* elflink.c (is_reloc_section): New function. Returns true if the
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5
6 Original code by
7 Center for Software Science
8 Department of Computer Science
9 University of Utah
10 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
11 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
12 TLS support written by Randolph Chung <tausq@debian.org>
13
14 This file is part of BFD, the Binary File Descriptor library.
15
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 3 of the License, or
19 (at your option) any later version.
20
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public License
27 along with this program; if not, write to the Free Software
28 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
29 MA 02110-1301, USA. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "elf-bfd.h"
35 #include "elf/hppa.h"
36 #include "libhppa.h"
37 #include "elf32-hppa.h"
38 #define ARCH_SIZE 32
39 #include "elf32-hppa.h"
40 #include "elf-hppa.h"
41
42 /* In order to gain some understanding of code in this file without
43 knowing all the intricate details of the linker, note the
44 following:
45
46 Functions named elf32_hppa_* are called by external routines, other
47 functions are only called locally. elf32_hppa_* functions appear
48 in this file more or less in the order in which they are called
49 from external routines. eg. elf32_hppa_check_relocs is called
50 early in the link process, elf32_hppa_finish_dynamic_sections is
51 one of the last functions. */
52
53 /* We use two hash tables to hold information for linking PA ELF objects.
54
55 The first is the elf32_hppa_link_hash_table which is derived
56 from the standard ELF linker hash table. We use this as a place to
57 attach other hash tables and static information.
58
59 The second is the stub hash table which is derived from the
60 base BFD hash table. The stub hash table holds the information
61 necessary to build the linker stubs during a link.
62
63 There are a number of different stubs generated by the linker.
64
65 Long branch stub:
66 : ldil LR'X,%r1
67 : be,n RR'X(%sr4,%r1)
68
69 PIC long branch stub:
70 : b,l .+8,%r1
71 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
72 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
73
74 Import stub to call shared library routine from normal object file
75 (single sub-space version)
76 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
77 : ldw RR'lt_ptr+ltoff(%r1),%r21
78 : bv %r0(%r21)
79 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
80
81 Import stub to call shared library routine from shared library
82 (single sub-space version)
83 : addil LR'ltoff,%r19 ; get procedure entry point
84 : ldw RR'ltoff(%r1),%r21
85 : bv %r0(%r21)
86 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
87
88 Import stub to call shared library routine from normal object file
89 (multiple sub-space support)
90 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
91 : ldw RR'lt_ptr+ltoff(%r1),%r21
92 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
93 : ldsid (%r21),%r1
94 : mtsp %r1,%sr0
95 : be 0(%sr0,%r21) ; branch to target
96 : stw %rp,-24(%sp) ; save rp
97
98 Import stub to call shared library routine from shared library
99 (multiple sub-space support)
100 : addil LR'ltoff,%r19 ; get procedure entry point
101 : ldw RR'ltoff(%r1),%r21
102 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
103 : ldsid (%r21),%r1
104 : mtsp %r1,%sr0
105 : be 0(%sr0,%r21) ; branch to target
106 : stw %rp,-24(%sp) ; save rp
107
108 Export stub to return from shared lib routine (multiple sub-space support)
109 One of these is created for each exported procedure in a shared
110 library (and stored in the shared lib). Shared lib routines are
111 called via the first instruction in the export stub so that we can
112 do an inter-space return. Not required for single sub-space.
113 : bl,n X,%rp ; trap the return
114 : nop
115 : ldw -24(%sp),%rp ; restore the original rp
116 : ldsid (%rp),%r1
117 : mtsp %r1,%sr0
118 : be,n 0(%sr0,%rp) ; inter-space return. */
119
120
121 /* Variable names follow a coding style.
122 Please follow this (Apps Hungarian) style:
123
124 Structure/Variable Prefix
125 elf_link_hash_table "etab"
126 elf_link_hash_entry "eh"
127
128 elf32_hppa_link_hash_table "htab"
129 elf32_hppa_link_hash_entry "hh"
130
131 bfd_hash_table "btab"
132 bfd_hash_entry "bh"
133
134 bfd_hash_table containing stubs "bstab"
135 elf32_hppa_stub_hash_entry "hsh"
136
137 elf32_hppa_dyn_reloc_entry "hdh"
138
139 Always remember to use GNU Coding Style. */
140
141 #define PLT_ENTRY_SIZE 8
142 #define GOT_ENTRY_SIZE 4
143 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
144
145 static const bfd_byte plt_stub[] =
146 {
147 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
148 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
149 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
150 #define PLT_STUB_ENTRY (3*4)
151 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
152 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
153 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
154 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
155 };
156
157 /* Section name for stubs is the associated section name plus this
158 string. */
159 #define STUB_SUFFIX ".stub"
160
161 /* We don't need to copy certain PC- or GP-relative dynamic relocs
162 into a shared object's dynamic section. All the relocs of the
163 limited class we are interested in, are absolute. */
164 #ifndef RELATIVE_DYNRELOCS
165 #define RELATIVE_DYNRELOCS 0
166 #define IS_ABSOLUTE_RELOC(r_type) 1
167 #endif
168
169 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
170 copying dynamic variables from a shared lib into an app's dynbss
171 section, and instead use a dynamic relocation to point into the
172 shared lib. */
173 #define ELIMINATE_COPY_RELOCS 1
174
175 enum elf32_hppa_stub_type
176 {
177 hppa_stub_long_branch,
178 hppa_stub_long_branch_shared,
179 hppa_stub_import,
180 hppa_stub_import_shared,
181 hppa_stub_export,
182 hppa_stub_none
183 };
184
185 struct elf32_hppa_stub_hash_entry
186 {
187 /* Base hash table entry structure. */
188 struct bfd_hash_entry bh_root;
189
190 /* The stub section. */
191 asection *stub_sec;
192
193 /* Offset within stub_sec of the beginning of this stub. */
194 bfd_vma stub_offset;
195
196 /* Given the symbol's value and its section we can determine its final
197 value when building the stubs (so the stub knows where to jump. */
198 bfd_vma target_value;
199 asection *target_section;
200
201 enum elf32_hppa_stub_type stub_type;
202
203 /* The symbol table entry, if any, that this was derived from. */
204 struct elf32_hppa_link_hash_entry *hh;
205
206 /* Where this stub is being called from, or, in the case of combined
207 stub sections, the first input section in the group. */
208 asection *id_sec;
209 };
210
211 struct elf32_hppa_link_hash_entry
212 {
213 struct elf_link_hash_entry eh;
214
215 /* A pointer to the most recently used stub hash entry against this
216 symbol. */
217 struct elf32_hppa_stub_hash_entry *hsh_cache;
218
219 /* Used to count relocations for delayed sizing of relocation
220 sections. */
221 struct elf32_hppa_dyn_reloc_entry
222 {
223 /* Next relocation in the chain. */
224 struct elf32_hppa_dyn_reloc_entry *hdh_next;
225
226 /* The input section of the reloc. */
227 asection *sec;
228
229 /* Number of relocs copied in this section. */
230 bfd_size_type count;
231
232 #if RELATIVE_DYNRELOCS
233 /* Number of relative relocs copied for the input section. */
234 bfd_size_type relative_count;
235 #endif
236 } *dyn_relocs;
237
238 enum
239 {
240 GOT_UNKNOWN = 0, GOT_NORMAL = 1, GOT_TLS_GD = 2, GOT_TLS_LDM = 4, GOT_TLS_IE = 8
241 } tls_type;
242
243 /* Set if this symbol is used by a plabel reloc. */
244 unsigned int plabel:1;
245 };
246
247 struct elf32_hppa_link_hash_table
248 {
249 /* The main hash table. */
250 struct elf_link_hash_table etab;
251
252 /* The stub hash table. */
253 struct bfd_hash_table bstab;
254
255 /* Linker stub bfd. */
256 bfd *stub_bfd;
257
258 /* Linker call-backs. */
259 asection * (*add_stub_section) (const char *, asection *);
260 void (*layout_sections_again) (void);
261
262 /* Array to keep track of which stub sections have been created, and
263 information on stub grouping. */
264 struct map_stub
265 {
266 /* This is the section to which stubs in the group will be
267 attached. */
268 asection *link_sec;
269 /* The stub section. */
270 asection *stub_sec;
271 } *stub_group;
272
273 /* Assorted information used by elf32_hppa_size_stubs. */
274 unsigned int bfd_count;
275 int top_index;
276 asection **input_list;
277 Elf_Internal_Sym **all_local_syms;
278
279 /* Short-cuts to get to dynamic linker sections. */
280 asection *sgot;
281 asection *srelgot;
282 asection *splt;
283 asection *srelplt;
284 asection *sdynbss;
285 asection *srelbss;
286
287 /* Used during a final link to store the base of the text and data
288 segments so that we can perform SEGREL relocations. */
289 bfd_vma text_segment_base;
290 bfd_vma data_segment_base;
291
292 /* Whether we support multiple sub-spaces for shared libs. */
293 unsigned int multi_subspace:1;
294
295 /* Flags set when various size branches are detected. Used to
296 select suitable defaults for the stub group size. */
297 unsigned int has_12bit_branch:1;
298 unsigned int has_17bit_branch:1;
299 unsigned int has_22bit_branch:1;
300
301 /* Set if we need a .plt stub to support lazy dynamic linking. */
302 unsigned int need_plt_stub:1;
303
304 /* Small local sym to section mapping cache. */
305 struct sym_sec_cache sym_sec;
306
307 /* Data for LDM relocations. */
308 union
309 {
310 bfd_signed_vma refcount;
311 bfd_vma offset;
312 } tls_ldm_got;
313 };
314
315 /* Various hash macros and functions. */
316 #define hppa_link_hash_table(p) \
317 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
318
319 #define hppa_elf_hash_entry(ent) \
320 ((struct elf32_hppa_link_hash_entry *)(ent))
321
322 #define hppa_stub_hash_entry(ent) \
323 ((struct elf32_hppa_stub_hash_entry *)(ent))
324
325 #define hppa_stub_hash_lookup(table, string, create, copy) \
326 ((struct elf32_hppa_stub_hash_entry *) \
327 bfd_hash_lookup ((table), (string), (create), (copy)))
328
329 #define hppa_elf_local_got_tls_type(abfd) \
330 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
331
332 #define hh_name(hh) \
333 (hh ? hh->eh.root.root.string : "<undef>")
334
335 #define eh_name(eh) \
336 (eh ? eh->root.root.string : "<undef>")
337
338 /* Override the generic function because we want to mark our BFDs. */
339
340 static bfd_boolean
341 elf32_hppa_mkobject (bfd *abfd)
342 {
343 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
344 HPPA_ELF_TDATA);
345 }
346
347 /* Assorted hash table functions. */
348
349 /* Initialize an entry in the stub hash table. */
350
351 static struct bfd_hash_entry *
352 stub_hash_newfunc (struct bfd_hash_entry *entry,
353 struct bfd_hash_table *table,
354 const char *string)
355 {
356 /* Allocate the structure if it has not already been allocated by a
357 subclass. */
358 if (entry == NULL)
359 {
360 entry = bfd_hash_allocate (table,
361 sizeof (struct elf32_hppa_stub_hash_entry));
362 if (entry == NULL)
363 return entry;
364 }
365
366 /* Call the allocation method of the superclass. */
367 entry = bfd_hash_newfunc (entry, table, string);
368 if (entry != NULL)
369 {
370 struct elf32_hppa_stub_hash_entry *hsh;
371
372 /* Initialize the local fields. */
373 hsh = hppa_stub_hash_entry (entry);
374 hsh->stub_sec = NULL;
375 hsh->stub_offset = 0;
376 hsh->target_value = 0;
377 hsh->target_section = NULL;
378 hsh->stub_type = hppa_stub_long_branch;
379 hsh->hh = NULL;
380 hsh->id_sec = NULL;
381 }
382
383 return entry;
384 }
385
386 /* Initialize an entry in the link hash table. */
387
388 static struct bfd_hash_entry *
389 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
390 struct bfd_hash_table *table,
391 const char *string)
392 {
393 /* Allocate the structure if it has not already been allocated by a
394 subclass. */
395 if (entry == NULL)
396 {
397 entry = bfd_hash_allocate (table,
398 sizeof (struct elf32_hppa_link_hash_entry));
399 if (entry == NULL)
400 return entry;
401 }
402
403 /* Call the allocation method of the superclass. */
404 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
405 if (entry != NULL)
406 {
407 struct elf32_hppa_link_hash_entry *hh;
408
409 /* Initialize the local fields. */
410 hh = hppa_elf_hash_entry (entry);
411 hh->hsh_cache = NULL;
412 hh->dyn_relocs = NULL;
413 hh->plabel = 0;
414 hh->tls_type = GOT_UNKNOWN;
415 }
416
417 return entry;
418 }
419
420 /* Create the derived linker hash table. The PA ELF port uses the derived
421 hash table to keep information specific to the PA ELF linker (without
422 using static variables). */
423
424 static struct bfd_link_hash_table *
425 elf32_hppa_link_hash_table_create (bfd *abfd)
426 {
427 struct elf32_hppa_link_hash_table *htab;
428 bfd_size_type amt = sizeof (*htab);
429
430 htab = bfd_malloc (amt);
431 if (htab == NULL)
432 return NULL;
433
434 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
435 sizeof (struct elf32_hppa_link_hash_entry)))
436 {
437 free (htab);
438 return NULL;
439 }
440
441 /* Init the stub hash table too. */
442 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
443 sizeof (struct elf32_hppa_stub_hash_entry)))
444 return NULL;
445
446 htab->stub_bfd = NULL;
447 htab->add_stub_section = NULL;
448 htab->layout_sections_again = NULL;
449 htab->stub_group = NULL;
450 htab->sgot = NULL;
451 htab->srelgot = NULL;
452 htab->splt = NULL;
453 htab->srelplt = NULL;
454 htab->sdynbss = NULL;
455 htab->srelbss = NULL;
456 htab->text_segment_base = (bfd_vma) -1;
457 htab->data_segment_base = (bfd_vma) -1;
458 htab->multi_subspace = 0;
459 htab->has_12bit_branch = 0;
460 htab->has_17bit_branch = 0;
461 htab->has_22bit_branch = 0;
462 htab->need_plt_stub = 0;
463 htab->sym_sec.abfd = NULL;
464 htab->tls_ldm_got.refcount = 0;
465
466 return &htab->etab.root;
467 }
468
469 /* Free the derived linker hash table. */
470
471 static void
472 elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *btab)
473 {
474 struct elf32_hppa_link_hash_table *htab
475 = (struct elf32_hppa_link_hash_table *) btab;
476
477 bfd_hash_table_free (&htab->bstab);
478 _bfd_generic_link_hash_table_free (btab);
479 }
480
481 /* Build a name for an entry in the stub hash table. */
482
483 static char *
484 hppa_stub_name (const asection *input_section,
485 const asection *sym_sec,
486 const struct elf32_hppa_link_hash_entry *hh,
487 const Elf_Internal_Rela *rela)
488 {
489 char *stub_name;
490 bfd_size_type len;
491
492 if (hh)
493 {
494 len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
495 stub_name = bfd_malloc (len);
496 if (stub_name != NULL)
497 sprintf (stub_name, "%08x_%s+%x",
498 input_section->id & 0xffffffff,
499 hh_name (hh),
500 (int) rela->r_addend & 0xffffffff);
501 }
502 else
503 {
504 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
505 stub_name = bfd_malloc (len);
506 if (stub_name != NULL)
507 sprintf (stub_name, "%08x_%x:%x+%x",
508 input_section->id & 0xffffffff,
509 sym_sec->id & 0xffffffff,
510 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
511 (int) rela->r_addend & 0xffffffff);
512 }
513 return stub_name;
514 }
515
516 /* Look up an entry in the stub hash. Stub entries are cached because
517 creating the stub name takes a bit of time. */
518
519 static struct elf32_hppa_stub_hash_entry *
520 hppa_get_stub_entry (const asection *input_section,
521 const asection *sym_sec,
522 struct elf32_hppa_link_hash_entry *hh,
523 const Elf_Internal_Rela *rela,
524 struct elf32_hppa_link_hash_table *htab)
525 {
526 struct elf32_hppa_stub_hash_entry *hsh_entry;
527 const asection *id_sec;
528
529 /* If this input section is part of a group of sections sharing one
530 stub section, then use the id of the first section in the group.
