20b16beb674614556b3d5fbd0b003b0daa1bfb1e
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
4
5 Original code by
6 Center for Software Science
7 Department of Computer Science
8 University of Utah
9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
10 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
11 TLS support written by Randolph Chung <tausq@debian.org>
12
13 This file is part of BFD, the Binary File Descriptor library.
14
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 3 of the License, or
18 (at your option) any later version.
19
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
28 MA 02110-1301, USA. */
29
30 #include "sysdep.h"
31 #include "bfd.h"
32 #include "libbfd.h"
33 #include "elf-bfd.h"
34 #include "elf/hppa.h"
35 #include "libhppa.h"
36 #include "elf32-hppa.h"
37 #define ARCH_SIZE 32
38 #include "elf32-hppa.h"
39 #include "elf-hppa.h"
40
41 /* In order to gain some understanding of code in this file without
42 knowing all the intricate details of the linker, note the
43 following:
44
45 Functions named elf32_hppa_* are called by external routines, other
46 functions are only called locally. elf32_hppa_* functions appear
47 in this file more or less in the order in which they are called
48 from external routines. eg. elf32_hppa_check_relocs is called
49 early in the link process, elf32_hppa_finish_dynamic_sections is
50 one of the last functions. */
51
52 /* We use two hash tables to hold information for linking PA ELF objects.
53
54 The first is the elf32_hppa_link_hash_table which is derived
55 from the standard ELF linker hash table. We use this as a place to
56 attach other hash tables and static information.
57
58 The second is the stub hash table which is derived from the
59 base BFD hash table. The stub hash table holds the information
60 necessary to build the linker stubs during a link.
61
62 There are a number of different stubs generated by the linker.
63
64 Long branch stub:
65 : ldil LR'X,%r1
66 : be,n RR'X(%sr4,%r1)
67
68 PIC long branch stub:
69 : b,l .+8,%r1
70 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
71 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
72
73 Import stub to call shared library routine from normal object file
74 (single sub-space version)
75 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
76 : ldw RR'lt_ptr+ltoff(%r1),%r21
77 : bv %r0(%r21)
78 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
79
80 Import stub to call shared library routine from shared library
81 (single sub-space version)
82 : addil LR'ltoff,%r19 ; get procedure entry point
83 : ldw RR'ltoff(%r1),%r21
84 : bv %r0(%r21)
85 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
86
87 Import stub to call shared library routine from normal object file
88 (multiple sub-space support)
89 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
90 : ldw RR'lt_ptr+ltoff(%r1),%r21
91 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
92 : ldsid (%r21),%r1
93 : mtsp %r1,%sr0
94 : be 0(%sr0,%r21) ; branch to target
95 : stw %rp,-24(%sp) ; save rp
96
97 Import stub to call shared library routine from shared library
98 (multiple sub-space support)
99 : addil LR'ltoff,%r19 ; get procedure entry point
100 : ldw RR'ltoff(%r1),%r21
101 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
102 : ldsid (%r21),%r1
103 : mtsp %r1,%sr0
104 : be 0(%sr0,%r21) ; branch to target
105 : stw %rp,-24(%sp) ; save rp
106
107 Export stub to return from shared lib routine (multiple sub-space support)
108 One of these is created for each exported procedure in a shared
109 library (and stored in the shared lib). Shared lib routines are
110 called via the first instruction in the export stub so that we can
111 do an inter-space return. Not required for single sub-space.
112 : bl,n X,%rp ; trap the return
113 : nop
114 : ldw -24(%sp),%rp ; restore the original rp
115 : ldsid (%rp),%r1
116 : mtsp %r1,%sr0
117 : be,n 0(%sr0,%rp) ; inter-space return. */
118
119
120 /* Variable names follow a coding style.
121 Please follow this (Apps Hungarian) style:
122
123 Structure/Variable Prefix
124 elf_link_hash_table "etab"
125 elf_link_hash_entry "eh"
126
127 elf32_hppa_link_hash_table "htab"
128 elf32_hppa_link_hash_entry "hh"
129
130 bfd_hash_table "btab"
131 bfd_hash_entry "bh"
132
133 bfd_hash_table containing stubs "bstab"
134 elf32_hppa_stub_hash_entry "hsh"
135
136 elf32_hppa_dyn_reloc_entry "hdh"
137
138 Always remember to use GNU Coding Style. */
139
140 #define PLT_ENTRY_SIZE 8
141 #define GOT_ENTRY_SIZE 4
142 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
143
144 static const bfd_byte plt_stub[] =
145 {
146 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
147 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
148 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
149 #define PLT_STUB_ENTRY (3*4)
150 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
151 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
152 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
153 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
154 };
155
156 /* Section name for stubs is the associated section name plus this
157 string. */
158 #define STUB_SUFFIX ".stub"
159
160 /* We don't need to copy certain PC- or GP-relative dynamic relocs
161 into a shared object's dynamic section. All the relocs of the
162 limited class we are interested in, are absolute. */
163 #ifndef RELATIVE_DYNRELOCS
164 #define RELATIVE_DYNRELOCS 0
165 #define IS_ABSOLUTE_RELOC(r_type) 1
166 #endif
167
168 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
169 copying dynamic variables from a shared lib into an app's dynbss
170 section, and instead use a dynamic relocation to point into the
171 shared lib. */
172 #define ELIMINATE_COPY_RELOCS 1
173
174 enum elf32_hppa_stub_type
175 {
176 hppa_stub_long_branch,
177 hppa_stub_long_branch_shared,
178 hppa_stub_import,
179 hppa_stub_import_shared,
180 hppa_stub_export,
181 hppa_stub_none
182 };
183
184 struct elf32_hppa_stub_hash_entry
185 {
186 /* Base hash table entry structure. */
187 struct bfd_hash_entry bh_root;
188
189 /* The stub section. */
190 asection *stub_sec;
191
192 /* Offset within stub_sec of the beginning of this stub. */
193 bfd_vma stub_offset;
194
195 /* Given the symbol's value and its section we can determine its final
196 value when building the stubs (so the stub knows where to jump. */
197 bfd_vma target_value;
198 asection *target_section;
199
200 enum elf32_hppa_stub_type stub_type;
201
202 /* The symbol table entry, if any, that this was derived from. */
203 struct elf32_hppa_link_hash_entry *hh;
204
205 /* Where this stub is being called from, or, in the case of combined
206 stub sections, the first input section in the group. */
207 asection *id_sec;
208 };
209
210 struct elf32_hppa_link_hash_entry
211 {
212 struct elf_link_hash_entry eh;
213
214 /* A pointer to the most recently used stub hash entry against this
215 symbol. */
216 struct elf32_hppa_stub_hash_entry *hsh_cache;
217
218 /* Used to count relocations for delayed sizing of relocation
219 sections. */
220 struct elf32_hppa_dyn_reloc_entry
221 {
222 /* Next relocation in the chain. */
223 struct elf32_hppa_dyn_reloc_entry *hdh_next;
224
225 /* The input section of the reloc. */
226 asection *sec;
227
228 /* Number of relocs copied in this section. */
229 bfd_size_type count;
230
231 #if RELATIVE_DYNRELOCS
232 /* Number of relative relocs copied for the input section. */
233 bfd_size_type relative_count;
234 #endif
235 } *dyn_relocs;
236
237 enum
238 {
239 GOT_UNKNOWN = 0, GOT_NORMAL = 1, GOT_TLS_GD = 2, GOT_TLS_LDM = 4, GOT_TLS_IE = 8
240 } tls_type;
241
242 /* Set if this symbol is used by a plabel reloc. */
243 unsigned int plabel:1;
244 };
245
246 struct elf32_hppa_link_hash_table
247 {
248 /* The main hash table. */
249 struct elf_link_hash_table etab;
250
251 /* The stub hash table. */
252 struct bfd_hash_table bstab;
253
254 /* Linker stub bfd. */
255 bfd *stub_bfd;
256
257 /* Linker call-backs. */
258 asection * (*add_stub_section) (const char *, asection *);
259 void (*layout_sections_again) (void);
260
261 /* Array to keep track of which stub sections have been created, and
262 information on stub grouping. */
263 struct map_stub
264 {
265 /* This is the section to which stubs in the group will be
266 attached. */
267 asection *link_sec;
268 /* The stub section. */
269 asection *stub_sec;
270 } *stub_group;
271
272 /* Assorted information used by elf32_hppa_size_stubs. */
273 unsigned int bfd_count;
274 int top_index;
275 asection **input_list;
276 Elf_Internal_Sym **all_local_syms;
277
278 /* Short-cuts to get to dynamic linker sections. */
279 asection *sgot;
280 asection *srelgot;
281 asection *splt;
282 asection *srelplt;
283 asection *sdynbss;
284 asection *srelbss;
285
286 /* Used during a final link to store the base of the text and data
287 segments so that we can perform SEGREL relocations. */
288 bfd_vma text_segment_base;
289 bfd_vma data_segment_base;
290
291 /* Whether we support multiple sub-spaces for shared libs. */
292 unsigned int multi_subspace:1;
293
294 /* Flags set when various size branches are detected. Used to
295 select suitable defaults for the stub group size. */
296 unsigned int has_12bit_branch:1;
297 unsigned int has_17bit_branch:1;
298 unsigned int has_22bit_branch:1;
299
300 /* Set if we need a .plt stub to support lazy dynamic linking. */
301 unsigned int need_plt_stub:1;
302
303 /* Small local sym to section mapping cache. */
304 struct sym_sec_cache sym_sec;
305
306 /* Data for LDM relocations. */
307 union
308 {
309 bfd_signed_vma refcount;
310 bfd_vma offset;
311 } tls_ldm_got;
312 };
313
314 /* Various hash macros and functions. */
315 #define hppa_link_hash_table(p) \
316 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
317
318 #define hppa_elf_hash_entry(ent) \
319 ((struct elf32_hppa_link_hash_entry *)(ent))
320
321 #define hppa_stub_hash_entry(ent) \
322 ((struct elf32_hppa_stub_hash_entry *)(ent))
323
324 #define hppa_stub_hash_lookup(table, string, create, copy) \
325 ((struct elf32_hppa_stub_hash_entry *) \
326 bfd_hash_lookup ((table), (string), (create), (copy)))
327
328 #define hppa_elf_local_got_tls_type(abfd) \
329 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
330
331 #define hh_name(hh) \
332 (hh ? hh->eh.root.root.string : "<undef>")
333
334 #define eh_name(eh) \
335 (eh ? eh->root.root.string : "<undef>")
336
337 /* Override the generic function because we want to mark our BFDs. */
338
339 static bfd_boolean
340 elf32_hppa_mkobject (bfd *abfd)
341 {
342 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
343 HPPA_ELF_TDATA);
344 }
345
346 /* Assorted hash table functions. */
347
348 /* Initialize an entry in the stub hash table. */
349
350 static struct bfd_hash_entry *
351 stub_hash_newfunc (struct bfd_hash_entry *entry,
352 struct bfd_hash_table *table,
353 const char *string)
354 {
355 /* Allocate the structure if it has not already been allocated by a
356 subclass. */
357 if (entry == NULL)
358 {
359 entry = bfd_hash_allocate (table,
360 sizeof (struct elf32_hppa_stub_hash_entry));
361 if (entry == NULL)
362 return entry;
363 }
364
365 /* Call the allocation method of the superclass. */
366 entry = bfd_hash_newfunc (entry, table, string);
367 if (entry != NULL)
368 {
369 struct elf32_hppa_stub_hash_entry *hsh;
370
371 /* Initialize the local fields. */
372 hsh = hppa_stub_hash_entry (entry);
373 hsh->stub_sec = NULL;
374 hsh->stub_offset = 0;
375 hsh->target_value = 0;
376 hsh->target_section = NULL;
377 hsh->stub_type = hppa_stub_long_branch;
378 hsh->hh = NULL;
379 hsh->id_sec = NULL;
380 }
381
382 return entry;
383 }
384
385 /* Initialize an entry in the link hash table. */
386
387 static struct bfd_hash_entry *
388 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
389 struct bfd_hash_table *table,
390 const char *string)
391 {
392 /* Allocate the structure if it has not already been allocated by a
393 subclass. */
394 if (entry == NULL)
395 {
396 entry = bfd_hash_allocate (table,
397 sizeof (struct elf32_hppa_link_hash_entry));
398 if (entry == NULL)
399 return entry;
400 }
401
402 /* Call the allocation method of the superclass. */
403 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
404 if (entry != NULL)
405 {
406 struct elf32_hppa_link_hash_entry *hh;
407
408 /* Initialize the local fields. */
409 hh = hppa_elf_hash_entry (entry);
410 hh->hsh_cache = NULL;
411 hh->dyn_relocs = NULL;
412 hh->plabel = 0;
413 hh->tls_type = GOT_UNKNOWN;
414 }
415
416 return entry;
417 }
418
419 /* Create the derived linker hash table. The PA ELF port uses the derived
420 hash table to keep information specific to the PA ELF linker (without
421 using static variables). */
422
423 static struct bfd_link_hash_table *
424 elf32_hppa_link_hash_table_create (bfd *abfd)
425 {
426 struct elf32_hppa_link_hash_table *htab;
427 bfd_size_type amt = sizeof (*htab);
428
429 htab = bfd_malloc (amt);
430 if (htab == NULL)
431 return NULL;
432
433 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
434 sizeof (struct elf32_hppa_link_hash_entry)))
435 {
436 free (htab);
437 return NULL;
438 }
439
440 /* Init the stub hash table too. */
441 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
442 sizeof (struct elf32_hppa_stub_hash_entry)))
443 return NULL;
444
445 htab->stub_bfd = NULL;
446 htab->add_stub_section = NULL;
447 htab->layout_sections_again = NULL;
448 htab->stub_group = NULL;
449 htab->sgot = NULL;
450 htab->srelgot = NULL;
451 htab->splt = NULL;
452 htab->srelplt = NULL;
453 htab->sdynbss = NULL;
454 htab->srelbss = NULL;
455 htab->text_segment_base = (bfd_vma) -1;
456 htab->data_segment_base = (bfd_vma) -1;
457 htab->multi_subspace = 0;
458 htab->has_12bit_branch = 0;
459 htab->has_17bit_branch = 0;
460 htab->has_22bit_branch = 0;
461 htab->need_plt_stub = 0;
462 htab->sym_sec.abfd = NULL;
463 htab->tls_ldm_got.refcount = 0;
464
465 return &htab->etab.root;
466 }
467
468 /* Free the derived linker hash table. */
469
470 static void
471 elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *btab)
472 {
473 struct elf32_hppa_link_hash_table *htab
474 = (struct elf32_hppa_link_hash_table *) btab;
475
476 bfd_hash_table_free (&htab->bstab);
477 _bfd_generic_link_hash_table_free (btab);
478 }
479
480 /* Build a name for an entry in the stub hash table. */
481
482 static char *
483 hppa_stub_name (const asection *input_section,
484 const asection *sym_sec,
485 const struct elf32_hppa_link_hash_entry *hh,
486 const Elf_Internal_Rela *rela)
487 {
488 char *stub_name;
489 bfd_size_type len;
490
491 if (hh)
492 {
493 len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
494 stub_name = bfd_malloc (len);
495 if (stub_name != NULL)
496 sprintf (stub_name, "%08x_%s+%x",
497 input_section->id & 0xffffffff,
498 hh_name (hh),
499 (int) rela->r_addend & 0xffffffff);
500 }
501 else
502 {
503 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
504 stub_name = bfd_malloc (len);
505 if (stub_name != NULL)
506 sprintf (stub_name, "%08x_%x:%x+%x",
507 input_section->id & 0xffffffff,
508 sym_sec->id & 0xffffffff,
509 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
510 (int) rela->r_addend & 0xffffffff);
511 }
512 return stub_name;
513 }
514
515 /* Look up an entry in the stub hash. Stub entries are cached because
516 creating the stub name takes a bit of time. */
517
518 static struct elf32_hppa_stub_hash_entry *
519 hppa_get_stub_entry (const asection *input_section,
520 const asection *sym_sec,
521 struct elf32_hppa_link_hash_entry *hh,
522 const Elf_Internal_Rela *rela,
523 struct elf32_hppa_link_hash_table *htab)
524 {
525 struct elf32_hppa_stub_hash_entry *hsh_entry;
526 const asection *id_sec;
527
528 /* If this input section is part of a group of sections sharing one
529 stub section, then use the id of the first section in the group.
