2019-12-18 Anthony Green <green@moxielogic.com>
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright (C) 1990-2019 Free Software Foundation, Inc.
3
4 Original code by
5 Center for Software Science
6 Department of Computer Science
7 University of Utah
8 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
9 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
10 TLS support written by Randolph Chung <tausq@debian.org>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
28
29 #include "sysdep.h"
30 #include "bfd.h"
31 #include "libbfd.h"
32 #include "elf-bfd.h"
33 #include "elf/hppa.h"
34 #include "libhppa.h"
35 #include "elf32-hppa.h"
36 #define ARCH_SIZE 32
37 #include "elf32-hppa.h"
38 #include "elf-hppa.h"
39
40 /* In order to gain some understanding of code in this file without
41 knowing all the intricate details of the linker, note the
42 following:
43
44 Functions named elf32_hppa_* are called by external routines, other
45 functions are only called locally. elf32_hppa_* functions appear
46 in this file more or less in the order in which they are called
47 from external routines. eg. elf32_hppa_check_relocs is called
48 early in the link process, elf32_hppa_finish_dynamic_sections is
49 one of the last functions. */
50
51 /* We use two hash tables to hold information for linking PA ELF objects.
52
53 The first is the elf32_hppa_link_hash_table which is derived
54 from the standard ELF linker hash table. We use this as a place to
55 attach other hash tables and static information.
56
57 The second is the stub hash table which is derived from the
58 base BFD hash table. The stub hash table holds the information
59 necessary to build the linker stubs during a link.
60
61 There are a number of different stubs generated by the linker.
62
63 Long branch stub:
64 : ldil LR'X,%r1
65 : be,n RR'X(%sr4,%r1)
66
67 PIC long branch stub:
68 : b,l .+8,%r1
69 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
70 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
71
72 Import stub to call shared library routine from normal object file
73 (single sub-space version)
74 : addil LR'lt_ptr+ltoff,%dp ; get PLT address
75 : ldo RR'lt_ptr+ltoff(%r1),%r22 ;
76 : ldw 0(%r22),%r21 ; get procedure entry point
77 : bv %r0(%r21)
78 : ldw 4(%r22),%r19 ; get new dlt value.
79
80 Import stub to call shared library routine from shared library
81 (single sub-space version)
82 : addil LR'ltoff,%r19 ; get PLT address
83 : ldo RR'ltoff(%r1),%r22
84 : ldw 0(%r22),%r21 ; get procedure entry point
85 : bv %r0(%r21)
86 : ldw 4(%r22),%r19 ; get new dlt value.
87
88 Import stub to call shared library routine from normal object file
89 (multiple sub-space support)
90 : addil LR'lt_ptr+ltoff,%dp ; get PLT address
91 : ldo RR'lt_ptr+ltoff(%r1),%r22 ;
92 : ldw 0(%r22),%r21 ; get procedure entry point
93 : ldsid (%r21),%r1 ; get target sid
94 : ldw 4(%r22),%r19 ; get new dlt value.
95 : mtsp %r1,%sr0
96 : be 0(%sr0,%r21) ; branch to target
97 : stw %rp,-24(%sp) ; save rp
98
99 Import stub to call shared library routine from shared library
100 (multiple sub-space support)
101 : addil LR'ltoff,%r19 ; get PLT address
102 : ldo RR'ltoff(%r1),%r22
103 : ldw 0(%r22),%r21 ; get procedure entry point
104 : ldsid (%r21),%r1 ; get target sid
105 : ldw 4(%r22),%r19 ; get new dlt value.
106 : mtsp %r1,%sr0
107 : be 0(%sr0,%r21) ; branch to target
108 : stw %rp,-24(%sp) ; save rp
109
110 Export stub to return from shared lib routine (multiple sub-space support)
111 One of these is created for each exported procedure in a shared
112 library (and stored in the shared lib). Shared lib routines are
113 called via the first instruction in the export stub so that we can
114 do an inter-space return. Not required for single sub-space.
115 : bl,n X,%rp ; trap the return
116 : nop
117 : ldw -24(%sp),%rp ; restore the original rp
118 : ldsid (%rp),%r1
119 : mtsp %r1,%sr0
120 : be,n 0(%sr0,%rp) ; inter-space return. */
121
122
123 /* Variable names follow a coding style.
124 Please follow this (Apps Hungarian) style:
125
126 Structure/Variable Prefix
127 elf_link_hash_table "etab"
128 elf_link_hash_entry "eh"
129
130 elf32_hppa_link_hash_table "htab"
131 elf32_hppa_link_hash_entry "hh"
132
133 bfd_hash_table "btab"
134 bfd_hash_entry "bh"
135
136 bfd_hash_table containing stubs "bstab"
137 elf32_hppa_stub_hash_entry "hsh"
138
139 Always remember to use GNU Coding Style. */
140
141 #define PLT_ENTRY_SIZE 8
142 #define GOT_ENTRY_SIZE 4
143 #define LONG_BRANCH_STUB_SIZE 8
144 #define LONG_BRANCH_SHARED_STUB_SIZE 12
145 #define IMPORT_STUB_SIZE 20
146 #define IMPORT_SHARED_STUB_SIZE 32
147 #define EXPORT_STUB_SIZE 24
148 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
149
150 static const bfd_byte plt_stub[] =
151 {
152 0x0e, 0x80, 0x10, 0x95, /* 1: ldw 0(%r20),%r21 */
153 0xea, 0xa0, 0xc0, 0x00, /* bv %r0(%r21) */
154 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
155 #define PLT_STUB_ENTRY (3*4)
156 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
157 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
158 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
159 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
160 };
161
162 /* Section name for stubs is the associated section name plus this
163 string. */
164 #define STUB_SUFFIX ".stub"
165
166 /* We don't need to copy certain PC- or GP-relative dynamic relocs
167 into a shared object's dynamic section. All the relocs of the
168 limited class we are interested in, are absolute. */
169 #ifndef RELATIVE_DYNRELOCS
170 #define RELATIVE_DYNRELOCS 0
171 #define IS_ABSOLUTE_RELOC(r_type) 1
172 #define pc_dynrelocs(hh) 0
173 #endif
174
175 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
176 copying dynamic variables from a shared lib into an app's dynbss
177 section, and instead use a dynamic relocation to point into the
178 shared lib. */
179 #define ELIMINATE_COPY_RELOCS 1
180
181 enum elf32_hppa_stub_type
182 {
183 hppa_stub_long_branch,
184 hppa_stub_long_branch_shared,
185 hppa_stub_import,
186 hppa_stub_import_shared,
187 hppa_stub_export,
188 hppa_stub_none
189 };
190
191 struct elf32_hppa_stub_hash_entry
192 {
193 /* Base hash table entry structure. */
194 struct bfd_hash_entry bh_root;
195
196 /* The stub section. */
197 asection *stub_sec;
198
199 /* Offset within stub_sec of the beginning of this stub. */
200 bfd_vma stub_offset;
201
202 /* Given the symbol's value and its section we can determine its final
203 value when building the stubs (so the stub knows where to jump. */
204 bfd_vma target_value;
205 asection *target_section;
206
207 enum elf32_hppa_stub_type stub_type;
208
209 /* The symbol table entry, if any, that this was derived from. */
210 struct elf32_hppa_link_hash_entry *hh;
211
212 /* Where this stub is being called from, or, in the case of combined
213 stub sections, the first input section in the group. */
214 asection *id_sec;
215 };
216
217 enum _tls_type
218 {
219 GOT_UNKNOWN = 0,
220 GOT_NORMAL = 1,
221 GOT_TLS_GD = 2,
222 GOT_TLS_LDM = 4,
223 GOT_TLS_IE = 8
224 };
225
226 struct elf32_hppa_link_hash_entry
227 {
228 struct elf_link_hash_entry eh;
229
230 /* A pointer to the most recently used stub hash entry against this
231 symbol. */
232 struct elf32_hppa_stub_hash_entry *hsh_cache;
233
234 /* Used to count relocations for delayed sizing of relocation
235 sections. */
236 struct elf_dyn_relocs *dyn_relocs;
237
238 ENUM_BITFIELD (_tls_type) tls_type : 8;
239
240 /* Set if this symbol is used by a plabel reloc. */
241 unsigned int plabel:1;
242 };
243
244 struct elf32_hppa_link_hash_table
245 {
246 /* The main hash table. */
247 struct elf_link_hash_table etab;
248
249 /* The stub hash table. */
250 struct bfd_hash_table bstab;
251
252 /* Linker stub bfd. */
253 bfd *stub_bfd;
254
255 /* Linker call-backs. */
256 asection * (*add_stub_section) (const char *, asection *);
257 void (*layout_sections_again) (void);
258
259 /* Array to keep track of which stub sections have been created, and
260 information on stub grouping. */
261 struct map_stub
262 {
263 /* This is the section to which stubs in the group will be
264 attached. */
265 asection *link_sec;
266 /* The stub section. */
267 asection *stub_sec;
268 } *stub_group;
269
270 /* Assorted information used by elf32_hppa_size_stubs. */
271 unsigned int bfd_count;
272 unsigned int top_index;
273 asection **input_list;
274 Elf_Internal_Sym **all_local_syms;
275
276 /* Used during a final link to store the base of the text and data
277 segments so that we can perform SEGREL relocations. */
278 bfd_vma text_segment_base;
279 bfd_vma data_segment_base;
280
281 /* Whether we support multiple sub-spaces for shared libs. */
282 unsigned int multi_subspace:1;
283
284 /* Flags set when various size branches are detected. Used to
285 select suitable defaults for the stub group size. */
286 unsigned int has_12bit_branch:1;
287 unsigned int has_17bit_branch:1;
288 unsigned int has_22bit_branch:1;
289
290 /* Set if we need a .plt stub to support lazy dynamic linking. */
291 unsigned int need_plt_stub:1;
292
293 /* Small local sym cache. */
294 struct sym_cache sym_cache;
295
296 /* Data for LDM relocations. */
297 union
298 {
299 bfd_signed_vma refcount;
300 bfd_vma offset;
301 } tls_ldm_got;
302 };
303
304 /* Various hash macros and functions. */
305 #define hppa_link_hash_table(p) \
306 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
307 == HPPA32_ELF_DATA ? ((struct elf32_hppa_link_hash_table *) ((p)->hash)) : NULL)
308
309 #define hppa_elf_hash_entry(ent) \
310 ((struct elf32_hppa_link_hash_entry *)(ent))
311
312 #define hppa_stub_hash_entry(ent) \
313 ((struct elf32_hppa_stub_hash_entry *)(ent))
314
315 #define hppa_stub_hash_lookup(table, string, create, copy) \
316 ((struct elf32_hppa_stub_hash_entry *) \
317 bfd_hash_lookup ((table), (string), (create), (copy)))
318
319 #define hppa_elf_local_got_tls_type(abfd) \
320 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
321
322 #define hh_name(hh) \
323 (hh ? hh->eh.root.root.string : "<undef>")
324
325 #define eh_name(eh) \
326 (eh ? eh->root.root.string : "<undef>")
327
328 /* Assorted hash table functions. */
329
330 /* Initialize an entry in the stub hash table. */
331
332 static struct bfd_hash_entry *
333 stub_hash_newfunc (struct bfd_hash_entry *entry,
334 struct bfd_hash_table *table,
335 const char *string)
336 {
337 /* Allocate the structure if it has not already been allocated by a
338 subclass. */
339 if (entry == NULL)
340 {
341 entry = bfd_hash_allocate (table,
342 sizeof (struct elf32_hppa_stub_hash_entry));
343 if (entry == NULL)
344 return entry;
345 }
346
347 /* Call the allocation method of the superclass. */
348 entry = bfd_hash_newfunc (entry, table, string);
349 if (entry != NULL)
350 {
351 struct elf32_hppa_stub_hash_entry *hsh;
352
353 /* Initialize the local fields. */
354 hsh = hppa_stub_hash_entry (entry);
355 hsh->stub_sec = NULL;
356 hsh->stub_offset = 0;
357 hsh->target_value = 0;
358 hsh->target_section = NULL;
359 hsh->stub_type = hppa_stub_long_branch;
360 hsh->hh = NULL;
361 hsh->id_sec = NULL;
362 }
363
364 return entry;
365 }
366
367 /* Initialize an entry in the link hash table. */
368
369 static struct bfd_hash_entry *
370 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
371 struct bfd_hash_table *table,
372 const char *string)
373 {
374 /* Allocate the structure if it has not already been allocated by a
375 subclass. */
376 if (entry == NULL)
377 {
378 entry = bfd_hash_allocate (table,
379 sizeof (struct elf32_hppa_link_hash_entry));
380 if (entry == NULL)
381 return entry;
382 }
383
384 /* Call the allocation method of the superclass. */
385 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
386 if (entry != NULL)
387 {
388 struct elf32_hppa_link_hash_entry *hh;
389
390 /* Initialize the local fields. */
391 hh = hppa_elf_hash_entry (entry);
392 hh->hsh_cache = NULL;
393 hh->dyn_relocs = NULL;
394 hh->plabel = 0;
395 hh->tls_type = GOT_UNKNOWN;
396 }
397
398 return entry;
399 }
400
401 /* Free the derived linker hash table. */
402
403 static void
404 elf32_hppa_link_hash_table_free (bfd *obfd)
405 {
406 struct elf32_hppa_link_hash_table *htab
407 = (struct elf32_hppa_link_hash_table *) obfd->link.hash;
408
409 bfd_hash_table_free (&htab->bstab);
410 _bfd_elf_link_hash_table_free (obfd);
411 }
412
413 /* Create the derived linker hash table. The PA ELF port uses the derived
414 hash table to keep information specific to the PA ELF linker (without
415 using static variables). */
416
417 static struct bfd_link_hash_table *
418 elf32_hppa_link_hash_table_create (bfd *abfd)
419 {
420 struct elf32_hppa_link_hash_table *htab;
421 bfd_size_type amt = sizeof (*htab);
422
423 htab = bfd_zmalloc (amt);
424 if (htab == NULL)
425 return NULL;
426
427 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
428 sizeof (struct elf32_hppa_link_hash_entry),
429 HPPA32_ELF_DATA))
430 {
431 free (htab);
432 return NULL;
433 }
434
435 /* Init the stub hash table too. */
436 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
437 sizeof (struct elf32_hppa_stub_hash_entry)))
438 {
439 _bfd_elf_link_hash_table_free (abfd);
440 return NULL;
441 }
442 htab->etab.root.hash_table_free = elf32_hppa_link_hash_table_free;
443
444 htab->text_segment_base = (bfd_vma) -1;
445 htab->data_segment_base = (bfd_vma) -1;
446 return &htab->etab.root;
447 }
448
449 /* Initialize the linker stubs BFD so that we can use it for linker
450 created dynamic sections. */
451
452 void
453 elf32_hppa_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
454 {
455 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
456
457 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS32;
458 htab->etab.dynobj = abfd;
459 }
460
461 /* Build a name for an entry in the stub hash table. */
462
463 static char *
464 hppa_stub_name (const asection *input_section,
465 const asection *sym_sec,
466 const struct elf32_hppa_link_hash_entry *hh,
467 const Elf_Internal_Rela *rela)
468 {
469 char *stub_name;
470 bfd_size_type len;
471
472 if (hh)
473 {
474 len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
475 stub_name = bfd_malloc (len);
476 if (stub_name != NULL)
477 sprintf (stub_name, "%08x_%s+%x",
478 input_section->id & 0xffffffff,
479 hh_name (hh),
480 (int) rela->r_addend & 0xffffffff);
481 }
482 else
483 {
484 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
485 stub_name = bfd_malloc (len);
486 if (stub_name != NULL)
487 sprintf (stub_name, "%08x_%x:%x+%x",
488 input_section->id & 0xffffffff,
489 sym_sec->id & 0xffffffff,
490 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
491 (int) rela->r_addend & 0xffffffff);
492 }
493 return stub_name;
494 }
495
496 /* Look up an entry in the stub hash. Stub entries are cached because
497 creating the stub name takes a bit of time. */
498
499 static struct elf32_hppa_stub_hash_entry *
500 hppa_get_stub_entry (const asection *input_section,
501 const asection *sym_sec,
502 struct elf32_hppa_link_hash_entry *hh,
503 const Elf_Internal_Rela *rela,
504 struct elf32_hppa_link_hash_table *htab)
505 {
506 struct elf32_hppa_stub_hash_entry *hsh_entry;
507 const asection *id_sec;
508
509 /* If this input section is part of a group of sections sharing one
510 stub section, then use the id of the first section in the group.
