x86: Add GENERATE_DYNAMIC_RELOCATION_P
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright (C) 1990-2017 Free Software Foundation, Inc.
3
4 Original code by
5 Center for Software Science
6 Department of Computer Science
7 University of Utah
8 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
9 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
10 TLS support written by Randolph Chung <tausq@debian.org>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
28
29 #include "sysdep.h"
30 #include "bfd.h"
31 #include "libbfd.h"
32 #include "elf-bfd.h"
33 #include "elf/hppa.h"
34 #include "libhppa.h"
35 #include "elf32-hppa.h"
36 #define ARCH_SIZE 32
37 #include "elf32-hppa.h"
38 #include "elf-hppa.h"
39
40 /* In order to gain some understanding of code in this file without
41 knowing all the intricate details of the linker, note the
42 following:
43
44 Functions named elf32_hppa_* are called by external routines, other
45 functions are only called locally. elf32_hppa_* functions appear
46 in this file more or less in the order in which they are called
47 from external routines. eg. elf32_hppa_check_relocs is called
48 early in the link process, elf32_hppa_finish_dynamic_sections is
49 one of the last functions. */
50
51 /* We use two hash tables to hold information for linking PA ELF objects.
52
53 The first is the elf32_hppa_link_hash_table which is derived
54 from the standard ELF linker hash table. We use this as a place to
55 attach other hash tables and static information.
56
57 The second is the stub hash table which is derived from the
58 base BFD hash table. The stub hash table holds the information
59 necessary to build the linker stubs during a link.
60
61 There are a number of different stubs generated by the linker.
62
63 Long branch stub:
64 : ldil LR'X,%r1
65 : be,n RR'X(%sr4,%r1)
66
67 PIC long branch stub:
68 : b,l .+8,%r1
69 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
70 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
71
72 Import stub to call shared library routine from normal object file
73 (single sub-space version)
74 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
75 : ldw RR'lt_ptr+ltoff(%r1),%r21
76 : bv %r0(%r21)
77 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
78
79 Import stub to call shared library routine from shared library
80 (single sub-space version)
81 : addil LR'ltoff,%r19 ; get procedure entry point
82 : ldw RR'ltoff(%r1),%r21
83 : bv %r0(%r21)
84 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
85
86 Import stub to call shared library routine from normal object file
87 (multiple sub-space support)
88 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
89 : ldw RR'lt_ptr+ltoff(%r1),%r21
90 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
91 : ldsid (%r21),%r1
92 : mtsp %r1,%sr0
93 : be 0(%sr0,%r21) ; branch to target
94 : stw %rp,-24(%sp) ; save rp
95
96 Import stub to call shared library routine from shared library
97 (multiple sub-space support)
98 : addil LR'ltoff,%r19 ; get procedure entry point
99 : ldw RR'ltoff(%r1),%r21
100 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
101 : ldsid (%r21),%r1
102 : mtsp %r1,%sr0
103 : be 0(%sr0,%r21) ; branch to target
104 : stw %rp,-24(%sp) ; save rp
105
106 Export stub to return from shared lib routine (multiple sub-space support)
107 One of these is created for each exported procedure in a shared
108 library (and stored in the shared lib). Shared lib routines are
109 called via the first instruction in the export stub so that we can
110 do an inter-space return. Not required for single sub-space.
111 : bl,n X,%rp ; trap the return
112 : nop
113 : ldw -24(%sp),%rp ; restore the original rp
114 : ldsid (%rp),%r1
115 : mtsp %r1,%sr0
116 : be,n 0(%sr0,%rp) ; inter-space return. */
117
118
119 /* Variable names follow a coding style.
120 Please follow this (Apps Hungarian) style:
121
122 Structure/Variable Prefix
123 elf_link_hash_table "etab"
124 elf_link_hash_entry "eh"
125
126 elf32_hppa_link_hash_table "htab"
127 elf32_hppa_link_hash_entry "hh"
128
129 bfd_hash_table "btab"
130 bfd_hash_entry "bh"
131
132 bfd_hash_table containing stubs "bstab"
133 elf32_hppa_stub_hash_entry "hsh"
134
135 elf32_hppa_dyn_reloc_entry "hdh"
136
137 Always remember to use GNU Coding Style. */
138
139 #define PLT_ENTRY_SIZE 8
140 #define GOT_ENTRY_SIZE 4
141 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
142
143 static const bfd_byte plt_stub[] =
144 {
145 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
146 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
147 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
148 #define PLT_STUB_ENTRY (3*4)
149 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
150 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
151 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
152 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
153 };
154
155 /* Section name for stubs is the associated section name plus this
156 string. */
157 #define STUB_SUFFIX ".stub"
158
159 /* We don't need to copy certain PC- or GP-relative dynamic relocs
160 into a shared object's dynamic section. All the relocs of the
161 limited class we are interested in, are absolute. */
162 #ifndef RELATIVE_DYNRELOCS
163 #define RELATIVE_DYNRELOCS 0
164 #define IS_ABSOLUTE_RELOC(r_type) 1
165 #endif
166
167 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
168 copying dynamic variables from a shared lib into an app's dynbss
169 section, and instead use a dynamic relocation to point into the
170 shared lib. */
171 #define ELIMINATE_COPY_RELOCS 1
172
173 enum elf32_hppa_stub_type
174 {
175 hppa_stub_long_branch,
176 hppa_stub_long_branch_shared,
177 hppa_stub_import,
178 hppa_stub_import_shared,
179 hppa_stub_export,
180 hppa_stub_none
181 };
182
183 struct elf32_hppa_stub_hash_entry
184 {
185 /* Base hash table entry structure. */
186 struct bfd_hash_entry bh_root;
187
188 /* The stub section. */
189 asection *stub_sec;
190
191 /* Offset within stub_sec of the beginning of this stub. */
192 bfd_vma stub_offset;
193
194 /* Given the symbol's value and its section we can determine its final
195 value when building the stubs (so the stub knows where to jump. */
196 bfd_vma target_value;
197 asection *target_section;
198
199 enum elf32_hppa_stub_type stub_type;
200
201 /* The symbol table entry, if any, that this was derived from. */
202 struct elf32_hppa_link_hash_entry *hh;
203
204 /* Where this stub is being called from, or, in the case of combined
205 stub sections, the first input section in the group. */
206 asection *id_sec;
207 };
208
209 struct elf32_hppa_link_hash_entry
210 {
211 struct elf_link_hash_entry eh;
212
213 /* A pointer to the most recently used stub hash entry against this
214 symbol. */
215 struct elf32_hppa_stub_hash_entry *hsh_cache;
216
217 /* Used to count relocations for delayed sizing of relocation
218 sections. */
219 struct elf32_hppa_dyn_reloc_entry
220 {
221 /* Next relocation in the chain. */
222 struct elf32_hppa_dyn_reloc_entry *hdh_next;
223
224 /* The input section of the reloc. */
225 asection *sec;
226
227 /* Number of relocs copied in this section. */
228 bfd_size_type count;
229
230 #if RELATIVE_DYNRELOCS
231 /* Number of relative relocs copied for the input section. */
232 bfd_size_type relative_count;
233 #endif
234 } *dyn_relocs;
235
236 enum
237 {
238 GOT_UNKNOWN = 0, GOT_NORMAL = 1, GOT_TLS_GD = 2, GOT_TLS_LDM = 4, GOT_TLS_IE = 8
239 } tls_type;
240
241 /* Set if this symbol is used by a plabel reloc. */
242 unsigned int plabel:1;
243 };
244
245 struct elf32_hppa_link_hash_table
246 {
247 /* The main hash table. */
248 struct elf_link_hash_table etab;
249
250 /* The stub hash table. */
251 struct bfd_hash_table bstab;
252
253 /* Linker stub bfd. */
254 bfd *stub_bfd;
255
256 /* Linker call-backs. */
257 asection * (*add_stub_section) (const char *, asection *);
258 void (*layout_sections_again) (void);
259
260 /* Array to keep track of which stub sections have been created, and
261 information on stub grouping. */
262 struct map_stub
263 {
264 /* This is the section to which stubs in the group will be
265 attached. */
266 asection *link_sec;
267 /* The stub section. */
268 asection *stub_sec;
269 } *stub_group;
270
271 /* Assorted information used by elf32_hppa_size_stubs. */
272 unsigned int bfd_count;
273 unsigned int top_index;
274 asection **input_list;
275 Elf_Internal_Sym **all_local_syms;
276
277 /* Used during a final link to store the base of the text and data
278 segments so that we can perform SEGREL relocations. */
279 bfd_vma text_segment_base;
280 bfd_vma data_segment_base;
281
282 /* Whether we support multiple sub-spaces for shared libs. */
283 unsigned int multi_subspace:1;
284
285 /* Flags set when various size branches are detected. Used to
286 select suitable defaults for the stub group size. */
287 unsigned int has_12bit_branch:1;
288 unsigned int has_17bit_branch:1;
289 unsigned int has_22bit_branch:1;
290
291 /* Set if we need a .plt stub to support lazy dynamic linking. */
292 unsigned int need_plt_stub:1;
293
294 /* Small local sym cache. */
295 struct sym_cache sym_cache;
296
297 /* Data for LDM relocations. */
298 union
299 {
300 bfd_signed_vma refcount;
301 bfd_vma offset;
302 } tls_ldm_got;
303 };
304
305 /* Various hash macros and functions. */
306 #define hppa_link_hash_table(p) \
307 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
308 == HPPA32_ELF_DATA ? ((struct elf32_hppa_link_hash_table *) ((p)->hash)) : NULL)
309
310 #define hppa_elf_hash_entry(ent) \
311 ((struct elf32_hppa_link_hash_entry *)(ent))
312
313 #define hppa_stub_hash_entry(ent) \
314 ((struct elf32_hppa_stub_hash_entry *)(ent))
315
316 #define hppa_stub_hash_lookup(table, string, create, copy) \
317 ((struct elf32_hppa_stub_hash_entry *) \
318 bfd_hash_lookup ((table), (string), (create), (copy)))
319
320 #define hppa_elf_local_got_tls_type(abfd) \
321 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
322
323 #define hh_name(hh) \
324 (hh ? hh->eh.root.root.string : "<undef>")
325
326 #define eh_name(eh) \
327 (eh ? eh->root.root.string : "<undef>")
328
329 /* Assorted hash table functions. */
330
331 /* Initialize an entry in the stub hash table. */
332
333 static struct bfd_hash_entry *
334 stub_hash_newfunc (struct bfd_hash_entry *entry,
335 struct bfd_hash_table *table,
336 const char *string)
337 {
338 /* Allocate the structure if it has not already been allocated by a
339 subclass. */
340 if (entry == NULL)
341 {
342 entry = bfd_hash_allocate (table,
343 sizeof (struct elf32_hppa_stub_hash_entry));
344 if (entry == NULL)
345 return entry;
346 }
347
348 /* Call the allocation method of the superclass. */
349 entry = bfd_hash_newfunc (entry, table, string);
350 if (entry != NULL)
351 {
352 struct elf32_hppa_stub_hash_entry *hsh;
353
354 /* Initialize the local fields. */
355 hsh = hppa_stub_hash_entry (entry);
356 hsh->stub_sec = NULL;
357 hsh->stub_offset = 0;
358 hsh->target_value = 0;
359 hsh->target_section = NULL;
360 hsh->stub_type = hppa_stub_long_branch;
361 hsh->hh = NULL;
362 hsh->id_sec = NULL;
363 }
364
365 return entry;
366 }
367
368 /* Initialize an entry in the link hash table. */
369
370 static struct bfd_hash_entry *
371 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
372 struct bfd_hash_table *table,
373 const char *string)
374 {
375 /* Allocate the structure if it has not already been allocated by a
376 subclass. */
377 if (entry == NULL)
378 {
379 entry = bfd_hash_allocate (table,
380 sizeof (struct elf32_hppa_link_hash_entry));
381 if (entry == NULL)
382 return entry;
383 }
384
385 /* Call the allocation method of the superclass. */
386 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
387 if (entry != NULL)
388 {
389 struct elf32_hppa_link_hash_entry *hh;
390
391 /* Initialize the local fields. */
392 hh = hppa_elf_hash_entry (entry);
393 hh->hsh_cache = NULL;
394 hh->dyn_relocs = NULL;
395 hh->plabel = 0;
396 hh->tls_type = GOT_UNKNOWN;
397 }
398
399 return entry;
400 }
401
402 /* Free the derived linker hash table. */
403
404 static void
405 elf32_hppa_link_hash_table_free (bfd *obfd)
406 {
407 struct elf32_hppa_link_hash_table *htab
408 = (struct elf32_hppa_link_hash_table *) obfd->link.hash;
409
410 bfd_hash_table_free (&htab->bstab);
411 _bfd_elf_link_hash_table_free (obfd);
412 }
413
414 /* Create the derived linker hash table. The PA ELF port uses the derived
415 hash table to keep information specific to the PA ELF linker (without
416 using static variables). */
417
418 static struct bfd_link_hash_table *
419 elf32_hppa_link_hash_table_create (bfd *abfd)
420 {
421 struct elf32_hppa_link_hash_table *htab;
422 bfd_size_type amt = sizeof (*htab);
423
424 htab = bfd_zmalloc (amt);
425 if (htab == NULL)
426 return NULL;
427
428 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
429 sizeof (struct elf32_hppa_link_hash_entry),
430 HPPA32_ELF_DATA))
431 {
432 free (htab);
433 return NULL;
434 }
435
436 /* Init the stub hash table too. */
437 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
438 sizeof (struct elf32_hppa_stub_hash_entry)))
439 {
440 _bfd_elf_link_hash_table_free (abfd);
441 return NULL;
442 }
443 htab->etab.root.hash_table_free = elf32_hppa_link_hash_table_free;
444
445 htab->text_segment_base = (bfd_vma) -1;
446 htab->data_segment_base = (bfd_vma) -1;
447 return &htab->etab.root;
448 }
449
450 /* Initialize the linker stubs BFD so that we can use it for linker
451 created dynamic sections. */
452
453 void
454 elf32_hppa_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
455 {
456 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
457
458 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS32;
459 htab->etab.dynobj = abfd;
460 }
461
462 /* Build a name for an entry in the stub hash table. */
463
464 static char *
465 hppa_stub_name (const asection *input_section,
466 const asection *sym_sec,
467 const struct elf32_hppa_link_hash_entry *hh,
468 const Elf_Internal_Rela *rela)
469 {
470 char *stub_name;
471 bfd_size_type len;
472
473 if (hh)
474 {
475 len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
476 stub_name = bfd_malloc (len);
477 if (stub_name != NULL)
478 sprintf (stub_name, "%08x_%s+%x",
479 input_section->id & 0xffffffff,
480 hh_name (hh),
481 (int) rela->r_addend & 0xffffffff);
482 }
483 else
484 {
485 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
486 stub_name = bfd_malloc (len);
487 if (stub_name != NULL)
488 sprintf (stub_name, "%08x_%x:%x+%x",
489 input_section->id & 0xffffffff,
490 sym_sec->id & 0xffffffff,
491 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
492 (int) rela->r_addend & 0xffffffff);
493 }
494 return stub_name;
495 }
496
497 /* Look up an entry in the stub hash. Stub entries are cached because
498 creating the stub name takes a bit of time. */
499
500 static struct elf32_hppa_stub_hash_entry *
501 hppa_get_stub_entry (const asection *input_section,
502 const asection *sym_sec,
503 struct elf32_hppa_link_hash_entry *hh,
504 const Elf_Internal_Rela *rela,
505 struct elf32_hppa_link_hash_table *htab)
506 {
507 struct elf32_hppa_stub_hash_entry *hsh_entry;
508 const asection *id_sec;
509
510 /* If this input section is part of a group of sections sharing one
511 stub section, then use the id of the first section in the group.