530 Stub names need to include a section id, as there may well be
531 more than one stub used to reach say, printf, and we need to
532 distinguish between them. */
533 id_sec = htab->stub_group[input_section->id].link_sec;
534
535 if (hh != NULL && hh->hsh_cache != NULL
536 && hh->hsh_cache->hh == hh
537 && hh->hsh_cache->id_sec == id_sec)
538 {
539 hsh_entry = hh->hsh_cache;
540 }
541 else
542 {
543 char *stub_name;
544
545 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
546 if (stub_name == NULL)
547 return NULL;
548
549 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
550 stub_name, FALSE, FALSE);
551 if (hh != NULL)
552 hh->hsh_cache = hsh_entry;
553
554 free (stub_name);
555 }
556
557 return hsh_entry;
558 }
559
560 /* Add a new stub entry to the stub hash. Not all fields of the new
561 stub entry are initialised. */
562
563 static struct elf32_hppa_stub_hash_entry *
564 hppa_add_stub (const char *stub_name,
565 asection *section,
566 struct elf32_hppa_link_hash_table *htab)
567 {
568 asection *link_sec;
569 asection *stub_sec;
570 struct elf32_hppa_stub_hash_entry *hsh;
571
572 link_sec = htab->stub_group[section->id].link_sec;
573 stub_sec = htab->stub_group[section->id].stub_sec;
574 if (stub_sec == NULL)
575 {
576 stub_sec = htab->stub_group[link_sec->id].stub_sec;
577 if (stub_sec == NULL)
578 {
579 size_t namelen;
580 bfd_size_type len;
581 char *s_name;
582
583 namelen = strlen (link_sec->name);
584 len = namelen + sizeof (STUB_SUFFIX);
585 s_name = bfd_alloc (htab->stub_bfd, len);
586 if (s_name == NULL)
587 return NULL;
588
589 memcpy (s_name, link_sec->name, namelen);
590 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
591 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
592 if (stub_sec == NULL)
593 return NULL;
594 htab->stub_group[link_sec->id].stub_sec = stub_sec;
595 }
596 htab->stub_group[section->id].stub_sec = stub_sec;
597 }
598
599 /* Enter this entry into the linker stub hash table. */
600 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
601 TRUE, FALSE);
602 if (hsh == NULL)
603 {
604 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
605 section->owner,
606 stub_name);
607 return NULL;
608 }
609
610 hsh->stub_sec = stub_sec;
611 hsh->stub_offset = 0;
612 hsh->id_sec = link_sec;
613 return hsh;
614 }
615
616 /* Determine the type of stub needed, if any, for a call. */
617
618 static enum elf32_hppa_stub_type
619 hppa_type_of_stub (asection *input_sec,
620 const Elf_Internal_Rela *rela,
621 struct elf32_hppa_link_hash_entry *hh,
622 bfd_vma destination,
623 struct bfd_link_info *info)
624 {
625 bfd_vma location;
626 bfd_vma branch_offset;
627 bfd_vma max_branch_offset;
628 unsigned int r_type;
629
630 if (hh != NULL
631 && hh->eh.plt.offset != (bfd_vma) -1
632 && hh->eh.dynindx != -1
633 && !hh->plabel
634 && (info->shared
635 || !hh->eh.def_regular
636 || hh->eh.root.type == bfd_link_hash_defweak))
637 {
638 /* We need an import stub. Decide between hppa_stub_import
639 and hppa_stub_import_shared later. */
640 return hppa_stub_import;
641 }
642
643 /* Determine where the call point is. */
644 location = (input_sec->output_offset
645 + input_sec->output_section->vma
646 + rela->r_offset);
647
648 branch_offset = destination - location - 8;
649 r_type = ELF32_R_TYPE (rela->r_info);
650
651 /* Determine if a long branch stub is needed. parisc branch offsets
652 are relative to the second instruction past the branch, ie. +8
653 bytes on from the branch instruction location. The offset is
654 signed and counts in units of 4 bytes. */
655 if (r_type == (unsigned int) R_PARISC_PCREL17F)
656 max_branch_offset = (1 << (17 - 1)) << 2;
657
658 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
659 max_branch_offset = (1 << (12 - 1)) << 2;
660
661 else /* R_PARISC_PCREL22F. */
662 max_branch_offset = (1 << (22 - 1)) << 2;
663
664 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
665 return hppa_stub_long_branch;
666
667 return hppa_stub_none;
668 }
669
670 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
671 IN_ARG contains the link info pointer. */
672
673 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
674 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
675
676 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
677 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
678 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
679
680 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
681 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
682 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
683 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
684
685 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
686 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
687
688 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
689 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
690 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
691 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
692
693 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
694 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
695 #define NOP 0x08000240 /* nop */
696 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
697 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
698 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
699
700 #ifndef R19_STUBS
701 #define R19_STUBS 1
702 #endif
703
704 #if R19_STUBS
705 #define LDW_R1_DLT LDW_R1_R19
706 #else
707 #define LDW_R1_DLT LDW_R1_DP
708 #endif
709
710 static bfd_boolean
711 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
712 {
713 struct elf32_hppa_stub_hash_entry *hsh;
714 struct bfd_link_info *info;
715 struct elf32_hppa_link_hash_table *htab;
716 asection *stub_sec;
717 bfd *stub_bfd;
718 bfd_byte *loc;
719 bfd_vma sym_value;
720 bfd_vma insn;
721 bfd_vma off;
722 int val;
723 int size;
724
725 /* Massage our args to the form they really have. */
726 hsh = hppa_stub_hash_entry (bh);
727 info = (struct bfd_link_info *)in_arg;
728
729 htab = hppa_link_hash_table (info);
730 stub_sec = hsh->stub_sec;
731
732 /* Make a note of the offset within the stubs for this entry. */
733 hsh->stub_offset = stub_sec->size;
734 loc = stub_sec->contents + hsh->stub_offset;
735
736 stub_bfd = stub_sec->owner;
737
738 switch (hsh->stub_type)
739 {
740 case hppa_stub_long_branch:
741 /* Create the long branch. A long branch is formed with "ldil"
742 loading the upper bits of the target address into a register,
743 then branching with "be" which adds in the lower bits.
744 The "be" has its delay slot nullified. */
745 sym_value = (hsh->target_value
746 + hsh->target_section->output_offset
747 + hsh->target_section->output_section->vma);
748
749 val = hppa_field_adjust (sym_value, 0, e_lrsel);
750 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
751 bfd_put_32 (stub_bfd, insn, loc);
752
753 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
754 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
755 bfd_put_32 (stub_bfd, insn, loc + 4);
756
757 size = 8;
758 break;
759
760 case hppa_stub_long_branch_shared:
761 /* Branches are relative. This is where we are going to. */
762 sym_value = (hsh->target_value
763 + hsh->target_section->output_offset
764 + hsh->target_section->output_section->vma);
765
766 /* And this is where we are coming from, more or less. */
767 sym_value -= (hsh->stub_offset
768 + stub_sec->output_offset
769 + stub_sec->output_section->vma);
770
771 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
772 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
773 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
774 bfd_put_32 (stub_bfd, insn, loc + 4);
775
776 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
777 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
778 bfd_put_32 (stub_bfd, insn, loc + 8);
779 size = 12;
780 break;
781
782 case hppa_stub_import:
783 case hppa_stub_import_shared:
784 off = hsh->hh->eh.plt.offset;
785 if (off >= (bfd_vma) -2)
786 abort ();
787
788 off &= ~ (bfd_vma) 1;
789 sym_value = (off
790 + htab->splt->output_offset
791 + htab->splt->output_section->vma
792 - elf_gp (htab->splt->output_section->owner));
793
794 insn = ADDIL_DP;
795 #if R19_STUBS
796 if (hsh->stub_type == hppa_stub_import_shared)
797 insn = ADDIL_R19;
798 #endif
799 val = hppa_field_adjust (sym_value, 0, e_lrsel),
800 insn = hppa_rebuild_insn ((int) insn, val, 21);
801 bfd_put_32 (stub_bfd, insn, loc);
802
803 /* It is critical to use lrsel/rrsel here because we are using
804 two different offsets (+0 and +4) from sym_value. If we use
805 lsel/rsel then with unfortunate sym_values we will round
806 sym_value+4 up to the next 2k block leading to a mis-match
807 between the lsel and rsel value. */
808 val = hppa_field_adjust (sym_value, 0, e_rrsel);
809 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
810 bfd_put_32 (stub_bfd, insn, loc + 4);
811
812 if (htab->multi_subspace)
813 {
814 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
815 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
816 bfd_put_32 (stub_bfd, insn, loc + 8);
817
818 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
819 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
820 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
821 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
822
823 size = 28;
824 }
825 else
826 {
827 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
828 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
829 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
830 bfd_put_32 (stub_bfd, insn, loc + 12);
831
832 size = 16;
833 }
834
835 break;
836
837 case hppa_stub_export:
838 /* Branches are relative. This is where we are going to. */
839 sym_value = (hsh->target_value
840 + hsh->target_section->output_offset
841 + hsh->target_section->output_section->vma);
842
843 /* And this is where we are coming from. */
844 sym_value -= (hsh->stub_offset
845 + stub_sec->output_offset
846 + stub_sec->output_section->vma);
847
848 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
849 && (!htab->has_22bit_branch
850 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
851 {
852 (*_bfd_error_handler)
853 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
854 hsh->target_section->owner,
855 stub_sec,
856 (long) hsh->stub_offset,
857 hsh->bh_root.string);
858 bfd_set_error (bfd_error_bad_value);
859 return FALSE;
860 }
861
862 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
863 if (!htab->has_22bit_branch)
864 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
865 else
866 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
867 bfd_put_32 (stub_bfd, insn, loc);
868
869 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
870 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
871 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
872 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
873 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
874
875 /* Point the function symbol at the stub. */
876 hsh->hh->eh.root.u.def.section = stub_sec;
877 hsh->hh->eh.root.u.def.value = stub_sec->size;
878
879 size = 24;
880 break;
881
882 default:
883 BFD_FAIL ();
884 return FALSE;
885 }
886
887 stub_sec->size += size;
888 return TRUE;
889 }
890
891 #undef LDIL_R1
892 #undef BE_SR4_R1
893 #undef BL_R1
894 #undef ADDIL_R1
895 #undef DEPI_R1
896 #undef LDW_R1_R21
897 #undef LDW_R1_DLT
898 #undef LDW_R1_R19
899 #undef ADDIL_R19
900 #undef LDW_R1_DP
901 #undef LDSID_R21_R1
902 #undef MTSP_R1
903 #undef BE_SR0_R21
904 #undef STW_RP
905 #undef BV_R0_R21
906 #undef BL_RP
907 #undef NOP
908 #undef LDW_RP
909 #undef LDSID_RP_R1
910 #undef BE_SR0_RP
911
912 /* As above, but don't actually build the stub. Just bump offset so
913 we know stub section sizes. */
914
915 static bfd_boolean
916 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
917 {
918 struct elf32_hppa_stub_hash_entry *hsh;
919 struct elf32_hppa_link_hash_table *htab;
920 int size;
921
922 /* Massage our args to the form they really have. */
923 hsh = hppa_stub_hash_entry (bh);
924 htab = in_arg;
925
926 if (hsh->stub_type == hppa_stub_long_branch)
927 size = 8;
928 else if (hsh->stub_type == hppa_stub_long_branch_shared)
929 size = 12;
930 else if (hsh->stub_type == hppa_stub_export)
931 size = 24;
932 else /* hppa_stub_import or hppa_stub_import_shared. */
933 {
934 if (htab->multi_subspace)
935 size = 28;
936 else
937 size = 16;
938 }
939
940 hsh->stub_sec->size += size;
941 return TRUE;
942 }
943
944 /* Return nonzero if ABFD represents an HPPA ELF32 file.
945 Additionally we set the default architecture and machine. */
946
947 static bfd_boolean
948 elf32_hppa_object_p (bfd *abfd)
949 {
950 Elf_Internal_Ehdr * i_ehdrp;
951 unsigned int flags;
952
953 i_ehdrp = elf_elfheader (abfd);
954 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
955 {
956 /* GCC on hppa-linux produces binaries with OSABI=Linux,
957 but the kernel produces corefiles with OSABI=SysV. */
958 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX &&
959 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
960 return FALSE;
961 }
962 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
963 {
964 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
965 but the kernel produces corefiles with OSABI=SysV. */
966 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
967 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
968 return FALSE;
969 }
970 else
971 {
972 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
973 return FALSE;
974 }
975
976 flags = i_ehdrp->e_flags;
977 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
978 {
979 case EFA_PARISC_1_0:
980 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
981 case EFA_PARISC_1_1:
982 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
983 case EFA_PARISC_2_0:
984 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
985 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
986 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
987 }
988 return TRUE;
989 }
990
991 /* Create the .plt and .got sections, and set up our hash table
992 short-cuts to various dynamic sections. */
993
994 static bfd_boolean
995 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
996 {
997 struct elf32_hppa_link_hash_table *htab;
998 struct elf_link_hash_entry *eh;
999
1000 /* Don't try to create the .plt and .got twice. */
1001 htab = hppa_link_hash_table (info);
1002 if (htab->splt != NULL)
1003 return TRUE;
1004
1005 /* Call the generic code to do most of the work. */
1006 if (! _bfd_elf_create_dynamic_sections (abfd, info))
1007 return FALSE;
1008
1009 htab->splt = bfd_get_section_by_name (abfd, ".plt");
1010 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
1011
1012 htab->sgot = bfd_get_section_by_name (abfd, ".got");
1013 htab->srelgot = bfd_make_section_with_flags (abfd, ".rela.got",
1014 (SEC_ALLOC
1015 | SEC_LOAD
1016 | SEC_HAS_CONTENTS
1017 | SEC_IN_MEMORY
1018 | SEC_LINKER_CREATED
1019 | SEC_READONLY));
1020 if (htab->srelgot == NULL
1021 || ! bfd_set_section_alignment (abfd, htab->srelgot, 2))
1022 return FALSE;
1023
1024 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
1025 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
1026
1027 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
1028 application, because __canonicalize_funcptr_for_compare needs it. */
1029 eh = elf_hash_table (info)->hgot;
1030 eh->forced_local = 0;
1031 eh->other = STV_DEFAULT;
1032 return bfd_elf_link_record_dynamic_symbol (info, eh);
1033 }
1034
1035 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1036
1037 static void
1038 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1039 struct elf_link_hash_entry *eh_dir,
1040 struct elf_link_hash_entry *eh_ind)
1041 {
1042 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1043
1044 hh_dir = hppa_elf_hash_entry (eh_dir);
1045 hh_ind = hppa_elf_hash_entry (eh_ind);
1046
1047 if (hh_ind->dyn_relocs != NULL)
1048 {
1049 if (hh_dir->dyn_relocs != NULL)
1050 {
1051 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1052 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1053
1054 /* Add reloc counts against the indirect sym to the direct sym
1055 list. Merge any entries against the same section. */
1056 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1057 {
1058 struct elf32_hppa_dyn_reloc_entry *hdh_q;
1059
1060 for (hdh_q = hh_dir->dyn_relocs;
1061 hdh_q != NULL;
1062 hdh_q = hdh_q->hdh_next)
1063 if (hdh_q->sec == hdh_p->sec)
1064 {
1065 #if RELATIVE_DYNRELOCS
1066 hdh_q->relative_count += hdh_p->relative_count;
1067 #endif
1068 hdh_q->count += hdh_p->count;
1069 *hdh_pp = hdh_p->hdh_next;
1070 break;
1071 }
1072 if (hdh_q == NULL)
1073 hdh_pp = &hdh_p->hdh_next;
1074 }
1075 *hdh_pp = hh_dir->dyn_relocs;
1076 }
1077
1078 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1079 hh_ind->dyn_relocs = NULL;
1080 }
1081
1082 if (ELIMINATE_COPY_RELOCS
1083 && eh_ind->root.type != bfd_link_hash_indirect
1084 && eh_dir->dynamic_adjusted)
1085 {
1086 /* If called to transfer flags for a weakdef during processing
1087 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1088 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1089 eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
1090 eh_dir->ref_regular |= eh_ind->ref_regular;
1091 eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
1092 eh_dir->needs_plt |= eh_ind->needs_plt;
1093 }
1094 else
1095 {
1096 if (eh_ind->root.type == bfd_link_hash_indirect
1097 && eh_dir->got.refcount <= 0)
1098 {
1099 hh_dir->tls_type = hh_ind->tls_type;
1100 hh_ind->tls_type = GOT_UNKNOWN;
1101 }
1102
1103 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1104 }
1105 }
1106
1107 static int
1108 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1109 int r_type, int is_local ATTRIBUTE_UNUSED)
1110 {
1111 /* For now we don't support linker optimizations. */
1112 return r_type;
1113 }
1114
1115 /* Look through the relocs for a section during the first phase, and
1116 calculate needed space in the global offset table, procedure linkage
1117 table, and dynamic reloc sections. At this point we haven't
1118 necessarily read all the input files. */
1119
1120 static bfd_boolean
1121 elf32_hppa_check_relocs (bfd *abfd,
1122 struct bfd_link_info *info,
1123 asection *sec,
1124 const Elf_Internal_Rela *relocs)
1125 {
1126 Elf_Internal_Shdr *symtab_hdr;
1127 struct elf_link_hash_entry **eh_syms;
1128 const Elf_Internal_Rela *rela;
1129 const Elf_Internal_Rela *rela_end;
1130 struct elf32_hppa_link_hash_table *htab;
1131 asection *sreloc;
1132 asection *stubreloc;
1133 int tls_type = GOT_UNKNOWN, old_tls_type = GOT_UNKNOWN;
1134
1135 if (info->relocatable)
1136 return TRUE;
1137
1138 htab = hppa_link_hash_table (info);
1139 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1140 eh_syms = elf_sym_hashes (abfd);
1141 sreloc = NULL;
1142 stubreloc = NULL;
1143
1144 rela_end = relocs + sec->reloc_count;
1145 for (rela = relocs; rela < rela_end; rela++)
1146 {
1147 enum {
1148 NEED_GOT = 1,
1149 NEED_PLT = 2,
1150 NEED_DYNREL = 4,
1151 PLT_PLABEL = 8
1152 };
1153
1154 unsigned int r_symndx, r_type;
1155 struct elf32_hppa_link_hash_entry *hh;
1156 int need_entry = 0;
1157
1158 r_symndx = ELF32_R_SYM (rela->r_info);
1159
1160 if (r_symndx < symtab_hdr->sh_info)
1161 hh = NULL;
1162 else
1163 {
1164 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1165 while (hh->eh.root.type == bfd_link_hash_indirect
1166 || hh->eh.root.type == bfd_link_hash_warning)
1167 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1168 }
1169
1170 r_type = ELF32_R_TYPE (rela->r_info);
1171 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1172
1173 switch (r_type)
1174 {
1175 case R_PARISC_DLTIND14F:
1176 case R_PARISC_DLTIND14R:
1177 case R_PARISC_DLTIND21L:
1178 /* This symbol requires a global offset table entry. */
1179 need_entry = NEED_GOT;
1180 break;
1181
1182 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1183 case R_PARISC_PLABEL21L:
1184 case R_PARISC_PLABEL32:
1185 /* If the addend is non-zero, we break badly. */
1186 if (rela->r_addend != 0)
1187 abort ();
1188
1189 /* If we are creating a shared library, then we need to
1190 create a PLT entry for all PLABELs, because PLABELs with
1191 local symbols may be passed via a pointer to another
1192 object. Additionally, output a dynamic relocation
1193 pointing to the PLT entry.
1194
1195 For executables, the original 32-bit ABI allowed two
1196 different styles of PLABELs (function pointers): For
1197 global functions, the PLABEL word points into the .plt
1198 two bytes past a (function address, gp) pair, and for
1199 local functions the PLABEL points directly at the
1200 function. The magic +2 for the first type allows us to
1201 differentiate between the two. As you can imagine, this
1202 is a real pain when it comes to generating code to call
1203 functions indirectly or to compare function pointers.
