15100431c8eb26459bf5da2aae7abf4bfa6637b7
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright (C) 1990-2020 Free Software Foundation, Inc.
3
4 Original code by
5 Center for Software Science
6 Department of Computer Science
7 University of Utah
8 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
9 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
10 TLS support written by Randolph Chung <tausq@debian.org>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
28
29 #include "sysdep.h"
30 #include "bfd.h"
31 #include "libbfd.h"
32 #include "elf-bfd.h"
33 #include "elf/hppa.h"
34 #include "libhppa.h"
35 #include "elf32-hppa.h"
36 #define ARCH_SIZE 32
37 #include "elf32-hppa.h"
38 #include "elf-hppa.h"
39
40 /* In order to gain some understanding of code in this file without
41 knowing all the intricate details of the linker, note the
42 following:
43
44 Functions named elf32_hppa_* are called by external routines, other
45 functions are only called locally. elf32_hppa_* functions appear
46 in this file more or less in the order in which they are called
47 from external routines. eg. elf32_hppa_check_relocs is called
48 early in the link process, elf32_hppa_finish_dynamic_sections is
49 one of the last functions. */
50
51 /* We use two hash tables to hold information for linking PA ELF objects.
52
53 The first is the elf32_hppa_link_hash_table which is derived
54 from the standard ELF linker hash table. We use this as a place to
55 attach other hash tables and static information.
56
57 The second is the stub hash table which is derived from the
58 base BFD hash table. The stub hash table holds the information
59 necessary to build the linker stubs during a link.
60
61 There are a number of different stubs generated by the linker.
62
63 Long branch stub:
64 : ldil LR'X,%r1
65 : be,n RR'X(%sr4,%r1)
66
67 PIC long branch stub:
68 : b,l .+8,%r1
69 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
70 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
71
72 Import stub to call shared library routine from normal object file
73 (single sub-space version)
74 : addil LR'lt_ptr+ltoff,%dp ; get PLT address
75 : ldo RR'lt_ptr+ltoff(%r1),%r22 ;
76 : ldw 0(%r22),%r21 ; get procedure entry point
77 : bv %r0(%r21)
78 : ldw 4(%r22),%r19 ; get new dlt value.
79
80 Import stub to call shared library routine from shared library
81 (single sub-space version)
82 : addil LR'ltoff,%r19 ; get PLT address
83 : ldo RR'ltoff(%r1),%r22
84 : ldw 0(%r22),%r21 ; get procedure entry point
85 : bv %r0(%r21)
86 : ldw 4(%r22),%r19 ; get new dlt value.
87
88 Import stub to call shared library routine from normal object file
89 (multiple sub-space support)
90 : addil LR'lt_ptr+ltoff,%dp ; get PLT address
91 : ldo RR'lt_ptr+ltoff(%r1),%r22 ;
92 : ldw 0(%r22),%r21 ; get procedure entry point
93 : ldsid (%r21),%r1 ; get target sid
94 : ldw 4(%r22),%r19 ; get new dlt value.
95 : mtsp %r1,%sr0
96 : be 0(%sr0,%r21) ; branch to target
97 : stw %rp,-24(%sp) ; save rp
98
99 Import stub to call shared library routine from shared library
100 (multiple sub-space support)
101 : addil LR'ltoff,%r19 ; get PLT address
102 : ldo RR'ltoff(%r1),%r22
103 : ldw 0(%r22),%r21 ; get procedure entry point
104 : ldsid (%r21),%r1 ; get target sid
105 : ldw 4(%r22),%r19 ; get new dlt value.
106 : mtsp %r1,%sr0
107 : be 0(%sr0,%r21) ; branch to target
108 : stw %rp,-24(%sp) ; save rp
109
110 Export stub to return from shared lib routine (multiple sub-space support)
111 One of these is created for each exported procedure in a shared
112 library (and stored in the shared lib). Shared lib routines are
113 called via the first instruction in the export stub so that we can
114 do an inter-space return. Not required for single sub-space.
115 : bl,n X,%rp ; trap the return
116 : nop
117 : ldw -24(%sp),%rp ; restore the original rp
118 : ldsid (%rp),%r1
119 : mtsp %r1,%sr0
120 : be,n 0(%sr0,%rp) ; inter-space return. */
121
122
123 /* Variable names follow a coding style.
124 Please follow this (Apps Hungarian) style:
125
126 Structure/Variable Prefix
127 elf_link_hash_table "etab"
128 elf_link_hash_entry "eh"
129
130 elf32_hppa_link_hash_table "htab"
131 elf32_hppa_link_hash_entry "hh"
132
133 bfd_hash_table "btab"
134 bfd_hash_entry "bh"
135
136 bfd_hash_table containing stubs "bstab"
137 elf32_hppa_stub_hash_entry "hsh"
138
139 Always remember to use GNU Coding Style. */
140
141 #define PLT_ENTRY_SIZE 8
142 #define GOT_ENTRY_SIZE 4
143 #define LONG_BRANCH_STUB_SIZE 8
144 #define LONG_BRANCH_SHARED_STUB_SIZE 12
145 #define IMPORT_STUB_SIZE 20
146 #define IMPORT_SHARED_STUB_SIZE 32
147 #define EXPORT_STUB_SIZE 24
148 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
149
150 static const bfd_byte plt_stub[] =
151 {
152 0x0e, 0x80, 0x10, 0x95, /* 1: ldw 0(%r20),%r21 */
153 0xea, 0xa0, 0xc0, 0x00, /* bv %r0(%r21) */
154 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
155 #define PLT_STUB_ENTRY (3*4)
156 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
157 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
158 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
159 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
160 };
161
162 /* Section name for stubs is the associated section name plus this
163 string. */
164 #define STUB_SUFFIX ".stub"
165
166 /* We don't need to copy certain PC- or GP-relative dynamic relocs
167 into a shared object's dynamic section. All the relocs of the
168 limited class we are interested in, are absolute. */
169 #ifndef RELATIVE_DYNRELOCS
170 #define RELATIVE_DYNRELOCS 0
171 #define IS_ABSOLUTE_RELOC(r_type) 1
172 #define pc_dynrelocs(hh) 0
173 #endif
174
175 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
176 copying dynamic variables from a shared lib into an app's dynbss
177 section, and instead use a dynamic relocation to point into the
178 shared lib. */
179 #define ELIMINATE_COPY_RELOCS 1
180
181 enum elf32_hppa_stub_type
182 {
183 hppa_stub_long_branch,
184 hppa_stub_long_branch_shared,
185 hppa_stub_import,
186 hppa_stub_import_shared,
187 hppa_stub_export,
188 hppa_stub_none
189 };
190
191 struct elf32_hppa_stub_hash_entry
192 {
193 /* Base hash table entry structure. */
194 struct bfd_hash_entry bh_root;
195
196 /* The stub section. */
197 asection *stub_sec;
198
199 /* Offset within stub_sec of the beginning of this stub. */
200 bfd_vma stub_offset;
201
202 /* Given the symbol's value and its section we can determine its final
203 value when building the stubs (so the stub knows where to jump. */
204 bfd_vma target_value;
205 asection *target_section;
206
207 enum elf32_hppa_stub_type stub_type;
208
209 /* The symbol table entry, if any, that this was derived from. */
210 struct elf32_hppa_link_hash_entry *hh;
211
212 /* Where this stub is being called from, or, in the case of combined
213 stub sections, the first input section in the group. */
214 asection *id_sec;
215 };
216
217 enum _tls_type
218 {
219 GOT_UNKNOWN = 0,
220 GOT_NORMAL = 1,
221 GOT_TLS_GD = 2,
222 GOT_TLS_LDM = 4,
223 GOT_TLS_IE = 8
224 };
225
226 struct elf32_hppa_link_hash_entry
227 {
228 struct elf_link_hash_entry eh;
229
230 /* A pointer to the most recently used stub hash entry against this
231 symbol. */
232 struct elf32_hppa_stub_hash_entry *hsh_cache;
233
234 ENUM_BITFIELD (_tls_type) tls_type : 8;
235
236 /* Set if this symbol is used by a plabel reloc. */
237 unsigned int plabel:1;
238 };
239
240 struct elf32_hppa_link_hash_table
241 {
242 /* The main hash table. */
243 struct elf_link_hash_table etab;
244
245 /* The stub hash table. */
246 struct bfd_hash_table bstab;
247
248 /* Linker stub bfd. */
249 bfd *stub_bfd;
250
251 /* Linker call-backs. */
252 asection * (*add_stub_section) (const char *, asection *);
253 void (*layout_sections_again) (void);
254
255 /* Array to keep track of which stub sections have been created, and
256 information on stub grouping. */
257 struct map_stub
258 {
259 /* This is the section to which stubs in the group will be
260 attached. */
261 asection *link_sec;
262 /* The stub section. */
263 asection *stub_sec;
264 } *stub_group;
265
266 /* Assorted information used by elf32_hppa_size_stubs. */
267 unsigned int bfd_count;
268 unsigned int top_index;
269 asection **input_list;
270 Elf_Internal_Sym **all_local_syms;
271
272 /* Used during a final link to store the base of the text and data
273 segments so that we can perform SEGREL relocations. */
274 bfd_vma text_segment_base;
275 bfd_vma data_segment_base;
276
277 /* Whether we support multiple sub-spaces for shared libs. */
278 unsigned int multi_subspace:1;
279
280 /* Flags set when various size branches are detected. Used to
281 select suitable defaults for the stub group size. */
282 unsigned int has_12bit_branch:1;
283 unsigned int has_17bit_branch:1;
284 unsigned int has_22bit_branch:1;
285
286 /* Set if we need a .plt stub to support lazy dynamic linking. */
287 unsigned int need_plt_stub:1;
288
289 /* Small local sym cache. */
290 struct sym_cache sym_cache;
291
292 /* Data for LDM relocations. */
293 union
294 {
295 bfd_signed_vma refcount;
296 bfd_vma offset;
297 } tls_ldm_got;
298 };
299
300 /* Various hash macros and functions. */
301 #define hppa_link_hash_table(p) \
302 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
303 == HPPA32_ELF_DATA ? ((struct elf32_hppa_link_hash_table *) ((p)->hash)) : NULL)
304
305 #define hppa_elf_hash_entry(ent) \
306 ((struct elf32_hppa_link_hash_entry *)(ent))
307
308 #define hppa_stub_hash_entry(ent) \
309 ((struct elf32_hppa_stub_hash_entry *)(ent))
310
311 #define hppa_stub_hash_lookup(table, string, create, copy) \
312 ((struct elf32_hppa_stub_hash_entry *) \
313 bfd_hash_lookup ((table), (string), (create), (copy)))
314
315 #define hppa_elf_local_got_tls_type(abfd) \
316 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
317
318 #define hh_name(hh) \
319 (hh ? hh->eh.root.root.string : "<undef>")
320
321 #define eh_name(eh) \
322 (eh ? eh->root.root.string : "<undef>")
323
324 /* Assorted hash table functions. */
325
326 /* Initialize an entry in the stub hash table. */
327
328 static struct bfd_hash_entry *
329 stub_hash_newfunc (struct bfd_hash_entry *entry,
330 struct bfd_hash_table *table,
331 const char *string)
332 {
333 /* Allocate the structure if it has not already been allocated by a
334 subclass. */
335 if (entry == NULL)
336 {
337 entry = bfd_hash_allocate (table,
338 sizeof (struct elf32_hppa_stub_hash_entry));
339 if (entry == NULL)
340 return entry;
341 }
342
343 /* Call the allocation method of the superclass. */
344 entry = bfd_hash_newfunc (entry, table, string);
345 if (entry != NULL)
346 {
347 struct elf32_hppa_stub_hash_entry *hsh;
348
349 /* Initialize the local fields. */
350 hsh = hppa_stub_hash_entry (entry);
351 hsh->stub_sec = NULL;
352 hsh->stub_offset = 0;
353 hsh->target_value = 0;
354 hsh->target_section = NULL;
355 hsh->stub_type = hppa_stub_long_branch;
356 hsh->hh = NULL;
357 hsh->id_sec = NULL;
358 }
359
360 return entry;
361 }
362
363 /* Initialize an entry in the link hash table. */
364
365 static struct bfd_hash_entry *
366 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
367 struct bfd_hash_table *table,
368 const char *string)
369 {
370 /* Allocate the structure if it has not already been allocated by a
371 subclass. */
372 if (entry == NULL)
373 {
374 entry = bfd_hash_allocate (table,
375 sizeof (struct elf32_hppa_link_hash_entry));
376 if (entry == NULL)
377 return entry;
378 }
379
380 /* Call the allocation method of the superclass. */
381 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
382 if (entry != NULL)
383 {
384 struct elf32_hppa_link_hash_entry *hh;
385
386 /* Initialize the local fields. */
387 hh = hppa_elf_hash_entry (entry);
388 hh->hsh_cache = NULL;
389 hh->plabel = 0;
390 hh->tls_type = GOT_UNKNOWN;
391 }
392
393 return entry;
394 }
395
396 /* Free the derived linker hash table. */
397
398 static void
399 elf32_hppa_link_hash_table_free (bfd *obfd)
400 {
401 struct elf32_hppa_link_hash_table *htab
402 = (struct elf32_hppa_link_hash_table *) obfd->link.hash;
403
404 bfd_hash_table_free (&htab->bstab);
405 _bfd_elf_link_hash_table_free (obfd);
406 }
407
408 /* Create the derived linker hash table. The PA ELF port uses the derived
409 hash table to keep information specific to the PA ELF linker (without
410 using static variables). */
411
412 static struct bfd_link_hash_table *
413 elf32_hppa_link_hash_table_create (bfd *abfd)
414 {
415 struct elf32_hppa_link_hash_table *htab;
416 size_t amt = sizeof (*htab);
417
418 htab = bfd_zmalloc (amt);
419 if (htab == NULL)
420 return NULL;
421
422 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
423 sizeof (struct elf32_hppa_link_hash_entry),
424 HPPA32_ELF_DATA))
425 {
426 free (htab);
427 return NULL;
428 }
429
430 /* Init the stub hash table too. */
431 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
432 sizeof (struct elf32_hppa_stub_hash_entry)))
433 {
434 _bfd_elf_link_hash_table_free (abfd);
435 return NULL;
436 }
437 htab->etab.root.hash_table_free = elf32_hppa_link_hash_table_free;
438
439 htab->text_segment_base = (bfd_vma) -1;
440 htab->data_segment_base = (bfd_vma) -1;
441 return &htab->etab.root;
442 }
443
444 /* Initialize the linker stubs BFD so that we can use it for linker
445 created dynamic sections. */
446
447 void
448 elf32_hppa_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
449 {
450 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
451
452 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS32;
453 htab->etab.dynobj = abfd;
454 }
455
456 /* Build a name for an entry in the stub hash table. */
457
458 static char *
459 hppa_stub_name (const asection *input_section,
460 const asection *sym_sec,
461 const struct elf32_hppa_link_hash_entry *hh,
462 const Elf_Internal_Rela *rela)
463 {
464 char *stub_name;
465 bfd_size_type len;
466
467 if (hh)
468 {
469 len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
470 stub_name = bfd_malloc (len);
471 if (stub_name != NULL)
472 sprintf (stub_name, "%08x_%s+%x",
473 input_section->id & 0xffffffff,
474 hh_name (hh),
475 (int) rela->r_addend & 0xffffffff);
476 }
477 else
478 {
479 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
480 stub_name = bfd_malloc (len);
481 if (stub_name != NULL)
482 sprintf (stub_name, "%08x_%x:%x+%x",
483 input_section->id & 0xffffffff,
484 sym_sec->id & 0xffffffff,
485 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
486 (int) rela->r_addend & 0xffffffff);
487 }
488 return stub_name;
489 }
490
491 /* Look up an entry in the stub hash. Stub entries are cached because
492 creating the stub name takes a bit of time. */
493
494 static struct elf32_hppa_stub_hash_entry *
495 hppa_get_stub_entry (const asection *input_section,
496 const asection *sym_sec,
497 struct elf32_hppa_link_hash_entry *hh,
498 const Elf_Internal_Rela *rela,
499 struct elf32_hppa_link_hash_table *htab)
500 {
501 struct elf32_hppa_stub_hash_entry *hsh_entry;
502 const asection *id_sec;
503
504 /* If this input section is part of a group of sections sharing one
505 stub section, then use the id of the first section in the group.
