4dc7e9b16d989339ddb5aa96fe42453a751386ef
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002 Free Software Foundation, Inc.
4
5 Original code by
6 Center for Software Science
7 Department of Computer Science
8 University of Utah
9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
26
27 #include "bfd.h"
28 #include "sysdep.h"
29 #include "libbfd.h"
30 #include "elf-bfd.h"
31 #include "elf/hppa.h"
32 #include "libhppa.h"
33 #include "elf32-hppa.h"
34 #define ARCH_SIZE 32
35 #include "elf32-hppa.h"
36 #include "elf-hppa.h"
37
38 /* In order to gain some understanding of code in this file without
39 knowing all the intricate details of the linker, note the
40 following:
41
42 Functions named elf32_hppa_* are called by external routines, other
43 functions are only called locally. elf32_hppa_* functions appear
44 in this file more or less in the order in which they are called
45 from external routines. eg. elf32_hppa_check_relocs is called
46 early in the link process, elf32_hppa_finish_dynamic_sections is
47 one of the last functions. */
48
49 /* We use two hash tables to hold information for linking PA ELF objects.
50
51 The first is the elf32_hppa_link_hash_table which is derived
52 from the standard ELF linker hash table. We use this as a place to
53 attach other hash tables and static information.
54
55 The second is the stub hash table which is derived from the
56 base BFD hash table. The stub hash table holds the information
57 necessary to build the linker stubs during a link.
58
59 There are a number of different stubs generated by the linker.
60
61 Long branch stub:
62 : ldil LR'X,%r1
63 : be,n RR'X(%sr4,%r1)
64
65 PIC long branch stub:
66 : b,l .+8,%r1
67 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
68 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
69
70 Import stub to call shared library routine from normal object file
71 (single sub-space version)
72 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
73 : ldw RR'lt_ptr+ltoff(%r1),%r21
74 : bv %r0(%r21)
75 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
76
77 Import stub to call shared library routine from shared library
78 (single sub-space version)
79 : addil LR'ltoff,%r19 ; get procedure entry point
80 : ldw RR'ltoff(%r1),%r21
81 : bv %r0(%r21)
82 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
83
84 Import stub to call shared library routine from normal object file
85 (multiple sub-space support)
86 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
87 : ldw RR'lt_ptr+ltoff(%r1),%r21
88 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
89 : ldsid (%r21),%r1
90 : mtsp %r1,%sr0
91 : be 0(%sr0,%r21) ; branch to target
92 : stw %rp,-24(%sp) ; save rp
93
94 Import stub to call shared library routine from shared library
95 (multiple sub-space support)
96 : addil LR'ltoff,%r19 ; get procedure entry point
97 : ldw RR'ltoff(%r1),%r21
98 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
99 : ldsid (%r21),%r1
100 : mtsp %r1,%sr0
101 : be 0(%sr0,%r21) ; branch to target
102 : stw %rp,-24(%sp) ; save rp
103
104 Export stub to return from shared lib routine (multiple sub-space support)
105 One of these is created for each exported procedure in a shared
106 library (and stored in the shared lib). Shared lib routines are
107 called via the first instruction in the export stub so that we can
108 do an inter-space return. Not required for single sub-space.
109 : bl,n X,%rp ; trap the return
110 : nop
111 : ldw -24(%sp),%rp ; restore the original rp
112 : ldsid (%rp),%r1
113 : mtsp %r1,%sr0
114 : be,n 0(%sr0,%rp) ; inter-space return */
115
116 #define PLT_ENTRY_SIZE 8
117 #define GOT_ENTRY_SIZE 4
118 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
119
120 static const bfd_byte plt_stub[] =
121 {
122 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
123 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
124 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
125 #define PLT_STUB_ENTRY (3*4)
126 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
127 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
128 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
129 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
130 };
131
132 /* Section name for stubs is the associated section name plus this
133 string. */
134 #define STUB_SUFFIX ".stub"
135
136 /* We don't need to copy certain PC- or GP-relative dynamic relocs
137 into a shared object's dynamic section. All the relocs of the
138 limited class we are interested in, are absolute. */
139 #ifndef RELATIVE_DYNRELOCS
140 #define RELATIVE_DYNRELOCS 0
141 #define IS_ABSOLUTE_RELOC(r_type) 1
142 #endif
143
144 enum elf32_hppa_stub_type {
145 hppa_stub_long_branch,
146 hppa_stub_long_branch_shared,
147 hppa_stub_import,
148 hppa_stub_import_shared,
149 hppa_stub_export,
150 hppa_stub_none
151 };
152
153 struct elf32_hppa_stub_hash_entry {
154
155 /* Base hash table entry structure. */
156 struct bfd_hash_entry root;
157
158 /* The stub section. */
159 asection *stub_sec;
160
161 /* Offset within stub_sec of the beginning of this stub. */
162 bfd_vma stub_offset;
163
164 /* Given the symbol's value and its section we can determine its final
165 value when building the stubs (so the stub knows where to jump. */
166 bfd_vma target_value;
167 asection *target_section;
168
169 enum elf32_hppa_stub_type stub_type;
170
171 /* The symbol table entry, if any, that this was derived from. */
172 struct elf32_hppa_link_hash_entry *h;
173
174 /* Where this stub is being called from, or, in the case of combined
175 stub sections, the first input section in the group. */
176 asection *id_sec;
177 };
178
179 struct elf32_hppa_link_hash_entry {
180
181 struct elf_link_hash_entry elf;
182
183 /* A pointer to the most recently used stub hash entry against this
184 symbol. */
185 struct elf32_hppa_stub_hash_entry *stub_cache;
186
187 /* Used to count relocations for delayed sizing of relocation
188 sections. */
189 struct elf32_hppa_dyn_reloc_entry {
190
191 /* Next relocation in the chain. */
192 struct elf32_hppa_dyn_reloc_entry *next;
193
194 /* The input section of the reloc. */
195 asection *sec;
196
197 /* Number of relocs copied in this section. */
198 bfd_size_type count;
199
200 #if RELATIVE_DYNRELOCS
201 /* Number of relative relocs copied for the input section. */
202 bfd_size_type relative_count;
203 #endif
204 } *dyn_relocs;
205
206 /* Set if the only reason we need a .plt entry is for a non-PIC to
207 PIC function call. */
208 unsigned int pic_call:1;
209
210 /* Set if this symbol is used by a plabel reloc. */
211 unsigned int plabel:1;
212 };
213
214 struct elf32_hppa_link_hash_table {
215
216 /* The main hash table. */
217 struct elf_link_hash_table elf;
218
219 /* The stub hash table. */
220 struct bfd_hash_table stub_hash_table;
221
222 /* Linker stub bfd. */
223 bfd *stub_bfd;
224
225 /* Linker call-backs. */
226 asection * (*add_stub_section) PARAMS ((const char *, asection *));
227 void (*layout_sections_again) PARAMS ((void));
228
229 /* Array to keep track of which stub sections have been created, and
230 information on stub grouping. */
231 struct map_stub {
232 /* This is the section to which stubs in the group will be
233 attached. */
234 asection *link_sec;
235 /* The stub section. */
236 asection *stub_sec;
237 } *stub_group;
238
239 /* Assorted information used by elf32_hppa_size_stubs. */
240 unsigned int bfd_count;
241 int top_index;
242 asection **input_list;
243 Elf_Internal_Sym **all_local_syms;
244
245 /* Short-cuts to get to dynamic linker sections. */
246 asection *sgot;
247 asection *srelgot;
248 asection *splt;
249 asection *srelplt;
250 asection *sdynbss;
251 asection *srelbss;
252
253 /* Used during a final link to store the base of the text and data
254 segments so that we can perform SEGREL relocations. */
255 bfd_vma text_segment_base;
256 bfd_vma data_segment_base;
257
258 /* Whether we support multiple sub-spaces for shared libs. */
259 unsigned int multi_subspace:1;
260
261 /* Flags set when various size branches are detected. Used to
262 select suitable defaults for the stub group size. */
263 unsigned int has_12bit_branch:1;
264 unsigned int has_17bit_branch:1;
265 unsigned int has_22bit_branch:1;
266
267 /* Set if we need a .plt stub to support lazy dynamic linking. */
268 unsigned int need_plt_stub:1;
269
270 /* Small local sym to section mapping cache. */
271 struct sym_sec_cache sym_sec;
272 };
273
274 /* Various hash macros and functions. */
275 #define hppa_link_hash_table(p) \
276 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
277
278 #define hppa_stub_hash_lookup(table, string, create, copy) \
279 ((struct elf32_hppa_stub_hash_entry *) \
280 bfd_hash_lookup ((table), (string), (create), (copy)))
281
282 static struct bfd_hash_entry *stub_hash_newfunc
283 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
284
285 static struct bfd_hash_entry *hppa_link_hash_newfunc
286 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
287
288 static struct bfd_link_hash_table *elf32_hppa_link_hash_table_create
289 PARAMS ((bfd *));
290
291 static void elf32_hppa_link_hash_table_free
292 PARAMS ((struct bfd_link_hash_table *));
293
294 /* Stub handling functions. */
295 static char *hppa_stub_name
296 PARAMS ((const asection *, const asection *,
297 const struct elf32_hppa_link_hash_entry *,
298 const Elf_Internal_Rela *));
299
300 static struct elf32_hppa_stub_hash_entry *hppa_get_stub_entry
301 PARAMS ((const asection *, const asection *,
302 struct elf32_hppa_link_hash_entry *,
303 const Elf_Internal_Rela *,
304 struct elf32_hppa_link_hash_table *));
305
306 static struct elf32_hppa_stub_hash_entry *hppa_add_stub
307 PARAMS ((const char *, asection *, struct elf32_hppa_link_hash_table *));
308
309 static enum elf32_hppa_stub_type hppa_type_of_stub
310 PARAMS ((asection *, const Elf_Internal_Rela *,
311 struct elf32_hppa_link_hash_entry *, bfd_vma));
312
313 static boolean hppa_build_one_stub
314 PARAMS ((struct bfd_hash_entry *, PTR));
315
316 static boolean hppa_size_one_stub
317 PARAMS ((struct bfd_hash_entry *, PTR));
318
319 /* BFD and elf backend functions. */
320 static boolean elf32_hppa_object_p PARAMS ((bfd *));
321
322 static boolean elf32_hppa_add_symbol_hook
323 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
324 const char **, flagword *, asection **, bfd_vma *));
325
326 static boolean elf32_hppa_create_dynamic_sections
327 PARAMS ((bfd *, struct bfd_link_info *));
328
329 static void elf32_hppa_copy_indirect_symbol
330 PARAMS ((struct elf_link_hash_entry *, struct elf_link_hash_entry *));
331
332 static boolean elf32_hppa_check_relocs
333 PARAMS ((bfd *, struct bfd_link_info *,
334 asection *, const Elf_Internal_Rela *));
335
336 static asection *elf32_hppa_gc_mark_hook
337 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
338 struct elf_link_hash_entry *, Elf_Internal_Sym *));
339
340 static boolean elf32_hppa_gc_sweep_hook
341 PARAMS ((bfd *, struct bfd_link_info *,
342 asection *, const Elf_Internal_Rela *));
343
344 static void elf32_hppa_hide_symbol
345 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *, boolean));
346
347 static boolean elf32_hppa_adjust_dynamic_symbol
348 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
349
350 static boolean mark_PIC_calls
351 PARAMS ((struct elf_link_hash_entry *, PTR));
352
353 static boolean allocate_plt_static
354 PARAMS ((struct elf_link_hash_entry *, PTR));
355
356 static boolean allocate_dynrelocs
357 PARAMS ((struct elf_link_hash_entry *, PTR));
358
359 static boolean readonly_dynrelocs
360 PARAMS ((struct elf_link_hash_entry *, PTR));
361
362 static boolean clobber_millicode_symbols
363 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
364
365 static boolean elf32_hppa_size_dynamic_sections
366 PARAMS ((bfd *, struct bfd_link_info *));
367
368 static void group_sections
369 PARAMS ((struct elf32_hppa_link_hash_table *, bfd_size_type, boolean));
370
371 static int get_local_syms
372 PARAMS ((bfd *, bfd *, struct bfd_link_info *));
373
374 static boolean elf32_hppa_final_link
375 PARAMS ((bfd *, struct bfd_link_info *));
376
377 static void hppa_record_segment_addr
378 PARAMS ((bfd *, asection *, PTR));
379
380 static bfd_reloc_status_type final_link_relocate
381 PARAMS ((asection *, bfd_byte *, const Elf_Internal_Rela *,
382 bfd_vma, struct elf32_hppa_link_hash_table *, asection *,
383 struct elf32_hppa_link_hash_entry *));
384
385 static boolean elf32_hppa_relocate_section
386 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *,
387 bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
388
389 static boolean elf32_hppa_finish_dynamic_symbol
390 PARAMS ((bfd *, struct bfd_link_info *,
391 struct elf_link_hash_entry *, Elf_Internal_Sym *));
392
393 static enum elf_reloc_type_class elf32_hppa_reloc_type_class
394 PARAMS ((const Elf_Internal_Rela *));
395
396 static boolean elf32_hppa_finish_dynamic_sections
397 PARAMS ((bfd *, struct bfd_link_info *));
398
399 static void elf32_hppa_post_process_headers
400 PARAMS ((bfd *, struct bfd_link_info *));
401
402 static int elf32_hppa_elf_get_symbol_type
403 PARAMS ((Elf_Internal_Sym *, int));
404
405 /* Assorted hash table functions. */
406
407 /* Initialize an entry in the stub hash table. */
408
409 static struct bfd_hash_entry *
410 stub_hash_newfunc (entry, table, string)
411 struct bfd_hash_entry *entry;
412 struct bfd_hash_table *table;
413 const char *string;
414 {
415 /* Allocate the structure if it has not already been allocated by a
416 subclass. */
417 if (entry == NULL)
418 {
419 entry = bfd_hash_allocate (table,
420 sizeof (struct elf32_hppa_stub_hash_entry));
421 if (entry == NULL)
422 return entry;
423 }
424
425 /* Call the allocation method of the superclass. */
426 entry = bfd_hash_newfunc (entry, table, string);
427 if (entry != NULL)
428 {
429 struct elf32_hppa_stub_hash_entry *eh;
430
431 /* Initialize the local fields. */
432 eh = (struct elf32_hppa_stub_hash_entry *) entry;
433 eh->stub_sec = NULL;
434 eh->stub_offset = 0;
435 eh->target_value = 0;
436 eh->target_section = NULL;
437 eh->stub_type = hppa_stub_long_branch;
438 eh->h = NULL;
439 eh->id_sec = NULL;
440 }
441
442 return entry;
443 }
444
445 /* Initialize an entry in the link hash table. */
446
447 static struct bfd_hash_entry *
448 hppa_link_hash_newfunc (entry, table, string)
449 struct bfd_hash_entry *entry;
450 struct bfd_hash_table *table;
451 const char *string;
452 {
453 /* Allocate the structure if it has not already been allocated by a
454 subclass. */
455 if (entry == NULL)
456 {
457 entry = bfd_hash_allocate (table,
458 sizeof (struct elf32_hppa_link_hash_entry));
459 if (entry == NULL)
460 return entry;
461 }
462
463 /* Call the allocation method of the superclass. */
464 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
465 if (entry != NULL)
466 {
467 struct elf32_hppa_link_hash_entry *eh;
468
469 /* Initialize the local fields. */
470 eh = (struct elf32_hppa_link_hash_entry *) entry;
471 eh->stub_cache = NULL;
472 eh->dyn_relocs = NULL;
473 eh->pic_call = 0;
474 eh->plabel = 0;
475 }
476
477 return entry;
478 }
479
480 /* Create the derived linker hash table. The PA ELF port uses the derived
481 hash table to keep information specific to the PA ELF linker (without
482 using static variables). */
483
484 static struct bfd_link_hash_table *
485 elf32_hppa_link_hash_table_create (abfd)
486 bfd *abfd;
487 {
488 struct elf32_hppa_link_hash_table *ret;
489 bfd_size_type amt = sizeof (*ret);
490
491 ret = (struct elf32_hppa_link_hash_table *) bfd_malloc (amt);
492 if (ret == NULL)
493 return NULL;
494
495 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, hppa_link_hash_newfunc))
496 {
497 free (ret);
498 return NULL;
499 }
500
501 /* Init the stub hash table too. */
502 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc))
503 return NULL;
504
505 ret->stub_bfd = NULL;
506 ret->add_stub_section = NULL;
507 ret->layout_sections_again = NULL;
508 ret->stub_group = NULL;
509 ret->sgot = NULL;
510 ret->srelgot = NULL;
511 ret->splt = NULL;
512 ret->srelplt = NULL;
513 ret->sdynbss = NULL;
514 ret->srelbss = NULL;
515 ret->text_segment_base = (bfd_vma) -1;
516 ret->data_segment_base = (bfd_vma) -1;
517 ret->multi_subspace = 0;
518 ret->has_12bit_branch = 0;
519 ret->has_17bit_branch = 0;
520 ret->has_22bit_branch = 0;
521 ret->need_plt_stub = 0;
522 ret->sym_sec.abfd = NULL;
523
524 return &ret->elf.root;
525 }
526
527 /* Free the derived linker hash table. */
528
529 static void
530 elf32_hppa_link_hash_table_free (hash)
531 struct bfd_link_hash_table *hash;
532 {
533 struct elf32_hppa_link_hash_table *ret
534 = (struct elf32_hppa_link_hash_table *) hash;
535
536 bfd_hash_table_free (&ret->stub_hash_table);
537 _bfd_generic_link_hash_table_free (hash);
538 }
539
540 /* Build a name for an entry in the stub hash table. */
541
542 static char *
543 hppa_stub_name (input_section, sym_sec, hash, rel)
544 const asection *input_section;
545 const asection *sym_sec;
546 const struct elf32_hppa_link_hash_entry *hash;
547 const Elf_Internal_Rela *rel;
548 {
549 char *stub_name;
550 bfd_size_type len;
551
552 if (hash)
553 {
554 len = 8 + 1 + strlen (hash->elf.root.root.string) + 1 + 8 + 1;
555 stub_name = bfd_malloc (len);
556 if (stub_name != NULL)
557 {
558 sprintf (stub_name, "%08x_%s+%x",
559 input_section->id & 0xffffffff,
560 hash->elf.root.root.string,
561 (int) rel->r_addend & 0xffffffff);
562 }
563 }
564 else
565 {
566 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
567 stub_name = bfd_malloc (len);
568 if (stub_name != NULL)
569 {
570 sprintf (stub_name, "%08x_%x:%x+%x",
571 input_section->id & 0xffffffff,
572 sym_sec->id & 0xffffffff,
573 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
574 (int) rel->r_addend & 0xffffffff);
575 }
576 }
577 return stub_name;
578 }
579
580 /* Look up an entry in the stub hash. Stub entries are cached because
581 creating the stub name takes a bit of time. */
582
583 static struct elf32_hppa_stub_hash_entry *
584 hppa_get_stub_entry (input_section, sym_sec, hash, rel, htab)
585 const asection *input_section;
586 const asection *sym_sec;
587 struct elf32_hppa_link_hash_entry *hash;
588 const Elf_Internal_Rela *rel;
589 struct elf32_hppa_link_hash_table *htab;
590 {
591 struct elf32_hppa_stub_hash_entry *stub_entry;
592 const asection *id_sec;
593
594 /* If this input section is part of a group of sections sharing one
595 stub section, then use the id of the first section in the group.
