481bde7e5d0e48d918e9560d9ddbce5e79e48625
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 Original code by
6 Center for Software Science
7 Department of Computer Science
8 University of Utah
9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
26
27 #include "bfd.h"
28 #include "sysdep.h"
29 #include "libbfd.h"
30 #include "elf-bfd.h"
31 #include "elf/hppa.h"
32 #include "libhppa.h"
33 #include "elf32-hppa.h"
34 #define ARCH_SIZE 32
35 #include "elf-hppa.h"
36 #include "elf32-hppa.h"
37
38 /* In order to gain some understanding of code in this file without
39 knowing all the intricate details of the linker, note the
40 following:
41
42 Functions named elf32_hppa_* are called by external routines, other
43 functions are only called locally. elf32_hppa_* functions appear
44 in this file more or less in the order in which they are called
45 from external routines. eg. elf32_hppa_check_relocs is called
46 early in the link process, elf32_hppa_finish_dynamic_sections is
47 one of the last functions. */
48
49 /* We use two hash tables to hold information for linking PA ELF objects.
50
51 The first is the elf32_hppa_link_hash_table which is derived
52 from the standard ELF linker hash table. We use this as a place to
53 attach other hash tables and static information.
54
55 The second is the stub hash table which is derived from the
56 base BFD hash table. The stub hash table holds the information
57 necessary to build the linker stubs during a link.
58
59 There are a number of different stubs generated by the linker.
60
61 Long branch stub:
62 : ldil LR'X,%r1
63 : be,n RR'X(%sr4,%r1)
64
65 PIC long branch stub:
66 : b,l .+8,%r1
67 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
68 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
69
70 Import stub to call shared library routine from normal object file
71 (single sub-space version)
72 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
73 : ldw RR'lt_ptr+ltoff(%r1),%r21
74 : bv %r0(%r21)
75 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
76
77 Import stub to call shared library routine from shared library
78 (single sub-space version)
79 : addil LR'ltoff,%r19 ; get procedure entry point
80 : ldw RR'ltoff(%r1),%r21
81 : bv %r0(%r21)
82 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
83
84 Import stub to call shared library routine from normal object file
85 (multiple sub-space support)
86 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
87 : ldw RR'lt_ptr+ltoff(%r1),%r21
88 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
89 : ldsid (%r21),%r1
90 : mtsp %r1,%sr0
91 : be 0(%sr0,%r21) ; branch to target
92 : stw %rp,-24(%sp) ; save rp
93
94 Import stub to call shared library routine from shared library
95 (multiple sub-space support)
96 : addil LR'ltoff,%r19 ; get procedure entry point
97 : ldw RR'ltoff(%r1),%r21
98 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
99 : ldsid (%r21),%r1
100 : mtsp %r1,%sr0
101 : be 0(%sr0,%r21) ; branch to target
102 : stw %rp,-24(%sp) ; save rp
103
104 Export stub to return from shared lib routine (multiple sub-space support)
105 One of these is created for each exported procedure in a shared
106 library (and stored in the shared lib). Shared lib routines are
107 called via the first instruction in the export stub so that we can
108 do an inter-space return. Not required for single sub-space.
109 : bl,n X,%rp ; trap the return
110 : nop
111 : ldw -24(%sp),%rp ; restore the original rp
112 : ldsid (%rp),%r1
113 : mtsp %r1,%sr0
114 : be,n 0(%sr0,%rp) ; inter-space return */
115
116 #define PLT_ENTRY_SIZE 8
117 #define GOT_ENTRY_SIZE 4
118 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
119
120 static const bfd_byte plt_stub[] =
121 {
122 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
123 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
124 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
125 #define PLT_STUB_ENTRY (3*4)
126 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
127 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
128 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
129 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
130 };
131
132 /* Section name for stubs is the associated section name plus this
133 string. */
134 #define STUB_SUFFIX ".stub"
135
136 /* We don't need to copy certain PC- or GP-relative dynamic relocs
137 into a shared object's dynamic section. All the relocs of the
138 limited class we are interested in, are absolute. */
139 #ifndef RELATIVE_DYNRELOCS
140 #define RELATIVE_DYNRELOCS 0
141 #define IS_ABSOLUTE_RELOC(r_type) 1
142 #endif
143
144 enum elf32_hppa_stub_type {
145 hppa_stub_long_branch,
146 hppa_stub_long_branch_shared,
147 hppa_stub_import,
148 hppa_stub_import_shared,
149 hppa_stub_export,
150 hppa_stub_none
151 };
152
153 struct elf32_hppa_stub_hash_entry {
154
155 /* Base hash table entry structure. */
156 struct bfd_hash_entry root;
157
158 /* The stub section. */
159 asection *stub_sec;
160
161 /* Offset within stub_sec of the beginning of this stub. */
162 bfd_vma stub_offset;
163
164 /* Given the symbol's value and its section we can determine its final
165 value when building the stubs (so the stub knows where to jump. */
166 bfd_vma target_value;
167 asection *target_section;
168
169 enum elf32_hppa_stub_type stub_type;
170
171 /* The symbol table entry, if any, that this was derived from. */
172 struct elf32_hppa_link_hash_entry *h;
173
174 /* Where this stub is being called from, or, in the case of combined
175 stub sections, the first input section in the group. */
176 asection *id_sec;
177 };
178
179 struct elf32_hppa_link_hash_entry {
180
181 struct elf_link_hash_entry elf;
182
183 /* A pointer to the most recently used stub hash entry against this
184 symbol. */
185 struct elf32_hppa_stub_hash_entry *stub_cache;
186
187 /* Used to count relocations for delayed sizing of relocation
188 sections. */
189 struct elf32_hppa_dyn_reloc_entry {
190
191 /* Next relocation in the chain. */
192 struct elf32_hppa_dyn_reloc_entry *next;
193
194 /* The input section of the reloc. */
195 asection *sec;
196
197 /* Number of relocs copied in this section. */
198 bfd_size_type count;
199
200 #if RELATIVE_DYNRELOCS
201 /* Number of relative relocs copied for the input section. */
202 bfd_size_type relative_count;
203 #endif
204 } *dyn_relocs;
205
206 /* Set during a static link if we detect a function is PIC. */
207 unsigned int maybe_pic_call:1;
208
209 /* Set if the only reason we need a .plt entry is for a non-PIC to
210 PIC function call. */
211 unsigned int pic_call:1;
212
213 /* Set if this symbol is used by a plabel reloc. */
214 unsigned int plabel:1;
215 };
216
217 struct elf32_hppa_link_hash_table {
218
219 /* The main hash table. */
220 struct elf_link_hash_table elf;
221
222 /* The stub hash table. */
223 struct bfd_hash_table stub_hash_table;
224
225 /* Linker stub bfd. */
226 bfd *stub_bfd;
227
228 /* Linker call-backs. */
229 asection * (*add_stub_section) PARAMS ((const char *, asection *));
230 void (*layout_sections_again) PARAMS ((void));
231
232 /* Array to keep track of which stub sections have been created, and
233 information on stub grouping. */
234 struct map_stub {
235 /* This is the section to which stubs in the group will be
236 attached. */
237 asection *link_sec;
238 /* The stub section. */
239 asection *stub_sec;
240 } *stub_group;
241
242 /* Short-cuts to get to dynamic linker sections. */
243 asection *sgot;
244 asection *srelgot;
245 asection *splt;
246 asection *srelplt;
247 asection *sdynbss;
248 asection *srelbss;
249
250 /* Used during a final link to store the base of the text and data
251 segments so that we can perform SEGREL relocations. */
252 bfd_vma text_segment_base;
253 bfd_vma data_segment_base;
254
255 /* Whether we support multiple sub-spaces for shared libs. */
256 unsigned int multi_subspace:1;
257
258 /* Flags set when PCREL12F and PCREL17F branches detected. Used to
259 select suitable defaults for the stub group size. */
260 unsigned int has_12bit_branch:1;
261 unsigned int has_17bit_branch:1;
262
263 /* Set if we need a .plt stub to support lazy dynamic linking. */
264 unsigned int need_plt_stub:1;
265
266 /* Small local sym to section mapping cache. */
267 struct sym_sec_cache sym_sec;
268 };
269
270 /* Various hash macros and functions. */
271 #define hppa_link_hash_table(p) \
272 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
273
274 #define hppa_stub_hash_lookup(table, string, create, copy) \
275 ((struct elf32_hppa_stub_hash_entry *) \
276 bfd_hash_lookup ((table), (string), (create), (copy)))
277
278 static struct bfd_hash_entry *stub_hash_newfunc
279 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
280
281 static struct bfd_hash_entry *hppa_link_hash_newfunc
282 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
283
284 static struct bfd_link_hash_table *elf32_hppa_link_hash_table_create
285 PARAMS ((bfd *));
286
287 /* Stub handling functions. */
288 static char *hppa_stub_name
289 PARAMS ((const asection *, const asection *,
290 const struct elf32_hppa_link_hash_entry *,
291 const Elf_Internal_Rela *));
292
293 static struct elf32_hppa_stub_hash_entry *hppa_get_stub_entry
294 PARAMS ((const asection *, const asection *,
295 struct elf32_hppa_link_hash_entry *,
296 const Elf_Internal_Rela *,
297 struct elf32_hppa_link_hash_table *));
298
299 static struct elf32_hppa_stub_hash_entry *hppa_add_stub
300 PARAMS ((const char *, asection *, struct elf32_hppa_link_hash_table *));
301
302 static enum elf32_hppa_stub_type hppa_type_of_stub
303 PARAMS ((asection *, const Elf_Internal_Rela *,
304 struct elf32_hppa_link_hash_entry *, bfd_vma));
305
306 static boolean hppa_build_one_stub
307 PARAMS ((struct bfd_hash_entry *, PTR));
308
309 static boolean hppa_size_one_stub
310 PARAMS ((struct bfd_hash_entry *, PTR));
311
312 /* BFD and elf backend functions. */
313 static boolean elf32_hppa_object_p PARAMS ((bfd *));
314
315 static boolean elf32_hppa_add_symbol_hook
316 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
317 const char **, flagword *, asection **, bfd_vma *));
318
319 static boolean elf32_hppa_create_dynamic_sections
320 PARAMS ((bfd *, struct bfd_link_info *));
321
322 static void elf32_hppa_copy_indirect_symbol
323 PARAMS ((struct elf_link_hash_entry *, struct elf_link_hash_entry *));
324
325 static boolean elf32_hppa_check_relocs
326 PARAMS ((bfd *, struct bfd_link_info *,
327 asection *, const Elf_Internal_Rela *));
328
329 static asection *elf32_hppa_gc_mark_hook
330 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
331 struct elf_link_hash_entry *, Elf_Internal_Sym *));
332
333 static boolean elf32_hppa_gc_sweep_hook
334 PARAMS ((bfd *, struct bfd_link_info *,
335 asection *, const Elf_Internal_Rela *));
336
337 static void elf32_hppa_hide_symbol
338 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
339
340 static boolean elf32_hppa_adjust_dynamic_symbol
341 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
342
343 static boolean mark_PIC_calls
344 PARAMS ((struct elf_link_hash_entry *, PTR));
345
346 static boolean allocate_plt_static
347 PARAMS ((struct elf_link_hash_entry *, PTR));
348
349 static boolean allocate_dynrelocs
350 PARAMS ((struct elf_link_hash_entry *, PTR));
351
352 static boolean readonly_dynrelocs
353 PARAMS ((struct elf_link_hash_entry *, PTR));
354
355 static boolean clobber_millicode_symbols
356 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
357
358 static boolean elf32_hppa_size_dynamic_sections
359 PARAMS ((bfd *, struct bfd_link_info *));
360
361 static boolean elf32_hppa_final_link
362 PARAMS ((bfd *, struct bfd_link_info *));
363
364 static void hppa_record_segment_addr
365 PARAMS ((bfd *, asection *, PTR));
366
367 static bfd_reloc_status_type final_link_relocate
368 PARAMS ((asection *, bfd_byte *, const Elf_Internal_Rela *,
369 bfd_vma, struct elf32_hppa_link_hash_table *, asection *,
370 struct elf32_hppa_link_hash_entry *));
371
372 static boolean elf32_hppa_relocate_section
373 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *,
374 bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
375
376 static int hppa_unwind_entry_compare
377 PARAMS ((const PTR, const PTR));
378
379 static boolean elf32_hppa_finish_dynamic_symbol
380 PARAMS ((bfd *, struct bfd_link_info *,
381 struct elf_link_hash_entry *, Elf_Internal_Sym *));
382
383 static enum elf_reloc_type_class elf32_hppa_reloc_type_class
384 PARAMS ((const Elf_Internal_Rela *));
385
386 static boolean elf32_hppa_finish_dynamic_sections
387 PARAMS ((bfd *, struct bfd_link_info *));
388
389 static void elf32_hppa_post_process_headers
390 PARAMS ((bfd *, struct bfd_link_info *));
391
392 static int elf32_hppa_elf_get_symbol_type
393 PARAMS ((Elf_Internal_Sym *, int));
394
395 /* Assorted hash table functions. */
396
397 /* Initialize an entry in the stub hash table. */
398
399 static struct bfd_hash_entry *
400 stub_hash_newfunc (entry, table, string)
401 struct bfd_hash_entry *entry;
402 struct bfd_hash_table *table;
403 const char *string;
404 {
405 /* Allocate the structure if it has not already been allocated by a
406 subclass. */
407 if (entry == NULL)
408 {
409 entry = bfd_hash_allocate (table,
410 sizeof (struct elf32_hppa_stub_hash_entry));
411 if (entry == NULL)
412 return entry;
413 }
414
415 /* Call the allocation method of the superclass. */
416 entry = bfd_hash_newfunc (entry, table, string);
417 if (entry != NULL)
418 {
419 struct elf32_hppa_stub_hash_entry *eh;
420
421 /* Initialize the local fields. */
422 eh = (struct elf32_hppa_stub_hash_entry *) entry;
423 eh->stub_sec = NULL;
424 eh->stub_offset = 0;
425 eh->target_value = 0;
426 eh->target_section = NULL;
427 eh->stub_type = hppa_stub_long_branch;
428 eh->h = NULL;
429 eh->id_sec = NULL;
430 }
431
432 return entry;
433 }
434
435 /* Initialize an entry in the link hash table. */
436
437 static struct bfd_hash_entry *
438 hppa_link_hash_newfunc (entry, table, string)
439 struct bfd_hash_entry *entry;
440 struct bfd_hash_table *table;
441 const char *string;
442 {
443 /* Allocate the structure if it has not already been allocated by a
444 subclass. */
445 if (entry == NULL)
446 {
447 entry = bfd_hash_allocate (table,
448 sizeof (struct elf32_hppa_link_hash_entry));
449 if (entry == NULL)
450 return entry;
451 }
452
453 /* Call the allocation method of the superclass. */
454 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
455 if (entry != NULL)
456 {
457 struct elf32_hppa_link_hash_entry *eh;
458
459 /* Initialize the local fields. */
460 eh = (struct elf32_hppa_link_hash_entry *) entry;
461 eh->stub_cache = NULL;
462 eh->dyn_relocs = NULL;
463 eh->maybe_pic_call = 0;
464 eh->pic_call = 0;
465 eh->plabel = 0;
466 }
467
468 return entry;
469 }
470
471 /* Create the derived linker hash table. The PA ELF port uses the derived
472 hash table to keep information specific to the PA ELF linker (without
473 using static variables). */
474
475 static struct bfd_link_hash_table *
476 elf32_hppa_link_hash_table_create (abfd)
477 bfd *abfd;
478 {
479 struct elf32_hppa_link_hash_table *ret;
480 bfd_size_type amt = sizeof (*ret);
481
482 ret = (struct elf32_hppa_link_hash_table *) bfd_alloc (abfd, amt);
483 if (ret == NULL)
484 return NULL;
485
486 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, hppa_link_hash_newfunc))
487 {
488 bfd_release (abfd, ret);
489 return NULL;
490 }
491
492 /* Init the stub hash table too. */
493 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc))
494 return NULL;
495
496 ret->stub_bfd = NULL;
497 ret->add_stub_section = NULL;
498 ret->layout_sections_again = NULL;
499 ret->stub_group = NULL;
500 ret->sgot = NULL;
501 ret->srelgot = NULL;
502 ret->splt = NULL;
503 ret->srelplt = NULL;
504 ret->sdynbss = NULL;
505 ret->srelbss = NULL;
506 ret->text_segment_base = (bfd_vma) -1;
507 ret->data_segment_base = (bfd_vma) -1;
508 ret->multi_subspace = 0;
509 ret->has_12bit_branch = 0;
510 ret->has_17bit_branch = 0;
511 ret->need_plt_stub = 0;
512 ret->sym_sec.abfd = NULL;
513
514 return &ret->elf.root;
515 }
516
517 /* Build a name for an entry in the stub hash table. */
518
519 static char *
520 hppa_stub_name (input_section, sym_sec, hash, rel)
521 const asection *input_section;
522 const asection *sym_sec;
523 const struct elf32_hppa_link_hash_entry *hash;
524 const Elf_Internal_Rela *rel;
525 {
526 char *stub_name;
527 bfd_size_type len;
528
529 if (hash)
530 {
531 len = 8 + 1 + strlen (hash->elf.root.root.string) + 1 + 8 + 1;
532 stub_name = bfd_malloc (len);
533 if (stub_name != NULL)
534 {
535 sprintf (stub_name, "%08x_%s+%x",
536 input_section->id & 0xffffffff,
537 hash->elf.root.root.string,
538 (int) rel->r_addend & 0xffffffff);
539 }
540 }
541 else
542 {
543 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
544 stub_name = bfd_malloc (len);
545 if (stub_name != NULL)
546 {
547 sprintf (stub_name, "%08x_%x:%x+%x",
548 input_section->id & 0xffffffff,
549 sym_sec->id & 0xffffffff,
550 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
551 (int) rel->r_addend & 0xffffffff);
552 }
553 }
554 return stub_name;
555 }
556
557 /* Look up an entry in the stub hash. Stub entries are cached because
558 creating the stub name takes a bit of time. */
559
560 static struct elf32_hppa_stub_hash_entry *
561 hppa_get_stub_entry (input_section, sym_sec, hash, rel, htab)
562 const asection *input_section;
563 const asection *sym_sec;
564 struct elf32_hppa_link_hash_entry *hash;
565 const Elf_Internal_Rela *rel;
566 struct elf32_hppa_link_hash_table *htab;
567 {
568 struct elf32_hppa_stub_hash_entry *stub_entry;
569 const asection *id_sec;
570
571 /* If this input section is part of a group of sections sharing one
572 stub section, then use the id of the first section in the group.