506 Stub names need to include a section id, as there may well be
507 more than one stub used to reach say, printf, and we need to
508 distinguish between them. */
509 id_sec = htab->stub_group[input_section->id].link_sec;
510 if (id_sec == NULL)
511 return NULL;
512
513 if (hh != NULL && hh->hsh_cache != NULL
514 && hh->hsh_cache->hh == hh
515 && hh->hsh_cache->id_sec == id_sec)
516 {
517 hsh_entry = hh->hsh_cache;
518 }
519 else
520 {
521 char *stub_name;
522
523 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
524 if (stub_name == NULL)
525 return NULL;
526
527 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
528 stub_name, FALSE, FALSE);
529 if (hh != NULL)
530 hh->hsh_cache = hsh_entry;
531
532 free (stub_name);
533 }
534
535 return hsh_entry;
536 }
537
538 /* Add a new stub entry to the stub hash. Not all fields of the new
539 stub entry are initialised. */
540
541 static struct elf32_hppa_stub_hash_entry *
542 hppa_add_stub (const char *stub_name,
543 asection *section,
544 struct elf32_hppa_link_hash_table *htab)
545 {
546 asection *link_sec;
547 asection *stub_sec;
548 struct elf32_hppa_stub_hash_entry *hsh;
549
550 link_sec = htab->stub_group[section->id].link_sec;
551 stub_sec = htab->stub_group[section->id].stub_sec;
552 if (stub_sec == NULL)
553 {
554 stub_sec = htab->stub_group[link_sec->id].stub_sec;
555 if (stub_sec == NULL)
556 {
557 size_t namelen;
558 bfd_size_type len;
559 char *s_name;
560
561 namelen = strlen (link_sec->name);
562 len = namelen + sizeof (STUB_SUFFIX);
563 s_name = bfd_alloc (htab->stub_bfd, len);
564 if (s_name == NULL)
565 return NULL;
566
567 memcpy (s_name, link_sec->name, namelen);
568 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
569 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
570 if (stub_sec == NULL)
571 return NULL;
572 htab->stub_group[link_sec->id].stub_sec = stub_sec;
573 }
574 htab->stub_group[section->id].stub_sec = stub_sec;
575 }
576
577 /* Enter this entry into the linker stub hash table. */
578 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
579 TRUE, FALSE);
580 if (hsh == NULL)
581 {
582 /* xgettext:c-format */
583 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
584 section->owner, stub_name);
585 return NULL;
586 }
587
588 hsh->stub_sec = stub_sec;
589 hsh->stub_offset = 0;
590 hsh->id_sec = link_sec;
591 return hsh;
592 }
593
594 /* Determine the type of stub needed, if any, for a call. */
595
596 static enum elf32_hppa_stub_type
597 hppa_type_of_stub (asection *input_sec,
598 const Elf_Internal_Rela *rela,
599 struct elf32_hppa_link_hash_entry *hh,
600 bfd_vma destination,
601 struct bfd_link_info *info)
602 {
603 bfd_vma location;
604 bfd_vma branch_offset;
605 bfd_vma max_branch_offset;
606 unsigned int r_type;
607
608 if (hh != NULL
609 && hh->eh.plt.offset != (bfd_vma) -1
610 && hh->eh.dynindx != -1
611 && !hh->plabel
612 && (bfd_link_pic (info)
613 || !hh->eh.def_regular
614 || hh->eh.root.type == bfd_link_hash_defweak))
615 {
616 /* We need an import stub. Decide between hppa_stub_import
617 and hppa_stub_import_shared later. */
618 return hppa_stub_import;
619 }
620
621 if (destination == (bfd_vma) -1)
622 return hppa_stub_none;
623
624 /* Determine where the call point is. */
625 location = (input_sec->output_offset
626 + input_sec->output_section->vma
627 + rela->r_offset);
628
629 branch_offset = destination - location - 8;
630 r_type = ELF32_R_TYPE (rela->r_info);
631
632 /* Determine if a long branch stub is needed. parisc branch offsets
633 are relative to the second instruction past the branch, ie. +8
634 bytes on from the branch instruction location. The offset is
635 signed and counts in units of 4 bytes. */
636 if (r_type == (unsigned int) R_PARISC_PCREL17F)
637 max_branch_offset = (1 << (17 - 1)) << 2;
638
639 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
640 max_branch_offset = (1 << (12 - 1)) << 2;
641
642 else /* R_PARISC_PCREL22F. */
643 max_branch_offset = (1 << (22 - 1)) << 2;
644
645 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
646 return hppa_stub_long_branch;
647
648 return hppa_stub_none;
649 }
650
651 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
652 IN_ARG contains the link info pointer. */
653
654 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
655 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
656
657 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
658 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
659 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
660
661 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
662 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
663 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
664 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
665
666 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
667 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
668
669 #define LDO_R1_R22 0x34360000 /* ldo RR'XXX(%r1),%r22 */
670 #define LDW_R22_R21 0x0ec01095 /* ldw 0(%r22),%r21 */
671 #define LDW_R22_R19 0x0ec81093 /* ldw 4(%r22),%r19 */
672
673 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
674 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
675 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
676 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
677
678 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
679 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
680 #define NOP 0x08000240 /* nop */
681 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
682 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
683 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
684
685 #ifndef R19_STUBS
686 #define R19_STUBS 1
687 #endif
688
689 #if R19_STUBS
690 #define LDW_R1_DLT LDW_R1_R19
691 #else
692 #define LDW_R1_DLT LDW_R1_DP
693 #endif
694
695 static bfd_boolean
696 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
697 {
698 struct elf32_hppa_stub_hash_entry *hsh;
699 struct bfd_link_info *info;
700 struct elf32_hppa_link_hash_table *htab;
701 asection *stub_sec;
702 bfd *stub_bfd;
703 bfd_byte *loc;
704 bfd_vma sym_value;
705 bfd_vma insn;
706 bfd_vma off;
707 int val;
708 int size;
709
710 /* Massage our args to the form they really have. */
711 hsh = hppa_stub_hash_entry (bh);
712 info = (struct bfd_link_info *)in_arg;
713
714 htab = hppa_link_hash_table (info);
715 if (htab == NULL)
716 return FALSE;
717
718 stub_sec = hsh->stub_sec;
719
720 /* Make a note of the offset within the stubs for this entry. */
721 hsh->stub_offset = stub_sec->size;
722 loc = stub_sec->contents + hsh->stub_offset;
723
724 stub_bfd = stub_sec->owner;
725
726 switch (hsh->stub_type)
727 {
728 case hppa_stub_long_branch:
729 /* Fail if the target section could not be assigned to an output
730 section. The user should fix his linker script. */
731 if (hsh->target_section->output_section == NULL
732 && info->non_contiguous_regions)
733 info->callbacks->einfo (_("%F%P: Could not assign '%pA' to an output "
734 "section. Retry without "
735 "--enable-non-contiguous-regions.\n"),
736 hsh->target_section);
737
738 /* Create the long branch. A long branch is formed with "ldil"
739 loading the upper bits of the target address into a register,
740 then branching with "be" which adds in the lower bits.
741 The "be" has its delay slot nullified. */
742 sym_value = (hsh->target_value
743 + hsh->target_section->output_offset
744 + hsh->target_section->output_section->vma);
745
746 val = hppa_field_adjust (sym_value, 0, e_lrsel);
747 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
748 bfd_put_32 (stub_bfd, insn, loc);
749
750 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
751 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
752 bfd_put_32 (stub_bfd, insn, loc + 4);
753
754 size = LONG_BRANCH_STUB_SIZE;
755 break;
756
757 case hppa_stub_long_branch_shared:
758 /* Fail if the target section could not be assigned to an output
759 section. The user should fix his linker script. */
760 if (hsh->target_section->output_section == NULL
761 && info->non_contiguous_regions)
762 info->callbacks->einfo (_("%F%P: Could not assign %pA to an output "
763 "section. Retry without "
764 "--enable-non-contiguous-regions.\n"),
765 hsh->target_section);
766
767 /* Branches are relative. This is where we are going to. */
768 sym_value = (hsh->target_value
769 + hsh->target_section->output_offset
770 + hsh->target_section->output_section->vma);
771
772 /* And this is where we are coming from, more or less. */
773 sym_value -= (hsh->stub_offset
774 + stub_sec->output_offset
775 + stub_sec->output_section->vma);
776
777 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
778 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
779 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
780 bfd_put_32 (stub_bfd, insn, loc + 4);
781
782 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
783 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
784 bfd_put_32 (stub_bfd, insn, loc + 8);
785 size = LONG_BRANCH_SHARED_STUB_SIZE;
786 break;
787
788 case hppa_stub_import:
789 case hppa_stub_import_shared:
790 off = hsh->hh->eh.plt.offset;
791 if (off >= (bfd_vma) -2)
792 abort ();
793
794 off &= ~ (bfd_vma) 1;
795 sym_value = (off
796 + htab->etab.splt->output_offset
797 + htab->etab.splt->output_section->vma
798 - elf_gp (htab->etab.splt->output_section->owner));
799
800 insn = ADDIL_DP;
801 #if R19_STUBS
802 if (hsh->stub_type == hppa_stub_import_shared)
803 insn = ADDIL_R19;
804 #endif
805
806 /* Load function descriptor address into register %r22. It is
807 sometimes needed for lazy binding. */
808 val = hppa_field_adjust (sym_value, 0, e_lrsel),
809 insn = hppa_rebuild_insn ((int) insn, val, 21);
810 bfd_put_32 (stub_bfd, insn, loc);
811
812 val = hppa_field_adjust (sym_value, 0, e_rrsel);
813 insn = hppa_rebuild_insn ((int) LDO_R1_R22, val, 14);
814 bfd_put_32 (stub_bfd, insn, loc + 4);
815
816 bfd_put_32 (stub_bfd, (bfd_vma) LDW_R22_R21, loc + 8);
817
818 if (htab->multi_subspace)
819 {
820 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
821 bfd_put_32 (stub_bfd, (bfd_vma) LDW_R22_R19, loc + 16);
822 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 20);
823 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 24);
824 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 28);
825
826 size = IMPORT_SHARED_STUB_SIZE;
827 }
828 else
829 {
830 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 12);
831 bfd_put_32 (stub_bfd, (bfd_vma) LDW_R22_R19, loc + 16);
832
833 size = IMPORT_STUB_SIZE;
834 }
835
836 break;
837
838 case hppa_stub_export:
839 /* Fail if the target section could not be assigned to an output
840 section. The user should fix his linker script. */
841 if (hsh->target_section->output_section == NULL
842 && info->non_contiguous_regions)
843 info->callbacks->einfo (_("%F%P: Could not assign %pA to an output "
844 "section. Retry without "
845 "--enable-non-contiguous-regions.\n"),
846 hsh->target_section);
847
848 /* Branches are relative. This is where we are going to. */
849 sym_value = (hsh->target_value
850 + hsh->target_section->output_offset
851 + hsh->target_section->output_section->vma);
852
853 /* And this is where we are coming from. */
854 sym_value -= (hsh->stub_offset
855 + stub_sec->output_offset
856 + stub_sec->output_section->vma);
857
858 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
859 && (!htab->has_22bit_branch
860 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
861 {
862 _bfd_error_handler
863 /* xgettext:c-format */
864 (_("%pB(%pA+%#" PRIx64 "): "
865 "cannot reach %s, recompile with -ffunction-sections"),
866 hsh->target_section->owner,
867 stub_sec,
868 (uint64_t) hsh->stub_offset,
869 hsh->bh_root.string);
870 bfd_set_error (bfd_error_bad_value);
871 return FALSE;
872 }
873
874 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
875 if (!htab->has_22bit_branch)
876 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
877 else
878 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
879 bfd_put_32 (stub_bfd, insn, loc);
880
881 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
882 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
883 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
884 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
885 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
886
887 /* Point the function symbol at the stub. */
888 hsh->hh->eh.root.u.def.section = stub_sec;
889 hsh->hh->eh.root.u.def.value = stub_sec->size;
890
891 size = EXPORT_STUB_SIZE;
892 break;
893
894 default:
895 BFD_FAIL ();
896 return FALSE;
897 }
898
899 stub_sec->size += size;
900 return TRUE;
901 }
902
903 #undef LDIL_R1
904 #undef BE_SR4_R1
905 #undef BL_R1
906 #undef ADDIL_R1
907 #undef DEPI_R1
908 #undef LDW_R1_R21
909 #undef LDW_R1_DLT
910 #undef LDW_R1_R19
911 #undef ADDIL_R19
912 #undef LDW_R1_DP
913 #undef LDSID_R21_R1
914 #undef MTSP_R1
915 #undef BE_SR0_R21
916 #undef STW_RP
917 #undef BV_R0_R21
918 #undef BL_RP
919 #undef NOP
920 #undef LDW_RP
921 #undef LDSID_RP_R1
922 #undef BE_SR0_RP
923
924 /* As above, but don't actually build the stub. Just bump offset so
925 we know stub section sizes. */
926
927 static bfd_boolean
928 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
929 {
930 struct elf32_hppa_stub_hash_entry *hsh;
931 struct elf32_hppa_link_hash_table *htab;
932 int size;
933
934 /* Massage our args to the form they really have. */
935 hsh = hppa_stub_hash_entry (bh);
936 htab = in_arg;
937
938 if (hsh->stub_type == hppa_stub_long_branch)
939 size = LONG_BRANCH_STUB_SIZE;
940 else if (hsh->stub_type == hppa_stub_long_branch_shared)
941 size = LONG_BRANCH_SHARED_STUB_SIZE;
942 else if (hsh->stub_type == hppa_stub_export)
943 size = EXPORT_STUB_SIZE;
944 else /* hppa_stub_import or hppa_stub_import_shared. */
945 {
946 if (htab->multi_subspace)
947 size = IMPORT_SHARED_STUB_SIZE;
948 else
949 size = IMPORT_STUB_SIZE;
950 }
951
952 hsh->stub_sec->size += size;
953 return TRUE;
954 }
955
956 /* Return nonzero if ABFD represents an HPPA ELF32 file.
957 Additionally we set the default architecture and machine. */
958
959 static bfd_boolean
960 elf32_hppa_object_p (bfd *abfd)
961 {
962 Elf_Internal_Ehdr * i_ehdrp;
963 unsigned int flags;
964
965 i_ehdrp = elf_elfheader (abfd);
966 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
967 {
968 /* GCC on hppa-linux produces binaries with OSABI=GNU,
969 but the kernel produces corefiles with OSABI=SysV. */
970 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU &&
971 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
972 return FALSE;
973 }
974 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
975 {
976 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
977 but the kernel produces corefiles with OSABI=SysV. */
978 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
979 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
980 return FALSE;
981 }
982 else
983 {
984 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
985 return FALSE;
986 }
987
988 flags = i_ehdrp->e_flags;
989 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
990 {
991 case EFA_PARISC_1_0:
992 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
993 case EFA_PARISC_1_1:
994 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
995 case EFA_PARISC_2_0:
996 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
997 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
998 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
999 }
1000 return TRUE;
1001 }
1002
1003 /* Create the .plt and .got sections, and set up our hash table
1004 short-cuts to various dynamic sections. */
1005
1006 static bfd_boolean
1007 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
1008 {
1009 struct elf32_hppa_link_hash_table *htab;
1010 struct elf_link_hash_entry *eh;
1011
1012 /* Don't try to create the .plt and .got twice. */
1013 htab = hppa_link_hash_table (info);
1014 if (htab == NULL)
1015 return FALSE;
1016 if (htab->etab.splt != NULL)
1017 return TRUE;
1018
1019 /* Call the generic code to do most of the work. */
1020 if (! _bfd_elf_create_dynamic_sections (abfd, info))
1021 return FALSE;
1022
1023 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
1024 application, because __canonicalize_funcptr_for_compare needs it. */
1025 eh = elf_hash_table (info)->hgot;
1026 eh->forced_local = 0;
1027 eh->other = STV_DEFAULT;
1028 return bfd_elf_link_record_dynamic_symbol (info, eh);
1029 }
1030
1031 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1032
1033 static void
1034 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1035 struct elf_link_hash_entry *eh_dir,
1036 struct elf_link_hash_entry *eh_ind)
1037 {
1038 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1039
1040 hh_dir = hppa_elf_hash_entry (eh_dir);
1041 hh_ind = hppa_elf_hash_entry (eh_ind);
1042
1043 if (eh_ind->dyn_relocs != NULL
1044 && eh_ind->root.type == bfd_link_hash_indirect)
1045 {
1046 if (eh_dir->dyn_relocs != NULL)
1047 {
1048 struct elf_dyn_relocs **hdh_pp;
1049 struct elf_dyn_relocs *hdh_p;
1050
1051 /* Add reloc counts against the indirect sym to the direct sym
1052 list. Merge any entries against the same section. */
1053 for (hdh_pp = &eh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1054 {
1055 struct elf_dyn_relocs *hdh_q;
1056
1057 for (hdh_q = eh_dir->dyn_relocs;
1058 hdh_q != NULL;
1059 hdh_q = hdh_q->next)
1060 if (hdh_q->sec == hdh_p->sec)
1061 {
1062 #if RELATIVE_DYNRELOCS
1063 hdh_q->pc_count += hdh_p->pc_count;
1064 #endif
1065 hdh_q->count += hdh_p->count;
1066 *hdh_pp = hdh_p->next;
1067 break;
1068 }
1069 if (hdh_q == NULL)
1070 hdh_pp = &hdh_p->next;
1071 }
1072 *hdh_pp = eh_dir->dyn_relocs;
1073 }
1074
1075 eh_dir->dyn_relocs = eh_ind->dyn_relocs;
1076 eh_ind->dyn_relocs = NULL;
1077 }
1078
1079 if (eh_ind->root.type == bfd_link_hash_indirect)
1080 {
1081 hh_dir->plabel |= hh_ind->plabel;
1082 hh_dir->tls_type |= hh_ind->tls_type;
1083 hh_ind->tls_type = GOT_UNKNOWN;
1084 }
1085
1086 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1087 }
1088
1089 static int
1090 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1091 int r_type, int is_local ATTRIBUTE_UNUSED)
1092 {
1093 /* For now we don't support linker optimizations. */
1094 return r_type;
1095 }
1096
1097 /* Return a pointer to the local GOT, PLT and TLS reference counts
1098 for ABFD. Returns NULL if the storage allocation fails. */
1099
1100 static bfd_signed_vma *
1101 hppa32_elf_local_refcounts (bfd *abfd)
1102 {
1103 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1104 bfd_signed_vma *local_refcounts;
1105
1106 local_refcounts = elf_local_got_refcounts (abfd);
1107 if (local_refcounts == NULL)
1108 {
1109 bfd_size_type size;
1110
1111 /* Allocate space for local GOT and PLT reference
1112 counts. Done this way to save polluting elf_obj_tdata
1113 with another target specific pointer. */
1114 size = symtab_hdr->sh_info;
1115 size *= 2 * sizeof (bfd_signed_vma);
1116 /* Add in space to store the local GOT TLS types. */
1117 size += symtab_hdr->sh_info;
1118 local_refcounts = bfd_zalloc (abfd, size);
1119 if (local_refcounts == NULL)
1120 return NULL;
1121 elf_local_got_refcounts (abfd) = local_refcounts;
1122 memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN,
1123 symtab_hdr->sh_info);
1124 }
1125 return local_refcounts;
1126 }
1127
1128
1129 /* Look through the relocs for a section during the first phase, and
1130 calculate needed space in the global offset table, procedure linkage
1131 table, and dynamic reloc sections. At this point we haven't
1132 necessarily read all the input files. */
1133
1134 static bfd_boolean
1135 elf32_hppa_check_relocs (bfd *abfd,
1136 struct bfd_link_info *info,
1137 asection *sec,
1138 const Elf_Internal_Rela *relocs)
1139 {
1140 Elf_Internal_Shdr *symtab_hdr;
1141 struct elf_link_hash_entry **eh_syms;
1142 const Elf_Internal_Rela *rela;
1143 const Elf_Internal_Rela *rela_end;
1144 struct elf32_hppa_link_hash_table *htab;
1145 asection *sreloc;
1146
1147 if (bfd_link_relocatable (info))
1148 return TRUE;
1149
1150 htab = hppa_link_hash_table (info);
1151 if (htab == NULL)
1152 return FALSE;
1153 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1154 eh_syms = elf_sym_hashes (abfd);
1155 sreloc = NULL;
1156
1157 rela_end = relocs + sec->reloc_count;
1158 for (rela = relocs; rela < rela_end; rela++)
1159 {
1160 enum {
1161 NEED_GOT = 1,
1162 NEED_PLT = 2,
1163 NEED_DYNREL = 4,
1164 PLT_PLABEL = 8
1165 };
1166
1167 unsigned int r_symndx, r_type;
1168 struct elf32_hppa_link_hash_entry *hh;
1169 int need_entry = 0;
1170
1171 r_symndx = ELF32_R_SYM (rela->r_info);
1172
1173 if (r_symndx < symtab_hdr->sh_info)
1174 hh = NULL;
1175 else
1176 {
1177 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1178 while (hh->eh.root.type == bfd_link_hash_indirect
1179 || hh->eh.root.type == bfd_link_hash_warning)
1180 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1181 }
1182
1183 r_type = ELF32_R_TYPE (rela->r_info);
1184 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1185
1186 switch (r_type)
1187 {
1188 case R_PARISC_DLTIND14F:
1189 case R_PARISC_DLTIND14R:
1190 case R_PARISC_DLTIND21L:
1191 /* This symbol requires a global offset table entry. */
1192 need_entry = NEED_GOT;
1193 break;
1194
1195 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1196 case R_PARISC_PLABEL21L:
1197 case R_PARISC_PLABEL32:
1198 /* If the addend is non-zero, we break badly. */
1199 if (rela->r_addend != 0)
1200 abort ();
1201
1202 /* If we are creating a shared library, then we need to
1203 create a PLT entry for all PLABELs, because PLABELs with
1204 local symbols may be passed via a pointer to another
1205 object. Additionally, output a dynamic relocation
1206 pointing to the PLT entry.