596 Stub names need to include a section id, as there may well be
597 more than one stub used to reach say, printf, and we need to
598 distinguish between them. */
599 id_sec = htab->stub_group[input_section->id].link_sec;
600
601 if (hash != NULL && hash->stub_cache != NULL
602 && hash->stub_cache->h == hash
603 && hash->stub_cache->id_sec == id_sec)
604 {
605 stub_entry = hash->stub_cache;
606 }
607 else
608 {
609 char *stub_name;
610
611 stub_name = hppa_stub_name (id_sec, sym_sec, hash, rel);
612 if (stub_name == NULL)
613 return NULL;
614
615 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
616 stub_name, false, false);
617 if (hash != NULL)
618 hash->stub_cache = stub_entry;
619
620 free (stub_name);
621 }
622
623 return stub_entry;
624 }
625
626 /* Add a new stub entry to the stub hash. Not all fields of the new
627 stub entry are initialised. */
628
629 static struct elf32_hppa_stub_hash_entry *
630 hppa_add_stub (stub_name, section, htab)
631 const char *stub_name;
632 asection *section;
633 struct elf32_hppa_link_hash_table *htab;
634 {
635 asection *link_sec;
636 asection *stub_sec;
637 struct elf32_hppa_stub_hash_entry *stub_entry;
638
639 link_sec = htab->stub_group[section->id].link_sec;
640 stub_sec = htab->stub_group[section->id].stub_sec;
641 if (stub_sec == NULL)
642 {
643 stub_sec = htab->stub_group[link_sec->id].stub_sec;
644 if (stub_sec == NULL)
645 {
646 bfd_size_type len;
647 char *s_name;
648
649 len = strlen (link_sec->name) + sizeof (STUB_SUFFIX);
650 s_name = bfd_alloc (htab->stub_bfd, len);
651 if (s_name == NULL)
652 return NULL;
653
654 strcpy (s_name, link_sec->name);
655 strcpy (s_name + len - sizeof (STUB_SUFFIX), STUB_SUFFIX);
656 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
657 if (stub_sec == NULL)
658 return NULL;
659 htab->stub_group[link_sec->id].stub_sec = stub_sec;
660 }
661 htab->stub_group[section->id].stub_sec = stub_sec;
662 }
663
664 /* Enter this entry into the linker stub hash table. */
665 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table, stub_name,
666 true, false);
667 if (stub_entry == NULL)
668 {
669 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
670 bfd_archive_filename (section->owner),
671 stub_name);
672 return NULL;
673 }
674
675 stub_entry->stub_sec = stub_sec;
676 stub_entry->stub_offset = 0;
677 stub_entry->id_sec = link_sec;
678 return stub_entry;
679 }
680
681 /* Determine the type of stub needed, if any, for a call. */
682
683 static enum elf32_hppa_stub_type
684 hppa_type_of_stub (input_sec, rel, hash, destination)
685 asection *input_sec;
686 const Elf_Internal_Rela *rel;
687 struct elf32_hppa_link_hash_entry *hash;
688 bfd_vma destination;
689 {
690 bfd_vma location;
691 bfd_vma branch_offset;
692 bfd_vma max_branch_offset;
693 unsigned int r_type;
694
695 if (hash != NULL
696 && hash->elf.plt.offset != (bfd_vma) -1
697 && (hash->elf.dynindx != -1 || hash->pic_call)
698 && !hash->plabel)
699 {
700 /* We need an import stub. Decide between hppa_stub_import
701 and hppa_stub_import_shared later. */
702 return hppa_stub_import;
703 }
704
705 /* Determine where the call point is. */
706 location = (input_sec->output_offset
707 + input_sec->output_section->vma
708 + rel->r_offset);
709
710 branch_offset = destination - location - 8;
711 r_type = ELF32_R_TYPE (rel->r_info);
712
713 /* Determine if a long branch stub is needed. parisc branch offsets
714 are relative to the second instruction past the branch, ie. +8
715 bytes on from the branch instruction location. The offset is
716 signed and counts in units of 4 bytes. */
717 if (r_type == (unsigned int) R_PARISC_PCREL17F)
718 {
719 max_branch_offset = (1 << (17-1)) << 2;
720 }
721 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
722 {
723 max_branch_offset = (1 << (12-1)) << 2;
724 }
725 else /* R_PARISC_PCREL22F. */
726 {
727 max_branch_offset = (1 << (22-1)) << 2;
728 }
729
730 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
731 return hppa_stub_long_branch;
732
733 return hppa_stub_none;
734 }
735
736 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
737 IN_ARG contains the link info pointer. */
738
739 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
740 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
741
742 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
743 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
744 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
745
746 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
747 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
748 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
749 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
750
751 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
752 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
753
754 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
755 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
756 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
757 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
758
759 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
760 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
761 #define NOP 0x08000240 /* nop */
762 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
763 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
764 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
765
766 #ifndef R19_STUBS
767 #define R19_STUBS 1
768 #endif
769
770 #if R19_STUBS
771 #define LDW_R1_DLT LDW_R1_R19
772 #else
773 #define LDW_R1_DLT LDW_R1_DP
774 #endif
775
776 static boolean
777 hppa_build_one_stub (gen_entry, in_arg)
778 struct bfd_hash_entry *gen_entry;
779 PTR in_arg;
780 {
781 struct elf32_hppa_stub_hash_entry *stub_entry;
782 struct bfd_link_info *info;
783 struct elf32_hppa_link_hash_table *htab;
784 asection *stub_sec;
785 bfd *stub_bfd;
786 bfd_byte *loc;
787 bfd_vma sym_value;
788 bfd_vma insn;
789 bfd_vma off;
790 int val;
791 int size;
792
793 /* Massage our args to the form they really have. */
794 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
795 info = (struct bfd_link_info *) in_arg;
796
797 htab = hppa_link_hash_table (info);
798 stub_sec = stub_entry->stub_sec;
799
800 /* Make a note of the offset within the stubs for this entry. */
801 stub_entry->stub_offset = stub_sec->_raw_size;
802 loc = stub_sec->contents + stub_entry->stub_offset;
803
804 stub_bfd = stub_sec->owner;
805
806 switch (stub_entry->stub_type)
807 {
808 case hppa_stub_long_branch:
809 /* Create the long branch. A long branch is formed with "ldil"
810 loading the upper bits of the target address into a register,
811 then branching with "be" which adds in the lower bits.
812 The "be" has its delay slot nullified. */
813 sym_value = (stub_entry->target_value
814 + stub_entry->target_section->output_offset
815 + stub_entry->target_section->output_section->vma);
816
817 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel);
818 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
819 bfd_put_32 (stub_bfd, insn, loc);
820
821 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel) >> 2;
822 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
823 bfd_put_32 (stub_bfd, insn, loc + 4);
824
825 size = 8;
826 break;
827
828 case hppa_stub_long_branch_shared:
829 /* Branches are relative. This is where we are going to. */
830 sym_value = (stub_entry->target_value
831 + stub_entry->target_section->output_offset
832 + stub_entry->target_section->output_section->vma);
833
834 /* And this is where we are coming from, more or less. */
835 sym_value -= (stub_entry->stub_offset
836 + stub_sec->output_offset
837 + stub_sec->output_section->vma);
838
839 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
840 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
841 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
842 bfd_put_32 (stub_bfd, insn, loc + 4);
843
844 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
845 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
846 bfd_put_32 (stub_bfd, insn, loc + 8);
847 size = 12;
848 break;
849
850 case hppa_stub_import:
851 case hppa_stub_import_shared:
852 off = stub_entry->h->elf.plt.offset;
853 if (off >= (bfd_vma) -2)
854 abort ();
855
856 off &= ~ (bfd_vma) 1;
857 sym_value = (off
858 + htab->splt->output_offset
859 + htab->splt->output_section->vma
860 - elf_gp (htab->splt->output_section->owner));
861
862 insn = ADDIL_DP;
863 #if R19_STUBS
864 if (stub_entry->stub_type == hppa_stub_import_shared)
865 insn = ADDIL_R19;
866 #endif
867 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel),
868 insn = hppa_rebuild_insn ((int) insn, val, 21);
869 bfd_put_32 (stub_bfd, insn, loc);
870
871 /* It is critical to use lrsel/rrsel here because we are using
872 two different offsets (+0 and +4) from sym_value. If we use
873 lsel/rsel then with unfortunate sym_values we will round
874 sym_value+4 up to the next 2k block leading to a mis-match
875 between the lsel and rsel value. */
876 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel);
877 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
878 bfd_put_32 (stub_bfd, insn, loc + 4);
879
880 if (htab->multi_subspace)
881 {
882 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
883 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
884 bfd_put_32 (stub_bfd, insn, loc + 8);
885
886 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
887 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
888 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
889 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
890
891 size = 28;
892 }
893 else
894 {
895 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
896 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
897 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
898 bfd_put_32 (stub_bfd, insn, loc + 12);
899
900 size = 16;
901 }
902
903 if (!info->shared
904 && stub_entry->h != NULL
905 && stub_entry->h->pic_call)
906 {
907 /* Build the .plt entry needed to call a PIC function from
908 statically linked code. We don't need any relocs. */
909 bfd *dynobj;
910 struct elf32_hppa_link_hash_entry *eh;
911 bfd_vma value;
912
913 dynobj = htab->elf.dynobj;
914 eh = (struct elf32_hppa_link_hash_entry *) stub_entry->h;
915
916 if (eh->elf.root.type != bfd_link_hash_defined
917 && eh->elf.root.type != bfd_link_hash_defweak)
918 abort ();
919
920 value = (eh->elf.root.u.def.value
921 + eh->elf.root.u.def.section->output_offset
922 + eh->elf.root.u.def.section->output_section->vma);
923
924 /* Fill in the entry in the procedure linkage table.
925
926 The format of a plt entry is
927 <funcaddr>
928 <__gp>. */
929
930 bfd_put_32 (htab->splt->owner, value,
931 htab->splt->contents + off);
932 value = elf_gp (htab->splt->output_section->owner);
933 bfd_put_32 (htab->splt->owner, value,
934 htab->splt->contents + off + 4);
935 }
936 break;
937
938 case hppa_stub_export:
939 /* Branches are relative. This is where we are going to. */
940 sym_value = (stub_entry->target_value
941 + stub_entry->target_section->output_offset
942 + stub_entry->target_section->output_section->vma);
943
944 /* And this is where we are coming from. */
945 sym_value -= (stub_entry->stub_offset
946 + stub_sec->output_offset
947 + stub_sec->output_section->vma);
948
949 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
950 && (!htab->has_22bit_branch
951 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
952 {
953 (*_bfd_error_handler)
954 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
955 bfd_archive_filename (stub_entry->target_section->owner),
956 stub_sec->name,
957 (long) stub_entry->stub_offset,
958 stub_entry->root.string);
959 bfd_set_error (bfd_error_bad_value);
960 return false;
961 }
962
963 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
964 if (!htab->has_22bit_branch)
965 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
966 else
967 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
968 bfd_put_32 (stub_bfd, insn, loc);
969
970 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
971 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
972 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
973 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
974 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
975
976 /* Point the function symbol at the stub. */
977 stub_entry->h->elf.root.u.def.section = stub_sec;
978 stub_entry->h->elf.root.u.def.value = stub_sec->_raw_size;
979
980 size = 24;
981 break;
982
983 default:
984 BFD_FAIL ();
985 return false;
986 }
987
988 stub_sec->_raw_size += size;
989 return true;
990 }
991
992 #undef LDIL_R1
993 #undef BE_SR4_R1
994 #undef BL_R1
995 #undef ADDIL_R1
996 #undef DEPI_R1
997 #undef ADDIL_DP
998 #undef LDW_R1_R21
999 #undef LDW_R1_DLT
1000 #undef LDW_R1_R19
1001 #undef ADDIL_R19
1002 #undef LDW_R1_DP
1003 #undef LDSID_R21_R1
1004 #undef MTSP_R1
1005 #undef BE_SR0_R21
1006 #undef STW_RP
1007 #undef BV_R0_R21
1008 #undef BL_RP
1009 #undef NOP
1010 #undef LDW_RP
1011 #undef LDSID_RP_R1
1012 #undef BE_SR0_RP
1013
1014 /* As above, but don't actually build the stub. Just bump offset so
1015 we know stub section sizes. */
1016
1017 static boolean
1018 hppa_size_one_stub (gen_entry, in_arg)
1019 struct bfd_hash_entry *gen_entry;
1020 PTR in_arg;
1021 {
1022 struct elf32_hppa_stub_hash_entry *stub_entry;
1023 struct elf32_hppa_link_hash_table *htab;
1024 int size;
1025
1026 /* Massage our args to the form they really have. */
1027 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
1028 htab = (struct elf32_hppa_link_hash_table *) in_arg;
1029
1030 if (stub_entry->stub_type == hppa_stub_long_branch)
1031 size = 8;
1032 else if (stub_entry->stub_type == hppa_stub_long_branch_shared)
1033 size = 12;
1034 else if (stub_entry->stub_type == hppa_stub_export)
1035 size = 24;
1036 else /* hppa_stub_import or hppa_stub_import_shared. */
1037 {
1038 if (htab->multi_subspace)
1039 size = 28;
1040 else
1041 size = 16;
1042 }
1043
1044 stub_entry->stub_sec->_raw_size += size;
1045 return true;
1046 }
1047
1048 /* Return nonzero if ABFD represents an HPPA ELF32 file.
1049 Additionally we set the default architecture and machine. */
1050
1051 static boolean
1052 elf32_hppa_object_p (abfd)
1053 bfd *abfd;
1054 {
1055 Elf_Internal_Ehdr * i_ehdrp;
1056 unsigned int flags;
1057
1058 i_ehdrp = elf_elfheader (abfd);
1059 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
1060 {
1061 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX)
1062 return false;
1063 }
1064 else
1065 {
1066 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
1067 return false;
1068 }
1069
1070 flags = i_ehdrp->e_flags;
1071 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
1072 {
1073 case EFA_PARISC_1_0:
1074 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
1075 case EFA_PARISC_1_1:
1076 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
1077 case EFA_PARISC_2_0:
1078 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
1079 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
1080 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
1081 }
1082 return true;
1083 }
1084
1085 /* Undo the generic ELF code's subtraction of section->vma from the
1086 value of each external symbol. */
1087
1088 static boolean
1089 elf32_hppa_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1090 bfd *abfd ATTRIBUTE_UNUSED;
1091 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1092 const Elf_Internal_Sym *sym ATTRIBUTE_UNUSED;
1093 const char **namep ATTRIBUTE_UNUSED;
1094 flagword *flagsp ATTRIBUTE_UNUSED;
1095 asection **secp;
1096 bfd_vma *valp;
1097 {
1098 *valp += (*secp)->vma;
1099 return true;
1100 }
1101
1102 /* Create the .plt and .got sections, and set up our hash table
1103 short-cuts to various dynamic sections. */
1104
1105 static boolean
1106 elf32_hppa_create_dynamic_sections (abfd, info)
1107 bfd *abfd;
1108 struct bfd_link_info *info;
1109 {
1110 struct elf32_hppa_link_hash_table *htab;
1111
1112 /* Don't try to create the .plt and .got twice. */
1113 htab = hppa_link_hash_table (info);
1114 if (htab->splt != NULL)
1115 return true;
1116
1117 /* Call the generic code to do most of the work. */
1118 if (! _bfd_elf_create_dynamic_sections (abfd, info))
1119 return false;
1120
1121 htab->splt = bfd_get_section_by_name (abfd, ".plt");
1122 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
1123
1124 htab->sgot = bfd_get_section_by_name (abfd, ".got");
1125 htab->srelgot = bfd_make_section (abfd, ".rela.got");
1126 if (htab->srelgot == NULL
1127 || ! bfd_set_section_flags (abfd, htab->srelgot,
1128 (SEC_ALLOC
1129 | SEC_LOAD
1130 | SEC_HAS_CONTENTS
1131 | SEC_IN_MEMORY
1132 | SEC_LINKER_CREATED
1133 | SEC_READONLY))
1134 || ! bfd_set_section_alignment (abfd, htab->srelgot, 2))
1135 return false;
1136
1137 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
1138 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
1139
1140 return true;
1141 }
1142
1143 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1144
1145 static void
1146 elf32_hppa_copy_indirect_symbol (dir, ind)
1147 struct elf_link_hash_entry *dir, *ind;
1148 {
1149 struct elf32_hppa_link_hash_entry *edir, *eind;
1150
1151 edir = (struct elf32_hppa_link_hash_entry *) dir;
1152 eind = (struct elf32_hppa_link_hash_entry *) ind;
1153
1154 if (eind->dyn_relocs != NULL)
1155 {
1156 if (edir->dyn_relocs != NULL)
1157 {
1158 struct elf32_hppa_dyn_reloc_entry **pp;
1159 struct elf32_hppa_dyn_reloc_entry *p;
1160
1161 if (ind->root.type == bfd_link_hash_indirect)
1162 abort ();
1163
1164 /* Add reloc counts against the weak sym to the strong sym
1165 list. Merge any entries against the same section. */
1166 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
1167 {
1168 struct elf32_hppa_dyn_reloc_entry *q;
1169
1170 for (q = edir->dyn_relocs; q != NULL; q = q->next)
1171 if (q->sec == p->sec)
1172 {
1173 #if RELATIVE_DYNRELOCS
1174 q->relative_count += p->relative_count;
1175 #endif
1176 q->count += p->count;
1177 *pp = p->next;
1178 break;
1179 }
1180 if (q == NULL)
1181 pp = &p->next;
1182 }
1183 *pp = edir->dyn_relocs;
1184 }
1185
1186 edir->dyn_relocs = eind->dyn_relocs;
1187 eind->dyn_relocs = NULL;
1188 }
1189
1190 _bfd_elf_link_hash_copy_indirect (dir, ind);
1191 }
1192
1193 /* Look through the relocs for a section during the first phase, and
1194 calculate needed space in the global offset table, procedure linkage
1195 table, and dynamic reloc sections. At this point we haven't
1196 necessarily read all the input files. */
1197
1198 static boolean
1199 elf32_hppa_check_relocs (abfd, info, sec, relocs)
1200 bfd *abfd;
1201 struct bfd_link_info *info;
1202 asection *sec;
1203 const Elf_Internal_Rela *relocs;
1204 {
1205 Elf_Internal_Shdr *symtab_hdr;
1206 struct elf_link_hash_entry **sym_hashes;
1207 const Elf_Internal_Rela *rel;
1208 const Elf_Internal_Rela *rel_end;
1209 struct elf32_hppa_link_hash_table *htab;
1210 asection *sreloc;
1211 asection *stubreloc;
1212
1213 if (info->relocateable)
1214 return true;
1215
1216 htab = hppa_link_hash_table (info);
1217 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1218 sym_hashes = elf_sym_hashes (abfd);
1219 sreloc = NULL;
1220 stubreloc = NULL;
1221
1222 rel_end = relocs + sec->reloc_count;
1223 for (rel = relocs; rel < rel_end; rel++)
1224 {
1225 enum {
1226 NEED_GOT = 1,
1227 NEED_PLT = 2,
1228 NEED_DYNREL = 4,
1229 PLT_PLABEL = 8
1230 };
1231
1232 unsigned int r_symndx, r_type;
1233 struct elf32_hppa_link_hash_entry *h;
1234 int need_entry;
1235
1236 r_symndx = ELF32_R_SYM (rel->r_info);
1237
1238 if (r_symndx < symtab_hdr->sh_info)
1239 h = NULL;
1240 else
1241 h = ((struct elf32_hppa_link_hash_entry *)
1242 sym_hashes[r_symndx - symtab_hdr->sh_info]);
1243
1244 r_type = ELF32_R_TYPE (rel->r_info);
1245
1246 switch (r_type)
1247 {
1248 case R_PARISC_DLTIND14F:
1249 case R_PARISC_DLTIND14R:
1250 case R_PARISC_DLTIND21L:
1251 /* This symbol requires a global offset table entry. */
1252 need_entry = NEED_GOT;
1253
1254 /* Mark this section as containing PIC code. */
1255 sec->flags |= SEC_HAS_GOT_REF;
1256 break;
1257
1258 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1259 case R_PARISC_PLABEL21L:
1260 case R_PARISC_PLABEL32:
1261 /* If the addend is non-zero, we break badly. */
1262 if (rel->r_addend != 0)
1263 abort ();
1264
1265 /* If we are creating a shared library, then we need to
1266 create a PLT entry for all PLABELs, because PLABELs with
1267 local symbols may be passed via a pointer to another
1268 object. Additionally, output a dynamic relocation
1269 pointing to the PLT entry.