573 Stub names need to include a section id, as there may well be
574 more than one stub used to reach say, printf, and we need to
575 distinguish between them. */
576 id_sec = htab->stub_group[input_section->id].link_sec;
577
578 if (hash != NULL && hash->stub_cache != NULL
579 && hash->stub_cache->h == hash
580 && hash->stub_cache->id_sec == id_sec)
581 {
582 stub_entry = hash->stub_cache;
583 }
584 else
585 {
586 char *stub_name;
587
588 stub_name = hppa_stub_name (id_sec, sym_sec, hash, rel);
589 if (stub_name == NULL)
590 return NULL;
591
592 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
593 stub_name, false, false);
594 if (stub_entry == NULL)
595 {
596 if (hash == NULL || hash->elf.root.type != bfd_link_hash_undefweak)
597 (*_bfd_error_handler) (_("%s(%s+0x%lx): cannot find stub entry %s"),
598 bfd_archive_filename (input_section->owner),
599 input_section->name,
600 (long) rel->r_offset,
601 stub_name);
602 }
603 else
604 {
605 if (hash != NULL)
606 hash->stub_cache = stub_entry;
607 }
608
609 free (stub_name);
610 }
611
612 return stub_entry;
613 }
614
615 /* Add a new stub entry to the stub hash. Not all fields of the new
616 stub entry are initialised. */
617
618 static struct elf32_hppa_stub_hash_entry *
619 hppa_add_stub (stub_name, section, htab)
620 const char *stub_name;
621 asection *section;
622 struct elf32_hppa_link_hash_table *htab;
623 {
624 asection *link_sec;
625 asection *stub_sec;
626 struct elf32_hppa_stub_hash_entry *stub_entry;
627
628 link_sec = htab->stub_group[section->id].link_sec;
629 stub_sec = htab->stub_group[section->id].stub_sec;
630 if (stub_sec == NULL)
631 {
632 stub_sec = htab->stub_group[link_sec->id].stub_sec;
633 if (stub_sec == NULL)
634 {
635 bfd_size_type len;
636 char *s_name;
637
638 len = strlen (link_sec->name) + sizeof (STUB_SUFFIX);
639 s_name = bfd_alloc (htab->stub_bfd, len);
640 if (s_name == NULL)
641 return NULL;
642
643 strcpy (s_name, link_sec->name);
644 strcpy (s_name + len - sizeof (STUB_SUFFIX), STUB_SUFFIX);
645 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
646 if (stub_sec == NULL)
647 return NULL;
648 htab->stub_group[link_sec->id].stub_sec = stub_sec;
649 }
650 htab->stub_group[section->id].stub_sec = stub_sec;
651 }
652
653 /* Enter this entry into the linker stub hash table. */
654 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table, stub_name,
655 true, false);
656 if (stub_entry == NULL)
657 {
658 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
659 bfd_archive_filename (section->owner),
660 stub_name);
661 return NULL;
662 }
663
664 stub_entry->stub_sec = stub_sec;
665 stub_entry->stub_offset = 0;
666 stub_entry->id_sec = link_sec;
667 return stub_entry;
668 }
669
670 /* Determine the type of stub needed, if any, for a call. */
671
672 static enum elf32_hppa_stub_type
673 hppa_type_of_stub (input_sec, rel, hash, destination)
674 asection *input_sec;
675 const Elf_Internal_Rela *rel;
676 struct elf32_hppa_link_hash_entry *hash;
677 bfd_vma destination;
678 {
679 bfd_vma location;
680 bfd_vma branch_offset;
681 bfd_vma max_branch_offset;
682 unsigned int r_type;
683
684 if (hash != NULL
685 && (((hash->elf.root.type == bfd_link_hash_defined
686 || hash->elf.root.type == bfd_link_hash_defweak)
687 && hash->elf.root.u.def.section->output_section == NULL)
688 || (hash->elf.root.type == bfd_link_hash_defweak
689 && hash->elf.dynindx != -1
690 && hash->elf.plt.offset != (bfd_vma) -1)
691 || hash->elf.root.type == bfd_link_hash_undefweak
692 || hash->elf.root.type == bfd_link_hash_undefined
693 || (hash->maybe_pic_call && !(input_sec->flags & SEC_HAS_GOT_REF))))
694 {
695 /* If output_section is NULL, then it's a symbol defined in a
696 shared library. We will need an import stub. Decide between
697 hppa_stub_import and hppa_stub_import_shared later. For
698 shared links we need stubs for undefined or weak syms too;
699 They will presumably be resolved by the dynamic linker. */
700 return hppa_stub_import;
701 }
702
703 /* Determine where the call point is. */
704 location = (input_sec->output_offset
705 + input_sec->output_section->vma
706 + rel->r_offset);
707
708 branch_offset = destination - location - 8;
709 r_type = ELF32_R_TYPE (rel->r_info);
710
711 /* Determine if a long branch stub is needed. parisc branch offsets
712 are relative to the second instruction past the branch, ie. +8
713 bytes on from the branch instruction location. The offset is
714 signed and counts in units of 4 bytes. */
715 if (r_type == (unsigned int) R_PARISC_PCREL17F)
716 {
717 max_branch_offset = (1 << (17-1)) << 2;
718 }
719 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
720 {
721 max_branch_offset = (1 << (12-1)) << 2;
722 }
723 else /* R_PARISC_PCREL22F. */
724 {
725 max_branch_offset = (1 << (22-1)) << 2;
726 }
727
728 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
729 return hppa_stub_long_branch;
730
731 return hppa_stub_none;
732 }
733
734 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
735 IN_ARG contains the link info pointer. */
736
737 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
738 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
739
740 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
741 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
742 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
743
744 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
745 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
746 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
747 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
748
749 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
750 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
751
752 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
753 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
754 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
755 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
756
757 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
758 #define NOP 0x08000240 /* nop */
759 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
760 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
761 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
762
763 #ifndef R19_STUBS
764 #define R19_STUBS 1
765 #endif
766
767 #if R19_STUBS
768 #define LDW_R1_DLT LDW_R1_R19
769 #else
770 #define LDW_R1_DLT LDW_R1_DP
771 #endif
772
773 static boolean
774 hppa_build_one_stub (gen_entry, in_arg)
775 struct bfd_hash_entry *gen_entry;
776 PTR in_arg;
777 {
778 struct elf32_hppa_stub_hash_entry *stub_entry;
779 struct bfd_link_info *info;
780 struct elf32_hppa_link_hash_table *htab;
781 asection *stub_sec;
782 bfd *stub_bfd;
783 bfd_byte *loc;
784 bfd_vma sym_value;
785 bfd_vma insn;
786 bfd_vma off;
787 int val;
788 int size;
789
790 /* Massage our args to the form they really have. */
791 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
792 info = (struct bfd_link_info *) in_arg;
793
794 htab = hppa_link_hash_table (info);
795 stub_sec = stub_entry->stub_sec;
796
797 /* Make a note of the offset within the stubs for this entry. */
798 stub_entry->stub_offset = stub_sec->_raw_size;
799 loc = stub_sec->contents + stub_entry->stub_offset;
800
801 stub_bfd = stub_sec->owner;
802
803 switch (stub_entry->stub_type)
804 {
805 case hppa_stub_long_branch:
806 /* Create the long branch. A long branch is formed with "ldil"
807 loading the upper bits of the target address into a register,
808 then branching with "be" which adds in the lower bits.
809 The "be" has its delay slot nullified. */
810 sym_value = (stub_entry->target_value
811 + stub_entry->target_section->output_offset
812 + stub_entry->target_section->output_section->vma);
813
814 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel);
815 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
816 bfd_put_32 (stub_bfd, insn, loc);
817
818 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel) >> 2;
819 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
820 bfd_put_32 (stub_bfd, insn, loc + 4);
821
822 size = 8;
823 break;
824
825 case hppa_stub_long_branch_shared:
826 /* Branches are relative. This is where we are going to. */
827 sym_value = (stub_entry->target_value
828 + stub_entry->target_section->output_offset
829 + stub_entry->target_section->output_section->vma);
830
831 /* And this is where we are coming from, more or less. */
832 sym_value -= (stub_entry->stub_offset
833 + stub_sec->output_offset
834 + stub_sec->output_section->vma);
835
836 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
837 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
838 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
839 bfd_put_32 (stub_bfd, insn, loc + 4);
840
841 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
842 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
843 bfd_put_32 (stub_bfd, insn, loc + 8);
844 size = 12;
845 break;
846
847 case hppa_stub_import:
848 case hppa_stub_import_shared:
849 off = stub_entry->h->elf.plt.offset;
850 if (off >= (bfd_vma) -2)
851 abort ();
852
853 off &= ~ (bfd_vma) 1;
854 sym_value = (off
855 + htab->splt->output_offset
856 + htab->splt->output_section->vma
857 - elf_gp (htab->splt->output_section->owner));
858
859 insn = ADDIL_DP;
860 #if R19_STUBS
861 if (stub_entry->stub_type == hppa_stub_import_shared)
862 insn = ADDIL_R19;
863 #endif
864 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel),
865 insn = hppa_rebuild_insn ((int) insn, val, 21);
866 bfd_put_32 (stub_bfd, insn, loc);
867
868 /* It is critical to use lrsel/rrsel here because we are using
869 two different offsets (+0 and +4) from sym_value. If we use
870 lsel/rsel then with unfortunate sym_values we will round
871 sym_value+4 up to the next 2k block leading to a mis-match
872 between the lsel and rsel value. */
873 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel);
874 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
875 bfd_put_32 (stub_bfd, insn, loc + 4);
876
877 if (htab->multi_subspace)
878 {
879 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
880 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
881 bfd_put_32 (stub_bfd, insn, loc + 8);
882
883 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
884 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
885 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
886 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
887
888 size = 28;
889 }
890 else
891 {
892 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
893 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
894 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
895 bfd_put_32 (stub_bfd, insn, loc + 12);
896
897 size = 16;
898 }
899
900 if (!info->shared
901 && stub_entry->h != NULL
902 && stub_entry->h->pic_call)
903 {
904 /* Build the .plt entry needed to call a PIC function from
905 statically linked code. We don't need any relocs. */
906 bfd *dynobj;
907 struct elf32_hppa_link_hash_entry *eh;
908 bfd_vma value;
909
910 dynobj = htab->elf.dynobj;
911 eh = (struct elf32_hppa_link_hash_entry *) stub_entry->h;
912
913 if (eh->elf.root.type != bfd_link_hash_defined
914 && eh->elf.root.type != bfd_link_hash_defweak)
915 abort ();
916
917 value = (eh->elf.root.u.def.value
918 + eh->elf.root.u.def.section->output_offset
919 + eh->elf.root.u.def.section->output_section->vma);
920
921 /* Fill in the entry in the procedure linkage table.
922
923 The format of a plt entry is
924 <funcaddr>
925 <__gp>. */
926
927 bfd_put_32 (htab->splt->owner, value,
928 htab->splt->contents + off);
929 value = elf_gp (htab->splt->output_section->owner);
930 bfd_put_32 (htab->splt->owner, value,
931 htab->splt->contents + off + 4);
932 }
933 break;
934
935 case hppa_stub_export:
936 /* Branches are relative. This is where we are going to. */
937 sym_value = (stub_entry->target_value
938 + stub_entry->target_section->output_offset
939 + stub_entry->target_section->output_section->vma);
940
941 /* And this is where we are coming from. */
942 sym_value -= (stub_entry->stub_offset
943 + stub_sec->output_offset
944 + stub_sec->output_section->vma);
945
946 if (sym_value - 8 + 0x40000 >= 0x80000)
947 {
948 (*_bfd_error_handler)
949 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
950 bfd_archive_filename (stub_entry->target_section->owner),
951 stub_sec->name,
952 (long) stub_entry->stub_offset,
953 stub_entry->root.string);
954 bfd_set_error (bfd_error_bad_value);
955 return false;
956 }
957
958 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
959 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
960 bfd_put_32 (stub_bfd, insn, loc);
961
962 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
963 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
964 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
965 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
966 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
967
968 /* Point the function symbol at the stub. */
969 stub_entry->h->elf.root.u.def.section = stub_sec;
970 stub_entry->h->elf.root.u.def.value = stub_sec->_raw_size;
971
972 size = 24;
973 break;
974
975 default:
976 BFD_FAIL ();
977 return false;
978 }
979
980 stub_sec->_raw_size += size;
981 return true;
982 }
983
984 #undef LDIL_R1
985 #undef BE_SR4_R1
986 #undef BL_R1
987 #undef ADDIL_R1
988 #undef DEPI_R1
989 #undef ADDIL_DP
990 #undef LDW_R1_R21
991 #undef LDW_R1_DLT
992 #undef LDW_R1_R19
993 #undef ADDIL_R19
994 #undef LDW_R1_DP
995 #undef LDSID_R21_R1
996 #undef MTSP_R1
997 #undef BE_SR0_R21
998 #undef STW_RP
999 #undef BV_R0_R21
1000 #undef BL_RP
1001 #undef NOP
1002 #undef LDW_RP
1003 #undef LDSID_RP_R1
1004 #undef BE_SR0_RP
1005
1006 /* As above, but don't actually build the stub. Just bump offset so
1007 we know stub section sizes. */
1008
1009 static boolean
1010 hppa_size_one_stub (gen_entry, in_arg)
1011 struct bfd_hash_entry *gen_entry;
1012 PTR in_arg;
1013 {
1014 struct elf32_hppa_stub_hash_entry *stub_entry;
1015 struct elf32_hppa_link_hash_table *htab;
1016 int size;
1017
1018 /* Massage our args to the form they really have. */
1019 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
1020 htab = (struct elf32_hppa_link_hash_table *) in_arg;
1021
1022 if (stub_entry->stub_type == hppa_stub_long_branch)
1023 size = 8;
1024 else if (stub_entry->stub_type == hppa_stub_long_branch_shared)
1025 size = 12;
1026 else if (stub_entry->stub_type == hppa_stub_export)
1027 size = 24;
1028 else /* hppa_stub_import or hppa_stub_import_shared. */
1029 {
1030 if (htab->multi_subspace)
1031 size = 28;
1032 else
1033 size = 16;
1034 }
1035
1036 stub_entry->stub_sec->_raw_size += size;
1037 return true;
1038 }
1039
1040 /* Return nonzero if ABFD represents an HPPA ELF32 file.
1041 Additionally we set the default architecture and machine. */
1042
1043 static boolean
1044 elf32_hppa_object_p (abfd)
1045 bfd *abfd;
1046 {
1047 Elf_Internal_Ehdr * i_ehdrp;
1048 unsigned int flags;
1049
1050 i_ehdrp = elf_elfheader (abfd);
1051 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
1052 {
1053 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX)
1054 return false;
1055 }
1056 else
1057 {
1058 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
1059 return false;
1060 }
1061
1062 flags = i_ehdrp->e_flags;
1063 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
1064 {
1065 case EFA_PARISC_1_0:
1066 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
1067 case EFA_PARISC_1_1:
1068 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
1069 case EFA_PARISC_2_0:
1070 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
1071 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
1072 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
1073 }
1074 return true;
1075 }
1076
1077 /* Undo the generic ELF code's subtraction of section->vma from the
1078 value of each external symbol. */
1079
1080 static boolean
1081 elf32_hppa_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1082 bfd *abfd ATTRIBUTE_UNUSED;
1083 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1084 const Elf_Internal_Sym *sym ATTRIBUTE_UNUSED;
1085 const char **namep ATTRIBUTE_UNUSED;
1086 flagword *flagsp ATTRIBUTE_UNUSED;
1087 asection **secp;
1088 bfd_vma *valp;
1089 {
1090 *valp += (*secp)->vma;
1091 return true;
1092 }
1093
1094 /* Create the .plt and .got sections, and set up our hash table
1095 short-cuts to various dynamic sections. */
1096
1097 static boolean
1098 elf32_hppa_create_dynamic_sections (abfd, info)
1099 bfd *abfd;
1100 struct bfd_link_info *info;
1101 {
1102 struct elf32_hppa_link_hash_table *htab;
1103
1104 /* Don't try to create the .plt and .got twice. */
1105 htab = hppa_link_hash_table (info);
1106 if (htab->splt != NULL)
1107 return true;
1108
1109 /* Call the generic code to do most of the work. */
1110 if (! _bfd_elf_create_dynamic_sections (abfd, info))
1111 return false;
1112
1113 htab->splt = bfd_get_section_by_name (abfd, ".plt");
1114 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
1115
1116 htab->sgot = bfd_get_section_by_name (abfd, ".got");
1117 htab->srelgot = bfd_make_section (abfd, ".rela.got");
1118 if (htab->srelgot == NULL
1119 || ! bfd_set_section_flags (abfd, htab->srelgot,
1120 (SEC_ALLOC
1121 | SEC_LOAD
1122 | SEC_HAS_CONTENTS
1123 | SEC_IN_MEMORY
1124 | SEC_LINKER_CREATED
1125 | SEC_READONLY))
1126 || ! bfd_set_section_alignment (abfd, htab->srelgot, 2))
1127 return false;
1128
1129 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
1130 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
1131
1132 return true;
1133 }
1134
1135 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1136
1137 static void
1138 elf32_hppa_copy_indirect_symbol (dir, ind)
1139 struct elf_link_hash_entry *dir, *ind;
1140 {
1141 struct elf32_hppa_link_hash_entry *edir, *eind;
1142
1143 edir = (struct elf32_hppa_link_hash_entry *) dir;
1144 eind = (struct elf32_hppa_link_hash_entry *) ind;
1145
1146 if (eind->dyn_relocs != NULL)
1147 {
1148 if (edir->dyn_relocs != NULL)
1149 {
1150 struct elf32_hppa_dyn_reloc_entry **pp;
1151 struct elf32_hppa_dyn_reloc_entry *p;
1152
1153 if (ind->root.type == bfd_link_hash_indirect)
1154 abort ();
1155
1156 /* Add reloc counts against the weak sym to the strong sym
1157 list. Merge any entries against the same section. */
1158 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
1159 {
1160 struct elf32_hppa_dyn_reloc_entry *q;
1161
1162 for (q = edir->dyn_relocs; q != NULL; q = q->next)
1163 if (q->sec == p->sec)
1164 {
1165 #if RELATIVE_DYNRELOCS
1166 q->relative_count += p->relative_count;
1167 #endif
1168 q->count += p->count;
1169 *pp = p->next;
1170 break;
1171 }
1172 if (q == NULL)
1173 pp = &p->next;
1174 }
1175 *pp = edir->dyn_relocs;
1176 }
1177
1178 edir->dyn_relocs = eind->dyn_relocs;
1179 eind->dyn_relocs = NULL;
1180 }
1181
1182 _bfd_elf_link_hash_copy_indirect (dir, ind);
1183 }
1184
1185 /* Look through the relocs for a section during the first phase, and
1186 calculate needed space in the global offset table, procedure linkage
1187 table, and dynamic reloc sections. At this point we haven't
1188 necessarily read all the input files. */
1189
1190 static boolean
1191 elf32_hppa_check_relocs (abfd, info, sec, relocs)
1192 bfd *abfd;
1193 struct bfd_link_info *info;
1194 asection *sec;
1195 const Elf_Internal_Rela *relocs;
1196 {
1197 Elf_Internal_Shdr *symtab_hdr;
1198 struct elf_link_hash_entry **sym_hashes;
1199 const Elf_Internal_Rela *rel;
1200 const Elf_Internal_Rela *rel_end;
1201 struct elf32_hppa_link_hash_table *htab;
1202 asection *sreloc;
1203 asection *stubreloc;
1204
1205 if (info->relocateable)
1206 return true;
1207
1208 htab = hppa_link_hash_table (info);
1209 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1210 sym_hashes = elf_sym_hashes (abfd);
1211 sreloc = NULL;
1212 stubreloc = NULL;
1213
1214 rel_end = relocs + sec->reloc_count;
1215 for (rel = relocs; rel < rel_end; rel++)
1216 {
1217 enum {
1218 NEED_GOT = 1,
1219 NEED_PLT = 2,
1220 NEED_DYNREL = 4,
1221 PLT_PLABEL = 8
1222 };
1223
1224 unsigned int r_symndx, r_type;
1225 struct elf32_hppa_link_hash_entry *h;
1226 int need_entry;
1227
1228 r_symndx = ELF32_R_SYM (rel->r_info);
1229
1230 if (r_symndx < symtab_hdr->sh_info)
1231 h = NULL;
1232 else
1233 h = ((struct elf32_hppa_link_hash_entry *)
1234 sym_hashes[r_symndx - symtab_hdr->sh_info]);
1235
1236 r_type = ELF32_R_TYPE (rel->r_info);
1237
1238 switch (r_type)
1239 {
1240 case R_PARISC_DLTIND14F:
1241 case R_PARISC_DLTIND14R:
1242 case R_PARISC_DLTIND21L:
1243 /* This symbol requires a global offset table entry. */
1244 need_entry = NEED_GOT;
1245
1246 /* Mark this section as containing PIC code. */
1247 sec->flags |= SEC_HAS_GOT_REF;
1248 break;
1249
1250 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1251 case R_PARISC_PLABEL21L:
1252 case R_PARISC_PLABEL32:
1253 /* If the addend is non-zero, we break badly. */
1254 if (rel->r_addend != 0)
1255 abort ();
1256
1257 /* If we are creating a shared library, then we need to
1258 create a PLT entry for all PLABELs, because PLABELs with
1259 local symbols may be passed via a pointer to another
1260 object. Additionally, output a dynamic relocation
1261 pointing to the PLT entry.
