1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
6 Center for Software Science
7 Department of Computer Science
9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
10 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
11 TLS support written by Randolph Chung <tausq@debian.org>
13 This file is part of BFD, the Binary File Descriptor library.
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 2 of the License, or
18 (at your option) any later version.
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
35 #include "elf32-hppa.h"
37 #include "elf32-hppa.h"
40 /* In order to gain some understanding of code in this file without
41 knowing all the intricate details of the linker, note the
44 Functions named elf32_hppa_* are called by external routines, other
45 functions are only called locally. elf32_hppa_* functions appear
46 in this file more or less in the order in which they are called
47 from external routines. eg. elf32_hppa_check_relocs is called
48 early in the link process, elf32_hppa_finish_dynamic_sections is
49 one of the last functions. */
51 /* We use two hash tables to hold information for linking PA ELF objects.
53 The first is the elf32_hppa_link_hash_table which is derived
54 from the standard ELF linker hash table. We use this as a place to
55 attach other hash tables and static information.
57 The second is the stub hash table which is derived from the
58 base BFD hash table. The stub hash table holds the information
59 necessary to build the linker stubs during a link.
61 There are a number of different stubs generated by the linker.
69 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
70 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
72 Import stub to call shared library routine from normal object file
73 (single sub-space version)
74 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
75 : ldw RR'lt_ptr+ltoff(%r1),%r21
77 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
79 Import stub to call shared library routine from shared library
80 (single sub-space version)
81 : addil LR'ltoff,%r19 ; get procedure entry point
82 : ldw RR'ltoff(%r1),%r21
84 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
86 Import stub to call shared library routine from normal object file
87 (multiple sub-space support)
88 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
89 : ldw RR'lt_ptr+ltoff(%r1),%r21
90 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
93 : be 0(%sr0,%r21) ; branch to target
94 : stw %rp,-24(%sp) ; save rp
96 Import stub to call shared library routine from shared library
97 (multiple sub-space support)
98 : addil LR'ltoff,%r19 ; get procedure entry point
99 : ldw RR'ltoff(%r1),%r21
100 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
103 : be 0(%sr0,%r21) ; branch to target
104 : stw %rp,-24(%sp) ; save rp
106 Export stub to return from shared lib routine (multiple sub-space support)
107 One of these is created for each exported procedure in a shared
108 library (and stored in the shared lib). Shared lib routines are
109 called via the first instruction in the export stub so that we can
110 do an inter-space return. Not required for single sub-space.
111 : bl,n X,%rp ; trap the return
113 : ldw -24(%sp),%rp ; restore the original rp
116 : be,n 0(%sr0,%rp) ; inter-space return. */
119 /* Variable names follow a coding style.
120 Please follow this (Apps Hungarian) style:
122 Structure/Variable Prefix
123 elf_link_hash_table "etab"
124 elf_link_hash_entry "eh"
126 elf32_hppa_link_hash_table "htab"
127 elf32_hppa_link_hash_entry "hh"
129 bfd_hash_table "btab"
132 bfd_hash_table containing stubs "bstab"
133 elf32_hppa_stub_hash_entry "hsh"
135 elf32_hppa_dyn_reloc_entry "hdh"
137 Always remember to use GNU Coding Style. */
139 #define PLT_ENTRY_SIZE 8
140 #define GOT_ENTRY_SIZE 4
141 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
143 static const bfd_byte plt_stub
[] =
145 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
146 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
147 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
148 #define PLT_STUB_ENTRY (3*4)
149 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
150 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
151 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
152 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
155 /* Section name for stubs is the associated section name plus this
157 #define STUB_SUFFIX ".stub"
159 /* We don't need to copy certain PC- or GP-relative dynamic relocs
160 into a shared object's dynamic section. All the relocs of the
161 limited class we are interested in, are absolute. */
162 #ifndef RELATIVE_DYNRELOCS
163 #define RELATIVE_DYNRELOCS 0
164 #define IS_ABSOLUTE_RELOC(r_type) 1
167 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
168 copying dynamic variables from a shared lib into an app's dynbss
169 section, and instead use a dynamic relocation to point into the
171 #define ELIMINATE_COPY_RELOCS 1
173 enum elf32_hppa_stub_type
175 hppa_stub_long_branch
,
176 hppa_stub_long_branch_shared
,
178 hppa_stub_import_shared
,
183 struct elf32_hppa_stub_hash_entry
185 /* Base hash table entry structure. */
186 struct bfd_hash_entry bh_root
;
188 /* The stub section. */
191 /* Offset within stub_sec of the beginning of this stub. */
194 /* Given the symbol's value and its section we can determine its final
195 value when building the stubs (so the stub knows where to jump. */
196 bfd_vma target_value
;
197 asection
*target_section
;
199 enum elf32_hppa_stub_type stub_type
;
201 /* The symbol table entry, if any, that this was derived from. */
202 struct elf32_hppa_link_hash_entry
*hh
;
204 /* Where this stub is being called from, or, in the case of combined
205 stub sections, the first input section in the group. */
209 struct elf32_hppa_link_hash_entry
211 struct elf_link_hash_entry eh
;
213 /* A pointer to the most recently used stub hash entry against this
215 struct elf32_hppa_stub_hash_entry
*hsh_cache
;
217 /* Used to count relocations for delayed sizing of relocation
219 struct elf32_hppa_dyn_reloc_entry
221 /* Next relocation in the chain. */
222 struct elf32_hppa_dyn_reloc_entry
*hdh_next
;
224 /* The input section of the reloc. */
227 /* Number of relocs copied in this section. */
230 #if RELATIVE_DYNRELOCS
231 /* Number of relative relocs copied for the input section. */
232 bfd_size_type relative_count
;
238 GOT_UNKNOWN
= 0, GOT_NORMAL
= 1, GOT_TLS_GD
= 2, GOT_TLS_LDM
= 4, GOT_TLS_IE
= 8
241 /* Set if this symbol is used by a plabel reloc. */
242 unsigned int plabel
:1;
245 struct elf32_hppa_link_hash_table
247 /* The main hash table. */
248 struct elf_link_hash_table etab
;
250 /* The stub hash table. */
251 struct bfd_hash_table bstab
;
253 /* Linker stub bfd. */
256 /* Linker call-backs. */
257 asection
* (*add_stub_section
) (const char *, asection
*);
258 void (*layout_sections_again
) (void);
260 /* Array to keep track of which stub sections have been created, and
261 information on stub grouping. */
264 /* This is the section to which stubs in the group will be
267 /* The stub section. */
271 /* Assorted information used by elf32_hppa_size_stubs. */
272 unsigned int bfd_count
;
274 asection
**input_list
;
275 Elf_Internal_Sym
**all_local_syms
;
277 /* Short-cuts to get to dynamic linker sections. */
285 /* Used during a final link to store the base of the text and data
286 segments so that we can perform SEGREL relocations. */
287 bfd_vma text_segment_base
;
288 bfd_vma data_segment_base
;
290 /* Whether we support multiple sub-spaces for shared libs. */
291 unsigned int multi_subspace
:1;
293 /* Flags set when various size branches are detected. Used to
294 select suitable defaults for the stub group size. */
295 unsigned int has_12bit_branch
:1;
296 unsigned int has_17bit_branch
:1;
297 unsigned int has_22bit_branch
:1;
299 /* Set if we need a .plt stub to support lazy dynamic linking. */
300 unsigned int need_plt_stub
:1;
302 /* Small local sym to section mapping cache. */
303 struct sym_sec_cache sym_sec
;
305 /* Data for LDM relocations. */
308 bfd_signed_vma refcount
;
313 /* Various hash macros and functions. */
314 #define hppa_link_hash_table(p) \
315 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
317 #define hppa_elf_hash_entry(ent) \
318 ((struct elf32_hppa_link_hash_entry *)(ent))
320 #define hppa_stub_hash_entry(ent) \
321 ((struct elf32_hppa_stub_hash_entry *)(ent))
323 #define hppa_stub_hash_lookup(table, string, create, copy) \
324 ((struct elf32_hppa_stub_hash_entry *) \
325 bfd_hash_lookup ((table), (string), (create), (copy)))
327 #define hppa_elf_local_got_tls_type(abfd) \
328 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
330 #define hh_name(hh) \
331 (hh ? hh->eh.root.root.string : "<undef>")
333 #define eh_name(eh) \
334 (eh ? eh->root.root.string : "<undef>")
336 /* Assorted hash table functions. */
338 /* Initialize an entry in the stub hash table. */
340 static struct bfd_hash_entry
*
341 stub_hash_newfunc (struct bfd_hash_entry
*entry
,
342 struct bfd_hash_table
*table
,
345 /* Allocate the structure if it has not already been allocated by a
349 entry
= bfd_hash_allocate (table
,
350 sizeof (struct elf32_hppa_stub_hash_entry
));
355 /* Call the allocation method of the superclass. */
356 entry
= bfd_hash_newfunc (entry
, table
, string
);
359 struct elf32_hppa_stub_hash_entry
*hsh
;
361 /* Initialize the local fields. */
362 hsh
= hppa_stub_hash_entry (entry
);
363 hsh
->stub_sec
= NULL
;
364 hsh
->stub_offset
= 0;
365 hsh
->target_value
= 0;
366 hsh
->target_section
= NULL
;
367 hsh
->stub_type
= hppa_stub_long_branch
;
375 /* Initialize an entry in the link hash table. */
377 static struct bfd_hash_entry
*
378 hppa_link_hash_newfunc (struct bfd_hash_entry
*entry
,
379 struct bfd_hash_table
*table
,
382 /* Allocate the structure if it has not already been allocated by a
386 entry
= bfd_hash_allocate (table
,
387 sizeof (struct elf32_hppa_link_hash_entry
));
392 /* Call the allocation method of the superclass. */
393 entry
= _bfd_elf_link_hash_newfunc (entry
, table
, string
);
396 struct elf32_hppa_link_hash_entry
*hh
;
398 /* Initialize the local fields. */
399 hh
= hppa_elf_hash_entry (entry
);
400 hh
->hsh_cache
= NULL
;
401 hh
->dyn_relocs
= NULL
;
403 hh
->tls_type
= GOT_UNKNOWN
;
409 /* Create the derived linker hash table. The PA ELF port uses the derived
410 hash table to keep information specific to the PA ELF linker (without
411 using static variables). */
413 static struct bfd_link_hash_table
*
414 elf32_hppa_link_hash_table_create (bfd
*abfd
)
416 struct elf32_hppa_link_hash_table
*htab
;
417 bfd_size_type amt
= sizeof (*htab
);
419 htab
= bfd_malloc (amt
);
423 if (!_bfd_elf_link_hash_table_init (&htab
->etab
, abfd
, hppa_link_hash_newfunc
,
424 sizeof (struct elf32_hppa_link_hash_entry
)))
430 /* Init the stub hash table too. */
431 if (!bfd_hash_table_init (&htab
->bstab
, stub_hash_newfunc
,
432 sizeof (struct elf32_hppa_stub_hash_entry
)))
435 htab
->stub_bfd
= NULL
;
436 htab
->add_stub_section
= NULL
;
437 htab
->layout_sections_again
= NULL
;
438 htab
->stub_group
= NULL
;
440 htab
->srelgot
= NULL
;
442 htab
->srelplt
= NULL
;
443 htab
->sdynbss
= NULL
;
444 htab
->srelbss
= NULL
;
445 htab
->text_segment_base
= (bfd_vma
) -1;
446 htab
->data_segment_base
= (bfd_vma
) -1;
447 htab
->multi_subspace
= 0;
448 htab
->has_12bit_branch
= 0;
449 htab
->has_17bit_branch
= 0;
450 htab
->has_22bit_branch
= 0;
451 htab
->need_plt_stub
= 0;
452 htab
->sym_sec
.abfd
= NULL
;
453 htab
->tls_ldm_got
.refcount
= 0;
455 return &htab
->etab
.root
;
458 /* Free the derived linker hash table. */
461 elf32_hppa_link_hash_table_free (struct bfd_link_hash_table
*btab
)
463 struct elf32_hppa_link_hash_table
*htab
464 = (struct elf32_hppa_link_hash_table
*) btab
;
466 bfd_hash_table_free (&htab
->bstab
);
467 _bfd_generic_link_hash_table_free (btab
);
470 /* Build a name for an entry in the stub hash table. */
473 hppa_stub_name (const asection
*input_section
,
474 const asection
*sym_sec
,
475 const struct elf32_hppa_link_hash_entry
*hh
,
476 const Elf_Internal_Rela
*rela
)
483 len
= 8 + 1 + strlen (hh_name (hh
)) + 1 + 8 + 1;
484 stub_name
= bfd_malloc (len
);
485 if (stub_name
!= NULL
)
486 sprintf (stub_name
, "%08x_%s+%x",
487 input_section
->id
& 0xffffffff,
489 (int) rela
->r_addend
& 0xffffffff);
493 len
= 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
494 stub_name
= bfd_malloc (len
);
495 if (stub_name
!= NULL
)
496 sprintf (stub_name
, "%08x_%x:%x+%x",
497 input_section
->id
& 0xffffffff,
498 sym_sec
->id
& 0xffffffff,
499 (int) ELF32_R_SYM (rela
->r_info
) & 0xffffffff,
500 (int) rela
->r_addend
& 0xffffffff);
505 /* Look up an entry in the stub hash. Stub entries are cached because
506 creating the stub name takes a bit of time. */
508 static struct elf32_hppa_stub_hash_entry
*
509 hppa_get_stub_entry (const asection
*input_section
,
510 const asection
*sym_sec
,
511 struct elf32_hppa_link_hash_entry
*hh
,
512 const Elf_Internal_Rela
*rela
,
513 struct elf32_hppa_link_hash_table
*htab
)
515 struct elf32_hppa_stub_hash_entry
*hsh_entry
;
516 const asection
*id_sec
;
518 /* If this input section is part of a group of sections sharing one
519 stub section, then use the id of the first section in the group.
520 Stub names need to include a section id, as there may well be
521 more than one stub used to reach say, printf, and we need to
522 distinguish between them. */
523 id_sec
= htab
->stub_group
[input_section
->id
].link_sec
;
525 if (hh
!= NULL
&& hh
->hsh_cache
!= NULL
526 && hh
->hsh_cache
->hh
== hh
527 && hh
->hsh_cache
->id_sec
== id_sec
)
529 hsh_entry
= hh
->hsh_cache
;
535 stub_name
= hppa_stub_name (id_sec
, sym_sec
, hh
, rela
);
536 if (stub_name
== NULL
)
539 hsh_entry
= hppa_stub_hash_lookup (&htab
->bstab
,
540 stub_name
, FALSE
, FALSE
);
542 hh
->hsh_cache
= hsh_entry
;
550 /* Add a new stub entry to the stub hash. Not all fields of the new
551 stub entry are initialised. */
553 static struct elf32_hppa_stub_hash_entry
*
554 hppa_add_stub (const char *stub_name
,
556 struct elf32_hppa_link_hash_table
*htab
)
560 struct elf32_hppa_stub_hash_entry
*hsh
;
562 link_sec
= htab
->stub_group
[section
->id
].link_sec
;
563 stub_sec
= htab
->stub_group
[section
->id
].stub_sec
;
564 if (stub_sec
== NULL
)
566 stub_sec
= htab
->stub_group
[link_sec
->id
].stub_sec
;
567 if (stub_sec
== NULL
)
573 namelen
= strlen (link_sec
->name
);
574 len
= namelen
+ sizeof (STUB_SUFFIX
);
575 s_name
= bfd_alloc (htab
->stub_bfd
, len
);
579 memcpy (s_name
, link_sec
->name
, namelen
);
580 memcpy (s_name
+ namelen
, STUB_SUFFIX
, sizeof (STUB_SUFFIX
));
581 stub_sec
= (*htab
->add_stub_section
) (s_name
, link_sec
);
582 if (stub_sec
== NULL
)
584 htab
->stub_group
[link_sec
->id
].stub_sec
= stub_sec
;
586 htab
->stub_group
[section
->id
].stub_sec
= stub_sec
;
589 /* Enter this entry into the linker stub hash table. */
590 hsh
= hppa_stub_hash_lookup (&htab
->bstab
, stub_name
,
594 (*_bfd_error_handler
) (_("%B: cannot create stub entry %s"),
600 hsh
->stub_sec
= stub_sec
;
601 hsh
->stub_offset
= 0;
602 hsh
->id_sec
= link_sec
;
606 /* Determine the type of stub needed, if any, for a call. */
608 static enum elf32_hppa_stub_type
609 hppa_type_of_stub (asection
*input_sec
,
610 const Elf_Internal_Rela
*rela
,
611 struct elf32_hppa_link_hash_entry
*hh
,
613 struct bfd_link_info
*info
)
616 bfd_vma branch_offset
;
617 bfd_vma max_branch_offset
;
621 && hh
->eh
.plt
.offset
!= (bfd_vma
) -1
622 && hh
->eh
.dynindx
!= -1
625 || !hh
->eh
.def_regular
626 || hh
->eh
.root
.type
== bfd_link_hash_defweak
))
628 /* We need an import stub. Decide between hppa_stub_import
629 and hppa_stub_import_shared later. */
630 return hppa_stub_import
;
633 /* Determine where the call point is. */
634 location
= (input_sec
->output_offset
635 + input_sec
->output_section
->vma
638 branch_offset
= destination
- location
- 8;
639 r_type
= ELF32_R_TYPE (rela
->r_info
);
641 /* Determine if a long branch stub is needed. parisc branch offsets
642 are relative to the second instruction past the branch, ie. +8
643 bytes on from the branch instruction location. The offset is
644 signed and counts in units of 4 bytes. */
645 if (r_type
== (unsigned int) R_PARISC_PCREL17F
)
646 max_branch_offset
= (1 << (17 - 1)) << 2;
648 else if (r_type
== (unsigned int) R_PARISC_PCREL12F
)
649 max_branch_offset
= (1 << (12 - 1)) << 2;
651 else /* R_PARISC_PCREL22F. */
652 max_branch_offset
= (1 << (22 - 1)) << 2;
654 if (branch_offset
+ max_branch_offset
>= 2*max_branch_offset
)
655 return hppa_stub_long_branch
;
657 return hppa_stub_none
;
660 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
661 IN_ARG contains the link info pointer. */
663 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
664 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
666 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
667 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
668 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
670 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
671 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
672 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
673 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
675 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
676 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
678 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
679 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
680 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
681 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
683 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
684 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
685 #define NOP 0x08000240 /* nop */
686 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
687 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
688 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
695 #define LDW_R1_DLT LDW_R1_R19
697 #define LDW_R1_DLT LDW_R1_DP
701 hppa_build_one_stub (struct bfd_hash_entry
*bh
, void *in_arg
)
703 struct elf32_hppa_stub_hash_entry
*hsh
;
704 struct bfd_link_info
*info
;
705 struct elf32_hppa_link_hash_table
*htab
;
715 /* Massage our args to the form they really have. */
716 hsh
= hppa_stub_hash_entry (bh
);
717 info
= (struct bfd_link_info
*)in_arg
;
719 htab
= hppa_link_hash_table (info
);
720 stub_sec
= hsh
->stub_sec
;
722 /* Make a note of the offset within the stubs for this entry. */
723 hsh
->stub_offset
= stub_sec
->size
;
724 loc
= stub_sec
->contents
+ hsh
->stub_offset
;
726 stub_bfd
= stub_sec
->owner
;
728 switch (hsh
->stub_type
)
730 case hppa_stub_long_branch
:
731 /* Create the long branch. A long branch is formed with "ldil"
732 loading the upper bits of the target address into a register,
733 then branching with "be" which adds in the lower bits.