531 Stub names need to include a section id, as there may well be
532 more than one stub used to reach say, printf, and we need to
533 distinguish between them. */
534 id_sec = htab->stub_group[input_section->id].link_sec;
535
536 if (hh != NULL && hh->hsh_cache != NULL
537 && hh->hsh_cache->hh == hh
538 && hh->hsh_cache->id_sec == id_sec)
539 {
540 hsh_entry = hh->hsh_cache;
541 }
542 else
543 {
544 char *stub_name;
545
546 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
547 if (stub_name == NULL)
548 return NULL;
549
550 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
551 stub_name, FALSE, FALSE);
552 if (hh != NULL)
553 hh->hsh_cache = hsh_entry;
554
555 free (stub_name);
556 }
557
558 return hsh_entry;
559 }
560
561 /* Add a new stub entry to the stub hash. Not all fields of the new
562 stub entry are initialised. */
563
564 static struct elf32_hppa_stub_hash_entry *
565 hppa_add_stub (const char *stub_name,
566 asection *section,
567 struct elf32_hppa_link_hash_table *htab)
568 {
569 asection *link_sec;
570 asection *stub_sec;
571 struct elf32_hppa_stub_hash_entry *hsh;
572
573 link_sec = htab->stub_group[section->id].link_sec;
574 stub_sec = htab->stub_group[section->id].stub_sec;
575 if (stub_sec == NULL)
576 {
577 stub_sec = htab->stub_group[link_sec->id].stub_sec;
578 if (stub_sec == NULL)
579 {
580 size_t namelen;
581 bfd_size_type len;
582 char *s_name;
583
584 namelen = strlen (link_sec->name);
585 len = namelen + sizeof (STUB_SUFFIX);
586 s_name = bfd_alloc (htab->stub_bfd, len);
587 if (s_name == NULL)
588 return NULL;
589
590 memcpy (s_name, link_sec->name, namelen);
591 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
592 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
593 if (stub_sec == NULL)
594 return NULL;
595 htab->stub_group[link_sec->id].stub_sec = stub_sec;
596 }
597 htab->stub_group[section->id].stub_sec = stub_sec;
598 }
599
600 /* Enter this entry into the linker stub hash table. */
601 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
602 TRUE, FALSE);
603 if (hsh == NULL)
604 {
605 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
606 section->owner,
607 stub_name);
608 return NULL;
609 }
610
611 hsh->stub_sec = stub_sec;
612 hsh->stub_offset = 0;
613 hsh->id_sec = link_sec;
614 return hsh;
615 }
616
617 /* Determine the type of stub needed, if any, for a call. */
618
619 static enum elf32_hppa_stub_type
620 hppa_type_of_stub (asection *input_sec,
621 const Elf_Internal_Rela *rela,
622 struct elf32_hppa_link_hash_entry *hh,
623 bfd_vma destination,
624 struct bfd_link_info *info)
625 {
626 bfd_vma location;
627 bfd_vma branch_offset;
628 bfd_vma max_branch_offset;
629 unsigned int r_type;
630
631 if (hh != NULL
632 && hh->eh.plt.offset != (bfd_vma) -1
633 && hh->eh.dynindx != -1
634 && !hh->plabel
635 && (info->shared
636 || !hh->eh.def_regular
637 || hh->eh.root.type == bfd_link_hash_defweak))
638 {
639 /* We need an import stub. Decide between hppa_stub_import
640 and hppa_stub_import_shared later. */
641 return hppa_stub_import;
642 }
643
644 /* Determine where the call point is. */
645 location = (input_sec->output_offset
646 + input_sec->output_section->vma
647 + rela->r_offset);
648
649 branch_offset = destination - location - 8;
650 r_type = ELF32_R_TYPE (rela->r_info);
651
652 /* Determine if a long branch stub is needed. parisc branch offsets
653 are relative to the second instruction past the branch, ie. +8
654 bytes on from the branch instruction location. The offset is
655 signed and counts in units of 4 bytes. */
656 if (r_type == (unsigned int) R_PARISC_PCREL17F)
657 max_branch_offset = (1 << (17 - 1)) << 2;
658
659 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
660 max_branch_offset = (1 << (12 - 1)) << 2;
661
662 else /* R_PARISC_PCREL22F. */
663 max_branch_offset = (1 << (22 - 1)) << 2;
664
665 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
666 return hppa_stub_long_branch;
667
668 return hppa_stub_none;
669 }
670
671 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
672 IN_ARG contains the link info pointer. */
673
674 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
675 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
676
677 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
678 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
679 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
680
681 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
682 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
683 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
684 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
685
686 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
687 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
688
689 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
690 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
691 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
692 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
693
694 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
695 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
696 #define NOP 0x08000240 /* nop */
697 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
698 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
699 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
700
701 #ifndef R19_STUBS
702 #define R19_STUBS 1
703 #endif
704
705 #if R19_STUBS
706 #define LDW_R1_DLT LDW_R1_R19
707 #else
708 #define LDW_R1_DLT LDW_R1_DP
709 #endif
710
711 static bfd_boolean
712 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
713 {
714 struct elf32_hppa_stub_hash_entry *hsh;
715 struct bfd_link_info *info;
716 struct elf32_hppa_link_hash_table *htab;
717 asection *stub_sec;
718 bfd *stub_bfd;
719 bfd_byte *loc;
720 bfd_vma sym_value;
721 bfd_vma insn;
722 bfd_vma off;
723 int val;
724 int size;
725
726 /* Massage our args to the form they really have. */
727 hsh = hppa_stub_hash_entry (bh);
728 info = (struct bfd_link_info *)in_arg;
729
730 htab = hppa_link_hash_table (info);
731 stub_sec = hsh->stub_sec;
732
733 /* Make a note of the offset within the stubs for this entry. */
734 hsh->stub_offset = stub_sec->size;
735 loc = stub_sec->contents + hsh->stub_offset;
736
737 stub_bfd = stub_sec->owner;
738
739 switch (hsh->stub_type)
740 {
741 case hppa_stub_long_branch:
742 /* Create the long branch. A long branch is formed with "ldil"
743 loading the upper bits of the target address into a register,
744 then branching with "be" which adds in the lower bits.
745 The "be" has its delay slot nullified. */
746 sym_value = (hsh->target_value
747 + hsh->target_section->output_offset
748 + hsh->target_section->output_section->vma);
749
750 val = hppa_field_adjust (sym_value, 0, e_lrsel);
751 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
752 bfd_put_32 (stub_bfd, insn, loc);
753
754 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
755 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
756 bfd_put_32 (stub_bfd, insn, loc + 4);
757
758 size = 8;
759 break;
760
761 case hppa_stub_long_branch_shared:
762 /* Branches are relative. This is where we are going to. */
763 sym_value = (hsh->target_value
764 + hsh->target_section->output_offset
765 + hsh->target_section->output_section->vma);
766
767 /* And this is where we are coming from, more or less. */
768 sym_value -= (hsh->stub_offset
769 + stub_sec->output_offset
770 + stub_sec->output_section->vma);
771
772 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
773 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
774 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
775 bfd_put_32 (stub_bfd, insn, loc + 4);
776
777 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
778 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
779 bfd_put_32 (stub_bfd, insn, loc + 8);
780 size = 12;
781 break;
782
783 case hppa_stub_import:
784 case hppa_stub_import_shared:
785 off = hsh->hh->eh.plt.offset;
786 if (off >= (bfd_vma) -2)
787 abort ();
788
789 off &= ~ (bfd_vma) 1;
790 sym_value = (off
791 + htab->splt->output_offset
792 + htab->splt->output_section->vma
793 - elf_gp (htab->splt->output_section->owner));
794
795 insn = ADDIL_DP;
796 #if R19_STUBS
797 if (hsh->stub_type == hppa_stub_import_shared)
798 insn = ADDIL_R19;
799 #endif
800 val = hppa_field_adjust (sym_value, 0, e_lrsel),
801 insn = hppa_rebuild_insn ((int) insn, val, 21);
802 bfd_put_32 (stub_bfd, insn, loc);
803
804 /* It is critical to use lrsel/rrsel here because we are using
805 two different offsets (+0 and +4) from sym_value. If we use
806 lsel/rsel then with unfortunate sym_values we will round
807 sym_value+4 up to the next 2k block leading to a mis-match
808 between the lsel and rsel value. */
809 val = hppa_field_adjust (sym_value, 0, e_rrsel);
810 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
811 bfd_put_32 (stub_bfd, insn, loc + 4);
812
813 if (htab->multi_subspace)
814 {
815 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
816 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
817 bfd_put_32 (stub_bfd, insn, loc + 8);
818
819 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
820 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
821 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
822 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
823
824 size = 28;
825 }
826 else
827 {
828 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
829 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
830 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
831 bfd_put_32 (stub_bfd, insn, loc + 12);
832
833 size = 16;
834 }
835
836 break;
837
838 case hppa_stub_export:
839 /* Branches are relative. This is where we are going to. */
840 sym_value = (hsh->target_value
841 + hsh->target_section->output_offset
842 + hsh->target_section->output_section->vma);
843
844 /* And this is where we are coming from. */
845 sym_value -= (hsh->stub_offset
846 + stub_sec->output_offset
847 + stub_sec->output_section->vma);
848
849 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
850 && (!htab->has_22bit_branch
851 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
852 {
853 (*_bfd_error_handler)
854 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
855 hsh->target_section->owner,
856 stub_sec,
857 (long) hsh->stub_offset,
858 hsh->bh_root.string);
859 bfd_set_error (bfd_error_bad_value);
860 return FALSE;
861 }
862
863 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
864 if (!htab->has_22bit_branch)
865 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
866 else
867 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
868 bfd_put_32 (stub_bfd, insn, loc);
869
870 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
871 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
872 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
873 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
874 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
875
876 /* Point the function symbol at the stub. */
877 hsh->hh->eh.root.u.def.section = stub_sec;
878 hsh->hh->eh.root.u.def.value = stub_sec->size;
879
880 size = 24;
881 break;
882
883 default:
884 BFD_FAIL ();
885 return FALSE;
886 }
887
888 stub_sec->size += size;
889 return TRUE;
890 }
891
892 #undef LDIL_R1
893 #undef BE_SR4_R1
894 #undef BL_R1
895 #undef ADDIL_R1
896 #undef DEPI_R1
897 #undef LDW_R1_R21
898 #undef LDW_R1_DLT
899 #undef LDW_R1_R19
900 #undef ADDIL_R19
901 #undef LDW_R1_DP
902 #undef LDSID_R21_R1
903 #undef MTSP_R1
904 #undef BE_SR0_R21
905 #undef STW_RP
906 #undef BV_R0_R21
907 #undef BL_RP
908 #undef NOP
909 #undef LDW_RP
910 #undef LDSID_RP_R1
911 #undef BE_SR0_RP
912
913 /* As above, but don't actually build the stub. Just bump offset so
914 we know stub section sizes. */
915
916 static bfd_boolean
917 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
918 {
919 struct elf32_hppa_stub_hash_entry *hsh;
920 struct elf32_hppa_link_hash_table *htab;
921 int size;
922
923 /* Massage our args to the form they really have. */
924 hsh = hppa_stub_hash_entry (bh);
925 htab = in_arg;
926
927 if (hsh->stub_type == hppa_stub_long_branch)
928 size = 8;
929 else if (hsh->stub_type == hppa_stub_long_branch_shared)
930 size = 12;
931 else if (hsh->stub_type == hppa_stub_export)
932 size = 24;
933 else /* hppa_stub_import or hppa_stub_import_shared. */
934 {
935 if (htab->multi_subspace)
936 size = 28;
937 else
938 size = 16;
939 }
940
941 hsh->stub_sec->size += size;
942 return TRUE;
943 }
944
945 /* Return nonzero if ABFD represents an HPPA ELF32 file.
946 Additionally we set the default architecture and machine. */
947
948 static bfd_boolean
949 elf32_hppa_object_p (bfd *abfd)
950 {
951 Elf_Internal_Ehdr * i_ehdrp;
952 unsigned int flags;
953
954 i_ehdrp = elf_elfheader (abfd);
955 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
956 {
957 /* GCC on hppa-linux produces binaries with OSABI=Linux,
958 but the kernel produces corefiles with OSABI=SysV. */
959 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX &&
960 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
961 return FALSE;
962 }
963 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
964 {
965 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
966 but the kernel produces corefiles with OSABI=SysV. */
967 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
968 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
969 return FALSE;
970 }
971 else
972 {
973 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
974 return FALSE;
975 }
976
977 flags = i_ehdrp->e_flags;
978 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
979 {
980 case EFA_PARISC_1_0:
981 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
982 case EFA_PARISC_1_1:
983 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
984 case EFA_PARISC_2_0:
985 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
986 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
987 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
988 }
989 return TRUE;
990 }
991
992 /* Create the .plt and .got sections, and set up our hash table
993 short-cuts to various dynamic sections. */
994
995 static bfd_boolean
996 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
997 {
998 struct elf32_hppa_link_hash_table *htab;
999 struct elf_link_hash_entry *eh;
1000
1001 /* Don't try to create the .plt and .got twice. */
1002 htab = hppa_link_hash_table (info);
1003 if (htab->splt != NULL)
1004 return TRUE;
1005
1006 /* Call the generic code to do most of the work. */
1007 if (! _bfd_elf_create_dynamic_sections (abfd, info))
1008 return FALSE;
1009
1010 htab->splt = bfd_get_section_by_name (abfd, ".plt");
1011 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
1012
1013 htab->sgot = bfd_get_section_by_name (abfd, ".got");
1014 htab->srelgot = bfd_make_section_with_flags (abfd, ".rela.got",
1015 (SEC_ALLOC
1016 | SEC_LOAD
1017 | SEC_HAS_CONTENTS
1018 | SEC_IN_MEMORY
1019 | SEC_LINKER_CREATED
1020 | SEC_READONLY));
1021 if (htab->srelgot == NULL
1022 || ! bfd_set_section_alignment (abfd, htab->srelgot, 2))
1023 return FALSE;
1024
1025 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
1026 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
1027
1028 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
1029 application, because __canonicalize_funcptr_for_compare needs it. */
1030 eh = elf_hash_table (info)->hgot;
1031 eh->forced_local = 0;
1032 eh->other = STV_DEFAULT;
1033 return bfd_elf_link_record_dynamic_symbol (info, eh);
1034 }
1035
1036 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1037
1038 static void
1039 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1040 struct elf_link_hash_entry *eh_dir,
1041 struct elf_link_hash_entry *eh_ind)
1042 {
1043 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1044
1045 hh_dir = hppa_elf_hash_entry (eh_dir);
1046 hh_ind = hppa_elf_hash_entry (eh_ind);
1047
1048 if (hh_ind->dyn_relocs != NULL)
1049 {
1050 if (hh_dir->dyn_relocs != NULL)
1051 {
1052 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1053 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1054
1055 /* Add reloc counts against the indirect sym to the direct sym
1056 list. Merge any entries against the same section. */
1057 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1058 {
1059 struct elf32_hppa_dyn_reloc_entry *hdh_q;
1060
1061 for (hdh_q = hh_dir->dyn_relocs;
1062 hdh_q != NULL;
1063 hdh_q = hdh_q->hdh_next)
1064 if (hdh_q->sec == hdh_p->sec)
1065 {
1066 #if RELATIVE_DYNRELOCS
1067 hdh_q->relative_count += hdh_p->relative_count;
1068 #endif
1069 hdh_q->count += hdh_p->count;
1070 *hdh_pp = hdh_p->hdh_next;
1071 break;
1072 }
1073 if (hdh_q == NULL)
1074 hdh_pp = &hdh_p->hdh_next;
1075 }
1076 *hdh_pp = hh_dir->dyn_relocs;
1077 }
1078
1079 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1080 hh_ind->dyn_relocs = NULL;
1081 }
1082
1083 if (ELIMINATE_COPY_RELOCS
1084 && eh_ind->root.type != bfd_link_hash_indirect
1085 && eh_dir->dynamic_adjusted)
1086 {
1087 /* If called to transfer flags for a weakdef during processing
1088 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1089 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1090 eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
1091 eh_dir->ref_regular |= eh_ind->ref_regular;
1092 eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
1093 eh_dir->needs_plt |= eh_ind->needs_plt;
1094 }
1095 else
1096 {
1097 if (eh_ind->root.type == bfd_link_hash_indirect
1098 && eh_dir->got.refcount <= 0)
1099 {
1100 hh_dir->tls_type = hh_ind->tls_type;
1101 hh_ind->tls_type = GOT_UNKNOWN;
1102 }
1103
1104 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1105 }
1106 }
1107
1108 static int
1109 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1110 int r_type, int is_local ATTRIBUTE_UNUSED)
1111 {
1112 /* For now we don't support linker optimizations. */
1113 return r_type;
1114 }
1115
1116 /* Look through the relocs for a section during the first phase, and
1117 calculate needed space in the global offset table, procedure linkage
1118 table, and dynamic reloc sections. At this point we haven't
1119 necessarily read all the input files. */
1120
1121 static bfd_boolean
1122 elf32_hppa_check_relocs (bfd *abfd,
1123 struct bfd_link_info *info,
1124 asection *sec,
1125 const Elf_Internal_Rela *relocs)
1126 {
1127 Elf_Internal_Shdr *symtab_hdr;
1128 struct elf_link_hash_entry **eh_syms;
1129 const Elf_Internal_Rela *rela;
1130 const Elf_Internal_Rela *rela_end;
1131 struct elf32_hppa_link_hash_table *htab;
1132 asection *sreloc;
1133 asection *stubreloc;
1134 int tls_type = GOT_UNKNOWN, old_tls_type = GOT_UNKNOWN;
1135
1136 if (info->relocatable)
1137 return TRUE;
1138
1139 htab = hppa_link_hash_table (info);
1140 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1141 eh_syms = elf_sym_hashes (abfd);
1142 sreloc = NULL;
1143 stubreloc = NULL;
1144
1145 rela_end = relocs + sec->reloc_count;
1146 for (rela = relocs; rela < rela_end; rela++)
1147 {
1148 enum {
1149 NEED_GOT = 1,
1150 NEED_PLT = 2,
1151 NEED_DYNREL = 4,
1152 PLT_PLABEL = 8
1153 };
1154
1155 unsigned int r_symndx, r_type;
1156 struct elf32_hppa_link_hash_entry *hh;
1157 int need_entry = 0;
1158
1159 r_symndx = ELF32_R_SYM (rela->r_info);
1160
1161 if (r_symndx < symtab_hdr->sh_info)
1162 hh = NULL;
1163 else
1164 {
1165 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1166 while (hh->eh.root.type == bfd_link_hash_indirect
1167 || hh->eh.root.type == bfd_link_hash_warning)
1168 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1169 }
1170
1171 r_type = ELF32_R_TYPE (rela->r_info);
1172 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1173
1174 switch (r_type)
1175 {
1176 case R_PARISC_DLTIND14F:
1177 case R_PARISC_DLTIND14R:
1178 case R_PARISC_DLTIND21L:
1179 /* This symbol requires a global offset table entry. */
1180 need_entry = NEED_GOT;
1181 break;
1182
1183 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1184 case R_PARISC_PLABEL21L:
1185 case R_PARISC_PLABEL32:
1186 /* If the addend is non-zero, we break badly. */
1187 if (rela->r_addend != 0)
1188 abort ();
1189
1190 /* If we are creating a shared library, then we need to
1191 create a PLT entry for all PLABELs, because PLABELs with
1192 local symbols may be passed via a pointer to another
1193 object. Additionally, output a dynamic relocation
1194 pointing to the PLT entry.
1195
1196 For executables, the original 32-bit ABI allowed two
1197 different styles of PLABELs (function pointers): For
1198 global functions, the PLABEL word points into the .plt
1199 two bytes past a (function address, gp) pair, and for
1200 local functions the PLABEL points directly at the
1201 function. The magic +2 for the first type allows us to
1202 differentiate between the two. As you can imagine, this
1203 is a real pain when it comes to generating code to call
1204 functions indirectly or to compare function pointers.