511 Stub names need to include a section id, as there may well be
512 more than one stub used to reach say, printf, and we need to
513 distinguish between them. */
514 id_sec = htab->stub_group[input_section->id].link_sec;
515 if (id_sec == NULL)
516 return NULL;
517
518 if (hh != NULL && hh->hsh_cache != NULL
519 && hh->hsh_cache->hh == hh
520 && hh->hsh_cache->id_sec == id_sec)
521 {
522 hsh_entry = hh->hsh_cache;
523 }
524 else
525 {
526 char *stub_name;
527
528 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
529 if (stub_name == NULL)
530 return NULL;
531
532 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
533 stub_name, FALSE, FALSE);
534 if (hh != NULL)
535 hh->hsh_cache = hsh_entry;
536
537 free (stub_name);
538 }
539
540 return hsh_entry;
541 }
542
543 /* Add a new stub entry to the stub hash. Not all fields of the new
544 stub entry are initialised. */
545
546 static struct elf32_hppa_stub_hash_entry *
547 hppa_add_stub (const char *stub_name,
548 asection *section,
549 struct elf32_hppa_link_hash_table *htab)
550 {
551 asection *link_sec;
552 asection *stub_sec;
553 struct elf32_hppa_stub_hash_entry *hsh;
554
555 link_sec = htab->stub_group[section->id].link_sec;
556 stub_sec = htab->stub_group[section->id].stub_sec;
557 if (stub_sec == NULL)
558 {
559 stub_sec = htab->stub_group[link_sec->id].stub_sec;
560 if (stub_sec == NULL)
561 {
562 size_t namelen;
563 bfd_size_type len;
564 char *s_name;
565
566 namelen = strlen (link_sec->name);
567 len = namelen + sizeof (STUB_SUFFIX);
568 s_name = bfd_alloc (htab->stub_bfd, len);
569 if (s_name == NULL)
570 return NULL;
571
572 memcpy (s_name, link_sec->name, namelen);
573 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
574 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
575 if (stub_sec == NULL)
576 return NULL;
577 htab->stub_group[link_sec->id].stub_sec = stub_sec;
578 }
579 htab->stub_group[section->id].stub_sec = stub_sec;
580 }
581
582 /* Enter this entry into the linker stub hash table. */
583 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
584 TRUE, FALSE);
585 if (hsh == NULL)
586 {
587 /* xgettext:c-format */
588 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
589 section->owner, stub_name);
590 return NULL;
591 }
592
593 hsh->stub_sec = stub_sec;
594 hsh->stub_offset = 0;
595 hsh->id_sec = link_sec;
596 return hsh;
597 }
598
599 /* Determine the type of stub needed, if any, for a call. */
600
601 static enum elf32_hppa_stub_type
602 hppa_type_of_stub (asection *input_sec,
603 const Elf_Internal_Rela *rela,
604 struct elf32_hppa_link_hash_entry *hh,
605 bfd_vma destination,
606 struct bfd_link_info *info)
607 {
608 bfd_vma location;
609 bfd_vma branch_offset;
610 bfd_vma max_branch_offset;
611 unsigned int r_type;
612
613 if (hh != NULL
614 && hh->eh.plt.offset != (bfd_vma) -1
615 && hh->eh.dynindx != -1
616 && !hh->plabel
617 && (bfd_link_pic (info)
618 || !hh->eh.def_regular
619 || hh->eh.root.type == bfd_link_hash_defweak))
620 {
621 /* We need an import stub. Decide between hppa_stub_import
622 and hppa_stub_import_shared later. */
623 return hppa_stub_import;
624 }
625
626 if (destination == (bfd_vma) -1)
627 return hppa_stub_none;
628
629 /* Determine where the call point is. */
630 location = (input_sec->output_offset
631 + input_sec->output_section->vma
632 + rela->r_offset);
633
634 branch_offset = destination - location - 8;
635 r_type = ELF32_R_TYPE (rela->r_info);
636
637 /* Determine if a long branch stub is needed. parisc branch offsets
638 are relative to the second instruction past the branch, ie. +8
639 bytes on from the branch instruction location. The offset is
640 signed and counts in units of 4 bytes. */
641 if (r_type == (unsigned int) R_PARISC_PCREL17F)
642 max_branch_offset = (1 << (17 - 1)) << 2;
643
644 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
645 max_branch_offset = (1 << (12 - 1)) << 2;
646
647 else /* R_PARISC_PCREL22F. */
648 max_branch_offset = (1 << (22 - 1)) << 2;
649
650 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
651 return hppa_stub_long_branch;
652
653 return hppa_stub_none;
654 }
655
656 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
657 IN_ARG contains the link info pointer. */
658
659 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
660 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
661
662 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
663 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
664 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
665
666 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
667 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
668 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
669 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
670
671 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
672 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
673
674 #define LDO_R1_R22 0x34360000 /* ldo RR'XXX(%r1),%r22 */
675 #define LDW_R22_R21 0x0ec01095 /* ldw 0(%r22),%r21 */
676 #define LDW_R22_R19 0x0ec81093 /* ldw 4(%r22),%r19 */
677
678 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
679 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
680 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
681 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
682
683 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
684 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
685 #define NOP 0x08000240 /* nop */
686 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
687 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
688 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
689
690 #ifndef R19_STUBS
691 #define R19_STUBS 1
692 #endif
693
694 #if R19_STUBS
695 #define LDW_R1_DLT LDW_R1_R19
696 #else
697 #define LDW_R1_DLT LDW_R1_DP
698 #endif
699
700 static bfd_boolean
701 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
702 {
703 struct elf32_hppa_stub_hash_entry *hsh;
704 struct bfd_link_info *info;
705 struct elf32_hppa_link_hash_table *htab;
706 asection *stub_sec;
707 bfd *stub_bfd;
708 bfd_byte *loc;
709 bfd_vma sym_value;
710 bfd_vma insn;
711 bfd_vma off;
712 int val;
713 int size;
714
715 /* Massage our args to the form they really have. */
716 hsh = hppa_stub_hash_entry (bh);
717 info = (struct bfd_link_info *)in_arg;
718
719 htab = hppa_link_hash_table (info);
720 if (htab == NULL)
721 return FALSE;
722
723 stub_sec = hsh->stub_sec;
724
725 /* Make a note of the offset within the stubs for this entry. */
726 hsh->stub_offset = stub_sec->size;
727 loc = stub_sec->contents + hsh->stub_offset;
728
729 stub_bfd = stub_sec->owner;
730
731 switch (hsh->stub_type)
732 {
733 case hppa_stub_long_branch:
734 /* Create the long branch. A long branch is formed with "ldil"
735 loading the upper bits of the target address into a register,
736 then branching with "be" which adds in the lower bits.
737 The "be" has its delay slot nullified. */
738 sym_value = (hsh->target_value
739 + hsh->target_section->output_offset
740 + hsh->target_section->output_section->vma);
741
742 val = hppa_field_adjust (sym_value, 0, e_lrsel);
743 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
744 bfd_put_32 (stub_bfd, insn, loc);
745
746 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
747 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
748 bfd_put_32 (stub_bfd, insn, loc + 4);
749
750 size = LONG_BRANCH_STUB_SIZE;
751 break;
752
753 case hppa_stub_long_branch_shared:
754 /* Branches are relative. This is where we are going to. */
755 sym_value = (hsh->target_value
756 + hsh->target_section->output_offset
757 + hsh->target_section->output_section->vma);
758
759 /* And this is where we are coming from, more or less. */
760 sym_value -= (hsh->stub_offset
761 + stub_sec->output_offset
762 + stub_sec->output_section->vma);
763
764 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
765 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
766 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
767 bfd_put_32 (stub_bfd, insn, loc + 4);
768
769 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
770 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
771 bfd_put_32 (stub_bfd, insn, loc + 8);
772 size = LONG_BRANCH_SHARED_STUB_SIZE;
773 break;
774
775 case hppa_stub_import:
776 case hppa_stub_import_shared:
777 off = hsh->hh->eh.plt.offset;
778 if (off >= (bfd_vma) -2)
779 abort ();
780
781 off &= ~ (bfd_vma) 1;
782 sym_value = (off
783 + htab->etab.splt->output_offset
784 + htab->etab.splt->output_section->vma
785 - elf_gp (htab->etab.splt->output_section->owner));
786
787 insn = ADDIL_DP;
788 #if R19_STUBS
789 if (hsh->stub_type == hppa_stub_import_shared)
790 insn = ADDIL_R19;
791 #endif
792
793 /* Load function descriptor address into register %r22. It is
794 sometimes needed for lazy binding. */
795 val = hppa_field_adjust (sym_value, 0, e_lrsel),
796 insn = hppa_rebuild_insn ((int) insn, val, 21);
797 bfd_put_32 (stub_bfd, insn, loc);
798
799 val = hppa_field_adjust (sym_value, 0, e_rrsel);
800 insn = hppa_rebuild_insn ((int) LDO_R1_R22, val, 14);
801 bfd_put_32 (stub_bfd, insn, loc + 4);
802
803 bfd_put_32 (stub_bfd, (bfd_vma) LDW_R22_R21, loc + 8);
804
805 if (htab->multi_subspace)
806 {
807 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
808 bfd_put_32 (stub_bfd, (bfd_vma) LDW_R22_R19, loc + 16);
809 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 20);
810 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 24);
811 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 28);
812
813 size = IMPORT_SHARED_STUB_SIZE;
814 }
815 else
816 {
817 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 12);
818 bfd_put_32 (stub_bfd, (bfd_vma) LDW_R22_R19, loc + 16);
819
820 size = IMPORT_STUB_SIZE;
821 }
822
823 break;
824
825 case hppa_stub_export:
826 /* Branches are relative. This is where we are going to. */
827 sym_value = (hsh->target_value
828 + hsh->target_section->output_offset
829 + hsh->target_section->output_section->vma);
830
831 /* And this is where we are coming from. */
832 sym_value -= (hsh->stub_offset
833 + stub_sec->output_offset
834 + stub_sec->output_section->vma);
835
836 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
837 && (!htab->has_22bit_branch
838 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
839 {
840 _bfd_error_handler
841 /* xgettext:c-format */
842 (_("%pB(%pA+%#" PRIx64 "): "
843 "cannot reach %s, recompile with -ffunction-sections"),
844 hsh->target_section->owner,
845 stub_sec,
846 (uint64_t) hsh->stub_offset,
847 hsh->bh_root.string);
848 bfd_set_error (bfd_error_bad_value);
849 return FALSE;
850 }
851
852 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
853 if (!htab->has_22bit_branch)
854 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
855 else
856 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
857 bfd_put_32 (stub_bfd, insn, loc);
858
859 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
860 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
861 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
862 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
863 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
864
865 /* Point the function symbol at the stub. */
866 hsh->hh->eh.root.u.def.section = stub_sec;
867 hsh->hh->eh.root.u.def.value = stub_sec->size;
868
869 size = EXPORT_STUB_SIZE;
870 break;
871
872 default:
873 BFD_FAIL ();
874 return FALSE;
875 }
876
877 stub_sec->size += size;
878 return TRUE;
879 }
880
881 #undef LDIL_R1
882 #undef BE_SR4_R1
883 #undef BL_R1
884 #undef ADDIL_R1
885 #undef DEPI_R1
886 #undef LDW_R1_R21
887 #undef LDW_R1_DLT
888 #undef LDW_R1_R19
889 #undef ADDIL_R19
890 #undef LDW_R1_DP
891 #undef LDSID_R21_R1
892 #undef MTSP_R1
893 #undef BE_SR0_R21
894 #undef STW_RP
895 #undef BV_R0_R21
896 #undef BL_RP
897 #undef NOP
898 #undef LDW_RP
899 #undef LDSID_RP_R1
900 #undef BE_SR0_RP
901
902 /* As above, but don't actually build the stub. Just bump offset so
903 we know stub section sizes. */
904
905 static bfd_boolean
906 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
907 {
908 struct elf32_hppa_stub_hash_entry *hsh;
909 struct elf32_hppa_link_hash_table *htab;
910 int size;
911
912 /* Massage our args to the form they really have. */
913 hsh = hppa_stub_hash_entry (bh);
914 htab = in_arg;
915
916 if (hsh->stub_type == hppa_stub_long_branch)
917 size = LONG_BRANCH_STUB_SIZE;
918 else if (hsh->stub_type == hppa_stub_long_branch_shared)
919 size = LONG_BRANCH_SHARED_STUB_SIZE;
920 else if (hsh->stub_type == hppa_stub_export)
921 size = EXPORT_STUB_SIZE;
922 else /* hppa_stub_import or hppa_stub_import_shared. */
923 {
924 if (htab->multi_subspace)
925 size = IMPORT_SHARED_STUB_SIZE;
926 else
927 size = IMPORT_STUB_SIZE;
928 }
929
930 hsh->stub_sec->size += size;
931 return TRUE;
932 }
933
934 /* Return nonzero if ABFD represents an HPPA ELF32 file.
935 Additionally we set the default architecture and machine. */
936
937 static bfd_boolean
938 elf32_hppa_object_p (bfd *abfd)
939 {
940 Elf_Internal_Ehdr * i_ehdrp;
941 unsigned int flags;
942
943 i_ehdrp = elf_elfheader (abfd);
944 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
945 {
946 /* GCC on hppa-linux produces binaries with OSABI=GNU,
947 but the kernel produces corefiles with OSABI=SysV. */
948 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU &&
949 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
950 return FALSE;
951 }
952 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
953 {
954 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
955 but the kernel produces corefiles with OSABI=SysV. */
956 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
957 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
958 return FALSE;
959 }
960 else
961 {
962 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
963 return FALSE;
964 }
965
966 flags = i_ehdrp->e_flags;
967 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
968 {
969 case EFA_PARISC_1_0:
970 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
971 case EFA_PARISC_1_1:
972 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
973 case EFA_PARISC_2_0:
974 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
975 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
976 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
977 }
978 return TRUE;
979 }
980
981 /* Create the .plt and .got sections, and set up our hash table
982 short-cuts to various dynamic sections. */
983
984 static bfd_boolean
985 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
986 {
987 struct elf32_hppa_link_hash_table *htab;
988 struct elf_link_hash_entry *eh;
989
990 /* Don't try to create the .plt and .got twice. */
991 htab = hppa_link_hash_table (info);
992 if (htab == NULL)
993 return FALSE;
994 if (htab->etab.splt != NULL)
995 return TRUE;
996
997 /* Call the generic code to do most of the work. */
998 if (! _bfd_elf_create_dynamic_sections (abfd, info))
999 return FALSE;
1000
1001 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
1002 application, because __canonicalize_funcptr_for_compare needs it. */
1003 eh = elf_hash_table (info)->hgot;
1004 eh->forced_local = 0;
1005 eh->other = STV_DEFAULT;
1006 return bfd_elf_link_record_dynamic_symbol (info, eh);
1007 }
1008
1009 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1010
1011 static void
1012 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1013 struct elf_link_hash_entry *eh_dir,
1014 struct elf_link_hash_entry *eh_ind)
1015 {
1016 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1017
1018 hh_dir = hppa_elf_hash_entry (eh_dir);
1019 hh_ind = hppa_elf_hash_entry (eh_ind);
1020
1021 if (hh_ind->dyn_relocs != NULL
1022 && eh_ind->root.type == bfd_link_hash_indirect)
1023 {
1024 if (hh_dir->dyn_relocs != NULL)
1025 {
1026 struct elf_dyn_relocs **hdh_pp;
1027 struct elf_dyn_relocs *hdh_p;
1028
1029 /* Add reloc counts against the indirect sym to the direct sym
1030 list. Merge any entries against the same section. */
1031 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1032 {
1033 struct elf_dyn_relocs *hdh_q;
1034
1035 for (hdh_q = hh_dir->dyn_relocs;
1036 hdh_q != NULL;
1037 hdh_q = hdh_q->next)
1038 if (hdh_q->sec == hdh_p->sec)
1039 {
1040 #if RELATIVE_DYNRELOCS
1041 hdh_q->pc_count += hdh_p->pc_count;
1042 #endif
1043 hdh_q->count += hdh_p->count;
1044 *hdh_pp = hdh_p->next;
1045 break;
1046 }
1047 if (hdh_q == NULL)
1048 hdh_pp = &hdh_p->next;
1049 }
1050 *hdh_pp = hh_dir->dyn_relocs;
1051 }
1052
1053 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1054 hh_ind->dyn_relocs = NULL;
1055 }
1056
1057 if (eh_ind->root.type == bfd_link_hash_indirect)
1058 {
1059 hh_dir->plabel |= hh_ind->plabel;
1060 hh_dir->tls_type |= hh_ind->tls_type;
1061 hh_ind->tls_type = GOT_UNKNOWN;
1062 }
1063
1064 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1065 }
1066
1067 static int
1068 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1069 int r_type, int is_local ATTRIBUTE_UNUSED)
1070 {
1071 /* For now we don't support linker optimizations. */
1072 return r_type;
1073 }
1074
1075 /* Return a pointer to the local GOT, PLT and TLS reference counts
1076 for ABFD. Returns NULL if the storage allocation fails. */
1077
1078 static bfd_signed_vma *
1079 hppa32_elf_local_refcounts (bfd *abfd)
1080 {
1081 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1082 bfd_signed_vma *local_refcounts;
1083
1084 local_refcounts = elf_local_got_refcounts (abfd);
1085 if (local_refcounts == NULL)
1086 {
1087 bfd_size_type size;
1088
1089 /* Allocate space for local GOT and PLT reference
1090 counts. Done this way to save polluting elf_obj_tdata
1091 with another target specific pointer. */
1092 size = symtab_hdr->sh_info;
1093 size *= 2 * sizeof (bfd_signed_vma);
1094 /* Add in space to store the local GOT TLS types. */
1095 size += symtab_hdr->sh_info;
1096 local_refcounts = bfd_zalloc (abfd, size);
1097 if (local_refcounts == NULL)
1098 return NULL;
1099 elf_local_got_refcounts (abfd) = local_refcounts;
1100 memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN,
1101 symtab_hdr->sh_info);
1102 }
1103 return local_refcounts;
1104 }
1105
1106
1107 /* Look through the relocs for a section during the first phase, and
1108 calculate needed space in the global offset table, procedure linkage
1109 table, and dynamic reloc sections. At this point we haven't
1110 necessarily read all the input files. */
1111
1112 static bfd_boolean
1113 elf32_hppa_check_relocs (bfd *abfd,
1114 struct bfd_link_info *info,
1115 asection *sec,
1116 const Elf_Internal_Rela *relocs)
1117 {
1118 Elf_Internal_Shdr *symtab_hdr;
1119 struct elf_link_hash_entry **eh_syms;
1120 const Elf_Internal_Rela *rela;
1121 const Elf_Internal_Rela *rela_end;
1122 struct elf32_hppa_link_hash_table *htab;
1123 asection *sreloc;
1124
1125 if (bfd_link_relocatable (info))
1126 return TRUE;
1127
1128 htab = hppa_link_hash_table (info);
1129 if (htab == NULL)
1130 return FALSE;
1131 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1132 eh_syms = elf_sym_hashes (abfd);
1133 sreloc = NULL;
1134
1135 rela_end = relocs + sec->reloc_count;
1136 for (rela = relocs; rela < rela_end; rela++)
1137 {
1138 enum {
1139 NEED_GOT = 1,
1140 NEED_PLT = 2,
1141 NEED_DYNREL = 4,
1142 PLT_PLABEL = 8
1143 };
1144
1145 unsigned int r_symndx, r_type;
1146 struct elf32_hppa_link_hash_entry *hh;
1147 int need_entry = 0;
1148
1149 r_symndx = ELF32_R_SYM (rela->r_info);
1150
1151 if (r_symndx < symtab_hdr->sh_info)
1152 hh = NULL;
1153 else
1154 {
1155 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1156 while (hh->eh.root.type == bfd_link_hash_indirect
1157 || hh->eh.root.type == bfd_link_hash_warning)
1158 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1159 }
1160
1161 r_type = ELF32_R_TYPE (rela->r_info);
1162 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1163
1164 switch (r_type)
1165 {
1166 case R_PARISC_DLTIND14F:
1167 case R_PARISC_DLTIND14R:
1168 case R_PARISC_DLTIND21L:
1169 /* This symbol requires a global offset table entry. */
1170 need_entry = NEED_GOT;
1171 break;
1172
1173 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1174 case R_PARISC_PLABEL21L:
1175 case R_PARISC_PLABEL32:
1176 /* If the addend is non-zero, we break badly. */
1177 if (rela->r_addend != 0)
1178 abort ();
1179
1180 /* If we are creating a shared library, then we need to
1181 create a PLT entry for all PLABELs, because PLABELs with
1182 local symbols may be passed via a pointer to another
1183 object. Additionally, output a dynamic relocation
1184 pointing to the PLT entry.
1185
1186 For executables, the original 32-bit ABI allowed two
1187 different styles of PLABELs (function pointers): For
1188 global functions, the PLABEL word points into the .plt
1189 two bytes past a (function address, gp) pair, and for
1190 local functions the PLABEL points directly at the
1191 function. The magic +2 for the first type allows us to
1192 differentiate between the two. As you can imagine, this
1193 is a real pain when it comes to generating code to call
1194 functions indirectly or to compare function pointers.