512 Stub names need to include a section id, as there may well be
513 more than one stub used to reach say, printf, and we need to
514 distinguish between them. */
515 id_sec = htab->stub_group[input_section->id].link_sec;
516
517 if (hh != NULL && hh->hsh_cache != NULL
518 && hh->hsh_cache->hh == hh
519 && hh->hsh_cache->id_sec == id_sec)
520 {
521 hsh_entry = hh->hsh_cache;
522 }
523 else
524 {
525 char *stub_name;
526
527 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
528 if (stub_name == NULL)
529 return NULL;
530
531 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
532 stub_name, FALSE, FALSE);
533 if (hh != NULL)
534 hh->hsh_cache = hsh_entry;
535
536 free (stub_name);
537 }
538
539 return hsh_entry;
540 }
541
542 /* Add a new stub entry to the stub hash. Not all fields of the new
543 stub entry are initialised. */
544
545 static struct elf32_hppa_stub_hash_entry *
546 hppa_add_stub (const char *stub_name,
547 asection *section,
548 struct elf32_hppa_link_hash_table *htab)
549 {
550 asection *link_sec;
551 asection *stub_sec;
552 struct elf32_hppa_stub_hash_entry *hsh;
553
554 link_sec = htab->stub_group[section->id].link_sec;
555 stub_sec = htab->stub_group[section->id].stub_sec;
556 if (stub_sec == NULL)
557 {
558 stub_sec = htab->stub_group[link_sec->id].stub_sec;
559 if (stub_sec == NULL)
560 {
561 size_t namelen;
562 bfd_size_type len;
563 char *s_name;
564
565 namelen = strlen (link_sec->name);
566 len = namelen + sizeof (STUB_SUFFIX);
567 s_name = bfd_alloc (htab->stub_bfd, len);
568 if (s_name == NULL)
569 return NULL;
570
571 memcpy (s_name, link_sec->name, namelen);
572 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
573 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
574 if (stub_sec == NULL)
575 return NULL;
576 htab->stub_group[link_sec->id].stub_sec = stub_sec;
577 }
578 htab->stub_group[section->id].stub_sec = stub_sec;
579 }
580
581 /* Enter this entry into the linker stub hash table. */
582 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
583 TRUE, FALSE);
584 if (hsh == NULL)
585 {
586 /* xgettext:c-format */
587 _bfd_error_handler (_("%B: cannot create stub entry %s"),
588 section->owner, stub_name);
589 return NULL;
590 }
591
592 hsh->stub_sec = stub_sec;
593 hsh->stub_offset = 0;
594 hsh->id_sec = link_sec;
595 return hsh;
596 }
597
598 /* Determine the type of stub needed, if any, for a call. */
599
600 static enum elf32_hppa_stub_type
601 hppa_type_of_stub (asection *input_sec,
602 const Elf_Internal_Rela *rela,
603 struct elf32_hppa_link_hash_entry *hh,
604 bfd_vma destination,
605 struct bfd_link_info *info)
606 {
607 bfd_vma location;
608 bfd_vma branch_offset;
609 bfd_vma max_branch_offset;
610 unsigned int r_type;
611
612 if (hh != NULL
613 && hh->eh.plt.offset != (bfd_vma) -1
614 && hh->eh.dynindx != -1
615 && !hh->plabel
616 && (bfd_link_pic (info)
617 || !hh->eh.def_regular
618 || hh->eh.root.type == bfd_link_hash_defweak))
619 {
620 /* We need an import stub. Decide between hppa_stub_import
621 and hppa_stub_import_shared later. */
622 return hppa_stub_import;
623 }
624
625 /* Determine where the call point is. */
626 location = (input_sec->output_offset
627 + input_sec->output_section->vma
628 + rela->r_offset);
629
630 branch_offset = destination - location - 8;
631 r_type = ELF32_R_TYPE (rela->r_info);
632
633 /* Determine if a long branch stub is needed. parisc branch offsets
634 are relative to the second instruction past the branch, ie. +8
635 bytes on from the branch instruction location. The offset is
636 signed and counts in units of 4 bytes. */
637 if (r_type == (unsigned int) R_PARISC_PCREL17F)
638 max_branch_offset = (1 << (17 - 1)) << 2;
639
640 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
641 max_branch_offset = (1 << (12 - 1)) << 2;
642
643 else /* R_PARISC_PCREL22F. */
644 max_branch_offset = (1 << (22 - 1)) << 2;
645
646 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
647 return hppa_stub_long_branch;
648
649 return hppa_stub_none;
650 }
651
652 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
653 IN_ARG contains the link info pointer. */
654
655 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
656 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
657
658 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
659 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
660 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
661
662 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
663 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
664 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
665 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
666
667 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
668 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
669
670 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
671 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
672 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
673 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
674
675 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
676 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
677 #define NOP 0x08000240 /* nop */
678 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
679 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
680 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
681
682 #ifndef R19_STUBS
683 #define R19_STUBS 1
684 #endif
685
686 #if R19_STUBS
687 #define LDW_R1_DLT LDW_R1_R19
688 #else
689 #define LDW_R1_DLT LDW_R1_DP
690 #endif
691
692 static bfd_boolean
693 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
694 {
695 struct elf32_hppa_stub_hash_entry *hsh;
696 struct bfd_link_info *info;
697 struct elf32_hppa_link_hash_table *htab;
698 asection *stub_sec;
699 bfd *stub_bfd;
700 bfd_byte *loc;
701 bfd_vma sym_value;
702 bfd_vma insn;
703 bfd_vma off;
704 int val;
705 int size;
706
707 /* Massage our args to the form they really have. */
708 hsh = hppa_stub_hash_entry (bh);
709 info = (struct bfd_link_info *)in_arg;
710
711 htab = hppa_link_hash_table (info);
712 if (htab == NULL)
713 return FALSE;
714
715 stub_sec = hsh->stub_sec;
716
717 /* Make a note of the offset within the stubs for this entry. */
718 hsh->stub_offset = stub_sec->size;
719 loc = stub_sec->contents + hsh->stub_offset;
720
721 stub_bfd = stub_sec->owner;
722
723 switch (hsh->stub_type)
724 {
725 case hppa_stub_long_branch:
726 /* Create the long branch. A long branch is formed with "ldil"
727 loading the upper bits of the target address into a register,
728 then branching with "be" which adds in the lower bits.
729 The "be" has its delay slot nullified. */
730 sym_value = (hsh->target_value
731 + hsh->target_section->output_offset
732 + hsh->target_section->output_section->vma);
733
734 val = hppa_field_adjust (sym_value, 0, e_lrsel);
735 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
736 bfd_put_32 (stub_bfd, insn, loc);
737
738 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
739 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
740 bfd_put_32 (stub_bfd, insn, loc + 4);
741
742 size = 8;
743 break;
744
745 case hppa_stub_long_branch_shared:
746 /* Branches are relative. This is where we are going to. */
747 sym_value = (hsh->target_value
748 + hsh->target_section->output_offset
749 + hsh->target_section->output_section->vma);
750
751 /* And this is where we are coming from, more or less. */
752 sym_value -= (hsh->stub_offset
753 + stub_sec->output_offset
754 + stub_sec->output_section->vma);
755
756 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
757 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
758 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
759 bfd_put_32 (stub_bfd, insn, loc + 4);
760
761 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
762 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
763 bfd_put_32 (stub_bfd, insn, loc + 8);
764 size = 12;
765 break;
766
767 case hppa_stub_import:
768 case hppa_stub_import_shared:
769 off = hsh->hh->eh.plt.offset;
770 if (off >= (bfd_vma) -2)
771 abort ();
772
773 off &= ~ (bfd_vma) 1;
774 sym_value = (off
775 + htab->etab.splt->output_offset
776 + htab->etab.splt->output_section->vma
777 - elf_gp (htab->etab.splt->output_section->owner));
778
779 insn = ADDIL_DP;
780 #if R19_STUBS
781 if (hsh->stub_type == hppa_stub_import_shared)
782 insn = ADDIL_R19;
783 #endif
784 val = hppa_field_adjust (sym_value, 0, e_lrsel),
785 insn = hppa_rebuild_insn ((int) insn, val, 21);
786 bfd_put_32 (stub_bfd, insn, loc);
787
788 /* It is critical to use lrsel/rrsel here because we are using
789 two different offsets (+0 and +4) from sym_value. If we use
790 lsel/rsel then with unfortunate sym_values we will round
791 sym_value+4 up to the next 2k block leading to a mis-match
792 between the lsel and rsel value. */
793 val = hppa_field_adjust (sym_value, 0, e_rrsel);
794 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
795 bfd_put_32 (stub_bfd, insn, loc + 4);
796
797 if (htab->multi_subspace)
798 {
799 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
800 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
801 bfd_put_32 (stub_bfd, insn, loc + 8);
802
803 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
804 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
805 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
806 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
807
808 size = 28;
809 }
810 else
811 {
812 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
813 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
814 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
815 bfd_put_32 (stub_bfd, insn, loc + 12);
816
817 size = 16;
818 }
819
820 break;
821
822 case hppa_stub_export:
823 /* Branches are relative. This is where we are going to. */
824 sym_value = (hsh->target_value
825 + hsh->target_section->output_offset
826 + hsh->target_section->output_section->vma);
827
828 /* And this is where we are coming from. */
829 sym_value -= (hsh->stub_offset
830 + stub_sec->output_offset
831 + stub_sec->output_section->vma);
832
833 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
834 && (!htab->has_22bit_branch
835 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
836 {
837 _bfd_error_handler
838 /* xgettext:c-format */
839 (_("%B(%A+%#Lx): cannot reach %s, recompile with -ffunction-sections"),
840 hsh->target_section->owner,
841 stub_sec,
842 hsh->stub_offset,
843 hsh->bh_root.string);
844 bfd_set_error (bfd_error_bad_value);
845 return FALSE;
846 }
847
848 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
849 if (!htab->has_22bit_branch)
850 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
851 else
852 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
853 bfd_put_32 (stub_bfd, insn, loc);
854
855 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
856 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
857 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
858 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
859 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
860
861 /* Point the function symbol at the stub. */
862 hsh->hh->eh.root.u.def.section = stub_sec;
863 hsh->hh->eh.root.u.def.value = stub_sec->size;
864
865 size = 24;
866 break;
867
868 default:
869 BFD_FAIL ();
870 return FALSE;
871 }
872
873 stub_sec->size += size;
874 return TRUE;
875 }
876
877 #undef LDIL_R1
878 #undef BE_SR4_R1
879 #undef BL_R1
880 #undef ADDIL_R1
881 #undef DEPI_R1
882 #undef LDW_R1_R21
883 #undef LDW_R1_DLT
884 #undef LDW_R1_R19
885 #undef ADDIL_R19
886 #undef LDW_R1_DP
887 #undef LDSID_R21_R1
888 #undef MTSP_R1
889 #undef BE_SR0_R21
890 #undef STW_RP
891 #undef BV_R0_R21
892 #undef BL_RP
893 #undef NOP
894 #undef LDW_RP
895 #undef LDSID_RP_R1
896 #undef BE_SR0_RP
897
898 /* As above, but don't actually build the stub. Just bump offset so
899 we know stub section sizes. */
900
901 static bfd_boolean
902 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
903 {
904 struct elf32_hppa_stub_hash_entry *hsh;
905 struct elf32_hppa_link_hash_table *htab;
906 int size;
907
908 /* Massage our args to the form they really have. */
909 hsh = hppa_stub_hash_entry (bh);
910 htab = in_arg;
911
912 if (hsh->stub_type == hppa_stub_long_branch)
913 size = 8;
914 else if (hsh->stub_type == hppa_stub_long_branch_shared)
915 size = 12;
916 else if (hsh->stub_type == hppa_stub_export)
917 size = 24;
918 else /* hppa_stub_import or hppa_stub_import_shared. */
919 {
920 if (htab->multi_subspace)
921 size = 28;
922 else
923 size = 16;
924 }
925
926 hsh->stub_sec->size += size;
927 return TRUE;
928 }
929
930 /* Return nonzero if ABFD represents an HPPA ELF32 file.
931 Additionally we set the default architecture and machine. */
932
933 static bfd_boolean
934 elf32_hppa_object_p (bfd *abfd)
935 {
936 Elf_Internal_Ehdr * i_ehdrp;
937 unsigned int flags;
938
939 i_ehdrp = elf_elfheader (abfd);
940 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
941 {
942 /* GCC on hppa-linux produces binaries with OSABI=GNU,
943 but the kernel produces corefiles with OSABI=SysV. */
944 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU &&
945 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
946 return FALSE;
947 }
948 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
949 {
950 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
951 but the kernel produces corefiles with OSABI=SysV. */
952 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
953 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
954 return FALSE;
955 }
956 else
957 {
958 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
959 return FALSE;
960 }
961
962 flags = i_ehdrp->e_flags;
963 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
964 {
965 case EFA_PARISC_1_0:
966 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
967 case EFA_PARISC_1_1:
968 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
969 case EFA_PARISC_2_0:
970 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
971 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
972 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
973 }
974 return TRUE;
975 }
976
977 /* Create the .plt and .got sections, and set up our hash table
978 short-cuts to various dynamic sections. */
979
980 static bfd_boolean
981 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
982 {
983 struct elf32_hppa_link_hash_table *htab;
984 struct elf_link_hash_entry *eh;
985
986 /* Don't try to create the .plt and .got twice. */
987 htab = hppa_link_hash_table (info);
988 if (htab == NULL)
989 return FALSE;
990 if (htab->etab.splt != NULL)
991 return TRUE;
992
993 /* Call the generic code to do most of the work. */
994 if (! _bfd_elf_create_dynamic_sections (abfd, info))
995 return FALSE;
996
997 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
998 application, because __canonicalize_funcptr_for_compare needs it. */
999 eh = elf_hash_table (info)->hgot;
1000 eh->forced_local = 0;
1001 eh->other = STV_DEFAULT;
1002 return bfd_elf_link_record_dynamic_symbol (info, eh);
1003 }
1004
1005 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1006
1007 static void
1008 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1009 struct elf_link_hash_entry *eh_dir,
1010 struct elf_link_hash_entry *eh_ind)
1011 {
1012 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1013
1014 hh_dir = hppa_elf_hash_entry (eh_dir);
1015 hh_ind = hppa_elf_hash_entry (eh_ind);
1016
1017 if (hh_ind->dyn_relocs != NULL)
1018 {
1019 if (hh_dir->dyn_relocs != NULL)
1020 {
1021 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1022 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1023
1024 /* Add reloc counts against the indirect sym to the direct sym
1025 list. Merge any entries against the same section. */
1026 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1027 {
1028 struct elf32_hppa_dyn_reloc_entry *hdh_q;
1029
1030 for (hdh_q = hh_dir->dyn_relocs;
1031 hdh_q != NULL;
1032 hdh_q = hdh_q->hdh_next)
1033 if (hdh_q->sec == hdh_p->sec)
1034 {
1035 #if RELATIVE_DYNRELOCS
1036 hdh_q->relative_count += hdh_p->relative_count;
1037 #endif
1038 hdh_q->count += hdh_p->count;
1039 *hdh_pp = hdh_p->hdh_next;
1040 break;
1041 }
1042 if (hdh_q == NULL)
1043 hdh_pp = &hdh_p->hdh_next;
1044 }
1045 *hdh_pp = hh_dir->dyn_relocs;
1046 }
1047
1048 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1049 hh_ind->dyn_relocs = NULL;
1050 }
1051
1052 if (ELIMINATE_COPY_RELOCS
1053 && eh_ind->root.type != bfd_link_hash_indirect
1054 && eh_dir->dynamic_adjusted)
1055 {
1056 /* If called to transfer flags for a weakdef during processing
1057 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1058 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1059 if (eh_dir->versioned != versioned_hidden)
1060 eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
1061 eh_dir->ref_regular |= eh_ind->ref_regular;
1062 eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
1063 eh_dir->needs_plt |= eh_ind->needs_plt;
1064 }
1065 else
1066 {
1067 if (eh_ind->root.type == bfd_link_hash_indirect)
1068 {
1069 hh_dir->plabel |= hh_ind->plabel;
1070 hh_dir->tls_type |= hh_ind->tls_type;
1071 hh_ind->tls_type = GOT_UNKNOWN;
1072 }
1073
1074 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1075 }
1076 }
1077
1078 static int
1079 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1080 int r_type, int is_local ATTRIBUTE_UNUSED)
1081 {
1082 /* For now we don't support linker optimizations. */
1083 return r_type;
1084 }
1085
1086 /* Return a pointer to the local GOT, PLT and TLS reference counts
1087 for ABFD. Returns NULL if the storage allocation fails. */
1088
1089 static bfd_signed_vma *
1090 hppa32_elf_local_refcounts (bfd *abfd)
1091 {
1092 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1093 bfd_signed_vma *local_refcounts;
1094
1095 local_refcounts = elf_local_got_refcounts (abfd);
1096 if (local_refcounts == NULL)
1097 {
1098 bfd_size_type size;
1099
1100 /* Allocate space for local GOT and PLT reference
1101 counts. Done this way to save polluting elf_obj_tdata
1102 with another target specific pointer. */
1103 size = symtab_hdr->sh_info;
1104 size *= 2 * sizeof (bfd_signed_vma);
1105 /* Add in space to store the local GOT TLS types. */
1106 size += symtab_hdr->sh_info;
1107 local_refcounts = bfd_zalloc (abfd, size);
1108 if (local_refcounts == NULL)
1109 return NULL;
1110 elf_local_got_refcounts (abfd) = local_refcounts;
1111 memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN,
1112 symtab_hdr->sh_info);
1113 }
1114 return local_refcounts;
1115 }
1116
1117
1118 /* Look through the relocs for a section during the first phase, and
1119 calculate needed space in the global offset table, procedure linkage
1120 table, and dynamic reloc sections. At this point we haven't
1121 necessarily read all the input files. */
1122
1123 static bfd_boolean
1124 elf32_hppa_check_relocs (bfd *abfd,
1125 struct bfd_link_info *info,
1126 asection *sec,
1127 const Elf_Internal_Rela *relocs)
1128 {
1129 Elf_Internal_Shdr *symtab_hdr;
1130 struct elf_link_hash_entry **eh_syms;
1131 const Elf_Internal_Rela *rela;
1132 const Elf_Internal_Rela *rela_end;
1133 struct elf32_hppa_link_hash_table *htab;
1134 asection *sreloc;
1135 int tls_type = GOT_UNKNOWN, old_tls_type = GOT_UNKNOWN;
1136
1137 if (bfd_link_relocatable (info))
1138 return TRUE;
1139
1140 htab = hppa_link_hash_table (info);
1141 if (htab == NULL)
1142 return FALSE;
1143 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1144 eh_syms = elf_sym_hashes (abfd);
1145 sreloc = NULL;
1146
1147 rela_end = relocs + sec->reloc_count;
1148 for (rela = relocs; rela < rela_end; rela++)
1149 {
1150 enum {
1151 NEED_GOT = 1,
1152 NEED_PLT = 2,
1153 NEED_DYNREL = 4,
1154 PLT_PLABEL = 8
1155 };
1156
1157 unsigned int r_symndx, r_type;
1158 struct elf32_hppa_link_hash_entry *hh;
1159 int need_entry = 0;
1160
1161 r_symndx = ELF32_R_SYM (rela->r_info);
1162
1163 if (r_symndx < symtab_hdr->sh_info)
1164 hh = NULL;
1165 else
1166 {
1167 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1168 while (hh->eh.root.type == bfd_link_hash_indirect
1169 || hh->eh.root.type == bfd_link_hash_warning)
1170 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1171
1172 /* PR15323, ref flags aren't set for references in the same
1173 object. */
1174 hh->eh.root.non_ir_ref_regular = 1;
1175 }
1176
1177 r_type = ELF32_R_TYPE (rela->r_info);
1178 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1179
1180 switch (r_type)
1181 {
1182 case R_PARISC_DLTIND14F:
1183 case R_PARISC_DLTIND14R:
1184 case R_PARISC_DLTIND21L:
1185 /* This symbol requires a global offset table entry. */
1186 need_entry = NEED_GOT;
1187 break;
1188
1189 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1190 case R_PARISC_PLABEL21L:
1191 case R_PARISC_PLABEL32:
1192 /* If the addend is non-zero, we break badly. */
1193 if (rela->r_addend != 0)
1194 abort ();
1195
1196 /* If we are creating a shared library, then we need to
1197 create a PLT entry for all PLABELs, because PLABELs with
1198 local symbols may be passed via a pointer to another
1199 object. Additionally, output a dynamic relocation
1200 pointing to the PLT entry.
1201
1202 For executables, the original 32-bit ABI allowed two
1203 different styles of PLABELs (function pointers): For
1204 global functions, the PLABEL word points into the .plt
1205 two bytes past a (function address, gp) pair, and for
1206 local functions the PLABEL points directly at the
1207 function. The magic +2 for the first type allows us to
1208 differentiate between the two. As you can imagine, this
1209 is a real pain when it comes to generating code to call
1210 functions indirectly or to compare function pointers.
