* elf.c (bfd_section_from_shdr): Treat invalid reloc sections as
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 Original code by
6 Center for Software Science
7 Department of Computer Science
8 University of Utah
9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
26
27 #include "bfd.h"
28 #include "sysdep.h"
29 #include "libbfd.h"
30 #include "elf-bfd.h"
31 #include "elf/hppa.h"
32 #include "libhppa.h"
33 #include "elf32-hppa.h"
34 #define ARCH_SIZE 32
35 #include "elf32-hppa.h"
36 #include "elf-hppa.h"
37
38 /* In order to gain some understanding of code in this file without
39 knowing all the intricate details of the linker, note the
40 following:
41
42 Functions named elf32_hppa_* are called by external routines, other
43 functions are only called locally. elf32_hppa_* functions appear
44 in this file more or less in the order in which they are called
45 from external routines. eg. elf32_hppa_check_relocs is called
46 early in the link process, elf32_hppa_finish_dynamic_sections is
47 one of the last functions. */
48
49 /* We use two hash tables to hold information for linking PA ELF objects.
50
51 The first is the elf32_hppa_link_hash_table which is derived
52 from the standard ELF linker hash table. We use this as a place to
53 attach other hash tables and static information.
54
55 The second is the stub hash table which is derived from the
56 base BFD hash table. The stub hash table holds the information
57 necessary to build the linker stubs during a link.
58
59 There are a number of different stubs generated by the linker.
60
61 Long branch stub:
62 : ldil LR'X,%r1
63 : be,n RR'X(%sr4,%r1)
64
65 PIC long branch stub:
66 : b,l .+8,%r1
67 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
68 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
69
70 Import stub to call shared library routine from normal object file
71 (single sub-space version)
72 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
73 : ldw RR'lt_ptr+ltoff(%r1),%r21
74 : bv %r0(%r21)
75 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
76
77 Import stub to call shared library routine from shared library
78 (single sub-space version)
79 : addil LR'ltoff,%r19 ; get procedure entry point
80 : ldw RR'ltoff(%r1),%r21
81 : bv %r0(%r21)
82 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
83
84 Import stub to call shared library routine from normal object file
85 (multiple sub-space support)
86 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
87 : ldw RR'lt_ptr+ltoff(%r1),%r21
88 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
89 : ldsid (%r21),%r1
90 : mtsp %r1,%sr0
91 : be 0(%sr0,%r21) ; branch to target
92 : stw %rp,-24(%sp) ; save rp
93
94 Import stub to call shared library routine from shared library
95 (multiple sub-space support)
96 : addil LR'ltoff,%r19 ; get procedure entry point
97 : ldw RR'ltoff(%r1),%r21
98 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
99 : ldsid (%r21),%r1
100 : mtsp %r1,%sr0
101 : be 0(%sr0,%r21) ; branch to target
102 : stw %rp,-24(%sp) ; save rp
103
104 Export stub to return from shared lib routine (multiple sub-space support)
105 One of these is created for each exported procedure in a shared
106 library (and stored in the shared lib). Shared lib routines are
107 called via the first instruction in the export stub so that we can
108 do an inter-space return. Not required for single sub-space.
109 : bl,n X,%rp ; trap the return
110 : nop
111 : ldw -24(%sp),%rp ; restore the original rp
112 : ldsid (%rp),%r1
113 : mtsp %r1,%sr0
114 : be,n 0(%sr0,%rp) ; inter-space return. */
115
116
117 /* Variable names follow a coding style.