1195 We avoid the mess by always pointing a PLABEL into the
1196 .plt, even for local functions. */
1197 need_entry = PLT_PLABEL | NEED_PLT;
1198 if (bfd_link_pic (info))
1199 need_entry |= NEED_DYNREL;
1200 break;
1201
1202 case R_PARISC_PCREL12F:
1203 htab->has_12bit_branch = 1;
1204 goto branch_common;
1205
1206 case R_PARISC_PCREL17C:
1207 case R_PARISC_PCREL17F:
1208 htab->has_17bit_branch = 1;
1209 goto branch_common;
1210
1211 case R_PARISC_PCREL22F:
1212 htab->has_22bit_branch = 1;
1213 branch_common:
1214 /* Function calls might need to go through the .plt, and
1215 might require long branch stubs. */
1216 if (hh == NULL)
1217 {
1218 /* We know local syms won't need a .plt entry, and if
1219 they need a long branch stub we can't guarantee that
1220 we can reach the stub. So just flag an error later
1221 if we're doing a shared link and find we need a long
1222 branch stub. */
1223 continue;
1224 }
1225 else
1226 {
1227 /* Global symbols will need a .plt entry if they remain
1228 global, and in most cases won't need a long branch
1229 stub. Unfortunately, we have to cater for the case
1230 where a symbol is forced local by versioning, or due
1231 to symbolic linking, and we lose the .plt entry. */
1232 need_entry = NEED_PLT;
1233 if (hh->eh.type == STT_PARISC_MILLI)
1234 need_entry = 0;
1235 }
1236 break;
1237
1238 case R_PARISC_SEGBASE: /* Used to set segment base. */
1239 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1240 case R_PARISC_PCREL14F: /* PC relative load/store. */
1241 case R_PARISC_PCREL14R:
1242 case R_PARISC_PCREL17R: /* External branches. */
1243 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1244 case R_PARISC_PCREL32:
1245 /* We don't need to propagate the relocation if linking a
1246 shared object since these are section relative. */
1247 continue;
1248
1249 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1250 case R_PARISC_DPREL14R:
1251 case R_PARISC_DPREL21L:
1252 if (bfd_link_pic (info))
1253 {
1254 _bfd_error_handler
1255 /* xgettext:c-format */
1256 (_("%pB: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1257 abfd,
1258 elf_hppa_howto_table[r_type].name);
1259 bfd_set_error (bfd_error_bad_value);
1260 return FALSE;
1261 }
1262 /* Fall through. */
1263
1264 case R_PARISC_DIR17F: /* Used for external branches. */
1265 case R_PARISC_DIR17R:
1266 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1267 case R_PARISC_DIR14R:
1268 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1269 case R_PARISC_DIR32: /* .word relocs. */
1270 /* We may want to output a dynamic relocation later. */
1271 need_entry = NEED_DYNREL;
1272 break;
1273
1274 /* This relocation describes the C++ object vtable hierarchy.
1275 Reconstruct it for later use during GC. */
1276 case R_PARISC_GNU_VTINHERIT:
1277 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1278 return FALSE;
1279 continue;
1280
1281 /* This relocation describes which C++ vtable entries are actually
1282 used. Record for later use during GC. */
1283 case R_PARISC_GNU_VTENTRY:
1284 if (!bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1285 return FALSE;
1286 continue;
1287
1288 case R_PARISC_TLS_GD21L:
1289 case R_PARISC_TLS_GD14R:
1290 case R_PARISC_TLS_LDM21L:
1291 case R_PARISC_TLS_LDM14R:
1292 need_entry = NEED_GOT;
1293 break;
1294
1295 case R_PARISC_TLS_IE21L:
1296 case R_PARISC_TLS_IE14R:
1297 if (bfd_link_dll (info))
1298 info->flags |= DF_STATIC_TLS;
1299 need_entry = NEED_GOT;
1300 break;
1301
1302 default:
1303 continue;
1304 }
1305
1306 /* Now carry out our orders. */
1307 if (need_entry & NEED_GOT)
1308 {
1309 int tls_type = GOT_NORMAL;
1310
1311 switch (r_type)
1312 {
1313 default:
1314 break;
1315 case R_PARISC_TLS_GD21L:
1316 case R_PARISC_TLS_GD14R:
1317 tls_type = GOT_TLS_GD;
1318 break;
1319 case R_PARISC_TLS_LDM21L:
1320 case R_PARISC_TLS_LDM14R:
1321 tls_type = GOT_TLS_LDM;
1322 break;
1323 case R_PARISC_TLS_IE21L:
1324 case R_PARISC_TLS_IE14R:
1325 tls_type = GOT_TLS_IE;
1326 break;
1327 }
1328
1329 /* Allocate space for a GOT entry, as well as a dynamic
1330 relocation for this entry. */
1331 if (htab->etab.sgot == NULL)
1332 {
1333 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1334 return FALSE;
1335 }
1336
1337 if (hh != NULL)
1338 {
1339 if (tls_type == GOT_TLS_LDM)
1340 htab->tls_ldm_got.refcount += 1;
1341 else
1342 hh->eh.got.refcount += 1;
1343 hh->tls_type |= tls_type;
1344 }
1345 else
1346 {
1347 bfd_signed_vma *local_got_refcounts;
1348
1349 /* This is a global offset table entry for a local symbol. */
1350 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1351 if (local_got_refcounts == NULL)
1352 return FALSE;
1353 if (tls_type == GOT_TLS_LDM)
1354 htab->tls_ldm_got.refcount += 1;
1355 else
1356 local_got_refcounts[r_symndx] += 1;
1357
1358 hppa_elf_local_got_tls_type (abfd) [r_symndx] |= tls_type;
1359 }
1360 }
1361
1362 if (need_entry & NEED_PLT)
1363 {
1364 /* If we are creating a shared library, and this is a reloc
1365 against a weak symbol or a global symbol in a dynamic
1366 object, then we will be creating an import stub and a
1367 .plt entry for the symbol. Similarly, on a normal link
1368 to symbols defined in a dynamic object we'll need the
1369 import stub and a .plt entry. We don't know yet whether
1370 the symbol is defined or not, so make an entry anyway and
1371 clean up later in adjust_dynamic_symbol. */
1372 if ((sec->flags & SEC_ALLOC) != 0)
1373 {
1374 if (hh != NULL)
1375 {
1376 hh->eh.needs_plt = 1;
1377 hh->eh.plt.refcount += 1;
1378
1379 /* If this .plt entry is for a plabel, mark it so
1380 that adjust_dynamic_symbol will keep the entry
1381 even if it appears to be local. */
1382 if (need_entry & PLT_PLABEL)
1383 hh->plabel = 1;
1384 }
1385 else if (need_entry & PLT_PLABEL)
1386 {
1387 bfd_signed_vma *local_got_refcounts;
1388 bfd_signed_vma *local_plt_refcounts;
1389
1390 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1391 if (local_got_refcounts == NULL)
1392 return FALSE;
1393 local_plt_refcounts = (local_got_refcounts
1394 + symtab_hdr->sh_info);
1395 local_plt_refcounts[r_symndx] += 1;
1396 }
1397 }
1398 }
1399
1400 if ((need_entry & NEED_DYNREL) != 0
1401 && (sec->flags & SEC_ALLOC) != 0)
1402 {
1403 /* Flag this symbol as having a non-got, non-plt reference
1404 so that we generate copy relocs if it turns out to be
1405 dynamic. */
1406 if (hh != NULL)
1407 hh->eh.non_got_ref = 1;
1408
1409 /* If we are creating a shared library then we need to copy
1410 the reloc into the shared library. However, if we are
1411 linking with -Bsymbolic, we need only copy absolute
1412 relocs or relocs against symbols that are not defined in
1413 an object we are including in the link. PC- or DP- or
1414 DLT-relative relocs against any local sym or global sym
1415 with DEF_REGULAR set, can be discarded. At this point we
1416 have not seen all the input files, so it is possible that
1417 DEF_REGULAR is not set now but will be set later (it is
1418 never cleared). We account for that possibility below by
1419 storing information in the dyn_relocs field of the
1420 hash table entry.
1421
1422 A similar situation to the -Bsymbolic case occurs when
1423 creating shared libraries and symbol visibility changes
1424 render the symbol local.
1425
1426 As it turns out, all the relocs we will be creating here
1427 are absolute, so we cannot remove them on -Bsymbolic
1428 links or visibility changes anyway. A STUB_REL reloc
1429 is absolute too, as in that case it is the reloc in the
1430 stub we will be creating, rather than copying the PCREL
1431 reloc in the branch.
1432
1433 If on the other hand, we are creating an executable, we
1434 may need to keep relocations for symbols satisfied by a
1435 dynamic library if we manage to avoid copy relocs for the
1436 symbol. */
1437 if ((bfd_link_pic (info)
1438 && (IS_ABSOLUTE_RELOC (r_type)
1439 || (hh != NULL
1440 && (!SYMBOLIC_BIND (info, &hh->eh)
1441 || hh->eh.root.type == bfd_link_hash_defweak
1442 || !hh->eh.def_regular))))
1443 || (ELIMINATE_COPY_RELOCS
1444 && !bfd_link_pic (info)
1445 && hh != NULL
1446 && (hh->eh.root.type == bfd_link_hash_defweak
1447 || !hh->eh.def_regular)))
1448 {
1449 struct elf_dyn_relocs *hdh_p;
1450 struct elf_dyn_relocs **hdh_head;
1451
1452 /* Create a reloc section in dynobj and make room for
1453 this reloc. */
1454 if (sreloc == NULL)
1455 {
1456 sreloc = _bfd_elf_make_dynamic_reloc_section
1457 (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
1458
1459 if (sreloc == NULL)
1460 {
1461 bfd_set_error (bfd_error_bad_value);
1462 return FALSE;
1463 }
1464 }
1465
1466 /* If this is a global symbol, we count the number of
1467 relocations we need for this symbol. */
1468 if (hh != NULL)
1469 {
1470 hdh_head = &hh->dyn_relocs;
1471 }
1472 else
1473 {
1474 /* Track dynamic relocs needed for local syms too.
1475 We really need local syms available to do this
1476 easily. Oh well. */
1477 asection *sr;
1478 void *vpp;
1479 Elf_Internal_Sym *isym;
1480
1481 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1482 abfd, r_symndx);
1483 if (isym == NULL)
1484 return FALSE;
1485
1486 sr = bfd_section_from_elf_index (abfd, isym->st_shndx);
1487 if (sr == NULL)
1488 sr = sec;
1489
1490 vpp = &elf_section_data (sr)->local_dynrel;
1491 hdh_head = (struct elf_dyn_relocs **) vpp;
1492 }
1493
1494 hdh_p = *hdh_head;
1495 if (hdh_p == NULL || hdh_p->sec != sec)
1496 {
1497 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1498 if (hdh_p == NULL)
1499 return FALSE;
1500 hdh_p->next = *hdh_head;
1501 *hdh_head = hdh_p;
1502 hdh_p->sec = sec;
1503 hdh_p->count = 0;
1504 #if RELATIVE_DYNRELOCS
1505 hdh_p->pc_count = 0;
1506 #endif
1507 }
1508
1509 hdh_p->count += 1;
1510 #if RELATIVE_DYNRELOCS
1511 if (!IS_ABSOLUTE_RELOC (rtype))
1512 hdh_p->pc_count += 1;
1513 #endif
1514 }
1515 }
1516 }
1517
1518 return TRUE;
1519 }
1520
1521 /* Return the section that should be marked against garbage collection
1522 for a given relocation. */
1523
1524 static asection *
1525 elf32_hppa_gc_mark_hook (asection *sec,
1526 struct bfd_link_info *info,
1527 Elf_Internal_Rela *rela,
1528 struct elf_link_hash_entry *hh,
1529 Elf_Internal_Sym *sym)
1530 {
1531 if (hh != NULL)
1532 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1533 {
1534 case R_PARISC_GNU_VTINHERIT:
1535 case R_PARISC_GNU_VTENTRY:
1536 return NULL;
1537 }
1538
1539 return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1540 }
1541
1542 /* Support for core dump NOTE sections. */
1543
1544 static bfd_boolean
1545 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1546 {
1547 int offset;
1548 size_t size;
1549
1550 switch (note->descsz)
1551 {
1552 default:
1553 return FALSE;
1554
1555 case 396: /* Linux/hppa */
1556 /* pr_cursig */
1557 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1558
1559 /* pr_pid */
1560 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
1561
1562 /* pr_reg */
1563 offset = 72;
1564 size = 320;
1565
1566 break;
1567 }
1568
1569 /* Make a ".reg/999" section. */
1570 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1571 size, note->descpos + offset);
1572 }
1573
1574 static bfd_boolean
1575 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1576 {
1577 switch (note->descsz)
1578 {
1579 default:
1580 return FALSE;
1581
1582 case 124: /* Linux/hppa elf_prpsinfo. */
1583 elf_tdata (abfd)->core->program
1584 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1585 elf_tdata (abfd)->core->command
1586 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1587 }
1588
1589 /* Note that for some reason, a spurious space is tacked
1590 onto the end of the args in some (at least one anyway)
1591 implementations, so strip it off if it exists. */
1592 {
1593 char *command = elf_tdata (abfd)->core->command;
1594 int n = strlen (command);
1595
1596 if (0 < n && command[n - 1] == ' ')
1597 command[n - 1] = '\0';
1598 }
1599
1600 return TRUE;
1601 }
1602
1603 /* Our own version of hide_symbol, so that we can keep plt entries for
1604 plabels. */
1605
1606 static void
1607 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1608 struct elf_link_hash_entry *eh,
1609 bfd_boolean force_local)
1610 {
1611 if (force_local)
1612 {
1613 eh->forced_local = 1;
1614 if (eh->dynindx != -1)
1615 {
1616 eh->dynindx = -1;
1617 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1618 eh->dynstr_index);
1619 }
1620
1621 /* PR 16082: Remove version information from hidden symbol. */
1622 eh->verinfo.verdef = NULL;
1623 eh->verinfo.vertree = NULL;
1624 }
1625
1626 /* STT_GNU_IFUNC symbol must go through PLT. */
1627 if (! hppa_elf_hash_entry (eh)->plabel
1628 && eh->type != STT_GNU_IFUNC)
1629 {
1630 eh->needs_plt = 0;
1631 eh->plt = elf_hash_table (info)->init_plt_offset;
1632 }
1633 }
1634
1635 /* Find any dynamic relocs that apply to read-only sections. */
1636
1637 static asection *
1638 readonly_dynrelocs (struct elf_link_hash_entry *eh)
1639 {
1640 struct elf32_hppa_link_hash_entry *hh;
1641 struct elf_dyn_relocs *hdh_p;
1642
1643 hh = hppa_elf_hash_entry (eh);
1644 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->next)
1645 {
1646 asection *sec = hdh_p->sec->output_section;
1647
1648 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1649 return hdh_p->sec;
1650 }
1651 return NULL;
1652 }
1653
1654 /* Return true if we have dynamic relocs against H or any of its weak
1655 aliases, that apply to read-only sections. Cannot be used after
1656 size_dynamic_sections. */
1657
1658 static bfd_boolean
1659 alias_readonly_dynrelocs (struct elf_link_hash_entry *eh)
1660 {
1661 struct elf32_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1662 do
1663 {
1664 if (readonly_dynrelocs (&hh->eh))
1665 return TRUE;
1666 hh = hppa_elf_hash_entry (hh->eh.u.alias);
1667 } while (hh != NULL && &hh->eh != eh);
1668
1669 return FALSE;
1670 }
1671
1672 /* Adjust a symbol defined by a dynamic object and referenced by a
1673 regular object. The current definition is in some section of the
1674 dynamic object, but we're not including those sections. We have to
1675 change the definition to something the rest of the link can
1676 understand. */
1677
1678 static bfd_boolean
1679 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1680 struct elf_link_hash_entry *eh)
1681 {
1682 struct elf32_hppa_link_hash_table *htab;
1683 asection *sec, *srel;
1684
1685 /* If this is a function, put it in the procedure linkage table. We
1686 will fill in the contents of the procedure linkage table later. */
1687 if (eh->type == STT_FUNC
1688 || eh->needs_plt)
1689 {
1690 bfd_boolean local = (SYMBOL_CALLS_LOCAL (info, eh)
1691 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh));
1692 /* Discard dyn_relocs when non-pic if we've decided that a
1693 function symbol is local. */
1694 if (!bfd_link_pic (info) && local)
1695 hppa_elf_hash_entry (eh)->dyn_relocs = NULL;
1696
1697 /* If the symbol is used by a plabel, we must allocate a PLT slot.
1698 The refcounts are not reliable when it has been hidden since
1699 hide_symbol can be called before the plabel flag is set. */
1700 if (hppa_elf_hash_entry (eh)->plabel)
1701 eh->plt.refcount = 1;
1702
1703 /* Note that unlike some other backends, the refcount is not
1704 incremented for a non-call (and non-plabel) function reference. */
1705 else if (eh->plt.refcount <= 0
1706 || local)
1707 {
1708 /* The .plt entry is not needed when:
1709 a) Garbage collection has removed all references to the
1710 symbol, or
1711 b) We know for certain the symbol is defined in this
1712 object, and it's not a weak definition, nor is the symbol
1713 used by a plabel relocation. Either this object is the
1714 application or we are doing a shared symbolic link. */
1715 eh->plt.offset = (bfd_vma) -1;
1716 eh->needs_plt = 0;
1717 }
1718
1719 /* Unlike other targets, elf32-hppa.c does not define a function
1720 symbol in a non-pic executable on PLT stub code, so we don't
1721 have a local definition in that case. ie. dyn_relocs can't
1722 be discarded. */
1723
1724 /* Function symbols can't have copy relocs. */
1725 return TRUE;
1726 }
1727 else
1728 eh->plt.offset = (bfd_vma) -1;
1729
1730 htab = hppa_link_hash_table (info);
1731 if (htab == NULL)
1732 return FALSE;
1733
1734 /* If this is a weak symbol, and there is a real definition, the
1735 processor independent code will have arranged for us to see the
1736 real definition first, and we can just use the same value. */
1737 if (eh->is_weakalias)
1738 {
1739 struct elf_link_hash_entry *def = weakdef (eh);
1740 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
1741 eh->root.u.def.section = def->root.u.def.section;
1742 eh->root.u.def.value = def->root.u.def.value;
1743 if (def->root.u.def.section == htab->etab.sdynbss
1744 || def->root.u.def.section == htab->etab.sdynrelro)
1745 hppa_elf_hash_entry (eh)->dyn_relocs = NULL;
1746 return TRUE;
1747 }
1748
1749 /* This is a reference to a symbol defined by a dynamic object which
1750 is not a function. */
1751
1752 /* If we are creating a shared library, we must presume that the
1753 only references to the symbol are via the global offset table.