1270 For executables, the original 32-bit ABI allowed two
1271 different styles of PLABELs (function pointers): For
1272 global functions, the PLABEL word points into the .plt
1273 two bytes past a (function address, gp) pair, and for
1274 local functions the PLABEL points directly at the
1275 function. The magic +2 for the first type allows us to
1276 differentiate between the two. As you can imagine, this
1277 is a real pain when it comes to generating code to call
1278 functions indirectly or to compare function pointers.
1279 We avoid the mess by always pointing a PLABEL into the
1280 .plt, even for local functions. */
1281 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1282 break;
1283
1284 case R_PARISC_PCREL12F:
1285 htab->has_12bit_branch = 1;
1286 goto branch_common;
1287
1288 case R_PARISC_PCREL17C:
1289 case R_PARISC_PCREL17F:
1290 htab->has_17bit_branch = 1;
1291 goto branch_common;
1292
1293 case R_PARISC_PCREL22F:
1294 htab->has_22bit_branch = 1;
1295 branch_common:
1296 /* Function calls might need to go through the .plt, and
1297 might require long branch stubs. */
1298 if (h == NULL)
1299 {
1300 /* We know local syms won't need a .plt entry, and if
1301 they need a long branch stub we can't guarantee that
1302 we can reach the stub. So just flag an error later
1303 if we're doing a shared link and find we need a long
1304 branch stub. */
1305 continue;
1306 }
1307 else
1308 {
1309 /* Global symbols will need a .plt entry if they remain
1310 global, and in most cases won't need a long branch
1311 stub. Unfortunately, we have to cater for the case
1312 where a symbol is forced local by versioning, or due
1313 to symbolic linking, and we lose the .plt entry. */
1314 need_entry = NEED_PLT;
1315 if (h->elf.type == STT_PARISC_MILLI)
1316 need_entry = 0;
1317 }
1318 break;
1319
1320 case R_PARISC_SEGBASE: /* Used to set segment base. */
1321 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1322 case R_PARISC_PCREL14F: /* PC relative load/store. */
1323 case R_PARISC_PCREL14R:
1324 case R_PARISC_PCREL17R: /* External branches. */
1325 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1326 /* We don't need to propagate the relocation if linking a
1327 shared object since these are section relative. */
1328 continue;
1329
1330 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1331 case R_PARISC_DPREL14R:
1332 case R_PARISC_DPREL21L:
1333 if (info->shared)
1334 {
1335 (*_bfd_error_handler)
1336 (_("%s: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1337 bfd_archive_filename (abfd),
1338 elf_hppa_howto_table[r_type].name);
1339 bfd_set_error (bfd_error_bad_value);
1340 return false;
1341 }
1342 /* Fall through. */
1343
1344 case R_PARISC_DIR17F: /* Used for external branches. */
1345 case R_PARISC_DIR17R:
1346 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1347 case R_PARISC_DIR14R:
1348 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1349 #if 0
1350 /* Help debug shared library creation. Any of the above
1351 relocs can be used in shared libs, but they may cause
1352 pages to become unshared. */
1353 if (info->shared)
1354 {
1355 (*_bfd_error_handler)
1356 (_("%s: relocation %s should not be used when making a shared object; recompile with -fPIC"),
1357 bfd_archive_filename (abfd),
1358 elf_hppa_howto_table[r_type].name);
1359 }
1360 /* Fall through. */
1361 #endif
1362
1363 case R_PARISC_DIR32: /* .word relocs. */
1364 /* We may want to output a dynamic relocation later. */
1365 need_entry = NEED_DYNREL;
1366 break;
1367
1368 /* This relocation describes the C++ object vtable hierarchy.
1369 Reconstruct it for later use during GC. */
1370 case R_PARISC_GNU_VTINHERIT:
1371 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec,
1372 &h->elf, rel->r_offset))
1373 return false;
1374 continue;
1375
1376 /* This relocation describes which C++ vtable entries are actually
1377 used. Record for later use during GC. */
1378 case R_PARISC_GNU_VTENTRY:
1379 if (!_bfd_elf32_gc_record_vtentry (abfd, sec,
1380 &h->elf, rel->r_addend))
1381 return false;
1382 continue;
1383
1384 default:
1385 continue;
1386 }
1387
1388 /* Now carry out our orders. */
1389 if (need_entry & NEED_GOT)
1390 {
1391 /* Allocate space for a GOT entry, as well as a dynamic
1392 relocation for this entry. */
1393 if (htab->sgot == NULL)
1394 {
1395 if (htab->elf.dynobj == NULL)
1396 htab->elf.dynobj = abfd;
1397 if (!elf32_hppa_create_dynamic_sections (htab->elf.dynobj, info))
1398 return false;
1399 }
1400
1401 if (h != NULL)
1402 {
1403 h->elf.got.refcount += 1;
1404 }
1405 else
1406 {
1407 bfd_signed_vma *local_got_refcounts;
1408
1409 /* This is a global offset table entry for a local symbol. */
1410 local_got_refcounts = elf_local_got_refcounts (abfd);
1411 if (local_got_refcounts == NULL)
1412 {
1413 bfd_size_type size;
1414
1415 /* Allocate space for local got offsets and local
1416 plt offsets. Done this way to save polluting
1417 elf_obj_tdata with another target specific
1418 pointer. */
1419 size = symtab_hdr->sh_info;
1420 size *= 2 * sizeof (bfd_signed_vma);
1421 local_got_refcounts = ((bfd_signed_vma *)
1422 bfd_zalloc (abfd, size));
1423 if (local_got_refcounts == NULL)
1424 return false;
1425 elf_local_got_refcounts (abfd) = local_got_refcounts;
1426 }
1427 local_got_refcounts[r_symndx] += 1;
1428 }
1429 }
1430
1431 if (need_entry & NEED_PLT)
1432 {
1433 /* If we are creating a shared library, and this is a reloc
1434 against a weak symbol or a global symbol in a dynamic
1435 object, then we will be creating an import stub and a
1436 .plt entry for the symbol. Similarly, on a normal link
1437 to symbols defined in a dynamic object we'll need the
1438 import stub and a .plt entry. We don't know yet whether
1439 the symbol is defined or not, so make an entry anyway and
1440 clean up later in adjust_dynamic_symbol. */
1441 if ((sec->flags & SEC_ALLOC) != 0)
1442 {
1443 if (h != NULL)
1444 {
1445 h->elf.elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1446 h->elf.plt.refcount += 1;
1447
1448 /* If this .plt entry is for a plabel, mark it so
1449 that adjust_dynamic_symbol will keep the entry
1450 even if it appears to be local. */
1451 if (need_entry & PLT_PLABEL)
1452 h->plabel = 1;
1453 }
1454 else if (need_entry & PLT_PLABEL)
1455 {
1456 bfd_signed_vma *local_got_refcounts;
1457 bfd_signed_vma *local_plt_refcounts;
1458
1459 local_got_refcounts = elf_local_got_refcounts (abfd);
1460 if (local_got_refcounts == NULL)
1461 {
1462 bfd_size_type size;
1463
1464 /* Allocate space for local got offsets and local
1465 plt offsets. */
1466 size = symtab_hdr->sh_info;
1467 size *= 2 * sizeof (bfd_signed_vma);
1468 local_got_refcounts = ((bfd_signed_vma *)
1469 bfd_zalloc (abfd, size));
1470 if (local_got_refcounts == NULL)
1471 return false;
1472 elf_local_got_refcounts (abfd) = local_got_refcounts;
1473 }
1474 local_plt_refcounts = (local_got_refcounts
1475 + symtab_hdr->sh_info);
1476 local_plt_refcounts[r_symndx] += 1;
1477 }
1478 }
1479 }
1480
1481 if (need_entry & NEED_DYNREL)
1482 {
1483 /* Flag this symbol as having a non-got, non-plt reference
1484 so that we generate copy relocs if it turns out to be
1485 dynamic. */
1486 if (h != NULL && !info->shared)
1487 h->elf.elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
1488
1489 /* If we are creating a shared library then we need to copy
1490 the reloc into the shared library. However, if we are
1491 linking with -Bsymbolic, we need only copy absolute
1492 relocs or relocs against symbols that are not defined in
1493 an object we are including in the link. PC- or DP- or
1494 DLT-relative relocs against any local sym or global sym
1495 with DEF_REGULAR set, can be discarded. At this point we
1496 have not seen all the input files, so it is possible that
1497 DEF_REGULAR is not set now but will be set later (it is
1498 never cleared). We account for that possibility below by
1499 storing information in the dyn_relocs field of the
1500 hash table entry.
1501
1502 A similar situation to the -Bsymbolic case occurs when
1503 creating shared libraries and symbol visibility changes
1504 render the symbol local.
1505
1506 As it turns out, all the relocs we will be creating here
1507 are absolute, so we cannot remove them on -Bsymbolic
1508 links or visibility changes anyway. A STUB_REL reloc
1509 is absolute too, as in that case it is the reloc in the
1510 stub we will be creating, rather than copying the PCREL
1511 reloc in the branch.
1512
1513 If on the other hand, we are creating an executable, we
1514 may need to keep relocations for symbols satisfied by a
1515 dynamic library if we manage to avoid copy relocs for the
1516 symbol. */
1517 if ((info->shared
1518 && (sec->flags & SEC_ALLOC) != 0
1519 && (IS_ABSOLUTE_RELOC (r_type)
1520 || (h != NULL
1521 && (!info->symbolic
1522 || h->elf.root.type == bfd_link_hash_defweak
1523 || (h->elf.elf_link_hash_flags
1524 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1525 || (!info->shared
1526 && (sec->flags & SEC_ALLOC) != 0
1527 && h != NULL
1528 && (h->elf.root.type == bfd_link_hash_defweak
1529 || (h->elf.elf_link_hash_flags
1530 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
1531 {
1532 struct elf32_hppa_dyn_reloc_entry *p;
1533 struct elf32_hppa_dyn_reloc_entry **head;
1534
1535 /* Create a reloc section in dynobj and make room for
1536 this reloc. */
1537 if (sreloc == NULL)
1538 {
1539 char *name;
1540 bfd *dynobj;
1541
1542 name = (bfd_elf_string_from_elf_section
1543 (abfd,
1544 elf_elfheader (abfd)->e_shstrndx,
1545 elf_section_data (sec)->rel_hdr.sh_name));
1546 if (name == NULL)
1547 {
1548 (*_bfd_error_handler)
1549 (_("Could not find relocation section for %s"),
1550 sec->name);
1551 bfd_set_error (bfd_error_bad_value);
1552 return false;
1553 }
1554
1555 if (htab->elf.dynobj == NULL)
1556 htab->elf.dynobj = abfd;
1557
1558 dynobj = htab->elf.dynobj;
1559 sreloc = bfd_get_section_by_name (dynobj, name);
1560 if (sreloc == NULL)
1561 {
1562 flagword flags;
1563
1564 sreloc = bfd_make_section (dynobj, name);
1565 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1566 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1567 if ((sec->flags & SEC_ALLOC) != 0)
1568 flags |= SEC_ALLOC | SEC_LOAD;
1569 if (sreloc == NULL
1570 || !bfd_set_section_flags (dynobj, sreloc, flags)
1571 || !bfd_set_section_alignment (dynobj, sreloc, 2))
1572 return false;
1573 }
1574
1575 elf_section_data (sec)->sreloc = sreloc;
1576 }
1577
1578 /* If this is a global symbol, we count the number of
1579 relocations we need for this symbol. */
1580 if (h != NULL)
1581 {
1582 head = &h->dyn_relocs;
1583 }
1584 else
1585 {
1586 /* Track dynamic relocs needed for local syms too.