1262 For executables, the original 32-bit ABI allowed two
1263 different styles of PLABELs (function pointers): For
1264 global functions, the PLABEL word points into the .plt
1265 two bytes past a (function address, gp) pair, and for
1266 local functions the PLABEL points directly at the
1267 function. The magic +2 for the first type allows us to
1268 differentiate between the two. As you can imagine, this
1269 is a real pain when it comes to generating code to call
1270 functions indirectly or to compare function pointers.
1271 We avoid the mess by always pointing a PLABEL into the
1272 .plt, even for local functions. */
1273 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1274 break;
1275
1276 case R_PARISC_PCREL12F:
1277 htab->has_12bit_branch = 1;
1278 /* Fall thru. */
1279 case R_PARISC_PCREL17C:
1280 case R_PARISC_PCREL17F:
1281 htab->has_17bit_branch = 1;
1282 /* Fall thru. */
1283 case R_PARISC_PCREL22F:
1284 /* Function calls might need to go through the .plt, and
1285 might require long branch stubs. */
1286 if (h == NULL)
1287 {
1288 /* We know local syms won't need a .plt entry, and if
1289 they need a long branch stub we can't guarantee that
1290 we can reach the stub. So just flag an error later
1291 if we're doing a shared link and find we need a long
1292 branch stub. */
1293 continue;
1294 }
1295 else
1296 {
1297 /* Global symbols will need a .plt entry if they remain
1298 global, and in most cases won't need a long branch
1299 stub. Unfortunately, we have to cater for the case
1300 where a symbol is forced local by versioning, or due
1301 to symbolic linking, and we lose the .plt entry. */
1302 need_entry = NEED_PLT;
1303 if (h->elf.type == STT_PARISC_MILLI)
1304 need_entry = 0;
1305 }
1306 break;
1307
1308 case R_PARISC_SEGBASE: /* Used to set segment base. */
1309 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1310 case R_PARISC_PCREL14F: /* PC relative load/store. */
1311 case R_PARISC_PCREL14R:
1312 case R_PARISC_PCREL17R: /* External branches. */
1313 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1314 /* We don't need to propagate the relocation if linking a
1315 shared object since these are section relative. */
1316 continue;
1317
1318 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1319 case R_PARISC_DPREL14R:
1320 case R_PARISC_DPREL21L:
1321 if (info->shared)
1322 {
1323 (*_bfd_error_handler)
1324 (_("%s: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1325 bfd_archive_filename (abfd),
1326 elf_hppa_howto_table[r_type].name);
1327 bfd_set_error (bfd_error_bad_value);
1328 return false;
1329 }
1330 /* Fall through. */
1331
1332 case R_PARISC_DIR17F: /* Used for external branches. */
1333 case R_PARISC_DIR17R:
1334 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1335 case R_PARISC_DIR14R:
1336 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1337 #if 1
1338 /* Help debug shared library creation. Any of the above
1339 relocs can be used in shared libs, but they may cause
1340 pages to become unshared. */
1341 if (info->shared)
1342 {
1343 (*_bfd_error_handler)
1344 (_("%s: relocation %s should not be used when making a shared object; recompile with -fPIC"),
1345 bfd_archive_filename (abfd),
1346 elf_hppa_howto_table[r_type].name);
1347 }
1348 /* Fall through. */
1349 #endif
1350
1351 case R_PARISC_DIR32: /* .word relocs. */
1352 /* We may want to output a dynamic relocation later. */
1353 need_entry = NEED_DYNREL;
1354 break;
1355
1356 /* This relocation describes the C++ object vtable hierarchy.
1357 Reconstruct it for later use during GC. */
1358 case R_PARISC_GNU_VTINHERIT:
1359 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec,
1360 &h->elf, rel->r_offset))
1361 return false;
1362 continue;
1363
1364 /* This relocation describes which C++ vtable entries are actually
1365 used. Record for later use during GC. */
1366 case R_PARISC_GNU_VTENTRY:
1367 if (!_bfd_elf32_gc_record_vtentry (abfd, sec,
1368 &h->elf, rel->r_addend))
1369 return false;
1370 continue;
1371
1372 default:
1373 continue;
1374 }
1375
1376 /* Now carry out our orders. */
1377 if (need_entry & NEED_GOT)
1378 {
1379 /* Allocate space for a GOT entry, as well as a dynamic
1380 relocation for this entry. */
1381 if (htab->sgot == NULL)
1382 {
1383 if (htab->elf.dynobj == NULL)
1384 htab->elf.dynobj = abfd;
1385 if (!elf32_hppa_create_dynamic_sections (htab->elf.dynobj, info))
1386 return false;
1387 }
1388
1389 if (h != NULL)
1390 {
1391 h->elf.got.refcount += 1;
1392 }
1393 else
1394 {
1395 bfd_signed_vma *local_got_refcounts;
1396
1397 /* This is a global offset table entry for a local symbol. */
1398 local_got_refcounts = elf_local_got_refcounts (abfd);
1399 if (local_got_refcounts == NULL)
1400 {
1401 bfd_size_type size;
1402
1403 /* Allocate space for local got offsets and local
1404 plt offsets. Done this way to save polluting
1405 elf_obj_tdata with another target specific
1406 pointer. */
1407 size = symtab_hdr->sh_info;
1408 size *= 2 * sizeof (bfd_signed_vma);
1409 local_got_refcounts = ((bfd_signed_vma *)
1410 bfd_zalloc (abfd, size));
1411 if (local_got_refcounts == NULL)
1412 return false;
1413 elf_local_got_refcounts (abfd) = local_got_refcounts;
1414 }
1415 local_got_refcounts[r_symndx] += 1;
1416 }
1417 }
1418
1419 if (need_entry & NEED_PLT)
1420 {
1421 /* If we are creating a shared library, and this is a reloc
1422 against a weak symbol or a global symbol in a dynamic
1423 object, then we will be creating an import stub and a
1424 .plt entry for the symbol. Similarly, on a normal link
1425 to symbols defined in a dynamic object we'll need the
1426 import stub and a .plt entry. We don't know yet whether
1427 the symbol is defined or not, so make an entry anyway and
1428 clean up later in adjust_dynamic_symbol. */
1429 if ((sec->flags & SEC_ALLOC) != 0)
1430 {
1431 if (h != NULL)
1432 {
1433 h->elf.elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1434 h->elf.plt.refcount += 1;
1435
1436 /* If this .plt entry is for a plabel, mark it so
1437 that adjust_dynamic_symbol will keep the entry
1438 even if it appears to be local. */
1439 if (need_entry & PLT_PLABEL)
1440 h->plabel = 1;
1441 }
1442 else if (need_entry & PLT_PLABEL)
1443 {
1444 bfd_signed_vma *local_got_refcounts;
1445 bfd_signed_vma *local_plt_refcounts;
1446
1447 local_got_refcounts = elf_local_got_refcounts (abfd);
1448 if (local_got_refcounts == NULL)
1449 {
1450 bfd_size_type size;
1451
1452 /* Allocate space for local got offsets and local
1453 plt offsets. */
1454 size = symtab_hdr->sh_info;
1455 size *= 2 * sizeof (bfd_signed_vma);
1456 local_got_refcounts = ((bfd_signed_vma *)
1457 bfd_zalloc (abfd, size));
1458 if (local_got_refcounts == NULL)
1459 return false;
1460 elf_local_got_refcounts (abfd) = local_got_refcounts;
1461 }
1462 local_plt_refcounts = (local_got_refcounts
1463 + symtab_hdr->sh_info);
1464 local_plt_refcounts[r_symndx] += 1;
1465 }
1466 }
1467 }
1468
1469 if (need_entry & NEED_DYNREL)
1470 {
1471 /* Flag this symbol as having a non-got, non-plt reference
1472 so that we generate copy relocs if it turns out to be
1473 dynamic. */
1474 if (h != NULL && !info->shared)
1475 h->elf.elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
1476
1477 /* If we are creating a shared library then we need to copy
1478 the reloc into the shared library. However, if we are
1479 linking with -Bsymbolic, we need only copy absolute
1480 relocs or relocs against symbols that are not defined in
1481 an object we are including in the link. PC- or DP- or
1482 DLT-relative relocs against any local sym or global sym
1483 with DEF_REGULAR set, can be discarded. At this point we
1484 have not seen all the input files, so it is possible that
1485 DEF_REGULAR is not set now but will be set later (it is
1486 never cleared). We account for that possibility below by
1487 storing information in the dyn_relocs field of the
1488 hash table entry.
1489
1490 A similar situation to the -Bsymbolic case occurs when
1491 creating shared libraries and symbol visibility changes
1492 render the symbol local.
1493
1494 As it turns out, all the relocs we will be creating here
1495 are absolute, so we cannot remove them on -Bsymbolic
1496 links or visibility changes anyway. A STUB_REL reloc
1497 is absolute too, as in that case it is the reloc in the
1498 stub we will be creating, rather than copying the PCREL
1499 reloc in the branch.
1500
1501 If on the other hand, we are creating an executable, we
1502 may need to keep relocations for symbols satisfied by a
1503 dynamic library if we manage to avoid copy relocs for the
1504 symbol. */
1505 if ((info->shared
1506 && (sec->flags & SEC_ALLOC) != 0
1507 && (IS_ABSOLUTE_RELOC (r_type)
1508 || (h != NULL
1509 && (!info->symbolic
1510 || h->elf.root.type == bfd_link_hash_defweak
1511 || (h->elf.elf_link_hash_flags
1512 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1513 || (!info->shared
1514 && (sec->flags & SEC_ALLOC) != 0
1515 && h != NULL
1516 && (h->elf.root.type == bfd_link_hash_defweak
1517 || (h->elf.elf_link_hash_flags
1518 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
1519 {
1520 struct elf32_hppa_dyn_reloc_entry *p;
1521 struct elf32_hppa_dyn_reloc_entry **head;
1522
1523 /* Create a reloc section in dynobj and make room for
1524 this reloc. */
1525 if (sreloc == NULL)
1526 {
1527 char *name;
1528 bfd *dynobj;
1529
1530 name = (bfd_elf_string_from_elf_section
1531 (abfd,
1532 elf_elfheader (abfd)->e_shstrndx,
1533 elf_section_data (sec)->rel_hdr.sh_name));
1534 if (name == NULL)
1535 {
1536 (*_bfd_error_handler)
1537 (_("Could not find relocation section for %s"),
1538 sec->name);
1539 bfd_set_error (bfd_error_bad_value);
1540 return false;
1541 }
1542
1543 if (htab->elf.dynobj == NULL)
1544 htab->elf.dynobj = abfd;
1545
1546 dynobj = htab->elf.dynobj;
1547 sreloc = bfd_get_section_by_name (dynobj, name);
1548 if (sreloc == NULL)
1549 {
1550 flagword flags;
1551
1552 sreloc = bfd_make_section (dynobj, name);
1553 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1554 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1555 if ((sec->flags & SEC_ALLOC) != 0)
1556 flags |= SEC_ALLOC | SEC_LOAD;
1557 if (sreloc == NULL
1558 || !bfd_set_section_flags (dynobj, sreloc, flags)
1559 || !bfd_set_section_alignment (dynobj, sreloc, 2))
1560 return false;
1561 }
1562
1563 elf_section_data (sec)->sreloc = sreloc;
1564 }
1565
1566 /* If this is a global symbol, we count the number of
1567 relocations we need for this symbol. */
1568 if (h != NULL)
1569 {
1570 head = &h->dyn_relocs;
1571 }
1572 else
1573 {
1574 /* Track dynamic relocs needed for local syms too.