1754 For such cases we need not do anything here; the relocations will
1755 be handled correctly by relocate_section. */
1756 if (bfd_link_pic (info))
1757 return TRUE;
1758
1759 /* If there are no references to this symbol that do not use the
1760 GOT, we don't need to generate a copy reloc. */
1761 if (!eh->non_got_ref)
1762 return TRUE;
1763
1764 /* If -z nocopyreloc was given, we won't generate them either. */
1765 if (info->nocopyreloc)
1766 return TRUE;
1767
1768 /* If we don't find any dynamic relocs in read-only sections, then
1769 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1770 if (ELIMINATE_COPY_RELOCS
1771 && !alias_readonly_dynrelocs (eh))
1772 return TRUE;
1773
1774 /* We must allocate the symbol in our .dynbss section, which will
1775 become part of the .bss section of the executable. There will be
1776 an entry for this symbol in the .dynsym section. The dynamic
1777 object will contain position independent code, so all references
1778 from the dynamic object to this symbol will go through the global
1779 offset table. The dynamic linker will use the .dynsym entry to
1780 determine the address it must put in the global offset table, so
1781 both the dynamic object and the regular object will refer to the
1782 same memory location for the variable. */
1783 if ((eh->root.u.def.section->flags & SEC_READONLY) != 0)
1784 {
1785 sec = htab->etab.sdynrelro;
1786 srel = htab->etab.sreldynrelro;
1787 }
1788 else
1789 {
1790 sec = htab->etab.sdynbss;
1791 srel = htab->etab.srelbss;
1792 }
1793 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0 && eh->size != 0)
1794 {
1795 /* We must generate a COPY reloc to tell the dynamic linker to
1796 copy the initial value out of the dynamic object and into the
1797 runtime process image. */
1798 srel->size += sizeof (Elf32_External_Rela);
1799 eh->needs_copy = 1;
1800 }
1801
1802 /* We no longer want dyn_relocs. */
1803 hppa_elf_hash_entry (eh)->dyn_relocs = NULL;
1804 return _bfd_elf_adjust_dynamic_copy (info, eh, sec);
1805 }
1806
1807 /* If EH is undefined, make it dynamic if that makes sense. */
1808
1809 static bfd_boolean
1810 ensure_undef_dynamic (struct bfd_link_info *info,
1811 struct elf_link_hash_entry *eh)
1812 {
1813 struct elf_link_hash_table *htab = elf_hash_table (info);
1814
1815 if (htab->dynamic_sections_created
1816 && (eh->root.type == bfd_link_hash_undefweak
1817 || eh->root.type == bfd_link_hash_undefined)
1818 && eh->dynindx == -1
1819 && !eh->forced_local
1820 && eh->type != STT_PARISC_MILLI
1821 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh)
1822 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT)
1823 return bfd_elf_link_record_dynamic_symbol (info, eh);
1824 return TRUE;
1825 }
1826
1827 /* Allocate space in the .plt for entries that won't have relocations.
1828 ie. plabel entries. */
1829
1830 static bfd_boolean
1831 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1832 {
1833 struct bfd_link_info *info;
1834 struct elf32_hppa_link_hash_table *htab;
1835 struct elf32_hppa_link_hash_entry *hh;
1836 asection *sec;
1837
1838 if (eh->root.type == bfd_link_hash_indirect)
1839 return TRUE;
1840
1841 info = (struct bfd_link_info *) inf;
1842 hh = hppa_elf_hash_entry (eh);
1843 htab = hppa_link_hash_table (info);
1844 if (htab == NULL)
1845 return FALSE;
1846
1847 if (htab->etab.dynamic_sections_created
1848 && eh->plt.refcount > 0)
1849 {
1850 if (!ensure_undef_dynamic (info, eh))
1851 return FALSE;
1852
1853 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), eh))
1854 {
1855 /* Allocate these later. From this point on, h->plabel
1856 means that the plt entry is only used by a plabel.
1857 We'll be using a normal plt entry for this symbol, so
1858 clear the plabel indicator. */
1859
1860 hh->plabel = 0;
1861 }
1862 else if (hh->plabel)
1863 {
1864 /* Make an entry in the .plt section for plabel references
1865 that won't have a .plt entry for other reasons. */
1866 sec = htab->etab.splt;
1867 eh->plt.offset = sec->size;
1868 sec->size += PLT_ENTRY_SIZE;
1869 if (bfd_link_pic (info))
1870 htab->etab.srelplt->size += sizeof (Elf32_External_Rela);
1871 }
1872 else
1873 {
1874 /* No .plt entry needed. */
1875 eh->plt.offset = (bfd_vma) -1;
1876 eh->needs_plt = 0;
1877 }
1878 }
1879 else
1880 {
1881 eh->plt.offset = (bfd_vma) -1;
1882 eh->needs_plt = 0;
1883 }
1884
1885 return TRUE;
1886 }
1887
1888 /* Calculate size of GOT entries for symbol given its TLS_TYPE. */
1889
1890 static inline unsigned int
1891 got_entries_needed (int tls_type)
1892 {
1893 unsigned int need = 0;
1894
1895 if ((tls_type & GOT_NORMAL) != 0)
1896 need += GOT_ENTRY_SIZE;
1897 if ((tls_type & GOT_TLS_GD) != 0)
1898 need += GOT_ENTRY_SIZE * 2;
1899 if ((tls_type & GOT_TLS_IE) != 0)
1900 need += GOT_ENTRY_SIZE;
1901 return need;
1902 }
1903
1904 /* Calculate size of relocs needed for symbol given its TLS_TYPE and
1905 NEEDed GOT entries. TPREL_KNOWN says a TPREL offset can be
1906 calculated at link time. DTPREL_KNOWN says the same for a DTPREL
1907 offset. */
1908
1909 static inline unsigned int
1910 got_relocs_needed (int tls_type, unsigned int need,
1911 bfd_boolean dtprel_known, bfd_boolean tprel_known)
1912 {
1913 /* All the entries we allocated need relocs.
1914 Except for GD and IE with local symbols. */
1915 if ((tls_type & GOT_TLS_GD) != 0 && dtprel_known)
1916 need -= GOT_ENTRY_SIZE;
1917 if ((tls_type & GOT_TLS_IE) != 0 && tprel_known)
1918 need -= GOT_ENTRY_SIZE;
1919 return need * sizeof (Elf32_External_Rela) / GOT_ENTRY_SIZE;
1920 }
1921
1922 /* Allocate space in .plt, .got and associated reloc sections for
1923 global syms. */
1924
1925 static bfd_boolean
1926 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
1927 {
1928 struct bfd_link_info *info;
1929 struct elf32_hppa_link_hash_table *htab;
1930 asection *sec;
1931 struct elf32_hppa_link_hash_entry *hh;
1932 struct elf_dyn_relocs *hdh_p;
1933
1934 if (eh->root.type == bfd_link_hash_indirect)
1935 return TRUE;
1936
1937 info = inf;
1938 htab = hppa_link_hash_table (info);
1939 if (htab == NULL)
1940 return FALSE;
1941
1942 hh = hppa_elf_hash_entry (eh);
1943
1944 if (htab->etab.dynamic_sections_created
1945 && eh->plt.offset != (bfd_vma) -1
1946 && !hh->plabel
1947 && eh->plt.refcount > 0)
1948 {
1949 /* Make an entry in the .plt section. */
1950 sec = htab->etab.splt;
1951 eh->plt.offset = sec->size;
1952 sec->size += PLT_ENTRY_SIZE;
1953
1954 /* We also need to make an entry in the .rela.plt section. */
1955 htab->etab.srelplt->size += sizeof (Elf32_External_Rela);
1956 htab->need_plt_stub = 1;
1957 }
1958
1959 if (eh->got.refcount > 0)
1960 {
1961 unsigned int need;
1962
1963 if (!ensure_undef_dynamic (info, eh))
1964 return FALSE;
1965
1966 sec = htab->etab.sgot;
1967 eh->got.offset = sec->size;
1968 need = got_entries_needed (hh->tls_type);
1969 sec->size += need;
1970 if (htab->etab.dynamic_sections_created
1971 && (bfd_link_dll (info)
1972 || (bfd_link_pic (info) && (hh->tls_type & GOT_NORMAL) != 0)
1973 || (eh->dynindx != -1
1974 && !SYMBOL_REFERENCES_LOCAL (info, eh)))
1975 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
1976 {
1977 bfd_boolean local = SYMBOL_REFERENCES_LOCAL (info, eh);
1978 htab->etab.srelgot->size
1979 += got_relocs_needed (hh->tls_type, need, local,
1980 local && bfd_link_executable (info));
1981 }
1982 }
1983 else
1984 eh->got.offset = (bfd_vma) -1;
1985
1986 /* If no dynamic sections we can't have dynamic relocs. */
1987 if (!htab->etab.dynamic_sections_created)
1988 hh->dyn_relocs = NULL;
1989
1990 /* Discard relocs on undefined syms with non-default visibility. */
1991 else if ((eh->root.type == bfd_link_hash_undefined
1992 && ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
1993 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
1994 hh->dyn_relocs = NULL;
1995
1996 if (hh->dyn_relocs == NULL)
1997 return TRUE;
1998
1999 /* If this is a -Bsymbolic shared link, then we need to discard all
2000 space allocated for dynamic pc-relative relocs against symbols
2001 defined in a regular object. For the normal shared case, discard
2002 space for relocs that have become local due to symbol visibility
2003 changes. */
2004 if (bfd_link_pic (info))
2005 {
2006 #if RELATIVE_DYNRELOCS
2007 if (SYMBOL_CALLS_LOCAL (info, eh))
2008 {
2009 struct elf_dyn_relocs **hdh_pp;
2010
2011 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2012 {
2013 hdh_p->count -= hdh_p->pc_count;
2014 hdh_p->pc_count = 0;
2015 if (hdh_p->count == 0)
2016 *hdh_pp = hdh_p->next;
2017 else
2018 hdh_pp = &hdh_p->next;
2019 }
2020 }
2021 #endif
2022
2023 if (hh->dyn_relocs != NULL)
2024 {
2025 if (!ensure_undef_dynamic (info, eh))
2026 return FALSE;
2027 }
2028 }
2029 else if (ELIMINATE_COPY_RELOCS)
2030 {
2031 /* For the non-shared case, discard space for relocs against
2032 symbols which turn out to need copy relocs or are not
2033 dynamic. */
2034
2035 if (eh->dynamic_adjusted
2036 && !eh->def_regular
2037 && !ELF_COMMON_DEF_P (eh))
2038 {
2039 if (!ensure_undef_dynamic (info, eh))
2040 return FALSE;
2041
2042 if (eh->dynindx == -1)
2043 hh->dyn_relocs = NULL;
2044 }
2045 else
2046 hh->dyn_relocs = NULL;
2047 }
2048
2049 /* Finally, allocate space. */
2050 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->next)
2051 {
2052 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2053 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2054 }
2055
2056 return TRUE;
2057 }
2058
2059 /* This function is called via elf_link_hash_traverse to force
2060 millicode symbols local so they do not end up as globals in the
2061 dynamic symbol table. We ought to be able to do this in
2062 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2063 for all dynamic symbols. Arguably, this is a bug in
2064 elf_adjust_dynamic_symbol. */
2065
2066 static bfd_boolean
2067 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2068 struct bfd_link_info *info)
2069 {
2070 if (eh->type == STT_PARISC_MILLI
2071 && !eh->forced_local)
2072 {
2073 elf32_hppa_hide_symbol (info, eh, TRUE);
2074 }
2075 return TRUE;
2076 }
2077
2078 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
2079 read-only sections. */
2080
2081 static bfd_boolean
2082 maybe_set_textrel (struct elf_link_hash_entry *eh, void *inf)
2083 {
2084 asection *sec;
2085
2086 if (eh->root.type == bfd_link_hash_indirect)
2087 return TRUE;
2088
2089 sec = readonly_dynrelocs (eh);
2090 if (sec != NULL)
2091 {
2092 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2093
2094 info->flags |= DF_TEXTREL;
2095 info->callbacks->minfo
2096 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
2097 sec->owner, eh->root.root.string, sec);
2098
2099 /* Not an error, just cut short the traversal. */
2100 return FALSE;
2101 }
2102 return TRUE;
2103 }
2104
2105 /* Set the sizes of the dynamic sections. */
2106
2107 static bfd_boolean
2108 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2109 struct bfd_link_info *info)
2110 {
2111 struct elf32_hppa_link_hash_table *htab;
2112 bfd *dynobj;
2113 bfd *ibfd;
2114 asection *sec;
2115 bfd_boolean relocs;
2116
2117 htab = hppa_link_hash_table (info);
2118 if (htab == NULL)
2119 return FALSE;
2120
2121 dynobj = htab->etab.dynobj;
2122 if (dynobj == NULL)
2123 abort ();
2124
2125 if (htab->etab.dynamic_sections_created)
2126 {
2127 /* Set the contents of the .interp section to the interpreter. */
2128 if (bfd_link_executable (info) && !info->nointerp)
2129 {
2130 sec = bfd_get_linker_section (dynobj, ".interp");
2131 if (sec == NULL)
2132 abort ();
2133 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2134 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2135 }
2136
2137 /* Force millicode symbols local. */
2138 elf_link_hash_traverse (&htab->etab,
2139 clobber_millicode_symbols,
2140 info);
2141 }
2142
2143 /* Set up .got and .plt offsets for local syms, and space for local
2144 dynamic relocs. */
2145 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
2146 {
2147 bfd_signed_vma *local_got;
2148 bfd_signed_vma *end_local_got;
2149 bfd_signed_vma *local_plt;
2150 bfd_signed_vma *end_local_plt;
2151 bfd_size_type locsymcount;
2152 Elf_Internal_Shdr *symtab_hdr;
2153 asection *srel;
2154 char *local_tls_type;
2155
2156 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2157 continue;
2158
2159 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2160 {
2161 struct elf_dyn_relocs *hdh_p;
2162
2163 for (hdh_p = ((struct elf_dyn_relocs *)
2164 elf_section_data (sec)->local_dynrel);
2165 hdh_p != NULL;
2166 hdh_p = hdh_p->next)
2167 {
2168 if (!bfd_is_abs_section (hdh_p->sec)
2169 && bfd_is_abs_section (hdh_p->sec->output_section))
2170 {
2171 /* Input section has been discarded, either because
2172 it is a copy of a linkonce section or due to
2173 linker script /DISCARD/, so we'll be discarding
2174 the relocs too. */
2175 }
2176 else if (hdh_p->count != 0)
2177 {
2178 srel = elf_section_data (hdh_p->sec)->sreloc;
2179 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2180 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2181 info->flags |= DF_TEXTREL;
2182 }
2183 }
2184 }
2185
2186 local_got = elf_local_got_refcounts (ibfd);
2187 if (!local_got)
2188 continue;
2189
2190 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2191 locsymcount = symtab_hdr->sh_info;
2192 end_local_got = local_got + locsymcount;
2193 local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2194 sec = htab->etab.sgot;
2195 srel = htab->etab.srelgot;
2196 for (; local_got < end_local_got; ++local_got)
2197 {
2198 if (*local_got > 0)
2199 {
2200 unsigned int need;
2201
2202 *local_got = sec->size;
2203 need = got_entries_needed (*local_tls_type);
2204 sec->size += need;
2205 if (bfd_link_dll (info)
2206 || (bfd_link_pic (info)
2207 && (*local_tls_type & GOT_NORMAL) != 0))
2208 htab->etab.srelgot->size
2209 += got_relocs_needed (*local_tls_type, need, TRUE,
2210 bfd_link_executable (info));
2211 }
2212 else
2213 *local_got = (bfd_vma) -1;
2214
2215 ++local_tls_type;
2216 }
2217
2218 local_plt = end_local_got;
2219 end_local_plt = local_plt + locsymcount;
2220 if (! htab->etab.dynamic_sections_created)
2221 {
2222 /* Won't be used, but be safe. */
2223 for (; local_plt < end_local_plt; ++local_plt)
2224 *local_plt = (bfd_vma) -1;
2225 }
2226 else
2227 {
2228 sec = htab->etab.splt;
2229 srel = htab->etab.srelplt;
2230 for (; local_plt < end_local_plt; ++local_plt)
2231 {
2232 if (*local_plt > 0)
2233 {
2234 *local_plt = sec->size;
2235 sec->size += PLT_ENTRY_SIZE;
2236 if (bfd_link_pic (info))
2237 srel->size += sizeof (Elf32_External_Rela);
2238 }
2239 else
2240 *local_plt = (bfd_vma) -1;
2241 }
2242 }
2243 }
2244
2245 if (htab->tls_ldm_got.refcount > 0)
2246 {
2247 /* Allocate 2 got entries and 1 dynamic reloc for
2248 R_PARISC_TLS_DTPMOD32 relocs. */
2249 htab->tls_ldm_got.offset = htab->etab.sgot->size;
2250 htab->etab.sgot->size += (GOT_ENTRY_SIZE * 2);
2251 htab->etab.srelgot->size += sizeof (Elf32_External_Rela);
2252 }
2253 else
2254 htab->tls_ldm_got.offset = -1;
2255
2256 /* Do all the .plt entries without relocs first. The dynamic linker
2257 uses the last .plt reloc to find the end of the .plt (and hence
2258 the start of the .got) for lazy linking. */
2259 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2260
2261 /* Allocate global sym .plt and .got entries, and space for global
2262 sym dynamic relocs. */
2263 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2264
2265 /* The check_relocs and adjust_dynamic_symbol entry points have
2266 determined the sizes of the various dynamic sections. Allocate
2267 memory for them. */
2268 relocs = FALSE;
2269 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2270 {
2271 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2272 continue;
2273
2274 if (sec == htab->etab.splt)
2275 {
2276 if (htab->need_plt_stub)
2277 {
2278 /* Make space for the plt stub at the end of the .plt
2279 section. We want this stub right at the end, up
2280 against the .got section. */
2281 int gotalign = bfd_section_alignment (htab->etab.sgot);
2282 int pltalign = bfd_section_alignment (sec);
2283 int align = gotalign > 3 ? gotalign : 3;
2284 bfd_size_type mask;
2285
2286 if (align > pltalign)
2287 bfd_set_section_alignment (sec, align);
2288 mask = ((bfd_size_type) 1 << gotalign) - 1;
2289 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2290 }
2291 }
2292 else if (sec == htab->etab.sgot
2293 || sec == htab->etab.sdynbss
2294 || sec == htab->etab.sdynrelro)
2295 ;
2296 else if (CONST_STRNEQ (bfd_section_name (sec), ".rela"))
2297 {
2298 if (sec->size != 0)
2299 {
2300 /* Remember whether there are any reloc sections other
2301 than .rela.plt. */
2302 if (sec != htab->etab.srelplt)
2303 relocs = TRUE;
2304
2305 /* We use the reloc_count field as a counter if we need
2306 to copy relocs into the output file. */
2307 sec->reloc_count = 0;
2308 }
2309 }
2310 else
2311 {
2312 /* It's not one of our sections, so don't allocate space. */
2313 continue;
2314 }
2315
2316 if (sec->size == 0)
2317 {
2318 /* If we don't need this section, strip it from the
2319 output file. This is mostly to handle .rela.bss and
2320 .rela.plt. We must create both sections in
2321 create_dynamic_sections, because they must be created
2322 before the linker maps input sections to output
2323 sections. The linker does that before
2324 adjust_dynamic_symbol is called, and it is that
2325 function which decides whether anything needs to go
2326 into these sections. */
2327 sec->flags |= SEC_EXCLUDE;
2328 continue;
2329 }
2330
2331 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2332 continue;
2333
2334 /* Allocate memory for the section contents. Zero it, because
2335 we may not fill in all the reloc sections. */
2336 sec->contents = bfd_zalloc (dynobj, sec->size);
2337 if (sec->contents == NULL)
2338 return FALSE;
2339 }
2340
2341 if (htab->etab.dynamic_sections_created)
2342 {
2343 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2344 actually has nothing to do with the PLT, it is how we
2345 communicate the LTP value of a load module to the dynamic
2346 linker. */
2347 #define add_dynamic_entry(TAG, VAL) \
2348 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2349
2350 if (!add_dynamic_entry (DT_PLTGOT, 0))
2351 return FALSE;
2352
2353 /* Add some entries to the .dynamic section. We fill in the
2354 values later, in elf32_hppa_finish_dynamic_sections, but we
2355 must add the entries now so that we get the correct size for
2356 the .dynamic section. The DT_DEBUG entry is filled in by the
2357 dynamic linker and used by the debugger. */
2358 if (bfd_link_executable (info))
2359 {
2360 if (!add_dynamic_entry (DT_DEBUG, 0))
2361 return FALSE;
2362 }
2363
2364 if (htab->etab.srelplt->size != 0)
2365 {
2366 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2367 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2368 || !add_dynamic_entry (DT_JMPREL, 0))
2369 return FALSE;
2370 }
2371
2372 if (relocs)
2373 {
2374 if (!add_dynamic_entry (DT_RELA, 0)
2375 || !add_dynamic_entry (DT_RELASZ, 0)
2376 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2377 return FALSE;
2378
2379 /* If any dynamic relocs apply to a read-only section,
2380 then we need a DT_TEXTREL entry. */
2381 if ((info->flags & DF_TEXTREL) == 0)
2382 elf_link_hash_traverse (&htab->etab, maybe_set_textrel, info);
2383
2384 if ((info->flags & DF_TEXTREL) != 0)
2385 {
2386 if (!add_dynamic_entry (DT_TEXTREL, 0))
2387 return FALSE;
2388 }
2389 }
2390 }
2391 #undef add_dynamic_entry
2392
2393 return TRUE;
2394 }
2395
2396 /* External entry points for sizing and building linker stubs. */
2397
2398 /* Set up various things so that we can make a list of input sections
2399 for each output section included in the link. Returns -1 on error,
2400 0 when no stubs will be needed, and 1 on success. */
2401
2402 int
2403 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2404 {
2405 bfd *input_bfd;
2406 unsigned int bfd_count;
2407 unsigned int top_id, top_index;
2408 asection *section;
2409 asection **input_list, **list;
2410 bfd_size_type amt;
2411 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2412
2413 if (htab == NULL)
2414 return -1;
2415
2416 /* Count the number of input BFDs and find the top input section id. */
2417 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2418 input_bfd != NULL;
2419 input_bfd = input_bfd->link.next)
2420 {
2421 bfd_count += 1;
2422 for (section = input_bfd->sections;
2423 section != NULL;
2424 section = section->next)
2425 {
2426 if (top_id < section->id)
2427 top_id = section->id;
2428 }
2429 }
2430 htab->bfd_count = bfd_count;
2431
2432 amt = sizeof (struct map_stub) * (top_id + 1);
2433 htab->stub_group = bfd_zmalloc (amt);
2434 if (htab->stub_group == NULL)
2435 return -1;
2436
2437 /* We can't use output_bfd->section_count here to find the top output
2438 section index as some sections may have been removed, and
2439 strip_excluded_output_sections doesn't renumber the indices. */
2440 for (section = output_bfd->sections, top_index = 0;
2441 section != NULL;
2442 section = section->next)
2443 {
2444 if (top_index < section->index)
2445 top_index = section->index;
2446 }
2447
2448 htab->top_index = top_index;
2449 amt = sizeof (asection *) * (top_index + 1);
2450 input_list = bfd_malloc (amt);
2451 htab->input_list = input_list;
2452 if (input_list == NULL)
2453 return -1;
2454
2455 /* For sections we aren't interested in, mark their entries with a
2456 value we can check later. */
2457 list = input_list + top_index;
2458 do
2459 *list = bfd_abs_section_ptr;
2460 while (list-- != input_list);
2461
2462 for (section = output_bfd->sections;
2463 section != NULL;
2464 section = section->next)
2465 {
2466 if ((section->flags & SEC_CODE) != 0)
2467 input_list[section->index] = NULL;
2468 }
2469
2470 return 1;
2471 }
2472
2473 /* The linker repeatedly calls this function for each input section,
2474 in the order that input sections are linked into output sections.
