(linux_test_for_tracefork): Don't leave zombie
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4
5 Original code by
6 Center for Software Science
7 Department of Computer Science
8 University of Utah
9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
10 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
11 TLS support written by Randolph Chung <tausq@debian.org>
12
13 This file is part of BFD, the Binary File Descriptor library.
14
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 2 of the License, or
18 (at your option) any later version.
19
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
28
29 #include "bfd.h"
30 #include "sysdep.h"
31 #include "libbfd.h"
32 #include "elf-bfd.h"
33 #include "elf/hppa.h"
34 #include "libhppa.h"
35 #include "elf32-hppa.h"
36 #define ARCH_SIZE 32
37 #include "elf32-hppa.h"
38 #include "elf-hppa.h"
39
40 /* In order to gain some understanding of code in this file without
41 knowing all the intricate details of the linker, note the
42 following:
43
44 Functions named elf32_hppa_* are called by external routines, other
45 functions are only called locally. elf32_hppa_* functions appear
46 in this file more or less in the order in which they are called
47 from external routines. eg. elf32_hppa_check_relocs is called
48 early in the link process, elf32_hppa_finish_dynamic_sections is
49 one of the last functions. */
50
51 /* We use two hash tables to hold information for linking PA ELF objects.
52
53 The first is the elf32_hppa_link_hash_table which is derived
54 from the standard ELF linker hash table. We use this as a place to
55 attach other hash tables and static information.
56
57 The second is the stub hash table which is derived from the
58 base BFD hash table. The stub hash table holds the information
59 necessary to build the linker stubs during a link.
60
61 There are a number of different stubs generated by the linker.
62
63 Long branch stub:
64 : ldil LR'X,%r1
65 : be,n RR'X(%sr4,%r1)
66
67 PIC long branch stub:
68 : b,l .+8,%r1
69 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
70 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
71
72 Import stub to call shared library routine from normal object file
73 (single sub-space version)
74 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
75 : ldw RR'lt_ptr+ltoff(%r1),%r21
76 : bv %r0(%r21)
77 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
78
79 Import stub to call shared library routine from shared library
80 (single sub-space version)
81 : addil LR'ltoff,%r19 ; get procedure entry point
82 : ldw RR'ltoff(%r1),%r21
83 : bv %r0(%r21)
84 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
85
86 Import stub to call shared library routine from normal object file
87 (multiple sub-space support)
88 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
89 : ldw RR'lt_ptr+ltoff(%r1),%r21
90 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
91 : ldsid (%r21),%r1
92 : mtsp %r1,%sr0
93 : be 0(%sr0,%r21) ; branch to target
94 : stw %rp,-24(%sp) ; save rp
95
96 Import stub to call shared library routine from shared library
97 (multiple sub-space support)
98 : addil LR'ltoff,%r19 ; get procedure entry point
99 : ldw RR'ltoff(%r1),%r21
100 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
101 : ldsid (%r21),%r1
102 : mtsp %r1,%sr0
103 : be 0(%sr0,%r21) ; branch to target
104 : stw %rp,-24(%sp) ; save rp
105
106 Export stub to return from shared lib routine (multiple sub-space support)
107 One of these is created for each exported procedure in a shared
108 library (and stored in the shared lib). Shared lib routines are
109 called via the first instruction in the export stub so that we can
110 do an inter-space return. Not required for single sub-space.
111 : bl,n X,%rp ; trap the return
112 : nop
113 : ldw -24(%sp),%rp ; restore the original rp
114 : ldsid (%rp),%r1
115 : mtsp %r1,%sr0
116 : be,n 0(%sr0,%rp) ; inter-space return. */
117
118
119 /* Variable names follow a coding style.
120 Please follow this (Apps Hungarian) style:
121
122 Structure/Variable Prefix
123 elf_link_hash_table "etab"
124 elf_link_hash_entry "eh"
125
126 elf32_hppa_link_hash_table "htab"
127 elf32_hppa_link_hash_entry "hh"
128
129 bfd_hash_table "btab"
130 bfd_hash_entry "bh"
131
132 bfd_hash_table containing stubs "bstab"
133 elf32_hppa_stub_hash_entry "hsh"
134
135 elf32_hppa_dyn_reloc_entry "hdh"
136
137 Always remember to use GNU Coding Style. */
138
139 #define PLT_ENTRY_SIZE 8
140 #define GOT_ENTRY_SIZE 4
141 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
142
143 static const bfd_byte plt_stub[] =
144 {
145 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
146 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
147 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
148 #define PLT_STUB_ENTRY (3*4)
149 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
150 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
151 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
152 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
153 };
154
155 /* Section name for stubs is the associated section name plus this
156 string. */
157 #define STUB_SUFFIX ".stub"
158
159 /* We don't need to copy certain PC- or GP-relative dynamic relocs
160 into a shared object's dynamic section. All the relocs of the
161 limited class we are interested in, are absolute. */
162 #ifndef RELATIVE_DYNRELOCS
163 #define RELATIVE_DYNRELOCS 0
164 #define IS_ABSOLUTE_RELOC(r_type) 1
165 #endif
166
167 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
168 copying dynamic variables from a shared lib into an app's dynbss
169 section, and instead use a dynamic relocation to point into the
170 shared lib. */
171 #define ELIMINATE_COPY_RELOCS 1
172
173 enum elf32_hppa_stub_type
174 {
175 hppa_stub_long_branch,
176 hppa_stub_long_branch_shared,
177 hppa_stub_import,
178 hppa_stub_import_shared,
179 hppa_stub_export,
180 hppa_stub_none
181 };
182
183 struct elf32_hppa_stub_hash_entry
184 {
185 /* Base hash table entry structure. */
186 struct bfd_hash_entry bh_root;
187
188 /* The stub section. */
189 asection *stub_sec;
190
191 /* Offset within stub_sec of the beginning of this stub. */
192 bfd_vma stub_offset;
193
194 /* Given the symbol's value and its section we can determine its final
195 value when building the stubs (so the stub knows where to jump. */
196 bfd_vma target_value;
197 asection *target_section;
198
199 enum elf32_hppa_stub_type stub_type;
200
201 /* The symbol table entry, if any, that this was derived from. */
202 struct elf32_hppa_link_hash_entry *hh;
203
204 /* Where this stub is being called from, or, in the case of combined
205 stub sections, the first input section in the group. */
206 asection *id_sec;
207 };
208
209 struct elf32_hppa_link_hash_entry
210 {
211 struct elf_link_hash_entry eh;
212
213 /* A pointer to the most recently used stub hash entry against this
214 symbol. */
215 struct elf32_hppa_stub_hash_entry *hsh_cache;
216
217 /* Used to count relocations for delayed sizing of relocation
218 sections. */
219 struct elf32_hppa_dyn_reloc_entry
220 {
221 /* Next relocation in the chain. */
222 struct elf32_hppa_dyn_reloc_entry *hdh_next;
223
224 /* The input section of the reloc. */
225 asection *sec;
226
227 /* Number of relocs copied in this section. */
228 bfd_size_type count;
229
230 #if RELATIVE_DYNRELOCS
231 /* Number of relative relocs copied for the input section. */
232 bfd_size_type relative_count;
233 #endif
234 } *dyn_relocs;
235
236 enum
237 {
238 GOT_UNKNOWN = 0, GOT_NORMAL = 1, GOT_TLS_GD = 2, GOT_TLS_LDM = 4, GOT_TLS_IE = 8
239 } tls_type;
240
241 /* Set if this symbol is used by a plabel reloc. */
242 unsigned int plabel:1;
243 };
244
245 struct elf32_hppa_link_hash_table
246 {
247 /* The main hash table. */
248 struct elf_link_hash_table etab;
249
250 /* The stub hash table. */
251 struct bfd_hash_table bstab;
252
253 /* Linker stub bfd. */
254 bfd *stub_bfd;
255
256 /* Linker call-backs. */
257 asection * (*add_stub_section) (const char *, asection *);
258 void (*layout_sections_again) (void);
259
260 /* Array to keep track of which stub sections have been created, and
261 information on stub grouping. */
262 struct map_stub
263 {
264 /* This is the section to which stubs in the group will be
265 attached. */
266 asection *link_sec;
267 /* The stub section. */
268 asection *stub_sec;
269 } *stub_group;
270
271 /* Assorted information used by elf32_hppa_size_stubs. */
272 unsigned int bfd_count;
273 int top_index;
274 asection **input_list;
275 Elf_Internal_Sym **all_local_syms;
276
277 /* Short-cuts to get to dynamic linker sections. */
278 asection *sgot;
279 asection *srelgot;
280 asection *splt;
281 asection *srelplt;
282 asection *sdynbss;
283 asection *srelbss;
284
285 /* Used during a final link to store the base of the text and data
286 segments so that we can perform SEGREL relocations. */
287 bfd_vma text_segment_base;
288 bfd_vma data_segment_base;
289
290 /* Whether we support multiple sub-spaces for shared libs. */
291 unsigned int multi_subspace:1;
292
293 /* Flags set when various size branches are detected. Used to
294 select suitable defaults for the stub group size. */
295 unsigned int has_12bit_branch:1;
296 unsigned int has_17bit_branch:1;
297 unsigned int has_22bit_branch:1;
298
299 /* Set if we need a .plt stub to support lazy dynamic linking. */
300 unsigned int need_plt_stub:1;
301
302 /* Small local sym to section mapping cache. */
303 struct sym_sec_cache sym_sec;
304
305 /* Data for LDM relocations. */
306 union
307 {
308 bfd_signed_vma refcount;
309 bfd_vma offset;
310 } tls_ldm_got;
311 };
312
313 /* Various hash macros and functions. */
314 #define hppa_link_hash_table(p) \
315 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
316
317 #define hppa_elf_hash_entry(ent) \
318 ((struct elf32_hppa_link_hash_entry *)(ent))
319
320 #define hppa_stub_hash_entry(ent) \
321 ((struct elf32_hppa_stub_hash_entry *)(ent))
322
323 #define hppa_stub_hash_lookup(table, string, create, copy) \
324 ((struct elf32_hppa_stub_hash_entry *) \
325 bfd_hash_lookup ((table), (string), (create), (copy)))
326
327 #define hppa_elf_local_got_tls_type(abfd) \
328 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
329
330 #define hh_name(hh) \
331 (hh ? hh->eh.root.root.string : "<undef>")
332
333 #define eh_name(eh) \
334 (eh ? eh->root.root.string : "<undef>")
335
336 /* Assorted hash table functions. */
337
338 /* Initialize an entry in the stub hash table. */
339
340 static struct bfd_hash_entry *
341 stub_hash_newfunc (struct bfd_hash_entry *entry,
342 struct bfd_hash_table *table,
343 const char *string)
344 {
345 /* Allocate the structure if it has not already been allocated by a
346 subclass. */
347 if (entry == NULL)
348 {
349 entry = bfd_hash_allocate (table,
350 sizeof (struct elf32_hppa_stub_hash_entry));
351 if (entry == NULL)
352 return entry;
353 }
354
355 /* Call the allocation method of the superclass. */
356 entry = bfd_hash_newfunc (entry, table, string);
357 if (entry != NULL)
358 {
359 struct elf32_hppa_stub_hash_entry *hsh;
360
361 /* Initialize the local fields. */
362 hsh = hppa_stub_hash_entry (entry);
363 hsh->stub_sec = NULL;
364 hsh->stub_offset = 0;
365 hsh->target_value = 0;
366 hsh->target_section = NULL;
367 hsh->stub_type = hppa_stub_long_branch;
368 hsh->hh = NULL;
369 hsh->id_sec = NULL;
370 }
371
372 return entry;
373 }
374
375 /* Initialize an entry in the link hash table. */
376
377 static struct bfd_hash_entry *
378 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
379 struct bfd_hash_table *table,
380 const char *string)
381 {
382 /* Allocate the structure if it has not already been allocated by a
383 subclass. */
384 if (entry == NULL)
385 {
386 entry = bfd_hash_allocate (table,
387 sizeof (struct elf32_hppa_link_hash_entry));
388 if (entry == NULL)
389 return entry;
390 }
391
392 /* Call the allocation method of the superclass. */
393 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
394 if (entry != NULL)
395 {
396 struct elf32_hppa_link_hash_entry *hh;
397
398 /* Initialize the local fields. */
399 hh = hppa_elf_hash_entry (entry);
400 hh->hsh_cache = NULL;
401 hh->dyn_relocs = NULL;
402 hh->plabel = 0;
403 hh->tls_type = GOT_UNKNOWN;
404 }
405
406 return entry;
407 }
408
409 /* Create the derived linker hash table. The PA ELF port uses the derived
410 hash table to keep information specific to the PA ELF linker (without
411 using static variables). */
412
413 static struct bfd_link_hash_table *
414 elf32_hppa_link_hash_table_create (bfd *abfd)
415 {
416 struct elf32_hppa_link_hash_table *htab;
417 bfd_size_type amt = sizeof (*htab);
418
419 htab = bfd_malloc (amt);
420 if (htab == NULL)
421 return NULL;
422
423 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
424 sizeof (struct elf32_hppa_link_hash_entry)))
425 {
426 free (htab);
427 return NULL;
428 }
429
430 /* Init the stub hash table too. */
431 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
432 sizeof (struct elf32_hppa_stub_hash_entry)))
433 return NULL;
434
435 htab->stub_bfd = NULL;
436 htab->add_stub_section = NULL;
437 htab->layout_sections_again = NULL;
438 htab->stub_group = NULL;
439 htab->sgot = NULL;
440 htab->srelgot = NULL;
441 htab->splt = NULL;
442 htab->srelplt = NULL;
443 htab->sdynbss = NULL;
444 htab->srelbss = NULL;
445 htab->text_segment_base = (bfd_vma) -1;
446 htab->data_segment_base = (bfd_vma) -1;
447 htab->multi_subspace = 0;
448 htab->has_12bit_branch = 0;
449 htab->has_17bit_branch = 0;
450 htab->has_22bit_branch = 0;
451 htab->need_plt_stub = 0;
452 htab->sym_sec.abfd = NULL;
453 htab->tls_ldm_got.refcount = 0;
454
455 return &htab->etab.root;
456 }
457
458 /* Free the derived linker hash table. */
459
460 static void
461 elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *btab)
462 {
463 struct elf32_hppa_link_hash_table *htab
464 = (struct elf32_hppa_link_hash_table *) btab;
465
466 bfd_hash_table_free (&htab->bstab);
467 _bfd_generic_link_hash_table_free (btab);
468 }
469
470 /* Build a name for an entry in the stub hash table. */
471
472 static char *
473 hppa_stub_name (const asection *input_section,
474 const asection *sym_sec,
475 const struct elf32_hppa_link_hash_entry *hh,
476 const Elf_Internal_Rela *rela)
477 {
478 char *stub_name;
479 bfd_size_type len;
480
481 if (hh)
482 {
483 len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
484 stub_name = bfd_malloc (len);
485 if (stub_name != NULL)
486 sprintf (stub_name, "%08x_%s+%x",
487 input_section->id & 0xffffffff,
488 hh_name (hh),
489 (int) rela->r_addend & 0xffffffff);
490 }
491 else
492 {
493 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
494 stub_name = bfd_malloc (len);
495 if (stub_name != NULL)
496 sprintf (stub_name, "%08x_%x:%x+%x",
497 input_section->id & 0xffffffff,
498 sym_sec->id & 0xffffffff,
499 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
500 (int) rela->r_addend & 0xffffffff);
501 }
502 return stub_name;
503 }
504
505 /* Look up an entry in the stub hash. Stub entries are cached because
506 creating the stub name takes a bit of time. */
507
508 static struct elf32_hppa_stub_hash_entry *
509 hppa_get_stub_entry (const asection *input_section,
510 const asection *sym_sec,
511 struct elf32_hppa_link_hash_entry *hh,
512 const Elf_Internal_Rela *rela,
513 struct elf32_hppa_link_hash_table *htab)
514 {
515 struct elf32_hppa_stub_hash_entry *hsh_entry;
516 const asection *id_sec;
517
518 /* If this input section is part of a group of sections sharing one
519 stub section, then use the id of the first section in the group.