734 The "be" has its delay slot nullified. */
735 sym_value
= (hsh
->target_value
736 + hsh
->target_section
->output_offset
737 + hsh
->target_section
->output_section
->vma
);
739 val
= hppa_field_adjust (sym_value
, 0, e_lrsel
);
740 insn
= hppa_rebuild_insn ((int) LDIL_R1
, val
, 21);
741 bfd_put_32 (stub_bfd
, insn
, loc
);
743 val
= hppa_field_adjust (sym_value
, 0, e_rrsel
) >> 2;
744 insn
= hppa_rebuild_insn ((int) BE_SR4_R1
, val
, 17);
745 bfd_put_32 (stub_bfd
, insn
, loc
+ 4);
750 case hppa_stub_long_branch_shared
:
751 /* Branches are relative. This is where we are going to. */
752 sym_value
= (hsh
->target_value
753 + hsh
->target_section
->output_offset
754 + hsh
->target_section
->output_section
->vma
);
756 /* And this is where we are coming from, more or less. */
757 sym_value
-= (hsh
->stub_offset
758 + stub_sec
->output_offset
759 + stub_sec
->output_section
->vma
);
761 bfd_put_32 (stub_bfd
, (bfd_vma
) BL_R1
, loc
);
762 val
= hppa_field_adjust (sym_value
, (bfd_signed_vma
) -8, e_lrsel
);
763 insn
= hppa_rebuild_insn ((int) ADDIL_R1
, val
, 21);
764 bfd_put_32 (stub_bfd
, insn
, loc
+ 4);
766 val
= hppa_field_adjust (sym_value
, (bfd_signed_vma
) -8, e_rrsel
) >> 2;
767 insn
= hppa_rebuild_insn ((int) BE_SR4_R1
, val
, 17);
768 bfd_put_32 (stub_bfd
, insn
, loc
+ 8);
772 case hppa_stub_import
:
773 case hppa_stub_import_shared
:
774 off
= hsh
->hh
->eh
.plt
.offset
;
775 if (off
>= (bfd_vma
) -2)
778 off
&= ~ (bfd_vma
) 1;
780 + htab
->splt
->output_offset
781 + htab
->splt
->output_section
->vma
782 - elf_gp (htab
->splt
->output_section
->owner
));
786 if (hsh
->stub_type
== hppa_stub_import_shared
)
789 val
= hppa_field_adjust (sym_value
, 0, e_lrsel
),
790 insn
= hppa_rebuild_insn ((int) insn
, val
, 21);
791 bfd_put_32 (stub_bfd
, insn
, loc
);
793 /* It is critical to use lrsel/rrsel here because we are using
794 two different offsets (+0 and +4) from sym_value. If we use
795 lsel/rsel then with unfortunate sym_values we will round
796 sym_value+4 up to the next 2k block leading to a mis-match
797 between the lsel and rsel value. */
798 val
= hppa_field_adjust (sym_value
, 0, e_rrsel
);
799 insn
= hppa_rebuild_insn ((int) LDW_R1_R21
, val
, 14);
800 bfd_put_32 (stub_bfd
, insn
, loc
+ 4);
802 if (htab
->multi_subspace
)
804 val
= hppa_field_adjust (sym_value
, (bfd_signed_vma
) 4, e_rrsel
);
805 insn
= hppa_rebuild_insn ((int) LDW_R1_DLT
, val
, 14);
806 bfd_put_32 (stub_bfd
, insn
, loc
+ 8);
808 bfd_put_32 (stub_bfd
, (bfd_vma
) LDSID_R21_R1
, loc
+ 12);
809 bfd_put_32 (stub_bfd
, (bfd_vma
) MTSP_R1
, loc
+ 16);
810 bfd_put_32 (stub_bfd
, (bfd_vma
) BE_SR0_R21
, loc
+ 20);
811 bfd_put_32 (stub_bfd
, (bfd_vma
) STW_RP
, loc
+ 24);
817 bfd_put_32 (stub_bfd
, (bfd_vma
) BV_R0_R21
, loc
+ 8);
818 val
= hppa_field_adjust (sym_value
, (bfd_signed_vma
) 4, e_rrsel
);
819 insn
= hppa_rebuild_insn ((int) LDW_R1_DLT
, val
, 14);
820 bfd_put_32 (stub_bfd
, insn
, loc
+ 12);
827 case hppa_stub_export
:
828 /* Branches are relative. This is where we are going to. */
829 sym_value
= (hsh
->target_value
830 + hsh
->target_section
->output_offset
831 + hsh
->target_section
->output_section
->vma
);
833 /* And this is where we are coming from. */
834 sym_value
-= (hsh
->stub_offset
835 + stub_sec
->output_offset
836 + stub_sec
->output_section
->vma
);
838 if (sym_value
- 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
839 && (!htab
->has_22bit_branch
840 || sym_value
- 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
842 (*_bfd_error_handler
)
843 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
844 hsh
->target_section
->owner
,
846 (long) hsh
->stub_offset
,
847 hsh
->bh_root
.string
);
848 bfd_set_error (bfd_error_bad_value
);
852 val
= hppa_field_adjust (sym_value
, (bfd_signed_vma
) -8, e_fsel
) >> 2;
853 if (!htab
->has_22bit_branch
)
854 insn
= hppa_rebuild_insn ((int) BL_RP
, val
, 17);
856 insn
= hppa_rebuild_insn ((int) BL22_RP
, val
, 22);
857 bfd_put_32 (stub_bfd
, insn
, loc
);
859 bfd_put_32 (stub_bfd
, (bfd_vma
) NOP
, loc
+ 4);
860 bfd_put_32 (stub_bfd
, (bfd_vma
) LDW_RP
, loc
+ 8);
861 bfd_put_32 (stub_bfd
, (bfd_vma
) LDSID_RP_R1
, loc
+ 12);
862 bfd_put_32 (stub_bfd
, (bfd_vma
) MTSP_R1
, loc
+ 16);
863 bfd_put_32 (stub_bfd
, (bfd_vma
) BE_SR0_RP
, loc
+ 20);
865 /* Point the function symbol at the stub. */
866 hsh
->hh
->eh
.root
.u
.def
.section
= stub_sec
;
867 hsh
->hh
->eh
.root
.u
.def
.value
= stub_sec
->size
;
877 stub_sec
->size
+= size
;
902 /* As above, but don't actually build the stub. Just bump offset so
903 we know stub section sizes. */
906 hppa_size_one_stub (struct bfd_hash_entry
*bh
, void *in_arg
)
908 struct elf32_hppa_stub_hash_entry
*hsh
;
909 struct elf32_hppa_link_hash_table
*htab
;
912 /* Massage our args to the form they really have. */
913 hsh
= hppa_stub_hash_entry (bh
);
916 if (hsh
->stub_type
== hppa_stub_long_branch
)
918 else if (hsh
->stub_type
== hppa_stub_long_branch_shared
)
920 else if (hsh
->stub_type
== hppa_stub_export
)
922 else /* hppa_stub_import or hppa_stub_import_shared. */
924 if (htab
->multi_subspace
)
930 hsh
->stub_sec
->size
+= size
;
934 /* Return nonzero if ABFD represents an HPPA ELF32 file.
935 Additionally we set the default architecture and machine. */
938 elf32_hppa_object_p (bfd
*abfd
)
940 Elf_Internal_Ehdr
* i_ehdrp
;
943 i_ehdrp
= elf_elfheader (abfd
);
944 if (strcmp (bfd_get_target (abfd
), "elf32-hppa-linux") == 0)
946 /* GCC on hppa-linux produces binaries with OSABI=Linux,
947 but the kernel produces corefiles with OSABI=SysV. */
948 if (i_ehdrp
->e_ident
[EI_OSABI
] != ELFOSABI_LINUX
&&
949 i_ehdrp
->e_ident
[EI_OSABI
] != ELFOSABI_NONE
) /* aka SYSV */
952 else if (strcmp (bfd_get_target (abfd
), "elf32-hppa-netbsd") == 0)
954 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
955 but the kernel produces corefiles with OSABI=SysV. */
956 if (i_ehdrp
->e_ident
[EI_OSABI
] != ELFOSABI_NETBSD
&&
957 i_ehdrp
->e_ident
[EI_OSABI
] != ELFOSABI_NONE
) /* aka SYSV */
962 if (i_ehdrp
->e_ident
[EI_OSABI
] != ELFOSABI_HPUX
)
966 flags
= i_ehdrp
->e_flags
;
967 switch (flags
& (EF_PARISC_ARCH
| EF_PARISC_WIDE
))
970 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 10);
972 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 11);
974 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 20);
975 case EFA_PARISC_2_0
| EF_PARISC_WIDE
:
976 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 25);
981 /* Create the .plt and .got sections, and set up our hash table
982 short-cuts to various dynamic sections. */
985 elf32_hppa_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
987 struct elf32_hppa_link_hash_table
*htab
;
988 struct elf_link_hash_entry
*eh
;
990 /* Don't try to create the .plt and .got twice. */
991 htab
= hppa_link_hash_table (info
);
992 if (htab
->splt
!= NULL
)
995 /* Call the generic code to do most of the work. */
996 if (! _bfd_elf_create_dynamic_sections (abfd
, info
))
999 htab
->splt
= bfd_get_section_by_name (abfd
, ".plt");
1000 htab
->srelplt
= bfd_get_section_by_name (abfd
, ".rela.plt");
1002 htab
->sgot
= bfd_get_section_by_name (abfd
, ".got");
1003 htab
->srelgot
= bfd_make_section_with_flags (abfd
, ".rela.got",
1008 | SEC_LINKER_CREATED
1010 if (htab
->srelgot
== NULL
1011 || ! bfd_set_section_alignment (abfd
, htab
->srelgot
, 2))
1014 htab
->sdynbss
= bfd_get_section_by_name (abfd
, ".dynbss");
1015 htab
->srelbss
= bfd_get_section_by_name (abfd
, ".rela.bss");
1017 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
1018 application, because __canonicalize_funcptr_for_compare needs it. */
1019 eh
= elf_hash_table (info
)->hgot
;
1020 eh
->forced_local
= 0;
1021 eh
->other
= STV_DEFAULT
;
1022 return bfd_elf_link_record_dynamic_symbol (info
, eh
);
1025 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1028 elf32_hppa_copy_indirect_symbol (struct bfd_link_info
*info
,
1029 struct elf_link_hash_entry
*eh_dir
,
1030 struct elf_link_hash_entry
*eh_ind
)
1032 struct elf32_hppa_link_hash_entry
*hh_dir
, *hh_ind
;
1034 hh_dir
= hppa_elf_hash_entry (eh_dir
);
1035 hh_ind
= hppa_elf_hash_entry (eh_ind
);
1037 if (hh_ind
->dyn_relocs
!= NULL
)
1039 if (hh_dir
->dyn_relocs
!= NULL
)
1041 struct elf32_hppa_dyn_reloc_entry
**hdh_pp
;
1042 struct elf32_hppa_dyn_reloc_entry
*hdh_p
;
1044 /* Add reloc counts against the indirect sym to the direct sym
1045 list. Merge any entries against the same section. */
1046 for (hdh_pp
= &hh_ind
->dyn_relocs
; (hdh_p
= *hdh_pp
) != NULL
; )
1048 struct elf32_hppa_dyn_reloc_entry
*hdh_q
;
1050 for (hdh_q
= hh_dir
->dyn_relocs
;
1052 hdh_q
= hdh_q
->hdh_next
)
1053 if (hdh_q
->sec
== hdh_p
->sec
)
1055 #if RELATIVE_DYNRELOCS
1056 hdh_q
->relative_count
+= hdh_p
->relative_count
;
1058 hdh_q
->count
+= hdh_p
->count
;
1059 *hdh_pp
= hdh_p
->hdh_next
;
1063 hdh_pp
= &hdh_p
->hdh_next
;
1065 *hdh_pp
= hh_dir
->dyn_relocs
;
1068 hh_dir
->dyn_relocs
= hh_ind
->dyn_relocs
;
1069 hh_ind
->dyn_relocs
= NULL
;
1072 if (ELIMINATE_COPY_RELOCS
1073 && eh_ind
->root
.type
!= bfd_link_hash_indirect
1074 && eh_dir
->dynamic_adjusted
)
1076 /* If called to transfer flags for a weakdef during processing
1077 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1078 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1079 eh_dir
->ref_dynamic
|= eh_ind
->ref_dynamic
;
1080 eh_dir
->ref_regular
|= eh_ind
->ref_regular
;
1081 eh_dir
->ref_regular_nonweak
|= eh_ind
->ref_regular_nonweak
;
1082 eh_dir
->needs_plt
|= eh_ind
->needs_plt
;
1086 if (eh_ind
->root
.type
== bfd_link_hash_indirect
1087 && eh_dir
->got
.refcount
<= 0)
1089 hh_dir
->tls_type
= hh_ind
->tls_type
;
1090 hh_ind
->tls_type
= GOT_UNKNOWN
;
1093 _bfd_elf_link_hash_copy_indirect (info
, eh_dir
, eh_ind
);
1098 elf32_hppa_optimized_tls_reloc (struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
1099 int r_type
, int is_local ATTRIBUTE_UNUSED
)
1101 /* For now we don't support linker optimizations. */
1105 /* Look through the relocs for a section during the first phase, and
1106 calculate needed space in the global offset table, procedure linkage
1107 table, and dynamic reloc sections. At this point we haven't
1108 necessarily read all the input files. */
1111 elf32_hppa_check_relocs (bfd
*abfd
,
1112 struct bfd_link_info
*info
,
1114 const Elf_Internal_Rela
*relocs
)
1116 Elf_Internal_Shdr
*symtab_hdr
;
1117 struct elf_link_hash_entry
**eh_syms
;
1118 const Elf_Internal_Rela
*rela
;
1119 const Elf_Internal_Rela
*rela_end
;
1120 struct elf32_hppa_link_hash_table
*htab
;
1122 asection
*stubreloc
;
1123 int tls_type
= GOT_UNKNOWN
, old_tls_type
= GOT_UNKNOWN
;
1125 if (info
->relocatable
)
1128 htab
= hppa_link_hash_table (info
);
1129 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1130 eh_syms
= elf_sym_hashes (abfd
);
1134 rela_end
= relocs
+ sec
->reloc_count
;
1135 for (rela
= relocs
; rela
< rela_end
; rela
++)
1144 unsigned int r_symndx
, r_type
;
1145 struct elf32_hppa_link_hash_entry
*hh
;
1148 r_symndx
= ELF32_R_SYM (rela
->r_info
);
1150 if (r_symndx
< symtab_hdr
->sh_info
)
1154 hh
= hppa_elf_hash_entry (eh_syms
[r_symndx
- symtab_hdr
->sh_info
]);
1155 while (hh
->eh
.root
.type
== bfd_link_hash_indirect
1156 || hh
->eh
.root
.type
== bfd_link_hash_warning
)
1157 hh
= hppa_elf_hash_entry (hh
->eh
.root
.u
.i
.link
);
1160 r_type
= ELF32_R_TYPE (rela
->r_info
);
1161 r_type
= elf32_hppa_optimized_tls_reloc (info
, r_type
, hh
== NULL
);
1165 case R_PARISC_DLTIND14F
:
1166 case R_PARISC_DLTIND14R
:
1167 case R_PARISC_DLTIND21L
:
1168 /* This symbol requires a global offset table entry. */
1169 need_entry
= NEED_GOT
;
1172 case R_PARISC_PLABEL14R
: /* "Official" procedure labels. */
1173 case R_PARISC_PLABEL21L
:
1174 case R_PARISC_PLABEL32
:
1175 /* If the addend is non-zero, we break badly. */
1176 if (rela
->r_addend
!= 0)
1179 /* If we are creating a shared library, then we need to
1180 create a PLT entry for all PLABELs, because PLABELs with
1181 local symbols may be passed via a pointer to another
1182 object. Additionally, output a dynamic relocation
1183 pointing to the PLT entry.
1185 For executables, the original 32-bit ABI allowed two
1186 different styles of PLABELs (function pointers): For
1187 global functions, the PLABEL word points into the .plt
1188 two bytes past a (function address, gp) pair, and for
1189 local functions the PLABEL points directly at the
1190 function. The magic +2 for the first type allows us to
1191 differentiate between the two. As you can imagine, this
1192 is a real pain when it comes to generating code to call
1193 functions indirectly or to compare function pointers.