2475 Build lists of input sections to determine groupings between which
2476 we may insert linker stubs. */
2477
2478 void
2479 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2480 {
2481 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2482
2483 if (htab == NULL)
2484 return;
2485
2486 if (isec->output_section->index <= htab->top_index)
2487 {
2488 asection **list = htab->input_list + isec->output_section->index;
2489 if (*list != bfd_abs_section_ptr)
2490 {
2491 /* Steal the link_sec pointer for our list. */
2492 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2493 /* This happens to make the list in reverse order,
2494 which is what we want. */
2495 PREV_SEC (isec) = *list;
2496 *list = isec;
2497 }
2498 }
2499 }
2500
2501 /* See whether we can group stub sections together. Grouping stub
2502 sections may result in fewer stubs. More importantly, we need to
2503 put all .init* and .fini* stubs at the beginning of the .init or
2504 .fini output sections respectively, because glibc splits the
2505 _init and _fini functions into multiple parts. Putting a stub in
2506 the middle of a function is not a good idea. */
2507
2508 static void
2509 group_sections (struct elf32_hppa_link_hash_table *htab,
2510 bfd_size_type stub_group_size,
2511 bfd_boolean stubs_always_before_branch)
2512 {
2513 asection **list = htab->input_list + htab->top_index;
2514 do
2515 {
2516 asection *tail = *list;
2517 if (tail == bfd_abs_section_ptr)
2518 continue;
2519 while (tail != NULL)
2520 {
2521 asection *curr;
2522 asection *prev;
2523 bfd_size_type total;
2524 bfd_boolean big_sec;
2525
2526 curr = tail;
2527 total = tail->size;
2528 big_sec = total >= stub_group_size;
2529
2530 while ((prev = PREV_SEC (curr)) != NULL
2531 && ((total += curr->output_offset - prev->output_offset)
2532 < stub_group_size))
2533 curr = prev;
2534
2535 /* OK, the size from the start of CURR to the end is less
2536 than 240000 bytes and thus can be handled by one stub
2537 section. (or the tail section is itself larger than
2538 240000 bytes, in which case we may be toast.)
2539 We should really be keeping track of the total size of
2540 stubs added here, as stubs contribute to the final output
2541 section size. That's a little tricky, and this way will
2542 only break if stubs added total more than 22144 bytes, or
2543 2768 long branch stubs. It seems unlikely for more than
2544 2768 different functions to be called, especially from
2545 code only 240000 bytes long. This limit used to be
2546 250000, but c++ code tends to generate lots of little
2547 functions, and sometimes violated the assumption. */
2548 do
2549 {
2550 prev = PREV_SEC (tail);
2551 /* Set up this stub group. */
2552 htab->stub_group[tail->id].link_sec = curr;
2553 }
2554 while (tail != curr && (tail = prev) != NULL);
2555
2556 /* But wait, there's more! Input sections up to 240000
2557 bytes before the stub section can be handled by it too.
2558 Don't do this if we have a really large section after the
2559 stubs, as adding more stubs increases the chance that
2560 branches may not reach into the stub section. */
2561 if (!stubs_always_before_branch && !big_sec)
2562 {
2563 total = 0;
2564 while (prev != NULL
2565 && ((total += tail->output_offset - prev->output_offset)
2566 < stub_group_size))
2567 {
2568 tail = prev;
2569 prev = PREV_SEC (tail);
2570 htab->stub_group[tail->id].link_sec = curr;
2571 }
2572 }
2573 tail = prev;
2574 }
2575 }
2576 while (list-- != htab->input_list);
2577 free (htab->input_list);
2578 #undef PREV_SEC
2579 }
2580
2581 /* Read in all local syms for all input bfds, and create hash entries
2582 for export stubs if we are building a multi-subspace shared lib.
2583 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2584
2585 static int
2586 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2587 {
2588 unsigned int bfd_indx;
2589 Elf_Internal_Sym *local_syms, **all_local_syms;
2590 int stub_changed = 0;
2591 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2592
2593 if (htab == NULL)
2594 return -1;
2595
2596 /* We want to read in symbol extension records only once. To do this
2597 we need to read in the local symbols in parallel and save them for
2598 later use; so hold pointers to the local symbols in an array. */
2599 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2600 all_local_syms = bfd_zmalloc (amt);
2601 htab->all_local_syms = all_local_syms;
2602 if (all_local_syms == NULL)
2603 return -1;
2604
2605 /* Walk over all the input BFDs, swapping in local symbols.
2606 If we are creating a shared library, create hash entries for the
2607 export stubs. */
2608 for (bfd_indx = 0;
2609 input_bfd != NULL;
2610 input_bfd = input_bfd->link.next, bfd_indx++)
2611 {
2612 Elf_Internal_Shdr *symtab_hdr;
2613
2614 /* We'll need the symbol table in a second. */
2615 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2616 if (symtab_hdr->sh_info == 0)
2617 continue;
2618
2619 /* We need an array of the local symbols attached to the input bfd. */
2620 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2621 if (local_syms == NULL)
2622 {
2623 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2624 symtab_hdr->sh_info, 0,
2625 NULL, NULL, NULL);
2626 /* Cache them for elf_link_input_bfd. */
2627 symtab_hdr->contents = (unsigned char *) local_syms;
2628 }
2629 if (local_syms == NULL)
2630 return -1;
2631
2632 all_local_syms[bfd_indx] = local_syms;
2633
2634 if (bfd_link_pic (info) && htab->multi_subspace)
2635 {
2636 struct elf_link_hash_entry **eh_syms;
2637 struct elf_link_hash_entry **eh_symend;
2638 unsigned int symcount;
2639
2640 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2641 - symtab_hdr->sh_info);
2642 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2643 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2644
2645 /* Look through the global syms for functions; We need to
2646 build export stubs for all globally visible functions. */
2647 for (; eh_syms < eh_symend; eh_syms++)
2648 {
2649 struct elf32_hppa_link_hash_entry *hh;
2650
2651 hh = hppa_elf_hash_entry (*eh_syms);
2652
2653 while (hh->eh.root.type == bfd_link_hash_indirect
2654 || hh->eh.root.type == bfd_link_hash_warning)
2655 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2656
2657 /* At this point in the link, undefined syms have been
2658 resolved, so we need to check that the symbol was
2659 defined in this BFD. */
2660 if ((hh->eh.root.type == bfd_link_hash_defined
2661 || hh->eh.root.type == bfd_link_hash_defweak)
2662 && hh->eh.type == STT_FUNC
2663 && hh->eh.root.u.def.section->output_section != NULL
2664 && (hh->eh.root.u.def.section->output_section->owner
2665 == output_bfd)
2666 && hh->eh.root.u.def.section->owner == input_bfd
2667 && hh->eh.def_regular
2668 && !hh->eh.forced_local
2669 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2670 {
2671 asection *sec;
2672 const char *stub_name;
2673 struct elf32_hppa_stub_hash_entry *hsh;
2674
2675 sec = hh->eh.root.u.def.section;
2676 stub_name = hh_name (hh);
2677 hsh = hppa_stub_hash_lookup (&htab->bstab,
2678 stub_name,
2679 FALSE, FALSE);
2680 if (hsh == NULL)
2681 {
2682 hsh = hppa_add_stub (stub_name, sec, htab);
2683 if (!hsh)
2684 return -1;
2685
2686 hsh->target_value = hh->eh.root.u.def.value;
2687 hsh->target_section = hh->eh.root.u.def.section;
2688 hsh->stub_type = hppa_stub_export;
2689 hsh->hh = hh;
2690 stub_changed = 1;
2691 }
2692 else
2693 {
2694 /* xgettext:c-format */
2695 _bfd_error_handler (_("%pB: duplicate export stub %s"),
2696 input_bfd, stub_name);
2697 }
2698 }
2699 }
2700 }
2701 }
2702
2703 return stub_changed;
2704 }
2705
2706 /* Determine and set the size of the stub section for a final link.
2707
2708 The basic idea here is to examine all the relocations looking for
2709 PC-relative calls to a target that is unreachable with a "bl"
2710 instruction. */
2711
2712 bfd_boolean
2713 elf32_hppa_size_stubs
2714 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2715 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2716 asection * (*add_stub_section) (const char *, asection *),
2717 void (*layout_sections_again) (void))
2718 {
2719 bfd_size_type stub_group_size;
2720 bfd_boolean stubs_always_before_branch;
2721 bfd_boolean stub_changed;
2722 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2723
2724 if (htab == NULL)
2725 return FALSE;
2726
2727 /* Stash our params away. */
2728 htab->stub_bfd = stub_bfd;
2729 htab->multi_subspace = multi_subspace;
2730 htab->add_stub_section = add_stub_section;
2731 htab->layout_sections_again = layout_sections_again;
2732 stubs_always_before_branch = group_size < 0;
2733 if (group_size < 0)
2734 stub_group_size = -group_size;
2735 else
2736 stub_group_size = group_size;
2737 if (stub_group_size == 1)
2738 {
2739 /* Default values. */
2740 if (stubs_always_before_branch)
2741 {
2742 stub_group_size = 7680000;
2743 if (htab->has_17bit_branch || htab->multi_subspace)
2744 stub_group_size = 240000;
2745 if (htab->has_12bit_branch)
2746 stub_group_size = 7500;
2747 }
2748 else
2749 {
2750 stub_group_size = 6971392;
2751 if (htab->has_17bit_branch || htab->multi_subspace)
2752 stub_group_size = 217856;
2753 if (htab->has_12bit_branch)
2754 stub_group_size = 6808;
2755 }
2756 }
2757
2758 group_sections (htab, stub_group_size, stubs_always_before_branch);
2759
2760 switch (get_local_syms (output_bfd, info->input_bfds, info))
2761 {
2762 default:
2763 if (htab->all_local_syms)
2764 goto error_ret_free_local;
2765 return FALSE;
2766
2767 case 0:
2768 stub_changed = FALSE;
2769 break;
2770
2771 case 1:
2772 stub_changed = TRUE;
2773 break;
2774 }
2775
2776 while (1)
2777 {
2778 bfd *input_bfd;
2779 unsigned int bfd_indx;
2780 asection *stub_sec;
2781
2782 for (input_bfd = info->input_bfds, bfd_indx = 0;
2783 input_bfd != NULL;
2784 input_bfd = input_bfd->link.next, bfd_indx++)
2785 {
2786 Elf_Internal_Shdr *symtab_hdr;
2787 asection *section;
2788 Elf_Internal_Sym *local_syms;
2789
2790 /* We'll need the symbol table in a second. */
2791 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2792 if (symtab_hdr->sh_info == 0)
2793 continue;
2794
2795 local_syms = htab->all_local_syms[bfd_indx];
2796
2797 /* Walk over each section attached to the input bfd. */
2798 for (section = input_bfd->sections;
2799 section != NULL;
2800 section = section->next)
2801 {
2802 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2803
2804 /* If there aren't any relocs, then there's nothing more
2805 to do. */
2806 if ((section->flags & SEC_RELOC) == 0
2807 || (section->flags & SEC_ALLOC) == 0
2808 || (section->flags & SEC_LOAD) == 0
2809 || (section->flags & SEC_CODE) == 0
2810 || section->reloc_count == 0)
2811 continue;
2812
2813 /* If this section is a link-once section that will be
2814 discarded, then don't create any stubs. */
2815 if (section->output_section == NULL
2816 || section->output_section->owner != output_bfd)
2817 continue;
2818
2819 /* Get the relocs. */
2820 internal_relocs
2821 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2822 info->keep_memory);
2823 if (internal_relocs == NULL)
2824 goto error_ret_free_local;
2825
2826 /* Now examine each relocation. */
2827 irela = internal_relocs;
2828 irelaend = irela + section->reloc_count;
2829 for (; irela < irelaend; irela++)
2830 {
2831 unsigned int r_type, r_indx;
2832 enum elf32_hppa_stub_type stub_type;
2833 struct elf32_hppa_stub_hash_entry *hsh;
2834 asection *sym_sec;
2835 bfd_vma sym_value;
2836 bfd_vma destination;
2837 struct elf32_hppa_link_hash_entry *hh;
2838 char *stub_name;
2839 const asection *id_sec;
2840
2841 r_type = ELF32_R_TYPE (irela->r_info);
2842 r_indx = ELF32_R_SYM (irela->r_info);
2843
2844 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2845 {
2846 bfd_set_error (bfd_error_bad_value);
2847 error_ret_free_internal:
2848 if (elf_section_data (section)->relocs == NULL)
2849 free (internal_relocs);
2850 goto error_ret_free_local;
2851 }
2852
2853 /* Only look for stubs on call instructions. */
2854 if (r_type != (unsigned int) R_PARISC_PCREL12F
2855 && r_type != (unsigned int) R_PARISC_PCREL17F
2856 && r_type != (unsigned int) R_PARISC_PCREL22F)
2857 continue;
2858
2859 /* Now determine the call target, its name, value,
2860 section. */
2861 sym_sec = NULL;
2862 sym_value = 0;
2863 destination = -1;
2864 hh = NULL;
2865 if (r_indx < symtab_hdr->sh_info)
2866 {
2867 /* It's a local symbol. */
2868 Elf_Internal_Sym *sym;
2869 Elf_Internal_Shdr *hdr;
2870 unsigned int shndx;
2871
2872 sym = local_syms + r_indx;
2873 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2874 sym_value = sym->st_value;
2875 shndx = sym->st_shndx;
2876 if (shndx < elf_numsections (input_bfd))
2877 {
2878 hdr = elf_elfsections (input_bfd)[shndx];
2879 sym_sec = hdr->bfd_section;
2880 destination = (sym_value + irela->r_addend
2881 + sym_sec->output_offset
2882 + sym_sec->output_section->vma);
2883 }
2884 }
2885 else
2886 {
2887 /* It's an external symbol. */
2888 int e_indx;
2889
2890 e_indx = r_indx - symtab_hdr->sh_info;
2891 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2892
2893 while (hh->eh.root.type == bfd_link_hash_indirect
2894 || hh->eh.root.type == bfd_link_hash_warning)
2895 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2896
2897 if (hh->eh.root.type == bfd_link_hash_defined
2898 || hh->eh.root.type == bfd_link_hash_defweak)
2899 {
2900 sym_sec = hh->eh.root.u.def.section;
2901 sym_value = hh->eh.root.u.def.value;
2902 if (sym_sec->output_section != NULL)
2903 destination = (sym_value + irela->r_addend
2904 + sym_sec->output_offset
2905 + sym_sec->output_section->vma);
2906 }
2907 else if (hh->eh.root.type == bfd_link_hash_undefweak)
2908 {
2909 if (! bfd_link_pic (info))
2910 continue;
2911 }
2912 else if (hh->eh.root.type == bfd_link_hash_undefined)
2913 {
2914 if (! (info->unresolved_syms_in_objects == RM_IGNORE
2915 && (ELF_ST_VISIBILITY (hh->eh.other)
2916 == STV_DEFAULT)
2917 && hh->eh.type != STT_PARISC_MILLI))
2918 continue;
2919 }
2920 else
2921 {
2922 bfd_set_error (bfd_error_bad_value);
2923 goto error_ret_free_internal;
2924 }
2925 }
2926
2927 /* Determine what (if any) linker stub is needed. */
2928 stub_type = hppa_type_of_stub (section, irela, hh,
2929 destination, info);
2930 if (stub_type == hppa_stub_none)
2931 continue;
2932
2933 /* Support for grouping stub sections. */
2934 id_sec = htab->stub_group[section->id].link_sec;
2935
2936 /* Get the name of this stub. */
2937 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
2938 if (!stub_name)
2939 goto error_ret_free_internal;
2940
2941 hsh = hppa_stub_hash_lookup (&htab->bstab,
2942 stub_name,
2943 FALSE, FALSE);
2944 if (hsh != NULL)
2945 {
2946 /* The proper stub has already been created. */
2947 free (stub_name);
2948 continue;
2949 }
2950
2951 hsh = hppa_add_stub (stub_name, section, htab);
2952 if (hsh == NULL)
2953 {
2954 free (stub_name);
2955 goto error_ret_free_internal;
2956 }
2957
2958 hsh->target_value = sym_value;
2959 hsh->target_section = sym_sec;
2960 hsh->stub_type = stub_type;
2961 if (bfd_link_pic (info))
2962 {
2963 if (stub_type == hppa_stub_import)
2964 hsh->stub_type = hppa_stub_import_shared;
2965 else if (stub_type == hppa_stub_long_branch)
2966 hsh->stub_type = hppa_stub_long_branch_shared;
2967 }
2968 hsh->hh = hh;
2969 stub_changed = TRUE;
2970 }
2971
2972 /* We're done with the internal relocs, free them. */
2973 if (elf_section_data (section)->relocs == NULL)
2974 free (internal_relocs);
2975 }
2976 }
2977
2978 if (!stub_changed)
2979 break;
2980
2981 /* OK, we've added some stubs. Find out the new size of the
2982 stub sections. */
2983 for (stub_sec = htab->stub_bfd->sections;
2984 stub_sec != NULL;
2985 stub_sec = stub_sec->next)
2986 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
2987 stub_sec->size = 0;
2988
2989 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