1204 We avoid the mess by always pointing a PLABEL into the
1205 .plt, even for local functions. */
1206 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1207 break;
1208
1209 case R_PARISC_PCREL12F:
1210 htab->has_12bit_branch = 1;
1211 goto branch_common;
1212
1213 case R_PARISC_PCREL17C:
1214 case R_PARISC_PCREL17F:
1215 htab->has_17bit_branch = 1;
1216 goto branch_common;
1217
1218 case R_PARISC_PCREL22F:
1219 htab->has_22bit_branch = 1;
1220 branch_common:
1221 /* Function calls might need to go through the .plt, and
1222 might require long branch stubs. */
1223 if (hh == NULL)
1224 {
1225 /* We know local syms won't need a .plt entry, and if
1226 they need a long branch stub we can't guarantee that
1227 we can reach the stub. So just flag an error later
1228 if we're doing a shared link and find we need a long
1229 branch stub. */
1230 continue;
1231 }
1232 else
1233 {
1234 /* Global symbols will need a .plt entry if they remain
1235 global, and in most cases won't need a long branch
1236 stub. Unfortunately, we have to cater for the case
1237 where a symbol is forced local by versioning, or due
1238 to symbolic linking, and we lose the .plt entry. */
1239 need_entry = NEED_PLT;
1240 if (hh->eh.type == STT_PARISC_MILLI)
1241 need_entry = 0;
1242 }
1243 break;
1244
1245 case R_PARISC_SEGBASE: /* Used to set segment base. */
1246 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1247 case R_PARISC_PCREL14F: /* PC relative load/store. */
1248 case R_PARISC_PCREL14R:
1249 case R_PARISC_PCREL17R: /* External branches. */
1250 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1251 case R_PARISC_PCREL32:
1252 /* We don't need to propagate the relocation if linking a
1253 shared object since these are section relative. */
1254 continue;
1255
1256 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1257 case R_PARISC_DPREL14R:
1258 case R_PARISC_DPREL21L:
1259 if (info->shared)
1260 {
1261 (*_bfd_error_handler)
1262 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1263 abfd,
1264 elf_hppa_howto_table[r_type].name);
1265 bfd_set_error (bfd_error_bad_value);
1266 return FALSE;
1267 }
1268 /* Fall through. */
1269
1270 case R_PARISC_DIR17F: /* Used for external branches. */
1271 case R_PARISC_DIR17R:
1272 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1273 case R_PARISC_DIR14R:
1274 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1275 case R_PARISC_DIR32: /* .word relocs. */
1276 /* We may want to output a dynamic relocation later. */
1277 need_entry = NEED_DYNREL;
1278 break;
1279
1280 /* This relocation describes the C++ object vtable hierarchy.
1281 Reconstruct it for later use during GC. */
1282 case R_PARISC_GNU_VTINHERIT:
1283 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1284 return FALSE;
1285 continue;
1286
1287 /* This relocation describes which C++ vtable entries are actually
1288 used. Record for later use during GC. */
1289 case R_PARISC_GNU_VTENTRY:
1290 BFD_ASSERT (hh != NULL);
1291 if (hh != NULL
1292 && !bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1293 return FALSE;
1294 continue;
1295
1296 case R_PARISC_TLS_GD21L:
1297 case R_PARISC_TLS_GD14R:
1298 case R_PARISC_TLS_LDM21L:
1299 case R_PARISC_TLS_LDM14R:
1300 need_entry = NEED_GOT;
1301 break;
1302
1303 case R_PARISC_TLS_IE21L:
1304 case R_PARISC_TLS_IE14R:
1305 if (info->shared)
1306 info->flags |= DF_STATIC_TLS;
1307 need_entry = NEED_GOT;
1308 break;
1309
1310 default:
1311 continue;
1312 }
1313
1314 /* Now carry out our orders. */
1315 if (need_entry & NEED_GOT)
1316 {
1317 switch (r_type)
1318 {
1319 default:
1320 tls_type = GOT_NORMAL;
1321 break;
1322 case R_PARISC_TLS_GD21L:
1323 case R_PARISC_TLS_GD14R:
1324 tls_type |= GOT_TLS_GD;
1325 break;
1326 case R_PARISC_TLS_LDM21L:
1327 case R_PARISC_TLS_LDM14R:
1328 tls_type |= GOT_TLS_LDM;
1329 break;
1330 case R_PARISC_TLS_IE21L:
1331 case R_PARISC_TLS_IE14R:
1332 tls_type |= GOT_TLS_IE;
1333 break;
1334 }
1335
1336 /* Allocate space for a GOT entry, as well as a dynamic
1337 relocation for this entry. */
1338 if (htab->sgot == NULL)
1339 {
1340 if (htab->etab.dynobj == NULL)
1341 htab->etab.dynobj = abfd;
1342 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1343 return FALSE;
1344 }
1345
1346 if (r_type == R_PARISC_TLS_LDM21L
1347 || r_type == R_PARISC_TLS_LDM14R)
1348 hppa_link_hash_table (info)->tls_ldm_got.refcount += 1;
1349 else
1350 {
1351 if (hh != NULL)
1352 {
1353 hh->eh.got.refcount += 1;
1354 old_tls_type = hh->tls_type;
1355 }
1356 else
1357 {
1358 bfd_signed_vma *local_got_refcounts;
1359
1360 /* This is a global offset table entry for a local symbol. */
1361 local_got_refcounts = elf_local_got_refcounts (abfd);
1362 if (local_got_refcounts == NULL)
1363 {
1364 bfd_size_type size;
1365
1366 /* Allocate space for local got offsets and local
1367 plt offsets. Done this way to save polluting
1368 elf_obj_tdata with another target specific
1369 pointer. */
1370 size = symtab_hdr->sh_info;
1371 size *= 2 * sizeof (bfd_signed_vma);
1372 /* Add in space to store the local GOT TLS types. */
1373 size += symtab_hdr->sh_info;
1374 local_got_refcounts = bfd_zalloc (abfd, size);
1375 if (local_got_refcounts == NULL)
1376 return FALSE;
1377 elf_local_got_refcounts (abfd) = local_got_refcounts;
1378 memset (hppa_elf_local_got_tls_type (abfd),
1379 GOT_UNKNOWN, symtab_hdr->sh_info);
1380 }
1381 local_got_refcounts[r_symndx] += 1;
1382
1383 old_tls_type = hppa_elf_local_got_tls_type (abfd) [r_symndx];
1384 }
1385
1386 tls_type |= old_tls_type;
1387
1388 if (old_tls_type != tls_type)
1389 {
1390 if (hh != NULL)
1391 hh->tls_type = tls_type;
1392 else
1393 hppa_elf_local_got_tls_type (abfd) [r_symndx] = tls_type;
1394 }
1395
1396 }
1397 }
1398
1399 if (need_entry & NEED_PLT)
1400 {
1401 /* If we are creating a shared library, and this is a reloc
1402 against a weak symbol or a global symbol in a dynamic
1403 object, then we will be creating an import stub and a
1404 .plt entry for the symbol. Similarly, on a normal link
1405 to symbols defined in a dynamic object we'll need the
1406 import stub and a .plt entry. We don't know yet whether
1407 the symbol is defined or not, so make an entry anyway and
1408 clean up later in adjust_dynamic_symbol. */
1409 if ((sec->flags & SEC_ALLOC) != 0)
1410 {
1411 if (hh != NULL)
1412 {
1413 hh->eh.needs_plt = 1;
1414 hh->eh.plt.refcount += 1;
1415
1416 /* If this .plt entry is for a plabel, mark it so
1417 that adjust_dynamic_symbol will keep the entry
1418 even if it appears to be local. */
1419 if (need_entry & PLT_PLABEL)
1420 hh->plabel = 1;
1421 }
1422 else if (need_entry & PLT_PLABEL)
1423 {
1424 bfd_signed_vma *local_got_refcounts;
1425 bfd_signed_vma *local_plt_refcounts;
1426
1427 local_got_refcounts = elf_local_got_refcounts (abfd);
1428 if (local_got_refcounts == NULL)
1429 {
1430 bfd_size_type size;
1431
1432 /* Allocate space for local got offsets and local
1433 plt offsets. */
1434 size = symtab_hdr->sh_info;
1435 size *= 2 * sizeof (bfd_signed_vma);
1436 /* Add in space to store the local GOT TLS types. */
1437 size += symtab_hdr->sh_info;
1438 local_got_refcounts = bfd_zalloc (abfd, size);
1439 if (local_got_refcounts == NULL)
1440 return FALSE;
1441 elf_local_got_refcounts (abfd) = local_got_refcounts;
1442 }
1443 local_plt_refcounts = (local_got_refcounts
1444 + symtab_hdr->sh_info);
1445 local_plt_refcounts[r_symndx] += 1;
1446 }
1447 }
1448 }
1449
1450 if (need_entry & NEED_DYNREL)
1451 {
1452 /* Flag this symbol as having a non-got, non-plt reference
1453 so that we generate copy relocs if it turns out to be
1454 dynamic. */
1455 if (hh != NULL && !info->shared)
1456 hh->eh.non_got_ref = 1;
1457
1458 /* If we are creating a shared library then we need to copy
1459 the reloc into the shared library. However, if we are
1460 linking with -Bsymbolic, we need only copy absolute
1461 relocs or relocs against symbols that are not defined in
1462 an object we are including in the link. PC- or DP- or
1463 DLT-relative relocs against any local sym or global sym
1464 with DEF_REGULAR set, can be discarded. At this point we
1465 have not seen all the input files, so it is possible that
1466 DEF_REGULAR is not set now but will be set later (it is
1467 never cleared). We account for that possibility below by
1468 storing information in the dyn_relocs field of the
1469 hash table entry.
1470
1471 A similar situation to the -Bsymbolic case occurs when
1472 creating shared libraries and symbol visibility changes
1473 render the symbol local.
1474
1475 As it turns out, all the relocs we will be creating here
1476 are absolute, so we cannot remove them on -Bsymbolic
1477 links or visibility changes anyway. A STUB_REL reloc
1478 is absolute too, as in that case it is the reloc in the
1479 stub we will be creating, rather than copying the PCREL
1480 reloc in the branch.
1481
1482 If on the other hand, we are creating an executable, we
1483 may need to keep relocations for symbols satisfied by a
1484 dynamic library if we manage to avoid copy relocs for the
1485 symbol. */
1486 if ((info->shared
1487 && (sec->flags & SEC_ALLOC) != 0
1488 && (IS_ABSOLUTE_RELOC (r_type)
1489 || (hh != NULL
1490 && (!info->symbolic
1491 || hh->eh.root.type == bfd_link_hash_defweak
1492 || !hh->eh.def_regular))))
1493 || (ELIMINATE_COPY_RELOCS
1494 && !info->shared
1495 && (sec->flags & SEC_ALLOC) != 0
1496 && hh != NULL
1497 && (hh->eh.root.type == bfd_link_hash_defweak
1498 || !hh->eh.def_regular)))
1499 {
1500 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1501 struct elf32_hppa_dyn_reloc_entry **hdh_head;
1502
1503 /* Create a reloc section in dynobj and make room for
1504 this reloc. */
1505 if (sreloc == NULL)
1506 {
1507 char *name;
1508 bfd *dynobj;
1509
1510 name = (bfd_elf_string_from_elf_section
1511 (abfd,
1512 elf_elfheader (abfd)->e_shstrndx,
1513 elf_section_data (sec)->rel_hdr.sh_name));
1514 if (name == NULL)
1515 {
1516 (*_bfd_error_handler)
1517 (_("Could not find relocation section for %s"),
1518 sec->name);
1519 bfd_set_error (bfd_error_bad_value);
1520 return FALSE;
1521 }
1522
1523 if (htab->etab.dynobj == NULL)
1524 htab->etab.dynobj = abfd;
1525
1526 dynobj = htab->etab.dynobj;
1527 sreloc = bfd_get_section_by_name (dynobj, name);
1528 if (sreloc == NULL)
1529 {
1530 flagword flags;
1531
1532 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1533 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1534 if ((sec->flags & SEC_ALLOC) != 0)
1535 flags |= SEC_ALLOC | SEC_LOAD;
1536 sreloc = bfd_make_section_with_flags (dynobj,
1537 name,
1538 flags);
1539 if (sreloc == NULL
1540 || !bfd_set_section_alignment (dynobj, sreloc, 2))
1541 return FALSE;
1542 }
1543
1544 elf_section_data (sec)->sreloc = sreloc;
1545 }
1546
1547 /* If this is a global symbol, we count the number of
1548 relocations we need for this symbol. */
1549 if (hh != NULL)
1550 {
1551 hdh_head = &hh->dyn_relocs;
1552 }
1553 else
1554 {
1555 /* Track dynamic relocs needed for local syms too.
1556 We really need local syms available to do this
1557 easily. Oh well. */
1558
1559 asection *sr;
1560 void *vpp;
1561
1562 sr = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1563 sec, r_symndx);
1564 if (sr == NULL)
1565 return FALSE;
1566
1567 vpp = &elf_section_data (sr)->local_dynrel;
1568 hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp;
1569 }
1570
1571 hdh_p = *hdh_head;
1572 if (hdh_p == NULL || hdh_p->sec != sec)
1573 {
1574 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1575 if (hdh_p == NULL)
1576 return FALSE;
1577 hdh_p->hdh_next = *hdh_head;
1578 *hdh_head = hdh_p;
1579 hdh_p->sec = sec;
1580 hdh_p->count = 0;
1581 #if RELATIVE_DYNRELOCS
1582 hdh_p->relative_count = 0;
1583 #endif
1584 }
1585
1586 hdh_p->count += 1;
1587 #if RELATIVE_DYNRELOCS
1588 if (!IS_ABSOLUTE_RELOC (rtype))
1589 hdh_p->relative_count += 1;
1590 #endif
1591 }
1592 }
1593 }
1594
1595 return TRUE;
1596 }
1597
1598 /* Return the section that should be marked against garbage collection
1599 for a given relocation. */
1600
1601 static asection *
1602 elf32_hppa_gc_mark_hook (asection *sec,
1603 struct bfd_link_info *info,
1604 Elf_Internal_Rela *rela,
1605 struct elf_link_hash_entry *hh,
1606 Elf_Internal_Sym *sym)
1607 {
1608 if (hh != NULL)
1609 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1610 {
1611 case R_PARISC_GNU_VTINHERIT:
1612 case R_PARISC_GNU_VTENTRY:
1613 return NULL;
1614 }
1615
1616 return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1617 }
1618
1619 /* Update the got and plt entry reference counts for the section being
1620 removed. */
1621
1622 static bfd_boolean
1623 elf32_hppa_gc_sweep_hook (bfd *abfd,
1624 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1625 asection *sec,
1626 const Elf_Internal_Rela *relocs)
1627 {
1628 Elf_Internal_Shdr *symtab_hdr;
1629 struct elf_link_hash_entry **eh_syms;
1630 bfd_signed_vma *local_got_refcounts;
1631 bfd_signed_vma *local_plt_refcounts;
1632 const Elf_Internal_Rela *rela, *relend;
1633
1634 if (info->relocatable)
1635 return TRUE;
1636
1637 elf_section_data (sec)->local_dynrel = NULL;
1638
1639 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1640 eh_syms = elf_sym_hashes (abfd);
1641 local_got_refcounts = elf_local_got_refcounts (abfd);
1642 local_plt_refcounts = local_got_refcounts;
1643 if (local_plt_refcounts != NULL)
1644 local_plt_refcounts += symtab_hdr->sh_info;
1645
1646 relend = relocs + sec->reloc_count;
1647 for (rela = relocs; rela < relend; rela++)
1648 {
1649 unsigned long r_symndx;
1650 unsigned int r_type;
1651 struct elf_link_hash_entry *eh = NULL;
1652
1653 r_symndx = ELF32_R_SYM (rela->r_info);
1654 if (r_symndx >= symtab_hdr->sh_info)
1655 {
1656 struct elf32_hppa_link_hash_entry *hh;
1657 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1658 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1659
1660 eh = eh_syms[r_symndx - symtab_hdr->sh_info];
1661 while (eh->root.type == bfd_link_hash_indirect
1662 || eh->root.type == bfd_link_hash_warning)
1663 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1664 hh = hppa_elf_hash_entry (eh);
1665
1666 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next)
1667 if (hdh_p->sec == sec)
1668 {
1669 /* Everything must go for SEC. */
1670 *hdh_pp = hdh_p->hdh_next;
1671 break;
1672 }
1673 }
1674
1675 r_type = ELF32_R_TYPE (rela->r_info);
1676 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, eh != NULL);
1677
1678 switch (r_type)
1679 {
1680 case R_PARISC_DLTIND14F:
1681 case R_PARISC_DLTIND14R:
1682 case R_PARISC_DLTIND21L:
1683 case R_PARISC_TLS_GD21L:
1684 case R_PARISC_TLS_GD14R:
1685 case R_PARISC_TLS_IE21L:
1686 case R_PARISC_TLS_IE14R:
1687 if (eh != NULL)
1688 {
1689 if (eh->got.refcount > 0)
1690 eh->got.refcount -= 1;
1691 }
1692 else if (local_got_refcounts != NULL)
1693 {
1694 if (local_got_refcounts[r_symndx] > 0)
1695 local_got_refcounts[r_symndx] -= 1;
1696 }
1697 break;
1698
1699 case R_PARISC_TLS_LDM21L:
1700 case R_PARISC_TLS_LDM14R:
1701 hppa_link_hash_table (info)->tls_ldm_got.refcount -= 1;
1702 break;
1703
1704 case R_PARISC_PCREL12F:
1705 case R_PARISC_PCREL17C:
1706 case R_PARISC_PCREL17F:
1707 case R_PARISC_PCREL22F:
1708 if (eh != NULL)
1709 {
1710 if (eh->plt.refcount > 0)
1711 eh->plt.refcount -= 1;
1712 }
1713 break;
1714
1715 case R_PARISC_PLABEL14R:
1716 case R_PARISC_PLABEL21L:
1717 case R_PARISC_PLABEL32:
1718 if (eh != NULL)
1719 {
1720 if (eh->plt.refcount > 0)
1721 eh->plt.refcount -= 1;
1722 }
1723 else if (local_plt_refcounts != NULL)
1724 {
1725 if (local_plt_refcounts[r_symndx] > 0)
1726 local_plt_refcounts[r_symndx] -= 1;
1727 }
1728 break;
1729
1730 default:
1731 break;
1732 }
1733 }
1734
1735 return TRUE;
1736 }
1737
1738 /* Support for core dump NOTE sections. */
1739
1740 static bfd_boolean
1741 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1742 {
1743 int offset;
1744 size_t size;
1745
1746 switch (note->descsz)
1747 {
1748 default:
1749 return FALSE;
1750
1751 case 396: /* Linux/hppa */
1752 /* pr_cursig */
1753 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1754
1755 /* pr_pid */
1756 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1757
1758 /* pr_reg */
1759 offset = 72;
1760 size = 320;
1761
1762 break;
1763 }
1764
1765 /* Make a ".reg/999" section. */
1766 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1767 size, note->descpos + offset);
1768 }
1769
1770 static bfd_boolean
1771 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1772 {
1773 switch (note->descsz)
1774 {
1775 default:
1776 return FALSE;
1777
1778 case 124: /* Linux/hppa elf_prpsinfo. */
1779 elf_tdata (abfd)->core_program
1780 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1781 elf_tdata (abfd)->core_command
1782 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1783 }
1784
1785 /* Note that for some reason, a spurious space is tacked
1786 onto the end of the args in some (at least one anyway)
1787 implementations, so strip it off if it exists. */
1788 {
1789 char *command = elf_tdata (abfd)->core_command;
1790 int n = strlen (command);
1791
1792 if (0 < n && command[n - 1] == ' ')
1793 command[n - 1] = '\0';
1794 }
1795
1796 return TRUE;
1797 }
1798
1799 /* Our own version of hide_symbol, so that we can keep plt entries for
1800 plabels. */
1801
1802 static void
1803 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1804 struct elf_link_hash_entry *eh,
1805 bfd_boolean force_local)
1806 {
1807 if (force_local)
1808 {
1809 eh->forced_local = 1;
1810 if (eh->dynindx != -1)
1811 {
1812 eh->dynindx = -1;
1813 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1814 eh->dynstr_index);
1815 }
1816 }
1817
1818 if (! hppa_elf_hash_entry (eh)->plabel)
1819 {
1820 eh->needs_plt = 0;
1821 eh->plt = elf_hash_table (info)->init_plt_refcount;
1822 }
1823 }
1824
1825 /* Adjust a symbol defined by a dynamic object and referenced by a
1826 regular object. The current definition is in some section of the
1827 dynamic object, but we're not including those sections. We have to
1828 change the definition to something the rest of the link can
1829 understand. */
1830
1831 static bfd_boolean
1832 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1833 struct elf_link_hash_entry *eh)
1834 {
1835 struct elf32_hppa_link_hash_table *htab;
1836 asection *sec;
1837
1838 /* If this is a function, put it in the procedure linkage table. We
1839 will fill in the contents of the procedure linkage table later. */
1840 if (eh->type == STT_FUNC
1841 || eh->needs_plt)
1842 {
1843 if (eh->plt.refcount <= 0
1844 || (eh->def_regular
1845 && eh->root.type != bfd_link_hash_defweak
1846 && ! hppa_elf_hash_entry (eh)->plabel
1847 && (!info->shared || info->symbolic)))
1848 {
1849 /* The .plt entry is not needed when:
1850 a) Garbage collection has removed all references to the
1851 symbol, or
1852 b) We know for certain the symbol is defined in this
1853 object, and it's not a weak definition, nor is the symbol
1854 used by a plabel relocation. Either this object is the
1855 application or we are doing a shared symbolic link. */
1856
1857 eh->plt.offset = (bfd_vma) -1;
1858 eh->needs_plt = 0;
1859 }
1860
1861 return TRUE;
1862 }
1863 else
1864 eh->plt.offset = (bfd_vma) -1;
1865
1866 /* If this is a weak symbol, and there is a real definition, the
1867 processor independent code will have arranged for us to see the
1868 real definition first, and we can just use the same value. */
1869 if (eh->u.weakdef != NULL)
1870 {
1871 if (eh->u.weakdef->root.type != bfd_link_hash_defined
1872 && eh->u.weakdef->root.type != bfd_link_hash_defweak)
1873 abort ();
1874 eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1875 eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1876 if (ELIMINATE_COPY_RELOCS)
1877 eh->non_got_ref = eh->u.weakdef->non_got_ref;
1878 return TRUE;
1879 }
1880
1881 /* This is a reference to a symbol defined by a dynamic object which
1882 is not a function. */
1883
1884 /* If we are creating a shared library, we must presume that the
1885 only references to the symbol are via the global offset table.