1575 We really need local syms available to do this
1576 easily. Oh well. */
1577
1578 asection *s;
1579 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1580 sec, r_symndx);
1581 if (s == NULL)
1582 return false;
1583
1584 head = ((struct elf32_hppa_dyn_reloc_entry **)
1585 &elf_section_data (s)->local_dynrel);
1586 }
1587
1588 p = *head;
1589 if (p == NULL || p->sec != sec)
1590 {
1591 p = ((struct elf32_hppa_dyn_reloc_entry *)
1592 bfd_alloc (htab->elf.dynobj,
1593 (bfd_size_type) sizeof *p));
1594 if (p == NULL)
1595 return false;
1596 p->next = *head;
1597 *head = p;
1598 p->sec = sec;
1599 p->count = 0;
1600 #if RELATIVE_DYNRELOCS
1601 p->relative_count = 0;
1602 #endif
1603 }
1604
1605 p->count += 1;
1606 #if RELATIVE_DYNRELOCS
1607 if (!IS_ABSOLUTE_RELOC (rtype))
1608 p->relative_count += 1;
1609 #endif
1610 }
1611 }
1612 }
1613
1614 return true;
1615 }
1616
1617 /* Return the section that should be marked against garbage collection
1618 for a given relocation. */
1619
1620 static asection *
1621 elf32_hppa_gc_mark_hook (abfd, info, rel, h, sym)
1622 bfd *abfd;
1623 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1624 Elf_Internal_Rela *rel;
1625 struct elf_link_hash_entry *h;
1626 Elf_Internal_Sym *sym;
1627 {
1628 if (h != NULL)
1629 {
1630 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1631 {
1632 case R_PARISC_GNU_VTINHERIT:
1633 case R_PARISC_GNU_VTENTRY:
1634 break;
1635
1636 default:
1637 switch (h->root.type)
1638 {
1639 case bfd_link_hash_defined:
1640 case bfd_link_hash_defweak:
1641 return h->root.u.def.section;
1642
1643 case bfd_link_hash_common:
1644 return h->root.u.c.p->section;
1645
1646 default:
1647 break;
1648 }
1649 }
1650 }
1651 else
1652 {
1653 if (!(elf_bad_symtab (abfd)
1654 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
1655 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
1656 && sym->st_shndx != SHN_COMMON))
1657 {
1658 return bfd_section_from_elf_index (abfd, sym->st_shndx);
1659 }
1660 }
1661
1662 return NULL;
1663 }
1664
1665 /* Update the got and plt entry reference counts for the section being
1666 removed. */
1667
1668 static boolean
1669 elf32_hppa_gc_sweep_hook (abfd, info, sec, relocs)
1670 bfd *abfd;
1671 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1672 asection *sec;
1673 const Elf_Internal_Rela *relocs;
1674 {
1675 Elf_Internal_Shdr *symtab_hdr;
1676 struct elf_link_hash_entry **sym_hashes;
1677 bfd_signed_vma *local_got_refcounts;
1678 bfd_signed_vma *local_plt_refcounts;
1679 const Elf_Internal_Rela *rel, *relend;
1680 unsigned long r_symndx;
1681 struct elf_link_hash_entry *h;
1682 struct elf32_hppa_link_hash_table *htab;
1683 bfd *dynobj;
1684
1685 elf_section_data (sec)->local_dynrel = NULL;
1686
1687 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1688 sym_hashes = elf_sym_hashes (abfd);
1689 local_got_refcounts = elf_local_got_refcounts (abfd);
1690 local_plt_refcounts = local_got_refcounts;
1691 if (local_plt_refcounts != NULL)
1692 local_plt_refcounts += symtab_hdr->sh_info;
1693 htab = hppa_link_hash_table (info);
1694 dynobj = htab->elf.dynobj;
1695 if (dynobj == NULL)
1696 return true;
1697
1698 relend = relocs + sec->reloc_count;
1699 for (rel = relocs; rel < relend; rel++)
1700 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1701 {
1702 case R_PARISC_DLTIND14F:
1703 case R_PARISC_DLTIND14R:
1704 case R_PARISC_DLTIND21L:
1705 r_symndx = ELF32_R_SYM (rel->r_info);
1706 if (r_symndx >= symtab_hdr->sh_info)
1707 {
1708 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1709 if (h->got.refcount > 0)
1710 h->got.refcount -= 1;
1711 }
1712 else if (local_got_refcounts != NULL)
1713 {
1714 if (local_got_refcounts[r_symndx] > 0)
1715 local_got_refcounts[r_symndx] -= 1;
1716 }
1717 break;
1718
1719 case R_PARISC_PCREL12F:
1720 case R_PARISC_PCREL17C:
1721 case R_PARISC_PCREL17F:
1722 case R_PARISC_PCREL22F:
1723 r_symndx = ELF32_R_SYM (rel->r_info);
1724 if (r_symndx >= symtab_hdr->sh_info)
1725 {
1726 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1727 if (h->plt.refcount > 0)
1728 h->plt.refcount -= 1;
1729 }
1730 break;
1731
1732 case R_PARISC_PLABEL14R:
1733 case R_PARISC_PLABEL21L:
1734 case R_PARISC_PLABEL32:
1735 r_symndx = ELF32_R_SYM (rel->r_info);
1736 if (r_symndx >= symtab_hdr->sh_info)
1737 {
1738 struct elf32_hppa_link_hash_entry *eh;
1739 struct elf32_hppa_dyn_reloc_entry **pp;
1740 struct elf32_hppa_dyn_reloc_entry *p;
1741
1742 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1743
1744 if (h->plt.refcount > 0)
1745 h->plt.refcount -= 1;
1746
1747 eh = (struct elf32_hppa_link_hash_entry *) h;
1748
1749 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1750 if (p->sec == sec)
1751 {
1752 #if RELATIVE_DYNRELOCS
1753 if (!IS_ABSOLUTE_RELOC (rtype))
1754 p->relative_count -= 1;
1755 #endif
1756 p->count -= 1;
1757 if (p->count == 0)
1758 *pp = p->next;
1759 break;
1760 }
1761 }
1762 else if (local_plt_refcounts != NULL)
1763 {
1764 if (local_plt_refcounts[r_symndx] > 0)
1765 local_plt_refcounts[r_symndx] -= 1;
1766 }
1767 break;
1768
1769 case R_PARISC_DIR32:
1770 r_symndx = ELF32_R_SYM (rel->r_info);
1771 if (r_symndx >= symtab_hdr->sh_info)
1772 {
1773 struct elf32_hppa_link_hash_entry *eh;
1774 struct elf32_hppa_dyn_reloc_entry **pp;
1775 struct elf32_hppa_dyn_reloc_entry *p;
1776
1777 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1778
1779 eh = (struct elf32_hppa_link_hash_entry *) h;
1780
1781 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1782 if (p->sec == sec)
1783 {
1784 #if RELATIVE_DYNRELOCS
1785 if (!IS_ABSOLUTE_RELOC (R_PARISC_DIR32))
1786 p->relative_count -= 1;
1787 #endif
1788 p->count -= 1;
1789 if (p->count == 0)
1790 *pp = p->next;
1791 break;
1792 }
1793 }
1794 break;
1795
1796 default:
1797 break;
1798 }
1799
1800 return true;
1801 }
1802
1803 /* Our own version of hide_symbol, so that we can keep plt entries for
1804 plabels. */
1805
1806 static void
1807 elf32_hppa_hide_symbol (info, h)
1808 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1809 struct elf_link_hash_entry *h;
1810 {
1811 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
1812 h->dynindx = -1;
1813 if (! ((struct elf32_hppa_link_hash_entry *) h)->plabel)
1814 {
1815 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1816 h->plt.offset = (bfd_vma) -1;
1817 }
1818 }
1819
1820 /* This is the condition under which elf32_hppa_finish_dynamic_symbol
1821 will be called from elflink.h. If elflink.h doesn't call our
1822 finish_dynamic_symbol routine, we'll need to do something about
1823 initializing any .plt and .got entries in elf32_hppa_relocate_section. */
1824 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1825 ((DYN) \
1826 && ((INFO)->shared \
1827 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1828 && ((H)->dynindx != -1 \
1829 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1830
1831 /* Adjust a symbol defined by a dynamic object and referenced by a
1832 regular object. The current definition is in some section of the
1833 dynamic object, but we're not including those sections. We have to
1834 change the definition to something the rest of the link can
1835 understand. */
1836
1837 static boolean
1838 elf32_hppa_adjust_dynamic_symbol (info, h)
1839 struct bfd_link_info *info;
1840 struct elf_link_hash_entry *h;
1841 {
1842 struct elf32_hppa_link_hash_table *htab;
1843 struct elf32_hppa_link_hash_entry *eh;
1844 struct elf32_hppa_dyn_reloc_entry *p;
1845 asection *s;
1846 unsigned int power_of_two;
1847
1848 /* If this is a function, put it in the procedure linkage table. We
1849 will fill in the contents of the procedure linkage table later,
1850 when we know the address of the .got section. */
1851 if (h->type == STT_FUNC
1852 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1853 {
1854 if (!info->shared
1855 && h->plt.refcount > 0
1856 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1857 && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0)
1858 {
1859 ((struct elf32_hppa_link_hash_entry *) h)->maybe_pic_call = 1;
1860 }
1861
1862 if (h->plt.refcount <= 0
1863 || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1864 && h->root.type != bfd_link_hash_defweak
1865 && ! ((struct elf32_hppa_link_hash_entry *) h)->plabel
1866 && (!info->shared || info->symbolic)))
1867 {
1868 /* The .plt entry is not needed when:
1869 a) Garbage collection has removed all references to the
1870 symbol, or
1871 b) We know for certain the symbol is defined in this
1872 object, and it's not a weak definition, nor is the symbol
1873 used by a plabel relocation. Either this object is the
1874 application or we are doing a shared symbolic link. */
1875
1876 /* As a special sop to the hppa ABI, we keep a .plt entry
1877 for functions in sections containing PIC code. */
1878 if (((struct elf32_hppa_link_hash_entry *) h)->maybe_pic_call)
1879 ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
1880 else
1881 {
1882 h->plt.offset = (bfd_vma) -1;
1883 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1884 }
1885 }
1886
1887 return true;
1888 }
1889 else
1890 h->plt.offset = (bfd_vma) -1;
1891
1892 /* If this is a weak symbol, and there is a real definition, the
1893 processor independent code will have arranged for us to see the
1894 real definition first, and we can just use the same value. */
1895 if (h->weakdef != NULL)
1896 {
1897 if (h->weakdef->root.type != bfd_link_hash_defined
1898 && h->weakdef->root.type != bfd_link_hash_defweak)
1899 abort ();
1900 h->root.u.def.section = h->weakdef->root.u.def.section;
1901 h->root.u.def.value = h->weakdef->root.u.def.value;
1902 return true;
1903 }
1904
1905 /* This is a reference to a symbol defined by a dynamic object which
1906 is not a function. */
1907
1908 /* If we are creating a shared library, we must presume that the
1909 only references to the symbol are via the global offset table.
1910 For such cases we need not do anything here; the relocations will
1911 be handled correctly by relocate_section. */
1912 if (info->shared)
1913 return true;
1914
1915 /* If there are no references to this symbol that do not use the
1916 GOT, we don't need to generate a copy reloc. */
1917 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1918 return true;
1919
1920 eh = (struct elf32_hppa_link_hash_entry *) h;
1921 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1922 {
1923 s = p->sec->output_section;
1924 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1925 break;
1926 }
1927
1928 /* If we didn't find any dynamic relocs in read-only sections, then
1929 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1930 if (p == NULL)
1931 {
1932 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1933 return true;
1934 }
1935
1936 /* We must allocate the symbol in our .dynbss section, which will
1937 become part of the .bss section of the executable. There will be
1938 an entry for this symbol in the .dynsym section. The dynamic
1939 object will contain position independent code, so all references
1940 from the dynamic object to this symbol will go through the global
1941 offset table. The dynamic linker will use the .dynsym entry to
1942 determine the address it must put in the global offset table, so
1943 both the dynamic object and the regular object will refer to the
1944 same memory location for the variable. */
1945
1946 htab = hppa_link_hash_table (info);
1947
1948 /* We must generate a COPY reloc to tell the dynamic linker to
1949 copy the initial value out of the dynamic object and into the
1950 runtime process image. */
1951 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1952 {
1953 htab->srelbss->_raw_size += sizeof (Elf32_External_Rela);
1954 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1955 }
1956
1957 /* We need to figure out the alignment required for this symbol. I
1958 have no idea how other ELF linkers handle this. */
1959
1960 power_of_two = bfd_log2 (h->size);
1961 if (power_of_two > 3)
1962 power_of_two = 3;
1963
1964 /* Apply the required alignment. */
1965 s = htab->sdynbss;
1966 s->_raw_size = BFD_ALIGN (s->_raw_size,
1967 (bfd_size_type) (1 << power_of_two));
1968 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1969 {
1970 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1971 return false;
1972 }
1973
1974 /* Define the symbol as being at this point in the section. */
1975 h->root.u.def.section = s;
1976 h->root.u.def.value = s->_raw_size;
1977
1978 /* Increment the section size to make room for the symbol. */
1979 s->_raw_size += h->size;
1980
1981 return true;
1982 }
1983
1984 /* Called via elf_link_hash_traverse to create .plt entries for an
1985 application that uses statically linked PIC functions. Similar to
1986 the first part of elf32_hppa_adjust_dynamic_symbol. */
1987
1988 static boolean
1989 mark_PIC_calls (h, inf)
1990 struct elf_link_hash_entry *h;
1991 PTR inf ATTRIBUTE_UNUSED;
1992 {
1993 if (! (h->plt.refcount > 0
1994 && (h->root.type == bfd_link_hash_defined
1995 || h->root.type == bfd_link_hash_defweak)
1996 && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0))
1997 {
1998 h->plt.offset = (bfd_vma) -1;
1999 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2000 return true;
2001 }
2002
2003 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
2004 ((struct elf32_hppa_link_hash_entry *) h)->maybe_pic_call = 1;
2005 ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
2006
2007 return true;
2008 }
2009
2010 /* Allocate space in the .plt for entries that won't have relocations.
2011 ie. pic_call and plabel entries. */
2012
2013 static boolean
2014 allocate_plt_static (h, inf)
2015 struct elf_link_hash_entry *h;
2016 PTR inf;
2017 {
2018 struct bfd_link_info *info;
2019 struct elf32_hppa_link_hash_table *htab;
2020 asection *s;
2021
2022 if (h->root.type == bfd_link_hash_indirect
2023 || h->root.type == bfd_link_hash_warning)
2024 return true;
2025
2026 info = (struct bfd_link_info *) inf;
2027 htab = hppa_link_hash_table (info);
2028 if (((struct elf32_hppa_link_hash_entry *) h)->pic_call)
2029 {
2030 /* Make an entry in the .plt section for non-pic code that is
2031 calling pic code. */
2032 s = htab->splt;
2033 h->plt.offset = s->_raw_size;
2034 s->_raw_size += PLT_ENTRY_SIZE;
2035 }
2036 else if (htab->elf.dynamic_sections_created
2037 && h->plt.refcount > 0)
2038 {
2039 /* Make sure this symbol is output as a dynamic symbol.
2040 Undefined weak syms won't yet be marked as dynamic. */
2041 if (h->dynindx == -1
2042 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
2043 && h->type != STT_PARISC_MILLI)
2044 {
2045 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2046 return false;
2047 }
2048
2049 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
2050 {
2051 /* Allocate these later. */
2052 }
2053 else if (((struct elf32_hppa_link_hash_entry *) h)->plabel)
2054 {
2055 /* Make an entry in the .plt section for plabel references
2056 that won't have a .plt entry for other reasons. */
2057 s = htab->splt;
2058 h->plt.offset = s->_raw_size;
2059 s->_raw_size += PLT_ENTRY_SIZE;
2060 }
2061 else
2062 {
2063 /* No .plt entry needed. */
2064 h->plt.offset = (bfd_vma) -1;
2065 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2066 }
2067 }
2068 else
2069 {
2070 h->plt.offset = (bfd_vma) -1;
2071 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2072 }
2073
2074 return true;
2075 }
2076
2077 /* Allocate space in .plt, .got and associated reloc sections for
2078 global syms. */
2079
2080 static boolean
2081 allocate_dynrelocs (h, inf)
2082 struct elf_link_hash_entry *h;
2083 PTR inf;
2084 {
2085 struct bfd_link_info *info;
2086 struct elf32_hppa_link_hash_table *htab;
2087 asection *s;
2088 struct elf32_hppa_link_hash_entry *eh;
2089 struct elf32_hppa_dyn_reloc_entry *p;
2090
2091 if (h->root.type == bfd_link_hash_indirect
2092 || h->root.type == bfd_link_hash_warning)
2093 return true;
2094
2095 info = (struct bfd_link_info *) inf;
2096 htab = hppa_link_hash_table (info);
2097 if (htab->elf.dynamic_sections_created
2098 && h->plt.offset != (bfd_vma) -1
2099 && !((struct elf32_hppa_link_hash_entry *) h)->pic_call
2100 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
2101 {
2102 /* Make an entry in the .plt section. */
2103 s = htab->splt;
2104 h->plt.offset = s->_raw_size;
2105 s->_raw_size += PLT_ENTRY_SIZE;
2106
2107 /* We also need to make an entry in the .rela.plt section. */
2108 htab->srelplt->_raw_size += sizeof (Elf32_External_Rela);
2109 htab->need_plt_stub = 1;
2110 }
2111
2112 if (h->got.refcount > 0)
2113 {
2114 /* Make sure this symbol is output as a dynamic symbol.
2115 Undefined weak syms won't yet be marked as dynamic. */
2116 if (h->dynindx == -1
2117 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
2118 && h->type != STT_PARISC_MILLI)
2119 {
2120 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2121 return false;
2122 }
2123
2124 s = htab->sgot;
2125 h->got.offset = s->_raw_size;
2126 s->_raw_size += GOT_ENTRY_SIZE;
2127 if (htab->elf.dynamic_sections_created
2128 && (info->shared
2129 || (h->dynindx != -1
2130 && h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0))
2131 {
2132 htab->srelgot->_raw_size += sizeof (Elf32_External_Rela);
2133 }
2134 }
2135 else
2136 h->got.offset = (bfd_vma) -1;
2137
2138 eh = (struct elf32_hppa_link_hash_entry *) h;
2139 if (eh->dyn_relocs == NULL)
2140 return true;
2141
2142 /* If this is a -Bsymbolic shared link, then we need to discard all
2143 space allocated for dynamic pc-relative relocs against symbols
2144 defined in a regular object. For the normal shared case, discard
2145 space for relocs that have become local due to symbol visibility
2146 changes. */
2147 if (info->shared)
2148 {
2149 #if RELATIVE_DYNRELOCS
2150 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
2151 && ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
2152 || info->symbolic))
2153 {
2154 struct elf32_hppa_dyn_reloc_entry **pp;
2155
2156 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2157 {
2158 p->count -= p->relative_count;
2159 p->relative_count = 0;
2160 if (p->count == 0)
2161 *pp = p->next;
2162 else
2163 pp = &p->next;
2164 }
2165 }
2166 #endif
2167 }
2168 else
2169 {
2170 /* For the non-shared case, discard space for relocs against
2171 symbols which turn out to need copy relocs or are not
2172 dynamic. */
2173 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
2174 && (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2175 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2176 || (htab->elf.dynamic_sections_created
2177 && (h->root.type == bfd_link_hash_undefweak
2178 || h->root.type == bfd_link_hash_undefined))))
2179 {
2180 /* Make sure this symbol is output as a dynamic symbol.
2181 Undefined weak syms won't yet be marked as dynamic. */
2182 if (h->dynindx == -1
2183 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
2184 && h->type != STT_PARISC_MILLI)
2185 {
2186 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2187 return false;
2188 }
2189
2190 /* If that succeeded, we know we'll be keeping all the
2191 relocs. */
2192 if (h->dynindx != -1)
2193 goto keep;
2194 }
2195
2196 eh->dyn_relocs = NULL;
2197 return true;
2198
2199 keep: ;
2200 }
2201
2202 /* Finally, allocate space. */
2203 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2204 {
2205 asection *sreloc = elf_section_data (p->sec)->sreloc;
2206 sreloc->_raw_size += p->count * sizeof (Elf32_External_Rela);
2207 }
2208
2209 return true;
2210 }
2211
2212 /* This function is called via elf_link_hash_traverse to force
2213 millicode symbols local so they do not end up as globals in the
2214 dynamic symbol table. We ought to be able to do this in
2215 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2216 for all dynamic symbols. Arguably, this is a bug in
2217 elf_adjust_dynamic_symbol. */
2218
2219 static boolean
2220 clobber_millicode_symbols (h, info)
2221 struct elf_link_hash_entry *h;
2222 struct bfd_link_info *info;
2223 {
2224 /* We only want to remove these from the dynamic symbol table.