1194 We avoid the mess by always pointing a PLABEL into the
1195 .plt, even for local functions. */
1196 need_entry
= PLT_PLABEL
| NEED_PLT
| NEED_DYNREL
;
1199 case R_PARISC_PCREL12F
:
1200 htab
->has_12bit_branch
= 1;
1203 case R_PARISC_PCREL17C
:
1204 case R_PARISC_PCREL17F
:
1205 htab
->has_17bit_branch
= 1;
1208 case R_PARISC_PCREL22F
:
1209 htab
->has_22bit_branch
= 1;
1211 /* Function calls might need to go through the .plt, and
1212 might require long branch stubs. */
1215 /* We know local syms won't need a .plt entry, and if
1216 they need a long branch stub we can't guarantee that
1217 we can reach the stub. So just flag an error later
1218 if we're doing a shared link and find we need a long
1224 /* Global symbols will need a .plt entry if they remain
1225 global, and in most cases won't need a long branch
1226 stub. Unfortunately, we have to cater for the case
1227 where a symbol is forced local by versioning, or due
1228 to symbolic linking, and we lose the .plt entry. */
1229 need_entry
= NEED_PLT
;
1230 if (hh
->eh
.type
== STT_PARISC_MILLI
)
1235 case R_PARISC_SEGBASE
: /* Used to set segment base. */
1236 case R_PARISC_SEGREL32
: /* Relative reloc, used for unwind. */
1237 case R_PARISC_PCREL14F
: /* PC relative load/store. */
1238 case R_PARISC_PCREL14R
:
1239 case R_PARISC_PCREL17R
: /* External branches. */
1240 case R_PARISC_PCREL21L
: /* As above, and for load/store too. */
1241 case R_PARISC_PCREL32
:
1242 /* We don't need to propagate the relocation if linking a
1243 shared object since these are section relative. */
1246 case R_PARISC_DPREL14F
: /* Used for gp rel data load/store. */
1247 case R_PARISC_DPREL14R
:
1248 case R_PARISC_DPREL21L
:
1251 (*_bfd_error_handler
)
1252 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1254 elf_hppa_howto_table
[r_type
].name
);
1255 bfd_set_error (bfd_error_bad_value
);
1260 case R_PARISC_DIR17F
: /* Used for external branches. */
1261 case R_PARISC_DIR17R
:
1262 case R_PARISC_DIR14F
: /* Used for load/store from absolute locn. */
1263 case R_PARISC_DIR14R
:
1264 case R_PARISC_DIR21L
: /* As above, and for ext branches too. */
1265 case R_PARISC_DIR32
: /* .word relocs. */
1266 /* We may want to output a dynamic relocation later. */
1267 need_entry
= NEED_DYNREL
;
1270 /* This relocation describes the C++ object vtable hierarchy.
1271 Reconstruct it for later use during GC. */
1272 case R_PARISC_GNU_VTINHERIT
:
1273 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, &hh
->eh
, rela
->r_offset
))
1277 /* This relocation describes which C++ vtable entries are actually
1278 used. Record for later use during GC. */
1279 case R_PARISC_GNU_VTENTRY
:
1280 if (!bfd_elf_gc_record_vtentry (abfd
, sec
, &hh
->eh
, rela
->r_addend
))
1284 case R_PARISC_TLS_GD21L
:
1285 case R_PARISC_TLS_GD14R
:
1286 case R_PARISC_TLS_LDM21L
:
1287 case R_PARISC_TLS_LDM14R
:
1288 need_entry
= NEED_GOT
;
1291 case R_PARISC_TLS_IE21L
:
1292 case R_PARISC_TLS_IE14R
:
1294 info
->flags
|= DF_STATIC_TLS
;
1295 need_entry
= NEED_GOT
;
1302 /* Now carry out our orders. */
1303 if (need_entry
& NEED_GOT
)
1308 tls_type
= GOT_NORMAL
;
1310 case R_PARISC_TLS_GD21L
:
1311 case R_PARISC_TLS_GD14R
:
1312 tls_type
|= GOT_TLS_GD
;
1314 case R_PARISC_TLS_LDM21L
:
1315 case R_PARISC_TLS_LDM14R
:
1316 tls_type
|= GOT_TLS_LDM
;
1318 case R_PARISC_TLS_IE21L
:
1319 case R_PARISC_TLS_IE14R
:
1320 tls_type
|= GOT_TLS_IE
;
1324 /* Allocate space for a GOT entry, as well as a dynamic
1325 relocation for this entry. */
1326 if (htab
->sgot
== NULL
)
1328 if (htab
->etab
.dynobj
== NULL
)
1329 htab
->etab
.dynobj
= abfd
;
1330 if (!elf32_hppa_create_dynamic_sections (htab
->etab
.dynobj
, info
))
1334 if (r_type
== R_PARISC_TLS_LDM21L
1335 || r_type
== R_PARISC_TLS_LDM14R
)
1336 hppa_link_hash_table (info
)->tls_ldm_got
.refcount
+= 1;
1341 hh
->eh
.got
.refcount
+= 1;
1342 old_tls_type
= hh
->tls_type
;
1346 bfd_signed_vma
*local_got_refcounts
;
1348 /* This is a global offset table entry for a local symbol. */
1349 local_got_refcounts
= elf_local_got_refcounts (abfd
);
1350 if (local_got_refcounts
== NULL
)
1354 /* Allocate space for local got offsets and local
1355 plt offsets. Done this way to save polluting
1356 elf_obj_tdata with another target specific
1358 size
= symtab_hdr
->sh_info
;
1359 size
*= 2 * sizeof (bfd_signed_vma
);
1360 /* Add in space to store the local GOT TLS types. */
1361 size
+= symtab_hdr
->sh_info
;
1362 local_got_refcounts
= bfd_zalloc (abfd
, size
);
1363 if (local_got_refcounts
== NULL
)
1365 elf_local_got_refcounts (abfd
) = local_got_refcounts
;
1366 memset (hppa_elf_local_got_tls_type (abfd
),
1367 GOT_UNKNOWN
, symtab_hdr
->sh_info
);
1369 local_got_refcounts
[r_symndx
] += 1;
1371 old_tls_type
= hppa_elf_local_got_tls_type (abfd
) [r_symndx
];
1374 tls_type
|= old_tls_type
;
1376 if (old_tls_type
!= tls_type
)
1379 hh
->tls_type
= tls_type
;
1381 hppa_elf_local_got_tls_type (abfd
) [r_symndx
] = tls_type
;
1387 if (need_entry
& NEED_PLT
)
1389 /* If we are creating a shared library, and this is a reloc
1390 against a weak symbol or a global symbol in a dynamic
1391 object, then we will be creating an import stub and a
1392 .plt entry for the symbol. Similarly, on a normal link
1393 to symbols defined in a dynamic object we'll need the
1394 import stub and a .plt entry. We don't know yet whether
1395 the symbol is defined or not, so make an entry anyway and
1396 clean up later in adjust_dynamic_symbol. */
1397 if ((sec
->flags
& SEC_ALLOC
) != 0)
1401 hh
->eh
.needs_plt
= 1;
1402 hh
->eh
.plt
.refcount
+= 1;
1404 /* If this .plt entry is for a plabel, mark it so
1405 that adjust_dynamic_symbol will keep the entry
1406 even if it appears to be local. */
1407 if (need_entry
& PLT_PLABEL
)
1410 else if (need_entry
& PLT_PLABEL
)
1412 bfd_signed_vma
*local_got_refcounts
;
1413 bfd_signed_vma
*local_plt_refcounts
;
1415 local_got_refcounts
= elf_local_got_refcounts (abfd
);
1416 if (local_got_refcounts
== NULL
)
1420 /* Allocate space for local got offsets and local
1422 size
= symtab_hdr
->sh_info
;
1423 size
*= 2 * sizeof (bfd_signed_vma
);
1424 /* Add in space to store the local GOT TLS types. */
1425 size
+= symtab_hdr
->sh_info
;
1426 local_got_refcounts
= bfd_zalloc (abfd
, size
);
1427 if (local_got_refcounts
== NULL
)
1429 elf_local_got_refcounts (abfd
) = local_got_refcounts
;
1431 local_plt_refcounts
= (local_got_refcounts
1432 + symtab_hdr
->sh_info
);
1433 local_plt_refcounts
[r_symndx
] += 1;
1438 if (need_entry
& NEED_DYNREL
)
1440 /* Flag this symbol as having a non-got, non-plt reference
1441 so that we generate copy relocs if it turns out to be
1443 if (hh
!= NULL
&& !info
->shared
)
1444 hh
->eh
.non_got_ref
= 1;
1446 /* If we are creating a shared library then we need to copy
1447 the reloc into the shared library. However, if we are
1448 linking with -Bsymbolic, we need only copy absolute
1449 relocs or relocs against symbols that are not defined in
1450 an object we are including in the link. PC- or DP- or
1451 DLT-relative relocs against any local sym or global sym
1452 with DEF_REGULAR set, can be discarded. At this point we
1453 have not seen all the input files, so it is possible that
1454 DEF_REGULAR is not set now but will be set later (it is
1455 never cleared). We account for that possibility below by
1456 storing information in the dyn_relocs field of the
1459 A similar situation to the -Bsymbolic case occurs when
1460 creating shared libraries and symbol visibility changes
1461 render the symbol local.
1463 As it turns out, all the relocs we will be creating here
1464 are absolute, so we cannot remove them on -Bsymbolic
1465 links or visibility changes anyway. A STUB_REL reloc
1466 is absolute too, as in that case it is the reloc in the
1467 stub we will be creating, rather than copying the PCREL
1468 reloc in the branch.
1470 If on the other hand, we are creating an executable, we
1471 may need to keep relocations for symbols satisfied by a
1472 dynamic library if we manage to avoid copy relocs for the
1475 && (sec
->flags
& SEC_ALLOC
) != 0
1476 && (IS_ABSOLUTE_RELOC (r_type
)
1479 || hh
->eh
.root
.type
== bfd_link_hash_defweak
1480 || !hh
->eh
.def_regular
))))
1481 || (ELIMINATE_COPY_RELOCS
1483 && (sec
->flags
& SEC_ALLOC
) != 0
1485 && (hh
->eh
.root
.type
== bfd_link_hash_defweak
1486 || !hh
->eh
.def_regular
)))
1488 struct elf32_hppa_dyn_reloc_entry
*hdh_p
;
1489 struct elf32_hppa_dyn_reloc_entry
**hdh_head
;
1491 /* Create a reloc section in dynobj and make room for
1498 name
= (bfd_elf_string_from_elf_section
1500 elf_elfheader (abfd
)->e_shstrndx
,
1501 elf_section_data (sec
)->rel_hdr
.sh_name
));
1504 (*_bfd_error_handler
)
1505 (_("Could not find relocation section for %s"),
1507 bfd_set_error (bfd_error_bad_value
);
1511 if (htab
->etab
.dynobj
== NULL
)
1512 htab
->etab
.dynobj
= abfd
;
1514 dynobj
= htab
->etab
.dynobj
;
1515 sreloc
= bfd_get_section_by_name (dynobj
, name
);
1520 flags
= (SEC_HAS_CONTENTS
| SEC_READONLY
1521 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
1522 if ((sec
->flags
& SEC_ALLOC
) != 0)
1523 flags
|= SEC_ALLOC
| SEC_LOAD
;
1524 sreloc
= bfd_make_section_with_flags (dynobj
,
1528 || !bfd_set_section_alignment (dynobj
, sreloc
, 2))
1532 elf_section_data (sec
)->sreloc
= sreloc
;
1535 /* If this is a global symbol, we count the number of
1536 relocations we need for this symbol. */
1539 hdh_head
= &hh
->dyn_relocs
;
1543 /* Track dynamic relocs needed for local syms too.
1544 We really need local syms available to do this
1550 sr
= bfd_section_from_r_symndx (abfd
, &htab
->sym_sec
,
1555 vpp
= &elf_section_data (sr
)->local_dynrel
;
1556 hdh_head
= (struct elf32_hppa_dyn_reloc_entry
**) vpp
;
1560 if (hdh_p
== NULL
|| hdh_p
->sec
!= sec
)
1562 hdh_p
= bfd_alloc (htab
->etab
.dynobj
, sizeof *hdh_p
);
1565 hdh_p
->hdh_next
= *hdh_head
;
1569 #if RELATIVE_DYNRELOCS
1570 hdh_p
->relative_count
= 0;
1575 #if RELATIVE_DYNRELOCS
1576 if (!IS_ABSOLUTE_RELOC (rtype
))
1577 hdh_p
->relative_count
+= 1;
1586 /* Return the section that should be marked against garbage collection
1587 for a given relocation. */
1590 elf32_hppa_gc_mark_hook (asection
*sec
,
1591 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
1592 Elf_Internal_Rela
*rela
,
1593 struct elf_link_hash_entry
*hh
,
1594 Elf_Internal_Sym
*sym
)
1598 switch ((unsigned int) ELF32_R_TYPE (rela
->r_info
))
1600 case R_PARISC_GNU_VTINHERIT
:
1601 case R_PARISC_GNU_VTENTRY
:
1605 switch (hh
->root
.type
)
1607 case bfd_link_hash_defined
:
1608 case bfd_link_hash_defweak
:
1609 return hh
->root
.u
.def
.section
;
1611 case bfd_link_hash_common
:
1612 return hh
->root
.u
.c
.p
->section
;
1620 return bfd_section_from_elf_index (sec
->owner
, sym
->st_shndx
);
1625 /* Update the got and plt entry reference counts for the section being
1629 elf32_hppa_gc_sweep_hook (bfd
*abfd
,
1630 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
1632 const Elf_Internal_Rela
*relocs
)
1634 Elf_Internal_Shdr
*symtab_hdr
;
1635 struct elf_link_hash_entry
**eh_syms
;
1636 bfd_signed_vma
*local_got_refcounts
;
1637 bfd_signed_vma
*local_plt_refcounts
;
1638 const Elf_Internal_Rela
*rela
, *relend
;
1640 elf_section_data (sec
)->local_dynrel
= NULL
;
1642 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1643 eh_syms
= elf_sym_hashes (abfd
);
1644 local_got_refcounts
= elf_local_got_refcounts (abfd
);
1645 local_plt_refcounts
= local_got_refcounts
;
1646 if (local_plt_refcounts
!= NULL
)
1647 local_plt_refcounts
+= symtab_hdr
->sh_info
;
1649 relend
= relocs
+ sec
->reloc_count
;
1650 for (rela
= relocs
; rela
< relend
; rela
++)
1652 unsigned long r_symndx
;
1653 unsigned int r_type
;
1654 struct elf_link_hash_entry
*eh
= NULL
;
1656 r_symndx
= ELF32_R_SYM (rela
->r_info
);
1657 if (r_symndx
>= symtab_hdr
->sh_info
)
1659 struct elf32_hppa_link_hash_entry
*hh
;
1660 struct elf32_hppa_dyn_reloc_entry
**hdh_pp
;
1661 struct elf32_hppa_dyn_reloc_entry
*hdh_p
;
1663 eh
= eh_syms
[r_symndx
- symtab_hdr
->sh_info
];
1664 while (eh
->root
.type
== bfd_link_hash_indirect
1665 || eh
->root
.type
== bfd_link_hash_warning
)
1666 eh
= (struct elf_link_hash_entry
*) eh
->root
.u
.i
.link
;
1667 hh
= hppa_elf_hash_entry (eh
);
1669 for (hdh_pp
= &hh
->dyn_relocs
; (hdh_p
= *hdh_pp
) != NULL
; hdh_pp
= &hdh_p
->hdh_next
)
1670 if (hdh_p
->sec
== sec
)
1672 /* Everything must go for SEC. */
1673 *hdh_pp
= hdh_p
->hdh_next
;
1678 r_type
= ELF32_R_TYPE (rela
->r_info
);
1679 r_type
= elf32_hppa_optimized_tls_reloc (info
, r_type
, eh
!= NULL
);
1683 case R_PARISC_DLTIND14F
:
1684 case R_PARISC_DLTIND14R
:
1685 case R_PARISC_DLTIND21L
:
1686 case R_PARISC_TLS_GD21L
:
1687 case R_PARISC_TLS_GD14R
:
1688 case R_PARISC_TLS_IE21L
:
1689 case R_PARISC_TLS_IE14R
:
1692 if (eh
->got
.refcount
> 0)
1693 eh
->got
.refcount
-= 1;
1695 else if (local_got_refcounts
!= NULL
)
1697 if (local_got_refcounts
[r_symndx
] > 0)
1698 local_got_refcounts
[r_symndx
] -= 1;
1702 case R_PARISC_TLS_LDM21L
:
1703 case R_PARISC_TLS_LDM14R
:
1704 hppa_link_hash_table (info
)->tls_ldm_got
.refcount
-= 1;
1707 case R_PARISC_PCREL12F
:
1708 case R_PARISC_PCREL17C
:
1709 case R_PARISC_PCREL17F
:
1710 case R_PARISC_PCREL22F
:
1713 if (eh
->plt
.refcount
> 0)
1714 eh
->plt
.refcount
-= 1;
1718 case R_PARISC_PLABEL14R
:
1719 case R_PARISC_PLABEL21L
:
1720 case R_PARISC_PLABEL32
:
1723 if (eh
->plt
.refcount
> 0)
1724 eh
->plt
.refcount
-= 1;
1726 else if (local_plt_refcounts
!= NULL
)
1728 if (local_plt_refcounts
[r_symndx
] > 0)
1729 local_plt_refcounts
[r_symndx
] -= 1;
1741 /* Support for core dump NOTE sections. */
1744 elf32_hppa_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
1749 switch (note
->descsz
)
1754 case 396: /* Linux/hppa */
1756 elf_tdata (abfd
)->core_signal
= bfd_get_16 (abfd
, note
->descdata
+ 12);
1759 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, note
->descdata
+ 24);
1768 /* Make a ".reg/999" section. */
1769 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
1770 size
, note
->descpos
+ offset
);
1774 elf32_hppa_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
1776 switch (note
->descsz
)
1781 case 124: /* Linux/hppa elf_prpsinfo. */
1782 elf_tdata (abfd
)->core_program
1783 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 28, 16);
1784 elf_tdata (abfd
)->core_command
1785 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 44, 80);
1788 /* Note that for some reason, a spurious space is tacked
1789 onto the end of the args in some (at least one anyway)
1790 implementations, so strip it off if it exists. */
1792 char *command
= elf_tdata (abfd
)->core_command
;
1793 int n
= strlen (command
);
1795 if (0 < n
&& command
[n
- 1] == ' ')
1796 command
[n
- 1] = '\0';
1802 /* Our own version of hide_symbol, so that we can keep plt entries for
1806 elf32_hppa_hide_symbol (struct bfd_link_info
*info
,
1807 struct elf_link_hash_entry
*eh
,
1808 bfd_boolean force_local
)
1812 eh
->forced_local
= 1;
1813 if (eh
->dynindx
!= -1)
1816 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
1821 if (! hppa_elf_hash_entry (eh
)->plabel
)
1824 eh
->plt
= elf_hash_table (info
)->init_plt_refcount
;
1828 /* Adjust a symbol defined by a dynamic object and referenced by a
1829 regular object. The current definition is in some section of the
1830 dynamic object, but we're not including those sections. We have to
1831 change the definition to something the rest of the link can
1835 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info
*info
,
1836 struct elf_link_hash_entry
*eh
)
1838 struct elf32_hppa_link_hash_table
*htab
;
1840 unsigned int power_of_two
;
1842 /* If this is a function, put it in the procedure linkage table. We
1843 will fill in the contents of the procedure linkage table later. */
1844 if (eh
->type
== STT_FUNC
1847 if (eh
->plt
.refcount
<= 0
1849 && eh
->root
.type
!= bfd_link_hash_defweak
1850 && ! hppa_elf_hash_entry (eh
)->plabel
1851 && (!info
->shared
|| info
->symbolic
)))
1853 /* The .plt entry is not needed when:
1854 a) Garbage collection has removed all references to the
1856 b) We know for certain the symbol is defined in this
1857 object, and it's not a weak definition, nor is the symbol
1858 used by a plabel relocation. Either this object is the
1859 application or we are doing a shared symbolic link. */
1861 eh
->plt
.offset
= (bfd_vma
) -1;
1868 eh
->plt
.offset
= (bfd_vma
) -1;
1870 /* If this is a weak symbol, and there is a real definition, the
1871 processor independent code will have arranged for us to see the
1872 real definition first, and we can just use the same value. */
1873 if (eh
->u
.weakdef
!= NULL
)
1875 if (eh
->u
.weakdef
->root
.type
!= bfd_link_hash_defined
1876 && eh
->u
.weakdef
->root
.type
!= bfd_link_hash_defweak
)
1878 eh
->root
.u
.def
.section
= eh
->u
.weakdef
->root
.u
.def
.section
;
1879 eh
->root
.u
.def
.value
= eh
->u
.weakdef
->root
.u
.def
.value
;
1880 if (ELIMINATE_COPY_RELOCS
)
1881 eh
->non_got_ref
= eh
->u
.weakdef
->non_got_ref
;
1885 /* This is a reference to a symbol defined by a dynamic object which
1886 is not a function. */
1888 /* If we are creating a shared library, we must presume that the
1889 only references to the symbol are via the global offset table.