1587 We really need local syms available to do this
1588 easily. Oh well. */
1589
1590 asection *s;
1591 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1592 sec, r_symndx);
1593 if (s == NULL)
1594 return false;
1595
1596 head = ((struct elf32_hppa_dyn_reloc_entry **)
1597 &elf_section_data (s)->local_dynrel);
1598 }
1599
1600 p = *head;
1601 if (p == NULL || p->sec != sec)
1602 {
1603 p = ((struct elf32_hppa_dyn_reloc_entry *)
1604 bfd_alloc (htab->elf.dynobj,
1605 (bfd_size_type) sizeof *p));
1606 if (p == NULL)
1607 return false;
1608 p->next = *head;
1609 *head = p;
1610 p->sec = sec;
1611 p->count = 0;
1612 #if RELATIVE_DYNRELOCS
1613 p->relative_count = 0;
1614 #endif
1615 }
1616
1617 p->count += 1;
1618 #if RELATIVE_DYNRELOCS
1619 if (!IS_ABSOLUTE_RELOC (rtype))
1620 p->relative_count += 1;
1621 #endif
1622 }
1623 }
1624 }
1625
1626 return true;
1627 }
1628
1629 /* Return the section that should be marked against garbage collection
1630 for a given relocation. */
1631
1632 static asection *
1633 elf32_hppa_gc_mark_hook (abfd, info, rel, h, sym)
1634 bfd *abfd;
1635 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1636 Elf_Internal_Rela *rel;
1637 struct elf_link_hash_entry *h;
1638 Elf_Internal_Sym *sym;
1639 {
1640 if (h != NULL)
1641 {
1642 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1643 {
1644 case R_PARISC_GNU_VTINHERIT:
1645 case R_PARISC_GNU_VTENTRY:
1646 break;
1647
1648 default:
1649 switch (h->root.type)
1650 {
1651 case bfd_link_hash_defined:
1652 case bfd_link_hash_defweak:
1653 return h->root.u.def.section;
1654
1655 case bfd_link_hash_common:
1656 return h->root.u.c.p->section;
1657
1658 default:
1659 break;
1660 }
1661 }
1662 }
1663 else
1664 {
1665 return bfd_section_from_elf_index (abfd, sym->st_shndx);
1666 }
1667
1668 return NULL;
1669 }
1670
1671 /* Update the got and plt entry reference counts for the section being
1672 removed. */
1673
1674 static boolean
1675 elf32_hppa_gc_sweep_hook (abfd, info, sec, relocs)
1676 bfd *abfd;
1677 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1678 asection *sec;
1679 const Elf_Internal_Rela *relocs;
1680 {
1681 Elf_Internal_Shdr *symtab_hdr;
1682 struct elf_link_hash_entry **sym_hashes;
1683 bfd_signed_vma *local_got_refcounts;
1684 bfd_signed_vma *local_plt_refcounts;
1685 const Elf_Internal_Rela *rel, *relend;
1686 unsigned long r_symndx;
1687 struct elf_link_hash_entry *h;
1688 struct elf32_hppa_link_hash_table *htab;
1689 bfd *dynobj;
1690
1691 elf_section_data (sec)->local_dynrel = NULL;
1692
1693 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1694 sym_hashes = elf_sym_hashes (abfd);
1695 local_got_refcounts = elf_local_got_refcounts (abfd);
1696 local_plt_refcounts = local_got_refcounts;
1697 if (local_plt_refcounts != NULL)
1698 local_plt_refcounts += symtab_hdr->sh_info;
1699 htab = hppa_link_hash_table (info);
1700 dynobj = htab->elf.dynobj;
1701 if (dynobj == NULL)
1702 return true;
1703
1704 relend = relocs + sec->reloc_count;
1705 for (rel = relocs; rel < relend; rel++)
1706 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1707 {
1708 case R_PARISC_DLTIND14F:
1709 case R_PARISC_DLTIND14R:
1710 case R_PARISC_DLTIND21L:
1711 r_symndx = ELF32_R_SYM (rel->r_info);
1712 if (r_symndx >= symtab_hdr->sh_info)
1713 {
1714 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1715 if (h->got.refcount > 0)
1716 h->got.refcount -= 1;
1717 }
1718 else if (local_got_refcounts != NULL)
1719 {
1720 if (local_got_refcounts[r_symndx] > 0)
1721 local_got_refcounts[r_symndx] -= 1;
1722 }
1723 break;
1724
1725 case R_PARISC_PCREL12F:
1726 case R_PARISC_PCREL17C:
1727 case R_PARISC_PCREL17F:
1728 case R_PARISC_PCREL22F:
1729 r_symndx = ELF32_R_SYM (rel->r_info);
1730 if (r_symndx >= symtab_hdr->sh_info)
1731 {
1732 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1733 if (h->plt.refcount > 0)
1734 h->plt.refcount -= 1;
1735 }
1736 break;
1737
1738 case R_PARISC_PLABEL14R:
1739 case R_PARISC_PLABEL21L:
1740 case R_PARISC_PLABEL32:
1741 r_symndx = ELF32_R_SYM (rel->r_info);
1742 if (r_symndx >= symtab_hdr->sh_info)
1743 {
1744 struct elf32_hppa_link_hash_entry *eh;
1745 struct elf32_hppa_dyn_reloc_entry **pp;
1746 struct elf32_hppa_dyn_reloc_entry *p;
1747
1748 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1749
1750 if (h->plt.refcount > 0)
1751 h->plt.refcount -= 1;
1752
1753 eh = (struct elf32_hppa_link_hash_entry *) h;
1754
1755 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1756 if (p->sec == sec)
1757 {
1758 #if RELATIVE_DYNRELOCS
1759 if (!IS_ABSOLUTE_RELOC (rtype))
1760 p->relative_count -= 1;
1761 #endif
1762 p->count -= 1;
1763 if (p->count == 0)
1764 *pp = p->next;
1765 break;
1766 }
1767 }
1768 else if (local_plt_refcounts != NULL)
1769 {
1770 if (local_plt_refcounts[r_symndx] > 0)
1771 local_plt_refcounts[r_symndx] -= 1;
1772 }
1773 break;
1774
1775 case R_PARISC_DIR32:
1776 r_symndx = ELF32_R_SYM (rel->r_info);
1777 if (r_symndx >= symtab_hdr->sh_info)
1778 {
1779 struct elf32_hppa_link_hash_entry *eh;
1780 struct elf32_hppa_dyn_reloc_entry **pp;
1781 struct elf32_hppa_dyn_reloc_entry *p;
1782
1783 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1784
1785 eh = (struct elf32_hppa_link_hash_entry *) h;
1786
1787 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1788 if (p->sec == sec)
1789 {
1790 #if RELATIVE_DYNRELOCS
1791 if (!IS_ABSOLUTE_RELOC (R_PARISC_DIR32))
1792 p->relative_count -= 1;
1793 #endif
1794 p->count -= 1;
1795 if (p->count == 0)
1796 *pp = p->next;
1797 break;
1798 }
1799 }
1800 break;
1801
1802 default:
1803 break;
1804 }
1805
1806 return true;
1807 }
1808
1809 /* Our own version of hide_symbol, so that we can keep plt entries for
1810 plabels. */
1811
1812 static void
1813 elf32_hppa_hide_symbol (info, h, force_local)
1814 struct bfd_link_info *info;
1815 struct elf_link_hash_entry *h;
1816 boolean force_local;
1817 {
1818 if (force_local)
1819 {
1820 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
1821 if (h->dynindx != -1)
1822 {
1823 h->dynindx = -1;
1824 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1825 h->dynstr_index);
1826 }
1827 }
1828
1829 if (! ((struct elf32_hppa_link_hash_entry *) h)->plabel)
1830 {
1831 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1832 h->plt.offset = (bfd_vma) -1;
1833 }
1834 }
1835
1836 /* This is the condition under which elf32_hppa_finish_dynamic_symbol
1837 will be called from elflink.h. If elflink.h doesn't call our
1838 finish_dynamic_symbol routine, we'll need to do something about
1839 initializing any .plt and .got entries in elf32_hppa_relocate_section. */
1840 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1841 ((DYN) \
1842 && ((INFO)->shared \
1843 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1844 && ((H)->dynindx != -1 \
1845 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1846
1847 /* Adjust a symbol defined by a dynamic object and referenced by a
1848 regular object. The current definition is in some section of the
1849 dynamic object, but we're not including those sections. We have to
1850 change the definition to something the rest of the link can
1851 understand. */
1852
1853 static boolean
1854 elf32_hppa_adjust_dynamic_symbol (info, h)
1855 struct bfd_link_info *info;
1856 struct elf_link_hash_entry *h;
1857 {
1858 struct elf32_hppa_link_hash_table *htab;
1859 struct elf32_hppa_link_hash_entry *eh;
1860 struct elf32_hppa_dyn_reloc_entry *p;
1861 asection *s;
1862 unsigned int power_of_two;
1863
1864 /* If this is a function, put it in the procedure linkage table. We
1865 will fill in the contents of the procedure linkage table later. */
1866 if (h->type == STT_FUNC
1867 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1868 {
1869 if (h->plt.refcount <= 0
1870 || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1871 && h->root.type != bfd_link_hash_defweak
1872 && ! ((struct elf32_hppa_link_hash_entry *) h)->plabel
1873 && (!info->shared || info->symbolic)))
1874 {
1875 /* The .plt entry is not needed when:
1876 a) Garbage collection has removed all references to the
1877 symbol, or
1878 b) We know for certain the symbol is defined in this
1879 object, and it's not a weak definition, nor is the symbol
1880 used by a plabel relocation. Either this object is the
1881 application or we are doing a shared symbolic link. */
1882
1883 /* As a special sop to the hppa ABI, we keep a .plt entry
1884 for functions in sections containing PIC code. */
1885 if (!info->shared
1886 && h->plt.refcount > 0
1887 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1888 && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0)
1889 ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
1890 else
1891 {
1892 h->plt.offset = (bfd_vma) -1;
1893 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1894 }
1895 }
1896
1897 return true;
1898 }
1899 else
1900 h->plt.offset = (bfd_vma) -1;
1901
1902 /* If this is a weak symbol, and there is a real definition, the
1903 processor independent code will have arranged for us to see the
1904 real definition first, and we can just use the same value. */
1905 if (h->weakdef != NULL)
1906 {
1907 if (h->weakdef->root.type != bfd_link_hash_defined
1908 && h->weakdef->root.type != bfd_link_hash_defweak)
1909 abort ();
1910 h->root.u.def.section = h->weakdef->root.u.def.section;
1911 h->root.u.def.value = h->weakdef->root.u.def.value;
1912 return true;
1913 }
1914
1915 /* This is a reference to a symbol defined by a dynamic object which
1916 is not a function. */
1917
1918 /* If we are creating a shared library, we must presume that the
1919 only references to the symbol are via the global offset table.
1920 For such cases we need not do anything here; the relocations will
1921 be handled correctly by relocate_section. */
1922 if (info->shared)
1923 return true;
1924
1925 /* If there are no references to this symbol that do not use the
1926 GOT, we don't need to generate a copy reloc. */
1927 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1928 return true;
1929
1930 eh = (struct elf32_hppa_link_hash_entry *) h;
1931 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1932 {
1933 s = p->sec->output_section;
1934 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1935 break;
1936 }
1937
1938 /* If we didn't find any dynamic relocs in read-only sections, then
1939 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1940 if (p == NULL)
1941 {
1942 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1943 return true;
1944 }
1945
1946 /* We must allocate the symbol in our .dynbss section, which will
1947 become part of the .bss section of the executable. There will be
1948 an entry for this symbol in the .dynsym section. The dynamic
1949 object will contain position independent code, so all references
1950 from the dynamic object to this symbol will go through the global
1951 offset table. The dynamic linker will use the .dynsym entry to
1952 determine the address it must put in the global offset table, so
1953 both the dynamic object and the regular object will refer to the
1954 same memory location for the variable. */
1955
1956 htab = hppa_link_hash_table (info);
1957
1958 /* We must generate a COPY reloc to tell the dynamic linker to
1959 copy the initial value out of the dynamic object and into the
1960 runtime process image. */
1961 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1962 {
1963 htab->srelbss->_raw_size += sizeof (Elf32_External_Rela);
1964 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1965 }
1966
1967 /* We need to figure out the alignment required for this symbol. I
1968 have no idea how other ELF linkers handle this. */
1969
1970 power_of_two = bfd_log2 (h->size);
1971 if (power_of_two > 3)
1972 power_of_two = 3;
1973
1974 /* Apply the required alignment. */
1975 s = htab->sdynbss;
1976 s->_raw_size = BFD_ALIGN (s->_raw_size,
1977 (bfd_size_type) (1 << power_of_two));
1978 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1979 {
1980 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1981 return false;
1982 }
1983
1984 /* Define the symbol as being at this point in the section. */
1985 h->root.u.def.section = s;
1986 h->root.u.def.value = s->_raw_size;
1987
1988 /* Increment the section size to make room for the symbol. */
1989 s->_raw_size += h->size;
1990
1991 return true;
1992 }
1993
1994 /* Called via elf_link_hash_traverse to create .plt entries for an
1995 application that uses statically linked PIC functions. Similar to
1996 the first part of elf32_hppa_adjust_dynamic_symbol. */
1997
1998 static boolean
1999 mark_PIC_calls (h, inf)
2000 struct elf_link_hash_entry *h;
2001 PTR inf ATTRIBUTE_UNUSED;
2002 {
2003 if (h->root.type == bfd_link_hash_warning)
2004 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2005
2006 if (! (h->plt.refcount > 0
2007 && (h->root.type == bfd_link_hash_defined
2008 || h->root.type == bfd_link_hash_defweak)
2009 && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0))
2010 {
2011 h->plt.offset = (bfd_vma) -1;
2012 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2013 return true;
2014 }
2015
2016 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
2017 ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
2018
2019 return true;
2020 }
2021
2022 /* Allocate space in the .plt for entries that won't have relocations.
2023 ie. pic_call and plabel entries. */
2024
2025 static boolean
2026 allocate_plt_static (h, inf)
2027 struct elf_link_hash_entry *h;
2028 PTR inf;
2029 {
2030 struct bfd_link_info *info;
2031 struct elf32_hppa_link_hash_table *htab;
2032 asection *s;
2033
2034 if (h->root.type == bfd_link_hash_indirect)
2035 return true;
2036
2037 if (h->root.type == bfd_link_hash_warning)
2038 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2039
2040 info = (struct bfd_link_info *) inf;
2041 htab = hppa_link_hash_table (info);
2042 if (((struct elf32_hppa_link_hash_entry *) h)->pic_call)
2043 {
2044 /* Make an entry in the .plt section for non-pic code that is
2045 calling pic code. */
2046 ((struct elf32_hppa_link_hash_entry *) h)->plabel = 0;
2047 s = htab->splt;
2048 h->plt.offset = s->_raw_size;
2049 s->_raw_size += PLT_ENTRY_SIZE;
2050 }
2051 else if (htab->elf.dynamic_sections_created
2052 && h->plt.refcount > 0)
2053 {
2054 /* Make sure this symbol is output as a dynamic symbol.
2055 Undefined weak syms won't yet be marked as dynamic. */
2056 if (h->dynindx == -1
2057 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
2058 && h->type != STT_PARISC_MILLI)
2059 {
2060 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2061 return false;
2062 }
2063
2064 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
2065 {
2066 /* Allocate these later. From this point on, h->plabel
2067 means that the plt entry is only used by a plabel.
2068 We'll be using a normal plt entry for this symbol, so
2069 clear the plabel indicator. */
2070 ((struct elf32_hppa_link_hash_entry *) h)->plabel = 0;
2071 }
2072 else if (((struct elf32_hppa_link_hash_entry *) h)->plabel)
2073 {
2074 /* Make an entry in the .plt section for plabel references
2075 that won't have a .plt entry for other reasons. */
2076 s = htab->splt;
2077 h->plt.offset = s->_raw_size;
2078 s->_raw_size += PLT_ENTRY_SIZE;
2079 }
2080 else
2081 {
2082 /* No .plt entry needed. */
2083 h->plt.offset = (bfd_vma) -1;
2084 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2085 }
2086 }
2087 else
2088 {
2089 h->plt.offset = (bfd_vma) -1;
2090 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2091 }
2092
2093 return true;
2094 }
2095
2096 /* Allocate space in .plt, .got and associated reloc sections for
2097 global syms. */
2098
2099 static boolean
2100 allocate_dynrelocs (h, inf)
2101 struct elf_link_hash_entry *h;
2102 PTR inf;
2103 {
2104 struct bfd_link_info *info;
2105 struct elf32_hppa_link_hash_table *htab;
2106 asection *s;
2107 struct elf32_hppa_link_hash_entry *eh;
2108 struct elf32_hppa_dyn_reloc_entry *p;
2109
2110 if (h->root.type == bfd_link_hash_indirect)
2111 return true;
2112
2113 if (h->root.type == bfd_link_hash_warning)
2114 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2115
2116 info = (struct bfd_link_info *) inf;
2117 htab = hppa_link_hash_table (info);
2118 if (htab->elf.dynamic_sections_created
2119 && h->plt.offset != (bfd_vma) -1
2120 && !((struct elf32_hppa_link_hash_entry *) h)->pic_call
2121 && !((struct elf32_hppa_link_hash_entry *) h)->plabel)
2122 {
2123 /* Make an entry in the .plt section. */
2124 s = htab->splt;
2125 h->plt.offset = s->_raw_size;
2126 s->_raw_size += PLT_ENTRY_SIZE;
2127
2128 /* We also need to make an entry in the .rela.plt section. */
2129 htab->srelplt->_raw_size += sizeof (Elf32_External_Rela);
2130 htab->need_plt_stub = 1;
2131 }
2132
2133 if (h->got.refcount > 0)
2134 {
2135 /* Make sure this symbol is output as a dynamic symbol.
2136 Undefined weak syms won't yet be marked as dynamic. */
2137 if (h->dynindx == -1
2138 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
2139 && h->type != STT_PARISC_MILLI)
2140 {
2141 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2142 return false;
2143 }
2144
2145 s = htab->sgot;
2146 h->got.offset = s->_raw_size;
2147 s->_raw_size += GOT_ENTRY_SIZE;
2148 if (htab->elf.dynamic_sections_created
2149 && (info->shared
2150 || (h->dynindx != -1
2151 && h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0))
2152 {
2153 htab->srelgot->_raw_size += sizeof (Elf32_External_Rela);
2154 }
2155 }
2156 else
2157 h->got.offset = (bfd_vma) -1;
2158
2159 eh = (struct elf32_hppa_link_hash_entry *) h;
2160 if (eh->dyn_relocs == NULL)
2161 return true;
2162
2163 /* If this is a -Bsymbolic shared link, then we need to discard all
2164 space allocated for dynamic pc-relative relocs against symbols
2165 defined in a regular object. For the normal shared case, discard
2166 space for relocs that have become local due to symbol visibility
2167 changes. */
2168 if (info->shared)
2169 {
2170 #if RELATIVE_DYNRELOCS
2171 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
2172 && ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
2173 || info->symbolic))
2174 {
2175 struct elf32_hppa_dyn_reloc_entry **pp;
2176
2177 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2178 {
2179 p->count -= p->relative_count;
2180 p->relative_count = 0;
2181 if (p->count == 0)
2182 *pp = p->next;
2183 else
2184 pp = &p->next;
2185 }
2186 }
2187 #endif
2188 }
2189 else
2190 {
2191 /* For the non-shared case, discard space for relocs against
2192 symbols which turn out to need copy relocs or are not
2193 dynamic. */
2194 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
2195 && (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2196 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2197 || (htab->elf.dynamic_sections_created
2198 && (h->root.type == bfd_link_hash_undefweak
2199 || h->root.type == bfd_link_hash_undefined))))
2200 {
2201 /* Make sure this symbol is output as a dynamic symbol.