1207
1208 For executables, the original 32-bit ABI allowed two
1209 different styles of PLABELs (function pointers): For
1210 global functions, the PLABEL word points into the .plt
1211 two bytes past a (function address, gp) pair, and for
1212 local functions the PLABEL points directly at the
1213 function. The magic +2 for the first type allows us to
1214 differentiate between the two. As you can imagine, this
1215 is a real pain when it comes to generating code to call
1216 functions indirectly or to compare function pointers.
1217 We avoid the mess by always pointing a PLABEL into the
1218 .plt, even for local functions. */
1219 need_entry = PLT_PLABEL | NEED_PLT;
1220 if (bfd_link_pic (info))
1221 need_entry |= NEED_DYNREL;
1222 break;
1223
1224 case R_PARISC_PCREL12F:
1225 htab->has_12bit_branch = 1;
1226 goto branch_common;
1227
1228 case R_PARISC_PCREL17C:
1229 case R_PARISC_PCREL17F:
1230 htab->has_17bit_branch = 1;
1231 goto branch_common;
1232
1233 case R_PARISC_PCREL22F:
1234 htab->has_22bit_branch = 1;
1235 branch_common:
1236 /* Function calls might need to go through the .plt, and
1237 might require long branch stubs. */
1238 if (hh == NULL)
1239 {
1240 /* We know local syms won't need a .plt entry, and if
1241 they need a long branch stub we can't guarantee that
1242 we can reach the stub. So just flag an error later
1243 if we're doing a shared link and find we need a long
1244 branch stub. */
1245 continue;
1246 }
1247 else
1248 {
1249 /* Global symbols will need a .plt entry if they remain
1250 global, and in most cases won't need a long branch
1251 stub. Unfortunately, we have to cater for the case
1252 where a symbol is forced local by versioning, or due
1253 to symbolic linking, and we lose the .plt entry. */
1254 need_entry = NEED_PLT;
1255 if (hh->eh.type == STT_PARISC_MILLI)
1256 need_entry = 0;
1257 }
1258 break;
1259
1260 case R_PARISC_SEGBASE: /* Used to set segment base. */
1261 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1262 case R_PARISC_PCREL14F: /* PC relative load/store. */
1263 case R_PARISC_PCREL14R:
1264 case R_PARISC_PCREL17R: /* External branches. */
1265 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1266 case R_PARISC_PCREL32:
1267 /* We don't need to propagate the relocation if linking a
1268 shared object since these are section relative. */
1269 continue;
1270
1271 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1272 case R_PARISC_DPREL14R:
1273 case R_PARISC_DPREL21L:
1274 if (bfd_link_pic (info))
1275 {
1276 _bfd_error_handler
1277 /* xgettext:c-format */
1278 (_("%pB: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1279 abfd,
1280 elf_hppa_howto_table[r_type].name);
1281 bfd_set_error (bfd_error_bad_value);
1282 return FALSE;
1283 }
1284 /* Fall through. */
1285
1286 case R_PARISC_DIR17F: /* Used for external branches. */
1287 case R_PARISC_DIR17R:
1288 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1289 case R_PARISC_DIR14R:
1290 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1291 case R_PARISC_DIR32: /* .word relocs. */
1292 /* We may want to output a dynamic relocation later. */
1293 need_entry = NEED_DYNREL;
1294 break;
1295
1296 /* This relocation describes the C++ object vtable hierarchy.
1297 Reconstruct it for later use during GC. */
1298 case R_PARISC_GNU_VTINHERIT:
1299 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1300 return FALSE;
1301 continue;
1302
1303 /* This relocation describes which C++ vtable entries are actually
1304 used. Record for later use during GC. */
1305 case R_PARISC_GNU_VTENTRY:
1306 if (!bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1307 return FALSE;
1308 continue;
1309
1310 case R_PARISC_TLS_GD21L:
1311 case R_PARISC_TLS_GD14R:
1312 case R_PARISC_TLS_LDM21L:
1313 case R_PARISC_TLS_LDM14R:
1314 need_entry = NEED_GOT;
1315 break;
1316
1317 case R_PARISC_TLS_IE21L:
1318 case R_PARISC_TLS_IE14R:
1319 if (bfd_link_dll (info))
1320 info->flags |= DF_STATIC_TLS;
1321 need_entry = NEED_GOT;
1322 break;
1323
1324 default:
1325 continue;
1326 }
1327
1328 /* Now carry out our orders. */
1329 if (need_entry & NEED_GOT)
1330 {
1331 int tls_type = GOT_NORMAL;
1332
1333 switch (r_type)
1334 {
1335 default:
1336 break;
1337 case R_PARISC_TLS_GD21L:
1338 case R_PARISC_TLS_GD14R:
1339 tls_type = GOT_TLS_GD;
1340 break;
1341 case R_PARISC_TLS_LDM21L:
1342 case R_PARISC_TLS_LDM14R:
1343 tls_type = GOT_TLS_LDM;
1344 break;
1345 case R_PARISC_TLS_IE21L:
1346 case R_PARISC_TLS_IE14R:
1347 tls_type = GOT_TLS_IE;
1348 break;
1349 }
1350
1351 /* Allocate space for a GOT entry, as well as a dynamic
1352 relocation for this entry. */
1353 if (htab->etab.sgot == NULL)
1354 {
1355 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1356 return FALSE;
1357 }
1358
1359 if (hh != NULL)
1360 {
1361 if (tls_type == GOT_TLS_LDM)
1362 htab->tls_ldm_got.refcount += 1;
1363 else
1364 hh->eh.got.refcount += 1;
1365 hh->tls_type |= tls_type;
1366 }
1367 else
1368 {
1369 bfd_signed_vma *local_got_refcounts;
1370
1371 /* This is a global offset table entry for a local symbol. */
1372 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1373 if (local_got_refcounts == NULL)
1374 return FALSE;
1375 if (tls_type == GOT_TLS_LDM)
1376 htab->tls_ldm_got.refcount += 1;
1377 else
1378 local_got_refcounts[r_symndx] += 1;
1379
1380 hppa_elf_local_got_tls_type (abfd) [r_symndx] |= tls_type;
1381 }
1382 }
1383
1384 if (need_entry & NEED_PLT)
1385 {
1386 /* If we are creating a shared library, and this is a reloc
1387 against a weak symbol or a global symbol in a dynamic
1388 object, then we will be creating an import stub and a
1389 .plt entry for the symbol. Similarly, on a normal link
1390 to symbols defined in a dynamic object we'll need the
1391 import stub and a .plt entry. We don't know yet whether
1392 the symbol is defined or not, so make an entry anyway and
1393 clean up later in adjust_dynamic_symbol. */
1394 if ((sec->flags & SEC_ALLOC) != 0)
1395 {
1396 if (hh != NULL)
1397 {
1398 hh->eh.needs_plt = 1;
1399 hh->eh.plt.refcount += 1;
1400
1401 /* If this .plt entry is for a plabel, mark it so
1402 that adjust_dynamic_symbol will keep the entry
1403 even if it appears to be local. */
1404 if (need_entry & PLT_PLABEL)
1405 hh->plabel = 1;
1406 }
1407 else if (need_entry & PLT_PLABEL)
1408 {
1409 bfd_signed_vma *local_got_refcounts;
1410 bfd_signed_vma *local_plt_refcounts;
1411
1412 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1413 if (local_got_refcounts == NULL)
1414 return FALSE;
1415 local_plt_refcounts = (local_got_refcounts
1416 + symtab_hdr->sh_info);
1417 local_plt_refcounts[r_symndx] += 1;
1418 }
1419 }
1420 }
1421
1422 if ((need_entry & NEED_DYNREL) != 0
1423 && (sec->flags & SEC_ALLOC) != 0)
1424 {
1425 /* Flag this symbol as having a non-got, non-plt reference
1426 so that we generate copy relocs if it turns out to be
1427 dynamic. */
1428 if (hh != NULL)
1429 hh->eh.non_got_ref = 1;
1430
1431 /* If we are creating a shared library then we need to copy
1432 the reloc into the shared library. However, if we are
1433 linking with -Bsymbolic, we need only copy absolute
1434 relocs or relocs against symbols that are not defined in
1435 an object we are including in the link. PC- or DP- or
1436 DLT-relative relocs against any local sym or global sym
1437 with DEF_REGULAR set, can be discarded. At this point we
1438 have not seen all the input files, so it is possible that
1439 DEF_REGULAR is not set now but will be set later (it is
1440 never cleared). We account for that possibility below by
1441 storing information in the dyn_relocs field of the
1442 hash table entry.
1443
1444 A similar situation to the -Bsymbolic case occurs when
1445 creating shared libraries and symbol visibility changes
1446 render the symbol local.
1447
1448 As it turns out, all the relocs we will be creating here
1449 are absolute, so we cannot remove them on -Bsymbolic
1450 links or visibility changes anyway. A STUB_REL reloc
1451 is absolute too, as in that case it is the reloc in the
1452 stub we will be creating, rather than copying the PCREL
1453 reloc in the branch.
1454
1455 If on the other hand, we are creating an executable, we
1456 may need to keep relocations for symbols satisfied by a
1457 dynamic library if we manage to avoid copy relocs for the
1458 symbol. */
1459 if ((bfd_link_pic (info)
1460 && (IS_ABSOLUTE_RELOC (r_type)
1461 || (hh != NULL
1462 && (!SYMBOLIC_BIND (info, &hh->eh)
1463 || hh->eh.root.type == bfd_link_hash_defweak
1464 || !hh->eh.def_regular))))
1465 || (ELIMINATE_COPY_RELOCS
1466 && !bfd_link_pic (info)
1467 && hh != NULL
1468 && (hh->eh.root.type == bfd_link_hash_defweak
1469 || !hh->eh.def_regular)))
1470 {
1471 struct elf_dyn_relocs *hdh_p;
1472 struct elf_dyn_relocs **hdh_head;
1473
1474 /* Create a reloc section in dynobj and make room for
1475 this reloc. */
1476 if (sreloc == NULL)
1477 {
1478 sreloc = _bfd_elf_make_dynamic_reloc_section
1479 (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
1480
1481 if (sreloc == NULL)
1482 {
1483 bfd_set_error (bfd_error_bad_value);
1484 return FALSE;
1485 }
1486 }
1487
1488 /* If this is a global symbol, we count the number of
1489 relocations we need for this symbol. */
1490 if (hh != NULL)
1491 {
1492 hdh_head = &hh->eh.dyn_relocs;
1493 }
1494 else
1495 {
1496 /* Track dynamic relocs needed for local syms too.
1497 We really need local syms available to do this
1498 easily. Oh well. */
1499 asection *sr;
1500 void *vpp;
1501 Elf_Internal_Sym *isym;
1502
1503 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1504 abfd, r_symndx);
1505 if (isym == NULL)
1506 return FALSE;
1507
1508 sr = bfd_section_from_elf_index (abfd, isym->st_shndx);
1509 if (sr == NULL)
1510 sr = sec;
1511
1512 vpp = &elf_section_data (sr)->local_dynrel;
1513 hdh_head = (struct elf_dyn_relocs **) vpp;
1514 }
1515
1516 hdh_p = *hdh_head;
1517 if (hdh_p == NULL || hdh_p->sec != sec)
1518 {
1519 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1520 if (hdh_p == NULL)
1521 return FALSE;
1522 hdh_p->next = *hdh_head;
1523 *hdh_head = hdh_p;
1524 hdh_p->sec = sec;
1525 hdh_p->count = 0;
1526 #if RELATIVE_DYNRELOCS
1527 hdh_p->pc_count = 0;
1528 #endif
1529 }
1530
1531 hdh_p->count += 1;
1532 #if RELATIVE_DYNRELOCS
1533 if (!IS_ABSOLUTE_RELOC (rtype))
1534 hdh_p->pc_count += 1;
1535 #endif
1536 }
1537 }
1538 }
1539
1540 return TRUE;
1541 }
1542
1543 /* Return the section that should be marked against garbage collection
1544 for a given relocation. */
1545
1546 static asection *
1547 elf32_hppa_gc_mark_hook (asection *sec,
1548 struct bfd_link_info *info,
1549 Elf_Internal_Rela *rela,
1550 struct elf_link_hash_entry *hh,
1551 Elf_Internal_Sym *sym)
1552 {
1553 if (hh != NULL)
1554 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1555 {
1556 case R_PARISC_GNU_VTINHERIT:
1557 case R_PARISC_GNU_VTENTRY:
1558 return NULL;
1559 }
1560
1561 return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1562 }
1563
1564 /* Support for core dump NOTE sections. */
1565
1566 static bfd_boolean
1567 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1568 {
1569 int offset;
1570 size_t size;
1571
1572 switch (note->descsz)
1573 {
1574 default:
1575 return FALSE;
1576
1577 case 396: /* Linux/hppa */
1578 /* pr_cursig */
1579 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1580
1581 /* pr_pid */
1582 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
1583
1584 /* pr_reg */
1585 offset = 72;
1586 size = 320;
1587
1588 break;
1589 }
1590
1591 /* Make a ".reg/999" section. */
1592 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1593 size, note->descpos + offset);
1594 }
1595
1596 static bfd_boolean
1597 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1598 {
1599 switch (note->descsz)
1600 {
1601 default:
1602 return FALSE;
1603
1604 case 124: /* Linux/hppa elf_prpsinfo. */
1605 elf_tdata (abfd)->core->program
1606 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1607 elf_tdata (abfd)->core->command
1608 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1609 }
1610
1611 /* Note that for some reason, a spurious space is tacked
1612 onto the end of the args in some (at least one anyway)
1613 implementations, so strip it off if it exists. */
1614 {
1615 char *command = elf_tdata (abfd)->core->command;
1616 int n = strlen (command);
1617
1618 if (0 < n && command[n - 1] == ' ')
1619 command[n - 1] = '\0';
1620 }
1621
1622 return TRUE;
1623 }
1624
1625 /* Our own version of hide_symbol, so that we can keep plt entries for
1626 plabels. */
1627
1628 static void
1629 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1630 struct elf_link_hash_entry *eh,
1631 bfd_boolean force_local)
1632 {
1633 if (force_local)
1634 {
1635 eh->forced_local = 1;
1636 if (eh->dynindx != -1)
1637 {
1638 eh->dynindx = -1;
1639 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1640 eh->dynstr_index);
1641 }
1642
1643 /* PR 16082: Remove version information from hidden symbol. */
1644 eh->verinfo.verdef = NULL;
1645 eh->verinfo.vertree = NULL;
1646 }
1647
1648 /* STT_GNU_IFUNC symbol must go through PLT. */
1649 if (! hppa_elf_hash_entry (eh)->plabel
1650 && eh->type != STT_GNU_IFUNC)
1651 {
1652 eh->needs_plt = 0;
1653 eh->plt = elf_hash_table (info)->init_plt_offset;
1654 }
1655 }
1656
1657 /* Return true if we have dynamic relocs against H or any of its weak
1658 aliases, that apply to read-only sections. Cannot be used after
1659 size_dynamic_sections. */
1660
1661 static bfd_boolean
1662 alias_readonly_dynrelocs (struct elf_link_hash_entry *eh)
1663 {
1664 struct elf32_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1665 do
1666 {
1667 if (_bfd_elf_readonly_dynrelocs (&hh->eh))
1668 return TRUE;
1669 hh = hppa_elf_hash_entry (hh->eh.u.alias);
1670 } while (hh != NULL && &hh->eh != eh);
1671
1672 return FALSE;
1673 }
1674
1675 /* Adjust a symbol defined by a dynamic object and referenced by a
1676 regular object. The current definition is in some section of the
1677 dynamic object, but we're not including those sections. We have to
1678 change the definition to something the rest of the link can
1679 understand. */
1680
1681 static bfd_boolean
1682 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1683 struct elf_link_hash_entry *eh)
1684 {
1685 struct elf32_hppa_link_hash_table *htab;
1686 asection *sec, *srel;
1687
1688 /* If this is a function, put it in the procedure linkage table. We
1689 will fill in the contents of the procedure linkage table later. */
1690 if (eh->type == STT_FUNC
1691 || eh->needs_plt)
1692 {
1693 bfd_boolean local = (SYMBOL_CALLS_LOCAL (info, eh)
1694 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh));
1695 /* Discard dyn_relocs when non-pic if we've decided that a
1696 function symbol is local. */
1697 if (!bfd_link_pic (info) && local)
1698 eh->dyn_relocs = NULL;
1699
1700 /* If the symbol is used by a plabel, we must allocate a PLT slot.
1701 The refcounts are not reliable when it has been hidden since
1702 hide_symbol can be called before the plabel flag is set. */
1703 if (hppa_elf_hash_entry (eh)->plabel)
1704 eh->plt.refcount = 1;
1705
1706 /* Note that unlike some other backends, the refcount is not
1707 incremented for a non-call (and non-plabel) function reference. */
1708 else if (eh->plt.refcount <= 0
1709 || local)
1710 {
1711 /* The .plt entry is not needed when:
1712 a) Garbage collection has removed all references to the
1713 symbol, or
1714 b) We know for certain the symbol is defined in this
1715 object, and it's not a weak definition, nor is the symbol
1716 used by a plabel relocation. Either this object is the
1717 application or we are doing a shared symbolic link. */
1718 eh->plt.offset = (bfd_vma) -1;
1719 eh->needs_plt = 0;
1720 }
1721
1722 /* Unlike other targets, elf32-hppa.c does not define a function
1723 symbol in a non-pic executable on PLT stub code, so we don't
1724 have a local definition in that case. ie. dyn_relocs can't
1725 be discarded. */
1726
1727 /* Function symbols can't have copy relocs. */
1728 return TRUE;
1729 }
1730 else
1731 eh->plt.offset = (bfd_vma) -1;
1732
1733 htab = hppa_link_hash_table (info);
1734 if (htab == NULL)
1735 return FALSE;
1736
1737 /* If this is a weak symbol, and there is a real definition, the
1738 processor independent code will have arranged for us to see the
1739 real definition first, and we can just use the same value. */
1740 if (eh->is_weakalias)
1741 {
1742 struct elf_link_hash_entry *def = weakdef (eh);
1743 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
1744 eh->root.u.def.section = def->root.u.def.section;
1745 eh->root.u.def.value = def->root.u.def.value;
1746 if (def->root.u.def.section == htab->etab.sdynbss
1747 || def->root.u.def.section == htab->etab.sdynrelro)
1748 eh->dyn_relocs = NULL;
1749 return TRUE;
1750 }
1751
1752 /* This is a reference to a symbol defined by a dynamic object which
1753 is not a function. */
1754
1755 /* If we are creating a shared library, we must presume that the
1756 only references to the symbol are via the global offset table.