520 Stub names need to include a section id, as there may well be
521 more than one stub used to reach say, printf, and we need to
522 distinguish between them. */
523 id_sec = htab->stub_group[input_section->id].link_sec;
524
525 if (hh != NULL && hh->hsh_cache != NULL
526 && hh->hsh_cache->hh == hh
527 && hh->hsh_cache->id_sec == id_sec)
528 {
529 hsh_entry = hh->hsh_cache;
530 }
531 else
532 {
533 char *stub_name;
534
535 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
536 if (stub_name == NULL)
537 return NULL;
538
539 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
540 stub_name, FALSE, FALSE);
541 if (hh != NULL)
542 hh->hsh_cache = hsh_entry;
543
544 free (stub_name);
545 }
546
547 return hsh_entry;
548 }
549
550 /* Add a new stub entry to the stub hash. Not all fields of the new
551 stub entry are initialised. */
552
553 static struct elf32_hppa_stub_hash_entry *
554 hppa_add_stub (const char *stub_name,
555 asection *section,
556 struct elf32_hppa_link_hash_table *htab)
557 {
558 asection *link_sec;
559 asection *stub_sec;
560 struct elf32_hppa_stub_hash_entry *hsh;
561
562 link_sec = htab->stub_group[section->id].link_sec;
563 stub_sec = htab->stub_group[section->id].stub_sec;
564 if (stub_sec == NULL)
565 {
566 stub_sec = htab->stub_group[link_sec->id].stub_sec;
567 if (stub_sec == NULL)
568 {
569 size_t namelen;
570 bfd_size_type len;
571 char *s_name;
572
573 namelen = strlen (link_sec->name);
574 len = namelen + sizeof (STUB_SUFFIX);
575 s_name = bfd_alloc (htab->stub_bfd, len);
576 if (s_name == NULL)
577 return NULL;
578
579 memcpy (s_name, link_sec->name, namelen);
580 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
581 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
582 if (stub_sec == NULL)
583 return NULL;
584 htab->stub_group[link_sec->id].stub_sec = stub_sec;
585 }
586 htab->stub_group[section->id].stub_sec = stub_sec;
587 }
588
589 /* Enter this entry into the linker stub hash table. */
590 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
591 TRUE, FALSE);
592 if (hsh == NULL)
593 {
594 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
595 section->owner,
596 stub_name);
597 return NULL;
598 }
599
600 hsh->stub_sec = stub_sec;
601 hsh->stub_offset = 0;
602 hsh->id_sec = link_sec;
603 return hsh;
604 }
605
606 /* Determine the type of stub needed, if any, for a call. */
607
608 static enum elf32_hppa_stub_type
609 hppa_type_of_stub (asection *input_sec,
610 const Elf_Internal_Rela *rela,
611 struct elf32_hppa_link_hash_entry *hh,
612 bfd_vma destination,
613 struct bfd_link_info *info)
614 {
615 bfd_vma location;
616 bfd_vma branch_offset;
617 bfd_vma max_branch_offset;
618 unsigned int r_type;
619
620 if (hh != NULL
621 && hh->eh.plt.offset != (bfd_vma) -1
622 && hh->eh.dynindx != -1
623 && !hh->plabel
624 && (info->shared
625 || !hh->eh.def_regular
626 || hh->eh.root.type == bfd_link_hash_defweak))
627 {
628 /* We need an import stub. Decide between hppa_stub_import
629 and hppa_stub_import_shared later. */
630 return hppa_stub_import;
631 }
632
633 /* Determine where the call point is. */
634 location = (input_sec->output_offset
635 + input_sec->output_section->vma
636 + rela->r_offset);
637
638 branch_offset = destination - location - 8;
639 r_type = ELF32_R_TYPE (rela->r_info);
640
641 /* Determine if a long branch stub is needed. parisc branch offsets
642 are relative to the second instruction past the branch, ie. +8
643 bytes on from the branch instruction location. The offset is
644 signed and counts in units of 4 bytes. */
645 if (r_type == (unsigned int) R_PARISC_PCREL17F)
646 max_branch_offset = (1 << (17 - 1)) << 2;
647
648 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
649 max_branch_offset = (1 << (12 - 1)) << 2;
650
651 else /* R_PARISC_PCREL22F. */
652 max_branch_offset = (1 << (22 - 1)) << 2;
653
654 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
655 return hppa_stub_long_branch;
656
657 return hppa_stub_none;
658 }
659
660 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
661 IN_ARG contains the link info pointer. */
662
663 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
664 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
665
666 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
667 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
668 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
669
670 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
671 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
672 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
673 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
674
675 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
676 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
677
678 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
679 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
680 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
681 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
682
683 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
684 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
685 #define NOP 0x08000240 /* nop */
686 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
687 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
688 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
689
690 #ifndef R19_STUBS
691 #define R19_STUBS 1
692 #endif
693
694 #if R19_STUBS
695 #define LDW_R1_DLT LDW_R1_R19
696 #else
697 #define LDW_R1_DLT LDW_R1_DP
698 #endif
699
700 static bfd_boolean
701 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
702 {
703 struct elf32_hppa_stub_hash_entry *hsh;
704 struct bfd_link_info *info;
705 struct elf32_hppa_link_hash_table *htab;
706 asection *stub_sec;
707 bfd *stub_bfd;
708 bfd_byte *loc;
709 bfd_vma sym_value;
710 bfd_vma insn;
711 bfd_vma off;
712 int val;
713 int size;
714
715 /* Massage our args to the form they really have. */
716 hsh = hppa_stub_hash_entry (bh);
717 info = (struct bfd_link_info *)in_arg;
718
719 htab = hppa_link_hash_table (info);
720 stub_sec = hsh->stub_sec;
721
722 /* Make a note of the offset within the stubs for this entry. */
723 hsh->stub_offset = stub_sec->size;
724 loc = stub_sec->contents + hsh->stub_offset;
725
726 stub_bfd = stub_sec->owner;
727
728 switch (hsh->stub_type)
729 {
730 case hppa_stub_long_branch:
731 /* Create the long branch. A long branch is formed with "ldil"
732 loading the upper bits of the target address into a register,
733 then branching with "be" which adds in the lower bits.
734 The "be" has its delay slot nullified. */
735 sym_value = (hsh->target_value
736 + hsh->target_section->output_offset
737 + hsh->target_section->output_section->vma);
738
739 val = hppa_field_adjust (sym_value, 0, e_lrsel);
740 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
741 bfd_put_32 (stub_bfd, insn, loc);
742
743 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
744 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
745 bfd_put_32 (stub_bfd, insn, loc + 4);
746
747 size = 8;
748 break;
749
750 case hppa_stub_long_branch_shared:
751 /* Branches are relative. This is where we are going to. */
752 sym_value = (hsh->target_value
753 + hsh->target_section->output_offset
754 + hsh->target_section->output_section->vma);
755
756 /* And this is where we are coming from, more or less. */
757 sym_value -= (hsh->stub_offset
758 + stub_sec->output_offset
759 + stub_sec->output_section->vma);
760
761 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
762 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
763 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
764 bfd_put_32 (stub_bfd, insn, loc + 4);
765
766 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
767 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
768 bfd_put_32 (stub_bfd, insn, loc + 8);
769 size = 12;
770 break;
771
772 case hppa_stub_import:
773 case hppa_stub_import_shared:
774 off = hsh->hh->eh.plt.offset;
775 if (off >= (bfd_vma) -2)
776 abort ();
777
778 off &= ~ (bfd_vma) 1;
779 sym_value = (off
780 + htab->splt->output_offset
781 + htab->splt->output_section->vma
782 - elf_gp (htab->splt->output_section->owner));
783
784 insn = ADDIL_DP;
785 #if R19_STUBS
786 if (hsh->stub_type == hppa_stub_import_shared)
787 insn = ADDIL_R19;
788 #endif
789 val = hppa_field_adjust (sym_value, 0, e_lrsel),
790 insn = hppa_rebuild_insn ((int) insn, val, 21);
791 bfd_put_32 (stub_bfd, insn, loc);
792
793 /* It is critical to use lrsel/rrsel here because we are using
794 two different offsets (+0 and +4) from sym_value. If we use
795 lsel/rsel then with unfortunate sym_values we will round
796 sym_value+4 up to the next 2k block leading to a mis-match
797 between the lsel and rsel value. */
798 val = hppa_field_adjust (sym_value, 0, e_rrsel);
799 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
800 bfd_put_32 (stub_bfd, insn, loc + 4);
801
802 if (htab->multi_subspace)
803 {
804 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
805 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
806 bfd_put_32 (stub_bfd, insn, loc + 8);
807
808 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
809 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
810 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
811 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
812
813 size = 28;
814 }
815 else
816 {
817 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
818 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
819 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
820 bfd_put_32 (stub_bfd, insn, loc + 12);
821
822 size = 16;
823 }
824
825 break;
826
827 case hppa_stub_export:
828 /* Branches are relative. This is where we are going to. */
829 sym_value = (hsh->target_value
830 + hsh->target_section->output_offset
831 + hsh->target_section->output_section->vma);
832
833 /* And this is where we are coming from. */
834 sym_value -= (hsh->stub_offset
835 + stub_sec->output_offset
836 + stub_sec->output_section->vma);
837
838 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
839 && (!htab->has_22bit_branch
840 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
841 {
842 (*_bfd_error_handler)
843 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
844 hsh->target_section->owner,
845 stub_sec,
846 (long) hsh->stub_offset,
847 hsh->bh_root.string);
848 bfd_set_error (bfd_error_bad_value);
849 return FALSE;
850 }
851
852 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
853 if (!htab->has_22bit_branch)
854 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
855 else
856 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
857 bfd_put_32 (stub_bfd, insn, loc);
858
859 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
860 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
861 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
862 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
863 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
864
865 /* Point the function symbol at the stub. */
866 hsh->hh->eh.root.u.def.section = stub_sec;
867 hsh->hh->eh.root.u.def.value = stub_sec->size;
868
869 size = 24;
870 break;
871
872 default:
873 BFD_FAIL ();
874 return FALSE;
875 }
876
877 stub_sec->size += size;
878 return TRUE;
879 }
880
881 #undef LDIL_R1
882 #undef BE_SR4_R1
883 #undef BL_R1
884 #undef ADDIL_R1
885 #undef DEPI_R1
886 #undef LDW_R1_R21
887 #undef LDW_R1_DLT
888 #undef LDW_R1_R19
889 #undef ADDIL_R19
890 #undef LDW_R1_DP
891 #undef LDSID_R21_R1
892 #undef MTSP_R1
893 #undef BE_SR0_R21
894 #undef STW_RP
895 #undef BV_R0_R21
896 #undef BL_RP
897 #undef NOP
898 #undef LDW_RP
899 #undef LDSID_RP_R1
900 #undef BE_SR0_RP
901
902 /* As above, but don't actually build the stub. Just bump offset so
903 we know stub section sizes. */
904
905 static bfd_boolean
906 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
907 {
908 struct elf32_hppa_stub_hash_entry *hsh;
909 struct elf32_hppa_link_hash_table *htab;
910 int size;
911
912 /* Massage our args to the form they really have. */
913 hsh = hppa_stub_hash_entry (bh);
914 htab = in_arg;
915
916 if (hsh->stub_type == hppa_stub_long_branch)
917 size = 8;
918 else if (hsh->stub_type == hppa_stub_long_branch_shared)
919 size = 12;
920 else if (hsh->stub_type == hppa_stub_export)
921 size = 24;
922 else /* hppa_stub_import or hppa_stub_import_shared. */
923 {
924 if (htab->multi_subspace)
925 size = 28;
926 else
927 size = 16;
928 }
929
930 hsh->stub_sec->size += size;
931 return TRUE;
932 }
933
934 /* Return nonzero if ABFD represents an HPPA ELF32 file.
935 Additionally we set the default architecture and machine. */
936
937 static bfd_boolean
938 elf32_hppa_object_p (bfd *abfd)
939 {
940 Elf_Internal_Ehdr * i_ehdrp;
941 unsigned int flags;
942
943 i_ehdrp = elf_elfheader (abfd);
944 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
945 {
946 /* GCC on hppa-linux produces binaries with OSABI=Linux,
947 but the kernel produces corefiles with OSABI=SysV. */
948 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX &&
949 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
950 return FALSE;
951 }
952 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
953 {
954 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
955 but the kernel produces corefiles with OSABI=SysV. */
956 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
957 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
958 return FALSE;
959 }
960 else
961 {
962 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
963 return FALSE;
964 }
965
966 flags = i_ehdrp->e_flags;
967 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
968 {
969 case EFA_PARISC_1_0:
970 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
971 case EFA_PARISC_1_1:
972 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
973 case EFA_PARISC_2_0:
974 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
975 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
976 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
977 }
978 return TRUE;
979 }
980
981 /* Create the .plt and .got sections, and set up our hash table
982 short-cuts to various dynamic sections. */
983
984 static bfd_boolean
985 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
986 {
987 struct elf32_hppa_link_hash_table *htab;
988 struct elf_link_hash_entry *eh;
989
990 /* Don't try to create the .plt and .got twice. */
991 htab = hppa_link_hash_table (info);
992 if (htab->splt != NULL)
993 return TRUE;
994
995 /* Call the generic code to do most of the work. */
996 if (! _bfd_elf_create_dynamic_sections (abfd, info))
997 return FALSE;
998
999 htab->splt = bfd_get_section_by_name (abfd, ".plt");
1000 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
1001
1002 htab->sgot = bfd_get_section_by_name (abfd, ".got");
1003 htab->srelgot = bfd_make_section_with_flags (abfd, ".rela.got",
1004 (SEC_ALLOC
1005 | SEC_LOAD
1006 | SEC_HAS_CONTENTS
1007 | SEC_IN_MEMORY
1008 | SEC_LINKER_CREATED
1009 | SEC_READONLY));
1010 if (htab->srelgot == NULL
1011 || ! bfd_set_section_alignment (abfd, htab->srelgot, 2))
1012 return FALSE;
1013
1014 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
1015 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
1016
1017 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
1018 application, because __canonicalize_funcptr_for_compare needs it. */
1019 eh = elf_hash_table (info)->hgot;
1020 eh->forced_local = 0;
1021 eh->other = STV_DEFAULT;
1022 return bfd_elf_link_record_dynamic_symbol (info, eh);
1023 }
1024
1025 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1026
1027 static void
1028 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1029 struct elf_link_hash_entry *eh_dir,
1030 struct elf_link_hash_entry *eh_ind)
1031 {
1032 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1033
1034 hh_dir = hppa_elf_hash_entry (eh_dir);
1035 hh_ind = hppa_elf_hash_entry (eh_ind);
1036
1037 if (hh_ind->dyn_relocs != NULL)
1038 {
1039 if (hh_dir->dyn_relocs != NULL)
1040 {
1041 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1042 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1043
1044 /* Add reloc counts against the indirect sym to the direct sym
1045 list. Merge any entries against the same section. */
1046 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1047 {
1048 struct elf32_hppa_dyn_reloc_entry *hdh_q;
1049
1050 for (hdh_q = hh_dir->dyn_relocs;
1051 hdh_q != NULL;
1052 hdh_q = hdh_q->hdh_next)
1053 if (hdh_q->sec == hdh_p->sec)
1054 {
1055 #if RELATIVE_DYNRELOCS
1056 hdh_q->relative_count += hdh_p->relative_count;
1057 #endif
1058 hdh_q->count += hdh_p->count;
1059 *hdh_pp = hdh_p->hdh_next;
1060 break;
1061 }
1062 if (hdh_q == NULL)
1063 hdh_pp = &hdh_p->hdh_next;
1064 }
1065 *hdh_pp = hh_dir->dyn_relocs;
1066 }
1067
1068 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1069 hh_ind->dyn_relocs = NULL;
1070 }
1071
1072 if (ELIMINATE_COPY_RELOCS
1073 && eh_ind->root.type != bfd_link_hash_indirect
1074 && eh_dir->dynamic_adjusted)
1075 {
1076 /* If called to transfer flags for a weakdef during processing
1077 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1078 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1079 eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
1080 eh_dir->ref_regular |= eh_ind->ref_regular;
1081 eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
1082 eh_dir->needs_plt |= eh_ind->needs_plt;
1083 }
1084 else
1085 {
1086 if (eh_ind->root.type == bfd_link_hash_indirect
1087 && eh_dir->got.refcount <= 0)
1088 {
1089 hh_dir->tls_type = hh_ind->tls_type;
1090 hh_ind->tls_type = GOT_UNKNOWN;
1091 }
1092
1093 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1094 }
1095 }
1096
1097 static int
1098 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1099 int r_type, int is_local ATTRIBUTE_UNUSED)
1100 {
1101 /* For now we don't support linker optimizations. */
1102 return r_type;
1103 }
1104
1105 /* Look through the relocs for a section during the first phase, and
1106 calculate needed space in the global offset table, procedure linkage
1107 table, and dynamic reloc sections. At this point we haven't
1108 necessarily read all the input files. */
1109
1110 static bfd_boolean
1111 elf32_hppa_check_relocs (bfd *abfd,
1112 struct bfd_link_info *info,
1113 asection *sec,
1114 const Elf_Internal_Rela *relocs)
1115 {
1116 Elf_Internal_Shdr *symtab_hdr;
1117 struct elf_link_hash_entry **eh_syms;
1118 const Elf_Internal_Rela *rela;
1119 const Elf_Internal_Rela *rela_end;
1120 struct elf32_hppa_link_hash_table *htab;
1121 asection *sreloc;
1122 asection *stubreloc;
1123 int tls_type = GOT_UNKNOWN, old_tls_type = GOT_UNKNOWN;
1124
1125 if (info->relocatable)
1126 return TRUE;
1127
1128 htab = hppa_link_hash_table (info);
1129 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1130 eh_syms = elf_sym_hashes (abfd);
1131 sreloc = NULL;
1132 stubreloc = NULL;
1133
1134 rela_end = relocs + sec->reloc_count;
1135 for (rela = relocs; rela < rela_end; rela++)
1136 {
1137 enum {
1138 NEED_GOT = 1,
1139 NEED_PLT = 2,
1140 NEED_DYNREL = 4,
1141 PLT_PLABEL = 8
1142 };
1143
1144 unsigned int r_symndx, r_type;
1145 struct elf32_hppa_link_hash_entry *hh;
1146 int need_entry = 0;
1147
1148 r_symndx = ELF32_R_SYM (rela->r_info);
1149
1150 if (r_symndx < symtab_hdr->sh_info)
1151 hh = NULL;
1152 else
1153 {
1154 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1155 while (hh->eh.root.type == bfd_link_hash_indirect
1156 || hh->eh.root.type == bfd_link_hash_warning)
1157 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1158 }
1159
1160 r_type = ELF32_R_TYPE (rela->r_info);
1161 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1162
1163 switch (r_type)
1164 {
1165 case R_PARISC_DLTIND14F:
1166 case R_PARISC_DLTIND14R:
1167 case R_PARISC_DLTIND21L:
1168 /* This symbol requires a global offset table entry. */
1169 need_entry = NEED_GOT;
1170 break;
1171
1172 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1173 case R_PARISC_PLABEL21L:
1174 case R_PARISC_PLABEL32:
1175 /* If the addend is non-zero, we break badly. */
1176 if (rela->r_addend != 0)
1177 abort ();
1178
1179 /* If we are creating a shared library, then we need to
1180 create a PLT entry for all PLABELs, because PLABELs with
1181 local symbols may be passed via a pointer to another
1182 object. Additionally, output a dynamic relocation
1183 pointing to the PLT entry.
1184
1185 For executables, the original 32-bit ABI allowed two
1186 different styles of PLABELs (function pointers): For
1187 global functions, the PLABEL word points into the .plt
1188 two bytes past a (function address, gp) pair, and for
1189 local functions the PLABEL points directly at the
1190 function. The magic +2 for the first type allows us to
1191 differentiate between the two. As you can imagine, this
1192 is a real pain when it comes to generating code to call
1193 functions indirectly or to compare function pointers.
