.plt stub for lazy linking, --stub-group-size=N ld switch,
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright (C) 1990, 91, 92, 93, 94, 95, 96, 97, 98, 99, 2000
3 Free Software Foundation, Inc.
4
5 Original code by
6 Center for Software Science
7 Department of Computer Science
8 University of Utah
9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
26
27 #include "bfd.h"
28 #include "sysdep.h"
29 #include "libbfd.h"
30 #include "elf-bfd.h"
31 #include "elf/hppa.h"
32 #include "libhppa.h"
33 #include "elf32-hppa.h"
34 #define ARCH_SIZE 32
35 #include "elf-hppa.h"
36 #include "elf32-hppa.h"
37
38
39 /* In order to gain some understanding of code in this file without
40 knowing all the intricate details of the linker, note the
41 following:
42
43 Functions named elf32_hppa_* are called by external routines, other
44 functions are only called locally. elf32_hppa_* functions appear
45 in this file more or less in the order in which they are called
46 from external routines. eg. elf32_hppa_check_relocs is called
47 early in the link process, elf32_hppa_finish_dynamic_sections is
48 one of the last functions. */
49
50
51 /* We use two hash tables to hold information for linking PA ELF objects.
52
53 The first is the elf32_hppa_link_hash_table which is derived
54 from the standard ELF linker hash table. We use this as a place to
55 attach other hash tables and static information.
56
57 The second is the stub hash table which is derived from the
58 base BFD hash table. The stub hash table holds the information
59 necessary to build the linker stubs during a link.
60
61 There are a number of different stubs generated by the linker.
62
63 Long branch stub:
64 : ldil LR'X,%r1
65 : be,n RR'X(%sr4,%r1)
66
67 PIC long branch stub:
68 : b,l .+8,%r1
69 : addil L'X - ($PIC_pcrel$0 - 4),%r1
70 : be,n R'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
71
72 Import stub to call shared library routine from normal object file
73 (single sub-space version)
74 : addil L'lt_ptr+ltoff,%dp ; get procedure entry point
75 : ldw R'lt_ptr+ltoff(%r1),%r21
76 : bv %r0(%r21)
77 : ldw R'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
78
79 Import stub to call shared library routine from shared library
80 (single sub-space version)
81 : addil L'ltoff,%r19 ; get procedure entry point
82 : ldw R'ltoff(%r1),%r21
83 : bv %r0(%r21)
84 : ldw R'ltoff+4(%r1),%r19 ; get new dlt value.
85
86 Import stub to call shared library routine from normal object file
87 (multiple sub-space support)
88 : addil L'lt_ptr+ltoff,%dp ; get procedure entry point
89 : ldw R'lt_ptr+ltoff(%r1),%r21
90 : ldw R'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
91 : ldsid (%r21),%r1
92 : mtsp %r1,%sr0
93 : be 0(%sr0,%r21) ; branch to target
94 : stw %rp,-24(%sp) ; save rp
95
96 Import stub to call shared library routine from shared library
97 (multiple sub-space support)
98 : addil L'ltoff,%r19 ; get procedure entry point
99 : ldw R'ltoff(%r1),%r21
100 : ldw R'ltoff+4(%r1),%r19 ; get new dlt value.
101 : ldsid (%r21),%r1
102 : mtsp %r1,%sr0
103 : be 0(%sr0,%r21) ; branch to target
104 : stw %rp,-24(%sp) ; save rp
105
106 Export stub to return from shared lib routine (multiple sub-space support)
107 One of these is created for each exported procedure in a shared
108 library (and stored in the shared lib). Shared lib routines are
109 called via the first instruction in the export stub so that we can
110 do an inter-space return. Not required for single sub-space.
111 : bl,n X,%rp ; trap the return
112 : nop
113 : ldw -24(%sp),%rp ; restore the original rp
114 : ldsid (%rp),%r1
115 : mtsp %r1,%sr0
116 : be,n 0(%sr0,%rp) ; inter-space return */
117
118 #define PLT_ENTRY_SIZE 8
119 #define PLABEL_PLT_ENTRY_SIZE PLT_ENTRY_SIZE
120 #define GOT_ENTRY_SIZE 4
121 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
122
123 static const bfd_byte plt_stub[] =
124 {
125 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
126 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
127 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
128 #define PLT_STUB_ENTRY (3*4)
129 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
130 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
131 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
132 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
133 };
134
135 /* Section name for stubs is the associated section name plus this
136 string. */
137 #define STUB_SUFFIX ".stub"
138
139 /* Setting the following non-zero makes all long branch stubs
140 generated during a shared link of the PIC variety. This saves on
141 relocs, but costs one extra instruction per stub. */
142 #ifndef LONG_BRANCH_PIC_IN_SHLIB
143 #define LONG_BRANCH_PIC_IN_SHLIB 1
144 #endif
145
146 /* Set this non-zero to use import stubs instead of long branch stubs
147 where a .plt entry exists for the symbol. This is a fairly useless
148 option as import stubs are bigger than PIC long branch stubs. */
149 #ifndef LONG_BRANCH_VIA_PLT
150 #define LONG_BRANCH_VIA_PLT 0
151 #endif
152
153 /* We don't need to copy any PC- or GP-relative dynamic relocs into a
154 shared object's dynamic section. */
155 #ifndef RELATIVE_DYNAMIC_RELOCS
156 #define RELATIVE_DYNAMIC_RELOCS 0
157 #endif
158
159
160 enum elf32_hppa_stub_type {
161 hppa_stub_long_branch,
162 hppa_stub_long_branch_shared,
163 hppa_stub_import,
164 hppa_stub_import_shared,
165 hppa_stub_export,
166 hppa_stub_none
167 };
168
169
170 struct elf32_hppa_stub_hash_entry {
171
172 /* Base hash table entry structure. */
173 struct bfd_hash_entry root;
174
175 /* The stub section. */
176 asection *stub_sec;
177
178 #if ! LONG_BRANCH_PIC_IN_SHLIB
179 /* It's associated reloc section. */
180 asection *reloc_sec;
181 #endif
182
183 /* Offset within stub_sec of the beginning of this stub. */
184 bfd_vma stub_offset;
185
186 /* Given the symbol's value and its section we can determine its final
187 value when building the stubs (so the stub knows where to jump. */
188 bfd_vma target_value;
189 asection *target_section;
190
191 enum elf32_hppa_stub_type stub_type;
192
193 /* The symbol table entry, if any, that this was derived from. */
194 struct elf32_hppa_link_hash_entry *h;
195
196 /* Where this stub is being called from, or, in the case of combined
197 stub sections, the first input section in the group. */
198 asection *id_sec;
199 };
200
201
202 struct elf32_hppa_link_hash_entry {
203
204 struct elf_link_hash_entry elf;
205
206 /* A pointer to the most recently used stub hash entry against this
207 symbol. */
208 struct elf32_hppa_stub_hash_entry *stub_cache;
209
210 #if ! LONG_BRANCH_PIC_IN_SHLIB
211 /* Used to track whether we have allocated space for a long branch
212 stub relocation for this symbol in the given section. */
213 asection *stub_reloc_sec;
214 #endif
215
216 #if ! LONG_BRANCH_PIC_IN_SHLIB || RELATIVE_DYNAMIC_RELOCS
217 /* Used to count relocations for delayed sizing of relocation
218 sections. */
219 struct elf32_hppa_dyn_reloc_entry {
220
221 /* Next relocation in the chain. */
222 struct elf32_hppa_dyn_reloc_entry *next;
223
224 /* The section in dynobj. */
225 asection *section;
226
227 /* Number of relocs copied in this section. */
228 bfd_size_type count;
229 } *reloc_entries;
230 #endif
231
232 /* Set during a static link if we detect a function is PIC. */
233 unsigned int pic_call:1;
234
235 /* Set if this symbol is used by a plabel reloc. */
236 unsigned int plabel:1;
237
238 /* Set if this symbol is an init or fini function and thus should
239 use an absolute reloc. */
240 unsigned int plt_abs:1;
241 };
242
243
244 struct elf32_hppa_link_hash_table {
245
246 /* The main hash table. */
247 struct elf_link_hash_table root;
248
249 /* The stub hash table. */
250 struct bfd_hash_table stub_hash_table;
251
252 /* Linker stub bfd. */
253 bfd *stub_bfd;
254
255 /* Linker call-backs. */
256 asection * (*add_stub_section) PARAMS ((const char *, asection *));
257 void (*layout_sections_again) PARAMS ((void));
258
259 /* Array to keep track of which stub sections have been created, and
260 information on stub grouping. */
261 struct map_stub {
262 /* This is the section to which stubs in the group will be
263 attached. */
264 asection *link_sec;
265 /* The stub section. */
266 asection *stub_sec;
267 #if ! LONG_BRANCH_PIC_IN_SHLIB
268 /* The stub section's reloc section. */
269 asection *reloc_sec;
270 #endif
271 } *stub_group;
272
273 /* Short-cuts to get to dynamic linker sections. */
274 asection *sgot;
275 asection *srelgot;
276 asection *splt;
277 asection *srelplt;
278 asection *sdynbss;
279 asection *srelbss;
280
281 /* Whether we support multiple sub-spaces for shared libs. */
282 unsigned int multi_subspace:1;
283
284 /* Flags set when PCREL12F and PCREL17F branches detected. Used to
285 select suitable defaults for the stub group size. */
286 unsigned int has_12bit_branch:1;
287 unsigned int has_17bit_branch:1;
288
289 /* Set if we need a .plt stub to support lazy dynamic linking. */
290 unsigned int need_plt_stub:1;
291 };
292
293
294 /* Various hash macros and functions. */
295 #define hppa_link_hash_table(p) \
296 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
297
298 #define hppa_stub_hash_lookup(table, string, create, copy) \
299 ((struct elf32_hppa_stub_hash_entry *) \
300 bfd_hash_lookup ((table), (string), (create), (copy)))
301
302 static struct bfd_hash_entry *stub_hash_newfunc
303 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
304
305 static struct bfd_hash_entry *hppa_link_hash_newfunc
306 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
307
308 static struct bfd_link_hash_table *elf32_hppa_link_hash_table_create
309 PARAMS ((bfd *));
310
311
312 /* Stub handling functions. */
313 static char *hppa_stub_name
314 PARAMS ((const asection *, const asection *,
315 const struct elf32_hppa_link_hash_entry *,
316 const Elf_Internal_Rela *));
317
318 static struct elf32_hppa_stub_hash_entry *hppa_get_stub_entry
319 PARAMS ((const asection *, const asection *,
320 struct elf32_hppa_link_hash_entry *,
321 const Elf_Internal_Rela *,
322 struct elf32_hppa_link_hash_table *));
323
324 static struct elf32_hppa_stub_hash_entry *hppa_add_stub
325 PARAMS ((const char *, asection *, struct elf32_hppa_link_hash_table *));
326
327 static enum elf32_hppa_stub_type hppa_type_of_stub
328 PARAMS ((asection *, const Elf_Internal_Rela *,
329 struct elf32_hppa_link_hash_entry *, bfd_vma));
330
331 static boolean hppa_build_one_stub
332 PARAMS ((struct bfd_hash_entry *, PTR));
333
334 static boolean hppa_size_one_stub
335 PARAMS ((struct bfd_hash_entry *, PTR));
336
337
338 /* BFD and elf backend functions. */
339 static boolean elf32_hppa_object_p PARAMS ((bfd *));
340
341 static boolean elf32_hppa_add_symbol_hook
342 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
343 const char **, flagword *, asection **, bfd_vma *));
344
345 static boolean elf32_hppa_create_dynamic_sections
346 PARAMS ((bfd *, struct bfd_link_info *));
347
348 static boolean elf32_hppa_check_relocs
349 PARAMS ((bfd *, struct bfd_link_info *,
350 asection *, const Elf_Internal_Rela *));
351
352 static asection *elf32_hppa_gc_mark_hook
353 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
354 struct elf_link_hash_entry *, Elf_Internal_Sym *));
355
356 static boolean elf32_hppa_gc_sweep_hook
357 PARAMS ((bfd *, struct bfd_link_info *,
358 asection *, const Elf_Internal_Rela *));
359
360 static void elf32_hppa_hide_symbol
361 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
362
363 static boolean elf32_hppa_adjust_dynamic_symbol
364 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
365
366 static boolean hppa_handle_PIC_calls
367 PARAMS ((struct elf_link_hash_entry *, PTR));
368
369 #if ((! LONG_BRANCH_PIC_IN_SHLIB && LONG_BRANCH_VIA_PLT) \
370 || RELATIVE_DYNAMIC_RELOCS)
371 static boolean hppa_discard_copies
372 PARAMS ((struct elf_link_hash_entry *, PTR));
373 #endif
374
375 static boolean clobber_millicode_symbols
376 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
377
378 static boolean elf32_hppa_size_dynamic_sections
379 PARAMS ((bfd *, struct bfd_link_info *));
380
381 static bfd_reloc_status_type final_link_relocate
382 PARAMS ((asection *, bfd_byte *, const Elf_Internal_Rela *,
383 bfd_vma, struct elf32_hppa_link_hash_table *, asection *,
384 struct elf32_hppa_link_hash_entry *));
385
386 static boolean elf32_hppa_relocate_section
387 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *,
388 bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
389
390 static boolean elf32_hppa_finish_dynamic_symbol
391 PARAMS ((bfd *, struct bfd_link_info *,
392 struct elf_link_hash_entry *, Elf_Internal_Sym *));
393
394 static boolean elf32_hppa_finish_dynamic_sections
395 PARAMS ((bfd *, struct bfd_link_info *));
396
397 static int elf32_hppa_elf_get_symbol_type
398 PARAMS ((Elf_Internal_Sym *, int));
399
400
401 /* Assorted hash table functions. */
402
403 /* Initialize an entry in the stub hash table. */
404
405 static struct bfd_hash_entry *
406 stub_hash_newfunc (entry, table, string)
407 struct bfd_hash_entry *entry;
408 struct bfd_hash_table *table;
409 const char *string;
410 {
411 struct elf32_hppa_stub_hash_entry *ret;
412
413 ret = (struct elf32_hppa_stub_hash_entry *) entry;
414
415 /* Allocate the structure if it has not already been allocated by a
416 subclass. */
417 if (ret == NULL)
418 {
419 ret = ((struct elf32_hppa_stub_hash_entry *)
420 bfd_hash_allocate (table,
421 sizeof (struct elf32_hppa_stub_hash_entry)));
422 if (ret == NULL)
423 return NULL;
424 }
425
426 /* Call the allocation method of the superclass. */
427 ret = ((struct elf32_hppa_stub_hash_entry *)
428 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
429
430 if (ret)
431 {
432 /* Initialize the local fields. */
433 ret->stub_sec = NULL;
434 #if ! LONG_BRANCH_PIC_IN_SHLIB
435 ret->reloc_sec = NULL;
436 #endif
437 ret->stub_offset = 0;
438 ret->target_value = 0;
439 ret->target_section = NULL;
440 ret->stub_type = hppa_stub_long_branch;
441 ret->h = NULL;
442 ret->id_sec = NULL;
443 }
444
445 return (struct bfd_hash_entry *) ret;
446 }
447
448
449 /* Initialize an entry in the link hash table. */
450
451 static struct bfd_hash_entry *
452 hppa_link_hash_newfunc (entry, table, string)
453 struct bfd_hash_entry *entry;
454 struct bfd_hash_table *table;
455 const char *string;
456 {
457 struct elf32_hppa_link_hash_entry *ret;
458
459 ret = (struct elf32_hppa_link_hash_entry *) entry;
460
461 /* Allocate the structure if it has not already been allocated by a
462 subclass. */
463 if (ret == NULL)
464 {
465 ret = ((struct elf32_hppa_link_hash_entry *)
466 bfd_hash_allocate (table,
467 sizeof (struct elf32_hppa_link_hash_entry)));
468 if (ret == NULL)
469 return NULL;
470 }
471
472 /* Call the allocation method of the superclass. */
473 ret = ((struct elf32_hppa_link_hash_entry *)
474 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
475 table, string));
476
477 if (ret)
478 {
479 /* Initialize the local fields. */
480 #if ! LONG_BRANCH_PIC_IN_SHLIB
481 ret->stub_reloc_sec = NULL;
482 #endif
483 ret->stub_cache = NULL;
484 #if ! LONG_BRANCH_PIC_IN_SHLIB || RELATIVE_DYNAMIC_RELOCS
485 ret->reloc_entries = NULL;
486 #endif
487 ret->pic_call = 0;
488 ret->plabel = 0;
489 ret->plt_abs = 0;
490 }
491
492 return (struct bfd_hash_entry *) ret;
493 }
494
495
496 /* Create the derived linker hash table. The PA ELF port uses the derived
497 hash table to keep information specific to the PA ELF linker (without
498 using static variables). */
499
500 static struct bfd_link_hash_table *
501 elf32_hppa_link_hash_table_create (abfd)
502 bfd *abfd;
503 {
504 struct elf32_hppa_link_hash_table *ret;
505
506 ret = ((struct elf32_hppa_link_hash_table *) bfd_alloc (abfd, sizeof (*ret)));
507 if (ret == NULL)
508 return NULL;
509
510 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, hppa_link_hash_newfunc))
511 {
512 bfd_release (abfd, ret);
513 return NULL;
514 }
515
516 /* Init the stub hash table too. */
517 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc))
518 return NULL;
519
520 ret->stub_bfd = NULL;
521 ret->add_stub_section = NULL;
522 ret->layout_sections_again = NULL;
523 ret->stub_group = NULL;
524 ret->sgot = NULL;
525 ret->srelgot = NULL;
526 ret->splt = NULL;
527 ret->srelplt = NULL;
528 ret->sdynbss = NULL;
529 ret->srelbss = NULL;
530 ret->multi_subspace = 0;
531 ret->has_12bit_branch = 0;
532 ret->has_17bit_branch = 0;
533 ret->need_plt_stub = 0;
534
535 return &ret->root.root;
536 }
537
538
539 /* Build a name for an entry in the stub hash table. */
540
541 static char *
542 hppa_stub_name (input_section, sym_sec, hash, rel)
543 const asection *input_section;
544 const asection *sym_sec;
545 const struct elf32_hppa_link_hash_entry *hash;
546 const Elf_Internal_Rela *rel;
547 {
548 char *stub_name;
549 size_t len;
550
551 if (hash)
552 {
553 len = 8 + 1 + strlen (hash->elf.root.root.string) + 1 + 8 + 1;
554 stub_name = bfd_malloc (len);
555 if (stub_name != NULL)
556 {
557 sprintf (stub_name, "%08x_%s+%x",
558 input_section->id & 0xffffffff,
559 hash->elf.root.root.string,
560 (int) rel->r_addend & 0xffffffff);
561 }
562 }
563 else
564 {
565 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
566 stub_name = bfd_malloc (len);
567 if (stub_name != NULL)
568 {
569 sprintf (stub_name, "%08x_%x:%x+%x",
570 input_section->id & 0xffffffff,
571 sym_sec->id & 0xffffffff,
572 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
573 (int) rel->r_addend & 0xffffffff);
574 }
575 }
576 return stub_name;
577 }
578
579
580 /* Look up an entry in the stub hash. Stub entries are cached because
581 creating the stub name takes a bit of time. */
582
583 static struct elf32_hppa_stub_hash_entry *
584 hppa_get_stub_entry (input_section, sym_sec, hash, rel, hplink)
585 const asection *input_section;
586 const asection *sym_sec;
587 struct elf32_hppa_link_hash_entry *hash;
588 const Elf_Internal_Rela *rel;
589 struct elf32_hppa_link_hash_table *hplink;
590 {
591 struct elf32_hppa_stub_hash_entry *stub_entry;
592 const asection *id_sec;
593
594 /* If this input section is part of a group of sections sharing one
595 stub section, then use the id of the first section in the group.
