bfd/
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 Original code by
6 Center for Software Science
7 Department of Computer Science
8 University of Utah
9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
26
27 #include "bfd.h"
28 #include "sysdep.h"
29 #include "libbfd.h"
30 #include "elf-bfd.h"
31 #include "elf/hppa.h"
32 #include "libhppa.h"
33 #include "elf32-hppa.h"
34 #define ARCH_SIZE 32
35 #include "elf32-hppa.h"
36 #include "elf-hppa.h"
37
38 /* In order to gain some understanding of code in this file without
39 knowing all the intricate details of the linker, note the
40 following:
41
42 Functions named elf32_hppa_* are called by external routines, other
43 functions are only called locally. elf32_hppa_* functions appear
44 in this file more or less in the order in which they are called
45 from external routines. eg. elf32_hppa_check_relocs is called
46 early in the link process, elf32_hppa_finish_dynamic_sections is
47 one of the last functions. */
48
49 /* We use two hash tables to hold information for linking PA ELF objects.
50
51 The first is the elf32_hppa_link_hash_table which is derived
52 from the standard ELF linker hash table. We use this as a place to
53 attach other hash tables and static information.
54
55 The second is the stub hash table which is derived from the
56 base BFD hash table. The stub hash table holds the information
57 necessary to build the linker stubs during a link.
58
59 There are a number of different stubs generated by the linker.
60
61 Long branch stub:
62 : ldil LR'X,%r1
63 : be,n RR'X(%sr4,%r1)
64
65 PIC long branch stub:
66 : b,l .+8,%r1
67 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
68 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
69
70 Import stub to call shared library routine from normal object file
71 (single sub-space version)
72 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
73 : ldw RR'lt_ptr+ltoff(%r1),%r21
74 : bv %r0(%r21)
75 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
76
77 Import stub to call shared library routine from shared library
78 (single sub-space version)
79 : addil LR'ltoff,%r19 ; get procedure entry point
80 : ldw RR'ltoff(%r1),%r21
81 : bv %r0(%r21)
82 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
83
84 Import stub to call shared library routine from normal object file
85 (multiple sub-space support)
86 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
87 : ldw RR'lt_ptr+ltoff(%r1),%r21
88 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
89 : ldsid (%r21),%r1
90 : mtsp %r1,%sr0
91 : be 0(%sr0,%r21) ; branch to target
92 : stw %rp,-24(%sp) ; save rp
93
94 Import stub to call shared library routine from shared library
95 (multiple sub-space support)
96 : addil LR'ltoff,%r19 ; get procedure entry point
97 : ldw RR'ltoff(%r1),%r21
98 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
99 : ldsid (%r21),%r1
100 : mtsp %r1,%sr0
101 : be 0(%sr0,%r21) ; branch to target
102 : stw %rp,-24(%sp) ; save rp
103
104 Export stub to return from shared lib routine (multiple sub-space support)
105 One of these is created for each exported procedure in a shared
106 library (and stored in the shared lib). Shared lib routines are
107 called via the first instruction in the export stub so that we can
108 do an inter-space return. Not required for single sub-space.
109 : bl,n X,%rp ; trap the return
110 : nop
111 : ldw -24(%sp),%rp ; restore the original rp
112 : ldsid (%rp),%r1
113 : mtsp %r1,%sr0
114 : be,n 0(%sr0,%rp) ; inter-space return. */
115
116 #define PLT_ENTRY_SIZE 8
117 #define GOT_ENTRY_SIZE 4
118 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
119
120 static const bfd_byte plt_stub[] =
121 {
122 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
123 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
124 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
125 #define PLT_STUB_ENTRY (3*4)
126 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
127 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
128 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
129 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
130 };
131
132 /* Section name for stubs is the associated section name plus this
133 string. */
134 #define STUB_SUFFIX ".stub"
135
136 /* We don't need to copy certain PC- or GP-relative dynamic relocs
137 into a shared object's dynamic section. All the relocs of the
138 limited class we are interested in, are absolute. */
139 #ifndef RELATIVE_DYNRELOCS
140 #define RELATIVE_DYNRELOCS 0
141 #define IS_ABSOLUTE_RELOC(r_type) 1
142 #endif
143
144 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
145 copying dynamic variables from a shared lib into an app's dynbss
146 section, and instead use a dynamic relocation to point into the
147 shared lib. */
148 #define ELIMINATE_COPY_RELOCS 1
149
150 enum elf32_hppa_stub_type {
151 hppa_stub_long_branch,
152 hppa_stub_long_branch_shared,
153 hppa_stub_import,
154 hppa_stub_import_shared,
155 hppa_stub_export,
156 hppa_stub_none
157 };
158
159 struct elf32_hppa_stub_hash_entry {
160
161 /* Base hash table entry structure. */
162 struct bfd_hash_entry root;
163
164 /* The stub section. */
165 asection *stub_sec;
166
167 /* Offset within stub_sec of the beginning of this stub. */
168 bfd_vma stub_offset;
169
170 /* Given the symbol's value and its section we can determine its final
171 value when building the stubs (so the stub knows where to jump. */
172 bfd_vma target_value;
173 asection *target_section;
174
175 enum elf32_hppa_stub_type stub_type;
176
177 /* The symbol table entry, if any, that this was derived from. */
178 struct elf32_hppa_link_hash_entry *h;
179
180 /* Where this stub is being called from, or, in the case of combined
181 stub sections, the first input section in the group. */
182 asection *id_sec;
183 };
184
185 struct elf32_hppa_link_hash_entry {
186
187 struct elf_link_hash_entry elf;
188
189 /* A pointer to the most recently used stub hash entry against this
190 symbol. */
191 struct elf32_hppa_stub_hash_entry *stub_cache;
192
193 /* Used to count relocations for delayed sizing of relocation
194 sections. */
195 struct elf32_hppa_dyn_reloc_entry {
196
197 /* Next relocation in the chain. */
198 struct elf32_hppa_dyn_reloc_entry *next;
199
200 /* The input section of the reloc. */
201 asection *sec;
202
203 /* Number of relocs copied in this section. */
204 bfd_size_type count;
205
206 #if RELATIVE_DYNRELOCS
207 /* Number of relative relocs copied for the input section. */
208 bfd_size_type relative_count;
209 #endif
210 } *dyn_relocs;
211
212 /* Set if this symbol is used by a plabel reloc. */
213 unsigned int plabel:1;
214 };
215
216 struct elf32_hppa_link_hash_table {
217
218 /* The main hash table. */
219 struct elf_link_hash_table elf;
220
221 /* The stub hash table. */
222 struct bfd_hash_table stub_hash_table;
223
224 /* Linker stub bfd. */
225 bfd *stub_bfd;
226
227 /* Linker call-backs. */
228 asection * (*add_stub_section) (const char *, asection *);
229 void (*layout_sections_again) (void);
230
231 /* Array to keep track of which stub sections have been created, and
232 information on stub grouping. */
233 struct map_stub {
234 /* This is the section to which stubs in the group will be
235 attached. */
236 asection *link_sec;
237 /* The stub section. */
238 asection *stub_sec;
239 } *stub_group;
240
241 /* Assorted information used by elf32_hppa_size_stubs. */
242 unsigned int bfd_count;
243 int top_index;
244 asection **input_list;
245 Elf_Internal_Sym **all_local_syms;
246
247 /* Short-cuts to get to dynamic linker sections. */
248 asection *sgot;
249 asection *srelgot;
250 asection *splt;
251 asection *srelplt;
252 asection *sdynbss;
253 asection *srelbss;
254
255 /* Used during a final link to store the base of the text and data
256 segments so that we can perform SEGREL relocations. */
257 bfd_vma text_segment_base;
258 bfd_vma data_segment_base;
259
260 /* Whether we support multiple sub-spaces for shared libs. */
261 unsigned int multi_subspace:1;
262
263 /* Flags set when various size branches are detected. Used to
264 select suitable defaults for the stub group size. */
265 unsigned int has_12bit_branch:1;
266 unsigned int has_17bit_branch:1;
267 unsigned int has_22bit_branch:1;
268
269 /* Set if we need a .plt stub to support lazy dynamic linking. */
270 unsigned int need_plt_stub:1;
271
272 /* Small local sym to section mapping cache. */
273 struct sym_sec_cache sym_sec;
274 };
275
276 /* Various hash macros and functions. */
277 #define hppa_link_hash_table(p) \
278 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
279
280 #define hppa_stub_hash_lookup(table, string, create, copy) \
281 ((struct elf32_hppa_stub_hash_entry *) \
282 bfd_hash_lookup ((table), (string), (create), (copy)))
283
284 /* Assorted hash table functions. */
285
286 /* Initialize an entry in the stub hash table. */
287
288 static struct bfd_hash_entry *
289 stub_hash_newfunc (struct bfd_hash_entry *entry,
290 struct bfd_hash_table *table,
291 const char *string)
292 {
293 /* Allocate the structure if it has not already been allocated by a
294 subclass. */
295 if (entry == NULL)
296 {
297 entry = bfd_hash_allocate (table,
298 sizeof (struct elf32_hppa_stub_hash_entry));
299 if (entry == NULL)
300 return entry;
301 }
302
303 /* Call the allocation method of the superclass. */
304 entry = bfd_hash_newfunc (entry, table, string);
305 if (entry != NULL)
306 {
307 struct elf32_hppa_stub_hash_entry *eh;
308
309 /* Initialize the local fields. */
310 eh = (struct elf32_hppa_stub_hash_entry *) entry;
311 eh->stub_sec = NULL;
312 eh->stub_offset = 0;
313 eh->target_value = 0;
314 eh->target_section = NULL;
315 eh->stub_type = hppa_stub_long_branch;
316 eh->h = NULL;
317 eh->id_sec = NULL;
318 }
319
320 return entry;
321 }
322
323 /* Initialize an entry in the link hash table. */
324
325 static struct bfd_hash_entry *
326 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
327 struct bfd_hash_table *table,
328 const char *string)
329 {
330 /* Allocate the structure if it has not already been allocated by a
331 subclass. */
332 if (entry == NULL)
333 {
334 entry = bfd_hash_allocate (table,
335 sizeof (struct elf32_hppa_link_hash_entry));
336 if (entry == NULL)
337 return entry;
338 }
339
340 /* Call the allocation method of the superclass. */
341 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
342 if (entry != NULL)
343 {
344 struct elf32_hppa_link_hash_entry *eh;
345
346 /* Initialize the local fields. */
347 eh = (struct elf32_hppa_link_hash_entry *) entry;
348 eh->stub_cache = NULL;
349 eh->dyn_relocs = NULL;
350 eh->plabel = 0;
351 }
352
353 return entry;
354 }
355
356 /* Create the derived linker hash table. The PA ELF port uses the derived
357 hash table to keep information specific to the PA ELF linker (without
358 using static variables). */
359
360 static struct bfd_link_hash_table *
361 elf32_hppa_link_hash_table_create (bfd *abfd)
362 {
363 struct elf32_hppa_link_hash_table *ret;
364 bfd_size_type amt = sizeof (*ret);
365
366 ret = bfd_malloc (amt);
367 if (ret == NULL)
368 return NULL;
369
370 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, hppa_link_hash_newfunc))
371 {
372 free (ret);
373 return NULL;
374 }
375
376 /* Init the stub hash table too. */
377 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc))
378 return NULL;
379
380 ret->stub_bfd = NULL;
381 ret->add_stub_section = NULL;
382 ret->layout_sections_again = NULL;
383 ret->stub_group = NULL;
384 ret->sgot = NULL;
385 ret->srelgot = NULL;
386 ret->splt = NULL;
387 ret->srelplt = NULL;
388 ret->sdynbss = NULL;
389 ret->srelbss = NULL;
390 ret->text_segment_base = (bfd_vma) -1;
391 ret->data_segment_base = (bfd_vma) -1;
392 ret->multi_subspace = 0;
393 ret->has_12bit_branch = 0;
394 ret->has_17bit_branch = 0;
395 ret->has_22bit_branch = 0;
396 ret->need_plt_stub = 0;
397 ret->sym_sec.abfd = NULL;
398
399 return &ret->elf.root;
400 }
401
402 /* Free the derived linker hash table. */
403
404 static void
405 elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *hash)
406 {
407 struct elf32_hppa_link_hash_table *ret
408 = (struct elf32_hppa_link_hash_table *) hash;
409
410 bfd_hash_table_free (&ret->stub_hash_table);
411 _bfd_generic_link_hash_table_free (hash);
412 }
413
414 /* Build a name for an entry in the stub hash table. */
415
416 static char *
417 hppa_stub_name (const asection *input_section,
418 const asection *sym_sec,
419 const struct elf32_hppa_link_hash_entry *hash,
420 const Elf_Internal_Rela *rel)
421 {
422 char *stub_name;
423 bfd_size_type len;
424
425 if (hash)
426 {
427 len = 8 + 1 + strlen (hash->elf.root.root.string) + 1 + 8 + 1;
428 stub_name = bfd_malloc (len);
429 if (stub_name != NULL)
430 {
431 sprintf (stub_name, "%08x_%s+%x",
432 input_section->id & 0xffffffff,
433 hash->elf.root.root.string,
434 (int) rel->r_addend & 0xffffffff);
435 }
436 }
437 else
438 {
439 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
440 stub_name = bfd_malloc (len);
441 if (stub_name != NULL)
442 {
443 sprintf (stub_name, "%08x_%x:%x+%x",
444 input_section->id & 0xffffffff,
445 sym_sec->id & 0xffffffff,
446 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
447 (int) rel->r_addend & 0xffffffff);
448 }
449 }
450 return stub_name;
451 }
452
453 /* Look up an entry in the stub hash. Stub entries are cached because
454 creating the stub name takes a bit of time. */
455
456 static struct elf32_hppa_stub_hash_entry *
457 hppa_get_stub_entry (const asection *input_section,
458 const asection *sym_sec,
459 struct elf32_hppa_link_hash_entry *hash,
460 const Elf_Internal_Rela *rel,
461 struct elf32_hppa_link_hash_table *htab)
462 {
463 struct elf32_hppa_stub_hash_entry *stub_entry;
464 const asection *id_sec;
465
466 /* If this input section is part of a group of sections sharing one
467 stub section, then use the id of the first section in the group.