118 Please follow this (Apps Hungarian) style:
119
120 Structure/Variable Prefix
121 elf_link_hash_table "etab"
122 elf_link_hash_entry "eh"
123
124 elf32_hppa_link_hash_table "htab"
125 elf32_hppa_link_hash_entry "hh"
126
127 bfd_hash_table "btab"
128 bfd_hash_entry "bh"
129
130 bfd_hash_table containing stubs "bstab"
131 elf32_hppa_stub_hash_entry "hsh"
132
133 elf32_hppa_dyn_reloc_entry "hdh"
134
135 Always remember to use GNU Coding Style. */
136
137 #define PLT_ENTRY_SIZE 8
138 #define GOT_ENTRY_SIZE 4
139 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
140
141 static const bfd_byte plt_stub[] =
142 {
143 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
144 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
145 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
146 #define PLT_STUB_ENTRY (3*4)
147 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
148 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
149 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
150 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
151 };
152
153 /* Section name for stubs is the associated section name plus this
154 string. */
155 #define STUB_SUFFIX ".stub"
156
157 /* We don't need to copy certain PC- or GP-relative dynamic relocs
158 into a shared object's dynamic section. All the relocs of the
159 limited class we are interested in, are absolute. */
160 #ifndef RELATIVE_DYNRELOCS
161 #define RELATIVE_DYNRELOCS 0
162 #define IS_ABSOLUTE_RELOC(r_type) 1
163 #endif
164
165 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
166 copying dynamic variables from a shared lib into an app's dynbss
167 section, and instead use a dynamic relocation to point into the
168 shared lib. */
169 #define ELIMINATE_COPY_RELOCS 1
170
171 enum elf32_hppa_stub_type {
172 hppa_stub_long_branch,
173 hppa_stub_long_branch_shared,
174 hppa_stub_import,
175 hppa_stub_import_shared,
176 hppa_stub_export,
177 hppa_stub_none
178 };
179
180 struct elf32_hppa_stub_hash_entry {
181
182 /* Base hash table entry structure. */
183 struct bfd_hash_entry bh_root;
184
185 /* The stub section. */
186 asection *stub_sec;
187
188 /* Offset within stub_sec of the beginning of this stub. */
189 bfd_vma stub_offset;
190
191 /* Given the symbol's value and its section we can determine its final
192 value when building the stubs (so the stub knows where to jump. */
193 bfd_vma target_value;
194 asection *target_section;
195
196 enum elf32_hppa_stub_type stub_type;
197
198 /* The symbol table entry, if any, that this was derived from. */
199 struct elf32_hppa_link_hash_entry *hh;
200
201 /* Where this stub is being called from, or, in the case of combined
202 stub sections, the first input section in the group. */
203 asection *id_sec;
204 };
205
206 struct elf32_hppa_link_hash_entry {
207
208 struct elf_link_hash_entry eh;
209
210 /* A pointer to the most recently used stub hash entry against this
211 symbol. */
212 struct elf32_hppa_stub_hash_entry *hsh_cache;
213
214 /* Used to count relocations for delayed sizing of relocation
215 sections. */
216 struct elf32_hppa_dyn_reloc_entry {
217
218 /* Next relocation in the chain. */
219 struct elf32_hppa_dyn_reloc_entry *hdh_next;
220
221 /* The input section of the reloc. */
222 asection *sec;
223
224 /* Number of relocs copied in this section. */
225 bfd_size_type count;
226
227 #if RELATIVE_DYNRELOCS
228 /* Number of relative relocs copied for the input section. */
229 bfd_size_type relative_count;
230 #endif
231 } *dyn_relocs;
232
233 /* Set if this symbol is used by a plabel reloc. */
234 unsigned int plabel:1;
235 };
236
237 struct elf32_hppa_link_hash_table {
238
239 /* The main hash table. */
240 struct elf_link_hash_table etab;
241
242 /* The stub hash table. */
243 struct bfd_hash_table bstab;
244
245 /* Linker stub bfd. */
246 bfd *stub_bfd;
247
248 /* Linker call-backs. */
249 asection * (*add_stub_section) (const char *, asection *);
250 void (*layout_sections_again) (void);
251
252 /* Array to keep track of which stub sections have been created, and
253 information on stub grouping. */
254 struct map_stub {
255 /* This is the section to which stubs in the group will be
256 attached. */
257 asection *link_sec;
258 /* The stub section. */
259 asection *stub_sec;
260 } *stub_group;
261
262 /* Assorted information used by elf32_hppa_size_stubs. */
263 unsigned int bfd_count;
264 int top_index;
265 asection **input_list;
266 Elf_Internal_Sym **all_local_syms;
267
268 /* Short-cuts to get to dynamic linker sections. */
269 asection *sgot;
270 asection *srelgot;
271 asection *splt;
272 asection *srelplt;
273 asection *sdynbss;
274 asection *srelbss;
275
276 /* Used during a final link to store the base of the text and data
277 segments so that we can perform SEGREL relocations. */
278 bfd_vma text_segment_base;
279 bfd_vma data_segment_base;
280
281 /* Whether we support multiple sub-spaces for shared libs. */
282 unsigned int multi_subspace:1;
283
284 /* Flags set when various size branches are detected. Used to
285 select suitable defaults for the stub group size. */
286 unsigned int has_12bit_branch:1;
287 unsigned int has_17bit_branch:1;
288 unsigned int has_22bit_branch:1;
289
290 /* Set if we need a .plt stub to support lazy dynamic linking. */
291 unsigned int need_plt_stub:1;
292
293 /* Small local sym to section mapping cache. */
294 struct sym_sec_cache sym_sec;
295 };
296
297 /* Various hash macros and functions. */
298 #define hppa_link_hash_table(p) \