596 Stub names need to include a section id, as there may well be
597 more than one stub used to reach say, printf, and we need to
598 distinguish between them. */
599 id_sec = hplink->stub_group[input_section->id].link_sec;
600
601 if (hash != NULL && hash->stub_cache != NULL
602 && hash->stub_cache->h == hash
603 && hash->stub_cache->id_sec == id_sec)
604 {
605 stub_entry = hash->stub_cache;
606 }
607 else
608 {
609 char *stub_name;
610
611 stub_name = hppa_stub_name (id_sec, sym_sec, hash, rel);
612 if (stub_name == NULL)
613 return NULL;
614
615 stub_entry = hppa_stub_hash_lookup (&hplink->stub_hash_table,
616 stub_name, false, false);
617 if (stub_entry == NULL)
618 {
619 if (hash == NULL || hash->elf.root.type != bfd_link_hash_undefweak)
620 (*_bfd_error_handler) (_("%s(%s+0x%lx): cannot find stub entry %s"),
621 bfd_get_filename (input_section->owner),
622 input_section->name,
623 (long) rel->r_offset,
624 stub_name);
625 }
626 else
627 {
628 if (hash != NULL)
629 hash->stub_cache = stub_entry;
630 }
631
632 free (stub_name);
633 }
634
635 return stub_entry;
636 }
637
638
639 /* Add a new stub entry to the stub hash. Not all fields of the new
640 stub entry are initialised. */
641
642 static struct elf32_hppa_stub_hash_entry *
643 hppa_add_stub (stub_name, section, hplink)
644 const char *stub_name;
645 asection *section;
646 struct elf32_hppa_link_hash_table *hplink;
647 {
648 asection *link_sec;
649 asection *stub_sec;
650 struct elf32_hppa_stub_hash_entry *stub_entry;
651
652 link_sec = hplink->stub_group[section->id].link_sec;
653 stub_sec = hplink->stub_group[section->id].stub_sec;
654 if (stub_sec == NULL)
655 {
656 stub_sec = hplink->stub_group[link_sec->id].stub_sec;
657 if (stub_sec == NULL)
658 {
659 size_t len;
660 char *s_name;
661
662 len = strlen (link_sec->name) + sizeof (STUB_SUFFIX);
663 s_name = bfd_alloc (hplink->stub_bfd, len);
664 if (s_name == NULL)
665 return NULL;
666
667 strcpy (s_name, link_sec->name);
668 strcpy (s_name + len - sizeof (STUB_SUFFIX), STUB_SUFFIX);
669 stub_sec = (*hplink->add_stub_section) (s_name, link_sec);
670 if (stub_sec == NULL)
671 return NULL;
672 hplink->stub_group[link_sec->id].stub_sec = stub_sec;
673 }
674 hplink->stub_group[section->id].stub_sec = stub_sec;
675 }
676
677 /* Enter this entry into the linker stub hash table. */
678 stub_entry = hppa_stub_hash_lookup (&hplink->stub_hash_table, stub_name,
679 true, false);
680 if (stub_entry == NULL)
681 {
682 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
683 bfd_get_filename (section->owner),
684 stub_name);
685 return NULL;
686 }
687
688 stub_entry->stub_sec = stub_sec;
689 #if ! LONG_BRANCH_PIC_IN_SHLIB
690 stub_entry->reloc_sec = hplink->stub_group[section->id].reloc_sec;
691 #endif
692 stub_entry->stub_offset = 0;
693 stub_entry->id_sec = link_sec;
694 return stub_entry;
695 }
696
697
698 /* Determine the type of stub needed, if any, for a call. */
699
700 static enum elf32_hppa_stub_type
701 hppa_type_of_stub (input_sec, rel, hash, destination)
702 asection *input_sec;
703 const Elf_Internal_Rela *rel;
704 struct elf32_hppa_link_hash_entry *hash;
705 bfd_vma destination;
706 {
707 bfd_vma location;
708 bfd_vma branch_offset;
709 bfd_vma max_branch_offset;
710 unsigned int r_type;
711
712 if (hash != NULL
713 && (((hash->elf.root.type == bfd_link_hash_defined
714 || hash->elf.root.type == bfd_link_hash_defweak)
715 && hash->elf.root.u.def.section->output_section == NULL)
716 || (hash->elf.root.type == bfd_link_hash_defweak
717 && hash->elf.dynindx != -1
718 && hash->elf.plt.offset != (bfd_vma) -1)
719 || hash->elf.root.type == bfd_link_hash_undefweak
720 || hash->elf.root.type == bfd_link_hash_undefined
721 || hash->pic_call))
722 {
723 /* If output_section is NULL, then it's a symbol defined in a
724 shared library. We will need an import stub. Decide between
725 hppa_stub_import and hppa_stub_import_shared later. For
726 shared links we need stubs for undefined or weak syms too;
727 They will presumably be resolved by the dynamic linker. */
728 return hppa_stub_import;
729 }
730
731 /* Determine where the call point is. */
732 location = (input_sec->output_offset
733 + input_sec->output_section->vma
734 + rel->r_offset);
735
736 branch_offset = destination - location - 8;
737 r_type = ELF32_R_TYPE (rel->r_info);
738
739 /* Determine if a long branch stub is needed. parisc branch offsets
740 are relative to the second instruction past the branch, ie. +8
741 bytes on from the branch instruction location. The offset is
742 signed and counts in units of 4 bytes. */
743 if (r_type == (unsigned int) R_PARISC_PCREL17F)
744 {
745 max_branch_offset = (1 << (17-1)) << 2;
746 }
747 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
748 {
749 max_branch_offset = (1 << (12-1)) << 2;
750 }
751 else /* R_PARISC_PCREL22F. */
752 {
753 max_branch_offset = (1 << (22-1)) << 2;
754 }
755
756 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
757 {
758 #if LONG_BRANCH_VIA_PLT
759 if (hash != NULL
760 && hash->elf.dynindx != -1
761 && hash->elf.plt.offset != (bfd_vma) -1)
762 {
763 /* If we are doing a shared link and find we need a long
764 branch stub, then go via the .plt if possible. */
765 return hppa_stub_import;
766 }
767 else
768 #endif
769 return hppa_stub_long_branch;
770 }
771 return hppa_stub_none;
772 }
773
774
775 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
776 IN_ARG contains the link info pointer. */
777
778 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
779 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
780
781 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
782 #define ADDIL_R1 0x28200000 /* addil L'XXX,%r1,%r1 */
783 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
784
785 #define ADDIL_DP 0x2b600000 /* addil L'XXX,%dp,%r1 */
786 #define LDW_R1_R21 0x48350000 /* ldw R'XXX(%sr0,%r1),%r21 */
787 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
788 #define LDW_R1_R19 0x48330000 /* ldw R'XXX(%sr0,%r1),%r19 */
789
790 #define ADDIL_R19 0x2a600000 /* addil L'XXX,%r19,%r1 */
791 #define LDW_R1_DP 0x483b0000 /* ldw R'XXX(%sr0,%r1),%dp */
792
793 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
794 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
795 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
796 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
797
798 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
799 #define NOP 0x08000240 /* nop */
800 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
801 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
802 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
803
804 #ifndef R19_STUBS
805 #define R19_STUBS 1
806 #endif
807
808 #if R19_STUBS
809 #define LDW_R1_DLT LDW_R1_R19
810 #else
811 #define LDW_R1_DLT LDW_R1_DP
812 #endif
813
814 static boolean
815 hppa_build_one_stub (gen_entry, in_arg)
816 struct bfd_hash_entry *gen_entry;
817 PTR in_arg;
818 {
819 struct elf32_hppa_stub_hash_entry *stub_entry;
820 struct bfd_link_info *info;
821 struct elf32_hppa_link_hash_table *hplink;
822 asection *stub_sec;
823 bfd *stub_bfd;
824 bfd_byte *loc;
825 bfd_vma sym_value;
826 bfd_vma insn;
827 int val;
828 int size;
829
830 /* Massage our args to the form they really have. */
831 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
832 info = (struct bfd_link_info *) in_arg;
833
834 hplink = hppa_link_hash_table (info);
835 stub_sec = stub_entry->stub_sec;
836
837 /* Make a note of the offset within the stubs for this entry. */
838 stub_entry->stub_offset = stub_sec->_raw_size;
839 loc = stub_sec->contents + stub_entry->stub_offset;
840
841 stub_bfd = stub_sec->owner;
842
843 switch (stub_entry->stub_type)
844 {
845 case hppa_stub_long_branch:
846 /* Create the long branch. A long branch is formed with "ldil"
847 loading the upper bits of the target address into a register,
848 then branching with "be" which adds in the lower bits.
849 The "be" has its delay slot nullified. */
850 sym_value = (stub_entry->target_value
851 + stub_entry->target_section->output_offset
852 + stub_entry->target_section->output_section->vma);
853
854 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel);
855 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
856 bfd_put_32 (stub_bfd, insn, loc);
857
858 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel) >> 2;
859 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
860 bfd_put_32 (stub_bfd, insn, loc + 4);
861
862 #if ! LONG_BRANCH_PIC_IN_SHLIB
863 if (info->shared)
864 {
865 /* Output a dynamic relocation for this stub. We only
866 output one PCREL21L reloc per stub, trusting that the
867 dynamic linker will also fix the implied PCREL17R for the
868 second instruction. PCREL21L dynamic relocs had better
869 never be emitted for some other purpose... */
870 asection *srel;
871 Elf_Internal_Rela outrel;
872
873 if (stub_entry->h == NULL)
874 {
875 (*_bfd_error_handler)
876 (_("%s(%s+0x%lx): cannot relocate %s, recompile with -ffunction-sections"),
877 bfd_get_filename (stub_entry->target_section->owner),
878 stub_sec->name,
879 (long) stub_entry->stub_offset,
880 stub_entry->root.string);
881 bfd_set_error (bfd_error_bad_value);
882 return false;
883 }
884
885 srel = stub_entry->reloc_sec;
886 if (srel == NULL)
887 {
888 (*_bfd_error_handler)
889 (_("Could not find relocation section for %s"),
890 stub_sec->name);
891 bfd_set_error (bfd_error_bad_value);
892 return false;
893 }
894
895 outrel.r_offset = (stub_entry->stub_offset
896 + stub_sec->output_offset
897 + stub_sec->output_section->vma);
898 outrel.r_info = ELF32_R_INFO (0, R_PARISC_PCREL21L);
899 outrel.r_addend = sym_value;
900 bfd_elf32_swap_reloca_out (stub_sec->output_section->owner,
901 &outrel,
902 ((Elf32_External_Rela *)
903 srel->contents + srel->reloc_count));
904 ++srel->reloc_count;
905 }
906 #endif
907 size = 8;
908 break;
909
910 case hppa_stub_long_branch_shared:
911 /* Branches are relative. This is where we are going to. */
912 sym_value = (stub_entry->target_value
913 + stub_entry->target_section->output_offset
914 + stub_entry->target_section->output_section->vma);
915
916 /* And this is where we are coming from, more or less. */
917 sym_value -= (stub_entry->stub_offset
918 + stub_sec->output_offset
919 + stub_sec->output_section->vma);
920
921 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
922 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
923 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
924 bfd_put_32 (stub_bfd, insn, loc + 4);
925
926 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
927 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
928 bfd_put_32 (stub_bfd, insn, loc + 8);
929 size = 12;
930 break;
931
932 case hppa_stub_import:
933 case hppa_stub_import_shared:
934 sym_value = (stub_entry->h->elf.plt.offset
935 + hplink->splt->output_offset
936 + hplink->splt->output_section->vma
937 - elf_gp (hplink->splt->output_section->owner));
938
939 insn = ADDIL_DP;
940 #if R19_STUBS
941 if (stub_entry->stub_type == hppa_stub_import_shared)
942 insn = ADDIL_R19;
943 #endif
944 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel),
945 insn = hppa_rebuild_insn ((int) insn, val, 21);
946 bfd_put_32 (stub_bfd, insn, loc);
947
948 /* It is critical to use lrsel/rrsel here because we are using
949 two different offsets (+0 and +4) from sym_value. If we use
950 lsel/rsel then with unfortunate sym_values we will round
951 sym_value+4 up to the next 2k block leading to a mis-match
952 between the lsel and rsel value. */
953 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel);
954 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
955 bfd_put_32 (stub_bfd, insn, loc + 4);
956
957 if (hplink->multi_subspace)
958 {
959 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
960 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
961 bfd_put_32 (stub_bfd, insn, loc + 8);
962
963 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
964 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
965 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
966 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
967
968 size = 28;
969 }
970 else
971 {
972 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
973 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
974 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
975 bfd_put_32 (stub_bfd, insn, loc + 12);
976
977 size = 16;
978 }
979
980 if (!info->shared
981 && stub_entry->h != NULL
982 && stub_entry->h->pic_call)
983 {
984 /* Build the .plt entry needed to call a PIC function from
985 statically linked code. We don't need any relocs. */
986 bfd *dynobj;
987 struct elf32_hppa_link_hash_entry *eh;
988 bfd_vma value;
989
990 dynobj = hplink->root.dynobj;
991 eh = (struct elf32_hppa_link_hash_entry *) stub_entry->h;
992
993 BFD_ASSERT (eh->elf.root.type == bfd_link_hash_defined
994 || eh->elf.root.type == bfd_link_hash_defweak);
995
996 value = (eh->elf.root.u.def.value
997 + eh->elf.root.u.def.section->output_offset
998 + eh->elf.root.u.def.section->output_section->vma);
999
1000 /* Fill in the entry in the procedure linkage table.
1001
1002 The format of a plt entry is
1003 <funcaddr>
1004 <__gp>. */
1005
1006 bfd_put_32 (hplink->splt->owner, value,
1007 hplink->splt->contents + eh->elf.plt.offset);
1008 value = elf_gp (hplink->splt->output_section->owner);
1009 bfd_put_32 (hplink->splt->owner, value,
1010 hplink->splt->contents + eh->elf.plt.offset + 4);
1011 }
1012 break;
1013
1014 case hppa_stub_export:
1015 /* Branches are relative. This is where we are going to. */
1016 sym_value = (stub_entry->target_value
1017 + stub_entry->target_section->output_offset
1018 + stub_entry->target_section->output_section->vma);
1019
1020 /* And this is where we are coming from. */
1021 sym_value -= (stub_entry->stub_offset
1022 + stub_sec->output_offset
1023 + stub_sec->output_section->vma);
1024
1025 if (sym_value - 8 + 0x40000 >= 0x80000)
1026 {
1027 (*_bfd_error_handler)
1028 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
1029 bfd_get_filename (stub_entry->target_section->owner),
1030 stub_sec->name,
1031 (long) stub_entry->stub_offset,
1032 stub_entry->root.string);
1033 bfd_set_error (bfd_error_bad_value);
1034 return false;
1035 }
1036
1037 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
1038 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
1039 bfd_put_32 (stub_bfd, insn, loc);
1040
1041 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
1042 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
1043 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
1044 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
1045 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
1046
1047 /* Point the function symbol at the stub. */
1048 stub_entry->h->elf.root.u.def.section = stub_sec;
1049 stub_entry->h->elf.root.u.def.value = stub_sec->_raw_size;
1050
1051 size = 24;
1052 break;
1053
1054 default:
1055 BFD_FAIL ();
1056 return false;
1057 }
1058
1059 stub_sec->_raw_size += size;
1060 return true;
1061 }
1062
1063 #undef LDIL_R1
1064 #undef BE_SR4_R1
1065 #undef BL_R1
1066 #undef ADDIL_R1
1067 #undef DEPI_R1
1068 #undef ADDIL_DP
1069 #undef LDW_R1_R21
1070 #undef LDW_R1_DLT
1071 #undef LDW_R1_R19
1072 #undef ADDIL_R19
1073 #undef LDW_R1_DP
1074 #undef LDSID_R21_R1
1075 #undef MTSP_R1
1076 #undef BE_SR0_R21
1077 #undef STW_RP
1078 #undef BV_R0_R21
1079 #undef BL_RP
1080 #undef NOP
1081 #undef LDW_RP
1082 #undef LDSID_RP_R1
1083 #undef BE_SR0_RP
1084
1085
1086 /* As above, but don't actually build the stub. Just bump offset so
1087 we know stub section sizes. */
1088
1089 static boolean
1090 hppa_size_one_stub (gen_entry, in_arg)
1091 struct bfd_hash_entry *gen_entry;
1092 PTR in_arg;
1093 {
1094 struct elf32_hppa_stub_hash_entry *stub_entry;
1095 struct elf32_hppa_link_hash_table *hplink;
1096 int size;
1097
1098 /* Massage our args to the form they really have. */
1099 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
1100 hplink = (struct elf32_hppa_link_hash_table *) in_arg;
1101
1102 if (stub_entry->stub_type == hppa_stub_long_branch)
1103 {
1104 #if ! LONG_BRANCH_PIC_IN_SHLIB
1105 if (stub_entry->reloc_sec != NULL)
1106 stub_entry->reloc_sec->_raw_size += sizeof (Elf32_External_Rela);
1107 #endif
1108 size = 8;
1109 }
1110 else if (stub_entry->stub_type == hppa_stub_long_branch_shared)
1111 size = 12;
1112 else if (stub_entry->stub_type == hppa_stub_export)
1113 size = 24;
1114 else /* hppa_stub_import or hppa_stub_import_shared. */
1115 {
1116 if (hplink->multi_subspace)
1117 size = 28;
1118 else
1119 size = 16;
1120 }
1121
1122 stub_entry->stub_sec->_raw_size += size;
1123 return true;
1124 }
1125
1126
1127 /* Return nonzero if ABFD represents an HPPA ELF32 file.
