;
2644 if (code_msb == 0x94 && code_lsb == 0x0E)
2645 {
2646 /* we are changing call -> rcall . */
2647 bfd_put_8 (abfd, 0x00, contents + irel->r_offset);
2648 bfd_put_8 (abfd, 0xD0, contents + irel->r_offset + 1);
2649 }
2650 else if (code_msb == 0x94 && code_lsb == 0x0C)
2651 {
2652 /* we are changeing jump -> rjmp. */
2653 bfd_put_8 (abfd, 0x00, contents + irel->r_offset);
2654 bfd_put_8 (abfd, 0xC0, contents + irel->r_offset + 1);
2655 }
2656 else
2657 abort ();
2658
2659 /* Fix the relocation's type. */
2660 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
2661 R_AVR_13_PCREL);
2662
2663 /* We should not modify the ordering if 'shrinkable' is
2664 FALSE. */
2665 if (!shrinkable)
2666 {
2667 /* Let's insert a nop. */
2668 bfd_put_8 (abfd, 0x00, contents + irel->r_offset + 2);
2669 bfd_put_8 (abfd, 0x00, contents + irel->r_offset + 3);
2670 }
2671 else
2672 {
2673 /* Delete two bytes of data. */
2674 if (!elf32_avr_relax_delete_bytes (abfd, sec,
2675 irel->r_offset + 2, 2,
2676 TRUE))
2677 goto error_return;
2678
2679 /* That will change things, so, we should relax again.
2680 Note that this is not required, and it may be slow. */
2681 *again = TRUE;
2682 }
2683 }
2684 }
2685 /* Fall through. */
2686
2687 default:
2688 {
2689 unsigned char code_msb;
2690 unsigned char code_lsb;
2691 bfd_vma dot;
2692
2693 code_msb = bfd_get_8 (abfd, contents + irel->r_offset + 1);
2694 code_lsb = bfd_get_8 (abfd, contents + irel->r_offset + 0);
2695
2696 /* Get the address of this instruction. */
2697 dot = (sec->output_section->vma
2698 + sec->output_offset + irel->r_offset);
2699
2700 /* Here we look for rcall/ret or call/ret sequences that could be
2701 safely replaced by rjmp/ret or jmp/ret. */
2702 if (((code_msb & 0xf0) == 0xd0)
2703 && avr_replace_call_ret_sequences)
2704 {
2705 /* This insn is a rcall. */
2706 unsigned char next_insn_msb = 0;
2707 unsigned char next_insn_lsb = 0;
2708
2709 if (irel->r_offset + 3 < sec->size)
2710 {
2711 next_insn_msb =
2712 bfd_get_8 (abfd, contents + irel->r_offset + 3);
2713 next_insn_lsb =
2714 bfd_get_8 (abfd, contents + irel->r_offset + 2);
2715 }
2716
2717 if ((0x95 == next_insn_msb) && (0x08 == next_insn_lsb))
2718 {
2719 /* The next insn is a ret. We now convert the rcall insn
2720 into a rjmp instruction. */
2721 code_msb &= 0xef;
2722 bfd_put_8 (abfd, code_msb, contents + irel->r_offset + 1);
2723 if (debug_relax)
2724 printf ("converted rcall/ret sequence at address 0x%x"
2725 " into rjmp/ret sequence. Section is %s\n\n",
2726 (int) dot, sec->name);
2727 *again = TRUE;
2728 break;
2729 }
2730 }
2731 else if ((0x94 == (code_msb & 0xfe))
2732 && (0x0e == (code_lsb & 0x0e))
2733 && avr_replace_call_ret_sequences)
2734 {
2735 /* This insn is a call. */
2736 unsigned char next_insn_msb = 0;
2737 unsigned char next_insn_lsb = 0;
2738
2739 if (irel->r_offset + 5 < sec->size)
2740 {
2741 next_insn_msb =
2742 bfd_get_8 (abfd, contents + irel->r_offset + 5);
2743 next_insn_lsb =
2744 bfd_get_8 (abfd, contents + irel->r_offset + 4);
2745 }
2746
2747 if ((0x95 == next_insn_msb) && (0x08 == next_insn_lsb))
2748 {
2749 /* The next insn is a ret. We now convert the call insn
2750 into a jmp instruction. */
2751
2752 code_lsb &= 0xfd;
2753 bfd_put_8 (abfd, code_lsb, contents + irel->r_offset);
2754 if (debug_relax)
2755 printf ("converted call/ret sequence at address 0x%x"
2756 " into jmp/ret sequence. Section is %s\n\n",
2757 (int) dot, sec->name);
2758 *again = TRUE;
2759 break;
2760 }
2761 }
2762 else if ((0xc0 == (code_msb & 0xf0))
2763 || ((0x94 == (code_msb & 0xfe))
2764 && (0x0c == (code_lsb & 0x0e))))
2765 {
2766 /* This insn is a rjmp or a jmp. */
2767 unsigned char next_insn_msb = 0;
2768 unsigned char next_insn_lsb = 0;
2769 int insn_size;
2770
2771 if (0xc0 == (code_msb & 0xf0))
2772 insn_size = 2; /* rjmp insn */
2773 else
2774 insn_size = 4; /* jmp insn */
2775
2776 if (irel->r_offset + insn_size + 1 < sec->size)
2777 {
2778 next_insn_msb =
2779 bfd_get_8 (abfd, contents + irel->r_offset
2780 + insn_size + 1);
2781 next_insn_lsb =
2782 bfd_get_8 (abfd, contents + irel->r_offset
2783 + insn_size);
2784 }
2785
2786 if ((0x95 == next_insn_msb) && (0x08 == next_insn_lsb))
2787 {
2788 /* The next insn is a ret. We possibly could delete
2789 this ret. First we need to check for preceding
2790 sbis/sbic/sbrs or cpse "skip" instructions. */
2791
2792 int there_is_preceding_non_skip_insn = 1;
2793 bfd_vma address_of_ret;
2794
2795 address_of_ret = dot + insn_size;
2796
2797 if (debug_relax && (insn_size == 2))
2798 printf ("found rjmp / ret sequence at address 0x%x\n",
2799 (int) dot);
2800 if (debug_relax && (insn_size == 4))
2801 printf ("found jmp / ret sequence at address 0x%x\n",
2802 (int) dot);
2803
2804 /* We have to make sure that there is a preceding insn. */
2805 if (irel->r_offset >= 2)
2806 {
2807 unsigned char preceding_msb;
2808 unsigned char preceding_lsb;
2809
2810 preceding_msb =
2811 bfd_get_8 (abfd, contents + irel->r_offset - 1);
2812 preceding_lsb =
2813 bfd_get_8 (abfd, contents + irel->r_offset - 2);
2814
2815 /* sbic. */
2816 if (0x99 == preceding_msb)
2817 there_is_preceding_non_skip_insn = 0;
2818
2819 /* sbis. */
2820 if (0x9b == preceding_msb)
2821 there_is_preceding_non_skip_insn = 0;
2822
2823 /* sbrc */
2824 if ((0xfc == (preceding_msb & 0xfe)
2825 && (0x00 == (preceding_lsb & 0x08))))
2826 there_is_preceding_non_skip_insn = 0;
2827
2828 /* sbrs */
2829 if ((0xfe == (preceding_msb & 0xfe)
2830 && (0x00 == (preceding_lsb & 0x08))))
2831 there_is_preceding_non_skip_insn = 0;
2832
2833 /* cpse */
2834 if (0x10 == (preceding_msb & 0xfc))
2835 there_is_preceding_non_skip_insn = 0;
2836
2837 if (there_is_preceding_non_skip_insn == 0)
2838 if (debug_relax)
2839 printf ("preceding skip insn prevents deletion of"
2840 " ret insn at Addy 0x%x in section %s\n",
2841 (int) dot + 2, sec->name);
2842 }
2843 else
2844 {
2845 /* There is no previous instruction. */