1886 For such cases we need not do anything here; the relocations will
1887 be handled correctly by relocate_section. */
1888 if (info->shared)
1889 return TRUE;
1890
1891 /* If there are no references to this symbol that do not use the
1892 GOT, we don't need to generate a copy reloc. */
1893 if (!eh->non_got_ref)
1894 return TRUE;
1895
1896 if (ELIMINATE_COPY_RELOCS)
1897 {
1898 struct elf32_hppa_link_hash_entry *hh;
1899 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1900
1901 hh = hppa_elf_hash_entry (eh);
1902 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
1903 {
1904 sec = hdh_p->sec->output_section;
1905 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1906 break;
1907 }
1908
1909 /* If we didn't find any dynamic relocs in read-only sections, then
1910 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1911 if (hdh_p == NULL)
1912 {
1913 eh->non_got_ref = 0;
1914 return TRUE;
1915 }
1916 }
1917
1918 if (eh->size == 0)
1919 {
1920 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
1921 eh->root.root.string);
1922 return TRUE;
1923 }
1924
1925 /* We must allocate the symbol in our .dynbss section, which will
1926 become part of the .bss section of the executable. There will be
1927 an entry for this symbol in the .dynsym section. The dynamic
1928 object will contain position independent code, so all references
1929 from the dynamic object to this symbol will go through the global
1930 offset table. The dynamic linker will use the .dynsym entry to
1931 determine the address it must put in the global offset table, so
1932 both the dynamic object and the regular object will refer to the
1933 same memory location for the variable. */
1934
1935 htab = hppa_link_hash_table (info);
1936
1937 /* We must generate a COPY reloc to tell the dynamic linker to
1938 copy the initial value out of the dynamic object and into the
1939 runtime process image. */
1940 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0)
1941 {
1942 htab->srelbss->size += sizeof (Elf32_External_Rela);
1943 eh->needs_copy = 1;
1944 }
1945
1946 sec = htab->sdynbss;
1947
1948 return _bfd_elf_adjust_dynamic_copy (eh, sec);
1949 }
1950
1951 /* Allocate space in the .plt for entries that won't have relocations.
1952 ie. plabel entries. */
1953
1954 static bfd_boolean
1955 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1956 {
1957 struct bfd_link_info *info;
1958 struct elf32_hppa_link_hash_table *htab;
1959 struct elf32_hppa_link_hash_entry *hh;
1960 asection *sec;
1961
1962 if (eh->root.type == bfd_link_hash_indirect)
1963 return TRUE;
1964
1965 if (eh->root.type == bfd_link_hash_warning)
1966 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1967
1968 info = (struct bfd_link_info *) inf;
1969 hh = hppa_elf_hash_entry (eh);
1970 htab = hppa_link_hash_table (info);
1971 if (htab->etab.dynamic_sections_created
1972 && eh->plt.refcount > 0)
1973 {
1974 /* Make sure this symbol is output as a dynamic symbol.
1975 Undefined weak syms won't yet be marked as dynamic. */
1976 if (eh->dynindx == -1
1977 && !eh->forced_local
1978 && eh->type != STT_PARISC_MILLI)
1979 {
1980 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
1981 return FALSE;
1982 }
1983
1984 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, eh))
1985 {
1986 /* Allocate these later. From this point on, h->plabel
1987 means that the plt entry is only used by a plabel.
1988 We'll be using a normal plt entry for this symbol, so
1989 clear the plabel indicator. */
1990
1991 hh->plabel = 0;
1992 }
1993 else if (hh->plabel)
1994 {
1995 /* Make an entry in the .plt section for plabel references
1996 that won't have a .plt entry for other reasons. */
1997 sec = htab->splt;
1998 eh->plt.offset = sec->size;
1999 sec->size += PLT_ENTRY_SIZE;
2000 }
2001 else
2002 {
2003 /* No .plt entry needed. */
2004 eh->plt.offset = (bfd_vma) -1;
2005 eh->needs_plt = 0;
2006 }
2007 }
2008 else
2009 {
2010 eh->plt.offset = (bfd_vma) -1;
2011 eh->needs_plt = 0;
2012 }
2013
2014 return TRUE;
2015 }
2016
2017 /* Allocate space in .plt, .got and associated reloc sections for
2018 global syms. */
2019
2020 static bfd_boolean
2021 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2022 {
2023 struct bfd_link_info *info;
2024 struct elf32_hppa_link_hash_table *htab;
2025 asection *sec;
2026 struct elf32_hppa_link_hash_entry *hh;
2027 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2028
2029 if (eh->root.type == bfd_link_hash_indirect)
2030 return TRUE;
2031
2032 if (eh->root.type == bfd_link_hash_warning)
2033 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2034
2035 info = inf;
2036 htab = hppa_link_hash_table (info);
2037 hh = hppa_elf_hash_entry (eh);
2038
2039 if (htab->etab.dynamic_sections_created
2040 && eh->plt.offset != (bfd_vma) -1
2041 && !hh->plabel
2042 && eh->plt.refcount > 0)
2043 {
2044 /* Make an entry in the .plt section. */
2045 sec = htab->splt;
2046 eh->plt.offset = sec->size;
2047 sec->size += PLT_ENTRY_SIZE;
2048
2049 /* We also need to make an entry in the .rela.plt section. */
2050 htab->srelplt->size += sizeof (Elf32_External_Rela);
2051 htab->need_plt_stub = 1;
2052 }
2053
2054 if (eh->got.refcount > 0)
2055 {
2056 /* Make sure this symbol is output as a dynamic symbol.
2057 Undefined weak syms won't yet be marked as dynamic. */
2058 if (eh->dynindx == -1
2059 && !eh->forced_local
2060 && eh->type != STT_PARISC_MILLI)
2061 {
2062 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2063 return FALSE;
2064 }
2065
2066 sec = htab->sgot;
2067 eh->got.offset = sec->size;
2068 sec->size += GOT_ENTRY_SIZE;
2069 /* R_PARISC_TLS_GD* needs two GOT entries */
2070 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2071 sec->size += GOT_ENTRY_SIZE * 2;
2072 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2073 sec->size += GOT_ENTRY_SIZE;
2074 if (htab->etab.dynamic_sections_created
2075 && (info->shared
2076 || (eh->dynindx != -1
2077 && !eh->forced_local)))
2078 {
2079 htab->srelgot->size += sizeof (Elf32_External_Rela);
2080 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2081 htab->srelgot->size += 2 * sizeof (Elf32_External_Rela);
2082 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2083 htab->srelgot->size += sizeof (Elf32_External_Rela);
2084 }
2085 }
2086 else
2087 eh->got.offset = (bfd_vma) -1;
2088
2089 if (hh->dyn_relocs == NULL)
2090 return TRUE;
2091
2092 /* If this is a -Bsymbolic shared link, then we need to discard all
2093 space allocated for dynamic pc-relative relocs against symbols
2094 defined in a regular object. For the normal shared case, discard
2095 space for relocs that have become local due to symbol visibility
2096 changes. */
2097 if (info->shared)
2098 {
2099 #if RELATIVE_DYNRELOCS
2100 if (SYMBOL_CALLS_LOCAL (info, eh))
2101 {
2102 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
2103
2104 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2105 {
2106 hdh_p->count -= hdh_p->relative_count;
2107 hdh_p->relative_count = 0;
2108 if (hdh_p->count == 0)
2109 *hdh_pp = hdh_p->hdh_next;
2110 else
2111 hdh_pp = &hdh_p->hdh_next;
2112 }
2113 }
2114 #endif
2115
2116 /* Also discard relocs on undefined weak syms with non-default
2117 visibility. */
2118 if (hh->dyn_relocs != NULL
2119 && eh->root.type == bfd_link_hash_undefweak)
2120 {
2121 if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
2122 hh->dyn_relocs = NULL;
2123
2124 /* Make sure undefined weak symbols are output as a dynamic
2125 symbol in PIEs. */
2126 else if (eh->dynindx == -1
2127 && !eh->forced_local)
2128 {
2129 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2130 return FALSE;
2131 }
2132 }
2133 }
2134 else
2135 {
2136 /* For the non-shared case, discard space for relocs against
2137 symbols which turn out to need copy relocs or are not
2138 dynamic. */
2139
2140 if (!eh->non_got_ref
2141 && ((ELIMINATE_COPY_RELOCS
2142 && eh->def_dynamic
2143 && !eh->def_regular)
2144 || (htab->etab.dynamic_sections_created
2145 && (eh->root.type == bfd_link_hash_undefweak
2146 || eh->root.type == bfd_link_hash_undefined))))
2147 {
2148 /* Make sure this symbol is output as a dynamic symbol.
2149 Undefined weak syms won't yet be marked as dynamic. */
2150 if (eh->dynindx == -1
2151 && !eh->forced_local
2152 && eh->type != STT_PARISC_MILLI)
2153 {
2154 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2155 return FALSE;
2156 }
2157
2158 /* If that succeeded, we know we'll be keeping all the
2159 relocs. */
2160 if (eh->dynindx != -1)
2161 goto keep;
2162 }
2163
2164 hh->dyn_relocs = NULL;
2165 return TRUE;
2166
2167 keep: ;
2168 }
2169
2170 /* Finally, allocate space. */
2171 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2172 {
2173 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2174 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2175 }
2176
2177 return TRUE;
2178 }
2179
2180 /* This function is called via elf_link_hash_traverse to force
2181 millicode symbols local so they do not end up as globals in the
2182 dynamic symbol table. We ought to be able to do this in
2183 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2184 for all dynamic symbols. Arguably, this is a bug in
2185 elf_adjust_dynamic_symbol. */
2186
2187 static bfd_boolean
2188 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2189 struct bfd_link_info *info)
2190 {
2191 if (eh->root.type == bfd_link_hash_warning)
2192 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2193
2194 if (eh->type == STT_PARISC_MILLI
2195 && !eh->forced_local)
2196 {
2197 elf32_hppa_hide_symbol (info, eh, TRUE);
2198 }
2199 return TRUE;
2200 }
2201
2202 /* Find any dynamic relocs that apply to read-only sections. */
2203
2204 static bfd_boolean
2205 readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2206 {
2207 struct elf32_hppa_link_hash_entry *hh;
2208 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2209
2210 if (eh->root.type == bfd_link_hash_warning)
2211 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2212
2213 hh = hppa_elf_hash_entry (eh);
2214 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2215 {
2216 asection *sec = hdh_p->sec->output_section;
2217
2218 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
2219 {
2220 struct bfd_link_info *info = inf;
2221
2222 info->flags |= DF_TEXTREL;
2223
2224 /* Not an error, just cut short the traversal. */
2225 return FALSE;
2226 }
2227 }
2228 return TRUE;
2229 }
2230
2231 /* Set the sizes of the dynamic sections. */
2232
2233 static bfd_boolean
2234 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2235 struct bfd_link_info *info)
2236 {
2237 struct elf32_hppa_link_hash_table *htab;
2238 bfd *dynobj;
2239 bfd *ibfd;
2240 asection *sec;
2241 bfd_boolean relocs;
2242
2243 htab = hppa_link_hash_table (info);
2244 dynobj = htab->etab.dynobj;
2245 if (dynobj == NULL)
2246 abort ();
2247
2248 if (htab->etab.dynamic_sections_created)
2249 {
2250 /* Set the contents of the .interp section to the interpreter. */
2251 if (info->executable)
2252 {
2253 sec = bfd_get_section_by_name (dynobj, ".interp");
2254 if (sec == NULL)
2255 abort ();
2256 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2257 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2258 }
2259
2260 /* Force millicode symbols local. */
2261 elf_link_hash_traverse (&htab->etab,
2262 clobber_millicode_symbols,
2263 info);
2264 }
2265
2266 /* Set up .got and .plt offsets for local syms, and space for local
2267 dynamic relocs. */
2268 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2269 {
2270 bfd_signed_vma *local_got;
2271 bfd_signed_vma *end_local_got;
2272 bfd_signed_vma *local_plt;
2273 bfd_signed_vma *end_local_plt;
2274 bfd_size_type locsymcount;
2275 Elf_Internal_Shdr *symtab_hdr;
2276 asection *srel;
2277 char *local_tls_type;
2278
2279 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2280 continue;
2281
2282 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2283 {
2284 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2285
2286 for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
2287 elf_section_data (sec)->local_dynrel);
2288 hdh_p != NULL;
2289 hdh_p = hdh_p->hdh_next)
2290 {
2291 if (!bfd_is_abs_section (hdh_p->sec)
2292 && bfd_is_abs_section (hdh_p->sec->output_section))
2293 {
2294 /* Input section has been discarded, either because
2295 it is a copy of a linkonce section or due to
2296 linker script /DISCARD/, so we'll be discarding
2297 the relocs too. */
2298 }
2299 else if (hdh_p->count != 0)
2300 {
2301 srel = elf_section_data (hdh_p->sec)->sreloc;
2302 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2303 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2304 info->flags |= DF_TEXTREL;
2305 }
2306 }
2307 }
2308
2309 local_got = elf_local_got_refcounts (ibfd);
2310 if (!local_got)
2311 continue;
2312
2313 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2314 locsymcount = symtab_hdr->sh_info;
2315 end_local_got = local_got + locsymcount;
2316 local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2317 sec = htab->sgot;
2318 srel = htab->srelgot;
2319 for (; local_got < end_local_got; ++local_got)
2320 {
2321 if (*local_got > 0)
2322 {
2323 *local_got = sec->size;
2324 sec->size += GOT_ENTRY_SIZE;
2325 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2326 sec->size += 2 * GOT_ENTRY_SIZE;
2327 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2328 sec->size += GOT_ENTRY_SIZE;
2329 if (info->shared)
2330 {
2331 srel->size += sizeof (Elf32_External_Rela);
2332 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2333 srel->size += 2 * sizeof (Elf32_External_Rela);
2334 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2335 srel->size += sizeof (Elf32_External_Rela);
2336 }
2337 }
2338 else
2339 *local_got = (bfd_vma) -1;
2340
2341 ++local_tls_type;
2342 }
2343
2344 local_plt = end_local_got;
2345 end_local_plt = local_plt + locsymcount;
2346 if (! htab->etab.dynamic_sections_created)
2347 {
2348 /* Won't be used, but be safe. */
2349 for (; local_plt < end_local_plt; ++local_plt)
2350 *local_plt = (bfd_vma) -1;
2351 }
2352 else
2353 {
2354 sec = htab->splt;
2355 srel = htab->srelplt;
2356 for (; local_plt < end_local_plt; ++local_plt)
2357 {
2358 if (*local_plt > 0)
2359 {
2360 *local_plt = sec->size;
2361 sec->size += PLT_ENTRY_SIZE;
2362 if (info->shared)
2363 srel->size += sizeof (Elf32_External_Rela);
2364 }
2365 else
2366 *local_plt = (bfd_vma) -1;
2367 }
2368 }
2369 }
2370
2371 if (htab->tls_ldm_got.refcount > 0)
2372 {
2373 /* Allocate 2 got entries and 1 dynamic reloc for
2374 R_PARISC_TLS_DTPMOD32 relocs. */
2375 htab->tls_ldm_got.offset = htab->sgot->size;