468 Stub names need to include a section id, as there may well be
469 more than one stub used to reach say, printf, and we need to
470 distinguish between them. */
471 id_sec = htab->stub_group[input_section->id].link_sec;
472
473 if (hash != NULL && hash->stub_cache != NULL
474 && hash->stub_cache->h == hash
475 && hash->stub_cache->id_sec == id_sec)
476 {
477 stub_entry = hash->stub_cache;
478 }
479 else
480 {
481 char *stub_name;
482
483 stub_name = hppa_stub_name (id_sec, sym_sec, hash, rel);
484 if (stub_name == NULL)
485 return NULL;
486
487 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
488 stub_name, FALSE, FALSE);
489 if (hash != NULL)
490 hash->stub_cache = stub_entry;
491
492 free (stub_name);
493 }
494
495 return stub_entry;
496 }
497
498 /* Add a new stub entry to the stub hash. Not all fields of the new
499 stub entry are initialised. */
500
501 static struct elf32_hppa_stub_hash_entry *
502 hppa_add_stub (const char *stub_name,
503 asection *section,
504 struct elf32_hppa_link_hash_table *htab)
505 {
506 asection *link_sec;
507 asection *stub_sec;
508 struct elf32_hppa_stub_hash_entry *stub_entry;
509
510 link_sec = htab->stub_group[section->id].link_sec;
511 stub_sec = htab->stub_group[section->id].stub_sec;
512 if (stub_sec == NULL)
513 {
514 stub_sec = htab->stub_group[link_sec->id].stub_sec;
515 if (stub_sec == NULL)
516 {
517 size_t namelen;
518 bfd_size_type len;
519 char *s_name;
520
521 namelen = strlen (link_sec->name);
522 len = namelen + sizeof (STUB_SUFFIX);
523 s_name = bfd_alloc (htab->stub_bfd, len);
524 if (s_name == NULL)
525 return NULL;
526
527 memcpy (s_name, link_sec->name, namelen);
528 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
529 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
530 if (stub_sec == NULL)
531 return NULL;
532 htab->stub_group[link_sec->id].stub_sec = stub_sec;
533 }
534 htab->stub_group[section->id].stub_sec = stub_sec;
535 }
536
537 /* Enter this entry into the linker stub hash table. */
538 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table, stub_name,
539 TRUE, FALSE);
540 if (stub_entry == NULL)
541 {
542 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
543 bfd_archive_filename (section->owner),
544 stub_name);
545 return NULL;
546 }
547
548 stub_entry->stub_sec = stub_sec;
549 stub_entry->stub_offset = 0;
550 stub_entry->id_sec = link_sec;
551 return stub_entry;
552 }
553
554 /* Determine the type of stub needed, if any, for a call. */
555
556 static enum elf32_hppa_stub_type
557 hppa_type_of_stub (asection *input_sec,
558 const Elf_Internal_Rela *rel,
559 struct elf32_hppa_link_hash_entry *hash,
560 bfd_vma destination,
561 struct bfd_link_info *info)
562 {
563 bfd_vma location;
564 bfd_vma branch_offset;
565 bfd_vma max_branch_offset;
566 unsigned int r_type;
567
568 if (hash != NULL
569 && hash->elf.plt.offset != (bfd_vma) -1
570 && hash->elf.dynindx != -1
571 && !hash->plabel
572 && (info->shared
573 || !(hash->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
574 || hash->elf.root.type == bfd_link_hash_defweak))
575 {
576 /* We need an import stub. Decide between hppa_stub_import
577 and hppa_stub_import_shared later. */
578 return hppa_stub_import;
579 }
580
581 /* Determine where the call point is. */
582 location = (input_sec->output_offset
583 + input_sec->output_section->vma
584 + rel->r_offset);
585
586 branch_offset = destination - location - 8;
587 r_type = ELF32_R_TYPE (rel->r_info);
588
589 /* Determine if a long branch stub is needed. parisc branch offsets
590 are relative to the second instruction past the branch, ie. +8
591 bytes on from the branch instruction location. The offset is
592 signed and counts in units of 4 bytes. */
593 if (r_type == (unsigned int) R_PARISC_PCREL17F)
594 {
595 max_branch_offset = (1 << (17-1)) << 2;
596 }
597 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
598 {
599 max_branch_offset = (1 << (12-1)) << 2;
600 }
601 else /* R_PARISC_PCREL22F. */
602 {
603 max_branch_offset = (1 << (22-1)) << 2;
604 }
605
606 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
607 return hppa_stub_long_branch;
608
609 return hppa_stub_none;
610 }
611
612 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
613 IN_ARG contains the link info pointer. */
614
615 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
616 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
617
618 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
619 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
620 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
621
622 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
623 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
624 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
625 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
626
627 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
628 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
629
630 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
631 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
632 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
633 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
634
635 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
636 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
637 #define NOP 0x08000240 /* nop */
638 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
639 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
640 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
641
642 #ifndef R19_STUBS
643 #define R19_STUBS 1
644 #endif
645
646 #if R19_STUBS
647 #define LDW_R1_DLT LDW_R1_R19
648 #else
649 #define LDW_R1_DLT LDW_R1_DP
650 #endif
651
652 static bfd_boolean
653 hppa_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
654 {
655 struct elf32_hppa_stub_hash_entry *stub_entry;
656 struct bfd_link_info *info;
657 struct elf32_hppa_link_hash_table *htab;
658 asection *stub_sec;
659 bfd *stub_bfd;
660 bfd_byte *loc;
661 bfd_vma sym_value;
662 bfd_vma insn;
663 bfd_vma off;
664 int val;
665 int size;
666
667 /* Massage our args to the form they really have. */
668 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
669 info = in_arg;
670
671 htab = hppa_link_hash_table (info);
672 stub_sec = stub_entry->stub_sec;
673
674 /* Make a note of the offset within the stubs for this entry. */
675 stub_entry->stub_offset = stub_sec->_raw_size;
676 loc = stub_sec->contents + stub_entry->stub_offset;
677
678 stub_bfd = stub_sec->owner;
679
680 switch (stub_entry->stub_type)
681 {
682 case hppa_stub_long_branch:
683 /* Create the long branch. A long branch is formed with "ldil"
684 loading the upper bits of the target address into a register,
685 then branching with "be" which adds in the lower bits.
686 The "be" has its delay slot nullified. */
687 sym_value = (stub_entry->target_value
688 + stub_entry->target_section->output_offset
689 + stub_entry->target_section->output_section->vma);
690
691 val = hppa_field_adjust (sym_value, 0, e_lrsel);
692 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
693 bfd_put_32 (stub_bfd, insn, loc);
694
695 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
696 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
697 bfd_put_32 (stub_bfd, insn, loc + 4);
698
699 size = 8;
700 break;
701
702 case hppa_stub_long_branch_shared:
703 /* Branches are relative. This is where we are going to. */
704 sym_value = (stub_entry->target_value
705 + stub_entry->target_section->output_offset
706 + stub_entry->target_section->output_section->vma);
707
708 /* And this is where we are coming from, more or less. */
709 sym_value -= (stub_entry->stub_offset
710 + stub_sec->output_offset
711 + stub_sec->output_section->vma);
712
713 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
714 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
715 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
716 bfd_put_32 (stub_bfd, insn, loc + 4);
717
718 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
719 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
720 bfd_put_32 (stub_bfd, insn, loc + 8);
721 size = 12;
722 break;
723
724 case hppa_stub_import:
725 case hppa_stub_import_shared:
726 off = stub_entry->h->elf.plt.offset;
727 if (off >= (bfd_vma) -2)
728 abort ();
729
730 off &= ~ (bfd_vma) 1;
731 sym_value = (off
732 + htab->splt->output_offset
733 + htab->splt->output_section->vma
734 - elf_gp (htab->splt->output_section->owner));
735
736 insn = ADDIL_DP;
737 #if R19_STUBS
738 if (stub_entry->stub_type == hppa_stub_import_shared)
739 insn = ADDIL_R19;
740 #endif
741 val = hppa_field_adjust (sym_value, 0, e_lrsel),
742 insn = hppa_rebuild_insn ((int) insn, val, 21);
743 bfd_put_32 (stub_bfd, insn, loc);
744
745 /* It is critical to use lrsel/rrsel here because we are using
746 two different offsets (+0 and +4) from sym_value. If we use
747 lsel/rsel then with unfortunate sym_values we will round
748 sym_value+4 up to the next 2k block leading to a mis-match
749 between the lsel and rsel value. */
750 val = hppa_field_adjust (sym_value, 0, e_rrsel);
751 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
752 bfd_put_32 (stub_bfd, insn, loc + 4);
753
754 if (htab->multi_subspace)
755 {
756 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
757 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
758 bfd_put_32 (stub_bfd, insn, loc + 8);
759
760 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
761 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
762 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
763 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
764
765 size = 28;
766 }
767 else
768 {
769 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
770 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
771 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
772 bfd_put_32 (stub_bfd, insn, loc + 12);
773
774 size = 16;
775 }
776
777 break;
778
779 case hppa_stub_export:
780 /* Branches are relative. This is where we are going to. */
781 sym_value = (stub_entry->target_value
782 + stub_entry->target_section->output_offset
783 + stub_entry->target_section->output_section->vma);
784
785 /* And this is where we are coming from. */
786 sym_value -= (stub_entry->stub_offset
787 + stub_sec->output_offset
788 + stub_sec->output_section->vma);
789
790 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
791 && (!htab->has_22bit_branch
792 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
793 {
794 (*_bfd_error_handler)
795 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
796 bfd_archive_filename (stub_entry->target_section->owner),
797 stub_sec->name,
798 (long) stub_entry->stub_offset,
799 stub_entry->root.string);
800 bfd_set_error (bfd_error_bad_value);
801 return FALSE;
802 }
803
804 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
805 if (!htab->has_22bit_branch)
806 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
807 else
808 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
809 bfd_put_32 (stub_bfd, insn, loc);
810
811 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
812 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
813 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
814 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
815 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
816
817 /* Point the function symbol at the stub. */
818 stub_entry->h->elf.root.u.def.section = stub_sec;
819 stub_entry->h->elf.root.u.def.value = stub_sec->_raw_size;
820
821 size = 24;
822 break;
823
824 default:
825 BFD_FAIL ();
826 return FALSE;
827 }
828
829 stub_sec->_raw_size += size;
830 return TRUE;
831 }
832
833 #undef LDIL_R1
834 #undef BE_SR4_R1
835 #undef BL_R1
836 #undef ADDIL_R1
837 #undef DEPI_R1
838 #undef LDW_R1_R21
839 #undef LDW_R1_DLT
840 #undef LDW_R1_R19
841 #undef ADDIL_R19
842 #undef LDW_R1_DP
843 #undef LDSID_R21_R1
844 #undef MTSP_R1
845 #undef BE_SR0_R21
846 #undef STW_RP
847 #undef BV_R0_R21
848 #undef BL_RP
849 #undef NOP
850 #undef LDW_RP
851 #undef LDSID_RP_R1
852 #undef BE_SR0_RP
853
854 /* As above, but don't actually build the stub. Just bump offset so
855 we know stub section sizes. */
856
857 static bfd_boolean
858 hppa_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
859 {
860 struct elf32_hppa_stub_hash_entry *stub_entry;
861 struct elf32_hppa_link_hash_table *htab;
862 int size;
863
864 /* Massage our args to the form they really have. */
865 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
866 htab = in_arg;
867
868 if (stub_entry->stub_type == hppa_stub_long_branch)
869 size = 8;
870 else if (stub_entry->stub_type == hppa_stub_long_branch_shared)
871 size = 12;
872 else if (stub_entry->stub_type == hppa_stub_export)
873 size = 24;
874 else /* hppa_stub_import or hppa_stub_import_shared. */
875 {
876 if (htab->multi_subspace)
877 size = 28;
878 else
879 size = 16;
880 }
881
882 stub_entry->stub_sec->_raw_size += size;
883 return TRUE;
884 }
885
886 /* Return nonzero if ABFD represents an HPPA ELF32 file.
887 Additionally we set the default architecture and machine. */
888
889 static bfd_boolean
890 elf32_hppa_object_p (bfd *abfd)
891 {
892 Elf_Internal_Ehdr * i_ehdrp;
893 unsigned int flags;
894
895 i_ehdrp = elf_elfheader (abfd);
896 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
897 {
898 /* GCC on hppa-linux produces binaries with OSABI=Linux,
899 but the kernel produces corefiles with OSABI=SysV. */
900 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX &&
901 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
902 return FALSE;
903 }
904 else
905 {
906 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
907 return FALSE;
908 }
909
910 flags = i_ehdrp->e_flags;
911 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
912 {
913 case EFA_PARISC_1_0:
914 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
915 case EFA_PARISC_1_1:
916 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
917 case EFA_PARISC_2_0:
918 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
919 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
920 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
921 }
922 return TRUE;
923 }
924
925 /* Create the .plt and .got sections, and set up our hash table
926 short-cuts to various dynamic sections. */
927
928 static bfd_boolean
929 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
930 {
931 struct elf32_hppa_link_hash_table *htab;
932
933 /* Don't try to create the .plt and .got twice. */
934 htab = hppa_link_hash_table (info);
935 if (htab->splt != NULL)
936 return TRUE;
937
938 /* Call the generic code to do most of the work. */
939 if (! _bfd_elf_create_dynamic_sections (abfd, info))
940 return FALSE;
941
942 htab->splt = bfd_get_section_by_name (abfd, ".plt");
943 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
944
945 htab->sgot = bfd_get_section_by_name (abfd, ".got");
946 htab->srelgot = bfd_make_section (abfd, ".rela.got");
947 if (htab->srelgot == NULL
948 || ! bfd_set_section_flags (abfd, htab->srelgot,
949 (SEC_ALLOC
950 | SEC_LOAD
951 | SEC_HAS_CONTENTS
952 | SEC_IN_MEMORY
953 | SEC_LINKER_CREATED
954 | SEC_READONLY))
955 || ! bfd_set_section_alignment (abfd, htab->srelgot, 2))
956 return FALSE;
957
958 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
959 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
960
961 return TRUE;
962 }
963
964 /* Copy the extra info we tack onto an elf_link_hash_entry. */
965
966 static void
967 elf32_hppa_copy_indirect_symbol (const struct elf_backend_data *bed,
968 struct elf_link_hash_entry *dir,
969 struct elf_link_hash_entry *ind)
970 {
971 struct elf32_hppa_link_hash_entry *edir, *eind;
972
973 edir = (struct elf32_hppa_link_hash_entry *) dir;
974 eind = (struct elf32_hppa_link_hash_entry *) ind;
975
976 if (eind->dyn_relocs != NULL)
977 {
978 if (edir->dyn_relocs != NULL)
979 {
980 struct elf32_hppa_dyn_reloc_entry **pp;
981 struct elf32_hppa_dyn_reloc_entry *p;
982
983 if (ind->root.type == bfd_link_hash_indirect)
984 abort ();
985
986 /* Add reloc counts against the weak sym to the strong sym
987 list. Merge any entries against the same section. */
988 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
989 {
990 struct elf32_hppa_dyn_reloc_entry *q;
991
992 for (q = edir->dyn_relocs; q != NULL; q = q->next)
993 if (q->sec == p->sec)
994 {
995 #if RELATIVE_DYNRELOCS
996 q->relative_count += p->relative_count;
997 #endif
998 q->count += p->count;
999 *pp = p->next;
1000 break;
1001 }
1002 if (q == NULL)
1003 pp = &p->next;
1004 }
1005 *pp = edir->dyn_relocs;
1006 }
1007
1008 edir->dyn_relocs = eind->dyn_relocs;
1009 eind->dyn_relocs = NULL;
1010 }
1011
1012 if (ELIMINATE_COPY_RELOCS
1013 && ind->root.type != bfd_link_hash_indirect
1014 && (dir->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
1015 /* If called to transfer flags for a weakdef during processing
1016 of elf_adjust_dynamic_symbol, don't copy ELF_LINK_NON_GOT_REF.
1017 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1018 dir->elf_link_hash_flags |=
1019 (ind->elf_link_hash_flags & (ELF_LINK_HASH_REF_DYNAMIC
1020 | ELF_LINK_HASH_REF_REGULAR
1021 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
1022 | ELF_LINK_HASH_NEEDS_PLT));
1023 else
1024 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
1025 }
1026
1027 /* Look through the relocs for a section during the first phase, and
1028 calculate needed space in the global offset table, procedure linkage
1029 table, and dynamic reloc sections. At this point we haven't
1030 necessarily read all the input files. */
1031
1032 static bfd_boolean
1033 elf32_hppa_check_relocs (bfd *abfd,
1034 struct bfd_link_info *info,
1035 asection *sec,
1036 const Elf_Internal_Rela *relocs)
1037 {
1038 Elf_Internal_Shdr *symtab_hdr;
1039 struct elf_link_hash_entry **sym_hashes;
1040 const Elf_Internal_Rela *rel;
1041 const Elf_Internal_Rela *rel_end;
1042 struct elf32_hppa_link_hash_table *htab;
1043 asection *sreloc;
1044 asection *stubreloc;
1045
1046 if (info->relocatable)
1047 return TRUE;
1048
1049 htab = hppa_link_hash_table (info);
1050 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1051 sym_hashes = elf_sym_hashes (abfd);
1052 sreloc = NULL;
1053 stubreloc = NULL;
1054
1055 rel_end = relocs + sec->reloc_count;
1056 for (rel = relocs; rel < rel_end; rel++)
1057 {
1058 enum {
1059 NEED_GOT = 1,
1060 NEED_PLT = 2,
1061 NEED_DYNREL = 4,
1062 PLT_PLABEL = 8
1063 };
1064
1065 unsigned int r_symndx, r_type;
1066 struct elf32_hppa_link_hash_entry *h;
1067 int need_entry;
1068
1069 r_symndx = ELF32_R_SYM (rel->r_info);
1070
1071 if (r_symndx < symtab_hdr->sh_info)
1072 h = NULL;
1073 else
1074 h = ((struct elf32_hppa_link_hash_entry *)
1075 sym_hashes[r_symndx - symtab_hdr->sh_info]);
1076
1077 r_type = ELF32_R_TYPE (rel->r_info);
1078
1079 switch (r_type)
1080 {
1081 case R_PARISC_DLTIND14F:
1082 case R_PARISC_DLTIND14R:
1083 case R_PARISC_DLTIND21L:
1084 /* This symbol requires a global offset table entry. */
1085 need_entry = NEED_GOT;
1086 break;
1087
1088 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1089 case R_PARISC_PLABEL21L:
1090 case R_PARISC_PLABEL32:
1091 /* If the addend is non-zero, we break badly. */
1092 if (rel->r_addend != 0)
1093 abort ();
1094
1095 /* If we are creating a shared library, then we need to
1096 create a PLT entry for all PLABELs, because PLABELs with
1097 local symbols may be passed via a pointer to another
1098 object. Additionally, output a dynamic relocation
1099 pointing to the PLT entry.
1100 For executables, the original 32-bit ABI allowed two
1101 different styles of PLABELs (function pointers): For
1102 global functions, the PLABEL word points into the .plt
1103 two bytes past a (function address, gp) pair, and for
1104 local functions the PLABEL points directly at the
1105 function. The magic +2 for the first type allows us to
1106 differentiate between the two. As you can imagine, this
1107 is a real pain when it comes to generating code to call
1108 functions indirectly or to compare function pointers.