2846 there_is_preceding_non_skip_insn = 0;
2847 }
2848
2849 if (there_is_preceding_non_skip_insn)
2850 {
2851 /* We now only have to make sure that there is no
2852 local label defined at the address of the ret
2853 instruction and that there is no local relocation
2854 in this section pointing to the ret. */
2855
2856 int deleting_ret_is_safe = 1;
2857 unsigned int section_offset_of_ret_insn =
2858 irel->r_offset + insn_size;
2859 Elf_Internal_Sym *isym, *isymend;
2860 unsigned int sec_shndx;
2861 struct bfd_section *isec;
2862
2863 sec_shndx =
2864 _bfd_elf_section_from_bfd_section (abfd, sec);
2865
2866 /* Check for local symbols. */
2867 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
2868 isymend = isym + symtab_hdr->sh_info;
2869 /* PR 6019: There may not be any local symbols. */
2870 for (; isym != NULL && isym < isymend; isym++)
2871 {
2872 if (isym->st_value == section_offset_of_ret_insn
2873 && isym->st_shndx == sec_shndx)
2874 {
2875 deleting_ret_is_safe = 0;
2876 if (debug_relax)
2877 printf ("local label prevents deletion of ret "
2878 "insn at address 0x%x\n",
2879 (int) dot + insn_size);
2880 }
2881 }
2882
2883 /* Now check for global symbols. */
2884 {
2885 int symcount;
2886 struct elf_link_hash_entry **sym_hashes;
2887 struct elf_link_hash_entry **end_hashes;
2888
2889 symcount = (symtab_hdr->sh_size
2890 / sizeof (Elf32_External_Sym)
2891 - symtab_hdr->sh_info);
2892 sym_hashes = elf_sym_hashes (abfd);
2893 end_hashes = sym_hashes + symcount;
2894 for (; sym_hashes < end_hashes; sym_hashes++)
2895 {
2896 struct elf_link_hash_entry *sym_hash =
2897 *sym_hashes;
2898 if ((sym_hash->root.type == bfd_link_hash_defined
2899 || sym_hash->root.type ==
2900 bfd_link_hash_defweak)
2901 && sym_hash->root.u.def.section == sec
2902 && sym_hash->root.u.def.value == section_offset_of_ret_insn)
2903 {
2904 deleting_ret_is_safe = 0;
2905 if (debug_relax)
2906 printf ("global label prevents deletion of "
2907 "ret insn at address 0x%x\n",
2908 (int) dot + insn_size);
2909 }
2910 }
2911 }
2912
2913 /* Now we check for relocations pointing to ret. */
2914 for (isec = abfd->sections; isec && deleting_ret_is_safe; isec = isec->next)
2915 {
2916 Elf_Internal_Rela *rel;
2917 Elf_Internal_Rela *relend;
2918
2919 rel = elf_section_data (isec)->relocs;
2920 if (rel == NULL)
2921 rel = _bfd_elf_link_read_relocs (abfd, isec, NULL, NULL, TRUE);
2922
2923 relend = rel + isec->reloc_count;
2924
2925 for (; rel && rel < relend; rel++)
2926 {
2927 bfd_vma reloc_target = 0;
2928
2929 /* Read this BFD's local symbols if we haven't
2930 done so already. */
2931 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
2932 {
2933 isymbuf = (Elf_Internal_Sym *)
2934 symtab_hdr->contents;
2935 if (isymbuf == NULL)
2936 isymbuf = bfd_elf_get_elf_syms
2937 (abfd,
2938 symtab_hdr,
2939 symtab_hdr->sh_info, 0,
2940 NULL, NULL, NULL);
2941 if (isymbuf == NULL)
2942 break;
2943 }
2944
2945 /* Get the value of the symbol referred to
2946 by the reloc. */
2947 if (ELF32_R_SYM (rel->r_info)
2948 < symtab_hdr->sh_info)
2949 {
2950 /* A local symbol. */
2951 asection *sym_sec;
2952
2953 isym = isymbuf
2954 + ELF32_R_SYM (rel->r_info);
2955 sym_sec = bfd_section_from_elf_index
2956 (abfd, isym->st_shndx);
2957 symval = isym->st_value;
2958
2959 /* If the reloc is absolute, it will not
2960 have a symbol or section associated
2961 with it. */
2962
2963 if (sym_sec)
2964 {
2965 symval +=
2966 sym_sec->output_section->vma
2967 + sym_sec->output_offset;
2968 reloc_target = symval + rel->r_addend;
2969 }
2970 else
2971 {
2972 reloc_target = symval + rel->r_addend;
2973 /* Reference symbol is absolute. */
2974 }
2975 }
2976 /* else ... reference symbol is extern. */
2977
2978 if (address_of_ret == reloc_target)
2979 {
2980 deleting_ret_is_safe = 0;
2981 if (debug_relax)
2982 printf ("ret from "
2983 "rjmp/jmp ret sequence at address"
2984 " 0x%x could not be deleted. ret"
2985 " is target of a relocation.\n",
2986 (int) address_of_ret);
2987 break;
2988 }
2989 }
2990 }
2991
2992 if (deleting_ret_is_safe)
2993 {
2994 if (debug_relax)
2995 printf ("unreachable ret instruction "
2996 "at address 0x%x deleted.\n",
2997 (int) dot + insn_size);
2998
2999 /* Delete two bytes of data. */
3000 if (!elf32_avr_relax_delete_bytes (abfd, sec,
3001 irel->r_offset + insn_size, 2,
3002 TRUE))
3003 goto error_return;
3004
3005 /* That will change things, so, we should relax
3006 again. Note that this is not required, and it
3007 may be slow. */
3008 *again = TRUE;
3009 break;
3010 }
3011 }
3012 }
3013 }
3014 break;
3015 }
3016 }
3017 }
3018
3019 if (!*again)
3020 {
3021 /* Look through all the property records in this section to see if
3022 there's any alignment records that can be moved. */
3023 struct avr_relax_info *relax_info;
3024
3025 relax_info = get_avr_relax_info (sec);
3026 if (relax_info->records.count > 0)
3027 {
3028 unsigned int i;
3029
3030 for (i = 0; i < relax_info->records.count; ++i)
3031 {
3032 switch (relax_info->records.items [i].type)
3033 {
3034 case RECORD_ORG:
3035 case RECORD_ORG_AND_FILL:
3036 break;
3037 case RECORD_ALIGN:
3038 case RECORD_ALIGN_AND_FILL:
3039 {
3040 struct avr_property_record *record;
3041 unsigned long bytes_to_align;
3042 int count = 0;
3043
3044 /* Look for alignment directives that have had enough
3045 bytes deleted before them, such that the directive
3046 can be moved backwards and still maintain the
3047 required alignment. */
3048 record = &relax_info->records.items [i];
3049 bytes_to_align
3050 = (unsigned long) (1 << record->data.align.bytes);
3051 while (record->data.align.preceding_deleted >=
3052 bytes_to_align)
3053 {
3054 record->data.align.preceding_deleted
3055 -= bytes_to_align;
3056 count += bytes_to_align;
3057 }
3058
3059 if (count > 0)
3060 {
3061 bfd_vma addr = record->offset;
3062
3063 /* We can delete COUNT bytes and this alignment
3064 directive will still be correctly aligned.