2202 Undefined weak syms won't yet be marked as dynamic. */
2203 if (h->dynindx == -1
2204 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
2205 && h->type != STT_PARISC_MILLI)
2206 {
2207 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2208 return false;
2209 }
2210
2211 /* If that succeeded, we know we'll be keeping all the
2212 relocs. */
2213 if (h->dynindx != -1)
2214 goto keep;
2215 }
2216
2217 eh->dyn_relocs = NULL;
2218 return true;
2219
2220 keep: ;
2221 }
2222
2223 /* Finally, allocate space. */
2224 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2225 {
2226 asection *sreloc = elf_section_data (p->sec)->sreloc;
2227 sreloc->_raw_size += p->count * sizeof (Elf32_External_Rela);
2228 }
2229
2230 return true;
2231 }
2232
2233 /* This function is called via elf_link_hash_traverse to force
2234 millicode symbols local so they do not end up as globals in the
2235 dynamic symbol table. We ought to be able to do this in
2236 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2237 for all dynamic symbols. Arguably, this is a bug in
2238 elf_adjust_dynamic_symbol. */
2239
2240 static boolean
2241 clobber_millicode_symbols (h, info)
2242 struct elf_link_hash_entry *h;
2243 struct bfd_link_info *info;
2244 {
2245 if (h->root.type == bfd_link_hash_warning)
2246 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2247
2248 if (h->type == STT_PARISC_MILLI
2249 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
2250 {
2251 elf32_hppa_hide_symbol (info, h, true);
2252 }
2253 return true;
2254 }
2255
2256 /* Find any dynamic relocs that apply to read-only sections. */
2257
2258 static boolean
2259 readonly_dynrelocs (h, inf)
2260 struct elf_link_hash_entry *h;
2261 PTR inf;
2262 {
2263 struct elf32_hppa_link_hash_entry *eh;
2264 struct elf32_hppa_dyn_reloc_entry *p;
2265
2266 if (h->root.type == bfd_link_hash_warning)
2267 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2268
2269 eh = (struct elf32_hppa_link_hash_entry *) h;
2270 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2271 {
2272 asection *s = p->sec->output_section;
2273
2274 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2275 {
2276 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2277
2278 info->flags |= DF_TEXTREL;
2279
2280 /* Not an error, just cut short the traversal. */
2281 return false;
2282 }
2283 }
2284 return true;
2285 }
2286
2287 /* Set the sizes of the dynamic sections. */
2288
2289 static boolean
2290 elf32_hppa_size_dynamic_sections (output_bfd, info)
2291 bfd *output_bfd ATTRIBUTE_UNUSED;
2292 struct bfd_link_info *info;
2293 {
2294 struct elf32_hppa_link_hash_table *htab;
2295 bfd *dynobj;
2296 bfd *ibfd;
2297 asection *s;
2298 boolean relocs;
2299
2300 htab = hppa_link_hash_table (info);
2301 dynobj = htab->elf.dynobj;
2302 if (dynobj == NULL)
2303 abort ();
2304
2305 if (htab->elf.dynamic_sections_created)
2306 {
2307 /* Set the contents of the .interp section to the interpreter. */
2308 if (! info->shared)
2309 {
2310 s = bfd_get_section_by_name (dynobj, ".interp");
2311 if (s == NULL)
2312 abort ();
2313 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
2314 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2315 }
2316
2317 /* Force millicode symbols local. */
2318 elf_link_hash_traverse (&htab->elf,
2319 clobber_millicode_symbols,
2320 info);
2321 }
2322 else
2323 {
2324 /* Run through the function symbols, looking for any that are
2325 PIC, and mark them as needing .plt entries so that %r19 will
2326 be set up. */
2327 if (! info->shared)
2328 elf_link_hash_traverse (&htab->elf, mark_PIC_calls, (PTR) info);
2329 }
2330
2331 /* Set up .got and .plt offsets for local syms, and space for local
2332 dynamic relocs. */
2333 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2334 {
2335 bfd_signed_vma *local_got;
2336 bfd_signed_vma *end_local_got;
2337 bfd_signed_vma *local_plt;
2338 bfd_signed_vma *end_local_plt;
2339 bfd_size_type locsymcount;
2340 Elf_Internal_Shdr *symtab_hdr;
2341 asection *srel;
2342
2343 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2344 continue;
2345
2346 for (s = ibfd->sections; s != NULL; s = s->next)
2347 {
2348 struct elf32_hppa_dyn_reloc_entry *p;
2349
2350 for (p = ((struct elf32_hppa_dyn_reloc_entry *)
2351 elf_section_data (s)->local_dynrel);
2352 p != NULL;
2353 p = p->next)
2354 {
2355 if (!bfd_is_abs_section (p->sec)
2356 && bfd_is_abs_section (p->sec->output_section))
2357 {
2358 /* Input section has been discarded, either because
2359 it is a copy of a linkonce section or due to
2360 linker script /DISCARD/, so we'll be discarding
2361 the relocs too. */
2362 }
2363 else if (p->count != 0)
2364 {
2365 srel = elf_section_data (p->sec)->sreloc;
2366 srel->_raw_size += p->count * sizeof (Elf32_External_Rela);
2367 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
2368 info->flags |= DF_TEXTREL;
2369 }
2370 }
2371 }
2372
2373 local_got = elf_local_got_refcounts (ibfd);
2374 if (!local_got)
2375 continue;
2376
2377 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2378 locsymcount = symtab_hdr->sh_info;
2379 end_local_got = local_got + locsymcount;
2380 s = htab->sgot;
2381 srel = htab->srelgot;
2382 for (; local_got < end_local_got; ++local_got)
2383 {
2384 if (*local_got > 0)
2385 {
2386 *local_got = s->_raw_size;
2387 s->_raw_size += GOT_ENTRY_SIZE;
2388 if (info->shared)
2389 srel->_raw_size += sizeof (Elf32_External_Rela);
2390 }
2391 else
2392 *local_got = (bfd_vma) -1;
2393 }
2394
2395 local_plt = end_local_got;
2396 end_local_plt = local_plt + locsymcount;
2397 if (! htab->elf.dynamic_sections_created)
2398 {
2399 /* Won't be used, but be safe. */
2400 for (; local_plt < end_local_plt; ++local_plt)
2401 *local_plt = (bfd_vma) -1;
2402 }
2403 else
2404 {
2405 s = htab->splt;
2406 srel = htab->srelplt;
2407 for (; local_plt < end_local_plt; ++local_plt)
2408 {
2409 if (*local_plt > 0)
2410 {
2411 *local_plt = s->_raw_size;
2412 s->_raw_size += PLT_ENTRY_SIZE;
2413 if (info->shared)
2414 srel->_raw_size += sizeof (Elf32_External_Rela);
2415 }
2416 else
2417 *local_plt = (bfd_vma) -1;
2418 }
2419 }
2420 }
2421
2422 /* Do all the .plt entries without relocs first. The dynamic linker
2423 uses the last .plt reloc to find the end of the .plt (and hence
2424 the start of the .got) for lazy linking. */
2425 elf_link_hash_traverse (&htab->elf, allocate_plt_static, (PTR) info);
2426
2427 /* Allocate global sym .plt and .got entries, and space for global
2428 sym dynamic relocs. */
2429 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
2430
2431 /* The check_relocs and adjust_dynamic_symbol entry points have
2432 determined the sizes of the various dynamic sections. Allocate
2433 memory for them. */
2434 relocs = false;
2435 for (s = dynobj->sections; s != NULL; s = s->next)
2436 {
2437 if ((s->flags & SEC_LINKER_CREATED) == 0)
2438 continue;
2439
2440 if (s == htab->splt)
2441 {
2442 if (htab->need_plt_stub)
2443 {
2444 /* Make space for the plt stub at the end of the .plt
2445 section. We want this stub right at the end, up
2446 against the .got section. */
2447 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2448 int pltalign = bfd_section_alignment (dynobj, s);
2449 bfd_size_type mask;
2450
2451 if (gotalign > pltalign)
2452 bfd_set_section_alignment (dynobj, s, gotalign);
2453 mask = ((bfd_size_type) 1 << gotalign) - 1;
2454 s->_raw_size = (s->_raw_size + sizeof (plt_stub) + mask) & ~mask;
2455 }
2456 }
2457 else if (s == htab->sgot)
2458 ;
2459 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
2460 {
2461 if (s->_raw_size != 0)
2462 {
2463 /* Remember whether there are any reloc sections other
2464 than .rela.plt. */
2465 if (s != htab->srelplt)
2466 relocs = true;
2467
2468 /* We use the reloc_count field as a counter if we need
2469 to copy relocs into the output file. */
2470 s->reloc_count = 0;
2471 }
2472 }
2473 else
2474 {
2475 /* It's not one of our sections, so don't allocate space. */
2476 continue;
2477 }
2478
2479 if (s->_raw_size == 0)
2480 {
2481 /* If we don't need this section, strip it from the
2482 output file. This is mostly to handle .rela.bss and
2483 .rela.plt. We must create both sections in
2484 create_dynamic_sections, because they must be created
2485 before the linker maps input sections to output
2486 sections. The linker does that before
2487 adjust_dynamic_symbol is called, and it is that
2488 function which decides whether anything needs to go
2489 into these sections. */
2490 _bfd_strip_section_from_output (info, s);
2491 continue;
2492 }
2493
2494 /* Allocate memory for the section contents. Zero it, because
2495 we may not fill in all the reloc sections. */
2496 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
2497 if (s->contents == NULL && s->_raw_size != 0)
2498 return false;
2499 }
2500
2501 if (htab->elf.dynamic_sections_created)
2502 {
2503 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2504 actually has nothing to do with the PLT, it is how we
2505 communicate the LTP value of a load module to the dynamic
2506 linker. */
2507 #define add_dynamic_entry(TAG, VAL) \
2508 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
2509
2510 if (!add_dynamic_entry (DT_PLTGOT, 0))
2511 return false;
2512
2513 /* Add some entries to the .dynamic section. We fill in the
2514 values later, in elf32_hppa_finish_dynamic_sections, but we
2515 must add the entries now so that we get the correct size for
2516 the .dynamic section. The DT_DEBUG entry is filled in by the
2517 dynamic linker and used by the debugger. */
2518 if (!info->shared)
2519 {
2520 if (!add_dynamic_entry (DT_DEBUG, 0))
2521 return false;
2522 }
2523
2524 if (htab->srelplt->_raw_size != 0)
2525 {
2526 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2527 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2528 || !add_dynamic_entry (DT_JMPREL, 0))
2529 return false;
2530 }
2531
2532 if (relocs)
2533 {
2534 if (!add_dynamic_entry (DT_RELA, 0)
2535 || !add_dynamic_entry (DT_RELASZ, 0)
2536 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2537 return false;
2538
2539 /* If any dynamic relocs apply to a read-only section,
2540 then we need a DT_TEXTREL entry. */
2541 if ((info->flags & DF_TEXTREL) == 0)
2542 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs,
2543 (PTR) info);
2544
2545 if ((info->flags & DF_TEXTREL) != 0)
2546 {
2547 if (!add_dynamic_entry (DT_TEXTREL, 0))
2548 return false;
2549 }
2550 }
2551 }
2552 #undef add_dynamic_entry
2553
2554 return true;
2555 }
2556
2557 /* External entry points for sizing and building linker stubs. */
2558
2559 /* Set up various things so that we can make a list of input sections
2560 for each output section included in the link. Returns -1 on error,
2561 0 when no stubs will be needed, and 1 on success. */
2562
2563 int
2564 elf32_hppa_setup_section_lists (output_bfd, info)
2565 bfd *output_bfd;
2566 struct bfd_link_info *info;
2567 {
2568 bfd *input_bfd;
2569 unsigned int bfd_count;
2570 int top_id, top_index;
2571 asection *section;
2572 asection **input_list, **list;
2573 bfd_size_type amt;
2574 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2575
2576 if (htab->elf.root.creator->flavour != bfd_target_elf_flavour)
2577 return 0;
2578
2579 /* Count the number of input BFDs and find the top input section id. */
2580 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2581 input_bfd != NULL;
2582 input_bfd = input_bfd->link_next)
2583 {
2584 bfd_count += 1;
2585 for (section = input_bfd->sections;
2586 section != NULL;
2587 section = section->next)
2588 {
2589 if (top_id < section->id)
2590 top_id = section->id;
2591 }
2592 }
2593 htab->bfd_count = bfd_count;
2594
2595 amt = sizeof (struct map_stub) * (top_id + 1);
2596 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
2597 if (htab->stub_group == NULL)
2598 return -1;
2599
2600 /* We can't use output_bfd->section_count here to find the top output
2601 section index as some sections may have been removed, and
2602 _bfd_strip_section_from_output doesn't renumber the indices. */
2603 for (section = output_bfd->sections, top_index = 0;
2604 section != NULL;
2605 section = section->next)
2606 {
2607 if (top_index < section->index)
2608 top_index = section->index;
2609 }
2610
2611 htab->top_index = top_index;
2612 amt = sizeof (asection *) * (top_index + 1);
2613 input_list = (asection **) bfd_malloc (amt);
2614 htab->input_list = input_list;
2615 if (input_list == NULL)
2616 return -1;
2617
2618 /* For sections we aren't interested in, mark their entries with a
2619 value we can check later. */
2620 list = input_list + top_index;
2621 do
2622 *list = bfd_abs_section_ptr;
2623 while (list-- != input_list);
2624
2625 for (section = output_bfd->sections;
2626 section != NULL;
2627 section = section->next)
2628 {
2629 if ((section->flags & SEC_CODE) != 0)
2630 input_list[section->index] = NULL;
2631 }
2632
2633 return 1;
2634 }
2635
2636 /* The linker repeatedly calls this function for each input section,
2637 in the order that input sections are linked into output sections.
2638 Build lists of input sections to determine groupings between which
2639 we may insert linker stubs. */
2640
2641 void
2642 elf32_hppa_next_input_section (info, isec)
2643 struct bfd_link_info *info;
2644 asection *isec;
2645 {
2646 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2647
2648 if (isec->output_section->index <= htab->top_index)
2649 {
2650 asection **list = htab->input_list + isec->output_section->index;
2651 if (*list != bfd_abs_section_ptr)
2652 {
2653 /* Steal the link_sec pointer for our list. */
2654 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2655 /* This happens to make the list in reverse order,
2656 which is what we want. */
2657 PREV_SEC (isec) = *list;
2658 *list = isec;
2659 }
2660 }
2661 }
2662
2663 /* See whether we can group stub sections together. Grouping stub
2664 sections may result in fewer stubs. More importantly, we need to
2665 put all .init* and .fini* stubs at the beginning of the .init or
2666 .fini output sections respectively, because glibc splits the
2667 _init and _fini functions into multiple parts. Putting a stub in
2668 the middle of a function is not a good idea. */
2669
2670 static void
2671 group_sections (htab, stub_group_size, stubs_always_before_branch)
2672 struct elf32_hppa_link_hash_table *htab;
2673 bfd_size_type stub_group_size;
2674 boolean stubs_always_before_branch;
2675 {
2676 asection **list = htab->input_list + htab->top_index;
2677 do
2678 {
2679 asection *tail = *list;
2680 if (tail == bfd_abs_section_ptr)
2681 continue;
2682 while (tail != NULL)
2683 {
2684 asection *curr;
2685 asection *prev;
2686 bfd_size_type total;
2687
2688 curr = tail;
2689 if (tail->_cooked_size)
2690 total = tail->_cooked_size;
2691 else
2692 total = tail->_raw_size;
2693 while ((prev = PREV_SEC (curr)) != NULL
2694 && ((total += curr->output_offset - prev->output_offset)
2695 < stub_group_size))
2696 curr = prev;
2697
2698 /* OK, the size from the start of CURR to the end is less
2699 than 240000 bytes and thus can be handled by one stub
2700 section. (or the tail section is itself larger than
2701 240000 bytes, in which case we may be toast.)
2702 We should really be keeping track of the total size of
2703 stubs added here, as stubs contribute to the final output
2704 section size. That's a little tricky, and this way will
2705 only break if stubs added total more than 22144 bytes, or
2706 2768 long branch stubs. It seems unlikely for more than
2707 2768 different functions to be called, especially from
2708 code only 240000 bytes long. This limit used to be
2709 250000, but c++ code tends to generate lots of little
2710 functions, and sometimes violated the assumption. */
2711 do
2712 {
2713 prev = PREV_SEC (tail);
2714 /* Set up this stub group. */
2715 htab->stub_group[tail->id].link_sec = curr;
2716 }
2717 while (tail != curr && (tail = prev) != NULL);
2718
2719 /* But wait, there's more! Input sections up to 240000
2720 bytes before the stub section can be handled by it too. */
2721 if (!stubs_always_before_branch)
2722 {
2723 total = 0;
2724 while (prev != NULL
2725 && ((total += tail->output_offset - prev->output_offset)
2726 < stub_group_size))
2727 {
2728 tail = prev;
2729 prev = PREV_SEC (tail);
2730 htab->stub_group[tail->id].link_sec = curr;
2731 }
2732 }
2733 tail = prev;
2734 }
2735 }
2736 while (list-- != htab->input_list);
2737 free (htab->input_list);
2738 #undef PREV_SEC
2739 }
2740
2741 /* Read in all local syms for all input bfds, and create hash entries
2742 for export stubs if we are building a multi-subspace shared lib.
2743 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2744
2745 static int
2746 get_local_syms (output_bfd, input_bfd, info)
2747 bfd *output_bfd;
2748 bfd *input_bfd;
2749 struct bfd_link_info *info;
2750 {
2751 unsigned int bfd_indx;
2752 Elf_Internal_Sym *local_syms, **all_local_syms;
2753 int stub_changed = 0;
2754 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2755
2756 /* We want to read in symbol extension records only once. To do this
2757 we need to read in the local symbols in parallel and save them for
2758 later use; so hold pointers to the local symbols in an array. */
2759 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2760 all_local_syms = (Elf_Internal_Sym **) bfd_zmalloc (amt);
2761 htab->all_local_syms = all_local_syms;
2762 if (all_local_syms == NULL)
2763 return -1;
2764
2765 /* Walk over all the input BFDs, swapping in local symbols.
2766 If we are creating a shared library, create hash entries for the
2767 export stubs. */
2768 for (bfd_indx = 0;
2769 input_bfd != NULL;
2770 input_bfd = input_bfd->link_next, bfd_indx++)
2771 {
2772 Elf_Internal_Shdr *symtab_hdr;
2773 Elf_Internal_Shdr *shndx_hdr;
2774 Elf_Internal_Sym *isym;
2775 Elf32_External_Sym *ext_syms, *esym, *end_sy;
2776 Elf_External_Sym_Shndx *shndx_buf, *shndx;
2777 bfd_size_type sec_size;
2778
2779 /* We'll need the symbol table in a second. */
2780 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2781 if (symtab_hdr->sh_info == 0)
2782 continue;
2783
2784 /* We need an array of the local symbols attached to the input bfd.
2785 Unfortunately, we're going to have to read & swap them in. */
2786 sec_size = symtab_hdr->sh_info;
2787 sec_size *= sizeof (Elf_Internal_Sym);
2788 local_syms = (Elf_Internal_Sym *) bfd_malloc (sec_size);
2789 if (local_syms == NULL)
2790 return -1;
2791
2792 all_local_syms[bfd_indx] = local_syms;
2793 sec_size = symtab_hdr->sh_info;
2794 sec_size *= sizeof (Elf32_External_Sym);
2795 ext_syms = (Elf32_External_Sym *) bfd_malloc (sec_size);
2796 if (ext_syms == NULL)
2797 return -1;
2798
2799 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
2800 || bfd_bread ((PTR) ext_syms, sec_size, input_bfd) != sec_size)
2801 {
2802 error_ret_free_ext_syms:
2803 free (ext_syms);
2804 return -1;
2805 }
2806
2807 shndx_buf = NULL;
2808 shndx_hdr = &elf_tdata (input_bfd)->symtab_shndx_hdr;
2809 if (shndx_hdr->sh_size != 0)
2810 {
2811 sec_size = symtab_hdr->sh_info;
2812 sec_size *= sizeof (Elf_External_Sym_Shndx);
2813 shndx_buf = (Elf_External_Sym_Shndx *) bfd_malloc (sec_size);
2814 if (shndx_buf == NULL)
2815 goto error_ret_free_ext_syms;
2816
2817 if (bfd_seek (input_bfd, shndx_hdr->sh_offset, SEEK_SET) != 0
2818 || bfd_bread ((PTR) shndx_buf, sec_size, input_bfd) != sec_size)
2819 {
2820 free (shndx_buf);
2821 goto error_ret_free_ext_syms;
2822 }
2823 }
2824
2825 /* Swap the local symbols in. */
2826 for (esym = ext_syms, end_sy = esym + symtab_hdr->sh_info,
2827 isym = local_syms, shndx = shndx_buf;
2828 esym < end_sy;
2829 esym++, isym++, shndx = (shndx ? shndx + 1 : NULL))
2830 bfd_elf32_swap_symbol_in (input_bfd, esym, shndx, isym);
2831
2832 /* Now we can free the external symbols. */
2833 free (shndx_buf);
2834 free (ext_syms);
2835
2836 if (info->shared && htab->multi_subspace)
2837 {
2838 struct elf_link_hash_entry **sym_hashes;
2839 struct elf_link_hash_entry **end_hashes;
2840 unsigned int symcount;
2841
2842 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2843 - symtab_hdr->sh_info);
2844 sym_hashes = elf_sym_hashes (input_bfd);
2845 end_hashes = sym_hashes + symcount;
2846
2847 /* Look through the global syms for functions; We need to
2848 build export stubs for all globally visible functions. */
2849 for (; sym_hashes < end_hashes; sym_hashes++)
2850 {
2851 struct elf32_hppa_link_hash_entry *hash;
2852
2853 hash = (struct elf32_hppa_link_hash_entry *) *sym_hashes;
2854
2855 while (hash->elf.root.type == bfd_link_hash_indirect
2856 || hash->elf.root.type == bfd_link_hash_warning)
2857 hash = ((struct elf32_hppa_link_hash_entry *)
2858 hash->elf.root.u.i.link);
2859
2860 /* At this point in the link, undefined syms have been
2861 resolved, so we need to check that the symbol was
2862 defined in this BFD. */
2863 if ((hash->elf.root.type == bfd_link_hash_defined
2864 || hash->elf.root.type == bfd_link_hash_defweak)
2865 && hash->elf.type == STT_FUNC
2866 && hash->elf.root.u.def.section->output_section != NULL
2867 && (hash->elf.root.u.def.section->output_section->owner
2868 == output_bfd)
2869 && hash->elf.root.u.def.section->owner == input_bfd
2870 && (hash->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
2871 && !(hash->elf.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)
2872 && ELF_ST_VISIBILITY (hash->elf.other) == STV_DEFAULT)
2873 {
2874 asection *sec;
2875 const char *stub_name;
2876 struct elf32_hppa_stub_hash_entry *stub_entry;
2877
2878 sec = hash->elf.root.u.def.section;
2879 stub_name = hash->elf.root.root.string;
2880 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
2881 stub_name,
2882 false, false);
2883 if (stub_entry == NULL)
2884 {
2885 stub_entry = hppa_add_stub (stub_name, sec, htab);
2886 if (!stub_entry)
2887 return -1;
2888
2889 stub_entry->target_value = hash->elf.root.u.def.value;
2890 stub_entry->target_section = hash->elf.root.u.def.section;
2891 stub_entry->stub_type = hppa_stub_export;
2892 stub_entry->h = hash;
2893 stub_changed = 1;
2894 }
2895 else
2896 {
2897 (*_bfd_error_handler) (_("%s: duplicate export stub %s"),
2898 bfd_archive_filename (input_bfd),
2899 stub_name);
2900 }
2901 }
2902 }
2903 }
2904 }
2905
2906 return stub_changed;
2907 }
2908
2909 /* Determine and set the size of the stub section for a final link.