2376 htab->sgot->size += (GOT_ENTRY_SIZE * 2);
2377 htab->srelgot->size += sizeof (Elf32_External_Rela);
2378 }
2379 else
2380 htab->tls_ldm_got.offset = -1;
2381
2382 /* Do all the .plt entries without relocs first. The dynamic linker
2383 uses the last .plt reloc to find the end of the .plt (and hence
2384 the start of the .got) for lazy linking. */
2385 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2386
2387 /* Allocate global sym .plt and .got entries, and space for global
2388 sym dynamic relocs. */
2389 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2390
2391 /* The check_relocs and adjust_dynamic_symbol entry points have
2392 determined the sizes of the various dynamic sections. Allocate
2393 memory for them. */
2394 relocs = FALSE;
2395 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2396 {
2397 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2398 continue;
2399
2400 if (sec == htab->splt)
2401 {
2402 if (htab->need_plt_stub)
2403 {
2404 /* Make space for the plt stub at the end of the .plt
2405 section. We want this stub right at the end, up
2406 against the .got section. */
2407 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2408 int pltalign = bfd_section_alignment (dynobj, sec);
2409 bfd_size_type mask;
2410
2411 if (gotalign > pltalign)
2412 bfd_set_section_alignment (dynobj, sec, gotalign);
2413 mask = ((bfd_size_type) 1 << gotalign) - 1;
2414 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2415 }
2416 }
2417 else if (sec == htab->sgot
2418 || sec == htab->sdynbss)
2419 ;
2420 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
2421 {
2422 if (sec->size != 0)
2423 {
2424 /* Remember whether there are any reloc sections other
2425 than .rela.plt. */
2426 if (sec != htab->srelplt)
2427 relocs = TRUE;
2428
2429 /* We use the reloc_count field as a counter if we need
2430 to copy relocs into the output file. */
2431 sec->reloc_count = 0;
2432 }
2433 }
2434 else
2435 {
2436 /* It's not one of our sections, so don't allocate space. */
2437 continue;
2438 }
2439
2440 if (sec->size == 0)
2441 {
2442 /* If we don't need this section, strip it from the
2443 output file. This is mostly to handle .rela.bss and
2444 .rela.plt. We must create both sections in
2445 create_dynamic_sections, because they must be created
2446 before the linker maps input sections to output
2447 sections. The linker does that before
2448 adjust_dynamic_symbol is called, and it is that
2449 function which decides whether anything needs to go
2450 into these sections. */
2451 sec->flags |= SEC_EXCLUDE;
2452 continue;
2453 }
2454
2455 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2456 continue;
2457
2458 /* Allocate memory for the section contents. Zero it, because
2459 we may not fill in all the reloc sections. */
2460 sec->contents = bfd_zalloc (dynobj, sec->size);
2461 if (sec->contents == NULL)
2462 return FALSE;
2463 }
2464
2465 if (htab->etab.dynamic_sections_created)
2466 {
2467 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2468 actually has nothing to do with the PLT, it is how we
2469 communicate the LTP value of a load module to the dynamic
2470 linker. */
2471 #define add_dynamic_entry(TAG, VAL) \
2472 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2473
2474 if (!add_dynamic_entry (DT_PLTGOT, 0))
2475 return FALSE;
2476
2477 /* Add some entries to the .dynamic section. We fill in the
2478 values later, in elf32_hppa_finish_dynamic_sections, but we
2479 must add the entries now so that we get the correct size for
2480 the .dynamic section. The DT_DEBUG entry is filled in by the
2481 dynamic linker and used by the debugger. */
2482 if (info->executable)
2483 {
2484 if (!add_dynamic_entry (DT_DEBUG, 0))
2485 return FALSE;
2486 }
2487
2488 if (htab->srelplt->size != 0)
2489 {
2490 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2491 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2492 || !add_dynamic_entry (DT_JMPREL, 0))
2493 return FALSE;
2494 }
2495
2496 if (relocs)
2497 {
2498 if (!add_dynamic_entry (DT_RELA, 0)
2499 || !add_dynamic_entry (DT_RELASZ, 0)
2500 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2501 return FALSE;
2502
2503 /* If any dynamic relocs apply to a read-only section,
2504 then we need a DT_TEXTREL entry. */
2505 if ((info->flags & DF_TEXTREL) == 0)
2506 elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info);
2507
2508 if ((info->flags & DF_TEXTREL) != 0)
2509 {
2510 if (!add_dynamic_entry (DT_TEXTREL, 0))
2511 return FALSE;
2512 }
2513 }
2514 }
2515 #undef add_dynamic_entry
2516
2517 return TRUE;
2518 }
2519
2520 /* External entry points for sizing and building linker stubs. */
2521
2522 /* Set up various things so that we can make a list of input sections
2523 for each output section included in the link. Returns -1 on error,
2524 0 when no stubs will be needed, and 1 on success. */
2525
2526 int
2527 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2528 {
2529 bfd *input_bfd;
2530 unsigned int bfd_count;
2531 int top_id, top_index;
2532 asection *section;
2533 asection **input_list, **list;
2534 bfd_size_type amt;
2535 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2536
2537 /* Count the number of input BFDs and find the top input section id. */
2538 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2539 input_bfd != NULL;
2540 input_bfd = input_bfd->link_next)
2541 {
2542 bfd_count += 1;
2543 for (section = input_bfd->sections;
2544 section != NULL;
2545 section = section->next)
2546 {
2547 if (top_id < section->id)
2548 top_id = section->id;
2549 }
2550 }
2551 htab->bfd_count = bfd_count;
2552
2553 amt = sizeof (struct map_stub) * (top_id + 1);
2554 htab->stub_group = bfd_zmalloc (amt);
2555 if (htab->stub_group == NULL)
2556 return -1;
2557
2558 /* We can't use output_bfd->section_count here to find the top output
2559 section index as some sections may have been removed, and
2560 strip_excluded_output_sections doesn't renumber the indices. */
2561 for (section = output_bfd->sections, top_index = 0;
2562 section != NULL;
2563 section = section->next)
2564 {
2565 if (top_index < section->index)
2566 top_index = section->index;
2567 }
2568
2569 htab->top_index = top_index;
2570 amt = sizeof (asection *) * (top_index + 1);
2571 input_list = bfd_malloc (amt);
2572 htab->input_list = input_list;
2573 if (input_list == NULL)
2574 return -1;
2575
2576 /* For sections we aren't interested in, mark their entries with a
2577 value we can check later. */
2578 list = input_list + top_index;
2579 do
2580 *list = bfd_abs_section_ptr;
2581 while (list-- != input_list);
2582
2583 for (section = output_bfd->sections;
2584 section != NULL;
2585 section = section->next)
2586 {
2587 if ((section->flags & SEC_CODE) != 0)
2588 input_list[section->index] = NULL;
2589 }
2590
2591 return 1;
2592 }
2593
2594 /* The linker repeatedly calls this function for each input section,
2595 in the order that input sections are linked into output sections.
2596 Build lists of input sections to determine groupings between which
2597 we may insert linker stubs. */
2598
2599 void
2600 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2601 {
2602 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2603
2604 if (isec->output_section->index <= htab->top_index)
2605 {
2606 asection **list = htab->input_list + isec->output_section->index;
2607 if (*list != bfd_abs_section_ptr)
2608 {
2609 /* Steal the link_sec pointer for our list. */
2610 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2611 /* This happens to make the list in reverse order,
2612 which is what we want. */
2613 PREV_SEC (isec) = *list;
2614 *list = isec;
2615 }
2616 }
2617 }
2618
2619 /* See whether we can group stub sections together. Grouping stub
2620 sections may result in fewer stubs. More importantly, we need to
2621 put all .init* and .fini* stubs at the beginning of the .init or
2622 .fini output sections respectively, because glibc splits the
2623 _init and _fini functions into multiple parts. Putting a stub in
2624 the middle of a function is not a good idea. */
2625
2626 static void
2627 group_sections (struct elf32_hppa_link_hash_table *htab,
2628 bfd_size_type stub_group_size,
2629 bfd_boolean stubs_always_before_branch)
2630 {
2631 asection **list = htab->input_list + htab->top_index;
2632 do
2633 {
2634 asection *tail = *list;
2635 if (tail == bfd_abs_section_ptr)
2636 continue;
2637 while (tail != NULL)
2638 {
2639 asection *curr;
2640 asection *prev;
2641 bfd_size_type total;
2642 bfd_boolean big_sec;
2643
2644 curr = tail;
2645 total = tail->size;
2646 big_sec = total >= stub_group_size;
2647
2648 while ((prev = PREV_SEC (curr)) != NULL
2649 && ((total += curr->output_offset - prev->output_offset)
2650 < stub_group_size))
2651 curr = prev;
2652
2653 /* OK, the size from the start of CURR to the end is less
2654 than 240000 bytes and thus can be handled by one stub
2655 section. (or the tail section is itself larger than
2656 240000 bytes, in which case we may be toast.)
2657 We should really be keeping track of the total size of
2658 stubs added here, as stubs contribute to the final output
2659 section size. That's a little tricky, and this way will
2660 only break if stubs added total more than 22144 bytes, or
2661 2768 long branch stubs. It seems unlikely for more than
2662 2768 different functions to be called, especially from
2663 code only 240000 bytes long. This limit used to be
2664 250000, but c++ code tends to generate lots of little
2665 functions, and sometimes violated the assumption. */
2666 do
2667 {
2668 prev = PREV_SEC (tail);
2669 /* Set up this stub group. */
2670 htab->stub_group[tail->id].link_sec = curr;
2671 }
2672 while (tail != curr && (tail = prev) != NULL);
2673
2674 /* But wait, there's more! Input sections up to 240000
2675 bytes before the stub section can be handled by it too.
2676 Don't do this if we have a really large section after the
2677 stubs, as adding more stubs increases the chance that
2678 branches may not reach into the stub section. */
2679 if (!stubs_always_before_branch && !big_sec)
2680 {
2681 total = 0;
2682 while (prev != NULL
2683 && ((total += tail->output_offset - prev->output_offset)
2684 < stub_group_size))
2685 {
2686 tail = prev;
2687 prev = PREV_SEC (tail);
2688 htab->stub_group[tail->id].link_sec = curr;
2689 }
2690 }
2691 tail = prev;
2692 }
2693 }
2694 while (list-- != htab->input_list);
2695 free (htab->input_list);
2696 #undef PREV_SEC
2697 }
2698
2699 /* Read in all local syms for all input bfds, and create hash entries
2700 for export stubs if we are building a multi-subspace shared lib.
2701 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2702
2703 static int
2704 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2705 {
2706 unsigned int bfd_indx;
2707 Elf_Internal_Sym *local_syms, **all_local_syms;
2708 int stub_changed = 0;
2709 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2710
2711 /* We want to read in symbol extension records only once. To do this
2712 we need to read in the local symbols in parallel and save them for
2713 later use; so hold pointers to the local symbols in an array. */
2714 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2715 all_local_syms = bfd_zmalloc (amt);
2716 htab->all_local_syms = all_local_syms;
2717 if (all_local_syms == NULL)
2718 return -1;
2719
2720 /* Walk over all the input BFDs, swapping in local symbols.
2721 If we are creating a shared library, create hash entries for the
2722 export stubs. */
2723 for (bfd_indx = 0;
2724 input_bfd != NULL;
2725 input_bfd = input_bfd->link_next, bfd_indx++)
2726 {
2727 Elf_Internal_Shdr *symtab_hdr;
2728
2729 /* We'll need the symbol table in a second. */
2730 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2731 if (symtab_hdr->sh_info == 0)
2732 continue;
2733
2734 /* We need an array of the local symbols attached to the input bfd. */
2735 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2736 if (local_syms == NULL)
2737 {
2738 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2739 symtab_hdr->sh_info, 0,
2740 NULL, NULL, NULL);
2741 /* Cache them for elf_link_input_bfd. */
2742 symtab_hdr->contents = (unsigned char *) local_syms;
2743 }
2744 if (local_syms == NULL)
2745 return -1;
2746
2747 all_local_syms[bfd_indx] = local_syms;
2748
2749 if (info->shared && htab->multi_subspace)
2750 {
2751 struct elf_link_hash_entry **eh_syms;
2752 struct elf_link_hash_entry **eh_symend;
2753 unsigned int symcount;
2754
2755 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2756 - symtab_hdr->sh_info);
2757 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2758 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2759
2760 /* Look through the global syms for functions; We need to
2761 build export stubs for all globally visible functions. */
2762 for (; eh_syms < eh_symend; eh_syms++)
2763 {
2764 struct elf32_hppa_link_hash_entry *hh;
2765
2766 hh = hppa_elf_hash_entry (*eh_syms);
2767
2768 while (hh->eh.root.type == bfd_link_hash_indirect
2769 || hh->eh.root.type == bfd_link_hash_warning)
2770 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2771
2772 /* At this point in the link, undefined syms have been
2773 resolved, so we need to check that the symbol was
2774 defined in this BFD. */
2775 if ((hh->eh.root.type == bfd_link_hash_defined
2776 || hh->eh.root.type == bfd_link_hash_defweak)
2777 && hh->eh.type == STT_FUNC
2778 && hh->eh.root.u.def.section->output_section != NULL
2779 && (hh->eh.root.u.def.section->output_section->owner
2780 == output_bfd)
2781 && hh->eh.root.u.def.section->owner == input_bfd
2782 && hh->eh.def_regular
2783 && !hh->eh.forced_local
2784 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2785 {
2786 asection *sec;
2787 const char *stub_name;
2788 struct elf32_hppa_stub_hash_entry *hsh;
2789
2790 sec = hh->eh.root.u.def.section;
2791 stub_name = hh_name (hh);
2792 hsh = hppa_stub_hash_lookup (&htab->bstab,
2793 stub_name,
2794 FALSE, FALSE);
2795 if (hsh == NULL)
2796 {
2797 hsh = hppa_add_stub (stub_name, sec, htab);
2798 if (!hsh)
2799 return -1;
2800
2801 hsh->target_value = hh->eh.root.u.def.value;
2802 hsh->target_section = hh->eh.root.u.def.section;
2803 hsh->stub_type = hppa_stub_export;
2804 hsh->hh = hh;
2805 stub_changed = 1;
2806 }
2807 else
2808 {
2809 (*_bfd_error_handler) (_("%B: duplicate export stub %s"),
2810 input_bfd,
2811 stub_name);
2812 }
2813 }
2814 }
2815 }
2816 }
2817
2818 return stub_changed;
2819 }
2820
2821 /* Determine and set the size of the stub section for a final link.