299 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
300
301 #define hppa_elf_hash_entry(ent) \
302 ((struct elf32_hppa_link_hash_entry *)(ent))
303
304 #define hppa_stub_hash_entry(ent) \
305 ((struct elf32_hppa_stub_hash_entry *)(ent))
306
307 #define hppa_stub_hash_lookup(table, string, create, copy) \
308 ((struct elf32_hppa_stub_hash_entry *) \
309 bfd_hash_lookup ((table), (string), (create), (copy)))
310
311 /* Assorted hash table functions. */
312
313 /* Initialize an entry in the stub hash table. */
314
315 static struct bfd_hash_entry *
316 stub_hash_newfunc (struct bfd_hash_entry *entry,
317 struct bfd_hash_table *table,
318 const char *string)
319 {
320 /* Allocate the structure if it has not already been allocated by a
321 subclass. */
322 if (entry == NULL)
323 {
324 entry = bfd_hash_allocate (table,
325 sizeof (struct elf32_hppa_stub_hash_entry));
326 if (entry == NULL)
327 return entry;
328 }
329
330 /* Call the allocation method of the superclass. */
331 entry = bfd_hash_newfunc (entry, table, string);
332 if (entry != NULL)
333 {
334 struct elf32_hppa_stub_hash_entry *hsh;
335
336 /* Initialize the local fields. */
337 hsh = hppa_stub_hash_entry (entry);
338 hsh->stub_sec = NULL;
339 hsh->stub_offset = 0;
340 hsh->target_value = 0;
341 hsh->target_section = NULL;
342 hsh->stub_type = hppa_stub_long_branch;
343 hsh->hh = NULL;
344 hsh->id_sec = NULL;
345 }
346
347 return entry;
348 }
349
350 /* Initialize an entry in the link hash table. */
351
352 static struct bfd_hash_entry *
353 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
354 struct bfd_hash_table *table,
355 const char *string)
356 {
357 /* Allocate the structure if it has not already been allocated by a
358 subclass. */
359 if (entry == NULL)
360 {
361 entry = bfd_hash_allocate (table,
362 sizeof (struct elf32_hppa_link_hash_entry));
363 if (entry == NULL)
364 return entry;
365 }
366
367 /* Call the allocation method of the superclass. */
368 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
369 if (entry != NULL)
370 {
371 struct elf32_hppa_link_hash_entry *hh;
372
373 /* Initialize the local fields. */
374 hh = hppa_elf_hash_entry (entry);
375 hh->hsh_cache = NULL;
376 hh->dyn_relocs = NULL;
377 hh->plabel = 0;
378 }
379
380 return entry;
381 }
382
383 /* Create the derived linker hash table. The PA ELF port uses the derived
384 hash table to keep information specific to the PA ELF linker (without
385 using static variables). */
386
387 static struct bfd_link_hash_table *
388 elf32_hppa_link_hash_table_create (bfd *abfd)
389 {
390 struct elf32_hppa_link_hash_table *htab;
391 bfd_size_type amt = sizeof (*htab);
392
393 htab = (struct elf32_hppa_link_hash_table *) bfd_malloc (amt);
394 if (htab == NULL)
395 return NULL;
396
397 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc))
398 {
399 free (htab);
400 return NULL;
401 }
402
403 /* Init the stub hash table too. */
404 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc))
405 return NULL;
406
407 htab->stub_bfd = NULL;
408 htab->add_stub_section = NULL;
409 htab->layout_sections_again = NULL;
410 htab->stub_group = NULL;
411 htab->sgot = NULL;
412 htab->srelgot = NULL;
413 htab->splt = NULL;
414 htab->srelplt = NULL;
415 htab->sdynbss = NULL;
416 htab->srelbss = NULL;
417 htab->text_segment_base = (bfd_vma) -1;
418 htab->data_segment_base = (bfd_vma) -1;
419 htab->multi_subspace = 0;
420 htab->has_12bit_branch = 0;
421 htab->has_17bit_branch = 0;
422 htab->has_22bit_branch = 0;
423 htab->need_plt_stub = 0;
424 htab->sym_sec.abfd = NULL;
425
426 return &htab->etab.root;
427 }
428
429 /* Free the derived linker hash table. */
430
431 static void
432 elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *btab)
433 {
434 struct elf32_hppa_link_hash_table *htab
435 = (struct elf32_hppa_link_hash_table *) btab;
436
437 bfd_hash_table_free (&htab->bstab);
438 _bfd_generic_link_hash_table_free (btab);
439 }
440
441 /* Build a name for an entry in the stub hash table. */
442
443 static char *
444 hppa_stub_name (const asection *input_section,
445 const asection *sym_sec,
446 const struct elf32_hppa_link_hash_entry *hh,
447 const Elf_Internal_Rela *rela)
448 {
449 char *stub_name;
450 bfd_size_type len;
451
452 if (hh)
453 {
454 len = 8 + 1 + strlen (hh->eh.root.root.string) + 1 + 8 + 1;
455 stub_name = bfd_malloc (len);
456 if (stub_name != NULL)
457 {
458 sprintf (stub_name, "%08x_%s+%x",
459 input_section->id & 0xffffffff,
460 hh->eh.root.root.string,
461 (int) rela->r_addend & 0xffffffff);
462 }
463 }
464 else
465 {
466 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
467 stub_name = bfd_malloc (len);
468 if (stub_name != NULL)
469 {
470 sprintf (stub_name, "%08x_%x:%x+%x",
471 input_section->id & 0xffffffff,
472 sym_sec->id & 0xffffffff,
473 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
474 (int) rela->r_addend & 0xffffffff);
475 }
476 }
477 return stub_name;
478 }
479
480 /* Look up an entry in the stub hash. Stub entries are cached because
481 creating the stub name takes a bit of time. */
482
483 static struct elf32_hppa_stub_hash_entry *
484 hppa_get_stub_entry (const asection *input_section,
485 const asection *sym_sec,
486 struct elf32_hppa_link_hash_entry *hh,
487 const Elf_Internal_Rela *rela,
488 struct elf32_hppa_link_hash_table *htab)
489 {
490 struct elf32_hppa_stub_hash_entry *hsh_entry;
491 const asection *id_sec;
492
493 /* If this input section is part of a group of sections sharing one
494 stub section, then use the id of the first section in the group.