1205 We avoid the mess by always pointing a PLABEL into the
1206 .plt, even for local functions. */
1207 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1208 break;
1209
1210 case R_PARISC_PCREL12F:
1211 htab->has_12bit_branch = 1;
1212 goto branch_common;
1213
1214 case R_PARISC_PCREL17C:
1215 case R_PARISC_PCREL17F:
1216 htab->has_17bit_branch = 1;
1217 goto branch_common;
1218
1219 case R_PARISC_PCREL22F:
1220 htab->has_22bit_branch = 1;
1221 branch_common:
1222 /* Function calls might need to go through the .plt, and
1223 might require long branch stubs. */
1224 if (hh == NULL)
1225 {
1226 /* We know local syms won't need a .plt entry, and if
1227 they need a long branch stub we can't guarantee that
1228 we can reach the stub. So just flag an error later
1229 if we're doing a shared link and find we need a long
1230 branch stub. */
1231 continue;
1232 }
1233 else
1234 {
1235 /* Global symbols will need a .plt entry if they remain
1236 global, and in most cases won't need a long branch
1237 stub. Unfortunately, we have to cater for the case
1238 where a symbol is forced local by versioning, or due
1239 to symbolic linking, and we lose the .plt entry. */
1240 need_entry = NEED_PLT;
1241 if (hh->eh.type == STT_PARISC_MILLI)
1242 need_entry = 0;
1243 }
1244 break;
1245
1246 case R_PARISC_SEGBASE: /* Used to set segment base. */
1247 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1248 case R_PARISC_PCREL14F: /* PC relative load/store. */
1249 case R_PARISC_PCREL14R:
1250 case R_PARISC_PCREL17R: /* External branches. */
1251 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1252 case R_PARISC_PCREL32:
1253 /* We don't need to propagate the relocation if linking a
1254 shared object since these are section relative. */
1255 continue;
1256
1257 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1258 case R_PARISC_DPREL14R:
1259 case R_PARISC_DPREL21L:
1260 if (info->shared)
1261 {
1262 (*_bfd_error_handler)
1263 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1264 abfd,
1265 elf_hppa_howto_table[r_type].name);
1266 bfd_set_error (bfd_error_bad_value);
1267 return FALSE;
1268 }
1269 /* Fall through. */
1270
1271 case R_PARISC_DIR17F: /* Used for external branches. */
1272 case R_PARISC_DIR17R:
1273 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1274 case R_PARISC_DIR14R:
1275 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1276 case R_PARISC_DIR32: /* .word relocs. */
1277 /* We may want to output a dynamic relocation later. */
1278 need_entry = NEED_DYNREL;
1279 break;
1280
1281 /* This relocation describes the C++ object vtable hierarchy.
1282 Reconstruct it for later use during GC. */
1283 case R_PARISC_GNU_VTINHERIT:
1284 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1285 return FALSE;
1286 continue;
1287
1288 /* This relocation describes which C++ vtable entries are actually
1289 used. Record for later use during GC. */
1290 case R_PARISC_GNU_VTENTRY:
1291 BFD_ASSERT (hh != NULL);
1292 if (hh != NULL
1293 && !bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1294 return FALSE;
1295 continue;
1296
1297 case R_PARISC_TLS_GD21L:
1298 case R_PARISC_TLS_GD14R:
1299 case R_PARISC_TLS_LDM21L:
1300 case R_PARISC_TLS_LDM14R:
1301 need_entry = NEED_GOT;
1302 break;
1303
1304 case R_PARISC_TLS_IE21L:
1305 case R_PARISC_TLS_IE14R:
1306 if (info->shared)
1307 info->flags |= DF_STATIC_TLS;
1308 need_entry = NEED_GOT;
1309 break;
1310
1311 default:
1312 continue;
1313 }
1314
1315 /* Now carry out our orders. */
1316 if (need_entry & NEED_GOT)
1317 {
1318 switch (r_type)
1319 {
1320 default:
1321 tls_type = GOT_NORMAL;
1322 break;
1323 case R_PARISC_TLS_GD21L:
1324 case R_PARISC_TLS_GD14R:
1325 tls_type |= GOT_TLS_GD;
1326 break;
1327 case R_PARISC_TLS_LDM21L:
1328 case R_PARISC_TLS_LDM14R:
1329 tls_type |= GOT_TLS_LDM;
1330 break;
1331 case R_PARISC_TLS_IE21L:
1332 case R_PARISC_TLS_IE14R:
1333 tls_type |= GOT_TLS_IE;
1334 break;
1335 }
1336
1337 /* Allocate space for a GOT entry, as well as a dynamic
1338 relocation for this entry. */
1339 if (htab->sgot == NULL)
1340 {
1341 if (htab->etab.dynobj == NULL)
1342 htab->etab.dynobj = abfd;
1343 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1344 return FALSE;
1345 }
1346
1347 if (r_type == R_PARISC_TLS_LDM21L
1348 || r_type == R_PARISC_TLS_LDM14R)
1349 hppa_link_hash_table (info)->tls_ldm_got.refcount += 1;
1350 else
1351 {
1352 if (hh != NULL)
1353 {
1354 hh->eh.got.refcount += 1;
1355 old_tls_type = hh->tls_type;
1356 }
1357 else
1358 {
1359 bfd_signed_vma *local_got_refcounts;
1360
1361 /* This is a global offset table entry for a local symbol. */
1362 local_got_refcounts = elf_local_got_refcounts (abfd);
1363 if (local_got_refcounts == NULL)
1364 {
1365 bfd_size_type size;
1366
1367 /* Allocate space for local got offsets and local
1368 plt offsets. Done this way to save polluting
1369 elf_obj_tdata with another target specific
1370 pointer. */
1371 size = symtab_hdr->sh_info;
1372 size *= 2 * sizeof (bfd_signed_vma);
1373 /* Add in space to store the local GOT TLS types. */
1374 size += symtab_hdr->sh_info;
1375 local_got_refcounts = bfd_zalloc (abfd, size);
1376 if (local_got_refcounts == NULL)
1377 return FALSE;
1378 elf_local_got_refcounts (abfd) = local_got_refcounts;
1379 memset (hppa_elf_local_got_tls_type (abfd),
1380 GOT_UNKNOWN, symtab_hdr->sh_info);
1381 }
1382 local_got_refcounts[r_symndx] += 1;
1383
1384 old_tls_type = hppa_elf_local_got_tls_type (abfd) [r_symndx];
1385 }
1386
1387 tls_type |= old_tls_type;
1388
1389 if (old_tls_type != tls_type)
1390 {
1391 if (hh != NULL)
1392 hh->tls_type = tls_type;
1393 else
1394 hppa_elf_local_got_tls_type (abfd) [r_symndx] = tls_type;
1395 }
1396
1397 }
1398 }
1399
1400 if (need_entry & NEED_PLT)
1401 {
1402 /* If we are creating a shared library, and this is a reloc
1403 against a weak symbol or a global symbol in a dynamic
1404 object, then we will be creating an import stub and a
1405 .plt entry for the symbol. Similarly, on a normal link
1406 to symbols defined in a dynamic object we'll need the
1407 import stub and a .plt entry. We don't know yet whether
1408 the symbol is defined or not, so make an entry anyway and
1409 clean up later in adjust_dynamic_symbol. */
1410 if ((sec->flags & SEC_ALLOC) != 0)
1411 {
1412 if (hh != NULL)
1413 {
1414 hh->eh.needs_plt = 1;
1415 hh->eh.plt.refcount += 1;
1416
1417 /* If this .plt entry is for a plabel, mark it so
1418 that adjust_dynamic_symbol will keep the entry
1419 even if it appears to be local. */
1420 if (need_entry & PLT_PLABEL)
1421 hh->plabel = 1;
1422 }
1423 else if (need_entry & PLT_PLABEL)
1424 {
1425 bfd_signed_vma *local_got_refcounts;
1426 bfd_signed_vma *local_plt_refcounts;
1427
1428 local_got_refcounts = elf_local_got_refcounts (abfd);
1429 if (local_got_refcounts == NULL)
1430 {
1431 bfd_size_type size;
1432
1433 /* Allocate space for local got offsets and local
1434 plt offsets. */
1435 size = symtab_hdr->sh_info;
1436 size *= 2 * sizeof (bfd_signed_vma);
1437 /* Add in space to store the local GOT TLS types. */
1438 size += symtab_hdr->sh_info;
1439 local_got_refcounts = bfd_zalloc (abfd, size);
1440 if (local_got_refcounts == NULL)
1441 return FALSE;
1442 elf_local_got_refcounts (abfd) = local_got_refcounts;
1443 }
1444 local_plt_refcounts = (local_got_refcounts
1445 + symtab_hdr->sh_info);
1446 local_plt_refcounts[r_symndx] += 1;
1447 }
1448 }
1449 }
1450
1451 if (need_entry & NEED_DYNREL)
1452 {
1453 /* Flag this symbol as having a non-got, non-plt reference
1454 so that we generate copy relocs if it turns out to be
1455 dynamic. */
1456 if (hh != NULL && !info->shared)
1457 hh->eh.non_got_ref = 1;
1458
1459 /* If we are creating a shared library then we need to copy
1460 the reloc into the shared library. However, if we are
1461 linking with -Bsymbolic, we need only copy absolute
1462 relocs or relocs against symbols that are not defined in
1463 an object we are including in the link. PC- or DP- or
1464 DLT-relative relocs against any local sym or global sym
1465 with DEF_REGULAR set, can be discarded. At this point we
1466 have not seen all the input files, so it is possible that
1467 DEF_REGULAR is not set now but will be set later (it is
1468 never cleared). We account for that possibility below by
1469 storing information in the dyn_relocs field of the
1470 hash table entry.
1471
1472 A similar situation to the -Bsymbolic case occurs when
1473 creating shared libraries and symbol visibility changes
1474 render the symbol local.
1475
1476 As it turns out, all the relocs we will be creating here
1477 are absolute, so we cannot remove them on -Bsymbolic
1478 links or visibility changes anyway. A STUB_REL reloc
1479 is absolute too, as in that case it is the reloc in the
1480 stub we will be creating, rather than copying the PCREL
1481 reloc in the branch.
1482
1483 If on the other hand, we are creating an executable, we
1484 may need to keep relocations for symbols satisfied by a
1485 dynamic library if we manage to avoid copy relocs for the
1486 symbol. */
1487 if ((info->shared
1488 && (sec->flags & SEC_ALLOC) != 0
1489 && (IS_ABSOLUTE_RELOC (r_type)
1490 || (hh != NULL
1491 && (!info->symbolic
1492 || hh->eh.root.type == bfd_link_hash_defweak
1493 || !hh->eh.def_regular))))
1494 || (ELIMINATE_COPY_RELOCS
1495 && !info->shared
1496 && (sec->flags & SEC_ALLOC) != 0
1497 && hh != NULL
1498 && (hh->eh.root.type == bfd_link_hash_defweak
1499 || !hh->eh.def_regular)))
1500 {
1501 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1502 struct elf32_hppa_dyn_reloc_entry **hdh_head;
1503
1504 /* Create a reloc section in dynobj and make room for
1505 this reloc. */
1506 if (sreloc == NULL)
1507 {
1508 if (htab->etab.dynobj == NULL)
1509 htab->etab.dynobj = abfd;
1510
1511 sreloc = _bfd_elf_make_dynamic_reloc_section
1512 (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
1513
1514 if (sreloc == NULL)
1515 {
1516 bfd_set_error (bfd_error_bad_value);
1517 return FALSE;
1518 }
1519 }
1520
1521 /* If this is a global symbol, we count the number of
1522 relocations we need for this symbol. */
1523 if (hh != NULL)
1524 {
1525 hdh_head = &hh->dyn_relocs;
1526 }
1527 else
1528 {
1529 /* Track dynamic relocs needed for local syms too.
1530 We really need local syms available to do this
1531 easily. Oh well. */
1532
1533 asection *sr;
1534 void *vpp;
1535
1536 sr = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1537 sec, r_symndx);
1538 if (sr == NULL)
1539 return FALSE;
1540
1541 vpp = &elf_section_data (sr)->local_dynrel;
1542 hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp;
1543 }
1544
1545 hdh_p = *hdh_head;
1546 if (hdh_p == NULL || hdh_p->sec != sec)
1547 {
1548 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1549 if (hdh_p == NULL)
1550 return FALSE;
1551 hdh_p->hdh_next = *hdh_head;
1552 *hdh_head = hdh_p;
1553 hdh_p->sec = sec;
1554 hdh_p->count = 0;
1555 #if RELATIVE_DYNRELOCS
1556 hdh_p->relative_count = 0;
1557 #endif
1558 }
1559
1560 hdh_p->count += 1;
1561 #if RELATIVE_DYNRELOCS
1562 if (!IS_ABSOLUTE_RELOC (rtype))
1563 hdh_p->relative_count += 1;
1564 #endif
1565 }
1566 }
1567 }
1568
1569 return TRUE;
1570 }
1571
1572 /* Return the section that should be marked against garbage collection
1573 for a given relocation. */
1574
1575 static asection *
1576 elf32_hppa_gc_mark_hook (asection *sec,
1577 struct bfd_link_info *info,
1578 Elf_Internal_Rela *rela,
1579 struct elf_link_hash_entry *hh,
1580 Elf_Internal_Sym *sym)
1581 {
1582 if (hh != NULL)
1583 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1584 {
1585 case R_PARISC_GNU_VTINHERIT:
1586 case R_PARISC_GNU_VTENTRY:
1587 return NULL;
1588 }
1589
1590 return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1591 }
1592
1593 /* Update the got and plt entry reference counts for the section being
1594 removed. */
1595
1596 static bfd_boolean
1597 elf32_hppa_gc_sweep_hook (bfd *abfd,
1598 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1599 asection *sec,
1600 const Elf_Internal_Rela *relocs)
1601 {
1602 Elf_Internal_Shdr *symtab_hdr;
1603 struct elf_link_hash_entry **eh_syms;
1604 bfd_signed_vma *local_got_refcounts;
1605 bfd_signed_vma *local_plt_refcounts;
1606 const Elf_Internal_Rela *rela, *relend;
1607
1608 if (info->relocatable)
1609 return TRUE;
1610
1611 elf_section_data (sec)->local_dynrel = NULL;
1612
1613 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1614 eh_syms = elf_sym_hashes (abfd);
1615 local_got_refcounts = elf_local_got_refcounts (abfd);
1616 local_plt_refcounts = local_got_refcounts;
1617 if (local_plt_refcounts != NULL)
1618 local_plt_refcounts += symtab_hdr->sh_info;
1619
1620 relend = relocs + sec->reloc_count;
1621 for (rela = relocs; rela < relend; rela++)
1622 {
1623 unsigned long r_symndx;
1624 unsigned int r_type;
1625 struct elf_link_hash_entry *eh = NULL;
1626
1627 r_symndx = ELF32_R_SYM (rela->r_info);
1628 if (r_symndx >= symtab_hdr->sh_info)
1629 {
1630 struct elf32_hppa_link_hash_entry *hh;
1631 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1632 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1633
1634 eh = eh_syms[r_symndx - symtab_hdr->sh_info];
1635 while (eh->root.type == bfd_link_hash_indirect
1636 || eh->root.type == bfd_link_hash_warning)
1637 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1638 hh = hppa_elf_hash_entry (eh);
1639
1640 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next)
1641 if (hdh_p->sec == sec)
1642 {
1643 /* Everything must go for SEC. */
1644 *hdh_pp = hdh_p->hdh_next;
1645 break;
1646 }
1647 }
1648
1649 r_type = ELF32_R_TYPE (rela->r_info);
1650 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, eh != NULL);
1651
1652 switch (r_type)
1653 {
1654 case R_PARISC_DLTIND14F:
1655 case R_PARISC_DLTIND14R:
1656 case R_PARISC_DLTIND21L:
1657 case R_PARISC_TLS_GD21L:
1658 case R_PARISC_TLS_GD14R:
1659 case R_PARISC_TLS_IE21L:
1660 case R_PARISC_TLS_IE14R:
1661 if (eh != NULL)
1662 {
1663 if (eh->got.refcount > 0)
1664 eh->got.refcount -= 1;
1665 }
1666 else if (local_got_refcounts != NULL)
1667 {
1668 if (local_got_refcounts[r_symndx] > 0)
1669 local_got_refcounts[r_symndx] -= 1;
1670 }
1671 break;
1672
1673 case R_PARISC_TLS_LDM21L:
1674 case R_PARISC_TLS_LDM14R:
1675 hppa_link_hash_table (info)->tls_ldm_got.refcount -= 1;
1676 break;
1677
1678 case R_PARISC_PCREL12F:
1679 case R_PARISC_PCREL17C:
1680 case R_PARISC_PCREL17F:
1681 case R_PARISC_PCREL22F:
1682 if (eh != NULL)
1683 {
1684 if (eh->plt.refcount > 0)
1685 eh->plt.refcount -= 1;
1686 }
1687 break;
1688
1689 case R_PARISC_PLABEL14R:
1690 case R_PARISC_PLABEL21L:
1691 case R_PARISC_PLABEL32:
1692 if (eh != NULL)
1693 {
1694 if (eh->plt.refcount > 0)
1695 eh->plt.refcount -= 1;
1696 }
1697 else if (local_plt_refcounts != NULL)
1698 {
1699 if (local_plt_refcounts[r_symndx] > 0)
1700 local_plt_refcounts[r_symndx] -= 1;
1701 }
1702 break;
1703
1704 default:
1705 break;
1706 }
1707 }
1708
1709 return TRUE;
1710 }
1711
1712 /* Support for core dump NOTE sections. */
1713
1714 static bfd_boolean
1715 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1716 {
1717 int offset;
1718 size_t size;
1719
1720 switch (note->descsz)
1721 {
1722 default:
1723 return FALSE;
1724
1725 case 396: /* Linux/hppa */
1726 /* pr_cursig */
1727 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1728
1729 /* pr_pid */
1730 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1731
1732 /* pr_reg */
1733 offset = 72;
1734 size = 320;
1735
1736 break;
1737 }
1738
1739 /* Make a ".reg/999" section. */
1740 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1741 size, note->descpos + offset);
1742 }
1743
1744 static bfd_boolean
1745 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1746 {
1747 switch (note->descsz)
1748 {
1749 default:
1750 return FALSE;
1751
1752 case 124: /* Linux/hppa elf_prpsinfo. */
1753 elf_tdata (abfd)->core_program
1754 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1755 elf_tdata (abfd)->core_command
1756 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1757 }
1758
1759 /* Note that for some reason, a spurious space is tacked
1760 onto the end of the args in some (at least one anyway)
1761 implementations, so strip it off if it exists. */
1762 {
1763 char *command = elf_tdata (abfd)->core_command;
1764 int n = strlen (command);
1765
1766 if (0 < n && command[n - 1] == ' ')
1767 command[n - 1] = '\0';
1768 }
1769
1770 return TRUE;
1771 }
1772
1773 /* Our own version of hide_symbol, so that we can keep plt entries for
1774 plabels. */
1775
1776 static void
1777 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1778 struct elf_link_hash_entry *eh,
1779 bfd_boolean force_local)
1780 {
1781 if (force_local)
1782 {
1783 eh->forced_local = 1;
1784 if (eh->dynindx != -1)
1785 {
1786 eh->dynindx = -1;
1787 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1788 eh->dynstr_index);
1789 }
1790 }
1791
1792 if (! hppa_elf_hash_entry (eh)->plabel)
1793 {
1794 eh->needs_plt = 0;
1795 eh->plt = elf_hash_table (info)->init_plt_refcount;
1796 }
1797 }
1798
1799 /* Adjust a symbol defined by a dynamic object and referenced by a
1800 regular object. The current definition is in some section of the
1801 dynamic object, but we're not including those sections. We have to
1802 change the definition to something the rest of the link can
1803 understand. */
1804
1805 static bfd_boolean
1806 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1807 struct elf_link_hash_entry *eh)
1808 {
1809 struct elf32_hppa_link_hash_table *htab;
1810 asection *sec;
1811
1812 /* If this is a function, put it in the procedure linkage table. We
1813 will fill in the contents of the procedure linkage table later. */
1814 if (eh->type == STT_FUNC
1815 || eh->needs_plt)
1816 {
1817 if (eh->plt.refcount <= 0
1818 || (eh->def_regular
1819 && eh->root.type != bfd_link_hash_defweak
1820 && ! hppa_elf_hash_entry (eh)->plabel
1821 && (!info->shared || info->symbolic)))
1822 {
1823 /* The .plt entry is not needed when:
1824 a) Garbage collection has removed all references to the
1825 symbol, or
1826 b) We know for certain the symbol is defined in this
1827 object, and it's not a weak definition, nor is the symbol
1828 used by a plabel relocation. Either this object is the
1829 application or we are doing a shared symbolic link. */
1830
1831 eh->plt.offset = (bfd_vma) -1;
1832 eh->needs_plt = 0;
1833 }
1834
1835 return TRUE;
1836 }
1837 else
1838 eh->plt.offset = (bfd_vma) -1;
1839
1840 /* If this is a weak symbol, and there is a real definition, the
1841 processor independent code will have arranged for us to see the
1842 real definition first, and we can just use the same value. */
1843 if (eh->u.weakdef != NULL)
1844 {
1845 if (eh->u.weakdef->root.type != bfd_link_hash_defined
1846 && eh->u.weakdef->root.type != bfd_link_hash_defweak)
1847 abort ();
1848 eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1849 eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1850 if (ELIMINATE_COPY_RELOCS)
1851 eh->non_got_ref = eh->u.weakdef->non_got_ref;
1852 return TRUE;
1853 }
1854
1855 /* This is a reference to a symbol defined by a dynamic object which
1856 is not a function. */
1857
1858 /* If we are creating a shared library, we must presume that the
1859 only references to the symbol are via the global offset table.