2225 Therefore we do not leave ELF_LINK_FORCED_LOCAL set. */
2226 if (h->type == STT_PARISC_MILLI)
2227 {
2228 struct elf32_hppa_link_hash_table *htab;
2229 unsigned short oldflags = h->elf_link_hash_flags;
2230
2231 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
2232 elf32_hppa_hide_symbol (info, h);
2233 htab = hppa_link_hash_table (info);
2234 _bfd_elf_strtab_delref (htab->elf.dynstr, h->dynstr_index);
2235 h->elf_link_hash_flags &= ~ELF_LINK_FORCED_LOCAL;
2236 h->elf_link_hash_flags |= oldflags & ELF_LINK_FORCED_LOCAL;
2237 }
2238 return true;
2239 }
2240
2241 /* Find any dynamic relocs that apply to read-only sections. */
2242
2243 static boolean
2244 readonly_dynrelocs (h, inf)
2245 struct elf_link_hash_entry *h;
2246 PTR inf;
2247 {
2248 struct elf32_hppa_link_hash_entry *eh;
2249 struct elf32_hppa_dyn_reloc_entry *p;
2250
2251 eh = (struct elf32_hppa_link_hash_entry *) h;
2252 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2253 {
2254 asection *s = p->sec->output_section;
2255
2256 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2257 {
2258 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2259
2260 info->flags |= DF_TEXTREL;
2261
2262 /* Not an error, just cut short the traversal. */
2263 return false;
2264 }
2265 }
2266 return true;
2267 }
2268
2269 /* Set the sizes of the dynamic sections. */
2270
2271 static boolean
2272 elf32_hppa_size_dynamic_sections (output_bfd, info)
2273 bfd *output_bfd ATTRIBUTE_UNUSED;
2274 struct bfd_link_info *info;
2275 {
2276 struct elf32_hppa_link_hash_table *htab;
2277 bfd *dynobj;
2278 bfd *ibfd;
2279 asection *s;
2280 boolean relocs;
2281
2282 htab = hppa_link_hash_table (info);
2283 dynobj = htab->elf.dynobj;
2284 if (dynobj == NULL)
2285 abort ();
2286
2287 if (htab->elf.dynamic_sections_created)
2288 {
2289 /* Set the contents of the .interp section to the interpreter. */
2290 if (! info->shared)
2291 {
2292 s = bfd_get_section_by_name (dynobj, ".interp");
2293 if (s == NULL)
2294 abort ();
2295 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
2296 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2297 }
2298
2299 /* Force millicode symbols local. */
2300 elf_link_hash_traverse (&htab->elf,
2301 clobber_millicode_symbols,
2302 info);
2303 }
2304 else
2305 {
2306 /* Run through the function symbols, looking for any that are
2307 PIC, and mark them as needing .plt entries so that %r19 will
2308 be set up. */
2309 if (! info->shared)
2310 elf_link_hash_traverse (&htab->elf, mark_PIC_calls, (PTR) info);
2311 }
2312
2313 /* Set up .got and .plt offsets for local syms, and space for local
2314 dynamic relocs. */
2315 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2316 {
2317 bfd_signed_vma *local_got;
2318 bfd_signed_vma *end_local_got;
2319 bfd_signed_vma *local_plt;
2320 bfd_signed_vma *end_local_plt;
2321 bfd_size_type locsymcount;
2322 Elf_Internal_Shdr *symtab_hdr;
2323 asection *srel;
2324
2325 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2326 continue;
2327
2328 for (s = ibfd->sections; s != NULL; s = s->next)
2329 {
2330 struct elf32_hppa_dyn_reloc_entry *p;
2331
2332 for (p = ((struct elf32_hppa_dyn_reloc_entry *)
2333 elf_section_data (s)->local_dynrel);
2334 p != NULL;
2335 p = p->next)
2336 {
2337 if (!bfd_is_abs_section (p->sec)
2338 && bfd_is_abs_section (p->sec->output_section))
2339 {
2340 /* Input section has been discarded, either because
2341 it is a copy of a linkonce section or due to
2342 linker script /DISCARD/, so we'll be discarding
2343 the relocs too. */
2344 }
2345 else
2346 {
2347 srel = elf_section_data (p->sec)->sreloc;
2348 srel->_raw_size += p->count * sizeof (Elf32_External_Rela);
2349 }
2350 }
2351 }
2352
2353 local_got = elf_local_got_refcounts (ibfd);
2354 if (!local_got)
2355 continue;
2356
2357 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2358 locsymcount = symtab_hdr->sh_info;
2359 end_local_got = local_got + locsymcount;
2360 s = htab->sgot;
2361 srel = htab->srelgot;
2362 for (; local_got < end_local_got; ++local_got)
2363 {
2364 if (*local_got > 0)
2365 {
2366 *local_got = s->_raw_size;
2367 s->_raw_size += GOT_ENTRY_SIZE;
2368 if (info->shared)
2369 srel->_raw_size += sizeof (Elf32_External_Rela);
2370 }
2371 else
2372 *local_got = (bfd_vma) -1;
2373 }
2374
2375 local_plt = end_local_got;
2376 end_local_plt = local_plt + locsymcount;
2377 if (! htab->elf.dynamic_sections_created)
2378 {
2379 /* Won't be used, but be safe. */
2380 for (; local_plt < end_local_plt; ++local_plt)
2381 *local_plt = (bfd_vma) -1;
2382 }
2383 else
2384 {
2385 s = htab->splt;
2386 srel = htab->srelplt;
2387 for (; local_plt < end_local_plt; ++local_plt)
2388 {
2389 if (*local_plt > 0)
2390 {
2391 *local_plt = s->_raw_size;
2392 s->_raw_size += PLT_ENTRY_SIZE;
2393 if (info->shared)
2394 srel->_raw_size += sizeof (Elf32_External_Rela);
2395 }
2396 else
2397 *local_plt = (bfd_vma) -1;
2398 }
2399 }
2400 }
2401
2402 /* Do all the .plt entries without relocs first. The dynamic linker
2403 uses the last .plt reloc to find the end of the .plt (and hence
2404 the start of the .got) for lazy linking. */
2405 elf_link_hash_traverse (&htab->elf, allocate_plt_static, (PTR) info);
2406
2407 /* Allocate global sym .plt and .got entries, and space for global
2408 sym dynamic relocs. */
2409 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
2410
2411 /* The check_relocs and adjust_dynamic_symbol entry points have
2412 determined the sizes of the various dynamic sections. Allocate
2413 memory for them. */
2414 relocs = false;
2415 for (s = dynobj->sections; s != NULL; s = s->next)
2416 {
2417 if ((s->flags & SEC_LINKER_CREATED) == 0)
2418 continue;
2419
2420 if (s == htab->splt)
2421 {
2422 if (htab->need_plt_stub)
2423 {
2424 /* Make space for the plt stub at the end of the .plt
2425 section. We want this stub right at the end, up
2426 against the .got section. */
2427 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2428 int pltalign = bfd_section_alignment (dynobj, s);
2429 bfd_size_type mask;
2430
2431 if (gotalign > pltalign)
2432 bfd_set_section_alignment (dynobj, s, gotalign);
2433 mask = ((bfd_size_type) 1 << gotalign) - 1;
2434 s->_raw_size = (s->_raw_size + sizeof (plt_stub) + mask) & ~mask;
2435 }
2436 }
2437 else if (s == htab->sgot)
2438 ;
2439 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
2440 {
2441 if (s->_raw_size != 0)
2442 {
2443 /* Remember whether there are any reloc sections other
2444 than .rela.plt. */
2445 if (s != htab->srelplt)
2446 relocs = true;
2447
2448 /* We use the reloc_count field as a counter if we need
2449 to copy relocs into the output file. */
2450 s->reloc_count = 0;
2451 }
2452 }
2453 else
2454 {
2455 /* It's not one of our sections, so don't allocate space. */
2456 continue;
2457 }
2458
2459 if (s->_raw_size == 0)
2460 {
2461 /* If we don't need this section, strip it from the
2462 output file. This is mostly to handle .rela.bss and
2463 .rela.plt. We must create both sections in
2464 create_dynamic_sections, because they must be created
2465 before the linker maps input sections to output
2466 sections. The linker does that before
2467 adjust_dynamic_symbol is called, and it is that
2468 function which decides whether anything needs to go
2469 into these sections. */
2470 _bfd_strip_section_from_output (info, s);
2471 continue;
2472 }
2473
2474 /* Allocate memory for the section contents. Zero it, because
2475 we may not fill in all the reloc sections. */
2476 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
2477 if (s->contents == NULL && s->_raw_size != 0)
2478 return false;
2479 }
2480
2481 if (htab->elf.dynamic_sections_created)
2482 {
2483 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2484 actually has nothing to do with the PLT, it is how we
2485 communicate the LTP value of a load module to the dynamic
2486 linker. */
2487 #define add_dynamic_entry(TAG, VAL) \
2488 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
2489
2490 if (!add_dynamic_entry (DT_PLTGOT, 0))
2491 return false;
2492
2493 /* Add some entries to the .dynamic section. We fill in the
2494 values later, in elf32_hppa_finish_dynamic_sections, but we
2495 must add the entries now so that we get the correct size for
2496 the .dynamic section. The DT_DEBUG entry is filled in by the
2497 dynamic linker and used by the debugger. */
2498 if (!info->shared)
2499 {
2500 if (!add_dynamic_entry (DT_DEBUG, 0))
2501 return false;
2502 }
2503
2504 if (htab->srelplt->_raw_size != 0)
2505 {
2506 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2507 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2508 || !add_dynamic_entry (DT_JMPREL, 0))
2509 return false;
2510 }
2511
2512 if (relocs)
2513 {
2514 if (!add_dynamic_entry (DT_RELA, 0)
2515 || !add_dynamic_entry (DT_RELASZ, 0)
2516 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2517 return false;
2518
2519 /* If any dynamic relocs apply to a read-only section,
2520 then we need a DT_TEXTREL entry. */
2521 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, (PTR) info);
2522
2523 if ((info->flags & DF_TEXTREL) != 0)
2524 {
2525 if (!add_dynamic_entry (DT_TEXTREL, 0))
2526 return false;
2527 }
2528 }
2529 }
2530 #undef add_dynamic_entry
2531
2532 return true;
2533 }
2534
2535 /* External entry points for sizing and building linker stubs. */
2536
2537 /* Determine and set the size of the stub section for a final link.
2538
2539 The basic idea here is to examine all the relocations looking for
2540 PC-relative calls to a target that is unreachable with a "bl"
2541 instruction. */
2542
2543 boolean
2544 elf32_hppa_size_stubs (output_bfd, stub_bfd, info, multi_subspace, group_size,
2545 add_stub_section, layout_sections_again)
2546 bfd *output_bfd;
2547 bfd *stub_bfd;
2548 struct bfd_link_info *info;
2549 boolean multi_subspace;
2550 bfd_signed_vma group_size;
2551 asection * (*add_stub_section) PARAMS ((const char *, asection *));
2552 void (*layout_sections_again) PARAMS ((void));
2553 {
2554 bfd *input_bfd;
2555 asection *section;
2556 asection **input_list, **list;
2557 Elf_Internal_Sym *local_syms, **all_local_syms;
2558 unsigned int bfd_indx, bfd_count;
2559 int top_id, top_index;
2560 struct elf32_hppa_link_hash_table *htab;
2561 bfd_size_type stub_group_size;
2562 boolean stubs_always_before_branch;
2563 boolean stub_changed = 0;
2564 boolean ret = 0;
2565 bfd_size_type amt;
2566
2567 htab = hppa_link_hash_table (info);
2568
2569 /* Stash our params away. */
2570 htab->stub_bfd = stub_bfd;
2571 htab->multi_subspace = multi_subspace;
2572 htab->add_stub_section = add_stub_section;
2573 htab->layout_sections_again = layout_sections_again;
2574 stubs_always_before_branch = group_size < 0;
2575 if (group_size < 0)
2576 stub_group_size = -group_size;
2577 else
2578 stub_group_size = group_size;
2579 if (stub_group_size == 1)
2580 {
2581 /* Default values. */
2582 stub_group_size = 8000000;
2583 if (htab->has_17bit_branch || htab->multi_subspace)
2584 stub_group_size = 250000;
2585 if (htab->has_12bit_branch)
2586 stub_group_size = 7812;
2587 }
2588
2589 /* Count the number of input BFDs and find the top input section id. */
2590 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2591 input_bfd != NULL;
2592 input_bfd = input_bfd->link_next)
2593 {
2594 bfd_count += 1;
2595 for (section = input_bfd->sections;
2596 section != NULL;
2597 section = section->next)
2598 {
2599 if (top_id < section->id)
2600 top_id = section->id;
2601 }
2602 }
2603
2604 amt = sizeof (struct map_stub) * (top_id + 1);
2605 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
2606 if (htab->stub_group == NULL)
2607 return false;
2608
2609 /* Make a list of input sections for each output section included in
2610 the link.
2611
2612 We can't use output_bfd->section_count here to find the top output
2613 section index as some sections may have been removed, and
2614 _bfd_strip_section_from_output doesn't renumber the indices. */
2615 for (section = output_bfd->sections, top_index = 0;
2616 section != NULL;
2617 section = section->next)
2618 {
2619 if (top_index < section->index)
2620 top_index = section->index;
2621 }
2622
2623 amt = sizeof (asection *) * (top_index + 1);
2624 input_list = (asection **) bfd_malloc (amt);
2625 if (input_list == NULL)
2626 return false;
2627
2628 /* For sections we aren't interested in, mark their entries with a
2629 value we can check later. */
2630 list = input_list + top_index;
2631 do
2632 *list = bfd_abs_section_ptr;
2633 while (list-- != input_list);
2634
2635 for (section = output_bfd->sections;
2636 section != NULL;
2637 section = section->next)
2638 {
2639 if ((section->flags & SEC_CODE) != 0)
2640 input_list[section->index] = NULL;
2641 }
2642
2643 /* Now actually build the lists. */
2644 for (input_bfd = info->input_bfds;
2645 input_bfd != NULL;
2646 input_bfd = input_bfd->link_next)
2647 {
2648 for (section = input_bfd->sections;
2649 section != NULL;
2650 section = section->next)
2651 {
2652 if (section->output_section != NULL
2653 && section->output_section->owner == output_bfd
2654 && section->output_section->index <= top_index)
2655 {
2656 list = input_list + section->output_section->index;
2657 if (*list != bfd_abs_section_ptr)
2658 {
2659 /* Steal the link_sec pointer for our list. */
2660 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2661 /* This happens to make the list in reverse order,
2662 which is what we want. */
2663 PREV_SEC (section) = *list;
2664 *list = section;
2665 }
2666 }
2667 }
2668 }
2669
2670 /* See whether we can group stub sections together. Grouping stub
2671 sections may result in fewer stubs. More importantly, we need to
2672 put all .init* and .fini* stubs at the beginning of the .init or
2673 .fini output sections respectively, because glibc splits the
2674 _init and _fini functions into multiple parts. Putting a stub in
2675 the middle of a function is not a good idea. */
2676 list = input_list + top_index;
2677 do
2678 {
2679 asection *tail = *list;
2680 if (tail == bfd_abs_section_ptr)
2681 continue;
2682 while (tail != NULL)
2683 {
2684 asection *curr;
2685 asection *prev;
2686 bfd_size_type total;
2687
2688 curr = tail;
2689 if (tail->_cooked_size)
2690 total = tail->_cooked_size;
2691 else
2692 total = tail->_raw_size;
2693 while ((prev = PREV_SEC (curr)) != NULL
2694 && ((total += curr->output_offset - prev->output_offset)
2695 < stub_group_size))
2696 curr = prev;
2697
2698 /* OK, the size from the start of CURR to the end is less
2699 than 250000 bytes and thus can be handled by one stub
2700 section. (or the tail section is itself larger than
2701 250000 bytes, in which case we may be toast.)
2702 We should really be keeping track of the total size of
2703 stubs added here, as stubs contribute to the final output
2704 section size. That's a little tricky, and this way will
2705 only break if stubs added total more than 12144 bytes, or
2706 1518 long branch stubs. It seems unlikely for more than
2707 1518 different functions to be called, especially from
2708 code only 250000 bytes long. */
2709 do
2710 {
2711 prev = PREV_SEC (tail);
2712 /* Set up this stub group. */
2713 htab->stub_group[tail->id].link_sec = curr;
2714 }
2715 while (tail != curr && (tail = prev) != NULL);
2716
2717 /* But wait, there's more! Input sections up to 250000
2718 bytes before the stub section can be handled by it too. */
2719 if (!stubs_always_before_branch)
2720 {
2721 total = 0;
2722 while (prev != NULL
2723 && ((total += tail->output_offset - prev->output_offset)
2724 < stub_group_size))
2725 {
2726 tail = prev;
2727 prev = PREV_SEC (tail);
2728 htab->stub_group[tail->id].link_sec = curr;
2729 }
2730 }
2731 tail = prev;
2732 }
2733 }
2734 while (list-- != input_list);
2735 free (input_list);
2736 #undef PREV_SEC
2737
2738 /* We want to read in symbol extension records only once. To do this
2739 we need to read in the local symbols in parallel and save them for
2740 later use; so hold pointers to the local symbols in an array. */
2741 amt = sizeof (Elf_Internal_Sym *) * bfd_count;
2742 all_local_syms = (Elf_Internal_Sym **) bfd_zmalloc (amt);
2743 if (all_local_syms == NULL)
2744 return false;
2745
2746 /* Walk over all the input BFDs, swapping in local symbols.
2747 If we are creating a shared library, create hash entries for the
2748 export stubs. */
2749 for (input_bfd = info->input_bfds, bfd_indx = 0;
2750 input_bfd != NULL;
2751 input_bfd = input_bfd->link_next, bfd_indx++)
2752 {
2753 Elf_Internal_Shdr *symtab_hdr;
2754 Elf_Internal_Sym *isym;
2755 Elf32_External_Sym *ext_syms, *esym, *end_sy;
2756 bfd_size_type sec_size;
2757
2758 /* We'll need the symbol table in a second. */
2759 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2760 if (symtab_hdr->sh_info == 0)
2761 continue;
2762
2763 /* We need an array of the local symbols attached to the input bfd.