2822
2823 The basic idea here is to examine all the relocations looking for
2824 PC-relative calls to a target that is unreachable with a "bl"
2825 instruction. */
2826
2827 bfd_boolean
2828 elf32_hppa_size_stubs
2829 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2830 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2831 asection * (*add_stub_section) (const char *, asection *),
2832 void (*layout_sections_again) (void))
2833 {
2834 bfd_size_type stub_group_size;
2835 bfd_boolean stubs_always_before_branch;
2836 bfd_boolean stub_changed;
2837 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2838
2839 /* Stash our params away. */
2840 htab->stub_bfd = stub_bfd;
2841 htab->multi_subspace = multi_subspace;
2842 htab->add_stub_section = add_stub_section;
2843 htab->layout_sections_again = layout_sections_again;
2844 stubs_always_before_branch = group_size < 0;
2845 if (group_size < 0)
2846 stub_group_size = -group_size;
2847 else
2848 stub_group_size = group_size;
2849 if (stub_group_size == 1)
2850 {
2851 /* Default values. */
2852 if (stubs_always_before_branch)
2853 {
2854 stub_group_size = 7680000;
2855 if (htab->has_17bit_branch || htab->multi_subspace)
2856 stub_group_size = 240000;
2857 if (htab->has_12bit_branch)
2858 stub_group_size = 7500;
2859 }
2860 else
2861 {
2862 stub_group_size = 6971392;
2863 if (htab->has_17bit_branch || htab->multi_subspace)
2864 stub_group_size = 217856;
2865 if (htab->has_12bit_branch)
2866 stub_group_size = 6808;
2867 }
2868 }
2869
2870 group_sections (htab, stub_group_size, stubs_always_before_branch);
2871
2872 switch (get_local_syms (output_bfd, info->input_bfds, info))
2873 {
2874 default:
2875 if (htab->all_local_syms)
2876 goto error_ret_free_local;
2877 return FALSE;
2878
2879 case 0:
2880 stub_changed = FALSE;
2881 break;
2882
2883 case 1:
2884 stub_changed = TRUE;
2885 break;
2886 }
2887
2888 while (1)
2889 {
2890 bfd *input_bfd;
2891 unsigned int bfd_indx;
2892 asection *stub_sec;
2893
2894 for (input_bfd = info->input_bfds, bfd_indx = 0;
2895 input_bfd != NULL;
2896 input_bfd = input_bfd->link_next, bfd_indx++)
2897 {
2898 Elf_Internal_Shdr *symtab_hdr;
2899 asection *section;
2900 Elf_Internal_Sym *local_syms;
2901
2902 /* We'll need the symbol table in a second. */
2903 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2904 if (symtab_hdr->sh_info == 0)
2905 continue;
2906
2907 local_syms = htab->all_local_syms[bfd_indx];
2908
2909 /* Walk over each section attached to the input bfd. */
2910 for (section = input_bfd->sections;
2911 section != NULL;
2912 section = section->next)
2913 {
2914 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2915
2916 /* If there aren't any relocs, then there's nothing more
2917 to do. */
2918 if ((section->flags & SEC_RELOC) == 0
2919 || section->reloc_count == 0)
2920 continue;
2921
2922 /* If this section is a link-once section that will be
2923 discarded, then don't create any stubs. */
2924 if (section->output_section == NULL
2925 || section->output_section->owner != output_bfd)
2926 continue;
2927
2928 /* Get the relocs. */
2929 internal_relocs
2930 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2931 info->keep_memory);
2932 if (internal_relocs == NULL)
2933 goto error_ret_free_local;
2934
2935 /* Now examine each relocation. */
2936 irela = internal_relocs;
2937 irelaend = irela + section->reloc_count;
2938 for (; irela < irelaend; irela++)
2939 {
2940 unsigned int r_type, r_indx;
2941 enum elf32_hppa_stub_type stub_type;
2942 struct elf32_hppa_stub_hash_entry *hsh;
2943 asection *sym_sec;
2944 bfd_vma sym_value;
2945 bfd_vma destination;
2946 struct elf32_hppa_link_hash_entry *hh;
2947 char *stub_name;
2948 const asection *id_sec;
2949
2950 r_type = ELF32_R_TYPE (irela->r_info);
2951 r_indx = ELF32_R_SYM (irela->r_info);
2952
2953 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2954 {
2955 bfd_set_error (bfd_error_bad_value);
2956 error_ret_free_internal:
2957 if (elf_section_data (section)->relocs == NULL)
2958 free (internal_relocs);
2959 goto error_ret_free_local;
2960 }
2961
2962 /* Only look for stubs on call instructions. */
2963 if (r_type != (unsigned int) R_PARISC_PCREL12F
2964 && r_type != (unsigned int) R_PARISC_PCREL17F
2965 && r_type != (unsigned int) R_PARISC_PCREL22F)
2966 continue;
2967
2968 /* Now determine the call target, its name, value,
2969 section. */
2970 sym_sec = NULL;
2971 sym_value = 0;
2972 destination = 0;
2973 hh = NULL;
2974 if (r_indx < symtab_hdr->sh_info)
2975 {
2976 /* It's a local symbol. */
2977 Elf_Internal_Sym *sym;
2978 Elf_Internal_Shdr *hdr;
2979
2980 sym = local_syms + r_indx;
2981 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2982 sym_sec = hdr->bfd_section;
2983 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2984 sym_value = sym->st_value;
2985 destination = (sym_value + irela->r_addend
2986 + sym_sec->output_offset
2987 + sym_sec->output_section->vma);
2988 }
2989 else
2990 {
2991 /* It's an external symbol. */
2992 int e_indx;
2993
2994 e_indx = r_indx - symtab_hdr->sh_info;
2995 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2996
2997 while (hh->eh.root.type == bfd_link_hash_indirect
2998 || hh->eh.root.type == bfd_link_hash_warning)
2999 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
3000
3001 if (hh->eh.root.type == bfd_link_hash_defined
3002 || hh->eh.root.type == bfd_link_hash_defweak)
3003 {
3004 sym_sec = hh->eh.root.u.def.section;
3005 sym_value = hh->eh.root.u.def.value;
3006 if (sym_sec->output_section != NULL)
3007 destination = (sym_value + irela->r_addend
3008 + sym_sec->output_offset
3009 + sym_sec->output_section->vma);
3010 }
3011 else if (hh->eh.root.type == bfd_link_hash_undefweak)
3012 {
3013 if (! info->shared)
3014 continue;
3015 }
3016 else if (hh->eh.root.type == bfd_link_hash_undefined)
3017 {
3018 if (! (info->unresolved_syms_in_objects == RM_IGNORE
3019 && (ELF_ST_VISIBILITY (hh->eh.other)
3020 == STV_DEFAULT)
3021 && hh->eh.type != STT_PARISC_MILLI))
3022 continue;
3023 }
3024 else
3025 {
3026 bfd_set_error (bfd_error_bad_value);
3027 goto error_ret_free_internal;
3028 }
3029 }
3030
3031 /* Determine what (if any) linker stub is needed. */
3032 stub_type = hppa_type_of_stub (section, irela, hh,
3033 destination, info);
3034 if (stub_type == hppa_stub_none)
3035 continue;
3036
3037 /* Support for grouping stub sections. */
3038 id_sec = htab->stub_group[section->id].link_sec;
3039
3040 /* Get the name of this stub. */
3041 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
3042 if (!stub_name)
3043 goto error_ret_free_internal;
3044
3045 hsh = hppa_stub_hash_lookup (&htab->bstab,
3046 stub_name,
3047 FALSE, FALSE);
3048 if (hsh != NULL)
3049 {
3050 /* The proper stub has already been created. */
3051 free (stub_name);
3052 continue;
3053 }
3054
3055 hsh = hppa_add_stub (stub_name, section, htab);
3056 if (hsh == NULL)
3057 {
3058 free (stub_name);
3059 goto error_ret_free_internal;
3060 }
3061
3062 hsh->target_value = sym_value;
3063 hsh->target_section = sym_sec;
3064 hsh->stub_type = stub_type;
3065 if (info->shared)
3066 {
3067 if (stub_type == hppa_stub_import)
3068 hsh->stub_type = hppa_stub_import_shared;
3069 else if (stub_type == hppa_stub_long_branch)
3070 hsh->stub_type = hppa_stub_long_branch_shared;
3071 }
3072 hsh->hh = hh;
3073 stub_changed = TRUE;
3074 }
3075
3076 /* We're done with the internal relocs, free them. */
3077 if (elf_section_data (section)->relocs == NULL)
3078 free (internal_relocs);
3079 }
3080 }
3081
3082 if (!stub_changed)
3083 break;
3084
3085 /* OK, we've added some stubs. Find out the new size of the
3086 stub sections. */
3087 for (stub_sec = htab->stub_bfd->sections;
3088 stub_sec != NULL;
3089 stub_sec = stub_sec->next)
3090 stub_sec->size = 0;
3091
3092 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
3093
3094 /* Ask the linker to do its stuff. */
3095 (*htab->layout_sections_again) ();
3096 stub_changed = FALSE;
3097 }
3098
3099 free (htab->all_local_syms);
3100 return TRUE;
3101
3102 error_ret_free_local:
3103 free (htab->all_local_syms);
3104 return FALSE;
3105 }
3106
3107 /* For a final link, this function is called after we have sized the
3108 stubs to provide a value for __gp. */
3109
3110 bfd_boolean
3111 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
3112 {
3113 struct bfd_link_hash_entry *h;
3114 asection *sec = NULL;
3115 bfd_vma gp_val = 0;
3116 struct elf32_hppa_link_hash_table *htab;
3117
3118 htab = hppa_link_hash_table (info);
3119 h = bfd_link_hash_lookup (&htab->etab.root, "$global$", FALSE, FALSE, FALSE);
3120
3121 if (h != NULL
3122 && (h->type == bfd_link_hash_defined
3123 || h->type == bfd_link_hash_defweak))
3124 {
3125 gp_val = h->u.def.value;
3126 sec = h->u.def.section;
3127 }
3128 else
3129 {
3130 asection *splt = bfd_get_section_by_name (abfd, ".plt");
3131 asection *sgot = bfd_get_section_by_name (abfd, ".got");
3132
3133 /* Choose to point our LTP at, in this order, one of .plt, .got,
3134 or .data, if these sections exist. In the case of choosing
3135 .plt try to make the LTP ideal for addressing anywhere in the
3136 .plt or .got with a 14 bit signed offset. Typically, the end
3137 of the .plt is the start of the .got, so choose .plt + 0x2000
3138 if either the .plt or .got is larger than 0x2000. If both
3139 the .plt and .got are smaller than 0x2000, choose the end of
3140 the .plt section. */
3141 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3142 ? NULL : splt;
3143 if (sec != NULL)
3144 {
3145 gp_val = sec->size;
3146 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3147 {
3148 gp_val = 0x2000;
3149 }
3150 }
3151 else
3152 {
3153 sec = sgot;
3154 if (sec != NULL)
3155 {
3156 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3157 {
3158 /* We know we don't have a .plt. If .got is large,
3159 offset our LTP. */
3160 if (sec->size > 0x2000)
3161 gp_val = 0x2000;
3162 }
3163 }
3164 else
3165 {
3166 /* No .plt or .got. Who cares what the LTP is? */
3167 sec = bfd_get_section_by_name (abfd, ".data");
3168 }
3169 }
3170
3171 if (h != NULL)
3172 {
3173 h->type = bfd_link_hash_defined;
3174 h->u.def.value = gp_val;
3175 if (sec != NULL)
3176 h->u.def.section = sec;
3177 else
3178 h->u.def.section = bfd_abs_section_ptr;
3179 }
3180 }
3181
3182 if (sec != NULL && sec->output_section != NULL)
3183 gp_val += sec->output_section->vma + sec->output_offset;
3184
3185 elf_gp (abfd) = gp_val;
3186 return TRUE;
3187 }
3188
3189 /* Build all the stubs associated with the current output file. The
3190 stubs are kept in a hash table attached to the main linker hash
3191 table. We also set up the .plt entries for statically linked PIC
3192 functions here. This function is called via hppaelf_finish in the
3193 linker. */
3194
3195 bfd_boolean
3196 elf32_hppa_build_stubs (struct bfd_link_info *info)
3197 {
3198 asection *stub_sec;
3199 struct bfd_hash_table *table;
3200 struct elf32_hppa_link_hash_table *htab;
3201
3202 htab = hppa_link_hash_table (info);
3203
3204 for (stub_sec = htab->stub_bfd->sections;
3205 stub_sec != NULL;
3206 stub_sec = stub_sec->next)
3207 {
3208 bfd_size_type size;
3209
3210 /* Allocate memory to hold the linker stubs. */
3211 size = stub_sec->size;
3212 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3213 if (stub_sec->contents == NULL && size != 0)
3214 return FALSE;
3215 stub_sec->size = 0;
3216 }
3217
3218 /* Build the stubs as directed by the stub hash table. */
3219 table = &htab->bstab;
3220 bfd_hash_traverse (table, hppa_build_one_stub, info);
3221
3222 return TRUE;
3223 }
3224
3225 /* Return the base vma address which should be subtracted from the real
3226 address when resolving a dtpoff relocation.
3227 This is PT_TLS segment p_vaddr. */
3228
3229 static bfd_vma
3230 dtpoff_base (struct bfd_link_info *info)
3231 {
3232 /* If tls_sec is NULL, we should have signalled an error already. */
3233 if (elf_hash_table (info)->tls_sec == NULL)
3234 return 0;
3235 return elf_hash_table (info)->tls_sec->vma;
3236 }
3237
3238 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3239
3240 static bfd_vma
3241 tpoff (struct bfd_link_info *info, bfd_vma address)
3242 {
3243 struct elf_link_hash_table *htab = elf_hash_table (info);
3244
3245 /* If tls_sec is NULL, we should have signalled an error already. */
3246 if (htab->tls_sec == NULL)
3247 return 0;
3248 /* hppa TLS ABI is variant I and static TLS block start just after
3249 tcbhead structure which has 2 pointer fields. */
3250 return (address - htab->tls_sec->vma
3251 + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3252 }
3253
3254 /* Perform a final link. */
3255
3256 static bfd_boolean
3257 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3258 {
3259 /* Invoke the regular ELF linker to do all the work. */
3260 if (!bfd_elf_final_link (abfd, info))
3261 return FALSE;
3262
3263 /* If we're producing a final executable, sort the contents of the
3264 unwind section. */
3265 return elf_hppa_sort_unwind (abfd);
3266 }
3267
3268 /* Record the lowest address for the data and text segments. */
3269
3270 static void
3271 hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
3272 {
3273 struct elf32_hppa_link_hash_table *htab;
3274
3275 htab = (struct elf32_hppa_link_hash_table*) data;
3276
3277 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3278 {
3279 bfd_vma value;
3280 Elf_Internal_Phdr *p;
3281
3282 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
3283 BFD_ASSERT (p != NULL);
3284 value = p->p_vaddr;
3285
3286 if ((section->flags & SEC_READONLY) != 0)
3287 {
3288 if (value < htab->text_segment_base)
3289 htab->text_segment_base = value;
3290 }
3291 else
3292 {
3293 if (value < htab->data_segment_base)
3294 htab->data_segment_base = value;
3295 }
3296 }
3297 }
3298
3299 /* Perform a relocation as part of a final link. */
3300
3301 static bfd_reloc_status_type
3302 final_link_relocate (asection *input_section,
3303 bfd_byte *contents,
3304 const Elf_Internal_Rela *rela,
3305 bfd_vma value,
3306 struct elf32_hppa_link_hash_table *htab,
3307 asection *sym_sec,
3308 struct elf32_hppa_link_hash_entry *hh,
3309 struct bfd_link_info *info)
3310 {
3311 int insn;
3312 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3313 unsigned int orig_r_type = r_type;
3314 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3315 int r_format = howto->bitsize;
3316 enum hppa_reloc_field_selector_type_alt r_field;
3317 bfd *input_bfd = input_section->owner;
3318 bfd_vma offset = rela->r_offset;
3319 bfd_vma max_branch_offset = 0;
3320 bfd_byte *hit_data = contents + offset;
3321 bfd_signed_vma addend = rela->r_addend;
3322 bfd_vma location;
3323 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3324 int val;
3325
3326 if (r_type == R_PARISC_NONE)
3327 return bfd_reloc_ok;
3328
3329 insn = bfd_get_32 (input_bfd, hit_data);
3330
3331 /* Find out where we are and where we're going. */
3332 location = (offset +
3333 input_section->output_offset +
3334 input_section->output_section->vma);
3335
3336 /* If we are not building a shared library, convert DLTIND relocs to
3337 DPREL relocs. */
3338 if (!info->shared)
3339 {
3340 switch (r_type)
3341 {
3342 case R_PARISC_DLTIND21L:
3343 r_type = R_PARISC_DPREL21L;
3344 break;
3345
3346 case R_PARISC_DLTIND14R:
3347 r_type = R_PARISC_DPREL14R;
3348 break;
3349
3350 case R_PARISC_DLTIND14F:
3351 r_type = R_PARISC_DPREL14F;
3352 break;
3353 }
3354 }
3355
3356 switch (r_type)
3357 {
3358 case R_PARISC_PCREL12F:
3359 case R_PARISC_PCREL17F:
3360 case R_PARISC_PCREL22F:
3361 /* If this call should go via the plt, find the import stub in
3362 the stub hash. */
3363 if (sym_sec == NULL
3364 || sym_sec->output_section == NULL
3365 || (hh != NULL
3366 && hh->eh.plt.offset != (bfd_vma) -1
3367 && hh->eh.dynindx != -1
3368 && !hh->plabel
3369 && (info->shared
3370 || !hh->eh.def_regular
3371 || hh->eh.root.type == bfd_link_hash_defweak)))
3372 {
3373 hsh = hppa_get_stub_entry (input_section, sym_sec,
3374 hh, rela, htab);
3375 if (hsh != NULL)
3376 {
3377 value = (hsh->stub_offset
3378 + hsh->stub_sec->output_offset
3379 + hsh->stub_sec->output_section->vma);
3380 addend = 0;
3381 }
3382 else if (sym_sec == NULL && hh != NULL
3383 && hh->eh.root.type == bfd_link_hash_undefweak)
3384 {
3385 /* It's OK if undefined weak. Calls to undefined weak
3386 symbols behave as if the "called" function
3387 immediately returns. We can thus call to a weak
3388 function without first checking whether the function
3389 is defined. */
3390 value = location;
3391 addend = 8;
3392 }
3393 else
3394 return bfd_reloc_undefined;
3395 }
3396 /* Fall thru. */
3397
3398 case R_PARISC_PCREL21L:
3399 case R_PARISC_PCREL17C:
3400 case R_PARISC_PCREL17R:
3401 case R_PARISC_PCREL14R:
3402 case R_PARISC_PCREL14F:
3403 case R_PARISC_PCREL32:
3404 /* Make it a pc relative offset. */
3405 value -= location;
3406 addend -= 8;
3407 break;
3408
3409 case R_PARISC_DPREL21L:
3410 case R_PARISC_DPREL14R:
3411 case R_PARISC_DPREL14F:
3412 /* Convert instructions that use the linkage table pointer (r19) to
3413 instructions that use the global data pointer (dp). This is the
3414 most efficient way of using PIC code in an incomplete executable,
3415 but the user must follow the standard runtime conventions for
3416 accessing data for this to work. */
3417 if (orig_r_type == R_PARISC_DLTIND21L)
3418 {
3419 /* Convert addil instructions if the original reloc was a
3420 DLTIND21L. GCC sometimes uses a register other than r19 for
3421 the operation, so we must convert any addil instruction
3422 that uses this relocation. */
3423 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3424 insn = ADDIL_DP;
3425 else
3426 /* We must have a ldil instruction. It's too hard to find
3427 and convert the associated add instruction, so issue an
3428 error. */
3429 (*_bfd_error_handler)
3430 (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3431 input_bfd,
3432 input_section,
3433 offset,
3434 howto->name,
3435 insn);
3436 }
3437 else if (orig_r_type == R_PARISC_DLTIND14F)
3438 {
3439 /* This must be a format 1 load/store. Change the base
3440 register to dp. */
3441 insn = (insn & 0xfc1ffff) | (27 << 21);
3442 }
3443
3444 /* For all the DP relative relocations, we need to examine the symbol's
3445 section. If it has no section or if it's a code section, then
3446 "data pointer relative" makes no sense. In that case we don't
3447 adjust the "value", and for 21 bit addil instructions, we change the
3448 source addend register from %dp to %r0. This situation commonly
3449 arises for undefined weak symbols and when a variable's "constness"
3450 is declared differently from the way the variable is defined. For
3451 instance: "extern int foo" with foo defined as "const int foo". */
3452 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3453 {
3454 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3455 == (((int) OP_ADDIL << 26) | (27 << 21)))
3456 {
3457 insn &= ~ (0x1f << 21);
3458 }
3459 /* Now try to make things easy for the dynamic linker. */
3460
3461 break;
3462 }
3463 /* Fall thru. */
3464
3465 case R_PARISC_DLTIND21L:
3466 case R_PARISC_DLTIND14R:
3467 case R_PARISC_DLTIND14F:
3468 case R_PARISC_TLS_GD21L:
3469 case R_PARISC_TLS_GD14R:
3470 case R_PARISC_TLS_LDM21L:
3471 case R_PARISC_TLS_LDM14R:
3472 case R_PARISC_TLS_IE21L:
3473 case R_PARISC_TLS_IE14R:
3474 value -= elf_gp (input_section->output_section->owner);
3475 break;
3476
3477 case R_PARISC_SEGREL32:
3478 if ((sym_sec->flags & SEC_CODE) != 0)
3479 value -= htab->text_segment_base;
3480 else
3481 value -= htab->data_segment_base;
3482 break;
3483
3484 default:
3485 break;
3486 }
3487
3488 switch (r_type)
3489 {
3490 case R_PARISC_DIR32:
3491 case R_PARISC_DIR14F:
3492 case R_PARISC_DIR17F:
3493 case R_PARISC_PCREL17C:
3494 case R_PARISC_PCREL14F:
3495 case R_PARISC_PCREL32:
3496 case R_PARISC_DPREL14F:
3497 case R_PARISC_PLABEL32:
3498 case R_PARISC_DLTIND14F:
3499 case R_PARISC_SEGBASE:
3500 case R_PARISC_SEGREL32:
3501 case R_PARISC_TLS_DTPMOD32:
3502 case R_PARISC_TLS_DTPOFF32:
3503 case R_PARISC_TLS_TPREL32:
3504 r_field = e_fsel;
3505 break;
3506
3507 case R_PARISC_DLTIND21L:
3508 case R_PARISC_PCREL21L:
3509 case R_PARISC_PLABEL21L:
3510 r_field = e_lsel;
3511 break;
3512
3513 case R_PARISC_DIR21L:
3514 case R_PARISC_DPREL21L:
3515 case R_PARISC_TLS_GD21L:
3516 case R_PARISC_TLS_LDM21L:
3517 case R_PARISC_TLS_LDO21L:
3518 case R_PARISC_TLS_IE21L:
3519 case R_PARISC_TLS_LE21L:
3520 r_field = e_lrsel;
3521 break;
3522
3523 case R_PARISC_PCREL17R:
3524 case R_PARISC_PCREL14R:
3525 case R_PARISC_PLABEL14R:
3526 case R_PARISC_DLTIND14R:
3527 r_field = e_rsel;
3528 break;
3529
3530 case R_PARISC_DIR17R:
3531 case R_PARISC_DIR14R:
3532 case R_PARISC_DPREL14R:
3533 case R_PARISC_TLS_GD14R:
3534 case R_PARISC_TLS_LDM14R:
3535 case R_PARISC_TLS_LDO14R:
3536 case R_PARISC_TLS_IE14R:
3537 case R_PARISC_TLS_LE14R:
3538 r_field = e_rrsel;
3539 break;
3540
3541 case R_PARISC_PCREL12F:
3542 case R_PARISC_PCREL17F:
3543 case R_PARISC_PCREL22F:
3544 r_field = e_fsel;
3545
3546 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3547 {
3548 max_branch_offset = (1 << (17-1)) << 2;
3549 }
3550 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3551 {
3552 max_branch_offset = (1 << (12-1)) << 2;
3553 }
3554 else
3555 {
3556 max_branch_offset = (1 << (22-1)) << 2;
3557 }
3558
3559 /* sym_sec is NULL on undefined weak syms or when shared on
3560 undefined syms. We've already checked for a stub for the
3561 shared undefined case. */
3562 if (sym_sec == NULL)
3563 break;
3564
3565 /* If the branch is out of reach, then redirect the
3566 call to the local stub for this function. */
3567 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3568 {
3569 hsh = hppa_get_stub_entry (input_section, sym_sec,
3570 hh, rela, htab);
3571 if (hsh == NULL)
3572 return bfd_reloc_undefined;
3573
3574 /* Munge up the value and addend so that we call the stub
3575 rather than the procedure directly. */
3576 value = (hsh->stub_offset
3577 + hsh->stub_sec->output_offset
3578 + hsh->stub_sec->output_section->vma
3579 - location);
3580 addend = -8;
3581 }
3582 break;
3583
3584 /* Something we don't know how to handle. */
3585 default:
3586 return bfd_reloc_notsupported;
3587 }
3588
3589 /* Make sure we can reach the stub. */
3590 if (max_branch_offset != 0
3591 && value + addend + max_branch_offset >= 2*max_branch_offset)
3592 {
3593 (*_bfd_error_handler)
3594 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3595 input_bfd,
3596 input_section,
3597 offset,
3598 hsh->bh_root.string);
3599 bfd_set_error (bfd_error_bad_value);
3600 return bfd_reloc_notsupported;
3601 }
3602
3603 val = hppa_field_adjust (value, addend, r_field);
3604
3605 switch (r_type)
3606 {
3607 case R_PARISC_PCREL12F:
3608 case R_PARISC_PCREL17C:
3609 case R_PARISC_PCREL17F:
3610 case R_PARISC_PCREL17R:
3611 case R_PARISC_PCREL22F:
3612 case R_PARISC_DIR17F:
3613 case R_PARISC_DIR17R:
3614 /* This is a branch. Divide the offset by four.