1860 For such cases we need not do anything here; the relocations will
1861 be handled correctly by relocate_section. */
1862 if (info->shared)
1863 return TRUE;
1864
1865 /* If there are no references to this symbol that do not use the
1866 GOT, we don't need to generate a copy reloc. */
1867 if (!eh->non_got_ref)
1868 return TRUE;
1869
1870 if (ELIMINATE_COPY_RELOCS)
1871 {
1872 struct elf32_hppa_link_hash_entry *hh;
1873 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1874
1875 hh = hppa_elf_hash_entry (eh);
1876 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
1877 {
1878 sec = hdh_p->sec->output_section;
1879 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1880 break;
1881 }
1882
1883 /* If we didn't find any dynamic relocs in read-only sections, then
1884 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1885 if (hdh_p == NULL)
1886 {
1887 eh->non_got_ref = 0;
1888 return TRUE;
1889 }
1890 }
1891
1892 if (eh->size == 0)
1893 {
1894 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
1895 eh->root.root.string);
1896 return TRUE;
1897 }
1898
1899 /* We must allocate the symbol in our .dynbss section, which will
1900 become part of the .bss section of the executable. There will be
1901 an entry for this symbol in the .dynsym section. The dynamic
1902 object will contain position independent code, so all references
1903 from the dynamic object to this symbol will go through the global
1904 offset table. The dynamic linker will use the .dynsym entry to
1905 determine the address it must put in the global offset table, so
1906 both the dynamic object and the regular object will refer to the
1907 same memory location for the variable. */
1908
1909 htab = hppa_link_hash_table (info);
1910
1911 /* We must generate a COPY reloc to tell the dynamic linker to
1912 copy the initial value out of the dynamic object and into the
1913 runtime process image. */
1914 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0)
1915 {
1916 htab->srelbss->size += sizeof (Elf32_External_Rela);
1917 eh->needs_copy = 1;
1918 }
1919
1920 sec = htab->sdynbss;
1921
1922 return _bfd_elf_adjust_dynamic_copy (eh, sec);
1923 }
1924
1925 /* Allocate space in the .plt for entries that won't have relocations.
1926 ie. plabel entries. */
1927
1928 static bfd_boolean
1929 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1930 {
1931 struct bfd_link_info *info;
1932 struct elf32_hppa_link_hash_table *htab;
1933 struct elf32_hppa_link_hash_entry *hh;
1934 asection *sec;
1935
1936 if (eh->root.type == bfd_link_hash_indirect)
1937 return TRUE;
1938
1939 if (eh->root.type == bfd_link_hash_warning)
1940 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1941
1942 info = (struct bfd_link_info *) inf;
1943 hh = hppa_elf_hash_entry (eh);
1944 htab = hppa_link_hash_table (info);
1945 if (htab->etab.dynamic_sections_created
1946 && eh->plt.refcount > 0)
1947 {
1948 /* Make sure this symbol is output as a dynamic symbol.
1949 Undefined weak syms won't yet be marked as dynamic. */
1950 if (eh->dynindx == -1
1951 && !eh->forced_local
1952 && eh->type != STT_PARISC_MILLI)
1953 {
1954 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
1955 return FALSE;
1956 }
1957
1958 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, eh))
1959 {
1960 /* Allocate these later. From this point on, h->plabel
1961 means that the plt entry is only used by a plabel.
1962 We'll be using a normal plt entry for this symbol, so
1963 clear the plabel indicator. */
1964
1965 hh->plabel = 0;
1966 }
1967 else if (hh->plabel)
1968 {
1969 /* Make an entry in the .plt section for plabel references
1970 that won't have a .plt entry for other reasons. */
1971 sec = htab->splt;
1972 eh->plt.offset = sec->size;
1973 sec->size += PLT_ENTRY_SIZE;
1974 }
1975 else
1976 {
1977 /* No .plt entry needed. */
1978 eh->plt.offset = (bfd_vma) -1;
1979 eh->needs_plt = 0;
1980 }
1981 }
1982 else
1983 {
1984 eh->plt.offset = (bfd_vma) -1;
1985 eh->needs_plt = 0;
1986 }
1987
1988 return TRUE;
1989 }
1990
1991 /* Allocate space in .plt, .got and associated reloc sections for
1992 global syms. */
1993
1994 static bfd_boolean
1995 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
1996 {
1997 struct bfd_link_info *info;
1998 struct elf32_hppa_link_hash_table *htab;
1999 asection *sec;
2000 struct elf32_hppa_link_hash_entry *hh;
2001 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2002
2003 if (eh->root.type == bfd_link_hash_indirect)
2004 return TRUE;
2005
2006 if (eh->root.type == bfd_link_hash_warning)
2007 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2008
2009 info = inf;
2010 htab = hppa_link_hash_table (info);
2011 hh = hppa_elf_hash_entry (eh);
2012
2013 if (htab->etab.dynamic_sections_created
2014 && eh->plt.offset != (bfd_vma) -1
2015 && !hh->plabel
2016 && eh->plt.refcount > 0)
2017 {
2018 /* Make an entry in the .plt section. */
2019 sec = htab->splt;
2020 eh->plt.offset = sec->size;
2021 sec->size += PLT_ENTRY_SIZE;
2022
2023 /* We also need to make an entry in the .rela.plt section. */
2024 htab->srelplt->size += sizeof (Elf32_External_Rela);
2025 htab->need_plt_stub = 1;
2026 }
2027
2028 if (eh->got.refcount > 0)
2029 {
2030 /* Make sure this symbol is output as a dynamic symbol.
2031 Undefined weak syms won't yet be marked as dynamic. */
2032 if (eh->dynindx == -1
2033 && !eh->forced_local
2034 && eh->type != STT_PARISC_MILLI)
2035 {
2036 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2037 return FALSE;
2038 }
2039
2040 sec = htab->sgot;
2041 eh->got.offset = sec->size;
2042 sec->size += GOT_ENTRY_SIZE;
2043 /* R_PARISC_TLS_GD* needs two GOT entries */
2044 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2045 sec->size += GOT_ENTRY_SIZE * 2;
2046 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2047 sec->size += GOT_ENTRY_SIZE;
2048 if (htab->etab.dynamic_sections_created
2049 && (info->shared
2050 || (eh->dynindx != -1
2051 && !eh->forced_local)))
2052 {
2053 htab->srelgot->size += sizeof (Elf32_External_Rela);
2054 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2055 htab->srelgot->size += 2 * sizeof (Elf32_External_Rela);
2056 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2057 htab->srelgot->size += sizeof (Elf32_External_Rela);
2058 }
2059 }
2060 else
2061 eh->got.offset = (bfd_vma) -1;
2062
2063 if (hh->dyn_relocs == NULL)
2064 return TRUE;
2065
2066 /* If this is a -Bsymbolic shared link, then we need to discard all
2067 space allocated for dynamic pc-relative relocs against symbols
2068 defined in a regular object. For the normal shared case, discard
2069 space for relocs that have become local due to symbol visibility
2070 changes. */
2071 if (info->shared)
2072 {
2073 #if RELATIVE_DYNRELOCS
2074 if (SYMBOL_CALLS_LOCAL (info, eh))
2075 {
2076 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
2077
2078 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2079 {
2080 hdh_p->count -= hdh_p->relative_count;
2081 hdh_p->relative_count = 0;
2082 if (hdh_p->count == 0)
2083 *hdh_pp = hdh_p->hdh_next;
2084 else
2085 hdh_pp = &hdh_p->hdh_next;
2086 }
2087 }
2088 #endif
2089
2090 /* Also discard relocs on undefined weak syms with non-default
2091 visibility. */
2092 if (hh->dyn_relocs != NULL
2093 && eh->root.type == bfd_link_hash_undefweak)
2094 {
2095 if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
2096 hh->dyn_relocs = NULL;
2097
2098 /* Make sure undefined weak symbols are output as a dynamic
2099 symbol in PIEs. */
2100 else if (eh->dynindx == -1
2101 && !eh->forced_local)
2102 {
2103 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2104 return FALSE;
2105 }
2106 }
2107 }
2108 else
2109 {
2110 /* For the non-shared case, discard space for relocs against
2111 symbols which turn out to need copy relocs or are not
2112 dynamic. */
2113
2114 if (!eh->non_got_ref
2115 && ((ELIMINATE_COPY_RELOCS
2116 && eh->def_dynamic
2117 && !eh->def_regular)
2118 || (htab->etab.dynamic_sections_created
2119 && (eh->root.type == bfd_link_hash_undefweak
2120 || eh->root.type == bfd_link_hash_undefined))))
2121 {
2122 /* Make sure this symbol is output as a dynamic symbol.
2123 Undefined weak syms won't yet be marked as dynamic. */
2124 if (eh->dynindx == -1
2125 && !eh->forced_local
2126 && eh->type != STT_PARISC_MILLI)
2127 {
2128 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2129 return FALSE;
2130 }
2131
2132 /* If that succeeded, we know we'll be keeping all the
2133 relocs. */
2134 if (eh->dynindx != -1)
2135 goto keep;
2136 }
2137
2138 hh->dyn_relocs = NULL;
2139 return TRUE;
2140
2141 keep: ;
2142 }
2143
2144 /* Finally, allocate space. */
2145 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2146 {
2147 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2148 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2149 }
2150
2151 return TRUE;
2152 }
2153
2154 /* This function is called via elf_link_hash_traverse to force
2155 millicode symbols local so they do not end up as globals in the
2156 dynamic symbol table. We ought to be able to do this in
2157 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2158 for all dynamic symbols. Arguably, this is a bug in
2159 elf_adjust_dynamic_symbol. */
2160
2161 static bfd_boolean
2162 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2163 struct bfd_link_info *info)
2164 {
2165 if (eh->root.type == bfd_link_hash_warning)
2166 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2167
2168 if (eh->type == STT_PARISC_MILLI
2169 && !eh->forced_local)
2170 {
2171 elf32_hppa_hide_symbol (info, eh, TRUE);
2172 }
2173 return TRUE;
2174 }
2175
2176 /* Find any dynamic relocs that apply to read-only sections. */
2177
2178 static bfd_boolean
2179 readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2180 {
2181 struct elf32_hppa_link_hash_entry *hh;
2182 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2183
2184 if (eh->root.type == bfd_link_hash_warning)
2185 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2186
2187 hh = hppa_elf_hash_entry (eh);
2188 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2189 {
2190 asection *sec = hdh_p->sec->output_section;
2191
2192 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
2193 {
2194 struct bfd_link_info *info = inf;
2195
2196 info->flags |= DF_TEXTREL;
2197
2198 /* Not an error, just cut short the traversal. */
2199 return FALSE;
2200 }
2201 }
2202 return TRUE;
2203 }
2204
2205 /* Set the sizes of the dynamic sections. */
2206
2207 static bfd_boolean
2208 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2209 struct bfd_link_info *info)
2210 {
2211 struct elf32_hppa_link_hash_table *htab;
2212 bfd *dynobj;
2213 bfd *ibfd;
2214 asection *sec;
2215 bfd_boolean relocs;
2216
2217 htab = hppa_link_hash_table (info);
2218 dynobj = htab->etab.dynobj;
2219 if (dynobj == NULL)
2220 abort ();
2221
2222 if (htab->etab.dynamic_sections_created)
2223 {
2224 /* Set the contents of the .interp section to the interpreter. */
2225 if (info->executable)
2226 {
2227 sec = bfd_get_section_by_name (dynobj, ".interp");
2228 if (sec == NULL)
2229 abort ();
2230 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2231 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2232 }
2233
2234 /* Force millicode symbols local. */
2235 elf_link_hash_traverse (&htab->etab,
2236 clobber_millicode_symbols,
2237 info);
2238 }
2239
2240 /* Set up .got and .plt offsets for local syms, and space for local
2241 dynamic relocs. */
2242 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2243 {
2244 bfd_signed_vma *local_got;
2245 bfd_signed_vma *end_local_got;
2246 bfd_signed_vma *local_plt;
2247 bfd_signed_vma *end_local_plt;
2248 bfd_size_type locsymcount;
2249 Elf_Internal_Shdr *symtab_hdr;
2250 asection *srel;
2251 char *local_tls_type;
2252
2253 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2254 continue;
2255
2256 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2257 {
2258 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2259
2260 for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
2261 elf_section_data (sec)->local_dynrel);
2262 hdh_p != NULL;
2263 hdh_p = hdh_p->hdh_next)
2264 {
2265 if (!bfd_is_abs_section (hdh_p->sec)
2266 && bfd_is_abs_section (hdh_p->sec->output_section))
2267 {
2268 /* Input section has been discarded, either because
2269 it is a copy of a linkonce section or due to
2270 linker script /DISCARD/, so we'll be discarding
2271 the relocs too. */
2272 }
2273 else if (hdh_p->count != 0)
2274 {
2275 srel = elf_section_data (hdh_p->sec)->sreloc;
2276 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2277 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2278 info->flags |= DF_TEXTREL;
2279 }
2280 }
2281 }
2282
2283 local_got = elf_local_got_refcounts (ibfd);
2284 if (!local_got)
2285 continue;
2286
2287 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2288 locsymcount = symtab_hdr->sh_info;
2289 end_local_got = local_got + locsymcount;
2290 local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2291 sec = htab->sgot;
2292 srel = htab->srelgot;
2293 for (; local_got < end_local_got; ++local_got)
2294 {
2295 if (*local_got > 0)
2296 {
2297 *local_got = sec->size;
2298 sec->size += GOT_ENTRY_SIZE;
2299 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2300 sec->size += 2 * GOT_ENTRY_SIZE;
2301 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2302 sec->size += GOT_ENTRY_SIZE;
2303 if (info->shared)
2304 {
2305 srel->size += sizeof (Elf32_External_Rela);
2306 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2307 srel->size += 2 * sizeof (Elf32_External_Rela);
2308 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2309 srel->size += sizeof (Elf32_External_Rela);
2310 }
2311 }
2312 else
2313 *local_got = (bfd_vma) -1;
2314
2315 ++local_tls_type;
2316 }
2317
2318 local_plt = end_local_got;
2319 end_local_plt = local_plt + locsymcount;
2320 if (! htab->etab.dynamic_sections_created)
2321 {
2322 /* Won't be used, but be safe. */
2323 for (; local_plt < end_local_plt; ++local_plt)
2324 *local_plt = (bfd_vma) -1;
2325 }
2326 else
2327 {
2328 sec = htab->splt;
2329 srel = htab->srelplt;
2330 for (; local_plt < end_local_plt; ++local_plt)
2331 {
2332 if (*local_plt > 0)
2333 {
2334 *local_plt = sec->size;
2335 sec->size += PLT_ENTRY_SIZE;
2336 if (info->shared)
2337 srel->size += sizeof (Elf32_External_Rela);
2338 }
2339 else
2340 *local_plt = (bfd_vma) -1;
2341 }
2342 }
2343 }
2344
2345 if (htab->tls_ldm_got.refcount > 0)
2346 {
2347 /* Allocate 2 got entries and 1 dynamic reloc for
2348 R_PARISC_TLS_DTPMOD32 relocs. */
2349 htab->tls_ldm_got.offset = htab->sgot->size;