2764 Unfortunately, we're going to have to read & swap them in. */
2765 sec_size = symtab_hdr->sh_info;
2766 sec_size *= sizeof (Elf_Internal_Sym);
2767 local_syms = (Elf_Internal_Sym *) bfd_malloc (sec_size);
2768 if (local_syms == NULL)
2769 {
2770 goto error_ret_free_local;
2771 }
2772 all_local_syms[bfd_indx] = local_syms;
2773 sec_size = symtab_hdr->sh_info;
2774 sec_size *= sizeof (Elf32_External_Sym);
2775 ext_syms = (Elf32_External_Sym *) bfd_malloc (sec_size);
2776 if (ext_syms == NULL)
2777 {
2778 goto error_ret_free_local;
2779 }
2780
2781 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
2782 || (bfd_bread (ext_syms, sec_size, input_bfd) != sec_size))
2783 {
2784 free (ext_syms);
2785 goto error_ret_free_local;
2786 }
2787
2788 /* Swap the local symbols in. */
2789 isym = local_syms;
2790 esym = ext_syms;
2791 for (end_sy = esym + symtab_hdr->sh_info; esym < end_sy; esym++, isym++)
2792 bfd_elf32_swap_symbol_in (input_bfd, esym, isym);
2793
2794 /* Now we can free the external symbols. */
2795 free (ext_syms);
2796
2797 if (info->shared && htab->multi_subspace)
2798 {
2799 struct elf_link_hash_entry **sym_hashes;
2800 struct elf_link_hash_entry **end_hashes;
2801 unsigned int symcount;
2802
2803 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2804 - symtab_hdr->sh_info);
2805 sym_hashes = elf_sym_hashes (input_bfd);
2806 end_hashes = sym_hashes + symcount;
2807
2808 /* Look through the global syms for functions; We need to
2809 build export stubs for all globally visible functions. */
2810 for (; sym_hashes < end_hashes; sym_hashes++)
2811 {
2812 struct elf32_hppa_link_hash_entry *hash;
2813
2814 hash = (struct elf32_hppa_link_hash_entry *) *sym_hashes;
2815
2816 while (hash->elf.root.type == bfd_link_hash_indirect
2817 || hash->elf.root.type == bfd_link_hash_warning)
2818 hash = ((struct elf32_hppa_link_hash_entry *)
2819 hash->elf.root.u.i.link);
2820
2821 /* At this point in the link, undefined syms have been
2822 resolved, so we need to check that the symbol was
2823 defined in this BFD. */
2824 if ((hash->elf.root.type == bfd_link_hash_defined
2825 || hash->elf.root.type == bfd_link_hash_defweak)
2826 && hash->elf.type == STT_FUNC
2827 && hash->elf.root.u.def.section->output_section != NULL
2828 && (hash->elf.root.u.def.section->output_section->owner
2829 == output_bfd)
2830 && hash->elf.root.u.def.section->owner == input_bfd
2831 && (hash->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
2832 && !(hash->elf.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)
2833 && ELF_ST_VISIBILITY (hash->elf.other) == STV_DEFAULT)
2834 {
2835 asection *sec;
2836 const char *stub_name;
2837 struct elf32_hppa_stub_hash_entry *stub_entry;
2838
2839 sec = hash->elf.root.u.def.section;
2840 stub_name = hash->elf.root.root.string;
2841 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
2842 stub_name,
2843 false, false);
2844 if (stub_entry == NULL)
2845 {
2846 stub_entry = hppa_add_stub (stub_name, sec, htab);
2847 if (!stub_entry)
2848 goto error_ret_free_local;
2849
2850 stub_entry->target_value = hash->elf.root.u.def.value;
2851 stub_entry->target_section = hash->elf.root.u.def.section;
2852 stub_entry->stub_type = hppa_stub_export;
2853 stub_entry->h = hash;
2854 stub_changed = 1;
2855 }
2856 else
2857 {
2858 (*_bfd_error_handler) (_("%s: duplicate export stub %s"),
2859 bfd_archive_filename (input_bfd),
2860 stub_name);
2861 }
2862 }
2863 }
2864 }
2865 }
2866
2867 while (1)
2868 {
2869 asection *stub_sec;
2870
2871 for (input_bfd = info->input_bfds, bfd_indx = 0;
2872 input_bfd != NULL;
2873 input_bfd = input_bfd->link_next, bfd_indx++)
2874 {
2875 Elf_Internal_Shdr *symtab_hdr;
2876
2877 /* We'll need the symbol table in a second. */
2878 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2879 if (symtab_hdr->sh_info == 0)
2880 continue;
2881
2882 local_syms = all_local_syms[bfd_indx];
2883
2884 /* Walk over each section attached to the input bfd. */
2885 for (section = input_bfd->sections;
2886 section != NULL;
2887 section = section->next)
2888 {
2889 Elf_Internal_Shdr *input_rel_hdr;
2890 Elf32_External_Rela *external_relocs, *erelaend, *erela;
2891 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2892
2893 /* If there aren't any relocs, then there's nothing more
2894 to do. */
2895 if ((section->flags & SEC_RELOC) == 0
2896 || section->reloc_count == 0)
2897 continue;
2898
2899 /* If this section is a link-once section that will be
2900 discarded, then don't create any stubs. */
2901 if (section->output_section == NULL
2902 || section->output_section->owner != output_bfd)
2903 continue;
2904
2905 /* Allocate space for the external relocations. */
2906 amt = section->reloc_count;
2907 amt *= sizeof (Elf32_External_Rela);
2908 external_relocs = (Elf32_External_Rela *) bfd_malloc (amt);
2909 if (external_relocs == NULL)
2910 {
2911 goto error_ret_free_local;
2912 }
2913
2914 /* Likewise for the internal relocations. */
2915 amt = section->reloc_count;
2916 amt *= sizeof (Elf_Internal_Rela);
2917 internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
2918 if (internal_relocs == NULL)
2919 {
2920 free (external_relocs);
2921 goto error_ret_free_local;
2922 }
2923
2924 /* Read in the external relocs. */
2925 input_rel_hdr = &elf_section_data (section)->rel_hdr;
2926 if (bfd_seek (input_bfd, input_rel_hdr->sh_offset, SEEK_SET) != 0
2927 || bfd_bread (external_relocs,
2928 input_rel_hdr->sh_size,
2929 input_bfd) != input_rel_hdr->sh_size)
2930 {
2931 free (external_relocs);
2932 error_ret_free_internal:
2933 free (internal_relocs);
2934 goto error_ret_free_local;
2935 }
2936
2937 /* Swap in the relocs. */
2938 erela = external_relocs;
2939 erelaend = erela + section->reloc_count;
2940 irela = internal_relocs;
2941 for (; erela < erelaend; erela++, irela++)
2942 bfd_elf32_swap_reloca_in (input_bfd, erela, irela);
2943
2944 /* We're done with the external relocs, free them. */
2945 free (external_relocs);
2946
2947 /* Now examine each relocation. */
2948 irela = internal_relocs;
2949 irelaend = irela + section->reloc_count;
2950 for (; irela < irelaend; irela++)
2951 {
2952 unsigned int r_type, r_indx;
2953 enum elf32_hppa_stub_type stub_type;
2954 struct elf32_hppa_stub_hash_entry *stub_entry;
2955 asection *sym_sec;
2956 bfd_vma sym_value;
2957 bfd_vma destination;
2958 struct elf32_hppa_link_hash_entry *hash;
2959 char *stub_name;
2960 const asection *id_sec;
2961
2962 r_type = ELF32_R_TYPE (irela->r_info);
2963 r_indx = ELF32_R_SYM (irela->r_info);
2964
2965 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2966 {
2967 bfd_set_error (bfd_error_bad_value);
2968 goto error_ret_free_internal;
2969 }
2970
2971 /* Only look for stubs on call instructions. */
2972 if (r_type != (unsigned int) R_PARISC_PCREL12F
2973 && r_type != (unsigned int) R_PARISC_PCREL17F
2974 && r_type != (unsigned int) R_PARISC_PCREL22F)
2975 continue;
2976
2977 /* Now determine the call target, its name, value,
2978 section. */
2979 sym_sec = NULL;
2980 sym_value = 0;
2981 destination = 0;
2982 hash = NULL;
2983 if (r_indx < symtab_hdr->sh_info)
2984 {
2985 /* It's a local symbol. */
2986 Elf_Internal_Sym *sym;
2987 Elf_Internal_Shdr *hdr;
2988
2989 sym = local_syms + r_indx;
2990 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2991 sym_sec = hdr->bfd_section;
2992 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2993 sym_value = sym->st_value;
2994 destination = (sym_value + irela->r_addend
2995 + sym_sec->output_offset
2996 + sym_sec->output_section->vma);
2997 }
2998 else
2999 {
3000 /* It's an external symbol. */
3001 int e_indx;
3002
3003 e_indx = r_indx - symtab_hdr->sh_info;
3004 hash = ((struct elf32_hppa_link_hash_entry *)
3005 elf_sym_hashes (input_bfd)[e_indx]);
3006
3007 while (hash->elf.root.type == bfd_link_hash_indirect
3008 || hash->elf.root.type == bfd_link_hash_warning)
3009 hash = ((struct elf32_hppa_link_hash_entry *)
3010 hash->elf.root.u.i.link);
3011
3012 if (hash->elf.root.type == bfd_link_hash_defined
3013 || hash->elf.root.type == bfd_link_hash_defweak)
3014 {
3015 sym_sec = hash->elf.root.u.def.section;
3016 sym_value = hash->elf.root.u.def.value;
3017 if (sym_sec->output_section != NULL)
3018 destination = (sym_value + irela->r_addend
3019 + sym_sec->output_offset
3020 + sym_sec->output_section->vma);
3021 }
3022 else if (hash->elf.root.type == bfd_link_hash_undefweak)
3023 {
3024 if (! info->shared)
3025 continue;
3026 }
3027 else if (hash->elf.root.type == bfd_link_hash_undefined)
3028 {
3029 if (! (info->shared
3030 && !info->no_undefined
3031 && (ELF_ST_VISIBILITY (hash->elf.other)
3032 == STV_DEFAULT)
3033 && hash->elf.type != STT_PARISC_MILLI))
3034 continue;
3035 }
3036 else
3037 {
3038 bfd_set_error (bfd_error_bad_value);
3039 goto error_ret_free_internal;
3040 }
3041 }
3042
3043 /* Determine what (if any) linker stub is needed. */
3044 stub_type = hppa_type_of_stub (section, irela, hash,
3045 destination);
3046 if (stub_type == hppa_stub_none)
3047 continue;
3048
3049 /* Support for grouping stub sections. */
3050 id_sec = htab->stub_group[section->id].link_sec;
3051
3052 /* Get the name of this stub. */
3053 stub_name = hppa_stub_name (id_sec, sym_sec, hash, irela);
3054 if (!stub_name)
3055 goto error_ret_free_internal;
3056
3057 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
3058 stub_name,
3059 false, false);
3060 if (stub_entry != NULL)
3061 {
3062 /* The proper stub has already been created. */
3063 free (stub_name);
3064 continue;
3065 }
3066
3067 stub_entry = hppa_add_stub (stub_name, section, htab);
3068 if (stub_entry == NULL)
3069 {
3070 free (stub_name);
3071 goto error_ret_free_local;
3072 }
3073
3074 stub_entry->target_value = sym_value;
3075 stub_entry->target_section = sym_sec;
3076 stub_entry->stub_type = stub_type;
3077 if (info->shared)
3078 {
3079 if (stub_type == hppa_stub_import)
3080 stub_entry->stub_type = hppa_stub_import_shared;
3081 else if (stub_type == hppa_stub_long_branch)
3082 stub_entry->stub_type = hppa_stub_long_branch_shared;
3083 }
3084 stub_entry->h = hash;
3085 stub_changed = 1;
3086 }
3087
3088 /* We're done with the internal relocs, free them. */
3089 free (internal_relocs);
3090 }
3091 }
3092
3093 if (!stub_changed)
3094 break;
3095
3096 /* OK, we've added some stubs. Find out the new size of the
3097 stub sections. */
3098 for (stub_sec = htab->stub_bfd->sections;
3099 stub_sec != NULL;
3100 stub_sec = stub_sec->next)
3101 {
3102 stub_sec->_raw_size = 0;
3103 stub_sec->_cooked_size = 0;
3104 }
3105
3106 bfd_hash_traverse (&htab->stub_hash_table, hppa_size_one_stub, htab);
3107
3108 /* Ask the linker to do its stuff. */
3109 (*htab->layout_sections_again) ();
3110 stub_changed = 0;
3111 }
3112
3113 ret = 1;
3114
3115 error_ret_free_local:
3116 while (bfd_count-- > 0)
3117 if (all_local_syms[bfd_count])
3118 free (all_local_syms[bfd_count]);
3119 free (all_local_syms);
3120
3121 return ret;
3122 }
3123
3124 /* For a final link, this function is called after we have sized the
3125 stubs to provide a value for __gp. */
3126
3127 boolean
3128 elf32_hppa_set_gp (abfd, info)
3129 bfd *abfd;
3130 struct bfd_link_info *info;
3131 {
3132 struct elf32_hppa_link_hash_table *htab;
3133 struct elf_link_hash_entry *h;
3134 asection *sec;
3135 bfd_vma gp_val;
3136
3137 htab = hppa_link_hash_table (info);
3138 h = elf_link_hash_lookup (&htab->elf, "$global$", false, false, false);
3139
3140 if (h != NULL
3141 && (h->root.type == bfd_link_hash_defined
3142 || h->root.type == bfd_link_hash_defweak))
3143 {
3144 gp_val = h->root.u.def.value;
3145 sec = h->root.u.def.section;
3146 }
3147 else
3148 {
3149 /* Choose to point our LTP at, in this order, one of .plt, .got,
3150 or .data, if these sections exist. In the case of choosing
3151 .plt try to make the LTP ideal for addressing anywhere in the
3152 .plt or .got with a 14 bit signed offset. Typically, the end
3153 of the .plt is the start of the .got, so choose .plt + 0x2000
3154 if either the .plt or .got is larger than 0x2000. If both
3155 the .plt and .got are smaller than 0x2000, choose the end of
3156 the .plt section. */
3157
3158 sec = htab->splt;
3159 if (sec != NULL)
3160 {
3161 gp_val = sec->_raw_size;
3162 if (gp_val > 0x2000
3163 || (htab->sgot && htab->sgot->_raw_size > 0x2000))
3164 {
3165 gp_val = 0x2000;
3166 }
3167 }
3168 else
3169 {
3170 gp_val = 0;
3171 sec = htab->sgot;
3172 if (sec != NULL)
3173 {
3174 /* We know we don't have a .plt. If .got is large,
3175 offset our LTP. */
3176 if (sec->_raw_size > 0x2000)
3177 gp_val = 0x2000;
3178 }
3179 else
3180 {
3181 /* No .plt or .got. Who cares what the LTP is? */
3182 sec = bfd_get_section_by_name (abfd, ".data");
3183 }
3184 }
3185
3186 if (h != NULL)
3187 {
3188 h->root.type = bfd_link_hash_defined;
3189 h->root.u.def.value = gp_val;
3190 if (sec != NULL)
3191 h->root.u.def.section = sec;
3192 else
3193 h->root.u.def.section = bfd_abs_section_ptr;
3194 }
3195 }
3196
3197 if (sec != NULL && sec->output_section != NULL)
3198 gp_val += sec->output_section->vma + sec->output_offset;
3199
3200 elf_gp (abfd) = gp_val;
3201 return true;
3202 }
3203
3204 /* Build all the stubs associated with the current output file. The
3205 stubs are kept in a hash table attached to the main linker hash
3206 table. We also set up the .plt entries for statically linked PIC
3207 functions here. This function is called via hppaelf_finish in the
3208 linker. */
3209
3210 boolean
3211 elf32_hppa_build_stubs (info)
3212 struct bfd_link_info *info;
3213 {
3214 asection *stub_sec;
3215 struct bfd_hash_table *table;
3216 struct elf32_hppa_link_hash_table *htab;
3217
3218 htab = hppa_link_hash_table (info);
3219
3220 for (stub_sec = htab->stub_bfd->sections;
3221 stub_sec != NULL;
3222 stub_sec = stub_sec->next)
3223 {
3224 bfd_size_type size;
3225
3226 /* Allocate memory to hold the linker stubs. */
3227 size = stub_sec->_raw_size;
3228 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
3229 if (stub_sec->contents == NULL && size != 0)
3230 return false;
3231 stub_sec->_raw_size = 0;
3232 }
3233
3234 /* Build the stubs as directed by the stub hash table. */
3235 table = &htab->stub_hash_table;
3236 bfd_hash_traverse (table, hppa_build_one_stub, info);
3237
3238 return true;
3239 }
3240
3241 /* Perform a final link. */
3242
3243 static boolean
3244 elf32_hppa_final_link (abfd, info)
3245 bfd *abfd;
3246 struct bfd_link_info *info;
3247 {
3248 asection *s;
3249
3250 /* Invoke the regular ELF linker to do all the work. */
3251 if (!bfd_elf32_bfd_final_link (abfd, info))
3252 return false;
3253
3254 /* If we're producing a final executable, sort the contents of the
3255 unwind section. Magic section names, but this is much safer than
3256 having elf32_hppa_relocate_section remember where SEGREL32 relocs
3257 occurred. Consider what happens if someone inept creates a
3258 linker script that puts unwind information in .text. */
3259 s = bfd_get_section_by_name (abfd, ".PARISC.unwind");
3260 if (s != NULL)
3261 {
3262 bfd_size_type size;
3263 char *contents;
3264
3265 size = s->_raw_size;
3266 contents = bfd_malloc (size);
3267 if (contents == NULL)
3268 return false;
3269
3270 if (! bfd_get_section_contents (abfd, s, contents, (file_ptr) 0, size))
3271 return false;
3272
3273 qsort (contents, (size_t) (size / 16), 16, hppa_unwind_entry_compare);
3274
3275 if (! bfd_set_section_contents (abfd, s, contents, (file_ptr) 0, size))
3276 return false;
3277 }
3278 return true;
3279 }
3280
3281 /* Record the lowest address for the data and text segments. */
3282
3283 static void
3284 hppa_record_segment_addr (abfd, section, data)
3285 bfd *abfd ATTRIBUTE_UNUSED;
3286 asection *section;
3287 PTR data;
3288 {
3289 struct elf32_hppa_link_hash_table *htab;
3290
3291 htab = (struct elf32_hppa_link_hash_table *) data;
3292
3293 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3294 {
3295 bfd_vma value = section->vma - section->filepos;
3296
3297 if ((section->flags & SEC_READONLY) != 0)
3298 {
3299 if (value < htab->text_segment_base)
3300 htab->text_segment_base = value;
3301 }
3302 else
3303 {
3304 if (value < htab->data_segment_base)
3305 htab->data_segment_base = value;
3306 }
3307 }
3308 }
3309
3310 /* Perform a relocation as part of a final link. */
3311
3312 static bfd_reloc_status_type
3313 final_link_relocate (input_section, contents, rel, value, htab, sym_sec, h)
3314 asection *input_section;
3315 bfd_byte *contents;
3316 const Elf_Internal_Rela *rel;
3317 bfd_vma value;
3318 struct elf32_hppa_link_hash_table *htab;
3319 asection *sym_sec;
3320 struct elf32_hppa_link_hash_entry *h;
3321 {
3322 int insn;
3323 unsigned int r_type = ELF32_R_TYPE (rel->r_info);
3324 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3325 int r_format = howto->bitsize;
3326 enum hppa_reloc_field_selector_type_alt r_field;
3327 bfd *input_bfd = input_section->owner;
3328 bfd_vma offset = rel->r_offset;
3329 bfd_vma max_branch_offset = 0;
3330 bfd_byte *hit_data = contents + offset;
3331 bfd_signed_vma addend = rel->r_addend;
3332 bfd_vma location;
3333 struct elf32_hppa_stub_hash_entry *stub_entry = NULL;
3334 int val;
3335
3336 if (r_type == R_PARISC_NONE)
3337 return bfd_reloc_ok;
3338
3339 insn = bfd_get_32 (input_bfd, hit_data);
3340