1211 We avoid the mess by always pointing a PLABEL into the
1212 .plt, even for local functions. */
1213 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1214 break;
1215
1216 case R_PARISC_PCREL12F:
1217 htab->has_12bit_branch = 1;
1218 goto branch_common;
1219
1220 case R_PARISC_PCREL17C:
1221 case R_PARISC_PCREL17F:
1222 htab->has_17bit_branch = 1;
1223 goto branch_common;
1224
1225 case R_PARISC_PCREL22F:
1226 htab->has_22bit_branch = 1;
1227 branch_common:
1228 /* Function calls might need to go through the .plt, and
1229 might require long branch stubs. */
1230 if (hh == NULL)
1231 {
1232 /* We know local syms won't need a .plt entry, and if
1233 they need a long branch stub we can't guarantee that
1234 we can reach the stub. So just flag an error later
1235 if we're doing a shared link and find we need a long
1236 branch stub. */
1237 continue;
1238 }
1239 else
1240 {
1241 /* Global symbols will need a .plt entry if they remain
1242 global, and in most cases won't need a long branch
1243 stub. Unfortunately, we have to cater for the case
1244 where a symbol is forced local by versioning, or due
1245 to symbolic linking, and we lose the .plt entry. */
1246 need_entry = NEED_PLT;
1247 if (hh->eh.type == STT_PARISC_MILLI)
1248 need_entry = 0;
1249 }
1250 break;
1251
1252 case R_PARISC_SEGBASE: /* Used to set segment base. */
1253 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1254 case R_PARISC_PCREL14F: /* PC relative load/store. */
1255 case R_PARISC_PCREL14R:
1256 case R_PARISC_PCREL17R: /* External branches. */
1257 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1258 case R_PARISC_PCREL32:
1259 /* We don't need to propagate the relocation if linking a
1260 shared object since these are section relative. */
1261 continue;
1262
1263 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1264 case R_PARISC_DPREL14R:
1265 case R_PARISC_DPREL21L:
1266 if (bfd_link_pic (info))
1267 {
1268 _bfd_error_handler
1269 /* xgettext:c-format */
1270 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1271 abfd,
1272 elf_hppa_howto_table[r_type].name);
1273 bfd_set_error (bfd_error_bad_value);
1274 return FALSE;
1275 }
1276 /* Fall through. */
1277
1278 case R_PARISC_DIR17F: /* Used for external branches. */
1279 case R_PARISC_DIR17R:
1280 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1281 case R_PARISC_DIR14R:
1282 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1283 case R_PARISC_DIR32: /* .word relocs. */
1284 /* We may want to output a dynamic relocation later. */
1285 need_entry = NEED_DYNREL;
1286 break;
1287
1288 /* This relocation describes the C++ object vtable hierarchy.
1289 Reconstruct it for later use during GC. */
1290 case R_PARISC_GNU_VTINHERIT:
1291 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1292 return FALSE;
1293 continue;
1294
1295 /* This relocation describes which C++ vtable entries are actually
1296 used. Record for later use during GC. */
1297 case R_PARISC_GNU_VTENTRY:
1298 BFD_ASSERT (hh != NULL);
1299 if (hh != NULL
1300 && !bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1301 return FALSE;
1302 continue;
1303
1304 case R_PARISC_TLS_GD21L:
1305 case R_PARISC_TLS_GD14R:
1306 case R_PARISC_TLS_LDM21L:
1307 case R_PARISC_TLS_LDM14R:
1308 need_entry = NEED_GOT;
1309 break;
1310
1311 case R_PARISC_TLS_IE21L:
1312 case R_PARISC_TLS_IE14R:
1313 if (bfd_link_pic (info))
1314 info->flags |= DF_STATIC_TLS;
1315 need_entry = NEED_GOT;
1316 break;
1317
1318 default:
1319 continue;
1320 }
1321
1322 /* Now carry out our orders. */
1323 if (need_entry & NEED_GOT)
1324 {
1325 switch (r_type)
1326 {
1327 default:
1328 tls_type = GOT_NORMAL;
1329 break;
1330 case R_PARISC_TLS_GD21L:
1331 case R_PARISC_TLS_GD14R:
1332 tls_type |= GOT_TLS_GD;
1333 break;
1334 case R_PARISC_TLS_LDM21L:
1335 case R_PARISC_TLS_LDM14R:
1336 tls_type |= GOT_TLS_LDM;
1337 break;
1338 case R_PARISC_TLS_IE21L:
1339 case R_PARISC_TLS_IE14R:
1340 tls_type |= GOT_TLS_IE;
1341 break;
1342 }
1343
1344 /* Allocate space for a GOT entry, as well as a dynamic
1345 relocation for this entry. */
1346 if (htab->etab.sgot == NULL)
1347 {
1348 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1349 return FALSE;
1350 }
1351
1352 if (r_type == R_PARISC_TLS_LDM21L
1353 || r_type == R_PARISC_TLS_LDM14R)
1354 htab->tls_ldm_got.refcount += 1;
1355 else
1356 {
1357 if (hh != NULL)
1358 {
1359 hh->eh.got.refcount += 1;
1360 old_tls_type = hh->tls_type;
1361 }
1362 else
1363 {
1364 bfd_signed_vma *local_got_refcounts;
1365
1366 /* This is a global offset table entry for a local symbol. */
1367 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1368 if (local_got_refcounts == NULL)
1369 return FALSE;
1370 local_got_refcounts[r_symndx] += 1;
1371
1372 old_tls_type = hppa_elf_local_got_tls_type (abfd) [r_symndx];
1373 }
1374
1375 tls_type |= old_tls_type;
1376
1377 if (old_tls_type != tls_type)
1378 {
1379 if (hh != NULL)
1380 hh->tls_type = tls_type;
1381 else
1382 hppa_elf_local_got_tls_type (abfd) [r_symndx] = tls_type;
1383 }
1384
1385 }
1386 }
1387
1388 if (need_entry & NEED_PLT)
1389 {
1390 /* If we are creating a shared library, and this is a reloc
1391 against a weak symbol or a global symbol in a dynamic
1392 object, then we will be creating an import stub and a
1393 .plt entry for the symbol. Similarly, on a normal link
1394 to symbols defined in a dynamic object we'll need the
1395 import stub and a .plt entry. We don't know yet whether
1396 the symbol is defined or not, so make an entry anyway and
1397 clean up later in adjust_dynamic_symbol. */
1398 if ((sec->flags & SEC_ALLOC) != 0)
1399 {
1400 if (hh != NULL)
1401 {
1402 hh->eh.needs_plt = 1;
1403 hh->eh.plt.refcount += 1;
1404
1405 /* If this .plt entry is for a plabel, mark it so
1406 that adjust_dynamic_symbol will keep the entry
1407 even if it appears to be local. */
1408 if (need_entry & PLT_PLABEL)
1409 hh->plabel = 1;
1410 }
1411 else if (need_entry & PLT_PLABEL)
1412 {
1413 bfd_signed_vma *local_got_refcounts;
1414 bfd_signed_vma *local_plt_refcounts;
1415
1416 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1417 if (local_got_refcounts == NULL)
1418 return FALSE;
1419 local_plt_refcounts = (local_got_refcounts
1420 + symtab_hdr->sh_info);
1421 local_plt_refcounts[r_symndx] += 1;
1422 }
1423 }
1424 }
1425
1426 if (need_entry & NEED_DYNREL)
1427 {
1428 /* Flag this symbol as having a non-got, non-plt reference
1429 so that we generate copy relocs if it turns out to be
1430 dynamic. */
1431 if (hh != NULL && !bfd_link_pic (info))
1432 hh->eh.non_got_ref = 1;
1433
1434 /* If we are creating a shared library then we need to copy
1435 the reloc into the shared library. However, if we are
1436 linking with -Bsymbolic, we need only copy absolute
1437 relocs or relocs against symbols that are not defined in
1438 an object we are including in the link. PC- or DP- or
1439 DLT-relative relocs against any local sym or global sym
1440 with DEF_REGULAR set, can be discarded. At this point we
1441 have not seen all the input files, so it is possible that
1442 DEF_REGULAR is not set now but will be set later (it is
1443 never cleared). We account for that possibility below by
1444 storing information in the dyn_relocs field of the
1445 hash table entry.
1446
1447 A similar situation to the -Bsymbolic case occurs when
1448 creating shared libraries and symbol visibility changes
1449 render the symbol local.
1450
1451 As it turns out, all the relocs we will be creating here
1452 are absolute, so we cannot remove them on -Bsymbolic
1453 links or visibility changes anyway. A STUB_REL reloc
1454 is absolute too, as in that case it is the reloc in the
1455 stub we will be creating, rather than copying the PCREL
1456 reloc in the branch.
1457
1458 If on the other hand, we are creating an executable, we
1459 may need to keep relocations for symbols satisfied by a
1460 dynamic library if we manage to avoid copy relocs for the
1461 symbol. */
1462 if ((bfd_link_pic (info)
1463 && (sec->flags & SEC_ALLOC) != 0
1464 && (IS_ABSOLUTE_RELOC (r_type)
1465 || (hh != NULL
1466 && (!SYMBOLIC_BIND (info, &hh->eh)
1467 || hh->eh.root.type == bfd_link_hash_defweak
1468 || !hh->eh.def_regular))))
1469 || (ELIMINATE_COPY_RELOCS
1470 && !bfd_link_pic (info)
1471 && (sec->flags & SEC_ALLOC) != 0
1472 && hh != NULL
1473 && (hh->eh.root.type == bfd_link_hash_defweak
1474 || !hh->eh.def_regular)))
1475 {
1476 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1477 struct elf32_hppa_dyn_reloc_entry **hdh_head;
1478
1479 /* Create a reloc section in dynobj and make room for
1480 this reloc. */
1481 if (sreloc == NULL)
1482 {
1483 sreloc = _bfd_elf_make_dynamic_reloc_section
1484 (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
1485
1486 if (sreloc == NULL)
1487 {
1488 bfd_set_error (bfd_error_bad_value);
1489 return FALSE;
1490 }
1491 }
1492
1493 /* If this is a global symbol, we count the number of
1494 relocations we need for this symbol. */
1495 if (hh != NULL)
1496 {
1497 hdh_head = &hh->dyn_relocs;
1498 }
1499 else
1500 {
1501 /* Track dynamic relocs needed for local syms too.
1502 We really need local syms available to do this
1503 easily. Oh well. */
1504 asection *sr;
1505 void *vpp;
1506 Elf_Internal_Sym *isym;
1507
1508 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1509 abfd, r_symndx);
1510 if (isym == NULL)
1511 return FALSE;
1512
1513 sr = bfd_section_from_elf_index (abfd, isym->st_shndx);
1514 if (sr == NULL)
1515 sr = sec;
1516
1517 vpp = &elf_section_data (sr)->local_dynrel;
1518 hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp;
1519 }
1520
1521 hdh_p = *hdh_head;
1522 if (hdh_p == NULL || hdh_p->sec != sec)
1523 {
1524 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1525 if (hdh_p == NULL)
1526 return FALSE;
1527 hdh_p->hdh_next = *hdh_head;
1528 *hdh_head = hdh_p;
1529 hdh_p->sec = sec;
1530 hdh_p->count = 0;
1531 #if RELATIVE_DYNRELOCS
1532 hdh_p->relative_count = 0;
1533 #endif
1534 }
1535
1536 hdh_p->count += 1;
1537 #if RELATIVE_DYNRELOCS
1538 if (!IS_ABSOLUTE_RELOC (rtype))
1539 hdh_p->relative_count += 1;
1540 #endif
1541 }
1542 }
1543 }
1544
1545 return TRUE;
1546 }
1547
1548 /* Return the section that should be marked against garbage collection
1549 for a given relocation. */
1550
1551 static asection *
1552 elf32_hppa_gc_mark_hook (asection *sec,
1553 struct bfd_link_info *info,
1554 Elf_Internal_Rela *rela,
1555 struct elf_link_hash_entry *hh,
1556 Elf_Internal_Sym *sym)
1557 {
1558 if (hh != NULL)
1559 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1560 {
1561 case R_PARISC_GNU_VTINHERIT:
1562 case R_PARISC_GNU_VTENTRY:
1563 return NULL;
1564 }
1565
1566 return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1567 }
1568
1569 /* Update the got and plt entry reference counts for the section being
1570 removed. */
1571
1572 static bfd_boolean
1573 elf32_hppa_gc_sweep_hook (bfd *abfd,
1574 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1575 asection *sec,
1576 const Elf_Internal_Rela *relocs)
1577 {
1578 Elf_Internal_Shdr *symtab_hdr;
1579 struct elf_link_hash_entry **eh_syms;
1580 bfd_signed_vma *local_got_refcounts;
1581 bfd_signed_vma *local_plt_refcounts;
1582 const Elf_Internal_Rela *rela, *relend;
1583 struct elf32_hppa_link_hash_table *htab;
1584
1585 if (bfd_link_relocatable (info))
1586 return TRUE;
1587
1588 htab = hppa_link_hash_table (info);
1589 if (htab == NULL)
1590 return FALSE;
1591
1592 elf_section_data (sec)->local_dynrel = NULL;
1593
1594 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1595 eh_syms = elf_sym_hashes (abfd);
1596 local_got_refcounts = elf_local_got_refcounts (abfd);
1597 local_plt_refcounts = local_got_refcounts;
1598 if (local_plt_refcounts != NULL)
1599 local_plt_refcounts += symtab_hdr->sh_info;
1600
1601 relend = relocs + sec->reloc_count;
1602 for (rela = relocs; rela < relend; rela++)
1603 {
1604 unsigned long r_symndx;
1605 unsigned int r_type;
1606 struct elf_link_hash_entry *eh = NULL;
1607
1608 r_symndx = ELF32_R_SYM (rela->r_info);
1609 if (r_symndx >= symtab_hdr->sh_info)
1610 {
1611 struct elf32_hppa_link_hash_entry *hh;
1612 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1613 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1614
1615 eh = eh_syms[r_symndx - symtab_hdr->sh_info];
1616 while (eh->root.type == bfd_link_hash_indirect
1617 || eh->root.type == bfd_link_hash_warning)
1618 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1619 hh = hppa_elf_hash_entry (eh);
1620
1621 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next)
1622 if (hdh_p->sec == sec)
1623 {
1624 /* Everything must go for SEC. */
1625 *hdh_pp = hdh_p->hdh_next;
1626 break;
1627 }
1628 }
1629
1630 r_type = ELF32_R_TYPE (rela->r_info);
1631 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, eh != NULL);
1632
1633 switch (r_type)
1634 {
1635 case R_PARISC_DLTIND14F:
1636 case R_PARISC_DLTIND14R:
1637 case R_PARISC_DLTIND21L:
1638 case R_PARISC_TLS_GD21L:
1639 case R_PARISC_TLS_GD14R:
1640 case R_PARISC_TLS_IE21L:
1641 case R_PARISC_TLS_IE14R:
1642 if (eh != NULL)
1643 {
1644 if (eh->got.refcount > 0)
1645 eh->got.refcount -= 1;
1646 }
1647 else if (local_got_refcounts != NULL)
1648 {
1649 if (local_got_refcounts[r_symndx] > 0)
1650 local_got_refcounts[r_symndx] -= 1;
1651 }
1652 break;
1653
1654 case R_PARISC_TLS_LDM21L:
1655 case R_PARISC_TLS_LDM14R:
1656 htab->tls_ldm_got.refcount -= 1;
1657 break;
1658
1659 case R_PARISC_PCREL12F:
1660 case R_PARISC_PCREL17C:
1661 case R_PARISC_PCREL17F:
1662 case R_PARISC_PCREL22F:
1663 if (eh != NULL)
1664 {
1665 if (eh->plt.refcount > 0)
1666 eh->plt.refcount -= 1;
1667 }
1668 break;
1669
1670 case R_PARISC_PLABEL14R:
1671 case R_PARISC_PLABEL21L:
1672 case R_PARISC_PLABEL32:
1673 if (eh != NULL)
1674 {
1675 if (eh->plt.refcount > 0)
1676 eh->plt.refcount -= 1;
1677 }
1678 else if (local_plt_refcounts != NULL)
1679 {
1680 if (local_plt_refcounts[r_symndx] > 0)
1681 local_plt_refcounts[r_symndx] -= 1;
1682 }
1683 break;
1684
1685 default:
1686 break;
1687 }
1688 }
1689
1690 return TRUE;
1691 }
1692
1693 /* Support for core dump NOTE sections. */
1694
1695 static bfd_boolean
1696 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1697 {
1698 int offset;
1699 size_t size;
1700
1701 switch (note->descsz)
1702 {
1703 default:
1704 return FALSE;
1705
1706 case 396: /* Linux/hppa */
1707 /* pr_cursig */
1708 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1709
1710 /* pr_pid */
1711 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
1712
1713 /* pr_reg */
1714 offset = 72;
1715 size = 320;
1716
1717 break;
1718 }
1719
1720 /* Make a ".reg/999" section. */
1721 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1722 size, note->descpos + offset);
1723 }
1724
1725 static bfd_boolean
1726 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1727 {
1728 switch (note->descsz)
1729 {
1730 default:
1731 return FALSE;
1732
1733 case 124: /* Linux/hppa elf_prpsinfo. */
1734 elf_tdata (abfd)->core->program
1735 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1736 elf_tdata (abfd)->core->command
1737 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1738 }
1739
1740 /* Note that for some reason, a spurious space is tacked
1741 onto the end of the args in some (at least one anyway)
1742 implementations, so strip it off if it exists. */
1743 {
1744 char *command = elf_tdata (abfd)->core->command;
1745 int n = strlen (command);
1746
1747 if (0 < n && command[n - 1] == ' ')
1748 command[n - 1] = '\0';
1749 }
1750
1751 return TRUE;
1752 }
1753
1754 /* Our own version of hide_symbol, so that we can keep plt entries for
1755 plabels. */
1756
1757 static void
1758 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1759 struct elf_link_hash_entry *eh,
1760 bfd_boolean force_local)
1761 {
1762 if (force_local)
1763 {
1764 eh->forced_local = 1;
1765 if (eh->dynindx != -1)
1766 {
1767 eh->dynindx = -1;
1768 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1769 eh->dynstr_index);
1770 }
1771
1772 /* PR 16082: Remove version information from hidden symbol. */
1773 eh->verinfo.verdef = NULL;
1774 eh->verinfo.vertree = NULL;
1775 }
1776
1777 /* STT_GNU_IFUNC symbol must go through PLT. */
1778 if (! hppa_elf_hash_entry (eh)->plabel
1779 && eh->type != STT_GNU_IFUNC)
1780 {
1781 eh->needs_plt = 0;
1782 eh->plt = elf_hash_table (info)->init_plt_offset;
1783 }
1784 }
1785
1786 /* Adjust a symbol defined by a dynamic object and referenced by a
1787 regular object. The current definition is in some section of the
1788 dynamic object, but we're not including those sections. We have to
1789 change the definition to something the rest of the link can
1790 understand. */
1791
1792 static bfd_boolean
1793 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1794 struct elf_link_hash_entry *eh)
1795 {
1796 struct elf32_hppa_link_hash_table *htab;
1797 asection *sec, *srel;
1798
1799 /* If this is a function, put it in the procedure linkage table. We
1800 will fill in the contents of the procedure linkage table later. */
1801 if (eh->type == STT_FUNC
1802 || eh->needs_plt)
1803 {
1804 /* If the symbol is used by a plabel, we must allocate a PLT slot.