2990
2991 /* Ask the linker to do its stuff. */
2992 (*htab->layout_sections_again) ();
2993 stub_changed = FALSE;
2994 }
2995
2996 free (htab->all_local_syms);
2997 return TRUE;
2998
2999 error_ret_free_local:
3000 free (htab->all_local_syms);
3001 return FALSE;
3002 }
3003
3004 /* For a final link, this function is called after we have sized the
3005 stubs to provide a value for __gp. */
3006
3007 bfd_boolean
3008 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
3009 {
3010 struct bfd_link_hash_entry *h;
3011 asection *sec = NULL;
3012 bfd_vma gp_val = 0;
3013
3014 h = bfd_link_hash_lookup (info->hash, "$global$", FALSE, FALSE, FALSE);
3015
3016 if (h != NULL
3017 && (h->type == bfd_link_hash_defined
3018 || h->type == bfd_link_hash_defweak))
3019 {
3020 gp_val = h->u.def.value;
3021 sec = h->u.def.section;
3022 }
3023 else
3024 {
3025 asection *splt = bfd_get_section_by_name (abfd, ".plt");
3026 asection *sgot = bfd_get_section_by_name (abfd, ".got");
3027
3028 /* Choose to point our LTP at, in this order, one of .plt, .got,
3029 or .data, if these sections exist. In the case of choosing
3030 .plt try to make the LTP ideal for addressing anywhere in the
3031 .plt or .got with a 14 bit signed offset. Typically, the end
3032 of the .plt is the start of the .got, so choose .plt + 0x2000
3033 if either the .plt or .got is larger than 0x2000. If both
3034 the .plt and .got are smaller than 0x2000, choose the end of
3035 the .plt section. */
3036 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3037 ? NULL : splt;
3038 if (sec != NULL)
3039 {
3040 gp_val = sec->size;
3041 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3042 {
3043 gp_val = 0x2000;
3044 }
3045 }
3046 else
3047 {
3048 sec = sgot;
3049 if (sec != NULL)
3050 {
3051 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3052 {
3053 /* We know we don't have a .plt. If .got is large,
3054 offset our LTP. */
3055 if (sec->size > 0x2000)
3056 gp_val = 0x2000;
3057 }
3058 }
3059 else
3060 {
3061 /* No .plt or .got. Who cares what the LTP is? */
3062 sec = bfd_get_section_by_name (abfd, ".data");
3063 }
3064 }
3065
3066 if (h != NULL)
3067 {
3068 h->type = bfd_link_hash_defined;
3069 h->u.def.value = gp_val;
3070 if (sec != NULL)
3071 h->u.def.section = sec;
3072 else
3073 h->u.def.section = bfd_abs_section_ptr;
3074 }
3075 }
3076
3077 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
3078 {
3079 if (sec != NULL && sec->output_section != NULL)
3080 gp_val += sec->output_section->vma + sec->output_offset;
3081
3082 elf_gp (abfd) = gp_val;
3083 }
3084 return TRUE;
3085 }
3086
3087 /* Build all the stubs associated with the current output file. The
3088 stubs are kept in a hash table attached to the main linker hash
3089 table. We also set up the .plt entries for statically linked PIC
3090 functions here. This function is called via hppaelf_finish in the
3091 linker. */
3092
3093 bfd_boolean
3094 elf32_hppa_build_stubs (struct bfd_link_info *info)
3095 {
3096 asection *stub_sec;
3097 struct bfd_hash_table *table;
3098 struct elf32_hppa_link_hash_table *htab;
3099
3100 htab = hppa_link_hash_table (info);
3101 if (htab == NULL)
3102 return FALSE;
3103
3104 for (stub_sec = htab->stub_bfd->sections;
3105 stub_sec != NULL;
3106 stub_sec = stub_sec->next)
3107 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
3108 && stub_sec->size != 0)
3109 {
3110 /* Allocate memory to hold the linker stubs. */
3111 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
3112 if (stub_sec->contents == NULL)
3113 return FALSE;
3114 stub_sec->size = 0;
3115 }
3116
3117 /* Build the stubs as directed by the stub hash table. */
3118 table = &htab->bstab;
3119 bfd_hash_traverse (table, hppa_build_one_stub, info);
3120
3121 return TRUE;
3122 }
3123
3124 /* Return the base vma address which should be subtracted from the real
3125 address when resolving a dtpoff relocation.
3126 This is PT_TLS segment p_vaddr. */
3127
3128 static bfd_vma
3129 dtpoff_base (struct bfd_link_info *info)
3130 {
3131 /* If tls_sec is NULL, we should have signalled an error already. */
3132 if (elf_hash_table (info)->tls_sec == NULL)
3133 return 0;
3134 return elf_hash_table (info)->tls_sec->vma;
3135 }
3136
3137 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3138
3139 static bfd_vma
3140 tpoff (struct bfd_link_info *info, bfd_vma address)
3141 {
3142 struct elf_link_hash_table *htab = elf_hash_table (info);
3143
3144 /* If tls_sec is NULL, we should have signalled an error already. */
3145 if (htab->tls_sec == NULL)
3146 return 0;
3147 /* hppa TLS ABI is variant I and static TLS block start just after
3148 tcbhead structure which has 2 pointer fields. */
3149 return (address - htab->tls_sec->vma
3150 + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3151 }
3152
3153 /* Perform a final link. */
3154
3155 static bfd_boolean
3156 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3157 {
3158 struct stat buf;
3159
3160 /* Invoke the regular ELF linker to do all the work. */
3161 if (!bfd_elf_final_link (abfd, info))
3162 return FALSE;
3163
3164 /* If we're producing a final executable, sort the contents of the
3165 unwind section. */
3166 if (bfd_link_relocatable (info))
3167 return TRUE;
3168
3169 /* Do not attempt to sort non-regular files. This is here
3170 especially for configure scripts and kernel builds which run
3171 tests with "ld [...] -o /dev/null". */
3172 if (stat (abfd->filename, &buf) != 0
3173 || !S_ISREG(buf.st_mode))
3174 return TRUE;
3175
3176 return elf_hppa_sort_unwind (abfd);
3177 }
3178
3179 /* Record the lowest address for the data and text segments. */
3180
3181 static void
3182 hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
3183 {
3184 struct elf32_hppa_link_hash_table *htab;
3185
3186 htab = (struct elf32_hppa_link_hash_table*) data;
3187 if (htab == NULL)
3188 return;
3189
3190 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3191 {
3192 bfd_vma value;
3193 Elf_Internal_Phdr *p;
3194
3195 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
3196 BFD_ASSERT (p != NULL);
3197 value = p->p_vaddr;
3198
3199 if ((section->flags & SEC_READONLY) != 0)
3200 {
3201 if (value < htab->text_segment_base)
3202 htab->text_segment_base = value;
3203 }
3204 else
3205 {
3206 if (value < htab->data_segment_base)
3207 htab->data_segment_base = value;
3208 }
3209 }
3210 }
3211
3212 /* Perform a relocation as part of a final link. */
3213
3214 static bfd_reloc_status_type
3215 final_link_relocate (asection *input_section,
3216 bfd_byte *contents,
3217 const Elf_Internal_Rela *rela,
3218 bfd_vma value,
3219 struct elf32_hppa_link_hash_table *htab,
3220 asection *sym_sec,
3221 struct elf32_hppa_link_hash_entry *hh,
3222 struct bfd_link_info *info)
3223 {
3224 unsigned int insn;
3225 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3226 unsigned int orig_r_type = r_type;
3227 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3228 int r_format = howto->bitsize;
3229 enum hppa_reloc_field_selector_type_alt r_field;
3230 bfd *input_bfd = input_section->owner;
3231 bfd_vma offset = rela->r_offset;
3232 bfd_vma max_branch_offset = 0;
3233 bfd_byte *hit_data = contents + offset;
3234 bfd_signed_vma addend = rela->r_addend;
3235 bfd_vma location;
3236 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3237 int val;
3238
3239 if (r_type == R_PARISC_NONE)
3240 return bfd_reloc_ok;
3241
3242 insn = bfd_get_32 (input_bfd, hit_data);
3243
3244 /* Find out where we are and where we're going. */
3245 location = (offset +
3246 input_section->output_offset +
3247 input_section->output_section->vma);
3248
3249 /* If we are not building a shared library, convert DLTIND relocs to
3250 DPREL relocs. */
3251 if (!bfd_link_pic (info))
3252 {
3253 switch (r_type)
3254 {
3255 case R_PARISC_DLTIND21L:
3256 case R_PARISC_TLS_GD21L:
3257 case R_PARISC_TLS_LDM21L:
3258 case R_PARISC_TLS_IE21L:
3259 r_type = R_PARISC_DPREL21L;
3260 break;
3261
3262 case R_PARISC_DLTIND14R:
3263 case R_PARISC_TLS_GD14R:
3264 case R_PARISC_TLS_LDM14R:
3265 case R_PARISC_TLS_IE14R:
3266 r_type = R_PARISC_DPREL14R;
3267 break;
3268
3269 case R_PARISC_DLTIND14F:
3270 r_type = R_PARISC_DPREL14F;
3271 break;
3272 }
3273 }
3274
3275 switch (r_type)
3276 {
3277 case R_PARISC_PCREL12F:
3278 case R_PARISC_PCREL17F:
3279 case R_PARISC_PCREL22F:
3280 /* If this call should go via the plt, find the import stub in
3281 the stub hash. */
3282 if (sym_sec == NULL
3283 || sym_sec->output_section == NULL
3284 || (hh != NULL
3285 && hh->eh.plt.offset != (bfd_vma) -1
3286 && hh->eh.dynindx != -1
3287 && !hh->plabel
3288 && (bfd_link_pic (info)
3289 || !hh->eh.def_regular
3290 || hh->eh.root.type == bfd_link_hash_defweak)))
3291 {
3292 hsh = hppa_get_stub_entry (input_section, sym_sec,
3293 hh, rela, htab);
3294 if (hsh != NULL)
3295 {
3296 value = (hsh->stub_offset
3297 + hsh->stub_sec->output_offset
3298 + hsh->stub_sec->output_section->vma);
3299 addend = 0;
3300 }
3301 else if (sym_sec == NULL && hh != NULL
3302 && hh->eh.root.type == bfd_link_hash_undefweak)
3303 {
3304 /* It's OK if undefined weak. Calls to undefined weak
3305 symbols behave as if the "called" function
3306 immediately returns. We can thus call to a weak
3307 function without first checking whether the function
3308 is defined. */
3309 value = location;
3310 addend = 8;
3311 }
3312 else
3313 return bfd_reloc_undefined;
3314 }
3315 /* Fall thru. */
3316
3317 case R_PARISC_PCREL21L:
3318 case R_PARISC_PCREL17C:
3319 case R_PARISC_PCREL17R:
3320 case R_PARISC_PCREL14R:
3321 case R_PARISC_PCREL14F:
3322 case R_PARISC_PCREL32:
3323 /* Make it a pc relative offset. */
3324 value -= location;
3325 addend -= 8;
3326 break;
3327
3328 case R_PARISC_DPREL21L:
3329 case R_PARISC_DPREL14R:
3330 case R_PARISC_DPREL14F:
3331 /* Convert instructions that use the linkage table pointer (r19) to
3332 instructions that use the global data pointer (dp). This is the
3333 most efficient way of using PIC code in an incomplete executable,
3334 but the user must follow the standard runtime conventions for
3335 accessing data for this to work. */
3336 if (orig_r_type != r_type)
3337 {
3338 if (r_type == R_PARISC_DPREL21L)
3339 {
3340 /* GCC sometimes uses a register other than r19 for the
3341 operation, so we must convert any addil instruction
3342 that uses this relocation. */
3343 if ((insn & 0xfc000000) == OP_ADDIL << 26)
3344 insn = ADDIL_DP;
3345 else
3346 /* We must have a ldil instruction. It's too hard to find
3347 and convert the associated add instruction, so issue an
3348 error. */
3349 _bfd_error_handler
3350 /* xgettext:c-format */
3351 (_("%pB(%pA+%#" PRIx64 "): %s fixup for insn %#x "
3352 "is not supported in a non-shared link"),
3353 input_bfd,
3354 input_section,
3355 (uint64_t) offset,
3356 howto->name,
3357 insn);
3358 }
3359 else if (r_type == R_PARISC_DPREL14F)
3360 {
3361 /* This must be a format 1 load/store. Change the base
3362 register to dp. */
3363 insn = (insn & 0xfc1ffff) | (27 << 21);
3364 }
3365 }
3366
3367 /* For all the DP relative relocations, we need to examine the symbol's
3368 section. If it has no section or if it's a code section, then
3369 "data pointer relative" makes no sense. In that case we don't
3370 adjust the "value", and for 21 bit addil instructions, we change the
3371 source addend register from %dp to %r0. This situation commonly
3372 arises for undefined weak symbols and when a variable's "constness"
3373 is declared differently from the way the variable is defined. For
3374 instance: "extern int foo" with foo defined as "const int foo". */
3375 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3376 {
3377 if ((insn & ((0x3fu << 26) | (0x1f << 21)))
3378 == ((OP_ADDIL << 26) | (27 << 21)))
3379 {
3380 insn &= ~ (0x1f << 21);
3381 }
3382 /* Now try to make things easy for the dynamic linker. */
3383
3384 break;
3385 }
3386 /* Fall thru. */
3387
3388 case R_PARISC_DLTIND21L:
3389 case R_PARISC_DLTIND14R:
3390 case R_PARISC_DLTIND14F:
3391 case R_PARISC_TLS_GD21L:
3392 case R_PARISC_TLS_LDM21L:
3393 case R_PARISC_TLS_IE21L:
3394 case R_PARISC_TLS_GD14R:
3395 case R_PARISC_TLS_LDM14R:
3396 case R_PARISC_TLS_IE14R:
3397 value -= elf_gp (input_section->output_section->owner);
3398 break;
3399
3400 case R_PARISC_SEGREL32:
3401 if ((sym_sec->flags & SEC_CODE) != 0)
3402 value -= htab->text_segment_base;
3403 else
3404 value -= htab->data_segment_base;
3405 break;
3406
3407 default:
3408 break;
3409 }
3410
3411 switch (r_type)
3412 {
3413 case R_PARISC_DIR32:
3414 case R_PARISC_DIR14F:
3415 case R_PARISC_DIR17F:
3416 case R_PARISC_PCREL17C:
3417 case R_PARISC_PCREL14F:
3418 case R_PARISC_PCREL32:
3419 case R_PARISC_DPREL14F:
3420 case R_PARISC_PLABEL32:
3421 case R_PARISC_DLTIND14F:
3422 case R_PARISC_SEGBASE:
3423 case R_PARISC_SEGREL32:
3424 case R_PARISC_TLS_DTPMOD32:
3425 case R_PARISC_TLS_DTPOFF32:
3426 case R_PARISC_TLS_TPREL32:
3427 r_field = e_fsel;
3428 break;
3429
3430 case R_PARISC_DLTIND21L:
3431 case R_PARISC_PCREL21L:
3432 case R_PARISC_PLABEL21L:
3433 r_field = e_lsel;
3434 break;
3435
3436 case R_PARISC_DIR21L:
3437 case R_PARISC_DPREL21L:
3438 case R_PARISC_TLS_GD21L:
3439 case R_PARISC_TLS_LDM21L:
3440 case R_PARISC_TLS_LDO21L:
3441 case R_PARISC_TLS_IE21L:
3442 case R_PARISC_TLS_LE21L:
3443 r_field = e_lrsel;
3444 break;
3445
3446 case R_PARISC_PCREL17R:
3447 case R_PARISC_PCREL14R:
3448 case R_PARISC_PLABEL14R:
3449 case R_PARISC_DLTIND14R:
3450 r_field = e_rsel;
3451 break;
3452
3453 case R_PARISC_DIR17R:
3454 case R_PARISC_DIR14R:
3455 case R_PARISC_DPREL14R:
3456 case R_PARISC_TLS_GD14R:
3457 case R_PARISC_TLS_LDM14R:
3458 case R_PARISC_TLS_LDO14R:
3459 case R_PARISC_TLS_IE14R:
3460 case R_PARISC_TLS_LE14R:
3461 r_field = e_rrsel;
3462 break;
3463
3464 case R_PARISC_PCREL12F:
3465 case R_PARISC_PCREL17F:
3466 case R_PARISC_PCREL22F:
3467 r_field = e_fsel;
3468
3469 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3470 {
3471 max_branch_offset = (1 << (17-1)) << 2;
3472 }
3473 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3474 {
3475 max_branch_offset = (1 << (12-1)) << 2;
3476 }
3477 else
3478 {
3479 max_branch_offset = (1 << (22-1)) << 2;
3480 }
3481
3482 /* sym_sec is NULL on undefined weak syms or when shared on
3483 undefined syms. We've already checked for a stub for the
3484 shared undefined case. */
3485 if (sym_sec == NULL)
3486 break;
3487
3488 /* If the branch is out of reach, then redirect the
3489 call to the local stub for this function. */
3490 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3491 {
3492 hsh = hppa_get_stub_entry (input_section, sym_sec,
3493 hh, rela, htab);
3494 if (hsh == NULL)
3495 return bfd_reloc_undefined;
3496
3497 /* Munge up the value and addend so that we call the stub
3498 rather than the procedure directly. */
3499 value = (hsh->stub_offset
3500 + hsh->stub_sec->output_offset
3501 + hsh->stub_sec->output_section->vma
3502 - location);
3503 addend = -8;
3504 }
3505 break;
3506
3507 /* Something we don't know how to handle. */
3508 default:
3509 return bfd_reloc_notsupported;
3510 }
3511
3512 /* Make sure we can reach the stub. */
3513 if (max_branch_offset != 0
3514 && value + addend + max_branch_offset >= 2*max_branch_offset)
3515 {
3516 _bfd_error_handler
3517 /* xgettext:c-format */
3518 (_("%pB(%pA+%#" PRIx64 "): cannot reach %s, "
3519 "recompile with -ffunction-sections"),
3520 input_bfd,
3521 input_section,
3522 (uint64_t) offset,
3523 hsh->bh_root.string);
3524 bfd_set_error (bfd_error_bad_value);
3525 return bfd_reloc_notsupported;
3526 }
3527
3528 val = hppa_field_adjust (value, addend, r_field);
3529
3530 switch (r_type)
3531 {
3532 case R_PARISC_PCREL12F:
3533 case R_PARISC_PCREL17C:
3534 case R_PARISC_PCREL17F:
3535 case R_PARISC_PCREL17R:
3536 case R_PARISC_PCREL22F:
3537 case R_PARISC_DIR17F:
3538 case R_PARISC_DIR17R:
3539 /* This is a branch. Divide the offset by four.