3065 First move the alignment directive, then delete
3066 the bytes. */
3067 record->offset -= count;
3068 elf32_avr_relax_delete_bytes (abfd, sec,
3069 addr - count,
3070 count, FALSE);
3071 *again = TRUE;
3072 }
3073 }
3074 break;
3075 }
3076 }
3077 }
3078 }
3079
3080 if (contents != NULL
3081 && elf_section_data (sec)->this_hdr.contents != contents)
3082 {
3083 if (! link_info->keep_memory)
3084 free (contents);
3085 else
3086 {
3087 /* Cache the section contents for elf_link_input_bfd. */
3088 elf_section_data (sec)->this_hdr.contents = contents;
3089 }
3090 }
3091
3092 if (internal_relocs != NULL
3093 && elf_section_data (sec)->relocs != internal_relocs)
3094 free (internal_relocs);
3095
3096 return TRUE;
3097
3098 error_return:
3099 if (isymbuf != NULL
3100 && symtab_hdr->contents != (unsigned char *) isymbuf)
3101 free (isymbuf);
3102 if (contents != NULL
3103 && elf_section_data (sec)->this_hdr.contents != contents)
3104 free (contents);
3105 if (internal_relocs != NULL
3106 && elf_section_data (sec)->relocs != internal_relocs)
3107 free (internal_relocs);
3108
3109 return FALSE;
3110 }
3111
3112 /* This is a version of bfd_generic_get_relocated_section_contents
3113 which uses elf32_avr_relocate_section.
3114
3115 For avr it's essentially a cut and paste taken from the H8300 port.
3116 The author of the relaxation support patch for avr had absolutely no
3117 clue what is happening here but found out that this part of the code
3118 seems to be important. */
3119
3120 static bfd_byte *
3121 elf32_avr_get_relocated_section_contents (bfd *output_bfd,
3122 struct bfd_link_info *link_info,
3123 struct bfd_link_order *link_order,
3124 bfd_byte *data,
3125 bfd_boolean relocatable,
3126 asymbol **symbols)
3127 {
3128 Elf_Internal_Shdr *symtab_hdr;
3129 asection *input_section = link_order->u.indirect.section;
3130 bfd *input_bfd = input_section->owner;
3131 asection **sections = NULL;
3132 Elf_Internal_Rela *internal_relocs = NULL;
3133 Elf_Internal_Sym *isymbuf = NULL;
3134
3135 /* We only need to handle the case of relaxing, or of having a
3136 particular set of section contents, specially. */
3137 if (relocatable
3138 || elf_section_data (input_section)->this_hdr.contents == NULL)
3139 return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
3140 link_order, data,
3141 relocatable,
3142 symbols);
3143 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3144
3145 memcpy (data, elf_section_data (input_section)->this_hdr.contents,
3146 (size_t) input_section->size);
3147
3148 if ((input_section->flags & SEC_RELOC) != 0
3149 && input_section->reloc_count > 0)
3150 {
3151 asection **secpp;
3152 Elf_Internal_Sym *isym, *isymend;
3153 bfd_size_type amt;
3154
3155 internal_relocs = (_bfd_elf_link_read_relocs
3156 (input_bfd, input_section, NULL, NULL, FALSE));
3157 if (internal_relocs == NULL)
3158 goto error_return;
3159
3160 if (symtab_hdr->sh_info != 0)
3161 {
3162 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
3163 if (isymbuf == NULL)
3164 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
3165 symtab_hdr->sh_info, 0,
3166 NULL, NULL, NULL);
3167 if (isymbuf == NULL)
3168 goto error_return;
3169 }
3170
3171 amt = symtab_hdr->sh_info;
3172 amt *= sizeof (asection *);
3173 sections = bfd_malloc (amt);
3174 if (sections == NULL && amt != 0)
3175 goto error_return;
3176
3177 isymend = isymbuf + symtab_hdr->sh_info;
3178 for (isym = isymbuf, secpp = sections; isym < isymend; ++isym, ++secpp)
3179 {
3180 asection *isec;
3181
3182 if (isym->st_shndx == SHN_UNDEF)
3183 isec = bfd_und_section_ptr;
3184 else if (isym->st_shndx == SHN_ABS)
3185 isec = bfd_abs_section_ptr;
3186 else if (isym->st_shndx == SHN_COMMON)
3187 isec = bfd_com_section_ptr;
3188 else
3189 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
3190
3191 *secpp = isec;
3192 }
3193
3194 if (! elf32_avr_relocate_section (output_bfd, link_info, input_bfd,
3195 input_section, data, internal_relocs,
3196 isymbuf, sections))
3197 goto error_return;
3198
3199 if (sections != NULL)
3200 free (sections);
3201 if (isymbuf != NULL
3202 && symtab_hdr->contents != (unsigned char *) isymbuf)
3203 free (isymbuf);
3204 if (elf_section_data (input_section)->relocs != internal_relocs)
3205 free (internal_relocs);
3206 }
3207
3208 return data;
3209
3210 error_return:
3211 if (sections != NULL)
3212 free (sections);
3213 if (isymbuf != NULL
3214 && symtab_hdr->contents != (unsigned char *) isymbuf)
3215 free (isymbuf);
3216 if (internal_relocs != NULL
3217 && elf_section_data (input_section)->relocs != internal_relocs)
3218 free (internal_relocs);
3219 return NULL;
3220 }
3221
3222
3223 /* Determines the hash entry name for a particular reloc. It consists of
3224 the identifier of the symbol section and the added reloc addend and
3225 symbol offset relative to the section the symbol is attached to. */
3226
3227 static char *
3228 avr_stub_name (const asection *symbol_section,
3229 const bfd_vma symbol_offset,
3230 const Elf_Internal_Rela *rela)
3231 {
3232 char *stub_name;
3233 bfd_size_type len;
3234
3235 len = 8 + 1 + 8 + 1 + 1;
3236 stub_name = bfd_malloc (len);
3237
3238 sprintf (stub_name, "%08x+%08x",
3239 symbol_section->id & 0xffffffff,
3240 (unsigned int) ((rela->r_addend & 0xffffffff) + symbol_offset));
3241
3242 return stub_name;
3243 }
3244
3245
3246 /* Add a new stub entry to the stub hash. Not all fields of the new
3247 stub entry are initialised. */
3248
3249 static struct elf32_avr_stub_hash_entry *
3250 avr_add_stub (const char *stub_name,
3251 struct elf32_avr_link_hash_table *htab)
3252 {
3253 struct elf32_avr_stub_hash_entry *hsh;
3254
3255 /* Enter this entry into the linker stub hash table. */
3256 hsh = avr_stub_hash_lookup (&htab->bstab, stub_name, TRUE, FALSE);
3257
3258 if (hsh == NULL)
3259 {
3260 _bfd_error_handler (_("%B: cannot create stub entry %s"),
3261 NULL, stub_name);
3262 return NULL;
3263 }
3264
3265 hsh->stub_offset = 0;
3266 return hsh;
3267 }
3268
3269 /* We assume that there is already space allocated for the stub section
3270 contents and that before building the stubs the section size is