1194 We avoid the mess by always pointing a PLABEL into the
1195 .plt, even for local functions. */
1196 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1197 break;
1198
1199 case R_PARISC_PCREL12F:
1200 htab->has_12bit_branch = 1;
1201 goto branch_common;
1202
1203 case R_PARISC_PCREL17C:
1204 case R_PARISC_PCREL17F:
1205 htab->has_17bit_branch = 1;
1206 goto branch_common;
1207
1208 case R_PARISC_PCREL22F:
1209 htab->has_22bit_branch = 1;
1210 branch_common:
1211 /* Function calls might need to go through the .plt, and
1212 might require long branch stubs. */
1213 if (hh == NULL)
1214 {
1215 /* We know local syms won't need a .plt entry, and if
1216 they need a long branch stub we can't guarantee that
1217 we can reach the stub. So just flag an error later
1218 if we're doing a shared link and find we need a long
1219 branch stub. */
1220 continue;
1221 }
1222 else
1223 {
1224 /* Global symbols will need a .plt entry if they remain
1225 global, and in most cases won't need a long branch
1226 stub. Unfortunately, we have to cater for the case
1227 where a symbol is forced local by versioning, or due
1228 to symbolic linking, and we lose the .plt entry. */
1229 need_entry = NEED_PLT;
1230 if (hh->eh.type == STT_PARISC_MILLI)
1231 need_entry = 0;
1232 }
1233 break;
1234
1235 case R_PARISC_SEGBASE: /* Used to set segment base. */
1236 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1237 case R_PARISC_PCREL14F: /* PC relative load/store. */
1238 case R_PARISC_PCREL14R:
1239 case R_PARISC_PCREL17R: /* External branches. */
1240 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1241 case R_PARISC_PCREL32:
1242 /* We don't need to propagate the relocation if linking a
1243 shared object since these are section relative. */
1244 continue;
1245
1246 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1247 case R_PARISC_DPREL14R:
1248 case R_PARISC_DPREL21L:
1249 if (info->shared)
1250 {
1251 (*_bfd_error_handler)
1252 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1253 abfd,
1254 elf_hppa_howto_table[r_type].name);
1255 bfd_set_error (bfd_error_bad_value);
1256 return FALSE;
1257 }
1258 /* Fall through. */
1259
1260 case R_PARISC_DIR17F: /* Used for external branches. */
1261 case R_PARISC_DIR17R:
1262 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1263 case R_PARISC_DIR14R:
1264 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1265 case R_PARISC_DIR32: /* .word relocs. */
1266 /* We may want to output a dynamic relocation later. */
1267 need_entry = NEED_DYNREL;
1268 break;
1269
1270 /* This relocation describes the C++ object vtable hierarchy.
1271 Reconstruct it for later use during GC. */
1272 case R_PARISC_GNU_VTINHERIT:
1273 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1274 return FALSE;
1275 continue;
1276
1277 /* This relocation describes which C++ vtable entries are actually
1278 used. Record for later use during GC. */
1279 case R_PARISC_GNU_VTENTRY:
1280 if (!bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1281 return FALSE;
1282 continue;
1283
1284 case R_PARISC_TLS_GD21L:
1285 case R_PARISC_TLS_GD14R:
1286 case R_PARISC_TLS_LDM21L:
1287 case R_PARISC_TLS_LDM14R:
1288 need_entry = NEED_GOT;
1289 break;
1290
1291 case R_PARISC_TLS_IE21L:
1292 case R_PARISC_TLS_IE14R:
1293 if (info->shared)
1294 info->flags |= DF_STATIC_TLS;
1295 need_entry = NEED_GOT;
1296 break;
1297
1298 default:
1299 continue;
1300 }
1301
1302 /* Now carry out our orders. */
1303 if (need_entry & NEED_GOT)
1304 {
1305 switch (r_type)
1306 {
1307 default:
1308 tls_type = GOT_NORMAL;
1309 break;
1310 case R_PARISC_TLS_GD21L:
1311 case R_PARISC_TLS_GD14R:
1312 tls_type |= GOT_TLS_GD;
1313 break;
1314 case R_PARISC_TLS_LDM21L:
1315 case R_PARISC_TLS_LDM14R:
1316 tls_type |= GOT_TLS_LDM;
1317 break;
1318 case R_PARISC_TLS_IE21L:
1319 case R_PARISC_TLS_IE14R:
1320 tls_type |= GOT_TLS_IE;
1321 break;
1322 }
1323
1324 /* Allocate space for a GOT entry, as well as a dynamic
1325 relocation for this entry. */
1326 if (htab->sgot == NULL)
1327 {
1328 if (htab->etab.dynobj == NULL)
1329 htab->etab.dynobj = abfd;
1330 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1331 return FALSE;
1332 }
1333
1334 if (r_type == R_PARISC_TLS_LDM21L
1335 || r_type == R_PARISC_TLS_LDM14R)
1336 hppa_link_hash_table (info)->tls_ldm_got.refcount += 1;
1337 else
1338 {
1339 if (hh != NULL)
1340 {
1341 hh->eh.got.refcount += 1;
1342 old_tls_type = hh->tls_type;
1343 }
1344 else
1345 {
1346 bfd_signed_vma *local_got_refcounts;
1347
1348 /* This is a global offset table entry for a local symbol. */
1349 local_got_refcounts = elf_local_got_refcounts (abfd);
1350 if (local_got_refcounts == NULL)
1351 {
1352 bfd_size_type size;
1353
1354 /* Allocate space for local got offsets and local
1355 plt offsets. Done this way to save polluting
1356 elf_obj_tdata with another target specific
1357 pointer. */
1358 size = symtab_hdr->sh_info;
1359 size *= 2 * sizeof (bfd_signed_vma);
1360 /* Add in space to store the local GOT TLS types. */
1361 size += symtab_hdr->sh_info;
1362 local_got_refcounts = bfd_zalloc (abfd, size);
1363 if (local_got_refcounts == NULL)
1364 return FALSE;
1365 elf_local_got_refcounts (abfd) = local_got_refcounts;
1366 memset (hppa_elf_local_got_tls_type (abfd),
1367 GOT_UNKNOWN, symtab_hdr->sh_info);
1368 }
1369 local_got_refcounts[r_symndx] += 1;
1370
1371 old_tls_type = hppa_elf_local_got_tls_type (abfd) [r_symndx];
1372 }
1373
1374 tls_type |= old_tls_type;
1375
1376 if (old_tls_type != tls_type)
1377 {
1378 if (hh != NULL)
1379 hh->tls_type = tls_type;
1380 else
1381 hppa_elf_local_got_tls_type (abfd) [r_symndx] = tls_type;
1382 }
1383
1384 }
1385 }
1386
1387 if (need_entry & NEED_PLT)
1388 {
1389 /* If we are creating a shared library, and this is a reloc
1390 against a weak symbol or a global symbol in a dynamic
1391 object, then we will be creating an import stub and a
1392 .plt entry for the symbol. Similarly, on a normal link
1393 to symbols defined in a dynamic object we'll need the
1394 import stub and a .plt entry. We don't know yet whether
1395 the symbol is defined or not, so make an entry anyway and
1396 clean up later in adjust_dynamic_symbol. */
1397 if ((sec->flags & SEC_ALLOC) != 0)
1398 {
1399 if (hh != NULL)
1400 {
1401 hh->eh.needs_plt = 1;
1402 hh->eh.plt.refcount += 1;
1403
1404 /* If this .plt entry is for a plabel, mark it so
1405 that adjust_dynamic_symbol will keep the entry
1406 even if it appears to be local. */
1407 if (need_entry & PLT_PLABEL)
1408 hh->plabel = 1;
1409 }
1410 else if (need_entry & PLT_PLABEL)
1411 {
1412 bfd_signed_vma *local_got_refcounts;
1413 bfd_signed_vma *local_plt_refcounts;
1414
1415 local_got_refcounts = elf_local_got_refcounts (abfd);
1416 if (local_got_refcounts == NULL)
1417 {
1418 bfd_size_type size;
1419
1420 /* Allocate space for local got offsets and local
1421 plt offsets. */
1422 size = symtab_hdr->sh_info;
1423 size *= 2 * sizeof (bfd_signed_vma);
1424 /* Add in space to store the local GOT TLS types. */
1425 size += symtab_hdr->sh_info;
1426 local_got_refcounts = bfd_zalloc (abfd, size);
1427 if (local_got_refcounts == NULL)
1428 return FALSE;
1429 elf_local_got_refcounts (abfd) = local_got_refcounts;
1430 }
1431 local_plt_refcounts = (local_got_refcounts
1432 + symtab_hdr->sh_info);
1433 local_plt_refcounts[r_symndx] += 1;
1434 }
1435 }
1436 }
1437
1438 if (need_entry & NEED_DYNREL)
1439 {
1440 /* Flag this symbol as having a non-got, non-plt reference
1441 so that we generate copy relocs if it turns out to be
1442 dynamic. */
1443 if (hh != NULL && !info->shared)
1444 hh->eh.non_got_ref = 1;
1445
1446 /* If we are creating a shared library then we need to copy
1447 the reloc into the shared library. However, if we are
1448 linking with -Bsymbolic, we need only copy absolute
1449 relocs or relocs against symbols that are not defined in
1450 an object we are including in the link. PC- or DP- or
1451 DLT-relative relocs against any local sym or global sym
1452 with DEF_REGULAR set, can be discarded. At this point we
1453 have not seen all the input files, so it is possible that
1454 DEF_REGULAR is not set now but will be set later (it is
1455 never cleared). We account for that possibility below by
1456 storing information in the dyn_relocs field of the
1457 hash table entry.
1458
1459 A similar situation to the -Bsymbolic case occurs when
1460 creating shared libraries and symbol visibility changes
1461 render the symbol local.
1462
1463 As it turns out, all the relocs we will be creating here
1464 are absolute, so we cannot remove them on -Bsymbolic
1465 links or visibility changes anyway. A STUB_REL reloc
1466 is absolute too, as in that case it is the reloc in the
1467 stub we will be creating, rather than copying the PCREL
1468 reloc in the branch.
1469
1470 If on the other hand, we are creating an executable, we
1471 may need to keep relocations for symbols satisfied by a
1472 dynamic library if we manage to avoid copy relocs for the
1473 symbol. */
1474 if ((info->shared
1475 && (sec->flags & SEC_ALLOC) != 0
1476 && (IS_ABSOLUTE_RELOC (r_type)
1477 || (hh != NULL
1478 && (!info->symbolic
1479 || hh->eh.root.type == bfd_link_hash_defweak
1480 || !hh->eh.def_regular))))
1481 || (ELIMINATE_COPY_RELOCS
1482 && !info->shared
1483 && (sec->flags & SEC_ALLOC) != 0
1484 && hh != NULL
1485 && (hh->eh.root.type == bfd_link_hash_defweak
1486 || !hh->eh.def_regular)))
1487 {
1488 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1489 struct elf32_hppa_dyn_reloc_entry **hdh_head;
1490
1491 /* Create a reloc section in dynobj and make room for
1492 this reloc. */
1493 if (sreloc == NULL)
1494 {
1495 char *name;
1496 bfd *dynobj;
1497
1498 name = (bfd_elf_string_from_elf_section
1499 (abfd,
1500 elf_elfheader (abfd)->e_shstrndx,
1501 elf_section_data (sec)->rel_hdr.sh_name));
1502 if (name == NULL)
1503 {
1504 (*_bfd_error_handler)
1505 (_("Could not find relocation section for %s"),
1506 sec->name);
1507 bfd_set_error (bfd_error_bad_value);
1508 return FALSE;
1509 }
1510
1511 if (htab->etab.dynobj == NULL)
1512 htab->etab.dynobj = abfd;
1513
1514 dynobj = htab->etab.dynobj;
1515 sreloc = bfd_get_section_by_name (dynobj, name);
1516 if (sreloc == NULL)
1517 {
1518 flagword flags;
1519
1520 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1521 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1522 if ((sec->flags & SEC_ALLOC) != 0)
1523 flags |= SEC_ALLOC | SEC_LOAD;
1524 sreloc = bfd_make_section_with_flags (dynobj,
1525 name,
1526 flags);
1527 if (sreloc == NULL
1528 || !bfd_set_section_alignment (dynobj, sreloc, 2))
1529 return FALSE;
1530 }
1531
1532 elf_section_data (sec)->sreloc = sreloc;
1533 }
1534
1535 /* If this is a global symbol, we count the number of
1536 relocations we need for this symbol. */
1537 if (hh != NULL)
1538 {
1539 hdh_head = &hh->dyn_relocs;
1540 }
1541 else
1542 {
1543 /* Track dynamic relocs needed for local syms too.
1544 We really need local syms available to do this
1545 easily. Oh well. */
1546
1547 asection *sr;
1548 void *vpp;
1549
1550 sr = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1551 sec, r_symndx);
1552 if (sr == NULL)
1553 return FALSE;
1554
1555 vpp = &elf_section_data (sr)->local_dynrel;
1556 hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp;
1557 }
1558
1559 hdh_p = *hdh_head;
1560 if (hdh_p == NULL || hdh_p->sec != sec)
1561 {
1562 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1563 if (hdh_p == NULL)
1564 return FALSE;
1565 hdh_p->hdh_next = *hdh_head;
1566 *hdh_head = hdh_p;
1567 hdh_p->sec = sec;
1568 hdh_p->count = 0;
1569 #if RELATIVE_DYNRELOCS
1570 hdh_p->relative_count = 0;
1571 #endif
1572 }
1573
1574 hdh_p->count += 1;
1575 #if RELATIVE_DYNRELOCS
1576 if (!IS_ABSOLUTE_RELOC (rtype))
1577 hdh_p->relative_count += 1;
1578 #endif
1579 }
1580 }
1581 }
1582
1583 return TRUE;
1584 }
1585
1586 /* Return the section that should be marked against garbage collection
1587 for a given relocation. */
1588
1589 static asection *
1590 elf32_hppa_gc_mark_hook (asection *sec,
1591 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1592 Elf_Internal_Rela *rela,
1593 struct elf_link_hash_entry *hh,
1594 Elf_Internal_Sym *sym)
1595 {
1596 if (hh != NULL)
1597 {
1598 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1599 {
1600 case R_PARISC_GNU_VTINHERIT:
1601 case R_PARISC_GNU_VTENTRY:
1602 break;
1603
1604 default:
1605 switch (hh->root.type)
1606 {
1607 case bfd_link_hash_defined:
1608 case bfd_link_hash_defweak:
1609 return hh->root.u.def.section;
1610
1611 case bfd_link_hash_common:
1612 return hh->root.u.c.p->section;
1613
1614 default:
1615 break;
1616 }
1617 }
1618 }
1619 else
1620 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1621
1622 return NULL;
1623 }
1624
1625 /* Update the got and plt entry reference counts for the section being
1626 removed. */
1627
1628 static bfd_boolean
1629 elf32_hppa_gc_sweep_hook (bfd *abfd,
1630 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1631 asection *sec,
1632 const Elf_Internal_Rela *relocs)
1633 {
1634 Elf_Internal_Shdr *symtab_hdr;
1635 struct elf_link_hash_entry **eh_syms;
1636 bfd_signed_vma *local_got_refcounts;
1637 bfd_signed_vma *local_plt_refcounts;
1638 const Elf_Internal_Rela *rela, *relend;
1639
1640 elf_section_data (sec)->local_dynrel = NULL;
1641
1642 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1643 eh_syms = elf_sym_hashes (abfd);
1644 local_got_refcounts = elf_local_got_refcounts (abfd);
1645 local_plt_refcounts = local_got_refcounts;
1646 if (local_plt_refcounts != NULL)
1647 local_plt_refcounts += symtab_hdr->sh_info;
1648
1649 relend = relocs + sec->reloc_count;
1650 for (rela = relocs; rela < relend; rela++)
1651 {
1652 unsigned long r_symndx;
1653 unsigned int r_type;
1654 struct elf_link_hash_entry *eh = NULL;
1655
1656 r_symndx = ELF32_R_SYM (rela->r_info);
1657 if (r_symndx >= symtab_hdr->sh_info)
1658 {
1659 struct elf32_hppa_link_hash_entry *hh;
1660 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1661 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1662
1663 eh = eh_syms[r_symndx - symtab_hdr->sh_info];
1664 while (eh->root.type == bfd_link_hash_indirect
1665 || eh->root.type == bfd_link_hash_warning)
1666 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1667 hh = hppa_elf_hash_entry (eh);
1668
1669 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next)
1670 if (hdh_p->sec == sec)
1671 {
1672 /* Everything must go for SEC. */
1673 *hdh_pp = hdh_p->hdh_next;
1674 break;
1675 }
1676 }
1677
1678 r_type = ELF32_R_TYPE (rela->r_info);
1679 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, eh != NULL);
1680
1681 switch (r_type)
1682 {
1683 case R_PARISC_DLTIND14F:
1684 case R_PARISC_DLTIND14R:
1685 case R_PARISC_DLTIND21L:
1686 case R_PARISC_TLS_GD21L:
1687 case R_PARISC_TLS_GD14R:
1688 case R_PARISC_TLS_IE21L:
1689 case R_PARISC_TLS_IE14R:
1690 if (eh != NULL)
1691 {
1692 if (eh->got.refcount > 0)
1693 eh->got.refcount -= 1;
1694 }
1695 else if (local_got_refcounts != NULL)
1696 {
1697 if (local_got_refcounts[r_symndx] > 0)
1698 local_got_refcounts[r_symndx] -= 1;
1699 }
1700 break;
1701
1702 case R_PARISC_TLS_LDM21L:
1703 case R_PARISC_TLS_LDM14R:
1704 hppa_link_hash_table (info)->tls_ldm_got.refcount -= 1;
1705 break;
1706
1707 case R_PARISC_PCREL12F:
1708 case R_PARISC_PCREL17C:
1709 case R_PARISC_PCREL17F:
1710 case R_PARISC_PCREL22F:
1711 if (eh != NULL)
1712 {
1713 if (eh->plt.refcount > 0)
1714 eh->plt.refcount -= 1;
1715 }
1716 break;
1717
1718 case R_PARISC_PLABEL14R:
1719 case R_PARISC_PLABEL21L:
1720 case R_PARISC_PLABEL32:
1721 if (eh != NULL)
1722 {
1723 if (eh->plt.refcount > 0)
1724 eh->plt.refcount -= 1;
1725 }
1726 else if (local_plt_refcounts != NULL)
1727 {
1728 if (local_plt_refcounts[r_symndx] > 0)
1729 local_plt_refcounts[r_symndx] -= 1;
1730 }
1731 break;
1732
1733 default:
1734 break;
1735 }
1736 }
1737
1738 return TRUE;
1739 }
1740
1741 /* Support for core dump NOTE sections. */
1742
1743 static bfd_boolean
1744 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1745 {
1746 int offset;
1747 size_t size;
1748
1749 switch (note->descsz)
1750 {
1751 default:
1752 return FALSE;
1753
1754 case 396: /* Linux/hppa */
1755 /* pr_cursig */
1756 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1757
1758 /* pr_pid */
1759 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1760
1761 /* pr_reg */
1762 offset = 72;
1763 size = 320;
1764
1765 break;
1766 }
1767
1768 /* Make a ".reg/999" section. */
1769 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1770 size, note->descpos + offset);
1771 }
1772
1773 static bfd_boolean
1774 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1775 {
1776 switch (note->descsz)
1777 {
1778 default:
1779 return FALSE;
1780
1781 case 124: /* Linux/hppa elf_prpsinfo. */
1782 elf_tdata (abfd)->core_program
1783 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1784 elf_tdata (abfd)->core_command
1785 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1786 }
1787
1788 /* Note that for some reason, a spurious space is tacked
1789 onto the end of the args in some (at least one anyway)
1790 implementations, so strip it off if it exists. */
1791 {
1792 char *command = elf_tdata (abfd)->core_command;
1793 int n = strlen (command);
1794
1795 if (0 < n && command[n - 1] == ' ')
1796 command[n - 1] = '\0';
1797 }
1798
1799 return TRUE;
1800 }
1801
1802 /* Our own version of hide_symbol, so that we can keep plt entries for
1803 plabels. */
1804
1805 static void
1806 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1807 struct elf_link_hash_entry *eh,
1808 bfd_boolean force_local)
1809 {
1810 if (force_local)
1811 {
1812 eh->forced_local = 1;
1813 if (eh->dynindx != -1)
1814 {
1815 eh->dynindx = -1;
1816 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1817 eh->dynstr_index);
1818 }
1819 }
1820
1821 if (! hppa_elf_hash_entry (eh)->plabel)
1822 {
1823 eh->needs_plt = 0;
1824 eh->plt = elf_hash_table (info)->init_plt_refcount;
1825 }
1826 }
1827
1828 /* Adjust a symbol defined by a dynamic object and referenced by a
1829 regular object. The current definition is in some section of the
1830 dynamic object, but we're not including those sections. We have to
1831 change the definition to something the rest of the link can
1832 understand. */
1833
1834 static bfd_boolean
1835 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1836 struct elf_link_hash_entry *eh)
1837 {
1838 struct elf32_hppa_link_hash_table *htab;
1839 asection *sec;
1840 unsigned int power_of_two;
1841
1842 /* If this is a function, put it in the procedure linkage table. We
1843 will fill in the contents of the procedure linkage table later. */
1844 if (eh->type == STT_FUNC
1845 || eh->needs_plt)
1846 {
1847 if (eh->plt.refcount <= 0
1848 || (eh->def_regular
1849 && eh->root.type != bfd_link_hash_defweak
1850 && ! hppa_elf_hash_entry (eh)->plabel
1851 && (!info->shared || info->symbolic)))
1852 {
1853 /* The .plt entry is not needed when:
1854 a) Garbage collection has removed all references to the
1855 symbol, or
1856 b) We know for certain the symbol is defined in this
1857 object, and it's not a weak definition, nor is the symbol
1858 used by a plabel relocation. Either this object is the
1859 application or we are doing a shared symbolic link. */
1860
1861 eh->plt.offset = (bfd_vma) -1;
1862 eh->needs_plt = 0;
1863 }
1864
1865 return TRUE;
1866 }
1867 else
1868 eh->plt.offset = (bfd_vma) -1;
1869
1870 /* If this is a weak symbol, and there is a real definition, the
1871 processor independent code will have arranged for us to see the
1872 real definition first, and we can just use the same value. */
1873 if (eh->u.weakdef != NULL)
1874 {
1875 if (eh->u.weakdef->root.type != bfd_link_hash_defined
1876 && eh->u.weakdef->root.type != bfd_link_hash_defweak)
1877 abort ();
1878 eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1879 eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1880 if (ELIMINATE_COPY_RELOCS)
1881 eh->non_got_ref = eh->u.weakdef->non_got_ref;
1882 return TRUE;
1883 }
1884
1885 /* This is a reference to a symbol defined by a dynamic object which
1886 is not a function. */
1887
1888 /* If we are creating a shared library, we must presume that the
1889 only references to the symbol are via the global offset table.