1757 For such cases we need not do anything here; the relocations will
1758 be handled correctly by relocate_section. */
1759 if (bfd_link_pic (info))
1760 return TRUE;
1761
1762 /* If there are no references to this symbol that do not use the
1763 GOT, we don't need to generate a copy reloc. */
1764 if (!eh->non_got_ref)
1765 return TRUE;
1766
1767 /* If -z nocopyreloc was given, we won't generate them either. */
1768 if (info->nocopyreloc)
1769 return TRUE;
1770
1771 /* If we don't find any dynamic relocs in read-only sections, then
1772 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1773 if (ELIMINATE_COPY_RELOCS
1774 && !alias_readonly_dynrelocs (eh))
1775 return TRUE;
1776
1777 /* We must allocate the symbol in our .dynbss section, which will
1778 become part of the .bss section of the executable. There will be
1779 an entry for this symbol in the .dynsym section. The dynamic
1780 object will contain position independent code, so all references
1781 from the dynamic object to this symbol will go through the global
1782 offset table. The dynamic linker will use the .dynsym entry to
1783 determine the address it must put in the global offset table, so
1784 both the dynamic object and the regular object will refer to the
1785 same memory location for the variable. */
1786 if ((eh->root.u.def.section->flags & SEC_READONLY) != 0)
1787 {
1788 sec = htab->etab.sdynrelro;
1789 srel = htab->etab.sreldynrelro;
1790 }
1791 else
1792 {
1793 sec = htab->etab.sdynbss;
1794 srel = htab->etab.srelbss;
1795 }
1796 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0 && eh->size != 0)
1797 {
1798 /* We must generate a COPY reloc to tell the dynamic linker to
1799 copy the initial value out of the dynamic object and into the
1800 runtime process image. */
1801 srel->size += sizeof (Elf32_External_Rela);
1802 eh->needs_copy = 1;
1803 }
1804
1805 /* We no longer want dyn_relocs. */
1806 eh->dyn_relocs = NULL;
1807 return _bfd_elf_adjust_dynamic_copy (info, eh, sec);
1808 }
1809
1810 /* If EH is undefined, make it dynamic if that makes sense. */
1811
1812 static bfd_boolean
1813 ensure_undef_dynamic (struct bfd_link_info *info,
1814 struct elf_link_hash_entry *eh)
1815 {
1816 struct elf_link_hash_table *htab = elf_hash_table (info);
1817
1818 if (htab->dynamic_sections_created
1819 && (eh->root.type == bfd_link_hash_undefweak
1820 || eh->root.type == bfd_link_hash_undefined)
1821 && eh->dynindx == -1
1822 && !eh->forced_local
1823 && eh->type != STT_PARISC_MILLI
1824 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh)
1825 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT)
1826 return bfd_elf_link_record_dynamic_symbol (info, eh);
1827 return TRUE;
1828 }
1829
1830 /* Allocate space in the .plt for entries that won't have relocations.
1831 ie. plabel entries. */
1832
1833 static bfd_boolean
1834 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1835 {
1836 struct bfd_link_info *info;
1837 struct elf32_hppa_link_hash_table *htab;
1838 struct elf32_hppa_link_hash_entry *hh;
1839 asection *sec;
1840
1841 if (eh->root.type == bfd_link_hash_indirect)
1842 return TRUE;
1843
1844 info = (struct bfd_link_info *) inf;
1845 hh = hppa_elf_hash_entry (eh);
1846 htab = hppa_link_hash_table (info);
1847 if (htab == NULL)
1848 return FALSE;
1849
1850 if (htab->etab.dynamic_sections_created
1851 && eh->plt.refcount > 0)
1852 {
1853 if (!ensure_undef_dynamic (info, eh))
1854 return FALSE;
1855
1856 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), eh))
1857 {
1858 /* Allocate these later. From this point on, h->plabel
1859 means that the plt entry is only used by a plabel.
1860 We'll be using a normal plt entry for this symbol, so
1861 clear the plabel indicator. */
1862
1863 hh->plabel = 0;
1864 }
1865 else if (hh->plabel)
1866 {
1867 /* Make an entry in the .plt section for plabel references
1868 that won't have a .plt entry for other reasons. */
1869 sec = htab->etab.splt;
1870 eh->plt.offset = sec->size;
1871 sec->size += PLT_ENTRY_SIZE;
1872 if (bfd_link_pic (info))
1873 htab->etab.srelplt->size += sizeof (Elf32_External_Rela);
1874 }
1875 else
1876 {
1877 /* No .plt entry needed. */
1878 eh->plt.offset = (bfd_vma) -1;
1879 eh->needs_plt = 0;
1880 }
1881 }
1882 else
1883 {
1884 eh->plt.offset = (bfd_vma) -1;
1885 eh->needs_plt = 0;
1886 }
1887
1888 return TRUE;
1889 }
1890
1891 /* Calculate size of GOT entries for symbol given its TLS_TYPE. */
1892
1893 static inline unsigned int
1894 got_entries_needed (int tls_type)
1895 {
1896 unsigned int need = 0;
1897
1898 if ((tls_type & GOT_NORMAL) != 0)
1899 need += GOT_ENTRY_SIZE;
1900 if ((tls_type & GOT_TLS_GD) != 0)
1901 need += GOT_ENTRY_SIZE * 2;
1902 if ((tls_type & GOT_TLS_IE) != 0)
1903 need += GOT_ENTRY_SIZE;
1904 return need;
1905 }
1906
1907 /* Calculate size of relocs needed for symbol given its TLS_TYPE and
1908 NEEDed GOT entries. TPREL_KNOWN says a TPREL offset can be
1909 calculated at link time. DTPREL_KNOWN says the same for a DTPREL
1910 offset. */
1911
1912 static inline unsigned int
1913 got_relocs_needed (int tls_type, unsigned int need,
1914 bfd_boolean dtprel_known, bfd_boolean tprel_known)
1915 {
1916 /* All the entries we allocated need relocs.
1917 Except for GD and IE with local symbols. */
1918 if ((tls_type & GOT_TLS_GD) != 0 && dtprel_known)
1919 need -= GOT_ENTRY_SIZE;
1920 if ((tls_type & GOT_TLS_IE) != 0 && tprel_known)
1921 need -= GOT_ENTRY_SIZE;
1922 return need * sizeof (Elf32_External_Rela) / GOT_ENTRY_SIZE;
1923 }
1924
1925 /* Allocate space in .plt, .got and associated reloc sections for
1926 global syms. */
1927
1928 static bfd_boolean
1929 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
1930 {
1931 struct bfd_link_info *info;
1932 struct elf32_hppa_link_hash_table *htab;
1933 asection *sec;
1934 struct elf32_hppa_link_hash_entry *hh;
1935 struct elf_dyn_relocs *hdh_p;
1936
1937 if (eh->root.type == bfd_link_hash_indirect)
1938 return TRUE;
1939
1940 info = inf;
1941 htab = hppa_link_hash_table (info);
1942 if (htab == NULL)
1943 return FALSE;
1944
1945 hh = hppa_elf_hash_entry (eh);
1946
1947 if (htab->etab.dynamic_sections_created
1948 && eh->plt.offset != (bfd_vma) -1
1949 && !hh->plabel
1950 && eh->plt.refcount > 0)
1951 {
1952 /* Make an entry in the .plt section. */
1953 sec = htab->etab.splt;
1954 eh->plt.offset = sec->size;
1955 sec->size += PLT_ENTRY_SIZE;
1956
1957 /* We also need to make an entry in the .rela.plt section. */
1958 htab->etab.srelplt->size += sizeof (Elf32_External_Rela);
1959 htab->need_plt_stub = 1;
1960 }
1961
1962 if (eh->got.refcount > 0)
1963 {
1964 unsigned int need;
1965
1966 if (!ensure_undef_dynamic (info, eh))
1967 return FALSE;
1968
1969 sec = htab->etab.sgot;
1970 eh->got.offset = sec->size;
1971 need = got_entries_needed (hh->tls_type);
1972 sec->size += need;
1973 if (htab->etab.dynamic_sections_created
1974 && (bfd_link_dll (info)
1975 || (bfd_link_pic (info) && (hh->tls_type & GOT_NORMAL) != 0)
1976 || (eh->dynindx != -1
1977 && !SYMBOL_REFERENCES_LOCAL (info, eh)))
1978 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
1979 {
1980 bfd_boolean local = SYMBOL_REFERENCES_LOCAL (info, eh);
1981 htab->etab.srelgot->size
1982 += got_relocs_needed (hh->tls_type, need, local,
1983 local && bfd_link_executable (info));
1984 }
1985 }
1986 else
1987 eh->got.offset = (bfd_vma) -1;
1988
1989 /* If no dynamic sections we can't have dynamic relocs. */
1990 if (!htab->etab.dynamic_sections_created)
1991 eh->dyn_relocs = NULL;
1992
1993 /* Discard relocs on undefined syms with non-default visibility. */
1994 else if ((eh->root.type == bfd_link_hash_undefined
1995 && ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
1996 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
1997 eh->dyn_relocs = NULL;
1998
1999 if (eh->dyn_relocs == NULL)
2000 return TRUE;
2001
2002 /* If this is a -Bsymbolic shared link, then we need to discard all
2003 space allocated for dynamic pc-relative relocs against symbols
2004 defined in a regular object. For the normal shared case, discard
2005 space for relocs that have become local due to symbol visibility
2006 changes. */
2007 if (bfd_link_pic (info))
2008 {
2009 #if RELATIVE_DYNRELOCS
2010 if (SYMBOL_CALLS_LOCAL (info, eh))
2011 {
2012 struct elf_dyn_relocs **hdh_pp;
2013
2014 for (hdh_pp = &eh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2015 {
2016 hdh_p->count -= hdh_p->pc_count;
2017 hdh_p->pc_count = 0;
2018 if (hdh_p->count == 0)
2019 *hdh_pp = hdh_p->next;
2020 else
2021 hdh_pp = &hdh_p->next;
2022 }
2023 }
2024 #endif
2025
2026 if (eh->dyn_relocs != NULL)
2027 {
2028 if (!ensure_undef_dynamic (info, eh))
2029 return FALSE;
2030 }
2031 }
2032 else if (ELIMINATE_COPY_RELOCS)
2033 {
2034 /* For the non-shared case, discard space for relocs against
2035 symbols which turn out to need copy relocs or are not
2036 dynamic. */
2037
2038 if (eh->dynamic_adjusted
2039 && !eh->def_regular
2040 && !ELF_COMMON_DEF_P (eh))
2041 {
2042 if (!ensure_undef_dynamic (info, eh))
2043 return FALSE;
2044
2045 if (eh->dynindx == -1)
2046 eh->dyn_relocs = NULL;
2047 }
2048 else
2049 eh->dyn_relocs = NULL;
2050 }
2051
2052 /* Finally, allocate space. */
2053 for (hdh_p = eh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->next)
2054 {
2055 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2056 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2057 }
2058
2059 return TRUE;
2060 }
2061
2062 /* This function is called via elf_link_hash_traverse to force
2063 millicode symbols local so they do not end up as globals in the
2064 dynamic symbol table. We ought to be able to do this in
2065 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2066 for all dynamic symbols. Arguably, this is a bug in
2067 elf_adjust_dynamic_symbol. */
2068
2069 static bfd_boolean
2070 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2071 struct bfd_link_info *info)
2072 {
2073 if (eh->type == STT_PARISC_MILLI
2074 && !eh->forced_local)
2075 {
2076 elf32_hppa_hide_symbol (info, eh, TRUE);
2077 }
2078 return TRUE;
2079 }
2080
2081 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
2082 read-only sections. */
2083
2084 static bfd_boolean
2085 maybe_set_textrel (struct elf_link_hash_entry *eh, void *inf)
2086 {
2087 asection *sec;
2088
2089 if (eh->root.type == bfd_link_hash_indirect)
2090 return TRUE;
2091
2092 sec = _bfd_elf_readonly_dynrelocs (eh);
2093 if (sec != NULL)
2094 {
2095 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2096
2097 info->flags |= DF_TEXTREL;
2098 info->callbacks->minfo
2099 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
2100 sec->owner, eh->root.root.string, sec);
2101
2102 /* Not an error, just cut short the traversal. */
2103 return FALSE;
2104 }
2105 return TRUE;
2106 }
2107
2108 /* Set the sizes of the dynamic sections. */
2109
2110 static bfd_boolean
2111 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2112 struct bfd_link_info *info)
2113 {
2114 struct elf32_hppa_link_hash_table *htab;
2115 bfd *dynobj;
2116 bfd *ibfd;
2117 asection *sec;
2118 bfd_boolean relocs;
2119
2120 htab = hppa_link_hash_table (info);
2121 if (htab == NULL)
2122 return FALSE;
2123
2124 dynobj = htab->etab.dynobj;
2125 if (dynobj == NULL)
2126 abort ();
2127
2128 if (htab->etab.dynamic_sections_created)
2129 {
2130 /* Set the contents of the .interp section to the interpreter. */
2131 if (bfd_link_executable (info) && !info->nointerp)
2132 {
2133 sec = bfd_get_linker_section (dynobj, ".interp");
2134 if (sec == NULL)
2135 abort ();
2136 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2137 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2138 }
2139
2140 /* Force millicode symbols local. */
2141 elf_link_hash_traverse (&htab->etab,
2142 clobber_millicode_symbols,
2143 info);
2144 }
2145
2146 /* Set up .got and .plt offsets for local syms, and space for local
2147 dynamic relocs. */
2148 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
2149 {
2150 bfd_signed_vma *local_got;
2151 bfd_signed_vma *end_local_got;
2152 bfd_signed_vma *local_plt;
2153 bfd_signed_vma *end_local_plt;
2154 bfd_size_type locsymcount;
2155 Elf_Internal_Shdr *symtab_hdr;
2156 asection *srel;
2157 char *local_tls_type;
2158
2159 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2160 continue;
2161
2162 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2163 {
2164 struct elf_dyn_relocs *hdh_p;
2165
2166 for (hdh_p = ((struct elf_dyn_relocs *)
2167 elf_section_data (sec)->local_dynrel);
2168 hdh_p != NULL;
2169 hdh_p = hdh_p->next)
2170 {
2171 if (!bfd_is_abs_section (hdh_p->sec)
2172 && bfd_is_abs_section (hdh_p->sec->output_section))
2173 {
2174 /* Input section has been discarded, either because
2175 it is a copy of a linkonce section or due to
2176 linker script /DISCARD/, so we'll be discarding
2177 the relocs too. */
2178 }
2179 else if (hdh_p->count != 0)
2180 {
2181 srel = elf_section_data (hdh_p->sec)->sreloc;
2182 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2183 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2184 info->flags |= DF_TEXTREL;
2185 }
2186 }
2187 }
2188
2189 local_got = elf_local_got_refcounts (ibfd);
2190 if (!local_got)
2191 continue;
2192
2193 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2194 locsymcount = symtab_hdr->sh_info;
2195 end_local_got = local_got + locsymcount;
2196 local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2197 sec = htab->etab.sgot;
2198 srel = htab->etab.srelgot;
2199 for (; local_got < end_local_got; ++local_got)
2200 {
2201 if (*local_got > 0)
2202 {
2203 unsigned int need;
2204
2205 *local_got = sec->size;
2206 need = got_entries_needed (*local_tls_type);
2207 sec->size += need;
2208 if (bfd_link_dll (info)
2209 || (bfd_link_pic (info)
2210 && (*local_tls_type & GOT_NORMAL) != 0))
2211 htab->etab.srelgot->size
2212 += got_relocs_needed (*local_tls_type, need, TRUE,
2213 bfd_link_executable (info));
2214 }
2215 else
2216 *local_got = (bfd_vma) -1;
2217
2218 ++local_tls_type;
2219 }
2220
2221 local_plt = end_local_got;
2222 end_local_plt = local_plt + locsymcount;
2223 if (! htab->etab.dynamic_sections_created)
2224 {
2225 /* Won't be used, but be safe. */
2226 for (; local_plt < end_local_plt; ++local_plt)
2227 *local_plt = (bfd_vma) -1;
2228 }
2229 else
2230 {
2231 sec = htab->etab.splt;
2232 srel = htab->etab.srelplt;
2233 for (; local_plt < end_local_plt; ++local_plt)
2234 {
2235 if (*local_plt > 0)
2236 {
2237 *local_plt = sec->size;
2238 sec->size += PLT_ENTRY_SIZE;
2239 if (bfd_link_pic (info))
2240 srel->size += sizeof (Elf32_External_Rela);
2241 }
2242 else
2243 *local_plt = (bfd_vma) -1;
2244 }
2245 }
2246 }
2247
2248 if (htab->tls_ldm_got.refcount > 0)
2249 {
2250 /* Allocate 2 got entries and 1 dynamic reloc for
2251 R_PARISC_TLS_DTPMOD32 relocs. */
2252 htab->tls_ldm_got.offset = htab->etab.sgot->size;
2253 htab->etab.sgot->size += (GOT_ENTRY_SIZE * 2);
2254 htab->etab.srelgot->size += sizeof (Elf32_External_Rela);
2255 }
2256 else
2257 htab->tls_ldm_got.offset = -1;
2258
2259 /* Do all the .plt entries without relocs first. The dynamic linker
2260 uses the last .plt reloc to find the end of the .plt (and hence
2261 the start of the .got) for lazy linking. */
2262 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2263
2264 /* Allocate global sym .plt and .got entries, and space for global
2265 sym dynamic relocs. */
2266 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2267
2268 /* The check_relocs and adjust_dynamic_symbol entry points have
2269 determined the sizes of the various dynamic sections. Allocate
2270 memory for them. */
2271 relocs = FALSE;
2272 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2273 {
2274 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2275 continue;
2276
2277 if (sec == htab->etab.splt)
2278 {
2279 if (htab->need_plt_stub)
2280 {
2281 /* Make space for the plt stub at the end of the .plt
2282 section. We want this stub right at the end, up
2283 against the .got section. */
2284 int gotalign = bfd_section_alignment (htab->etab.sgot);
2285 int pltalign = bfd_section_alignment (sec);
2286 int align = gotalign > 3 ? gotalign : 3;
2287 bfd_size_type mask;
2288
2289 if (align > pltalign)
2290 bfd_set_section_alignment (sec, align);
2291 mask = ((bfd_size_type) 1 << gotalign) - 1;
2292 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2293 }
2294 }
2295 else if (sec == htab->etab.sgot
2296 || sec == htab->etab.sdynbss
2297 || sec == htab->etab.sdynrelro)
2298 ;
2299 else if (CONST_STRNEQ (bfd_section_name (sec), ".rela"))
2300 {
2301 if (sec->size != 0)
2302 {
2303 /* Remember whether there are any reloc sections other
2304 than .rela.plt. */
2305 if (sec != htab->etab.srelplt)
2306 relocs = TRUE;
2307
2308 /* We use the reloc_count field as a counter if we need
2309 to copy relocs into the output file. */
2310 sec->reloc_count = 0;
2311 }
2312 }
2313 else
2314 {
2315 /* It's not one of our sections, so don't allocate space. */
2316 continue;
2317 }
2318
2319 if (sec->size == 0)
2320 {
2321 /* If we don't need this section, strip it from the
2322 output file. This is mostly to handle .rela.bss and
2323 .rela.plt. We must create both sections in
2324 create_dynamic_sections, because they must be created
2325 before the linker maps input sections to output
2326 sections. The linker does that before
2327 adjust_dynamic_symbol is called, and it is that
2328 function which decides whether anything needs to go
2329 into these sections. */
2330 sec->flags |= SEC_EXCLUDE;
2331 continue;
2332 }
2333
2334 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2335 continue;
2336
2337 /* Allocate memory for the section contents. Zero it, because
2338 we may not fill in all the reloc sections. */
2339 sec->contents = bfd_zalloc (dynobj, sec->size);
2340 if (sec->contents == NULL)
2341 return FALSE;
2342 }
2343
2344 if (htab->etab.dynamic_sections_created)
2345 {
2346 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2347 actually has nothing to do with the PLT, it is how we
2348 communicate the LTP value of a load module to the dynamic
2349 linker. */
2350 #define add_dynamic_entry(TAG, VAL) \
2351 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2352
2353 if (!add_dynamic_entry (DT_PLTGOT, 0))
2354 return FALSE;
2355
2356 /* Add some entries to the .dynamic section. We fill in the
2357 values later, in elf32_hppa_finish_dynamic_sections, but we
2358 must add the entries now so that we get the correct size for
2359 the .dynamic section. The DT_DEBUG entry is filled in by the
2360 dynamic linker and used by the debugger. */
2361 if (bfd_link_executable (info))
2362 {
2363 if (!add_dynamic_entry (DT_DEBUG, 0))
2364 return FALSE;
2365 }
2366
2367 if (htab->etab.srelplt->size != 0)
2368 {
2369 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2370 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2371 || !add_dynamic_entry (DT_JMPREL, 0))
2372 return FALSE;
2373 }
2374
2375 if (relocs)
2376 {
2377 if (!add_dynamic_entry (DT_RELA, 0)
2378 || !add_dynamic_entry (DT_RELASZ, 0)
2379 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2380 return FALSE;
2381
2382 /* If any dynamic relocs apply to a read-only section,
2383 then we need a DT_TEXTREL entry. */
2384 if ((info->flags & DF_TEXTREL) == 0)
2385 elf_link_hash_traverse (&htab->etab, maybe_set_textrel, info);
2386
2387 if ((info->flags & DF_TEXTREL) != 0)
2388 {
2389 if (!add_dynamic_entry (DT_TEXTREL, 0))
2390 return FALSE;
2391 }
2392 }
2393 }
2394 #undef add_dynamic_entry
2395
2396 return TRUE;
2397 }
2398
2399 /* External entry points for sizing and building linker stubs. */
2400
2401 /* Set up various things so that we can make a list of input sections
2402 for each output section included in the link. Returns -1 on error,
2403 0 when no stubs will be needed, and 1 on success. */
2404
2405 int
2406 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2407 {
2408 bfd *input_bfd;
2409 unsigned int bfd_count;
2410 unsigned int top_id, top_index;
2411 asection *section;
2412 asection **input_list, **list;
2413 size_t amt;
2414 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2415
2416 if (htab == NULL)
2417 return -1;
2418
2419 /* Count the number of input BFDs and find the top input section id. */
2420 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2421 input_bfd != NULL;
2422 input_bfd = input_bfd->link.next)
2423 {
2424 bfd_count += 1;
2425 for (section = input_bfd->sections;
2426 section != NULL;
2427 section = section->next)
2428 {
2429 if (top_id < section->id)
2430 top_id = section->id;
2431 }
2432 }
2433 htab->bfd_count = bfd_count;
2434
2435 amt = sizeof (struct map_stub) * (top_id + 1);
2436 htab->stub_group = bfd_zmalloc (amt);
2437 if (htab->stub_group == NULL)
2438 return -1;
2439
2440 /* We can't use output_bfd->section_count here to find the top output
2441 section index as some sections may have been removed, and
2442 strip_excluded_output_sections doesn't renumber the indices. */
2443 for (section = output_bfd->sections, top_index = 0;
2444 section != NULL;
2445 section = section->next)
2446 {
2447 if (top_index < section->index)
2448 top_index = section->index;
2449 }
2450
2451 htab->top_index = top_index;
2452 amt = sizeof (asection *) * (top_index + 1);
2453 input_list = bfd_malloc (amt);
2454 htab->input_list = input_list;
2455 if (input_list == NULL)
2456 return -1;
2457
2458 /* For sections we aren't interested in, mark their entries with a
2459 value we can check later. */
2460 list = input_list + top_index;
2461 do
2462 *list = bfd_abs_section_ptr;
2463 while (list-- != input_list);
2464
2465 for (section = output_bfd->sections;
2466 section != NULL;
2467 section = section->next)
2468 {
2469 if ((section->flags & SEC_CODE) != 0)
2470 input_list[section->index] = NULL;
2471 }
2472
2473 return 1;
2474 }
2475
2476 /* The linker repeatedly calls this function for each input section,
2477 in the order that input sections are linked into output sections.