1890 For such cases we need not do anything here; the relocations will
1891 be handled correctly by relocate_section. */
1895 /* If there are no references to this symbol that do not use the
1896 GOT, we don't need to generate a copy reloc. */
1897 if (!eh
->non_got_ref
)
1900 if (ELIMINATE_COPY_RELOCS
)
1902 struct elf32_hppa_link_hash_entry
*hh
;
1903 struct elf32_hppa_dyn_reloc_entry
*hdh_p
;
1905 hh
= hppa_elf_hash_entry (eh
);
1906 for (hdh_p
= hh
->dyn_relocs
; hdh_p
!= NULL
; hdh_p
= hdh_p
->hdh_next
)
1908 sec
= hdh_p
->sec
->output_section
;
1909 if (sec
!= NULL
&& (sec
->flags
& SEC_READONLY
) != 0)
1913 /* If we didn't find any dynamic relocs in read-only sections, then
1914 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1917 eh
->non_got_ref
= 0;
1924 (*_bfd_error_handler
) (_("dynamic variable `%s' is zero size"),
1925 eh
->root
.root
.string
);
1929 /* We must allocate the symbol in our .dynbss section, which will
1930 become part of the .bss section of the executable. There will be
1931 an entry for this symbol in the .dynsym section. The dynamic
1932 object will contain position independent code, so all references
1933 from the dynamic object to this symbol will go through the global
1934 offset table. The dynamic linker will use the .dynsym entry to
1935 determine the address it must put in the global offset table, so
1936 both the dynamic object and the regular object will refer to the
1937 same memory location for the variable. */
1939 htab
= hppa_link_hash_table (info
);
1941 /* We must generate a COPY reloc to tell the dynamic linker to
1942 copy the initial value out of the dynamic object and into the
1943 runtime process image. */
1944 if ((eh
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
1946 htab
->srelbss
->size
+= sizeof (Elf32_External_Rela
);
1950 /* We need to figure out the alignment required for this symbol. I
1951 have no idea how other ELF linkers handle this. */
1953 power_of_two
= bfd_log2 (eh
->size
);
1954 if (power_of_two
> 3)
1957 /* Apply the required alignment. */
1958 sec
= htab
->sdynbss
;
1959 sec
->size
= BFD_ALIGN (sec
->size
, (bfd_size_type
) (1 << power_of_two
));
1960 if (power_of_two
> bfd_get_section_alignment (htab
->etab
.dynobj
, sec
))
1962 if (! bfd_set_section_alignment (htab
->etab
.dynobj
, sec
, power_of_two
))
1966 /* Define the symbol as being at this point in the section. */
1967 eh
->root
.u
.def
.section
= sec
;
1968 eh
->root
.u
.def
.value
= sec
->size
;
1970 /* Increment the section size to make room for the symbol. */
1971 sec
->size
+= eh
->size
;
1976 /* Allocate space in the .plt for entries that won't have relocations.
1977 ie. plabel entries. */
1980 allocate_plt_static (struct elf_link_hash_entry
*eh
, void *inf
)
1982 struct bfd_link_info
*info
;
1983 struct elf32_hppa_link_hash_table
*htab
;
1984 struct elf32_hppa_link_hash_entry
*hh
;
1987 if (eh
->root
.type
== bfd_link_hash_indirect
)
1990 if (eh
->root
.type
== bfd_link_hash_warning
)
1991 eh
= (struct elf_link_hash_entry
*) eh
->root
.u
.i
.link
;
1993 info
= (struct bfd_link_info
*) inf
;
1994 hh
= hppa_elf_hash_entry (eh
);
1995 htab
= hppa_link_hash_table (info
);
1996 if (htab
->etab
.dynamic_sections_created
1997 && eh
->plt
.refcount
> 0)
1999 /* Make sure this symbol is output as a dynamic symbol.
2000 Undefined weak syms won't yet be marked as dynamic. */
2001 if (eh
->dynindx
== -1
2002 && !eh
->forced_local
2003 && eh
->type
!= STT_PARISC_MILLI
)
2005 if (! bfd_elf_link_record_dynamic_symbol (info
, eh
))
2009 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info
->shared
, eh
))
2011 /* Allocate these later. From this point on, h->plabel
2012 means that the plt entry is only used by a plabel.
2013 We'll be using a normal plt entry for this symbol, so
2014 clear the plabel indicator. */
2018 else if (hh
->plabel
)
2020 /* Make an entry in the .plt section for plabel references
2021 that won't have a .plt entry for other reasons. */
2023 eh
->plt
.offset
= sec
->size
;
2024 sec
->size
+= PLT_ENTRY_SIZE
;
2028 /* No .plt entry needed. */
2029 eh
->plt
.offset
= (bfd_vma
) -1;
2035 eh
->plt
.offset
= (bfd_vma
) -1;
2042 /* Allocate space in .plt, .got and associated reloc sections for
2046 allocate_dynrelocs (struct elf_link_hash_entry
*eh
, void *inf
)
2048 struct bfd_link_info
*info
;
2049 struct elf32_hppa_link_hash_table
*htab
;
2051 struct elf32_hppa_link_hash_entry
*hh
;
2052 struct elf32_hppa_dyn_reloc_entry
*hdh_p
;
2054 if (eh
->root
.type
== bfd_link_hash_indirect
)
2057 if (eh
->root
.type
== bfd_link_hash_warning
)
2058 eh
= (struct elf_link_hash_entry
*) eh
->root
.u
.i
.link
;
2061 htab
= hppa_link_hash_table (info
);
2062 hh
= hppa_elf_hash_entry (eh
);
2064 if (htab
->etab
.dynamic_sections_created
2065 && eh
->plt
.offset
!= (bfd_vma
) -1
2067 && eh
->plt
.refcount
> 0)
2069 /* Make an entry in the .plt section. */
2071 eh
->plt
.offset
= sec
->size
;
2072 sec
->size
+= PLT_ENTRY_SIZE
;
2074 /* We also need to make an entry in the .rela.plt section. */
2075 htab
->srelplt
->size
+= sizeof (Elf32_External_Rela
);
2076 htab
->need_plt_stub
= 1;
2079 if (eh
->got
.refcount
> 0)
2081 /* Make sure this symbol is output as a dynamic symbol.
2082 Undefined weak syms won't yet be marked as dynamic. */
2083 if (eh
->dynindx
== -1
2084 && !eh
->forced_local
2085 && eh
->type
!= STT_PARISC_MILLI
)
2087 if (! bfd_elf_link_record_dynamic_symbol (info
, eh
))
2092 eh
->got
.offset
= sec
->size
;
2093 sec
->size
+= GOT_ENTRY_SIZE
;
2094 /* R_PARISC_TLS_GD* needs two GOT entries */
2095 if ((hh
->tls_type
& (GOT_TLS_GD
| GOT_TLS_IE
)) == (GOT_TLS_GD
| GOT_TLS_IE
))
2096 sec
->size
+= GOT_ENTRY_SIZE
* 2;
2097 else if ((hh
->tls_type
& GOT_TLS_GD
) == GOT_TLS_GD
)
2098 sec
->size
+= GOT_ENTRY_SIZE
;
2099 if (htab
->etab
.dynamic_sections_created
2101 || (eh
->dynindx
!= -1
2102 && !eh
->forced_local
)))
2104 htab
->srelgot
->size
+= sizeof (Elf32_External_Rela
);
2105 if ((hh
->tls_type
& (GOT_TLS_GD
| GOT_TLS_IE
)) == (GOT_TLS_GD
| GOT_TLS_IE
))
2106 htab
->srelgot
->size
+= 2 * sizeof (Elf32_External_Rela
);
2107 else if ((hh
->tls_type
& GOT_TLS_GD
) == GOT_TLS_GD
)
2108 htab
->srelgot
->size
+= sizeof (Elf32_External_Rela
);
2112 eh
->got
.offset
= (bfd_vma
) -1;
2114 if (hh
->dyn_relocs
== NULL
)
2117 /* If this is a -Bsymbolic shared link, then we need to discard all
2118 space allocated for dynamic pc-relative relocs against symbols
2119 defined in a regular object. For the normal shared case, discard
2120 space for relocs that have become local due to symbol visibility
2124 #if RELATIVE_DYNRELOCS
2125 if (SYMBOL_CALLS_LOCAL (info
, eh
))
2127 struct elf32_hppa_dyn_reloc_entry
**hdh_pp
;
2129 for (hdh_pp
= &hh
->dyn_relocs
; (hdh_p
= *hdh_pp
) != NULL
; )
2131 hdh_p
->count
-= hdh_p
->relative_count
;
2132 hdh_p
->relative_count
= 0;
2133 if (hdh_p
->count
== 0)
2134 *hdh_pp
= hdh_p
->hdh_next
;
2136 hdh_pp
= &hdh_p
->hdh_next
;
2141 /* Also discard relocs on undefined weak syms with non-default
2143 if (hh
->dyn_relocs
!= NULL
2144 && eh
->root
.type
== bfd_link_hash_undefweak
)
2146 if (ELF_ST_VISIBILITY (eh
->other
) != STV_DEFAULT
)
2147 hh
->dyn_relocs
= NULL
;
2149 /* Make sure undefined weak symbols are output as a dynamic
2151 else if (eh
->dynindx
== -1
2152 && !eh
->forced_local
)
2154 if (! bfd_elf_link_record_dynamic_symbol (info
, eh
))
2161 /* For the non-shared case, discard space for relocs against
2162 symbols which turn out to need copy relocs or are not
2165 if (!eh
->non_got_ref
2166 && ((ELIMINATE_COPY_RELOCS
2168 && !eh
->def_regular
)
2169 || (htab
->etab
.dynamic_sections_created
2170 && (eh
->root
.type
== bfd_link_hash_undefweak
2171 || eh
->root
.type
== bfd_link_hash_undefined
))))
2173 /* Make sure this symbol is output as a dynamic symbol.
2174 Undefined weak syms won't yet be marked as dynamic. */
2175 if (eh
->dynindx
== -1
2176 && !eh
->forced_local
2177 && eh
->type
!= STT_PARISC_MILLI
)
2179 if (! bfd_elf_link_record_dynamic_symbol (info
, eh
))
2183 /* If that succeeded, we know we'll be keeping all the
2185 if (eh
->dynindx
!= -1)
2189 hh
->dyn_relocs
= NULL
;
2195 /* Finally, allocate space. */
2196 for (hdh_p
= hh
->dyn_relocs
; hdh_p
!= NULL
; hdh_p
= hdh_p
->hdh_next
)
2198 asection
*sreloc
= elf_section_data (hdh_p
->sec
)->sreloc
;
2199 sreloc
->size
+= hdh_p
->count
* sizeof (Elf32_External_Rela
);
2205 /* This function is called via elf_link_hash_traverse to force
2206 millicode symbols local so they do not end up as globals in the
2207 dynamic symbol table. We ought to be able to do this in
2208 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2209 for all dynamic symbols. Arguably, this is a bug in
2210 elf_adjust_dynamic_symbol. */
2213 clobber_millicode_symbols (struct elf_link_hash_entry
*eh
,
2214 struct bfd_link_info
*info
)
2216 if (eh
->root
.type
== bfd_link_hash_warning
)
2217 eh
= (struct elf_link_hash_entry
*) eh
->root
.u
.i
.link
;
2219 if (eh
->type
== STT_PARISC_MILLI
2220 && !eh
->forced_local
)
2222 elf32_hppa_hide_symbol (info
, eh
, TRUE
);
2227 /* Find any dynamic relocs that apply to read-only sections. */
2230 readonly_dynrelocs (struct elf_link_hash_entry
*eh
, void *inf
)
2232 struct elf32_hppa_link_hash_entry
*hh
;
2233 struct elf32_hppa_dyn_reloc_entry
*hdh_p
;
2235 if (eh
->root
.type
== bfd_link_hash_warning
)
2236 eh
= (struct elf_link_hash_entry
*) eh
->root
.u
.i
.link
;
2238 hh
= hppa_elf_hash_entry (eh
);
2239 for (hdh_p
= hh
->dyn_relocs
; hdh_p
!= NULL
; hdh_p
= hdh_p
->hdh_next
)
2241 asection
*sec
= hdh_p
->sec
->output_section
;
2243 if (sec
!= NULL
&& (sec
->flags
& SEC_READONLY
) != 0)
2245 struct bfd_link_info
*info
= inf
;
2247 info
->flags
|= DF_TEXTREL
;
2249 /* Not an error, just cut short the traversal. */
2256 /* Set the sizes of the dynamic sections. */
2259 elf32_hppa_size_dynamic_sections (bfd
*output_bfd ATTRIBUTE_UNUSED
,
2260 struct bfd_link_info
*info
)
2262 struct elf32_hppa_link_hash_table
*htab
;
2268 htab
= hppa_link_hash_table (info
);
2269 dynobj
= htab
->etab
.dynobj
;
2273 if (htab
->etab
.dynamic_sections_created
)
2275 /* Set the contents of the .interp section to the interpreter. */
2276 if (info
->executable
)
2278 sec
= bfd_get_section_by_name (dynobj
, ".interp");
2281 sec
->size
= sizeof ELF_DYNAMIC_INTERPRETER
;
2282 sec
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
2285 /* Force millicode symbols local. */
2286 elf_link_hash_traverse (&htab
->etab
,
2287 clobber_millicode_symbols
,
2291 /* Set up .got and .plt offsets for local syms, and space for local
2293 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
2295 bfd_signed_vma
*local_got
;
2296 bfd_signed_vma
*end_local_got
;
2297 bfd_signed_vma
*local_plt
;
2298 bfd_signed_vma
*end_local_plt
;
2299 bfd_size_type locsymcount
;
2300 Elf_Internal_Shdr
*symtab_hdr
;
2302 char *local_tls_type
;
2304 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
)
2307 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2309 struct elf32_hppa_dyn_reloc_entry
*hdh_p
;
2311 for (hdh_p
= ((struct elf32_hppa_dyn_reloc_entry
*)
2312 elf_section_data (sec
)->local_dynrel
);
2314 hdh_p
= hdh_p
->hdh_next
)
2316 if (!bfd_is_abs_section (hdh_p
->sec
)
2317 && bfd_is_abs_section (hdh_p
->sec
->output_section
))
2319 /* Input section has been discarded, either because
2320 it is a copy of a linkonce section or due to
2321 linker script /DISCARD/, so we'll be discarding
2324 else if (hdh_p
->count
!= 0)
2326 srel
= elf_section_data (hdh_p
->sec
)->sreloc
;
2327 srel
->size
+= hdh_p
->count
* sizeof (Elf32_External_Rela
);
2328 if ((hdh_p
->sec
->output_section
->flags
& SEC_READONLY
) != 0)
2329 info
->flags
|= DF_TEXTREL
;
2334 local_got
= elf_local_got_refcounts (ibfd
);
2338 symtab_hdr
= &elf_tdata (ibfd
)->symtab_hdr
;
2339 locsymcount
= symtab_hdr
->sh_info
;
2340 end_local_got
= local_got
+ locsymcount
;
2341 local_tls_type
= hppa_elf_local_got_tls_type (ibfd
);
2343 srel
= htab
->srelgot
;
2344 for (; local_got
< end_local_got
; ++local_got
)
2348 *local_got
= sec
->size
;
2349 sec
->size
+= GOT_ENTRY_SIZE
;
2350 if ((*local_tls_type
& (GOT_TLS_GD
| GOT_TLS_IE
)) == (GOT_TLS_GD
| GOT_TLS_IE
))
2351 sec
->size
+= 2 * GOT_ENTRY_SIZE
;
2352 else if ((*local_tls_type
& GOT_TLS_GD
) == GOT_TLS_GD
)
2353 sec
->size
+= GOT_ENTRY_SIZE
;
2356 srel
->size
+= sizeof (Elf32_External_Rela
);
2357 if ((*local_tls_type
& (GOT_TLS_GD
| GOT_TLS_IE
)) == (GOT_TLS_GD
| GOT_TLS_IE
))
2358 srel
->size
+= 2 * sizeof (Elf32_External_Rela
);
2359 else if ((*local_tls_type
& GOT_TLS_GD
) == GOT_TLS_GD
)
2360 srel
->size
+= sizeof (Elf32_External_Rela
);
2364 *local_got
= (bfd_vma
) -1;
2369 local_plt
= end_local_got
;
2370 end_local_plt
= local_plt
+ locsymcount
;
2371 if (! htab
->etab
.dynamic_sections_created
)
2373 /* Won't be used, but be safe. */
2374 for (; local_plt
< end_local_plt
; ++local_plt
)
2375 *local_plt
= (bfd_vma
) -1;
2380 srel
= htab
->srelplt
;
2381 for (; local_plt
< end_local_plt
; ++local_plt
)
2385 *local_plt
= sec
->size
;
2386 sec
->size
+= PLT_ENTRY_SIZE
;
2388 srel
->size
+= sizeof (Elf32_External_Rela
);
2391 *local_plt
= (bfd_vma
) -1;
2396 if (htab
->tls_ldm_got