1128 Additionally we set the default architecture and machine. */
1129
1130 static boolean
1131 elf32_hppa_object_p (abfd)
1132 bfd *abfd;
1133 {
1134 unsigned int flags = elf_elfheader (abfd)->e_flags;
1135
1136 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
1137 {
1138 case EFA_PARISC_1_0:
1139 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
1140 case EFA_PARISC_1_1:
1141 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
1142 case EFA_PARISC_2_0:
1143 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
1144 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
1145 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
1146 }
1147 return true;
1148 }
1149
1150
1151 /* Undo the generic ELF code's subtraction of section->vma from the
1152 value of each external symbol. */
1153
1154 static boolean
1155 elf32_hppa_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1156 bfd *abfd ATTRIBUTE_UNUSED;
1157 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1158 const Elf_Internal_Sym *sym ATTRIBUTE_UNUSED;
1159 const char **namep ATTRIBUTE_UNUSED;
1160 flagword *flagsp ATTRIBUTE_UNUSED;
1161 asection **secp;
1162 bfd_vma *valp;
1163 {
1164 *valp += (*secp)->vma;
1165 return true;
1166 }
1167
1168
1169 /* Create the .plt and .got sections, and set up our hash table
1170 short-cuts to various dynamic sections. */
1171
1172 static boolean
1173 elf32_hppa_create_dynamic_sections (abfd, info)
1174 bfd *abfd;
1175 struct bfd_link_info *info;
1176 {
1177 struct elf32_hppa_link_hash_table *hplink;
1178
1179 /* Don't try to create the .plt and .got twice. */
1180 hplink = hppa_link_hash_table (info);
1181 if (hplink->splt != NULL)
1182 return true;
1183
1184 /* Call the generic code to do most of the work. */
1185 if (! _bfd_elf_create_dynamic_sections (abfd, info))
1186 return false;
1187
1188 hplink->splt = bfd_get_section_by_name (abfd, ".plt");
1189 hplink->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
1190
1191 hplink->sgot = bfd_get_section_by_name (abfd, ".got");
1192 hplink->srelgot = bfd_make_section (abfd, ".rela.got");
1193 if (hplink->srelgot == NULL
1194 || ! bfd_set_section_flags (abfd, hplink->srelgot,
1195 (SEC_ALLOC
1196 | SEC_LOAD
1197 | SEC_HAS_CONTENTS
1198 | SEC_IN_MEMORY
1199 | SEC_LINKER_CREATED
1200 | SEC_READONLY))
1201 || ! bfd_set_section_alignment (abfd, hplink->srelgot, 2))
1202 return false;
1203
1204 hplink->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
1205 hplink->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
1206
1207 return true;
1208 }
1209
1210
1211 /* Look through the relocs for a section during the first phase, and
1212 allocate space in the global offset table or procedure linkage
1213 table. At this point we haven't necessarily read all the input
1214 files. */
1215
1216 static boolean
1217 elf32_hppa_check_relocs (abfd, info, sec, relocs)
1218 bfd *abfd;
1219 struct bfd_link_info *info;
1220 asection *sec;
1221 const Elf_Internal_Rela *relocs;
1222 {
1223 bfd *dynobj;
1224 Elf_Internal_Shdr *symtab_hdr;
1225 struct elf_link_hash_entry **sym_hashes;
1226 bfd_signed_vma *local_got_refcounts;
1227 const Elf_Internal_Rela *rel;
1228 const Elf_Internal_Rela *rel_end;
1229 struct elf32_hppa_link_hash_table *hplink;
1230 asection *sreloc;
1231 asection *stubreloc;
1232
1233 if (info->relocateable)
1234 return true;
1235
1236 hplink = hppa_link_hash_table (info);
1237 dynobj = hplink->root.dynobj;
1238 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1239 sym_hashes = elf_sym_hashes (abfd);
1240 local_got_refcounts = elf_local_got_refcounts (abfd);
1241 sreloc = NULL;
1242 stubreloc = NULL;
1243
1244 rel_end = relocs + sec->reloc_count;
1245 for (rel = relocs; rel < rel_end; rel++)
1246 {
1247 enum {
1248 NEED_GOT = 1,
1249 NEED_PLT = 2,
1250 NEED_DYNREL = 4,
1251 #if LONG_BRANCH_PIC_IN_SHLIB
1252 NEED_STUBREL = 0, /* We won't be needing them in this case. */
1253 #else
1254 NEED_STUBREL = 8,
1255 #endif
1256 PLT_PLABEL = 16
1257 };
1258
1259 unsigned int r_symndx, r_type;
1260 struct elf32_hppa_link_hash_entry *h;
1261 int need_entry;
1262
1263 r_symndx = ELF32_R_SYM (rel->r_info);
1264
1265 if (r_symndx < symtab_hdr->sh_info)
1266 h = NULL;
1267 else
1268 h = ((struct elf32_hppa_link_hash_entry *)
1269 sym_hashes[r_symndx - symtab_hdr->sh_info]);
1270
1271 r_type = ELF32_R_TYPE (rel->r_info);
1272
1273 switch (r_type)
1274 {
1275 case R_PARISC_DLTIND14F:
1276 case R_PARISC_DLTIND14R:
1277 case R_PARISC_DLTIND21L:
1278 /* This symbol requires a global offset table entry. */
1279 need_entry = NEED_GOT;
1280
1281 /* Mark this section as containing PIC code. */
1282 sec->flags |= SEC_HAS_GOT_REF;
1283 break;
1284
1285 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1286 case R_PARISC_PLABEL21L:
1287 case R_PARISC_PLABEL32:
1288 /* If the addend is non-zero, we break badly. */
1289 BFD_ASSERT (rel->r_addend == 0);
1290
1291 /* If we are creating a shared library, then we need to
1292 create a PLT entry for all PLABELs, because PLABELs with
1293 local symbols may be passed via a pointer to another
1294 object. Additionally, output a dynamic relocation
1295 pointing to the PLT entry. */
1296 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1297 break;
1298
1299 case R_PARISC_PCREL12F:
1300 hplink->has_12bit_branch = 1;
1301 /* Fall thru. */
1302 case R_PARISC_PCREL17C:
1303 case R_PARISC_PCREL17F:
1304 hplink->has_17bit_branch = 1;
1305 /* Fall thru. */
1306 case R_PARISC_PCREL22F:
1307 /* Function calls might need to go through the .plt, and
1308 might require long branch stubs. */
1309 if (h == NULL)
1310 {
1311 /* We know local syms won't need a .plt entry, and if
1312 they need a long branch stub we can't guarantee that
1313 we can reach the stub. So just flag an error later
1314 if we're doing a shared link and find we need a long
1315 branch stub. */
1316 continue;
1317 }
1318 else
1319 {
1320 /* Global symbols will need a .plt entry if they remain
1321 global, and in most cases won't need a long branch
1322 stub. Unfortunately, we have to cater for the case
1323 where a symbol is forced local by versioning, or due
1324 to symbolic linking, and we lose the .plt entry. */
1325 need_entry = NEED_PLT | NEED_STUBREL;
1326 }
1327 break;
1328
1329 case R_PARISC_SEGBASE: /* Used to set segment base. */
1330 case R_PARISC_SEGREL32: /* Relative reloc. */
1331 case R_PARISC_PCREL14F: /* PC relative load/store. */
1332 case R_PARISC_PCREL14R:
1333 case R_PARISC_PCREL17R: /* External branches. */
1334 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1335 /* We don't need to propagate the relocation if linking a
1336 shared object since these are section relative. */
1337 continue;
1338
1339 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1340 case R_PARISC_DPREL14R:
1341 case R_PARISC_DPREL21L:
1342 if (info->shared)
1343 {
1344 (*_bfd_error_handler)
1345 (_("%s: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1346 bfd_get_filename (abfd),
1347 elf_hppa_howto_table[r_type].name);
1348 bfd_set_error (bfd_error_bad_value);
1349 return false;
1350 }
1351 /* Fall through. */
1352
1353 case R_PARISC_DIR17F: /* Used for external branches. */
1354 case R_PARISC_DIR17R:
1355 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1356 case R_PARISC_DIR14R:
1357 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1358 #if 1
1359 /* Help debug shared library creation. Any of the above
1360 relocs can be used in shared libs, but they may cause
1361 pages to become unshared. */
1362 if (info->shared)
1363 {
1364 (*_bfd_error_handler)
1365 (_("%s: relocation %s should not be used when making a shared object; recompile with -fPIC"),
1366 bfd_get_filename (abfd),
1367 elf_hppa_howto_table[r_type].name);
1368 }
1369 /* Fall through. */
1370 #endif
1371
1372 case R_PARISC_DIR32: /* .word, PARISC.unwind relocs. */
1373 /* We may want to output a dynamic relocation later. */
1374 need_entry = NEED_DYNREL;
1375 break;
1376
1377 /* This relocation describes the C++ object vtable hierarchy.
1378 Reconstruct it for later use during GC. */
1379 case R_PARISC_GNU_VTINHERIT:
1380 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec,
1381 &h->elf, rel->r_offset))
1382 return false;
1383 continue;
1384
1385 /* This relocation describes which C++ vtable entries are actually
1386 used. Record for later use during GC. */
1387 case R_PARISC_GNU_VTENTRY:
1388 if (!_bfd_elf32_gc_record_vtentry (abfd, sec,
1389 &h->elf, rel->r_offset))
1390 return false;
1391 continue;
1392
1393 default:
1394 continue;
1395 }
1396
1397 /* Now carry out our orders. */
1398 if (need_entry & NEED_GOT)
1399 {
1400 /* Allocate space for a GOT entry, as well as a dynamic
1401 relocation for this entry. */
1402 if (dynobj == NULL)
1403 hplink->root.dynobj = dynobj = abfd;
1404
1405 if (hplink->sgot == NULL)
1406 {
1407 if (! elf32_hppa_create_dynamic_sections (dynobj, info))
1408 return false;
1409 }
1410
1411 if (h != NULL)
1412 {
1413 if (h->elf.got.refcount == -1)
1414 {
1415 h->elf.got.refcount = 1;
1416
1417 /* Make sure this symbol is output as a dynamic symbol. */
1418 if (h->elf.dynindx == -1)
1419 {
1420 if (! bfd_elf32_link_record_dynamic_symbol (info,
1421 &h->elf))
1422 return false;
1423 }
1424
1425 hplink->sgot->_raw_size += GOT_ENTRY_SIZE;
1426 hplink->srelgot->_raw_size += sizeof (Elf32_External_Rela);
1427 }
1428 else
1429 h->elf.got.refcount += 1;
1430 }
1431 else
1432 {
1433 /* This is a global offset table entry for a local symbol. */
1434 if (local_got_refcounts == NULL)
1435 {
1436 size_t size;
1437
1438 /* Allocate space for local got offsets and local
1439 plt offsets. Done this way to save polluting
1440 elf_obj_tdata with another target specific
1441 pointer. */
1442 size = symtab_hdr->sh_info * 2 * sizeof (bfd_signed_vma);
1443 local_got_refcounts = ((bfd_signed_vma *)
1444 bfd_alloc (abfd, size));
1445 if (local_got_refcounts == NULL)
1446 return false;
1447 elf_local_got_refcounts (abfd) = local_got_refcounts;
1448 memset (local_got_refcounts, -1, size);
1449 }
1450 if (local_got_refcounts[r_symndx] == -1)
1451 {
1452 local_got_refcounts[r_symndx] = 1;
1453
1454 hplink->sgot->_raw_size += GOT_ENTRY_SIZE;
1455 if (info->shared)
1456 {
1457 /* If we are generating a shared object, we need to
1458 output a reloc so that the dynamic linker can
1459 adjust this GOT entry (because the address
1460 the shared library is loaded at is not fixed). */
1461 hplink->srelgot->_raw_size +=
1462 sizeof (Elf32_External_Rela);
1463 }
1464 }
1465 else
1466 local_got_refcounts[r_symndx] += 1;
1467 }
1468 }
1469
1470 if (need_entry & NEED_PLT)
1471 {
1472 /* If we are creating a shared library, and this is a reloc
1473 against a weak symbol or a global symbol in a dynamic
1474 object, then we will be creating an import stub and a
1475 .plt entry for the symbol. Similarly, on a normal link
1476 to symbols defined in a dynamic object we'll need the
1477 import stub and a .plt entry. We don't know yet whether
1478 the symbol is defined or not, so make an entry anyway and
1479 clean up later in adjust_dynamic_symbol. */
1480 if ((sec->flags & SEC_ALLOC) != 0)
1481 {
1482 if (h != NULL)
1483 {
1484 if (h->elf.plt.refcount == -1)
1485 {
1486 h->elf.plt.refcount = 1;
1487 h->elf.elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1488 }
1489 else
1490 h->elf.plt.refcount += 1;
1491
1492 /* If this .plt entry is for a plabel, we need an
1493 extra word for ld.so. adjust_dynamic_symbol will
1494 also keep the entry even if it appears to be
1495 local. */
1496 if (need_entry & PLT_PLABEL)
1497 h->plabel = 1;
1498 }
1499 else if (need_entry & PLT_PLABEL)
1500 {
1501 int indx;
1502
1503 if (local_got_refcounts == NULL)
1504 {
1505 size_t size;
1506
1507 /* Allocate space for local got offsets and local
1508 plt offsets. */
1509 size = symtab_hdr->sh_info * 2 * sizeof (bfd_signed_vma);
1510 local_got_refcounts = ((bfd_signed_vma *)
1511 bfd_alloc (abfd, size));
1512 if (local_got_refcounts == NULL)
1513 return false;
1514 elf_local_got_refcounts (abfd) = local_got_refcounts;
1515 memset (local_got_refcounts, -1, size);
1516 }
1517 indx = r_symndx + symtab_hdr->sh_info;
1518 if (local_got_refcounts[indx] == -1)
1519 local_got_refcounts[indx] = 1;
1520 else
1521 local_got_refcounts[indx] += 1;
1522 }
1523 }
1524 }
1525
1526 if (need_entry & (NEED_DYNREL | NEED_STUBREL))
1527 {
1528 /* Flag this symbol as having a non-got, non-plt reference
1529 so that we generate copy relocs if it turns out to be
1530 dynamic. */
1531 if (h != NULL)
1532 h->elf.elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
1533
1534 /* If we are creating a shared library then we need to copy
1535 the reloc into the shared library. However, if we are
1536 linking with -Bsymbolic, we need only copy absolute
1537 relocs or relocs against symbols that are not defined in
1538 an object we are including in the link. PC- or DP- or
1539 DLT-relative relocs against any local sym or global sym
1540 with DEF_REGULAR set, can be discarded. At this point we
1541 have not seen all the input files, so it is possible that
1542 DEF_REGULAR is not set now but will be set later (it is
1543 never cleared). We account for that possibility below by
1544 storing information in the reloc_entries field of the
1545 hash table entry.
1546
1547 A similar situation to the -Bsymbolic case occurs when
1548 creating shared libraries and symbol visibility changes
1549 render the symbol local.