1805 The refcounts are not reliable when it has been hidden since
1806 hide_symbol can be called before the plabel flag is set. */
1807 if (hppa_elf_hash_entry (eh)->plabel
1808 && eh->plt.refcount <= 0)
1809 eh->plt.refcount = 1;
1810
1811 if (eh->plt.refcount <= 0
1812 || (eh->def_regular
1813 && eh->root.type != bfd_link_hash_defweak
1814 && ! hppa_elf_hash_entry (eh)->plabel
1815 && (!bfd_link_pic (info) || SYMBOLIC_BIND (info, eh))))
1816 {
1817 /* The .plt entry is not needed when:
1818 a) Garbage collection has removed all references to the
1819 symbol, or
1820 b) We know for certain the symbol is defined in this
1821 object, and it's not a weak definition, nor is the symbol
1822 used by a plabel relocation. Either this object is the
1823 application or we are doing a shared symbolic link. */
1824
1825 eh->plt.offset = (bfd_vma) -1;
1826 eh->needs_plt = 0;
1827 }
1828
1829 return TRUE;
1830 }
1831 else
1832 eh->plt.offset = (bfd_vma) -1;
1833
1834 /* If this is a weak symbol, and there is a real definition, the
1835 processor independent code will have arranged for us to see the
1836 real definition first, and we can just use the same value. */
1837 if (eh->u.weakdef != NULL)
1838 {
1839 if (eh->u.weakdef->root.type != bfd_link_hash_defined
1840 && eh->u.weakdef->root.type != bfd_link_hash_defweak)
1841 abort ();
1842 eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1843 eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1844 if (ELIMINATE_COPY_RELOCS)
1845 eh->non_got_ref = eh->u.weakdef->non_got_ref;
1846 return TRUE;
1847 }
1848
1849 /* This is a reference to a symbol defined by a dynamic object which
1850 is not a function. */
1851
1852 /* If we are creating a shared library, we must presume that the
1853 only references to the symbol are via the global offset table.
1854 For such cases we need not do anything here; the relocations will
1855 be handled correctly by relocate_section. */
1856 if (bfd_link_pic (info))
1857 return TRUE;
1858
1859 /* If there are no references to this symbol that do not use the
1860 GOT, we don't need to generate a copy reloc. */
1861 if (!eh->non_got_ref)
1862 return TRUE;
1863
1864 if (ELIMINATE_COPY_RELOCS)
1865 {
1866 struct elf32_hppa_link_hash_entry *hh;
1867 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1868
1869 hh = hppa_elf_hash_entry (eh);
1870 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
1871 {
1872 sec = hdh_p->sec->output_section;
1873 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1874 break;
1875 }
1876
1877 /* If we didn't find any dynamic relocs in read-only sections, then
1878 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1879 if (hdh_p == NULL)
1880 {
1881 eh->non_got_ref = 0;
1882 return TRUE;
1883 }
1884 }
1885
1886 /* We must allocate the symbol in our .dynbss section, which will
1887 become part of the .bss section of the executable. There will be
1888 an entry for this symbol in the .dynsym section. The dynamic
1889 object will contain position independent code, so all references
1890 from the dynamic object to this symbol will go through the global
1891 offset table. The dynamic linker will use the .dynsym entry to
1892 determine the address it must put in the global offset table, so
1893 both the dynamic object and the regular object will refer to the
1894 same memory location for the variable. */
1895
1896 htab = hppa_link_hash_table (info);
1897 if (htab == NULL)
1898 return FALSE;
1899
1900 /* We must generate a COPY reloc to tell the dynamic linker to
1901 copy the initial value out of the dynamic object and into the
1902 runtime process image. */
1903 if ((eh->root.u.def.section->flags & SEC_READONLY) != 0)
1904 {
1905 sec = htab->etab.sdynrelro;
1906 srel = htab->etab.sreldynrelro;
1907 }
1908 else
1909 {
1910 sec = htab->etab.sdynbss;
1911 srel = htab->etab.srelbss;
1912 }
1913 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0 && eh->size != 0)
1914 {
1915 srel->size += sizeof (Elf32_External_Rela);
1916 eh->needs_copy = 1;
1917 }
1918
1919 return _bfd_elf_adjust_dynamic_copy (info, eh, sec);
1920 }
1921
1922 /* If EH is undefined, make it dynamic if that makes sense. */
1923
1924 static bfd_boolean
1925 ensure_undef_dynamic (struct bfd_link_info *info,
1926 struct elf_link_hash_entry *eh)
1927 {
1928 struct elf_link_hash_table *htab = elf_hash_table (info);
1929
1930 if (htab->dynamic_sections_created
1931 && (eh->root.type == bfd_link_hash_undefweak
1932 || eh->root.type == bfd_link_hash_undefined)
1933 && eh->dynindx == -1
1934 && !eh->forced_local
1935 && eh->type != STT_PARISC_MILLI
1936 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT)
1937 return bfd_elf_link_record_dynamic_symbol (info, eh);
1938 return TRUE;
1939 }
1940
1941 /* Allocate space in the .plt for entries that won't have relocations.
1942 ie. plabel entries. */
1943
1944 static bfd_boolean
1945 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1946 {
1947 struct bfd_link_info *info;
1948 struct elf32_hppa_link_hash_table *htab;
1949 struct elf32_hppa_link_hash_entry *hh;
1950 asection *sec;
1951
1952 if (eh->root.type == bfd_link_hash_indirect)
1953 return TRUE;
1954
1955 info = (struct bfd_link_info *) inf;
1956 hh = hppa_elf_hash_entry (eh);
1957 htab = hppa_link_hash_table (info);
1958 if (htab == NULL)
1959 return FALSE;
1960
1961 if (htab->etab.dynamic_sections_created
1962 && eh->plt.refcount > 0)
1963 {
1964 if (!ensure_undef_dynamic (info, eh))
1965 return FALSE;
1966
1967 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), eh))
1968 {
1969 /* Allocate these later. From this point on, h->plabel
1970 means that the plt entry is only used by a plabel.
1971 We'll be using a normal plt entry for this symbol, so
1972 clear the plabel indicator. */
1973
1974 hh->plabel = 0;
1975 }
1976 else if (hh->plabel)
1977 {
1978 /* Make an entry in the .plt section for plabel references
1979 that won't have a .plt entry for other reasons. */
1980 sec = htab->etab.splt;
1981 eh->plt.offset = sec->size;
1982 sec->size += PLT_ENTRY_SIZE;
1983 if (bfd_link_pic (info))
1984 htab->etab.srelplt->size += sizeof (Elf32_External_Rela);
1985 }
1986 else
1987 {
1988 /* No .plt entry needed. */
1989 eh->plt.offset = (bfd_vma) -1;
1990 eh->needs_plt = 0;
1991 }
1992 }
1993 else
1994 {
1995 eh->plt.offset = (bfd_vma) -1;
1996 eh->needs_plt = 0;
1997 }
1998
1999 return TRUE;
2000 }
2001
2002 /* Allocate space in .plt, .got and associated reloc sections for
2003 global syms. */
2004
2005 static bfd_boolean
2006 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2007 {
2008 struct bfd_link_info *info;
2009 struct elf32_hppa_link_hash_table *htab;
2010 asection *sec;
2011 struct elf32_hppa_link_hash_entry *hh;
2012 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2013
2014 if (eh->root.type == bfd_link_hash_indirect)
2015 return TRUE;
2016
2017 info = inf;
2018 htab = hppa_link_hash_table (info);
2019 if (htab == NULL)
2020 return FALSE;
2021
2022 hh = hppa_elf_hash_entry (eh);
2023
2024 if (htab->etab.dynamic_sections_created
2025 && eh->plt.offset != (bfd_vma) -1
2026 && !hh->plabel
2027 && eh->plt.refcount > 0)
2028 {
2029 /* Make an entry in the .plt section. */
2030 sec = htab->etab.splt;
2031 eh->plt.offset = sec->size;
2032 sec->size += PLT_ENTRY_SIZE;
2033
2034 /* We also need to make an entry in the .rela.plt section. */
2035 htab->etab.srelplt->size += sizeof (Elf32_External_Rela);
2036 htab->need_plt_stub = 1;
2037 }
2038
2039 if (eh->got.refcount > 0)
2040 {
2041 if (!ensure_undef_dynamic (info, eh))
2042 return FALSE;
2043
2044 sec = htab->etab.sgot;
2045 eh->got.offset = sec->size;
2046 sec->size += GOT_ENTRY_SIZE;
2047 /* R_PARISC_TLS_GD* needs two GOT entries */
2048 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2049 sec->size += GOT_ENTRY_SIZE * 2;
2050 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2051 sec->size += GOT_ENTRY_SIZE;
2052 if (htab->etab.dynamic_sections_created
2053 && (bfd_link_pic (info)
2054 || (eh->dynindx != -1
2055 && !eh->forced_local)))
2056 {
2057 htab->etab.srelgot->size += sizeof (Elf32_External_Rela);
2058 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2059 htab->etab.srelgot->size += 2 * sizeof (Elf32_External_Rela);
2060 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2061 htab->etab.srelgot->size += sizeof (Elf32_External_Rela);
2062 }
2063 }
2064 else
2065 eh->got.offset = (bfd_vma) -1;
2066
2067 if (hh->dyn_relocs == NULL)
2068 return TRUE;
2069
2070 /* If this is a -Bsymbolic shared link, then we need to discard all
2071 space allocated for dynamic pc-relative relocs against symbols
2072 defined in a regular object. For the normal shared case, discard
2073 space for relocs that have become local due to symbol visibility
2074 changes. */
2075 if (bfd_link_pic (info))
2076 {
2077 /* Discard relocs on undefined syms with non-default visibility. */
2078 if ((eh->root.type == bfd_link_hash_undefined
2079 || eh->root.type == bfd_link_hash_undefweak)
2080 && ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
2081 hh->dyn_relocs = NULL;
2082
2083 #if RELATIVE_DYNRELOCS
2084 else if (SYMBOL_CALLS_LOCAL (info, eh))
2085 {
2086 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
2087
2088 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2089 {
2090 hdh_p->count -= hdh_p->relative_count;
2091 hdh_p->relative_count = 0;
2092 if (hdh_p->count == 0)
2093 *hdh_pp = hdh_p->hdh_next;
2094 else
2095 hdh_pp = &hdh_p->hdh_next;
2096 }
2097 }
2098 #endif
2099
2100 if (hh->dyn_relocs != NULL)
2101 {
2102 if (!ensure_undef_dynamic (info, eh))
2103 return FALSE;
2104 }
2105 }
2106 else
2107 {
2108 /* For the non-shared case, discard space for relocs against
2109 symbols which turn out to need copy relocs or are not
2110 dynamic. */
2111
2112 if (!eh->non_got_ref
2113 && ((ELIMINATE_COPY_RELOCS
2114 && eh->def_dynamic
2115 && !eh->def_regular)
2116 || (htab->etab.dynamic_sections_created
2117 && (eh->root.type == bfd_link_hash_undefweak
2118 || eh->root.type == bfd_link_hash_undefined))))
2119 {
2120 if (!ensure_undef_dynamic (info, eh))
2121 return FALSE;
2122
2123 if (eh->dynindx == -1)
2124 hh->dyn_relocs = NULL;
2125 }
2126 else
2127 hh->dyn_relocs = NULL;
2128 }
2129
2130 /* Finally, allocate space. */
2131 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2132 {
2133 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2134 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2135 }
2136
2137 return TRUE;
2138 }
2139
2140 /* This function is called via elf_link_hash_traverse to force
2141 millicode symbols local so they do not end up as globals in the
2142 dynamic symbol table. We ought to be able to do this in
2143 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2144 for all dynamic symbols. Arguably, this is a bug in
2145 elf_adjust_dynamic_symbol. */
2146
2147 static bfd_boolean
2148 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2149 struct bfd_link_info *info)
2150 {
2151 if (eh->type == STT_PARISC_MILLI
2152 && !eh->forced_local)
2153 {
2154 elf32_hppa_hide_symbol (info, eh, TRUE);
2155 }
2156 return TRUE;
2157 }
2158
2159 /* Find any dynamic relocs that apply to read-only sections. */
2160
2161 static bfd_boolean
2162 readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2163 {
2164 struct elf32_hppa_link_hash_entry *hh;
2165 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2166
2167 hh = hppa_elf_hash_entry (eh);
2168 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2169 {
2170 asection *sec = hdh_p->sec->output_section;
2171
2172 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
2173 {
2174 struct bfd_link_info *info = inf;
2175
2176 info->flags |= DF_TEXTREL;
2177
2178 /* Not an error, just cut short the traversal. */
2179 return FALSE;
2180 }
2181 }
2182 return TRUE;
2183 }
2184
2185 /* Set the sizes of the dynamic sections. */
2186
2187 static bfd_boolean
2188 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2189 struct bfd_link_info *info)
2190 {
2191 struct elf32_hppa_link_hash_table *htab;
2192 bfd *dynobj;
2193 bfd *ibfd;
2194 asection *sec;
2195 bfd_boolean relocs;
2196
2197 htab = hppa_link_hash_table (info);
2198 if (htab == NULL)
2199 return FALSE;
2200
2201 dynobj = htab->etab.dynobj;
2202 if (dynobj == NULL)
2203 abort ();
2204
2205 if (htab->etab.dynamic_sections_created)
2206 {
2207 /* Set the contents of the .interp section to the interpreter. */
2208 if (bfd_link_executable (info) && !info->nointerp)
2209 {
2210 sec = bfd_get_linker_section (dynobj, ".interp");
2211 if (sec == NULL)
2212 abort ();
2213 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2214 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2215 }
2216
2217 /* Force millicode symbols local. */
2218 elf_link_hash_traverse (&htab->etab,
2219 clobber_millicode_symbols,
2220 info);
2221 }
2222
2223 /* Set up .got and .plt offsets for local syms, and space for local
2224 dynamic relocs. */
2225 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
2226 {
2227 bfd_signed_vma *local_got;
2228 bfd_signed_vma *end_local_got;
2229 bfd_signed_vma *local_plt;
2230 bfd_signed_vma *end_local_plt;
2231 bfd_size_type locsymcount;
2232 Elf_Internal_Shdr *symtab_hdr;
2233 asection *srel;
2234 char *local_tls_type;
2235
2236 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2237 continue;
2238
2239 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2240 {
2241 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2242
2243 for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
2244 elf_section_data (sec)->local_dynrel);
2245 hdh_p != NULL;
2246 hdh_p = hdh_p->hdh_next)
2247 {
2248 if (!bfd_is_abs_section (hdh_p->sec)
2249 && bfd_is_abs_section (hdh_p->sec->output_section))
2250 {
2251 /* Input section has been discarded, either because
2252 it is a copy of a linkonce section or due to
2253 linker script /DISCARD/, so we'll be discarding
2254 the relocs too. */
2255 }
2256 else if (hdh_p->count != 0)
2257 {
2258 srel = elf_section_data (hdh_p->sec)->sreloc;
2259 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2260 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2261 info->flags |= DF_TEXTREL;
2262 }
2263 }
2264 }
2265
2266 local_got = elf_local_got_refcounts (ibfd);
2267 if (!local_got)
2268 continue;
2269
2270 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2271 locsymcount = symtab_hdr->sh_info;
2272 end_local_got = local_got + locsymcount;
2273 local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2274 sec = htab->etab.sgot;
2275 srel = htab->etab.srelgot;
2276 for (; local_got < end_local_got; ++local_got)
2277 {
2278 if (*local_got > 0)
2279 {
2280 *local_got = sec->size;
2281 sec->size += GOT_ENTRY_SIZE;
2282 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2283 sec->size += 2 * GOT_ENTRY_SIZE;
2284 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2285 sec->size += GOT_ENTRY_SIZE;
2286 if (bfd_link_pic (info))
2287 {
2288 srel->size += sizeof (Elf32_External_Rela);
2289 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2290 srel->size += 2 * sizeof (Elf32_External_Rela);
2291 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2292 srel->size += sizeof (Elf32_External_Rela);
2293 }
2294 }
2295 else
2296 *local_got = (bfd_vma) -1;
2297
2298 ++local_tls_type;
2299 }
2300
2301 local_plt = end_local_got;
2302 end_local_plt = local_plt + locsymcount;
2303 if (! htab->etab.dynamic_sections_created)
2304 {
2305 /* Won't be used, but be safe. */