495 Stub names need to include a section id, as there may well be
496 more than one stub used to reach say, printf, and we need to
497 distinguish between them. */
498 id_sec = htab->stub_group[input_section->id].link_sec;
499
500 if (hh != NULL && hh->hsh_cache != NULL
501 && hh->hsh_cache->hh == hh
502 && hh->hsh_cache->id_sec == id_sec)
503 {
504 hsh_entry = hh->hsh_cache;
505 }
506 else
507 {
508 char *stub_name;
509
510 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
511 if (stub_name == NULL)
512 return NULL;
513
514 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
515 stub_name, FALSE, FALSE);
516 if (hh != NULL)
517 hh->hsh_cache = hsh_entry;
518
519 free (stub_name);
520 }
521
522 return hsh_entry;
523 }
524
525 /* Add a new stub entry to the stub hash. Not all fields of the new
526 stub entry are initialised. */
527
528 static struct elf32_hppa_stub_hash_entry *
529 hppa_add_stub (const char *stub_name,
530 asection *section,
531 struct elf32_hppa_link_hash_table *htab)
532 {
533 asection *link_sec;
534 asection *stub_sec;
535 struct elf32_hppa_stub_hash_entry *hsh;
536
537 link_sec = htab->stub_group[section->id].link_sec;
538 stub_sec = htab->stub_group[section->id].stub_sec;
539 if (stub_sec == NULL)
540 {
541 stub_sec = htab->stub_group[link_sec->id].stub_sec;
542 if (stub_sec == NULL)
543 {
544 size_t namelen;
545 bfd_size_type len;
546 char *s_name;
547
548 namelen = strlen (link_sec->name);
549 len = namelen + sizeof (STUB_SUFFIX);
550 s_name = bfd_alloc (htab->stub_bfd, len);
551 if (s_name == NULL)
552 return NULL;
553
554 memcpy (s_name, link_sec->name, namelen);
555 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
556 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
557 if (stub_sec == NULL)
558 return NULL;
559 htab->stub_group[link_sec->id].stub_sec = stub_sec;
560 }
561 htab->stub_group[section->id].stub_sec = stub_sec;
562 }
563
564 /* Enter this entry into the linker stub hash table. */
565 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
566 TRUE, FALSE);
567 if (hsh == NULL)
568 {
569 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
570 section->owner,
571 stub_name);
572 return NULL;
573 }
574
575 hsh->stub_sec = stub_sec;
576 hsh->stub_offset = 0;
577 hsh->id_sec = link_sec;
578 return hsh;
579 }
580
581 /* Determine the type of stub needed, if any, for a call. */
582
583 static enum elf32_hppa_stub_type
584 hppa_type_of_stub (asection *input_sec,
585 const Elf_Internal_Rela *rela,
586 struct elf32_hppa_link_hash_entry *hh,
587 bfd_vma destination,
588 struct bfd_link_info *info)
589 {
590 bfd_vma location;
591 bfd_vma branch_offset;
592 bfd_vma max_branch_offset;
593 unsigned int r_type;
594
595 if (hh != NULL
596 && hh->eh.plt.offset != (bfd_vma) -1
597 && hh->eh.dynindx != -1
598 && !hh->plabel
599 && (info->shared
600 || !hh->eh.def_regular
601 || hh->eh.root.type == bfd_link_hash_defweak))
602 {
603 /* We need an import stub. Decide between hppa_stub_import
604 and hppa_stub_import_shared later. */
605 return hppa_stub_import;
606 }
607
608 /* Determine where the call point is. */
609 location = (input_sec->output_offset
610 + input_sec->output_section->vma
611 + rela->r_offset);
612
613 branch_offset = destination - location - 8;
614 r_type = ELF32_R_TYPE (rela->r_info);
615
616 /* Determine if a long branch stub is needed. parisc branch offsets
617 are relative to the second instruction past the branch, ie. +8
618 bytes on from the branch instruction location. The offset is
619 signed and counts in units of 4 bytes. */
620 if (r_type == (unsigned int) R_PARISC_PCREL17F)
621 {
622 max_branch_offset = (1 << (17-1)) << 2;
623 }
624 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
625 {
626 max_branch_offset = (1 << (12-1)) << 2;
627 }
628 else /* R_PARISC_PCREL22F. */
629 {
630 max_branch_offset = (1 << (22-1)) << 2;
631 }
632
633 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
634 return hppa_stub_long_branch;
635
636 return hppa_stub_none;
637 }
638
639 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
640 IN_ARG contains the link info pointer. */
641
642 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
643 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
644
645 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
646 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
647 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
648
649 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
650 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
651 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
652 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
653
654 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
655 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
656
657 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
658 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
659 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
660 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
661
662 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
663 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
664 #define NOP 0x08000240 /* nop */
665 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
666 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
667 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
668
669 #ifndef R19_STUBS
670 #define R19_STUBS 1
671 #endif
672
673 #if R19_STUBS
674 #define LDW_R1_DLT LDW_R1_R19
675 #else
676 #define LDW_R1_DLT LDW_R1_DP
677 #endif
678
679 static bfd_boolean
680 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
681 {
682 struct elf32_hppa_stub_hash_entry *hsh;
683 struct bfd_link_info *info;
684 struct elf32_hppa_link_hash_table *htab;
685 asection *stub_sec;
686 bfd *stub_bfd;
687 bfd_byte *loc;
688 bfd_vma sym_value;
689 bfd_vma insn;
690 bfd_vma off;
691 int val;
692 int size;
693
694 /* Massage our args to the form they really have. */
695 hsh = hppa_stub_hash_entry (bh);
696 info = (struct bfd_link_info *)in_arg;
697
698 htab = hppa_link_hash_table (info);
699 stub_sec = hsh->stub_sec;
700
701 /* Make a note of the offset within the stubs for this entry. */
702 hsh->stub_offset = stub_sec->size;
703 loc = stub_sec->contents + hsh->stub_offset;
704
705 stub_bfd = stub_sec->owner;
706