1109 We avoid the mess by always pointing a PLABEL into the
1110 .plt, even for local functions. */
1111 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1112 break;
1113
1114 case R_PARISC_PCREL12F:
1115 htab->has_12bit_branch = 1;
1116 goto branch_common;
1117
1118 case R_PARISC_PCREL17C:
1119 case R_PARISC_PCREL17F:
1120 htab->has_17bit_branch = 1;
1121 goto branch_common;
1122
1123 case R_PARISC_PCREL22F:
1124 htab->has_22bit_branch = 1;
1125 branch_common:
1126 /* Function calls might need to go through the .plt, and
1127 might require long branch stubs. */
1128 if (h == NULL)
1129 {
1130 /* We know local syms won't need a .plt entry, and if
1131 they need a long branch stub we can't guarantee that
1132 we can reach the stub. So just flag an error later
1133 if we're doing a shared link and find we need a long
1134 branch stub. */
1135 continue;
1136 }
1137 else
1138 {
1139 /* Global symbols will need a .plt entry if they remain
1140 global, and in most cases won't need a long branch
1141 stub. Unfortunately, we have to cater for the case
1142 where a symbol is forced local by versioning, or due
1143 to symbolic linking, and we lose the .plt entry. */
1144 need_entry = NEED_PLT;
1145 if (h->elf.type == STT_PARISC_MILLI)
1146 need_entry = 0;
1147 }
1148 break;
1149
1150 case R_PARISC_SEGBASE: /* Used to set segment base. */
1151 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1152 case R_PARISC_PCREL14F: /* PC relative load/store. */
1153 case R_PARISC_PCREL14R:
1154 case R_PARISC_PCREL17R: /* External branches. */
1155 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1156 case R_PARISC_PCREL32:
1157 /* We don't need to propagate the relocation if linking a
1158 shared object since these are section relative. */
1159 continue;
1160
1161 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1162 case R_PARISC_DPREL14R:
1163 case R_PARISC_DPREL21L:
1164 if (info->shared)
1165 {
1166 (*_bfd_error_handler)
1167 (_("%s: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1168 bfd_archive_filename (abfd),
1169 elf_hppa_howto_table[r_type].name);
1170 bfd_set_error (bfd_error_bad_value);
1171 return FALSE;
1172 }
1173 /* Fall through. */
1174
1175 case R_PARISC_DIR17F: /* Used for external branches. */
1176 case R_PARISC_DIR17R:
1177 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1178 case R_PARISC_DIR14R:
1179 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1180 #if 0
1181 /* Help debug shared library creation. Any of the above
1182 relocs can be used in shared libs, but they may cause
1183 pages to become unshared. */
1184 if (info->shared)
1185 {
1186 (*_bfd_error_handler)
1187 (_("%s: relocation %s should not be used when making a shared object; recompile with -fPIC"),
1188 bfd_archive_filename (abfd),
1189 elf_hppa_howto_table[r_type].name);
1190 }
1191 /* Fall through. */
1192 #endif
1193
1194 case R_PARISC_DIR32: /* .word relocs. */
1195 /* We may want to output a dynamic relocation later. */
1196 need_entry = NEED_DYNREL;
1197 break;
1198
1199 /* This relocation describes the C++ object vtable hierarchy.
1200 Reconstruct it for later use during GC. */
1201 case R_PARISC_GNU_VTINHERIT:
1202 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &h->elf, rel->r_offset))
1203 return FALSE;
1204 continue;
1205
1206 /* This relocation describes which C++ vtable entries are actually
1207 used. Record for later use during GC. */
1208 case R_PARISC_GNU_VTENTRY:
1209 if (!bfd_elf_gc_record_vtentry (abfd, sec, &h->elf, rel->r_addend))
1210 return FALSE;
1211 continue;
1212
1213 default:
1214 continue;
1215 }
1216
1217 /* Now carry out our orders. */
1218 if (need_entry & NEED_GOT)
1219 {
1220 /* Allocate space for a GOT entry, as well as a dynamic
1221 relocation for this entry. */
1222 if (htab->sgot == NULL)
1223 {
1224 if (htab->elf.dynobj == NULL)
1225 htab->elf.dynobj = abfd;
1226 if (!elf32_hppa_create_dynamic_sections (htab->elf.dynobj, info))
1227 return FALSE;
1228 }
1229
1230 if (h != NULL)
1231 {
1232 h->elf.got.refcount += 1;
1233 }
1234 else
1235 {
1236 bfd_signed_vma *local_got_refcounts;
1237
1238 /* This is a global offset table entry for a local symbol. */
1239 local_got_refcounts = elf_local_got_refcounts (abfd);
1240 if (local_got_refcounts == NULL)
1241 {
1242 bfd_size_type size;
1243
1244 /* Allocate space for local got offsets and local
1245 plt offsets. Done this way to save polluting
1246 elf_obj_tdata with another target specific
1247 pointer. */
1248 size = symtab_hdr->sh_info;
1249 size *= 2 * sizeof (bfd_signed_vma);
1250 local_got_refcounts = bfd_zalloc (abfd, size);
1251 if (local_got_refcounts == NULL)
1252 return FALSE;
1253 elf_local_got_refcounts (abfd) = local_got_refcounts;
1254 }
1255 local_got_refcounts[r_symndx] += 1;
1256 }
1257 }
1258
1259 if (need_entry & NEED_PLT)
1260 {
1261 /* If we are creating a shared library, and this is a reloc
1262 against a weak symbol or a global symbol in a dynamic
1263 object, then we will be creating an import stub and a
1264 .plt entry for the symbol. Similarly, on a normal link
1265 to symbols defined in a dynamic object we'll need the
1266 import stub and a .plt entry. We don't know yet whether
1267 the symbol is defined or not, so make an entry anyway and
1268 clean up later in adjust_dynamic_symbol. */
1269 if ((sec->flags & SEC_ALLOC) != 0)
1270 {
1271 if (h != NULL)
1272 {
1273 h->elf.elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1274 h->elf.plt.refcount += 1;
1275
1276 /* If this .plt entry is for a plabel, mark it so
1277 that adjust_dynamic_symbol will keep the entry
1278 even if it appears to be local. */
1279 if (need_entry & PLT_PLABEL)
1280 h->plabel = 1;
1281 }
1282 else if (need_entry & PLT_PLABEL)
1283 {
1284 bfd_signed_vma *local_got_refcounts;
1285 bfd_signed_vma *local_plt_refcounts;
1286
1287 local_got_refcounts = elf_local_got_refcounts (abfd);
1288 if (local_got_refcounts == NULL)
1289 {
1290 bfd_size_type size;
1291
1292 /* Allocate space for local got offsets and local
1293 plt offsets. */
1294 size = symtab_hdr->sh_info;
1295 size *= 2 * sizeof (bfd_signed_vma);
1296 local_got_refcounts = bfd_zalloc (abfd, size);
1297 if (local_got_refcounts == NULL)
1298 return FALSE;
1299 elf_local_got_refcounts (abfd) = local_got_refcounts;
1300 }
1301 local_plt_refcounts = (local_got_refcounts
1302 + symtab_hdr->sh_info);
1303 local_plt_refcounts[r_symndx] += 1;
1304 }
1305 }
1306 }
1307
1308 if (need_entry & NEED_DYNREL)
1309 {
1310 /* Flag this symbol as having a non-got, non-plt reference
1311 so that we generate copy relocs if it turns out to be
1312 dynamic. */
1313 if (h != NULL && !info->shared)
1314 h->elf.elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
1315
1316 /* If we are creating a shared library then we need to copy
1317 the reloc into the shared library. However, if we are
1318 linking with -Bsymbolic, we need only copy absolute
1319 relocs or relocs against symbols that are not defined in
1320 an object we are including in the link. PC- or DP- or
1321 DLT-relative relocs against any local sym or global sym
1322 with DEF_REGULAR set, can be discarded. At this point we
1323 have not seen all the input files, so it is possible that
1324 DEF_REGULAR is not set now but will be set later (it is
1325 never cleared). We account for that possibility below by
1326 storing information in the dyn_relocs field of the
1327 hash table entry.
1328
1329 A similar situation to the -Bsymbolic case occurs when
1330 creating shared libraries and symbol visibility changes
1331 render the symbol local.
1332
1333 As it turns out, all the relocs we will be creating here
1334 are absolute, so we cannot remove them on -Bsymbolic
1335 links or visibility changes anyway. A STUB_REL reloc
1336 is absolute too, as in that case it is the reloc in the
1337 stub we will be creating, rather than copying the PCREL
1338 reloc in the branch.
1339
1340 If on the other hand, we are creating an executable, we
1341 may need to keep relocations for symbols satisfied by a
1342 dynamic library if we manage to avoid copy relocs for the
1343 symbol. */
1344 if ((info->shared
1345 && (sec->flags & SEC_ALLOC) != 0
1346 && (IS_ABSOLUTE_RELOC (r_type)
1347 || (h != NULL
1348 && (!info->symbolic
1349 || h->elf.root.type == bfd_link_hash_defweak
1350 || (h->elf.elf_link_hash_flags
1351 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1352 || (ELIMINATE_COPY_RELOCS
1353 && !info->shared
1354 && (sec->flags & SEC_ALLOC) != 0
1355 && h != NULL
1356 && (h->elf.root.type == bfd_link_hash_defweak
1357 || (h->elf.elf_link_hash_flags
1358 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
1359 {
1360 struct elf32_hppa_dyn_reloc_entry *p;
1361 struct elf32_hppa_dyn_reloc_entry **head;
1362
1363 /* Create a reloc section in dynobj and make room for
1364 this reloc. */
1365 if (sreloc == NULL)
1366 {
1367 char *name;
1368 bfd *dynobj;
1369
1370 name = (bfd_elf_string_from_elf_section
1371 (abfd,
1372 elf_elfheader (abfd)->e_shstrndx,
1373 elf_section_data (sec)->rel_hdr.sh_name));
1374 if (name == NULL)
1375 {
1376 (*_bfd_error_handler)
1377 (_("Could not find relocation section for %s"),
1378 sec->name);
1379 bfd_set_error (bfd_error_bad_value);
1380 return FALSE;
1381 }
1382
1383 if (htab->elf.dynobj == NULL)
1384 htab->elf.dynobj = abfd;
1385
1386 dynobj = htab->elf.dynobj;
1387 sreloc = bfd_get_section_by_name (dynobj, name);
1388 if (sreloc == NULL)
1389 {
1390 flagword flags;
1391
1392 sreloc = bfd_make_section (dynobj, name);
1393 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1394 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1395 if ((sec->flags & SEC_ALLOC) != 0)
1396 flags |= SEC_ALLOC | SEC_LOAD;
1397 if (sreloc == NULL
1398 || !bfd_set_section_flags (dynobj, sreloc, flags)
1399 || !bfd_set_section_alignment (dynobj, sreloc, 2))
1400 return FALSE;
1401 }
1402
1403 elf_section_data (sec)->sreloc = sreloc;
1404 }
1405
1406 /* If this is a global symbol, we count the number of
1407 relocations we need for this symbol. */
1408 if (h != NULL)
1409 {
1410 head = &h->dyn_relocs;
1411 }
1412 else
1413 {
1414 /* Track dynamic relocs needed for local syms too.
1415 We really need local syms available to do this
1416 easily. Oh well. */
1417
1418 asection *s;
1419 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1420 sec, r_symndx);
1421 if (s == NULL)
1422 return FALSE;
1423
1424 head = ((struct elf32_hppa_dyn_reloc_entry **)
1425 &elf_section_data (s)->local_dynrel);
1426 }
1427
1428 p = *head;
1429 if (p == NULL || p->sec != sec)
1430 {
1431 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
1432 if (p == NULL)
1433 return FALSE;
1434 p->next = *head;
1435 *head = p;
1436 p->sec = sec;
1437 p->count = 0;
1438 #if RELATIVE_DYNRELOCS
1439 p->relative_count = 0;
1440 #endif
1441 }
1442
1443 p->count += 1;
1444 #if RELATIVE_DYNRELOCS
1445 if (!IS_ABSOLUTE_RELOC (rtype))
1446 p->relative_count += 1;
1447 #endif
1448 }
1449 }
1450 }
1451
1452 return TRUE;
1453 }
1454
1455 /* Return the section that should be marked against garbage collection
1456 for a given relocation. */
1457
1458 static asection *
1459 elf32_hppa_gc_mark_hook (asection *sec,
1460 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1461 Elf_Internal_Rela *rel,
1462 struct elf_link_hash_entry *h,
1463 Elf_Internal_Sym *sym)
1464 {
1465 if (h != NULL)
1466 {
1467 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1468 {
1469 case R_PARISC_GNU_VTINHERIT:
1470 case R_PARISC_GNU_VTENTRY:
1471 break;
1472
1473 default:
1474 switch (h->root.type)
1475 {
1476 case bfd_link_hash_defined:
1477 case bfd_link_hash_defweak:
1478 return h->root.u.def.section;
1479
1480 case bfd_link_hash_common:
1481 return h->root.u.c.p->section;
1482
1483 default:
1484 break;
1485 }
1486 }
1487 }
1488 else
1489 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1490
1491 return NULL;
1492 }
1493
1494 /* Update the got and plt entry reference counts for the section being
1495 removed. */
1496
1497 static bfd_boolean
1498 elf32_hppa_gc_sweep_hook (bfd *abfd,
1499 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1500 asection *sec,
1501 const Elf_Internal_Rela *relocs)
1502 {
1503 Elf_Internal_Shdr *symtab_hdr;
1504 struct elf_link_hash_entry **sym_hashes;
1505 bfd_signed_vma *local_got_refcounts;
1506 bfd_signed_vma *local_plt_refcounts;
1507 const Elf_Internal_Rela *rel, *relend;
1508
1509 elf_section_data (sec)->local_dynrel = NULL;
1510
1511 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1512 sym_hashes = elf_sym_hashes (abfd);
1513 local_got_refcounts = elf_local_got_refcounts (abfd);
1514 local_plt_refcounts = local_got_refcounts;
1515 if (local_plt_refcounts != NULL)
1516 local_plt_refcounts += symtab_hdr->sh_info;
1517
1518 relend = relocs + sec->reloc_count;
1519 for (rel = relocs; rel < relend; rel++)
1520 {
1521 unsigned long r_symndx;
1522 unsigned int r_type;
1523 struct elf_link_hash_entry *h = NULL;
1524
1525 r_symndx = ELF32_R_SYM (rel->r_info);
1526 if (r_symndx >= symtab_hdr->sh_info)
1527 {
1528 struct elf32_hppa_link_hash_entry *eh;
1529 struct elf32_hppa_dyn_reloc_entry **pp;
1530 struct elf32_hppa_dyn_reloc_entry *p;
1531
1532 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1533 eh = (struct elf32_hppa_link_hash_entry *) h;
1534
1535 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1536 if (p->sec == sec)
1537 {
1538 /* Everything must go for SEC. */
1539 *pp = p->next;
1540 break;
1541 }
1542 }
1543
1544 r_type = ELF32_R_TYPE (rel->r_info);
1545 switch (r_type)
1546 {
1547 case R_PARISC_DLTIND14F:
1548 case R_PARISC_DLTIND14R:
1549 case R_PARISC_DLTIND21L:
1550 if (h != NULL)
1551 {
1552 if (h->got.refcount > 0)
1553 h->got.refcount -= 1;
1554 }
1555 else if (local_got_refcounts != NULL)
1556 {
1557 if (local_got_refcounts[r_symndx] > 0)
1558 local_got_refcounts[r_symndx] -= 1;
1559 }
1560 break;
1561
1562 case R_PARISC_PCREL12F:
1563 case R_PARISC_PCREL17C:
1564 case R_PARISC_PCREL17F:
1565 case R_PARISC_PCREL22F:
1566 if (h != NULL)
1567 {
1568 if (h->plt.refcount > 0)
1569 h->plt.refcount -= 1;
1570 }
1571 break;
1572
1573 case R_PARISC_PLABEL14R:
1574 case R_PARISC_PLABEL21L:
1575 case R_PARISC_PLABEL32:
1576 if (h != NULL)
1577 {
1578 if (h->plt.refcount > 0)
1579 h->plt.refcount -= 1;
1580 }
1581 else if (local_plt_refcounts != NULL)
1582 {
1583 if (local_plt_refcounts[r_symndx] > 0)
1584 local_plt_refcounts[r_symndx] -= 1;
1585 }
1586 break;
1587
1588 default:
1589 break;
1590 }
1591 }
1592
1593 return TRUE;
1594 }
1595
1596 /* Our own version of hide_symbol, so that we can keep plt entries for
1597 plabels. */
1598
1599 static void
1600 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1601 struct elf_link_hash_entry *h,
1602 bfd_boolean force_local)
1603 {
1604 if (force_local)
1605 {
1606 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
1607 if (h->dynindx != -1)
1608 {
1609 h->dynindx = -1;
1610 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1611 h->dynstr_index);
1612 }
1613 }
1614
1615 if (! ((struct elf32_hppa_link_hash_entry *) h)->plabel)
1616 {
1617 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1618 h->plt.offset = (bfd_vma) -1;
1619 }
1620 }
1621
1622 /* Adjust a symbol defined by a dynamic object and referenced by a
1623 regular object. The current definition is in some section of the
1624 dynamic object, but we're not including those sections. We have to
1625 change the definition to something the rest of the link can
1626 understand. */
1627
1628 static bfd_boolean
1629 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1630 struct elf_link_hash_entry *h)
1631 {
1632 struct elf32_hppa_link_hash_table *htab;
1633 asection *s;
1634 unsigned int power_of_two;
1635
1636 /* If this is a function, put it in the procedure linkage table. We
1637 will fill in the contents of the procedure linkage table later. */
1638 if (h->type == STT_FUNC
1639 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1640 {
1641 if (h->plt.refcount <= 0
1642 || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1643 && h->root.type != bfd_link_hash_defweak
1644 && ! ((struct elf32_hppa_link_hash_entry *) h)->plabel
1645 && (!info->shared || info->symbolic)))
1646 {
1647 /* The .plt entry is not needed when:
1648 a) Garbage collection has removed all references to the
1649 symbol, or
1650 b) We know for certain the symbol is defined in this
1651 object, and it's not a weak definition, nor is the symbol
1652 used by a plabel relocation. Either this object is the
1653 application or we are doing a shared symbolic link. */
1654
1655 h->plt.offset = (bfd_vma) -1;
1656 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1657 }
1658
1659 return TRUE;
1660 }
1661 else
1662 h->plt.offset = (bfd_vma) -1;
1663
1664 /* If this is a weak symbol, and there is a real definition, the
1665 processor independent code will have arranged for us to see the
1666 real definition first, and we can just use the same value. */
1667 if (h->weakdef != NULL)
1668 {
1669 if (h->weakdef->root.type != bfd_link_hash_defined
1670 && h->weakdef->root.type != bfd_link_hash_defweak)
1671 abort ();
1672 h->root.u.def.section = h->weakdef->root.u.def.section;
1673 h->root.u.def.value = h->weakdef->root.u.def.value;
1674 if (ELIMINATE_COPY_RELOCS)
1675 h->elf_link_hash_flags
1676 = ((h->elf_link_hash_flags & ~ELF_LINK_NON_GOT_REF)
1677 | (h->weakdef->elf_link_hash_flags & ELF_LINK_NON_GOT_REF));
1678 return TRUE;
1679 }
1680
1681 /* This is a reference to a symbol defined by a dynamic object which
1682 is not a function. */
1683
1684 /* If we are creating a shared library, we must presume that the
1685 only references to the symbol are via the global offset table.