1890 For such cases we need not do anything here; the relocations will
1891 be handled correctly by relocate_section. */
1892 if (info->shared)
1893 return TRUE;
1894
1895 /* If there are no references to this symbol that do not use the
1896 GOT, we don't need to generate a copy reloc. */
1897 if (!eh->non_got_ref)
1898 return TRUE;
1899
1900 if (ELIMINATE_COPY_RELOCS)
1901 {
1902 struct elf32_hppa_link_hash_entry *hh;
1903 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1904
1905 hh = hppa_elf_hash_entry (eh);
1906 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
1907 {
1908 sec = hdh_p->sec->output_section;
1909 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1910 break;
1911 }
1912
1913 /* If we didn't find any dynamic relocs in read-only sections, then
1914 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1915 if (hdh_p == NULL)
1916 {
1917 eh->non_got_ref = 0;
1918 return TRUE;
1919 }
1920 }
1921
1922 if (eh->size == 0)
1923 {
1924 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
1925 eh->root.root.string);
1926 return TRUE;
1927 }
1928
1929 /* We must allocate the symbol in our .dynbss section, which will
1930 become part of the .bss section of the executable. There will be
1931 an entry for this symbol in the .dynsym section. The dynamic
1932 object will contain position independent code, so all references
1933 from the dynamic object to this symbol will go through the global
1934 offset table. The dynamic linker will use the .dynsym entry to
1935 determine the address it must put in the global offset table, so
1936 both the dynamic object and the regular object will refer to the
1937 same memory location for the variable. */
1938
1939 htab = hppa_link_hash_table (info);
1940
1941 /* We must generate a COPY reloc to tell the dynamic linker to
1942 copy the initial value out of the dynamic object and into the
1943 runtime process image. */
1944 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0)
1945 {
1946 htab->srelbss->size += sizeof (Elf32_External_Rela);
1947 eh->needs_copy = 1;
1948 }
1949
1950 /* We need to figure out the alignment required for this symbol. I
1951 have no idea how other ELF linkers handle this. */
1952
1953 power_of_two = bfd_log2 (eh->size);
1954 if (power_of_two > 3)
1955 power_of_two = 3;
1956
1957 /* Apply the required alignment. */
1958 sec = htab->sdynbss;
1959 sec->size = BFD_ALIGN (sec->size, (bfd_size_type) (1 << power_of_two));
1960 if (power_of_two > bfd_get_section_alignment (htab->etab.dynobj, sec))
1961 {
1962 if (! bfd_set_section_alignment (htab->etab.dynobj, sec, power_of_two))
1963 return FALSE;
1964 }
1965
1966 /* Define the symbol as being at this point in the section. */
1967 eh->root.u.def.section = sec;
1968 eh->root.u.def.value = sec->size;
1969
1970 /* Increment the section size to make room for the symbol. */
1971 sec->size += eh->size;
1972
1973 return TRUE;
1974 }
1975
1976 /* Allocate space in the .plt for entries that won't have relocations.
1977 ie. plabel entries. */
1978
1979 static bfd_boolean
1980 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1981 {
1982 struct bfd_link_info *info;
1983 struct elf32_hppa_link_hash_table *htab;
1984 struct elf32_hppa_link_hash_entry *hh;
1985 asection *sec;
1986
1987 if (eh->root.type == bfd_link_hash_indirect)
1988 return TRUE;
1989
1990 if (eh->root.type == bfd_link_hash_warning)
1991 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1992
1993 info = (struct bfd_link_info *) inf;
1994 hh = hppa_elf_hash_entry (eh);
1995 htab = hppa_link_hash_table (info);
1996 if (htab->etab.dynamic_sections_created
1997 && eh->plt.refcount > 0)
1998 {
1999 /* Make sure this symbol is output as a dynamic symbol.
2000 Undefined weak syms won't yet be marked as dynamic. */
2001 if (eh->dynindx == -1
2002 && !eh->forced_local
2003 && eh->type != STT_PARISC_MILLI)
2004 {
2005 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2006 return FALSE;
2007 }
2008
2009 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, eh))
2010 {
2011 /* Allocate these later. From this point on, h->plabel
2012 means that the plt entry is only used by a plabel.
2013 We'll be using a normal plt entry for this symbol, so
2014 clear the plabel indicator. */
2015
2016 hh->plabel = 0;
2017 }
2018 else if (hh->plabel)
2019 {
2020 /* Make an entry in the .plt section for plabel references
2021 that won't have a .plt entry for other reasons. */
2022 sec = htab->splt;
2023 eh->plt.offset = sec->size;
2024 sec->size += PLT_ENTRY_SIZE;
2025 }
2026 else
2027 {
2028 /* No .plt entry needed. */
2029 eh->plt.offset = (bfd_vma) -1;
2030 eh->needs_plt = 0;
2031 }
2032 }
2033 else
2034 {
2035 eh->plt.offset = (bfd_vma) -1;
2036 eh->needs_plt = 0;
2037 }
2038
2039 return TRUE;
2040 }
2041
2042 /* Allocate space in .plt, .got and associated reloc sections for
2043 global syms. */
2044
2045 static bfd_boolean
2046 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2047 {
2048 struct bfd_link_info *info;
2049 struct elf32_hppa_link_hash_table *htab;
2050 asection *sec;
2051 struct elf32_hppa_link_hash_entry *hh;
2052 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2053
2054 if (eh->root.type == bfd_link_hash_indirect)
2055 return TRUE;
2056
2057 if (eh->root.type == bfd_link_hash_warning)
2058 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2059
2060 info = inf;
2061 htab = hppa_link_hash_table (info);
2062 hh = hppa_elf_hash_entry (eh);
2063
2064 if (htab->etab.dynamic_sections_created
2065 && eh->plt.offset != (bfd_vma) -1
2066 && !hh->plabel
2067 && eh->plt.refcount > 0)
2068 {
2069 /* Make an entry in the .plt section. */
2070 sec = htab->splt;
2071 eh->plt.offset = sec->size;
2072 sec->size += PLT_ENTRY_SIZE;
2073
2074 /* We also need to make an entry in the .rela.plt section. */
2075 htab->srelplt->size += sizeof (Elf32_External_Rela);
2076 htab->need_plt_stub = 1;
2077 }
2078
2079 if (eh->got.refcount > 0)
2080 {
2081 /* Make sure this symbol is output as a dynamic symbol.
2082 Undefined weak syms won't yet be marked as dynamic. */
2083 if (eh->dynindx == -1
2084 && !eh->forced_local
2085 && eh->type != STT_PARISC_MILLI)
2086 {
2087 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2088 return FALSE;
2089 }
2090
2091 sec = htab->sgot;
2092 eh->got.offset = sec->size;
2093 sec->size += GOT_ENTRY_SIZE;
2094 /* R_PARISC_TLS_GD* needs two GOT entries */
2095 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2096 sec->size += GOT_ENTRY_SIZE * 2;
2097 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2098 sec->size += GOT_ENTRY_SIZE;
2099 if (htab->etab.dynamic_sections_created
2100 && (info->shared
2101 || (eh->dynindx != -1
2102 && !eh->forced_local)))
2103 {
2104 htab->srelgot->size += sizeof (Elf32_External_Rela);
2105 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2106 htab->srelgot->size += 2 * sizeof (Elf32_External_Rela);
2107 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2108 htab->srelgot->size += sizeof (Elf32_External_Rela);
2109 }
2110 }
2111 else
2112 eh->got.offset = (bfd_vma) -1;
2113
2114 if (hh->dyn_relocs == NULL)
2115 return TRUE;
2116
2117 /* If this is a -Bsymbolic shared link, then we need to discard all
2118 space allocated for dynamic pc-relative relocs against symbols
2119 defined in a regular object. For the normal shared case, discard
2120 space for relocs that have become local due to symbol visibility
2121 changes. */
2122 if (info->shared)
2123 {
2124 #if RELATIVE_DYNRELOCS
2125 if (SYMBOL_CALLS_LOCAL (info, eh))
2126 {
2127 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
2128
2129 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2130 {
2131 hdh_p->count -= hdh_p->relative_count;
2132 hdh_p->relative_count = 0;
2133 if (hdh_p->count == 0)
2134 *hdh_pp = hdh_p->hdh_next;
2135 else
2136 hdh_pp = &hdh_p->hdh_next;
2137 }
2138 }
2139 #endif
2140
2141 /* Also discard relocs on undefined weak syms with non-default
2142 visibility. */
2143 if (hh->dyn_relocs != NULL
2144 && eh->root.type == bfd_link_hash_undefweak)
2145 {
2146 if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
2147 hh->dyn_relocs = NULL;
2148
2149 /* Make sure undefined weak symbols are output as a dynamic
2150 symbol in PIEs. */
2151 else if (eh->dynindx == -1
2152 && !eh->forced_local)
2153 {
2154 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2155 return FALSE;
2156 }
2157 }
2158 }
2159 else
2160 {
2161 /* For the non-shared case, discard space for relocs against
2162 symbols which turn out to need copy relocs or are not
2163 dynamic. */
2164
2165 if (!eh->non_got_ref
2166 && ((ELIMINATE_COPY_RELOCS
2167 && eh->def_dynamic
2168 && !eh->def_regular)
2169 || (htab->etab.dynamic_sections_created
2170 && (eh->root.type == bfd_link_hash_undefweak
2171 || eh->root.type == bfd_link_hash_undefined))))
2172 {
2173 /* Make sure this symbol is output as a dynamic symbol.
2174 Undefined weak syms won't yet be marked as dynamic. */
2175 if (eh->dynindx == -1
2176 && !eh->forced_local
2177 && eh->type != STT_PARISC_MILLI)
2178 {
2179 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2180 return FALSE;
2181 }
2182
2183 /* If that succeeded, we know we'll be keeping all the
2184 relocs. */
2185 if (eh->dynindx != -1)
2186 goto keep;
2187 }
2188
2189 hh->dyn_relocs = NULL;
2190 return TRUE;
2191
2192 keep: ;
2193 }
2194
2195 /* Finally, allocate space. */
2196 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2197 {
2198 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2199 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2200 }
2201
2202 return TRUE;
2203 }
2204
2205 /* This function is called via elf_link_hash_traverse to force
2206 millicode symbols local so they do not end up as globals in the
2207 dynamic symbol table. We ought to be able to do this in
2208 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2209 for all dynamic symbols. Arguably, this is a bug in
2210 elf_adjust_dynamic_symbol. */
2211
2212 static bfd_boolean
2213 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2214 struct bfd_link_info *info)
2215 {
2216 if (eh->root.type == bfd_link_hash_warning)
2217 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2218
2219 if (eh->type == STT_PARISC_MILLI
2220 && !eh->forced_local)
2221 {
2222 elf32_hppa_hide_symbol (info, eh, TRUE);
2223 }
2224 return TRUE;
2225 }
2226
2227 /* Find any dynamic relocs that apply to read-only sections. */
2228
2229 static bfd_boolean
2230 readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2231 {
2232 struct elf32_hppa_link_hash_entry *hh;
2233 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2234
2235 if (eh->root.type == bfd_link_hash_warning)
2236 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2237
2238 hh = hppa_elf_hash_entry (eh);
2239 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2240 {
2241 asection *sec = hdh_p->sec->output_section;
2242
2243 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
2244 {
2245 struct bfd_link_info *info = inf;
2246
2247 info->flags |= DF_TEXTREL;
2248
2249 /* Not an error, just cut short the traversal. */
2250 return FALSE;
2251 }
2252 }
2253 return TRUE;
2254 }
2255
2256 /* Set the sizes of the dynamic sections. */
2257
2258 static bfd_boolean
2259 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2260 struct bfd_link_info *info)
2261 {
2262 struct elf32_hppa_link_hash_table *htab;
2263 bfd *dynobj;
2264 bfd *ibfd;
2265 asection *sec;
2266 bfd_boolean relocs;
2267
2268 htab = hppa_link_hash_table (info);
2269 dynobj = htab->etab.dynobj;
2270 if (dynobj == NULL)
2271 abort ();
2272
2273 if (htab->etab.dynamic_sections_created)
2274 {
2275 /* Set the contents of the .interp section to the interpreter. */
2276 if (info->executable)
2277 {
2278 sec = bfd_get_section_by_name (dynobj, ".interp");
2279 if (sec == NULL)
2280 abort ();
2281 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2282 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2283 }
2284
2285 /* Force millicode symbols local. */
2286 elf_link_hash_traverse (&htab->etab,
2287 clobber_millicode_symbols,
2288 info);
2289 }
2290
2291 /* Set up .got and .plt offsets for local syms, and space for local
2292 dynamic relocs. */
2293 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2294 {
2295 bfd_signed_vma *local_got;
2296 bfd_signed_vma *end_local_got;
2297 bfd_signed_vma *local_plt;
2298 bfd_signed_vma *end_local_plt;
2299 bfd_size_type locsymcount;
2300 Elf_Internal_Shdr *symtab_hdr;
2301 asection *srel;
2302 char *local_tls_type;
2303
2304 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2305 continue;
2306
2307 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2308 {
2309 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2310
2311 for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
2312 elf_section_data (sec)->local_dynrel);
2313 hdh_p != NULL;
2314 hdh_p = hdh_p->hdh_next)
2315 {
2316 if (!bfd_is_abs_section (hdh_p->sec)
2317 && bfd_is_abs_section (hdh_p->sec->output_section))
2318 {
2319 /* Input section has been discarded, either because
2320 it is a copy of a linkonce section or due to
2321 linker script /DISCARD/, so we'll be discarding
2322 the relocs too. */
2323 }
2324 else if (hdh_p->count != 0)
2325 {
2326 srel = elf_section_data (hdh_p->sec)->sreloc;
2327 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2328 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2329 info->flags |= DF_TEXTREL;
2330 }
2331 }
2332 }
2333
2334 local_got = elf_local_got_refcounts (ibfd);
2335 if (!local_got)
2336 continue;
2337
2338 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2339 locsymcount = symtab_hdr->sh_info;
2340 end_local_got = local_got + locsymcount;
2341 local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2342 sec = htab->sgot;
2343 srel = htab->srelgot;
2344 for (; local_got < end_local_got; ++local_got)
2345 {
2346 if (*local_got > 0)
2347 {
2348 *local_got = sec->size;
2349 sec->size += GOT_ENTRY_SIZE;
2350 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2351 sec->size += 2 * GOT_ENTRY_SIZE;
2352 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2353 sec->size += GOT_ENTRY_SIZE;
2354 if (info->shared)
2355 {
2356 srel->size += sizeof (Elf32_External_Rela);
2357 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2358 srel->size += 2 * sizeof (Elf32_External_Rela);
2359 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2360 srel->size += sizeof (Elf32_External_Rela);
2361 }
2362 }
2363 else
2364 *local_got = (bfd_vma) -1;
2365
2366 ++local_tls_type;
2367 }
2368
2369 local_plt = end_local_got;
2370 end_local_plt = local_plt + locsymcount;
2371 if (! htab->etab.dynamic_sections_created)
2372 {
2373 /* Won't be used, but be safe. */
2374 for (; local_plt < end_local_plt; ++local_plt)
2375 *local_plt = (bfd_vma) -1;
2376 }
2377 else
2378 {
2379 sec = htab->splt;
2380 srel = htab->srelplt;
2381 for (; local_plt < end_local_plt; ++local_plt)
2382 {
2383 if (*local_plt > 0)
2384 {
2385 *local_plt = sec->size;