.refcount
> 0)
2398 /* Allocate 2 got entries and 1 dynamic reloc for
2399 R_PARISC_TLS_DTPMOD32 relocs. */
2400 htab
->tls_ldm_got
.offset
= htab
->sgot
->size
;
2401 htab
->sgot
->size
+= (GOT_ENTRY_SIZE
* 2);
2402 htab
->srelgot
->size
+= sizeof (Elf32_External_Rela
);
2405 htab
->tls_ldm_got
.offset
= -1;
2407 /* Do all the .plt entries without relocs first. The dynamic linker
2408 uses the last .plt reloc to find the end of the .plt (and hence
2409 the start of the .got) for lazy linking. */
2410 elf_link_hash_traverse (&htab
->etab
, allocate_plt_static
, info
);
2412 /* Allocate global sym .plt and .got entries, and space for global
2413 sym dynamic relocs. */
2414 elf_link_hash_traverse (&htab
->etab
, allocate_dynrelocs
, info
);
2416 /* The check_relocs and adjust_dynamic_symbol entry points have
2417 determined the sizes of the various dynamic sections. Allocate
2420 for (sec
= dynobj
->sections
; sec
!= NULL
; sec
= sec
->next
)
2422 if ((sec
->flags
& SEC_LINKER_CREATED
) == 0)
2425 if (sec
== htab
->splt
)
2427 if (htab
->need_plt_stub
)
2429 /* Make space for the plt stub at the end of the .plt
2430 section. We want this stub right at the end, up
2431 against the .got section. */
2432 int gotalign
= bfd_section_alignment (dynobj
, htab
->sgot
);
2433 int pltalign
= bfd_section_alignment (dynobj
, sec
);
2436 if (gotalign
> pltalign
)
2437 bfd_set_section_alignment (dynobj
, sec
, gotalign
);
2438 mask
= ((bfd_size_type
) 1 << gotalign
) - 1;
2439 sec
->size
= (sec
->size
+ sizeof (plt_stub
) + mask
) & ~mask
;
2442 else if (sec
== htab
->sgot
2443 || sec
== htab
->sdynbss
)
2445 else if (strncmp (bfd_get_section_name (dynobj
, sec
), ".rela", 5) == 0)
2449 /* Remember whether there are any reloc sections other
2451 if (sec
!= htab
->srelplt
)
2454 /* We use the reloc_count field as a counter if we need
2455 to copy relocs into the output file. */
2456 sec
->reloc_count
= 0;
2461 /* It's not one of our sections, so don't allocate space. */
2467 /* If we don't need this section, strip it from the
2468 output file. This is mostly to handle .rela.bss and
2469 .rela.plt. We must create both sections in
2470 create_dynamic_sections, because they must be created
2471 before the linker maps input sections to output
2472 sections. The linker does that before
2473 adjust_dynamic_symbol is called, and it is that
2474 function which decides whether anything needs to go
2475 into these sections. */
2476 sec
->flags
|= SEC_EXCLUDE
;
2480 if ((sec
->flags
& SEC_HAS_CONTENTS
) == 0)
2483 /* Allocate memory for the section contents. Zero it, because
2484 we may not fill in all the reloc sections. */
2485 sec
->contents
= bfd_zalloc (dynobj
, sec
->size
);
2486 if (sec
->contents
== NULL
)
2490 if (htab
->etab
.dynamic_sections_created
)
2492 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2493 actually has nothing to do with the PLT, it is how we
2494 communicate the LTP value of a load module to the dynamic
2496 #define add_dynamic_entry(TAG, VAL) \
2497 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2499 if (!add_dynamic_entry (DT_PLTGOT
, 0))
2502 /* Add some entries to the .dynamic section. We fill in the
2503 values later, in elf32_hppa_finish_dynamic_sections, but we
2504 must add the entries now so that we get the correct size for
2505 the .dynamic section. The DT_DEBUG entry is filled in by the
2506 dynamic linker and used by the debugger. */
2507 if (info
->executable
)
2509 if (!add_dynamic_entry (DT_DEBUG
, 0))
2513 if (htab
->srelplt
->size
!= 0)
2515 if (!add_dynamic_entry (DT_PLTRELSZ
, 0)
2516 || !add_dynamic_entry (DT_PLTREL
, DT_RELA
)
2517 || !add_dynamic_entry (DT_JMPREL
, 0))
2523 if (!add_dynamic_entry (DT_RELA
, 0)
2524 || !add_dynamic_entry (DT_RELASZ
, 0)
2525 || !add_dynamic_entry (DT_RELAENT
, sizeof (Elf32_External_Rela
)))
2528 /* If any dynamic relocs apply to a read-only section,
2529 then we need a DT_TEXTREL entry. */
2530 if ((info
->flags
& DF_TEXTREL
) == 0)
2531 elf_link_hash_traverse (&htab
->etab
, readonly_dynrelocs
, info
);
2533 if ((info
->flags
& DF_TEXTREL
) != 0)
2535 if (!add_dynamic_entry (DT_TEXTREL
, 0))
2540 #undef add_dynamic_entry
2545 /* External entry points for sizing and building linker stubs. */
2547 /* Set up various things so that we can make a list of input sections
2548 for each output section included in the link. Returns -1 on error,
2549 0 when no stubs will be needed, and 1 on success. */
2552 elf32_hppa_setup_section_lists (bfd
*output_bfd
, struct bfd_link_info
*info
)
2555 unsigned int bfd_count
;
2556 int top_id
, top_index
;
2558 asection
**input_list
, **list
;
2560 struct elf32_hppa_link_hash_table
*htab
= hppa_link_hash_table (info
);
2562 /* Count the number of input BFDs and find the top input section id. */
2563 for (input_bfd
= info
->input_bfds
, bfd_count
= 0, top_id
= 0;
2565 input_bfd
= input_bfd
->link_next
)
2568 for (section
= input_bfd
->sections
;
2570 section
= section
->next
)
2572 if (top_id
< section
->id
)
2573 top_id
= section
->id
;
2576 htab
->bfd_count
= bfd_count
;
2578 amt
= sizeof (struct map_stub
) * (top_id
+ 1);
2579 htab
->stub_group
= bfd_zmalloc (amt
);
2580 if (htab
->stub_group
== NULL
)
2583 /* We can't use output_bfd->section_count here to find the top output
2584 section index as some sections may have been removed, and
2585 strip_excluded_output_sections doesn't renumber the indices. */
2586 for (section
= output_bfd
->sections
, top_index
= 0;
2588 section
= section
->next
)
2590 if (top_index
< section
->index
)
2591 top_index
= section
->index
;
2594 htab
->top_index
= top_index
;
2595 amt
= sizeof (asection
*) * (top_index
+ 1);
2596 input_list
= bfd_malloc (amt
);
2597 htab
->input_list
= input_list
;
2598 if (input_list
== NULL
)
2601 /* For sections we aren't interested in, mark their entries with a
2602 value we can check later. */
2603 list
= input_list
+ top_index
;
2605 *list
= bfd_abs_section_ptr
;
2606 while (list
-- != input_list
);
2608 for (section
= output_bfd
->sections
;
2610 section
= section
->next
)
2612 if ((section
->flags
& SEC_CODE
) != 0)
2613 input_list
[section
->index
] = NULL
;
2619 /* The linker repeatedly calls this function for each input section,
2620 in the order that input sections are linked into output sections.
2621 Build lists of input sections to determine groupings between which
2622 we may insert linker stubs. */
2625 elf32_hppa_next_input_section (struct bfd_link_info
*info
, asection
*isec
)
2627 struct elf32_hppa_link_hash_table
*htab
= hppa_link_hash_table (info
);
2629 if (isec
->output_section
->index
<= htab
->top_index
)
2631 asection
**list
= htab
->input_list
+ isec
->output_section
->index
;
2632 if (*list
!= bfd_abs_section_ptr
)
2634 /* Steal the link_sec pointer for our list. */
2635 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2636 /* This happens to make the list in reverse order,
2637 which is what we want. */
2638 PREV_SEC (isec
) = *list
;
2644 /* See whether we can group stub sections together. Grouping stub
2645 sections may result in fewer stubs. More importantly, we need to
2646 put all .init* and .fini* stubs at the beginning of the .init or
2647 .fini output sections respectively, because glibc splits the
2648 _init and _fini functions into multiple parts. Putting a stub in
2649 the middle of a function is not a good idea. */
2652 group_sections (struct elf32_hppa_link_hash_table
*htab
,
2653 bfd_size_type stub_group_size
,
2654 bfd_boolean stubs_always_before_branch
)
2656 asection
**list
= htab
->input_list
+ htab
->top_index
;
2659 asection
*tail
= *list
;
2660 if (tail
== bfd_abs_section_ptr
)
2662 while (tail
!= NULL
)
2666 bfd_size_type total
;
2667 bfd_boolean big_sec
;
2671 big_sec
= total
>= stub_group_size
;
2673 while ((prev
= PREV_SEC (curr
)) != NULL
2674 && ((total
+= curr
->output_offset
- prev
->output_offset
)
2678 /* OK, the size from the start of CURR to the end is less
2679 than 240000 bytes and thus can be handled by one stub
2680 section. (or the tail section is itself larger than
2681 240000 bytes, in which case we may be toast.)
2682 We should really be keeping track of the total size of
2683 stubs added here, as stubs contribute to the final output
2684 section size. That's a little tricky, and this way will
2685 only break if stubs added total more than 22144 bytes, or
2686 2768 long branch stubs. It seems unlikely for more than
2687 2768 different functions to be called, especially from
2688 code only 240000 bytes long. This limit used to be
2689 250000, but c++ code tends to generate lots of little
2690 functions, and sometimes violated the assumption. */
2693 prev
= PREV_SEC (tail
);
2694 /* Set up this stub group. */
2695 htab
->stub_group
[tail
->id
].link_sec
= curr
;
2697 while (tail
!= curr
&& (tail
= prev
) != NULL
);
2699 /* But wait, there's more! Input sections up to 240000
2700 bytes before the stub section can be handled by it too.
2701 Don't do this if we have a really large section after the
2702 stubs, as adding more stubs increases the chance that
2703 branches may not reach into the stub section. */
2704 if (!stubs_always_before_branch
&& !big_sec
)
2708 && ((total
+= tail
->output_offset
- prev
->output_offset
)
2712 prev
= PREV_SEC (tail
);
2713 htab
->stub_group
[tail
->id
].link_sec
= curr
;
2719 while (list
-- != htab
->input_list
);
2720 free (htab
->input_list
);
2724 /* Read in all local syms for all input bfds, and create hash entries
2725 for export stubs if we are building a multi-subspace shared lib.
2726 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2729 get_local_syms (bfd
*output_bfd
, bfd
*input_bfd
, struct bfd_link_info
*info
)
2731 unsigned int bfd_indx
;
2732 Elf_Internal_Sym
*local_syms
, **all_local_syms
;
2733 int stub_changed
= 0;
2734 struct elf32_hppa_link_hash_table
*htab
= hppa_link_hash_table (info
);
2736 /* We want to read in symbol extension records only once. To do this
2737 we need to read in the local symbols in parallel and save them for
2738 later use; so hold pointers to the local symbols in an array. */
2739 bfd_size_type amt
= sizeof (Elf_Internal_Sym
*) * htab
->bfd_count
;
2740 all_local_syms
= bfd_zmalloc (amt
);
2741 htab
->all_local_syms
= all_local_syms
;
2742 if (all_local_syms
== NULL
)
2745 /* Walk over all the input BFDs, swapping in local symbols.
2746 If we are creating a shared library, create hash entries for the
2750 input_bfd
= input_bfd
->link_next
, bfd_indx
++)
2752 Elf_Internal_Shdr
*symtab_hdr
;
2754 /* We'll need the symbol table in a second. */
2755 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
2756 if (symtab_hdr
->sh_info
== 0)
2759 /* We need an array of the local symbols attached to the input bfd. */
2760 local_syms
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
2761 if (local_syms
== NULL
)
2763 local_syms
= bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
,
2764 symtab_hdr
->sh_info
, 0,
2766 /* Cache them for elf_link_input_bfd. */
2767 symtab_hdr
->contents
= (unsigned char *) local_syms
;
2769 if (local_syms
== NULL
)
2772 all_local_syms
[bfd_indx
] = local_syms
;
2774 if (info
->shared
&& htab
->multi_subspace
)
2776 struct elf_link_hash_entry
**eh_syms
;
2777 struct elf_link_hash_entry
**eh_symend
;
2778 unsigned int symcount
;
2780 symcount
= (symtab_hdr
->sh_size
/ sizeof (Elf32_External_Sym
)
2781 - symtab_hdr
->sh_info
);
2782 eh_syms
= (struct elf_link_hash_entry
**) elf_sym_hashes (input_bfd
);
2783 eh_symend
= (struct elf_link_hash_entry
**) (eh_syms
+ symcount
);
2785 /* Look through the global syms for functions; We need to
2786 build export stubs for all globally visible functions. */
2787 for (; eh_syms
< eh_symend
; eh_syms
++)
2789 struct elf32_hppa_link_hash_entry
*hh
;
2791 hh
= hppa_elf_hash_entry (*eh_syms
);
2793 while (hh
->eh
.root
.type
== bfd_link_hash_indirect
2794 || hh
->eh
.root
.type
== bfd_link_hash_warning
)
2795 hh
= hppa_elf_hash_entry (hh
->eh
.root
.u
.i
.link
);
2797 /* At this point in the link, undefined syms have been
2798 resolved, so we need to check that the symbol was
2799 defined in this BFD. */
2800 if ((hh
->eh
.root
.type
== bfd_link_hash_defined
2801 || hh
->eh
.root
.type
== bfd_link_hash_defweak
)
2802 && hh
->eh
.type
== STT_FUNC
2803 && hh
->eh
.root
.u
.def
.section
->output_section
!= NULL
2804 && (hh
->eh
.root
.u
.def
.section
->output_section
->owner
2806 && hh
->eh
.root
.u
.def
.section
->owner
== input_bfd
2807 && hh
->eh
.def_regular
2808 && !hh
->eh
.forced_local
2809 && ELF_ST_VISIBILITY (hh
->eh
.other
) == STV_DEFAULT
)
2812 const char *stub_name
;
2813 struct elf32_hppa_stub_hash_entry
*hsh
;
2815 sec
= hh
->eh
.root
.u
.def
.section
;
2816 stub_name
= hh_name (hh
);
2817 hsh
= hppa_stub_hash_lookup (&htab
->bstab
,
2822 hsh
= hppa_add_stub (stub_name
, sec
, htab
);
2826 hsh
->target_value
= hh
->eh
.root
.u
.def
.value
;
2827 hsh
->target_section
= hh
->eh
.root
.u
.def
.section
;
2828 hsh
->stub_type
= hppa_stub_export
;
2834 (*_bfd_error_handler
) (_("%B: duplicate export stub %s"),
2843 return stub_changed
;
2846 /* Determine and set the size of the stub section for a final link.