3271 initialized to 0. We assume that within the stub hash table entry,
3272 the absolute position of the jmp target has been written in the
3273 target_value field. We write here the offset of the generated jmp insn
3274 relative to the trampoline section start to the stub_offset entry in
3275 the stub hash table entry. */
3276
3277 static bfd_boolean
3278 avr_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
3279 {
3280 struct elf32_avr_stub_hash_entry *hsh;
3281 struct bfd_link_info *info;
3282 struct elf32_avr_link_hash_table *htab;
3283 bfd *stub_bfd;
3284 bfd_byte *loc;
3285 bfd_vma target;
3286 bfd_vma starget;
3287
3288 /* Basic opcode */
3289 bfd_vma jmp_insn = 0x0000940c;
3290
3291 /* Massage our args to the form they really have. */
3292 hsh = avr_stub_hash_entry (bh);
3293
3294 if (!hsh->is_actually_needed)
3295 return TRUE;
3296
3297 info = (struct bfd_link_info *) in_arg;
3298
3299 htab = avr_link_hash_table (info);
3300 if (htab == NULL)
3301 return FALSE;
3302
3303 target = hsh->target_value;
3304
3305 /* Make a note of the offset within the stubs for this entry. */
3306 hsh->stub_offset = htab->stub_sec->size;
3307 loc = htab->stub_sec->contents + hsh->stub_offset;
3308
3309 stub_bfd = htab->stub_sec->owner;
3310
3311 if (debug_stubs)
3312 printf ("Building one Stub. Address: 0x%x, Offset: 0x%x\n",
3313 (unsigned int) target,
3314 (unsigned int) hsh->stub_offset);
3315
3316 /* We now have to add the information on the jump target to the bare
3317 opcode bits already set in jmp_insn. */
3318
3319 /* Check for the alignment of the address. */
3320 if (target & 1)
3321 return FALSE;
3322
3323 starget = target >> 1;
3324 jmp_insn |= ((starget & 0x10000) | ((starget << 3) & 0x1f00000)) >> 16;
3325 bfd_put_16 (stub_bfd, jmp_insn, loc);
3326 bfd_put_16 (stub_bfd, (bfd_vma) starget & 0xffff, loc + 2);
3327
3328 htab->stub_sec->size += 4;
3329
3330 /* Now add the entries in the address mapping table if there is still
3331 space left. */
3332 {
3333 unsigned int nr;
3334
3335 nr = htab->amt_entry_cnt + 1;
3336 if (nr <= htab->amt_max_entry_cnt)
3337 {
3338 htab->amt_entry_cnt = nr;
3339
3340 htab->amt_stub_offsets[nr - 1] = hsh->stub_offset;
3341 htab->amt_destination_addr[nr - 1] = target;
3342 }
3343 }
3344
3345 return TRUE;
3346 }
3347
3348 static bfd_boolean
3349 avr_mark_stub_not_to_be_necessary (struct bfd_hash_entry *bh,
3350 void *in_arg ATTRIBUTE_UNUSED)
3351 {
3352 struct elf32_avr_stub_hash_entry *hsh;
3353
3354 hsh = avr_stub_hash_entry (bh);
3355 hsh->is_actually_needed = FALSE;
3356
3357 return TRUE;
3358 }
3359
3360 static bfd_boolean
3361 avr_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
3362 {
3363 struct elf32_avr_stub_hash_entry *hsh;
3364 struct elf32_avr_link_hash_table *htab;
3365 int size;
3366
3367 /* Massage our args to the form they really have. */
3368 hsh = avr_stub_hash_entry (bh);
3369 htab = in_arg;
3370
3371 if (hsh->is_actually_needed)
3372 size = 4;
3373 else
3374 size = 0;
3375
3376 htab->stub_sec->size += size;
3377 return TRUE;
3378 }
3379
3380 void
3381 elf32_avr_setup_params (struct bfd_link_info *info,
3382 bfd *avr_stub_bfd,
3383 asection *avr_stub_section,
3384 bfd_boolean no_stubs,
3385 bfd_boolean deb_stubs,
3386 bfd_boolean deb_relax,
3387 bfd_vma pc_wrap_around,
3388 bfd_boolean call_ret_replacement)
3389 {
3390 struct elf32_avr_link_hash_table *htab = avr_link_hash_table (info);
3391
3392 if (htab == NULL)
3393 return;
3394 htab->stub_sec = avr_stub_section;
3395 htab->stub_bfd = avr_stub_bfd;
3396 htab->no_stubs = no_stubs;
3397
3398 debug_relax = deb_relax;
3399 debug_stubs = deb_stubs;
3400 avr_pc_wrap_around = pc_wrap_around;
3401 avr_replace_call_ret_sequences = call_ret_replacement;
3402 }
3403
3404
3405 /* Set up various things so that we can make a list of input sections
3406 for each output section included in the link. Returns -1 on error,
3407 0 when no stubs will be needed, and 1 on success. It also sets
3408 information on the stubs bfd and the stub section in the info
3409 struct. */
3410
3411 int
3412 elf32_avr_setup_section_lists (bfd *output_bfd,
3413 struct bfd_link_info *info)
3414 {
3415 bfd *input_bfd;
3416 unsigned int bfd_count;
3417 unsigned int top_id, top_index;
3418 asection *section;
3419 asection **input_list, **list;
3420 bfd_size_type amt;
3421 struct elf32_avr_link_hash_table *htab = avr_link_hash_table (info);
3422
3423 if (htab == NULL || htab->no_stubs)
3424 return 0;
3425
3426 /* Count the number of input BFDs and find the top input section id. */
3427 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3428 input_bfd != NULL;
3429 input_bfd = input_bfd->link.next)
3430 {
3431 bfd_count += 1;
3432 for (section = input_bfd->sections;
3433 section != NULL;
3434 section = section->next)
3435 if (top_id < section->id)
3436 top_id = section->id;
3437 }
3438
3439 htab->bfd_count = bfd_count;
3440
3441 /* We can't use output_bfd->section_count here to find the top output
3442 section index as some sections may have been removed, and
3443 strip_excluded_output_sections doesn't renumber the indices. */
3444 for (section = output_bfd->sections, top_index = 0;
3445 section != NULL;
3446 section = section->next)
3447 if (top_index < section->index)
3448 top_index = section->index;
3449
3450 htab->top_index = top_index;
3451 amt = sizeof (asection *) * (top_index + 1);
3452 input_list = bfd_malloc (amt);
3453 htab->input_list = input_list;
3454 if (input_list == NULL)
3455 return -1;
3456
3457 /* For sections we aren't interested in, mark their entries with a
3458 value we can check later. */
3459 list = input_list + top_index;
3460 do
3461 *list = bfd_abs_section_ptr;
3462 while (list-- != input_list);
3463
3464 for (section = output_bfd->sections;
3465 section != NULL;
3466 section = section->next)
3467 if ((section->flags & SEC_CODE) != 0)
3468 input_list[section->index] = NULL;
3469
3470 return 1;
3471 }
3472
3473
3474 /* Read in all local syms for all input bfds, and create hash entries
3475 for export stubs if we are building a multi-subspace shared lib.