707 switch (hsh->stub_type)
708 {
709 case hppa_stub_long_branch:
710 /* Create the long branch. A long branch is formed with "ldil"
711 loading the upper bits of the target address into a register,
712 then branching with "be" which adds in the lower bits.
713 The "be" has its delay slot nullified. */
714 sym_value = (hsh->target_value
715 + hsh->target_section->output_offset
716 + hsh->target_section->output_section->vma);
717
718 val = hppa_field_adjust (sym_value, 0, e_lrsel);
719 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
720 bfd_put_32 (stub_bfd, insn, loc);
721
722 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
723 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
724 bfd_put_32 (stub_bfd, insn, loc + 4);
725
726 size = 8;
727 break;
728
729 case hppa_stub_long_branch_shared:
730 /* Branches are relative. This is where we are going to. */
731 sym_value = (hsh->target_value
732 + hsh->target_section->output_offset
733 + hsh->target_section->output_section->vma);
734
735 /* And this is where we are coming from, more or less. */
736 sym_value -= (hsh->stub_offset
737 + stub_sec->output_offset
738 + stub_sec->output_section->vma);
739
740 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
741 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
742 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
743 bfd_put_32 (stub_bfd, insn, loc + 4);
744
745 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
746 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
747 bfd_put_32 (stub_bfd, insn, loc + 8);
748 size = 12;
749 break;
750
751 case hppa_stub_import:
752 case hppa_stub_import_shared:
753 off = hsh->hh->eh.plt.offset;
754 if (off >= (bfd_vma) -2)
755 abort ();
756
757 off &= ~ (bfd_vma) 1;
758 sym_value = (off
759 + htab->splt->output_offset
760 + htab->splt->output_section->vma
761 - elf_gp (htab->splt->output_section->owner));
762
763 insn = ADDIL_DP;
764 #if R19_STUBS
765 if (hsh->stub_type == hppa_stub_import_shared)
766 insn = ADDIL_R19;
767 #endif
768 val = hppa_field_adjust (sym_value, 0, e_lrsel),
769 insn = hppa_rebuild_insn ((int) insn, val, 21);
770 bfd_put_32 (stub_bfd, insn, loc);
771
772 /* It is critical to use lrsel/rrsel here because we are using
773 two different offsets (+0 and +4) from sym_value. If we use
774 lsel/rsel then with unfortunate sym_values we will round
775 sym_value+4 up to the next 2k block leading to a mis-match
776 between the lsel and rsel value. */
777 val = hppa_field_adjust (sym_value, 0, e_rrsel);
778 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
779 bfd_put_32 (stub_bfd, insn, loc + 4);
780
781 if (htab->multi_subspace)
782 {
783 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
784 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
785 bfd_put_32 (stub_bfd, insn, loc + 8);
786
787 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
788 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
789 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
790 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
791
792 size = 28;
793 }
794 else
795 {
796 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
797 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
798 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
799 bfd_put_32 (stub_bfd, insn, loc + 12);
800
801 size = 16;
802 }
803
804 break;
805
806 case hppa_stub_export:
807 /* Branches are relative. This is where we are going to. */
808 sym_value = (hsh->target_value
809 + hsh->target_section->output_offset
810 + hsh->target_section->output_section->vma);
811
812 /* And this is where we are coming from. */
813 sym_value -= (hsh->stub_offset
814 + stub_sec->output_offset
815 + stub_sec->output_section->vma);
816
817 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
818 && (!htab->has_22bit_branch
819 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
820 {
821 (*_bfd_error_handler)
822 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
823 hsh->target_section->owner,
824 stub_sec,
825 (long) hsh->stub_offset,
826 hsh->bh_root.string);
827 bfd_set_error (bfd_error_bad_value);
828 return FALSE;
829 }
830
831 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
832 if (!htab->has_22bit_branch)
833 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
834 else
835 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
836 bfd_put_32 (stub_bfd, insn, loc);
837
838 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
839 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
840 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
841 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
842 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
843
844 /* Point the function symbol at the stub. */
845 hsh->hh->eh.root.u.def.section = stub_sec;
846 hsh->hh->eh.root.u.def.value = stub_sec->size;
847
848 size = 24;
849 break;
850
851 default:
852 BFD_FAIL ();
853 return FALSE;
854 }
855
856 stub_sec->size += size;
857 return TRUE;
858 }
859
860 #undef LDIL_R1
861 #undef BE_SR4_R1
862 #undef BL_R1
863 #undef ADDIL_R1
864 #undef DEPI_R1
865 #undef LDW_R1_R21
866 #undef LDW_R1_DLT
867 #undef LDW_R1_R19
868 #undef ADDIL_R19
869 #undef LDW_R1_DP
870 #undef LDSID_R21_R1
871 #undef MTSP_R1
872 #undef BE_SR0_R21
873 #undef STW_RP
874 #undef BV_R0_R21
875 #undef BL_RP
876 #undef NOP
877 #undef LDW_RP
878 #undef LDSID_RP_R1
879 #undef BE_SR0_RP
880
881 /* As above, but don't actually build the stub. Just bump offset so
882 we know stub section sizes. */
883
884 static bfd_boolean
885 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
886 {
887 struct elf32_hppa_stub_hash_entry *hsh;
888 struct elf32_hppa_link_hash_table *htab;
889 int size;
890
891 /* Massage our args to the form they really have. */
892 hsh = hppa_stub_hash_entry (bh);
893 htab = in_arg;
894
895 if (hsh->stub_type == hppa_stub_long_branch)
896 size = 8;
897 else if (hsh->stub_type == hppa_stub_long_branch_shared)
898 size = 12;
899 else if (hsh->stub_type == hppa_stub_export)
900 size = 24;
901 else /* hppa_stub_import or hppa_stub_import_shared. */
902 {
903 if (htab->multi_subspace)
904 size = 28;
905 else
906 size = 16;
907 }
908
909 hsh->stub_sec->size += size;
910 return TRUE;
911 }
912
913 /* Return nonzero if ABFD represents an HPPA ELF32 file.