2306 for (; local_plt < end_local_plt; ++local_plt)
2307 *local_plt = (bfd_vma) -1;
2308 }
2309 else
2310 {
2311 sec = htab->etab.splt;
2312 srel = htab->etab.srelplt;
2313 for (; local_plt < end_local_plt; ++local_plt)
2314 {
2315 if (*local_plt > 0)
2316 {
2317 *local_plt = sec->size;
2318 sec->size += PLT_ENTRY_SIZE;
2319 if (bfd_link_pic (info))
2320 srel->size += sizeof (Elf32_External_Rela);
2321 }
2322 else
2323 *local_plt = (bfd_vma) -1;
2324 }
2325 }
2326 }
2327
2328 if (htab->tls_ldm_got.refcount > 0)
2329 {
2330 /* Allocate 2 got entries and 1 dynamic reloc for
2331 R_PARISC_TLS_DTPMOD32 relocs. */
2332 htab->tls_ldm_got.offset = htab->etab.sgot->size;
2333 htab->etab.sgot->size += (GOT_ENTRY_SIZE * 2);
2334 htab->etab.srelgot->size += sizeof (Elf32_External_Rela);
2335 }
2336 else
2337 htab->tls_ldm_got.offset = -1;
2338
2339 /* Do all the .plt entries without relocs first. The dynamic linker
2340 uses the last .plt reloc to find the end of the .plt (and hence
2341 the start of the .got) for lazy linking. */
2342 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2343
2344 /* Allocate global sym .plt and .got entries, and space for global
2345 sym dynamic relocs. */
2346 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2347
2348 /* The check_relocs and adjust_dynamic_symbol entry points have
2349 determined the sizes of the various dynamic sections. Allocate
2350 memory for them. */
2351 relocs = FALSE;
2352 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2353 {
2354 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2355 continue;
2356
2357 if (sec == htab->etab.splt)
2358 {
2359 if (htab->need_plt_stub)
2360 {
2361 /* Make space for the plt stub at the end of the .plt
2362 section. We want this stub right at the end, up
2363 against the .got section. */
2364 int gotalign = bfd_section_alignment (dynobj, htab->etab.sgot);
2365 int pltalign = bfd_section_alignment (dynobj, sec);
2366 bfd_size_type mask;
2367
2368 if (gotalign > pltalign)
2369 (void) bfd_set_section_alignment (dynobj, sec, gotalign);
2370 mask = ((bfd_size_type) 1 << gotalign) - 1;
2371 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2372 }
2373 }
2374 else if (sec == htab->etab.sgot
2375 || sec == htab->etab.sdynbss
2376 || sec == htab->etab.sdynrelro)
2377 ;
2378 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
2379 {
2380 if (sec->size != 0)
2381 {
2382 /* Remember whether there are any reloc sections other
2383 than .rela.plt. */
2384 if (sec != htab->etab.srelplt)
2385 relocs = TRUE;
2386
2387 /* We use the reloc_count field as a counter if we need
2388 to copy relocs into the output file. */
2389 sec->reloc_count = 0;
2390 }
2391 }
2392 else
2393 {
2394 /* It's not one of our sections, so don't allocate space. */
2395 continue;
2396 }
2397
2398 if (sec->size == 0)
2399 {
2400 /* If we don't need this section, strip it from the
2401 output file. This is mostly to handle .rela.bss and
2402 .rela.plt. We must create both sections in
2403 create_dynamic_sections, because they must be created
2404 before the linker maps input sections to output
2405 sections. The linker does that before
2406 adjust_dynamic_symbol is called, and it is that
2407 function which decides whether anything needs to go
2408 into these sections. */
2409 sec->flags |= SEC_EXCLUDE;
2410 continue;
2411 }
2412
2413 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2414 continue;
2415
2416 /* Allocate memory for the section contents. Zero it, because
2417 we may not fill in all the reloc sections. */
2418 sec->contents = bfd_zalloc (dynobj, sec->size);
2419 if (sec->contents == NULL)
2420 return FALSE;
2421 }
2422
2423 if (htab->etab.dynamic_sections_created)
2424 {
2425 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2426 actually has nothing to do with the PLT, it is how we
2427 communicate the LTP value of a load module to the dynamic
2428 linker. */
2429 #define add_dynamic_entry(TAG, VAL) \
2430 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2431
2432 if (!add_dynamic_entry (DT_PLTGOT, 0))
2433 return FALSE;
2434
2435 /* Add some entries to the .dynamic section. We fill in the
2436 values later, in elf32_hppa_finish_dynamic_sections, but we
2437 must add the entries now so that we get the correct size for
2438 the .dynamic section. The DT_DEBUG entry is filled in by the
2439 dynamic linker and used by the debugger. */
2440 if (bfd_link_executable (info))
2441 {
2442 if (!add_dynamic_entry (DT_DEBUG, 0))
2443 return FALSE;
2444 }
2445
2446 if (htab->etab.srelplt->size != 0)
2447 {
2448 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2449 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2450 || !add_dynamic_entry (DT_JMPREL, 0))
2451 return FALSE;
2452 }
2453
2454 if (relocs)
2455 {
2456 if (!add_dynamic_entry (DT_RELA, 0)
2457 || !add_dynamic_entry (DT_RELASZ, 0)
2458 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2459 return FALSE;
2460
2461 /* If any dynamic relocs apply to a read-only section,
2462 then we need a DT_TEXTREL entry. */
2463 if ((info->flags & DF_TEXTREL) == 0)
2464 elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info);
2465
2466 if ((info->flags & DF_TEXTREL) != 0)
2467 {
2468 if (!add_dynamic_entry (DT_TEXTREL, 0))
2469 return FALSE;
2470 }
2471 }
2472 }
2473 #undef add_dynamic_entry
2474
2475 return TRUE;
2476 }
2477
2478 /* External entry points for sizing and building linker stubs. */
2479
2480 /* Set up various things so that we can make a list of input sections
2481 for each output section included in the link. Returns -1 on error,
2482 0 when no stubs will be needed, and 1 on success. */
2483
2484 int
2485 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2486 {
2487 bfd *input_bfd;
2488 unsigned int bfd_count;
2489 unsigned int top_id, top_index;
2490 asection *section;
2491 asection **input_list, **list;
2492 bfd_size_type amt;
2493 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2494
2495 if (htab == NULL)
2496 return -1;
2497
2498 /* Count the number of input BFDs and find the top input section id. */
2499 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2500 input_bfd != NULL;
2501 input_bfd = input_bfd->link.next)
2502 {
2503 bfd_count += 1;
2504 for (section = input_bfd->sections;
2505 section != NULL;
2506 section = section->next)
2507 {
2508 if (top_id < section->id)
2509 top_id = section->id;
2510 }
2511 }
2512 htab->bfd_count = bfd_count;
2513
2514 amt = sizeof (struct map_stub) * (top_id + 1);
2515 htab->stub_group = bfd_zmalloc (amt);
2516 if (htab->stub_group == NULL)
2517 return -1;
2518
2519 /* We can't use output_bfd->section_count here to find the top output
2520 section index as some sections may have been removed, and
2521 strip_excluded_output_sections doesn't renumber the indices. */
2522 for (section = output_bfd->sections, top_index = 0;
2523 section != NULL;
2524 section = section->next)
2525 {
2526 if (top_index < section->index)
2527 top_index = section->index;
2528 }
2529
2530 htab->top_index = top_index;
2531 amt = sizeof (asection *) * (top_index + 1);
2532 input_list = bfd_malloc (amt);
2533 htab->input_list = input_list;
2534 if (input_list == NULL)
2535 return -1;
2536
2537 /* For sections we aren't interested in, mark their entries with a
2538 value we can check later. */
2539 list = input_list + top_index;
2540 do
2541 *list = bfd_abs_section_ptr;
2542 while (list-- != input_list);
2543
2544 for (section = output_bfd->sections;
2545 section != NULL;
2546 section = section->next)
2547 {
2548 if ((section->flags & SEC_CODE) != 0)
2549 input_list[section->index] = NULL;
2550 }
2551
2552 return 1;
2553 }
2554
2555 /* The linker repeatedly calls this function for each input section,
2556 in the order that input sections are linked into output sections.
2557 Build lists of input sections to determine groupings between which
2558 we may insert linker stubs. */
2559
2560 void
2561 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2562 {
2563 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2564
2565 if (htab == NULL)
2566 return;
2567
2568 if (isec->output_section->index <= htab->top_index)
2569 {
2570 asection **list = htab->input_list + isec->output_section->index;
2571 if (*list != bfd_abs_section_ptr)
2572 {
2573 /* Steal the link_sec pointer for our list. */
2574 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2575 /* This happens to make the list in reverse order,
2576 which is what we want. */
2577 PREV_SEC (isec) = *list;
2578 *list = isec;
2579 }
2580 }
2581 }
2582
2583 /* See whether we can group stub sections together. Grouping stub
2584 sections may result in fewer stubs. More importantly, we need to
2585 put all .init* and .fini* stubs at the beginning of the .init or
2586 .fini output sections respectively, because glibc splits the
2587 _init and _fini functions into multiple parts. Putting a stub in
2588 the middle of a function is not a good idea. */
2589
2590 static void
2591 group_sections (struct elf32_hppa_link_hash_table *htab,
2592 bfd_size_type stub_group_size,
2593 bfd_boolean stubs_always_before_branch)
2594 {
2595 asection **list = htab->input_list + htab->top_index;
2596 do
2597 {
2598 asection *tail = *list;
2599 if (tail == bfd_abs_section_ptr)
2600 continue;
2601 while (tail != NULL)
2602 {
2603 asection *curr;
2604 asection *prev;
2605 bfd_size_type total;
2606 bfd_boolean big_sec;
2607
2608 curr = tail;
2609 total = tail->size;
2610 big_sec = total >= stub_group_size;
2611
2612 while ((prev = PREV_SEC (curr)) != NULL
2613 && ((total += curr->output_offset - prev->output_offset)
2614 < stub_group_size))
2615 curr = prev;
2616
2617 /* OK, the size from the start of CURR to the end is less
2618 than 240000 bytes and thus can be handled by one stub
2619 section. (or the tail section is itself larger than
2620 240000 bytes, in which case we may be toast.)
2621 We should really be keeping track of the total size of
2622 stubs added here, as stubs contribute to the final output
2623 section size. That's a little tricky, and this way will
2624 only break if stubs added total more than 22144 bytes, or
2625 2768 long branch stubs. It seems unlikely for more than
2626 2768 different functions to be called, especially from
2627 code only 240000 bytes long. This limit used to be
2628 250000, but c++ code tends to generate lots of little
2629 functions, and sometimes violated the assumption. */
2630 do
2631 {
2632 prev = PREV_SEC (tail);
2633 /* Set up this stub group. */
2634 htab->stub_group[tail->id].link_sec = curr;
2635 }
2636 while (tail != curr && (tail = prev) != NULL);
2637
2638 /* But wait, there's more! Input sections up to 240000
2639 bytes before the stub section can be handled by it too.
2640 Don't do this if we have a really large section after the
2641 stubs, as adding more stubs increases the chance that
2642 branches may not reach into the stub section. */
2643 if (!stubs_always_before_branch && !big_sec)
2644 {
2645 total = 0;
2646 while (prev != NULL
2647 && ((total += tail->output_offset - prev->output_offset)
2648 < stub_group_size))
2649 {
2650 tail = prev;
2651 prev = PREV_SEC (tail);
2652 htab->stub_group[tail->id].link_sec = curr;
2653 }
2654 }
2655 tail = prev;
2656 }
2657 }
2658 while (list-- != htab->input_list);
2659 free (htab->input_list);
2660 #undef PREV_SEC
2661 }
2662
2663 /* Read in all local syms for all input bfds, and create hash entries
2664 for export stubs if we are building a multi-subspace shared lib.
2665 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2666
2667 static int
2668 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2669 {
2670 unsigned int bfd_indx;
2671 Elf_Internal_Sym *local_syms, **all_local_syms;
2672 int stub_changed = 0;
2673 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2674
2675 if (htab == NULL)
2676 return -1;
2677
2678 /* We want to read in symbol extension records only once. To do this
2679 we need to read in the local symbols in parallel and save them for
2680 later use; so hold pointers to the local symbols in an array. */
2681 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2682 all_local_syms = bfd_zmalloc (amt);
2683 htab->all_local_syms = all_local_syms;
2684 if (all_local_syms == NULL)
2685 return -1;
2686
2687 /* Walk over all the input BFDs, swapping in local symbols.
2688 If we are creating a shared library, create hash entries for the
2689 export stubs. */
2690 for (bfd_indx = 0;
2691 input_bfd != NULL;
2692 input_bfd = input_bfd->link.next, bfd_indx++)
2693 {
2694 Elf_Internal_Shdr *symtab_hdr;
2695
2696 /* We'll need the symbol table in a second. */
2697 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2698 if (symtab_hdr->sh_info == 0)
2699 continue;
2700
2701 /* We need an array of the local symbols attached to the input bfd. */
2702 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2703 if (local_syms == NULL)
2704 {
2705 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2706 symtab_hdr->sh_info, 0,
2707 NULL, NULL, NULL);
2708 /* Cache them for elf_link_input_bfd. */
2709 symtab_hdr->contents = (unsigned char *) local_syms;
2710 }
2711 if (local_syms == NULL)
2712 return -1;
2713
2714 all_local_syms[bfd_indx] = local_syms;
2715
2716 if (bfd_link_pic (info) && htab->multi_subspace)
2717 {
2718 struct elf_link_hash_entry **eh_syms;
2719 struct elf_link_hash_entry **eh_symend;
2720 unsigned int symcount;
2721
2722 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2723 - symtab_hdr->sh_info);
2724 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2725 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2726
2727 /* Look through the global syms for functions; We need to
2728 build export stubs for all globally visible functions. */
2729 for (; eh_syms < eh_symend; eh_syms++)
2730 {
2731 struct elf32_hppa_link_hash_entry *hh;
2732
2733 hh = hppa_elf_hash_entry (*eh_syms);
2734
2735 while (hh->eh.root.type == bfd_link_hash_indirect
2736 || hh->eh.root.type == bfd_link_hash_warning)
2737 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2738
2739 /* At this point in the link, undefined syms have been
2740 resolved, so we need to check that the symbol was
2741 defined in this BFD. */
2742 if ((hh->eh.root.type == bfd_link_hash_defined
2743 || hh->eh.root.type == bfd_link_hash_defweak)
2744 && hh->eh.type == STT_FUNC
2745 && hh->eh.root.u.def.section->output_section != NULL
2746 && (hh->eh.root.u.def.section->output_section->owner
2747 == output_bfd)
2748 && hh->eh.root.u.def.section->owner == input_bfd
2749 && hh->eh.def_regular
2750 && !hh->eh.forced_local
2751 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2752 {
2753 asection *sec;
2754 const char *stub_name;
2755 struct elf32_hppa_stub_hash_entry *hsh;
2756
2757 sec = hh->eh.root.u.def.section;
2758 stub_name = hh_name (hh);
2759 hsh = hppa_stub_hash_lookup (&htab->bstab,
2760 stub_name,
2761 FALSE, FALSE);
2762 if (hsh == NULL)
2763 {
2764 hsh = hppa_add_stub (stub_name, sec, htab);
2765 if (!hsh)
2766 return -1;
2767
2768 hsh->target_value = hh->eh.root.u.def.value;
2769 hsh->target_section = hh->eh.root.u.def.section;
2770 hsh->stub_type = hppa_stub_export;
2771 hsh->hh = hh;
2772 stub_changed = 1;
2773 }
2774 else
2775 {
2776 /* xgettext:c-format */
2777 _bfd_error_handler (_("%B: duplicate export stub %s"),
2778 input_bfd, stub_name);
2779 }
2780 }
2781 }
2782 }
2783 }
2784
2785 return stub_changed;
2786 }
2787
2788 /* Determine and set the size of the stub section for a final link.