2910
2911 The basic idea here is to examine all the relocations looking for
2912 PC-relative calls to a target that is unreachable with a "bl"
2913 instruction. */
2914
2915 boolean
2916 elf32_hppa_size_stubs (output_bfd, stub_bfd, info, multi_subspace, group_size,
2917 add_stub_section, layout_sections_again)
2918 bfd *output_bfd;
2919 bfd *stub_bfd;
2920 struct bfd_link_info *info;
2921 boolean multi_subspace;
2922 bfd_signed_vma group_size;
2923 asection * (*add_stub_section) PARAMS ((const char *, asection *));
2924 void (*layout_sections_again) PARAMS ((void));
2925 {
2926 bfd_size_type stub_group_size;
2927 boolean stubs_always_before_branch;
2928 boolean stub_changed;
2929 boolean ret = 0;
2930 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2931
2932 /* Stash our params away. */
2933 htab->stub_bfd = stub_bfd;
2934 htab->multi_subspace = multi_subspace;
2935 htab->add_stub_section = add_stub_section;
2936 htab->layout_sections_again = layout_sections_again;
2937 stubs_always_before_branch = group_size < 0;
2938 if (group_size < 0)
2939 stub_group_size = -group_size;
2940 else
2941 stub_group_size = group_size;
2942 if (stub_group_size == 1)
2943 {
2944 /* Default values. */
2945 stub_group_size = 7680000;
2946 if (htab->has_17bit_branch || htab->multi_subspace)
2947 stub_group_size = 240000;
2948 if (htab->has_12bit_branch)
2949 stub_group_size = 7500;
2950 }
2951
2952 group_sections (htab, stub_group_size, stubs_always_before_branch);
2953
2954 switch (get_local_syms (output_bfd, info->input_bfds, info))
2955 {
2956 default:
2957 if (htab->all_local_syms)
2958 goto error_ret_free_local;
2959 return false;
2960
2961 case 0:
2962 stub_changed = false;
2963 break;
2964
2965 case 1:
2966 stub_changed = true;
2967 break;
2968 }
2969
2970 while (1)
2971 {
2972 bfd *input_bfd;
2973 unsigned int bfd_indx;
2974 asection *stub_sec;
2975
2976 for (input_bfd = info->input_bfds, bfd_indx = 0;
2977 input_bfd != NULL;
2978 input_bfd = input_bfd->link_next, bfd_indx++)
2979 {
2980 Elf_Internal_Shdr *symtab_hdr;
2981 asection *section;
2982 Elf_Internal_Sym *local_syms;
2983
2984 /* We'll need the symbol table in a second. */
2985 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2986 if (symtab_hdr->sh_info == 0)
2987 continue;
2988
2989 local_syms = htab->all_local_syms[bfd_indx];
2990
2991 /* Walk over each section attached to the input bfd. */
2992 for (section = input_bfd->sections;
2993 section != NULL;
2994 section = section->next)
2995 {
2996 Elf_Internal_Shdr *input_rel_hdr;
2997 Elf32_External_Rela *external_relocs, *erelaend, *erela;
2998 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2999 bfd_size_type amt;
3000
3001 /* If there aren't any relocs, then there's nothing more
3002 to do. */
3003 if ((section->flags & SEC_RELOC) == 0
3004 || section->reloc_count == 0)
3005 continue;
3006
3007 /* If this section is a link-once section that will be
3008 discarded, then don't create any stubs. */
3009 if (section->output_section == NULL
3010 || section->output_section->owner != output_bfd)
3011 continue;
3012
3013 /* Allocate space for the external relocations. */
3014 amt = section->reloc_count;
3015 amt *= sizeof (Elf32_External_Rela);
3016 external_relocs = (Elf32_External_Rela *) bfd_malloc (amt);
3017 if (external_relocs == NULL)
3018 {
3019 goto error_ret_free_local;
3020 }
3021
3022 /* Likewise for the internal relocations. */
3023 amt = section->reloc_count;
3024 amt *= sizeof (Elf_Internal_Rela);
3025 internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
3026 if (internal_relocs == NULL)
3027 {
3028 free (external_relocs);
3029 goto error_ret_free_local;
3030 }
3031
3032 /* Read in the external relocs. */
3033 input_rel_hdr = &elf_section_data (section)->rel_hdr;
3034 if (bfd_seek (input_bfd, input_rel_hdr->sh_offset, SEEK_SET) != 0
3035 || bfd_bread ((PTR) external_relocs,
3036 input_rel_hdr->sh_size,
3037 input_bfd) != input_rel_hdr->sh_size)
3038 {
3039 free (external_relocs);
3040 error_ret_free_internal:
3041 free (internal_relocs);
3042 goto error_ret_free_local;
3043 }
3044
3045 /* Swap in the relocs. */
3046 erela = external_relocs;
3047 erelaend = erela + section->reloc_count;
3048 irela = internal_relocs;
3049 for (; erela < erelaend; erela++, irela++)
3050 bfd_elf32_swap_reloca_in (input_bfd, erela, irela);
3051
3052 /* We're done with the external relocs, free them. */
3053 free (external_relocs);
3054
3055 /* Now examine each relocation. */
3056 irela = internal_relocs;
3057 irelaend = irela + section->reloc_count;
3058 for (; irela < irelaend; irela++)
3059 {
3060 unsigned int r_type, r_indx;
3061 enum elf32_hppa_stub_type stub_type;
3062 struct elf32_hppa_stub_hash_entry *stub_entry;
3063 asection *sym_sec;
3064 bfd_vma sym_value;
3065 bfd_vma destination;
3066 struct elf32_hppa_link_hash_entry *hash;
3067 char *stub_name;
3068 const asection *id_sec;
3069
3070 r_type = ELF32_R_TYPE (irela->r_info);
3071 r_indx = ELF32_R_SYM (irela->r_info);
3072
3073 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3074 {
3075 bfd_set_error (bfd_error_bad_value);
3076 goto error_ret_free_internal;
3077 }
3078
3079 /* Only look for stubs on call instructions. */
3080 if (r_type != (unsigned int) R_PARISC_PCREL12F
3081 && r_type != (unsigned int) R_PARISC_PCREL17F
3082 && r_type != (unsigned int) R_PARISC_PCREL22F)
3083 continue;
3084
3085 /* Now determine the call target, its name, value,
3086 section. */
3087 sym_sec = NULL;
3088 sym_value = 0;
3089 destination = 0;
3090 hash = NULL;
3091 if (r_indx < symtab_hdr->sh_info)
3092 {
3093 /* It's a local symbol. */
3094 Elf_Internal_Sym *sym;
3095 Elf_Internal_Shdr *hdr;
3096
3097 sym = local_syms + r_indx;
3098 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
3099 sym_sec = hdr->bfd_section;
3100 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
3101 sym_value = sym->st_value;
3102 destination = (sym_value + irela->r_addend
3103 + sym_sec->output_offset
3104 + sym_sec->output_section->vma);
3105 }
3106 else
3107 {
3108 /* It's an external symbol. */
3109 int e_indx;
3110
3111 e_indx = r_indx - symtab_hdr->sh_info;
3112 hash = ((struct elf32_hppa_link_hash_entry *)
3113 elf_sym_hashes (input_bfd)[e_indx]);
3114
3115 while (hash->elf.root.type == bfd_link_hash_indirect
3116 || hash->elf.root.type == bfd_link_hash_warning)
3117 hash = ((struct elf32_hppa_link_hash_entry *)
3118 hash->elf.root.u.i.link);
3119
3120 if (hash->elf.root.type == bfd_link_hash_defined
3121 || hash->elf.root.type == bfd_link_hash_defweak)
3122 {
3123 sym_sec = hash->elf.root.u.def.section;
3124 sym_value = hash->elf.root.u.def.value;
3125 if (sym_sec->output_section != NULL)
3126 destination = (sym_value + irela->r_addend
3127 + sym_sec->output_offset
3128 + sym_sec->output_section->vma);
3129 }
3130 else if (hash->elf.root.type == bfd_link_hash_undefweak)
3131 {
3132 if (! info->shared)
3133 continue;
3134 }
3135 else if (hash->elf.root.type == bfd_link_hash_undefined)
3136 {
3137 if (! (info->shared
3138 && !info->no_undefined
3139 && (ELF_ST_VISIBILITY (hash->elf.other)
3140 == STV_DEFAULT)
3141 && hash->elf.type != STT_PARISC_MILLI))
3142 continue;
3143 }
3144 else
3145 {
3146 bfd_set_error (bfd_error_bad_value);
3147 goto error_ret_free_internal;
3148 }
3149 }
3150
3151 /* Determine what (if any) linker stub is needed. */
3152 stub_type = hppa_type_of_stub (section, irela, hash,
3153 destination);
3154 if (stub_type == hppa_stub_none)
3155 continue;
3156
3157 /* Support for grouping stub sections. */
3158 id_sec = htab->stub_group[section->id].link_sec;
3159
3160 /* Get the name of this stub. */
3161 stub_name = hppa_stub_name (id_sec, sym_sec, hash, irela);
3162 if (!stub_name)
3163 goto error_ret_free_internal;
3164
3165 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
3166 stub_name,
3167 false, false);
3168 if (stub_entry != NULL)
3169 {
3170 /* The proper stub has already been created. */
3171 free (stub_name);
3172 continue;
3173 }
3174
3175 stub_entry = hppa_add_stub (stub_name, section, htab);
3176 if (stub_entry == NULL)
3177 {
3178 free (stub_name);
3179 goto error_ret_free_local;
3180 }
3181
3182 stub_entry->target_value = sym_value;
3183 stub_entry->target_section = sym_sec;
3184 stub_entry->stub_type = stub_type;
3185 if (info->shared)
3186 {
3187 if (stub_type == hppa_stub_import)
3188 stub_entry->stub_type = hppa_stub_import_shared;
3189 else if (stub_type == hppa_stub_long_branch)
3190 stub_entry->stub_type = hppa_stub_long_branch_shared;
3191 }
3192 stub_entry->h = hash;
3193 stub_changed = true;
3194 }
3195
3196 /* We're done with the internal relocs, free them. */
3197 free (internal_relocs);
3198 }
3199 }
3200
3201 if (!stub_changed)
3202 break;
3203
3204 /* OK, we've added some stubs. Find out the new size of the
3205 stub sections. */
3206 for (stub_sec = htab->stub_bfd->sections;
3207 stub_sec != NULL;
3208 stub_sec = stub_sec->next)
3209 {
3210 stub_sec->_raw_size = 0;
3211 stub_sec->_cooked_size = 0;
3212 }
3213
3214 bfd_hash_traverse (&htab->stub_hash_table, hppa_size_one_stub, htab);
3215
3216 /* Ask the linker to do its stuff. */
3217 (*htab->layout_sections_again) ();
3218 stub_changed = false;
3219 }
3220
3221 ret = true;
3222
3223 error_ret_free_local:
3224 while (htab->bfd_count-- > 0)
3225 if (htab->all_local_syms[htab->bfd_count])
3226 free (htab->all_local_syms[htab->bfd_count]);
3227 free (htab->all_local_syms);
3228
3229 return ret;
3230 }
3231
3232 /* For a final link, this function is called after we have sized the
3233 stubs to provide a value for __gp. */
3234
3235 boolean
3236 elf32_hppa_set_gp (abfd, info)
3237 bfd *abfd;
3238 struct bfd_link_info *info;
3239 {
3240 struct bfd_link_hash_entry *h;
3241 asection *sec = NULL;
3242 bfd_vma gp_val = 0;
3243 struct elf32_hppa_link_hash_table *htab;
3244
3245 htab = hppa_link_hash_table (info);
3246 h = bfd_link_hash_lookup (&htab->elf.root, "$global$", false, false, false);
3247
3248 if (h != NULL
3249 && (h->type == bfd_link_hash_defined
3250 || h->type == bfd_link_hash_defweak))
3251 {
3252 gp_val = h->u.def.value;
3253 sec = h->u.def.section;
3254 }
3255 else
3256 {
3257 asection *splt;
3258 asection *sgot;
3259
3260 if (htab->elf.root.creator->flavour == bfd_target_elf_flavour)
3261 {
3262 splt = htab->splt;
3263 sgot = htab->sgot;
3264 }
3265 else
3266 {
3267 /* If we're not elf, look up the output sections in the
3268 hope we may actually find them. */
3269 splt = bfd_get_section_by_name (abfd, ".plt");
3270 sgot = bfd_get_section_by_name (abfd, ".got");
3271 }
3272
3273 /* Choose to point our LTP at, in this order, one of .plt, .got,
3274 or .data, if these sections exist. In the case of choosing
3275 .plt try to make the LTP ideal for addressing anywhere in the
3276 .plt or .got with a 14 bit signed offset. Typically, the end
3277 of the .plt is the start of the .got, so choose .plt + 0x2000
3278 if either the .plt or .got is larger than 0x2000. If both
3279 the .plt and .got are smaller than 0x2000, choose the end of
3280 the .plt section. */
3281 sec = splt;
3282 if (sec != NULL)
3283 {
3284 gp_val = sec->_raw_size;
3285 if (gp_val > 0x2000 || (sgot && sgot->_raw_size > 0x2000))
3286 {
3287 gp_val = 0x2000;
3288 }
3289 }
3290 else
3291 {
3292 sec = sgot;
3293 if (sec != NULL)
3294 {
3295 /* We know we don't have a .plt. If .got is large,
3296 offset our LTP. */
3297 if (sec->_raw_size > 0x2000)
3298 gp_val = 0x2000;
3299 }
3300 else
3301 {
3302 /* No .plt or .got. Who cares what the LTP is? */
3303 sec = bfd_get_section_by_name (abfd, ".data");
3304 }
3305 }
3306
3307 if (h != NULL)
3308 {
3309 h->type = bfd_link_hash_defined;
3310 h->u.def.value = gp_val;
3311 if (sec != NULL)
3312 h->u.def.section = sec;
3313 else
3314 h->u.def.section = bfd_abs_section_ptr;
3315 }
3316 }
3317
3318 if (sec != NULL && sec->output_section != NULL)
3319 gp_val += sec->output_section->vma + sec->output_offset;
3320
3321 elf_gp (abfd) = gp_val;
3322 return true;
3323 }
3324
3325 /* Build all the stubs associated with the current output file. The
3326 stubs are kept in a hash table attached to the main linker hash
3327 table. We also set up the .plt entries for statically linked PIC
3328 functions here. This function is called via hppaelf_finish in the
3329 linker. */
3330
3331 boolean
3332 elf32_hppa_build_stubs (info)
3333 struct bfd_link_info *info;
3334 {
3335 asection *stub_sec;
3336 struct bfd_hash_table *table;
3337 struct elf32_hppa_link_hash_table *htab;
3338
3339 htab = hppa_link_hash_table (info);
3340
3341 for (stub_sec = htab->stub_bfd->sections;
3342 stub_sec != NULL;
3343 stub_sec = stub_sec->next)
3344 {
3345 bfd_size_type size;
3346
3347 /* Allocate memory to hold the linker stubs. */
3348 size = stub_sec->_raw_size;
3349 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
3350 if (stub_sec->contents == NULL && size != 0)
3351 return false;
3352 stub_sec->_raw_size = 0;
3353 }
3354
3355 /* Build the stubs as directed by the stub hash table. */
3356 table = &htab->stub_hash_table;
3357 bfd_hash_traverse (table, hppa_build_one_stub, info);
3358
3359 return true;
3360 }
3361
3362 /* Perform a final link. */
3363
3364 static boolean
3365 elf32_hppa_final_link (abfd, info)
3366 bfd *abfd;
3367 struct bfd_link_info *info;
3368 {
3369 /* Invoke the regular ELF linker to do all the work. */
3370 if (!bfd_elf32_bfd_final_link (abfd, info))
3371 return false;
3372
3373 /* If we're producing a final executable, sort the contents of the
3374 unwind section. */
3375 return elf_hppa_sort_unwind (abfd);
3376 }
3377
3378 /* Record the lowest address for the data and text segments. */
3379
3380 static void
3381 hppa_record_segment_addr (abfd, section, data)
3382 bfd *abfd ATTRIBUTE_UNUSED;
3383 asection *section;
3384 PTR data;
3385 {
3386 struct elf32_hppa_link_hash_table *htab;
3387
3388 htab = (struct elf32_hppa_link_hash_table *) data;
3389
3390 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3391 {
3392 bfd_vma value = section->vma - section->filepos;
3393
3394 if ((section->flags & SEC_READONLY) != 0)
3395 {
3396 if (value < htab->text_segment_base)
3397 htab->text_segment_base = value;
3398 }
3399 else
3400 {
3401 if (value < htab->data_segment_base)
3402 htab->data_segment_base = value;
3403 }
3404 }
3405 }
3406
3407 /* Perform a relocation as part of a final link. */
3408
3409 static bfd_reloc_status_type
3410 final_link_relocate (input_section, contents, rel, value, htab, sym_sec, h)
3411 asection *input_section;
3412 bfd_byte *contents;
3413 const Elf_Internal_Rela *rel;
3414 bfd_vma value;
3415 struct elf32_hppa_link_hash_table *htab;
3416 asection *sym_sec;
3417 struct elf32_hppa_link_hash_entry *h;
3418 {
3419 int insn;
3420 unsigned int r_type = ELF32_R_TYPE (rel->r_info);
3421 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3422 int r_format = howto->bitsize;
3423 enum hppa_reloc_field_selector_type_alt r_field;
3424 bfd *input_bfd = input_section->owner;
3425 bfd_vma offset = rel->r_offset;
3426 bfd_vma max_branch_offset = 0;
3427 bfd_byte *hit_data = contents + offset;
3428 bfd_signed_vma addend = rel->r_addend;
3429 bfd_vma location;
3430 struct elf32_hppa_stub_hash_entry *stub_entry = NULL;
3431 int val;
3432
3433 if (r_type == R_PARISC_NONE)
3434 return bfd_reloc_ok;
3435
3436 insn = bfd_get_32 (input_bfd, hit_data);
3437
3438 /* Find out where we are and where we're going. */
3439 location = (offset +
3440 input_section->output_offset +
3441 input_section->output_section->vma);