1550
1551 As it turns out, all the relocs we will be creating here
1552 are absolute, so we cannot remove them on -Bsymbolic
1553 links or visibility changes anyway. A STUB_REL reloc
1554 is absolute too, as in that case it is the reloc in the
1555 stub we will be creating, rather than copying the PCREL
1556 reloc in the branch. */
1557 if ((sec->flags & SEC_ALLOC) != 0
1558 && info->shared
1559 #if RELATIVE_DYNAMIC_RELOCS
1560 && (!info->symbolic
1561 || is_absolute_reloc (r_type)
1562 || (h != NULL
1563 && ((h->elf.elf_link_hash_flags
1564 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
1565 #endif
1566 )
1567 {
1568 boolean doit;
1569 asection *srel;
1570
1571 srel = sreloc;
1572 if ((need_entry & NEED_STUBREL))
1573 srel = stubreloc;
1574
1575 /* Create a reloc section in dynobj and make room for
1576 this reloc. */
1577 if (srel == NULL)
1578 {
1579 char *name;
1580
1581 if (dynobj == NULL)
1582 hplink->root.dynobj = dynobj = abfd;
1583
1584 name = bfd_elf_string_from_elf_section
1585 (abfd,
1586 elf_elfheader (abfd)->e_shstrndx,
1587 elf_section_data (sec)->rel_hdr.sh_name);
1588 if (name == NULL)
1589 {
1590 (*_bfd_error_handler)
1591 (_("Could not find relocation section for %s"),
1592 sec->name);
1593 bfd_set_error (bfd_error_bad_value);
1594 return false;
1595 }
1596
1597 if ((need_entry & NEED_STUBREL))
1598 {
1599 size_t len = strlen (name) + sizeof (STUB_SUFFIX);
1600 char *newname = bfd_malloc (len);
1601
1602 if (newname == NULL)
1603 return false;
1604 strcpy (newname, name);
1605 strcpy (newname + len - sizeof (STUB_SUFFIX),
1606 STUB_SUFFIX);
1607 name = newname;
1608 }
1609
1610 srel = bfd_get_section_by_name (dynobj, name);
1611 if (srel == NULL)
1612 {
1613 flagword flags;
1614
1615 srel = bfd_make_section (dynobj, name);
1616 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1617 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1618 if ((sec->flags & SEC_ALLOC) != 0)
1619 flags |= SEC_ALLOC | SEC_LOAD;
1620 if (srel == NULL
1621 || !bfd_set_section_flags (dynobj, srel, flags)
1622 || !bfd_set_section_alignment (dynobj, srel, 2))
1623 return false;
1624 }
1625 else if ((need_entry & NEED_STUBREL))
1626 free (name);
1627
1628 if ((need_entry & NEED_STUBREL))
1629 stubreloc = srel;
1630 else
1631 sreloc = srel;
1632 }
1633
1634 #if ! LONG_BRANCH_PIC_IN_SHLIB
1635 /* If this is a function call, we only need one dynamic
1636 reloc for the stub as all calls to a particular
1637 function will go through the same stub. Actually, a
1638 long branch stub needs two relocations, but we count
1639 on some intelligence on the part of the dynamic
1640 linker. */
1641 if ((need_entry & NEED_STUBREL))
1642 {
1643 doit = h->stub_reloc_sec != stubreloc;
1644 h->stub_reloc_sec = stubreloc;
1645 }
1646 else
1647 #endif
1648 doit = 1;
1649
1650 if (doit)
1651 {
1652 srel->_raw_size += sizeof (Elf32_External_Rela);
1653
1654 #if ! LONG_BRANCH_PIC_IN_SHLIB || RELATIVE_DYNAMIC_RELOCS
1655 /* Keep track of relocations we have entered for
1656 this global symbol, so that we can discard them
1657 later if necessary. */
1658 if (h != NULL
1659 && (0
1660 #if RELATIVE_DYNAMIC_RELOCS
1661 || ! is_absolute_reloc (rtype)
1662 #endif
1663 || (need_entry & NEED_STUBREL)))
1664 {
1665 struct elf32_hppa_dyn_reloc_entry *p;
1666
1667 for (p = h->reloc_entries; p != NULL; p = p->next)
1668 if (p->section == srel)
1669 break;
1670
1671 if (p == NULL)
1672 {
1673 p = ((struct elf32_hppa_dyn_reloc_entry *)
1674 bfd_alloc (dynobj, sizeof *p));
1675 if (p == NULL)
1676 return false;
1677 p->next = h->reloc_entries;
1678 h->reloc_entries = p;
1679 p->section = srel;
1680 p->count = 0;
1681 }
1682
1683 /* NEED_STUBREL and NEED_DYNREL are never both
1684 set. Leave the count at zero for the
1685 NEED_STUBREL case as we only ever have one
1686 stub reloc per section per symbol, and this
1687 simplifies code in hppa_discard_copies. */
1688 if (! (need_entry & NEED_STUBREL))
1689 ++p->count;
1690 }
1691 #endif
1692 }
1693 }
1694 }
1695 }
1696
1697 return true;
1698 }
1699
1700
1701 /* Return the section that should be marked against garbage collection
1702 for a given relocation. */
1703
1704 static asection *
1705 elf32_hppa_gc_mark_hook (abfd, info, rel, h, sym)
1706 bfd *abfd;
1707 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1708 Elf_Internal_Rela *rel;
1709 struct elf_link_hash_entry *h;
1710 Elf_Internal_Sym *sym;
1711 {
1712 if (h != NULL)
1713 {
1714 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1715 {
1716 case R_PARISC_GNU_VTINHERIT:
1717 case R_PARISC_GNU_VTENTRY:
1718 break;
1719
1720 default:
1721 switch (h->root.type)
1722 {
1723 case bfd_link_hash_defined:
1724 case bfd_link_hash_defweak:
1725 return h->root.u.def.section;
1726
1727 case bfd_link_hash_common:
1728 return h->root.u.c.p->section;
1729
1730 default:
1731 break;
1732 }
1733 }
1734 }
1735 else
1736 {
1737 if (!(elf_bad_symtab (abfd)
1738 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
1739 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
1740 && sym->st_shndx != SHN_COMMON))
1741 {
1742 return bfd_section_from_elf_index (abfd, sym->st_shndx);
1743 }
1744 }
1745
1746 return NULL;
1747 }
1748
1749
1750 /* Update the got and plt entry reference counts for the section being
1751 removed. */
1752
1753 static boolean
1754 elf32_hppa_gc_sweep_hook (abfd, info, sec, relocs)
1755 bfd *abfd;
1756 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1757 asection *sec;
1758 const Elf_Internal_Rela *relocs;
1759 {
1760 Elf_Internal_Shdr *symtab_hdr;
1761 struct elf_link_hash_entry **sym_hashes;
1762 bfd_signed_vma *local_got_refcounts;
1763 bfd_signed_vma *local_plt_refcounts;
1764 const Elf_Internal_Rela *rel, *relend;
1765 unsigned long r_symndx;
1766 struct elf_link_hash_entry *h;
1767 struct elf32_hppa_link_hash_table *hplink;
1768 bfd *dynobj;
1769 asection *sgot;
1770 asection *srelgot;
1771
1772 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1773 sym_hashes = elf_sym_hashes (abfd);
1774 local_got_refcounts = elf_local_got_refcounts (abfd);
1775 local_plt_refcounts = local_got_refcounts;
1776 if (local_plt_refcounts != NULL)
1777 local_plt_refcounts += symtab_hdr->sh_info;
1778 hplink = hppa_link_hash_table (info);
1779 dynobj = hplink->root.dynobj;
1780 if (dynobj == NULL)
1781 return true;
1782
1783 sgot = hplink->sgot;
1784 srelgot = hplink->srelgot;
1785
1786 relend = relocs + sec->reloc_count;
1787 for (rel = relocs; rel < relend; rel++)
1788 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1789 {
1790 case R_PARISC_DLTIND14F:
1791 case R_PARISC_DLTIND14R:
1792 case R_PARISC_DLTIND21L:
1793 r_symndx = ELF32_R_SYM (rel->r_info);
1794 if (r_symndx >= symtab_hdr->sh_info)
1795 {
1796 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1797 if (h->got.refcount > 0)
1798 {
1799 h->got.refcount -= 1;
1800 if (h->got.refcount == 0)
1801 {
1802 sgot->_raw_size -= GOT_ENTRY_SIZE;
1803 srelgot->_raw_size -= sizeof (Elf32_External_Rela);
1804 }
1805 }
1806 }
1807 else if (local_got_refcounts != NULL)
1808 {
1809 if (local_got_refcounts[r_symndx] > 0)
1810 {
1811 local_got_refcounts[r_symndx] -= 1;
1812 if (local_got_refcounts[r_symndx] == 0)
1813 {
1814 sgot->_raw_size -= GOT_ENTRY_SIZE;
1815 if (info->shared)
1816 srelgot->_raw_size -= sizeof (Elf32_External_Rela);
1817 }
1818 }
1819 }
1820 break;
1821
1822 case R_PARISC_PCREL12F:
1823 case R_PARISC_PCREL17C:
1824 case R_PARISC_PCREL17F:
1825 case R_PARISC_PCREL22F:
1826 r_symndx = ELF32_R_SYM (rel->r_info);
1827 if (r_symndx >= symtab_hdr->sh_info)
1828 {
1829 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1830 if (h->plt.refcount > 0)
1831 h->plt.refcount -= 1;
1832 }
1833 break;
1834
1835 case R_PARISC_PLABEL14R:
1836 case R_PARISC_PLABEL21L:
1837 case R_PARISC_PLABEL32:
1838 r_symndx = ELF32_R_SYM (rel->r_info);
1839 if (r_symndx >= symtab_hdr->sh_info)
1840 {
1841 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1842 if (h->plt.refcount > 0)
1843 h->plt.refcount -= 1;
1844 }
1845 else if (local_plt_refcounts != NULL)
1846 {
1847 if (local_plt_refcounts[r_symndx] > 0)
1848 local_plt_refcounts[r_symndx] -= 1;
1849 }
1850 break;
1851
1852 default:
1853 break;
1854 }
1855
1856 return true;
1857 }
1858
1859
1860 /* Our own version of hide_symbol, so that we can keep plt entries for
1861 plabels. */
1862
1863 static void
1864 elf32_hppa_hide_symbol (info, h)
1865 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1866 struct elf_link_hash_entry *h;
1867 {
1868 h->dynindx = -1;
1869 if (! ((struct elf32_hppa_link_hash_entry *) h)->plabel)
1870 {
1871 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1872 h->plt.offset = (bfd_vma) -1;
1873 }
1874 }
1875
1876
1877 /* Adjust a symbol defined by a dynamic object and referenced by a
1878 regular object. The current definition is in some section of the
1879 dynamic object, but we're not including those sections. We have to
1880 change the definition to something the rest of the link can
1881 understand. */
1882
1883 static boolean
1884 elf32_hppa_adjust_dynamic_symbol (info, h)
1885 struct bfd_link_info *info;
1886 struct elf_link_hash_entry *h;
1887 {
1888 bfd *dynobj;
1889 struct elf32_hppa_link_hash_table *hplink;
1890 asection *s;
1891
1892 hplink = hppa_link_hash_table (info);
1893 dynobj = hplink->root.dynobj;
1894
1895 /* If this is a function, put it in the procedure linkage table. We
1896 will fill in the contents of the procedure linkage table later,
1897 when we know the address of the .got section. */
1898 if (h->type == STT_FUNC
1899 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1900 {
1901 if (h->plt.refcount <= 0
1902 || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1903 && h->root.type != bfd_link_hash_defweak
1904 && ! ((struct elf32_hppa_link_hash_entry *) h)->plabel
1905 && (!info->shared || info->symbolic)))
1906 {
1907 /* The .plt entry is not needed when:
1908 a) Garbage collection has removed all references to the
1909 symbol, or
1910 b) We know for certain the symbol is defined in this
1911 object, and it's not a weak definition, nor is the symbol
1912 used by a plabel relocation. Either this object is the
1913 application or we are doing a shared symbolic link. */
1914
1915 /* As a special sop to the hppa ABI, we keep a .plt entry
1916 for functions in sections containing PIC code. */
1917 if (!info->shared
1918 && h->plt.refcount > 0
1919 && (h->root.type == bfd_link_hash_defined
1920 || h->root.type == bfd_link_hash_defweak)
1921 && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0)
1922 {
1923 ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
1924 }
1925 else
1926 {
1927 h->plt.offset = (bfd_vma) -1;
1928 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1929 return true;
1930 }
1931 }
1932
1933 /* Make an entry in the .plt section. */
1934 s = hplink->splt;
1935 h->plt.offset = s->_raw_size;
1936 if (PLABEL_PLT_ENTRY_SIZE != PLT_ENTRY_SIZE
1937 && ((struct elf32_hppa_link_hash_entry *) h)->plabel
1938 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1939 {
1940 /* Add some extra space for the dynamic linker to use. */
1941 s->_raw_size += PLABEL_PLT_ENTRY_SIZE;
1942 }
1943 else
1944 s->_raw_size += PLT_ENTRY_SIZE;
1945
1946 if (! ((struct elf32_hppa_link_hash_entry *) h)->pic_call)
1947 {
1948 /* Make sure this symbol is output as a dynamic symbol. */
1949 if (h->dynindx == -1
1950 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1951 {
1952 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1953 return false;
1954 }
1955
1956 /* We also need to make an entry in the .rela.plt section. */
1957 s = hplink->srelplt;
1958 s->_raw_size += sizeof (Elf32_External_Rela);
1959
1960 hplink->need_plt_stub = 1;
1961 }
1962 return true;
1963 }
1964
1965 /* If this is a weak symbol, and there is a real definition, the
1966 processor independent code will have arranged for us to see the
1967 real definition first, and we can just use the same value. */
1968 if (h->weakdef != NULL)
1969 {
1970 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1971 || h->weakdef->root.type == bfd_link_hash_defweak);
1972 h->root.u.def.section = h->weakdef->root.u.def.section;
1973 h->root.u.def.value = h->weakdef->root.u.def.value;
1974 return true;
1975 }
1976
1977 /* This is a reference to a symbol defined by a dynamic object which
1978 is not a function. */
1979
1980 /* If we are creating a shared library, we must presume that the
1981 only references to the symbol are via the global offset table.
1982 For such cases we need not do anything here; the relocations will
1983 be handled correctly by relocate_section. */
1984 if (info->shared)
1985 return true;
1986
1987 /* If there are no references to this symbol that do not use the
1988 GOT, we don't need to generate a copy reloc. */
1989 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1990 return true;
1991
1992 /* We must allocate the symbol in our .dynbss section, which will
1993 become part of the .bss section of the executable. There will be
1994 an entry for this symbol in the .dynsym section. The dynamic
1995 object will contain position independent code, so all references
1996 from the dynamic object to this symbol will go through the global
1997 offset table. The dynamic linker will use the .dynsym entry to
1998 determine the address it must put in the global offset table, so
1999 both the dynamic object and the regular object will refer to the
2000 same memory location for the variable. */
2001
2002 s = hplink->sdynbss;
2003
2004 /* We must generate a COPY reloc to tell the dynamic linker to
2005 copy the initial value out of the dynamic object and into the
2006 runtime process image. We need to remember the offset into the
2007 .rela.bss section we are going to use. */
2008 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
2009 {
2010 asection *srel;
2011
2012 srel = hplink->srelbss;
2013 srel->_raw_size += sizeof (Elf32_External_Rela);
2014 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
2015 }
2016
2017 {
2018 /* We need to figure out the alignment required for this symbol. I
2019 have no idea how other ELF linkers handle this. */
2020 unsigned int power_of_two;
2021
2022 power_of_two = bfd_log2 (h->size);
2023 if (power_of_two > 3)
2024 power_of_two = 3;
2025
2026 /* Apply the required alignment. */
2027 s->_raw_size = BFD_ALIGN (s->_raw_size,
2028 (bfd_size_type) (1 << power_of_two));
2029 if (power_of_two > bfd_get_section_alignment (dynobj, s))
2030 {
2031 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
2032 return false;
2033 }
2034 }
2035 /* Define the symbol as being at this point in the section. */
2036 h->root.u.def.section = s;
2037 h->root.u.def.value = s->_raw_size;
2038
2039 /* Increment the section size to make room for the symbol. */
2040 s->_raw_size += h->size;
2041
2042 return true;
2043 }
2044
2045
2046 /* Called via elf_link_hash_traverse to create .plt entries for an
2047 application that uses statically linked PIC functions. Similar to
2048 the first part of elf32_hppa_adjust_dynamic_symbol. */
2049
2050 static boolean
2051 hppa_handle_PIC_calls (h, inf)
2052 struct elf_link_hash_entry *h;
2053 PTR inf;
2054 {
2055 struct bfd_link_info *info;
2056 bfd *dynobj;
2057 struct elf32_hppa_link_hash_table *hplink;
2058 asection *s;
2059
2060 if (! (h->plt.refcount > 0
2061 && (h->root.type == bfd_link_hash_defined
2062 || h->root.type == bfd_link_hash_defweak)
2063 && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0))
2064 {
2065 h->plt.offset = (bfd_vma) -1;
2066 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2067 return true;
2068 }
2069
2070 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
2071 ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
2072
2073 info = (struct bfd_link_info *) inf;
2074 hplink = hppa_link_hash_table (info);
2075 dynobj = hplink->root.dynobj;
2076
2077 /* Make an entry in the .plt section. */
2078 s = hplink->splt;
2079 h->plt.offset = s->_raw_size;
2080 s->_raw_size += PLT_ENTRY_SIZE;
2081
2082 return true;
2083 }
2084
2085
2086 #if ((! LONG_BRANCH_PIC_IN_SHLIB && LONG_BRANCH_VIA_PLT) \
2087 || RELATIVE_DYNAMIC_RELOCS)
2088 /* This function is called via elf_link_hash_traverse to discard space
2089 we allocated for relocs that it turned out we didn't need. */
2090
2091 static boolean
2092 hppa_discard_copies (h, inf)
2093 struct elf_link_hash_entry *h;
2094 PTR inf;
2095 {
2096 struct elf32_hppa_dyn_reloc_entry *s;
2097 struct elf32_hppa_link_hash_entry *eh;
2098 struct bfd_link_info *info;
2099
2100 eh = (struct elf32_hppa_link_hash_entry *) h;
2101 info = (struct bfd_link_info *) inf;
2102
2103 #if ! LONG_BRANCH_PIC_IN_SHLIB && LONG_BRANCH_VIA_PLT
2104 /* Handle the stub reloc case. If we have a plt entry for the
2105 function, we won't be needing long branch stubs. s->count will
2106 only be zero for stub relocs, which provides a handy way of
2107 flagging these relocs, and means we need do nothing special for
2108 the forced local and symbolic link case. */
2109 if (eh->stub_reloc_sec != NULL
2110 && eh->elf.plt.offset != (bfd_vma) -1)
2111 {
2112 for (s = eh->reloc_entries; s != NULL; s = s->next)
2113 if (s->count == 0)
2114 s->section->_raw_size -= sizeof (Elf32_External_Rela);
2115 }
2116 #endif
2117
2118 #if RELATIVE_DYNAMIC_RELOCS
2119 /* If a symbol has been forced local or we have found a regular
2120 definition for the symbolic link case, then we won't be needing
2121 any relocs. */
2122 if (eh->elf.dynindx == -1
2123 || ((eh->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
2124 && !is_absolute_reloc (r_type)
2125 && info->symbolic))
2126 {
2127 for (s = eh->reloc_entries; s != NULL; s = s->next)
2128 s->section->_raw_size -= s->count * sizeof (Elf32_External_Rela);
2129 }
2130 #endif
2131
2132 return true;
2133 }
2134 #endif
2135
2136
2137 /* This function is called via elf_link_hash_traverse to force
2138 millicode symbols local so they do not end up as globals in the
2139 dynamic symbol table. We ought to be able to do this in
2140 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2141 for all dynamic symbols. Arguably, this is a bug in
2142 elf_adjust_dynamic_symbol. */
2143
2144 static boolean
2145 clobber_millicode_symbols (h, info)
2146 struct elf_link_hash_entry *h;
2147 struct bfd_link_info *info;
2148 {
2149 /* Note! We only want to remove these from the dynamic symbol
2150 table. Therefore we do not set ELF_LINK_FORCED_LOCAL. */
2151 if (h->type == STT_PARISC_MILLI)
2152 elf32_hppa_hide_symbol(info, h);
2153 return true;
2154 }
2155
2156
2157 /* Set the sizes of the dynamic sections. */
2158
2159 static boolean
2160 elf32_hppa_size_dynamic_sections (output_bfd, info)
2161 bfd *output_bfd;
2162 struct bfd_link_info *info;
2163 {
2164 struct elf32_hppa_link_hash_table *hplink;
2165 bfd *dynobj;
2166 asection *s;
2167 boolean relocs;
2168 boolean reltext;
2169
2170 hplink = hppa_link_hash_table (info);
2171 dynobj = hplink->root.dynobj;
2172 BFD_ASSERT (dynobj != NULL);
2173
2174 if (hplink->root.dynamic_sections_created)
2175 {
2176 const char *funcname;
2177 bfd *i;
2178
2179 /* Set the contents of the .interp section to the interpreter. */
2180 if (! info->shared)
2181 {
2182 s = bfd_get_section_by_name (dynobj, ".interp");
2183 BFD_ASSERT (s != NULL);
2184 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
2185 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2186 }
2187
2188 /* Force millicode symbols local. */
2189 elf_link_hash_traverse (&hplink->root,
2190 clobber_millicode_symbols,
2191 info);
2192
2193 /* DT_INIT and DT_FINI need a .plt entry. Make sure they have
2194 one. */
2195 funcname = info->init_function;
2196 while (1)
2197 {
2198 if (funcname != NULL)
2199 {
2200 struct elf_link_hash_entry *h;
2201
2202 h = elf_link_hash_lookup (&hplink->root,
2203 funcname,
2204 false, false, false);
2205 if (h != NULL
2206 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
2207 | ELF_LINK_HASH_DEF_REGULAR)))
2208 {
2209 if (h->plt.refcount <= 0)
2210 {
2211 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
2212
2213 /* Make an entry in the .plt section. We know
2214 the function doesn't have a plabel by the
2215 refcount. */
2216 s = hplink->splt;
2217 h->plt.offset = s->_raw_size;
2218 s->_raw_size += PLT_ENTRY_SIZE;
2219
2220 /* Make sure this symbol is output as a dynamic
2221 symbol. */
2222 if (h->dynindx == -1)
2223 {
2224 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2225 return false;
2226 }
2227
2228 /* Make an entry for the reloc too. */
2229 s = hplink->srelplt;
2230 s->_raw_size += sizeof (Elf32_External_Rela);
2231 }
2232
2233 ((struct elf32_hppa_link_hash_entry *) h)->plt_abs = 1;
2234 }
2235 }
2236 if (funcname == info->fini_function)
2237 break;
2238 funcname = info->fini_function;
2239 }
2240
2241 /* Set up .plt offsets for local plabels. */
2242 for (i = info->input_bfds; i; i = i->link_next)
2243 {
2244 bfd_signed_vma *local_plt;
2245 bfd_signed_vma *end_local_plt;
2246 bfd_size_type locsymcount;
2247 Elf_Internal_Shdr *symtab_hdr;
2248
2249 local_plt = elf_local_got_refcounts (i);
2250 if (!local_plt)
2251 continue;
2252
2253 symtab_hdr = &elf_tdata (i)->symtab_hdr;
2254 locsymcount = symtab_hdr->sh_info;
2255 local_plt += locsymcount;
2256 end_local_plt = local_plt + locsymcount;
2257
2258 for (; local_plt < end_local_plt; ++local_plt)
2259 {
2260 if (*local_plt > 0)
2261 {
2262 s = hplink->splt;
2263 *local_plt = s->_raw_size;
2264 s->_raw_size += PLT_ENTRY_SIZE;
2265 if (info->shared)
2266 hplink->srelplt->_raw_size += sizeof (Elf32_External_Rela);
2267 }
2268 else
2269 *local_plt = (bfd_vma) -1;
2270 }
2271 }
2272 }
2273 else
2274 {
2275 /* Run through the function symbols, looking for any that are
2276 PIC, and allocate space for the necessary .plt entries so
2277 that %r19 will be set up. */
2278 if (! info->shared)
2279 elf_link_hash_traverse (&hplink->root,
2280 hppa_handle_PIC_calls,
2281 info);
2282
2283 /* We may have created entries in the .rela.got section.