2350 htab->sgot->size += (GOT_ENTRY_SIZE * 2);
2351 htab->srelgot->size += sizeof (Elf32_External_Rela);
2352 }
2353 else
2354 htab->tls_ldm_got.offset = -1;
2355
2356 /* Do all the .plt entries without relocs first. The dynamic linker
2357 uses the last .plt reloc to find the end of the .plt (and hence
2358 the start of the .got) for lazy linking. */
2359 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2360
2361 /* Allocate global sym .plt and .got entries, and space for global
2362 sym dynamic relocs. */
2363 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2364
2365 /* The check_relocs and adjust_dynamic_symbol entry points have
2366 determined the sizes of the various dynamic sections. Allocate
2367 memory for them. */
2368 relocs = FALSE;
2369 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2370 {
2371 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2372 continue;
2373
2374 if (sec == htab->splt)
2375 {
2376 if (htab->need_plt_stub)
2377 {
2378 /* Make space for the plt stub at the end of the .plt
2379 section. We want this stub right at the end, up
2380 against the .got section. */
2381 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2382 int pltalign = bfd_section_alignment (dynobj, sec);
2383 bfd_size_type mask;
2384
2385 if (gotalign > pltalign)
2386 bfd_set_section_alignment (dynobj, sec, gotalign);
2387 mask = ((bfd_size_type) 1 << gotalign) - 1;
2388 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2389 }
2390 }
2391 else if (sec == htab->sgot
2392 || sec == htab->sdynbss)
2393 ;
2394 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
2395 {
2396 if (sec->size != 0)
2397 {
2398 /* Remember whether there are any reloc sections other
2399 than .rela.plt. */
2400 if (sec != htab->srelplt)
2401 relocs = TRUE;
2402
2403 /* We use the reloc_count field as a counter if we need
2404 to copy relocs into the output file. */
2405 sec->reloc_count = 0;
2406 }
2407 }
2408 else
2409 {
2410 /* It's not one of our sections, so don't allocate space. */
2411 continue;
2412 }
2413
2414 if (sec->size == 0)
2415 {
2416 /* If we don't need this section, strip it from the
2417 output file. This is mostly to handle .rela.bss and
2418 .rela.plt. We must create both sections in
2419 create_dynamic_sections, because they must be created
2420 before the linker maps input sections to output
2421 sections. The linker does that before
2422 adjust_dynamic_symbol is called, and it is that
2423 function which decides whether anything needs to go
2424 into these sections. */
2425 sec->flags |= SEC_EXCLUDE;
2426 continue;
2427 }
2428
2429 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2430 continue;
2431
2432 /* Allocate memory for the section contents. Zero it, because
2433 we may not fill in all the reloc sections. */
2434 sec->contents = bfd_zalloc (dynobj, sec->size);
2435 if (sec->contents == NULL)
2436 return FALSE;
2437 }
2438
2439 if (htab->etab.dynamic_sections_created)
2440 {
2441 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2442 actually has nothing to do with the PLT, it is how we
2443 communicate the LTP value of a load module to the dynamic
2444 linker. */
2445 #define add_dynamic_entry(TAG, VAL) \
2446 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2447
2448 if (!add_dynamic_entry (DT_PLTGOT, 0))
2449 return FALSE;
2450
2451 /* Add some entries to the .dynamic section. We fill in the
2452 values later, in elf32_hppa_finish_dynamic_sections, but we
2453 must add the entries now so that we get the correct size for
2454 the .dynamic section. The DT_DEBUG entry is filled in by the
2455 dynamic linker and used by the debugger. */
2456 if (info->executable)
2457 {
2458 if (!add_dynamic_entry (DT_DEBUG, 0))
2459 return FALSE;
2460 }
2461
2462 if (htab->srelplt->size != 0)
2463 {
2464 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2465 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2466 || !add_dynamic_entry (DT_JMPREL, 0))
2467 return FALSE;
2468 }
2469
2470 if (relocs)
2471 {
2472 if (!add_dynamic_entry (DT_RELA, 0)
2473 || !add_dynamic_entry (DT_RELASZ, 0)
2474 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2475 return FALSE;
2476
2477 /* If any dynamic relocs apply to a read-only section,
2478 then we need a DT_TEXTREL entry. */
2479 if ((info->flags & DF_TEXTREL) == 0)
2480 elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info);
2481
2482 if ((info->flags & DF_TEXTREL) != 0)
2483 {
2484 if (!add_dynamic_entry (DT_TEXTREL, 0))
2485 return FALSE;
2486 }
2487 }
2488 }
2489 #undef add_dynamic_entry
2490
2491 return TRUE;
2492 }
2493
2494 /* External entry points for sizing and building linker stubs. */
2495
2496 /* Set up various things so that we can make a list of input sections
2497 for each output section included in the link. Returns -1 on error,
2498 0 when no stubs will be needed, and 1 on success. */
2499
2500 int
2501 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2502 {
2503 bfd *input_bfd;
2504 unsigned int bfd_count;
2505 int top_id, top_index;
2506 asection *section;
2507 asection **input_list, **list;
2508 bfd_size_type amt;
2509 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2510
2511 /* Count the number of input BFDs and find the top input section id. */
2512 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2513 input_bfd != NULL;
2514 input_bfd = input_bfd->link_next)
2515 {
2516 bfd_count += 1;
2517 for (section = input_bfd->sections;
2518 section != NULL;
2519 section = section->next)
2520 {
2521 if (top_id < section->id)
2522 top_id = section->id;
2523 }
2524 }
2525 htab->bfd_count = bfd_count;
2526
2527 amt = sizeof (struct map_stub) * (top_id + 1);
2528 htab->stub_group = bfd_zmalloc (amt);
2529 if (htab->stub_group == NULL)
2530 return -1;
2531
2532 /* We can't use output_bfd->section_count here to find the top output
2533 section index as some sections may have been removed, and
2534 strip_excluded_output_sections doesn't renumber the indices. */
2535 for (section = output_bfd->sections, top_index = 0;
2536 section != NULL;
2537 section = section->next)
2538 {
2539 if (top_index < section->index)
2540 top_index = section->index;
2541 }
2542
2543 htab->top_index = top_index;
2544 amt = sizeof (asection *) * (top_index + 1);
2545 input_list = bfd_malloc (amt);
2546 htab->input_list = input_list;
2547 if (input_list == NULL)
2548 return -1;
2549
2550 /* For sections we aren't interested in, mark their entries with a
2551 value we can check later. */
2552 list = input_list + top_index;
2553 do
2554 *list = bfd_abs_section_ptr;
2555 while (list-- != input_list);
2556
2557 for (section = output_bfd->sections;
2558 section != NULL;
2559 section = section->next)
2560 {
2561 if ((section->flags & SEC_CODE) != 0)
2562 input_list[section->index] = NULL;
2563 }
2564
2565 return 1;
2566 }
2567
2568 /* The linker repeatedly calls this function for each input section,
2569 in the order that input sections are linked into output sections.
2570 Build lists of input sections to determine groupings between which
2571 we may insert linker stubs. */
2572
2573 void
2574 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2575 {
2576 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2577
2578 if (isec->output_section->index <= htab->top_index)
2579 {
2580 asection **list = htab->input_list + isec->output_section->index;
2581 if (*list != bfd_abs_section_ptr)
2582 {
2583 /* Steal the link_sec pointer for our list. */
2584 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2585 /* This happens to make the list in reverse order,
2586 which is what we want. */
2587 PREV_SEC (isec) = *list;
2588 *list = isec;
2589 }
2590 }
2591 }
2592
2593 /* See whether we can group stub sections together. Grouping stub
2594 sections may result in fewer stubs. More importantly, we need to
2595 put all .init* and .fini* stubs at the beginning of the .init or
2596 .fini output sections respectively, because glibc splits the
2597 _init and _fini functions into multiple parts. Putting a stub in
2598 the middle of a function is not a good idea. */
2599
2600 static void
2601 group_sections (struct elf32_hppa_link_hash_table *htab,
2602 bfd_size_type stub_group_size,
2603 bfd_boolean stubs_always_before_branch)
2604 {
2605 asection **list = htab->input_list + htab->top_index;
2606 do
2607 {
2608 asection *tail = *list;
2609 if (tail == bfd_abs_section_ptr)
2610 continue;
2611 while (tail != NULL)
2612 {
2613 asection *curr;
2614 asection *prev;
2615 bfd_size_type total;
2616 bfd_boolean big_sec;
2617
2618 curr = tail;
2619 total = tail->size;
2620 big_sec = total >= stub_group_size;
2621
2622 while ((prev = PREV_SEC (curr)) != NULL
2623 && ((total += curr->output_offset - prev->output_offset)
2624 < stub_group_size))
2625 curr = prev;
2626
2627 /* OK, the size from the start of CURR to the end is less
2628 than 240000 bytes and thus can be handled by one stub
2629 section. (or the tail section is itself larger than
2630 240000 bytes, in which case we may be toast.)
2631 We should really be keeping track of the total size of
2632 stubs added here, as stubs contribute to the final output
2633 section size. That's a little tricky, and this way will
2634 only break if stubs added total more than 22144 bytes, or
2635 2768 long branch stubs. It seems unlikely for more than
2636 2768 different functions to be called, especially from
2637 code only 240000 bytes long. This limit used to be
2638 250000, but c++ code tends to generate lots of little
2639 functions, and sometimes violated the assumption. */
2640 do
2641 {
2642 prev = PREV_SEC (tail);
2643 /* Set up this stub group. */
2644 htab->stub_group[tail->id].link_sec = curr;
2645 }
2646 while (tail != curr && (tail = prev) != NULL);
2647
2648 /* But wait, there's more! Input sections up to 240000
2649 bytes before the stub section can be handled by it too.
2650 Don't do this if we have a really large section after the
2651 stubs, as adding more stubs increases the chance that
2652 branches may not reach into the stub section. */
2653 if (!stubs_always_before_branch && !big_sec)
2654 {
2655 total = 0;
2656 while (prev != NULL
2657 && ((total += tail->output_offset - prev->output_offset)
2658 < stub_group_size))
2659 {
2660 tail = prev;
2661 prev = PREV_SEC (tail);
2662 htab->stub_group[tail->id].link_sec = curr;
2663 }
2664 }
2665 tail = prev;
2666 }
2667 }
2668 while (list-- != htab->input_list);
2669 free (htab->input_list);
2670 #undef PREV_SEC
2671 }
2672
2673 /* Read in all local syms for all input bfds, and create hash entries
2674 for export stubs if we are building a multi-subspace shared lib.
2675 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2676
2677 static int
2678 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2679 {
2680 unsigned int bfd_indx;
2681 Elf_Internal_Sym *local_syms, **all_local_syms;
2682 int stub_changed = 0;
2683 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2684
2685 /* We want to read in symbol extension records only once. To do this
2686 we need to read in the local symbols in parallel and save them for
2687 later use; so hold pointers to the local symbols in an array. */
2688 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2689 all_local_syms = bfd_zmalloc (amt);
2690 htab->all_local_syms = all_local_syms;
2691 if (all_local_syms == NULL)
2692 return -1;
2693
2694 /* Walk over all the input BFDs, swapping in local symbols.
2695 If we are creating a shared library, create hash entries for the
2696 export stubs. */
2697 for (bfd_indx = 0;
2698 input_bfd != NULL;
2699 input_bfd = input_bfd->link_next, bfd_indx++)
2700 {
2701 Elf_Internal_Shdr *symtab_hdr;
2702
2703 /* We'll need the symbol table in a second. */
2704 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2705 if (symtab_hdr->sh_info == 0)
2706 continue;
2707
2708 /* We need an array of the local symbols attached to the input bfd. */
2709 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2710 if (local_syms == NULL)
2711 {
2712 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2713 symtab_hdr->sh_info, 0,
2714 NULL, NULL, NULL);
2715 /* Cache them for elf_link_input_bfd. */
2716 symtab_hdr->contents = (unsigned char *) local_syms;
2717 }
2718 if (local_syms == NULL)
2719 return -1;
2720
2721 all_local_syms[bfd_indx] = local_syms;
2722
2723 if (info->shared && htab->multi_subspace)
2724 {
2725 struct elf_link_hash_entry **eh_syms;
2726 struct elf_link_hash_entry **eh_symend;
2727 unsigned int symcount;
2728
2729 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2730 - symtab_hdr->sh_info);
2731 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2732 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2733
2734 /* Look through the global syms for functions; We need to
2735 build export stubs for all globally visible functions. */
2736 for (; eh_syms < eh_symend; eh_syms++)
2737 {
2738 struct elf32_hppa_link_hash_entry *hh;
2739
2740 hh = hppa_elf_hash_entry (*eh_syms);
2741
2742 while (hh->eh.root.type == bfd_link_hash_indirect
2743 || hh->eh.root.type == bfd_link_hash_warning)
2744 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2745
2746 /* At this point in the link, undefined syms have been
2747 resolved, so we need to check that the symbol was
2748 defined in this BFD. */
2749 if ((hh->eh.root.type == bfd_link_hash_defined
2750 || hh->eh.root.type == bfd_link_hash_defweak)
2751 && hh->eh.type == STT_FUNC
2752 && hh->eh.root.u.def.section->output_section != NULL
2753 && (hh->eh.root.u.def.section->output_section->owner
2754 == output_bfd)
2755 && hh->eh.root.u.def.section->owner == input_bfd
2756 && hh->eh.def_regular
2757 && !hh->eh.forced_local
2758 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2759 {
2760 asection *sec;
2761 const char *stub_name;
2762 struct elf32_hppa_stub_hash_entry *hsh;
2763
2764 sec = hh->eh.root.u.def.section;
2765 stub_name = hh_name (hh);
2766 hsh = hppa_stub_hash_lookup (&htab->bstab,
2767 stub_name,
2768 FALSE, FALSE);
2769 if (hsh == NULL)
2770 {
2771 hsh = hppa_add_stub (stub_name, sec, htab);
2772 if (!hsh)
2773 return -1;
2774
2775 hsh->target_value = hh->eh.root.u.def.value;
2776 hsh->target_section = hh->eh.root.u.def.section;
2777 hsh->stub_type = hppa_stub_export;
2778 hsh->hh = hh;
2779 stub_changed = 1;
2780 }
2781 else
2782 {
2783 (*_bfd_error_handler) (_("%B: duplicate export stub %s"),
2784 input_bfd,
2785 stub_name);
2786 }
2787 }
2788 }
2789 }
2790 }
2791
2792 return stub_changed;
2793 }
2794
2795 /* Determine and set the size of the stub section for a final link.