2386 sec->size += PLT_ENTRY_SIZE;
2387 if (info->shared)
2388 srel->size += sizeof (Elf32_External_Rela);
2389 }
2390 else
2391 *local_plt = (bfd_vma) -1;
2392 }
2393 }
2394 }
2395
2396 if (htab->tls_ldm_got.refcount > 0)
2397 {
2398 /* Allocate 2 got entries and 1 dynamic reloc for
2399 R_PARISC_TLS_DTPMOD32 relocs. */
2400 htab->tls_ldm_got.offset = htab->sgot->size;
2401 htab->sgot->size += (GOT_ENTRY_SIZE * 2);
2402 htab->srelgot->size += sizeof (Elf32_External_Rela);
2403 }
2404 else
2405 htab->tls_ldm_got.offset = -1;
2406
2407 /* Do all the .plt entries without relocs first. The dynamic linker
2408 uses the last .plt reloc to find the end of the .plt (and hence
2409 the start of the .got) for lazy linking. */
2410 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2411
2412 /* Allocate global sym .plt and .got entries, and space for global
2413 sym dynamic relocs. */
2414 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2415
2416 /* The check_relocs and adjust_dynamic_symbol entry points have
2417 determined the sizes of the various dynamic sections. Allocate
2418 memory for them. */
2419 relocs = FALSE;
2420 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2421 {
2422 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2423 continue;
2424
2425 if (sec == htab->splt)
2426 {
2427 if (htab->need_plt_stub)
2428 {
2429 /* Make space for the plt stub at the end of the .plt
2430 section. We want this stub right at the end, up
2431 against the .got section. */
2432 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2433 int pltalign = bfd_section_alignment (dynobj, sec);
2434 bfd_size_type mask;
2435
2436 if (gotalign > pltalign)
2437 bfd_set_section_alignment (dynobj, sec, gotalign);
2438 mask = ((bfd_size_type) 1 << gotalign) - 1;
2439 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2440 }
2441 }
2442 else if (sec == htab->sgot
2443 || sec == htab->sdynbss)
2444 ;
2445 else if (strncmp (bfd_get_section_name (dynobj, sec), ".rela", 5) == 0)
2446 {
2447 if (sec->size != 0)
2448 {
2449 /* Remember whether there are any reloc sections other
2450 than .rela.plt. */
2451 if (sec != htab->srelplt)
2452 relocs = TRUE;
2453
2454 /* We use the reloc_count field as a counter if we need
2455 to copy relocs into the output file. */
2456 sec->reloc_count = 0;
2457 }
2458 }
2459 else
2460 {
2461 /* It's not one of our sections, so don't allocate space. */
2462 continue;
2463 }
2464
2465 if (sec->size == 0)
2466 {
2467 /* If we don't need this section, strip it from the
2468 output file. This is mostly to handle .rela.bss and
2469 .rela.plt. We must create both sections in
2470 create_dynamic_sections, because they must be created
2471 before the linker maps input sections to output
2472 sections. The linker does that before
2473 adjust_dynamic_symbol is called, and it is that
2474 function which decides whether anything needs to go
2475 into these sections. */
2476 sec->flags |= SEC_EXCLUDE;
2477 continue;
2478 }
2479
2480 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2481 continue;
2482
2483 /* Allocate memory for the section contents. Zero it, because
2484 we may not fill in all the reloc sections. */
2485 sec->contents = bfd_zalloc (dynobj, sec->size);
2486 if (sec->contents == NULL)
2487 return FALSE;
2488 }
2489
2490 if (htab->etab.dynamic_sections_created)
2491 {
2492 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2493 actually has nothing to do with the PLT, it is how we
2494 communicate the LTP value of a load module to the dynamic
2495 linker. */
2496 #define add_dynamic_entry(TAG, VAL) \
2497 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2498
2499 if (!add_dynamic_entry (DT_PLTGOT, 0))
2500 return FALSE;
2501
2502 /* Add some entries to the .dynamic section. We fill in the
2503 values later, in elf32_hppa_finish_dynamic_sections, but we
2504 must add the entries now so that we get the correct size for
2505 the .dynamic section. The DT_DEBUG entry is filled in by the
2506 dynamic linker and used by the debugger. */
2507 if (info->executable)
2508 {
2509 if (!add_dynamic_entry (DT_DEBUG, 0))
2510 return FALSE;
2511 }
2512
2513 if (htab->srelplt->size != 0)
2514 {
2515 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2516 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2517 || !add_dynamic_entry (DT_JMPREL, 0))
2518 return FALSE;
2519 }
2520
2521 if (relocs)
2522 {
2523 if (!add_dynamic_entry (DT_RELA, 0)
2524 || !add_dynamic_entry (DT_RELASZ, 0)
2525 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2526 return FALSE;
2527
2528 /* If any dynamic relocs apply to a read-only section,
2529 then we need a DT_TEXTREL entry. */
2530 if ((info->flags & DF_TEXTREL) == 0)
2531 elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info);
2532
2533 if ((info->flags & DF_TEXTREL) != 0)
2534 {
2535 if (!add_dynamic_entry (DT_TEXTREL, 0))
2536 return FALSE;
2537 }
2538 }
2539 }
2540 #undef add_dynamic_entry
2541
2542 return TRUE;
2543 }
2544
2545 /* External entry points for sizing and building linker stubs. */
2546
2547 /* Set up various things so that we can make a list of input sections
2548 for each output section included in the link. Returns -1 on error,
2549 0 when no stubs will be needed, and 1 on success. */
2550
2551 int
2552 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2553 {
2554 bfd *input_bfd;
2555 unsigned int bfd_count;
2556 int top_id, top_index;
2557 asection *section;
2558 asection **input_list, **list;
2559 bfd_size_type amt;
2560 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2561
2562 /* Count the number of input BFDs and find the top input section id. */
2563 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2564 input_bfd != NULL;
2565 input_bfd = input_bfd->link_next)
2566 {
2567 bfd_count += 1;
2568 for (section = input_bfd->sections;
2569 section != NULL;
2570 section = section->next)
2571 {
2572 if (top_id < section->id)
2573 top_id = section->id;
2574 }
2575 }
2576 htab->bfd_count = bfd_count;
2577
2578 amt = sizeof (struct map_stub) * (top_id + 1);
2579 htab->stub_group = bfd_zmalloc (amt);
2580 if (htab->stub_group == NULL)
2581 return -1;
2582
2583 /* We can't use output_bfd->section_count here to find the top output
2584 section index as some sections may have been removed, and
2585 strip_excluded_output_sections doesn't renumber the indices. */
2586 for (section = output_bfd->sections, top_index = 0;
2587 section != NULL;
2588 section = section->next)
2589 {
2590 if (top_index < section->index)
2591 top_index = section->index;
2592 }
2593
2594 htab->top_index = top_index;
2595 amt = sizeof (asection *) * (top_index + 1);
2596 input_list = bfd_malloc (amt);
2597 htab->input_list = input_list;
2598 if (input_list == NULL)
2599 return -1;
2600
2601 /* For sections we aren't interested in, mark their entries with a
2602 value we can check later. */
2603 list = input_list + top_index;
2604 do
2605 *list = bfd_abs_section_ptr;
2606 while (list-- != input_list);
2607
2608 for (section = output_bfd->sections;
2609 section != NULL;
2610 section = section->next)
2611 {
2612 if ((section->flags & SEC_CODE) != 0)
2613 input_list[section->index] = NULL;
2614 }
2615
2616 return 1;
2617 }
2618
2619 /* The linker repeatedly calls this function for each input section,
2620 in the order that input sections are linked into output sections.
2621 Build lists of input sections to determine groupings between which
2622 we may insert linker stubs. */
2623
2624 void
2625 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2626 {
2627 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2628
2629 if (isec->output_section->index <= htab->top_index)
2630 {
2631 asection **list = htab->input_list + isec->output_section->index;
2632 if (*list != bfd_abs_section_ptr)
2633 {
2634 /* Steal the link_sec pointer for our list. */
2635 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2636 /* This happens to make the list in reverse order,
2637 which is what we want. */
2638 PREV_SEC (isec) = *list;
2639 *list = isec;
2640 }
2641 }
2642 }
2643
2644 /* See whether we can group stub sections together. Grouping stub
2645 sections may result in fewer stubs. More importantly, we need to
2646 put all .init* and .fini* stubs at the beginning of the .init or
2647 .fini output sections respectively, because glibc splits the
2648 _init and _fini functions into multiple parts. Putting a stub in
2649 the middle of a function is not a good idea. */
2650
2651 static void
2652 group_sections (struct elf32_hppa_link_hash_table *htab,
2653 bfd_size_type stub_group_size,
2654 bfd_boolean stubs_always_before_branch)
2655 {
2656 asection **list = htab->input_list + htab->top_index;
2657 do
2658 {
2659 asection *tail = *list;
2660 if (tail == bfd_abs_section_ptr)
2661 continue;
2662 while (tail != NULL)
2663 {
2664 asection *curr;
2665 asection *prev;
2666 bfd_size_type total;
2667 bfd_boolean big_sec;
2668
2669 curr = tail;
2670 total = tail->size;
2671 big_sec = total >= stub_group_size;
2672
2673 while ((prev = PREV_SEC (curr)) != NULL
2674 && ((total += curr->output_offset - prev->output_offset)
2675 < stub_group_size))
2676 curr = prev;
2677
2678 /* OK, the size from the start of CURR to the end is less
2679 than 240000 bytes and thus can be handled by one stub
2680 section. (or the tail section is itself larger than
2681 240000 bytes, in which case we may be toast.)
2682 We should really be keeping track of the total size of
2683 stubs added here, as stubs contribute to the final output
2684 section size. That's a little tricky, and this way will
2685 only break if stubs added total more than 22144 bytes, or
2686 2768 long branch stubs. It seems unlikely for more than
2687 2768 different functions to be called, especially from
2688 code only 240000 bytes long. This limit used to be
2689 250000, but c++ code tends to generate lots of little
2690 functions, and sometimes violated the assumption. */
2691 do
2692 {
2693 prev = PREV_SEC (tail);
2694 /* Set up this stub group. */
2695 htab->stub_group[tail->id].link_sec = curr;
2696 }
2697 while (tail != curr && (tail = prev) != NULL);
2698
2699 /* But wait, there's more! Input sections up to 240000
2700 bytes before the stub section can be handled by it too.
2701 Don't do this if we have a really large section after the
2702 stubs, as adding more stubs increases the chance that
2703 branches may not reach into the stub section. */
2704 if (!stubs_always_before_branch && !big_sec)
2705 {
2706 total = 0;
2707 while (prev != NULL
2708 && ((total += tail->output_offset - prev->output_offset)
2709 < stub_group_size))
2710 {
2711 tail = prev;
2712 prev = PREV_SEC (tail);
2713 htab->stub_group[tail->id].link_sec = curr;
2714 }
2715 }
2716 tail = prev;
2717 }
2718 }
2719 while (list-- != htab->input_list);
2720 free (htab->input_list);
2721 #undef PREV_SEC
2722 }
2723
2724 /* Read in all local syms for all input bfds, and create hash entries
2725 for export stubs if we are building a multi-subspace shared lib.
2726 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2727
2728 static int
2729 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2730 {
2731 unsigned int bfd_indx;
2732 Elf_Internal_Sym *local_syms, **all_local_syms;
2733 int stub_changed = 0;
2734 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2735
2736 /* We want to read in symbol extension records only once. To do this
2737 we need to read in the local symbols in parallel and save them for
2738 later use; so hold pointers to the local symbols in an array. */
2739 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2740 all_local_syms = bfd_zmalloc (amt);
2741 htab->all_local_syms = all_local_syms;
2742 if (all_local_syms == NULL)
2743 return -1;
2744
2745 /* Walk over all the input BFDs, swapping in local symbols.
2746 If we are creating a shared library, create hash entries for the
2747 export stubs. */
2748 for (bfd_indx = 0;
2749 input_bfd != NULL;
2750 input_bfd = input_bfd->link_next, bfd_indx++)
2751 {
2752 Elf_Internal_Shdr *symtab_hdr;
2753
2754 /* We'll need the symbol table in a second. */
2755 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2756 if (symtab_hdr->sh_info == 0)
2757 continue;
2758
2759 /* We need an array of the local symbols attached to the input bfd. */
2760 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2761 if (local_syms == NULL)
2762 {
2763 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2764 symtab_hdr->sh_info, 0,
2765 NULL, NULL, NULL);
2766 /* Cache them for elf_link_input_bfd. */
2767 symtab_hdr->contents = (unsigned char *) local_syms;
2768 }
2769 if (local_syms == NULL)
2770 return -1;
2771
2772 all_local_syms[bfd_indx] = local_syms;
2773
2774 if (info->shared && htab->multi_subspace)
2775 {
2776 struct elf_link_hash_entry **eh_syms;
2777 struct elf_link_hash_entry **eh_symend;
2778 unsigned int symcount;
2779
2780 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2781 - symtab_hdr->sh_info);
2782 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2783 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2784
2785 /* Look through the global syms for functions; We need to
2786 build export stubs for all globally visible functions. */
2787 for (; eh_syms < eh_symend; eh_syms++)
2788 {
2789 struct elf32_hppa_link_hash_entry *hh;
2790
2791 hh = hppa_elf_hash_entry (*eh_syms);
2792
2793 while (hh->eh.root.type == bfd_link_hash_indirect
2794 || hh->eh.root.type == bfd_link_hash_warning)
2795 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2796
2797 /* At this point in the link, undefined syms have been
2798 resolved, so we need to check that the symbol was
2799 defined in this BFD. */
2800 if ((hh->eh.root.type == bfd_link_hash_defined
2801 || hh->eh.root.type == bfd_link_hash_defweak)
2802 && hh->eh.type == STT_FUNC
2803 && hh->eh.root.u.def.section->output_section != NULL
2804 && (hh->eh.root.u.def.section->output_section->owner
2805 == output_bfd)
2806 && hh->eh.root.u.def.section->owner == input_bfd
2807 && hh->eh.def_regular
2808 && !hh->eh.forced_local
2809 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2810 {
2811 asection *sec;
2812 const char *stub_name;
2813 struct elf32_hppa_stub_hash_entry *hsh;
2814
2815 sec = hh->eh.root.u.def.section;
2816 stub_name = hh_name (hh);
2817 hsh = hppa_stub_hash_lookup (&htab->bstab,
2818 stub_name,
2819 FALSE, FALSE);
2820 if (hsh == NULL)
2821 {
2822 hsh = hppa_add_stub (stub_name, sec, htab);
2823 if (!hsh)
2824 return -1;
2825
2826 hsh->target_value = hh->eh.root.u.def.value;
2827 hsh->target_section = hh->eh.root.u.def.section;
2828 hsh->stub_type = hppa_stub_export;
2829 hsh->hh = hh;
2830 stub_changed = 1;
2831 }
2832 else
2833 {
2834 (*_bfd_error_handler) (_("%B: duplicate export stub %s"),
2835 input_bfd,
2836 stub_name);
2837 }
2838 }
2839 }
2840 }
2841 }
2842
2843 return stub_changed;
2844 }
2845
2846 /* Determine and set the size of the stub section for a final link.