3476 Returns -1 on error, 0 otherwise. */
3477
3478 static int
3479 get_local_syms (bfd *input_bfd, struct bfd_link_info *info)
3480 {
3481 unsigned int bfd_indx;
3482 Elf_Internal_Sym *local_syms, **all_local_syms;
3483 struct elf32_avr_link_hash_table *htab = avr_link_hash_table (info);
3484 bfd_size_type amt;
3485
3486 if (htab == NULL)
3487 return -1;
3488
3489 /* We want to read in symbol extension records only once. To do this
3490 we need to read in the local symbols in parallel and save them for
3491 later use; so hold pointers to the local symbols in an array. */
3492 amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
3493 all_local_syms = bfd_zmalloc (amt);
3494 htab->all_local_syms = all_local_syms;
3495 if (all_local_syms == NULL)
3496 return -1;
3497
3498 /* Walk over all the input BFDs, swapping in local symbols.
3499 If we are creating a shared library, create hash entries for the
3500 export stubs. */
3501 for (bfd_indx = 0;
3502 input_bfd != NULL;
3503 input_bfd = input_bfd->link.next, bfd_indx++)
3504 {
3505 Elf_Internal_Shdr *symtab_hdr;
3506
3507 /* We'll need the symbol table in a second. */
3508 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3509 if (symtab_hdr->sh_info == 0)
3510 continue;
3511
3512 /* We need an array of the local symbols attached to the input bfd. */
3513 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
3514 if (local_syms == NULL)
3515 {
3516 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
3517 symtab_hdr->sh_info, 0,
3518 NULL, NULL, NULL);
3519 /* Cache them for elf_link_input_bfd. */
3520 symtab_hdr->contents = (unsigned char *) local_syms;
3521 }
3522 if (local_syms == NULL)
3523 return -1;
3524
3525 all_local_syms[bfd_indx] = local_syms;
3526 }
3527
3528 return 0;
3529 }
3530
3531 #define ADD_DUMMY_STUBS_FOR_DEBUGGING 0
3532
3533 bfd_boolean
3534 elf32_avr_size_stubs (bfd *output_bfd,
3535 struct bfd_link_info *info,
3536 bfd_boolean is_prealloc_run)
3537 {
3538 struct elf32_avr_link_hash_table *htab;
3539 int stub_changed = 0;
3540
3541 htab = avr_link_hash_table (info);
3542 if (htab == NULL)
3543 return FALSE;
3544
3545 /* At this point we initialize htab->vector_base
3546 To the start of the text output section. */
3547 htab->vector_base = htab->stub_sec->output_section->vma;
3548
3549 if (get_local_syms (info->input_bfds, info))
3550 {
3551 if (htab->all_local_syms)
3552 goto error_ret_free_local;
3553 return FALSE;
3554 }
3555
3556 if (ADD_DUMMY_STUBS_FOR_DEBUGGING)
3557 {
3558 struct elf32_avr_stub_hash_entry *test;
3559
3560 test = avr_add_stub ("Hugo",htab);
3561 test->target_value = 0x123456;
3562 test->stub_offset = 13;
3563
3564 test = avr_add_stub ("Hugo2",htab);
3565 test->target_value = 0x84210;
3566 test->stub_offset = 14;
3567 }
3568
3569 while (1)
3570 {
3571 bfd *input_bfd;
3572 unsigned int bfd_indx;
3573
3574 /* We will have to re-generate the stub hash table each time anything
3575 in memory has changed. */
3576
3577 bfd_hash_traverse (&htab->bstab, avr_mark_stub_not_to_be_necessary, htab);
3578 for (input_bfd = info->input_bfds, bfd_indx = 0;
3579 input_bfd != NULL;
3580 input_bfd = input_bfd->link.next, bfd_indx++)
3581 {
3582 Elf_Internal_Shdr *symtab_hdr;
3583 asection *section;
3584 Elf_Internal_Sym *local_syms;
3585
3586 /* We'll need the symbol table in a second. */
3587 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3588 if (symtab_hdr->sh_info == 0)
3589 continue;
3590
3591 local_syms = htab->all_local_syms[bfd_indx];
3592
3593 /* Walk over each section attached to the input bfd. */
3594 for (section = input_bfd->sections;
3595 section != NULL;
3596 section = section->next)
3597 {
3598 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
3599
3600 /* If there aren't any relocs, then there's nothing more
3601 to do. */
3602 if ((section->flags & SEC_RELOC) == 0
3603 || section->reloc_count == 0)
3604 continue;
3605
3606 /* If this section is a link-once section that will be
3607 discarded, then don't create any stubs. */
3608 if (section->output_section == NULL
3609 || section->output_section->owner != output_bfd)
3610 continue;
3611
3612 /* Get the relocs. */
3613 internal_relocs
3614 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
3615 info->keep_memory);
3616 if (internal_relocs == NULL)
3617 goto error_ret_free_local;
3618
3619 /* Now examine each relocation. */
3620 irela = internal_relocs;
3621 irelaend = irela + section->reloc_count;
3622 for (; irela < irelaend; irela++)
3623 {
3624 unsigned int r_type, r_indx;
3625 struct elf32_avr_stub_hash_entry *hsh;
3626 asection *sym_sec;
3627 bfd_vma sym_value;
3628 bfd_vma destination;
3629 struct elf_link_hash_entry *hh;
3630 char *stub_name;
3631
3632 r_type = ELF32_R_TYPE (irela->r_info);
3633 r_indx = ELF32_R_SYM (irela->r_info);
3634
3635 /* Only look for 16 bit GS relocs. No other reloc will need a
3636 stub. */
3637 if (!((r_type == R_AVR_16_PM)
3638 || (r_type == R_AVR_LO8_LDI_GS)
3639 || (r_type == R_AVR_HI8_LDI_GS)))
3640 continue;
3641
3642 /* Now determine the call target, its name, value,
3643 section. */
3644 sym_sec = NULL;
3645 sym_value = 0;
3646 destination = 0;
3647 hh = NULL;
3648 if (r_indx < symtab_hdr->sh_info)
3649 {
3650 /* It's a local symbol. */
3651 Elf_Internal_Sym *sym;
3652 Elf_Internal_Shdr *hdr;
3653 unsigned int shndx;
3654
3655 sym = local_syms + r_indx;
3656 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
3657 sym_value = sym->st_value;
3658 shndx = sym->st_shndx;
3659 if (shndx < elf_numsections (input_bfd))
3660 {
3661 hdr = elf_elfsections (input_bfd)[shndx];
3662 sym_sec = hdr->bfd_section;