2848 The basic idea here is to examine all the relocations looking for
2849 PC-relative calls to a target that is unreachable with a "bl"
2853 elf32_hppa_size_stubs
2854 (bfd
*output_bfd
, bfd
*stub_bfd
, struct bfd_link_info
*info
,
2855 bfd_boolean multi_subspace
, bfd_signed_vma group_size
,
2856 asection
* (*add_stub_section
) (const char *, asection
*),
2857 void (*layout_sections_again
) (void))
2859 bfd_size_type stub_group_size
;
2860 bfd_boolean stubs_always_before_branch
;
2861 bfd_boolean stub_changed
;
2862 struct elf32_hppa_link_hash_table
*htab
= hppa_link_hash_table (info
);
2864 /* Stash our params away. */
2865 htab
->stub_bfd
= stub_bfd
;
2866 htab
->multi_subspace
= multi_subspace
;
2867 htab
->add_stub_section
= add_stub_section
;
2868 htab
->layout_sections_again
= layout_sections_again
;
2869 stubs_always_before_branch
= group_size
< 0;
2871 stub_group_size
= -group_size
;
2873 stub_group_size
= group_size
;
2874 if (stub_group_size
== 1)
2876 /* Default values. */
2877 if (stubs_always_before_branch
)
2879 stub_group_size
= 7680000;
2880 if (htab
->has_17bit_branch
|| htab
->multi_subspace
)
2881 stub_group_size
= 240000;
2882 if (htab
->has_12bit_branch
)
2883 stub_group_size
= 7500;
2887 stub_group_size
= 6971392;
2888 if (htab
->has_17bit_branch
|| htab
->multi_subspace
)
2889 stub_group_size
= 217856;
2890 if (htab
->has_12bit_branch
)
2891 stub_group_size
= 6808;
2895 group_sections (htab
, stub_group_size
, stubs_always_before_branch
);
2897 switch (get_local_syms (output_bfd
, info
->input_bfds
, info
))
2900 if (htab
->all_local_syms
)
2901 goto error_ret_free_local
;
2905 stub_changed
= FALSE
;
2909 stub_changed
= TRUE
;
2916 unsigned int bfd_indx
;
2919 for (input_bfd
= info
->input_bfds
, bfd_indx
= 0;
2921 input_bfd
= input_bfd
->link_next
, bfd_indx
++)
2923 Elf_Internal_Shdr
*symtab_hdr
;
2925 Elf_Internal_Sym
*local_syms
;
2927 /* We'll need the symbol table in a second. */
2928 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
2929 if (symtab_hdr
->sh_info
== 0)
2932 local_syms
= htab
->all_local_syms
[bfd_indx
];
2934 /* Walk over each section attached to the input bfd. */
2935 for (section
= input_bfd
->sections
;
2937 section
= section
->next
)
2939 Elf_Internal_Rela
*internal_relocs
, *irelaend
, *irela
;
2941 /* If there aren't any relocs, then there's nothing more
2943 if ((section
->flags
& SEC_RELOC
) == 0
2944 || section
->reloc_count
== 0)
2947 /* If this section is a link-once section that will be
2948 discarded, then don't create any stubs. */
2949 if (section
->output_section
== NULL
2950 || section
->output_section
->owner
!= output_bfd
)
2953 /* Get the relocs. */
2955 = _bfd_elf_link_read_relocs (input_bfd
, section
, NULL
, NULL
,
2957 if (internal_relocs
== NULL
)
2958 goto error_ret_free_local
;
2960 /* Now examine each relocation. */
2961 irela
= internal_relocs
;
2962 irelaend
= irela
+ section
->reloc_count
;
2963 for (; irela
< irelaend
; irela
++)
2965 unsigned int r_type
, r_indx
;
2966 enum elf32_hppa_stub_type stub_type
;
2967 struct elf32_hppa_stub_hash_entry
*hsh
;
2970 bfd_vma destination
;
2971 struct elf32_hppa_link_hash_entry
*hh
;
2973 const asection
*id_sec
;
2975 r_type
= ELF32_R_TYPE (irela
->r_info
);
2976 r_indx
= ELF32_R_SYM (irela
->r_info
);
2978 if (r_type
>= (unsigned int) R_PARISC_UNIMPLEMENTED
)
2980 bfd_set_error (bfd_error_bad_value
);
2981 error_ret_free_internal
:
2982 if (elf_section_data (section
)->relocs
== NULL
)
2983 free (internal_relocs
);
2984 goto error_ret_free_local
;
2987 /* Only look for stubs on call instructions. */
2988 if (r_type
!= (unsigned int) R_PARISC_PCREL12F
2989 && r_type
!= (unsigned int) R_PARISC_PCREL17F
2990 && r_type
!= (unsigned int) R_PARISC_PCREL22F
)
2993 /* Now determine the call target, its name, value,
2999 if (r_indx
< symtab_hdr
->sh_info
)
3001 /* It's a local symbol. */
3002 Elf_Internal_Sym
*sym
;
3003 Elf_Internal_Shdr
*hdr
;
3005 sym
= local_syms
+ r_indx
;
3006 hdr
= elf_elfsections (input_bfd
)[sym
->st_shndx
];
3007 sym_sec
= hdr
->bfd_section
;
3008 if (ELF_ST_TYPE (sym
->st_info
) != STT_SECTION
)
3009 sym_value
= sym
->st_value
;
3010 destination
= (sym_value
+ irela
->r_addend
3011 + sym_sec
->output_offset
3012 + sym_sec
->output_section
->vma
);
3016 /* It's an external symbol. */
3019 e_indx
= r_indx
- symtab_hdr
->sh_info
;
3020 hh
= hppa_elf_hash_entry (elf_sym_hashes (input_bfd
)[e_indx
]);
3022 while (hh
->eh
.root
.type
== bfd_link_hash_indirect
3023 || hh
->eh
.root
.type
== bfd_link_hash_warning
)
3024 hh
= hppa_elf_hash_entry (hh
->eh
.root
.u
.i
.link
);
3026 if (hh
->eh
.root
.type
== bfd_link_hash_defined
3027 || hh
->eh
.root
.type
== bfd_link_hash_defweak
)
3029 sym_sec
= hh
->eh
.root
.u
.def
.section
;
3030 sym_value
= hh
->eh
.root
.u
.def
.value
;
3031 if (sym_sec
->output_section
!= NULL
)
3032 destination
= (sym_value
+ irela
->r_addend
3033 + sym_sec
->output_offset
3034 + sym_sec
->output_section
->vma
);
3036 else if (hh
->eh
.root
.type
== bfd_link_hash_undefweak
)
3041 else if (hh
->eh
.root
.type
== bfd_link_hash_undefined
)
3043 if (! (info
->unresolved_syms_in_objects
== RM_IGNORE
3044 && (ELF_ST_VISIBILITY (hh
->eh
.other
)
3046 && hh
->eh
.type
!= STT_PARISC_MILLI
))
3051 bfd_set_error (bfd_error_bad_value
);
3052 goto error_ret_free_internal
;
3056 /* Determine what (if any) linker stub is needed. */
3057 stub_type
= hppa_type_of_stub (section
, irela
, hh
,
3059 if (stub_type
== hppa_stub_none
)
3062 /* Support for grouping stub sections. */
3063 id_sec
= htab
->stub_group
[section
->id
].link_sec
;
3065 /* Get the name of this stub. */
3066 stub_name
= hppa_stub_name (id_sec
, sym_sec
, hh
, irela
);
3068 goto error_ret_free_internal
;
3070 hsh
= hppa_stub_hash_lookup (&htab
->bstab
,
3075 /* The proper stub has already been created. */
3080 hsh
= hppa_add_stub (stub_name
, section
, htab
);
3084 goto error_ret_free_internal
;
3087 hsh
->target_value
= sym_value
;
3088 hsh
->target_section
= sym_sec
;
3089 hsh
->stub_type
= stub_type
;
3092 if (stub_type
== hppa_stub_import
)
3093 hsh
->stub_type
= hppa_stub_import_shared
;
3094 else if (stub_type
== hppa_stub_long_branch
)
3095 hsh
->stub_type
= hppa_stub_long_branch_shared
;
3098 stub_changed
= TRUE
;
3101 /* We're done with the internal relocs, free them. */
3102 if (elf_section_data (section
)->relocs
== NULL
)
3103 free (internal_relocs
);
3110 /* OK, we've added some stubs. Find out the new size of the
3112 for (stub_sec
= htab
->stub_bfd
->sections
;
3114 stub_sec
= stub_sec
->next
)
3117 bfd_hash_traverse (&htab
->bstab
, hppa_size_one_stub
, htab
);
3119 /* Ask the linker to do its stuff. */
3120 (*htab
->layout_sections_again
) ();
3121 stub_changed
= FALSE
;
3124 free (htab
->all_local_syms
);
3127 error_ret_free_local
:
3128 free (htab
->all_local_syms
);
3132 /* For a final link, this function is called after we have sized the
3133 stubs to provide a value for __gp. */
3136 elf32_hppa_set_gp (bfd
*abfd
, struct bfd_link_info
*info
)
3138 struct bfd_link_hash_entry
*h
;
3139 asection
*sec
= NULL
;
3141 struct elf32_hppa_link_hash_table
*htab
;
3143 htab
= hppa_link_hash_table (info
);
3144 h
= bfd_link_hash_lookup (&htab
->etab
.root
, "$global$", FALSE
, FALSE
, FALSE
);
3147 && (h
->type
== bfd_link_hash_defined
3148 || h
->type
== bfd_link_hash_defweak
))
3150 gp_val
= h
->u
.def
.value
;
3151 sec
= h
->u
.def
.section
;
3155 asection
*splt
= bfd_get_section_by_name (abfd
, ".plt");
3156 asection
*sgot
= bfd_get_section_by_name (abfd
, ".got");
3158 /* Choose to point our LTP at, in this order, one of .plt, .got,
3159 or .data, if these sections exist. In the case of choosing
3160 .plt try to make the LTP ideal for addressing anywhere in the
3161 .plt or .got with a 14 bit signed offset. Typically, the end
3162 of the .plt is the start of the .got, so choose .plt + 0x2000
3163 if either the .plt or .got is larger than 0x2000. If both
3164 the .plt and .got are smaller than 0x2000, choose the end of
3165 the .plt section. */
3166 sec
= strcmp (bfd_get_target (abfd
), "elf32-hppa-netbsd") == 0
3171 if (gp_val
> 0x2000 || (sgot
&& sgot
->size
> 0x2000))
3181 if (strcmp (bfd_get_target (abfd
), "elf32-hppa-netbsd") != 0)
3183 /* We know we don't have a .plt. If .got is large,
3185 if (sec
->size
> 0x2000)
3191 /* No .plt or .got. Who cares what the LTP is? */
3192 sec
= bfd_get_section_by_name (abfd
, ".data");
3198 h
->type
= bfd_link_hash_defined
;
3199 h
->u
.def
.value
= gp_val
;
3201 h
->u
.def
.section
= sec
;
3203 h
->u
.def
.section
= bfd_abs_section_ptr
;
3207 if (sec
!= NULL
&& sec
->output_section
!= NULL
)
3208 gp_val
+= sec
->output_section
->vma
+ sec
->output_offset
;
3210 elf_gp (abfd
) = gp_val
;
3214 /* Build all the stubs associated with the current output file. The
3215 stubs are kept in a hash table attached to the main linker hash
3216 table. We also set up the .plt entries for statically linked PIC
3217 functions here. This function is called via hppaelf_finish in the
3221 elf32_hppa_build_stubs (struct bfd_link_info
*info
)
3224 struct bfd_hash_table
*table
;
3225 struct elf32_hppa_link_hash_table
*htab
;
3227 htab
= hppa_link_hash_table (info
);
3229 for (stub_sec
= htab
->stub_bfd
->sections
;
3231 stub_sec
= stub_sec
->next
)
3235 /* Allocate memory to hold the linker stubs. */
3236 size
= stub_sec
->size
;
3237 stub_sec
->contents
= bfd_zalloc (htab
->stub_bfd
, size
);
3238 if (stub_sec
->contents
== NULL
&& size
!= 0)
3243 /* Build the stubs as directed by the stub hash table. */
3244 table
= &htab
->bstab
;
3245 bfd_hash_traverse (table
, hppa_build_one_stub
, info
);
3250 /* Return the base vma address which should be subtracted from the real
3251 address when resolving a dtpoff relocation.
3252 This is PT_TLS segment p_vaddr. */
3255 dtpoff_base (struct bfd_link_info
*info
)
3257 /* If tls_sec is NULL, we should have signalled an error already. */
3258 if (elf_hash_table (info
)->tls_sec
== NULL
)
3260 return elf_hash_table (info
)->tls_sec
->vma
;
3263 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3266 tpoff (struct bfd_link_info
*info
, bfd_vma address
)
3268 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
3270 /* If tls_sec is NULL, we should have signalled an error already. */
3271 if (htab
->tls_sec
== NULL
)
3273 /* hppa TLS ABI is variant I and static TLS block start just after
3274 tcbhead structure which has 2 pointer fields. */
3275 return (address
- htab
->tls_sec
->vma
3276 + align_power ((bfd_vma
) 8, htab
->tls_sec
->alignment_power
));
3279 /* Perform a final link. */
3282 elf32_hppa_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
3284 /* Invoke the regular ELF linker to do all the work. */
3285 if (!bfd_elf_final_link (abfd
, info
))
3288 /* If we're producing a final executable, sort the contents of the
3290 return elf_hppa_sort_unwind (abfd
);
3293 /* Record the lowest address for the data and text segments. */
3296 hppa_record_segment_addr (bfd
*abfd ATTRIBUTE_UNUSED
,
3300 struct elf32_hppa_link_hash_table
*htab
;
3302 htab
= (struct elf32_hppa_link_hash_table
*) data
;
3304 if ((section
->flags
& (SEC_ALLOC
| SEC_LOAD
)) == (SEC_ALLOC
| SEC_LOAD
))
3306 bfd_vma value
= section
->vma
- section
->filepos
;
3308 if ((section
->flags
& SEC_READONLY
) != 0)
3310 if (value
< htab
->text_segment_base
)
3311 htab
->text_segment_base
= value
;
3315 if (value
< htab
->data_segment_base
)
3316 htab
->data_segment_base
= value
;
3321 /* Perform a relocation as part of a final link. */
3323 static bfd_reloc_status_type
3324 final_link_relocate (asection
*input_section
,
3326 const Elf_Internal_Rela
*rela
,
3328 struct elf32_hppa_link_hash_table
*htab
,
3330 struct elf32_hppa_link_hash_entry
*hh
,
3331 struct bfd_link_info
*info
)
3334 unsigned int r_type
= ELF32_R_TYPE (rela
->r_info
);
3335 unsigned int orig_r_type
= r_type
;
3336 reloc_howto_type
*howto
= elf_hppa_howto_table
+ r_type
;
3337 int r_format
= howto
->bitsize
;
3338 enum hppa_reloc_field_selector_type_alt r_field
;
3339 bfd
*input_bfd
= input_section
->owner
;
3340 bfd_vma offset
= rela
->r_offset
;
3341 bfd_vma max_branch_offset
= 0;
3342 bfd_byte
*hit_data
= contents
+ offset
;
3343 bfd_signed_vma addend
= rela
->r_addend
;
3345 struct elf32_hppa_stub_hash_entry
*hsh
= NULL
;
3348 if (r_type
== R_PARISC_NONE
)
3349 return bfd_reloc_ok
;
3351 insn
= bfd_get_32 (input_bfd
, hit_data
);
3353 /* Find out where we are and where we're going. */
3354 location
= (offset
+
3355 input_section
->output_offset
+
3356 input_section
->output_section
->vma
);
3358 /* If we are not building a shared library, convert DLTIND relocs to
3364 case R_PARISC_DLTIND21L
:
3365 r_type
= R_PARISC_DPREL21L
;
3368 case R_PARISC_DLTIND14R
:
3369 r_type
= R_PARISC_DPREL14R
;
3372 case R_PARISC_DLTIND14F
:
3373 r_type
= R_PARISC_DPREL14F
;
3380 case R_PARISC_PCREL12F
:
3381 case R_PARISC_PCREL17F
:
3382 case R_PARISC_PCREL22F
:
3383 /* If this call should go via the plt, find the import stub in
3386 || sym_sec
->output_section
== NULL
3388 && hh
->eh
.plt
.offset
!= (bfd_vma
) -1
3389 && hh
->eh
.dynindx
!= -1
3392 || !hh
->eh
.def_regular
3393 || hh
->eh
.root
.type
== bfd_link_hash_defweak
)))
3395 hsh
= hppa_get_stub_entry (input_section
, sym_sec
,
3399 value
= (hsh
->stub_offset
3400 + hsh
->stub_sec
->output_offset
3401 + hsh
->stub_sec
->output_section
->vma
);
3404 else if (sym_sec
== NULL
&& hh
!= NULL
3405 && hh
->eh
.root
.type
== bfd_link_hash_undefweak
)
3407 /* It's OK if undefined weak. Calls to undefined weak
3408 symbols behave as if the "called" function
3409 immediately returns. We can thus call to a weak
3410 function without first checking whether the function
3416 return bfd_reloc_undefined
;
3420 case R_PARISC_PCREL21L
:
3421 case R_PARISC_PCREL17C
:
3422 case R_PARISC_PCREL17R
:
3423 case R_PARISC_PCREL14R
:
3424 case R_PARISC_PCREL14F
:
3425 case R_PARISC_PCREL32
:
3426 /* Make it a pc relative offset. */
3431 case R_PARISC_DPREL21L
:
3432 case R_PARISC_DPREL14R
:
3433 case R_PARISC_DPREL14F
:
3434 /* Convert instructions that use the linkage table pointer (r19) to
3435 instructions that use the global data pointer (dp). This is the
3436 most efficient way of using PIC code in an incomplete executable,
3437 but the user must follow the standard runtime conventions for
3438 accessing data for this to work. */
3439 if (orig_r_type
== R_PARISC_DLTIND21L
)
3441 /* Convert addil instructions if the original reloc was a
3442 DLTIND21L. GCC sometimes uses a register other than r19 for
3443 the operation, so we must convert any addil instruction
3444 that uses this relocation. */
3445 if ((insn
& 0xfc000000) == ((int) OP_ADDIL
<< 26))
3448 /* We must have a ldil instruction. It's too hard to find
3449 and convert the associated add instruction, so issue an
3451 (*_bfd_error_handler
)
3452 (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3459 else if (orig_r_type
== R_PARISC_DLTIND14F
)
3461 /* This must be a format 1 load/store. Change the base
3463 insn
= (insn
& 0xfc1ffff) | (27 << 21);
3466 /* For all the DP relative relocations, we need to examine the symbol's
3467 section. If it has no section or if it's a code section, then
3468 "data pointer relative" makes no sense. In that case we don't
3469 adjust the "value", and for 21 bit addil instructions, we change the
3470 source addend register from %dp to %r0. This situation commonly
3471 arises for undefined weak symbols and when a variable's "constness"
3472 is declared differently from the way the variable is defined. For
3473 instance: "extern int foo" with foo defined as "const int foo". */
3474 if (sym_sec
== NULL
|| (sym_sec
->flags
& SEC_CODE
) != 0)
3476 if ((insn
& ((0x3f << 26) | (0x1f << 21)))
3477 == (((int) OP_ADDIL
<< 26) | (27 << 21)))
3479 insn
&= ~ (0x1f << 21);
3481 /* Now try to make things easy for the dynamic linker. */
3487 case R_PARISC_DLTIND21L
:
3488 case R_PARISC_DLTIND14R
:
3489 case R_PARISC_DLTIND14F
:
3490 case R_PARISC_TLS_GD21L
:
3491 case R_PARISC_TLS_GD14R
:
3492 case R_PARISC_TLS_LDM21L
:
3493 case R_PARISC_TLS_LDM14R
:
3494 case R_PARISC_TLS_IE21L
:
3495 case R_PARISC_TLS_IE14R
:
3496 value
-= elf_gp (input_section
->output_section
->owner
);
3499 case R_PARISC_SEGREL32
:
3500 if ((sym_sec
->flags
& SEC_CODE
) != 0)
3501 value
-= htab
->text_segment_base
;
3503 value
-= htab
->data_segment_base
;
3512 case R_PARISC_DIR32
:
3513 case R_PARISC_DIR14F
:
3514 case R_PARISC_DIR17F
:
3515 case R_PARISC_PCREL17C
:
3516 case R_PARISC_PCREL14F
:
3517 case R_PARISC_PCREL32
:
3518 case R_PARISC_DPREL14F
:
3519 case R_PARISC_PLABEL32
:
3520 case R_PARISC_DLTIND14F
:
3521 case R_PARISC_SEGBASE
:
3522 case R_PARISC_SEGREL32
:
3523 case R_PARISC_TLS_DTPMOD32
:
3524 case R_PARISC_TLS_DTPOFF32
:
3525 case R_PARISC_TLS_TPREL32
:
3529 case R_PARISC_DLTIND21L
:
3530 case R_PARISC_PCREL21L
:
3531 case R_PARISC_PLABEL21L
:
3535 case R_PARISC_DIR21L
:
3536 case R_PARISC_DPREL21L
:
3537 case R_PARISC_TLS_GD21L
:
3538 case R_PARISC_TLS_LDM21L
:
3539 case R_PARISC_TLS_LDO21L
:
3540 case R_PARISC_TLS_IE21L
:
3541 case R_PARISC_TLS_LE21L
:
3545 case R_PARISC_PCREL17R
:
3546 case R_PARISC_PCREL14R
:
3547 case R_PARISC_PLABEL14R
:
3548 case R_PARISC_DLTIND14R
:
3552 case R_PARISC_DIR17R
:
3553 case R_PARISC_DIR14R
:
3554 case R_PARISC_DPREL14R
:
3555 case R_PARISC_TLS_GD14R
:
3556 case R_PARISC_TLS_LDM14R
:
3557 case R_PARISC_TLS_LDO14R
:
3558 case R_PARISC_TLS_IE14R
:
3559 case R_PARISC_TLS_LE14R
:
3563 case R_PARISC_PCREL12F
:
3564 case R_PARISC_PCREL17F
:
3565 case R_PARISC_PCREL22F
:
3568 if (r_type
== (unsigned int) R_PARISC_PCREL17F
)
3570 max_branch_offset
= (1 << (17-1)) << 2;
3572 else if (r_type
== (unsigned int) R_PARISC_PCREL12F
)
3574 max_branch_offset
= (1 << (12-1)) << 2;
3578 max_branch_offset
= (1 << (22-1)) << 2;
3581 /* sym_sec is NULL on undefined weak syms or when shared on
3582 undefined syms. We've already checked for a stub for the
3583 shared undefined case. */
3584 if (sym_sec
== NULL
)
3587 /* If the branch is out of reach, then redirect the
3588 call to the local stub for this function. */
3589 if (value
+ addend
+ max_branch_offset
>= 2*max_branch_offset
)
3591 hsh
= hppa_get_stub_entry (input_section
, sym_sec
,
3594 return bfd_reloc_undefined
;
3596 /* Munge up the value and addend so that we call the stub
3597 rather than the procedure directly. */
3598 value
= (hsh
->stub_offset
3599 + hsh
->stub_sec
->output_offset
3600 + hsh
->stub_sec
->output_section
->vma
3606 /* Something we don't know how to handle. */
3608 return bfd_reloc_notsupported
;
3611 /* Make sure we can reach the stub. */
3612 if (max_branch_offset
!= 0
3613 && value
+ addend
+ max_branch_offset
>= 2*max_branch_offset
)
3615 (*_bfd_error_handler
)
3616 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3620 hsh
->bh_root
.string
);
3621 bfd_set_error (bfd_error_bad_value
);
3622 return bfd_reloc_notsupported
;
3625 val
= hppa_field_adjust (value
, addend
, r_field
);
3629 case R_PARISC_PCREL12F
:
3630 case R_PARISC_PCREL17C
:
3631 case R_PARISC_PCREL17F
:
3632 case R_PARISC_PCREL17R
:
3633 case R_PARISC_PCREL22F
:
3634 case R_PARISC_DIR17F
:
3635 case R_PARISC_DIR17R
:
3636 /* This is a branch. Divide the offset by four.