3341 /* Find out where we are and where we're going. */
3342 location = (offset +
3343 input_section->output_offset +
3344 input_section->output_section->vma);
3345
3346 switch (r_type)
3347 {
3348 case R_PARISC_PCREL12F:
3349 case R_PARISC_PCREL17F:
3350 case R_PARISC_PCREL22F:
3351 /* If this is a call to a function defined in another dynamic
3352 library, or if it is a call to a PIC function in the same
3353 object, or if this is a shared link and it is a call to a
3354 weak symbol which may or may not be in the same object, then
3355 find the import stub in the stub hash. */
3356 if (sym_sec == NULL
3357 || sym_sec->output_section == NULL
3358 || (h != NULL
3359 && ((h->maybe_pic_call
3360 && !(input_section->flags & SEC_HAS_GOT_REF))
3361 || (h->elf.root.type == bfd_link_hash_defweak
3362 && h->elf.dynindx != -1
3363 && h->elf.plt.offset != (bfd_vma) -1))))
3364 {
3365 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3366 h, rel, htab);
3367 if (stub_entry != NULL)
3368 {
3369 value = (stub_entry->stub_offset
3370 + stub_entry->stub_sec->output_offset
3371 + stub_entry->stub_sec->output_section->vma);
3372 addend = 0;
3373 }
3374 else if (sym_sec == NULL && h != NULL
3375 && h->elf.root.type == bfd_link_hash_undefweak)
3376 {
3377 /* It's OK if undefined weak. Calls to undefined weak
3378 symbols behave as if the "called" function
3379 immediately returns. We can thus call to a weak
3380 function without first checking whether the function
3381 is defined. */
3382 value = location;
3383 addend = 8;
3384 }
3385 else
3386 return bfd_reloc_notsupported;
3387 }
3388 /* Fall thru. */
3389
3390 case R_PARISC_PCREL21L:
3391 case R_PARISC_PCREL17C:
3392 case R_PARISC_PCREL17R:
3393 case R_PARISC_PCREL14R:
3394 case R_PARISC_PCREL14F:
3395 /* Make it a pc relative offset. */
3396 value -= location;
3397 addend -= 8;
3398 break;
3399
3400 case R_PARISC_DPREL21L:
3401 case R_PARISC_DPREL14R:
3402 case R_PARISC_DPREL14F:
3403 /* For all the DP relative relocations, we need to examine the symbol's
3404 section. If it's a code section, then "data pointer relative" makes
3405 no sense. In that case we don't adjust the "value", and for 21 bit
3406 addil instructions, we change the source addend register from %dp to
3407 %r0. This situation commonly arises when a variable's "constness"
3408 is declared differently from the way the variable is defined. For
3409 instance: "extern int foo" with foo defined as "const int foo". */
3410 if (sym_sec == NULL)
3411 break;
3412 if ((sym_sec->flags & SEC_CODE) != 0)
3413 {
3414 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3415 == (((int) OP_ADDIL << 26) | (27 << 21)))
3416 {
3417 insn &= ~ (0x1f << 21);
3418 #if 1 /* debug them. */
3419 (*_bfd_error_handler)
3420 (_("%s(%s+0x%lx): fixing %s"),
3421 bfd_archive_filename (input_bfd),
3422 input_section->name,
3423 (long) rel->r_offset,
3424 howto->name);
3425 #endif
3426 }
3427 /* Now try to make things easy for the dynamic linker. */
3428
3429 break;
3430 }
3431 /* Fall thru. */
3432
3433 case R_PARISC_DLTIND21L:
3434 case R_PARISC_DLTIND14R:
3435 case R_PARISC_DLTIND14F:
3436 value -= elf_gp (input_section->output_section->owner);
3437 break;
3438
3439 case R_PARISC_SEGREL32:
3440 if ((sym_sec->flags & SEC_CODE) != 0)
3441 value -= htab->text_segment_base;
3442 else
3443 value -= htab->data_segment_base;
3444 break;
3445
3446 default:
3447 break;
3448 }
3449
3450 switch (r_type)
3451 {
3452 case R_PARISC_DIR32:
3453 case R_PARISC_DIR14F:
3454 case R_PARISC_DIR17F:
3455 case R_PARISC_PCREL17C:
3456 case R_PARISC_PCREL14F:
3457 case R_PARISC_DPREL14F:
3458 case R_PARISC_PLABEL32:
3459 case R_PARISC_DLTIND14F:
3460 case R_PARISC_SEGBASE:
3461 case R_PARISC_SEGREL32:
3462 r_field = e_fsel;
3463 break;
3464
3465 case R_PARISC_DIR21L:
3466 case R_PARISC_PCREL21L:
3467 case R_PARISC_DPREL21L:
3468 case R_PARISC_PLABEL21L:
3469 case R_PARISC_DLTIND21L:
3470 r_field = e_lrsel;
3471 break;
3472
3473 case R_PARISC_DIR17R:
3474 case R_PARISC_PCREL17R:
3475 case R_PARISC_DIR14R:
3476 case R_PARISC_PCREL14R:
3477 case R_PARISC_DPREL14R:
3478 case R_PARISC_PLABEL14R:
3479 case R_PARISC_DLTIND14R:
3480 r_field = e_rrsel;
3481 break;
3482
3483 case R_PARISC_PCREL12F:
3484 case R_PARISC_PCREL17F:
3485 case R_PARISC_PCREL22F:
3486 r_field = e_fsel;
3487
3488 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3489 {
3490 max_branch_offset = (1 << (17-1)) << 2;
3491 }
3492 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3493 {
3494 max_branch_offset = (1 << (12-1)) << 2;
3495 }
3496 else
3497 {
3498 max_branch_offset = (1 << (22-1)) << 2;
3499 }
3500
3501 /* sym_sec is NULL on undefined weak syms or when shared on
3502 undefined syms. We've already checked for a stub for the
3503 shared undefined case. */
3504 if (sym_sec == NULL)
3505 break;
3506
3507 /* If the branch is out of reach, then redirect the
3508 call to the local stub for this function. */
3509 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3510 {
3511 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3512 h, rel, htab);
3513 if (stub_entry == NULL)
3514 return bfd_reloc_notsupported;
3515
3516 /* Munge up the value and addend so that we call the stub
3517 rather than the procedure directly. */
3518 value = (stub_entry->stub_offset
3519 + stub_entry->stub_sec->output_offset
3520 + stub_entry->stub_sec->output_section->vma
3521 - location);
3522 addend = -8;
3523 }
3524 break;
3525
3526 /* Something we don't know how to handle. */
3527 default:
3528 return bfd_reloc_notsupported;
3529 }
3530
3531 /* Make sure we can reach the stub. */
3532 if (max_branch_offset != 0
3533 && value + addend + max_branch_offset >= 2*max_branch_offset)
3534 {
3535 (*_bfd_error_handler)
3536 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3537 bfd_archive_filename (input_bfd),
3538 input_section->name,
3539 (long) rel->r_offset,
3540 stub_entry->root.string);
3541 bfd_set_error (bfd_error_bad_value);
3542 return bfd_reloc_notsupported;
3543 }
3544
3545 val = hppa_field_adjust (value, addend, r_field);
3546
3547 switch (r_type)
3548 {
3549 case R_PARISC_PCREL12F:
3550 case R_PARISC_PCREL17C:
3551 case R_PARISC_PCREL17F:
3552 case R_PARISC_PCREL17R:
3553 case R_PARISC_PCREL22F:
3554 case R_PARISC_DIR17F:
3555 case R_PARISC_DIR17R:
3556 /* This is a branch. Divide the offset by four.
3557 Note that we need to decide whether it's a branch or
3558 otherwise by inspecting the reloc. Inspecting insn won't
3559 work as insn might be from a .word directive. */
3560 val >>= 2;
3561 break;
3562
3563 default:
3564 break;
3565 }
3566
3567 insn = hppa_rebuild_insn (insn, val, r_format);
3568
3569 /* Update the instruction word. */
3570 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3571 return bfd_reloc_ok;
3572 }
3573
3574 /* Relocate an HPPA ELF section. */
3575
3576 static boolean
3577 elf32_hppa_relocate_section (output_bfd, info, input_bfd, input_section,
3578 contents, relocs, local_syms, local_sections)
3579 bfd *output_bfd;
3580 struct bfd_link_info *info;
3581 bfd *input_bfd;
3582 asection *input_section;
3583 bfd_byte *contents;
3584 Elf_Internal_Rela *relocs;
3585 Elf_Internal_Sym *local_syms;
3586 asection **local_sections;
3587 {
3588 bfd_vma *local_got_offsets;
3589 struct elf32_hppa_link_hash_table *htab;
3590 Elf_Internal_Shdr *symtab_hdr;
3591 Elf_Internal_Rela *rel;
3592 Elf_Internal_Rela *relend;
3593
3594 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3595
3596 htab = hppa_link_hash_table (info);
3597 local_got_offsets = elf_local_got_offsets (input_bfd);
3598
3599 rel = relocs;
3600 relend = relocs + input_section->reloc_count;
3601 for (; rel < relend; rel++)
3602 {
3603 unsigned int r_type;
3604 reloc_howto_type *howto;
3605 unsigned int r_symndx;
3606 struct elf32_hppa_link_hash_entry *h;
3607 Elf_Internal_Sym *sym;
3608 asection *sym_sec;
3609 bfd_vma relocation;
3610 bfd_reloc_status_type r;
3611 const char *sym_name;
3612 boolean plabel;
3613
3614 r_type = ELF32_R_TYPE (rel->r_info);
3615 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3616 {
3617 bfd_set_error (bfd_error_bad_value);
3618 return false;
3619 }
3620 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3621 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3622 continue;
3623
3624 r_symndx = ELF32_R_SYM (rel->r_info);
3625
3626 if (info->relocateable)
3627 {
3628 /* This is a relocatable link. We don't have to change
3629 anything, unless the reloc is against a section symbol,
3630 in which case we have to adjust according to where the
3631 section symbol winds up in the output section. */
3632 if (r_symndx < symtab_hdr->sh_info)
3633 {
3634 sym = local_syms + r_symndx;
3635 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3636 {
3637 sym_sec = local_sections[r_symndx];
3638 rel->r_addend += sym_sec->output_offset;
3639 }
3640 }
3641 continue;
3642 }
3643
3644 /* This is a final link. */
3645 h = NULL;
3646 sym = NULL;
3647 sym_sec = NULL;
3648 if (r_symndx < symtab_hdr->sh_info)
3649 {
3650 /* This is a local symbol, h defaults to NULL. */
3651 sym = local_syms + r_symndx;
3652 sym_sec = local_sections[r_symndx];
3653 relocation = ((ELF_ST_TYPE (sym->st_info) == STT_SECTION
3654 ? 0 : sym->st_value)
3655 + sym_sec->output_offset
3656 + sym_sec->output_section->vma);
3657 }
3658 else
3659 {
3660 int indx;
3661
3662 /* It's a global; Find its entry in the link hash. */
3663 indx = r_symndx - symtab_hdr->sh_info;
3664 h = ((struct elf32_hppa_link_hash_entry *)
3665 elf_sym_hashes (input_bfd)[indx]);
3666 while (h->elf.root.type == bfd_link_hash_indirect
3667 || h->elf.root.type == bfd_link_hash_warning)
3668 h = (struct elf32_hppa_link_hash_entry *) h->elf.root.u.i.link;
3669
3670 relocation = 0;
3671 if (h->elf.root.type == bfd_link_hash_defined
3672 || h->elf.root.type == bfd_link_hash_defweak)
3673 {
3674 sym_sec = h->elf.root.u.def.section;
3675 /* If sym_sec->output_section is NULL, then it's a
3676 symbol defined in a shared library. */
3677 if (sym_sec->output_section != NULL)
3678 relocation = (h->elf.root.u.def.value
3679 + sym_sec->output_offset
3680 + sym_sec->output_section->vma);
3681 }
3682 else if (h->elf.root.type == bfd_link_hash_undefweak)
3683 ;
3684 else if (info->shared && !info->no_undefined
3685 && ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
3686 && h->elf.type != STT_PARISC_MILLI)
3687 {
3688 if (info->symbolic && !info->allow_shlib_undefined)
3689 if (!((*info->callbacks->undefined_symbol)
3690 (info, h->elf.root.root.string, input_bfd,
3691 input_section, rel->r_offset, false)))
3692 return false;
3693 }
3694 else
3695 {
3696 if (!((*info->callbacks->undefined_symbol)
3697 (info, h->elf.root.root.string, input_bfd,
3698 input_section, rel->r_offset, true)))
3699 return false;
3700 }
3701 }
3702
3703 /* Do any required modifications to the relocation value, and
3704 determine what types of dynamic info we need to output, if
3705 any. */
3706 plabel = 0;
3707 switch (r_type)
3708 {
3709 case R_PARISC_DLTIND14F:
3710 case R_PARISC_DLTIND14R:
3711 case R_PARISC_DLTIND21L:
3712 {
3713 bfd_vma off;
3714 boolean do_got = 0;
3715
3716 /* Relocation is to the entry for this symbol in the
3717 global offset table. */
3718 if (h != NULL)
3719 {
3720 boolean dyn;
3721
3722 off = h->elf.got.offset;
3723 dyn = htab->elf.dynamic_sections_created;
3724 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, &h->elf))
3725 {
3726 /* If we aren't going to call finish_dynamic_symbol,
3727 then we need to handle initialisation of the .got
3728 entry and create needed relocs here. Since the
3729 offset must always be a multiple of 4, we use the
3730 least significant bit to record whether we have
3731 initialised it already. */
3732 if ((off & 1) != 0)
3733 off &= ~1;
3734 else
3735 {
3736 h->elf.got.offset |= 1;
3737 do_got = 1;
3738 }
3739 }
3740 }
3741 else
3742 {
3743 /* Local symbol case. */
3744 if (local_got_offsets == NULL)
3745 abort ();
3746
3747 off = local_got_offsets[r_symndx];
3748
3749 /* The offset must always be a multiple of 4. We use
3750 the least significant bit to record whether we have
3751 already generated the necessary reloc. */
3752 if ((off & 1) != 0)
3753 off &= ~1;
3754 else
3755 {
3756 local_got_offsets[r_symndx] |= 1;
3757 do_got = 1;
3758 }
3759 }
3760
3761 if (do_got)
3762 {
3763 if (info->shared)
3764 {
3765 /* Output a dynamic relocation for this GOT entry.
3766 In this case it is relative to the base of the
3767 object because the symbol index is zero. */
3768 Elf_Internal_Rela outrel;
3769 asection *srelgot = htab->srelgot;
3770 Elf32_External_Rela *loc;
3771
3772 outrel.r_offset = (off
3773 + htab->sgot->output_offset
3774 + htab->sgot->output_section->vma);
3775 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3776 outrel.r_addend = relocation;
3777 loc = (Elf32_External_Rela *) srelgot->contents;
3778 loc += srelgot->reloc_count++;
3779 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3780 }
3781 else
3782 bfd_put_32 (output_bfd, relocation,
3783 htab->sgot->contents + off);
3784 }
3785
3786 if (off >= (bfd_vma) -2)
3787 abort ();
3788
3789 /* Add the base of the GOT to the relocation value. */
3790 relocation = (off
3791 + htab->sgot->output_offset
3792 + htab->sgot->output_section->vma);
3793 }
3794 break;
3795
3796 case R_PARISC_SEGREL32:
3797 /* If this is the first SEGREL relocation, then initialize
3798 the segment base values. */
3799 if (htab->text_segment_base == (bfd_vma) -1)
3800 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3801 break;
3802
3803 case R_PARISC_PLABEL14R:
3804 case R_PARISC_PLABEL21L:
3805 case R_PARISC_PLABEL32:
3806 if (htab->elf.dynamic_sections_created)
3807 {
3808 bfd_vma off;
3809 boolean do_plt = 0;
3810
3811 /* If we have a global symbol with a PLT slot, then
3812 redirect this relocation to it. */
3813 if (h != NULL)
3814 {
3815 off = h->elf.plt.offset;
3816 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, &h->elf))
3817 {
3818 /* In a non-shared link, adjust_dynamic_symbols
3819 isn't called for symbols forced local. We
3820 need to write out the plt entry here. */
3821 if ((off & 1) != 0)
3822 off &= ~1;
3823 else
3824 {
3825 h->elf.plt.offset |= 1;
3826 do_plt = 1;
3827 }
3828 }
3829 }
3830 else
3831 {
3832 bfd_vma *local_plt_offsets;
3833
3834 if (local_got_offsets == NULL)
3835 abort ();
3836
3837 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3838 off = local_plt_offsets[r_symndx];
3839
3840 /* As for the local .got entry case, we use the last
3841 bit to record whether we've already initialised
3842 this local .plt entry. */
3843 if ((off & 1) != 0)
3844 off &= ~1;
3845 else
3846 {
3847 local_plt_offsets[r_symndx] |= 1;
3848 do_plt = 1;
3849 }
3850 }
3851
3852 if (do_plt)
3853 {
3854 if (info->shared)
3855 {
3856 /* Output a dynamic IPLT relocation for this
3857 PLT entry. */
3858 Elf_Internal_Rela outrel;
3859 asection *srelplt = htab->srelplt;
3860 Elf32_External_Rela *loc;
3861
3862 outrel.r_offset = (off
3863 + htab->splt->output_offset
3864 + htab->splt->output_section->vma);
3865 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3866 outrel.r_addend = relocation;
3867 loc = (Elf32_External_Rela *) srelplt->contents;
3868 loc += srelplt->reloc_count++;
3869 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3870 }
3871 else
3872 {
3873 bfd_put_32 (output_bfd,
3874 relocation,
3875 htab->splt->contents + off);
3876 bfd_put_32 (output_bfd,
3877 elf_gp (htab->splt->output_section->owner),
3878 htab->splt->contents + off + 4);
3879 }
3880 }
3881
3882 if (off >= (bfd_vma) -2)
3883 abort ();
3884
3885 /* PLABELs contain function pointers. Relocation is to
3886 the entry for the function in the .plt. The magic +2
3887 offset signals to $$dyncall that the function pointer
3888 is in the .plt and thus has a gp pointer too.
3889 Exception: Undefined PLABELs should have a value of
3890 zero. */
3891 if (h == NULL
3892 || (h->elf.root.type != bfd_link_hash_undefweak
3893 && h->elf.root.type != bfd_link_hash_undefined))
3894 {
3895 relocation = (off
3896 + htab->splt->output_offset
3897 + htab->splt->output_section->vma
3898 + 2);
3899 }
3900 plabel = 1;
3901 }
3902 /* Fall through and possibly emit a dynamic relocation. */
3903
3904 case R_PARISC_DIR17F:
3905 case R_PARISC_DIR17R:
3906 case R_PARISC_DIR14F:
3907 case R_PARISC_DIR14R:
3908 case R_PARISC_DIR21L:
3909 case R_PARISC_DPREL14F:
3910 case R_PARISC_DPREL14R:
3911 case R_PARISC_DPREL21L:
3912 case R_PARISC_DIR32:
3913 /* r_symndx will be zero only for relocs against symbols
3914 from removed linkonce sections, or sections discarded by
3915 a linker script. */
3916 if (r_symndx == 0
3917 || (input_section->flags & SEC_ALLOC) == 0)
3918 break;
3919
3920 /* The reloc types handled here and this conditional
3921 expression must match the code in ..check_relocs and
3922 allocate_dynrelocs. ie. We need exactly the same condition
3923 as in ..check_relocs, with some extra conditions (dynindx
3924 test in this case) to cater for relocs removed by
3925 allocate_dynrelocs. If you squint, the non-shared test
3926 here does indeed match the one in ..check_relocs, the
3927 difference being that here we test DEF_DYNAMIC as well as
3928 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3929 which is why we can't use just that test here.