2847
2848 The basic idea here is to examine all the relocations looking for
2849 PC-relative calls to a target that is unreachable with a "bl"
2850 instruction. */
2851
2852 bfd_boolean
2853 elf32_hppa_size_stubs
2854 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2855 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2856 asection * (*add_stub_section) (const char *, asection *),
2857 void (*layout_sections_again) (void))
2858 {
2859 bfd_size_type stub_group_size;
2860 bfd_boolean stubs_always_before_branch;
2861 bfd_boolean stub_changed;
2862 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2863
2864 /* Stash our params away. */
2865 htab->stub_bfd = stub_bfd;
2866 htab->multi_subspace = multi_subspace;
2867 htab->add_stub_section = add_stub_section;
2868 htab->layout_sections_again = layout_sections_again;
2869 stubs_always_before_branch = group_size < 0;
2870 if (group_size < 0)
2871 stub_group_size = -group_size;
2872 else
2873 stub_group_size = group_size;
2874 if (stub_group_size == 1)
2875 {
2876 /* Default values. */
2877 if (stubs_always_before_branch)
2878 {
2879 stub_group_size = 7680000;
2880 if (htab->has_17bit_branch || htab->multi_subspace)
2881 stub_group_size = 240000;
2882 if (htab->has_12bit_branch)
2883 stub_group_size = 7500;
2884 }
2885 else
2886 {
2887 stub_group_size = 6971392;
2888 if (htab->has_17bit_branch || htab->multi_subspace)
2889 stub_group_size = 217856;
2890 if (htab->has_12bit_branch)
2891 stub_group_size = 6808;
2892 }
2893 }
2894
2895 group_sections (htab, stub_group_size, stubs_always_before_branch);
2896
2897 switch (get_local_syms (output_bfd, info->input_bfds, info))
2898 {
2899 default:
2900 if (htab->all_local_syms)
2901 goto error_ret_free_local;
2902 return FALSE;
2903
2904 case 0:
2905 stub_changed = FALSE;
2906 break;
2907
2908 case 1:
2909 stub_changed = TRUE;
2910 break;
2911 }
2912
2913 while (1)
2914 {
2915 bfd *input_bfd;
2916 unsigned int bfd_indx;
2917 asection *stub_sec;
2918
2919 for (input_bfd = info->input_bfds, bfd_indx = 0;
2920 input_bfd != NULL;
2921 input_bfd = input_bfd->link_next, bfd_indx++)
2922 {
2923 Elf_Internal_Shdr *symtab_hdr;
2924 asection *section;
2925 Elf_Internal_Sym *local_syms;
2926
2927 /* We'll need the symbol table in a second. */
2928 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2929 if (symtab_hdr->sh_info == 0)
2930 continue;
2931
2932 local_syms = htab->all_local_syms[bfd_indx];
2933
2934 /* Walk over each section attached to the input bfd. */
2935 for (section = input_bfd->sections;
2936 section != NULL;
2937 section = section->next)
2938 {
2939 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2940
2941 /* If there aren't any relocs, then there's nothing more
2942 to do. */
2943 if ((section->flags & SEC_RELOC) == 0
2944 || section->reloc_count == 0)
2945 continue;
2946
2947 /* If this section is a link-once section that will be
2948 discarded, then don't create any stubs. */
2949 if (section->output_section == NULL
2950 || section->output_section->owner != output_bfd)
2951 continue;
2952
2953 /* Get the relocs. */
2954 internal_relocs
2955 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2956 info->keep_memory);
2957 if (internal_relocs == NULL)
2958 goto error_ret_free_local;
2959
2960 /* Now examine each relocation. */
2961 irela = internal_relocs;
2962 irelaend = irela + section->reloc_count;
2963 for (; irela < irelaend; irela++)
2964 {
2965 unsigned int r_type, r_indx;
2966 enum elf32_hppa_stub_type stub_type;
2967 struct elf32_hppa_stub_hash_entry *hsh;
2968 asection *sym_sec;
2969 bfd_vma sym_value;
2970 bfd_vma destination;
2971 struct elf32_hppa_link_hash_entry *hh;
2972 char *stub_name;
2973 const asection *id_sec;
2974
2975 r_type = ELF32_R_TYPE (irela->r_info);
2976 r_indx = ELF32_R_SYM (irela->r_info);
2977
2978 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2979 {
2980 bfd_set_error (bfd_error_bad_value);
2981 error_ret_free_internal:
2982 if (elf_section_data (section)->relocs == NULL)
2983 free (internal_relocs);
2984 goto error_ret_free_local;
2985 }
2986
2987 /* Only look for stubs on call instructions. */
2988 if (r_type != (unsigned int) R_PARISC_PCREL12F
2989 && r_type != (unsigned int) R_PARISC_PCREL17F
2990 && r_type != (unsigned int) R_PARISC_PCREL22F)
2991 continue;
2992
2993 /* Now determine the call target, its name, value,
2994 section. */
2995 sym_sec = NULL;
2996 sym_value = 0;
2997 destination = 0;
2998 hh = NULL;
2999 if (r_indx < symtab_hdr->sh_info)
3000 {
3001 /* It's a local symbol. */
3002 Elf_Internal_Sym *sym;
3003 Elf_Internal_Shdr *hdr;
3004
3005 sym = local_syms + r_indx;
3006 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
3007 sym_sec = hdr->bfd_section;
3008 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
3009 sym_value = sym->st_value;
3010 destination = (sym_value + irela->r_addend
3011 + sym_sec->output_offset
3012 + sym_sec->output_section->vma);
3013 }
3014 else
3015 {
3016 /* It's an external symbol. */
3017 int e_indx;
3018
3019 e_indx = r_indx - symtab_hdr->sh_info;
3020 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
3021
3022 while (hh->eh.root.type == bfd_link_hash_indirect
3023 || hh->eh.root.type == bfd_link_hash_warning)
3024 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
3025
3026 if (hh->eh.root.type == bfd_link_hash_defined
3027 || hh->eh.root.type == bfd_link_hash_defweak)
3028 {
3029 sym_sec = hh->eh.root.u.def.section;
3030 sym_value = hh->eh.root.u.def.value;
3031 if (sym_sec->output_section != NULL)
3032 destination = (sym_value + irela->r_addend
3033 + sym_sec->output_offset
3034 + sym_sec->output_section->vma);
3035 }
3036 else if (hh->eh.root.type == bfd_link_hash_undefweak)
3037 {
3038 if (! info->shared)
3039 continue;
3040 }
3041 else if (hh->eh.root.type == bfd_link_hash_undefined)
3042 {
3043 if (! (info->unresolved_syms_in_objects == RM_IGNORE
3044 && (ELF_ST_VISIBILITY (hh->eh.other)
3045 == STV_DEFAULT)
3046 && hh->eh.type != STT_PARISC_MILLI))
3047 continue;
3048 }
3049 else
3050 {
3051 bfd_set_error (bfd_error_bad_value);
3052 goto error_ret_free_internal;
3053 }
3054 }
3055
3056 /* Determine what (if any) linker stub is needed. */
3057 stub_type = hppa_type_of_stub (section, irela, hh,
3058 destination, info);
3059 if (stub_type == hppa_stub_none)
3060 continue;
3061
3062 /* Support for grouping stub sections. */
3063 id_sec = htab->stub_group[section->id].link_sec;
3064
3065 /* Get the name of this stub. */
3066 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
3067 if (!stub_name)
3068 goto error_ret_free_internal;
3069
3070 hsh = hppa_stub_hash_lookup (&htab->bstab,
3071 stub_name,
3072 FALSE, FALSE);
3073 if (hsh != NULL)
3074 {
3075 /* The proper stub has already been created. */
3076 free (stub_name);
3077 continue;
3078 }
3079
3080 hsh = hppa_add_stub (stub_name, section, htab);
3081 if (hsh == NULL)
3082 {
3083 free (stub_name);
3084 goto error_ret_free_internal;
3085 }
3086
3087 hsh->target_value = sym_value;
3088 hsh->target_section = sym_sec;
3089 hsh->stub_type = stub_type;
3090 if (info->shared)
3091 {
3092 if (stub_type == hppa_stub_import)
3093 hsh->stub_type = hppa_stub_import_shared;
3094 else if (stub_type == hppa_stub_long_branch)
3095 hsh->stub_type = hppa_stub_long_branch_shared;
3096 }
3097 hsh->hh = hh;
3098 stub_changed = TRUE;
3099 }
3100
3101 /* We're done with the internal relocs, free them. */
3102 if (elf_section_data (section)->relocs == NULL)
3103 free (internal_relocs);
3104 }
3105 }
3106
3107 if (!stub_changed)
3108 break;
3109
3110 /* OK, we've added some stubs. Find out the new size of the
3111 stub sections. */
3112 for (stub_sec = htab->stub_bfd->sections;
3113 stub_sec != NULL;
3114 stub_sec = stub_sec->next)
3115 stub_sec->size = 0;
3116
3117 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
3118
3119 /* Ask the linker to do its stuff. */
3120 (*htab->layout_sections_again) ();
3121 stub_changed = FALSE;
3122 }
3123
3124 free (htab->all_local_syms);
3125 return TRUE;
3126
3127 error_ret_free_local:
3128 free (htab->all_local_syms);
3129 return FALSE;
3130 }
3131
3132 /* For a final link, this function is called after we have sized the
3133 stubs to provide a value for __gp. */
3134
3135 bfd_boolean
3136 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
3137 {
3138 struct bfd_link_hash_entry *h;
3139 asection *sec = NULL;
3140 bfd_vma gp_val = 0;
3141 struct elf32_hppa_link_hash_table *htab;
3142
3143 htab = hppa_link_hash_table (info);
3144 h = bfd_link_hash_lookup (&htab->etab.root, "$global$", FALSE, FALSE, FALSE);
3145
3146 if (h != NULL
3147 && (h->type == bfd_link_hash_defined
3148 || h->type == bfd_link_hash_defweak))
3149 {
3150 gp_val = h->u.def.value;
3151 sec = h->u.def.section;
3152 }
3153 else
3154 {
3155 asection *splt = bfd_get_section_by_name (abfd, ".plt");
3156 asection *sgot = bfd_get_section_by_name (abfd, ".got");
3157
3158 /* Choose to point our LTP at, in this order, one of .plt, .got,
3159 or .data, if these sections exist. In the case of choosing
3160 .plt try to make the LTP ideal for addressing anywhere in the
3161 .plt or .got with a 14 bit signed offset. Typically, the end
3162 of the .plt is the start of the .got, so choose .plt + 0x2000
3163 if either the .plt or .got is larger than 0x2000. If both
3164 the .plt and .got are smaller than 0x2000, choose the end of
3165 the .plt section. */
3166 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3167 ? NULL : splt;
3168 if (sec != NULL)
3169 {
3170 gp_val = sec->size;
3171 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3172 {
3173 gp_val = 0x2000;
3174 }
3175 }
3176 else
3177 {
3178 sec = sgot;
3179 if (sec != NULL)
3180 {
3181 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3182 {
3183 /* We know we don't have a .plt. If .got is large,
3184 offset our LTP. */
3185 if (sec->size > 0x2000)
3186 gp_val = 0x2000;
3187 }
3188 }
3189 else
3190 {
3191 /* No .plt or .got. Who cares what the LTP is? */
3192 sec = bfd_get_section_by_name (abfd, ".data");
3193 }
3194 }
3195
3196 if (h != NULL)
3197 {
3198 h->type = bfd_link_hash_defined;
3199 h->u.def.value = gp_val;
3200 if (sec != NULL)
3201 h->u.def.section = sec;
3202 else
3203 h->u.def.section = bfd_abs_section_ptr;
3204 }
3205 }
3206
3207 if (sec != NULL && sec->output_section != NULL)
3208 gp_val += sec->output_section->vma + sec->output_offset;
3209
3210 elf_gp (abfd) = gp_val;
3211 return TRUE;
3212 }
3213
3214 /* Build all the stubs associated with the current output file. The
3215 stubs are kept in a hash table attached to the main linker hash
3216 table. We also set up the .plt entries for statically linked PIC
3217 functions here. This function is called via hppaelf_finish in the
3218 linker. */
3219
3220 bfd_boolean
3221 elf32_hppa_build_stubs (struct bfd_link_info *info)
3222 {
3223 asection *stub_sec;
3224 struct bfd_hash_table *table;
3225 struct elf32_hppa_link_hash_table *htab;
3226
3227 htab = hppa_link_hash_table (info);
3228
3229 for (stub_sec = htab->stub_bfd->sections;
3230 stub_sec != NULL;
3231 stub_sec = stub_sec->next)
3232 {
3233 bfd_size_type size;
3234
3235 /* Allocate memory to hold the linker stubs. */
3236 size = stub_sec->size;
3237 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3238 if (stub_sec->contents == NULL && size != 0)
3239 return FALSE;
3240 stub_sec->size = 0;
3241 }
3242
3243 /* Build the stubs as directed by the stub hash table. */
3244 table = &htab->bstab;
3245 bfd_hash_traverse (table, hppa_build_one_stub, info);
3246
3247 return TRUE;
3248 }
3249
3250 /* Return the base vma address which should be subtracted from the real
3251 address when resolving a dtpoff relocation.
3252 This is PT_TLS segment p_vaddr. */
3253
3254 static bfd_vma
3255 dtpoff_base (struct bfd_link_info *info)
3256 {
3257 /* If tls_sec is NULL, we should have signalled an error already. */
3258 if (elf_hash_table (info)->tls_sec == NULL)
3259 return 0;
3260 return elf_hash_table (info)->tls_sec->vma;
3261 }
3262
3263 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3264
3265 static bfd_vma
3266 tpoff (struct bfd_link_info *info, bfd_vma address)
3267 {
3268 struct elf_link_hash_table *htab = elf_hash_table (info);
3269
3270 /* If tls_sec is NULL, we should have signalled an error already. */
3271 if (htab->tls_sec == NULL)
3272 return 0;
3273 /* hppa TLS ABI is variant I and static TLS block start just after
3274 tcbhead structure which has 2 pointer fields. */
3275 return (address - htab->tls_sec->vma
3276 + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3277 }
3278
3279 /* Perform a final link. */
3280
3281 static bfd_boolean
3282 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3283 {
3284 /* Invoke the regular ELF linker to do all the work. */
3285 if (!bfd_elf_final_link (abfd, info))
3286 return FALSE;
3287
3288 /* If we're producing a final executable, sort the contents of the
3289 unwind section. */
3290 return elf_hppa_sort_unwind (abfd);
3291 }
3292
3293 /* Record the lowest address for the data and text segments. */
3294
3295 static void
3296 hppa_record_segment_addr (bfd *abfd ATTRIBUTE_UNUSED,
3297 asection *section,
3298 void *data)
3299 {
3300 struct elf32_hppa_link_hash_table *htab;
3301
3302 htab = (struct elf32_hppa_link_hash_table*) data;
3303
3304 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3305 {
3306 bfd_vma value = section->vma - section->filepos;
3307
3308 if ((section->flags & SEC_READONLY) != 0)
3309 {
3310 if (value < htab->text_segment_base)
3311 htab->text_segment_base = value;
3312 }
3313 else
3314 {
3315 if (value < htab->data_segment_base)
3316 htab->data_segment_base = value;
3317 }
3318 }
3319 }
3320
3321 /* Perform a relocation as part of a final link. */
3322
3323 static bfd_reloc_status_type
3324 final_link_relocate (asection *input_section,
3325 bfd_byte *contents,
3326 const Elf_Internal_Rela *rela,
3327 bfd_vma value,
3328 struct elf32_hppa_link_hash_table *htab,
3329 asection *sym_sec,
3330 struct elf32_hppa_link_hash_entry *hh,
3331 struct bfd_link_info *info)
3332 {
3333 int insn;
3334 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3335 unsigned int orig_r_type = r_type;
3336 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3337 int r_format = howto->bitsize;
3338 enum hppa_reloc_field_selector_type_alt r_field;
3339 bfd *input_bfd = input_section->owner;
3340 bfd_vma offset = rela->r_offset;
3341 bfd_vma max_branch_offset = 0;
3342 bfd_byte *hit_data = contents + offset;
3343 bfd_signed_vma addend = rela->r_addend;
3344 bfd_vma location;
3345 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3346 int val;
3347
3348 if (r_type == R_PARISC_NONE)
3349 return bfd_reloc_ok;
3350
3351 insn = bfd_get_32 (input_bfd, hit_data);
3352
3353 /* Find out where we are and where we're going. */
3354 location = (offset +
3355 input_section->output_offset +
3356 input_section->output_section->vma);
3357
3358 /* If we are not building a shared library, convert DLTIND relocs to
3359 DPREL relocs. */
3360 if (!info->shared)
3361 {
3362 switch (r_type)
3363 {
3364 case R_PARISC_DLTIND21L:
3365 r_type = R_PARISC_DPREL21L;
3366 break;
3367
3368 case R_PARISC_DLTIND14R:
3369 r_type = R_PARISC_DPREL14R;
3370 break;
3371
3372 case R_PARISC_DLTIND14F:
3373 r_type = R_PARISC_DPREL14F;
3374 break;
3375 }
3376 }
3377
3378 switch (r_type)
3379 {
3380 case R_PARISC_PCREL12F:
3381 case R_PARISC_PCREL17F:
3382 case R_PARISC_PCREL22F:
3383 /* If this call should go via the plt, find the import stub in
3384 the stub hash. */
3385 if (sym_sec == NULL
3386 || sym_sec->output_section == NULL
3387 || (hh != NULL
3388 && hh->eh.plt.offset != (bfd_vma) -1
3389 && hh->eh.dynindx != -1
3390 && !hh->plabel
3391 && (info->shared
3392 || !hh->eh.def_regular
3393 || hh->eh.root.type == bfd_link_hash_defweak)))
3394 {
3395 hsh = hppa_get_stub_entry (input_section, sym_sec,
3396 hh, rela, htab);
3397 if (hsh != NULL)
3398 {
3399 value = (hsh->stub_offset
3400 + hsh->stub_sec->output_offset
3401 + hsh->stub_sec->output_section->vma);
3402 addend = 0;
3403 }
3404 else if (sym_sec == NULL && hh != NULL
3405 && hh->eh.root.type == bfd_link_hash_undefweak)
3406 {
3407 /* It's OK if undefined weak. Calls to undefined weak
3408 symbols behave as if the "called" function
3409 immediately returns. We can thus call to a weak
3410 function without first checking whether the function
3411 is defined. */
3412 value = location;
3413 addend = 8;
3414 }
3415 else
3416 return bfd_reloc_undefined;
3417 }
3418 /* Fall thru. */
3419
3420 case R_PARISC_PCREL21L:
3421 case R_PARISC_PCREL17C:
3422 case R_PARISC_PCREL17R:
3423 case R_PARISC_PCREL14R:
3424 case R_PARISC_PCREL14F:
3425 case R_PARISC_PCREL32:
3426 /* Make it a pc relative offset. */
3427 value -= location;
3428 addend -= 8;
3429 break;
3430
3431 case R_PARISC_DPREL21L:
3432 case R_PARISC_DPREL14R:
3433 case R_PARISC_DPREL14F:
3434 /* Convert instructions that use the linkage table pointer (r19) to
3435 instructions that use the global data pointer (dp). This is the
3436 most efficient way of using PIC code in an incomplete executable,
3437 but the user must follow the standard runtime conventions for
3438 accessing data for this to work. */
3439 if (orig_r_type == R_PARISC_DLTIND21L)
3440 {
3441 /* Convert addil instructions if the original reloc was a
3442 DLTIND21L. GCC sometimes uses a register other than r19 for
3443 the operation, so we must convert any addil instruction
3444 that uses this relocation. */
3445 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3446 insn = ADDIL_DP;
3447 else
3448 /* We must have a ldil instruction. It's too hard to find
3449 and convert the associated add instruction, so issue an
3450 error. */
3451 (*_bfd_error_handler)
3452 (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3453 input_bfd,
3454 input_section,
3455 offset,
3456 howto->name,
3457 insn);
3458 }
3459 else if (orig_r_type == R_PARISC_DLTIND14F)
3460 {
3461 /* This must be a format 1 load/store. Change the base
3462 register to dp. */
3463 insn = (insn & 0xfc1ffff) | (27 << 21);
3464 }
3465
3466 /* For all the DP relative relocations, we need to examine the symbol's
3467 section. If it has no section or if it's a code section, then
3468 "data pointer relative" makes no sense. In that case we don't
3469 adjust the "value", and for 21 bit addil instructions, we change the
3470 source addend register from %dp to %r0. This situation commonly
3471 arises for undefined weak symbols and when a variable's "constness"
3472 is declared differently from the way the variable is defined. For
3473 instance: "extern int foo" with foo defined as "const int foo". */
3474 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3475 {
3476 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3477 == (((int) OP_ADDIL << 26) | (27 << 21)))
3478 {
3479 insn &= ~ (0x1f << 21);
3480 }
3481 /* Now try to make things easy for the dynamic linker. */
3482
3483 break;
3484 }
3485 /* Fall thru. */
3486
3487 case R_PARISC_DLTIND21L:
3488 case R_PARISC_DLTIND14R:
3489 case R_PARISC_DLTIND14F:
3490 case R_PARISC_TLS_GD21L:
3491 case R_PARISC_TLS_GD14R:
3492 case R_PARISC_TLS_LDM21L:
3493 case R_PARISC_TLS_LDM14R:
3494 case R_PARISC_TLS_IE21L:
3495 case R_PARISC_TLS_IE14R:
3496 value -= elf_gp (input_section->output_section->owner);
3497 break;
3498
3499 case R_PARISC_SEGREL32:
3500 if ((sym_sec->flags & SEC_CODE) != 0)
3501 value -= htab->text_segment_base;
3502 else
3503 value -= htab->data_segment_base;
3504 break;
3505
3506 default:
3507 break;
3508 }
3509
3510 switch (r_type)
3511 {
3512 case R_PARISC_DIR32:
3513 case R_PARISC_DIR14F:
3514 case R_PARISC_DIR17F:
3515 case R_PARISC_PCREL17C:
3516 case R_PARISC_PCREL14F:
3517 case R_PARISC_PCREL32:
3518 case R_PARISC_DPREL14F:
3519 case R_PARISC_PLABEL32:
3520 case R_PARISC_DLTIND14F:
3521 case R_PARISC_SEGBASE:
3522 case R_PARISC_SEGREL32:
3523 case R_PARISC_TLS_DTPMOD32:
3524 case R_PARISC_TLS_DTPOFF32:
3525 case R_PARISC_TLS_TPREL32:
3526 r_field = e_fsel;
3527 break;
3528
3529 case R_PARISC_DLTIND21L:
3530 case R_PARISC_PCREL21L:
3531 case R_PARISC_PLABEL21L:
3532 r_field = e_lsel;
3533 break;
3534
3535 case R_PARISC_DIR21L:
3536 case R_PARISC_DPREL21L:
3537 case R_PARISC_TLS_GD21L:
3538 case R_PARISC_TLS_LDM21L:
3539 case R_PARISC_TLS_LDO21L:
3540 case R_PARISC_TLS_IE21L:
3541 case R_PARISC_TLS_LE21L:
3542 r_field = e_lrsel;
3543 break;
3544
3545 case R_PARISC_PCREL17R:
3546 case R_PARISC_PCREL14R:
3547 case R_PARISC_PLABEL14R:
3548 case R_PARISC_DLTIND14R:
3549 r_field = e_rsel;
3550 break;
3551
3552 case R_PARISC_DIR17R:
3553 case R_PARISC_DIR14R:
3554 case R_PARISC_DPREL14R:
3555 case R_PARISC_TLS_GD14R:
3556 case R_PARISC_TLS_LDM14R:
3557 case R_PARISC_TLS_LDO14R:
3558 case R_PARISC_TLS_IE14R:
3559 case R_PARISC_TLS_LE14R:
3560 r_field = e_rrsel;
3561 break;
3562
3563 case R_PARISC_PCREL12F:
3564 case R_PARISC_PCREL17F:
3565 case R_PARISC_PCREL22F:
3566 r_field = e_fsel;
3567
3568 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3569 {
3570 max_branch_offset = (1 << (17-1)) << 2;
3571 }
3572 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3573 {
3574 max_branch_offset = (1 << (12-1)) << 2;
3575 }
3576 else
3577 {
3578 max_branch_offset = (1 << (22-1)) << 2;
3579 }
3580
3581 /* sym_sec is NULL on undefined weak syms or when shared on
3582 undefined syms. We've already checked for a stub for the
3583 shared undefined case. */
3584 if (sym_sec == NULL)
3585 break;
3586
3587 /* If the branch is out of reach, then redirect the
3588 call to the local stub for this function. */
3589 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3590 {
3591 hsh = hppa_get_stub_entry (input_section, sym_sec,
3592 hh, rela, htab);
3593 if (hsh == NULL)
3594 return bfd_reloc_undefined;
3595
3596 /* Munge up the value and addend so that we call the stub
3597 rather than the procedure directly. */
3598 value = (hsh->stub_offset
3599 + hsh->stub_sec->output_offset
3600 + hsh->stub_sec->output_section->vma
3601 - location);
3602 addend = -8;
3603 }
3604 break;
3605
3606 /* Something we don't know how to handle. */
3607 default:
3608 return bfd_reloc_notsupported;
3609 }
3610
3611 /* Make sure we can reach the stub. */
3612 if (max_branch_offset != 0
3613 && value + addend + max_branch_offset >= 2*max_branch_offset)
3614 {
3615 (*_bfd_error_handler)
3616 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3617 input_bfd,
3618 input_section,
3619 offset,
3620 hsh->bh_root.string);
3621 bfd_set_error (bfd_error_bad_value);
3622 return bfd_reloc_notsupported;
3623 }
3624
3625 val = hppa_field_adjust (value, addend, r_field);
3626
3627 switch (r_type)
3628 {
3629 case R_PARISC_PCREL12F:
3630 case R_PARISC_PCREL17C:
3631 case R_PARISC_PCREL17F:
3632 case R_PARISC_PCREL17R:
3633 case R_PARISC_PCREL22F:
3634 case R_PARISC_DIR17F:
3635 case R_PARISC_DIR17R:
3636 /* This is a branch. Divide the offset by four.