3637 Note that we need to decide whether it's a branch or
3638 otherwise by inspecting the reloc. Inspecting insn won't
3639 work as insn might be from a .word directive. */
3647 insn
= hppa_rebuild_insn (insn
, val
, r_format
);
3649 /* Update the instruction word. */
3650 bfd_put_32 (input_bfd
, (bfd_vma
) insn
, hit_data
);
3651 return bfd_reloc_ok
;
3654 /* Relocate an HPPA ELF section. */
3657 elf32_hppa_relocate_section (bfd
*output_bfd
,
3658 struct bfd_link_info
*info
,
3660 asection
*input_section
,
3662 Elf_Internal_Rela
*relocs
,
3663 Elf_Internal_Sym
*local_syms
,
3664 asection
**local_sections
)
3666 bfd_vma
*local_got_offsets
;
3667 struct elf32_hppa_link_hash_table
*htab
;
3668 Elf_Internal_Shdr
*symtab_hdr
;
3669 Elf_Internal_Rela
*rela
;
3670 Elf_Internal_Rela
*relend
;
3672 if (info
->relocatable
)
3675 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
3677 htab
= hppa_link_hash_table (info
);
3678 local_got_offsets
= elf_local_got_offsets (input_bfd
);
3681 relend
= relocs
+ input_section
->reloc_count
;
3682 for (; rela
< relend
; rela
++)
3684 unsigned int r_type
;
3685 reloc_howto_type
*howto
;
3686 unsigned int r_symndx
;
3687 struct elf32_hppa_link_hash_entry
*hh
;
3688 Elf_Internal_Sym
*sym
;
3691 bfd_reloc_status_type rstatus
;
3692 const char *sym_name
;
3694 bfd_boolean warned_undef
;
3696 r_type
= ELF32_R_TYPE (rela
->r_info
);
3697 if (r_type
>= (unsigned int) R_PARISC_UNIMPLEMENTED
)
3699 bfd_set_error (bfd_error_bad_value
);
3702 if (r_type
== (unsigned int) R_PARISC_GNU_VTENTRY
3703 || r_type
== (unsigned int) R_PARISC_GNU_VTINHERIT
)
3706 /* This is a final link. */
3707 r_symndx
= ELF32_R_SYM (rela
->r_info
);
3711 warned_undef
= FALSE
;
3712 if (r_symndx
< symtab_hdr
->sh_info
)
3714 /* This is a local symbol, h defaults to NULL. */
3715 sym
= local_syms
+ r_symndx
;
3716 sym_sec
= local_sections
[r_symndx
];
3717 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, &sym_sec
, rela
);
3721 struct elf_link_hash_entry
*eh
;
3722 bfd_boolean unresolved_reloc
;
3723 struct elf_link_hash_entry
**sym_hashes
= elf_sym_hashes (input_bfd
);
3725 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rela
,
3726 r_symndx
, symtab_hdr
, sym_hashes
,
3727 eh
, sym_sec
, relocation
,
3728 unresolved_reloc
, warned_undef
);
3731 && eh
->root
.type
!= bfd_link_hash_defined
3732 && eh
->root
.type
!= bfd_link_hash_defweak
3733 && eh
->root
.type
!= bfd_link_hash_undefweak
)
3735 if (info
->unresolved_syms_in_objects
== RM_IGNORE
3736 && ELF_ST_VISIBILITY (eh
->other
) == STV_DEFAULT
3737 && eh
->type
== STT_PARISC_MILLI
)
3739 if (! info
->callbacks
->undefined_symbol
3740 (info
, eh_name (eh
), input_bfd
,
3741 input_section
, rela
->r_offset
, FALSE
))
3743 warned_undef
= TRUE
;
3746 hh
= hppa_elf_hash_entry (eh
);
3749 /* Do any required modifications to the relocation value, and
3750 determine what types of dynamic info we need to output, if
3755 case R_PARISC_DLTIND14F
:
3756 case R_PARISC_DLTIND14R
:
3757 case R_PARISC_DLTIND21L
:
3760 bfd_boolean do_got
= 0;
3762 /* Relocation is to the entry for this symbol in the
3763 global offset table. */
3768 off
= hh
->eh
.got
.offset
;
3769 dyn
= htab
->etab
.dynamic_sections_created
;
3770 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
,
3773 /* If we aren't going to call finish_dynamic_symbol,
3774 then we need to handle initialisation of the .got
3775 entry and create needed relocs here. Since the
3776 offset must always be a multiple of 4, we use the
3777 least significant bit to record whether we have
3778 initialised it already. */
3783 hh
->eh
.got
.offset
|= 1;
3790 /* Local symbol case. */
3791 if (local_got_offsets
== NULL
)
3794 off
= local_got_offsets
[r_symndx
];
3796 /* The offset must always be a multiple of 4. We use
3797 the least significant bit to record whether we have
3798 already generated the necessary reloc. */
3803 local_got_offsets
[r_symndx
] |= 1;
3812 /* Output a dynamic relocation for this GOT entry.
3813 In this case it is relative to the base of the
3814 object because the symbol index is zero. */
3815 Elf_Internal_Rela outrel
;
3817 asection
*sec
= htab
->srelgot
;
3819 outrel
.r_offset
= (off
3820 + htab
->sgot
->output_offset
3821 + htab
->sgot
->output_section
->vma
);
3822 outrel
.r_info
= ELF32_R_INFO (0, R_PARISC_DIR32
);
3823 outrel
.r_addend
= relocation
;
3824 loc
= sec
->contents
;
3825 loc
+= sec
->reloc_count
++ * sizeof (Elf32_External_Rela
);
3826 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
, loc
);
3829 bfd_put_32 (output_bfd
, relocation
,
3830 htab
->sgot
->contents
+ off
);
3833 if (off
>= (bfd_vma
) -2)
3836 /* Add the base of the GOT to the relocation value. */
3838 + htab
->sgot
->output_offset
3839 + htab
->sgot
->output_section
->vma
);
3843 case R_PARISC_SEGREL32
:
3844 /* If this is the first SEGREL relocation, then initialize
3845 the segment base values. */
3846 if (htab
->text_segment_base
== (bfd_vma
) -1)
3847 bfd_map_over_sections (output_bfd
, hppa_record_segment_addr
, htab
);
3850 case R_PARISC_PLABEL14R
:
3851 case R_PARISC_PLABEL21L
:
3852 case R_PARISC_PLABEL32
:
3853 if (htab
->etab
.dynamic_sections_created
)
3856 bfd_boolean do_plt
= 0;
3857 /* If we have a global symbol with a PLT slot, then
3858 redirect this relocation to it. */
3861 off
= hh
->eh
.plt
.offset
;
3862 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info
->shared
,
3865 /* In a non-shared link, adjust_dynamic_symbols
3866 isn't called for symbols forced local. We
3867 need to write out the plt entry here. */
3872 hh
->eh
.plt
.offset
|= 1;
3879 bfd_vma
*local_plt_offsets
;
3881 if (local_got_offsets
== NULL
)
3884 local_plt_offsets
= local_got_offsets
+ symtab_hdr
->sh_info
;
3885 off
= local_plt_offsets
[r_symndx
];
3887 /* As for the local .got entry case, we use the last
3888 bit to record whether we've already initialised
3889 this local .plt entry. */
3894 local_plt_offsets
[r_symndx
] |= 1;
3903 /* Output a dynamic IPLT relocation for this
3905 Elf_Internal_Rela outrel
;
3907 asection
*s
= htab
->srelplt
;
3909 outrel
.r_offset
= (off
3910 + htab
->splt
->output_offset
3911 + htab
->splt
->output_section
->vma
);
3912 outrel
.r_info
= ELF32_R_INFO (0, R_PARISC_IPLT
);
3913 outrel
.r_addend
= relocation
;
3915 loc
+= s
->reloc_count
++ * sizeof (Elf32_External_Rela
);
3916 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
, loc
);
3920 bfd_put_32 (output_bfd
,
3922 htab
->splt
->contents
+ off
);
3923 bfd_put_32 (output_bfd
,
3924 elf_gp (htab
->splt
->output_section
->owner
),
3925 htab
->splt
->contents
+ off
+ 4);
3929 if (off
>= (bfd_vma
) -2)
3932 /* PLABELs contain function pointers. Relocation is to
3933 the entry for the function in the .plt. The magic +2
3934 offset signals to $$dyncall that the function pointer
3935 is in the .plt and thus has a gp pointer too.
3936 Exception: Undefined PLABELs should have a value of
3939 || (hh
->eh
.root
.type
!= bfd_link_hash_undefweak
3940 && hh
->eh
.root
.type
!= bfd_link_hash_undefined
))
3943 + htab
->splt
->output_offset
3944 + htab
->splt
->output_section
->vma
3949 /* Fall through and possibly emit a dynamic relocation. */
3951 case R_PARISC_DIR17F
:
3952 case R_PARISC_DIR17R
:
3953 case R_PARISC_DIR14F
:
3954 case R_PARISC_DIR14R
:
3955 case R_PARISC_DIR21L
:
3956 case R_PARISC_DPREL14F
:
3957 case R_PARISC_DPREL14R
:
3958 case R_PARISC_DPREL21L
:
3959 case R_PARISC_DIR32
:
3960 /* r_symndx will be zero only for relocs against symbols
3961 from removed linkonce sections, or sections discarded by
3964 || (input_section
->flags
& SEC_ALLOC
) == 0)
3967 /* The reloc types handled here and this conditional
3968 expression must match the code in ..check_relocs and
3969 allocate_dynrelocs. ie. We need exactly the same condition
3970 as in ..check_relocs, with some extra conditions (dynindx
3971 test in this case) to cater for relocs removed by
3972 allocate_dynrelocs. If you squint, the non-shared test
3973 here does indeed match the one in ..check_relocs, the
3974 difference being that here we test DEF_DYNAMIC as well as
3975 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3976 which is why we can't use just that test here.