914 Additionally we set the default architecture and machine. */
915
916 static bfd_boolean
917 elf32_hppa_object_p (bfd *abfd)
918 {
919 Elf_Internal_Ehdr * i_ehdrp;
920 unsigned int flags;
921
922 i_ehdrp = elf_elfheader (abfd);
923 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
924 {
925 /* GCC on hppa-linux produces binaries with OSABI=Linux,
926 but the kernel produces corefiles with OSABI=SysV. */
927 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX &&
928 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
929 return FALSE;
930 }
931 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
932 {
933 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
934 but the kernel produces corefiles with OSABI=SysV. */
935 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
936 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
937 return FALSE;
938 }
939 else
940 {
941 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
942 return FALSE;
943 }
944
945 flags = i_ehdrp->e_flags;
946 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
947 {
948 case EFA_PARISC_1_0:
949 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
950 case EFA_PARISC_1_1:
951 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
952 case EFA_PARISC_2_0:
953 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
954 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
955 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
956 }
957 return TRUE;
958 }
959
960 /* Create the .plt and .got sections, and set up our hash table
961 short-cuts to various dynamic sections. */
962
963 static bfd_boolean
964 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
965 {
966 struct elf32_hppa_link_hash_table *htab;
967 struct elf_link_hash_entry *eh;
968
969 /* Don't try to create the .plt and .got twice. */
970 htab = hppa_link_hash_table (info);
971 if (htab->splt != NULL)
972 return TRUE;
973
974 /* Call the generic code to do most of the work. */
975 if (! _bfd_elf_create_dynamic_sections (abfd, info))
976 return FALSE;
977
978 htab->splt = bfd_get_section_by_name (abfd, ".plt");
979 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
980
981 htab->sgot = bfd_get_section_by_name (abfd, ".got");
982 htab->srelgot = bfd_make_section_with_flags (abfd, ".rela.got",
983 (SEC_ALLOC
984 | SEC_LOAD
985 | SEC_HAS_CONTENTS
986 | SEC_IN_MEMORY
987 | SEC_LINKER_CREATED
988 | SEC_READONLY));
989 if (htab->srelgot == NULL
990 || ! bfd_set_section_alignment (abfd, htab->srelgot, 2))
991 return FALSE;
992
993 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
994 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
995
996 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
997 application, because __canonicalize_funcptr_for_compare needs it. */
998 eh = elf_hash_table (info)->hgot;
999 eh->forced_local = 0;
1000 eh->other = STV_DEFAULT;
1001 return bfd_elf_link_record_dynamic_symbol (info, eh);
1002 }
1003
1004 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1005
1006 static void
1007 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1008 struct elf_link_hash_entry *eh_dir,
1009 struct elf_link_hash_entry *eh_ind)
1010 {
1011 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1012
1013 hh_dir = hppa_elf_hash_entry (eh_dir);
1014 hh_ind = hppa_elf_hash_entry (eh_ind);
1015
1016 if (hh_ind->dyn_relocs != NULL)
1017 {
1018 if (hh_dir->dyn_relocs != NULL)
1019 {
1020 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1021 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1022
1023 /* Add reloc counts against the indirect sym to the direct sym
1024 list. Merge any entries against the same section. */