3637 Note that we need to decide whether it's a branch or
3638 otherwise by inspecting the reloc. Inspecting insn won't
3639 work as insn might be from a .word directive. */
3640 val >>= 2;
3641 break;
3642
3643 default:
3644 break;
3645 }
3646
3647 insn = hppa_rebuild_insn (insn, val, r_format);
3648
3649 /* Update the instruction word. */
3650 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3651 return bfd_reloc_ok;
3652 }
3653
3654 /* Relocate an HPPA ELF section. */
3655
3656 static bfd_boolean
3657 elf32_hppa_relocate_section (bfd *output_bfd,
3658 struct bfd_link_info *info,
3659 bfd *input_bfd,
3660 asection *input_section,
3661 bfd_byte *contents,
3662 Elf_Internal_Rela *relocs,
3663 Elf_Internal_Sym *local_syms,
3664 asection **local_sections)
3665 {
3666 bfd_vma *local_got_offsets;
3667 struct elf32_hppa_link_hash_table *htab;
3668 Elf_Internal_Shdr *symtab_hdr;
3669 Elf_Internal_Rela *rela;
3670 Elf_Internal_Rela *relend;
3671
3672 if (info->relocatable)
3673 return TRUE;
3674
3675 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3676
3677 htab = hppa_link_hash_table (info);
3678 local_got_offsets = elf_local_got_offsets (input_bfd);
3679
3680 rela = relocs;
3681 relend = relocs + input_section->reloc_count;
3682 for (; rela < relend; rela++)
3683 {
3684 unsigned int r_type;
3685 reloc_howto_type *howto;
3686 unsigned int r_symndx;
3687 struct elf32_hppa_link_hash_entry *hh;
3688 Elf_Internal_Sym *sym;
3689 asection *sym_sec;
3690 bfd_vma relocation;
3691 bfd_reloc_status_type rstatus;
3692 const char *sym_name;
3693 bfd_boolean plabel;
3694 bfd_boolean warned_undef;
3695
3696 r_type = ELF32_R_TYPE (rela->r_info);
3697 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3698 {
3699 bfd_set_error (bfd_error_bad_value);
3700 return FALSE;
3701 }
3702 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3703 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3704 continue;
3705
3706 /* This is a final link. */
3707 r_symndx = ELF32_R_SYM (rela->r_info);
3708 hh = NULL;
3709 sym = NULL;
3710 sym_sec = NULL;
3711 warned_undef = FALSE;
3712 if (r_symndx < symtab_hdr->sh_info)
3713 {
3714 /* This is a local symbol, h defaults to NULL. */
3715 sym = local_syms + r_symndx;
3716 sym_sec = local_sections[r_symndx];
3717 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3718 }
3719 else
3720 {
3721 struct elf_link_hash_entry *eh;
3722 bfd_boolean unresolved_reloc;
3723 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3724
3725 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3726 r_symndx, symtab_hdr, sym_hashes,
3727 eh, sym_sec, relocation,
3728 unresolved_reloc, warned_undef);
3729
3730 if (relocation == 0
3731 && eh->root.type != bfd_link_hash_defined
3732 && eh->root.type != bfd_link_hash_defweak
3733 && eh->root.type != bfd_link_hash_undefweak)
3734 {
3735 if (info->unresolved_syms_in_objects == RM_IGNORE
3736 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3737 && eh->type == STT_PARISC_MILLI)
3738 {
3739 if (! info->callbacks->undefined_symbol
3740 (info, eh_name (eh), input_bfd,
3741 input_section, rela->r_offset, FALSE))
3742 return FALSE;
3743 warned_undef = TRUE;
3744 }
3745 }
3746 hh = hppa_elf_hash_entry (eh);
3747 }
3748
3749 /* Do any required modifications to the relocation value, and
3750 determine what types of dynamic info we need to output, if
3751 any. */
3752 plabel = 0;
3753 switch (r_type)
3754 {
3755 case R_PARISC_DLTIND14F:
3756 case R_PARISC_DLTIND14R:
3757 case R_PARISC_DLTIND21L:
3758 {
3759 bfd_vma off;
3760 bfd_boolean do_got = 0;
3761
3762 /* Relocation is to the entry for this symbol in the
3763 global offset table. */
3764 if (hh != NULL)
3765 {
3766 bfd_boolean dyn;
3767
3768 off = hh->eh.got.offset;
3769 dyn = htab->etab.dynamic_sections_created;
3770 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
3771 &hh->eh))
3772 {
3773 /* If we aren't going to call finish_dynamic_symbol,
3774 then we need to handle initialisation of the .got
3775 entry and create needed relocs here. Since the
3776 offset must always be a multiple of 4, we use the
3777 least significant bit to record whether we have
3778 initialised it already. */
3779 if ((off & 1) != 0)
3780 off &= ~1;
3781 else
3782 {
3783 hh->eh.got.offset |= 1;
3784 do_got = 1;
3785 }
3786 }
3787 }
3788 else
3789 {
3790 /* Local symbol case. */
3791 if (local_got_offsets == NULL)
3792 abort ();
3793
3794 off = local_got_offsets[r_symndx];
3795
3796 /* The offset must always be a multiple of 4. We use
3797 the least significant bit to record whether we have
3798 already generated the necessary reloc. */
3799 if ((off & 1) != 0)
3800 off &= ~1;
3801 else
3802 {
3803 local_got_offsets[r_symndx] |= 1;
3804 do_got = 1;
3805 }
3806 }
3807
3808 if (do_got)
3809 {
3810 if (info->shared)
3811 {
3812 /* Output a dynamic relocation for this GOT entry.
3813 In this case it is relative to the base of the
3814 object because the symbol index is zero. */
3815 Elf_Internal_Rela outrel;
3816 bfd_byte *loc;
3817 asection *sec = htab->srelgot;
3818
3819 outrel.r_offset = (off
3820 + htab->sgot->output_offset
3821 + htab->sgot->output_section->vma);
3822 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3823 outrel.r_addend = relocation;
3824 loc = sec->contents;
3825 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3826 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3827 }
3828 else
3829 bfd_put_32 (output_bfd, relocation,
3830 htab->sgot->contents + off);
3831 }
3832
3833 if (off >= (bfd_vma) -2)
3834 abort ();
3835
3836 /* Add the base of the GOT to the relocation value. */
3837 relocation = (off
3838 + htab->sgot->output_offset
3839 + htab->sgot->output_section->vma);
3840 }
3841 break;
3842
3843 case R_PARISC_SEGREL32:
3844 /* If this is the first SEGREL relocation, then initialize
3845 the segment base values. */
3846 if (htab->text_segment_base == (bfd_vma) -1)
3847 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3848 break;
3849
3850 case R_PARISC_PLABEL14R:
3851 case R_PARISC_PLABEL21L:
3852 case R_PARISC_PLABEL32:
3853 if (htab->etab.dynamic_sections_created)
3854 {
3855 bfd_vma off;
3856 bfd_boolean do_plt = 0;
3857 /* If we have a global symbol with a PLT slot, then
3858 redirect this relocation to it. */
3859 if (hh != NULL)
3860 {
3861 off = hh->eh.plt.offset;
3862 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared,
3863 &hh->eh))
3864 {
3865 /* In a non-shared link, adjust_dynamic_symbols
3866 isn't called for symbols forced local. We
3867 need to write out the plt entry here. */
3868 if ((off & 1) != 0)
3869 off &= ~1;
3870 else
3871 {
3872 hh->eh.plt.offset |= 1;
3873 do_plt = 1;
3874 }
3875 }
3876 }
3877 else
3878 {
3879 bfd_vma *local_plt_offsets;
3880
3881 if (local_got_offsets == NULL)
3882 abort ();
3883
3884 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3885 off = local_plt_offsets[r_symndx];
3886
3887 /* As for the local .got entry case, we use the last
3888 bit to record whether we've already initialised
3889 this local .plt entry. */
3890 if ((off & 1) != 0)
3891 off &= ~1;
3892 else
3893 {
3894 local_plt_offsets[r_symndx] |= 1;
3895 do_plt = 1;
3896 }
3897 }
3898
3899 if (do_plt)
3900 {
3901 if (info->shared)
3902 {
3903 /* Output a dynamic IPLT relocation for this
3904 PLT entry. */
3905 Elf_Internal_Rela outrel;
3906 bfd_byte *loc;
3907 asection *s = htab->srelplt;
3908
3909 outrel.r_offset = (off
3910 + htab->splt->output_offset
3911 + htab->splt->output_section->vma);
3912 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3913 outrel.r_addend = relocation;
3914 loc = s->contents;
3915 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3916 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3917 }
3918 else
3919 {
3920 bfd_put_32 (output_bfd,
3921 relocation,
3922 htab->splt->contents + off);
3923 bfd_put_32 (output_bfd,
3924 elf_gp (htab->splt->output_section->owner),
3925 htab->splt->contents + off + 4);
3926 }
3927 }
3928
3929 if (off >= (bfd_vma) -2)
3930 abort ();
3931
3932 /* PLABELs contain function pointers. Relocation is to
3933 the entry for the function in the .plt. The magic +2
3934 offset signals to $$dyncall that the function pointer
3935 is in the .plt and thus has a gp pointer too.
3936 Exception: Undefined PLABELs should have a value of
3937 zero. */
3938 if (hh == NULL
3939 || (hh->eh.root.type != bfd_link_hash_undefweak
3940 && hh->eh.root.type != bfd_link_hash_undefined))
3941 {
3942 relocation = (off
3943 + htab->splt->output_offset
3944 + htab->splt->output_section->vma
3945 + 2);
3946 }
3947 plabel = 1;
3948 }
3949 /* Fall through and possibly emit a dynamic relocation. */
3950
3951 case R_PARISC_DIR17F:
3952 case R_PARISC_DIR17R:
3953 case R_PARISC_DIR14F:
3954 case R_PARISC_DIR14R:
3955 case R_PARISC_DIR21L:
3956 case R_PARISC_DPREL14F:
3957 case R_PARISC_DPREL14R:
3958 case R_PARISC_DPREL21L:
3959 case R_PARISC_DIR32:
3960 /* r_symndx will be zero only for relocs against symbols
3961 from removed linkonce sections, or sections discarded by
3962 a linker script. */
3963 if (r_symndx == 0
3964 || (input_section->flags & SEC_ALLOC) == 0)
3965 break;
3966
3967 /* The reloc types handled here and this conditional
3968 expression must match the code in ..check_relocs and
3969 allocate_dynrelocs. ie. We need exactly the same condition
3970 as in ..check_relocs, with some extra conditions (dynindx
3971 test in this case) to cater for relocs removed by
3972 allocate_dynrelocs. If you squint, the non-shared test
3973 here does indeed match the one in ..check_relocs, the
3974 difference being that here we test DEF_DYNAMIC as well as
3975 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3976 which is why we can't use just that test here.