3930 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3931 there all files have not been loaded. */
3932 if ((info->shared
3933 && (IS_ABSOLUTE_RELOC (r_type)
3934 || (h != NULL
3935 && h->elf.dynindx != -1
3936 && (!info->symbolic
3937 || (h->elf.elf_link_hash_flags
3938 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
3939 || (!info->shared
3940 && h != NULL
3941 && h->elf.dynindx != -1
3942 && (h->elf.elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
3943 && (((h->elf.elf_link_hash_flags
3944 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3945 && (h->elf.elf_link_hash_flags
3946 & ELF_LINK_HASH_DEF_REGULAR) == 0)
3947 || h->elf.root.type == bfd_link_hash_undefweak
3948 || h->elf.root.type == bfd_link_hash_undefined)))
3949 {
3950 Elf_Internal_Rela outrel;
3951 boolean skip;
3952 asection *sreloc;
3953 Elf32_External_Rela *loc;
3954
3955 /* When generating a shared object, these relocations
3956 are copied into the output file to be resolved at run
3957 time. */
3958
3959 outrel.r_offset = rel->r_offset;
3960 outrel.r_addend = rel->r_addend;
3961 skip = false;
3962 if (elf_section_data (input_section)->stab_info != NULL)
3963 {
3964 bfd_vma off;
3965
3966 off = (_bfd_stab_section_offset
3967 (output_bfd, &htab->elf.stab_info,
3968 input_section,
3969 &elf_section_data (input_section)->stab_info,
3970 rel->r_offset));
3971 if (off == (bfd_vma) -1)
3972 skip = true;
3973 outrel.r_offset = off;
3974 }
3975
3976 outrel.r_offset += (input_section->output_offset
3977 + input_section->output_section->vma);
3978
3979 if (skip)
3980 {
3981 memset (&outrel, 0, sizeof (outrel));
3982 }
3983 else if (h != NULL
3984 && h->elf.dynindx != -1
3985 && (plabel
3986 || !IS_ABSOLUTE_RELOC (r_type)
3987 || !info->shared
3988 || !info->symbolic
3989 || (h->elf.elf_link_hash_flags
3990 & ELF_LINK_HASH_DEF_REGULAR) == 0))
3991 {
3992 outrel.r_info = ELF32_R_INFO (h->elf.dynindx, r_type);
3993 }
3994 else /* It's a local symbol, or one marked to become local. */
3995 {
3996 int indx = 0;
3997
3998 /* Add the absolute offset of the symbol. */
3999 outrel.r_addend += relocation;
4000
4001 /* Global plabels need to be processed by the
4002 dynamic linker so that functions have at most one
4003 fptr. For this reason, we need to differentiate
4004 between global and local plabels, which we do by
4005 providing the function symbol for a global plabel
4006 reloc, and no symbol for local plabels. */
4007 if (! plabel
4008 && sym_sec != NULL
4009 && sym_sec->output_section != NULL
4010 && ! bfd_is_abs_section (sym_sec))
4011 {
4012 indx = elf_section_data (sym_sec->output_section)->dynindx;
4013 /* We are turning this relocation into one
4014 against a section symbol, so subtract out the
4015 output section's address but not the offset
4016 of the input section in the output section. */
4017 outrel.r_addend -= sym_sec->output_section->vma;
4018 }
4019
4020 outrel.r_info = ELF32_R_INFO (indx, r_type);
4021 }
4022 #if 0
4023 /* EH info can cause unaligned DIR32 relocs.
4024 Tweak the reloc type for the dynamic linker. */
4025 if (r_type == R_PARISC_DIR32 && (outrel.r_offset & 3) != 0)
4026 outrel.r_info = ELF32_R_INFO (ELF32_R_SYM (outrel.r_info),
4027 R_PARISC_DIR32U);
4028 #endif
4029 sreloc = elf_section_data (input_section)->sreloc;
4030 if (sreloc == NULL)
4031 abort ();
4032
4033 loc = (Elf32_External_Rela *) sreloc->contents;
4034 loc += sreloc->reloc_count++;
4035 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4036 }
4037 break;
4038
4039 default:
4040 break;
4041 }
4042
4043 r = final_link_relocate (input_section, contents, rel, relocation,
4044 htab, sym_sec, h);
4045
4046 if (r == bfd_reloc_ok)
4047 continue;
4048
4049 if (h != NULL)
4050 sym_name = h->elf.root.root.string;
4051 else
4052 {
4053 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4054 symtab_hdr->sh_link,
4055 sym->st_name);
4056 if (sym_name == NULL)
4057 return false;
4058 if (*sym_name == '\0')
4059 sym_name = bfd_section_name (input_bfd, sym_sec);
4060 }
4061
4062 howto = elf_hppa_howto_table + r_type;
4063
4064 if (r == bfd_reloc_undefined || r == bfd_reloc_notsupported)
4065 {
4066 (*_bfd_error_handler)
4067 (_("%s(%s+0x%lx): cannot handle %s for %s"),
4068 bfd_archive_filename (input_bfd),
4069 input_section->name,
4070 (long) rel->r_offset,
4071 howto->name,
4072 sym_name);
4073 bfd_set_error (bfd_error_bad_value);
4074 return false;
4075 }
4076 else
4077 {
4078 if (!((*info->callbacks->reloc_overflow)
4079 (info, sym_name, howto->name, (bfd_vma) 0,
4080 input_bfd, input_section, rel->r_offset)))
4081 return false;
4082 }
4083 }
4084
4085 return true;
4086 }
4087
4088 /* Comparison function for qsort to sort unwind section during a
4089 final link. */
4090
4091 static int
4092 hppa_unwind_entry_compare (a, b)
4093 const PTR a;
4094 const PTR b;
4095 {
4096 const bfd_byte *ap, *bp;
4097 unsigned long av, bv;
4098
4099 ap = (const bfd_byte *) a;
4100 av = (unsigned long) ap[0] << 24;
4101 av |= (unsigned long) ap[1] << 16;
4102 av |= (unsigned long) ap[2] << 8;
4103 av |= (unsigned long) ap[3];
4104
4105 bp = (const bfd_byte *) b;
4106 bv = (unsigned long) bp[0] << 24;
4107 bv |= (unsigned long) bp[1] << 16;
4108 bv |= (unsigned long) bp[2] << 8;
4109 bv |= (unsigned long) bp[3];
4110
4111 return av < bv ? -1 : av > bv ? 1 : 0;
4112 }
4113
4114 /* Finish up dynamic symbol handling. We set the contents of various
4115 dynamic sections here. */
4116
4117 static boolean
4118 elf32_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
4119 bfd *output_bfd;
4120 struct bfd_link_info *info;
4121 struct elf_link_hash_entry *h;
4122 Elf_Internal_Sym *sym;
4123 {
4124 struct elf32_hppa_link_hash_table *htab;
4125
4126 htab = hppa_link_hash_table (info);
4127
4128 if (h->plt.offset != (bfd_vma) -1)
4129 {
4130 bfd_vma value;
4131
4132 if (h->plt.offset & 1)
4133 abort ();
4134
4135 /* This symbol has an entry in the procedure linkage table. Set
4136 it up.
4137
4138 The format of a plt entry is
4139 <funcaddr>
4140 <__gp>
4141 */
4142 value = 0;
4143 if (h->root.type == bfd_link_hash_defined
4144 || h->root.type == bfd_link_hash_defweak)
4145 {
4146 value = h->root.u.def.value;
4147 if (h->root.u.def.section->output_section != NULL)
4148 value += (h->root.u.def.section->output_offset
4149 + h->root.u.def.section->output_section->vma);
4150 }
4151
4152 if (! ((struct elf32_hppa_link_hash_entry *) h)->pic_call)
4153 {
4154 Elf_Internal_Rela rel;
4155 Elf32_External_Rela *loc;
4156
4157 /* Create a dynamic IPLT relocation for this entry. */
4158 rel.r_offset = (h->plt.offset
4159 + htab->splt->output_offset
4160 + htab->splt->output_section->vma);
4161 if (h->dynindx != -1)
4162 {
4163 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_IPLT);
4164 rel.r_addend = 0;
4165 }
4166 else
4167 {
4168 /* This symbol has been marked to become local, and is
4169 used by a plabel so must be kept in the .plt. */
4170 rel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4171 rel.r_addend = value;
4172 }
4173
4174 loc = (Elf32_External_Rela *) htab->srelplt->contents;
4175 loc += htab->srelplt->reloc_count++;
4176 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner,
4177 &rel, loc);
4178 }
4179 else
4180 {
4181 bfd_put_32 (htab->splt->owner,
4182 value,
4183 htab->splt->contents + h->plt.offset);
4184 bfd_put_32 (htab->splt->owner,
4185 elf_gp (htab->splt->output_section->owner),
4186 htab->splt->contents + h->plt.offset + 4);
4187 }
4188
4189 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
4190 {
4191 /* Mark the symbol as undefined, rather than as defined in
4192 the .plt section. Leave the value alone. */
4193 sym->st_shndx = SHN_UNDEF;
4194 }
4195 }
4196
4197 if (h->got.offset != (bfd_vma) -1)
4198 {
4199 Elf_Internal_Rela rel;
4200 Elf32_External_Rela *loc;
4201
4202 /* This symbol has an entry in the global offset table. Set it
4203 up. */
4204
4205 rel.r_offset = ((h->got.offset &~ (bfd_vma) 1)
4206 + htab->sgot->output_offset
4207 + htab->sgot->output_section->vma);
4208
4209 /* If this is a -Bsymbolic link and the symbol is defined
4210 locally or was forced to be local because of a version file,
4211 we just want to emit a RELATIVE reloc. The entry in the
4212 global offset table will already have been initialized in the
4213 relocate_section function. */
4214 if (info->shared
4215 && (info->symbolic || h->dynindx == -1)
4216 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
4217 {
4218 rel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4219 rel.r_addend = (h->root.u.def.value
4220 + h->root.u.def.section->output_offset
4221 + h->root.u.def.section->output_section->vma);
4222 }
4223 else
4224 {
4225 if ((h->got.offset & 1) != 0)
4226 abort ();
4227 bfd_put_32 (output_bfd, (bfd_vma) 0,
4228 htab->sgot->contents + h->got.offset);
4229 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_DIR32);
4230 rel.r_addend = 0;
4231 }
4232
4233 loc = (Elf32_External_Rela *) htab->srelgot->contents;
4234 loc += htab->srelgot->reloc_count++;
4235 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
4236 }
4237
4238 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
4239 {
4240 asection *s;
4241 Elf_Internal_Rela rel;
4242 Elf32_External_Rela *loc;
4243
4244 /* This symbol needs a copy reloc. Set it up. */
4245
4246 if (! (h->dynindx != -1
4247 && (h->root.type == bfd_link_hash_defined
4248 || h->root.type == bfd_link_hash_defweak)))
4249 abort ();
4250
4251 s = htab->srelbss;
4252
4253 rel.r_offset = (h->root.u.def.value
4254 + h->root.u.def.section->output_offset
4255 + h->root.u.def.section->output_section->vma);
4256 rel.r_addend = 0;
4257 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_COPY);
4258 loc = (Elf32_External_Rela *) s->contents + s->reloc_count++;
4259 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
4260 }
4261
4262 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4263 if (h->root.root.string[0] == '_'
4264 && (strcmp (h->root.root.string, "_DYNAMIC") == 0
4265 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0))
4266 {
4267 sym->st_shndx = SHN_ABS;
4268 }
4269
4270 return true;
4271 }
4272
4273 /* Used to decide how to sort relocs in an optimal manner for the
4274 dynamic linker, before writing them out. */
4275
4276 static enum elf_reloc_type_class
4277 elf32_hppa_reloc_type_class (rela)
4278 const Elf_Internal_Rela *rela;
4279 {
4280 if (ELF32_R_SYM (rela->r_info) == 0)
4281 return reloc_class_relative;
4282
4283 switch ((int) ELF32_R_TYPE (rela->r_info))
4284 {
4285 case R_PARISC_IPLT:
4286 return reloc_class_plt;
4287 case R_PARISC_COPY:
4288 return reloc_class_copy;
4289 default:
4290 return reloc_class_normal;
4291 }
4292 }
4293
4294 /* Finish up the dynamic sections. */
4295
4296 static boolean
4297 elf32_hppa_finish_dynamic_sections (output_bfd, info)
4298 bfd *output_bfd;
4299 struct bfd_link_info *info;
4300 {
4301 bfd *dynobj;
4302 struct elf32_hppa_link_hash_table *htab;
4303 asection *sdyn;
4304
4305 htab = hppa_link_hash_table (info);
4306 dynobj = htab->elf.dynobj;
4307
4308 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4309
4310 if (htab->elf.dynamic_sections_created)
4311 {
4312 Elf32_External_Dyn *dyncon, *dynconend;
4313
4314 if (sdyn == NULL)
4315 abort ();
4316
4317 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4318 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
4319 for (; dyncon < dynconend; dyncon++)
4320 {
4321 Elf_Internal_Dyn dyn;
4322 asection *s;
4323
4324 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4325
4326 switch (dyn.d_tag)
4327 {
4328 default:
4329 continue;
4330
4331 case DT_PLTGOT:
4332 /* Use PLTGOT to set the GOT register. */
4333 dyn.d_un.d_ptr = elf_gp (output_bfd);
4334 break;
4335
4336 case DT_JMPREL:
4337 s = htab->srelplt;
4338 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4339 break;
4340
4341 case DT_PLTRELSZ:
4342 s = htab->srelplt;
4343 if (s->_cooked_size != 0)
4344 dyn.d_un.d_val = s->_cooked_size;
4345 else
4346 dyn.d_un.d_val = s->_raw_size;
4347 break;
4348
4349 case DT_RELASZ:
4350 /* Don't count procedure linkage table relocs in the
4351 overall reloc count. */
4352 if (htab->srelplt != NULL)
4353 {
4354 s = htab->srelplt->output_section;
4355 if (s->_cooked_size != 0)
4356 dyn.d_un.d_val -= s->_cooked_size;
4357 else
4358 dyn.d_un.d_val -= s->_raw_size;
4359 }
4360 break;
4361 }
4362
4363 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4364 }
4365 }
4366
4367 if (htab->sgot != NULL && htab->sgot->_raw_size != 0)
4368 {
4369 /* Fill in the first entry in the global offset table.
4370 We use it to point to our dynamic section, if we have one. */
4371 bfd_put_32 (output_bfd,
4372 (sdyn != NULL
4373 ? sdyn->output_section->vma + sdyn->output_offset
4374 : (bfd_vma) 0),
4375 htab->sgot->contents);
4376
4377 /* The second entry is reserved for use by the dynamic linker. */
4378 memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4379
4380 /* Set .got entry size. */
4381 elf_section_data (htab->sgot->output_section)
4382 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4383 }
4384
4385 if (htab->splt != NULL && htab->splt->_raw_size != 0)
4386 {
4387 /* Set plt entry size. */
4388 elf_section_data (htab->splt->output_section)
4389 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4390
4391 if (htab->need_plt_stub)
4392 {
4393 /* Set up the .plt stub. */
4394 memcpy (htab->splt->contents
4395 + htab->splt->_raw_size - sizeof (plt_stub),
4396 plt_stub, sizeof (plt_stub));
4397
4398 if ((htab->splt->output_offset
4399 + htab->splt->output_section->vma
4400 + htab->splt->_raw_size)
4401 != (htab->sgot->output_offset
4402 + htab->sgot->output_section->vma))
4403 {
4404 (*_bfd_error_handler)
4405 (_(".got section not immediately after .plt section"));
4406 return false;
4407 }
4408 }
4409 }
4410
4411 return true;
4412 }
4413
4414 /* Tweak the OSABI field of the elf header. */
4415
4416 static void
4417 elf32_hppa_post_process_headers (abfd, link_info)
4418 bfd *abfd;
4419 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
4420 {
4421 Elf_Internal_Ehdr * i_ehdrp;
4422
4423 i_ehdrp = elf_elfheader (abfd);
4424
4425 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
4426 {
4427 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
4428 }
4429 else
4430 {
4431 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
4432 }
4433 }
4434
4435 /* Called when writing out an object file to decide the type of a
4436 symbol. */
4437 static int
4438 elf32_hppa_elf_get_symbol_type (elf_sym, type)
4439 Elf_Internal_Sym *elf_sym;
4440 int type;
4441 {
4442 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4443 return STT_PARISC_MILLI;
4444 else
4445 return type;
4446 }
4447
4448 /* Misc BFD support code. */
4449 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4450 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4451 #define elf_info_to_howto elf_hppa_info_to_howto
4452 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4453
4454 /* Stuff for the BFD linker. */
4455 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4456 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4457 #define elf_backend_add_symbol_hook elf32_hppa_add_symbol_hook
4458 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4459 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4460 #define elf_backend_check_relocs elf32_hppa_check_relocs
4461 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4462 #define elf_backend_fake_sections elf_hppa_fake_sections
4463 #define elf_backend_relocate_section elf32_hppa_relocate_section
4464 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4465 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4466 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4467 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4468 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4469 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4470 #define elf_backend_object_p elf32_hppa_object_p
4471 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4472 #define elf_backend_post_process_headers elf32_hppa_post_process_headers
4473 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4474 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4475
4476 #define elf_backend_can_gc_sections 1
4477 #define elf_backend_can_refcount 1
4478 #define elf_backend_plt_alignment 2
4479 #define elf_backend_want_got_plt 0
4480 #define elf_backend_plt_readonly 0
4481 #define elf_backend_want_plt_sym 0
4482 #define elf_backend_got_header_size 8
4483
4484 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4485 #define TARGET_BIG_NAME "elf32-hppa"
4486 #define ELF_ARCH bfd_arch_hppa
4487 #define ELF_MACHINE_CODE EM_PARISC
4488 #define ELF_MAXPAGESIZE 0x1000
4489
4490 #include "elf32-target.h"
4491
4492 #undef TARGET_BIG_SYM
4493 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4494 #undef TARGET_BIG_NAME
4495 #define TARGET_BIG_NAME "elf32-hppa-linux"
4496
4497 #define INCLUDED_TARGET_FILE 1
4498 #include "elf32-target.h"
This page took 0.140744 seconds and 3 git commands to generate.