2284 However, if we are not creating the dynamic sections, we will
2285 not actually use these entries. Reset the size of .rela.got,
2286 which will cause it to get stripped from the output file
2287 below. */
2288 hplink->srelgot->_raw_size = 0;
2289 }
2290
2291 #if ((! LONG_BRANCH_PIC_IN_SHLIB && LONG_BRANCH_VIA_PLT) \
2292 || RELATIVE_DYNAMIC_RELOCS)
2293 /* If this is a -Bsymbolic shared link, then we need to discard all
2294 relocs against symbols defined in a regular object. We also need
2295 to lose relocs we've allocated for long branch stubs if we know
2296 we won't be generating a stub. */
2297 if (info->shared)
2298 elf_link_hash_traverse (&hplink->root,
2299 hppa_discard_copies,
2300 info);
2301 #endif
2302
2303 /* The check_relocs and adjust_dynamic_symbol entry points have
2304 determined the sizes of the various dynamic sections. Allocate
2305 memory for them. */
2306 relocs = false;
2307 reltext = false;
2308 for (s = dynobj->sections; s != NULL; s = s->next)
2309 {
2310 const char *name;
2311
2312 if ((s->flags & SEC_LINKER_CREATED) == 0)
2313 continue;
2314
2315 /* It's OK to base decisions on the section name, because none
2316 of the dynobj section names depend upon the input files. */
2317 name = bfd_get_section_name (dynobj, s);
2318
2319 if (strncmp (name, ".rela", 5) == 0)
2320 {
2321 if (s->_raw_size != 0)
2322 {
2323 asection *target;
2324 const char *outname;
2325
2326 /* Remember whether there are any reloc sections other
2327 than .rela.plt. */
2328 if (strcmp (name+5, ".plt") != 0)
2329 relocs = true;
2330
2331 /* If this relocation section applies to a read only
2332 section, then we probably need a DT_TEXTREL entry. */
2333 outname = bfd_get_section_name (output_bfd,
2334 s->output_section);
2335 target = bfd_get_section_by_name (output_bfd, outname + 5);
2336 if (target != NULL
2337 && (target->flags & SEC_READONLY) != 0
2338 && (target->flags & SEC_ALLOC) != 0)
2339 reltext = true;
2340
2341 /* We use the reloc_count field as a counter if we need
2342 to copy relocs into the output file. */
2343 s->reloc_count = 0;
2344 }
2345 }
2346 else if (strcmp (name, ".plt") == 0)
2347 {
2348 if (hplink->need_plt_stub)
2349 {
2350 /* Make space for the plt stub at the end of the .plt
2351 section. We want this stub right at the end, up
2352 against the .got section. */
2353 int gotalign = bfd_section_alignment (dynobj, hplink->sgot);
2354 int pltalign = bfd_section_alignment (dynobj, s);
2355 bfd_size_type mask;
2356
2357 if (gotalign > pltalign)
2358 bfd_set_section_alignment (dynobj, s, gotalign);
2359 mask = ((bfd_size_type) 1 << gotalign) - 1;
2360 s->_raw_size = (s->_raw_size + sizeof (plt_stub) + mask) & ~mask;
2361 }
2362 }
2363 else if (strcmp (name, ".got") == 0)
2364 ;
2365 else
2366 {
2367 /* It's not one of our sections, so don't allocate space. */
2368 continue;
2369 }
2370
2371 if (s->_raw_size == 0)
2372 {
2373 /* If we don't need this section, strip it from the
2374 output file. This is mostly to handle .rela.bss and
2375 .rela.plt. We must create both sections in
2376 create_dynamic_sections, because they must be created
2377 before the linker maps input sections to output
2378 sections. The linker does that before
2379 adjust_dynamic_symbol is called, and it is that
2380 function which decides whether anything needs to go
2381 into these sections. */
2382 _bfd_strip_section_from_output (info, s);
2383 continue;
2384 }
2385
2386 /* Allocate memory for the section contents. Zero it, because
2387 we may not fill in all the reloc sections. */
2388 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
2389 if (s->contents == NULL && s->_raw_size != 0)
2390 return false;
2391 }
2392
2393 if (hplink->root.dynamic_sections_created)
2394 {
2395 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2396 actually has nothing to do with the PLT, it is how we
2397 communicate the LTP value of a load module to the dynamic
2398 linker. */
2399 if (! bfd_elf32_add_dynamic_entry (info, DT_PLTGOT, 0))
2400 return false;
2401
2402 /* Add some entries to the .dynamic section. We fill in the
2403 values later, in elf32_hppa_finish_dynamic_sections, but we
2404 must add the entries now so that we get the correct size for
2405 the .dynamic section. The DT_DEBUG entry is filled in by the
2406 dynamic linker and used by the debugger. */
2407 if (! info->shared)
2408 {
2409 if (! bfd_elf32_add_dynamic_entry (info, DT_DEBUG, 0))
2410 return false;
2411 }
2412
2413 if (hplink->srelplt->_raw_size != 0)
2414 {
2415 if (! bfd_elf32_add_dynamic_entry (info, DT_PLTRELSZ, 0)
2416 || ! bfd_elf32_add_dynamic_entry (info, DT_PLTREL, DT_RELA)
2417 || ! bfd_elf32_add_dynamic_entry (info, DT_JMPREL, 0))
2418 return false;
2419 }
2420
2421 if (relocs)
2422 {
2423 if (! bfd_elf32_add_dynamic_entry (info, DT_RELA, 0)
2424 || ! bfd_elf32_add_dynamic_entry (info, DT_RELASZ, 0)
2425 || ! bfd_elf32_add_dynamic_entry (info, DT_RELAENT,
2426 sizeof (Elf32_External_Rela)))
2427 return false;
2428 }
2429
2430 if (reltext)
2431 {
2432 if (! bfd_elf32_add_dynamic_entry (info, DT_TEXTREL, 0))
2433 return false;
2434 info->flags |= DF_TEXTREL;
2435 }
2436 }
2437
2438 return true;
2439 }
2440
2441
2442 /* External entry points for sizing and building linker stubs. */
2443
2444 /* Determine and set the size of the stub section for a final link.
2445
2446 The basic idea here is to examine all the relocations looking for
2447 PC-relative calls to a target that is unreachable with a "bl"
2448 instruction. */
2449
2450 boolean
2451 elf32_hppa_size_stubs (output_bfd, stub_bfd, info, multi_subspace, group_size,
2452 add_stub_section, layout_sections_again)
2453 bfd *output_bfd;
2454 bfd *stub_bfd;
2455 struct bfd_link_info *info;
2456 boolean multi_subspace;
2457 bfd_signed_vma group_size;
2458 asection * (*add_stub_section) PARAMS ((const char *, asection *));
2459 void (*layout_sections_again) PARAMS ((void));
2460 {
2461 bfd *input_bfd;
2462 asection *section;
2463 asection **input_list, **list;
2464 Elf_Internal_Sym *local_syms, **all_local_syms;
2465 unsigned int bfd_indx, bfd_count;
2466 int top_id, top_index;
2467 struct elf32_hppa_link_hash_table *hplink;
2468 bfd_size_type stub_group_size;
2469 boolean stubs_always_before_branch;
2470 boolean stub_changed = 0;
2471 boolean ret = 0;
2472
2473 hplink = hppa_link_hash_table (info);
2474
2475 /* Stash our params away. */
2476 hplink->stub_bfd = stub_bfd;
2477 hplink->multi_subspace = multi_subspace;
2478 hplink->add_stub_section = add_stub_section;
2479 hplink->layout_sections_again = layout_sections_again;
2480 stubs_always_before_branch = group_size < 0;
2481 if (group_size < 0)
2482 stub_group_size = -group_size;
2483 else
2484 stub_group_size = group_size;
2485 if (stub_group_size == 1)
2486 {
2487 /* Default values. */
2488 stub_group_size = 8000000;
2489 if (hplink->has_17bit_branch || hplink->multi_subspace)
2490 stub_group_size = 250000;
2491 if (hplink->has_12bit_branch)
2492 stub_group_size = 7812;
2493 }
2494
2495 /* Count the number of input BFDs and find the top input section id. */
2496 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2497 input_bfd != NULL;
2498 input_bfd = input_bfd->link_next)
2499 {
2500 bfd_count += 1;
2501 for (section = input_bfd->sections;
2502 section != NULL;
2503 section = section->next)
2504 {
2505 if (top_id < section->id)
2506 top_id = section->id;
2507 }
2508 }
2509
2510 hplink->stub_group
2511 = (struct map_stub *) bfd_zmalloc (sizeof (struct map_stub) * (top_id + 1));
2512 if (hplink->stub_group == NULL)
2513 return false;
2514
2515 /* Make a list of input sections for each output section included in
2516 the link.
2517
2518 We can't use output_bfd->section_count here to find the top output
2519 section index as some sections may have been removed, and
2520 _bfd_strip_section_from_output doesn't renumber the indices. */
2521 for (section = output_bfd->sections, top_index = 0;
2522 section != NULL;
2523 section = section->next)
2524 {
2525 if (top_index < section->index)
2526 top_index = section->index;
2527 }
2528
2529 input_list
2530 = (asection **) bfd_malloc (sizeof (asection *) * (top_index + 1));
2531 if (input_list == NULL)
2532 return false;
2533
2534 /* For sections we aren't interested in, mark their entries with a
2535 value we can check later. */
2536 list = input_list + top_index;
2537 do
2538 *list = bfd_abs_section_ptr;
2539 while (list-- != input_list);
2540
2541 for (section = output_bfd->sections;
2542 section != NULL;
2543 section = section->next)
2544 {
2545 if ((section->flags & SEC_CODE) != 0)
2546 input_list[section->index] = NULL;
2547 }
2548
2549 /* Now actually build the lists. */
2550 for (input_bfd = info->input_bfds;
2551 input_bfd != NULL;
2552 input_bfd = input_bfd->link_next)
2553 {
2554 for (section = input_bfd->sections;
2555 section != NULL;
2556 section = section->next)
2557 {
2558 if (section->output_section != NULL
2559 && section->output_section->owner == output_bfd
2560 && section->output_section->index <= top_index)
2561 {
2562 list = input_list + section->output_section->index;
2563 if (*list != bfd_abs_section_ptr)
2564 {
2565 /* Steal the link_sec pointer for our list. */
2566 #define PREV_SEC(sec) (hplink->stub_group[(sec)->id].link_sec)
2567 /* This happens to make the list in reverse order,
2568 which is what we want. */
2569 PREV_SEC (section) = *list;
2570 *list = section;
2571 }
2572 }
2573 }
2574 }
2575
2576 /* See whether we can group stub sections together. Grouping stub
2577 sections may result in fewer stubs. More importantly, we need to
2578 put all .init* and .fini* stubs at the beginning of the .init or
2579 .fini output sections respectively, because glibc splits the
2580 _init and _fini functions into multiple parts. Putting a stub in
2581 the middle of a function is not a good idea. */
2582 list = input_list + top_index;
2583 do
2584 {
2585 asection *tail = *list;
2586 if (tail == bfd_abs_section_ptr)
2587 continue;
2588 while (tail != NULL)
2589 {
2590 asection *curr;
2591 asection *prev;
2592 bfd_size_type total;
2593
2594 curr = tail;
2595 if (tail->_cooked_size)
2596 total = tail->_cooked_size;
2597 else
2598 total = tail->_raw_size;
2599 while ((prev = PREV_SEC (curr)) != NULL
2600 && ((total += curr->output_offset - prev->output_offset)
2601 < stub_group_size))
2602 curr = prev;
2603
2604 /* OK, the size from the start of CURR to the end is less
2605 than 250000 bytes and thus can be handled by one stub
2606 section. (or the tail section is itself larger than
2607 250000 bytes, in which case we may be toast.)
2608 We should really be keeping track of the total size of
2609 stubs added here, as stubs contribute to the final output
2610 section size. That's a little tricky, and this way will
2611 only break if stubs added total more than 12144 bytes, or
2612 1518 long branch stubs. It seems unlikely for more than
2613 1518 different functions to be called, especially from
2614 code only 250000 bytes long. */
2615 do
2616 {
2617 prev = PREV_SEC (tail);
2618 /* Set up this stub group. */
2619 hplink->stub_group[tail->id].link_sec = curr;
2620 }
2621 while (tail != curr && (tail = prev) != NULL);
2622
2623 /* But wait, there's more! Input sections up to 250000
2624 bytes before the stub section can be handled by it too. */
2625 if (!stubs_always_before_branch)
2626 {
2627 total = 0;
2628 while (prev != NULL
2629 && ((total += tail->output_offset - prev->output_offset)
2630 < stub_group_size))
2631 {
2632 tail = prev;
2633 prev = PREV_SEC (tail);
2634 hplink->stub_group[tail->id].link_sec = curr;
2635 }
2636 }
2637 tail = prev;
2638 }
2639 }
2640 while (list-- != input_list);
2641 free (input_list);
2642 #undef PREV_SEC
2643
2644 /* We want to read in symbol extension records only once. To do this
2645 we need to read in the local symbols in parallel and save them for
2646 later use; so hold pointers to the local symbols in an array. */
2647 all_local_syms
2648 = (Elf_Internal_Sym **) bfd_zmalloc (sizeof (Elf_Internal_Sym *)
2649 * bfd_count);
2650 if (all_local_syms == NULL)
2651 return false;
2652
2653 /* Walk over all the input BFDs, swapping in local symbols.
2654 If we are creating a shared library, create hash entries for the
2655 export stubs. */
2656 for (input_bfd = info->input_bfds, bfd_indx = 0;
2657 input_bfd != NULL;
2658 input_bfd = input_bfd->link_next, bfd_indx++)
2659 {
2660 Elf_Internal_Shdr *symtab_hdr;
2661 Elf_Internal_Sym *isym;
2662 Elf32_External_Sym *ext_syms, *esym, *end_sy;
2663
2664 /* We'll need the symbol table in a second. */
2665 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2666 if (symtab_hdr->sh_info == 0)
2667 continue;
2668
2669 /* We need an array of the local symbols attached to the input bfd.