2789
2790 The basic idea here is to examine all the relocations looking for
2791 PC-relative calls to a target that is unreachable with a "bl"
2792 instruction. */
2793
2794 bfd_boolean
2795 elf32_hppa_size_stubs
2796 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2797 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2798 asection * (*add_stub_section) (const char *, asection *),
2799 void (*layout_sections_again) (void))
2800 {
2801 bfd_size_type stub_group_size;
2802 bfd_boolean stubs_always_before_branch;
2803 bfd_boolean stub_changed;
2804 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2805
2806 if (htab == NULL)
2807 return FALSE;
2808
2809 /* Stash our params away. */
2810 htab->stub_bfd = stub_bfd;
2811 htab->multi_subspace = multi_subspace;
2812 htab->add_stub_section = add_stub_section;
2813 htab->layout_sections_again = layout_sections_again;
2814 stubs_always_before_branch = group_size < 0;
2815 if (group_size < 0)
2816 stub_group_size = -group_size;
2817 else
2818 stub_group_size = group_size;
2819 if (stub_group_size == 1)
2820 {
2821 /* Default values. */
2822 if (stubs_always_before_branch)
2823 {
2824 stub_group_size = 7680000;
2825 if (htab->has_17bit_branch || htab->multi_subspace)
2826 stub_group_size = 240000;
2827 if (htab->has_12bit_branch)
2828 stub_group_size = 7500;
2829 }
2830 else
2831 {
2832 stub_group_size = 6971392;
2833 if (htab->has_17bit_branch || htab->multi_subspace)
2834 stub_group_size = 217856;
2835 if (htab->has_12bit_branch)
2836 stub_group_size = 6808;
2837 }
2838 }
2839
2840 group_sections (htab, stub_group_size, stubs_always_before_branch);
2841
2842 switch (get_local_syms (output_bfd, info->input_bfds, info))
2843 {
2844 default:
2845 if (htab->all_local_syms)
2846 goto error_ret_free_local;
2847 return FALSE;
2848
2849 case 0:
2850 stub_changed = FALSE;
2851 break;
2852
2853 case 1:
2854 stub_changed = TRUE;
2855 break;
2856 }
2857
2858 while (1)
2859 {
2860 bfd *input_bfd;
2861 unsigned int bfd_indx;
2862 asection *stub_sec;
2863
2864 for (input_bfd = info->input_bfds, bfd_indx = 0;
2865 input_bfd != NULL;
2866 input_bfd = input_bfd->link.next, bfd_indx++)
2867 {
2868 Elf_Internal_Shdr *symtab_hdr;
2869 asection *section;
2870 Elf_Internal_Sym *local_syms;
2871
2872 /* We'll need the symbol table in a second. */
2873 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2874 if (symtab_hdr->sh_info == 0)
2875 continue;
2876
2877 local_syms = htab->all_local_syms[bfd_indx];
2878
2879 /* Walk over each section attached to the input bfd. */
2880 for (section = input_bfd->sections;
2881 section != NULL;
2882 section = section->next)
2883 {
2884 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2885
2886 /* If there aren't any relocs, then there's nothing more
2887 to do. */
2888 if ((section->flags & SEC_RELOC) == 0
2889 || section->reloc_count == 0)
2890 continue;
2891
2892 /* If this section is a link-once section that will be
2893 discarded, then don't create any stubs. */
2894 if (section->output_section == NULL
2895 || section->output_section->owner != output_bfd)
2896 continue;
2897
2898 /* Get the relocs. */
2899 internal_relocs
2900 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2901 info->keep_memory);
2902 if (internal_relocs == NULL)
2903 goto error_ret_free_local;
2904
2905 /* Now examine each relocation. */
2906 irela = internal_relocs;
2907 irelaend = irela + section->reloc_count;
2908 for (; irela < irelaend; irela++)
2909 {
2910 unsigned int r_type, r_indx;
2911 enum elf32_hppa_stub_type stub_type;
2912 struct elf32_hppa_stub_hash_entry *hsh;
2913 asection *sym_sec;
2914 bfd_vma sym_value;
2915 bfd_vma destination;
2916 struct elf32_hppa_link_hash_entry *hh;
2917 char *stub_name;
2918 const asection *id_sec;
2919
2920 r_type = ELF32_R_TYPE (irela->r_info);
2921 r_indx = ELF32_R_SYM (irela->r_info);
2922
2923 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2924 {
2925 bfd_set_error (bfd_error_bad_value);
2926 error_ret_free_internal:
2927 if (elf_section_data (section)->relocs == NULL)
2928 free (internal_relocs);
2929 goto error_ret_free_local;
2930 }
2931
2932 /* Only look for stubs on call instructions. */
2933 if (r_type != (unsigned int) R_PARISC_PCREL12F
2934 && r_type != (unsigned int) R_PARISC_PCREL17F
2935 && r_type != (unsigned int) R_PARISC_PCREL22F)
2936 continue;
2937
2938 /* Now determine the call target, its name, value,
2939 section. */
2940 sym_sec = NULL;
2941 sym_value = 0;
2942 destination = 0;
2943 hh = NULL;
2944 if (r_indx < symtab_hdr->sh_info)
2945 {
2946 /* It's a local symbol. */
2947 Elf_Internal_Sym *sym;
2948 Elf_Internal_Shdr *hdr;
2949 unsigned int shndx;
2950
2951 sym = local_syms + r_indx;
2952 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2953 sym_value = sym->st_value;
2954 shndx = sym->st_shndx;
2955 if (shndx < elf_numsections (input_bfd))
2956 {
2957 hdr = elf_elfsections (input_bfd)[shndx];
2958 sym_sec = hdr->bfd_section;
2959 destination = (sym_value + irela->r_addend
2960 + sym_sec->output_offset
2961 + sym_sec->output_section->vma);
2962 }
2963 }
2964 else
2965 {
2966 /* It's an external symbol. */
2967 int e_indx;
2968
2969 e_indx = r_indx - symtab_hdr->sh_info;
2970 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2971
2972 while (hh->eh.root.type == bfd_link_hash_indirect
2973 || hh->eh.root.type == bfd_link_hash_warning)
2974 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2975
2976 if (hh->eh.root.type == bfd_link_hash_defined
2977 || hh->eh.root.type == bfd_link_hash_defweak)
2978 {
2979 sym_sec = hh->eh.root.u.def.section;
2980 sym_value = hh->eh.root.u.def.value;
2981 if (sym_sec->output_section != NULL)
2982 destination = (sym_value + irela->r_addend
2983 + sym_sec->output_offset
2984 + sym_sec->output_section->vma);
2985 }
2986 else if (hh->eh.root.type == bfd_link_hash_undefweak)
2987 {
2988 if (! bfd_link_pic (info))
2989 continue;
2990 }
2991 else if (hh->eh.root.type == bfd_link_hash_undefined)
2992 {
2993 if (! (info->unresolved_syms_in_objects == RM_IGNORE
2994 && (ELF_ST_VISIBILITY (hh->eh.other)
2995 == STV_DEFAULT)
2996 && hh->eh.type != STT_PARISC_MILLI))
2997 continue;
2998 }
2999 else
3000 {
3001 bfd_set_error (bfd_error_bad_value);
3002 goto error_ret_free_internal;
3003 }
3004 }
3005
3006 /* Determine what (if any) linker stub is needed. */
3007 stub_type = hppa_type_of_stub (section, irela, hh,
3008 destination, info);
3009 if (stub_type == hppa_stub_none)
3010 continue;
3011
3012 /* Support for grouping stub sections. */
3013 id_sec = htab->stub_group[section->id].link_sec;
3014
3015 /* Get the name of this stub. */
3016 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
3017 if (!stub_name)
3018 goto error_ret_free_internal;
3019
3020 hsh = hppa_stub_hash_lookup (&htab->bstab,
3021 stub_name,
3022 FALSE, FALSE);
3023 if (hsh != NULL)
3024 {
3025 /* The proper stub has already been created. */
3026 free (stub_name);
3027 continue;
3028 }
3029
3030 hsh = hppa_add_stub (stub_name, section, htab);
3031 if (hsh == NULL)
3032 {
3033 free (stub_name);
3034 goto error_ret_free_internal;
3035 }
3036
3037 hsh->target_value = sym_value;
3038 hsh->target_section = sym_sec;
3039 hsh->stub_type = stub_type;
3040 if (bfd_link_pic (info))
3041 {
3042 if (stub_type == hppa_stub_import)
3043 hsh->stub_type = hppa_stub_import_shared;
3044 else if (stub_type == hppa_stub_long_branch)
3045 hsh->stub_type = hppa_stub_long_branch_shared;
3046 }
3047 hsh->hh = hh;
3048 stub_changed = TRUE;
3049 }
3050
3051 /* We're done with the internal relocs, free them. */
3052 if (elf_section_data (section)->relocs == NULL)
3053 free (internal_relocs);
3054 }
3055 }
3056
3057 if (!stub_changed)
3058 break;
3059
3060 /* OK, we've added some stubs. Find out the new size of the
3061 stub sections. */
3062 for (stub_sec = htab->stub_bfd->sections;
3063 stub_sec != NULL;
3064 stub_sec = stub_sec->next)
3065 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
3066 stub_sec->size = 0;
3067
3068 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
3069
3070 /* Ask the linker to do its stuff. */
3071 (*htab->layout_sections_again) ();
3072 stub_changed = FALSE;
3073 }
3074
3075 free (htab->all_local_syms);
3076 return TRUE;
3077
3078 error_ret_free_local:
3079 free (htab->all_local_syms);
3080 return FALSE;
3081 }
3082
3083 /* For a final link, this function is called after we have sized the
3084 stubs to provide a value for __gp. */
3085
3086 bfd_boolean
3087 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
3088 {
3089 struct bfd_link_hash_entry *h;
3090 asection *sec = NULL;
3091 bfd_vma gp_val = 0;
3092
3093 h = bfd_link_hash_lookup (info->hash, "$global$", FALSE, FALSE, FALSE);
3094
3095 if (h != NULL
3096 && (h->type == bfd_link_hash_defined
3097 || h->type == bfd_link_hash_defweak))
3098 {
3099 gp_val = h->u.def.value;
3100 sec = h->u.def.section;
3101 }
3102 else
3103 {
3104 asection *splt = bfd_get_section_by_name (abfd, ".plt");
3105 asection *sgot = bfd_get_section_by_name (abfd, ".got");
3106
3107 /* Choose to point our LTP at, in this order, one of .plt, .got,
3108 or .data, if these sections exist. In the case of choosing
3109 .plt try to make the LTP ideal for addressing anywhere in the
3110 .plt or .got with a 14 bit signed offset. Typically, the end
3111 of the .plt is the start of the .got, so choose .plt + 0x2000
3112 if either the .plt or .got is larger than 0x2000. If both
3113 the .plt and .got are smaller than 0x2000, choose the end of
3114 the .plt section. */
3115 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3116 ? NULL : splt;
3117 if (sec != NULL)
3118 {
3119 gp_val = sec->size;
3120 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3121 {
3122 gp_val = 0x2000;
3123 }
3124 }
3125 else
3126 {
3127 sec = sgot;
3128 if (sec != NULL)
3129 {
3130 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3131 {
3132 /* We know we don't have a .plt. If .got is large,
3133 offset our LTP. */
3134 if (sec->size > 0x2000)
3135 gp_val = 0x2000;
3136 }
3137 }
3138 else
3139 {
3140 /* No .plt or .got. Who cares what the LTP is? */
3141 sec = bfd_get_section_by_name (abfd, ".data");
3142 }
3143 }
3144
3145 if (h != NULL)
3146 {
3147 h->type = bfd_link_hash_defined;
3148 h->u.def.value = gp_val;
3149 if (sec != NULL)
3150 h->u.def.section = sec;
3151 else
3152 h->u.def.section = bfd_abs_section_ptr;
3153 }
3154 }
3155
3156 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
3157 {
3158 if (sec != NULL && sec->output_section != NULL)
3159 gp_val += sec->output_section->vma + sec->output_offset;
3160
3161 elf_gp (abfd) = gp_val;
3162 }
3163 return TRUE;
3164 }
3165
3166 /* Build all the stubs associated with the current output file. The
3167 stubs are kept in a hash table attached to the main linker hash
3168 table. We also set up the .plt entries for statically linked PIC
3169 functions here. This function is called via hppaelf_finish in the
3170 linker. */
3171
3172 bfd_boolean
3173 elf32_hppa_build_stubs (struct bfd_link_info *info)
3174 {
3175 asection *stub_sec;
3176 struct bfd_hash_table *table;
3177 struct elf32_hppa_link_hash_table *htab;
3178
3179 htab = hppa_link_hash_table (info);
3180 if (htab == NULL)
3181 return FALSE;
3182
3183 for (stub_sec = htab->stub_bfd->sections;
3184 stub_sec != NULL;
3185 stub_sec = stub_sec->next)
3186 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
3187 && stub_sec->size != 0)
3188 {
3189 /* Allocate memory to hold the linker stubs. */
3190 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
3191 if (stub_sec->contents == NULL)
3192 return FALSE;
3193 stub_sec->size = 0;
3194 }
3195
3196 /* Build the stubs as directed by the stub hash table. */
3197 table = &htab->bstab;
3198 bfd_hash_traverse (table, hppa_build_one_stub, info);
3199
3200 return TRUE;
3201 }
3202
3203 /* Return the base vma address which should be subtracted from the real
3204 address when resolving a dtpoff relocation.
3205 This is PT_TLS segment p_vaddr. */
3206
3207 static bfd_vma
3208 dtpoff_base (struct bfd_link_info *info)
3209 {
3210 /* If tls_sec is NULL, we should have signalled an error already. */
3211 if (elf_hash_table (info)->tls_sec == NULL)
3212 return 0;
3213 return elf_hash_table (info)->tls_sec->vma;
3214 }
3215
3216 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3217
3218 static bfd_vma
3219 tpoff (struct bfd_link_info *info, bfd_vma address)
3220 {
3221 struct elf_link_hash_table *htab = elf_hash_table (info);
3222
3223 /* If tls_sec is NULL, we should have signalled an error already. */
3224 if (htab->tls_sec == NULL)
3225 return 0;
3226 /* hppa TLS ABI is variant I and static TLS block start just after
3227 tcbhead structure which has 2 pointer fields. */
3228 return (address - htab->tls_sec->vma
3229 + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3230 }
3231
3232 /* Perform a final link. */
3233
3234 static bfd_boolean
3235 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3236 {
3237 struct stat buf;
3238
3239 /* Invoke the regular ELF linker to do all the work. */
3240 if (!bfd_elf_final_link (abfd, info))
3241 return FALSE;
3242
3243 /* If we're producing a final executable, sort the contents of the
3244 unwind section. */
3245 if (bfd_link_relocatable (info))
3246 return TRUE;
3247
3248 /* Do not attempt to sort non-regular files. This is here
3249 especially for configure scripts and kernel builds which run
3250 tests with "ld [...] -o /dev/null". */
3251 if (stat (abfd->filename, &buf) != 0
3252 || !S_ISREG(buf.st_mode))
3253 return TRUE;
3254
3255 return elf_hppa_sort_unwind (abfd);
3256 }
3257
3258 /* Record the lowest address for the data and text segments. */
3259
3260 static void
3261 hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
3262 {
3263 struct elf32_hppa_link_hash_table *htab;
3264
3265 htab = (struct elf32_hppa_link_hash_table*) data;
3266 if (htab == NULL)
3267 return;
3268
3269 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3270 {
3271 bfd_vma value;
3272 Elf_Internal_Phdr *p;
3273
3274 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
3275 BFD_ASSERT (p != NULL);
3276 value = p->p_vaddr;
3277
3278 if ((section->flags & SEC_READONLY) != 0)
3279 {
3280 if (value < htab->text_segment_base)
3281 htab->text_segment_base = value;
3282 }
3283 else
3284 {
3285 if (value < htab->data_segment_base)
3286 htab->data_segment_base = value;
3287 }
3288 }
3289 }
3290
3291 /* Perform a relocation as part of a final link. */
3292
3293 static bfd_reloc_status_type
3294 final_link_relocate (asection *input_section,
3295 bfd_byte *contents,
3296 const Elf_Internal_Rela *rela,
3297 bfd_vma value,
3298 struct elf32_hppa_link_hash_table *htab,
3299 asection *sym_sec,
3300 struct elf32_hppa_link_hash_entry *hh,
3301 struct bfd_link_info *info)
3302 {
3303 int insn;
3304 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3305 unsigned int orig_r_type = r_type;
3306 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3307 int r_format = howto->bitsize;
3308 enum hppa_reloc_field_selector_type_alt r_field;
3309 bfd *input_bfd = input_section->owner;
3310 bfd_vma offset = rela->r_offset;
3311 bfd_vma max_branch_offset = 0;
3312 bfd_byte *hit_data = contents + offset;
3313 bfd_signed_vma addend = rela->r_addend;
3314 bfd_vma location;
3315 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3316 int val;
3317
3318 if (r_type == R_PARISC_NONE)
3319 return bfd_reloc_ok;
3320
3321 insn = bfd_get_32 (input_bfd, hit_data);
3322
3323 /* Find out where we are and where we're going. */
3324 location = (offset +
3325 input_section->output_offset +
3326 input_section->output_section->vma);
3327
3328 /* If we are not building a shared library, convert DLTIND relocs to
3329 DPREL relocs. */
3330 if (!bfd_link_pic (info))
3331 {
3332 switch (r_type)
3333 {
3334 case R_PARISC_DLTIND21L:
3335 case R_PARISC_TLS_GD21L:
3336 case R_PARISC_TLS_LDM21L:
3337 case R_PARISC_TLS_IE21L:
3338 r_type = R_PARISC_DPREL21L;
3339 break;
3340
3341 case R_PARISC_DLTIND14R:
3342 case R_PARISC_TLS_GD14R:
3343 case R_PARISC_TLS_LDM14R:
3344 case R_PARISC_TLS_IE14R:
3345 r_type = R_PARISC_DPREL14R;
3346 break;
3347
3348 case R_PARISC_DLTIND14F:
3349 r_type = R_PARISC_DPREL14F;
3350 break;
3351 }
3352 }
3353
3354 switch (r_type)
3355 {
3356 case R_PARISC_PCREL12F:
3357 case R_PARISC_PCREL17F:
3358 case R_PARISC_PCREL22F:
3359 /* If this call should go via the plt, find the import stub in
3360 the stub hash. */
3361 if (sym_sec == NULL
3362 || sym_sec->output_section == NULL
3363 || (hh != NULL
3364 && hh->eh.plt.offset != (bfd_vma) -1
3365 && hh->eh.dynindx != -1
3366 && !hh->plabel
3367 && (bfd_link_pic (info)
3368 || !hh->eh.def_regular
3369 || hh->eh.root.type == bfd_link_hash_defweak)))
3370 {
3371 hsh = hppa_get_stub_entry (input_section, sym_sec,
3372 hh, rela, htab);
3373 if (hsh != NULL)
3374 {
3375 value = (hsh->stub_offset
3376 + hsh->stub_sec->output_offset
3377 + hsh->stub_sec->output_section->vma);
3378 addend = 0;
3379 }
3380 else if (sym_sec == NULL && hh != NULL
3381 && hh->eh.root.type == bfd_link_hash_undefweak)
3382 {
3383 /* It's OK if undefined weak. Calls to undefined weak
3384 symbols behave as if the "called" function
3385 immediately returns. We can thus call to a weak
3386 function without first checking whether the function
3387 is defined. */
3388 value = location;
3389 addend = 8;
3390 }
3391 else
3392 return bfd_reloc_undefined;
3393 }
3394 /* Fall thru. */
3395
3396 case R_PARISC_PCREL21L:
3397 case R_PARISC_PCREL17C:
3398 case R_PARISC_PCREL17R:
3399 case R_PARISC_PCREL14R:
3400 case R_PARISC_PCREL14F:
3401 case R_PARISC_PCREL32:
3402 /* Make it a pc relative offset. */
3403 value -= location;
3404 addend -= 8;
3405 break;
3406
3407 case R_PARISC_DPREL21L:
3408 case R_PARISC_DPREL14R:
3409 case R_PARISC_DPREL14F:
3410 /* Convert instructions that use the linkage table pointer (r19) to
3411 instructions that use the global data pointer (dp). This is the
3412 most efficient way of using PIC code in an incomplete executable,
3413 but the user must follow the standard runtime conventions for
3414 accessing data for this to work. */
3415 if (orig_r_type != r_type)
3416 {
3417 if (r_type == R_PARISC_DPREL21L)
3418 {
3419 /* GCC sometimes uses a register other than r19 for the
3420 operation, so we must convert any addil instruction
3421 that uses this relocation. */
3422 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3423 insn = ADDIL_DP;
3424 else
3425 /* We must have a ldil instruction. It's too hard to find
3426 and convert the associated add instruction, so issue an
3427 error. */
3428 _bfd_error_handler
3429 /* xgettext:c-format */
3430 (_("%B(%A+%#Lx): %s fixup for insn %#x is not supported in a non-shared link"),
3431 input_bfd,
3432 input_section,
3433 offset,
3434 howto->name,
3435 insn);
3436 }
3437 else if (r_type == R_PARISC_DPREL14F)
3438 {
3439 /* This must be a format 1 load/store. Change the base
3440 register to dp. */
3441 insn = (insn & 0xfc1ffff) | (27 << 21);
3442 }
3443 }
3444
3445 /* For all the DP relative relocations, we need to examine the symbol's
3446 section. If it has no section or if it's a code section, then
3447 "data pointer relative" makes no sense. In that case we don't
3448 adjust the "value", and for 21 bit addil instructions, we change the
3449 source addend register from %dp to %r0. This situation commonly
3450 arises for undefined weak symbols and when a variable's "constness"
3451 is declared differently from the way the variable is defined. For
3452 instance: "extern int foo" with foo defined as "const int foo". */
3453 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3454 {
3455 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3456 == (((int) OP_ADDIL << 26) | (27 << 21)))
3457 {
3458 insn &= ~ (0x1f << 21);
3459 }
3460 /* Now try to make things easy for the dynamic linker. */
3461
3462 break;
3463 }
3464 /* Fall thru. */
3465
3466 case R_PARISC_DLTIND21L:
3467 case R_PARISC_DLTIND14R:
3468 case R_PARISC_DLTIND14F:
3469 case R_PARISC_TLS_GD21L:
3470 case R_PARISC_TLS_LDM21L:
3471 case R_PARISC_TLS_IE21L:
3472 case R_PARISC_TLS_GD14R:
3473 case R_PARISC_TLS_LDM14R:
3474 case R_PARISC_TLS_IE14R:
3475 value -= elf_gp (input_section->output_section->owner);
3476 break;
3477
3478 case R_PARISC_SEGREL32:
3479 if ((sym_sec->flags & SEC_CODE) != 0)
3480 value -= htab->text_segment_base;
3481 else
3482 value -= htab->data_segment_base;
3483 break;
3484
3485 default:
3486 break;
3487 }
3488
3489 switch (r_type)
3490 {
3491 case R_PARISC_DIR32:
3492 case R_PARISC_DIR14F:
3493 case R_PARISC_DIR17F:
3494 case R_PARISC_PCREL17C:
3495 case R_PARISC_PCREL14F:
3496 case R_PARISC_PCREL32:
3497 case R_PARISC_DPREL14F:
3498 case R_PARISC_PLABEL32:
3499 case R_PARISC_DLTIND14F:
3500 case R_PARISC_SEGBASE:
3501 case R_PARISC_SEGREL32:
3502 case R_PARISC_TLS_DTPMOD32:
3503 case R_PARISC_TLS_DTPOFF32:
3504 case R_PARISC_TLS_TPREL32:
3505 r_field = e_fsel;
3506 break;
3507
3508 case R_PARISC_DLTIND21L:
3509 case R_PARISC_PCREL21L:
3510 case R_PARISC_PLABEL21L:
3511 r_field = e_lsel;
3512 break;
3513
3514 case R_PARISC_DIR21L:
3515 case R_PARISC_DPREL21L:
3516 case R_PARISC_TLS_GD21L:
3517 case R_PARISC_TLS_LDM21L:
3518 case R_PARISC_TLS_LDO21L:
3519 case R_PARISC_TLS_IE21L:
3520 case R_PARISC_TLS_LE21L:
3521 r_field = e_lrsel;
3522 break;
3523
3524 case R_PARISC_PCREL17R:
3525 case R_PARISC_PCREL14R:
3526 case R_PARISC_PLABEL14R:
3527 case R_PARISC_DLTIND14R:
3528 r_field = e_rsel;
3529 break;
3530
3531 case R_PARISC_DIR17R:
3532 case R_PARISC_DIR14R:
3533 case R_PARISC_DPREL14R:
3534 case R_PARISC_TLS_GD14R:
3535 case R_PARISC_TLS_LDM14R:
3536 case R_PARISC_TLS_LDO14R:
3537 case R_PARISC_TLS_IE14R:
3538 case R_PARISC_TLS_LE14R:
3539 r_field = e_rrsel;
3540 break;
3541
3542 case R_PARISC_PCREL12F:
3543 case R_PARISC_PCREL17F:
3544 case R_PARISC_PCREL22F:
3545 r_field = e_fsel;
3546
3547 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3548 {
3549 max_branch_offset = (1 << (17-1)) << 2;
3550 }
3551 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3552 {
3553 max_branch_offset = (1 << (12-1)) << 2;
3554 }
3555 else
3556 {
3557 max_branch_offset = (1 << (22-1)) << 2;
3558 }
3559
3560 /* sym_sec is NULL on undefined weak syms or when shared on
3561 undefined syms. We've already checked for a stub for the
3562 shared undefined case. */
3563 if (sym_sec == NULL)
3564 break;
3565
3566 /* If the branch is out of reach, then redirect the
3567 call to the local stub for this function. */
3568 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3569 {
3570 hsh = hppa_get_stub_entry (input_section, sym_sec,
3571 hh, rela, htab);
3572 if (hsh == NULL)
3573 return bfd_reloc_undefined;
3574
3575 /* Munge up the value and addend so that we call the stub
3576 rather than the procedure directly. */
3577 value = (hsh->stub_offset
3578 + hsh->stub_sec->output_offset
3579 + hsh->stub_sec->output_section->vma
3580 - location);
3581 addend = -8;
3582 }
3583 break;
3584
3585 /* Something we don't know how to handle. */
3586 default:
3587 return bfd_reloc_notsupported;
3588 }
3589
3590 /* Make sure we can reach the stub. */
3591 if (max_branch_offset != 0
3592 && value + addend + max_branch_offset >= 2*max_branch_offset)
3593 {
3594 _bfd_error_handler
3595 /* xgettext:c-format */
3596 (_("%B(%A+%#Lx): cannot reach %s, recompile with -ffunction-sections"),
3597 input_bfd,
3598 input_section,
3599 offset,
3600 hsh->bh_root.string);
3601 bfd_set_error (bfd_error_bad_value);
3602 return bfd_reloc_notsupported;
3603 }
3604
3605 val = hppa_field_adjust (value, addend, r_field);
3606
3607 switch (r_type)
3608 {
3609 case R_PARISC_PCREL12F:
3610 case R_PARISC_PCREL17C:
3611 case R_PARISC_PCREL17F:
3612 case R_PARISC_PCREL17R:
3613 case R_PARISC_PCREL22F:
3614 case R_PARISC_DIR17F:
3615 case R_PARISC_DIR17R:
3616 /* This is a branch. Divide the offset by four.