2796
2797 The basic idea here is to examine all the relocations looking for
2798 PC-relative calls to a target that is unreachable with a "bl"
2799 instruction. */
2800
2801 bfd_boolean
2802 elf32_hppa_size_stubs
2803 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2804 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2805 asection * (*add_stub_section) (const char *, asection *),
2806 void (*layout_sections_again) (void))
2807 {
2808 bfd_size_type stub_group_size;
2809 bfd_boolean stubs_always_before_branch;
2810 bfd_boolean stub_changed;
2811 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2812
2813 /* Stash our params away. */
2814 htab->stub_bfd = stub_bfd;
2815 htab->multi_subspace = multi_subspace;
2816 htab->add_stub_section = add_stub_section;
2817 htab->layout_sections_again = layout_sections_again;
2818 stubs_always_before_branch = group_size < 0;
2819 if (group_size < 0)
2820 stub_group_size = -group_size;
2821 else
2822 stub_group_size = group_size;
2823 if (stub_group_size == 1)
2824 {
2825 /* Default values. */
2826 if (stubs_always_before_branch)
2827 {
2828 stub_group_size = 7680000;
2829 if (htab->has_17bit_branch || htab->multi_subspace)
2830 stub_group_size = 240000;
2831 if (htab->has_12bit_branch)
2832 stub_group_size = 7500;
2833 }
2834 else
2835 {
2836 stub_group_size = 6971392;
2837 if (htab->has_17bit_branch || htab->multi_subspace)
2838 stub_group_size = 217856;
2839 if (htab->has_12bit_branch)
2840 stub_group_size = 6808;
2841 }
2842 }
2843
2844 group_sections (htab, stub_group_size, stubs_always_before_branch);
2845
2846 switch (get_local_syms (output_bfd, info->input_bfds, info))
2847 {
2848 default:
2849 if (htab->all_local_syms)
2850 goto error_ret_free_local;
2851 return FALSE;
2852
2853 case 0:
2854 stub_changed = FALSE;
2855 break;
2856
2857 case 1:
2858 stub_changed = TRUE;
2859 break;
2860 }
2861
2862 while (1)
2863 {
2864 bfd *input_bfd;
2865 unsigned int bfd_indx;
2866 asection *stub_sec;
2867
2868 for (input_bfd = info->input_bfds, bfd_indx = 0;
2869 input_bfd != NULL;
2870 input_bfd = input_bfd->link_next, bfd_indx++)
2871 {
2872 Elf_Internal_Shdr *symtab_hdr;
2873 asection *section;
2874 Elf_Internal_Sym *local_syms;
2875
2876 /* We'll need the symbol table in a second. */
2877 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2878 if (symtab_hdr->sh_info == 0)
2879 continue;
2880
2881 local_syms = htab->all_local_syms[bfd_indx];
2882
2883 /* Walk over each section attached to the input bfd. */
2884 for (section = input_bfd->sections;
2885 section != NULL;
2886 section = section->next)
2887 {
2888 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2889
2890 /* If there aren't any relocs, then there's nothing more
2891 to do. */
2892 if ((section->flags & SEC_RELOC) == 0
2893 || section->reloc_count == 0)
2894 continue;
2895
2896 /* If this section is a link-once section that will be
2897 discarded, then don't create any stubs. */
2898 if (section->output_section == NULL
2899 || section->output_section->owner != output_bfd)
2900 continue;
2901
2902 /* Get the relocs. */
2903 internal_relocs
2904 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2905 info->keep_memory);
2906 if (internal_relocs == NULL)
2907 goto error_ret_free_local;
2908
2909 /* Now examine each relocation. */
2910 irela = internal_relocs;
2911 irelaend = irela + section->reloc_count;
2912 for (; irela < irelaend; irela++)
2913 {
2914 unsigned int r_type, r_indx;
2915 enum elf32_hppa_stub_type stub_type;
2916 struct elf32_hppa_stub_hash_entry *hsh;
2917 asection *sym_sec;
2918 bfd_vma sym_value;
2919 bfd_vma destination;
2920 struct elf32_hppa_link_hash_entry *hh;
2921 char *stub_name;
2922 const asection *id_sec;
2923
2924 r_type = ELF32_R_TYPE (irela->r_info);
2925 r_indx = ELF32_R_SYM (irela->r_info);
2926
2927 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2928 {
2929 bfd_set_error (bfd_error_bad_value);
2930 error_ret_free_internal:
2931 if (elf_section_data (section)->relocs == NULL)
2932 free (internal_relocs);
2933 goto error_ret_free_local;
2934 }
2935
2936 /* Only look for stubs on call instructions. */
2937 if (r_type != (unsigned int) R_PARISC_PCREL12F
2938 && r_type != (unsigned int) R_PARISC_PCREL17F
2939 && r_type != (unsigned int) R_PARISC_PCREL22F)
2940 continue;
2941
2942 /* Now determine the call target, its name, value,
2943 section. */
2944 sym_sec = NULL;
2945 sym_value = 0;
2946 destination = 0;
2947 hh = NULL;
2948 if (r_indx < symtab_hdr->sh_info)
2949 {
2950 /* It's a local symbol. */
2951 Elf_Internal_Sym *sym;
2952 Elf_Internal_Shdr *hdr;
2953 unsigned int shndx;
2954
2955 sym = local_syms + r_indx;
2956 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2957 sym_value = sym->st_value;
2958 shndx = sym->st_shndx;
2959 if (shndx < elf_numsections (input_bfd))
2960 {
2961 hdr = elf_elfsections (input_bfd)[shndx];
2962 sym_sec = hdr->bfd_section;
2963 destination = (sym_value + irela->r_addend
2964 + sym_sec->output_offset
2965 + sym_sec->output_section->vma);
2966 }
2967 }
2968 else
2969 {
2970 /* It's an external symbol. */
2971 int e_indx;
2972
2973 e_indx = r_indx - symtab_hdr->sh_info;
2974 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2975
2976 while (hh->eh.root.type == bfd_link_hash_indirect
2977 || hh->eh.root.type == bfd_link_hash_warning)
2978 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2979
2980 if (hh->eh.root.type == bfd_link_hash_defined
2981 || hh->eh.root.type == bfd_link_hash_defweak)
2982 {
2983 sym_sec = hh->eh.root.u.def.section;
2984 sym_value = hh->eh.root.u.def.value;
2985 if (sym_sec->output_section != NULL)
2986 destination = (sym_value + irela->r_addend
2987 + sym_sec->output_offset
2988 + sym_sec->output_section->vma);
2989 }
2990 else if (hh->eh.root.type == bfd_link_hash_undefweak)
2991 {
2992 if (! info->shared)
2993 continue;
2994 }
2995 else if (hh->eh.root.type == bfd_link_hash_undefined)
2996 {
2997 if (! (info->unresolved_syms_in_objects == RM_IGNORE
2998 && (ELF_ST_VISIBILITY (hh->eh.other)
2999 == STV_DEFAULT)
3000 && hh->eh.type != STT_PARISC_MILLI))
3001 continue;
3002 }
3003 else
3004 {
3005 bfd_set_error (bfd_error_bad_value);
3006 goto error_ret_free_internal;
3007 }
3008 }
3009
3010 /* Determine what (if any) linker stub is needed. */
3011 stub_type = hppa_type_of_stub (section, irela, hh,
3012 destination, info);
3013 if (stub_type == hppa_stub_none)
3014 continue;
3015
3016 /* Support for grouping stub sections. */
3017 id_sec = htab->stub_group[section->id].link_sec;
3018
3019 /* Get the name of this stub. */
3020 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
3021 if (!stub_name)
3022 goto error_ret_free_internal;
3023
3024 hsh = hppa_stub_hash_lookup (&htab->bstab,
3025 stub_name,
3026 FALSE, FALSE);
3027 if (hsh != NULL)
3028 {
3029 /* The proper stub has already been created. */
3030 free (stub_name);
3031 continue;
3032 }
3033
3034 hsh = hppa_add_stub (stub_name, section, htab);
3035 if (hsh == NULL)
3036 {
3037 free (stub_name);
3038 goto error_ret_free_internal;
3039 }
3040
3041 hsh->target_value = sym_value;
3042 hsh->target_section = sym_sec;
3043 hsh->stub_type = stub_type;
3044 if (info->shared)
3045 {
3046 if (stub_type == hppa_stub_import)
3047 hsh->stub_type = hppa_stub_import_shared;
3048 else if (stub_type == hppa_stub_long_branch)
3049 hsh->stub_type = hppa_stub_long_branch_shared;
3050 }
3051 hsh->hh = hh;
3052 stub_changed = TRUE;
3053 }
3054
3055 /* We're done with the internal relocs, free them. */
3056 if (elf_section_data (section)->relocs == NULL)
3057 free (internal_relocs);
3058 }
3059 }
3060
3061 if (!stub_changed)
3062 break;
3063
3064 /* OK, we've added some stubs. Find out the new size of the
3065 stub sections. */
3066 for (stub_sec = htab->stub_bfd->sections;
3067 stub_sec != NULL;
3068 stub_sec = stub_sec->next)
3069 stub_sec->size = 0;
3070
3071 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
3072
3073 /* Ask the linker to do its stuff. */
3074 (*htab->layout_sections_again) ();
3075 stub_changed = FALSE;
3076 }
3077
3078 free (htab->all_local_syms);
3079 return TRUE;
3080
3081 error_ret_free_local:
3082 free (htab->all_local_syms);
3083 return FALSE;
3084 }
3085
3086 /* For a final link, this function is called after we have sized the
3087 stubs to provide a value for __gp. */
3088
3089 bfd_boolean
3090 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
3091 {
3092 struct bfd_link_hash_entry *h;
3093 asection *sec = NULL;
3094 bfd_vma gp_val = 0;
3095 struct elf32_hppa_link_hash_table *htab;
3096
3097 htab = hppa_link_hash_table (info);
3098 h = bfd_link_hash_lookup (&htab->etab.root, "$global$", FALSE, FALSE, FALSE);
3099
3100 if (h != NULL
3101 && (h->type == bfd_link_hash_defined
3102 || h->type == bfd_link_hash_defweak))
3103 {
3104 gp_val = h->u.def.value;
3105 sec = h->u.def.section;
3106 }
3107 else
3108 {
3109 asection *splt = bfd_get_section_by_name (abfd, ".plt");
3110 asection *sgot = bfd_get_section_by_name (abfd, ".got");
3111
3112 /* Choose to point our LTP at, in this order, one of .plt, .got,
3113 or .data, if these sections exist. In the case of choosing
3114 .plt try to make the LTP ideal for addressing anywhere in the
3115 .plt or .got with a 14 bit signed offset. Typically, the end
3116 of the .plt is the start of the .got, so choose .plt + 0x2000
3117 if either the .plt or .got is larger than 0x2000. If both
3118 the .plt and .got are smaller than 0x2000, choose the end of
3119 the .plt section. */
3120 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3121 ? NULL : splt;
3122 if (sec != NULL)
3123 {
3124 gp_val = sec->size;
3125 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3126 {
3127 gp_val = 0x2000;
3128 }
3129 }
3130 else
3131 {
3132 sec = sgot;
3133 if (sec != NULL)
3134 {
3135 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3136 {
3137 /* We know we don't have a .plt. If .got is large,
3138 offset our LTP. */
3139 if (sec->size > 0x2000)
3140 gp_val = 0x2000;
3141 }
3142 }
3143 else
3144 {
3145 /* No .plt or .got. Who cares what the LTP is? */
3146 sec = bfd_get_section_by_name (abfd, ".data");
3147 }
3148 }
3149
3150 if (h != NULL)
3151 {
3152 h->type = bfd_link_hash_defined;
3153 h->u.def.value = gp_val;
3154 if (sec != NULL)
3155 h->u.def.section = sec;
3156 else
3157 h->u.def.section = bfd_abs_section_ptr;
3158 }
3159 }
3160
3161 if (sec != NULL && sec->output_section != NULL)
3162 gp_val += sec->output_section->vma + sec->output_offset;
3163
3164 elf_gp (abfd) = gp_val;
3165 return TRUE;
3166 }
3167
3168 /* Build all the stubs associated with the current output file. The
3169 stubs are kept in a hash table attached to the main linker hash
3170 table. We also set up the .plt entries for statically linked PIC
3171 functions here. This function is called via hppaelf_finish in the
3172 linker. */
3173
3174 bfd_boolean
3175 elf32_hppa_build_stubs (struct bfd_link_info *info)
3176 {
3177 asection *stub_sec;
3178 struct bfd_hash_table *table;
3179 struct elf32_hppa_link_hash_table *htab;
3180
3181 htab = hppa_link_hash_table (info);
3182
3183 for (stub_sec = htab->stub_bfd->sections;
3184 stub_sec != NULL;
3185 stub_sec = stub_sec->next)
3186 {
3187 bfd_size_type size;
3188
3189 /* Allocate memory to hold the linker stubs. */
3190 size = stub_sec->size;
3191 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3192 if (stub_sec->contents == NULL && size != 0)
3193 return FALSE;
3194 stub_sec->size = 0;
3195 }
3196
3197 /* Build the stubs as directed by the stub hash table. */
3198 table = &htab->bstab;
3199 bfd_hash_traverse (table, hppa_build_one_stub, info);
3200
3201 return TRUE;
3202 }
3203
3204 /* Return the base vma address which should be subtracted from the real
3205 address when resolving a dtpoff relocation.
3206 This is PT_TLS segment p_vaddr. */
3207
3208 static bfd_vma
3209 dtpoff_base (struct bfd_link_info *info)
3210 {
3211 /* If tls_sec is NULL, we should have signalled an error already. */
3212 if (elf_hash_table (info)->tls_sec == NULL)
3213 return 0;
3214 return elf_hash_table (info)->tls_sec->vma;
3215 }
3216
3217 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3218
3219 static bfd_vma
3220 tpoff (struct bfd_link_info *info, bfd_vma address)
3221 {
3222 struct elf_link_hash_table *htab = elf_hash_table (info);
3223
3224 /* If tls_sec is NULL, we should have signalled an error already. */
3225 if (htab->tls_sec == NULL)
3226 return 0;
3227 /* hppa TLS ABI is variant I and static TLS block start just after
3228 tcbhead structure which has 2 pointer fields. */
3229 return (address - htab->tls_sec->vma
3230 + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3231 }
3232
3233 /* Perform a final link. */
3234
3235 static bfd_boolean
3236 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3237 {
3238 /* Invoke the regular ELF linker to do all the work. */
3239 if (!bfd_elf_final_link (abfd, info))
3240 return FALSE;
3241
3242 /* If we're producing a final executable, sort the contents of the
3243 unwind section. */
3244 return elf_hppa_sort_unwind (abfd);
3245 }
3246
3247 /* Record the lowest address for the data and text segments. */
3248
3249 static void
3250 hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
3251 {
3252 struct elf32_hppa_link_hash_table *htab;
3253
3254 htab = (struct elf32_hppa_link_hash_table*) data;
3255
3256 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3257 {
3258 bfd_vma value;
3259 Elf_Internal_Phdr *p;
3260
3261 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
3262 BFD_ASSERT (p != NULL);
3263 value = p->p_vaddr;
3264
3265 if ((section->flags & SEC_READONLY) != 0)
3266 {
3267 if (value < htab->text_segment_base)
3268 htab->text_segment_base = value;
3269 }
3270 else
3271 {
3272 if (value < htab->data_segment_base)
3273 htab->data_segment_base = value;
3274 }
3275 }
3276 }
3277
3278 /* Perform a relocation as part of a final link. */
3279
3280 static bfd_reloc_status_type
3281 final_link_relocate (asection *input_section,
3282 bfd_byte *contents,
3283 const Elf_Internal_Rela *rela,
3284 bfd_vma value,
3285 struct elf32_hppa_link_hash_table *htab,
3286 asection *sym_sec,
3287 struct elf32_hppa_link_hash_entry *hh,
3288 struct bfd_link_info *info)
3289 {
3290 int insn;
3291 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3292 unsigned int orig_r_type = r_type;
3293 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3294 int r_format = howto->bitsize;
3295 enum hppa_reloc_field_selector_type_alt r_field;
3296 bfd *input_bfd = input_section->owner;
3297 bfd_vma offset = rela->r_offset;
3298 bfd_vma max_branch_offset = 0;
3299 bfd_byte *hit_data = contents + offset;
3300 bfd_signed_vma addend = rela->r_addend;
3301 bfd_vma location;
3302 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3303 int val;
3304
3305 if (r_type == R_PARISC_NONE)
3306 return bfd_reloc_ok;
3307
3308 insn = bfd_get_32 (input_bfd, hit_data);
3309
3310 /* Find out where we are and where we're going. */
3311 location = (offset +
3312 input_section->output_offset +
3313 input_section->output_section->vma);
3314
3315 /* If we are not building a shared library, convert DLTIND relocs to
3316 DPREL relocs. */
3317 if (!info->shared)
3318 {
3319 switch (r_type)
3320 {
3321 case R_PARISC_DLTIND21L:
3322 r_type = R_PARISC_DPREL21L;
3323 break;
3324
3325 case R_PARISC_DLTIND14R:
3326 r_type = R_PARISC_DPREL14R;
3327 break;
3328
3329 case R_PARISC_DLTIND14F:
3330 r_type = R_PARISC_DPREL14F;
3331 break;
3332 }
3333 }
3334
3335 switch (r_type)
3336 {
3337 case R_PARISC_PCREL12F:
3338 case R_PARISC_PCREL17F:
3339 case R_PARISC_PCREL22F:
3340 /* If this call should go via the plt, find the import stub in
3341 the stub hash. */
3342 if (sym_sec == NULL
3343 || sym_sec->output_section == NULL
3344 || (hh != NULL
3345 && hh->eh.plt.offset != (bfd_vma) -1
3346 && hh->eh.dynindx != -1
3347 && !hh->plabel
3348 && (info->shared
3349 || !hh->eh.def_regular
3350 || hh->eh.root.type == bfd_link_hash_defweak)))
3351 {
3352 hsh = hppa_get_stub_entry (input_section, sym_sec,
3353 hh, rela, htab);
3354 if (hsh != NULL)
3355 {
3356 value = (hsh->stub_offset
3357 + hsh->stub_sec->output_offset
3358 + hsh->stub_sec->output_section->vma);
3359 addend = 0;
3360 }
3361 else if (sym_sec == NULL && hh != NULL
3362 && hh->eh.root.type == bfd_link_hash_undefweak)
3363 {
3364 /* It's OK if undefined weak. Calls to undefined weak
3365 symbols behave as if the "called" function
3366 immediately returns. We can thus call to a weak
3367 function without first checking whether the function
3368 is defined. */
3369 value = location;
3370 addend = 8;
3371 }
3372 else
3373 return bfd_reloc_undefined;
3374 }
3375 /* Fall thru. */
3376
3377 case R_PARISC_PCREL21L:
3378 case R_PARISC_PCREL17C:
3379 case R_PARISC_PCREL17R:
3380 case R_PARISC_PCREL14R:
3381 case R_PARISC_PCREL14F:
3382 case R_PARISC_PCREL32:
3383 /* Make it a pc relative offset. */
3384 value -= location;
3385 addend -= 8;
3386 break;
3387
3388 case R_PARISC_DPREL21L:
3389 case R_PARISC_DPREL14R:
3390 case R_PARISC_DPREL14F:
3391 /* Convert instructions that use the linkage table pointer (r19) to
3392 instructions that use the global data pointer (dp). This is the
3393 most efficient way of using PIC code in an incomplete executable,
3394 but the user must follow the standard runtime conventions for
3395 accessing data for this to work. */
3396 if (orig_r_type == R_PARISC_DLTIND21L)
3397 {
3398 /* Convert addil instructions if the original reloc was a
3399 DLTIND21L. GCC sometimes uses a register other than r19 for
3400 the operation, so we must convert any addil instruction
3401 that uses this relocation. */
3402 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3403 insn = ADDIL_DP;
3404 else
3405 /* We must have a ldil instruction. It's too hard to find
3406 and convert the associated add instruction, so issue an
3407 error. */
3408 (*_bfd_error_handler)
3409 (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3410 input_bfd,
3411 input_section,
3412 offset,
3413 howto->name,
3414 insn);
3415 }
3416 else if (orig_r_type == R_PARISC_DLTIND14F)
3417 {
3418 /* This must be a format 1 load/store. Change the base
3419 register to dp. */
3420 insn = (insn & 0xfc1ffff) | (27 << 21);
3421 }
3422
3423 /* For all the DP relative relocations, we need to examine the symbol's
3424 section. If it has no section or if it's a code section, then
3425 "data pointer relative" makes no sense. In that case we don't
3426 adjust the "value", and for 21 bit addil instructions, we change the
3427 source addend register from %dp to %r0. This situation commonly
3428 arises for undefined weak symbols and when a variable's "constness"
3429 is declared differently from the way the variable is defined. For
3430 instance: "extern int foo" with foo defined as "const int foo". */
3431 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3432 {
3433 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3434 == (((int) OP_ADDIL << 26) | (27 << 21)))
3435 {
3436 insn &= ~ (0x1f << 21);
3437 }
3438 /* Now try to make things easy for the dynamic linker. */
3439
3440 break;
3441 }
3442 /* Fall thru. */
3443
3444 case R_PARISC_DLTIND21L:
3445 case R_PARISC_DLTIND14R:
3446 case R_PARISC_DLTIND14F:
3447 case R_PARISC_TLS_GD21L:
3448 case R_PARISC_TLS_GD14R:
3449 case R_PARISC_TLS_LDM21L:
3450 case R_PARISC_TLS_LDM14R:
3451 case R_PARISC_TLS_IE21L:
3452 case R_PARISC_TLS_IE14R:
3453 value -= elf_gp (input_section->output_section->owner);
3454 break;
3455
3456 case R_PARISC_SEGREL32:
3457 if ((sym_sec->flags & SEC_CODE) != 0)
3458 value -= htab->text_segment_base;
3459 else
3460 value -= htab->data_segment_base;
3461 break;
3462
3463 default:
3464 break;
3465 }
3466
3467 switch (r_type)
3468 {
3469 case R_PARISC_DIR32:
3470 case R_PARISC_DIR14F:
3471 case R_PARISC_DIR17F:
3472 case R_PARISC_PCREL17C:
3473 case R_PARISC_PCREL14F:
3474 case R_PARISC_PCREL32:
3475 case R_PARISC_DPREL14F:
3476 case R_PARISC_PLABEL32:
3477 case R_PARISC_DLTIND14F:
3478 case R_PARISC_SEGBASE:
3479 case R_PARISC_SEGREL32:
3480 case R_PARISC_TLS_DTPMOD32:
3481 case R_PARISC_TLS_DTPOFF32:
3482 case R_PARISC_TLS_TPREL32:
3483 r_field = e_fsel;
3484 break;
3485
3486 case R_PARISC_DLTIND21L:
3487 case R_PARISC_PCREL21L:
3488 case R_PARISC_PLABEL21L:
3489 r_field = e_lsel;
3490 break;
3491
3492 case R_PARISC_DIR21L:
3493 case R_PARISC_DPREL21L:
3494 case R_PARISC_TLS_GD21L:
3495 case R_PARISC_TLS_LDM21L:
3496 case R_PARISC_TLS_LDO21L:
3497 case R_PARISC_TLS_IE21L:
3498 case R_PARISC_TLS_LE21L:
3499 r_field = e_lrsel;
3500 break;
3501
3502 case R_PARISC_PCREL17R:
3503 case R_PARISC_PCREL14R:
3504 case R_PARISC_PLABEL14R:
3505 case R_PARISC_DLTIND14R:
3506 r_field = e_rsel;
3507 break;
3508
3509 case R_PARISC_DIR17R:
3510 case R_PARISC_DIR14R:
3511 case R_PARISC_DPREL14R:
3512 case R_PARISC_TLS_GD14R:
3513 case R_PARISC_TLS_LDM14R:
3514 case R_PARISC_TLS_LDO14R:
3515 case R_PARISC_TLS_IE14R:
3516 case R_PARISC_TLS_LE14R:
3517 r_field = e_rrsel;
3518 break;
3519
3520 case R_PARISC_PCREL12F:
3521 case R_PARISC_PCREL17F:
3522 case R_PARISC_PCREL22F:
3523 r_field = e_fsel;
3524
3525 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3526 {
3527 max_branch_offset = (1 << (17-1)) << 2;
3528 }
3529 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3530 {
3531 max_branch_offset = (1 << (12-1)) << 2;
3532 }
3533 else
3534 {
3535 max_branch_offset = (1 << (22-1)) << 2;
3536 }
3537
3538 /* sym_sec is NULL on undefined weak syms or when shared on
3539 undefined syms. We've already checked for a stub for the
3540 shared undefined case. */
3541 if (sym_sec == NULL)
3542 break;
3543
3544 /* If the branch is out of reach, then redirect the
3545 call to the local stub for this function. */
3546 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3547 {
3548 hsh = hppa_get_stub_entry (input_section, sym_sec,
3549 hh, rela, htab);
3550 if (hsh == NULL)
3551 return bfd_reloc_undefined;
3552
3553 /* Munge up the value and addend so that we call the stub
3554 rather than the procedure directly. */
3555 value = (hsh->stub_offset
3556 + hsh->stub_sec->output_offset
3557 + hsh->stub_sec->output_section->vma
3558 - location);
3559 addend = -8;
3560 }
3561 break;
3562
3563 /* Something we don't know how to handle. */
3564 default:
3565 return bfd_reloc_notsupported;
3566 }
3567
3568 /* Make sure we can reach the stub. */
3569 if (max_branch_offset != 0
3570 && value + addend + max_branch_offset >= 2*max_branch_offset)
3571 {
3572 (*_bfd_error_handler)
3573 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3574 input_bfd,
3575 input_section,
3576 offset,
3577 hsh->bh_root.string);
3578 bfd_set_error (bfd_error_bad_value);
3579 return bfd_reloc_notsupported;
3580 }
3581
3582 val = hppa_field_adjust (value, addend, r_field);
3583
3584 switch (r_type)
3585 {
3586 case R_PARISC_PCREL12F:
3587 case R_PARISC_PCREL17C:
3588 case R_PARISC_PCREL17F:
3589 case R_PARISC_PCREL17R:
3590 case R_PARISC_PCREL22F:
3591 case R_PARISC_DIR17F:
3592 case R_PARISC_DIR17R:
3593 /* This is a branch. Divide the offset by four.