3442
3443 switch (r_type)
3444 {
3445 case R_PARISC_PCREL12F:
3446 case R_PARISC_PCREL17F:
3447 case R_PARISC_PCREL22F:
3448 /* If this call should go via the plt, find the import stub in
3449 the stub hash. */
3450 if (sym_sec == NULL
3451 || sym_sec->output_section == NULL
3452 || (h != NULL
3453 && h->elf.plt.offset != (bfd_vma) -1
3454 && (h->elf.dynindx != -1 || h->pic_call)
3455 && !h->plabel))
3456 {
3457 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3458 h, rel, htab);
3459 if (stub_entry != NULL)
3460 {
3461 value = (stub_entry->stub_offset
3462 + stub_entry->stub_sec->output_offset
3463 + stub_entry->stub_sec->output_section->vma);
3464 addend = 0;
3465 }
3466 else if (sym_sec == NULL && h != NULL
3467 && h->elf.root.type == bfd_link_hash_undefweak)
3468 {
3469 /* It's OK if undefined weak. Calls to undefined weak
3470 symbols behave as if the "called" function
3471 immediately returns. We can thus call to a weak
3472 function without first checking whether the function
3473 is defined. */
3474 value = location;
3475 addend = 8;
3476 }
3477 else
3478 return bfd_reloc_undefined;
3479 }
3480 /* Fall thru. */
3481
3482 case R_PARISC_PCREL21L:
3483 case R_PARISC_PCREL17C:
3484 case R_PARISC_PCREL17R:
3485 case R_PARISC_PCREL14R:
3486 case R_PARISC_PCREL14F:
3487 /* Make it a pc relative offset. */
3488 value -= location;
3489 addend -= 8;
3490 break;
3491
3492 case R_PARISC_DPREL21L:
3493 case R_PARISC_DPREL14R:
3494 case R_PARISC_DPREL14F:
3495 /* For all the DP relative relocations, we need to examine the symbol's
3496 section. If it's a code section, then "data pointer relative" makes
3497 no sense. In that case we don't adjust the "value", and for 21 bit
3498 addil instructions, we change the source addend register from %dp to
3499 %r0. This situation commonly arises when a variable's "constness"
3500 is declared differently from the way the variable is defined. For
3501 instance: "extern int foo" with foo defined as "const int foo". */
3502 if (sym_sec == NULL)
3503 break;
3504 if ((sym_sec->flags & SEC_CODE) != 0)
3505 {
3506 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3507 == (((int) OP_ADDIL << 26) | (27 << 21)))
3508 {
3509 insn &= ~ (0x1f << 21);
3510 #if 0 /* debug them. */
3511 (*_bfd_error_handler)
3512 (_("%s(%s+0x%lx): fixing %s"),
3513 bfd_archive_filename (input_bfd),
3514 input_section->name,
3515 (long) rel->r_offset,
3516 howto->name);
3517 #endif
3518 }
3519 /* Now try to make things easy for the dynamic linker. */
3520
3521 break;
3522 }
3523 /* Fall thru. */
3524
3525 case R_PARISC_DLTIND21L:
3526 case R_PARISC_DLTIND14R:
3527 case R_PARISC_DLTIND14F:
3528 value -= elf_gp (input_section->output_section->owner);
3529 break;
3530
3531 case R_PARISC_SEGREL32:
3532 if ((sym_sec->flags & SEC_CODE) != 0)
3533 value -= htab->text_segment_base;
3534 else
3535 value -= htab->data_segment_base;
3536 break;
3537
3538 default:
3539 break;
3540 }
3541
3542 switch (r_type)
3543 {
3544 case R_PARISC_DIR32:
3545 case R_PARISC_DIR14F:
3546 case R_PARISC_DIR17F:
3547 case R_PARISC_PCREL17C:
3548 case R_PARISC_PCREL14F:
3549 case R_PARISC_DPREL14F:
3550 case R_PARISC_PLABEL32:
3551 case R_PARISC_DLTIND14F:
3552 case R_PARISC_SEGBASE:
3553 case R_PARISC_SEGREL32:
3554 r_field = e_fsel;
3555 break;
3556
3557 case R_PARISC_DLTIND21L:
3558 case R_PARISC_PCREL21L:
3559 case R_PARISC_PLABEL21L:
3560 r_field = e_lsel;
3561 break;
3562
3563 case R_PARISC_DIR21L:
3564 case R_PARISC_DPREL21L:
3565 r_field = e_lrsel;
3566 break;
3567
3568 case R_PARISC_PCREL17R:
3569 case R_PARISC_PCREL14R:
3570 case R_PARISC_PLABEL14R:
3571 case R_PARISC_DLTIND14R:
3572 r_field = e_rsel;
3573 break;
3574
3575 case R_PARISC_DIR17R:
3576 case R_PARISC_DIR14R:
3577 case R_PARISC_DPREL14R:
3578 r_field = e_rrsel;
3579 break;
3580
3581 case R_PARISC_PCREL12F:
3582 case R_PARISC_PCREL17F:
3583 case R_PARISC_PCREL22F:
3584 r_field = e_fsel;
3585
3586 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3587 {
3588 max_branch_offset = (1 << (17-1)) << 2;
3589 }
3590 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3591 {
3592 max_branch_offset = (1 << (12-1)) << 2;
3593 }
3594 else
3595 {
3596 max_branch_offset = (1 << (22-1)) << 2;
3597 }
3598
3599 /* sym_sec is NULL on undefined weak syms or when shared on
3600 undefined syms. We've already checked for a stub for the
3601 shared undefined case. */
3602 if (sym_sec == NULL)
3603 break;
3604
3605 /* If the branch is out of reach, then redirect the
3606 call to the local stub for this function. */
3607 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3608 {
3609 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3610 h, rel, htab);
3611 if (stub_entry == NULL)
3612 return bfd_reloc_undefined;
3613
3614 /* Munge up the value and addend so that we call the stub
3615 rather than the procedure directly. */
3616 value = (stub_entry->stub_offset
3617 + stub_entry->stub_sec->output_offset
3618 + stub_entry->stub_sec->output_section->vma
3619 - location);
3620 addend = -8;
3621 }
3622 break;
3623
3624 /* Something we don't know how to handle. */
3625 default:
3626 return bfd_reloc_notsupported;
3627 }
3628
3629 /* Make sure we can reach the stub. */
3630 if (max_branch_offset != 0
3631 && value + addend + max_branch_offset >= 2*max_branch_offset)
3632 {
3633 (*_bfd_error_handler)
3634 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3635 bfd_archive_filename (input_bfd),
3636 input_section->name,
3637 (long) rel->r_offset,
3638 stub_entry->root.string);
3639 bfd_set_error (bfd_error_bad_value);
3640 return bfd_reloc_notsupported;
3641 }
3642
3643 val = hppa_field_adjust (value, addend, r_field);
3644
3645 switch (r_type)
3646 {
3647 case R_PARISC_PCREL12F:
3648 case R_PARISC_PCREL17C:
3649 case R_PARISC_PCREL17F:
3650 case R_PARISC_PCREL17R:
3651 case R_PARISC_PCREL22F:
3652 case R_PARISC_DIR17F:
3653 case R_PARISC_DIR17R:
3654 /* This is a branch. Divide the offset by four.
3655 Note that we need to decide whether it's a branch or
3656 otherwise by inspecting the reloc. Inspecting insn won't
3657 work as insn might be from a .word directive. */
3658 val >>= 2;
3659 break;
3660
3661 default:
3662 break;
3663 }
3664
3665 insn = hppa_rebuild_insn (insn, val, r_format);
3666
3667 /* Update the instruction word. */
3668 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3669 return bfd_reloc_ok;
3670 }
3671
3672 /* Relocate an HPPA ELF section. */
3673
3674 static boolean
3675 elf32_hppa_relocate_section (output_bfd, info, input_bfd, input_section,
3676 contents, relocs, local_syms, local_sections)
3677 bfd *output_bfd;
3678 struct bfd_link_info *info;
3679 bfd *input_bfd;
3680 asection *input_section;
3681 bfd_byte *contents;
3682 Elf_Internal_Rela *relocs;
3683 Elf_Internal_Sym *local_syms;
3684 asection **local_sections;
3685 {
3686 bfd_vma *local_got_offsets;
3687 struct elf32_hppa_link_hash_table *htab;
3688 Elf_Internal_Shdr *symtab_hdr;
3689 Elf_Internal_Rela *rel;
3690 Elf_Internal_Rela *relend;
3691
3692 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3693
3694 htab = hppa_link_hash_table (info);
3695 local_got_offsets = elf_local_got_offsets (input_bfd);
3696
3697 rel = relocs;
3698 relend = relocs + input_section->reloc_count;
3699 for (; rel < relend; rel++)
3700 {
3701 unsigned int r_type;
3702 reloc_howto_type *howto;
3703 unsigned int r_symndx;
3704 struct elf32_hppa_link_hash_entry *h;
3705 Elf_Internal_Sym *sym;
3706 asection *sym_sec;
3707 bfd_vma relocation;
3708 bfd_reloc_status_type r;
3709 const char *sym_name;
3710 boolean plabel;
3711 boolean warned_undef;
3712
3713 r_type = ELF32_R_TYPE (rel->r_info);
3714 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3715 {
3716 bfd_set_error (bfd_error_bad_value);
3717 return false;
3718 }
3719 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3720 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3721 continue;
3722
3723 r_symndx = ELF32_R_SYM (rel->r_info);
3724
3725 if (info->relocateable)
3726 {
3727 /* This is a relocatable link. We don't have to change
3728 anything, unless the reloc is against a section symbol,
3729 in which case we have to adjust according to where the
3730 section symbol winds up in the output section. */
3731 if (r_symndx < symtab_hdr->sh_info)
3732 {
3733 sym = local_syms + r_symndx;
3734 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3735 {
3736 sym_sec = local_sections[r_symndx];
3737 rel->r_addend += sym_sec->output_offset;
3738 }
3739 }
3740 continue;
3741 }
3742
3743 /* This is a final link. */
3744 h = NULL;
3745 sym = NULL;
3746 sym_sec = NULL;
3747 warned_undef = false;
3748 if (r_symndx < symtab_hdr->sh_info)
3749 {
3750 /* This is a local symbol, h defaults to NULL. */
3751 sym = local_syms + r_symndx;
3752 sym_sec = local_sections[r_symndx];
3753 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sym_sec, rel);
3754 }
3755 else
3756 {
3757 int indx;
3758
3759 /* It's a global; Find its entry in the link hash. */
3760 indx = r_symndx - symtab_hdr->sh_info;
3761 h = ((struct elf32_hppa_link_hash_entry *)
3762 elf_sym_hashes (input_bfd)[indx]);
3763 while (h->elf.root.type == bfd_link_hash_indirect
3764 || h->elf.root.type == bfd_link_hash_warning)
3765 h = (struct elf32_hppa_link_hash_entry *) h->elf.root.u.i.link;
3766
3767 relocation = 0;
3768 if (h->elf.root.type == bfd_link_hash_defined
3769 || h->elf.root.type == bfd_link_hash_defweak)
3770 {
3771 sym_sec = h->elf.root.u.def.section;
3772 /* If sym_sec->output_section is NULL, then it's a
3773 symbol defined in a shared library. */
3774 if (sym_sec->output_section != NULL)
3775 relocation = (h->elf.root.u.def.value
3776 + sym_sec->output_offset
3777 + sym_sec->output_section->vma);
3778 }
3779 else if (h->elf.root.type == bfd_link_hash_undefweak)
3780 ;
3781 else if (info->shared && !info->no_undefined
3782 && ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
3783 && h->elf.type != STT_PARISC_MILLI)
3784 {
3785 if (info->symbolic && !info->allow_shlib_undefined)
3786 {
3787 if (!((*info->callbacks->undefined_symbol)
3788 (info, h->elf.root.root.string, input_bfd,
3789 input_section, rel->r_offset, false)))
3790 return false;
3791 warned_undef = true;
3792 }
3793 }
3794 else
3795 {
3796 if (!((*info->callbacks->undefined_symbol)
3797 (info, h->elf.root.root.string, input_bfd,
3798 input_section, rel->r_offset, true)))
3799 return false;
3800 warned_undef = true;
3801 }
3802 }
3803
3804 /* Do any required modifications to the relocation value, and
3805 determine what types of dynamic info we need to output, if
3806 any. */
3807 plabel = 0;
3808 switch (r_type)
3809 {
3810 case R_PARISC_DLTIND14F:
3811 case R_PARISC_DLTIND14R:
3812 case R_PARISC_DLTIND21L:
3813 {
3814 bfd_vma off;
3815 boolean do_got = 0;
3816
3817 /* Relocation is to the entry for this symbol in the
3818 global offset table. */
3819 if (h != NULL)
3820 {
3821 boolean dyn;
3822
3823 off = h->elf.got.offset;
3824 dyn = htab->elf.dynamic_sections_created;
3825 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, &h->elf))
3826 {
3827 /* If we aren't going to call finish_dynamic_symbol,
3828 then we need to handle initialisation of the .got
3829 entry and create needed relocs here. Since the
3830 offset must always be a multiple of 4, we use the
3831 least significant bit to record whether we have
3832 initialised it already. */
3833 if ((off & 1) != 0)
3834 off &= ~1;
3835 else
3836 {
3837 h->elf.got.offset |= 1;
3838 do_got = 1;
3839 }
3840 }
3841 }
3842 else
3843 {
3844 /* Local symbol case. */
3845 if (local_got_offsets == NULL)
3846 abort ();
3847
3848 off = local_got_offsets[r_symndx];
3849
3850 /* The offset must always be a multiple of 4. We use
3851 the least significant bit to record whether we have
3852 already generated the necessary reloc. */
3853 if ((off & 1) != 0)
3854 off &= ~1;
3855 else
3856 {
3857 local_got_offsets[r_symndx] |= 1;
3858 do_got = 1;
3859 }
3860 }
3861
3862 if (do_got)
3863 {
3864 if (info->shared)
3865 {
3866 /* Output a dynamic relocation for this GOT entry.
3867 In this case it is relative to the base of the
3868 object because the symbol index is zero. */
3869 Elf_Internal_Rela outrel;
3870 asection *srelgot = htab->srelgot;
3871 Elf32_External_Rela *loc;
3872
3873 outrel.r_offset = (off
3874 + htab->sgot->output_offset
3875 + htab->sgot->output_section->vma);
3876 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3877 outrel.r_addend = relocation;
3878 loc = (Elf32_External_Rela *) srelgot->contents;
3879 loc += srelgot->reloc_count++;
3880 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3881 }
3882 else
3883 bfd_put_32 (output_bfd, relocation,
3884 htab->sgot->contents + off);
3885 }
3886
3887 if (off >= (bfd_vma) -2)
3888 abort ();
3889
3890 /* Add the base of the GOT to the relocation value. */
3891 relocation = (off
3892 + htab->sgot->output_offset
3893 + htab->sgot->output_section->vma);
3894 }
3895 break;
3896
3897 case R_PARISC_SEGREL32:
3898 /* If this is the first SEGREL relocation, then initialize
3899 the segment base values. */
3900 if (htab->text_segment_base == (bfd_vma) -1)
3901 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3902 break;
3903
3904 case R_PARISC_PLABEL14R:
3905 case R_PARISC_PLABEL21L:
3906 case R_PARISC_PLABEL32:
3907 if (htab->elf.dynamic_sections_created)
3908 {
3909 bfd_vma off;
3910 boolean do_plt = 0;
3911
3912 /* If we have a global symbol with a PLT slot, then
3913 redirect this relocation to it. */
3914 if (h != NULL)
3915 {
3916 off = h->elf.plt.offset;
3917 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, &h->elf))
3918 {
3919 /* In a non-shared link, adjust_dynamic_symbols
3920 isn't called for symbols forced local. We
3921 need to write out the plt entry here. */
3922 if ((off & 1) != 0)
3923 off &= ~1;
3924 else
3925 {
3926 h->elf.plt.offset |= 1;
3927 do_plt = 1;
3928 }
3929 }
3930 }
3931 else
3932 {
3933 bfd_vma *local_plt_offsets;
3934
3935 if (local_got_offsets == NULL)
3936 abort ();
3937
3938 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3939 off = local_plt_offsets[r_symndx];
3940
3941 /* As for the local .got entry case, we use the last
3942 bit to record whether we've already initialised
3943 this local .plt entry. */
3944 if ((off & 1) != 0)
3945 off &= ~1;
3946 else
3947 {
3948 local_plt_offsets[r_symndx] |= 1;
3949 do_plt = 1;
3950 }
3951 }
3952
3953 if (do_plt)
3954 {
3955 if (info->shared)
3956 {
3957 /* Output a dynamic IPLT relocation for this
3958 PLT entry. */
3959 Elf_Internal_Rela outrel;
3960 asection *srelplt = htab->srelplt;
3961 Elf32_External_Rela *loc;
3962
3963 outrel.r_offset = (off
3964 + htab->splt->output_offset
3965 + htab->splt->output_section->vma);
3966 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3967 outrel.r_addend = relocation;
3968 loc = (Elf32_External_Rela *) srelplt->contents;
3969 loc += srelplt->reloc_count++;
3970 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3971 }
3972 else
3973 {
3974 bfd_put_32 (output_bfd,
3975 relocation,
3976 htab->splt->contents + off);
3977 bfd_put_32 (output_bfd,
3978 elf_gp (htab->splt->output_section->owner),
3979 htab->splt->contents + off + 4);
3980 }
3981 }
3982
3983 if (off >= (bfd_vma) -2)
3984 abort ();
3985
3986 /* PLABELs contain function pointers. Relocation is to
3987 the entry for the function in the .plt. The magic +2
3988 offset signals to $$dyncall that the function pointer
3989 is in the .plt and thus has a gp pointer too.