1025 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1026 {
1027 struct elf32_hppa_dyn_reloc_entry *hdh_q;
1028
1029 for (hdh_q = hh_dir->dyn_relocs;
1030 hdh_q != NULL;
1031 hdh_q = hdh_q->hdh_next)
1032 if (hdh_q->sec == hdh_p->sec)
1033 {
1034 #if RELATIVE_DYNRELOCS
1035 hdh_q->relative_count += hdh_p->relative_count;
1036 #endif
1037 hdh_q->count += hdh_p->count;
1038 *hdh_pp = hdh_p->hdh_next;
1039 break;
1040 }
1041 if (hdh_q == NULL)
1042 hdh_pp = &hdh_p->hdh_next;
1043 }
1044 *hdh_pp = hh_dir->dyn_relocs;
1045 }
1046
1047 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1048 hh_ind->dyn_relocs = NULL;
1049 }
1050
1051 if (ELIMINATE_COPY_RELOCS
1052 && eh_ind->root.type != bfd_link_hash_indirect
1053 && eh_dir->dynamic_adjusted)
1054 {
1055 /* If called to transfer flags for a weakdef during processing
1056 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1057 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1058 eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
1059 eh_dir->ref_regular |= eh_ind->ref_regular;
1060 eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
1061 eh_dir->needs_plt |= eh_ind->needs_plt;
1062 }
1063 else
1064 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1065 }
1066
1067 /* Look through the relocs for a section during the first phase, and
1068 calculate needed space in the global offset table, procedure linkage
1069 table, and dynamic reloc sections. At this point we haven't
1070 necessarily read all the input files. */
1071
1072 static bfd_boolean
1073 elf32_hppa_check_relocs (bfd *abfd,
1074 struct bfd_link_info *info,
1075 asection *sec,
1076 const Elf_Internal_Rela *relocs)
1077 {
1078 Elf_Internal_Shdr *symtab_hdr;
1079 struct elf_link_hash_entry **eh_syms;
1080 const Elf_Internal_Rela *rela;
1081 const Elf_Internal_Rela *rela_end;
1082 struct elf32_hppa_link_hash_table *htab;
1083 asection *sreloc;
1084 asection *stubreloc;
1085
1086 if (info->relocatable)
1087 return TRUE;
1088
1089 htab = hppa_link_hash_table (info);
1090 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1091 eh_syms = elf_sym_hashes (abfd);
1092 sreloc = NULL;
1093 stubreloc = NULL;
1094
1095 rela_end = relocs + sec->reloc_count;
1096 for (rela = relocs; rela < rela_end; rela++)
1097 {
1098 enum {
1099 NEED_GOT = 1,
1100 NEED_PLT = 2,
1101 NEED_DYNREL = 4,
1102 PLT_PLABEL = 8
1103 };
1104
1105 unsigned int r_symndx, r_type;
1106 struct elf32_hppa_link_hash_entry *hh;
1107 int need_entry = 0;
1108
1109 r_symndx = ELF32_R_SYM (rela->r_info);
1110
1111 if (r_symndx < symtab_hdr->sh_info)
1112 hh = NULL;
1113 else
1114 {
1115 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1116 while (hh->eh.root.type == bfd_link_hash_indirect
1117 || hh->eh.root.type == bfd_link_hash_warning)
1118 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1119 }
1120
1121 r_type = ELF32_R_TYPE (rela->r_info);
1122
1123 switch (r_type)
1124 {
1125 case R_PARISC_DLTIND14F:
1126 case R_PARISC_DLTIND14R:
1127 case R_PARISC_DLTIND21L:
1128 /* This symbol requires a global offset table entry. */
1129 need_entry = NEED_GOT;
1130 break;
1131
1132 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1133 case R_PARISC_PLABEL21L:
1134 case R_PARISC_PLABEL32:
1135 /* If the addend is non-zero, we break badly. */
1136 if (rela->r_addend != 0)
1137 abort ();
1138
1139 /* If we are creating a shared library, then we need to
1140 create a PLT entry for all PLABELs, because PLABELs with
1141 local symbols may be passed via a pointer to another
1142 object. Additionally, output a dynamic relocation
1143 pointing to the PLT entry.