3663 destination = (sym_value + irela->r_addend
3664 + sym_sec->output_offset
3665 + sym_sec->output_section->vma);
3666 }
3667 }
3668 else
3669 {
3670 /* It's an external symbol. */
3671 int e_indx;
3672
3673 e_indx = r_indx - symtab_hdr->sh_info;
3674 hh = elf_sym_hashes (input_bfd)[e_indx];
3675
3676 while (hh->root.type == bfd_link_hash_indirect
3677 || hh->root.type == bfd_link_hash_warning)
3678 hh = (struct elf_link_hash_entry *)
3679 (hh->root.u.i.link);
3680
3681 if (hh->root.type == bfd_link_hash_defined
3682 || hh->root.type == bfd_link_hash_defweak)
3683 {
3684 sym_sec = hh->root.u.def.section;
3685 sym_value = hh->root.u.def.value;
3686 if (sym_sec->output_section != NULL)
3687 destination = (sym_value + irela->r_addend
3688 + sym_sec->output_offset
3689 + sym_sec->output_section->vma);
3690 }
3691 else if (hh->root.type == bfd_link_hash_undefweak)
3692 {
3693 if (! bfd_link_pic (info))
3694 continue;
3695 }
3696 else if (hh->root.type == bfd_link_hash_undefined)
3697 {
3698 if (! (info->unresolved_syms_in_objects == RM_IGNORE
3699 && (ELF_ST_VISIBILITY (hh->other)
3700 == STV_DEFAULT)))
3701 continue;
3702 }
3703 else
3704 {
3705 bfd_set_error (bfd_error_bad_value);
3706
3707 error_ret_free_internal:
3708 if (elf_section_data (section)->relocs == NULL)
3709 free (internal_relocs);
3710 goto error_ret_free_local;
3711 }
3712 }
3713
3714 if (! avr_stub_is_required_for_16_bit_reloc
3715 (destination - htab->vector_base))
3716 {
3717 if (!is_prealloc_run)
3718 /* We are having a reloc that does't need a stub. */
3719 continue;
3720
3721 /* We don't right now know if a stub will be needed.
3722 Let's rather be on the safe side. */
3723 }
3724
3725 /* Get the name of this stub. */
3726 stub_name = avr_stub_name (sym_sec, sym_value, irela);
3727
3728 if (!stub_name)
3729 goto error_ret_free_internal;
3730
3731
3732 hsh = avr_stub_hash_lookup (&htab->bstab,
3733 stub_name,
3734 FALSE, FALSE);
3735 if (hsh != NULL)
3736 {
3737 /* The proper stub has already been created. Mark it
3738 to be used and write the possibly changed destination
3739 value. */
3740 hsh->is_actually_needed = TRUE;
3741 hsh->target_value = destination;
3742 free (stub_name);
3743 continue;
3744 }
3745
3746 hsh = avr_add_stub (stub_name, htab);
3747 if (hsh == NULL)
3748 {
3749 free (stub_name);
3750 goto error_ret_free_internal;
3751 }
3752
3753 hsh->is_actually_needed = TRUE;
3754 hsh->target_value = destination;
3755
3756 if (debug_stubs)
3757 printf ("Adding stub with destination 0x%x to the"
3758 " hash table.\n", (unsigned int) destination);
3759 if (debug_stubs)
3760 printf ("(Pre-Alloc run: %i)\n", is_prealloc_run);
3761
3762 stub_changed = TRUE;
3763 }
3764
3765 /* We're done with the internal relocs, free them. */
3766 if (elf_section_data (section)->relocs == NULL)
3767 free (internal_relocs);
3768 }
3769 }
3770
3771 /* Re-Calculate the number of needed stubs. */
3772 htab->stub_sec->size = 0;
3773 bfd_hash_traverse (&htab->bstab, avr_size_one_stub, htab);
3774
3775 if (!stub_changed)
3776 break;
3777
3778 stub_changed = FALSE;
3779 }
3780
3781 free (htab->all_local_syms);
3782 return TRUE;
3783
3784 error_ret_free_local:
3785 free (htab->all_local_syms);
3786 return FALSE;
3787 }
3788
3789
3790 /* Build all the stubs associated with the current output file. The
3791 stubs are kept in a hash table attached to the main linker hash
3792 table. We also set up the .plt entries for statically linked PIC
3793 functions here. This function is called via hppaelf_finish in the
3794 linker. */
3795
3796 bfd_boolean
3797 elf32_avr_build_stubs (struct bfd_link_info *info)
3798 {
3799 asection *stub_sec;
3800 struct bfd_hash_table *table;
3801 struct elf32_avr_link_hash_table *htab;
3802 bfd_size_type total_size = 0;
3803
3804 htab = avr_link_hash_table (info);
3805 if (htab == NULL)
3806 return FALSE;
3807
3808 /* In case that there were several stub sections: */
3809 for (stub_sec = htab->stub_bfd->sections;
3810 stub_sec != NULL;
3811 stub_sec = stub_sec->next)
3812 {
3813 bfd_size_type size;
3814
3815 /* Allocate memory to hold the linker stubs. */
3816 size = stub_sec->size;
3817 total_size += size;
3818
3819 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3820 if (stub_sec->contents == NULL && size != 0)
3821 return FALSE;
3822 stub_sec->size = 0;
3823 }
3824
3825 /* Allocate memory for the adress mapping table. */
3826 htab->amt_entry_cnt = 0;
3827 htab->amt_max_entry_cnt = total_size / 4;
3828 htab->amt_stub_offsets = bfd_malloc (sizeof (bfd_vma)
3829 * htab->amt_max_entry_cnt);
3830 htab->amt_destination_addr = bfd_malloc (sizeof (bfd_vma)
3831 * htab->amt_max_entry_cnt );
3832
3833 if (debug_stubs)
3834 printf ("Allocating %i entries in the AMT\n", htab->amt_max_entry_cnt);
3835
3836 /* Build the stubs as directed by the stub hash table. */
3837 table = &htab->bstab;
3838 bfd_hash_traverse (table, avr_build_one_stub, info);
3839
3840 if (debug_stubs)
3841 printf ("Final Stub section Size: %i\n", (int) htab->stub_sec->size);
3842
3843 return TRUE;
3844 }
3845
3846 /* Callback used by QSORT to order relocations AP and BP. */
3847
3848 static int
3849 internal_reloc_compare (const void *ap, const void *bp)
3850 {
3851 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
3852 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
3853
3854 if (a->r_offset != b->r_offset)
3855 return (a->r_offset - b->r_offset);
3856
3857 /* We don't need to sort on these criteria for correctness,
3858 but enforcing a more strict ordering prevents unstable qsort
3859 from behaving differently with different implementations.