1686 For such cases we need not do anything here; the relocations will
1687 be handled correctly by relocate_section. */
1688 if (info->shared)
1689 return TRUE;
1690
1691 /* If there are no references to this symbol that do not use the
1692 GOT, we don't need to generate a copy reloc. */
1693 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1694 return TRUE;
1695
1696 if (ELIMINATE_COPY_RELOCS)
1697 {
1698 struct elf32_hppa_link_hash_entry *eh;
1699 struct elf32_hppa_dyn_reloc_entry *p;
1700
1701 eh = (struct elf32_hppa_link_hash_entry *) h;
1702 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1703 {
1704 s = p->sec->output_section;
1705 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1706 break;
1707 }
1708
1709 /* If we didn't find any dynamic relocs in read-only sections, then
1710 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1711 if (p == NULL)
1712 {
1713 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1714 return TRUE;
1715 }
1716 }
1717
1718 /* We must allocate the symbol in our .dynbss section, which will
1719 become part of the .bss section of the executable. There will be
1720 an entry for this symbol in the .dynsym section. The dynamic
1721 object will contain position independent code, so all references
1722 from the dynamic object to this symbol will go through the global
1723 offset table. The dynamic linker will use the .dynsym entry to
1724 determine the address it must put in the global offset table, so
1725 both the dynamic object and the regular object will refer to the
1726 same memory location for the variable. */
1727
1728 htab = hppa_link_hash_table (info);
1729
1730 /* We must generate a COPY reloc to tell the dynamic linker to
1731 copy the initial value out of the dynamic object and into the
1732 runtime process image. */
1733 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1734 {
1735 htab->srelbss->_raw_size += sizeof (Elf32_External_Rela);
1736 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1737 }
1738
1739 /* We need to figure out the alignment required for this symbol. I
1740 have no idea how other ELF linkers handle this. */
1741
1742 power_of_two = bfd_log2 (h->size);
1743 if (power_of_two > 3)
1744 power_of_two = 3;
1745
1746 /* Apply the required alignment. */
1747 s = htab->sdynbss;
1748 s->_raw_size = BFD_ALIGN (s->_raw_size,
1749 (bfd_size_type) (1 << power_of_two));
1750 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1751 {
1752 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1753 return FALSE;
1754 }
1755
1756 /* Define the symbol as being at this point in the section. */
1757 h->root.u.def.section = s;
1758 h->root.u.def.value = s->_raw_size;
1759
1760 /* Increment the section size to make room for the symbol. */
1761 s->_raw_size += h->size;
1762
1763 return TRUE;
1764 }
1765
1766 /* Allocate space in the .plt for entries that won't have relocations.
1767 ie. plabel entries. */
1768
1769 static bfd_boolean
1770 allocate_plt_static (struct elf_link_hash_entry *h, void *inf)
1771 {
1772 struct bfd_link_info *info;
1773 struct elf32_hppa_link_hash_table *htab;
1774 asection *s;
1775
1776 if (h->root.type == bfd_link_hash_indirect)
1777 return TRUE;
1778
1779 if (h->root.type == bfd_link_hash_warning)
1780 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1781
1782 info = inf;
1783 htab = hppa_link_hash_table (info);
1784 if (htab->elf.dynamic_sections_created
1785 && h->plt.refcount > 0)
1786 {
1787 /* Make sure this symbol is output as a dynamic symbol.
1788 Undefined weak syms won't yet be marked as dynamic. */
1789 if (h->dynindx == -1
1790 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
1791 && h->type != STT_PARISC_MILLI)
1792 {
1793 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1794 return FALSE;
1795 }
1796
1797 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, h))
1798 {
1799 /* Allocate these later. From this point on, h->plabel
1800 means that the plt entry is only used by a plabel.
1801 We'll be using a normal plt entry for this symbol, so
1802 clear the plabel indicator. */
1803 ((struct elf32_hppa_link_hash_entry *) h)->plabel = 0;
1804 }
1805 else if (((struct elf32_hppa_link_hash_entry *) h)->plabel)
1806 {
1807 /* Make an entry in the .plt section for plabel references
1808 that won't have a .plt entry for other reasons. */
1809 s = htab->splt;
1810 h->plt.offset = s->_raw_size;
1811 s->_raw_size += PLT_ENTRY_SIZE;
1812 }
1813 else
1814 {
1815 /* No .plt entry needed. */
1816 h->plt.offset = (bfd_vma) -1;
1817 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1818 }
1819 }
1820 else
1821 {
1822 h->plt.offset = (bfd_vma) -1;
1823 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1824 }
1825
1826 return TRUE;
1827 }
1828
1829 /* Allocate space in .plt, .got and associated reloc sections for
1830 global syms. */
1831
1832 static bfd_boolean
1833 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
1834 {
1835 struct bfd_link_info *info;
1836 struct elf32_hppa_link_hash_table *htab;
1837 asection *s;
1838 struct elf32_hppa_link_hash_entry *eh;
1839 struct elf32_hppa_dyn_reloc_entry *p;
1840
1841 if (h->root.type == bfd_link_hash_indirect)
1842 return TRUE;
1843
1844 if (h->root.type == bfd_link_hash_warning)
1845 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1846
1847 info = inf;
1848 htab = hppa_link_hash_table (info);
1849 if (htab->elf.dynamic_sections_created
1850 && h->plt.offset != (bfd_vma) -1
1851 && !((struct elf32_hppa_link_hash_entry *) h)->plabel)
1852 {
1853 /* Make an entry in the .plt section. */
1854 s = htab->splt;
1855 h->plt.offset = s->_raw_size;
1856 s->_raw_size += PLT_ENTRY_SIZE;
1857
1858 /* We also need to make an entry in the .rela.plt section. */
1859 htab->srelplt->_raw_size += sizeof (Elf32_External_Rela);
1860 htab->need_plt_stub = 1;
1861 }
1862
1863 if (h->got.refcount > 0)
1864 {
1865 /* Make sure this symbol is output as a dynamic symbol.
1866 Undefined weak syms won't yet be marked as dynamic. */
1867 if (h->dynindx == -1
1868 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
1869 && h->type != STT_PARISC_MILLI)
1870 {
1871 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1872 return FALSE;
1873 }
1874
1875 s = htab->sgot;
1876 h->got.offset = s->_raw_size;
1877 s->_raw_size += GOT_ENTRY_SIZE;
1878 if (htab->elf.dynamic_sections_created
1879 && (info->shared
1880 || (h->dynindx != -1
1881 && h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0))
1882 {
1883 htab->srelgot->_raw_size += sizeof (Elf32_External_Rela);
1884 }
1885 }
1886 else
1887 h->got.offset = (bfd_vma) -1;
1888
1889 eh = (struct elf32_hppa_link_hash_entry *) h;
1890 if (eh->dyn_relocs == NULL)
1891 return TRUE;
1892
1893 /* If this is a -Bsymbolic shared link, then we need to discard all
1894 space allocated for dynamic pc-relative relocs against symbols
1895 defined in a regular object. For the normal shared case, discard
1896 space for relocs that have become local due to symbol visibility
1897 changes. */
1898 if (info->shared)
1899 {
1900 #if RELATIVE_DYNRELOCS
1901 if (SYMBOL_CALLS_LOCAL (info, h))
1902 {
1903 struct elf32_hppa_dyn_reloc_entry **pp;
1904
1905 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1906 {
1907 p->count -= p->relative_count;
1908 p->relative_count = 0;
1909 if (p->count == 0)
1910 *pp = p->next;
1911 else
1912 pp = &p->next;
1913 }
1914 }
1915 #endif
1916
1917 /* Also discard relocs on undefined weak syms with non-default
1918 visibility. */
1919 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1920 && h->root.type == bfd_link_hash_undefweak)
1921 eh->dyn_relocs = NULL;
1922 }
1923 else
1924 {
1925 /* For the non-shared case, discard space for relocs against
1926 symbols which turn out to need copy relocs or are not
1927 dynamic. */
1928 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1929 && ((ELIMINATE_COPY_RELOCS
1930 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1931 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1932 || (htab->elf.dynamic_sections_created
1933 && (h->root.type == bfd_link_hash_undefweak
1934 || h->root.type == bfd_link_hash_undefined))))
1935 {
1936 /* Make sure this symbol is output as a dynamic symbol.
1937 Undefined weak syms won't yet be marked as dynamic. */
1938 if (h->dynindx == -1
1939 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
1940 && h->type != STT_PARISC_MILLI)
1941 {
1942 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1943 return FALSE;
1944 }
1945
1946 /* If that succeeded, we know we'll be keeping all the
1947 relocs. */
1948 if (h->dynindx != -1)
1949 goto keep;
1950 }
1951
1952 eh->dyn_relocs = NULL;
1953 return TRUE;
1954
1955 keep: ;
1956 }
1957
1958 /* Finally, allocate space. */
1959 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1960 {
1961 asection *sreloc = elf_section_data (p->sec)->sreloc;
1962 sreloc->_raw_size += p->count * sizeof (Elf32_External_Rela);
1963 }
1964
1965 return TRUE;
1966 }
1967
1968 /* This function is called via elf_link_hash_traverse to force
1969 millicode symbols local so they do not end up as globals in the
1970 dynamic symbol table. We ought to be able to do this in
1971 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
1972 for all dynamic symbols. Arguably, this is a bug in
1973 elf_adjust_dynamic_symbol. */
1974
1975 static bfd_boolean
1976 clobber_millicode_symbols (struct elf_link_hash_entry *h,
1977 struct bfd_link_info *info)
1978 {
1979 if (h->root.type == bfd_link_hash_warning)
1980 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1981
1982 if (h->type == STT_PARISC_MILLI
1983 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1984 {
1985 elf32_hppa_hide_symbol (info, h, TRUE);
1986 }
1987 return TRUE;
1988 }
1989
1990 /* Find any dynamic relocs that apply to read-only sections. */
1991
1992 static bfd_boolean
1993 readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf)
1994 {
1995 struct elf32_hppa_link_hash_entry *eh;
1996 struct elf32_hppa_dyn_reloc_entry *p;
1997
1998 if (h->root.type == bfd_link_hash_warning)
1999 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2000
2001 eh = (struct elf32_hppa_link_hash_entry *) h;
2002 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2003 {
2004 asection *s = p->sec->output_section;
2005
2006 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2007 {
2008 struct bfd_link_info *info = inf;
2009
2010 info->flags |= DF_TEXTREL;
2011
2012 /* Not an error, just cut short the traversal. */
2013 return FALSE;
2014 }
2015 }
2016 return TRUE;
2017 }
2018
2019 /* Set the sizes of the dynamic sections. */
2020
2021 static bfd_boolean
2022 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2023 struct bfd_link_info *info)
2024 {
2025 struct elf32_hppa_link_hash_table *htab;
2026 bfd *dynobj;
2027 bfd *ibfd;
2028 asection *s;
2029 bfd_boolean relocs;
2030
2031 htab = hppa_link_hash_table (info);
2032 dynobj = htab->elf.dynobj;
2033 if (dynobj == NULL)
2034 abort ();
2035
2036 if (htab->elf.dynamic_sections_created)
2037 {
2038 /* Set the contents of the .interp section to the interpreter. */
2039 if (info->executable)
2040 {
2041 s = bfd_get_section_by_name (dynobj, ".interp");
2042 if (s == NULL)
2043 abort ();
2044 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
2045 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2046 }
2047
2048 /* Force millicode symbols local. */
2049 elf_link_hash_traverse (&htab->elf,
2050 clobber_millicode_symbols,
2051 info);
2052 }
2053
2054 /* Set up .got and .plt offsets for local syms, and space for local
2055 dynamic relocs. */
2056 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2057 {
2058 bfd_signed_vma *local_got;
2059 bfd_signed_vma *end_local_got;
2060 bfd_signed_vma *local_plt;
2061 bfd_signed_vma *end_local_plt;
2062 bfd_size_type locsymcount;
2063 Elf_Internal_Shdr *symtab_hdr;
2064 asection *srel;
2065
2066 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2067 continue;
2068
2069 for (s = ibfd->sections; s != NULL; s = s->next)
2070 {
2071 struct elf32_hppa_dyn_reloc_entry *p;
2072
2073 for (p = ((struct elf32_hppa_dyn_reloc_entry *)
2074 elf_section_data (s)->local_dynrel);
2075 p != NULL;
2076 p = p->next)
2077 {
2078 if (!bfd_is_abs_section (p->sec)
2079 && bfd_is_abs_section (p->sec->output_section))
2080 {
2081 /* Input section has been discarded, either because
2082 it is a copy of a linkonce section or due to
2083 linker script /DISCARD/, so we'll be discarding
2084 the relocs too. */
2085 }
2086 else if (p->count != 0)
2087 {
2088 srel = elf_section_data (p->sec)->sreloc;
2089 srel->_raw_size += p->count * sizeof (Elf32_External_Rela);
2090 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
2091 info->flags |= DF_TEXTREL;
2092 }
2093 }
2094 }
2095
2096 local_got = elf_local_got_refcounts (ibfd);
2097 if (!local_got)
2098 continue;
2099
2100 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2101 locsymcount = symtab_hdr->sh_info;
2102 end_local_got = local_got + locsymcount;
2103 s = htab->sgot;
2104 srel = htab->srelgot;
2105 for (; local_got < end_local_got; ++local_got)
2106 {
2107 if (*local_got > 0)
2108 {
2109 *local_got = s->_raw_size;
2110 s->_raw_size += GOT_ENTRY_SIZE;
2111 if (info->shared)
2112 srel->_raw_size += sizeof (Elf32_External_Rela);
2113 }
2114 else
2115 *local_got = (bfd_vma) -1;
2116 }
2117
2118 local_plt = end_local_got;
2119 end_local_plt = local_plt + locsymcount;
2120 if (! htab->elf.dynamic_sections_created)
2121 {
2122 /* Won't be used, but be safe. */
2123 for (; local_plt < end_local_plt; ++local_plt)
2124 *local_plt = (bfd_vma) -1;
2125 }
2126 else
2127 {
2128 s = htab->splt;
2129 srel = htab->srelplt;
2130 for (; local_plt < end_local_plt; ++local_plt)
2131 {
2132 if (*local_plt > 0)
2133 {
2134 *local_plt = s->_raw_size;
2135 s->_raw_size += PLT_ENTRY_SIZE;
2136 if (info->shared)
2137 srel->_raw_size += sizeof (Elf32_External_Rela);
2138 }
2139 else
2140 *local_plt = (bfd_vma) -1;
2141 }
2142 }
2143 }
2144
2145 /* Do all the .plt entries without relocs first. The dynamic linker
2146 uses the last .plt reloc to find the end of the .plt (and hence
2147 the start of the .got) for lazy linking. */
2148 elf_link_hash_traverse (&htab->elf, allocate_plt_static, info);
2149
2150 /* Allocate global sym .plt and .got entries, and space for global