3540 Note that we need to decide whether it's a branch or
3541 otherwise by inspecting the reloc. Inspecting insn won't
3542 work as insn might be from a .word directive. */
3543 val >>= 2;
3544 break;
3545
3546 default:
3547 break;
3548 }
3549
3550 insn = hppa_rebuild_insn (insn, val, r_format);
3551
3552 /* Update the instruction word. */
3553 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3554 return bfd_reloc_ok;
3555 }
3556
3557 /* Relocate an HPPA ELF section. */
3558
3559 static bfd_boolean
3560 elf32_hppa_relocate_section (bfd *output_bfd,
3561 struct bfd_link_info *info,
3562 bfd *input_bfd,
3563 asection *input_section,
3564 bfd_byte *contents,
3565 Elf_Internal_Rela *relocs,
3566 Elf_Internal_Sym *local_syms,
3567 asection **local_sections)
3568 {
3569 bfd_vma *local_got_offsets;
3570 struct elf32_hppa_link_hash_table *htab;
3571 Elf_Internal_Shdr *symtab_hdr;
3572 Elf_Internal_Rela *rela;
3573 Elf_Internal_Rela *relend;
3574
3575 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3576
3577 htab = hppa_link_hash_table (info);
3578 if (htab == NULL)
3579 return FALSE;
3580
3581 local_got_offsets = elf_local_got_offsets (input_bfd);
3582
3583 rela = relocs;
3584 relend = relocs + input_section->reloc_count;
3585 for (; rela < relend; rela++)
3586 {
3587 unsigned int r_type;
3588 reloc_howto_type *howto;
3589 unsigned int r_symndx;
3590 struct elf32_hppa_link_hash_entry *hh;
3591 Elf_Internal_Sym *sym;
3592 asection *sym_sec;
3593 bfd_vma relocation;
3594 bfd_reloc_status_type rstatus;
3595 const char *sym_name;
3596 bfd_boolean plabel;
3597 bfd_boolean warned_undef;
3598
3599 r_type = ELF32_R_TYPE (rela->r_info);
3600 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3601 {
3602 bfd_set_error (bfd_error_bad_value);
3603 return FALSE;
3604 }
3605 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3606 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3607 continue;
3608
3609 r_symndx = ELF32_R_SYM (rela->r_info);
3610 hh = NULL;
3611 sym = NULL;
3612 sym_sec = NULL;
3613 warned_undef = FALSE;
3614 if (r_symndx < symtab_hdr->sh_info)
3615 {
3616 /* This is a local symbol, h defaults to NULL. */
3617 sym = local_syms + r_symndx;
3618 sym_sec = local_sections[r_symndx];
3619 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3620 }
3621 else
3622 {
3623 struct elf_link_hash_entry *eh;
3624 bfd_boolean unresolved_reloc, ignored;
3625 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3626
3627 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3628 r_symndx, symtab_hdr, sym_hashes,
3629 eh, sym_sec, relocation,
3630 unresolved_reloc, warned_undef,
3631 ignored);
3632
3633 if (!bfd_link_relocatable (info)
3634 && relocation == 0
3635 && eh->root.type != bfd_link_hash_defined
3636 && eh->root.type != bfd_link_hash_defweak
3637 && eh->root.type != bfd_link_hash_undefweak)
3638 {
3639 if (info->unresolved_syms_in_objects == RM_IGNORE
3640 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3641 && eh->type == STT_PARISC_MILLI)
3642 {
3643 (*info->callbacks->undefined_symbol)
3644 (info, eh_name (eh), input_bfd,
3645 input_section, rela->r_offset, FALSE);
3646 warned_undef = TRUE;
3647 }
3648 }
3649 hh = hppa_elf_hash_entry (eh);
3650 }
3651
3652 if (sym_sec != NULL && discarded_section (sym_sec))
3653 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3654 rela, 1, relend,
3655 elf_hppa_howto_table + r_type, 0,
3656 contents);
3657
3658 if (bfd_link_relocatable (info))
3659 continue;
3660
3661 /* Do any required modifications to the relocation value, and
3662 determine what types of dynamic info we need to output, if
3663 any. */
3664 plabel = 0;
3665 switch (r_type)
3666 {
3667 case R_PARISC_DLTIND14F:
3668 case R_PARISC_DLTIND14R:
3669 case R_PARISC_DLTIND21L:
3670 {
3671 bfd_vma off;
3672 bfd_boolean do_got = FALSE;
3673 bfd_boolean reloc = bfd_link_pic (info);
3674
3675 /* Relocation is to the entry for this symbol in the
3676 global offset table. */
3677 if (hh != NULL)
3678 {
3679 bfd_boolean dyn;
3680
3681 off = hh->eh.got.offset;
3682 dyn = htab->etab.dynamic_sections_created;
3683 reloc = (!UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh)
3684 && (reloc
3685 || (hh->eh.dynindx != -1
3686 && !SYMBOL_REFERENCES_LOCAL (info, &hh->eh))));
3687 if (!reloc
3688 || !WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
3689 bfd_link_pic (info),
3690 &hh->eh))
3691 {
3692 /* If we aren't going to call finish_dynamic_symbol,
3693 then we need to handle initialisation of the .got
3694 entry and create needed relocs here. Since the
3695 offset must always be a multiple of 4, we use the
3696 least significant bit to record whether we have
3697 initialised it already. */
3698 if ((off & 1) != 0)
3699 off &= ~1;
3700 else
3701 {
3702 hh->eh.got.offset |= 1;
3703 do_got = TRUE;
3704 }
3705 }
3706 }
3707 else
3708 {
3709 /* Local symbol case. */
3710 if (local_got_offsets == NULL)
3711 abort ();
3712
3713 off = local_got_offsets[r_symndx];
3714
3715 /* The offset must always be a multiple of 4. We use
3716 the least significant bit to record whether we have
3717 already generated the necessary reloc. */
3718 if ((off & 1) != 0)
3719 off &= ~1;
3720 else
3721 {
3722 local_got_offsets[r_symndx] |= 1;
3723 do_got = TRUE;
3724 }
3725 }
3726
3727 if (do_got)
3728 {
3729 if (reloc)
3730 {
3731 /* Output a dynamic relocation for this GOT entry.
3732 In this case it is relative to the base of the
3733 object because the symbol index is zero. */
3734 Elf_Internal_Rela outrel;
3735 bfd_byte *loc;
3736 asection *sec = htab->etab.srelgot;
3737
3738 outrel.r_offset = (off
3739 + htab->etab.sgot->output_offset
3740 + htab->etab.sgot->output_section->vma);
3741 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3742 outrel.r_addend = relocation;
3743 loc = sec->contents;
3744 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3745 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3746 }
3747 else
3748 bfd_put_32 (output_bfd, relocation,
3749 htab->etab.sgot->contents + off);
3750 }
3751
3752 if (off >= (bfd_vma) -2)
3753 abort ();
3754
3755 /* Add the base of the GOT to the relocation value. */
3756 relocation = (off
3757 + htab->etab.sgot->output_offset
3758 + htab->etab.sgot->output_section->vma);
3759 }
3760 break;
3761
3762 case R_PARISC_SEGREL32:
3763 /* If this is the first SEGREL relocation, then initialize
3764 the segment base values. */
3765 if (htab->text_segment_base == (bfd_vma) -1)
3766 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3767 break;
3768
3769 case R_PARISC_PLABEL14R:
3770 case R_PARISC_PLABEL21L:
3771 case R_PARISC_PLABEL32:
3772 if (htab->etab.dynamic_sections_created)
3773 {
3774 bfd_vma off;
3775 bfd_boolean do_plt = 0;
3776 /* If we have a global symbol with a PLT slot, then
3777 redirect this relocation to it. */
3778 if (hh != NULL)
3779 {
3780 off = hh->eh.plt.offset;
3781 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1,
3782 bfd_link_pic (info),
3783 &hh->eh))
3784 {
3785 /* In a non-shared link, adjust_dynamic_symbol
3786 isn't called for symbols forced local. We
3787 need to write out the plt entry here. */
3788 if ((off & 1) != 0)
3789 off &= ~1;
3790 else
3791 {
3792 hh->eh.plt.offset |= 1;
3793 do_plt = 1;
3794 }
3795 }
3796 }
3797 else
3798 {
3799 bfd_vma *local_plt_offsets;
3800
3801 if (local_got_offsets == NULL)
3802 abort ();
3803
3804 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3805 off = local_plt_offsets[r_symndx];
3806
3807 /* As for the local .got entry case, we use the last
3808 bit to record whether we've already initialised
3809 this local .plt entry. */
3810 if ((off & 1) != 0)
3811 off &= ~1;
3812 else
3813 {
3814 local_plt_offsets[r_symndx] |= 1;
3815 do_plt = 1;
3816 }
3817 }
3818
3819 if (do_plt)
3820 {
3821 if (bfd_link_pic (info))
3822 {
3823 /* Output a dynamic IPLT relocation for this
3824 PLT entry. */
3825 Elf_Internal_Rela outrel;
3826 bfd_byte *loc;
3827 asection *s = htab->etab.srelplt;
3828
3829 outrel.r_offset = (off
3830 + htab->etab.splt->output_offset
3831 + htab->etab.splt->output_section->vma);
3832 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3833 outrel.r_addend = relocation;
3834 loc = s->contents;
3835 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3836 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3837 }
3838 else
3839 {
3840 bfd_put_32 (output_bfd,
3841 relocation,
3842 htab->etab.splt->contents + off);
3843 bfd_put_32 (output_bfd,
3844 elf_gp (htab->etab.splt->output_section->owner),
3845 htab->etab.splt->contents + off + 4);
3846 }
3847 }
3848
3849 if (off >= (bfd_vma) -2)
3850 abort ();
3851
3852 /* PLABELs contain function pointers. Relocation is to
3853 the entry for the function in the .plt. The magic +2
3854 offset signals to $$dyncall that the function pointer
3855 is in the .plt and thus has a gp pointer too.
3856 Exception: Undefined PLABELs should have a value of
3857 zero. */
3858 if (hh == NULL
3859 || (hh->eh.root.type != bfd_link_hash_undefweak
3860 && hh->eh.root.type != bfd_link_hash_undefined))
3861 {
3862 relocation = (off
3863 + htab->etab.splt->output_offset
3864 + htab->etab.splt->output_section->vma
3865 + 2);
3866 }
3867 plabel = 1;
3868 }
3869 /* Fall through. */
3870
3871 case R_PARISC_DIR17F:
3872 case R_PARISC_DIR17R:
3873 case R_PARISC_DIR14F:
3874 case R_PARISC_DIR14R:
3875 case R_PARISC_DIR21L:
3876 case R_PARISC_DPREL14F:
3877 case R_PARISC_DPREL14R:
3878 case R_PARISC_DPREL21L:
3879 case R_PARISC_DIR32:
3880 if ((input_section->flags & SEC_ALLOC) == 0)
3881 break;
3882
3883 if (bfd_link_pic (info)
3884 ? ((hh == NULL
3885 || hh->dyn_relocs != NULL)
3886 && ((hh != NULL && pc_dynrelocs (hh))
3887 || IS_ABSOLUTE_RELOC (r_type)))
3888 : (hh != NULL
3889 && hh->dyn_relocs != NULL))
3890 {
3891 Elf_Internal_Rela outrel;
3892 bfd_boolean skip;
3893 asection *sreloc;
3894 bfd_byte *loc;
3895
3896 /* When generating a shared object, these relocations
3897 are copied into the output file to be resolved at run
3898 time. */
3899
3900 outrel.r_addend = rela->r_addend;
3901 outrel.r_offset =
3902 _bfd_elf_section_offset (output_bfd, info, input_section,
3903 rela->r_offset);
3904 skip = (outrel.r_offset == (bfd_vma) -1
3905 || outrel.r_offset == (bfd_vma) -2);
3906 outrel.r_offset += (input_section->output_offset
3907 + input_section->output_section->vma);
3908
3909 if (skip)
3910 {
3911 memset (&outrel, 0, sizeof (outrel));
3912 }
3913 else if (hh != NULL
3914 && hh->eh.dynindx != -1
3915 && (plabel
3916 || !IS_ABSOLUTE_RELOC (r_type)
3917 || !bfd_link_pic (info)
3918 || !SYMBOLIC_BIND (info, &hh->eh)
3919 || !hh->eh.def_regular))
3920 {
3921 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
3922 }
3923 else /* It's a local symbol, or one marked to become local. */
3924 {
3925 int indx = 0;
3926
3927 /* Add the absolute offset of the symbol. */
3928 outrel.r_addend += relocation;
3929
3930 /* Global plabels need to be processed by the
3931 dynamic linker so that functions have at most one
3932 fptr. For this reason, we need to differentiate
3933 between global and local plabels, which we do by
3934 providing the function symbol for a global plabel
3935 reloc, and no symbol for local plabels. */
3936 if (! plabel
3937 && sym_sec != NULL
3938 && sym_sec->output_section != NULL
3939 && ! bfd_is_abs_section (sym_sec))
3940 {
3941 asection *osec;
3942
3943 osec = sym_sec->output_section;
3944 indx = elf_section_data (osec)->dynindx;
3945 if (indx == 0)
3946 {
3947 osec = htab->etab.text_index_section;
3948 indx = elf_section_data (osec)->dynindx;
3949 }
3950 BFD_ASSERT (indx != 0);
3951
3952 /* We are turning this relocation into one
3953 against a section symbol, so subtract out the
3954 output section's address but not the offset
3955 of the input section in the output section. */
3956 outrel.r_addend -= osec->vma;
3957 }
3958
3959 outrel.r_info = ELF32_R_INFO (indx, r_type);
3960 }
3961 sreloc = elf_section_data (input_section)->sreloc;
3962 if (sreloc == NULL)
3963 abort ();
3964
3965 loc = sreloc->contents;
3966 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3967 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3968 }
3969 break;
3970
3971 case R_PARISC_TLS_LDM21L:
3972 case R_PARISC_TLS_LDM14R:
3973 {
3974 bfd_vma off;
3975
3976 off = htab->tls_ldm_got.offset;
3977 if (off & 1)
3978 off &= ~1;
3979 else
3980 {
3981 Elf_Internal_Rela outrel;
3982 bfd_byte *loc;
3983
3984 outrel.r_offset = (off
3985 + htab->etab.sgot->output_section->vma
3986 + htab->etab.sgot->output_offset);
3987 outrel.r_addend = 0;
3988 outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
3989 loc = htab->etab.srelgot->contents;
3990 loc += htab->etab.srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
3991
3992 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3993 htab->tls_ldm_got.offset |= 1;
3994 }
3995
3996 /* Add the base of the GOT to the relocation value. */
3997 relocation = (off
3998 + htab->etab.sgot->output_offset
3999 + htab->etab.sgot->output_section->vma);
4000
4001 break;
4002 }
4003
4004 case R_PARISC_TLS_LDO21L:
4005 case R_PARISC_TLS_LDO14R:
4006 relocation -= dtpoff_base (info);
4007 break;
4008
4009 case R_PARISC_TLS_GD21L:
4010 case R_PARISC_TLS_GD14R:
4011 case R_PARISC_TLS_IE21L:
4012 case R_PARISC_TLS_IE14R:
4013 {
4014 bfd_vma off;
4015 int indx;
4016 char tls_type;
4017
4018 indx = 0;
4019 if (hh != NULL)
4020 {
4021 if (!htab->etab.dynamic_sections_created
4022 || hh->eh.dynindx == -1
4023 || SYMBOL_REFERENCES_LOCAL (info, &hh->eh)
4024 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh))
4025 /* This is actually a static link, or it is a
4026 -Bsymbolic link and the symbol is defined
4027 locally, or the symbol was forced to be local
4028 because of a version file. */
4029 ;
4030 else
4031 indx = hh->eh.dynindx;
4032 off = hh->eh.got.offset;
4033 tls_type = hh->tls_type;
4034 }
4035 else
4036 {
4037 off = local_got_offsets[r_symndx];
4038 tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4039 }
4040
4041 if (tls_type == GOT_UNKNOWN)
4042 abort ();
4043
4044 if ((off & 1) != 0)
4045 off &= ~1;
4046 else
4047 {
4048 bfd_boolean need_relocs = FALSE;
4049 Elf_Internal_Rela outrel;
4050 bfd_byte *loc = NULL;
4051 int cur_off = off;
4052
4053 /* The GOT entries have not been initialized yet. Do it
4054 now, and emit any relocations. If both an IE GOT and a
4055 GD GOT are necessary, we emit the GD first. */
4056
4057 if (indx != 0
4058 || (bfd_link_dll (info)
4059 && (hh == NULL
4060 || !UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh))))
4061 {
4062 need_relocs = TRUE;
4063 loc = htab->etab.srelgot->contents;
4064 loc += (htab->etab.srelgot->reloc_count
4065 * sizeof (Elf32_External_Rela));
4066 }
4067
4068 if (tls_type & GOT_TLS_GD)
4069 {
4070 if (need_relocs)
4071 {
4072 outrel.r_offset
4073 = (cur_off
4074 + htab->etab.sgot->output_section->vma
4075 + htab->etab.sgot->output_offset);
4076 outrel.r_info
4077 = ELF32_R_INFO (indx, R_PARISC_TLS_DTPMOD32);
4078 outrel.r_addend = 0;
4079 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4080 htab->etab.srelgot->reloc_count++;
4081 loc += sizeof (Elf32_External_Rela);
4082 bfd_put_32 (output_bfd, 0,
4083 htab->etab.sgot->contents + cur_off);
4084 }
4085 else
4086 /* If we are not emitting relocations for a
4087 general dynamic reference, then we must be in a
4088 static link or an executable link with the
4089 symbol binding locally. Mark it as belonging
4090 to module 1, the executable. */
4091 bfd_put_32 (output_bfd, 1,
4092 htab->etab.sgot->contents + cur_off);
4093
4094 if (indx != 0)
4095 {
4096 outrel.r_info
4097 = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4098 outrel.r_offset += 4;
4099 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4100 htab->etab.srelgot->reloc_count++;