2478 Build lists of input sections to determine groupings between which
2479 we may insert linker stubs. */
2480
2481 void
2482 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2483 {
2484 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2485
2486 if (htab == NULL)
2487 return;
2488
2489 if (isec->output_section->index <= htab->top_index)
2490 {
2491 asection **list = htab->input_list + isec->output_section->index;
2492 if (*list != bfd_abs_section_ptr)
2493 {
2494 /* Steal the link_sec pointer for our list. */
2495 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2496 /* This happens to make the list in reverse order,
2497 which is what we want. */
2498 PREV_SEC (isec) = *list;
2499 *list = isec;
2500 }
2501 }
2502 }
2503
2504 /* See whether we can group stub sections together. Grouping stub
2505 sections may result in fewer stubs. More importantly, we need to
2506 put all .init* and .fini* stubs at the beginning of the .init or
2507 .fini output sections respectively, because glibc splits the
2508 _init and _fini functions into multiple parts. Putting a stub in
2509 the middle of a function is not a good idea. */
2510
2511 static void
2512 group_sections (struct elf32_hppa_link_hash_table *htab,
2513 bfd_size_type stub_group_size,
2514 bfd_boolean stubs_always_before_branch)
2515 {
2516 asection **list = htab->input_list + htab->top_index;
2517 do
2518 {
2519 asection *tail = *list;
2520 if (tail == bfd_abs_section_ptr)
2521 continue;
2522 while (tail != NULL)
2523 {
2524 asection *curr;
2525 asection *prev;
2526 bfd_size_type total;
2527 bfd_boolean big_sec;
2528
2529 curr = tail;
2530 total = tail->size;
2531 big_sec = total >= stub_group_size;
2532
2533 while ((prev = PREV_SEC (curr)) != NULL
2534 && ((total += curr->output_offset - prev->output_offset)
2535 < stub_group_size))
2536 curr = prev;
2537
2538 /* OK, the size from the start of CURR to the end is less
2539 than 240000 bytes and thus can be handled by one stub
2540 section. (or the tail section is itself larger than
2541 240000 bytes, in which case we may be toast.)
2542 We should really be keeping track of the total size of
2543 stubs added here, as stubs contribute to the final output
2544 section size. That's a little tricky, and this way will
2545 only break if stubs added total more than 22144 bytes, or
2546 2768 long branch stubs. It seems unlikely for more than
2547 2768 different functions to be called, especially from
2548 code only 240000 bytes long. This limit used to be
2549 250000, but c++ code tends to generate lots of little
2550 functions, and sometimes violated the assumption. */
2551 do
2552 {
2553 prev = PREV_SEC (tail);
2554 /* Set up this stub group. */
2555 htab->stub_group[tail->id].link_sec = curr;
2556 }
2557 while (tail != curr && (tail = prev) != NULL);
2558
2559 /* But wait, there's more! Input sections up to 240000
2560 bytes before the stub section can be handled by it too.
2561 Don't do this if we have a really large section after the
2562 stubs, as adding more stubs increases the chance that
2563 branches may not reach into the stub section. */
2564 if (!stubs_always_before_branch && !big_sec)
2565 {
2566 total = 0;
2567 while (prev != NULL
2568 && ((total += tail->output_offset - prev->output_offset)
2569 < stub_group_size))
2570 {
2571 tail = prev;
2572 prev = PREV_SEC (tail);
2573 htab->stub_group[tail->id].link_sec = curr;
2574 }
2575 }
2576 tail = prev;
2577 }
2578 }
2579 while (list-- != htab->input_list);
2580 free (htab->input_list);
2581 #undef PREV_SEC
2582 }
2583
2584 /* Read in all local syms for all input bfds, and create hash entries
2585 for export stubs if we are building a multi-subspace shared lib.
2586 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2587
2588 static int
2589 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2590 {
2591 unsigned int bfd_indx;
2592 Elf_Internal_Sym *local_syms, **all_local_syms;
2593 int stub_changed = 0;
2594 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2595
2596 if (htab == NULL)
2597 return -1;
2598
2599 /* We want to read in symbol extension records only once. To do this
2600 we need to read in the local symbols in parallel and save them for
2601 later use; so hold pointers to the local symbols in an array. */
2602 size_t amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2603 all_local_syms = bfd_zmalloc (amt);
2604 htab->all_local_syms = all_local_syms;
2605 if (all_local_syms == NULL)
2606 return -1;
2607
2608 /* Walk over all the input BFDs, swapping in local symbols.
2609 If we are creating a shared library, create hash entries for the
2610 export stubs. */
2611 for (bfd_indx = 0;
2612 input_bfd != NULL;
2613 input_bfd = input_bfd->link.next, bfd_indx++)
2614 {
2615 Elf_Internal_Shdr *symtab_hdr;
2616
2617 /* We'll need the symbol table in a second. */
2618 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2619 if (symtab_hdr->sh_info == 0)
2620 continue;
2621
2622 /* We need an array of the local symbols attached to the input bfd. */
2623 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2624 if (local_syms == NULL)
2625 {
2626 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2627 symtab_hdr->sh_info, 0,
2628 NULL, NULL, NULL);
2629 /* Cache them for elf_link_input_bfd. */
2630 symtab_hdr->contents = (unsigned char *) local_syms;
2631 }
2632 if (local_syms == NULL)
2633 return -1;
2634
2635 all_local_syms[bfd_indx] = local_syms;
2636
2637 if (bfd_link_pic (info) && htab->multi_subspace)
2638 {
2639 struct elf_link_hash_entry **eh_syms;
2640 struct elf_link_hash_entry **eh_symend;
2641 unsigned int symcount;
2642
2643 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2644 - symtab_hdr->sh_info);
2645 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2646 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2647
2648 /* Look through the global syms for functions; We need to
2649 build export stubs for all globally visible functions. */
2650 for (; eh_syms < eh_symend; eh_syms++)
2651 {
2652 struct elf32_hppa_link_hash_entry *hh;
2653
2654 hh = hppa_elf_hash_entry (*eh_syms);
2655
2656 while (hh->eh.root.type == bfd_link_hash_indirect
2657 || hh->eh.root.type == bfd_link_hash_warning)
2658 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2659
2660 /* At this point in the link, undefined syms have been
2661 resolved, so we need to check that the symbol was
2662 defined in this BFD. */
2663 if ((hh->eh.root.type == bfd_link_hash_defined
2664 || hh->eh.root.type == bfd_link_hash_defweak)
2665 && hh->eh.type == STT_FUNC
2666 && hh->eh.root.u.def.section->output_section != NULL
2667 && (hh->eh.root.u.def.section->output_section->owner
2668 == output_bfd)
2669 && hh->eh.root.u.def.section->owner == input_bfd
2670 && hh->eh.def_regular
2671 && !hh->eh.forced_local
2672 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2673 {
2674 asection *sec;
2675 const char *stub_name;
2676 struct elf32_hppa_stub_hash_entry *hsh;
2677
2678 sec = hh->eh.root.u.def.section;
2679 stub_name = hh_name (hh);
2680 hsh = hppa_stub_hash_lookup (&htab->bstab,
2681 stub_name,
2682 FALSE, FALSE);
2683 if (hsh == NULL)
2684 {
2685 hsh = hppa_add_stub (stub_name, sec, htab);
2686 if (!hsh)
2687 return -1;
2688
2689 hsh->target_value = hh->eh.root.u.def.value;
2690 hsh->target_section = hh->eh.root.u.def.section;
2691 hsh->stub_type = hppa_stub_export;
2692 hsh->hh = hh;
2693 stub_changed = 1;
2694 }
2695 else
2696 {
2697 /* xgettext:c-format */
2698 _bfd_error_handler (_("%pB: duplicate export stub %s"),
2699 input_bfd, stub_name);
2700 }
2701 }
2702 }
2703 }
2704 }
2705
2706 return stub_changed;
2707 }
2708
2709 /* Determine and set the size of the stub section for a final link.
2710
2711 The basic idea here is to examine all the relocations looking for
2712 PC-relative calls to a target that is unreachable with a "bl"
2713 instruction. */
2714
2715 bfd_boolean
2716 elf32_hppa_size_stubs
2717 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2718 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2719 asection * (*add_stub_section) (const char *, asection *),
2720 void (*layout_sections_again) (void))
2721 {
2722 bfd_size_type stub_group_size;
2723 bfd_boolean stubs_always_before_branch;
2724 bfd_boolean stub_changed;
2725 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2726
2727 if (htab == NULL)
2728 return FALSE;
2729
2730 /* Stash our params away. */
2731 htab->stub_bfd = stub_bfd;
2732 htab->multi_subspace = multi_subspace;
2733 htab->add_stub_section = add_stub_section;
2734 htab->layout_sections_again = layout_sections_again;
2735 stubs_always_before_branch = group_size < 0;
2736 if (group_size < 0)
2737 stub_group_size = -group_size;
2738 else
2739 stub_group_size = group_size;
2740 if (stub_group_size == 1)
2741 {
2742 /* Default values. */
2743 if (stubs_always_before_branch)
2744 {
2745 stub_group_size = 7680000;
2746 if (htab->has_17bit_branch || htab->multi_subspace)
2747 stub_group_size = 240000;
2748 if (htab->has_12bit_branch)
2749 stub_group_size = 7500;
2750 }
2751 else
2752 {
2753 stub_group_size = 6971392;
2754 if (htab->has_17bit_branch || htab->multi_subspace)
2755 stub_group_size = 217856;
2756 if (htab->has_12bit_branch)
2757 stub_group_size = 6808;
2758 }
2759 }
2760
2761 group_sections (htab, stub_group_size, stubs_always_before_branch);
2762
2763 switch (get_local_syms (output_bfd, info->input_bfds, info))
2764 {
2765 default:
2766 if (htab->all_local_syms)
2767 goto error_ret_free_local;
2768 return FALSE;
2769
2770 case 0:
2771 stub_changed = FALSE;
2772 break;
2773
2774 case 1:
2775 stub_changed = TRUE;
2776 break;
2777 }
2778
2779 while (1)
2780 {
2781 bfd *input_bfd;
2782 unsigned int bfd_indx;
2783 asection *stub_sec;
2784
2785 for (input_bfd = info->input_bfds, bfd_indx = 0;
2786 input_bfd != NULL;
2787 input_bfd = input_bfd->link.next, bfd_indx++)
2788 {
2789 Elf_Internal_Shdr *symtab_hdr;
2790 asection *section;
2791 Elf_Internal_Sym *local_syms;
2792
2793 /* We'll need the symbol table in a second. */
2794 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2795 if (symtab_hdr->sh_info == 0)
2796 continue;
2797
2798 local_syms = htab->all_local_syms[bfd_indx];
2799
2800 /* Walk over each section attached to the input bfd. */
2801 for (section = input_bfd->sections;
2802 section != NULL;
2803 section = section->next)
2804 {
2805 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2806
2807 /* If there aren't any relocs, then there's nothing more
2808 to do. */
2809 if ((section->flags & SEC_RELOC) == 0
2810 || (section->flags & SEC_ALLOC) == 0
2811 || (section->flags & SEC_LOAD) == 0
2812 || (section->flags & SEC_CODE) == 0
2813 || section->reloc_count == 0)
2814 continue;
2815
2816 /* If this section is a link-once section that will be
2817 discarded, then don't create any stubs. */
2818 if (section->output_section == NULL
2819 || section->output_section->owner != output_bfd)
2820 continue;
2821
2822 /* Get the relocs. */
2823 internal_relocs
2824 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2825 info->keep_memory);
2826 if (internal_relocs == NULL)
2827 goto error_ret_free_local;
2828
2829 /* Now examine each relocation. */
2830 irela = internal_relocs;
2831 irelaend = irela + section->reloc_count;
2832 for (; irela < irelaend; irela++)
2833 {
2834 unsigned int r_type, r_indx;
2835 enum elf32_hppa_stub_type stub_type;
2836 struct elf32_hppa_stub_hash_entry *hsh;
2837 asection *sym_sec;
2838 bfd_vma sym_value;
2839 bfd_vma destination;
2840 struct elf32_hppa_link_hash_entry *hh;
2841 char *stub_name;
2842 const asection *id_sec;
2843
2844 r_type = ELF32_R_TYPE (irela->r_info);
2845 r_indx = ELF32_R_SYM (irela->r_info);
2846
2847 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2848 {
2849 bfd_set_error (bfd_error_bad_value);
2850 error_ret_free_internal:
2851 if (elf_section_data (section)->relocs == NULL)
2852 free (internal_relocs);
2853 goto error_ret_free_local;
2854 }
2855
2856 /* Only look for stubs on call instructions. */
2857 if (r_type != (unsigned int) R_PARISC_PCREL12F
2858 && r_type != (unsigned int) R_PARISC_PCREL17F
2859 && r_type != (unsigned int) R_PARISC_PCREL22F)
2860 continue;
2861
2862 /* Now determine the call target, its name, value,
2863 section. */
2864 sym_sec = NULL;
2865 sym_value = 0;
2866 destination = -1;
2867 hh = NULL;
2868 if (r_indx < symtab_hdr->sh_info)
2869 {
2870 /* It's a local symbol. */
2871 Elf_Internal_Sym *sym;
2872 Elf_Internal_Shdr *hdr;
2873 unsigned int shndx;
2874
2875 sym = local_syms + r_indx;
2876 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2877 sym_value = sym->st_value;
2878 shndx = sym->st_shndx;
2879 if (shndx < elf_numsections (input_bfd))
2880 {
2881 hdr = elf_elfsections (input_bfd)[shndx];
2882 sym_sec = hdr->bfd_section;
2883 destination = (sym_value + irela->r_addend
2884 + sym_sec->output_offset
2885 + sym_sec->output_section->vma);
2886 }
2887 }
2888 else
2889 {
2890 /* It's an external symbol. */
2891 int e_indx;
2892
2893 e_indx = r_indx - symtab_hdr->sh_info;
2894 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2895
2896 while (hh->eh.root.type == bfd_link_hash_indirect
2897 || hh->eh.root.type == bfd_link_hash_warning)
2898 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2899
2900 if (hh->eh.root.type == bfd_link_hash_defined
2901 || hh->eh.root.type == bfd_link_hash_defweak)
2902 {
2903 sym_sec = hh->eh.root.u.def.section;
2904 sym_value = hh->eh.root.u.def.value;
2905 if (sym_sec->output_section != NULL)
2906 destination = (sym_value + irela->r_addend
2907 + sym_sec->output_offset
2908 + sym_sec->output_section->vma);
2909 }
2910 else if (hh->eh.root.type == bfd_link_hash_undefweak)
2911 {
2912 if (! bfd_link_pic (info))
2913 continue;
2914 }
2915 else if (hh->eh.root.type == bfd_link_hash_undefined)
2916 {
2917 if (! (info->unresolved_syms_in_objects == RM_IGNORE
2918 && (ELF_ST_VISIBILITY (hh->eh.other)
2919 == STV_DEFAULT)
2920 && hh->eh.type != STT_PARISC_MILLI))
2921 continue;
2922 }
2923 else
2924 {
2925 bfd_set_error (bfd_error_bad_value);
2926 goto error_ret_free_internal;
2927 }
2928 }
2929
2930 /* Determine what (if any) linker stub is needed. */
2931 stub_type = hppa_type_of_stub (section, irela, hh,
2932 destination, info);
2933 if (stub_type == hppa_stub_none)
2934 continue;
2935
2936 /* Support for grouping stub sections. */
2937 id_sec = htab->stub_group[section->id].link_sec;
2938
2939 /* Get the name of this stub. */
2940 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
2941 if (!stub_name)
2942 goto error_ret_free_internal;
2943
2944 hsh = hppa_stub_hash_lookup (&htab->bstab,
2945 stub_name,
2946 FALSE, FALSE);
2947 if (hsh != NULL)
2948 {
2949 /* The proper stub has already been created. */
2950 free (stub_name);
2951 continue;
2952 }
2953
2954 hsh = hppa_add_stub (stub_name, section, htab);
2955 if (hsh == NULL)
2956 {
2957 free (stub_name);
2958 goto error_ret_free_internal;
2959 }
2960
2961 hsh->target_value = sym_value;
2962 hsh->target_section = sym_sec;
2963 hsh->stub_type = stub_type;
2964 if (bfd_link_pic (info))
2965 {
2966 if (stub_type == hppa_stub_import)
2967 hsh->stub_type = hppa_stub_import_shared;
2968 else if (stub_type == hppa_stub_long_branch)
2969 hsh->stub_type = hppa_stub_long_branch_shared;
2970 }
2971 hsh->hh = hh;
2972 stub_changed = TRUE;
2973 }
2974
2975 /* We're done with the internal relocs, free them. */
2976 if (elf_section_data (section)->relocs == NULL)
2977 free (internal_relocs);
2978 }
2979 }
2980
2981 if (!stub_changed)
2982 break;
2983
2984 /* OK, we've added some stubs. Find out the new size of the
2985 stub sections. */
2986 for (stub_sec = htab->stub_bfd->sections;
2987 stub_sec != NULL;
2988 stub_sec = stub_sec->next)
2989 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
2990 stub_sec->size = 0;
2991
2992 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