2670 Unfortunately, we're going to have to read & swap them in. */
2671 local_syms = (Elf_Internal_Sym *)
2672 bfd_malloc (symtab_hdr->sh_info * sizeof (Elf_Internal_Sym));
2673 if (local_syms == NULL)
2674 {
2675 goto error_ret_free_local;
2676 }
2677 all_local_syms[bfd_indx] = local_syms;
2678 ext_syms = (Elf32_External_Sym *)
2679 bfd_malloc (symtab_hdr->sh_info * sizeof (Elf32_External_Sym));
2680 if (ext_syms == NULL)
2681 {
2682 goto error_ret_free_local;
2683 }
2684
2685 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
2686 || (bfd_read (ext_syms, 1,
2687 (symtab_hdr->sh_info * sizeof (Elf32_External_Sym)),
2688 input_bfd)
2689 != (symtab_hdr->sh_info * sizeof (Elf32_External_Sym))))
2690 {
2691 free (ext_syms);
2692 goto error_ret_free_local;
2693 }
2694
2695 /* Swap the local symbols in. */
2696 isym = local_syms;
2697 esym = ext_syms;
2698 for (end_sy = esym + symtab_hdr->sh_info; esym < end_sy; esym++, isym++)
2699 bfd_elf32_swap_symbol_in (input_bfd, esym, isym);
2700
2701 /* Now we can free the external symbols. */
2702 free (ext_syms);
2703
2704 #if ! LONG_BRANCH_PIC_IN_SHLIB
2705 /* If this is a shared link, find all the stub reloc sections. */
2706 if (info->shared)
2707 for (section = input_bfd->sections;
2708 section != NULL;
2709 section = section->next)
2710 {
2711 char *name;
2712 asection *reloc_sec;
2713
2714 name = bfd_malloc (strlen (section->name)
2715 + sizeof STUB_SUFFIX
2716 + 5);
2717 if (name == NULL)
2718 return false;
2719 sprintf (name, ".rela%s%s", section->name, STUB_SUFFIX);
2720 reloc_sec = bfd_get_section_by_name (hplink->root.dynobj, name);
2721 hplink->stub_group[section->id].reloc_sec = reloc_sec;
2722 free (name);
2723 }
2724 #endif
2725
2726 if (info->shared && hplink->multi_subspace)
2727 {
2728 struct elf_link_hash_entry **sym_hashes;
2729 struct elf_link_hash_entry **end_hashes;
2730 unsigned int symcount;
2731
2732 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2733 - symtab_hdr->sh_info);
2734 sym_hashes = elf_sym_hashes (input_bfd);
2735 end_hashes = sym_hashes + symcount;
2736
2737 /* Look through the global syms for functions; We need to
2738 build export stubs for all globally visible functions. */
2739 for (; sym_hashes < end_hashes; sym_hashes++)
2740 {
2741 struct elf32_hppa_link_hash_entry *hash;
2742
2743 hash = (struct elf32_hppa_link_hash_entry *) *sym_hashes;
2744
2745 while (hash->elf.root.type == bfd_link_hash_indirect
2746 || hash->elf.root.type == bfd_link_hash_warning)
2747 hash = ((struct elf32_hppa_link_hash_entry *)
2748 hash->elf.root.u.i.link);
2749
2750 /* At this point in the link, undefined syms have been
2751 resolved, so we need to check that the symbol was
2752 defined in this BFD. */
2753 if ((hash->elf.root.type == bfd_link_hash_defined
2754 || hash->elf.root.type == bfd_link_hash_defweak)
2755 && hash->elf.type == STT_FUNC
2756 && hash->elf.root.u.def.section->output_section != NULL
2757 && (hash->elf.root.u.def.section->output_section->owner
2758 == output_bfd)
2759 && hash->elf.root.u.def.section->owner == input_bfd
2760 && (hash->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
2761 && !(hash->elf.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)
2762 && ELF_ST_VISIBILITY (hash->elf.other) == STV_DEFAULT)
2763 {
2764 asection *sec;
2765 const char *stub_name;
2766 struct elf32_hppa_stub_hash_entry *stub_entry;
2767
2768 sec = hash->elf.root.u.def.section;
2769 stub_name = hash->elf.root.root.string;
2770 stub_entry = hppa_stub_hash_lookup (&hplink->stub_hash_table,
2771 stub_name,
2772 false, false);
2773 if (stub_entry == NULL)
2774 {
2775 stub_entry = hppa_add_stub (stub_name, sec, hplink);
2776 if (!stub_entry)
2777 goto error_ret_free_local;
2778
2779 stub_entry->target_value = hash->elf.root.u.def.value;
2780 stub_entry->target_section = hash->elf.root.u.def.section;
2781 stub_entry->stub_type = hppa_stub_export;
2782 stub_entry->h = hash;
2783 stub_changed = 1;
2784 }
2785 else
2786 {
2787 (*_bfd_error_handler) (_("%s: duplicate export stub %s"),
2788 bfd_get_filename (input_bfd),
2789 stub_name);
2790 }
2791 }
2792 }
2793 }
2794 }
2795
2796 while (1)
2797 {
2798 asection *stub_sec;
2799
2800 for (input_bfd = info->input_bfds, bfd_indx = 0;
2801 input_bfd != NULL;
2802 input_bfd = input_bfd->link_next, bfd_indx++)
2803 {
2804 Elf_Internal_Shdr *symtab_hdr;
2805
2806 /* We'll need the symbol table in a second. */
2807 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2808 if (symtab_hdr->sh_info == 0)
2809 continue;
2810
2811 local_syms = all_local_syms[bfd_indx];
2812
2813 /* Walk over each section attached to the input bfd. */
2814 for (section = input_bfd->sections;
2815 section != NULL;
2816 section = section->next)
2817 {
2818 Elf_Internal_Shdr *input_rel_hdr;
2819 Elf32_External_Rela *external_relocs, *erelaend, *erela;
2820 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2821
2822 /* If there aren't any relocs, then there's nothing more
2823 to do. */
2824 if ((section->flags & SEC_RELOC) == 0
2825 || section->reloc_count == 0)
2826 continue;
2827
2828 /* If this section is a link-once section that will be
2829 discarded, then don't create any stubs. */
2830 if (section->output_section == NULL
2831 || section->output_section->owner != output_bfd)
2832 continue;
2833
2834 /* Allocate space for the external relocations. */
2835 external_relocs
2836 = ((Elf32_External_Rela *)
2837 bfd_malloc (section->reloc_count
2838 * sizeof (Elf32_External_Rela)));
2839 if (external_relocs == NULL)
2840 {
2841 goto error_ret_free_local;
2842 }
2843
2844 /* Likewise for the internal relocations. */
2845 internal_relocs = ((Elf_Internal_Rela *)
2846 bfd_malloc (section->reloc_count
2847 * sizeof (Elf_Internal_Rela)));
2848 if (internal_relocs == NULL)
2849 {
2850 free (external_relocs);
2851 goto error_ret_free_local;
2852 }
2853
2854 /* Read in the external relocs. */
2855 input_rel_hdr = &elf_section_data (section)->rel_hdr;
2856 if (bfd_seek (input_bfd, input_rel_hdr->sh_offset, SEEK_SET) != 0
2857 || bfd_read (external_relocs, 1,
2858 input_rel_hdr->sh_size,
2859 input_bfd) != input_rel_hdr->sh_size)
2860 {
2861 free (external_relocs);
2862 error_ret_free_internal:
2863 free (internal_relocs);
2864 goto error_ret_free_local;
2865 }
2866
2867 /* Swap in the relocs. */
2868 erela = external_relocs;
2869 erelaend = erela + section->reloc_count;
2870 irela = internal_relocs;
2871 for (; erela < erelaend; erela++, irela++)
2872 bfd_elf32_swap_reloca_in (input_bfd, erela, irela);
2873
2874 /* We're done with the external relocs, free them. */
2875 free (external_relocs);
2876
2877 /* Now examine each relocation. */
2878 irela = internal_relocs;
2879 irelaend = irela + section->reloc_count;
2880 for (; irela < irelaend; irela++)
2881 {
2882 unsigned int r_type, r_indx;
2883 enum elf32_hppa_stub_type stub_type;
2884 struct elf32_hppa_stub_hash_entry *stub_entry;
2885 asection *sym_sec;
2886 bfd_vma sym_value;
2887 bfd_vma destination;
2888 struct elf32_hppa_link_hash_entry *hash;
2889 char *stub_name;
2890 const asection *id_sec;
2891
2892 r_type = ELF32_R_TYPE (irela->r_info);
2893 r_indx = ELF32_R_SYM (irela->r_info);
2894
2895 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2896 {
2897 bfd_set_error (bfd_error_bad_value);
2898 goto error_ret_free_internal;
2899 }
2900
2901 /* Only look for stubs on call instructions. */
2902 if (r_type != (unsigned int) R_PARISC_PCREL12F
2903 && r_type != (unsigned int) R_PARISC_PCREL17F
2904 && r_type != (unsigned int) R_PARISC_PCREL22F)
2905 continue;
2906
2907 /* Now determine the call target, its name, value,
2908 section. */
2909 sym_sec = NULL;
2910 sym_value = 0;
2911 destination = 0;
2912 hash = NULL;
2913 if (r_indx < symtab_hdr->sh_info)
2914 {
2915 /* It's a local symbol. */
2916 Elf_Internal_Sym *sym;
2917 Elf_Internal_Shdr *hdr;
2918
2919 sym = local_syms + r_indx;
2920 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2921 sym_sec = hdr->bfd_section;
2922 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2923 sym_value = sym->st_value;
2924 destination = (sym_value + irela->r_addend
2925 + sym_sec->output_offset
2926 + sym_sec->output_section->vma);
2927 }
2928 else
2929 {
2930 /* It's an external symbol. */
2931 int e_indx;
2932
2933 e_indx = r_indx - symtab_hdr->sh_info;
2934 hash = ((struct elf32_hppa_link_hash_entry *)
2935 elf_sym_hashes (input_bfd)[e_indx]);
2936
2937 while (hash->elf.root.type == bfd_link_hash_indirect
2938 || hash->elf.root.type == bfd_link_hash_warning)
2939 hash = ((struct elf32_hppa_link_hash_entry *)
2940 hash->elf.root.u.i.link);
2941
2942 if (hash->elf.root.type == bfd_link_hash_defined
2943 || hash->elf.root.type == bfd_link_hash_defweak)
2944 {
2945 sym_sec = hash->elf.root.u.def.section;
2946 sym_value = hash->elf.root.u.def.value;
2947 if (sym_sec->output_section != NULL)
2948 destination = (sym_value + irela->r_addend
2949 + sym_sec->output_offset
2950 + sym_sec->output_section->vma);
2951 }
2952 else if (hash->elf.root.type == bfd_link_hash_undefweak)
2953 {
2954 if (! info->shared)
2955 continue;
2956 }
2957 else if (hash->elf.root.type == bfd_link_hash_undefined)
2958 {
2959 if (! (info->shared
2960 && !info->no_undefined
2961 && (ELF_ST_VISIBILITY (hash->elf.other)
2962 == STV_DEFAULT)))
2963 continue;
2964 }
2965 else
2966 {
2967 bfd_set_error (bfd_error_bad_value);
2968 goto error_ret_free_internal;
2969 }
2970 }
2971
2972 /* Determine what (if any) linker stub is needed. */
2973 stub_type = hppa_type_of_stub (section, irela, hash,
2974 destination);
2975 if (stub_type == hppa_stub_none)
2976 continue;
2977
2978 /* Support for grouping stub sections. */
2979 id_sec = hplink->stub_group[section->id].link_sec;
2980
2981 /* Get the name of this stub. */
2982 stub_name = hppa_stub_name (id_sec, sym_sec, hash, irela);
2983 if (!stub_name)
2984 goto error_ret_free_internal;
2985
2986 stub_entry = hppa_stub_hash_lookup (&hplink->stub_hash_table,
2987 stub_name,
2988 false, false);
2989 if (stub_entry != NULL)
2990 {
2991 /* The proper stub has already been created. */
2992 free (stub_name);
2993 continue;
2994 }
2995
2996 stub_entry = hppa_add_stub (stub_name, section, hplink);
2997 if (stub_entry == NULL)
2998 {
2999 free (stub_name);
3000 goto error_ret_free_local;
3001 }
3002
3003 stub_entry->target_value = sym_value;
3004 stub_entry->target_section = sym_sec;
3005 stub_entry->stub_type = stub_type;
3006 if (info->shared)
3007 {
3008 if (stub_type == hppa_stub_import)
3009 stub_entry->stub_type = hppa_stub_import_shared;
3010 else if (stub_type == hppa_stub_long_branch
3011 && (LONG_BRANCH_PIC_IN_SHLIB || hash == NULL))
3012 stub_entry->stub_type = hppa_stub_long_branch_shared;
3013 }
3014 stub_entry->h = hash;
3015 stub_changed = 1;
3016 }
3017
3018 /* We're done with the internal relocs, free them. */
3019 free (internal_relocs);
3020 }
3021 }
3022
3023 if (!stub_changed)
3024 break;
3025
3026 /* OK, we've added some stubs. Find out the new size of the
3027 stub sections. */
3028 for (stub_sec = hplink->stub_bfd->sections;
3029 stub_sec != NULL;
3030 stub_sec = stub_sec->next)
3031 {
3032 stub_sec->_raw_size = 0;
3033 stub_sec->_cooked_size = 0;
3034 }
3035 #if ! LONG_BRANCH_PIC_IN_SHLIB
3036 {
3037 int i;
3038
3039 for (i = top_id; i >= 0; --i)
3040 {
3041 /* This will probably hit the same section many times.. */
3042 stub_sec = hplink->stub_group[i].reloc_sec;
3043 if (stub_sec != NULL)
3044 {
3045 stub_sec->_raw_size = 0;
3046 stub_sec->_cooked_size = 0;
3047 }
3048 }
3049 }
3050 #endif
3051
3052 bfd_hash_traverse (&hplink->stub_hash_table,
3053 hppa_size_one_stub,
3054 hplink);
3055
3056 /* Ask the linker to do its stuff. */
3057 (*hplink->layout_sections_again) ();
3058 stub_changed = 0;
3059 }
3060
3061 ret = 1;
3062
3063 error_ret_free_local:
3064 while (bfd_count-- > 0)
3065 if (all_local_syms[bfd_count])
3066 free (all_local_syms[bfd_count]);
3067 free (all_local_syms);
3068
3069 return ret;
3070 }
3071
3072
3073 /* For a final link, this function is called after we have sized the
3074 stubs to provide a value for __gp. */
3075
3076 boolean
3077 elf32_hppa_set_gp (abfd, info)
3078 bfd *abfd;
3079 struct bfd_link_info *info;
3080 {
3081 struct elf32_hppa_link_hash_table *hplink;
3082 struct elf_link_hash_entry *h;
3083 asection *sec;
3084 bfd_vma gp_val;
3085
3086 hplink = hppa_link_hash_table (info);
3087 h = elf_link_hash_lookup (&hplink->root, "$global$",
3088 false, false, false);
3089
3090 if (h != NULL && h->root.type == bfd_link_hash_defined)
3091 {
3092 gp_val = h->root.u.def.value;
3093 sec = h->root.u.def.section;
3094 }
3095 else
3096 {
3097 /* Choose to point our LTP at, in this order, one of .plt, .got,
3098 or .data, if these sections exist. In the case of choosing
3099 .plt try to make the LTP ideal for addressing anywhere in the
3100 .plt or .got with a 14 bit signed offset. Typically, the end
3101 of the .plt is the start of the .got, so choose .plt + 0x2000
3102 if either the .plt or .got is larger than 0x2000. If both
3103 the .plt and .got are smaller than 0x2000, choose the end of
3104 the .plt section. */
3105
3106 sec = hplink->splt;
3107 if (sec != NULL)
3108 {
3109 gp_val = sec->_raw_size;
3110 if (gp_val > 0x2000
3111 || (hplink->sgot && hplink->sgot->_raw_size > 0x2000))
3112 {
3113 gp_val = 0x2000;
3114 }
3115 }
3116 else
3117 {
3118 gp_val = 0;
3119 sec = hplink->sgot;
3120 if (sec != NULL)
3121 {
3122 /* We know we don't have a .plt. If .got is large,
3123 offset our LTP. */
3124 if (sec->_raw_size > 0x2000)
3125 gp_val = 0x2000;
3126 }
3127 else
3128 {
3129 /* No .plt or .got. Who cares what the LTP is? */
3130 sec = bfd_get_section_by_name (abfd, ".data");
3131 }
3132 }
3133 }
3134
3135 if (sec != NULL)
3136 gp_val += sec->output_section->vma + sec->output_offset;
3137
3138 elf_gp (abfd) = gp_val;
3139 return true;
3140 }
3141
3142
3143 /* Build all the stubs associated with the current output file. The
3144 stubs are kept in a hash table attached to the main linker hash
3145 table. We also set up the .plt entries for statically linked PIC
3146 functions here. This function is called via hppaelf_finish in the
3147 linker. */
3148
3149 boolean
3150 elf32_hppa_build_stubs (info)
3151 struct bfd_link_info *info;
3152 {
3153 asection *stub_sec;
3154 struct bfd_hash_table *table;
3155 struct elf32_hppa_link_hash_table *hplink;
3156
3157 hplink = hppa_link_hash_table (info);
3158
3159 for (stub_sec = hplink->stub_bfd->sections;
3160 stub_sec != NULL;
3161 stub_sec = stub_sec->next)
3162 {
3163 size_t size;
3164
3165 /* Allocate memory to hold the linker stubs. */
3166 size = stub_sec->_raw_size;
3167 stub_sec->contents = (unsigned char *) bfd_zalloc (hplink->stub_bfd,
3168 size);
3169 if (stub_sec->contents == NULL && size != 0)
3170 return false;
3171 stub_sec->_raw_size = 0;
3172 }
3173
3174 /* Build the stubs as directed by the stub hash table. */
3175 table = &hplink->stub_hash_table;
3176 bfd_hash_traverse (table, hppa_build_one_stub, info);
3177
3178 return true;
3179 }
3180
3181
3182 /* Perform a relocation as part of a final link. */
3183
3184 static bfd_reloc_status_type
3185 final_link_relocate (input_section, contents, rel, value, hplink, sym_sec, h)
3186 asection *input_section;
3187 bfd_byte *contents;
3188 const Elf_Internal_Rela *rel;
3189 bfd_vma value;
3190 struct elf32_hppa_link_hash_table *hplink;
3191 asection *sym_sec;
3192 struct elf32_hppa_link_hash_entry *h;
3193 {
3194 int insn;
3195 unsigned int r_type = ELF32_R_TYPE (rel->r_info);