3990 Exception: Undefined PLABELs should have a value of
3991 zero. */
3992 if (h == NULL
3993 || (h->elf.root.type != bfd_link_hash_undefweak
3994 && h->elf.root.type != bfd_link_hash_undefined))
3995 {
3996 relocation = (off
3997 + htab->splt->output_offset
3998 + htab->splt->output_section->vma
3999 + 2);
4000 }
4001 plabel = 1;
4002 }
4003 /* Fall through and possibly emit a dynamic relocation. */
4004
4005 case R_PARISC_DIR17F:
4006 case R_PARISC_DIR17R:
4007 case R_PARISC_DIR14F:
4008 case R_PARISC_DIR14R:
4009 case R_PARISC_DIR21L:
4010 case R_PARISC_DPREL14F:
4011 case R_PARISC_DPREL14R:
4012 case R_PARISC_DPREL21L:
4013 case R_PARISC_DIR32:
4014 /* r_symndx will be zero only for relocs against symbols
4015 from removed linkonce sections, or sections discarded by
4016 a linker script. */
4017 if (r_symndx == 0
4018 || (input_section->flags & SEC_ALLOC) == 0)
4019 break;
4020
4021 /* The reloc types handled here and this conditional
4022 expression must match the code in ..check_relocs and
4023 allocate_dynrelocs. ie. We need exactly the same condition
4024 as in ..check_relocs, with some extra conditions (dynindx
4025 test in this case) to cater for relocs removed by
4026 allocate_dynrelocs. If you squint, the non-shared test
4027 here does indeed match the one in ..check_relocs, the
4028 difference being that here we test DEF_DYNAMIC as well as
4029 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
4030 which is why we can't use just that test here.
4031 Conversely, DEF_DYNAMIC can't be used in check_relocs as
4032 there all files have not been loaded. */
4033 if ((info->shared
4034 && (IS_ABSOLUTE_RELOC (r_type)
4035 || (h != NULL
4036 && h->elf.dynindx != -1
4037 && (!info->symbolic
4038 || (h->elf.elf_link_hash_flags
4039 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
4040 || (!info->shared
4041 && h != NULL
4042 && h->elf.dynindx != -1
4043 && (h->elf.elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
4044 && (((h->elf.elf_link_hash_flags
4045 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
4046 && (h->elf.elf_link_hash_flags
4047 & ELF_LINK_HASH_DEF_REGULAR) == 0)
4048 || h->elf.root.type == bfd_link_hash_undefweak
4049 || h->elf.root.type == bfd_link_hash_undefined)))
4050 {
4051 Elf_Internal_Rela outrel;
4052 boolean skip;
4053 asection *sreloc;
4054 Elf32_External_Rela *loc;
4055
4056 /* When generating a shared object, these relocations
4057 are copied into the output file to be resolved at run
4058 time. */
4059
4060 outrel.r_addend = rel->r_addend;
4061 outrel.r_offset =
4062 _bfd_elf_section_offset (output_bfd, info, input_section,
4063 rel->r_offset);
4064 skip = (outrel.r_offset == (bfd_vma) -1
4065 || outrel.r_offset == (bfd_vma) -2);
4066 outrel.r_offset += (input_section->output_offset
4067 + input_section->output_section->vma);
4068
4069 if (skip)
4070 {
4071 memset (&outrel, 0, sizeof (outrel));
4072 }
4073 else if (h != NULL
4074 && h->elf.dynindx != -1
4075 && (plabel
4076 || !IS_ABSOLUTE_RELOC (r_type)
4077 || !info->shared
4078 || !info->symbolic
4079 || (h->elf.elf_link_hash_flags
4080 & ELF_LINK_HASH_DEF_REGULAR) == 0))
4081 {
4082 outrel.r_info = ELF32_R_INFO (h->elf.dynindx, r_type);
4083 }
4084 else /* It's a local symbol, or one marked to become local. */
4085 {
4086 int indx = 0;
4087
4088 /* Add the absolute offset of the symbol. */
4089 outrel.r_addend += relocation;
4090
4091 /* Global plabels need to be processed by the
4092 dynamic linker so that functions have at most one
4093 fptr. For this reason, we need to differentiate
4094 between global and local plabels, which we do by
4095 providing the function symbol for a global plabel
4096 reloc, and no symbol for local plabels. */
4097 if (! plabel
4098 && sym_sec != NULL
4099 && sym_sec->output_section != NULL
4100 && ! bfd_is_abs_section (sym_sec))
4101 {
4102 indx = elf_section_data (sym_sec->output_section)->dynindx;
4103 /* We are turning this relocation into one
4104 against a section symbol, so subtract out the
4105 output section's address but not the offset
4106 of the input section in the output section. */
4107 outrel.r_addend -= sym_sec->output_section->vma;
4108 }
4109
4110 outrel.r_info = ELF32_R_INFO (indx, r_type);
4111 }
4112 #if 0
4113 /* EH info can cause unaligned DIR32 relocs.
4114 Tweak the reloc type for the dynamic linker. */
4115 if (r_type == R_PARISC_DIR32 && (outrel.r_offset & 3) != 0)
4116 outrel.r_info = ELF32_R_INFO (ELF32_R_SYM (outrel.r_info),
4117 R_PARISC_DIR32U);
4118 #endif
4119 sreloc = elf_section_data (input_section)->sreloc;
4120 if (sreloc == NULL)
4121 abort ();
4122
4123 loc = (Elf32_External_Rela *) sreloc->contents;
4124 loc += sreloc->reloc_count++;
4125 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4126 }
4127 break;
4128
4129 default:
4130 break;
4131 }
4132
4133 r = final_link_relocate (input_section, contents, rel, relocation,
4134 htab, sym_sec, h);
4135
4136 if (r == bfd_reloc_ok)
4137 continue;
4138
4139 if (h != NULL)
4140 sym_name = h->elf.root.root.string;
4141 else
4142 {
4143 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4144 symtab_hdr->sh_link,
4145 sym->st_name);
4146 if (sym_name == NULL)
4147 return false;
4148 if (*sym_name == '\0')
4149 sym_name = bfd_section_name (input_bfd, sym_sec);
4150 }
4151
4152 howto = elf_hppa_howto_table + r_type;
4153
4154 if (r == bfd_reloc_undefined || r == bfd_reloc_notsupported)
4155 {
4156 if (r == bfd_reloc_notsupported || !warned_undef)
4157 {
4158 (*_bfd_error_handler)
4159 (_("%s(%s+0x%lx): cannot handle %s for %s"),
4160 bfd_archive_filename (input_bfd),
4161 input_section->name,
4162 (long) rel->r_offset,
4163 howto->name,
4164 sym_name);
4165 bfd_set_error (bfd_error_bad_value);
4166 return false;
4167 }
4168 }
4169 else
4170 {
4171 if (!((*info->callbacks->reloc_overflow)
4172 (info, sym_name, howto->name, (bfd_vma) 0,
4173 input_bfd, input_section, rel->r_offset)))
4174 return false;
4175 }
4176 }
4177
4178 return true;
4179 }
4180
4181 /* Finish up dynamic symbol handling. We set the contents of various
4182 dynamic sections here. */
4183
4184 static boolean
4185 elf32_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
4186 bfd *output_bfd;
4187 struct bfd_link_info *info;
4188 struct elf_link_hash_entry *h;
4189 Elf_Internal_Sym *sym;
4190 {
4191 struct elf32_hppa_link_hash_table *htab;
4192
4193 htab = hppa_link_hash_table (info);
4194
4195 if (h->plt.offset != (bfd_vma) -1)
4196 {
4197 bfd_vma value;
4198
4199 if (h->plt.offset & 1)
4200 abort ();
4201
4202 /* This symbol has an entry in the procedure linkage table. Set
4203 it up.
4204
4205 The format of a plt entry is
4206 <funcaddr>
4207 <__gp>
4208 */
4209 value = 0;
4210 if (h->root.type == bfd_link_hash_defined
4211 || h->root.type == bfd_link_hash_defweak)
4212 {
4213 value = h->root.u.def.value;
4214 if (h->root.u.def.section->output_section != NULL)
4215 value += (h->root.u.def.section->output_offset
4216 + h->root.u.def.section->output_section->vma);
4217 }
4218
4219 if (! ((struct elf32_hppa_link_hash_entry *) h)->pic_call)
4220 {
4221 Elf_Internal_Rela rel;
4222 Elf32_External_Rela *loc;
4223
4224 /* Create a dynamic IPLT relocation for this entry. */
4225 rel.r_offset = (h->plt.offset
4226 + htab->splt->output_offset
4227 + htab->splt->output_section->vma);
4228 if (h->dynindx != -1)
4229 {
4230 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_IPLT);
4231 rel.r_addend = 0;
4232 }
4233 else
4234 {
4235 /* This symbol has been marked to become local, and is
4236 used by a plabel so must be kept in the .plt. */
4237 rel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4238 rel.r_addend = value;
4239 }
4240
4241 loc = (Elf32_External_Rela *) htab->srelplt->contents;
4242 loc += htab->srelplt->reloc_count++;
4243 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner,
4244 &rel, loc);
4245 }
4246 else
4247 {
4248 bfd_put_32 (htab->splt->owner,
4249 value,
4250 htab->splt->contents + h->plt.offset);
4251 bfd_put_32 (htab->splt->owner,
4252 elf_gp (htab->splt->output_section->owner),
4253 htab->splt->contents + h->plt.offset + 4);
4254 }
4255
4256 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
4257 {
4258 /* Mark the symbol as undefined, rather than as defined in
4259 the .plt section. Leave the value alone. */
4260 sym->st_shndx = SHN_UNDEF;
4261 }
4262 }
4263
4264 if (h->got.offset != (bfd_vma) -1)
4265 {
4266 Elf_Internal_Rela rel;
4267 Elf32_External_Rela *loc;
4268
4269 /* This symbol has an entry in the global offset table. Set it
4270 up. */
4271
4272 rel.r_offset = ((h->got.offset &~ (bfd_vma) 1)
4273 + htab->sgot->output_offset
4274 + htab->sgot->output_section->vma);
4275
4276 /* If this is a -Bsymbolic link and the symbol is defined
4277 locally or was forced to be local because of a version file,
4278 we just want to emit a RELATIVE reloc. The entry in the
4279 global offset table will already have been initialized in the
4280 relocate_section function. */
4281 if (info->shared
4282 && (info->symbolic || h->dynindx == -1)
4283 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
4284 {
4285 rel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4286 rel.r_addend = (h->root.u.def.value
4287 + h->root.u.def.section->output_offset
4288 + h->root.u.def.section->output_section->vma);
4289 }
4290 else
4291 {
4292 if ((h->got.offset & 1) != 0)
4293 abort ();
4294 bfd_put_32 (output_bfd, (bfd_vma) 0,
4295 htab->sgot->contents + h->got.offset);
4296 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_DIR32);
4297 rel.r_addend = 0;
4298 }
4299
4300 loc = (Elf32_External_Rela *) htab->srelgot->contents;
4301 loc += htab->srelgot->reloc_count++;
4302 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
4303 }
4304
4305 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
4306 {
4307 asection *s;
4308 Elf_Internal_Rela rel;
4309 Elf32_External_Rela *loc;
4310
4311 /* This symbol needs a copy reloc. Set it up. */
4312
4313 if (! (h->dynindx != -1
4314 && (h->root.type == bfd_link_hash_defined
4315 || h->root.type == bfd_link_hash_defweak)))
4316 abort ();
4317
4318 s = htab->srelbss;
4319
4320 rel.r_offset = (h->root.u.def.value
4321 + h->root.u.def.section->output_offset
4322 + h->root.u.def.section->output_section->vma);
4323 rel.r_addend = 0;
4324 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_COPY);
4325 loc = (Elf32_External_Rela *) s->contents + s->reloc_count++;
4326 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
4327 }
4328
4329 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4330 if (h->root.root.string[0] == '_'
4331 && (strcmp (h->root.root.string, "_DYNAMIC") == 0
4332 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0))
4333 {
4334 sym->st_shndx = SHN_ABS;
4335 }
4336
4337 return true;
4338 }
4339
4340 /* Used to decide how to sort relocs in an optimal manner for the
4341 dynamic linker, before writing them out. */
4342
4343 static enum elf_reloc_type_class
4344 elf32_hppa_reloc_type_class (rela)
4345 const Elf_Internal_Rela *rela;
4346 {
4347 if (ELF32_R_SYM (rela->r_info) == 0)
4348 return reloc_class_relative;
4349
4350 switch ((int) ELF32_R_TYPE (rela->r_info))
4351 {
4352 case R_PARISC_IPLT:
4353 return reloc_class_plt;
4354 case R_PARISC_COPY:
4355 return reloc_class_copy;
4356 default:
4357 return reloc_class_normal;
4358 }
4359 }
4360
4361 /* Finish up the dynamic sections. */
4362
4363 static boolean
4364 elf32_hppa_finish_dynamic_sections (output_bfd, info)
4365 bfd *output_bfd;
4366 struct bfd_link_info *info;
4367 {
4368 bfd *dynobj;
4369 struct elf32_hppa_link_hash_table *htab;
4370 asection *sdyn;
4371
4372 htab = hppa_link_hash_table (info);
4373 dynobj = htab->elf.dynobj;
4374
4375 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4376
4377 if (htab->elf.dynamic_sections_created)
4378 {
4379 Elf32_External_Dyn *dyncon, *dynconend;
4380
4381 if (sdyn == NULL)
4382 abort ();
4383
4384 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4385 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
4386 for (; dyncon < dynconend; dyncon++)
4387 {
4388 Elf_Internal_Dyn dyn;
4389 asection *s;
4390
4391 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4392
4393 switch (dyn.d_tag)
4394 {
4395 default:
4396 continue;
4397
4398 case DT_PLTGOT:
4399 /* Use PLTGOT to set the GOT register. */
4400 dyn.d_un.d_ptr = elf_gp (output_bfd);
4401 break;
4402
4403 case DT_JMPREL:
4404 s = htab->srelplt;
4405 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4406 break;
4407
4408 case DT_PLTRELSZ:
4409 s = htab->srelplt;
4410 if (s->_cooked_size != 0)
4411 dyn.d_un.d_val = s->_cooked_size;
4412 else
4413 dyn.d_un.d_val = s->_raw_size;
4414 break;
4415
4416 case DT_RELASZ:
4417 /* Don't count procedure linkage table relocs in the
4418 overall reloc count. */
4419 if (htab->srelplt != NULL)
4420 {
4421 s = htab->srelplt->output_section;
4422 if (s->_cooked_size != 0)
4423 dyn.d_un.d_val -= s->_cooked_size;
4424 else
4425 dyn.d_un.d_val -= s->_raw_size;
4426 }
4427 break;
4428 }
4429
4430 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4431 }
4432 }
4433
4434 if (htab->sgot != NULL && htab->sgot->_raw_size != 0)
4435 {
4436 /* Fill in the first entry in the global offset table.
4437 We use it to point to our dynamic section, if we have one. */
4438 bfd_put_32 (output_bfd,
4439 (sdyn != NULL
4440 ? sdyn->output_section->vma + sdyn->output_offset
4441 : (bfd_vma) 0),
4442 htab->sgot->contents);
4443
4444 /* The second entry is reserved for use by the dynamic linker. */
4445 memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4446
4447 /* Set .got entry size. */
4448 elf_section_data (htab->sgot->output_section)
4449 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4450 }
4451
4452 if (htab->splt != NULL && htab->splt->_raw_size != 0)
4453 {
4454 /* Set plt entry size. */
4455 elf_section_data (htab->splt->output_section)
4456 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4457
4458 if (htab->need_plt_stub)
4459 {
4460 /* Set up the .plt stub. */
4461 memcpy (htab->splt->contents
4462 + htab->splt->_raw_size - sizeof (plt_stub),
4463 plt_stub, sizeof (plt_stub));
4464
4465 if ((htab->splt->output_offset
4466 + htab->splt->output_section->vma
4467 + htab->splt->_raw_size)
4468 != (htab->sgot->output_offset
4469 + htab->sgot->output_section->vma))
4470 {
4471 (*_bfd_error_handler)
4472 (_(".got section not immediately after .plt section"));
4473 return false;
4474 }
4475 }
4476 }
4477
4478 return true;
4479 }
4480
4481 /* Tweak the OSABI field of the elf header. */
4482
4483 static void
4484 elf32_hppa_post_process_headers (abfd, link_info)
4485 bfd *abfd;
4486 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
4487 {
4488 Elf_Internal_Ehdr * i_ehdrp;
4489
4490 i_ehdrp = elf_elfheader (abfd);
4491
4492 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
4493 {
4494 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
4495 }
4496 else
4497 {
4498 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
4499 }
4500 }
4501
4502 /* Called when writing out an object file to decide the type of a
4503 symbol. */
4504 static int
4505 elf32_hppa_elf_get_symbol_type (elf_sym, type)
4506 Elf_Internal_Sym *elf_sym;
4507 int type;
4508 {
4509 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4510 return STT_PARISC_MILLI;
4511 else
4512 return type;
4513 }
4514
4515 /* Misc BFD support code. */
4516 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4517 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4518 #define elf_info_to_howto elf_hppa_info_to_howto
4519 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4520
4521 /* Stuff for the BFD linker. */
4522 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4523 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4524 #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
4525 #define elf_backend_add_symbol_hook elf32_hppa_add_symbol_hook
4526 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4527 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4528 #define elf_backend_check_relocs elf32_hppa_check_relocs
4529 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4530 #define elf_backend_fake_sections elf_hppa_fake_sections
4531 #define elf_backend_relocate_section elf32_hppa_relocate_section
4532 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4533 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4534 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4535 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4536 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4537 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4538 #define elf_backend_object_p elf32_hppa_object_p
4539 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4540 #define elf_backend_post_process_headers elf32_hppa_post_process_headers
4541 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4542 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4543
4544 #define elf_backend_can_gc_sections 1
4545 #define elf_backend_can_refcount 1
4546 #define elf_backend_plt_alignment 2
4547 #define elf_backend_want_got_plt 0
4548 #define elf_backend_plt_readonly 0
4549 #define elf_backend_want_plt_sym 0
4550 #define elf_backend_got_header_size 8
4551
4552 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4553 #define TARGET_BIG_NAME "elf32-hppa"
4554 #define ELF_ARCH bfd_arch_hppa
4555 #define ELF_MACHINE_CODE EM_PARISC
4556 #define ELF_MAXPAGESIZE 0x1000
4557
4558 #include "elf32-target.h"
4559
4560 #undef TARGET_BIG_SYM
4561 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4562 #undef TARGET_BIG_NAME
4563 #define TARGET_BIG_NAME "elf32-hppa-linux"
4564
4565 #define INCLUDED_TARGET_FILE 1
4566 #include "elf32-target.h"
This page took 0.190386 seconds and 4 git commands to generate.