3615 Note that we need to decide whether it's a branch or
3616 otherwise by inspecting the reloc. Inspecting insn won't
3617 work as insn might be from a .word directive. */
3618 val >>= 2;
3619 break;
3620
3621 default:
3622 break;
3623 }
3624
3625 insn = hppa_rebuild_insn (insn, val, r_format);
3626
3627 /* Update the instruction word. */
3628 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3629 return bfd_reloc_ok;
3630 }
3631
3632 /* Relocate an HPPA ELF section. */
3633
3634 static bfd_boolean
3635 elf32_hppa_relocate_section (bfd *output_bfd,
3636 struct bfd_link_info *info,
3637 bfd *input_bfd,
3638 asection *input_section,
3639 bfd_byte *contents,
3640 Elf_Internal_Rela *relocs,
3641 Elf_Internal_Sym *local_syms,
3642 asection **local_sections)
3643 {
3644 bfd_vma *local_got_offsets;
3645 struct elf32_hppa_link_hash_table *htab;
3646 Elf_Internal_Shdr *symtab_hdr;
3647 Elf_Internal_Rela *rela;
3648 Elf_Internal_Rela *relend;
3649
3650 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3651
3652 htab = hppa_link_hash_table (info);
3653 local_got_offsets = elf_local_got_offsets (input_bfd);
3654
3655 rela = relocs;
3656 relend = relocs + input_section->reloc_count;
3657 for (; rela < relend; rela++)
3658 {
3659 unsigned int r_type;
3660 reloc_howto_type *howto;
3661 unsigned int r_symndx;
3662 struct elf32_hppa_link_hash_entry *hh;
3663 Elf_Internal_Sym *sym;
3664 asection *sym_sec;
3665 bfd_vma relocation;
3666 bfd_reloc_status_type rstatus;
3667 const char *sym_name;
3668 bfd_boolean plabel;
3669 bfd_boolean warned_undef;
3670
3671 r_type = ELF32_R_TYPE (rela->r_info);
3672 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3673 {
3674 bfd_set_error (bfd_error_bad_value);
3675 return FALSE;
3676 }
3677 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3678 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3679 continue;
3680
3681 r_symndx = ELF32_R_SYM (rela->r_info);
3682 hh = NULL;
3683 sym = NULL;
3684 sym_sec = NULL;
3685 warned_undef = FALSE;
3686 if (r_symndx < symtab_hdr->sh_info)
3687 {
3688 /* This is a local symbol, h defaults to NULL. */
3689 sym = local_syms + r_symndx;
3690 sym_sec = local_sections[r_symndx];
3691 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3692 }
3693 else
3694 {
3695 struct elf_link_hash_entry *eh;
3696 bfd_boolean unresolved_reloc;
3697 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3698
3699 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3700 r_symndx, symtab_hdr, sym_hashes,
3701 eh, sym_sec, relocation,
3702 unresolved_reloc, warned_undef);
3703
3704 if (!info->relocatable
3705 && relocation == 0
3706 && eh->root.type != bfd_link_hash_defined
3707 && eh->root.type != bfd_link_hash_defweak
3708 && eh->root.type != bfd_link_hash_undefweak)
3709 {
3710 if (info->unresolved_syms_in_objects == RM_IGNORE
3711 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3712 && eh->type == STT_PARISC_MILLI)
3713 {
3714 if (! info->callbacks->undefined_symbol
3715 (info, eh_name (eh), input_bfd,
3716 input_section, rela->r_offset, FALSE))
3717 return FALSE;
3718 warned_undef = TRUE;
3719 }
3720 }
3721 hh = hppa_elf_hash_entry (eh);
3722 }
3723
3724 if (sym_sec != NULL && elf_discarded_section (sym_sec))
3725 {
3726 /* For relocs against symbols from removed linkonce
3727 sections, or sections discarded by a linker script,
3728 we just want the section contents zeroed. Avoid any
3729 special processing. */
3730 _bfd_clear_contents (elf_hppa_howto_table + r_type, input_bfd,
3731 contents + rela->r_offset);
3732 rela->r_info = 0;
3733 rela->r_addend = 0;
3734 continue;
3735 }
3736
3737 if (info->relocatable)
3738 continue;
3739
3740 /* Do any required modifications to the relocation value, and
3741 determine what types of dynamic info we need to output, if
3742 any. */
3743 plabel = 0;
3744 switch (r_type)
3745 {
3746 case R_PARISC_DLTIND14F:
3747 case R_PARISC_DLTIND14R:
3748 case R_PARISC_DLTIND21L:
3749 {
3750 bfd_vma off;
3751 bfd_boolean do_got = 0;
3752
3753 /* Relocation is to the entry for this symbol in the
3754 global offset table. */
3755 if (hh != NULL)
3756 {
3757 bfd_boolean dyn;
3758
3759 off = hh->eh.got.offset;
3760 dyn = htab->etab.dynamic_sections_created;
3761 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
3762 &hh->eh))
3763 {
3764 /* If we aren't going to call finish_dynamic_symbol,
3765 then we need to handle initialisation of the .got
3766 entry and create needed relocs here. Since the
3767 offset must always be a multiple of 4, we use the
3768 least significant bit to record whether we have
3769 initialised it already. */
3770 if ((off & 1) != 0)
3771 off &= ~1;
3772 else
3773 {
3774 hh->eh.got.offset |= 1;
3775 do_got = 1;
3776 }
3777 }
3778 }
3779 else
3780 {
3781 /* Local symbol case. */
3782 if (local_got_offsets == NULL)
3783 abort ();
3784
3785 off = local_got_offsets[r_symndx];
3786
3787 /* The offset must always be a multiple of 4. We use
3788 the least significant bit to record whether we have
3789 already generated the necessary reloc. */
3790 if ((off & 1) != 0)
3791 off &= ~1;
3792 else
3793 {
3794 local_got_offsets[r_symndx] |= 1;
3795 do_got = 1;
3796 }
3797 }
3798
3799 if (do_got)
3800 {
3801 if (info->shared)
3802 {
3803 /* Output a dynamic relocation for this GOT entry.
3804 In this case it is relative to the base of the
3805 object because the symbol index is zero. */
3806 Elf_Internal_Rela outrel;
3807 bfd_byte *loc;
3808 asection *sec = htab->srelgot;
3809
3810 outrel.r_offset = (off
3811 + htab->sgot->output_offset
3812 + htab->sgot->output_section->vma);
3813 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3814 outrel.r_addend = relocation;
3815 loc = sec->contents;
3816 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3817 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3818 }
3819 else
3820 bfd_put_32 (output_bfd, relocation,
3821 htab->sgot->contents + off);
3822 }
3823
3824 if (off >= (bfd_vma) -2)
3825 abort ();
3826
3827 /* Add the base of the GOT to the relocation value. */
3828 relocation = (off
3829 + htab->sgot->output_offset
3830 + htab->sgot->output_section->vma);
3831 }
3832 break;
3833
3834 case R_PARISC_SEGREL32:
3835 /* If this is the first SEGREL relocation, then initialize
3836 the segment base values. */
3837 if (htab->text_segment_base == (bfd_vma) -1)
3838 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3839 break;
3840
3841 case R_PARISC_PLABEL14R:
3842 case R_PARISC_PLABEL21L:
3843 case R_PARISC_PLABEL32:
3844 if (htab->etab.dynamic_sections_created)
3845 {
3846 bfd_vma off;
3847 bfd_boolean do_plt = 0;
3848 /* If we have a global symbol with a PLT slot, then
3849 redirect this relocation to it. */
3850 if (hh != NULL)
3851 {
3852 off = hh->eh.plt.offset;
3853 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared,
3854 &hh->eh))
3855 {
3856 /* In a non-shared link, adjust_dynamic_symbols
3857 isn't called for symbols forced local. We
3858 need to write out the plt entry here. */
3859 if ((off & 1) != 0)
3860 off &= ~1;
3861 else
3862 {
3863 hh->eh.plt.offset |= 1;
3864 do_plt = 1;
3865 }
3866 }
3867 }
3868 else
3869 {
3870 bfd_vma *local_plt_offsets;
3871
3872 if (local_got_offsets == NULL)
3873 abort ();
3874
3875 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3876 off = local_plt_offsets[r_symndx];
3877
3878 /* As for the local .got entry case, we use the last
3879 bit to record whether we've already initialised
3880 this local .plt entry. */
3881 if ((off & 1) != 0)
3882 off &= ~1;
3883 else
3884 {
3885 local_plt_offsets[r_symndx] |= 1;
3886 do_plt = 1;
3887 }
3888 }
3889
3890 if (do_plt)
3891 {
3892 if (info->shared)
3893 {
3894 /* Output a dynamic IPLT relocation for this
3895 PLT entry. */
3896 Elf_Internal_Rela outrel;
3897 bfd_byte *loc;
3898 asection *s = htab->srelplt;
3899
3900 outrel.r_offset = (off
3901 + htab->splt->output_offset
3902 + htab->splt->output_section->vma);
3903 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3904 outrel.r_addend = relocation;
3905 loc = s->contents;
3906 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3907 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3908 }
3909 else
3910 {
3911 bfd_put_32 (output_bfd,
3912 relocation,
3913 htab->splt->contents + off);
3914 bfd_put_32 (output_bfd,
3915 elf_gp (htab->splt->output_section->owner),
3916 htab->splt->contents + off + 4);
3917 }
3918 }
3919
3920 if (off >= (bfd_vma) -2)
3921 abort ();
3922
3923 /* PLABELs contain function pointers. Relocation is to
3924 the entry for the function in the .plt. The magic +2
3925 offset signals to $$dyncall that the function pointer
3926 is in the .plt and thus has a gp pointer too.
3927 Exception: Undefined PLABELs should have a value of
3928 zero. */
3929 if (hh == NULL
3930 || (hh->eh.root.type != bfd_link_hash_undefweak
3931 && hh->eh.root.type != bfd_link_hash_undefined))
3932 {
3933 relocation = (off
3934 + htab->splt->output_offset
3935 + htab->splt->output_section->vma
3936 + 2);
3937 }
3938 plabel = 1;
3939 }
3940 /* Fall through and possibly emit a dynamic relocation. */
3941
3942 case R_PARISC_DIR17F:
3943 case R_PARISC_DIR17R:
3944 case R_PARISC_DIR14F:
3945 case R_PARISC_DIR14R:
3946 case R_PARISC_DIR21L:
3947 case R_PARISC_DPREL14F:
3948 case R_PARISC_DPREL14R:
3949 case R_PARISC_DPREL21L:
3950 case R_PARISC_DIR32:
3951 if ((input_section->flags & SEC_ALLOC) == 0)
3952 break;
3953
3954 /* The reloc types handled here and this conditional
3955 expression must match the code in ..check_relocs and
3956 allocate_dynrelocs. ie. We need exactly the same condition
3957 as in ..check_relocs, with some extra conditions (dynindx
3958 test in this case) to cater for relocs removed by
3959 allocate_dynrelocs. If you squint, the non-shared test
3960 here does indeed match the one in ..check_relocs, the
3961 difference being that here we test DEF_DYNAMIC as well as
3962 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3963 which is why we can't use just that test here.