3860 Without the code below we get correct but different results
3861 on Solaris 2.7 and 2.8. We would like to always produce the
3862 same results no matter the host. */
3863
3864 if (a->r_info != b->r_info)
3865 return (a->r_info - b->r_info);
3866
3867 return (a->r_addend - b->r_addend);
3868 }
3869
3870 /* Return true if ADDRESS is within the vma range of SECTION from ABFD. */
3871
3872 static bfd_boolean
3873 avr_is_section_for_address (bfd *abfd, asection *section, bfd_vma address)
3874 {
3875 bfd_vma vma;
3876 bfd_size_type size;
3877
3878 vma = bfd_get_section_vma (abfd, section);
3879 if (address < vma)
3880 return FALSE;
3881
3882 size = section->size;
3883 if (address >= vma + size)
3884 return FALSE;
3885
3886 return TRUE;
3887 }
3888
3889 /* Data structure used by AVR_FIND_SECTION_FOR_ADDRESS. */
3890
3891 struct avr_find_section_data
3892 {
3893 /* The address we're looking for. */
3894 bfd_vma address;
3895
3896 /* The section we've found. */
3897 asection *section;
3898 };
3899
3900 /* Helper function to locate the section holding a certain virtual memory
3901 address. This is called via bfd_map_over_sections. The DATA is an
3902 instance of STRUCT AVR_FIND_SECTION_DATA, the address field of which
3903 has been set to the address to search for, and the section field has
3904 been set to NULL. If SECTION from ABFD contains ADDRESS then the
3905 section field in DATA will be set to SECTION. As an optimisation, if
3906 the section field is already non-null then this function does not
3907 perform any checks, and just returns. */
3908
3909 static void
3910 avr_find_section_for_address (bfd *abfd,
3911 asection *section, void *data)
3912 {
3913 struct avr_find_section_data *fs_data
3914 = (struct avr_find_section_data *) data;
3915
3916 /* Return if already found. */
3917 if (fs_data->section != NULL)
3918 return;
3919
3920 /* If this section isn't part of the addressable code content, skip it. */
3921 if ((bfd_get_section_flags (abfd, section) & SEC_ALLOC) == 0
3922 && (bfd_get_section_flags (abfd, section) & SEC_CODE) == 0)
3923 return;
3924
3925 if (avr_is_section_for_address (abfd, section, fs_data->address))
3926 fs_data->section = section;
3927 }
3928
3929 /* Load all of the property records from SEC, a section from ABFD. Return
3930 a STRUCT AVR_PROPERTY_RECORD_LIST containing all the records. The
3931 memory for the returned structure, and all of the records pointed too by
3932 the structure are allocated with a single call to malloc, so, only the
3933 pointer returned needs to be free'd. */
3934
3935 static struct avr_property_record_list *
3936 avr_elf32_load_records_from_section (bfd *abfd, asection *sec)
3937 {
3938 char *contents = NULL, *ptr;
3939 bfd_size_type size, mem_size;
3940 bfd_byte version, flags;
3941 uint16_t record_count, i;
3942 struct avr_property_record_list *r_list = NULL;
3943 Elf_Internal_Rela *internal_relocs = NULL, *rel, *rel_end;
3944 struct avr_find_section_data fs_data;
3945
3946 fs_data.section = NULL;
3947
3948 size = bfd_get_section_size (sec);
3949 contents = bfd_malloc (size);
3950 bfd_get_section_contents (abfd, sec, contents, 0, size);
3951 ptr = contents;
3952
3953 /* Load the relocations for the '.avr.prop' section if there are any, and
3954 sort them. */
3955 internal_relocs = (_bfd_elf_link_read_relocs
3956 (abfd, sec, NULL, NULL, FALSE));
3957 if (internal_relocs)
3958 qsort (internal_relocs, sec->reloc_count,
3959 sizeof (Elf_Internal_Rela), internal_reloc_compare);
3960
3961 /* There is a header at the start of the property record section SEC, the
3962 format of this header is:
3963 uint8_t : version number
3964 uint8_t : flags
3965 uint16_t : record counter
3966 */
3967
3968 /* Check we have at least got a headers worth of bytes. */
3969 if (size < AVR_PROPERTY_SECTION_HEADER_SIZE)
3970 goto load_failed;
3971
3972 version = *((bfd_byte *) ptr);
3973 ptr++;
3974 flags = *((bfd_byte *) ptr);
3975 ptr++;
3976 record_count = *((uint16_t *) ptr);
3977 ptr+=2;
3978 BFD_ASSERT (ptr - contents == AVR_PROPERTY_SECTION_HEADER_SIZE);
3979
3980 /* Now allocate space for the list structure, and all of the list
3981 elements in a single block. */
3982 mem_size = sizeof (struct avr_property_record_list)
3983 + sizeof (struct avr_property_record) * record_count;
3984 r_list = bfd_malloc (mem_size);
3985 if (r_list == NULL)
3986 goto load_failed;
3987
3988 r_list->version = version;
3989 r_list->flags = flags;
3990 r_list->section = sec;
3991 r_list->record_count = record_count;
3992 r_list->records = (struct avr_property_record *) (&r_list [1]);
3993 size -= AVR_PROPERTY_SECTION_HEADER_SIZE;
3994
3995 /* Check that we understand the version number. There is only one
3996 version number right now, anything else is an error. */
3997 if (r_list->version != AVR_PROPERTY_RECORDS_VERSION)
3998 goto load_failed;
3999
4000 rel = internal_relocs;
4001 rel_end = rel + sec->reloc_count;
4002 for (i = 0; i < record_count; ++i)
4003 {
4004 bfd_vma address;
4005
4006 /* Each entry is a 32-bit address, followed by a single byte type.