3594 Note that we need to decide whether it's a branch or
3595 otherwise by inspecting the reloc. Inspecting insn won't
3596 work as insn might be from a .word directive. */
3597 val >>= 2;
3598 break;
3599
3600 default:
3601 break;
3602 }
3603
3604 insn = hppa_rebuild_insn (insn, val, r_format);
3605
3606 /* Update the instruction word. */
3607 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3608 return bfd_reloc_ok;
3609 }
3610
3611 /* Relocate an HPPA ELF section. */
3612
3613 static bfd_boolean
3614 elf32_hppa_relocate_section (bfd *output_bfd,
3615 struct bfd_link_info *info,
3616 bfd *input_bfd,
3617 asection *input_section,
3618 bfd_byte *contents,
3619 Elf_Internal_Rela *relocs,
3620 Elf_Internal_Sym *local_syms,
3621 asection **local_sections)
3622 {
3623 bfd_vma *local_got_offsets;
3624 struct elf32_hppa_link_hash_table *htab;
3625 Elf_Internal_Shdr *symtab_hdr;
3626 Elf_Internal_Rela *rela;
3627 Elf_Internal_Rela *relend;
3628
3629 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3630
3631 htab = hppa_link_hash_table (info);
3632 local_got_offsets = elf_local_got_offsets (input_bfd);
3633
3634 rela = relocs;
3635 relend = relocs + input_section->reloc_count;
3636 for (; rela < relend; rela++)
3637 {
3638 unsigned int r_type;
3639 reloc_howto_type *howto;
3640 unsigned int r_symndx;
3641 struct elf32_hppa_link_hash_entry *hh;
3642 Elf_Internal_Sym *sym;
3643 asection *sym_sec;
3644 bfd_vma relocation;
3645 bfd_reloc_status_type rstatus;
3646 const char *sym_name;
3647 bfd_boolean plabel;
3648 bfd_boolean warned_undef;
3649
3650 r_type = ELF32_R_TYPE (rela->r_info);
3651 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3652 {
3653 bfd_set_error (bfd_error_bad_value);
3654 return FALSE;
3655 }
3656 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3657 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3658 continue;
3659
3660 r_symndx = ELF32_R_SYM (rela->r_info);
3661 hh = NULL;
3662 sym = NULL;
3663 sym_sec = NULL;
3664 warned_undef = FALSE;
3665 if (r_symndx < symtab_hdr->sh_info)
3666 {
3667 /* This is a local symbol, h defaults to NULL. */
3668 sym = local_syms + r_symndx;
3669 sym_sec = local_sections[r_symndx];
3670 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3671 }
3672 else
3673 {
3674 struct elf_link_hash_entry *eh;
3675 bfd_boolean unresolved_reloc;
3676 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3677
3678 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3679 r_symndx, symtab_hdr, sym_hashes,
3680 eh, sym_sec, relocation,
3681 unresolved_reloc, warned_undef);
3682
3683 if (!info->relocatable
3684 && relocation == 0
3685 && eh->root.type != bfd_link_hash_defined
3686 && eh->root.type != bfd_link_hash_defweak
3687 && eh->root.type != bfd_link_hash_undefweak)
3688 {
3689 if (info->unresolved_syms_in_objects == RM_IGNORE
3690 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3691 && eh->type == STT_PARISC_MILLI)
3692 {
3693 if (! info->callbacks->undefined_symbol
3694 (info, eh_name (eh), input_bfd,
3695 input_section, rela->r_offset, FALSE))
3696 return FALSE;
3697 warned_undef = TRUE;
3698 }
3699 }
3700 hh = hppa_elf_hash_entry (eh);
3701 }
3702
3703 if (sym_sec != NULL && elf_discarded_section (sym_sec))
3704 {
3705 /* For relocs against symbols from removed linkonce
3706 sections, or sections discarded by a linker script,
3707 we just want the section contents zeroed. Avoid any
3708 special processing. */
3709 _bfd_clear_contents (elf_hppa_howto_table + r_type, input_bfd,
3710 contents + rela->r_offset);
3711 rela->r_info = 0;
3712 rela->r_addend = 0;
3713 continue;
3714 }
3715
3716 if (info->relocatable)
3717 continue;
3718
3719 /* Do any required modifications to the relocation value, and
3720 determine what types of dynamic info we need to output, if
3721 any. */
3722 plabel = 0;
3723 switch (r_type)
3724 {
3725 case R_PARISC_DLTIND14F:
3726 case R_PARISC_DLTIND14R:
3727 case R_PARISC_DLTIND21L:
3728 {
3729 bfd_vma off;
3730 bfd_boolean do_got = 0;
3731
3732 /* Relocation is to the entry for this symbol in the
3733 global offset table. */
3734 if (hh != NULL)
3735 {
3736 bfd_boolean dyn;
3737
3738 off = hh->eh.got.offset;
3739 dyn = htab->etab.dynamic_sections_created;
3740 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
3741 &hh->eh))
3742 {
3743 /* If we aren't going to call finish_dynamic_symbol,
3744 then we need to handle initialisation of the .got
3745 entry and create needed relocs here. Since the
3746 offset must always be a multiple of 4, we use the
3747 least significant bit to record whether we have
3748 initialised it already. */
3749 if ((off & 1) != 0)
3750 off &= ~1;
3751 else
3752 {
3753 hh->eh.got.offset |= 1;
3754 do_got = 1;
3755 }
3756 }
3757 }
3758 else
3759 {
3760 /* Local symbol case. */
3761 if (local_got_offsets == NULL)
3762 abort ();
3763
3764 off = local_got_offsets[r_symndx];
3765
3766 /* The offset must always be a multiple of 4. We use
3767 the least significant bit to record whether we have
3768 already generated the necessary reloc. */
3769 if ((off & 1) != 0)
3770 off &= ~1;
3771 else
3772 {
3773 local_got_offsets[r_symndx] |= 1;
3774 do_got = 1;
3775 }
3776 }
3777
3778 if (do_got)
3779 {
3780 if (info->shared)
3781 {
3782 /* Output a dynamic relocation for this GOT entry.
3783 In this case it is relative to the base of the
3784 object because the symbol index is zero. */
3785 Elf_Internal_Rela outrel;
3786 bfd_byte *loc;
3787 asection *sec = htab->srelgot;
3788
3789 outrel.r_offset = (off
3790 + htab->sgot->output_offset
3791 + htab->sgot->output_section->vma);
3792 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3793 outrel.r_addend = relocation;
3794 loc = sec->contents;
3795 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3796 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3797 }
3798 else
3799 bfd_put_32 (output_bfd, relocation,
3800 htab->sgot->contents + off);
3801 }
3802
3803 if (off >= (bfd_vma) -2)
3804 abort ();
3805
3806 /* Add the base of the GOT to the relocation value. */
3807 relocation = (off
3808 + htab->sgot->output_offset
3809 + htab->sgot->output_section->vma);
3810 }
3811 break;
3812
3813 case R_PARISC_SEGREL32:
3814 /* If this is the first SEGREL relocation, then initialize
3815 the segment base values. */
3816 if (htab->text_segment_base == (bfd_vma) -1)
3817 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3818 break;
3819
3820 case R_PARISC_PLABEL14R:
3821 case R_PARISC_PLABEL21L:
3822 case R_PARISC_PLABEL32:
3823 if (htab->etab.dynamic_sections_created)
3824 {
3825 bfd_vma off;
3826 bfd_boolean do_plt = 0;
3827 /* If we have a global symbol with a PLT slot, then
3828 redirect this relocation to it. */
3829 if (hh != NULL)
3830 {
3831 off = hh->eh.plt.offset;
3832 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared,
3833 &hh->eh))
3834 {
3835 /* In a non-shared link, adjust_dynamic_symbols
3836 isn't called for symbols forced local. We
3837 need to write out the plt entry here. */
3838 if ((off & 1) != 0)
3839 off &= ~1;
3840 else
3841 {
3842 hh->eh.plt.offset |= 1;
3843 do_plt = 1;
3844 }
3845 }
3846 }
3847 else
3848 {
3849 bfd_vma *local_plt_offsets;
3850
3851 if (local_got_offsets == NULL)
3852 abort ();
3853
3854 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3855 off = local_plt_offsets[r_symndx];
3856
3857 /* As for the local .got entry case, we use the last
3858 bit to record whether we've already initialised
3859 this local .plt entry. */
3860 if ((off & 1) != 0)
3861 off &= ~1;
3862 else
3863 {
3864 local_plt_offsets[r_symndx] |= 1;
3865 do_plt = 1;
3866 }
3867 }
3868
3869 if (do_plt)
3870 {
3871 if (info->shared)
3872 {
3873 /* Output a dynamic IPLT relocation for this
3874 PLT entry. */
3875 Elf_Internal_Rela outrel;
3876 bfd_byte *loc;
3877 asection *s = htab->srelplt;
3878
3879 outrel.r_offset = (off
3880 + htab->splt->output_offset
3881 + htab->splt->output_section->vma);
3882 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3883 outrel.r_addend = relocation;
3884 loc = s->contents;
3885 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3886 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3887 }
3888 else
3889 {
3890 bfd_put_32 (output_bfd,
3891 relocation,
3892 htab->splt->contents + off);
3893 bfd_put_32 (output_bfd,
3894 elf_gp (htab->splt->output_section->owner),
3895 htab->splt->contents + off + 4);
3896 }
3897 }
3898
3899 if (off >= (bfd_vma) -2)
3900 abort ();
3901
3902 /* PLABELs contain function pointers. Relocation is to
3903 the entry for the function in the .plt. The magic +2
3904 offset signals to $$dyncall that the function pointer
3905 is in the .plt and thus has a gp pointer too.
3906 Exception: Undefined PLABELs should have a value of
3907 zero. */
3908 if (hh == NULL
3909 || (hh->eh.root.type != bfd_link_hash_undefweak
3910 && hh->eh.root.type != bfd_link_hash_undefined))
3911 {
3912 relocation = (off
3913 + htab->splt->output_offset
3914 + htab->splt->output_section->vma
3915 + 2);
3916 }
3917 plabel = 1;
3918 }
3919 /* Fall through and possibly emit a dynamic relocation. */
3920
3921 case R_PARISC_DIR17F:
3922 case R_PARISC_DIR17R:
3923 case R_PARISC_DIR14F:
3924 case R_PARISC_DIR14R:
3925 case R_PARISC_DIR21L:
3926 case R_PARISC_DPREL14F:
3927 case R_PARISC_DPREL14R:
3928 case R_PARISC_DPREL21L:
3929 case R_PARISC_DIR32:
3930 if ((input_section->flags & SEC_ALLOC) == 0)
3931 break;
3932
3933 /* The reloc types handled here and this conditional
3934 expression must match the code in ..check_relocs and
3935 allocate_dynrelocs. ie. We need exactly the same condition
3936 as in ..check_relocs, with some extra conditions (dynindx
3937 test in this case) to cater for relocs removed by
3938 allocate_dynrelocs. If you squint, the non-shared test
3939 here does indeed match the one in ..check_relocs, the
3940 difference being that here we test DEF_DYNAMIC as well as
3941 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3942 which is why we can't use just that test here.