2993
2994 /* Ask the linker to do its stuff. */
2995 (*htab->layout_sections_again) ();
2996 stub_changed = FALSE;
2997 }
2998
2999 free (htab->all_local_syms);
3000 return TRUE;
3001
3002 error_ret_free_local:
3003 free (htab->all_local_syms);
3004 return FALSE;
3005 }
3006
3007 /* For a final link, this function is called after we have sized the
3008 stubs to provide a value for __gp. */
3009
3010 bfd_boolean
3011 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
3012 {
3013 struct bfd_link_hash_entry *h;
3014 asection *sec = NULL;
3015 bfd_vma gp_val = 0;
3016
3017 h = bfd_link_hash_lookup (info->hash, "$global$", FALSE, FALSE, FALSE);
3018
3019 if (h != NULL
3020 && (h->type == bfd_link_hash_defined
3021 || h->type == bfd_link_hash_defweak))
3022 {
3023 gp_val = h->u.def.value;
3024 sec = h->u.def.section;
3025 }
3026 else
3027 {
3028 asection *splt = bfd_get_section_by_name (abfd, ".plt");
3029 asection *sgot = bfd_get_section_by_name (abfd, ".got");
3030
3031 /* Choose to point our LTP at, in this order, one of .plt, .got,
3032 or .data, if these sections exist. In the case of choosing
3033 .plt try to make the LTP ideal for addressing anywhere in the
3034 .plt or .got with a 14 bit signed offset. Typically, the end
3035 of the .plt is the start of the .got, so choose .plt + 0x2000
3036 if either the .plt or .got is larger than 0x2000. If both
3037 the .plt and .got are smaller than 0x2000, choose the end of
3038 the .plt section. */
3039 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3040 ? NULL : splt;
3041 if (sec != NULL)
3042 {
3043 gp_val = sec->size;
3044 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3045 {
3046 gp_val = 0x2000;
3047 }
3048 }
3049 else
3050 {
3051 sec = sgot;
3052 if (sec != NULL)
3053 {
3054 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3055 {
3056 /* We know we don't have a .plt. If .got is large,
3057 offset our LTP. */
3058 if (sec->size > 0x2000)
3059 gp_val = 0x2000;
3060 }
3061 }
3062 else
3063 {
3064 /* No .plt or .got. Who cares what the LTP is? */
3065 sec = bfd_get_section_by_name (abfd, ".data");
3066 }
3067 }
3068
3069 if (h != NULL)
3070 {
3071 h->type = bfd_link_hash_defined;
3072 h->u.def.value = gp_val;
3073 if (sec != NULL)
3074 h->u.def.section = sec;
3075 else
3076 h->u.def.section = bfd_abs_section_ptr;
3077 }
3078 }
3079
3080 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
3081 {
3082 if (sec != NULL && sec->output_section != NULL)
3083 gp_val += sec->output_section->vma + sec->output_offset;
3084
3085 elf_gp (abfd) = gp_val;
3086 }
3087 return TRUE;
3088 }
3089
3090 /* Build all the stubs associated with the current output file. The
3091 stubs are kept in a hash table attached to the main linker hash
3092 table. We also set up the .plt entries for statically linked PIC
3093 functions here. This function is called via hppaelf_finish in the
3094 linker. */
3095
3096 bfd_boolean
3097 elf32_hppa_build_stubs (struct bfd_link_info *info)
3098 {
3099 asection *stub_sec;
3100 struct bfd_hash_table *table;
3101 struct elf32_hppa_link_hash_table *htab;
3102
3103 htab = hppa_link_hash_table (info);
3104 if (htab == NULL)
3105 return FALSE;
3106
3107 for (stub_sec = htab->stub_bfd->sections;
3108 stub_sec != NULL;
3109 stub_sec = stub_sec->next)
3110 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
3111 && stub_sec->size != 0)
3112 {
3113 /* Allocate memory to hold the linker stubs. */
3114 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
3115 if (stub_sec->contents == NULL)
3116 return FALSE;
3117 stub_sec->size = 0;
3118 }
3119
3120 /* Build the stubs as directed by the stub hash table. */
3121 table = &htab->bstab;
3122 bfd_hash_traverse (table, hppa_build_one_stub, info);
3123
3124 return TRUE;
3125 }
3126
3127 /* Return the base vma address which should be subtracted from the real
3128 address when resolving a dtpoff relocation.
3129 This is PT_TLS segment p_vaddr. */
3130
3131 static bfd_vma
3132 dtpoff_base (struct bfd_link_info *info)
3133 {
3134 /* If tls_sec is NULL, we should have signalled an error already. */
3135 if (elf_hash_table (info)->tls_sec == NULL)
3136 return 0;
3137 return elf_hash_table (info)->tls_sec->vma;
3138 }
3139
3140 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3141
3142 static bfd_vma
3143 tpoff (struct bfd_link_info *info, bfd_vma address)
3144 {
3145 struct elf_link_hash_table *htab = elf_hash_table (info);
3146
3147 /* If tls_sec is NULL, we should have signalled an error already. */
3148 if (htab->tls_sec == NULL)
3149 return 0;
3150 /* hppa TLS ABI is variant I and static TLS block start just after
3151 tcbhead structure which has 2 pointer fields. */
3152 return (address - htab->tls_sec->vma
3153 + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3154 }
3155
3156 /* Perform a final link. */
3157
3158 static bfd_boolean
3159 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3160 {
3161 struct stat buf;
3162
3163 /* Invoke the regular ELF linker to do all the work. */
3164 if (!bfd_elf_final_link (abfd, info))
3165 return FALSE;
3166
3167 /* If we're producing a final executable, sort the contents of the
3168 unwind section. */
3169 if (bfd_link_relocatable (info))
3170 return TRUE;
3171
3172 /* Do not attempt to sort non-regular files. This is here
3173 especially for configure scripts and kernel builds which run
3174 tests with "ld [...] -o /dev/null". */
3175 if (stat (bfd_get_filename (abfd), &buf) != 0
3176 || !S_ISREG(buf.st_mode))
3177 return TRUE;
3178
3179 return elf_hppa_sort_unwind (abfd);
3180 }
3181
3182 /* Record the lowest address for the data and text segments. */
3183
3184 static void
3185 hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
3186 {
3187 struct elf32_hppa_link_hash_table *htab;
3188
3189 htab = (struct elf32_hppa_link_hash_table*) data;
3190 if (htab == NULL)
3191 return;
3192
3193 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3194 {
3195 bfd_vma value;
3196 Elf_Internal_Phdr *p;
3197
3198 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
3199 BFD_ASSERT (p != NULL);
3200 value = p->p_vaddr;
3201
3202 if ((section->flags & SEC_READONLY) != 0)
3203 {
3204 if (value < htab->text_segment_base)
3205 htab->text_segment_base = value;
3206 }
3207 else
3208 {
3209 if (value < htab->data_segment_base)
3210 htab->data_segment_base = value;
3211 }
3212 }
3213 }
3214
3215 /* Perform a relocation as part of a final link. */
3216
3217 static bfd_reloc_status_type
3218 final_link_relocate (asection *input_section,
3219 bfd_byte *contents,
3220 const Elf_Internal_Rela *rela,
3221 bfd_vma value,
3222 struct elf32_hppa_link_hash_table *htab,
3223 asection *sym_sec,
3224 struct elf32_hppa_link_hash_entry *hh,
3225 struct bfd_link_info *info)
3226 {
3227 unsigned int insn;
3228 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3229 unsigned int orig_r_type = r_type;
3230 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3231 int r_format = howto->bitsize;
3232 enum hppa_reloc_field_selector_type_alt r_field;
3233 bfd *input_bfd = input_section->owner;
3234 bfd_vma offset = rela->r_offset;
3235 bfd_vma max_branch_offset = 0;
3236 bfd_byte *hit_data = contents + offset;
3237 bfd_signed_vma addend = rela->r_addend;
3238 bfd_vma location;
3239 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3240 int val;
3241
3242 if (r_type == R_PARISC_NONE)
3243 return bfd_reloc_ok;
3244
3245 insn = bfd_get_32 (input_bfd, hit_data);
3246
3247 /* Find out where we are and where we're going. */
3248 location = (offset +
3249 input_section->output_offset +
3250 input_section->output_section->vma);
3251
3252 /* If we are not building a shared library, convert DLTIND relocs to
3253 DPREL relocs. */
3254 if (!bfd_link_pic (info))
3255 {
3256 switch (r_type)
3257 {
3258 case R_PARISC_DLTIND21L:
3259 case R_PARISC_TLS_GD21L:
3260 case R_PARISC_TLS_LDM21L:
3261 case R_PARISC_TLS_IE21L:
3262 r_type = R_PARISC_DPREL21L;
3263 break;
3264
3265 case R_PARISC_DLTIND14R:
3266 case R_PARISC_TLS_GD14R:
3267 case R_PARISC_TLS_LDM14R:
3268 case R_PARISC_TLS_IE14R:
3269 r_type = R_PARISC_DPREL14R;
3270 break;
3271
3272 case R_PARISC_DLTIND14F:
3273 r_type = R_PARISC_DPREL14F;
3274 break;
3275 }
3276 }
3277
3278 switch (r_type)
3279 {
3280 case R_PARISC_PCREL12F:
3281 case R_PARISC_PCREL17F:
3282 case R_PARISC_PCREL22F:
3283 /* If this call should go via the plt, find the import stub in
3284 the stub hash. */
3285 if (sym_sec == NULL
3286 || sym_sec->output_section == NULL
3287 || (hh != NULL
3288 && hh->eh.plt.offset != (bfd_vma) -1
3289 && hh->eh.dynindx != -1
3290 && !hh->plabel
3291 && (bfd_link_pic (info)
3292 || !hh->eh.def_regular
3293 || hh->eh.root.type == bfd_link_hash_defweak)))
3294 {
3295 hsh = hppa_get_stub_entry (input_section, sym_sec,
3296 hh, rela, htab);
3297 if (hsh != NULL)
3298 {
3299 value = (hsh->stub_offset
3300 + hsh->stub_sec->output_offset
3301 + hsh->stub_sec->output_section->vma);
3302 addend = 0;
3303 }
3304 else if (sym_sec == NULL && hh != NULL
3305 && hh->eh.root.type == bfd_link_hash_undefweak)
3306 {
3307 /* It's OK if undefined weak. Calls to undefined weak
3308 symbols behave as if the "called" function
3309 immediately returns. We can thus call to a weak
3310 function without first checking whether the function
3311 is defined. */
3312 value = location;
3313 addend = 8;
3314 }
3315 else
3316 return bfd_reloc_undefined;
3317 }
3318 /* Fall thru. */
3319
3320 case R_PARISC_PCREL21L:
3321 case R_PARISC_PCREL17C:
3322 case R_PARISC_PCREL17R:
3323 case R_PARISC_PCREL14R:
3324 case R_PARISC_PCREL14F:
3325 case R_PARISC_PCREL32:
3326 /* Make it a pc relative offset. */
3327 value -= location;
3328 addend -= 8;
3329 break;
3330
3331 case R_PARISC_DPREL21L:
3332 case R_PARISC_DPREL14R:
3333 case R_PARISC_DPREL14F:
3334 /* Convert instructions that use the linkage table pointer (r19) to
3335 instructions that use the global data pointer (dp). This is the
3336 most efficient way of using PIC code in an incomplete executable,
3337 but the user must follow the standard runtime conventions for
3338 accessing data for this to work. */
3339 if (orig_r_type != r_type)
3340 {
3341 if (r_type == R_PARISC_DPREL21L)
3342 {
3343 /* GCC sometimes uses a register other than r19 for the
3344 operation, so we must convert any addil instruction
3345 that uses this relocation. */
3346 if ((insn & 0xfc000000) == OP_ADDIL << 26)
3347 insn = ADDIL_DP;
3348 else
3349 /* We must have a ldil instruction. It's too hard to find
3350 and convert the associated add instruction, so issue an
3351 error. */
3352 _bfd_error_handler
3353 /* xgettext:c-format */
3354 (_("%pB(%pA+%#" PRIx64 "): %s fixup for insn %#x "
3355 "is not supported in a non-shared link"),
3356 input_bfd,
3357 input_section,
3358 (uint64_t) offset,
3359 howto->name,
3360 insn);
3361 }
3362 else if (r_type == R_PARISC_DPREL14F)
3363 {
3364 /* This must be a format 1 load/store. Change the base
3365 register to dp. */
3366 insn = (insn & 0xfc1ffff) | (27 << 21);
3367 }
3368 }
3369
3370 /* For all the DP relative relocations, we need to examine the symbol's
3371 section. If it has no section or if it's a code section, then
3372 "data pointer relative" makes no sense. In that case we don't
3373 adjust the "value", and for 21 bit addil instructions, we change the
3374 source addend register from %dp to %r0. This situation commonly
3375 arises for undefined weak symbols and when a variable's "constness"
3376 is declared differently from the way the variable is defined. For
3377 instance: "extern int foo" with foo defined as "const int foo". */
3378 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3379 {
3380 if ((insn & ((0x3fu << 26) | (0x1f << 21)))
3381 == ((OP_ADDIL << 26) | (27 << 21)))
3382 {
3383 insn &= ~ (0x1f << 21);
3384 }
3385 /* Now try to make things easy for the dynamic linker. */
3386
3387 break;
3388 }
3389 /* Fall thru. */
3390
3391 case R_PARISC_DLTIND21L:
3392 case R_PARISC_DLTIND14R:
3393 case R_PARISC_DLTIND14F:
3394 case R_PARISC_TLS_GD21L:
3395 case R_PARISC_TLS_LDM21L:
3396 case R_PARISC_TLS_IE21L:
3397 case R_PARISC_TLS_GD14R:
3398 case R_PARISC_TLS_LDM14R:
3399 case R_PARISC_TLS_IE14R:
3400 value -= elf_gp (input_section->output_section->owner);
3401 break;
3402
3403 case R_PARISC_SEGREL32:
3404 if ((sym_sec->flags & SEC_CODE) != 0)
3405 value -= htab->text_segment_base;
3406 else
3407 value -= htab->data_segment_base;
3408 break;
3409
3410 default:
3411 break;
3412 }
3413
3414 switch (r_type)
3415 {
3416 case R_PARISC_DIR32:
3417 case R_PARISC_DIR14F:
3418 case R_PARISC_DIR17F:
3419 case R_PARISC_PCREL17C:
3420 case R_PARISC_PCREL14F:
3421 case R_PARISC_PCREL32:
3422 case R_PARISC_DPREL14F:
3423 case R_PARISC_PLABEL32:
3424 case R_PARISC_DLTIND14F:
3425 case R_PARISC_SEGBASE:
3426 case R_PARISC_SEGREL32:
3427 case R_PARISC_TLS_DTPMOD32:
3428 case R_PARISC_TLS_DTPOFF32:
3429 case R_PARISC_TLS_TPREL32:
3430 r_field = e_fsel;
3431 break;
3432
3433 case R_PARISC_DLTIND21L:
3434 case R_PARISC_PCREL21L:
3435 case R_PARISC_PLABEL21L:
3436 r_field = e_lsel;
3437 break;
3438
3439 case R_PARISC_DIR21L:
3440 case R_PARISC_DPREL21L:
3441 case R_PARISC_TLS_GD21L:
3442 case R_PARISC_TLS_LDM21L:
3443 case R_PARISC_TLS_LDO21L:
3444 case R_PARISC_TLS_IE21L:
3445 case R_PARISC_TLS_LE21L:
3446 r_field = e_lrsel;
3447 break;
3448
3449 case R_PARISC_PCREL17R:
3450 case R_PARISC_PCREL14R:
3451 case R_PARISC_PLABEL14R:
3452 case R_PARISC_DLTIND14R:
3453 r_field = e_rsel;
3454 break;
3455
3456 case R_PARISC_DIR17R:
3457 case R_PARISC_DIR14R:
3458 case R_PARISC_DPREL14R:
3459 case R_PARISC_TLS_GD14R:
3460 case R_PARISC_TLS_LDM14R:
3461 case R_PARISC_TLS_LDO14R:
3462 case R_PARISC_TLS_IE14R:
3463 case R_PARISC_TLS_LE14R:
3464 r_field = e_rrsel;
3465 break;
3466
3467 case R_PARISC_PCREL12F:
3468 case R_PARISC_PCREL17F:
3469 case R_PARISC_PCREL22F:
3470 r_field = e_fsel;
3471
3472 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3473 {
3474 max_branch_offset = (1 << (17-1)) << 2;
3475 }
3476 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3477 {
3478 max_branch_offset = (1 << (12-1)) << 2;
3479 }
3480 else
3481 {
3482 max_branch_offset = (1 << (22-1)) << 2;
3483 }
3484
3485 /* sym_sec is NULL on undefined weak syms or when shared on
3486 undefined syms. We've already checked for a stub for the
3487 shared undefined case. */
3488 if (sym_sec == NULL)
3489 break;
3490
3491 /* If the branch is out of reach, then redirect the
3492 call to the local stub for this function. */
3493 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3494 {
3495 hsh = hppa_get_stub_entry (input_section, sym_sec,
3496 hh, rela, htab);
3497 if (hsh == NULL)
3498 return bfd_reloc_undefined;
3499
3500 /* Munge up the value and addend so that we call the stub
3501 rather than the procedure directly. */
3502 value = (hsh->stub_offset
3503 + hsh->stub_sec->output_offset
3504 + hsh->stub_sec->output_section->vma
3505 - location);
3506 addend = -8;
3507 }
3508 break;
3509
3510 /* Something we don't know how to handle. */
3511 default:
3512 return bfd_reloc_notsupported;
3513 }
3514
3515 /* Make sure we can reach the stub. */
3516 if (max_branch_offset != 0
3517 && value + addend + max_branch_offset >= 2*max_branch_offset)
3518 {
3519 _bfd_error_handler
3520 /* xgettext:c-format */
3521 (_("%pB(%pA+%#" PRIx64 "): cannot reach %s, "
3522 "recompile with -ffunction-sections"),
3523 input_bfd,
3524 input_section,
3525 (uint64_t) offset,
3526 hsh->bh_root.string);
3527 bfd_set_error (bfd_error_bad_value);
3528 return bfd_reloc_notsupported;
3529 }
3530
3531 val = hppa_field_adjust (value, addend, r_field);
3532
3533 switch (r_type)
3534 {
3535 case R_PARISC_PCREL12F:
3536 case R_PARISC_PCREL17C:
3537 case R_PARISC_PCREL17F:
3538 case R_PARISC_PCREL17R:
3539 case R_PARISC_PCREL22F:
3540 case R_PARISC_DIR17F:
3541 case R_PARISC_DIR17R:
3542 /* This is a branch. Divide the offset by four.