3617 Note that we need to decide whether it's a branch or
3618 otherwise by inspecting the reloc. Inspecting insn won't
3619 work as insn might be from a .word directive. */
3620 val >>= 2;
3621 break;
3622
3623 default:
3624 break;
3625 }
3626
3627 insn = hppa_rebuild_insn (insn, val, r_format);
3628
3629 /* Update the instruction word. */
3630 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3631 return bfd_reloc_ok;
3632 }
3633
3634 /* Relocate an HPPA ELF section. */
3635
3636 static bfd_boolean
3637 elf32_hppa_relocate_section (bfd *output_bfd,
3638 struct bfd_link_info *info,
3639 bfd *input_bfd,
3640 asection *input_section,
3641 bfd_byte *contents,
3642 Elf_Internal_Rela *relocs,
3643 Elf_Internal_Sym *local_syms,
3644 asection **local_sections)
3645 {
3646 bfd_vma *local_got_offsets;
3647 struct elf32_hppa_link_hash_table *htab;
3648 Elf_Internal_Shdr *symtab_hdr;
3649 Elf_Internal_Rela *rela;
3650 Elf_Internal_Rela *relend;
3651
3652 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3653
3654 htab = hppa_link_hash_table (info);
3655 if (htab == NULL)
3656 return FALSE;
3657
3658 local_got_offsets = elf_local_got_offsets (input_bfd);
3659
3660 rela = relocs;
3661 relend = relocs + input_section->reloc_count;
3662 for (; rela < relend; rela++)
3663 {
3664 unsigned int r_type;
3665 reloc_howto_type *howto;
3666 unsigned int r_symndx;
3667 struct elf32_hppa_link_hash_entry *hh;
3668 Elf_Internal_Sym *sym;
3669 asection *sym_sec;
3670 bfd_vma relocation;
3671 bfd_reloc_status_type rstatus;
3672 const char *sym_name;
3673 bfd_boolean plabel;
3674 bfd_boolean warned_undef;
3675
3676 r_type = ELF32_R_TYPE (rela->r_info);
3677 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3678 {
3679 bfd_set_error (bfd_error_bad_value);
3680 return FALSE;
3681 }
3682 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3683 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3684 continue;
3685
3686 r_symndx = ELF32_R_SYM (rela->r_info);
3687 hh = NULL;
3688 sym = NULL;
3689 sym_sec = NULL;
3690 warned_undef = FALSE;
3691 if (r_symndx < symtab_hdr->sh_info)
3692 {
3693 /* This is a local symbol, h defaults to NULL. */
3694 sym = local_syms + r_symndx;
3695 sym_sec = local_sections[r_symndx];
3696 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3697 }
3698 else
3699 {
3700 struct elf_link_hash_entry *eh;
3701 bfd_boolean unresolved_reloc, ignored;
3702 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3703
3704 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3705 r_symndx, symtab_hdr, sym_hashes,
3706 eh, sym_sec, relocation,
3707 unresolved_reloc, warned_undef,
3708 ignored);
3709
3710 if (!bfd_link_relocatable (info)
3711 && relocation == 0
3712 && eh->root.type != bfd_link_hash_defined
3713 && eh->root.type != bfd_link_hash_defweak
3714 && eh->root.type != bfd_link_hash_undefweak)
3715 {
3716 if (info->unresolved_syms_in_objects == RM_IGNORE
3717 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3718 && eh->type == STT_PARISC_MILLI)
3719 {
3720 (*info->callbacks->undefined_symbol)
3721 (info, eh_name (eh), input_bfd,
3722 input_section, rela->r_offset, FALSE);
3723 warned_undef = TRUE;
3724 }
3725 }
3726 hh = hppa_elf_hash_entry (eh);
3727 }
3728
3729 if (sym_sec != NULL && discarded_section (sym_sec))
3730 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3731 rela, 1, relend,
3732 elf_hppa_howto_table + r_type, 0,
3733 contents);
3734
3735 if (bfd_link_relocatable (info))
3736 continue;
3737
3738 /* Do any required modifications to the relocation value, and
3739 determine what types of dynamic info we need to output, if
3740 any. */
3741 plabel = 0;
3742 switch (r_type)
3743 {
3744 case R_PARISC_DLTIND14F:
3745 case R_PARISC_DLTIND14R:
3746 case R_PARISC_DLTIND21L:
3747 {
3748 bfd_vma off;
3749 bfd_boolean do_got = 0;
3750
3751 /* Relocation is to the entry for this symbol in the
3752 global offset table. */
3753 if (hh != NULL)
3754 {
3755 bfd_boolean dyn;
3756
3757 off = hh->eh.got.offset;
3758 dyn = htab->etab.dynamic_sections_created;
3759 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
3760 bfd_link_pic (info),
3761 &hh->eh))
3762 {
3763 /* If we aren't going to call finish_dynamic_symbol,
3764 then we need to handle initialisation of the .got
3765 entry and create needed relocs here. Since the
3766 offset must always be a multiple of 4, we use the
3767 least significant bit to record whether we have
3768 initialised it already. */
3769 if ((off & 1) != 0)
3770 off &= ~1;
3771 else
3772 {
3773 hh->eh.got.offset |= 1;
3774 do_got = 1;
3775 }
3776 }
3777 }
3778 else
3779 {
3780 /* Local symbol case. */
3781 if (local_got_offsets == NULL)
3782 abort ();
3783
3784 off = local_got_offsets[r_symndx];
3785
3786 /* The offset must always be a multiple of 4. We use
3787 the least significant bit to record whether we have
3788 already generated the necessary reloc. */
3789 if ((off & 1) != 0)
3790 off &= ~1;
3791 else
3792 {
3793 local_got_offsets[r_symndx] |= 1;
3794 do_got = 1;
3795 }
3796 }
3797
3798 if (do_got)
3799 {
3800 if (bfd_link_pic (info))
3801 {
3802 /* Output a dynamic relocation for this GOT entry.
3803 In this case it is relative to the base of the
3804 object because the symbol index is zero. */
3805 Elf_Internal_Rela outrel;
3806 bfd_byte *loc;
3807 asection *sec = htab->etab.srelgot;
3808
3809 outrel.r_offset = (off
3810 + htab->etab.sgot->output_offset
3811 + htab->etab.sgot->output_section->vma);
3812 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3813 outrel.r_addend = relocation;
3814 loc = sec->contents;
3815 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3816 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3817 }
3818 else
3819 bfd_put_32 (output_bfd, relocation,
3820 htab->etab.sgot->contents + off);
3821 }
3822
3823 if (off >= (bfd_vma) -2)
3824 abort ();
3825
3826 /* Add the base of the GOT to the relocation value. */
3827 relocation = (off
3828 + htab->etab.sgot->output_offset
3829 + htab->etab.sgot->output_section->vma);
3830 }
3831 break;
3832
3833 case R_PARISC_SEGREL32:
3834 /* If this is the first SEGREL relocation, then initialize
3835 the segment base values. */
3836 if (htab->text_segment_base == (bfd_vma) -1)
3837 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3838 break;
3839
3840 case R_PARISC_PLABEL14R:
3841 case R_PARISC_PLABEL21L:
3842 case R_PARISC_PLABEL32:
3843 if (htab->etab.dynamic_sections_created)
3844 {
3845 bfd_vma off;
3846 bfd_boolean do_plt = 0;
3847 /* If we have a global symbol with a PLT slot, then
3848 redirect this relocation to it. */
3849 if (hh != NULL)
3850 {
3851 off = hh->eh.plt.offset;
3852 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1,
3853 bfd_link_pic (info),
3854 &hh->eh))
3855 {
3856 /* In a non-shared link, adjust_dynamic_symbols
3857 isn't called for symbols forced local. We
3858 need to write out the plt entry here. */
3859 if ((off & 1) != 0)
3860 off &= ~1;
3861 else
3862 {
3863 hh->eh.plt.offset |= 1;
3864 do_plt = 1;
3865 }
3866 }
3867 }
3868 else
3869 {
3870 bfd_vma *local_plt_offsets;
3871
3872 if (local_got_offsets == NULL)
3873 abort ();
3874
3875 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3876 off = local_plt_offsets[r_symndx];
3877
3878 /* As for the local .got entry case, we use the last
3879 bit to record whether we've already initialised
3880 this local .plt entry. */
3881 if ((off & 1) != 0)
3882 off &= ~1;
3883 else
3884 {
3885 local_plt_offsets[r_symndx] |= 1;
3886 do_plt = 1;
3887 }
3888 }
3889
3890 if (do_plt)
3891 {
3892 if (bfd_link_pic (info))
3893 {
3894 /* Output a dynamic IPLT relocation for this
3895 PLT entry. */
3896 Elf_Internal_Rela outrel;
3897 bfd_byte *loc;
3898 asection *s = htab->etab.srelplt;
3899
3900 outrel.r_offset = (off
3901 + htab->etab.splt->output_offset
3902 + htab->etab.splt->output_section->vma);
3903 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3904 outrel.r_addend = relocation;
3905 loc = s->contents;
3906 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3907 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3908 }
3909 else
3910 {
3911 bfd_put_32 (output_bfd,
3912 relocation,
3913 htab->etab.splt->contents + off);
3914 bfd_put_32 (output_bfd,
3915 elf_gp (htab->etab.splt->output_section->owner),
3916 htab->etab.splt->contents + off + 4);
3917 }
3918 }
3919
3920 if (off >= (bfd_vma) -2)
3921 abort ();
3922
3923 /* PLABELs contain function pointers. Relocation is to
3924 the entry for the function in the .plt. The magic +2
3925 offset signals to $$dyncall that the function pointer
3926 is in the .plt and thus has a gp pointer too.
3927 Exception: Undefined PLABELs should have a value of
3928 zero. */
3929 if (hh == NULL
3930 || (hh->eh.root.type != bfd_link_hash_undefweak
3931 && hh->eh.root.type != bfd_link_hash_undefined))
3932 {
3933 relocation = (off
3934 + htab->etab.splt->output_offset
3935 + htab->etab.splt->output_section->vma
3936 + 2);
3937 }
3938 plabel = 1;
3939 }
3940 /* Fall through. */
3941
3942 case R_PARISC_DIR17F:
3943 case R_PARISC_DIR17R:
3944 case R_PARISC_DIR14F:
3945 case R_PARISC_DIR14R:
3946 case R_PARISC_DIR21L:
3947 case R_PARISC_DPREL14F:
3948 case R_PARISC_DPREL14R:
3949 case R_PARISC_DPREL21L:
3950 case R_PARISC_DIR32:
3951 if ((input_section->flags & SEC_ALLOC) == 0)
3952 break;
3953
3954 /* The reloc types handled here and this conditional
3955 expression must match the code in ..check_relocs and
3956 allocate_dynrelocs. ie. We need exactly the same condition
3957 as in ..check_relocs, with some extra conditions (dynindx
3958 test in this case) to cater for relocs removed by
3959 allocate_dynrelocs. If you squint, the non-shared test
3960 here does indeed match the one in ..check_relocs, the
3961 difference being that here we test DEF_DYNAMIC as well as
3962 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3963 which is why we can't use just that test here.