3977 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3978 there all files have not been loaded. */
3979 if ((info->shared
3980 && (hh == NULL
3981 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
3982 || hh->eh.root.type != bfd_link_hash_undefweak)
3983 && (IS_ABSOLUTE_RELOC (r_type)
3984 || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
3985 || (!info->shared
3986 && hh != NULL
3987 && hh->eh.dynindx != -1
3988 && !hh->eh.non_got_ref
3989 && ((ELIMINATE_COPY_RELOCS
3990 && hh->eh.def_dynamic
3991 && !hh->eh.def_regular)
3992 || hh->eh.root.type == bfd_link_hash_undefweak
3993 || hh->eh.root.type == bfd_link_hash_undefined)))
3994 {
3995 Elf_Internal_Rela outrel;
3996 bfd_boolean skip;
3997 asection *sreloc;
3998 bfd_byte *loc;
3999
4000 /* When generating a shared object, these relocations
4001 are copied into the output file to be resolved at run
4002 time. */
4003
4004 outrel.r_addend = rela->r_addend;
4005 outrel.r_offset =
4006 _bfd_elf_section_offset (output_bfd, info, input_section,
4007 rela->r_offset);
4008 skip = (outrel.r_offset == (bfd_vma) -1
4009 || outrel.r_offset == (bfd_vma) -2);
4010 outrel.r_offset += (input_section->output_offset
4011 + input_section->output_section->vma);
4012
4013 if (skip)
4014 {
4015 memset (&outrel, 0, sizeof (outrel));
4016 }
4017 else if (hh != NULL
4018 && hh->eh.dynindx != -1
4019 && (plabel
4020 || !IS_ABSOLUTE_RELOC (r_type)
4021 || !info->shared
4022 || !info->symbolic
4023 || !hh->eh.def_regular))
4024 {
4025 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
4026 }
4027 else /* It's a local symbol, or one marked to become local. */
4028 {
4029 int indx = 0;
4030
4031 /* Add the absolute offset of the symbol. */
4032 outrel.r_addend += relocation;
4033
4034 /* Global plabels need to be processed by the
4035 dynamic linker so that functions have at most one
4036 fptr. For this reason, we need to differentiate
4037 between global and local plabels, which we do by
4038 providing the function symbol for a global plabel
4039 reloc, and no symbol for local plabels. */
4040 if (! plabel
4041 && sym_sec != NULL
4042 && sym_sec->output_section != NULL
4043 && ! bfd_is_abs_section (sym_sec))
4044 {
4045 /* Skip this relocation if the output section has
4046 been discarded. */
4047 if (bfd_is_abs_section (sym_sec->output_section))
4048 break;
4049
4050 indx = elf_section_data (sym_sec->output_section)->dynindx;
4051 /* We are turning this relocation into one
4052 against a section symbol, so subtract out the
4053 output section's address but not the offset
4054 of the input section in the output section. */
4055 outrel.r_addend -= sym_sec->output_section->vma;
4056 }
4057
4058 outrel.r_info = ELF32_R_INFO (indx, r_type);
4059 }
4060 sreloc = elf_section_data (input_section)->sreloc;
4061 if (sreloc == NULL)
4062 abort ();
4063
4064 loc = sreloc->contents;
4065 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
4066 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4067 }
4068 break;
4069
4070 case R_PARISC_TLS_LDM21L:
4071 case R_PARISC_TLS_LDM14R:
4072 {
4073 bfd_vma off;
4074
4075 off = htab->tls_ldm_got.offset;
4076 if (off & 1)
4077 off &= ~1;
4078 else
4079 {
4080 Elf_Internal_Rela outrel;
4081 bfd_byte *loc;
4082
4083 outrel.r_offset = (off
4084 + htab->sgot->output_section->vma
4085 + htab->sgot->output_offset);
4086 outrel.r_addend = 0;
4087 outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
4088 loc = htab->srelgot->contents;
4089 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4090
4091 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4092 htab->tls_ldm_got.offset |= 1;
4093 }
4094
4095 /* Add the base of the GOT to the relocation value. */
4096 relocation = (off
4097 + htab->sgot->output_offset
4098 + htab->sgot->output_section->vma);
4099
4100 break;
4101 }
4102
4103 case R_PARISC_TLS_LDO21L:
4104 case R_PARISC_TLS_LDO14R:
4105 relocation -= dtpoff_base (info);
4106 break;
4107
4108 case R_PARISC_TLS_GD21L:
4109 case R_PARISC_TLS_GD14R:
4110 case R_PARISC_TLS_IE21L:
4111 case R_PARISC_TLS_IE14R:
4112 {
4113 bfd_vma off;
4114 int indx;
4115 char tls_type;
4116
4117 indx = 0;
4118 if (hh != NULL)
4119 {
4120 bfd_boolean dyn;
4121 dyn = htab->etab.dynamic_sections_created;
4122
4123 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &hh->eh)
4124 && (!info->shared
4125 || !SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4126 {
4127 indx = hh->eh.dynindx;
4128 }
4129 off = hh->eh.got.offset;
4130 tls_type = hh->tls_type;
4131 }
4132 else
4133 {
4134 off = local_got_offsets[r_symndx];
4135 tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4136 }
4137
4138 if (tls_type == GOT_UNKNOWN)
4139 abort ();
4140
4141 if ((off & 1) != 0)
4142 off &= ~1;
4143 else
4144 {
4145 bfd_boolean need_relocs = FALSE;
4146 Elf_Internal_Rela outrel;
4147 bfd_byte *loc = NULL;
4148 int cur_off = off;
4149
4150 /* The GOT entries have not been initialized yet. Do it
4151 now, and emit any relocations. If both an IE GOT and a
4152 GD GOT are necessary, we emit the GD first. */
4153
4154 if ((info->shared || indx != 0)
4155 && (hh == NULL
4156 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
4157 || hh->eh.root.type != bfd_link_hash_undefweak))
4158 {
4159 need_relocs = TRUE;
4160 loc = htab->srelgot->contents;
4161 /* FIXME (CAO): Should this be reloc_count++ ? */
4162 loc += htab->srelgot->reloc_count * sizeof (Elf32_External_Rela);
4163 }
4164
4165 if (tls_type & GOT_TLS_GD)
4166 {
4167 if (need_relocs)
4168 {
4169 outrel.r_offset = (cur_off
4170 + htab->sgot->output_section->vma
4171 + htab->sgot->output_offset);
4172 outrel.r_info = ELF32_R_INFO (indx,R_PARISC_TLS_DTPMOD32);
4173 outrel.r_addend = 0;
4174 bfd_put_32 (output_bfd, 0, htab->sgot->contents + cur_off);
4175 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4176 htab->srelgot->reloc_count++;
4177 loc += sizeof (Elf32_External_Rela);
4178
4179 if (indx == 0)
4180 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4181 htab->sgot->contents + cur_off + 4);
4182 else
4183 {
4184 bfd_put_32 (output_bfd, 0,
4185 htab->sgot->contents + cur_off + 4);
4186 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4187 outrel.r_offset += 4;
4188 bfd_elf32_swap_reloca_out (output_bfd, &outrel,loc);
4189 htab->srelgot->reloc_count++;
4190 loc += sizeof (Elf32_External_Rela);
4191 }
4192 }
4193 else
4194 {
4195 /* If we are not emitting relocations for a
4196 general dynamic reference, then we must be in a
4197 static link or an executable link with the
4198 symbol binding locally. Mark it as belonging
4199 to module 1, the executable. */
4200 bfd_put_32 (output_bfd, 1,
4201 htab->sgot->contents + cur_off);
4202 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4203 htab->sgot->contents + cur_off + 4);
4204 }
4205
4206
4207 cur_off += 8;
4208 }
4209
4210 if (tls_type & GOT_TLS_IE)
4211 {
4212 if (need_relocs)
4213 {
4214 outrel.r_offset = (cur_off
4215 + htab->sgot->output_section->vma
4216 + htab->sgot->output_offset);
4217 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_TPREL32);
4218
4219 if (indx == 0)
4220 outrel.r_addend = relocation - dtpoff_base (info);
4221 else
4222 outrel.r_addend = 0;
4223
4224 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4225 htab->srelgot->reloc_count++;
4226 loc += sizeof (Elf32_External_Rela);
4227 }
4228 else
4229 bfd_put_32 (output_bfd, tpoff (info, relocation),
4230 htab->sgot->contents + cur_off);
4231
4232 cur_off += 4;
4233 }
4234
4235 if (hh != NULL)
4236 hh->eh.got.offset |= 1;
4237 else
4238 local_got_offsets[r_symndx] |= 1;
4239 }
4240
4241 if ((tls_type & GOT_TLS_GD)
4242 && r_type != R_PARISC_TLS_GD21L
4243 && r_type != R_PARISC_TLS_GD14R)
4244 off += 2 * GOT_ENTRY_SIZE;
4245
4246 /* Add the base of the GOT to the relocation value. */
4247 relocation = (off
4248 + htab->sgot->output_offset
4249 + htab->sgot->output_section->vma);
4250
4251 break;
4252 }
4253
4254 case R_PARISC_TLS_LE21L:
4255 case R_PARISC_TLS_LE14R:
4256 {
4257 relocation = tpoff (info, relocation);
4258 break;
4259 }
4260 break;
4261
4262 default:
4263 break;
4264 }
4265
4266 rstatus = final_link_relocate (input_section, contents, rela, relocation,
4267 htab, sym_sec, hh, info);
4268
4269 if (rstatus == bfd_reloc_ok)
4270 continue;
4271
4272 if (hh != NULL)
4273 sym_name = hh_name (hh);
4274 else
4275 {
4276 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4277 symtab_hdr->sh_link,
4278 sym->st_name);
4279 if (sym_name == NULL)
4280 return FALSE;
4281 if (*sym_name == '\0')
4282 sym_name = bfd_section_name (input_bfd, sym_sec);
4283 }
4284
4285 howto = elf_hppa_howto_table + r_type;
4286
4287 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4288 {
4289 if (rstatus == bfd_reloc_notsupported || !warned_undef)
4290 {
4291 (*_bfd_error_handler)
4292 (_("%B(%A+0x%lx): cannot handle %s for %s"),
4293 input_bfd,
4294 input_section,
4295 (long) rela->r_offset,
4296 howto->name,
4297 sym_name);
4298 bfd_set_error (bfd_error_bad_value);
4299 return FALSE;
4300 }
4301 }
4302 else
4303 {
4304 if (!((*info->callbacks->reloc_overflow)
4305 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4306 (bfd_vma) 0, input_bfd, input_section, rela->r_offset)))
4307 return FALSE;
4308 }
4309 }
4310
4311 return TRUE;
4312 }
4313
4314 /* Finish up dynamic symbol handling. We set the contents of various
4315 dynamic sections here. */
4316
4317 static bfd_boolean
4318 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4319 struct bfd_link_info *info,
4320 struct elf_link_hash_entry *eh,
4321 Elf_Internal_Sym *sym)
4322 {
4323 struct elf32_hppa_link_hash_table *htab;
4324 Elf_Internal_Rela rela;
4325 bfd_byte *loc;
4326
4327 htab = hppa_link_hash_table (info);
4328
4329 if (eh->plt.offset != (bfd_vma) -1)
4330 {
4331 bfd_vma value;
4332
4333 if (eh->plt.offset & 1)
4334 abort ();
4335
4336 /* This symbol has an entry in the procedure linkage table. Set
4337 it up.
4338
4339 The format of a plt entry is
4340 <funcaddr>
4341 <__gp>
4342 */
4343 value = 0;
4344 if (eh->root.type == bfd_link_hash_defined
4345 || eh->root.type == bfd_link_hash_defweak)
4346 {
4347 value = eh->root.u.def.value;
4348 if (eh->root.u.def.section->output_section != NULL)
4349 value += (eh->root.u.def.section->output_offset
4350 + eh->root.u.def.section->output_section->vma);
4351 }
4352
4353 /* Create a dynamic IPLT relocation for this entry. */
4354 rela.r_offset = (eh->plt.offset
4355 + htab->splt->output_offset
4356 + htab->splt->output_section->vma);
4357 if (eh->dynindx != -1)
4358 {
4359 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4360 rela.r_addend = 0;
4361 }
4362 else
4363 {
4364 /* This symbol has been marked to become local, and is
4365 used by a plabel so must be kept in the .plt. */
4366 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4367 rela.r_addend = value;
4368 }
4369
4370 loc = htab->srelplt->contents;
4371 loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4372 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rela, loc);
4373
4374 if (!eh->def_regular)
4375 {
4376 /* Mark the symbol as undefined, rather than as defined in
4377 the .plt section. Leave the value alone. */
4378 sym->st_shndx = SHN_UNDEF;
4379 }
4380 }
4381
4382 if (eh->got.offset != (bfd_vma) -1
4383 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_GD) == 0
4384 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_IE) == 0)
4385 {
4386 /* This symbol has an entry in the global offset table. Set it
4387 up. */
4388
4389 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4390 + htab->sgot->output_offset
4391 + htab->sgot->output_section->vma);
4392
4393 /* If this is a -Bsymbolic link and the symbol is defined
4394 locally or was forced to be local because of a version file,
4395 we just want to emit a RELATIVE reloc. The entry in the
4396 global offset table will already have been initialized in the
4397 relocate_section function. */
4398 if (info->shared
4399 && (info->symbolic || eh->dynindx == -1)
4400 && eh->def_regular)
4401 {
4402 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4403 rela.r_addend = (eh->root.u.def.value
4404 + eh->root.u.def.section->output_offset
4405 + eh->root.u.def.section->output_section->vma);
4406 }
4407 else
4408 {
4409 if ((eh->got.offset & 1) != 0)
4410 abort ();
4411
4412 bfd_put_32 (output_bfd, 0, htab->sgot->contents + (eh->got.offset & ~1));
4413 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4414 rela.r_addend = 0;
4415 }
4416
4417 loc = htab->srelgot->contents;
4418 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4419 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4420 }
4421
4422 if (eh->needs_copy)
4423 {
4424 asection *sec;
4425
4426 /* This symbol needs a copy reloc. Set it up. */
4427
4428 if (! (eh->dynindx != -1
4429 && (eh->root.type == bfd_link_hash_defined
4430 || eh->root.type == bfd_link_hash_defweak)))
4431 abort ();
4432
4433 sec = htab->srelbss;
4434
4435 rela.r_offset = (eh->root.u.def.value
4436 + eh->root.u.def.section->output_offset
4437 + eh->root.u.def.section->output_section->vma);
4438 rela.r_addend = 0;
4439 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4440 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4441 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4442 }
4443
4444 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4445 if (eh_name (eh)[0] == '_'
4446 && (strcmp (eh_name (eh), "_DYNAMIC") == 0
4447 || eh == htab->etab.hgot))
4448 {
4449 sym->st_shndx = SHN_ABS;
4450 }
4451
4452 return TRUE;
4453 }
4454
4455 /* Used to decide how to sort relocs in an optimal manner for the
4456 dynamic linker, before writing them out. */
4457
4458 static enum elf_reloc_type_class
4459 elf32_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
4460 {
4461 /* Handle TLS relocs first; we don't want them to be marked
4462 relative by the "if (ELF32_R_SYM (rela->r_info) == 0)"
4463 check below. */
4464 switch ((int) ELF32_R_TYPE (rela->r_info))
4465 {
4466 case R_PARISC_TLS_DTPMOD32:
4467 case R_PARISC_TLS_DTPOFF32:
4468 case R_PARISC_TLS_TPREL32:
4469 return reloc_class_normal;
4470 }
4471
4472 if (ELF32_R_SYM (rela->r_info) == 0)
4473 return reloc_class_relative;
4474
4475 switch ((int) ELF32_R_TYPE (rela->r_info))
4476 {
4477 case R_PARISC_IPLT:
4478 return reloc_class_plt;
4479 case R_PARISC_COPY:
4480 return reloc_class_copy;
4481 default:
4482 return reloc_class_normal;
4483 }
4484 }
4485
4486 /* Finish up the dynamic sections. */
4487
4488 static bfd_boolean
4489 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4490 struct bfd_link_info *info)
4491 {
4492 bfd *dynobj;
4493 struct elf32_hppa_link_hash_table *htab;
4494 asection *sdyn;
4495
4496 htab = hppa_link_hash_table (info);
4497 dynobj = htab->etab.dynobj;
4498
4499 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4500
4501 if (htab->etab.dynamic_sections_created)
4502 {
4503 Elf32_External_Dyn *dyncon, *dynconend;
4504
4505 if (sdyn == NULL)
4506 abort ();
4507
4508 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4509 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4510 for (; dyncon < dynconend; dyncon++)
4511 {
4512 Elf_Internal_Dyn dyn;
4513 asection *s;
4514
4515 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4516
4517 switch (dyn.d_tag)
4518 {
4519 default:
4520 continue;
4521
4522 case DT_PLTGOT:
4523 /* Use PLTGOT to set the GOT register. */
4524 dyn.d_un.d_ptr = elf_gp (output_bfd);
4525 break;
4526
4527 case DT_JMPREL:
4528 s = htab->srelplt;
4529 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4530 break;
4531
4532 case DT_PLTRELSZ:
4533 s = htab->srelplt;
4534 dyn.d_un.d_val = s->size;
4535 break;
4536
4537 case DT_RELASZ:
4538 /* Don't count procedure linkage table relocs in the
4539 overall reloc count. */
4540 s = htab->srelplt;
4541 if (s == NULL)
4542 continue;
4543 dyn.d_un.d_val -= s->size;
4544 break;
4545
4546 case DT_RELA:
4547 /* We may not be using the standard ELF linker script.
4548 If .rela.plt is the first .rela section, we adjust
4549 DT_RELA to not include it. */
4550 s = htab->srelplt;
4551 if (s == NULL)
4552 continue;
4553 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4554 continue;
4555 dyn.d_un.d_ptr += s->size;
4556 break;
4557 }
4558
4559 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4560 }
4561 }
4562
4563 if (htab->sgot != NULL && htab->sgot->size != 0)
4564 {
4565 /* Fill in the first entry in the global offset table.
4566 We use it to point to our dynamic section, if we have one. */
4567 bfd_put_32 (output_bfd,
4568 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4569 htab->sgot->contents);
4570
4571 /* The second entry is reserved for use by the dynamic linker. */
4572 memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4573
4574 /* Set .got entry size. */
4575 elf_section_data (htab->sgot->output_section)
4576 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4577 }
4578
4579 if (htab->splt != NULL && htab->splt->size != 0)
4580 {
4581 /* Set plt entry size. */
4582 elf_section_data (htab->splt->output_section)
4583 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4584
4585 if (htab->need_plt_stub)
4586 {
4587 /* Set up the .plt stub. */
4588 memcpy (htab->splt->contents
4589 + htab->splt->size - sizeof (plt_stub),
4590 plt_stub, sizeof (plt_stub));
4591
4592 if ((htab->splt->output_offset
4593 + htab->splt->output_section->vma
4594 + htab->splt->size)
4595 != (htab->sgot->output_offset
4596 + htab->sgot->output_section->vma))
4597 {
4598 (*_bfd_error_handler)
4599 (_(".got section not immediately after .plt section"));
4600 return FALSE;
4601 }
4602 }
4603 }
4604
4605 return TRUE;
4606 }
4607
4608 /* Tweak the OSABI field of the elf header. */
4609
4610 static void
4611 elf32_hppa_post_process_headers (bfd *abfd,
4612 struct bfd_link_info *info ATTRIBUTE_UNUSED)
4613 {
4614 Elf_Internal_Ehdr * i_ehdrp;
4615
4616 i_ehdrp = elf_elfheader (abfd);
4617
4618 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
4619 {
4620 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
4621 }
4622 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
4623 {
4624 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_NETBSD;
4625 }
4626 else
4627 {
4628 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
4629 }
4630 }
4631
4632 /* Called when writing out an object file to decide the type of a
4633 symbol. */
4634 static int
4635 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4636 {
4637 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4638 return STT_PARISC_MILLI;
4639 else
4640 return type;
4641 }
4642
4643 /* Misc BFD support code. */
4644 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4645 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4646 #define elf_info_to_howto elf_hppa_info_to_howto
4647 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4648
4649 /* Stuff for the BFD linker. */
4650 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4651 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4652 #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
4653 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4654 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4655 #define elf_backend_check_relocs elf32_hppa_check_relocs
4656 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4657 #define elf_backend_fake_sections elf_hppa_fake_sections
4658 #define elf_backend_relocate_section elf32_hppa_relocate_section
4659 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4660 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4661 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4662 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4663 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4664 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4665 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4666 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4667 #define elf_backend_object_p elf32_hppa_object_p
4668 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4669 #define elf_backend_post_process_headers elf32_hppa_post_process_headers
4670 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4671 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4672 #define elf_backend_action_discarded elf_hppa_action_discarded
4673
4674 #define elf_backend_can_gc_sections 1
4675 #define elf_backend_can_refcount 1
4676 #define elf_backend_plt_alignment 2
4677 #define elf_backend_want_got_plt 0
4678 #define elf_backend_plt_readonly 0
4679 #define elf_backend_want_plt_sym 0
4680 #define elf_backend_got_header_size 8
4681 #define elf_backend_rela_normal 1
4682
4683 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4684 #define TARGET_BIG_NAME "elf32-hppa"
4685 #define ELF_ARCH bfd_arch_hppa
4686 #define ELF_MACHINE_CODE EM_PARISC
4687 #define ELF_MAXPAGESIZE 0x1000
4688
4689 #include "elf32-target.h"
4690
4691 #undef TARGET_BIG_SYM
4692 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4693 #undef TARGET_BIG_NAME
4694 #define TARGET_BIG_NAME "elf32-hppa-linux"
4695
4696 #define INCLUDED_TARGET_FILE 1
4697 #include "elf32-target.h"
4698
4699 #undef TARGET_BIG_SYM
4700 #define TARGET_BIG_SYM bfd_elf32_hppa_nbsd_vec
4701 #undef TARGET_BIG_NAME
4702 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4703
4704 #include "elf32-target.h"
This page took 0.129235 seconds and 4 git commands to generate.