3977 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3978 there all files have not been loaded. */
3981 || ELF_ST_VISIBILITY (hh
->eh
.other
) == STV_DEFAULT
3982 || hh
->eh
.root
.type
!= bfd_link_hash_undefweak
)
3983 && (IS_ABSOLUTE_RELOC (r_type
)
3984 || !SYMBOL_CALLS_LOCAL (info
, &hh
->eh
)))
3987 && hh
->eh
.dynindx
!= -1
3988 && !hh
->eh
.non_got_ref
3989 && ((ELIMINATE_COPY_RELOCS
3990 && hh
->eh
.def_dynamic
3991 && !hh
->eh
.def_regular
)
3992 || hh
->eh
.root
.type
== bfd_link_hash_undefweak
3993 || hh
->eh
.root
.type
== bfd_link_hash_undefined
)))
3995 Elf_Internal_Rela outrel
;
4000 /* When generating a shared object, these relocations
4001 are copied into the output file to be resolved at run
4004 outrel
.r_addend
= rela
->r_addend
;
4006 _bfd_elf_section_offset (output_bfd
, info
, input_section
,
4008 skip
= (outrel
.r_offset
== (bfd_vma
) -1
4009 || outrel
.r_offset
== (bfd_vma
) -2);
4010 outrel
.r_offset
+= (input_section
->output_offset
4011 + input_section
->output_section
->vma
);
4015 memset (&outrel
, 0, sizeof (outrel
));
4018 && hh
->eh
.dynindx
!= -1
4020 || !IS_ABSOLUTE_RELOC (r_type
)
4023 || !hh
->eh
.def_regular
))
4025 outrel
.r_info
= ELF32_R_INFO (hh
->eh
.dynindx
, r_type
);
4027 else /* It's a local symbol, or one marked to become local. */
4031 /* Add the absolute offset of the symbol. */
4032 outrel
.r_addend
+= relocation
;
4034 /* Global plabels need to be processed by the
4035 dynamic linker so that functions have at most one
4036 fptr. For this reason, we need to differentiate
4037 between global and local plabels, which we do by
4038 providing the function symbol for a global plabel
4039 reloc, and no symbol for local plabels. */
4042 && sym_sec
->output_section
!= NULL
4043 && ! bfd_is_abs_section (sym_sec
))
4045 /* Skip this relocation if the output section has
4047 if (bfd_is_abs_section (sym_sec
->output_section
))
4050 indx
= elf_section_data (sym_sec
->output_section
)->dynindx
;
4051 /* We are turning this relocation into one
4052 against a section symbol, so subtract out the
4053 output section's address but not the offset
4054 of the input section in the output section. */
4055 outrel
.r_addend
-= sym_sec
->output_section
->vma
;
4058 outrel
.r_info
= ELF32_R_INFO (indx
, r_type
);
4060 sreloc
= elf_section_data (input_section
)->sreloc
;
4064 loc
= sreloc
->contents
;
4065 loc
+= sreloc
->reloc_count
++ * sizeof (Elf32_External_Rela
);
4066 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
, loc
);
4070 case R_PARISC_TLS_LDM21L
:
4071 case R_PARISC_TLS_LDM14R
:
4075 off
= htab
->tls_ldm_got
.offset
;
4080 Elf_Internal_Rela outrel
;
4083 outrel
.r_offset
= (off
4084 + htab
->sgot
->output_section
->vma
4085 + htab
->sgot
->output_offset
);
4086 outrel
.r_addend
= 0;
4087 outrel
.r_info
= ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32
);
4088 loc
= htab
->srelgot
->contents
;
4089 loc
+= htab
->srelgot
->reloc_count
++ * sizeof (Elf32_External_Rela
);
4091 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
, loc
);
4092 htab
->tls_ldm_got
.offset
|= 1;
4095 /* Add the base of the GOT to the relocation value. */
4097 + htab
->sgot
->output_offset
4098 + htab
->sgot
->output_section
->vma
);
4103 case R_PARISC_TLS_LDO21L
:
4104 case R_PARISC_TLS_LDO14R
:
4105 relocation
-= dtpoff_base (info
);
4108 case R_PARISC_TLS_GD21L
:
4109 case R_PARISC_TLS_GD14R
:
4110 case R_PARISC_TLS_IE21L
:
4111 case R_PARISC_TLS_IE14R
:
4121 dyn
= htab
->etab
.dynamic_sections_created
;
4123 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, &hh
->eh
)
4125 || !SYMBOL_REFERENCES_LOCAL (info
, &hh
->eh
)))
4127 indx
= hh
->eh
.dynindx
;
4129 off
= hh
->eh
.got
.offset
;
4130 tls_type
= hh
->tls_type
;
4134 off
= local_got_offsets
[r_symndx
];
4135 tls_type
= hppa_elf_local_got_tls_type (input_bfd
)[r_symndx
];
4138 if (tls_type
== GOT_UNKNOWN
)
4145 bfd_boolean need_relocs
= FALSE
;
4146 Elf_Internal_Rela outrel
;
4147 bfd_byte
*loc
= NULL
;
4150 /* The GOT entries have not been initialized yet. Do it
4151 now, and emit any relocations. If both an IE GOT and a
4152 GD GOT are necessary, we emit the GD first. */
4154 if ((info
->shared
|| indx
!= 0)
4156 || ELF_ST_VISIBILITY (hh
->eh
.other
) == STV_DEFAULT
4157 || hh
->eh
.root
.type
!= bfd_link_hash_undefweak
))
4160 loc
= htab
->srelgot
->contents
;
4161 /* FIXME (CAO): Should this be reloc_count++ ? */
4162 loc
+= htab
->srelgot
->reloc_count
* sizeof (Elf32_External_Rela
);
4165 if (tls_type
& GOT_TLS_GD
)
4169 outrel
.r_offset
= (cur_off
4170 + htab
->sgot
->output_section
->vma
4171 + htab
->sgot
->output_offset
);
4172 outrel
.r_info
= ELF32_R_INFO (indx
,R_PARISC_TLS_DTPMOD32
);
4173 outrel
.r_addend
= 0;
4174 bfd_put_32 (output_bfd
, 0, htab
->sgot
->contents
+ cur_off
);
4175 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
, loc
);
4176 htab
->srelgot
->reloc_count
++;
4177 loc
+= sizeof (Elf32_External_Rela
);
4180 bfd_put_32 (output_bfd
, relocation
- dtpoff_base (info
),
4181 htab
->sgot
->contents
+ cur_off
+ 4);
4184 bfd_put_32 (output_bfd
, 0,
4185 htab
->sgot
->contents
+ cur_off
+ 4);
4186 outrel
.r_info
= ELF32_R_INFO (indx
, R_PARISC_TLS_DTPOFF32
);
4187 outrel
.r_offset
+= 4;
4188 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
,loc
);
4189 htab
->srelgot
->reloc_count
++;
4190 loc
+= sizeof (Elf32_External_Rela
);
4195 /* If we are not emitting relocations for a
4196 general dynamic reference, then we must be in a
4197 static link or an executable link with the
4198 symbol binding locally. Mark it as belonging
4199 to module 1, the executable. */
4200 bfd_put_32 (output_bfd
, 1,
4201 htab
->sgot
->contents
+ cur_off
);
4202 bfd_put_32 (output_bfd
, relocation
- dtpoff_base (info
),
4203 htab
->sgot
->contents
+ cur_off
+ 4);
4210 if (tls_type
& GOT_TLS_IE
)
4214 outrel
.r_offset
= (cur_off
4215 + htab
->sgot
->output_section
->vma
4216 + htab
->sgot
->output_offset
);
4217 outrel
.r_info
= ELF32_R_INFO (indx
, R_PARISC_TLS_TPREL32
);
4220 outrel
.r_addend
= relocation
- dtpoff_base (info
);
4222 outrel
.r_addend
= 0;
4224 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
, loc
);
4225 htab
->srelgot
->reloc_count
++;
4226 loc
+= sizeof (Elf32_External_Rela
);
4229 bfd_put_32 (output_bfd
, tpoff (info
, relocation
),
4230 htab
->sgot
->contents
+ cur_off
);
4236 hh
->eh
.got
.offset
|= 1;
4238 local_got_offsets
[r_symndx
] |= 1;
4241 if ((tls_type
& GOT_TLS_GD
)
4242 && r_type
!= R_PARISC_TLS_GD21L
4243 && r_type
!= R_PARISC_TLS_GD14R
)
4244 off
+= 2 * GOT_ENTRY_SIZE
;
4246 /* Add the base of the GOT to the relocation value. */
4248 + htab
->sgot
->output_offset
4249 + htab
->sgot
->output_section
->vma
);
4254 case R_PARISC_TLS_LE21L
:
4255 case R_PARISC_TLS_LE14R
:
4257 relocation
= tpoff (info
, relocation
);
4266 rstatus
= final_link_relocate (input_section
, contents
, rela
, relocation
,
4267 htab
, sym_sec
, hh
, info
);
4269 if (rstatus
== bfd_reloc_ok
)
4273 sym_name
= hh_name (hh
);
4276 sym_name
= bfd_elf_string_from_elf_section (input_bfd
,
4277 symtab_hdr
->sh_link
,
4279 if (sym_name
== NULL
)
4281 if (*sym_name
== '\0')
4282 sym_name
= bfd_section_name (input_bfd
, sym_sec
);
4285 howto
= elf_hppa_howto_table
+ r_type
;
4287 if (rstatus
== bfd_reloc_undefined
|| rstatus
== bfd_reloc_notsupported
)
4289 if (rstatus
== bfd_reloc_notsupported
|| !warned_undef
)
4291 (*_bfd_error_handler
)
4292 (_("%B(%A+0x%lx): cannot handle %s for %s"),
4295 (long) rela
->r_offset
,
4298 bfd_set_error (bfd_error_bad_value
);
4304 if (!((*info
->callbacks
->reloc_overflow
)
4305 (info
, (hh
? &hh
->eh
.root
: NULL
), sym_name
, howto
->name
,
4306 (bfd_vma
) 0, input_bfd
, input_section
, rela
->r_offset
)))
4314 /* Finish up dynamic symbol handling. We set the contents of various
4315 dynamic sections here. */
4318 elf32_hppa_finish_dynamic_symbol (bfd
*output_bfd
,
4319 struct bfd_link_info
*info
,
4320 struct elf_link_hash_entry
*eh
,
4321 Elf_Internal_Sym
*sym
)
4323 struct elf32_hppa_link_hash_table
*htab
;
4324 Elf_Internal_Rela rela
;
4327 htab
= hppa_link_hash_table (info
);
4329 if (eh
->plt
.offset
!= (bfd_vma
) -1)
4333 if (eh
->plt
.offset
& 1)
4336 /* This symbol has an entry in the procedure linkage table. Set
4339 The format of a plt entry is
4344 if (eh
->root
.type
== bfd_link_hash_defined
4345 || eh
->root
.type
== bfd_link_hash_defweak
)
4347 value
= eh
->root
.u
.def
.value
;
4348 if (eh
->root
.u
.def
.section
->output_section
!= NULL
)
4349 value
+= (eh
->root
.u
.def
.section
->output_offset
4350 + eh
->root
.u
.def
.section
->output_section
->vma
);
4353 /* Create a dynamic IPLT relocation for this entry. */
4354 rela
.r_offset
= (eh
->plt
.offset
4355 + htab
->splt
->output_offset
4356 + htab
->splt
->output_section
->vma
);
4357 if (eh
->dynindx
!= -1)
4359 rela
.r_info
= ELF32_R_INFO (eh
->dynindx
, R_PARISC_IPLT
);
4364 /* This symbol has been marked to become local, and is
4365 used by a plabel so must be kept in the .plt. */
4366 rela
.r_info
= ELF32_R_INFO (0, R_PARISC_IPLT
);
4367 rela
.r_addend
= value
;
4370 loc
= htab
->srelplt
->contents
;
4371 loc
+= htab
->srelplt
->reloc_count
++ * sizeof (Elf32_External_Rela
);
4372 bfd_elf32_swap_reloca_out (htab
->splt
->output_section
->owner
, &rela
, loc
);
4374 if (!eh
->def_regular
)
4376 /* Mark the symbol as undefined, rather than as defined in
4377 the .plt section. Leave the value alone. */
4378 sym
->st_shndx
= SHN_UNDEF
;
4382 if (eh
->got
.offset
!= (bfd_vma
) -1
4383 && (hppa_elf_hash_entry (eh
)->tls_type
& GOT_TLS_GD
) == 0
4384 && (hppa_elf_hash_entry (eh
)->tls_type
& GOT_TLS_IE
) == 0)
4386 /* This symbol has an entry in the global offset table. Set it
4389 rela
.r_offset
= ((eh
->got
.offset
&~ (bfd_vma
) 1)
4390 + htab
->sgot
->output_offset
4391 + htab
->sgot
->output_section
->vma
);
4393 /* If this is a -Bsymbolic link and the symbol is defined
4394 locally or was forced to be local because of a version file,
4395 we just want to emit a RELATIVE reloc. The entry in the
4396 global offset table will already have been initialized in the
4397 relocate_section function. */
4399 && (info
->symbolic
|| eh
->dynindx
== -1)
4402 rela
.r_info
= ELF32_R_INFO (0, R_PARISC_DIR32
);
4403 rela
.r_addend
= (eh
->root
.u
.def
.value
4404 + eh
->root
.u
.def
.section
->output_offset
4405 + eh
->root
.u
.def
.section
->output_section
->vma
);
4409 if ((eh
->got
.offset
& 1) != 0)
4412 bfd_put_32 (output_bfd
, 0, htab
->sgot
->contents
+ (eh
->got
.offset
& ~1));
4413 rela
.r_info
= ELF32_R_INFO (eh
->dynindx
, R_PARISC_DIR32
);
4417 loc
= htab
->srelgot
->contents
;
4418 loc
+= htab
->srelgot
->reloc_count
++ * sizeof (Elf32_External_Rela
);
4419 bfd_elf32_swap_reloca_out (output_bfd
, &rela
, loc
);
4426 /* This symbol needs a copy reloc. Set it up. */
4428 if (! (eh
->dynindx
!= -1
4429 && (eh
->root
.type
== bfd_link_hash_defined
4430 || eh
->root
.type
== bfd_link_hash_defweak
)))
4433 sec
= htab
->srelbss
;
4435 rela
.r_offset
= (eh
->root
.u
.def
.value
4436 + eh
->root
.u
.def
.section
->output_offset
4437 + eh
->root
.u
.def
.section
->output_section
->vma
);
4439 rela
.r_info
= ELF32_R_INFO (eh
->dynindx
, R_PARISC_COPY
);
4440 loc
= sec
->contents
+ sec
->reloc_count
++ * sizeof (Elf32_External_Rela
);
4441 bfd_elf32_swap_reloca_out (output_bfd
, &rela
, loc
);
4444 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4445 if (eh_name (eh
)[0] == '_'
4446 && (strcmp (eh_name (eh
), "_DYNAMIC") == 0
4447 || eh
== htab
->etab
.hgot
))
4449 sym
->st_shndx
= SHN_ABS
;
4455 /* Used to decide how to sort relocs in an optimal manner for the
4456 dynamic linker, before writing them out. */
4458 static enum elf_reloc_type_class
4459 elf32_hppa_reloc_type_class (const Elf_Internal_Rela
*rela
)
4461 /* Handle TLS relocs first; we don't want them to be marked
4462 relative by the "if (ELF32_R_SYM (rela->r_info) == 0)"
4464 switch ((int) ELF32_R_TYPE (rela
->r_info
))
4466 case R_PARISC_TLS_DTPMOD32
:
4467 case R_PARISC_TLS_DTPOFF32
:
4468 case R_PARISC_TLS_TPREL32
:
4469 return reloc_class_normal
;
4472 if (ELF32_R_SYM (rela
->r_info
) == 0)
4473 return reloc_class_relative
;
4475 switch ((int) ELF32_R_TYPE (rela
->r_info
))
4478 return reloc_class_plt
;
4480 return reloc_class_copy
;
4482 return reloc_class_normal
;
4486 /* Finish up the dynamic sections. */
4489 elf32_hppa_finish_dynamic_sections (bfd
*output_bfd
,
4490 struct bfd_link_info
*info
)
4493 struct elf32_hppa_link_hash_table
*htab
;
4496 htab
= hppa_link_hash_table (info
);
4497 dynobj
= htab
->etab
.dynobj
;
4499 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
4501 if (htab
->etab
.dynamic_sections_created
)
4503 Elf32_External_Dyn
*dyncon
, *dynconend
;
4508 dyncon
= (Elf32_External_Dyn
*) sdyn
->contents
;
4509 dynconend
= (Elf32_External_Dyn
*) (sdyn
->contents
+ sdyn
->size
);
4510 for (; dyncon
< dynconend
; dyncon
++)
4512 Elf_Internal_Dyn dyn
;
4515 bfd_elf32_swap_dyn_in (dynobj
, dyncon
, &dyn
);
4523 /* Use PLTGOT to set the GOT register. */
4524 dyn
.d_un
.d_ptr
= elf_gp (output_bfd
);
4529 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
4534 dyn
.d_un
.d_val
= s
->size
;
4538 /* Don't count procedure linkage table relocs in the
4539 overall reloc count. */
4543 dyn
.d_un
.d_val
-= s
->size
;
4547 /* We may not be using the standard ELF linker script.
4548 If .rela.plt is the first .rela section, we adjust
4549 DT_RELA to not include it. */
4553 if (dyn
.d_un
.d_ptr
!= s
->output_section
->vma
+ s
->output_offset
)
4555 dyn
.d_un
.d_ptr
+= s
->size
;
4559 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
4563 if (htab
->sgot
!= NULL
&& htab
->sgot
->size
!= 0)
4565 /* Fill in the first entry in the global offset table.
4566 We use it to point to our dynamic section, if we have one. */
4567 bfd_put_32 (output_bfd
,
4568 sdyn
? sdyn
->output_section
->vma
+ sdyn
->output_offset
: 0,
4569 htab
->sgot
->contents
);
4571 /* The second entry is reserved for use by the dynamic linker. */
4572 memset (htab
->sgot
->contents
+ GOT_ENTRY_SIZE
, 0, GOT_ENTRY_SIZE
);
4574 /* Set .got entry size. */
4575 elf_section_data (htab
->sgot
->output_section
)
4576 ->this_hdr
.sh_entsize
= GOT_ENTRY_SIZE
;
4579 if (htab
->splt
!= NULL
&& htab
->splt
->size
!= 0)
4581 /* Set plt entry size. */
4582 elf_section_data (htab
->splt
->output_section
)
4583 ->this_hdr
.sh_entsize
= PLT_ENTRY_SIZE
;
4585 if (htab
->need_plt_stub
)
4587 /* Set up the .plt stub. */
4588 memcpy (htab
->splt
->contents
4589 + htab
->splt
->size
- sizeof (plt_stub
),
4590 plt_stub
, sizeof (plt_stub
));
4592 if ((htab
->splt
->output_offset
4593 + htab
->splt
->output_section
->vma
4595 != (htab
->sgot
->output_offset
4596 + htab
->sgot
->output_section
->vma
))
4598 (*_bfd_error_handler
)
4599 (_(".got section not immediately after .plt section"));
4608 /* Tweak the OSABI field of the elf header. */
4611 elf32_hppa_post_process_headers (bfd
*abfd
,
4612 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
4614 Elf_Internal_Ehdr
* i_ehdrp
;
4616 i_ehdrp
= elf_elfheader (abfd
);
4618 if (strcmp (bfd_get_target (abfd
), "elf32-hppa-linux") == 0)
4620 i_ehdrp
->e_ident
[EI_OSABI
] = ELFOSABI_LINUX
;
4622 else if (strcmp (bfd_get_target (abfd
), "elf32-hppa-netbsd") == 0)
4624 i_ehdrp
->e_ident
[EI_OSABI
] = ELFOSABI_NETBSD
;
4628 i_ehdrp
->e_ident
[EI_OSABI
] = ELFOSABI_HPUX
;
4632 /* Called when writing out an object file to decide the type of a
4635 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym
*elf_sym
, int type
)
4637 if (ELF_ST_TYPE (elf_sym
->st_info
) == STT_PARISC_MILLI
)
4638 return STT_PARISC_MILLI
;
4643 /* Misc BFD support code. */
4644 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4645 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4646 #define elf_info_to_howto elf_hppa_info_to_howto
4647 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4649 /* Stuff for the BFD linker. */
4650 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4651 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4652 #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
4653 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4654 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4655 #define elf_backend_check_relocs elf32_hppa_check_relocs
4656 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4657 #define elf_backend_fake_sections elf_hppa_fake_sections
4658 #define elf_backend_relocate_section elf32_hppa_relocate_section
4659 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4660 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4661 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4662 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4663 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4664 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4665 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4666 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4667 #define elf_backend_object_p elf32_hppa_object_p
4668 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4669 #define elf_backend_post_process_headers elf32_hppa_post_process_headers
4670 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4671 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4672 #define elf_backend_action_discarded elf_hppa_action_discarded
4674 #define elf_backend_can_gc_sections 1
4675 #define elf_backend_can_refcount 1
4676 #define elf_backend_plt_alignment 2
4677 #define elf_backend_want_got_plt 0
4678 #define elf_backend_plt_readonly 0
4679 #define elf_backend_want_plt_sym 0
4680 #define elf_backend_got_header_size 8
4681 #define elf_backend_rela_normal 1
4683 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4684 #define TARGET_BIG_NAME "elf32-hppa"
4685 #define ELF_ARCH bfd_arch_hppa
4686 #define ELF_MACHINE_CODE EM_PARISC
4687 #define ELF_MAXPAGESIZE 0x1000
4689 #include "elf32-target.h"
4691 #undef TARGET_BIG_SYM
4692 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4693 #undef TARGET_BIG_NAME
4694 #define TARGET_BIG_NAME "elf32-hppa-linux"
4696 #define INCLUDED_TARGET_FILE 1
4697 #include "elf32-target.h"
4699 #undef TARGET_BIG_SYM
4700 #define TARGET_BIG_SYM bfd_elf32_hppa_nbsd_vec
4701 #undef TARGET_BIG_NAME
4702 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4704 #include "elf32-target.h"