2151 sym dynamic relocs. */
2152 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
2153
2154 /* The check_relocs and adjust_dynamic_symbol entry points have
2155 determined the sizes of the various dynamic sections. Allocate
2156 memory for them. */
2157 relocs = FALSE;
2158 for (s = dynobj->sections; s != NULL; s = s->next)
2159 {
2160 if ((s->flags & SEC_LINKER_CREATED) == 0)
2161 continue;
2162
2163 if (s == htab->splt)
2164 {
2165 if (htab->need_plt_stub)
2166 {
2167 /* Make space for the plt stub at the end of the .plt
2168 section. We want this stub right at the end, up
2169 against the .got section. */
2170 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2171 int pltalign = bfd_section_alignment (dynobj, s);
2172 bfd_size_type mask;
2173
2174 if (gotalign > pltalign)
2175 bfd_set_section_alignment (dynobj, s, gotalign);
2176 mask = ((bfd_size_type) 1 << gotalign) - 1;
2177 s->_raw_size = (s->_raw_size + sizeof (plt_stub) + mask) & ~mask;
2178 }
2179 }
2180 else if (s == htab->sgot)
2181 ;
2182 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
2183 {
2184 if (s->_raw_size != 0)
2185 {
2186 /* Remember whether there are any reloc sections other
2187 than .rela.plt. */
2188 if (s != htab->srelplt)
2189 relocs = TRUE;
2190
2191 /* We use the reloc_count field as a counter if we need
2192 to copy relocs into the output file. */
2193 s->reloc_count = 0;
2194 }
2195 }
2196 else
2197 {
2198 /* It's not one of our sections, so don't allocate space. */
2199 continue;
2200 }
2201
2202 if (s->_raw_size == 0)
2203 {
2204 /* If we don't need this section, strip it from the
2205 output file. This is mostly to handle .rela.bss and
2206 .rela.plt. We must create both sections in
2207 create_dynamic_sections, because they must be created
2208 before the linker maps input sections to output
2209 sections. The linker does that before
2210 adjust_dynamic_symbol is called, and it is that
2211 function which decides whether anything needs to go
2212 into these sections. */
2213 _bfd_strip_section_from_output (info, s);
2214 continue;
2215 }
2216
2217 /* Allocate memory for the section contents. Zero it, because
2218 we may not fill in all the reloc sections. */
2219 s->contents = bfd_zalloc (dynobj, s->_raw_size);
2220 if (s->contents == NULL && s->_raw_size != 0)
2221 return FALSE;
2222 }
2223
2224 if (htab->elf.dynamic_sections_created)
2225 {
2226 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2227 actually has nothing to do with the PLT, it is how we
2228 communicate the LTP value of a load module to the dynamic
2229 linker. */
2230 #define add_dynamic_entry(TAG, VAL) \
2231 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2232
2233 if (!add_dynamic_entry (DT_PLTGOT, 0))
2234 return FALSE;
2235
2236 /* Add some entries to the .dynamic section. We fill in the
2237 values later, in elf32_hppa_finish_dynamic_sections, but we
2238 must add the entries now so that we get the correct size for
2239 the .dynamic section. The DT_DEBUG entry is filled in by the
2240 dynamic linker and used by the debugger. */
2241 if (!info->shared)
2242 {
2243 if (!add_dynamic_entry (DT_DEBUG, 0))
2244 return FALSE;
2245 }
2246
2247 if (htab->srelplt->_raw_size != 0)
2248 {
2249 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2250 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2251 || !add_dynamic_entry (DT_JMPREL, 0))
2252 return FALSE;
2253 }
2254
2255 if (relocs)
2256 {
2257 if (!add_dynamic_entry (DT_RELA, 0)
2258 || !add_dynamic_entry (DT_RELASZ, 0)
2259 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2260 return FALSE;
2261
2262 /* If any dynamic relocs apply to a read-only section,
2263 then we need a DT_TEXTREL entry. */
2264 if ((info->flags & DF_TEXTREL) == 0)
2265 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, info);
2266
2267 if ((info->flags & DF_TEXTREL) != 0)
2268 {
2269 if (!add_dynamic_entry (DT_TEXTREL, 0))
2270 return FALSE;
2271 }
2272 }
2273 }
2274 #undef add_dynamic_entry
2275
2276 return TRUE;
2277 }
2278
2279 /* External entry points for sizing and building linker stubs. */
2280
2281 /* Set up various things so that we can make a list of input sections
2282 for each output section included in the link. Returns -1 on error,
2283 0 when no stubs will be needed, and 1 on success. */
2284
2285 int
2286 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2287 {
2288 bfd *input_bfd;
2289 unsigned int bfd_count;
2290 int top_id, top_index;
2291 asection *section;
2292 asection **input_list, **list;
2293 bfd_size_type amt;
2294 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2295
2296 /* Count the number of input BFDs and find the top input section id. */
2297 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2298 input_bfd != NULL;
2299 input_bfd = input_bfd->link_next)
2300 {
2301 bfd_count += 1;
2302 for (section = input_bfd->sections;
2303 section != NULL;
2304 section = section->next)
2305 {
2306 if (top_id < section->id)
2307 top_id = section->id;
2308 }
2309 }
2310 htab->bfd_count = bfd_count;
2311
2312 amt = sizeof (struct map_stub) * (top_id + 1);
2313 htab->stub_group = bfd_zmalloc (amt);
2314 if (htab->stub_group == NULL)
2315 return -1;
2316
2317 /* We can't use output_bfd->section_count here to find the top output
2318 section index as some sections may have been removed, and
2319 _bfd_strip_section_from_output doesn't renumber the indices. */
2320 for (section = output_bfd->sections, top_index = 0;
2321 section != NULL;
2322 section = section->next)
2323 {
2324 if (top_index < section->index)
2325 top_index = section->index;
2326 }
2327
2328 htab->top_index = top_index;
2329 amt = sizeof (asection *) * (top_index + 1);
2330 input_list = bfd_malloc (amt);
2331 htab->input_list = input_list;
2332 if (input_list == NULL)
2333 return -1;
2334
2335 /* For sections we aren't interested in, mark their entries with a
2336 value we can check later. */
2337 list = input_list + top_index;
2338 do
2339 *list = bfd_abs_section_ptr;
2340 while (list-- != input_list);
2341
2342 for (section = output_bfd->sections;
2343 section != NULL;
2344 section = section->next)
2345 {
2346 if ((section->flags & SEC_CODE) != 0)
2347 input_list[section->index] = NULL;
2348 }
2349
2350 return 1;
2351 }
2352
2353 /* The linker repeatedly calls this function for each input section,
2354 in the order that input sections are linked into output sections.
2355 Build lists of input sections to determine groupings between which
2356 we may insert linker stubs. */
2357
2358 void
2359 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2360 {
2361 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2362
2363 if (isec->output_section->index <= htab->top_index)
2364 {
2365 asection **list = htab->input_list + isec->output_section->index;
2366 if (*list != bfd_abs_section_ptr)
2367 {
2368 /* Steal the link_sec pointer for our list. */
2369 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2370 /* This happens to make the list in reverse order,
2371 which is what we want. */
2372 PREV_SEC (isec) = *list;
2373 *list = isec;
2374 }
2375 }
2376 }
2377
2378 /* See whether we can group stub sections together. Grouping stub
2379 sections may result in fewer stubs. More importantly, we need to
2380 put all .init* and .fini* stubs at the beginning of the .init or
2381 .fini output sections respectively, because glibc splits the
2382 _init and _fini functions into multiple parts. Putting a stub in
2383 the middle of a function is not a good idea. */
2384
2385 static void
2386 group_sections (struct elf32_hppa_link_hash_table *htab,
2387 bfd_size_type stub_group_size,
2388 bfd_boolean stubs_always_before_branch)
2389 {
2390 asection **list = htab->input_list + htab->top_index;
2391 do
2392 {
2393 asection *tail = *list;
2394 if (tail == bfd_abs_section_ptr)
2395 continue;
2396 while (tail != NULL)
2397 {
2398 asection *curr;
2399 asection *prev;
2400 bfd_size_type total;
2401 bfd_boolean big_sec;
2402
2403 curr = tail;
2404 if (tail->_cooked_size)
2405 total = tail->_cooked_size;
2406 else
2407 total = tail->_raw_size;
2408 big_sec = total >= stub_group_size;
2409
2410 while ((prev = PREV_SEC (curr)) != NULL
2411 && ((total += curr->output_offset - prev->output_offset)
2412 < stub_group_size))
2413 curr = prev;
2414
2415 /* OK, the size from the start of CURR to the end is less
2416 than 240000 bytes and thus can be handled by one stub
2417 section. (or the tail section is itself larger than
2418 240000 bytes, in which case we may be toast.)
2419 We should really be keeping track of the total size of
2420 stubs added here, as stubs contribute to the final output
2421 section size. That's a little tricky, and this way will
2422 only break if stubs added total more than 22144 bytes, or
2423 2768 long branch stubs. It seems unlikely for more than
2424 2768 different functions to be called, especially from
2425 code only 240000 bytes long. This limit used to be
2426 250000, but c++ code tends to generate lots of little
2427 functions, and sometimes violated the assumption. */
2428 do
2429 {
2430 prev = PREV_SEC (tail);
2431 /* Set up this stub group. */
2432 htab->stub_group[tail->id].link_sec = curr;
2433 }
2434 while (tail != curr && (tail = prev) != NULL);
2435
2436 /* But wait, there's more! Input sections up to 240000
2437 bytes before the stub section can be handled by it too.
2438 Don't do this if we have a really large section after the
2439 stubs, as adding more stubs increases the chance that
2440 branches may not reach into the stub section. */
2441 if (!stubs_always_before_branch && !big_sec)
2442 {
2443 total = 0;
2444 while (prev != NULL
2445 && ((total += tail->output_offset - prev->output_offset)
2446 < stub_group_size))
2447 {
2448 tail = prev;
2449 prev = PREV_SEC (tail);
2450 htab->stub_group[tail->id].link_sec = curr;
2451 }
2452 }
2453 tail = prev;
2454 }
2455 }
2456 while (list-- != htab->input_list);
2457 free (htab->input_list);
2458 #undef PREV_SEC
2459 }
2460
2461 /* Read in all local syms for all input bfds, and create hash entries
2462 for export stubs if we are building a multi-subspace shared lib.
2463 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2464
2465 static int
2466 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2467 {
2468 unsigned int bfd_indx;
2469 Elf_Internal_Sym *local_syms, **all_local_syms;
2470 int stub_changed = 0;
2471 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2472
2473 /* We want to read in symbol extension records only once. To do this
2474 we need to read in the local symbols in parallel and save them for
2475 later use; so hold pointers to the local symbols in an array. */
2476 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2477 all_local_syms = bfd_zmalloc (amt);
2478 htab->all_local_syms = all_local_syms;
2479 if (all_local_syms == NULL)
2480 return -1;
2481
2482 /* Walk over all the input BFDs, swapping in local symbols.
2483 If we are creating a shared library, create hash entries for the
2484 export stubs. */
2485 for (bfd_indx = 0;
2486 input_bfd != NULL;
2487 input_bfd = input_bfd->link_next, bfd_indx++)
2488 {
2489 Elf_Internal_Shdr *symtab_hdr;
2490
2491 /* We'll need the symbol table in a second. */
2492 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2493 if (symtab_hdr->sh_info == 0)
2494 continue;
2495
2496 /* We need an array of the local symbols attached to the input bfd. */
2497 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2498 if (local_syms == NULL)
2499 {
2500 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2501 symtab_hdr->sh_info, 0,
2502 NULL, NULL, NULL);
2503 /* Cache them for elf_link_input_bfd. */
2504 symtab_hdr->contents = (unsigned char *) local_syms;
2505 }
2506 if (local_syms == NULL)
2507 return -1;
2508
2509 all_local_syms[bfd_indx] = local_syms;
2510
2511 if (info->shared && htab->multi_subspace)
2512 {
2513 struct elf_link_hash_entry **sym_hashes;
2514 struct elf_link_hash_entry **end_hashes;
2515 unsigned int symcount;
2516
2517 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2518 - symtab_hdr->sh_info);
2519 sym_hashes = elf_sym_hashes (input_bfd);
2520 end_hashes = sym_hashes + symcount;
2521
2522 /* Look through the global syms for functions; We need to
2523 build export stubs for all globally visible functions. */
2524 for (; sym_hashes < end_hashes; sym_hashes++)
2525 {
2526 struct elf32_hppa_link_hash_entry *hash;
2527
2528 hash = (struct elf32_hppa_link_hash_entry *) *sym_hashes;
2529
2530 while (hash->elf.root.type == bfd_link_hash_indirect
2531 || hash->elf.root.type == bfd_link_hash_warning)
2532 hash = ((struct elf32_hppa_link_hash_entry *)
2533 hash->elf.root.u.i.link);
2534
2535 /* At this point in the link, undefined syms have been
2536 resolved, so we need to check that the symbol was
2537 defined in this BFD. */
2538 if ((hash->elf.root.type == bfd_link_hash_defined
2539 || hash->elf.root.type == bfd_link_hash_defweak)
2540 && hash->elf.type == STT_FUNC
2541 && hash->elf.root.u.def.section->output_section != NULL
2542 && (hash->elf.root.u.def.section->output_section->owner
2543 == output_bfd)
2544 && hash->elf.root.u.def.section->owner == input_bfd
2545 && (hash->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
2546 && !(hash->elf.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)
2547 && ELF_ST_VISIBILITY (hash->elf.other) == STV_DEFAULT)
2548 {
2549 asection *sec;
2550 const char *stub_name;
2551 struct elf32_hppa_stub_hash_entry *stub_entry;
2552
2553 sec = hash->elf.root.u.def.section;
2554 stub_name = hash->elf.root.root.string;
2555 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
2556 stub_name,
2557 FALSE, FALSE);
2558 if (stub_entry == NULL)
2559 {
2560 stub_entry = hppa_add_stub (stub_name, sec, htab);
2561 if (!stub_entry)
2562 return -1;
2563
2564 stub_entry->target_value = hash->elf.root.u.def.value;
2565 stub_entry->target_section = hash->elf.root.u.def.section;
2566 stub_entry->stub_type = hppa_stub_export;
2567 stub_entry->h = hash;
2568 stub_changed = 1;
2569 }
2570 else
2571 {
2572 (*_bfd_error_handler) (_("%s: duplicate export stub %s"),
2573 bfd_archive_filename (input_bfd),
2574 stub_name);
2575 }
2576 }
2577 }
2578 }
2579 }
2580
2581 return stub_changed;
2582 }
2583
2584 /* Determine and set the size of the stub section for a final link.