3196 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3197 int r_format = howto->bitsize;
3198 enum hppa_reloc_field_selector_type_alt r_field;
3199 bfd *input_bfd = input_section->owner;
3200 bfd_vma offset = rel->r_offset;
3201 bfd_vma max_branch_offset = 0;
3202 bfd_byte *hit_data = contents + offset;
3203 bfd_signed_vma addend = rel->r_addend;
3204 bfd_vma location;
3205 struct elf32_hppa_stub_hash_entry *stub_entry = NULL;
3206 int val;
3207
3208 if (r_type == R_PARISC_NONE)
3209 return bfd_reloc_ok;
3210
3211 insn = bfd_get_32 (input_bfd, hit_data);
3212
3213 /* Find out where we are and where we're going. */
3214 location = (offset +
3215 input_section->output_offset +
3216 input_section->output_section->vma);
3217
3218 switch (r_type)
3219 {
3220 case R_PARISC_PCREL12F:
3221 case R_PARISC_PCREL17F:
3222 case R_PARISC_PCREL22F:
3223 /* If this is a call to a function defined in another dynamic
3224 library, or if it is a call to a PIC function in the same
3225 object, or if this is a shared link and it is a call to a
3226 weak symbol which may or may not be in the same object, then
3227 find the import stub in the stub hash. */
3228 if (sym_sec == NULL
3229 || sym_sec->output_section == NULL
3230 || (h != NULL &&
3231 (h->pic_call
3232 || (h->elf.root.type == bfd_link_hash_defweak
3233 && h->elf.dynindx != -1
3234 && h->elf.plt.offset != (bfd_vma) -1))))
3235 {
3236 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3237 h, rel, hplink);
3238 if (stub_entry != NULL)
3239 {
3240 value = (stub_entry->stub_offset
3241 + stub_entry->stub_sec->output_offset
3242 + stub_entry->stub_sec->output_section->vma);
3243 addend = 0;
3244 }
3245 else if (sym_sec == NULL && h != NULL
3246 && h->elf.root.type == bfd_link_hash_undefweak)
3247 {
3248 /* It's OK if undefined weak. Make undefined weak
3249 branches go nowhere. */
3250 value = location;
3251 addend = 0;
3252 }
3253 else
3254 return bfd_reloc_notsupported;
3255 }
3256 /* Fall thru. */
3257
3258 case R_PARISC_PCREL21L:
3259 case R_PARISC_PCREL17C:
3260 case R_PARISC_PCREL17R:
3261 case R_PARISC_PCREL14R:
3262 case R_PARISC_PCREL14F:
3263 /* Make it a pc relative offset. */
3264 value -= location;
3265 addend -= 8;
3266 break;
3267
3268 case R_PARISC_DPREL21L:
3269 case R_PARISC_DPREL14R:
3270 case R_PARISC_DPREL14F:
3271 /* For all the DP relative relocations, we need to examine the symbol's
3272 section. If it's a code section, then "data pointer relative" makes
3273 no sense. In that case we don't adjust the "value", and for 21 bit
3274 addil instructions, we change the source addend register from %dp to
3275 %r0. This situation commonly arises when a variable's "constness"
3276 is declared differently from the way the variable is defined. For
3277 instance: "extern int foo" with foo defined as "const int foo". */
3278 if (sym_sec == NULL)
3279 break;
3280 if ((sym_sec->flags & SEC_CODE) != 0)
3281 {
3282 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3283 == (((int) OP_ADDIL << 26) | (27 << 21)))
3284 {
3285 insn &= ~ (0x1f << 21);
3286 #if 1 /* debug them. */
3287 (*_bfd_error_handler)
3288 (_("%s(%s+0x%lx): fixing %s"),
3289 bfd_get_filename (input_bfd),
3290 input_section->name,
3291 (long) rel->r_offset,
3292 howto->name);
3293 #endif
3294 }
3295 /* Now try to make things easy for the dynamic linker. */
3296
3297 break;
3298 }
3299 /* Fall thru. */
3300
3301 case R_PARISC_DLTIND21L:
3302 case R_PARISC_DLTIND14R:
3303 case R_PARISC_DLTIND14F:
3304 value -= elf_gp (input_section->output_section->owner);
3305 break;
3306
3307 default:
3308 break;
3309 }
3310
3311 switch (r_type)
3312 {
3313 case R_PARISC_DIR32:
3314 case R_PARISC_DIR14F:
3315 case R_PARISC_DIR17F:
3316 case R_PARISC_PCREL17C:
3317 case R_PARISC_PCREL14F:
3318 case R_PARISC_DPREL14F:
3319 case R_PARISC_PLABEL32:
3320 case R_PARISC_DLTIND14F:
3321 case R_PARISC_SEGBASE:
3322 case R_PARISC_SEGREL32:
3323 r_field = e_fsel;
3324 break;
3325
3326 case R_PARISC_DIR21L:
3327 case R_PARISC_PCREL21L:
3328 case R_PARISC_DPREL21L:
3329 case R_PARISC_PLABEL21L:
3330 case R_PARISC_DLTIND21L:
3331 r_field = e_lrsel;
3332 break;
3333
3334 case R_PARISC_DIR17R:
3335 case R_PARISC_PCREL17R:
3336 case R_PARISC_DIR14R:
3337 case R_PARISC_PCREL14R:
3338 case R_PARISC_DPREL14R:
3339 case R_PARISC_PLABEL14R:
3340 case R_PARISC_DLTIND14R:
3341 r_field = e_rrsel;
3342 break;
3343
3344 case R_PARISC_PCREL12F:
3345 case R_PARISC_PCREL17F:
3346 case R_PARISC_PCREL22F:
3347 r_field = e_fsel;
3348
3349 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3350 {
3351 max_branch_offset = (1 << (17-1)) << 2;
3352 }
3353 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3354 {
3355 max_branch_offset = (1 << (12-1)) << 2;
3356 }
3357 else
3358 {
3359 max_branch_offset = (1 << (22-1)) << 2;
3360 }
3361
3362 /* sym_sec is NULL on undefined weak syms or when shared on
3363 undefined syms. We've already checked for a stub for the
3364 shared undefined case. */
3365 if (sym_sec == NULL)
3366 break;
3367
3368 /* If the branch is out of reach, then redirect the
3369 call to the local stub for this function. */
3370 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3371 {
3372 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3373 h, rel, hplink);
3374 if (stub_entry == NULL)
3375 return bfd_reloc_notsupported;
3376
3377 /* Munge up the value and addend so that we call the stub
3378 rather than the procedure directly. */
3379 value = (stub_entry->stub_offset
3380 + stub_entry->stub_sec->output_offset
3381 + stub_entry->stub_sec->output_section->vma
3382 - location);
3383 addend = -8;
3384 }
3385 break;
3386
3387 /* Something we don't know how to handle. */
3388 default:
3389 return bfd_reloc_notsupported;
3390 }
3391
3392 /* Make sure we can reach the stub. */
3393 if (max_branch_offset != 0
3394 && value + addend + max_branch_offset >= 2*max_branch_offset)
3395 {
3396 (*_bfd_error_handler)
3397 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3398 bfd_get_filename (input_bfd),
3399 input_section->name,
3400 (long) rel->r_offset,
3401 stub_entry->root.string);
3402 return bfd_reloc_notsupported;
3403 }
3404
3405 val = hppa_field_adjust (value, addend, r_field);
3406
3407 switch (r_type)
3408 {
3409 case R_PARISC_PCREL12F:
3410 case R_PARISC_PCREL17C:
3411 case R_PARISC_PCREL17F:
3412 case R_PARISC_PCREL17R:
3413 case R_PARISC_PCREL22F:
3414 case R_PARISC_DIR17F:
3415 case R_PARISC_DIR17R:
3416 /* This is a branch. Divide the offset by four.
3417 Note that we need to decide whether it's a branch or
3418 otherwise by inspecting the reloc. Inspecting insn won't
3419 work as insn might be from a .word directive. */
3420 val >>= 2;
3421 break;
3422
3423 default:
3424 break;
3425 }
3426
3427 insn = hppa_rebuild_insn (insn, val, r_format);
3428
3429 /* Update the instruction word. */
3430 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3431 return bfd_reloc_ok;
3432 }
3433
3434
3435 /* Relocate an HPPA ELF section. */
3436
3437 static boolean
3438 elf32_hppa_relocate_section (output_bfd, info, input_bfd, input_section,
3439 contents, relocs, local_syms, local_sections)
3440 bfd *output_bfd;
3441 struct bfd_link_info *info;
3442 bfd *input_bfd;
3443 asection *input_section;
3444 bfd_byte *contents;
3445 Elf_Internal_Rela *relocs;
3446 Elf_Internal_Sym *local_syms;
3447 asection **local_sections;
3448 {
3449 bfd *dynobj;
3450 bfd_vma *local_got_offsets;
3451 struct elf32_hppa_link_hash_table *hplink;
3452 Elf_Internal_Shdr *symtab_hdr;
3453 Elf_Internal_Rela *rel;
3454 Elf_Internal_Rela *relend;
3455 asection *sreloc;
3456
3457 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3458
3459 hplink = hppa_link_hash_table (info);
3460 dynobj = hplink->root.dynobj;
3461 local_got_offsets = elf_local_got_offsets (input_bfd);
3462 sreloc = NULL;
3463
3464 rel = relocs;
3465 relend = relocs + input_section->reloc_count;
3466 for (; rel < relend; rel++)
3467 {
3468 unsigned int r_type;
3469 reloc_howto_type *howto;
3470 unsigned int r_symndx;
3471 struct elf32_hppa_link_hash_entry *h;
3472 Elf_Internal_Sym *sym;
3473 asection *sym_sec;
3474 bfd_vma relocation;
3475 bfd_reloc_status_type r;
3476 const char *sym_name;
3477 boolean plabel;
3478
3479 r_type = ELF32_R_TYPE (rel->r_info);
3480 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3481 {
3482 bfd_set_error (bfd_error_bad_value);
3483 return false;
3484 }
3485 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3486 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3487 continue;
3488
3489 r_symndx = ELF32_R_SYM (rel->r_info);
3490
3491 if (info->relocateable)
3492 {
3493 /* This is a relocateable link. We don't have to change
3494 anything, unless the reloc is against a section symbol,
3495 in which case we have to adjust according to where the
3496 section symbol winds up in the output section. */
3497 if (r_symndx < symtab_hdr->sh_info)
3498 {
3499 sym = local_syms + r_symndx;
3500 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3501 {
3502 sym_sec = local_sections[r_symndx];
3503 rel->r_addend += sym_sec->output_offset;
3504 }
3505 }
3506 continue;
3507 }
3508
3509 /* This is a final link. */
3510 h = NULL;
3511 sym = NULL;
3512 sym_sec = NULL;
3513 if (r_symndx < symtab_hdr->sh_info)
3514 {
3515 /* This is a local symbol, h defaults to NULL. */
3516 sym = local_syms + r_symndx;
3517 sym_sec = local_sections[r_symndx];
3518 relocation = ((ELF_ST_TYPE (sym->st_info) == STT_SECTION
3519 ? 0 : sym->st_value)
3520 + sym_sec->output_offset
3521 + sym_sec->output_section->vma);
3522 }
3523 else
3524 {
3525 int indx;
3526
3527 /* It's a global; Find its entry in the link hash. */
3528 indx = r_symndx - symtab_hdr->sh_info;
3529 h = ((struct elf32_hppa_link_hash_entry *)
3530 elf_sym_hashes (input_bfd)[indx]);
3531 while (h->elf.root.type == bfd_link_hash_indirect
3532 || h->elf.root.type == bfd_link_hash_warning)
3533 h = (struct elf32_hppa_link_hash_entry *) h->elf.root.u.i.link;
3534
3535 relocation = 0;
3536 if (h->elf.root.type == bfd_link_hash_defined
3537 || h->elf.root.type == bfd_link_hash_defweak)
3538 {
3539 sym_sec = h->elf.root.u.def.section;
3540 /* If sym_sec->output_section is NULL, then it's a
3541 symbol defined in a shared library. */
3542 if (sym_sec->output_section != NULL)
3543 relocation = (h->elf.root.u.def.value
3544 + sym_sec->output_offset
3545 + sym_sec->output_section->vma);
3546 }
3547 else if (h->elf.root.type == bfd_link_hash_undefweak)
3548 ;
3549 else if (info->shared && !info->no_undefined
3550 && ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT)
3551 {
3552 if (info->symbolic)
3553 if (!((*info->callbacks->undefined_symbol)
3554 (info, h->elf.root.root.string, input_bfd,
3555 input_section, rel->r_offset, false)))
3556 return false;
3557 }
3558 else
3559 {
3560 if (!((*info->callbacks->undefined_symbol)
3561 (info, h->elf.root.root.string, input_bfd,
3562 input_section, rel->r_offset, true)))
3563 return false;
3564 }
3565 }
3566
3567 /* Do any required modifications to the relocation value, and
3568 determine what types of dynamic info we need to output, if
3569 any. */
3570 plabel = 0;
3571 switch (r_type)
3572 {
3573 case R_PARISC_DLTIND14F:
3574 case R_PARISC_DLTIND14R:
3575 case R_PARISC_DLTIND21L:
3576 /* Relocation is to the entry for this symbol in the global
3577 offset table. */
3578 if (h != NULL)
3579 {
3580 bfd_vma off;
3581
3582 off = h->elf.got.offset;
3583 BFD_ASSERT (off != (bfd_vma) -1);
3584
3585 if (! hplink->root.dynamic_sections_created
3586 || (info->shared
3587 && (info->symbolic || h->elf.dynindx == -1)
3588 && (h->elf.elf_link_hash_flags
3589 & ELF_LINK_HASH_DEF_REGULAR) != 0))
3590 {
3591 /* This is actually a static link, or it is a
3592 -Bsymbolic link and the symbol is defined
3593 locally, or the symbol was forced to be local
3594 because of a version file. We must initialize
3595 this entry in the global offset table. Since the
3596 offset must always be a multiple of 4, we use the
3597 least significant bit to record whether we have
3598 initialized it already.
3599
3600 When doing a dynamic link, we create a .rela.got
3601 relocation entry to initialize the value. This
3602 is done in the finish_dynamic_symbol routine. */
3603 if ((off & 1) != 0)
3604 off &= ~1;
3605 else
3606 {
3607 bfd_put_32 (output_bfd, relocation,
3608 hplink->sgot->contents + off);
3609 h->elf.got.offset |= 1;
3610 }
3611 }
3612
3613 relocation = off;
3614 }
3615 else
3616 {
3617 /* Local symbol case. */
3618 bfd_vma off;
3619
3620 BFD_ASSERT (local_got_offsets != NULL
3621 && local_got_offsets[r_symndx] != (bfd_vma) -1);
3622
3623 off = local_got_offsets[r_symndx];
3624
3625 /* The offset must always be a multiple of 4. We use
3626 the least significant bit to record whether we have
3627 already generated the necessary reloc. */
3628 if ((off & 1) != 0)
3629 off &= ~1;
3630 else
3631 {
3632 bfd_put_32 (output_bfd, relocation,
3633 hplink->sgot->contents + off);
3634
3635 if (info->shared)
3636 {
3637 /* Output a dynamic *ABS* relocation for this
3638 GOT entry. In this case it is relative to
3639 the base of the object because the symbol
3640 index is zero. */
3641 Elf_Internal_Rela outrel;
3642 asection *srelgot = hplink->srelgot;
3643
3644 outrel.r_offset = (off
3645 + hplink->sgot->output_offset
3646 + hplink->sgot->output_section->vma);
3647 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3648 outrel.r_addend = relocation;
3649 bfd_elf32_swap_reloca_out (output_bfd, &outrel,
3650 ((Elf32_External_Rela *)
3651 srelgot->contents
3652 + srelgot->reloc_count));
3653 ++srelgot->reloc_count;
3654 }
3655
3656 local_got_offsets[r_symndx] |= 1;
3657 }
3658
3659 relocation = off;
3660 }
3661
3662 /* Add the base of the GOT to the relocation value. */
3663 relocation += (hplink->sgot->output_offset
3664 + hplink->sgot->output_section->vma);
3665 break;
3666
3667 case R_PARISC_PLABEL14R:
3668 case R_PARISC_PLABEL21L:
3669 case R_PARISC_PLABEL32:
3670 if (hplink->root.dynamic_sections_created)
3671 {
3672 bfd_vma off;
3673
3674 /* If we have a global symbol with a PLT slot, then
3675 redirect this relocation to it. */
3676 if (h != NULL)
3677 {
3678 off = h->elf.plt.offset;
3679 }
3680 else
3681 {
3682 int indx;
3683
3684 indx = r_symndx + symtab_hdr->sh_info;
3685 off = local_got_offsets[indx];
3686
3687 /* As for the local .got entry case, we use the last
3688 bit to record whether we've already initialised
3689 this local .plt entry. */
3690 if ((off & 1) != 0)
3691 off &= ~1;
3692 else
3693 {
3694 bfd_put_32 (output_bfd,
3695 relocation,
3696 hplink->splt->contents + off);
3697 bfd_put_32 (output_bfd,
3698 elf_gp (hplink->splt->output_section->owner),
3699 hplink->splt->contents + off + 4);
3700
3701 if (info->shared)
3702 {
3703 /* Output a dynamic IPLT relocation for this
3704 PLT entry. */
3705 Elf_Internal_Rela outrel;
3706 asection *srelplt = hplink->srelplt;
3707
3708 outrel.r_offset = (off
3709 + hplink->splt->output_offset
3710 + hplink->splt->output_section->vma);
3711 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3712 outrel.r_addend = relocation;
3713 bfd_elf32_swap_reloca_out (output_bfd, &outrel,
3714 ((Elf32_External_Rela *)
3715 srelplt->contents
3716 + srelplt->reloc_count));
3717 ++srelplt->reloc_count;
3718 }
3719
3720 local_got_offsets[indx] |= 1;
3721 }
3722 }
3723
3724 BFD_ASSERT (off < (bfd_vma) -2);
3725
3726 /* PLABELs contain function pointers. Relocation is to
3727 the entry for the function in the .plt. The magic +2
3728 offset signals to $$dyncall that the function pointer
3729 is in the .plt and thus has a gp pointer too.