4101 loc += sizeof (Elf32_External_Rela);
4102 bfd_put_32 (output_bfd, 0,
4103 htab->etab.sgot->contents + cur_off + 4);
4104 }
4105 else
4106 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4107 htab->etab.sgot->contents + cur_off + 4);
4108 cur_off += 8;
4109 }
4110
4111 if (tls_type & GOT_TLS_IE)
4112 {
4113 if (need_relocs
4114 && !(bfd_link_executable (info)
4115 && SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4116 {
4117 outrel.r_offset
4118 = (cur_off
4119 + htab->etab.sgot->output_section->vma
4120 + htab->etab.sgot->output_offset);
4121 outrel.r_info = ELF32_R_INFO (indx,
4122 R_PARISC_TLS_TPREL32);
4123 if (indx == 0)
4124 outrel.r_addend = relocation - dtpoff_base (info);
4125 else
4126 outrel.r_addend = 0;
4127 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4128 htab->etab.srelgot->reloc_count++;
4129 loc += sizeof (Elf32_External_Rela);
4130 }
4131 else
4132 bfd_put_32 (output_bfd, tpoff (info, relocation),
4133 htab->etab.sgot->contents + cur_off);
4134 cur_off += 4;
4135 }
4136
4137 if (hh != NULL)
4138 hh->eh.got.offset |= 1;
4139 else
4140 local_got_offsets[r_symndx] |= 1;
4141 }
4142
4143 if ((tls_type & GOT_NORMAL) != 0
4144 && (tls_type & (GOT_TLS_GD | GOT_TLS_LDM | GOT_TLS_IE)) != 0)
4145 {
4146 if (hh != NULL)
4147 _bfd_error_handler (_("%s has both normal and TLS relocs"),
4148 hh_name (hh));
4149 else
4150 {
4151 Elf_Internal_Sym *isym
4152 = bfd_sym_from_r_symndx (&htab->sym_cache,
4153 input_bfd, r_symndx);
4154 if (isym == NULL)
4155 return FALSE;
4156 sym_name
4157 = bfd_elf_string_from_elf_section (input_bfd,
4158 symtab_hdr->sh_link,
4159 isym->st_name);
4160 if (sym_name == NULL)
4161 return FALSE;
4162 if (*sym_name == '\0')
4163 sym_name = bfd_section_name (sym_sec);
4164 _bfd_error_handler
4165 (_("%pB:%s has both normal and TLS relocs"),
4166 input_bfd, sym_name);
4167 }
4168 bfd_set_error (bfd_error_bad_value);
4169 return FALSE;
4170 }
4171
4172 if ((tls_type & GOT_TLS_GD)
4173 && r_type != R_PARISC_TLS_GD21L
4174 && r_type != R_PARISC_TLS_GD14R)
4175 off += 2 * GOT_ENTRY_SIZE;
4176
4177 /* Add the base of the GOT to the relocation value. */
4178 relocation = (off
4179 + htab->etab.sgot->output_offset
4180 + htab->etab.sgot->output_section->vma);
4181
4182 break;
4183 }
4184
4185 case R_PARISC_TLS_LE21L:
4186 case R_PARISC_TLS_LE14R:
4187 {
4188 relocation = tpoff (info, relocation);
4189 break;
4190 }
4191 break;
4192
4193 default:
4194 break;
4195 }
4196
4197 rstatus = final_link_relocate (input_section, contents, rela, relocation,
4198 htab, sym_sec, hh, info);
4199
4200 if (rstatus == bfd_reloc_ok)
4201 continue;
4202
4203 if (hh != NULL)
4204 sym_name = hh_name (hh);
4205 else
4206 {
4207 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4208 symtab_hdr->sh_link,
4209 sym->st_name);
4210 if (sym_name == NULL)
4211 return FALSE;
4212 if (*sym_name == '\0')
4213 sym_name = bfd_section_name (sym_sec);
4214 }
4215
4216 howto = elf_hppa_howto_table + r_type;
4217
4218 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4219 {
4220 if (rstatus == bfd_reloc_notsupported || !warned_undef)
4221 {
4222 _bfd_error_handler
4223 /* xgettext:c-format */
4224 (_("%pB(%pA+%#" PRIx64 "): cannot handle %s for %s"),
4225 input_bfd,
4226 input_section,
4227 (uint64_t) rela->r_offset,
4228 howto->name,
4229 sym_name);
4230 bfd_set_error (bfd_error_bad_value);
4231 return FALSE;
4232 }
4233 }
4234 else
4235 (*info->callbacks->reloc_overflow)
4236 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4237 (bfd_vma) 0, input_bfd, input_section, rela->r_offset);
4238 }
4239
4240 return TRUE;
4241 }
4242
4243 /* Finish up dynamic symbol handling. We set the contents of various
4244 dynamic sections here. */
4245
4246 static bfd_boolean
4247 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4248 struct bfd_link_info *info,
4249 struct elf_link_hash_entry *eh,
4250 Elf_Internal_Sym *sym)
4251 {
4252 struct elf32_hppa_link_hash_table *htab;
4253 Elf_Internal_Rela rela;
4254 bfd_byte *loc;
4255
4256 htab = hppa_link_hash_table (info);
4257 if (htab == NULL)
4258 return FALSE;
4259
4260 if (eh->plt.offset != (bfd_vma) -1)
4261 {
4262 bfd_vma value;
4263
4264 if (eh->plt.offset & 1)
4265 abort ();
4266
4267 /* This symbol has an entry in the procedure linkage table. Set
4268 it up.
4269
4270 The format of a plt entry is
4271 <funcaddr>
4272 <__gp>
4273 */
4274 value = 0;
4275 if (eh->root.type == bfd_link_hash_defined
4276 || eh->root.type == bfd_link_hash_defweak)
4277 {
4278 value = eh->root.u.def.value;
4279 if (eh->root.u.def.section->output_section != NULL)
4280 value += (eh->root.u.def.section->output_offset
4281 + eh->root.u.def.section->output_section->vma);
4282 }
4283
4284 /* Create a dynamic IPLT relocation for this entry. */
4285 rela.r_offset = (eh->plt.offset
4286 + htab->etab.splt->output_offset
4287 + htab->etab.splt->output_section->vma);
4288 if (eh->dynindx != -1)
4289 {
4290 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4291 rela.r_addend = 0;
4292 }
4293 else
4294 {
4295 /* This symbol has been marked to become local, and is
4296 used by a plabel so must be kept in the .plt. */
4297 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4298 rela.r_addend = value;
4299 }
4300
4301 loc = htab->etab.srelplt->contents;
4302 loc += htab->etab.srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4303 bfd_elf32_swap_reloca_out (htab->etab.splt->output_section->owner, &rela, loc);
4304
4305 if (!eh->def_regular)
4306 {
4307 /* Mark the symbol as undefined, rather than as defined in
4308 the .plt section. Leave the value alone. */
4309 sym->st_shndx = SHN_UNDEF;
4310 }
4311 }
4312
4313 if (eh->got.offset != (bfd_vma) -1
4314 && (hppa_elf_hash_entry (eh)->tls_type & GOT_NORMAL) != 0
4315 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
4316 {
4317 bfd_boolean is_dyn = (eh->dynindx != -1
4318 && !SYMBOL_REFERENCES_LOCAL (info, eh));
4319
4320 if (is_dyn || bfd_link_pic (info))
4321 {
4322 /* This symbol has an entry in the global offset table. Set
4323 it up. */
4324
4325 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4326 + htab->etab.sgot->output_offset
4327 + htab->etab.sgot->output_section->vma);
4328
4329 /* If this is a -Bsymbolic link and the symbol is defined
4330 locally or was forced to be local because of a version
4331 file, we just want to emit a RELATIVE reloc. The entry
4332 in the global offset table will already have been
4333 initialized in the relocate_section function. */
4334 if (!is_dyn)
4335 {
4336 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4337 rela.r_addend = (eh->root.u.def.value
4338 + eh->root.u.def.section->output_offset
4339 + eh->root.u.def.section->output_section->vma);
4340 }
4341 else
4342 {
4343 if ((eh->got.offset & 1) != 0)
4344 abort ();
4345
4346 bfd_put_32 (output_bfd, 0,
4347 htab->etab.sgot->contents + (eh->got.offset & ~1));
4348 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4349 rela.r_addend = 0;
4350 }
4351
4352 loc = htab->etab.srelgot->contents;
4353 loc += (htab->etab.srelgot->reloc_count++
4354 * sizeof (Elf32_External_Rela));
4355 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4356 }
4357 }
4358
4359 if (eh->needs_copy)
4360 {
4361 asection *sec;
4362
4363 /* This symbol needs a copy reloc. Set it up. */
4364
4365 if (! (eh->dynindx != -1
4366 && (eh->root.type == bfd_link_hash_defined
4367 || eh->root.type == bfd_link_hash_defweak)))
4368 abort ();
4369
4370 rela.r_offset = (eh->root.u.def.value
4371 + eh->root.u.def.section->output_offset
4372 + eh->root.u.def.section->output_section->vma);
4373 rela.r_addend = 0;
4374 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4375 if (eh->root.u.def.section == htab->etab.sdynrelro)
4376 sec = htab->etab.sreldynrelro;
4377 else
4378 sec = htab->etab.srelbss;
4379 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4380 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4381 }
4382
4383 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4384 if (eh == htab->etab.hdynamic || eh == htab->etab.hgot)
4385 {
4386 sym->st_shndx = SHN_ABS;
4387 }
4388
4389 return TRUE;
4390 }
4391
4392 /* Used to decide how to sort relocs in an optimal manner for the
4393 dynamic linker, before writing them out. */
4394
4395 static enum elf_reloc_type_class
4396 elf32_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4397 const asection *rel_sec ATTRIBUTE_UNUSED,
4398 const Elf_Internal_Rela *rela)
4399 {
4400 /* Handle TLS relocs first; we don't want them to be marked
4401 relative by the "if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)"
4402 check below. */
4403 switch ((int) ELF32_R_TYPE (rela->r_info))
4404 {
4405 case R_PARISC_TLS_DTPMOD32:
4406 case R_PARISC_TLS_DTPOFF32:
4407 case R_PARISC_TLS_TPREL32:
4408 return reloc_class_normal;
4409 }
4410
4411 if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)
4412 return reloc_class_relative;
4413
4414 switch ((int) ELF32_R_TYPE (rela->r_info))
4415 {
4416 case R_PARISC_IPLT:
4417 return reloc_class_plt;
4418 case R_PARISC_COPY:
4419 return reloc_class_copy;
4420 default:
4421 return reloc_class_normal;
4422 }
4423 }
4424
4425 /* Finish up the dynamic sections. */
4426
4427 static bfd_boolean
4428 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4429 struct bfd_link_info *info)
4430 {
4431 bfd *dynobj;
4432 struct elf32_hppa_link_hash_table *htab;
4433 asection *sdyn;
4434 asection * sgot;
4435
4436 htab = hppa_link_hash_table (info);
4437 if (htab == NULL)
4438 return FALSE;
4439
4440 dynobj = htab->etab.dynobj;
4441
4442 sgot = htab->etab.sgot;
4443 /* A broken linker script might have discarded the dynamic sections.
4444 Catch this here so that we do not seg-fault later on. */
4445 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
4446 return FALSE;
4447
4448 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4449
4450 if (htab->etab.dynamic_sections_created)
4451 {
4452 Elf32_External_Dyn *dyncon, *dynconend;
4453
4454 if (sdyn == NULL)
4455 abort ();
4456
4457 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4458 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4459 for (; dyncon < dynconend; dyncon++)
4460 {
4461 Elf_Internal_Dyn dyn;
4462 asection *s;
4463
4464 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4465
4466 switch (dyn.d_tag)
4467 {
4468 default:
4469 continue;
4470
4471 case DT_PLTGOT:
4472 /* Use PLTGOT to set the GOT register. */
4473 dyn.d_un.d_ptr = elf_gp (output_bfd);
4474 break;
4475
4476 case DT_JMPREL:
4477 s = htab->etab.srelplt;
4478 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4479 break;
4480
4481 case DT_PLTRELSZ:
4482 s = htab->etab.srelplt;
4483 dyn.d_un.d_val = s->size;
4484 break;
4485 }
4486
4487 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4488 }
4489 }
4490
4491 if (sgot != NULL && sgot->size != 0)
4492 {
4493 /* Fill in the first entry in the global offset table.
4494 We use it to point to our dynamic section, if we have one. */
4495 bfd_put_32 (output_bfd,
4496 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4497 sgot->contents);
4498
4499 /* The second entry is reserved for use by the dynamic linker. */
4500 memset (sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4501
4502 /* Set .got entry size. */
4503 elf_section_data (sgot->output_section)
4504 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4505 }
4506
4507 if (htab->etab.splt != NULL && htab->etab.splt->size != 0)
4508 {
4509 /* Set plt entry size to 0 instead of PLT_ENTRY_SIZE, since we add the
4510 plt stubs and as such the section does not hold a table of fixed-size
4511 entries. */
4512 elf_section_data (htab->etab.splt->output_section)->this_hdr.sh_entsize = 0;
4513
4514 if (htab->need_plt_stub)
4515 {
4516 /* Set up the .plt stub. */
4517 memcpy (htab->etab.splt->contents
4518 + htab->etab.splt->size - sizeof (plt_stub),
4519 plt_stub, sizeof (plt_stub));
4520
4521 if ((htab->etab.splt->output_offset
4522 + htab->etab.splt->output_section->vma
4523 + htab->etab.splt->size)
4524 != (sgot->output_offset
4525 + sgot->output_section->vma))
4526 {
4527 _bfd_error_handler
4528 (_(".got section not immediately after .plt section"));
4529 return FALSE;
4530 }
4531 }
4532 }
4533
4534 return TRUE;
4535 }
4536
4537 /* Called when writing out an object file to decide the type of a
4538 symbol. */
4539 static int
4540 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4541 {
4542 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4543 return STT_PARISC_MILLI;
4544 else
4545 return type;
4546 }
4547
4548 /* Misc BFD support code. */
4549 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4550 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4551 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4552 #define elf_info_to_howto elf_hppa_info_to_howto
4553 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4554
4555 /* Stuff for the BFD linker. */
4556 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4557 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4558 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4559 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4560 #define elf_backend_check_relocs elf32_hppa_check_relocs
4561 #define elf_backend_relocs_compatible _bfd_elf_relocs_compatible
4562 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4563 #define elf_backend_fake_sections elf_hppa_fake_sections
4564 #define elf_backend_relocate_section elf32_hppa_relocate_section
4565 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4566 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4567 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4568 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4569 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4570 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4571 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4572 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4573 #define elf_backend_object_p elf32_hppa_object_p
4574 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4575 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4576 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4577 #define elf_backend_action_discarded elf_hppa_action_discarded
4578
4579 #define elf_backend_can_gc_sections 1
4580 #define elf_backend_can_refcount 1
4581 #define elf_backend_plt_alignment 2
4582 #define elf_backend_want_got_plt 0
4583 #define elf_backend_plt_readonly 0
4584 #define elf_backend_want_plt_sym 0
4585 #define elf_backend_got_header_size 8
4586 #define elf_backend_want_dynrelro 1
4587 #define elf_backend_rela_normal 1
4588 #define elf_backend_dtrel_excludes_plt 1
4589 #define elf_backend_no_page_alias 1
4590
4591 #define TARGET_BIG_SYM hppa_elf32_vec
4592 #define TARGET_BIG_NAME "elf32-hppa"
4593 #define ELF_ARCH bfd_arch_hppa
4594 #define ELF_TARGET_ID HPPA32_ELF_DATA
4595 #define ELF_MACHINE_CODE EM_PARISC
4596 #define ELF_MAXPAGESIZE 0x1000
4597 #define ELF_OSABI ELFOSABI_HPUX
4598 #define elf32_bed elf32_hppa_hpux_bed
4599
4600 #include "elf32-target.h"
4601
4602 #undef TARGET_BIG_SYM
4603 #define TARGET_BIG_SYM hppa_elf32_linux_vec
4604 #undef TARGET_BIG_NAME
4605 #define TARGET_BIG_NAME "elf32-hppa-linux"
4606 #undef ELF_OSABI
4607 #define ELF_OSABI ELFOSABI_GNU
4608 #undef elf32_bed
4609 #define elf32_bed elf32_hppa_linux_bed
4610
4611 #include "elf32-target.h"
4612
4613 #undef TARGET_BIG_SYM
4614 #define TARGET_BIG_SYM hppa_elf32_nbsd_vec
4615 #undef TARGET_BIG_NAME
4616 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4617 #undef ELF_OSABI
4618 #define ELF_OSABI ELFOSABI_NETBSD
4619 #undef elf32_bed
4620 #define elf32_bed elf32_hppa_netbsd_bed
4621
4622 #include "elf32-target.h"
This page took 0.174586 seconds and 4 git commands to generate.