2585
2586 The basic idea here is to examine all the relocations looking for
2587 PC-relative calls to a target that is unreachable with a "bl"
2588 instruction. */
2589
2590 bfd_boolean
2591 elf32_hppa_size_stubs
2592 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2593 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2594 asection * (*add_stub_section) (const char *, asection *),
2595 void (*layout_sections_again) (void))
2596 {
2597 bfd_size_type stub_group_size;
2598 bfd_boolean stubs_always_before_branch;
2599 bfd_boolean stub_changed;
2600 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2601
2602 /* Stash our params away. */
2603 htab->stub_bfd = stub_bfd;
2604 htab->multi_subspace = multi_subspace;
2605 htab->add_stub_section = add_stub_section;
2606 htab->layout_sections_again = layout_sections_again;
2607 stubs_always_before_branch = group_size < 0;
2608 if (group_size < 0)
2609 stub_group_size = -group_size;
2610 else
2611 stub_group_size = group_size;
2612 if (stub_group_size == 1)
2613 {
2614 /* Default values. */
2615 if (stubs_always_before_branch)
2616 {
2617 stub_group_size = 7680000;
2618 if (htab->has_17bit_branch || htab->multi_subspace)
2619 stub_group_size = 240000;
2620 if (htab->has_12bit_branch)
2621 stub_group_size = 7500;
2622 }
2623 else
2624 {
2625 stub_group_size = 6971392;
2626 if (htab->has_17bit_branch || htab->multi_subspace)
2627 stub_group_size = 217856;
2628 if (htab->has_12bit_branch)
2629 stub_group_size = 6808;
2630 }
2631 }
2632
2633 group_sections (htab, stub_group_size, stubs_always_before_branch);
2634
2635 switch (get_local_syms (output_bfd, info->input_bfds, info))
2636 {
2637 default:
2638 if (htab->all_local_syms)
2639 goto error_ret_free_local;
2640 return FALSE;
2641
2642 case 0:
2643 stub_changed = FALSE;
2644 break;
2645
2646 case 1:
2647 stub_changed = TRUE;
2648 break;
2649 }
2650
2651 while (1)
2652 {
2653 bfd *input_bfd;
2654 unsigned int bfd_indx;
2655 asection *stub_sec;
2656
2657 for (input_bfd = info->input_bfds, bfd_indx = 0;
2658 input_bfd != NULL;
2659 input_bfd = input_bfd->link_next, bfd_indx++)
2660 {
2661 Elf_Internal_Shdr *symtab_hdr;
2662 asection *section;
2663 Elf_Internal_Sym *local_syms;
2664
2665 /* We'll need the symbol table in a second. */
2666 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2667 if (symtab_hdr->sh_info == 0)
2668 continue;
2669
2670 local_syms = htab->all_local_syms[bfd_indx];
2671
2672 /* Walk over each section attached to the input bfd. */
2673 for (section = input_bfd->sections;
2674 section != NULL;
2675 section = section->next)
2676 {
2677 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2678
2679 /* If there aren't any relocs, then there's nothing more
2680 to do. */
2681 if ((section->flags & SEC_RELOC) == 0
2682 || section->reloc_count == 0)
2683 continue;
2684
2685 /* If this section is a link-once section that will be
2686 discarded, then don't create any stubs. */
2687 if (section->output_section == NULL
2688 || section->output_section->owner != output_bfd)
2689 continue;
2690
2691 /* Get the relocs. */
2692 internal_relocs
2693 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2694 info->keep_memory);
2695 if (internal_relocs == NULL)
2696 goto error_ret_free_local;
2697
2698 /* Now examine each relocation. */
2699 irela = internal_relocs;
2700 irelaend = irela + section->reloc_count;
2701 for (; irela < irelaend; irela++)
2702 {
2703 unsigned int r_type, r_indx;
2704 enum elf32_hppa_stub_type stub_type;
2705 struct elf32_hppa_stub_hash_entry *stub_entry;
2706 asection *sym_sec;
2707 bfd_vma sym_value;
2708 bfd_vma destination;
2709 struct elf32_hppa_link_hash_entry *hash;
2710 char *stub_name;
2711 const asection *id_sec;
2712
2713 r_type = ELF32_R_TYPE (irela->r_info);
2714 r_indx = ELF32_R_SYM (irela->r_info);
2715
2716 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2717 {
2718 bfd_set_error (bfd_error_bad_value);
2719 error_ret_free_internal:
2720 if (elf_section_data (section)->relocs == NULL)
2721 free (internal_relocs);
2722 goto error_ret_free_local;
2723 }
2724
2725 /* Only look for stubs on call instructions. */
2726 if (r_type != (unsigned int) R_PARISC_PCREL12F
2727 && r_type != (unsigned int) R_PARISC_PCREL17F
2728 && r_type != (unsigned int) R_PARISC_PCREL22F)
2729 continue;
2730
2731 /* Now determine the call target, its name, value,
2732 section. */
2733 sym_sec = NULL;
2734 sym_value = 0;
2735 destination = 0;
2736 hash = NULL;
2737 if (r_indx < symtab_hdr->sh_info)
2738 {
2739 /* It's a local symbol. */
2740 Elf_Internal_Sym *sym;
2741 Elf_Internal_Shdr *hdr;
2742
2743 sym = local_syms + r_indx;
2744 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2745 sym_sec = hdr->bfd_section;
2746 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2747 sym_value = sym->st_value;
2748 destination = (sym_value + irela->r_addend
2749 + sym_sec->output_offset
2750 + sym_sec->output_section->vma);
2751 }
2752 else
2753 {
2754 /* It's an external symbol. */
2755 int e_indx;
2756
2757 e_indx = r_indx - symtab_hdr->sh_info;
2758 hash = ((struct elf32_hppa_link_hash_entry *)
2759 elf_sym_hashes (input_bfd)[e_indx]);
2760
2761 while (hash->elf.root.type == bfd_link_hash_indirect
2762 || hash->elf.root.type == bfd_link_hash_warning)
2763 hash = ((struct elf32_hppa_link_hash_entry *)
2764 hash->elf.root.u.i.link);
2765
2766 if (hash->elf.root.type == bfd_link_hash_defined
2767 || hash->elf.root.type == bfd_link_hash_defweak)
2768 {
2769 sym_sec = hash->elf.root.u.def.section;
2770 sym_value = hash->elf.root.u.def.value;
2771 if (sym_sec->output_section != NULL)
2772 destination = (sym_value + irela->r_addend
2773 + sym_sec->output_offset
2774 + sym_sec->output_section->vma);
2775 }
2776 else if (hash->elf.root.type == bfd_link_hash_undefweak)
2777 {
2778 if (! info->shared)
2779 continue;
2780 }
2781 else if (hash->elf.root.type == bfd_link_hash_undefined)
2782 {
2783 if (! (info->unresolved_syms_in_objects == RM_IGNORE
2784 && (ELF_ST_VISIBILITY (hash->elf.other)
2785 == STV_DEFAULT)
2786 && hash->elf.type != STT_PARISC_MILLI))
2787 continue;
2788 }
2789 else
2790 {
2791 bfd_set_error (bfd_error_bad_value);
2792 goto error_ret_free_internal;
2793 }
2794 }
2795
2796 /* Determine what (if any) linker stub is needed. */
2797 stub_type = hppa_type_of_stub (section, irela, hash,
2798 destination, info);
2799 if (stub_type == hppa_stub_none)
2800 continue;
2801
2802 /* Support for grouping stub sections. */
2803 id_sec = htab->stub_group[section->id].link_sec;
2804
2805 /* Get the name of this stub. */
2806 stub_name = hppa_stub_name (id_sec, sym_sec, hash, irela);
2807 if (!stub_name)
2808 goto error_ret_free_internal;
2809
2810 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
2811 stub_name,
2812 FALSE, FALSE);
2813 if (stub_entry != NULL)
2814 {
2815 /* The proper stub has already been created. */
2816 free (stub_name);
2817 continue;
2818 }
2819
2820 stub_entry = hppa_add_stub (stub_name, section, htab);
2821 if (stub_entry == NULL)
2822 {
2823 free (stub_name);
2824 goto error_ret_free_internal;
2825 }
2826
2827 stub_entry->target_value = sym_value;
2828 stub_entry->target_section = sym_sec;
2829 stub_entry->stub_type = stub_type;
2830 if (info->shared)
2831 {
2832 if (stub_type == hppa_stub_import)
2833 stub_entry->stub_type = hppa_stub_import_shared;
2834 else if (stub_type == hppa_stub_long_branch)
2835 stub_entry->stub_type = hppa_stub_long_branch_shared;
2836 }
2837 stub_entry->h = hash;
2838 stub_changed = TRUE;
2839 }
2840
2841 /* We're done with the internal relocs, free them. */
2842 if (elf_section_data (section)->relocs == NULL)
2843 free (internal_relocs);
2844 }
2845 }
2846
2847 if (!stub_changed)
2848 break;
2849
2850 /* OK, we've added some stubs. Find out the new size of the
2851 stub sections. */
2852 for (stub_sec = htab->stub_bfd->sections;
2853 stub_sec != NULL;
2854 stub_sec = stub_sec->next)
2855 {
2856 stub_sec->_raw_size = 0;
2857 stub_sec->_cooked_size = 0;
2858 }
2859
2860 bfd_hash_traverse (&htab->stub_hash_table, hppa_size_one_stub, htab);
2861
2862 /* Ask the linker to do its stuff. */
2863 (*htab->layout_sections_again) ();
2864 stub_changed = FALSE;
2865 }
2866
2867 free (htab->all_local_syms);
2868 return TRUE;
2869
2870 error_ret_free_local:
2871 free (htab->all_local_syms);
2872 return FALSE;
2873 }
2874
2875 /* For a final link, this function is called after we have sized the
2876 stubs to provide a value for __gp. */
2877
2878 bfd_boolean
2879 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
2880 {
2881 struct bfd_link_hash_entry *h;
2882 asection *sec = NULL;
2883 bfd_vma gp_val = 0;
2884 struct elf32_hppa_link_hash_table *htab;
2885
2886 htab = hppa_link_hash_table (info);
2887 h = bfd_link_hash_lookup (&htab->elf.root, "$global$", FALSE, FALSE, FALSE);
2888
2889 if (h != NULL
2890 && (h->type == bfd_link_hash_defined
2891 || h->type == bfd_link_hash_defweak))
2892 {
2893 gp_val = h->u.def.value;
2894 sec = h->u.def.section;
2895 }
2896 else
2897 {
2898 asection *splt = bfd_get_section_by_name (abfd, ".plt");
2899 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2900
2901 /* Choose to point our LTP at, in this order, one of .plt, .got,
2902 or .data, if these sections exist. In the case of choosing
2903 .plt try to make the LTP ideal for addressing anywhere in the
2904 .plt or .got with a 14 bit signed offset. Typically, the end
2905 of the .plt is the start of the .got, so choose .plt + 0x2000
2906 if either the .plt or .got is larger than 0x2000. If both
2907 the .plt and .got are smaller than 0x2000, choose the end of
2908 the .plt section. */
2909 sec = splt;
2910 if (sec != NULL)
2911 {
2912 gp_val = sec->_raw_size;
2913 if (gp_val > 0x2000 || (sgot && sgot->_raw_size > 0x2000))
2914 {
2915 gp_val = 0x2000;
2916 }
2917 }
2918 else
2919 {
2920 sec = sgot;
2921 if (sec != NULL)
2922 {
2923 /* We know we don't have a .plt. If .got is large,
2924 offset our LTP. */
2925 if (sec->_raw_size > 0x2000)
2926 gp_val = 0x2000;
2927 }
2928 else
2929 {
2930 /* No .plt or .got. Who cares what the LTP is? */
2931 sec = bfd_get_section_by_name (abfd, ".data");
2932 }
2933 }
2934
2935 if (h != NULL)
2936 {
2937 h->type = bfd_link_hash_defined;
2938 h->u.def.value = gp_val;
2939 if (sec != NULL)
2940 h->u.def.section = sec;
2941 else
2942 h->u.def.section = bfd_abs_section_ptr;
2943 }
2944 }
2945
2946 if (sec != NULL && sec->output_section != NULL)
2947 gp_val += sec->output_section->vma + sec->output_offset;
2948
2949 elf_gp (abfd) = gp_val;
2950 return TRUE;
2951 }
2952
2953 /* Build all the stubs associated with the current output file. The
2954 stubs are kept in a hash table attached to the main linker hash
2955 table. We also set up the .plt entries for statically linked PIC
2956 functions here. This function is called via hppaelf_finish in the
2957 linker. */
2958
2959 bfd_boolean
2960 elf32_hppa_build_stubs (struct bfd_link_info *info)
2961 {
2962 asection *stub_sec;
2963 struct bfd_hash_table *table;
2964 struct elf32_hppa_link_hash_table *htab;
2965
2966 htab = hppa_link_hash_table (info);
2967
2968 for (stub_sec = htab->stub_bfd->sections;
2969 stub_sec != NULL;
2970 stub_sec = stub_sec->next)
2971 {
2972 bfd_size_type size;
2973
2974 /* Allocate memory to hold the linker stubs. */
2975 size = stub_sec->_raw_size;
2976 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
2977 if (stub_sec->contents == NULL && size != 0)
2978 return FALSE;
2979 stub_sec->_raw_size = 0;
2980 }
2981
2982 /* Build the stubs as directed by the stub hash table. */
2983 table = &htab->stub_hash_table;
2984 bfd_hash_traverse (table, hppa_build_one_stub, info);
2985
2986 return TRUE;
2987 }
2988
2989 /* Perform a final link. */
2990
2991 static bfd_boolean
2992 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
2993 {
2994 /* Invoke the regular ELF linker to do all the work. */
2995 if (!bfd_elf_final_link (abfd, info))
2996 return FALSE;
2997
2998 /* If we're producing a final executable, sort the contents of the
2999 unwind section. */
3000 return elf_hppa_sort_unwind (abfd);
3001 }
3002
3003 /* Record the lowest address for the data and text segments. */
3004
3005 static void
3006 hppa_record_segment_addr (bfd *abfd ATTRIBUTE_UNUSED,
3007 asection *section,
3008 void *data)
3009 {
3010 struct elf32_hppa_link_hash_table *htab;
3011
3012 htab = (struct elf32_hppa_link_hash_table *) data;
3013
3014 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3015 {
3016 bfd_vma value = section->vma - section->filepos;
3017
3018 if ((section->flags & SEC_READONLY) != 0)
3019 {
3020 if (value < htab->text_segment_base)
3021 htab->text_segment_base = value;
3022 }
3023 else
3024 {
3025 if (value < htab->data_segment_base)
3026 htab->data_segment_base = value;
3027 }
3028 }
3029 }
3030
3031 /* Perform a relocation as part of a final link. */
3032
3033 static bfd_reloc_status_type
3034 final_link_relocate (asection *input_section,
3035 bfd_byte *contents,
3036 const Elf_Internal_Rela *rel,
3037 bfd_vma value,
3038 struct elf32_hppa_link_hash_table *htab,
3039 asection *sym_sec,
3040 struct elf32_hppa_link_hash_entry *h,
3041 struct bfd_link_info *info)
3042 {
3043 int insn;
3044 unsigned int r_type = ELF32_R_TYPE (rel->r_info);
3045 unsigned int orig_r_type = r_type;
3046 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3047 int r_format = howto->bitsize;
3048 enum hppa_reloc_field_selector_type_alt r_field;
3049 bfd *input_bfd = input_section->owner;
3050 bfd_vma offset = rel->r_offset;
3051 bfd_vma max_branch_offset = 0;
3052 bfd_byte *hit_data = contents + offset;
3053 bfd_signed_vma addend = rel->r_addend;
3054 bfd_vma location;
3055 struct elf32_hppa_stub_hash_entry *stub_entry = NULL;
3056 int val;
3057
3058 if (r_type == R_PARISC_NONE)
3059 return bfd_reloc_ok;
3060
3061 insn = bfd_get_32 (input_bfd, hit_data);
3062
3063 /* Find out where we are and where we're going. */
3064 location = (offset +
3065 input_section->output_offset +
3066 input_section->output_section->vma);
3067
3068 /* If we are not building a shared library, convert DLTIND relocs to
3069 DPREL relocs. */
3070 if (!info->shared)
3071 {
3072 switch (r_type)
3073 {
3074 case R_PARISC_DLTIND21L:
3075 r_type = R_PARISC_DPREL21L;
3076 break;
3077
3078 case R_PARISC_DLTIND14R:
3079 r_type = R_PARISC_DPREL14R;
3080 break;
3081
3082 case R_PARISC_DLTIND14F:
3083 r_type = R_PARISC_DPREL14F;
3084 break;
3085 }
3086 }
3087
3088 switch (r_type)
3089 {
3090 case R_PARISC_PCREL12F:
3091 case R_PARISC_PCREL17F:
3092 case R_PARISC_PCREL22F:
3093 /* If this call should go via the plt, find the import stub in
3094 the stub hash. */
3095 if (sym_sec == NULL
3096 || sym_sec->output_section == NULL
3097 || (h != NULL
3098 && h->elf.plt.offset != (bfd_vma) -1
3099 && h->elf.dynindx != -1
3100 && !h->plabel
3101 && (info->shared
3102 || !(h->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
3103 || h->elf.root.type == bfd_link_hash_defweak)))
3104 {
3105 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3106 h, rel, htab);
3107 if (stub_entry != NULL)
3108 {
3109 value = (stub_entry->stub_offset
3110 + stub_entry->stub_sec->output_offset
3111 + stub_entry->stub_sec->output_section->vma);
3112 addend = 0;
3113 }
3114 else if (sym_sec == NULL && h != NULL
3115 && h->elf.root.type == bfd_link_hash_undefweak)
3116 {
3117 /* It's OK if undefined weak. Calls to undefined weak
3118 symbols behave as if the "called" function
3119 immediately returns. We can thus call to a weak
3120 function without first checking whether the function
3121 is defined. */
3122 value = location;
3123 addend = 8;
3124 }
3125 else
3126 return bfd_reloc_undefined;
3127 }
3128 /* Fall thru. */
3129
3130 case R_PARISC_PCREL21L:
3131 case R_PARISC_PCREL17C:
3132 case R_PARISC_PCREL17R:
3133 case R_PARISC_PCREL14R:
3134 case R_PARISC_PCREL14F:
3135 case R_PARISC_PCREL32:
3136 /* Make it a pc relative offset. */
3137 value -= location;
3138 addend -= 8;
3139 break;
3140
3141 case R_PARISC_DPREL21L:
3142 case R_PARISC_DPREL14R:
3143 case R_PARISC_DPREL14F:
3144 /* Convert instructions that use the linkage table pointer (r19) to
3145 instructions that use the global data pointer (dp). This is the
3146 most efficient way of using PIC code in an incomplete executable,
3147 but the user must follow the standard runtime conventions for
3148 accessing data for this to work. */
3149 if (orig_r_type == R_PARISC_DLTIND21L)
3150 {
3151 /* Convert addil instructions if the original reloc was a
3152 DLTIND21L. GCC sometimes uses a register other than r19 for
3153 the operation, so we must convert any addil instruction
3154 that uses this relocation. */
3155 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3156 insn = ADDIL_DP;
3157 else
3158 /* We must have a ldil instruction. It's too hard to find
3159 and convert the associated add instruction, so issue an
3160 error. */
3161 (*_bfd_error_handler)
3162 (_("%s(%s+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3163 bfd_archive_filename (input_bfd),
3164 input_section->name,
3165 (long) rel->r_offset,
3166 howto->name,
3167 insn);
3168 }
3169 else if (orig_r_type == R_PARISC_DLTIND14F)
3170 {
3171 /* This must be a format 1 load/store. Change the base
3172 register to dp. */
3173 insn = (insn & 0xfc1ffff) | (27 << 21);
3174 }
3175
3176 /* For all the DP relative relocations, we need to examine the symbol's
3177 section. If it has no section or if it's a code section, then
3178 "data pointer relative" makes no sense. In that case we don't
3179 adjust the "value", and for 21 bit addil instructions, we change the
3180 source addend register from %dp to %r0. This situation commonly
3181 arises for undefined weak symbols and when a variable's "constness"
3182 is declared differently from the way the variable is defined. For
3183 instance: "extern int foo" with foo defined as "const int foo". */
3184 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3185 {
3186 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3187 == (((int) OP_ADDIL << 26) | (27 << 21)))
3188 {
3189 insn &= ~ (0x1f << 21);
3190 #if 0 /* debug them. */
3191 (*_bfd_error_handler)
3192 (_("%s(%s+0x%lx): fixing %s"),
3193 bfd_archive_filename (input_bfd),
3194 input_section->name,
3195 (long) rel->r_offset,
3196 howto->name);
3197 #endif
3198 }
3199 /* Now try to make things easy for the dynamic linker. */
3200
3201 break;
3202 }
3203 /* Fall thru. */
3204
3205 case R_PARISC_DLTIND21L:
3206 case R_PARISC_DLTIND14R:
3207 case R_PARISC_DLTIND14F:
3208 value -= elf_gp (input_section->output_section->owner);
3209 break;
3210
3211 case R_PARISC_SEGREL32:
3212 if ((sym_sec->flags & SEC_CODE) != 0)
3213 value -= htab->text_segment_base;
3214 else
3215 value -= htab->data_segment_base;
3216 break;
3217
3218 default:
3219 break;
3220 }
3221
3222 switch (r_type)
3223 {
3224 case R_PARISC_DIR32:
3225 case R_PARISC_DIR14F:
3226 case R_PARISC_DIR17F:
3227 case R_PARISC_PCREL17C:
3228 case R_PARISC_PCREL14F:
3229 case R_PARISC_PCREL32:
3230 case R_PARISC_DPREL14F:
3231 case R_PARISC_PLABEL32:
3232 case R_PARISC_DLTIND14F:
3233 case R_PARISC_SEGBASE:
3234 case R_PARISC_SEGREL32:
3235 r_field = e_fsel;
3236 break;
3237
3238 case R_PARISC_DLTIND21L:
3239 case R_PARISC_PCREL21L:
3240 case R_PARISC_PLABEL21L:
3241 r_field = e_lsel;
3242 break;
3243
3244 case R_PARISC_DIR21L:
3245 case R_PARISC_DPREL21L:
3246 r_field = e_lrsel;
3247 break;
3248
3249 case R_PARISC_PCREL17R:
3250 case R_PARISC_PCREL14R:
3251 case R_PARISC_PLABEL14R:
3252 case R_PARISC_DLTIND14R:
3253 r_field = e_rsel;
3254 break;
3255
3256 case R_PARISC_DIR17R:
3257 case R_PARISC_DIR14R:
3258 case R_PARISC_DPREL14R:
3259 r_field = e_rrsel;
3260 break;
3261
3262 case R_PARISC_PCREL12F:
3263 case R_PARISC_PCREL17F:
3264 case R_PARISC_PCREL22F:
3265 r_field = e_fsel;
3266
3267 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3268 {
3269 max_branch_offset = (1 << (17-1)) << 2;
3270 }
3271 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3272 {
3273 max_branch_offset = (1 << (12-1)) << 2;
3274 }
3275 else
3276 {
3277 max_branch_offset = (1 << (22-1)) << 2;
3278 }
3279
3280 /* sym_sec is NULL on undefined weak syms or when shared on
3281 undefined syms. We've already checked for a stub for the
3282 shared undefined case. */
3283 if (sym_sec == NULL)
3284 break;
3285
3286 /* If the branch is out of reach, then redirect the
3287 call to the local stub for this function. */
3288 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3289 {
3290 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3291 h, rel, htab);
3292 if (stub_entry == NULL)
3293 return bfd_reloc_undefined;
3294
3295 /* Munge up the value and addend so that we call the stub
3296 rather than the procedure directly. */
3297 value = (stub_entry->stub_offset
3298 + stub_entry->stub_sec->output_offset
3299 + stub_entry->stub_sec->output_section->vma
3300 - location);
3301 addend = -8;
3302 }
3303 break;
3304
3305 /* Something we don't know how to handle. */
3306 default:
3307 return bfd_reloc_notsupported;
3308 }
3309
3310 /* Make sure we can reach the stub. */
3311 if (max_branch_offset != 0
3312 && value + addend + max_branch_offset >= 2*max_branch_offset)
3313 {
3314 (*_bfd_error_handler)
3315 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3316 bfd_archive_filename (input_bfd),
3317 input_section->name,
3318 (long) rel->r_offset,
3319 stub_entry->root.string);
3320 bfd_set_error (bfd_error_bad_value);
3321 return bfd_reloc_notsupported;
3322 }
3323
3324 val = hppa_field_adjust (value, addend, r_field);
3325
3326 switch (r_type)
3327 {
3328 case R_PARISC_PCREL12F:
3329 case R_PARISC_PCREL17C:
3330 case R_PARISC_PCREL17F:
3331 case R_PARISC_PCREL17R:
3332 case R_PARISC_PCREL22F:
3333 case R_PARISC_DIR17F:
3334 case R_PARISC_DIR17R:
3335 /* This is a branch. Divide the offset by four.
3336 Note that we need to decide whether it's a branch or
3337 otherwise by inspecting the reloc. Inspecting insn won't
3338 work as insn might be from a .word directive. */
3339 val >>= 2;
3340 break;
3341
3342 default:
3343 break;
3344 }
3345
3346 insn = hppa_rebuild_insn (insn, val, r_format);
3347
3348 /* Update the instruction word. */
3349 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3350 return bfd_reloc_ok;
3351 }
3352
3353 /* Relocate an HPPA ELF section. */
3354
3355 static bfd_boolean
3356 elf32_hppa_relocate_section (bfd *output_bfd,
3357 struct bfd_link_info *info,
3358 bfd *input_bfd,
3359 asection *input_section,
3360 bfd_byte *contents,
3361 Elf_Internal_Rela *relocs,
3362 Elf_Internal_Sym *local_syms,
3363 asection **local_sections)
3364 {
3365 bfd_vma *local_got_offsets;
3366 struct elf32_hppa_link_hash_table *htab;
3367 Elf_Internal_Shdr *symtab_hdr;
3368 Elf_Internal_Rela *rel;
3369 Elf_Internal_Rela *relend;
3370
3371 if (info->relocatable)
3372 return TRUE;
3373
3374 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3375
3376 htab = hppa_link_hash_table (info);
3377 local_got_offsets = elf_local_got_offsets (input_bfd);
3378
3379 rel = relocs;
3380 relend = relocs + input_section->reloc_count;
3381 for (; rel < relend; rel++)
3382 {
3383 unsigned int r_type;
3384 reloc_howto_type *howto;
3385 unsigned int r_symndx;
3386 struct elf32_hppa_link_hash_entry *h;
3387 Elf_Internal_Sym *sym;
3388 asection *sym_sec;
3389 bfd_vma relocation;
3390 bfd_reloc_status_type r;
3391 const char *sym_name;
3392 bfd_boolean plabel;
3393 bfd_boolean warned_undef;
3394
3395 r_type = ELF32_R_TYPE (rel->r_info);
3396 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3397 {
3398 bfd_set_error (bfd_error_bad_value);
3399 return FALSE;
3400 }
3401 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3402 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3403 continue;
3404
3405 /* This is a final link. */
3406 r_symndx = ELF32_R_SYM (rel->r_info);
3407 h = NULL;
3408 sym = NULL;
3409 sym_sec = NULL;
3410 warned_undef = FALSE;
3411 if (r_symndx < symtab_hdr->sh_info)
3412 {
3413 /* This is a local symbol, h defaults to NULL. */
3414 sym = local_syms + r_symndx;
3415 sym_sec = local_sections[r_symndx];
3416 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rel);
3417 }
3418 else
3419 {
3420 struct elf_link_hash_entry *hh;
3421 bfd_boolean unresolved_reloc;
3422 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3423
3424 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3425 r_symndx, symtab_hdr, sym_hashes,
3426 hh, sym_sec, relocation,
3427 unresolved_reloc, warned_undef);
3428
3429 if (relocation == 0
3430 && hh->root.type != bfd_link_hash_defined
3431 && hh->root.type != bfd_link_hash_defweak
3432 && hh->root.type != bfd_link_hash_undefweak)
3433 {
3434 if (info->unresolved_syms_in_objects == RM_IGNORE
3435 && ELF_ST_VISIBILITY (hh->other) == STV_DEFAULT
3436 && hh->type == STT_PARISC_MILLI)
3437 {
3438 if (! info->callbacks->undefined_symbol
3439 (info, hh->root.root.string, input_bfd,
3440 input_section, rel->r_offset, FALSE))
3441 return FALSE;
3442 warned_undef = TRUE;
3443 }
3444 }
3445 h = (struct elf32_hppa_link_hash_entry *) hh;
3446 }
3447
3448 /* Do any required modifications to the relocation value, and
3449 determine what types of dynamic info we need to output, if
3450 any. */
3451 plabel = 0;
3452 switch (r_type)
3453 {
3454 case R_PARISC_DLTIND14F:
3455 case R_PARISC_DLTIND14R:
3456 case R_PARISC_DLTIND21L:
3457 {
3458 bfd_vma off;
3459 bfd_boolean do_got = 0;
3460
3461 /* Relocation is to the entry for this symbol in the
3462 global offset table. */
3463 if (h != NULL)
3464 {
3465 bfd_boolean dyn;
3466
3467 off = h->elf.got.offset;
3468 dyn = htab->elf.dynamic_sections_created;
3469 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
3470 &h->elf))
3471 {
3472 /* If we aren't going to call finish_dynamic_symbol,
3473 then we need to handle initialisation of the .got
3474 entry and create needed relocs here. Since the
3475 offset must always be a multiple of 4, we use the
3476 least significant bit to record whether we have
3477 initialised it already. */
3478 if ((off & 1) != 0)
3479 off &= ~1;
3480 else
3481 {
3482 h->elf.got.offset |= 1;
3483 do_got = 1;
3484 }
3485 }
3486 }
3487 else
3488 {
3489 /* Local symbol case. */
3490 if (local_got_offsets == NULL)
3491 abort ();
3492
3493 off = local_got_offsets[r_symndx];
3494
3495 /* The offset must always be a multiple of 4. We use
3496 the least significant bit to record whether we have
3497 already generated the necessary reloc. */
3498 if ((off & 1) != 0)
3499 off &= ~1;
3500 else
3501 {
3502 local_got_offsets[r_symndx] |= 1;
3503 do_got = 1;
3504 }
3505 }
3506
3507 if (do_got)
3508 {
3509 if (info->shared)
3510 {
3511 /* Output a dynamic relocation for this GOT entry.
3512 In this case it is relative to the base of the
3513 object because the symbol index is zero. */
3514 Elf_Internal_Rela outrel;
3515 bfd_byte *loc;
3516 asection *s = htab->srelgot;
3517
3518 outrel.r_offset = (off
3519 + htab->sgot->output_offset
3520 + htab->sgot->output_section->vma);
3521 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3522 outrel.r_addend = relocation;
3523 loc = s->contents;
3524 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3525 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3526 }
3527 else
3528 bfd_put_32 (output_bfd, relocation,
3529 htab->sgot->contents + off);
3530 }
3531
3532 if (off >= (bfd_vma) -2)
3533 abort ();
3534
3535 /* Add the base of the GOT to the relocation value. */
3536 relocation = (off
3537 + htab->sgot->output_offset
3538 + htab->sgot->output_section->vma);
3539 }
3540 break;
3541
3542 case R_PARISC_SEGREL32:
3543 /* If this is the first SEGREL relocation, then initialize
3544 the segment base values. */
3545 if (htab->text_segment_base == (bfd_vma) -1)
3546 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3547 break;
3548
3549 case R_PARISC_PLABEL14R:
3550 case R_PARISC_PLABEL21L:
3551 case R_PARISC_PLABEL32:
3552 if (htab->elf.dynamic_sections_created)
3553 {
3554 bfd_vma off;
3555 bfd_boolean do_plt = 0;
3556
3557 /* If we have a global symbol with a PLT slot, then
3558 redirect this relocation to it. */
3559 if (h != NULL)
3560 {
3561 off = h->elf.plt.offset;
3562 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared,
3563 &h->elf))
3564 {
3565 /* In a non-shared link, adjust_dynamic_symbols
3566 isn't called for symbols forced local. We
3567 need to write out the plt entry here. */
3568 if ((off & 1) != 0)
3569 off &= ~1;
3570 else
3571 {
3572 h->elf.plt.offset |= 1;
3573 do_plt = 1;
3574 }
3575 }
3576 }
3577 else
3578 {
3579 bfd_vma *local_plt_offsets;
3580
3581 if (local_got_offsets == NULL)
3582 abort ();
3583
3584 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3585 off = local_plt_offsets[r_symndx];
3586
3587 /* As for the local .got entry case, we use the last
3588 bit to record whether we've already initialised
3589 this local .plt entry. */
3590 if ((off & 1) != 0)
3591 off &= ~1;
3592 else
3593 {
3594 local_plt_offsets[r_symndx] |= 1;
3595 do_plt = 1;
3596 }
3597 }
3598
3599 if (do_plt)
3600 {
3601 if (info->shared)
3602 {
3603 /* Output a dynamic IPLT relocation for this
3604 PLT entry. */
3605 Elf_Internal_Rela outrel;
3606 bfd_byte *loc;
3607 asection *s = htab->srelplt;
3608
3609 outrel.r_offset = (off
3610 + htab->splt->output_offset
3611 + htab->splt->output_section->vma);
3612 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3613 outrel.r_addend = relocation;
3614 loc = s->contents;
3615 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3616 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3617 }
3618 else
3619 {
3620 bfd_put_32 (output_bfd,
3621 relocation,
3622 htab->splt->contents + off);
3623 bfd_put_32 (output_bfd,
3624 elf_gp (htab->splt->output_section->owner),
3625 htab->splt->contents + off + 4);
3626 }
3627 }
3628
3629 if (off >= (bfd_vma) -2)
3630 abort ();
3631
3632 /* PLABELs contain function pointers. Relocation is to
3633 the entry for the function in the .plt. The magic +2
3634 offset signals to $$dyncall that the function pointer
3635 is in the .plt and thus has a gp pointer too.
3636 Exception: Undefined PLABELs should have a value of
3637 zero. */
3638 if (h == NULL
3639 || (h->elf.root.type != bfd_link_hash_undefweak
3640 && h->elf.root.type != bfd_link_hash_undefined))
3641 {
3642 relocation = (off
3643 + htab->splt->output_offset
3644 + htab->splt->output_section->vma
3645 + 2);
3646 }
3647 plabel = 1;
3648 }
3649 /* Fall through and possibly emit a dynamic relocation. */
3650
3651 case R_PARISC_DIR17F:
3652 case R_PARISC_DIR17R:
3653 case R_PARISC_DIR14F:
3654 case R_PARISC_DIR14R:
3655 case R_PARISC_DIR21L:
3656 case R_PARISC_DPREL14F:
3657 case R_PARISC_DPREL14R:
3658 case R_PARISC_DPREL21L:
3659 case R_PARISC_DIR32:
3660 /* r_symndx will be zero only for relocs against symbols
3661 from removed linkonce sections, or sections discarded by
3662 a linker script. */
3663 if (r_symndx == 0
3664 || (input_section->flags & SEC_ALLOC) == 0)
3665 break;
3666
3667 /* The reloc types handled here and this conditional
3668 expression must match the code in ..check_relocs and
3669 allocate_dynrelocs. ie. We need exactly the same condition
3670 as in ..check_relocs, with some extra conditions (dynindx
3671 test in this case) to cater for relocs removed by
3672 allocate_dynrelocs. If you squint, the non-shared test
3673 here does indeed match the one in ..check_relocs, the
3674 difference being that here we test DEF_DYNAMIC as well as
3675 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3676 which is why we can't use just that test here.