3543 Note that we need to decide whether it's a branch or
3544 otherwise by inspecting the reloc. Inspecting insn won't
3545 work as insn might be from a .word directive. */
3546 val >>= 2;
3547 break;
3548
3549 default:
3550 break;
3551 }
3552
3553 insn = hppa_rebuild_insn (insn, val, r_format);
3554
3555 /* Update the instruction word. */
3556 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3557 return bfd_reloc_ok;
3558 }
3559
3560 /* Relocate an HPPA ELF section. */
3561
3562 static bfd_boolean
3563 elf32_hppa_relocate_section (bfd *output_bfd,
3564 struct bfd_link_info *info,
3565 bfd *input_bfd,
3566 asection *input_section,
3567 bfd_byte *contents,
3568 Elf_Internal_Rela *relocs,
3569 Elf_Internal_Sym *local_syms,
3570 asection **local_sections)
3571 {
3572 bfd_vma *local_got_offsets;
3573 struct elf32_hppa_link_hash_table *htab;
3574 Elf_Internal_Shdr *symtab_hdr;
3575 Elf_Internal_Rela *rela;
3576 Elf_Internal_Rela *relend;
3577
3578 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3579
3580 htab = hppa_link_hash_table (info);
3581 if (htab == NULL)
3582 return FALSE;
3583
3584 local_got_offsets = elf_local_got_offsets (input_bfd);
3585
3586 rela = relocs;
3587 relend = relocs + input_section->reloc_count;
3588 for (; rela < relend; rela++)
3589 {
3590 unsigned int r_type;
3591 reloc_howto_type *howto;
3592 unsigned int r_symndx;
3593 struct elf32_hppa_link_hash_entry *hh;
3594 Elf_Internal_Sym *sym;
3595 asection *sym_sec;
3596 bfd_vma relocation;
3597 bfd_reloc_status_type rstatus;
3598 const char *sym_name;
3599 bfd_boolean plabel;
3600 bfd_boolean warned_undef;
3601
3602 r_type = ELF32_R_TYPE (rela->r_info);
3603 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3604 {
3605 bfd_set_error (bfd_error_bad_value);
3606 return FALSE;
3607 }
3608 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3609 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3610 continue;
3611
3612 r_symndx = ELF32_R_SYM (rela->r_info);
3613 hh = NULL;
3614 sym = NULL;
3615 sym_sec = NULL;
3616 warned_undef = FALSE;
3617 if (r_symndx < symtab_hdr->sh_info)
3618 {
3619 /* This is a local symbol, h defaults to NULL. */
3620 sym = local_syms + r_symndx;
3621 sym_sec = local_sections[r_symndx];
3622 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3623 }
3624 else
3625 {
3626 struct elf_link_hash_entry *eh;
3627 bfd_boolean unresolved_reloc, ignored;
3628 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3629
3630 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3631 r_symndx, symtab_hdr, sym_hashes,
3632 eh, sym_sec, relocation,
3633 unresolved_reloc, warned_undef,
3634 ignored);
3635
3636 if (!bfd_link_relocatable (info)
3637 && relocation == 0
3638 && eh->root.type != bfd_link_hash_defined
3639 && eh->root.type != bfd_link_hash_defweak
3640 && eh->root.type != bfd_link_hash_undefweak)
3641 {
3642 if (info->unresolved_syms_in_objects == RM_IGNORE
3643 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3644 && eh->type == STT_PARISC_MILLI)
3645 {
3646 (*info->callbacks->undefined_symbol)
3647 (info, eh_name (eh), input_bfd,
3648 input_section, rela->r_offset, FALSE);
3649 warned_undef = TRUE;
3650 }
3651 }
3652 hh = hppa_elf_hash_entry (eh);
3653 }
3654
3655 if (sym_sec != NULL && discarded_section (sym_sec))
3656 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3657 rela, 1, relend,
3658 elf_hppa_howto_table + r_type, 0,
3659 contents);
3660
3661 if (bfd_link_relocatable (info))
3662 continue;
3663
3664 /* Do any required modifications to the relocation value, and
3665 determine what types of dynamic info we need to output, if
3666 any. */
3667 plabel = 0;
3668 switch (r_type)
3669 {
3670 case R_PARISC_DLTIND14F:
3671 case R_PARISC_DLTIND14R:
3672 case R_PARISC_DLTIND21L:
3673 {
3674 bfd_vma off;
3675 bfd_boolean do_got = FALSE;
3676 bfd_boolean reloc = bfd_link_pic (info);
3677
3678 /* Relocation is to the entry for this symbol in the
3679 global offset table. */
3680 if (hh != NULL)
3681 {
3682 bfd_boolean dyn;
3683
3684 off = hh->eh.got.offset;
3685 dyn = htab->etab.dynamic_sections_created;
3686 reloc = (!UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh)
3687 && (reloc
3688 || (hh->eh.dynindx != -1
3689 && !SYMBOL_REFERENCES_LOCAL (info, &hh->eh))));
3690 if (!reloc
3691 || !WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
3692 bfd_link_pic (info),
3693 &hh->eh))
3694 {
3695 /* If we aren't going to call finish_dynamic_symbol,
3696 then we need to handle initialisation of the .got
3697 entry and create needed relocs here. Since the
3698 offset must always be a multiple of 4, we use the
3699 least significant bit to record whether we have
3700 initialised it already. */
3701 if ((off & 1) != 0)
3702 off &= ~1;
3703 else
3704 {
3705 hh->eh.got.offset |= 1;
3706 do_got = TRUE;
3707 }
3708 }
3709 }
3710 else
3711 {
3712 /* Local symbol case. */
3713 if (local_got_offsets == NULL)
3714 abort ();
3715
3716 off = local_got_offsets[r_symndx];
3717
3718 /* The offset must always be a multiple of 4. We use
3719 the least significant bit to record whether we have
3720 already generated the necessary reloc. */
3721 if ((off & 1) != 0)
3722 off &= ~1;
3723 else
3724 {
3725 local_got_offsets[r_symndx] |= 1;
3726 do_got = TRUE;
3727 }
3728 }
3729
3730 if (do_got)
3731 {
3732 if (reloc)
3733 {
3734 /* Output a dynamic relocation for this GOT entry.
3735 In this case it is relative to the base of the
3736 object because the symbol index is zero. */
3737 Elf_Internal_Rela outrel;
3738 bfd_byte *loc;
3739 asection *sec = htab->etab.srelgot;
3740
3741 outrel.r_offset = (off
3742 + htab->etab.sgot->output_offset
3743 + htab->etab.sgot->output_section->vma);
3744 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3745 outrel.r_addend = relocation;
3746 loc = sec->contents;
3747 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3748 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3749 }
3750 else
3751 bfd_put_32 (output_bfd, relocation,
3752 htab->etab.sgot->contents + off);
3753 }
3754
3755 if (off >= (bfd_vma) -2)
3756 abort ();
3757
3758 /* Add the base of the GOT to the relocation value. */
3759 relocation = (off
3760 + htab->etab.sgot->output_offset
3761 + htab->etab.sgot->output_section->vma);
3762 }
3763 break;
3764
3765 case R_PARISC_SEGREL32:
3766 /* If this is the first SEGREL relocation, then initialize
3767 the segment base values. */
3768 if (htab->text_segment_base == (bfd_vma) -1)
3769 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3770 break;
3771
3772 case R_PARISC_PLABEL14R:
3773 case R_PARISC_PLABEL21L:
3774 case R_PARISC_PLABEL32:
3775 if (htab->etab.dynamic_sections_created)
3776 {
3777 bfd_vma off;
3778 bfd_boolean do_plt = 0;
3779 /* If we have a global symbol with a PLT slot, then
3780 redirect this relocation to it. */
3781 if (hh != NULL)
3782 {
3783 off = hh->eh.plt.offset;
3784 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1,
3785 bfd_link_pic (info),
3786 &hh->eh))
3787 {
3788 /* In a non-shared link, adjust_dynamic_symbol
3789 isn't called for symbols forced local. We
3790 need to write out the plt entry here. */
3791 if ((off & 1) != 0)
3792 off &= ~1;
3793 else
3794 {
3795 hh->eh.plt.offset |= 1;
3796 do_plt = 1;
3797 }
3798 }
3799 }
3800 else
3801 {
3802 bfd_vma *local_plt_offsets;
3803
3804 if (local_got_offsets == NULL)
3805 abort ();
3806
3807 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3808 off = local_plt_offsets[r_symndx];
3809
3810 /* As for the local .got entry case, we use the last
3811 bit to record whether we've already initialised
3812 this local .plt entry. */
3813 if ((off & 1) != 0)
3814 off &= ~1;
3815 else
3816 {
3817 local_plt_offsets[r_symndx] |= 1;
3818 do_plt = 1;
3819 }
3820 }
3821
3822 if (do_plt)
3823 {
3824 if (bfd_link_pic (info))
3825 {
3826 /* Output a dynamic IPLT relocation for this
3827 PLT entry. */
3828 Elf_Internal_Rela outrel;
3829 bfd_byte *loc;
3830 asection *s = htab->etab.srelplt;
3831
3832 outrel.r_offset = (off
3833 + htab->etab.splt->output_offset
3834 + htab->etab.splt->output_section->vma);
3835 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3836 outrel.r_addend = relocation;
3837 loc = s->contents;
3838 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3839 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3840 }
3841 else
3842 {
3843 bfd_put_32 (output_bfd,
3844 relocation,
3845 htab->etab.splt->contents + off);
3846 bfd_put_32 (output_bfd,
3847 elf_gp (htab->etab.splt->output_section->owner),
3848 htab->etab.splt->contents + off + 4);
3849 }
3850 }
3851
3852 if (off >= (bfd_vma) -2)
3853 abort ();
3854
3855 /* PLABELs contain function pointers. Relocation is to
3856 the entry for the function in the .plt. The magic +2
3857 offset signals to $$dyncall that the function pointer
3858 is in the .plt and thus has a gp pointer too.
3859 Exception: Undefined PLABELs should have a value of
3860 zero. */
3861 if (hh == NULL
3862 || (hh->eh.root.type != bfd_link_hash_undefweak
3863 && hh->eh.root.type != bfd_link_hash_undefined))
3864 {
3865 relocation = (off
3866 + htab->etab.splt->output_offset
3867 + htab->etab.splt->output_section->vma
3868 + 2);
3869 }
3870 plabel = 1;
3871 }
3872 /* Fall through. */
3873
3874 case R_PARISC_DIR17F:
3875 case R_PARISC_DIR17R:
3876 case R_PARISC_DIR14F:
3877 case R_PARISC_DIR14R:
3878 case R_PARISC_DIR21L:
3879 case R_PARISC_DPREL14F:
3880 case R_PARISC_DPREL14R:
3881 case R_PARISC_DPREL21L:
3882 case R_PARISC_DIR32:
3883 if ((input_section->flags & SEC_ALLOC) == 0)
3884 break;
3885
3886 if (bfd_link_pic (info)
3887 ? ((hh == NULL
3888 || hh->eh.dyn_relocs != NULL)
3889 && ((hh != NULL && pc_dynrelocs (hh))
3890 || IS_ABSOLUTE_RELOC (r_type)))
3891 : (hh != NULL
3892 && hh->eh.dyn_relocs != NULL))
3893 {
3894 Elf_Internal_Rela outrel;
3895 bfd_boolean skip;
3896 asection *sreloc;
3897 bfd_byte *loc;
3898
3899 /* When generating a shared object, these relocations
3900 are copied into the output file to be resolved at run
3901 time. */
3902
3903 outrel.r_addend = rela->r_addend;
3904 outrel.r_offset =
3905 _bfd_elf_section_offset (output_bfd, info, input_section,
3906 rela->r_offset);
3907 skip = (outrel.r_offset == (bfd_vma) -1
3908 || outrel.r_offset == (bfd_vma) -2);
3909 outrel.r_offset += (input_section->output_offset
3910 + input_section->output_section->vma);
3911
3912 if (skip)
3913 {
3914 memset (&outrel, 0, sizeof (outrel));
3915 }
3916 else if (hh != NULL
3917 && hh->eh.dynindx != -1
3918 && (plabel
3919 || !IS_ABSOLUTE_RELOC (r_type)
3920 || !bfd_link_pic (info)
3921 || !SYMBOLIC_BIND (info, &hh->eh)
3922 || !hh->eh.def_regular))
3923 {
3924 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
3925 }
3926 else /* It's a local symbol, or one marked to become local. */
3927 {
3928 int indx = 0;
3929
3930 /* Add the absolute offset of the symbol. */
3931 outrel.r_addend += relocation;
3932
3933 /* Global plabels need to be processed by the
3934 dynamic linker so that functions have at most one
3935 fptr. For this reason, we need to differentiate
3936 between global and local plabels, which we do by
3937 providing the function symbol for a global plabel
3938 reloc, and no symbol for local plabels. */
3939 if (! plabel
3940 && sym_sec != NULL
3941 && sym_sec->output_section != NULL
3942 && ! bfd_is_abs_section (sym_sec))
3943 {
3944 asection *osec;
3945
3946 osec = sym_sec->output_section;
3947 indx = elf_section_data (osec)->dynindx;
3948 if (indx == 0)
3949 {
3950 osec = htab->etab.text_index_section;
3951 indx = elf_section_data (osec)->dynindx;
3952 }
3953 BFD_ASSERT (indx != 0);
3954
3955 /* We are turning this relocation into one
3956 against a section symbol, so subtract out the
3957 output section's address but not the offset
3958 of the input section in the output section. */
3959 outrel.r_addend -= osec->vma;
3960 }
3961
3962 outrel.r_info = ELF32_R_INFO (indx, r_type);
3963 }
3964 sreloc = elf_section_data (input_section)->sreloc;
3965 if (sreloc == NULL)
3966 abort ();
3967
3968 loc = sreloc->contents;
3969 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3970 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3971 }
3972 break;
3973
3974 case R_PARISC_TLS_LDM21L:
3975 case R_PARISC_TLS_LDM14R:
3976 {
3977 bfd_vma off;
3978
3979 off = htab->tls_ldm_got.offset;
3980 if (off & 1)
3981 off &= ~1;
3982 else
3983 {
3984 Elf_Internal_Rela outrel;
3985 bfd_byte *loc;
3986
3987 outrel.r_offset = (off
3988 + htab->etab.sgot->output_section->vma
3989 + htab->etab.sgot->output_offset);
3990 outrel.r_addend = 0;
3991 outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
3992 loc = htab->etab.srelgot->contents;
3993 loc += htab->etab.srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
3994
3995 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3996 htab->tls_ldm_got.offset |= 1;
3997 }
3998
3999 /* Add the base of the GOT to the relocation value. */
4000 relocation = (off
4001 + htab->etab.sgot->output_offset
4002 + htab->etab.sgot->output_section->vma);
4003
4004 break;
4005 }
4006
4007 case R_PARISC_TLS_LDO21L:
4008 case R_PARISC_TLS_LDO14R:
4009 relocation -= dtpoff_base (info);
4010 break;
4011
4012 case R_PARISC_TLS_GD21L:
4013 case R_PARISC_TLS_GD14R:
4014 case R_PARISC_TLS_IE21L:
4015 case R_PARISC_TLS_IE14R:
4016 {
4017 bfd_vma off;
4018 int indx;
4019 char tls_type;
4020
4021 indx = 0;
4022 if (hh != NULL)
4023 {
4024 if (!htab->etab.dynamic_sections_created
4025 || hh->eh.dynindx == -1
4026 || SYMBOL_REFERENCES_LOCAL (info, &hh->eh)
4027 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh))
4028 /* This is actually a static link, or it is a
4029 -Bsymbolic link and the symbol is defined
4030 locally, or the symbol was forced to be local
4031 because of a version file. */
4032 ;
4033 else
4034 indx = hh->eh.dynindx;
4035 off = hh->eh.got.offset;
4036 tls_type = hh->tls_type;
4037 }
4038 else
4039 {
4040 off = local_got_offsets[r_symndx];
4041 tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4042 }
4043
4044 if (tls_type == GOT_UNKNOWN)
4045 abort ();
4046
4047 if ((off & 1) != 0)
4048 off &= ~1;
4049 else
4050 {
4051 bfd_boolean need_relocs = FALSE;
4052 Elf_Internal_Rela outrel;
4053 bfd_byte *loc = NULL;
4054 int cur_off = off;
4055
4056 /* The GOT entries have not been initialized yet. Do it
4057 now, and emit any relocations. If both an IE GOT and a
4058 GD GOT are necessary, we emit the GD first. */
4059
4060 if (indx != 0
4061 || (bfd_link_dll (info)
4062 && (hh == NULL
4063 || !UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh))))
4064 {
4065 need_relocs = TRUE;
4066 loc = htab->etab.srelgot->contents;
4067 loc += (htab->etab.srelgot->reloc_count
4068 * sizeof (Elf32_External_Rela));
4069 }
4070
4071 if (tls_type & GOT_TLS_GD)
4072 {
4073 if (need_relocs)
4074 {
4075 outrel.r_offset
4076 = (cur_off
4077 + htab->etab.sgot->output_section->vma
4078 + htab->etab.sgot->output_offset);
4079 outrel.r_info
4080 = ELF32_R_INFO (indx, R_PARISC_TLS_DTPMOD32);
4081 outrel.r_addend = 0;
4082 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4083 htab->etab.srelgot->reloc_count++;
4084 loc += sizeof (Elf32_External_Rela);
4085 bfd_put_32 (output_bfd, 0,
4086 htab->etab.sgot->contents + cur_off);
4087 }
4088 else
4089 /* If we are not emitting relocations for a
4090 general dynamic reference, then we must be in a
4091 static link or an executable link with the
4092 symbol binding locally. Mark it as belonging
4093 to module 1, the executable. */
4094 bfd_put_32 (output_bfd, 1,
4095 htab->etab.sgot->contents + cur_off);
4096
4097 if (indx != 0)
4098 {
4099 outrel.r_info
4100 = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4101 outrel.r_offset += 4;
4102 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4103 htab->etab.srelgot->reloc_count++;