3964 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3965 there all files have not been loaded. */
3966 if ((info->shared
3967 && (hh == NULL
3968 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
3969 || hh->eh.root.type != bfd_link_hash_undefweak)
3970 && (IS_ABSOLUTE_RELOC (r_type)
3971 || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
3972 || (!info->shared
3973 && hh != NULL
3974 && hh->eh.dynindx != -1
3975 && !hh->eh.non_got_ref
3976 && ((ELIMINATE_COPY_RELOCS
3977 && hh->eh.def_dynamic
3978 && !hh->eh.def_regular)
3979 || hh->eh.root.type == bfd_link_hash_undefweak
3980 || hh->eh.root.type == bfd_link_hash_undefined)))
3981 {
3982 Elf_Internal_Rela outrel;
3983 bfd_boolean skip;
3984 asection *sreloc;
3985 bfd_byte *loc;
3986
3987 /* When generating a shared object, these relocations
3988 are copied into the output file to be resolved at run
3989 time. */
3990
3991 outrel.r_addend = rela->r_addend;
3992 outrel.r_offset =
3993 _bfd_elf_section_offset (output_bfd, info, input_section,
3994 rela->r_offset);
3995 skip = (outrel.r_offset == (bfd_vma) -1
3996 || outrel.r_offset == (bfd_vma) -2);
3997 outrel.r_offset += (input_section->output_offset
3998 + input_section->output_section->vma);
3999
4000 if (skip)
4001 {
4002 memset (&outrel, 0, sizeof (outrel));
4003 }
4004 else if (hh != NULL
4005 && hh->eh.dynindx != -1
4006 && (plabel
4007 || !IS_ABSOLUTE_RELOC (r_type)
4008 || !info->shared
4009 || !info->symbolic
4010 || !hh->eh.def_regular))
4011 {
4012 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
4013 }
4014 else /* It's a local symbol, or one marked to become local. */
4015 {
4016 int indx = 0;
4017
4018 /* Add the absolute offset of the symbol. */
4019 outrel.r_addend += relocation;
4020
4021 /* Global plabels need to be processed by the
4022 dynamic linker so that functions have at most one
4023 fptr. For this reason, we need to differentiate
4024 between global and local plabels, which we do by
4025 providing the function symbol for a global plabel
4026 reloc, and no symbol for local plabels. */
4027 if (! plabel
4028 && sym_sec != NULL
4029 && sym_sec->output_section != NULL
4030 && ! bfd_is_abs_section (sym_sec))
4031 {
4032 asection *osec;
4033
4034 osec = sym_sec->output_section;
4035 indx = elf_section_data (osec)->dynindx;
4036 if (indx == 0)
4037 {
4038 osec = htab->etab.text_index_section;
4039 indx = elf_section_data (osec)->dynindx;
4040 }
4041 BFD_ASSERT (indx != 0);
4042
4043 /* We are turning this relocation into one
4044 against a section symbol, so subtract out the
4045 output section's address but not the offset
4046 of the input section in the output section. */
4047 outrel.r_addend -= osec->vma;
4048 }
4049
4050 outrel.r_info = ELF32_R_INFO (indx, r_type);
4051 }
4052 sreloc = elf_section_data (input_section)->sreloc;
4053 if (sreloc == NULL)
4054 abort ();
4055
4056 loc = sreloc->contents;
4057 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
4058 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4059 }
4060 break;
4061
4062 case R_PARISC_TLS_LDM21L:
4063 case R_PARISC_TLS_LDM14R:
4064 {
4065 bfd_vma off;
4066
4067 off = htab->tls_ldm_got.offset;
4068 if (off & 1)
4069 off &= ~1;
4070 else
4071 {
4072 Elf_Internal_Rela outrel;
4073 bfd_byte *loc;
4074
4075 outrel.r_offset = (off
4076 + htab->sgot->output_section->vma
4077 + htab->sgot->output_offset);
4078 outrel.r_addend = 0;
4079 outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
4080 loc = htab->srelgot->contents;
4081 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4082
4083 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4084 htab->tls_ldm_got.offset |= 1;
4085 }
4086
4087 /* Add the base of the GOT to the relocation value. */
4088 relocation = (off
4089 + htab->sgot->output_offset
4090 + htab->sgot->output_section->vma);
4091
4092 break;
4093 }
4094
4095 case R_PARISC_TLS_LDO21L:
4096 case R_PARISC_TLS_LDO14R:
4097 relocation -= dtpoff_base (info);
4098 break;
4099
4100 case R_PARISC_TLS_GD21L:
4101 case R_PARISC_TLS_GD14R:
4102 case R_PARISC_TLS_IE21L:
4103 case R_PARISC_TLS_IE14R:
4104 {
4105 bfd_vma off;
4106 int indx;
4107 char tls_type;
4108
4109 indx = 0;
4110 if (hh != NULL)
4111 {
4112 bfd_boolean dyn;
4113 dyn = htab->etab.dynamic_sections_created;
4114
4115 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &hh->eh)
4116 && (!info->shared
4117 || !SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4118 {
4119 indx = hh->eh.dynindx;
4120 }
4121 off = hh->eh.got.offset;
4122 tls_type = hh->tls_type;
4123 }
4124 else
4125 {
4126 off = local_got_offsets[r_symndx];
4127 tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4128 }
4129
4130 if (tls_type == GOT_UNKNOWN)
4131 abort ();
4132
4133 if ((off & 1) != 0)
4134 off &= ~1;
4135 else
4136 {
4137 bfd_boolean need_relocs = FALSE;
4138 Elf_Internal_Rela outrel;
4139 bfd_byte *loc = NULL;
4140 int cur_off = off;
4141
4142 /* The GOT entries have not been initialized yet. Do it
4143 now, and emit any relocations. If both an IE GOT and a
4144 GD GOT are necessary, we emit the GD first. */
4145
4146 if ((info->shared || indx != 0)
4147 && (hh == NULL
4148 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
4149 || hh->eh.root.type != bfd_link_hash_undefweak))
4150 {
4151 need_relocs = TRUE;
4152 loc = htab->srelgot->contents;
4153 /* FIXME (CAO): Should this be reloc_count++ ? */
4154 loc += htab->srelgot->reloc_count * sizeof (Elf32_External_Rela);
4155 }
4156
4157 if (tls_type & GOT_TLS_GD)
4158 {
4159 if (need_relocs)
4160 {
4161 outrel.r_offset = (cur_off
4162 + htab->sgot->output_section->vma
4163 + htab->sgot->output_offset);
4164 outrel.r_info = ELF32_R_INFO (indx,R_PARISC_TLS_DTPMOD32);
4165 outrel.r_addend = 0;
4166 bfd_put_32 (output_bfd, 0, htab->sgot->contents + cur_off);
4167 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4168 htab->srelgot->reloc_count++;
4169 loc += sizeof (Elf32_External_Rela);
4170
4171 if (indx == 0)
4172 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4173 htab->sgot->contents + cur_off + 4);
4174 else
4175 {
4176 bfd_put_32 (output_bfd, 0,
4177 htab->sgot->contents + cur_off + 4);
4178 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4179 outrel.r_offset += 4;
4180 bfd_elf32_swap_reloca_out (output_bfd, &outrel,loc);
4181 htab->srelgot->reloc_count++;
4182 loc += sizeof (Elf32_External_Rela);
4183 }
4184 }
4185 else
4186 {
4187 /* If we are not emitting relocations for a
4188 general dynamic reference, then we must be in a
4189 static link or an executable link with the
4190 symbol binding locally. Mark it as belonging
4191 to module 1, the executable. */
4192 bfd_put_32 (output_bfd, 1,
4193 htab->sgot->contents + cur_off);
4194 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4195 htab->sgot->contents + cur_off + 4);
4196 }
4197
4198
4199 cur_off += 8;
4200 }
4201
4202 if (tls_type & GOT_TLS_IE)
4203 {
4204 if (need_relocs)
4205 {
4206 outrel.r_offset = (cur_off
4207 + htab->sgot->output_section->vma
4208 + htab->sgot->output_offset);
4209 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_TPREL32);
4210
4211 if (indx == 0)
4212 outrel.r_addend = relocation - dtpoff_base (info);
4213 else
4214 outrel.r_addend = 0;
4215
4216 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4217 htab->srelgot->reloc_count++;
4218 loc += sizeof (Elf32_External_Rela);
4219 }
4220 else
4221 bfd_put_32 (output_bfd, tpoff (info, relocation),
4222 htab->sgot->contents + cur_off);
4223
4224 cur_off += 4;
4225 }
4226
4227 if (hh != NULL)
4228 hh->eh.got.offset |= 1;
4229 else
4230 local_got_offsets[r_symndx] |= 1;
4231 }
4232
4233 if ((tls_type & GOT_TLS_GD)
4234 && r_type != R_PARISC_TLS_GD21L
4235 && r_type != R_PARISC_TLS_GD14R)
4236 off += 2 * GOT_ENTRY_SIZE;
4237
4238 /* Add the base of the GOT to the relocation value. */
4239 relocation = (off
4240 + htab->sgot->output_offset
4241 + htab->sgot->output_section->vma);
4242
4243 break;
4244 }
4245
4246 case R_PARISC_TLS_LE21L:
4247 case R_PARISC_TLS_LE14R:
4248 {
4249 relocation = tpoff (info, relocation);
4250 break;
4251 }
4252 break;
4253
4254 default:
4255 break;
4256 }
4257
4258 rstatus = final_link_relocate (input_section, contents, rela, relocation,
4259 htab, sym_sec, hh, info);
4260
4261 if (rstatus == bfd_reloc_ok)
4262 continue;
4263
4264 if (hh != NULL)
4265 sym_name = hh_name (hh);
4266 else
4267 {
4268 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4269 symtab_hdr->sh_link,
4270 sym->st_name);
4271 if (sym_name == NULL)
4272 return FALSE;
4273 if (*sym_name == '\0')
4274 sym_name = bfd_section_name (input_bfd, sym_sec);
4275 }
4276
4277 howto = elf_hppa_howto_table + r_type;
4278
4279 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4280 {
4281 if (rstatus == bfd_reloc_notsupported || !warned_undef)
4282 {
4283 (*_bfd_error_handler)
4284 (_("%B(%A+0x%lx): cannot handle %s for %s"),
4285 input_bfd,
4286 input_section,
4287 (long) rela->r_offset,
4288 howto->name,
4289 sym_name);
4290 bfd_set_error (bfd_error_bad_value);
4291 return FALSE;
4292 }
4293 }
4294 else
4295 {
4296 if (!((*info->callbacks->reloc_overflow)
4297 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4298 (bfd_vma) 0, input_bfd, input_section, rela->r_offset)))
4299 return FALSE;
4300 }
4301 }
4302
4303 return TRUE;
4304 }
4305
4306 /* Finish up dynamic symbol handling. We set the contents of various
4307 dynamic sections here. */
4308
4309 static bfd_boolean
4310 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4311 struct bfd_link_info *info,
4312 struct elf_link_hash_entry *eh,
4313 Elf_Internal_Sym *sym)
4314 {
4315 struct elf32_hppa_link_hash_table *htab;
4316 Elf_Internal_Rela rela;
4317 bfd_byte *loc;
4318
4319 htab = hppa_link_hash_table (info);
4320
4321 if (eh->plt.offset != (bfd_vma) -1)
4322 {
4323 bfd_vma value;
4324
4325 if (eh->plt.offset & 1)
4326 abort ();
4327
4328 /* This symbol has an entry in the procedure linkage table. Set
4329 it up.
4330
4331 The format of a plt entry is
4332 <funcaddr>
4333 <__gp>
4334 */
4335 value = 0;
4336 if (eh->root.type == bfd_link_hash_defined
4337 || eh->root.type == bfd_link_hash_defweak)
4338 {
4339 value = eh->root.u.def.value;
4340 if (eh->root.u.def.section->output_section != NULL)
4341 value += (eh->root.u.def.section->output_offset
4342 + eh->root.u.def.section->output_section->vma);
4343 }
4344
4345 /* Create a dynamic IPLT relocation for this entry. */
4346 rela.r_offset = (eh->plt.offset
4347 + htab->splt->output_offset
4348 + htab->splt->output_section->vma);
4349 if (eh->dynindx != -1)
4350 {
4351 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4352 rela.r_addend = 0;
4353 }
4354 else
4355 {
4356 /* This symbol has been marked to become local, and is
4357 used by a plabel so must be kept in the .plt. */
4358 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4359 rela.r_addend = value;
4360 }
4361
4362 loc = htab->srelplt->contents;
4363 loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4364 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rela, loc);
4365
4366 if (!eh->def_regular)
4367 {
4368 /* Mark the symbol as undefined, rather than as defined in
4369 the .plt section. Leave the value alone. */
4370 sym->st_shndx = SHN_UNDEF;
4371 }
4372 }
4373
4374 if (eh->got.offset != (bfd_vma) -1
4375 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_GD) == 0
4376 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_IE) == 0)
4377 {
4378 /* This symbol has an entry in the global offset table. Set it
4379 up. */
4380
4381 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4382 + htab->sgot->output_offset
4383 + htab->sgot->output_section->vma);
4384
4385 /* If this is a -Bsymbolic link and the symbol is defined
4386 locally or was forced to be local because of a version file,
4387 we just want to emit a RELATIVE reloc. The entry in the
4388 global offset table will already have been initialized in the
4389 relocate_section function. */
4390 if (info->shared
4391 && (info->symbolic || eh->dynindx == -1)
4392 && eh->def_regular)
4393 {
4394 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4395 rela.r_addend = (eh->root.u.def.value
4396 + eh->root.u.def.section->output_offset
4397 + eh->root.u.def.section->output_section->vma);
4398 }
4399 else
4400 {
4401 if ((eh->got.offset & 1) != 0)
4402 abort ();
4403
4404 bfd_put_32 (output_bfd, 0, htab->sgot->contents + (eh->got.offset & ~1));
4405 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4406 rela.r_addend = 0;
4407 }
4408
4409 loc = htab->srelgot->contents;
4410 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4411 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4412 }
4413
4414 if (eh->needs_copy)
4415 {
4416 asection *sec;
4417
4418 /* This symbol needs a copy reloc. Set it up. */
4419
4420 if (! (eh->dynindx != -1
4421 && (eh->root.type == bfd_link_hash_defined
4422 || eh->root.type == bfd_link_hash_defweak)))
4423 abort ();
4424
4425 sec = htab->srelbss;
4426
4427 rela.r_offset = (eh->root.u.def.value
4428 + eh->root.u.def.section->output_offset
4429 + eh->root.u.def.section->output_section->vma);
4430 rela.r_addend = 0;
4431 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4432 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4433 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4434 }
4435
4436 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4437 if (eh_name (eh)[0] == '_'
4438 && (strcmp (eh_name (eh), "_DYNAMIC") == 0
4439 || eh == htab->etab.hgot))
4440 {
4441 sym->st_shndx = SHN_ABS;
4442 }
4443
4444 return TRUE;
4445 }
4446
4447 /* Used to decide how to sort relocs in an optimal manner for the
4448 dynamic linker, before writing them out. */
4449
4450 static enum elf_reloc_type_class
4451 elf32_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
4452 {
4453 /* Handle TLS relocs first; we don't want them to be marked
4454 relative by the "if (ELF32_R_SYM (rela->r_info) == 0)"
4455 check below. */
4456 switch ((int) ELF32_R_TYPE (rela->r_info))
4457 {
4458 case R_PARISC_TLS_DTPMOD32:
4459 case R_PARISC_TLS_DTPOFF32:
4460 case R_PARISC_TLS_TPREL32:
4461 return reloc_class_normal;
4462 }
4463
4464 if (ELF32_R_SYM (rela->r_info) == 0)
4465 return reloc_class_relative;
4466
4467 switch ((int) ELF32_R_TYPE (rela->r_info))
4468 {
4469 case R_PARISC_IPLT:
4470 return reloc_class_plt;
4471 case R_PARISC_COPY:
4472 return reloc_class_copy;
4473 default:
4474 return reloc_class_normal;
4475 }
4476 }
4477
4478 /* Finish up the dynamic sections. */
4479
4480 static bfd_boolean
4481 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4482 struct bfd_link_info *info)
4483 {
4484 bfd *dynobj;
4485 struct elf32_hppa_link_hash_table *htab;
4486 asection *sdyn;
4487
4488 htab = hppa_link_hash_table (info);
4489 dynobj = htab->etab.dynobj;
4490
4491 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4492
4493 if (htab->etab.dynamic_sections_created)
4494 {
4495 Elf32_External_Dyn *dyncon, *dynconend;
4496
4497 if (sdyn == NULL)
4498 abort ();
4499
4500 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4501 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4502 for (; dyncon < dynconend; dyncon++)
4503 {
4504 Elf_Internal_Dyn dyn;
4505 asection *s;
4506
4507 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4508
4509 switch (dyn.d_tag)
4510 {
4511 default:
4512 continue;
4513
4514 case DT_PLTGOT:
4515 /* Use PLTGOT to set the GOT register. */
4516 dyn.d_un.d_ptr = elf_gp (output_bfd);
4517 break;
4518
4519 case DT_JMPREL:
4520 s = htab->srelplt;
4521 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4522 break;
4523
4524 case DT_PLTRELSZ:
4525 s = htab->srelplt;
4526 dyn.d_un.d_val = s->size;
4527 break;
4528
4529 case DT_RELASZ:
4530 /* Don't count procedure linkage table relocs in the
4531 overall reloc count. */
4532 s = htab->srelplt;
4533 if (s == NULL)
4534 continue;
4535 dyn.d_un.d_val -= s->size;
4536 break;
4537
4538 case DT_RELA:
4539 /* We may not be using the standard ELF linker script.
4540 If .rela.plt is the first .rela section, we adjust
4541 DT_RELA to not include it. */
4542 s = htab->srelplt;
4543 if (s == NULL)
4544 continue;
4545 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4546 continue;
4547 dyn.d_un.d_ptr += s->size;
4548 break;
4549 }
4550
4551 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4552 }
4553 }
4554
4555 if (htab->sgot != NULL && htab->sgot->size != 0)
4556 {
4557 /* Fill in the first entry in the global offset table.
4558 We use it to point to our dynamic section, if we have one. */
4559 bfd_put_32 (output_bfd,
4560 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4561 htab->sgot->contents);
4562
4563 /* The second entry is reserved for use by the dynamic linker. */
4564 memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4565
4566 /* Set .got entry size. */
4567 elf_section_data (htab->sgot->output_section)
4568 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4569 }
4570
4571 if (htab->splt != NULL && htab->splt->size != 0)
4572 {
4573 /* Set plt entry size. */
4574 elf_section_data (htab->splt->output_section)
4575 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4576
4577 if (htab->need_plt_stub)
4578 {
4579 /* Set up the .plt stub. */
4580 memcpy (htab->splt->contents
4581 + htab->splt->size - sizeof (plt_stub),
4582 plt_stub, sizeof (plt_stub));
4583
4584 if ((htab->splt->output_offset
4585 + htab->splt->output_section->vma
4586 + htab->splt->size)
4587 != (htab->sgot->output_offset
4588 + htab->sgot->output_section->vma))
4589 {
4590 (*_bfd_error_handler)
4591 (_(".got section not immediately after .plt section"));
4592 return FALSE;
4593 }
4594 }
4595 }
4596
4597 return TRUE;
4598 }
4599
4600 /* Called when writing out an object file to decide the type of a
4601 symbol. */
4602 static int
4603 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4604 {
4605 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4606 return STT_PARISC_MILLI;
4607 else
4608 return type;
4609 }
4610
4611 /* Misc BFD support code. */
4612 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4613 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4614 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4615 #define elf_info_to_howto elf_hppa_info_to_howto
4616 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4617
4618 /* Stuff for the BFD linker. */
4619 #define bfd_elf32_mkobject elf32_hppa_mkobject
4620 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4621 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4622 #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
4623 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4624 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4625 #define elf_backend_check_relocs elf32_hppa_check_relocs
4626 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4627 #define elf_backend_fake_sections elf_hppa_fake_sections
4628 #define elf_backend_relocate_section elf32_hppa_relocate_section
4629 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4630 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4631 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4632 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4633 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4634 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4635 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4636 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4637 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4638 #define elf_backend_object_p elf32_hppa_object_p
4639 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4640 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4641 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4642 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4643 #define elf_backend_action_discarded elf_hppa_action_discarded
4644
4645 #define elf_backend_can_gc_sections 1
4646 #define elf_backend_can_refcount 1
4647 #define elf_backend_plt_alignment 2
4648 #define elf_backend_want_got_plt 0
4649 #define elf_backend_plt_readonly 0
4650 #define elf_backend_want_plt_sym 0
4651 #define elf_backend_got_header_size 8
4652 #define elf_backend_rela_normal 1
4653
4654 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4655 #define TARGET_BIG_NAME "elf32-hppa"
4656 #define ELF_ARCH bfd_arch_hppa
4657 #define ELF_MACHINE_CODE EM_PARISC
4658 #define ELF_MAXPAGESIZE 0x1000
4659 #define ELF_OSABI ELFOSABI_HPUX
4660 #define elf32_bed elf32_hppa_hpux_bed
4661
4662 #include "elf32-target.h"
4663
4664 #undef TARGET_BIG_SYM
4665 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4666 #undef TARGET_BIG_NAME
4667 #define TARGET_BIG_NAME "elf32-hppa-linux"
4668 #undef ELF_OSABI
4669 #define ELF_OSABI ELFOSABI_LINUX
4670 #undef elf32_bed
4671 #define elf32_bed elf32_hppa_linux_bed
4672
4673 #include "elf32-target.h"
4674
4675 #undef TARGET_BIG_SYM
4676 #define TARGET_BIG_SYM bfd_elf32_hppa_nbsd_vec
4677 #undef TARGET_BIG_NAME
4678 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4679 #undef ELF_OSABI
4680 #define ELF_OSABI ELFOSABI_NETBSD
4681 #undef elf32_bed
4682 #define elf32_bed elf32_hppa_netbsd_bed
4683
4684 #include "elf32-target.h"
This page took 0.156935 seconds and 4 git commands to generate.