3677 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3678 there all files have not been loaded. */
3679 if ((info->shared
3680 && (h == NULL
3681 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
3682 || h->elf.root.type != bfd_link_hash_undefweak)
3683 && (IS_ABSOLUTE_RELOC (r_type)
3684 || !SYMBOL_CALLS_LOCAL (info, &h->elf)))
3685 || (!info->shared
3686 && h != NULL
3687 && h->elf.dynindx != -1
3688 && (h->elf.elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
3689 && ((ELIMINATE_COPY_RELOCS
3690 && (h->elf.elf_link_hash_flags
3691 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3692 && (h->elf.elf_link_hash_flags
3693 & ELF_LINK_HASH_DEF_REGULAR) == 0)
3694 || h->elf.root.type == bfd_link_hash_undefweak
3695 || h->elf.root.type == bfd_link_hash_undefined)))
3696 {
3697 Elf_Internal_Rela outrel;
3698 bfd_boolean skip;
3699 asection *sreloc;
3700 bfd_byte *loc;
3701
3702 /* When generating a shared object, these relocations
3703 are copied into the output file to be resolved at run
3704 time. */
3705
3706 outrel.r_addend = rel->r_addend;
3707 outrel.r_offset =
3708 _bfd_elf_section_offset (output_bfd, info, input_section,
3709 rel->r_offset);
3710 skip = (outrel.r_offset == (bfd_vma) -1
3711 || outrel.r_offset == (bfd_vma) -2);
3712 outrel.r_offset += (input_section->output_offset
3713 + input_section->output_section->vma);
3714
3715 if (skip)
3716 {
3717 memset (&outrel, 0, sizeof (outrel));
3718 }
3719 else if (h != NULL
3720 && h->elf.dynindx != -1
3721 && (plabel
3722 || !IS_ABSOLUTE_RELOC (r_type)
3723 || !info->shared
3724 || !info->symbolic
3725 || (h->elf.elf_link_hash_flags
3726 & ELF_LINK_HASH_DEF_REGULAR) == 0))
3727 {
3728 outrel.r_info = ELF32_R_INFO (h->elf.dynindx, r_type);
3729 }
3730 else /* It's a local symbol, or one marked to become local. */
3731 {
3732 int indx = 0;
3733
3734 /* Add the absolute offset of the symbol. */
3735 outrel.r_addend += relocation;
3736
3737 /* Global plabels need to be processed by the
3738 dynamic linker so that functions have at most one
3739 fptr. For this reason, we need to differentiate
3740 between global and local plabels, which we do by
3741 providing the function symbol for a global plabel
3742 reloc, and no symbol for local plabels. */
3743 if (! plabel
3744 && sym_sec != NULL
3745 && sym_sec->output_section != NULL
3746 && ! bfd_is_abs_section (sym_sec))
3747 {
3748 /* Skip this relocation if the output section has
3749 been discarded. */
3750 if (bfd_is_abs_section (sym_sec->output_section))
3751 break;
3752
3753 indx = elf_section_data (sym_sec->output_section)->dynindx;
3754 /* We are turning this relocation into one
3755 against a section symbol, so subtract out the
3756 output section's address but not the offset
3757 of the input section in the output section. */
3758 outrel.r_addend -= sym_sec->output_section->vma;
3759 }
3760
3761 outrel.r_info = ELF32_R_INFO (indx, r_type);
3762 }
3763 #if 0
3764 /* EH info can cause unaligned DIR32 relocs.
3765 Tweak the reloc type for the dynamic linker. */
3766 if (r_type == R_PARISC_DIR32 && (outrel.r_offset & 3) != 0)
3767 outrel.r_info = ELF32_R_INFO (ELF32_R_SYM (outrel.r_info),
3768 R_PARISC_DIR32U);
3769 #endif
3770 sreloc = elf_section_data (input_section)->sreloc;
3771 if (sreloc == NULL)
3772 abort ();
3773
3774 loc = sreloc->contents;
3775 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3776 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3777 }
3778 break;
3779
3780 default:
3781 break;
3782 }
3783
3784 r = final_link_relocate (input_section, contents, rel, relocation,
3785 htab, sym_sec, h, info);
3786
3787 if (r == bfd_reloc_ok)
3788 continue;
3789
3790 if (h != NULL)
3791 sym_name = h->elf.root.root.string;
3792 else
3793 {
3794 sym_name = bfd_elf_string_from_elf_section (input_bfd,
3795 symtab_hdr->sh_link,
3796 sym->st_name);
3797 if (sym_name == NULL)
3798 return FALSE;
3799 if (*sym_name == '\0')
3800 sym_name = bfd_section_name (input_bfd, sym_sec);
3801 }
3802
3803 howto = elf_hppa_howto_table + r_type;
3804
3805 if (r == bfd_reloc_undefined || r == bfd_reloc_notsupported)
3806 {
3807 if (r == bfd_reloc_notsupported || !warned_undef)
3808 {
3809 (*_bfd_error_handler)
3810 (_("%s(%s+0x%lx): cannot handle %s for %s"),
3811 bfd_archive_filename (input_bfd),
3812 input_section->name,
3813 (long) rel->r_offset,
3814 howto->name,
3815 sym_name);
3816 bfd_set_error (bfd_error_bad_value);
3817 return FALSE;
3818 }
3819 }
3820 else
3821 {
3822 if (!((*info->callbacks->reloc_overflow)
3823 (info, sym_name, howto->name, 0, input_bfd, input_section,
3824 rel->r_offset)))
3825 return FALSE;
3826 }
3827 }
3828
3829 return TRUE;
3830 }
3831
3832 /* Finish up dynamic symbol handling. We set the contents of various
3833 dynamic sections here. */
3834
3835 static bfd_boolean
3836 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
3837 struct bfd_link_info *info,
3838 struct elf_link_hash_entry *h,
3839 Elf_Internal_Sym *sym)
3840 {
3841 struct elf32_hppa_link_hash_table *htab;
3842 Elf_Internal_Rela rel;
3843 bfd_byte *loc;
3844
3845 htab = hppa_link_hash_table (info);
3846
3847 if (h->plt.offset != (bfd_vma) -1)
3848 {
3849 bfd_vma value;
3850
3851 if (h->plt.offset & 1)
3852 abort ();
3853
3854 /* This symbol has an entry in the procedure linkage table. Set
3855 it up.
3856
3857 The format of a plt entry is
3858 <funcaddr>
3859 <__gp>
3860 */
3861 value = 0;
3862 if (h->root.type == bfd_link_hash_defined
3863 || h->root.type == bfd_link_hash_defweak)
3864 {
3865 value = h->root.u.def.value;
3866 if (h->root.u.def.section->output_section != NULL)
3867 value += (h->root.u.def.section->output_offset
3868 + h->root.u.def.section->output_section->vma);
3869 }
3870
3871 /* Create a dynamic IPLT relocation for this entry. */
3872 rel.r_offset = (h->plt.offset
3873 + htab->splt->output_offset
3874 + htab->splt->output_section->vma);
3875 if (h->dynindx != -1)
3876 {
3877 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_IPLT);
3878 rel.r_addend = 0;
3879 }
3880 else
3881 {
3882 /* This symbol has been marked to become local, and is
3883 used by a plabel so must be kept in the .plt. */
3884 rel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3885 rel.r_addend = value;
3886 }
3887
3888 loc = htab->srelplt->contents;
3889 loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
3890 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rel, loc);
3891
3892 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3893 {
3894 /* Mark the symbol as undefined, rather than as defined in
3895 the .plt section. Leave the value alone. */
3896 sym->st_shndx = SHN_UNDEF;
3897 }
3898 }
3899
3900 if (h->got.offset != (bfd_vma) -1)
3901 {
3902 /* This symbol has an entry in the global offset table. Set it
3903 up. */
3904
3905 rel.r_offset = ((h->got.offset &~ (bfd_vma) 1)
3906 + htab->sgot->output_offset
3907 + htab->sgot->output_section->vma);
3908
3909 /* If this is a -Bsymbolic link and the symbol is defined
3910 locally or was forced to be local because of a version file,
3911 we just want to emit a RELATIVE reloc. The entry in the
3912 global offset table will already have been initialized in the
3913 relocate_section function. */
3914 if (info->shared
3915 && (info->symbolic || h->dynindx == -1)
3916 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
3917 {
3918 rel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3919 rel.r_addend = (h->root.u.def.value
3920 + h->root.u.def.section->output_offset
3921 + h->root.u.def.section->output_section->vma);
3922 }
3923 else
3924 {
3925 if ((h->got.offset & 1) != 0)
3926 abort ();
3927 bfd_put_32 (output_bfd, 0, htab->sgot->contents + h->got.offset);
3928 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_DIR32);
3929 rel.r_addend = 0;
3930 }
3931
3932 loc = htab->srelgot->contents;
3933 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
3934 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
3935 }
3936
3937 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
3938 {
3939 asection *s;
3940
3941 /* This symbol needs a copy reloc. Set it up. */
3942
3943 if (! (h->dynindx != -1
3944 && (h->root.type == bfd_link_hash_defined
3945 || h->root.type == bfd_link_hash_defweak)))
3946 abort ();
3947
3948 s = htab->srelbss;
3949
3950 rel.r_offset = (h->root.u.def.value
3951 + h->root.u.def.section->output_offset
3952 + h->root.u.def.section->output_section->vma);
3953 rel.r_addend = 0;
3954 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_COPY);
3955 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
3956 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
3957 }
3958
3959 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3960 if (h->root.root.string[0] == '_'
3961 && (strcmp (h->root.root.string, "_DYNAMIC") == 0
3962 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0))
3963 {
3964 sym->st_shndx = SHN_ABS;
3965 }
3966
3967 return TRUE;
3968 }
3969
3970 /* Used to decide how to sort relocs in an optimal manner for the
3971 dynamic linker, before writing them out. */
3972
3973 static enum elf_reloc_type_class
3974 elf32_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
3975 {
3976 if (ELF32_R_SYM (rela->r_info) == 0)
3977 return reloc_class_relative;
3978
3979 switch ((int) ELF32_R_TYPE (rela->r_info))
3980 {
3981 case R_PARISC_IPLT:
3982 return reloc_class_plt;
3983 case R_PARISC_COPY:
3984 return reloc_class_copy;
3985 default:
3986 return reloc_class_normal;
3987 }
3988 }
3989
3990 /* Finish up the dynamic sections. */
3991
3992 static bfd_boolean
3993 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
3994 struct bfd_link_info *info)
3995 {
3996 bfd *dynobj;
3997 struct elf32_hppa_link_hash_table *htab;
3998 asection *sdyn;
3999
4000 htab = hppa_link_hash_table (info);
4001 dynobj = htab->elf.dynobj;
4002
4003 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4004
4005 if (htab->elf.dynamic_sections_created)
4006 {
4007 Elf32_External_Dyn *dyncon, *dynconend;
4008
4009 if (sdyn == NULL)
4010 abort ();
4011
4012 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4013 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
4014 for (; dyncon < dynconend; dyncon++)
4015 {
4016 Elf_Internal_Dyn dyn;
4017 asection *s;
4018
4019 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4020
4021 switch (dyn.d_tag)
4022 {
4023 default:
4024 continue;
4025
4026 case DT_PLTGOT:
4027 /* Use PLTGOT to set the GOT register. */
4028 dyn.d_un.d_ptr = elf_gp (output_bfd);
4029 break;
4030
4031 case DT_JMPREL:
4032 s = htab->srelplt;
4033 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4034 break;
4035
4036 case DT_PLTRELSZ:
4037 s = htab->srelplt;
4038 dyn.d_un.d_val = s->_raw_size;
4039 break;
4040
4041 case DT_RELASZ:
4042 /* Don't count procedure linkage table relocs in the
4043 overall reloc count. */
4044 s = htab->srelplt;
4045 if (s == NULL)
4046 continue;
4047 dyn.d_un.d_val -= s->_raw_size;
4048 break;
4049
4050 case DT_RELA:
4051 /* We may not be using the standard ELF linker script.
4052 If .rela.plt is the first .rela section, we adjust
4053 DT_RELA to not include it. */
4054 s = htab->srelplt;
4055 if (s == NULL)
4056 continue;
4057 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4058 continue;
4059 dyn.d_un.d_ptr += s->_raw_size;
4060 break;
4061 }
4062
4063 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4064 }
4065 }
4066
4067 if (htab->sgot != NULL && htab->sgot->_raw_size != 0)
4068 {
4069 /* Fill in the first entry in the global offset table.
4070 We use it to point to our dynamic section, if we have one. */
4071 bfd_put_32 (output_bfd,
4072 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4073 htab->sgot->contents);
4074
4075 /* The second entry is reserved for use by the dynamic linker. */
4076 memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4077
4078 /* Set .got entry size. */
4079 elf_section_data (htab->sgot->output_section)
4080 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4081 }
4082
4083 if (htab->splt != NULL && htab->splt->_raw_size != 0)
4084 {
4085 /* Set plt entry size. */
4086 elf_section_data (htab->splt->output_section)
4087 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4088
4089 if (htab->need_plt_stub)
4090 {
4091 /* Set up the .plt stub. */
4092 memcpy (htab->splt->contents
4093 + htab->splt->_raw_size - sizeof (plt_stub),
4094 plt_stub, sizeof (plt_stub));
4095
4096 if ((htab->splt->output_offset
4097 + htab->splt->output_section->vma
4098 + htab->splt->_raw_size)
4099 != (htab->sgot->output_offset
4100 + htab->sgot->output_section->vma))
4101 {
4102 (*_bfd_error_handler)
4103 (_(".got section not immediately after .plt section"));
4104 return FALSE;
4105 }
4106 }
4107 }
4108
4109 return TRUE;
4110 }
4111
4112 /* Tweak the OSABI field of the elf header. */
4113
4114 static void
4115 elf32_hppa_post_process_headers (bfd *abfd,
4116 struct bfd_link_info *info ATTRIBUTE_UNUSED)
4117 {
4118 Elf_Internal_Ehdr * i_ehdrp;
4119
4120 i_ehdrp = elf_elfheader (abfd);
4121
4122 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
4123 {
4124 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
4125 }
4126 else
4127 {
4128 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
4129 }
4130 }
4131
4132 /* Called when writing out an object file to decide the type of a
4133 symbol. */
4134 static int
4135 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4136 {
4137 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4138 return STT_PARISC_MILLI;
4139 else
4140 return type;
4141 }
4142
4143 /* Misc BFD support code. */
4144 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4145 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4146 #define elf_info_to_howto elf_hppa_info_to_howto
4147 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4148
4149 /* Stuff for the BFD linker. */
4150 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4151 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4152 #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
4153 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4154 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4155 #define elf_backend_check_relocs elf32_hppa_check_relocs
4156 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4157 #define elf_backend_fake_sections elf_hppa_fake_sections
4158 #define elf_backend_relocate_section elf32_hppa_relocate_section
4159 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4160 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4161 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4162 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4163 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4164 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4165 #define elf_backend_object_p elf32_hppa_object_p
4166 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4167 #define elf_backend_post_process_headers elf32_hppa_post_process_headers
4168 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4169 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4170
4171 #define elf_backend_can_gc_sections 1
4172 #define elf_backend_can_refcount 1
4173 #define elf_backend_plt_alignment 2
4174 #define elf_backend_want_got_plt 0
4175 #define elf_backend_plt_readonly 0
4176 #define elf_backend_want_plt_sym 0
4177 #define elf_backend_got_header_size 8
4178 #define elf_backend_rela_normal 1
4179
4180 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4181 #define TARGET_BIG_NAME "elf32-hppa"
4182 #define ELF_ARCH bfd_arch_hppa
4183 #define ELF_MACHINE_CODE EM_PARISC
4184 #define ELF_MAXPAGESIZE 0x1000
4185
4186 #include "elf32-target.h"
4187
4188 #undef TARGET_BIG_SYM
4189 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4190 #undef TARGET_BIG_NAME
4191 #define TARGET_BIG_NAME "elf32-hppa-linux"
4192
4193 #define INCLUDED_TARGET_FILE 1
4194 #include "elf32-target.h"
This page took 0.133879 seconds and 4 git commands to generate.