4104 loc += sizeof (Elf32_External_Rela);
4105 bfd_put_32 (output_bfd, 0,
4106 htab->etab.sgot->contents + cur_off + 4);
4107 }
4108 else
4109 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4110 htab->etab.sgot->contents + cur_off + 4);
4111 cur_off += 8;
4112 }
4113
4114 if (tls_type & GOT_TLS_IE)
4115 {
4116 if (need_relocs
4117 && !(bfd_link_executable (info)
4118 && SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4119 {
4120 outrel.r_offset
4121 = (cur_off
4122 + htab->etab.sgot->output_section->vma
4123 + htab->etab.sgot->output_offset);
4124 outrel.r_info = ELF32_R_INFO (indx,
4125 R_PARISC_TLS_TPREL32);
4126 if (indx == 0)
4127 outrel.r_addend = relocation - dtpoff_base (info);
4128 else
4129 outrel.r_addend = 0;
4130 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4131 htab->etab.srelgot->reloc_count++;
4132 loc += sizeof (Elf32_External_Rela);
4133 }
4134 else
4135 bfd_put_32 (output_bfd, tpoff (info, relocation),
4136 htab->etab.sgot->contents + cur_off);
4137 cur_off += 4;
4138 }
4139
4140 if (hh != NULL)
4141 hh->eh.got.offset |= 1;
4142 else
4143 local_got_offsets[r_symndx] |= 1;
4144 }
4145
4146 if ((tls_type & GOT_NORMAL) != 0
4147 && (tls_type & (GOT_TLS_GD | GOT_TLS_LDM | GOT_TLS_IE)) != 0)
4148 {
4149 if (hh != NULL)
4150 _bfd_error_handler (_("%s has both normal and TLS relocs"),
4151 hh_name (hh));
4152 else
4153 {
4154 Elf_Internal_Sym *isym
4155 = bfd_sym_from_r_symndx (&htab->sym_cache,
4156 input_bfd, r_symndx);
4157 if (isym == NULL)
4158 return FALSE;
4159 sym_name
4160 = bfd_elf_string_from_elf_section (input_bfd,
4161 symtab_hdr->sh_link,
4162 isym->st_name);
4163 if (sym_name == NULL)
4164 return FALSE;
4165 if (*sym_name == '\0')
4166 sym_name = bfd_section_name (sym_sec);
4167 _bfd_error_handler
4168 (_("%pB:%s has both normal and TLS relocs"),
4169 input_bfd, sym_name);
4170 }
4171 bfd_set_error (bfd_error_bad_value);
4172 return FALSE;
4173 }
4174
4175 if ((tls_type & GOT_TLS_GD)
4176 && r_type != R_PARISC_TLS_GD21L
4177 && r_type != R_PARISC_TLS_GD14R)
4178 off += 2 * GOT_ENTRY_SIZE;
4179
4180 /* Add the base of the GOT to the relocation value. */
4181 relocation = (off
4182 + htab->etab.sgot->output_offset
4183 + htab->etab.sgot->output_section->vma);
4184
4185 break;
4186 }
4187
4188 case R_PARISC_TLS_LE21L:
4189 case R_PARISC_TLS_LE14R:
4190 {
4191 relocation = tpoff (info, relocation);
4192 break;
4193 }
4194 break;
4195
4196 default:
4197 break;
4198 }
4199
4200 rstatus = final_link_relocate (input_section, contents, rela, relocation,
4201 htab, sym_sec, hh, info);
4202
4203 if (rstatus == bfd_reloc_ok)
4204 continue;
4205
4206 if (hh != NULL)
4207 sym_name = hh_name (hh);
4208 else
4209 {
4210 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4211 symtab_hdr->sh_link,
4212 sym->st_name);
4213 if (sym_name == NULL)
4214 return FALSE;
4215 if (*sym_name == '\0')
4216 sym_name = bfd_section_name (sym_sec);
4217 }
4218
4219 howto = elf_hppa_howto_table + r_type;
4220
4221 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4222 {
4223 if (rstatus == bfd_reloc_notsupported || !warned_undef)
4224 {
4225 _bfd_error_handler
4226 /* xgettext:c-format */
4227 (_("%pB(%pA+%#" PRIx64 "): cannot handle %s for %s"),
4228 input_bfd,
4229 input_section,
4230 (uint64_t) rela->r_offset,
4231 howto->name,
4232 sym_name);
4233 bfd_set_error (bfd_error_bad_value);
4234 return FALSE;
4235 }
4236 }
4237 else
4238 (*info->callbacks->reloc_overflow)
4239 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4240 (bfd_vma) 0, input_bfd, input_section, rela->r_offset);
4241 }
4242
4243 return TRUE;
4244 }
4245
4246 /* Finish up dynamic symbol handling. We set the contents of various
4247 dynamic sections here. */
4248
4249 static bfd_boolean
4250 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4251 struct bfd_link_info *info,
4252 struct elf_link_hash_entry *eh,
4253 Elf_Internal_Sym *sym)
4254 {
4255 struct elf32_hppa_link_hash_table *htab;
4256 Elf_Internal_Rela rela;
4257 bfd_byte *loc;
4258
4259 htab = hppa_link_hash_table (info);
4260 if (htab == NULL)
4261 return FALSE;
4262
4263 if (eh->plt.offset != (bfd_vma) -1)
4264 {
4265 bfd_vma value;
4266
4267 if (eh->plt.offset & 1)
4268 abort ();
4269
4270 /* This symbol has an entry in the procedure linkage table. Set
4271 it up.
4272
4273 The format of a plt entry is
4274 <funcaddr>
4275 <__gp>
4276 */
4277 value = 0;
4278 if (eh->root.type == bfd_link_hash_defined
4279 || eh->root.type == bfd_link_hash_defweak)
4280 {
4281 value = eh->root.u.def.value;
4282 if (eh->root.u.def.section->output_section != NULL)
4283 value += (eh->root.u.def.section->output_offset
4284 + eh->root.u.def.section->output_section->vma);
4285 }
4286
4287 /* Create a dynamic IPLT relocation for this entry. */
4288 rela.r_offset = (eh->plt.offset
4289 + htab->etab.splt->output_offset
4290 + htab->etab.splt->output_section->vma);
4291 if (eh->dynindx != -1)
4292 {
4293 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4294 rela.r_addend = 0;
4295 }
4296 else
4297 {
4298 /* This symbol has been marked to become local, and is
4299 used by a plabel so must be kept in the .plt. */
4300 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4301 rela.r_addend = value;
4302 }
4303
4304 loc = htab->etab.srelplt->contents;
4305 loc += htab->etab.srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4306 bfd_elf32_swap_reloca_out (htab->etab.splt->output_section->owner, &rela, loc);
4307
4308 if (!eh->def_regular)
4309 {
4310 /* Mark the symbol as undefined, rather than as defined in
4311 the .plt section. Leave the value alone. */
4312 sym->st_shndx = SHN_UNDEF;
4313 }
4314 }
4315
4316 if (eh->got.offset != (bfd_vma) -1
4317 && (hppa_elf_hash_entry (eh)->tls_type & GOT_NORMAL) != 0
4318 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
4319 {
4320 bfd_boolean is_dyn = (eh->dynindx != -1
4321 && !SYMBOL_REFERENCES_LOCAL (info, eh));
4322
4323 if (is_dyn || bfd_link_pic (info))
4324 {
4325 /* This symbol has an entry in the global offset table. Set
4326 it up. */
4327
4328 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4329 + htab->etab.sgot->output_offset
4330 + htab->etab.sgot->output_section->vma);
4331
4332 /* If this is a -Bsymbolic link and the symbol is defined
4333 locally or was forced to be local because of a version
4334 file, we just want to emit a RELATIVE reloc. The entry
4335 in the global offset table will already have been
4336 initialized in the relocate_section function. */
4337 if (!is_dyn)
4338 {
4339 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4340 rela.r_addend = (eh->root.u.def.value
4341 + eh->root.u.def.section->output_offset
4342 + eh->root.u.def.section->output_section->vma);
4343 }
4344 else
4345 {
4346 if ((eh->got.offset & 1) != 0)
4347 abort ();
4348
4349 bfd_put_32 (output_bfd, 0,
4350 htab->etab.sgot->contents + (eh->got.offset & ~1));
4351 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4352 rela.r_addend = 0;
4353 }
4354
4355 loc = htab->etab.srelgot->contents;
4356 loc += (htab->etab.srelgot->reloc_count++
4357 * sizeof (Elf32_External_Rela));
4358 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4359 }
4360 }
4361
4362 if (eh->needs_copy)
4363 {
4364 asection *sec;
4365
4366 /* This symbol needs a copy reloc. Set it up. */
4367
4368 if (! (eh->dynindx != -1
4369 && (eh->root.type == bfd_link_hash_defined
4370 || eh->root.type == bfd_link_hash_defweak)))
4371 abort ();
4372
4373 rela.r_offset = (eh->root.u.def.value
4374 + eh->root.u.def.section->output_offset
4375 + eh->root.u.def.section->output_section->vma);
4376 rela.r_addend = 0;
4377 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4378 if (eh->root.u.def.section == htab->etab.sdynrelro)
4379 sec = htab->etab.sreldynrelro;
4380 else
4381 sec = htab->etab.srelbss;
4382 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4383 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4384 }
4385
4386 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4387 if (eh == htab->etab.hdynamic || eh == htab->etab.hgot)
4388 {
4389 sym->st_shndx = SHN_ABS;
4390 }
4391
4392 return TRUE;
4393 }
4394
4395 /* Used to decide how to sort relocs in an optimal manner for the
4396 dynamic linker, before writing them out. */
4397
4398 static enum elf_reloc_type_class
4399 elf32_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4400 const asection *rel_sec ATTRIBUTE_UNUSED,
4401 const Elf_Internal_Rela *rela)
4402 {
4403 /* Handle TLS relocs first; we don't want them to be marked
4404 relative by the "if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)"
4405 check below. */
4406 switch ((int) ELF32_R_TYPE (rela->r_info))
4407 {
4408 case R_PARISC_TLS_DTPMOD32:
4409 case R_PARISC_TLS_DTPOFF32:
4410 case R_PARISC_TLS_TPREL32:
4411 return reloc_class_normal;
4412 }
4413
4414 if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)
4415 return reloc_class_relative;
4416
4417 switch ((int) ELF32_R_TYPE (rela->r_info))
4418 {
4419 case R_PARISC_IPLT:
4420 return reloc_class_plt;
4421 case R_PARISC_COPY:
4422 return reloc_class_copy;
4423 default:
4424 return reloc_class_normal;
4425 }
4426 }
4427
4428 /* Finish up the dynamic sections. */
4429
4430 static bfd_boolean
4431 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4432 struct bfd_link_info *info)
4433 {
4434 bfd *dynobj;
4435 struct elf32_hppa_link_hash_table *htab;
4436 asection *sdyn;
4437 asection * sgot;
4438
4439 htab = hppa_link_hash_table (info);
4440 if (htab == NULL)
4441 return FALSE;
4442
4443 dynobj = htab->etab.dynobj;
4444
4445 sgot = htab->etab.sgot;
4446 /* A broken linker script might have discarded the dynamic sections.
4447 Catch this here so that we do not seg-fault later on. */
4448 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
4449 return FALSE;
4450
4451 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4452
4453 if (htab->etab.dynamic_sections_created)
4454 {
4455 Elf32_External_Dyn *dyncon, *dynconend;
4456
4457 if (sdyn == NULL)
4458 abort ();
4459
4460 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4461 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4462 for (; dyncon < dynconend; dyncon++)
4463 {
4464 Elf_Internal_Dyn dyn;
4465 asection *s;
4466
4467 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4468
4469 switch (dyn.d_tag)
4470 {
4471 default:
4472 continue;
4473
4474 case DT_PLTGOT:
4475 /* Use PLTGOT to set the GOT register. */
4476 dyn.d_un.d_ptr = elf_gp (output_bfd);
4477 break;
4478
4479 case DT_JMPREL:
4480 s = htab->etab.srelplt;
4481 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4482 break;
4483
4484 case DT_PLTRELSZ:
4485 s = htab->etab.srelplt;
4486 dyn.d_un.d_val = s->size;
4487 break;
4488 }
4489
4490 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4491 }
4492 }
4493
4494 if (sgot != NULL && sgot->size != 0)
4495 {
4496 /* Fill in the first entry in the global offset table.
4497 We use it to point to our dynamic section, if we have one. */
4498 bfd_put_32 (output_bfd,
4499 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4500 sgot->contents);
4501
4502 /* The second entry is reserved for use by the dynamic linker. */
4503 memset (sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4504
4505 /* Set .got entry size. */
4506 elf_section_data (sgot->output_section)
4507 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4508 }
4509
4510 if (htab->etab.splt != NULL && htab->etab.splt->size != 0)
4511 {
4512 /* Set plt entry size to 0 instead of PLT_ENTRY_SIZE, since we add the
4513 plt stubs and as such the section does not hold a table of fixed-size
4514 entries. */
4515 elf_section_data (htab->etab.splt->output_section)->this_hdr.sh_entsize = 0;
4516
4517 if (htab->need_plt_stub)
4518 {
4519 /* Set up the .plt stub. */
4520 memcpy (htab->etab.splt->contents
4521 + htab->etab.splt->size - sizeof (plt_stub),
4522 plt_stub, sizeof (plt_stub));
4523
4524 if ((htab->etab.splt->output_offset
4525 + htab->etab.splt->output_section->vma
4526 + htab->etab.splt->size)
4527 != (sgot->output_offset
4528 + sgot->output_section->vma))
4529 {
4530 _bfd_error_handler
4531 (_(".got section not immediately after .plt section"));
4532 return FALSE;
4533 }
4534 }
4535 }
4536
4537 return TRUE;
4538 }
4539
4540 /* Called when writing out an object file to decide the type of a
4541 symbol. */
4542 static int
4543 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4544 {
4545 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4546 return STT_PARISC_MILLI;
4547 else
4548 return type;
4549 }
4550
4551 /* Misc BFD support code. */
4552 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4553 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4554 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4555 #define elf_info_to_howto elf_hppa_info_to_howto
4556 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4557
4558 /* Stuff for the BFD linker. */
4559 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4560 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4561 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4562 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4563 #define elf_backend_check_relocs elf32_hppa_check_relocs
4564 #define elf_backend_relocs_compatible _bfd_elf_relocs_compatible
4565 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4566 #define elf_backend_fake_sections elf_hppa_fake_sections
4567 #define elf_backend_relocate_section elf32_hppa_relocate_section
4568 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4569 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4570 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4571 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4572 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4573 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4574 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4575 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4576 #define elf_backend_object_p elf32_hppa_object_p
4577 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4578 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4579 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4580 #define elf_backend_action_discarded elf_hppa_action_discarded
4581
4582 #define elf_backend_can_gc_sections 1
4583 #define elf_backend_can_refcount 1
4584 #define elf_backend_plt_alignment 2
4585 #define elf_backend_want_got_plt 0
4586 #define elf_backend_plt_readonly 0
4587 #define elf_backend_want_plt_sym 0
4588 #define elf_backend_got_header_size 8
4589 #define elf_backend_want_dynrelro 1
4590 #define elf_backend_rela_normal 1
4591 #define elf_backend_dtrel_excludes_plt 1
4592 #define elf_backend_no_page_alias 1
4593
4594 #define TARGET_BIG_SYM hppa_elf32_vec
4595 #define TARGET_BIG_NAME "elf32-hppa"
4596 #define ELF_ARCH bfd_arch_hppa
4597 #define ELF_TARGET_ID HPPA32_ELF_DATA
4598 #define ELF_MACHINE_CODE EM_PARISC
4599 #define ELF_MAXPAGESIZE 0x1000
4600 #define ELF_OSABI ELFOSABI_HPUX
4601 #define elf32_bed elf32_hppa_hpux_bed
4602
4603 #include "elf32-target.h"
4604
4605 #undef TARGET_BIG_SYM
4606 #define TARGET_BIG_SYM hppa_elf32_linux_vec
4607 #undef TARGET_BIG_NAME
4608 #define TARGET_BIG_NAME "elf32-hppa-linux"
4609 #undef ELF_OSABI
4610 #define ELF_OSABI ELFOSABI_GNU
4611 #undef elf32_bed
4612 #define elf32_bed elf32_hppa_linux_bed
4613
4614 #include "elf32-target.h"
4615
4616 #undef TARGET_BIG_SYM
4617 #define TARGET_BIG_SYM hppa_elf32_nbsd_vec
4618 #undef TARGET_BIG_NAME
4619 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4620 #undef ELF_OSABI
4621 #define ELF_OSABI ELFOSABI_NETBSD
4622 #undef elf32_bed
4623 #define elf32_bed elf32_hppa_netbsd_bed
4624
4625 #include "elf32-target.h"
This page took 0.149064 seconds and 4 git commands to generate.