3943 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3944 there all files have not been loaded. */
3945 if ((info->shared
3946 && (hh == NULL
3947 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
3948 || hh->eh.root.type != bfd_link_hash_undefweak)
3949 && (IS_ABSOLUTE_RELOC (r_type)
3950 || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
3951 || (!info->shared
3952 && hh != NULL
3953 && hh->eh.dynindx != -1
3954 && !hh->eh.non_got_ref
3955 && ((ELIMINATE_COPY_RELOCS
3956 && hh->eh.def_dynamic
3957 && !hh->eh.def_regular)
3958 || hh->eh.root.type == bfd_link_hash_undefweak
3959 || hh->eh.root.type == bfd_link_hash_undefined)))
3960 {
3961 Elf_Internal_Rela outrel;
3962 bfd_boolean skip;
3963 asection *sreloc;
3964 bfd_byte *loc;
3965
3966 /* When generating a shared object, these relocations
3967 are copied into the output file to be resolved at run
3968 time. */
3969
3970 outrel.r_addend = rela->r_addend;
3971 outrel.r_offset =
3972 _bfd_elf_section_offset (output_bfd, info, input_section,
3973 rela->r_offset);
3974 skip = (outrel.r_offset == (bfd_vma) -1
3975 || outrel.r_offset == (bfd_vma) -2);
3976 outrel.r_offset += (input_section->output_offset
3977 + input_section->output_section->vma);
3978
3979 if (skip)
3980 {
3981 memset (&outrel, 0, sizeof (outrel));
3982 }
3983 else if (hh != NULL
3984 && hh->eh.dynindx != -1
3985 && (plabel
3986 || !IS_ABSOLUTE_RELOC (r_type)
3987 || !info->shared
3988 || !info->symbolic
3989 || !hh->eh.def_regular))
3990 {
3991 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
3992 }
3993 else /* It's a local symbol, or one marked to become local. */
3994 {
3995 int indx = 0;
3996
3997 /* Add the absolute offset of the symbol. */
3998 outrel.r_addend += relocation;
3999
4000 /* Global plabels need to be processed by the
4001 dynamic linker so that functions have at most one
4002 fptr. For this reason, we need to differentiate
4003 between global and local plabels, which we do by
4004 providing the function symbol for a global plabel
4005 reloc, and no symbol for local plabels. */
4006 if (! plabel
4007 && sym_sec != NULL
4008 && sym_sec->output_section != NULL
4009 && ! bfd_is_abs_section (sym_sec))
4010 {
4011 asection *osec;
4012
4013 osec = sym_sec->output_section;
4014 indx = elf_section_data (osec)->dynindx;
4015 if (indx == 0)
4016 {
4017 osec = htab->etab.text_index_section;
4018 indx = elf_section_data (osec)->dynindx;
4019 }
4020 BFD_ASSERT (indx != 0);
4021
4022 /* We are turning this relocation into one
4023 against a section symbol, so subtract out the
4024 output section's address but not the offset
4025 of the input section in the output section. */
4026 outrel.r_addend -= osec->vma;
4027 }
4028
4029 outrel.r_info = ELF32_R_INFO (indx, r_type);
4030 }
4031 sreloc = elf_section_data (input_section)->sreloc;
4032 if (sreloc == NULL)
4033 abort ();
4034
4035 loc = sreloc->contents;
4036 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
4037 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4038 }
4039 break;
4040
4041 case R_PARISC_TLS_LDM21L:
4042 case R_PARISC_TLS_LDM14R:
4043 {
4044 bfd_vma off;
4045
4046 off = htab->tls_ldm_got.offset;
4047 if (off & 1)
4048 off &= ~1;
4049 else
4050 {
4051 Elf_Internal_Rela outrel;
4052 bfd_byte *loc;
4053
4054 outrel.r_offset = (off
4055 + htab->sgot->output_section->vma
4056 + htab->sgot->output_offset);
4057 outrel.r_addend = 0;
4058 outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
4059 loc = htab->srelgot->contents;
4060 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4061
4062 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4063 htab->tls_ldm_got.offset |= 1;
4064 }
4065
4066 /* Add the base of the GOT to the relocation value. */
4067 relocation = (off
4068 + htab->sgot->output_offset
4069 + htab->sgot->output_section->vma);
4070
4071 break;
4072 }
4073
4074 case R_PARISC_TLS_LDO21L:
4075 case R_PARISC_TLS_LDO14R:
4076 relocation -= dtpoff_base (info);
4077 break;
4078
4079 case R_PARISC_TLS_GD21L:
4080 case R_PARISC_TLS_GD14R:
4081 case R_PARISC_TLS_IE21L:
4082 case R_PARISC_TLS_IE14R:
4083 {
4084 bfd_vma off;
4085 int indx;
4086 char tls_type;
4087
4088 indx = 0;
4089 if (hh != NULL)
4090 {
4091 bfd_boolean dyn;
4092 dyn = htab->etab.dynamic_sections_created;
4093
4094 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &hh->eh)
4095 && (!info->shared
4096 || !SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4097 {
4098 indx = hh->eh.dynindx;
4099 }
4100 off = hh->eh.got.offset;
4101 tls_type = hh->tls_type;
4102 }
4103 else
4104 {
4105 off = local_got_offsets[r_symndx];
4106 tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4107 }
4108
4109 if (tls_type == GOT_UNKNOWN)
4110 abort ();
4111
4112 if ((off & 1) != 0)
4113 off &= ~1;
4114 else
4115 {
4116 bfd_boolean need_relocs = FALSE;
4117 Elf_Internal_Rela outrel;
4118 bfd_byte *loc = NULL;
4119 int cur_off = off;
4120
4121 /* The GOT entries have not been initialized yet. Do it
4122 now, and emit any relocations. If both an IE GOT and a
4123 GD GOT are necessary, we emit the GD first. */
4124
4125 if ((info->shared || indx != 0)
4126 && (hh == NULL
4127 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
4128 || hh->eh.root.type != bfd_link_hash_undefweak))
4129 {
4130 need_relocs = TRUE;
4131 loc = htab->srelgot->contents;
4132 /* FIXME (CAO): Should this be reloc_count++ ? */
4133 loc += htab->srelgot->reloc_count * sizeof (Elf32_External_Rela);
4134 }
4135
4136 if (tls_type & GOT_TLS_GD)
4137 {
4138 if (need_relocs)
4139 {
4140 outrel.r_offset = (cur_off
4141 + htab->sgot->output_section->vma
4142 + htab->sgot->output_offset);
4143 outrel.r_info = ELF32_R_INFO (indx,R_PARISC_TLS_DTPMOD32);
4144 outrel.r_addend = 0;
4145 bfd_put_32 (output_bfd, 0, htab->sgot->contents + cur_off);
4146 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4147 htab->srelgot->reloc_count++;
4148 loc += sizeof (Elf32_External_Rela);
4149
4150 if (indx == 0)
4151 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4152 htab->sgot->contents + cur_off + 4);
4153 else
4154 {
4155 bfd_put_32 (output_bfd, 0,
4156 htab->sgot->contents + cur_off + 4);
4157 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4158 outrel.r_offset += 4;
4159 bfd_elf32_swap_reloca_out (output_bfd, &outrel,loc);
4160 htab->srelgot->reloc_count++;
4161 loc += sizeof (Elf32_External_Rela);
4162 }
4163 }
4164 else
4165 {
4166 /* If we are not emitting relocations for a
4167 general dynamic reference, then we must be in a
4168 static link or an executable link with the
4169 symbol binding locally. Mark it as belonging
4170 to module 1, the executable. */
4171 bfd_put_32 (output_bfd, 1,
4172 htab->sgot->contents + cur_off);
4173 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4174 htab->sgot->contents + cur_off + 4);
4175 }
4176
4177
4178 cur_off += 8;
4179 }
4180
4181 if (tls_type & GOT_TLS_IE)
4182 {
4183 if (need_relocs)
4184 {
4185 outrel.r_offset = (cur_off
4186 + htab->sgot->output_section->vma
4187 + htab->sgot->output_offset);
4188 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_TPREL32);
4189
4190 if (indx == 0)
4191 outrel.r_addend = relocation - dtpoff_base (info);
4192 else
4193 outrel.r_addend = 0;
4194
4195 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4196 htab->srelgot->reloc_count++;
4197 loc += sizeof (Elf32_External_Rela);
4198 }
4199 else
4200 bfd_put_32 (output_bfd, tpoff (info, relocation),
4201 htab->sgot->contents + cur_off);
4202
4203 cur_off += 4;
4204 }
4205
4206 if (hh != NULL)
4207 hh->eh.got.offset |= 1;
4208 else
4209 local_got_offsets[r_symndx] |= 1;
4210 }
4211
4212 if ((tls_type & GOT_TLS_GD)
4213 && r_type != R_PARISC_TLS_GD21L
4214 && r_type != R_PARISC_TLS_GD14R)
4215 off += 2 * GOT_ENTRY_SIZE;
4216
4217 /* Add the base of the GOT to the relocation value. */
4218 relocation = (off
4219 + htab->sgot->output_offset
4220 + htab->sgot->output_section->vma);
4221
4222 break;
4223 }
4224
4225 case R_PARISC_TLS_LE21L:
4226 case R_PARISC_TLS_LE14R:
4227 {
4228 relocation = tpoff (info, relocation);
4229 break;
4230 }
4231 break;
4232
4233 default:
4234 break;
4235 }
4236
4237 rstatus = final_link_relocate (input_section, contents, rela, relocation,
4238 htab, sym_sec, hh, info);
4239
4240 if (rstatus == bfd_reloc_ok)
4241 continue;
4242
4243 if (hh != NULL)
4244 sym_name = hh_name (hh);
4245 else
4246 {
4247 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4248 symtab_hdr->sh_link,
4249 sym->st_name);
4250 if (sym_name == NULL)
4251 return FALSE;
4252 if (*sym_name == '\0')
4253 sym_name = bfd_section_name (input_bfd, sym_sec);
4254 }
4255
4256 howto = elf_hppa_howto_table + r_type;
4257
4258 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4259 {
4260 if (rstatus == bfd_reloc_notsupported || !warned_undef)
4261 {
4262 (*_bfd_error_handler)
4263 (_("%B(%A+0x%lx): cannot handle %s for %s"),
4264 input_bfd,
4265 input_section,
4266 (long) rela->r_offset,
4267 howto->name,
4268 sym_name);
4269 bfd_set_error (bfd_error_bad_value);
4270 return FALSE;
4271 }
4272 }
4273 else
4274 {
4275 if (!((*info->callbacks->reloc_overflow)
4276 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4277 (bfd_vma) 0, input_bfd, input_section, rela->r_offset)))
4278 return FALSE;
4279 }
4280 }
4281
4282 return TRUE;
4283 }
4284
4285 /* Finish up dynamic symbol handling. We set the contents of various
4286 dynamic sections here. */
4287
4288 static bfd_boolean
4289 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4290 struct bfd_link_info *info,
4291 struct elf_link_hash_entry *eh,
4292 Elf_Internal_Sym *sym)
4293 {
4294 struct elf32_hppa_link_hash_table *htab;
4295 Elf_Internal_Rela rela;
4296 bfd_byte *loc;
4297
4298 htab = hppa_link_hash_table (info);
4299
4300 if (eh->plt.offset != (bfd_vma) -1)
4301 {
4302 bfd_vma value;
4303
4304 if (eh->plt.offset & 1)
4305 abort ();
4306
4307 /* This symbol has an entry in the procedure linkage table. Set
4308 it up.
4309
4310 The format of a plt entry is
4311 <funcaddr>
4312 <__gp>
4313 */
4314 value = 0;
4315 if (eh->root.type == bfd_link_hash_defined
4316 || eh->root.type == bfd_link_hash_defweak)
4317 {
4318 value = eh->root.u.def.value;
4319 if (eh->root.u.def.section->output_section != NULL)
4320 value += (eh->root.u.def.section->output_offset
4321 + eh->root.u.def.section->output_section->vma);
4322 }
4323
4324 /* Create a dynamic IPLT relocation for this entry. */
4325 rela.r_offset = (eh->plt.offset
4326 + htab->splt->output_offset
4327 + htab->splt->output_section->vma);
4328 if (eh->dynindx != -1)
4329 {
4330 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4331 rela.r_addend = 0;
4332 }
4333 else
4334 {
4335 /* This symbol has been marked to become local, and is
4336 used by a plabel so must be kept in the .plt. */
4337 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4338 rela.r_addend = value;
4339 }
4340
4341 loc = htab->srelplt->contents;
4342 loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4343 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rela, loc);
4344
4345 if (!eh->def_regular)
4346 {
4347 /* Mark the symbol as undefined, rather than as defined in
4348 the .plt section. Leave the value alone. */
4349 sym->st_shndx = SHN_UNDEF;
4350 }
4351 }
4352
4353 if (eh->got.offset != (bfd_vma) -1
4354 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_GD) == 0
4355 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_IE) == 0)
4356 {
4357 /* This symbol has an entry in the global offset table. Set it
4358 up. */
4359
4360 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4361 + htab->sgot->output_offset
4362 + htab->sgot->output_section->vma);
4363
4364 /* If this is a -Bsymbolic link and the symbol is defined
4365 locally or was forced to be local because of a version file,
4366 we just want to emit a RELATIVE reloc. The entry in the
4367 global offset table will already have been initialized in the
4368 relocate_section function. */
4369 if (info->shared
4370 && (info->symbolic || eh->dynindx == -1)
4371 && eh->def_regular)
4372 {
4373 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4374 rela.r_addend = (eh->root.u.def.value
4375 + eh->root.u.def.section->output_offset
4376 + eh->root.u.def.section->output_section->vma);
4377 }
4378 else
4379 {
4380 if ((eh->got.offset & 1) != 0)
4381 abort ();
4382
4383 bfd_put_32 (output_bfd, 0, htab->sgot->contents + (eh->got.offset & ~1));
4384 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4385 rela.r_addend = 0;
4386 }
4387
4388 loc = htab->srelgot->contents;
4389 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4390 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4391 }
4392
4393 if (eh->needs_copy)
4394 {
4395 asection *sec;
4396
4397 /* This symbol needs a copy reloc. Set it up. */
4398
4399 if (! (eh->dynindx != -1
4400 && (eh->root.type == bfd_link_hash_defined
4401 || eh->root.type == bfd_link_hash_defweak)))
4402 abort ();
4403
4404 sec = htab->srelbss;
4405
4406 rela.r_offset = (eh->root.u.def.value
4407 + eh->root.u.def.section->output_offset
4408 + eh->root.u.def.section->output_section->vma);
4409 rela.r_addend = 0;
4410 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4411 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4412 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4413 }
4414
4415 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4416 if (eh_name (eh)[0] == '_'
4417 && (strcmp (eh_name (eh), "_DYNAMIC") == 0
4418 || eh == htab->etab.hgot))
4419 {
4420 sym->st_shndx = SHN_ABS;
4421 }
4422
4423 return TRUE;
4424 }
4425
4426 /* Used to decide how to sort relocs in an optimal manner for the
4427 dynamic linker, before writing them out. */
4428
4429 static enum elf_reloc_type_class
4430 elf32_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
4431 {
4432 /* Handle TLS relocs first; we don't want them to be marked
4433 relative by the "if (ELF32_R_SYM (rela->r_info) == 0)"
4434 check below. */
4435 switch ((int) ELF32_R_TYPE (rela->r_info))
4436 {
4437 case R_PARISC_TLS_DTPMOD32:
4438 case R_PARISC_TLS_DTPOFF32:
4439 case R_PARISC_TLS_TPREL32:
4440 return reloc_class_normal;
4441 }
4442
4443 if (ELF32_R_SYM (rela->r_info) == 0)
4444 return reloc_class_relative;
4445
4446 switch ((int) ELF32_R_TYPE (rela->r_info))
4447 {
4448 case R_PARISC_IPLT:
4449 return reloc_class_plt;
4450 case R_PARISC_COPY:
4451 return reloc_class_copy;
4452 default:
4453 return reloc_class_normal;
4454 }
4455 }
4456
4457 /* Finish up the dynamic sections. */
4458
4459 static bfd_boolean
4460 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4461 struct bfd_link_info *info)
4462 {
4463 bfd *dynobj;
4464 struct elf32_hppa_link_hash_table *htab;
4465 asection *sdyn;
4466
4467 htab = hppa_link_hash_table (info);
4468 dynobj = htab->etab.dynobj;
4469
4470 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4471
4472 if (htab->etab.dynamic_sections_created)
4473 {
4474 Elf32_External_Dyn *dyncon, *dynconend;
4475
4476 if (sdyn == NULL)
4477 abort ();
4478
4479 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4480 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4481 for (; dyncon < dynconend; dyncon++)
4482 {
4483 Elf_Internal_Dyn dyn;
4484 asection *s;
4485
4486 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4487
4488 switch (dyn.d_tag)
4489 {
4490 default:
4491 continue;
4492
4493 case DT_PLTGOT:
4494 /* Use PLTGOT to set the GOT register. */
4495 dyn.d_un.d_ptr = elf_gp (output_bfd);
4496 break;
4497
4498 case DT_JMPREL:
4499 s = htab->srelplt;
4500 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4501 break;
4502
4503 case DT_PLTRELSZ:
4504 s = htab->srelplt;
4505 dyn.d_un.d_val = s->size;
4506 break;
4507
4508 case DT_RELASZ:
4509 /* Don't count procedure linkage table relocs in the
4510 overall reloc count. */
4511 s = htab->srelplt;
4512 if (s == NULL)
4513 continue;
4514 dyn.d_un.d_val -= s->size;
4515 break;
4516
4517 case DT_RELA:
4518 /* We may not be using the standard ELF linker script.
4519 If .rela.plt is the first .rela section, we adjust
4520 DT_RELA to not include it. */
4521 s = htab->srelplt;
4522 if (s == NULL)
4523 continue;
4524 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4525 continue;
4526 dyn.d_un.d_ptr += s->size;
4527 break;
4528 }
4529
4530 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4531 }
4532 }
4533
4534 if (htab->sgot != NULL && htab->sgot->size != 0)
4535 {
4536 /* Fill in the first entry in the global offset table.
4537 We use it to point to our dynamic section, if we have one. */
4538 bfd_put_32 (output_bfd,
4539 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4540 htab->sgot->contents);
4541
4542 /* The second entry is reserved for use by the dynamic linker. */
4543 memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4544
4545 /* Set .got entry size. */
4546 elf_section_data (htab->sgot->output_section)
4547 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4548 }
4549
4550 if (htab->splt != NULL && htab->splt->size != 0)
4551 {
4552 /* Set plt entry size. */
4553 elf_section_data (htab->splt->output_section)
4554 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4555
4556 if (htab->need_plt_stub)
4557 {
4558 /* Set up the .plt stub. */
4559 memcpy (htab->splt->contents
4560 + htab->splt->size - sizeof (plt_stub),
4561 plt_stub, sizeof (plt_stub));
4562
4563 if ((htab->splt->output_offset
4564 + htab->splt->output_section->vma
4565 + htab->splt->size)
4566 != (htab->sgot->output_offset
4567 + htab->sgot->output_section->vma))
4568 {
4569 (*_bfd_error_handler)
4570 (_(".got section not immediately after .plt section"));
4571 return FALSE;
4572 }
4573 }
4574 }
4575
4576 return TRUE;
4577 }
4578
4579 /* Called when writing out an object file to decide the type of a
4580 symbol. */
4581 static int
4582 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4583 {
4584 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4585 return STT_PARISC_MILLI;
4586 else
4587 return type;
4588 }
4589
4590 /* Misc BFD support code. */
4591 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4592 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4593 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4594 #define elf_info_to_howto elf_hppa_info_to_howto
4595 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4596
4597 /* Stuff for the BFD linker. */
4598 #define bfd_elf32_mkobject elf32_hppa_mkobject
4599 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4600 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4601 #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
4602 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4603 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4604 #define elf_backend_check_relocs elf32_hppa_check_relocs
4605 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4606 #define elf_backend_fake_sections elf_hppa_fake_sections
4607 #define elf_backend_relocate_section elf32_hppa_relocate_section
4608 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4609 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4610 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4611 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4612 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4613 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4614 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4615 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4616 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4617 #define elf_backend_object_p elf32_hppa_object_p
4618 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4619 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4620 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4621 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4622 #define elf_backend_action_discarded elf_hppa_action_discarded
4623
4624 #define elf_backend_can_gc_sections 1
4625 #define elf_backend_can_refcount 1
4626 #define elf_backend_plt_alignment 2
4627 #define elf_backend_want_got_plt 0
4628 #define elf_backend_plt_readonly 0
4629 #define elf_backend_want_plt_sym 0
4630 #define elf_backend_got_header_size 8
4631 #define elf_backend_rela_normal 1
4632
4633 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4634 #define TARGET_BIG_NAME "elf32-hppa"
4635 #define ELF_ARCH bfd_arch_hppa
4636 #define ELF_MACHINE_CODE EM_PARISC
4637 #define ELF_MAXPAGESIZE 0x1000
4638 #define ELF_OSABI ELFOSABI_HPUX
4639 #define elf32_bed elf32_hppa_hpux_bed
4640
4641 #include "elf32-target.h"
4642
4643 #undef TARGET_BIG_SYM
4644 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4645 #undef TARGET_BIG_NAME
4646 #define TARGET_BIG_NAME "elf32-hppa-linux"
4647 #undef ELF_OSABI
4648 #define ELF_OSABI ELFOSABI_LINUX
4649 #undef elf32_bed
4650 #define elf32_bed elf32_hppa_linux_bed
4651
4652 #include "elf32-target.h"
4653
4654 #undef TARGET_BIG_SYM
4655 #define TARGET_BIG_SYM bfd_elf32_hppa_nbsd_vec
4656 #undef TARGET_BIG_NAME
4657 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4658 #undef ELF_OSABI
4659 #define ELF_OSABI ELFOSABI_NETBSD
4660 #undef elf32_bed
4661 #define elf32_bed elf32_hppa_netbsd_bed
4662
4663 #include "elf32-target.h"
This page took 0.125414 seconds and 4 git commands to generate.