3730 Exception: Undefined PLABELs should have a value of
3731 zero. */
3732 if (h == NULL
3733 || (h->elf.root.type != bfd_link_hash_undefweak
3734 && h->elf.root.type != bfd_link_hash_undefined))
3735 {
3736 relocation = (off
3737 + hplink->splt->output_offset
3738 + hplink->splt->output_section->vma
3739 + 2);
3740 }
3741 plabel = 1;
3742 }
3743 /* Fall through and possibly emit a dynamic relocation. */
3744
3745 case R_PARISC_DIR17F:
3746 case R_PARISC_DIR17R:
3747 case R_PARISC_DIR14F:
3748 case R_PARISC_DIR14R:
3749 case R_PARISC_DIR21L:
3750 case R_PARISC_DPREL14F:
3751 case R_PARISC_DPREL14R:
3752 case R_PARISC_DPREL21L:
3753 case R_PARISC_DIR32:
3754 /* The reloc types handled here and this conditional
3755 expression must match the code in check_relocs and
3756 hppa_discard_copies. ie. We need exactly the same
3757 condition as in check_relocs, with some extra conditions
3758 (dynindx test in this case) to cater for relocs removed
3759 by hppa_discard_copies. */
3760 if ((input_section->flags & SEC_ALLOC) != 0
3761 && info->shared
3762 #if RELATIVE_DYNAMIC_RELOCS
3763 && (is_absolute_reloc (r_type)
3764 || ((!info->symbolic
3765 || (h != NULL
3766 && ((h->elf.elf_link_hash_flags
3767 & ELF_LINK_HASH_DEF_REGULAR) == 0
3768 || h->elf.root.type == bfd_link_hash_defweak)))
3769 && (h == NULL || h->elf.dynindx != -1)))
3770 #endif
3771 )
3772 {
3773 Elf_Internal_Rela outrel;
3774 boolean skip;
3775
3776 /* When generating a shared object, these relocations
3777 are copied into the output file to be resolved at run
3778 time. */
3779
3780 if (sreloc == NULL)
3781 {
3782 const char *name;
3783
3784 name = (bfd_elf_string_from_elf_section
3785 (input_bfd,
3786 elf_elfheader (input_bfd)->e_shstrndx,
3787 elf_section_data (input_section)->rel_hdr.sh_name));
3788 if (name == NULL)
3789 return false;
3790 sreloc = bfd_get_section_by_name (dynobj, name);
3791 BFD_ASSERT (sreloc != NULL);
3792 }
3793
3794 outrel.r_offset = rel->r_offset;
3795 outrel.r_addend = rel->r_addend;
3796 skip = false;
3797 if (elf_section_data (input_section)->stab_info != NULL)
3798 {
3799 bfd_vma off;
3800
3801 off = (_bfd_stab_section_offset
3802 (output_bfd, &hplink->root.stab_info,
3803 input_section,
3804 &elf_section_data (input_section)->stab_info,
3805 rel->r_offset));
3806 if (off == (bfd_vma) -1)
3807 skip = true;
3808 outrel.r_offset = off;
3809 }
3810
3811 outrel.r_offset += (input_section->output_offset
3812 + input_section->output_section->vma);
3813
3814 if (skip)
3815 {
3816 memset (&outrel, 0, sizeof (outrel));
3817 }
3818 else if (h != NULL
3819 && h->elf.dynindx != -1
3820 && (plabel
3821 || !info->symbolic
3822 || (h->elf.elf_link_hash_flags
3823 & ELF_LINK_HASH_DEF_REGULAR) == 0))
3824 {
3825 outrel.r_info = ELF32_R_INFO (h->elf.dynindx, r_type);
3826 }
3827 else /* It's a local symbol, or one marked to become local. */
3828 {
3829 int indx = 0;
3830
3831 /* Add the absolute offset of the symbol. */
3832 outrel.r_addend += relocation;
3833
3834 /* Global plabels need to be processed by the
3835 dynamic linker so that functions have at most one
3836 fptr. For this reason, we need to differentiate
3837 between global and local plabels, which we do by
3838 providing the function symbol for a global plabel
3839 reloc, and no symbol for local plabels. */
3840 if (! plabel
3841 && sym_sec != NULL
3842 && sym_sec->output_section != NULL
3843 && ! bfd_is_abs_section (sym_sec))
3844 {
3845 indx = elf_section_data (sym_sec->output_section)->dynindx;
3846 /* We are turning this relocation into one
3847 against a section symbol, so subtract out the
3848 output section's address but not the offset
3849 of the input section in the output section. */
3850 outrel.r_addend -= sym_sec->output_section->vma;
3851 }
3852
3853 outrel.r_info = ELF32_R_INFO (indx, r_type);
3854 }
3855
3856 bfd_elf32_swap_reloca_out (output_bfd, &outrel,
3857 ((Elf32_External_Rela *)
3858 sreloc->contents
3859 + sreloc->reloc_count));
3860 ++sreloc->reloc_count;
3861 }
3862 break;
3863
3864 default:
3865 break;
3866 }
3867
3868 r = final_link_relocate (input_section, contents, rel, relocation,
3869 hplink, sym_sec, h);
3870
3871 if (r == bfd_reloc_ok)
3872 continue;
3873
3874 if (h != NULL)
3875 sym_name = h->elf.root.root.string;
3876 else
3877 {
3878 sym_name = bfd_elf_string_from_elf_section (input_bfd,
3879 symtab_hdr->sh_link,
3880 sym->st_name);
3881 if (sym_name == NULL)
3882 return false;
3883 if (*sym_name == '\0')
3884 sym_name = bfd_section_name (input_bfd, sym_sec);
3885 }
3886
3887 howto = elf_hppa_howto_table + r_type;
3888
3889 if (r == bfd_reloc_undefined || r == bfd_reloc_notsupported)
3890 {
3891 (*_bfd_error_handler)
3892 (_("%s(%s+0x%lx): cannot handle %s for %s"),
3893 bfd_get_filename (input_bfd),
3894 input_section->name,
3895 (long) rel->r_offset,
3896 howto->name,
3897 sym_name);
3898 }
3899 else
3900 {
3901 if (!((*info->callbacks->reloc_overflow)
3902 (info, sym_name, howto->name, (bfd_vma) 0,
3903 input_bfd, input_section, rel->r_offset)))
3904 return false;
3905 }
3906 }
3907
3908 return true;
3909 }
3910
3911
3912 /* Finish up dynamic symbol handling. We set the contents of various
3913 dynamic sections here. */
3914
3915 static boolean
3916 elf32_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
3917 bfd *output_bfd;
3918 struct bfd_link_info *info;
3919 struct elf_link_hash_entry *h;
3920 Elf_Internal_Sym *sym;
3921 {
3922 struct elf32_hppa_link_hash_table *hplink;
3923 bfd *dynobj;
3924
3925 hplink = hppa_link_hash_table (info);
3926 dynobj = hplink->root.dynobj;
3927
3928 if (h->plt.offset != (bfd_vma) -1)
3929 {
3930 bfd_vma value;
3931
3932 /* This symbol has an entry in the procedure linkage table. Set
3933 it up.
3934
3935 The format of a plt entry is
3936 <funcaddr>
3937 <__gp>
3938 */
3939 value = 0;
3940 if (h->root.type == bfd_link_hash_defined
3941 || h->root.type == bfd_link_hash_defweak)
3942 {
3943 value = h->root.u.def.value;
3944 if (h->root.u.def.section->output_section != NULL)
3945 value += (h->root.u.def.section->output_offset
3946 + h->root.u.def.section->output_section->vma);
3947 }
3948
3949 if (! ((struct elf32_hppa_link_hash_entry *) h)->pic_call)
3950 {
3951 Elf_Internal_Rela rel;
3952
3953 /* Create a dynamic IPLT relocation for this entry. */
3954 rel.r_offset = (h->plt.offset
3955 + hplink->splt->output_offset
3956 + hplink->splt->output_section->vma);
3957 if (! ((struct elf32_hppa_link_hash_entry *) h)->plt_abs
3958 && h->dynindx != -1)
3959 {
3960 /* To support lazy linking, the function pointer is
3961 initialised to point to a special stub stored at the
3962 end of the .plt. This is only done for plt entries
3963 with a non-*ABS* dynamic relocation. */
3964 value = (hplink->splt->output_offset
3965 + hplink->splt->output_section->vma
3966 + hplink->splt->_raw_size
3967 - sizeof (plt_stub)
3968 + PLT_STUB_ENTRY);
3969 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_IPLT);
3970 rel.r_addend = 0;
3971 }
3972 else
3973 {
3974 /* This symbol has been marked to become local, and is
3975 used by a plabel so must be kept in the .plt. */
3976 rel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3977 rel.r_addend = value;
3978 }
3979
3980 bfd_elf32_swap_reloca_out (hplink->splt->output_section->owner,
3981 &rel,
3982 ((Elf32_External_Rela *)
3983 hplink->srelplt->contents
3984 + hplink->srelplt->reloc_count));
3985 hplink->srelplt->reloc_count++;
3986 }
3987
3988 bfd_put_32 (hplink->splt->owner,
3989 value,
3990 hplink->splt->contents + h->plt.offset);
3991 bfd_put_32 (hplink->splt->owner,
3992 elf_gp (hplink->splt->output_section->owner),
3993 hplink->splt->contents + h->plt.offset + 4);
3994 if (PLABEL_PLT_ENTRY_SIZE != PLT_ENTRY_SIZE
3995 && ((struct elf32_hppa_link_hash_entry *) h)->plabel
3996 && h->dynindx != -1)
3997 {
3998 memset (hplink->splt->contents + h->plt.offset + 8,
3999 0, PLABEL_PLT_ENTRY_SIZE - PLT_ENTRY_SIZE);
4000 }
4001
4002 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
4003 {
4004 /* Mark the symbol as undefined, rather than as defined in
4005 the .plt section. Leave the value alone. */
4006 sym->st_shndx = SHN_UNDEF;
4007 }
4008 }
4009
4010 if (h->got.offset != (bfd_vma) -1)
4011 {
4012 Elf_Internal_Rela rel;
4013
4014 /* This symbol has an entry in the global offset table. Set it
4015 up. */
4016
4017 rel.r_offset = ((h->got.offset &~ (bfd_vma) 1)
4018 + hplink->sgot->output_offset
4019 + hplink->sgot->output_section->vma);
4020
4021 /* If this is a static link, or it is a -Bsymbolic link and the
4022 symbol is defined locally or was forced to be local because
4023 of a version file, we just want to emit a RELATIVE reloc.
4024 The entry in the global offset table will already have been
4025 initialized in the relocate_section function. */
4026 if (! hplink->root.dynamic_sections_created
4027 || (info->shared
4028 && (info->symbolic || h->dynindx == -1)
4029 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
4030 {
4031 rel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4032 rel.r_addend = (h->root.u.def.value
4033 + h->root.u.def.section->output_offset
4034 + h->root.u.def.section->output_section->vma);
4035 }
4036 else
4037 {
4038 BFD_ASSERT((h->got.offset & 1) == 0);
4039 bfd_put_32 (output_bfd, (bfd_vma) 0,
4040 hplink->sgot->contents + h->got.offset);
4041 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_DIR32);
4042 rel.r_addend = 0;
4043 }
4044
4045 bfd_elf32_swap_reloca_out (output_bfd, &rel,
4046 ((Elf32_External_Rela *)
4047 hplink->srelgot->contents
4048 + hplink->srelgot->reloc_count));
4049 ++hplink->srelgot->reloc_count;
4050 }
4051
4052 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
4053 {
4054 asection *s;
4055 Elf_Internal_Rela rel;
4056
4057 /* This symbol needs a copy reloc. Set it up. */
4058
4059 BFD_ASSERT (h->dynindx != -1
4060 && (h->root.type == bfd_link_hash_defined
4061 || h->root.type == bfd_link_hash_defweak));
4062
4063 s = hplink->srelbss;
4064
4065 rel.r_offset = (h->root.u.def.value
4066 + h->root.u.def.section->output_offset
4067 + h->root.u.def.section->output_section->vma);
4068 rel.r_addend = 0;
4069 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_COPY);
4070 bfd_elf32_swap_reloca_out (output_bfd, &rel,
4071 ((Elf32_External_Rela *) s->contents
4072 + s->reloc_count));
4073 ++s->reloc_count;
4074 }
4075
4076 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4077 if (h->root.root.string[0] == '_'
4078 && (strcmp (h->root.root.string, "_DYNAMIC") == 0
4079 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0))
4080 {
4081 sym->st_shndx = SHN_ABS;
4082 }
4083
4084 return true;
4085 }
4086
4087
4088 /* Finish up the dynamic sections. */
4089
4090 static boolean
4091 elf32_hppa_finish_dynamic_sections (output_bfd, info)
4092 bfd *output_bfd;
4093 struct bfd_link_info *info;
4094 {
4095 bfd *dynobj;
4096 struct elf32_hppa_link_hash_table *hplink;
4097 asection *sdyn;
4098
4099 hplink = hppa_link_hash_table (info);
4100 dynobj = hplink->root.dynobj;
4101
4102 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4103
4104 if (hplink->root.dynamic_sections_created)
4105 {
4106 Elf32_External_Dyn *dyncon, *dynconend;
4107
4108 BFD_ASSERT (sdyn != NULL);
4109
4110 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4111 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
4112 for (; dyncon < dynconend; dyncon++)
4113 {
4114 Elf_Internal_Dyn dyn;
4115 asection *s;
4116
4117 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4118
4119 switch (dyn.d_tag)
4120 {
4121 default:
4122 break;
4123
4124 case DT_PLTGOT:
4125 /* Use PLTGOT to set the GOT register. */
4126 dyn.d_un.d_ptr = elf_gp (output_bfd);
4127 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4128 break;
4129
4130 case DT_JMPREL:
4131 s = hplink->srelplt;
4132 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4133 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4134 break;
4135
4136 case DT_PLTRELSZ:
4137 s = hplink->srelplt;
4138 if (s->_cooked_size != 0)
4139 dyn.d_un.d_val = s->_cooked_size;
4140 else
4141 dyn.d_un.d_val = s->_raw_size;
4142 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4143 break;
4144
4145 case DT_INIT:
4146 case DT_FINI:
4147 {
4148 struct elf_link_hash_entry *h;
4149 const char *funcname;
4150
4151 if (dyn.d_tag == DT_INIT)
4152 funcname = info->init_function;
4153 else
4154 funcname = info->fini_function;
4155
4156 h = elf_link_hash_lookup (&hplink->root, funcname,
4157 false, false, false);
4158
4159 /* This is a function pointer. The magic +2 offset
4160 signals to $$dyncall that the function pointer
4161 is in the .plt and thus has a gp pointer too. */
4162 dyn.d_un.d_ptr = (h->plt.offset
4163 + hplink->splt->output_offset
4164 + hplink->splt->output_section->vma
4165 + 2);
4166 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4167 break;
4168 }
4169 }
4170 }
4171 }
4172
4173 if (hplink->sgot->_raw_size != 0)
4174 {
4175 /* Fill in the first entry in the global offset table.
4176 We use it to point to our dynamic section, if we have one. */
4177 bfd_put_32 (output_bfd,
4178 (sdyn != NULL
4179 ? sdyn->output_section->vma + sdyn->output_offset
4180 : (bfd_vma) 0),
4181 hplink->sgot->contents);
4182
4183 /* The second entry is reserved for use by the dynamic linker. */
4184 memset (hplink->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4185
4186 /* Set .got entry size. */
4187 elf_section_data (hplink->sgot->output_section)
4188 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4189 }
4190
4191 if (hplink->splt->_raw_size != 0)
4192 {
4193 /* Set plt entry size. */
4194 elf_section_data (hplink->splt->output_section)
4195 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4196
4197 if (hplink->need_plt_stub)
4198 {
4199 /* Set up the .plt stub. */
4200 memcpy (hplink->splt->contents
4201 + hplink->splt->_raw_size - sizeof (plt_stub),
4202 plt_stub, sizeof (plt_stub));
4203
4204 if ((hplink->splt->output_offset
4205 + hplink->splt->output_section->vma
4206 + hplink->splt->_raw_size)
4207 != (hplink->sgot->output_offset
4208 + hplink->sgot->output_section->vma))
4209 {
4210 (*_bfd_error_handler)
4211 (_(".got section not immediately after .plt section"));
4212 return false;
4213 }
4214 }
4215 }
4216
4217 return true;
4218 }
4219
4220
4221 /* Called when writing out an object file to decide the type of a
4222 symbol. */
4223 static int
4224 elf32_hppa_elf_get_symbol_type (elf_sym, type)
4225 Elf_Internal_Sym *elf_sym;
4226 int type;
4227 {
4228 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4229 return STT_PARISC_MILLI;
4230 else
4231 return type;
4232 }
4233
4234
4235 /* Misc BFD support code. */
4236 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4237 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4238 #define elf_info_to_howto elf_hppa_info_to_howto
4239 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4240
4241 /* Stuff for the BFD linker. */
4242 #define bfd_elf32_bfd_final_link _bfd_elf32_gc_common_final_link
4243 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4244 #define elf_backend_add_symbol_hook elf32_hppa_add_symbol_hook
4245 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4246 #define elf_backend_check_relocs elf32_hppa_check_relocs
4247 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4248 #define elf_backend_fake_sections elf_hppa_fake_sections
4249 #define elf_backend_relocate_section elf32_hppa_relocate_section
4250 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4251 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4252 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4253 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4254 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4255 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4256 #define elf_backend_object_p elf32_hppa_object_p
4257 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4258 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4259
4260 #define elf_backend_can_gc_sections 1
4261 #define elf_backend_plt_alignment 2
4262 #define elf_backend_want_got_plt 0
4263 #define elf_backend_plt_readonly 0
4264 #define elf_backend_want_plt_sym 0
4265 #define elf_backend_got_header_size 8
4266
4267 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4268 #define TARGET_BIG_NAME "elf32-hppa"
4269 #define ELF_ARCH bfd_arch_hppa
4270 #define ELF_MACHINE_CODE EM_PARISC
4271 #define ELF_MAXPAGESIZE 0x1000
4272
4273 #include "elf32-target.h"
This page took 0.135469 seconds and 4 git commands to generate.