3964 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3965 there all files have not been loaded. */
3966 if ((bfd_link_pic (info)
3967 && (hh == NULL
3968 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
3969 || hh->eh.root.type != bfd_link_hash_undefweak)
3970 && (IS_ABSOLUTE_RELOC (r_type)
3971 || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
3972 || (!bfd_link_pic (info)
3973 && hh != NULL
3974 && hh->eh.dynindx != -1
3975 && !hh->eh.non_got_ref
3976 && ((ELIMINATE_COPY_RELOCS
3977 && hh->eh.def_dynamic
3978 && !hh->eh.def_regular)
3979 || hh->eh.root.type == bfd_link_hash_undefweak
3980 || hh->eh.root.type == bfd_link_hash_undefined)))
3981 {
3982 Elf_Internal_Rela outrel;
3983 bfd_boolean skip;
3984 asection *sreloc;
3985 bfd_byte *loc;
3986
3987 /* When generating a shared object, these relocations
3988 are copied into the output file to be resolved at run
3989 time. */
3990
3991 outrel.r_addend = rela->r_addend;
3992 outrel.r_offset =
3993 _bfd_elf_section_offset (output_bfd, info, input_section,
3994 rela->r_offset);
3995 skip = (outrel.r_offset == (bfd_vma) -1
3996 || outrel.r_offset == (bfd_vma) -2);
3997 outrel.r_offset += (input_section->output_offset
3998 + input_section->output_section->vma);
3999
4000 if (skip)
4001 {
4002 memset (&outrel, 0, sizeof (outrel));
4003 }
4004 else if (hh != NULL
4005 && hh->eh.dynindx != -1
4006 && (plabel
4007 || !IS_ABSOLUTE_RELOC (r_type)
4008 || !bfd_link_pic (info)
4009 || !SYMBOLIC_BIND (info, &hh->eh)
4010 || !hh->eh.def_regular))
4011 {
4012 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
4013 }
4014 else /* It's a local symbol, or one marked to become local. */
4015 {
4016 int indx = 0;
4017
4018 /* Add the absolute offset of the symbol. */
4019 outrel.r_addend += relocation;
4020
4021 /* Global plabels need to be processed by the
4022 dynamic linker so that functions have at most one
4023 fptr. For this reason, we need to differentiate
4024 between global and local plabels, which we do by
4025 providing the function symbol for a global plabel
4026 reloc, and no symbol for local plabels. */
4027 if (! plabel
4028 && sym_sec != NULL
4029 && sym_sec->output_section != NULL
4030 && ! bfd_is_abs_section (sym_sec))
4031 {
4032 asection *osec;
4033
4034 osec = sym_sec->output_section;
4035 indx = elf_section_data (osec)->dynindx;
4036 if (indx == 0)
4037 {
4038 osec = htab->etab.text_index_section;
4039 indx = elf_section_data (osec)->dynindx;
4040 }
4041 BFD_ASSERT (indx != 0);
4042
4043 /* We are turning this relocation into one
4044 against a section symbol, so subtract out the
4045 output section's address but not the offset
4046 of the input section in the output section. */
4047 outrel.r_addend -= osec->vma;
4048 }
4049
4050 outrel.r_info = ELF32_R_INFO (indx, r_type);
4051 }
4052 sreloc = elf_section_data (input_section)->sreloc;
4053 if (sreloc == NULL)
4054 abort ();
4055
4056 loc = sreloc->contents;
4057 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
4058 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4059 }
4060 break;
4061
4062 case R_PARISC_TLS_LDM21L:
4063 case R_PARISC_TLS_LDM14R:
4064 {
4065 bfd_vma off;
4066
4067 off = htab->tls_ldm_got.offset;
4068 if (off & 1)
4069 off &= ~1;
4070 else
4071 {
4072 Elf_Internal_Rela outrel;
4073 bfd_byte *loc;
4074
4075 outrel.r_offset = (off
4076 + htab->etab.sgot->output_section->vma
4077 + htab->etab.sgot->output_offset);
4078 outrel.r_addend = 0;
4079 outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
4080 loc = htab->etab.srelgot->contents;
4081 loc += htab->etab.srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4082
4083 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4084 htab->tls_ldm_got.offset |= 1;
4085 }
4086
4087 /* Add the base of the GOT to the relocation value. */
4088 relocation = (off
4089 + htab->etab.sgot->output_offset
4090 + htab->etab.sgot->output_section->vma);
4091
4092 break;
4093 }
4094
4095 case R_PARISC_TLS_LDO21L:
4096 case R_PARISC_TLS_LDO14R:
4097 relocation -= dtpoff_base (info);
4098 break;
4099
4100 case R_PARISC_TLS_GD21L:
4101 case R_PARISC_TLS_GD14R:
4102 case R_PARISC_TLS_IE21L:
4103 case R_PARISC_TLS_IE14R:
4104 {
4105 bfd_vma off;
4106 int indx;
4107 char tls_type;
4108
4109 indx = 0;
4110 if (hh != NULL)
4111 {
4112 bfd_boolean dyn;
4113 dyn = htab->etab.dynamic_sections_created;
4114
4115 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
4116 bfd_link_pic (info),
4117 &hh->eh)
4118 && (!bfd_link_pic (info)
4119 || !SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4120 {
4121 indx = hh->eh.dynindx;
4122 }
4123 off = hh->eh.got.offset;
4124 tls_type = hh->tls_type;
4125 }
4126 else
4127 {
4128 off = local_got_offsets[r_symndx];
4129 tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4130 }
4131
4132 if (tls_type == GOT_UNKNOWN)
4133 abort ();
4134
4135 if ((off & 1) != 0)
4136 off &= ~1;
4137 else
4138 {
4139 bfd_boolean need_relocs = FALSE;
4140 Elf_Internal_Rela outrel;
4141 bfd_byte *loc = NULL;
4142 int cur_off = off;
4143
4144 /* The GOT entries have not been initialized yet. Do it
4145 now, and emit any relocations. If both an IE GOT and a
4146 GD GOT are necessary, we emit the GD first. */
4147
4148 if ((bfd_link_pic (info) || indx != 0)
4149 && (hh == NULL
4150 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
4151 || hh->eh.root.type != bfd_link_hash_undefweak))
4152 {
4153 need_relocs = TRUE;
4154 loc = htab->etab.srelgot->contents;
4155 /* FIXME (CAO): Should this be reloc_count++ ? */
4156 loc += htab->etab.srelgot->reloc_count * sizeof (Elf32_External_Rela);
4157 }
4158
4159 if (tls_type & GOT_TLS_GD)
4160 {
4161 if (need_relocs)
4162 {
4163 outrel.r_offset = (cur_off
4164 + htab->etab.sgot->output_section->vma
4165 + htab->etab.sgot->output_offset);
4166 outrel.r_info = ELF32_R_INFO (indx,R_PARISC_TLS_DTPMOD32);
4167 outrel.r_addend = 0;
4168 bfd_put_32 (output_bfd, 0, htab->etab.sgot->contents + cur_off);
4169 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4170 htab->etab.srelgot->reloc_count++;
4171 loc += sizeof (Elf32_External_Rela);
4172
4173 if (indx == 0)
4174 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4175 htab->etab.sgot->contents + cur_off + 4);
4176 else
4177 {
4178 bfd_put_32 (output_bfd, 0,
4179 htab->etab.sgot->contents + cur_off + 4);
4180 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4181 outrel.r_offset += 4;
4182 bfd_elf32_swap_reloca_out (output_bfd, &outrel,loc);
4183 htab->etab.srelgot->reloc_count++;
4184 loc += sizeof (Elf32_External_Rela);
4185 }
4186 }
4187 else
4188 {
4189 /* If we are not emitting relocations for a
4190 general dynamic reference, then we must be in a
4191 static link or an executable link with the
4192 symbol binding locally. Mark it as belonging
4193 to module 1, the executable. */
4194 bfd_put_32 (output_bfd, 1,
4195 htab->etab.sgot->contents + cur_off);
4196 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4197 htab->etab.sgot->contents + cur_off + 4);
4198 }
4199
4200
4201 cur_off += 8;
4202 }
4203
4204 if (tls_type & GOT_TLS_IE)
4205 {
4206 if (need_relocs)
4207 {
4208 outrel.r_offset = (cur_off
4209 + htab->etab.sgot->output_section->vma
4210 + htab->etab.sgot->output_offset);
4211 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_TPREL32);
4212
4213 if (indx == 0)
4214 outrel.r_addend = relocation - dtpoff_base (info);
4215 else
4216 outrel.r_addend = 0;
4217
4218 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4219 htab->etab.srelgot->reloc_count++;
4220 loc += sizeof (Elf32_External_Rela);
4221 }
4222 else
4223 bfd_put_32 (output_bfd, tpoff (info, relocation),
4224 htab->etab.sgot->contents + cur_off);
4225
4226 cur_off += 4;
4227 }
4228
4229 if (hh != NULL)
4230 hh->eh.got.offset |= 1;
4231 else
4232 local_got_offsets[r_symndx] |= 1;
4233 }
4234
4235 if ((tls_type & GOT_TLS_GD)
4236 && r_type != R_PARISC_TLS_GD21L
4237 && r_type != R_PARISC_TLS_GD14R)
4238 off += 2 * GOT_ENTRY_SIZE;
4239
4240 /* Add the base of the GOT to the relocation value. */
4241 relocation = (off
4242 + htab->etab.sgot->output_offset
4243 + htab->etab.sgot->output_section->vma);
4244
4245 break;
4246 }
4247
4248 case R_PARISC_TLS_LE21L:
4249 case R_PARISC_TLS_LE14R:
4250 {
4251 relocation = tpoff (info, relocation);
4252 break;
4253 }
4254 break;
4255
4256 default:
4257 break;
4258 }
4259
4260 rstatus = final_link_relocate (input_section, contents, rela, relocation,
4261 htab, sym_sec, hh, info);
4262
4263 if (rstatus == bfd_reloc_ok)
4264 continue;
4265
4266 if (hh != NULL)
4267 sym_name = hh_name (hh);
4268 else
4269 {
4270 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4271 symtab_hdr->sh_link,
4272 sym->st_name);
4273 if (sym_name == NULL)
4274 return FALSE;
4275 if (*sym_name == '\0')
4276 sym_name = bfd_section_name (input_bfd, sym_sec);
4277 }
4278
4279 howto = elf_hppa_howto_table + r_type;
4280
4281 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4282 {
4283 if (rstatus == bfd_reloc_notsupported || !warned_undef)
4284 {
4285 _bfd_error_handler
4286 /* xgettext:c-format */
4287 (_("%B(%A+%#Lx): cannot handle %s for %s"),
4288 input_bfd,
4289 input_section,
4290 rela->r_offset,
4291 howto->name,
4292 sym_name);
4293 bfd_set_error (bfd_error_bad_value);
4294 return FALSE;
4295 }
4296 }
4297 else
4298 (*info->callbacks->reloc_overflow)
4299 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4300 (bfd_vma) 0, input_bfd, input_section, rela->r_offset);
4301 }
4302
4303 return TRUE;
4304 }
4305
4306 /* Finish up dynamic symbol handling. We set the contents of various
4307 dynamic sections here. */
4308
4309 static bfd_boolean
4310 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4311 struct bfd_link_info *info,
4312 struct elf_link_hash_entry *eh,
4313 Elf_Internal_Sym *sym)
4314 {
4315 struct elf32_hppa_link_hash_table *htab;
4316 Elf_Internal_Rela rela;
4317 bfd_byte *loc;
4318
4319 htab = hppa_link_hash_table (info);
4320 if (htab == NULL)
4321 return FALSE;
4322
4323 if (eh->plt.offset != (bfd_vma) -1)
4324 {
4325 bfd_vma value;
4326
4327 if (eh->plt.offset & 1)
4328 abort ();
4329
4330 /* This symbol has an entry in the procedure linkage table. Set
4331 it up.
4332
4333 The format of a plt entry is
4334 <funcaddr>
4335 <__gp>
4336 */
4337 value = 0;
4338 if (eh->root.type == bfd_link_hash_defined
4339 || eh->root.type == bfd_link_hash_defweak)
4340 {
4341 value = eh->root.u.def.value;
4342 if (eh->root.u.def.section->output_section != NULL)
4343 value += (eh->root.u.def.section->output_offset
4344 + eh->root.u.def.section->output_section->vma);
4345 }
4346
4347 /* Create a dynamic IPLT relocation for this entry. */
4348 rela.r_offset = (eh->plt.offset
4349 + htab->etab.splt->output_offset
4350 + htab->etab.splt->output_section->vma);
4351 if (eh->dynindx != -1)
4352 {
4353 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4354 rela.r_addend = 0;
4355 }
4356 else
4357 {
4358 /* This symbol has been marked to become local, and is
4359 used by a plabel so must be kept in the .plt. */
4360 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4361 rela.r_addend = value;
4362 }
4363
4364 loc = htab->etab.srelplt->contents;
4365 loc += htab->etab.srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4366 bfd_elf32_swap_reloca_out (htab->etab.splt->output_section->owner, &rela, loc);
4367
4368 if (!eh->def_regular)
4369 {
4370 /* Mark the symbol as undefined, rather than as defined in
4371 the .plt section. Leave the value alone. */
4372 sym->st_shndx = SHN_UNDEF;
4373 }
4374 }
4375
4376 if (eh->got.offset != (bfd_vma) -1
4377 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_GD) == 0
4378 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_IE) == 0)
4379 {
4380 /* This symbol has an entry in the global offset table. Set it
4381 up. */
4382
4383 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4384 + htab->etab.sgot->output_offset
4385 + htab->etab.sgot->output_section->vma);
4386
4387 /* If this is a -Bsymbolic link and the symbol is defined
4388 locally or was forced to be local because of a version file,
4389 we just want to emit a RELATIVE reloc. The entry in the
4390 global offset table will already have been initialized in the
4391 relocate_section function. */
4392 if (bfd_link_pic (info)
4393 && (SYMBOLIC_BIND (info, eh) || eh->dynindx == -1)
4394 && eh->def_regular)
4395 {
4396 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4397 rela.r_addend = (eh->root.u.def.value
4398 + eh->root.u.def.section->output_offset
4399 + eh->root.u.def.section->output_section->vma);
4400 }
4401 else
4402 {
4403 if ((eh->got.offset & 1) != 0)
4404 abort ();
4405
4406 bfd_put_32 (output_bfd, 0, htab->etab.sgot->contents + (eh->got.offset & ~1));
4407 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4408 rela.r_addend = 0;
4409 }
4410
4411 loc = htab->etab.srelgot->contents;
4412 loc += htab->etab.srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4413 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4414 }
4415
4416 if (eh->needs_copy)
4417 {
4418 asection *sec;
4419
4420 /* This symbol needs a copy reloc. Set it up. */
4421
4422 if (! (eh->dynindx != -1
4423 && (eh->root.type == bfd_link_hash_defined
4424 || eh->root.type == bfd_link_hash_defweak)))
4425 abort ();
4426
4427 rela.r_offset = (eh->root.u.def.value
4428 + eh->root.u.def.section->output_offset
4429 + eh->root.u.def.section->output_section->vma);
4430 rela.r_addend = 0;
4431 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4432 if (eh->root.u.def.section == htab->etab.sdynrelro)
4433 sec = htab->etab.sreldynrelro;
4434 else
4435 sec = htab->etab.srelbss;
4436 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4437 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4438 }
4439
4440 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4441 if (eh == htab->etab.hdynamic || eh == htab->etab.hgot)
4442 {
4443 sym->st_shndx = SHN_ABS;
4444 }
4445
4446 return TRUE;
4447 }
4448
4449 /* Used to decide how to sort relocs in an optimal manner for the
4450 dynamic linker, before writing them out. */
4451
4452 static enum elf_reloc_type_class
4453 elf32_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4454 const asection *rel_sec ATTRIBUTE_UNUSED,
4455 const Elf_Internal_Rela *rela)
4456 {
4457 /* Handle TLS relocs first; we don't want them to be marked
4458 relative by the "if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)"
4459 check below. */
4460 switch ((int) ELF32_R_TYPE (rela->r_info))
4461 {
4462 case R_PARISC_TLS_DTPMOD32:
4463 case R_PARISC_TLS_DTPOFF32:
4464 case R_PARISC_TLS_TPREL32:
4465 return reloc_class_normal;
4466 }
4467
4468 if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)
4469 return reloc_class_relative;
4470
4471 switch ((int) ELF32_R_TYPE (rela->r_info))
4472 {
4473 case R_PARISC_IPLT:
4474 return reloc_class_plt;
4475 case R_PARISC_COPY:
4476 return reloc_class_copy;
4477 default:
4478 return reloc_class_normal;
4479 }
4480 }
4481
4482 /* Finish up the dynamic sections. */
4483
4484 static bfd_boolean
4485 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4486 struct bfd_link_info *info)
4487 {
4488 bfd *dynobj;
4489 struct elf32_hppa_link_hash_table *htab;
4490 asection *sdyn;
4491 asection * sgot;
4492
4493 htab = hppa_link_hash_table (info);
4494 if (htab == NULL)
4495 return FALSE;
4496
4497 dynobj = htab->etab.dynobj;
4498
4499 sgot = htab->etab.sgot;
4500 /* A broken linker script might have discarded the dynamic sections.
4501 Catch this here so that we do not seg-fault later on. */
4502 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
4503 return FALSE;
4504
4505 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4506
4507 if (htab->etab.dynamic_sections_created)
4508 {
4509 Elf32_External_Dyn *dyncon, *dynconend;
4510
4511 if (sdyn == NULL)
4512 abort ();
4513
4514 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4515 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4516 for (; dyncon < dynconend; dyncon++)
4517 {
4518 Elf_Internal_Dyn dyn;
4519 asection *s;
4520
4521 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4522
4523 switch (dyn.d_tag)
4524 {
4525 default:
4526 continue;
4527
4528 case DT_PLTGOT:
4529 /* Use PLTGOT to set the GOT register. */
4530 dyn.d_un.d_ptr = elf_gp (output_bfd);
4531 break;
4532
4533 case DT_JMPREL:
4534 s = htab->etab.srelplt;
4535 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4536 break;
4537
4538 case DT_PLTRELSZ:
4539 s = htab->etab.srelplt;
4540 dyn.d_un.d_val = s->size;
4541 break;
4542 }
4543
4544 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4545 }
4546 }
4547
4548 if (sgot != NULL && sgot->size != 0)
4549 {
4550 /* Fill in the first entry in the global offset table.
4551 We use it to point to our dynamic section, if we have one. */
4552 bfd_put_32 (output_bfd,
4553 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4554 sgot->contents);
4555
4556 /* The second entry is reserved for use by the dynamic linker. */
4557 memset (sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4558
4559 /* Set .got entry size. */
4560 elf_section_data (sgot->output_section)
4561 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4562 }
4563
4564 if (htab->etab.splt != NULL && htab->etab.splt->size != 0)
4565 {
4566 /* Set plt entry size to 0 instead of PLT_ENTRY_SIZE, since we add the
4567 plt stubs and as such the section does not hold a table of fixed-size
4568 entries. */
4569 elf_section_data (htab->etab.splt->output_section)->this_hdr.sh_entsize = 0;
4570
4571 if (htab->need_plt_stub)
4572 {
4573 /* Set up the .plt stub. */
4574 memcpy (htab->etab.splt->contents
4575 + htab->etab.splt->size - sizeof (plt_stub),
4576 plt_stub, sizeof (plt_stub));
4577
4578 if ((htab->etab.splt->output_offset
4579 + htab->etab.splt->output_section->vma
4580 + htab->etab.splt->size)
4581 != (sgot->output_offset
4582 + sgot->output_section->vma))
4583 {
4584 _bfd_error_handler
4585 (_(".got section not immediately after .plt section"));
4586 return FALSE;
4587 }
4588 }
4589 }
4590
4591 return TRUE;
4592 }
4593
4594 /* Called when writing out an object file to decide the type of a
4595 symbol. */
4596 static int
4597 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4598 {
4599 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4600 return STT_PARISC_MILLI;
4601 else
4602 return type;
4603 }
4604
4605 /* Misc BFD support code. */
4606 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4607 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4608 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4609 #define elf_info_to_howto elf_hppa_info_to_howto
4610 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4611
4612 /* Stuff for the BFD linker. */
4613 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4614 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4615 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4616 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4617 #define elf_backend_check_relocs elf32_hppa_check_relocs
4618 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4619 #define elf_backend_fake_sections elf_hppa_fake_sections
4620 #define elf_backend_relocate_section elf32_hppa_relocate_section
4621 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4622 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4623 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4624 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4625 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4626 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4627 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4628 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4629 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4630 #define elf_backend_object_p elf32_hppa_object_p
4631 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4632 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4633 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4634 #define elf_backend_action_discarded elf_hppa_action_discarded
4635
4636 #define elf_backend_can_gc_sections 1
4637 #define elf_backend_can_refcount 1
4638 #define elf_backend_plt_alignment 2
4639 #define elf_backend_want_got_plt 0
4640 #define elf_backend_plt_readonly 0
4641 #define elf_backend_want_plt_sym 0
4642 #define elf_backend_got_header_size 8
4643 #define elf_backend_want_dynrelro 1
4644 #define elf_backend_rela_normal 1
4645 #define elf_backend_dtrel_excludes_plt 1
4646 #define elf_backend_no_page_alias 1
4647
4648 #define TARGET_BIG_SYM hppa_elf32_vec
4649 #define TARGET_BIG_NAME "elf32-hppa"
4650 #define ELF_ARCH bfd_arch_hppa
4651 #define ELF_TARGET_ID HPPA32_ELF_DATA
4652 #define ELF_MACHINE_CODE EM_PARISC
4653 #define ELF_MAXPAGESIZE 0x1000
4654 #define ELF_OSABI ELFOSABI_HPUX
4655 #define elf32_bed elf32_hppa_hpux_bed
4656
4657 #include "elf32-target.h"
4658
4659 #undef TARGET_BIG_SYM
4660 #define TARGET_BIG_SYM hppa_elf32_linux_vec
4661 #undef TARGET_BIG_NAME
4662 #define TARGET_BIG_NAME "elf32-hppa-linux"
4663 #undef ELF_OSABI
4664 #define ELF_OSABI ELFOSABI_GNU
4665 #undef elf32_bed
4666 #define elf32_bed elf32_hppa_linux_bed
4667
4668 #include "elf32-target.h"
4669
4670 #undef TARGET_BIG_SYM
4671 #define TARGET_BIG_SYM hppa_elf32_nbsd_vec
4672 #undef TARGET_BIG_NAME
4673 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4674 #undef ELF_OSABI
4675 #define ELF_OSABI ELFOSABI_NETBSD
4676 #undef elf32_bed
4677 #define elf32_bed elf32_hppa_netbsd_bed
4678
4679 #include "elf32-target.h"
This page took 0.124536 seconds and 4 git commands to generate.