4007 After that is the type specific data. We must take care to
4008 ensure that we don't read beyond the end of the section data. */
4009 if (size < 5)
4010 goto load_failed;
4011
4012 r_list->records [i].section = NULL;
4013 r_list->records [i].offset = 0;
4014
4015 if (rel)
4016 {
4017 /* The offset of the address within the .avr.prop section. */
4018 size_t offset = ptr - contents;
4019
4020 while (rel < rel_end && rel->r_offset < offset)
4021 ++rel;
4022
4023 if (rel == rel_end)
4024 rel = NULL;
4025 else if (rel->r_offset == offset)
4026 {
4027 /* Find section and section offset. */
4028 unsigned long r_symndx;
4029
4030 asection * rel_sec;
4031 bfd_vma sec_offset;
4032
4033 r_symndx = ELF32_R_SYM (rel->r_info);
4034 rel_sec = get_elf_r_symndx_section (abfd, r_symndx);
4035 sec_offset = get_elf_r_symndx_offset (abfd, r_symndx)
4036 + rel->r_addend;
4037
4038 r_list->records [i].section = rel_sec;
4039 r_list->records [i].offset = sec_offset;
4040 }
4041 }
4042
4043 address = *((uint32_t *) ptr);
4044 ptr += 4;
4045 size -= 4;
4046
4047 if (r_list->records [i].section == NULL)
4048 {
4049 /* Try to find section and offset from address. */
4050 if (fs_data.section != NULL
4051 && !avr_is_section_for_address (abfd, fs_data.section,
4052 address))
4053 fs_data.section = NULL;
4054
4055 if (fs_data.section == NULL)
4056 {
4057 fs_data.address = address;
4058 bfd_map_over_sections (abfd, avr_find_section_for_address,
4059 &fs_data);
4060 }
4061
4062 if (fs_data.section == NULL)
4063 {
4064 fprintf (stderr, "Failed to find matching section.\n");
4065 goto load_failed;
4066 }
4067
4068 r_list->records [i].section = fs_data.section;
4069 r_list->records [i].offset
4070 = address - bfd_get_section_vma (abfd, fs_data.section);
4071 }
4072
4073 r_list->records [i].type = *((bfd_byte *) ptr);
4074 ptr += 1;
4075 size -= 1;
4076
4077 switch (r_list->records [i].type)
4078 {
4079 case RECORD_ORG:
4080 /* Nothing else to load. */
4081 break;
4082 case RECORD_ORG_AND_FILL:
4083 /* Just a 4-byte fill to load. */
4084 if (size < 4)
4085 goto load_failed;
4086 r_list->records [i].data.org.fill = *((uint32_t *) ptr);
4087 ptr += 4;
4088 size -= 4;
4089 break;
4090 case RECORD_ALIGN:
4091 /* Just a 4-byte alignment to load. */
4092 if (size < 4)
4093 goto load_failed;
4094 r_list->records [i].data.align.bytes = *((uint32_t *) ptr);
4095 ptr += 4;
4096 size -= 4;
4097 /* Just initialise PRECEDING_DELETED field, this field is
4098 used during linker relaxation. */
4099 r_list->records [i].data.align.preceding_deleted = 0;
4100 break;
4101 case RECORD_ALIGN_AND_FILL:
4102 /* A 4-byte alignment, and a 4-byte fill to load. */
4103 if (size < 8)
4104 goto load_failed;
4105 r_list->records [i].data.align.bytes = *((uint32_t *) ptr);
4106 ptr += 4;
4107 r_list->records [i].data.align.fill = *((uint32_t *) ptr);
4108 ptr += 4;
4109 size -= 8;
4110 /* Just initialise PRECEDING_DELETED field, this field is
4111 used during linker relaxation. */
4112 r_list->records [i].data.align.preceding_deleted = 0;
4113 break;
4114 default:
4115 goto load_failed;
4116 }
4117 }
4118
4119 free (contents);
4120 if (elf_section_data (sec)->relocs != internal_relocs)
4121 free (internal_relocs);
4122 return r_list;
4123
4124 load_failed:
4125 if (elf_section_data (sec)->relocs != internal_relocs)
4126 free (internal_relocs);
4127 free (contents);
4128 free (r_list);
4129 return NULL;
4130 }
4131
4132 /* Load all of the property records from ABFD. See
4133 AVR_ELF32_LOAD_RECORDS_FROM_SECTION for details of the return value. */
4134
4135 struct avr_property_record_list *
4136 avr_elf32_load_property_records (bfd *abfd)
4137 {
4138 asection *sec;
4139
4140 /* Find the '.avr.prop' section and load the contents into memory. */
4141 sec = bfd_get_section_by_name (abfd, AVR_PROPERTY_RECORD_SECTION_NAME);
4142 if (sec == NULL)
4143 return NULL;
4144 return avr_elf32_load_records_from_section (abfd, sec);
4145 }
4146
4147 const char *
4148 avr_elf32_property_record_name (struct avr_property_record *rec)
4149 {
4150 const char *str;
4151
4152 switch (rec->type)
4153 {
4154 case RECORD_ORG:
4155 str = "ORG";
4156 break;
4157 case RECORD_ORG_AND_FILL:
4158 str = "ORG+FILL";
4159 break;
4160 case RECORD_ALIGN:
4161 str = "ALIGN";
4162 break;
4163 case RECORD_ALIGN_AND_FILL:
4164 str = "ALIGN+FILL";
4165 break;
4166 default:
4167 str = "unknown";
4168 }
4169
4170 return str;
4171 }
4172
4173
4174 #define ELF_ARCH bfd_arch_avr
4175 #define ELF_TARGET_ID AVR_ELF_DATA
4176 #define ELF_MACHINE_CODE EM_AVR
4177 #define ELF_MACHINE_ALT1 EM_AVR_OLD
4178 #define ELF_MAXPAGESIZE 1
4179
4180 #define TARGET_LITTLE_SYM avr_elf32_vec
4181 #define TARGET_LITTLE_NAME "elf32-avr"
4182
4183 #define bfd_elf32_bfd_link_hash_table_create elf32_avr_link_hash_table_create
4184
4185 #define elf_info_to_howto avr_info_to_howto_rela
4186 #define elf_info_to_howto_rel NULL
4187 #define elf_backend_relocate_section elf32_avr_relocate_section
4188 #define elf_backend_can_gc_sections 1
4189 #define elf_backend_rela_normal 1
4190 #define elf_backend_final_write_processing \
4191 bfd_elf_avr_final_write_processing
4192 #define elf_backend_object_p elf32_avr_object_p
4193
4194 #define bfd_elf32_bfd_relax_section elf32_avr_relax_section
4195 #define bfd_elf32_bfd_get_relocated_section_contents \
4196 elf32_avr_get_relocated_section_contents
4197 #define bfd_elf32_new_section_hook elf_avr_new_section_hook
4198
4199 #include "elf32-target.h"
This page took 0.116658 seconds and 4 git commands to generate.