1144
1145 For executables, the original 32-bit ABI allowed two
1146 different styles of PLABELs (function pointers): For
1147 global functions, the PLABEL word points into the .plt
1148 two bytes past a (function address, gp) pair, and for
1149 local functions the PLABEL points directly at the
1150 function. The magic +2 for the first type allows us to
1151 differentiate between the two. As you can imagine, this
1152 is a real pain when it comes to generating code to call
1153 functions indirectly or to compare function pointers.
1154 We avoid the mess by always pointing a PLABEL into the
1155 .plt, even for local functions. */
1156 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1157 break;
1158
1159 case R_PARISC_PCREL12F:
1160 htab->has_12bit_branch = 1;
1161 goto branch_common;
1162
1163 case R_PARISC_PCREL17C:
1164 case R_PARISC_PCREL17F:
1165 htab->has_17bit_branch = 1;
1166 goto branch_common;
1167
1168 case R_PARISC_PCREL22F:
1169 htab->has_22bit_branch = 1;
1170 branch_common:
1171 /* Function calls might need to go through the .plt, and
1172 might require long branch stubs. */
1173 if (hh == NULL)
1174 {
1175 /* We know local syms won't need a .plt entry, and if
1176 they need a long branch stub we can't guarantee that
1177 we can reach the stub. So just flag an error later
1178 if we're doing a shared link and find we need a long
1179 branch stub. */
1180 continue;
1181 }
1182 else
1183 {
1184 /* Global symbols will need a .plt entry if they remain
1185 global, and in most cases won't need a long branch
1186 stub. Unfortunately, we have to cater for the case
1187 where a symbol is forced local by versioning, or due
1188 to symbolic linking, and we lose the .plt entry. */
1189 need_entry = NEED_PLT;
1190 if (hh->eh.type == STT_PARISC_MILLI)
1191 need_entry = 0;
1192 }
1193 break;
1194
1195 case R_PARISC_SEGBASE: /* Used to set segment base. */
1196 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1197 case R_PARISC_PCREL14F: /* PC relative load/store. */
1198 case R_PARISC_PCREL14R:
1199 case R_PARISC_PCREL17R: /* External branches. */
1200 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1201 case R_PARISC_PCREL32:
1202 /* We don't need to propagate the relocation if linking a
1203 shared object since these are section relative. */
1204 continue;
1205
1206 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1207 case R_PARISC_DPREL14R:
1208 case R_PARISC_DPREL21L:
1209 if (info->shared)
1210 {
1211 (*_bfd_error_handler)
1212 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1213 abfd,
1214 elf_hppa_howto_table[r_type].name);
1215 bfd_set_error (bfd_error_bad_value);
1216 return FALSE;
1217 }
1218 /* Fall through. */
1219
1220 case R_PARISC_DIR17F: /* Used for external branches. */
1221 case R_PARISC_DIR17R:
1222 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1223 case R_PARISC_DIR14R:
1224 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1225 case R_PARISC_DIR32: /* .word relocs. */
1226 /* We may want to output a dynamic relocation later. */
1227 need_entry = NEED_DYNREL;
1228 break;
1229
1230 /* This relocation describes the C++ object vtable hierarchy.
1231 Reconstruct it for later use during GC. */
1232 case R_PARISC_GNU_VTINHERIT:
1233 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1234 return FALSE;
1235 continue;
1236
1237 /* This relocation describes which C++ vtable entries are actually
1238 used. Record for later use during GC. */
1239 case R_PARISC_GNU_VTENTRY:
1240 if (!bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1241 return FALSE;
1242 continue;
1243
1244 default:
1245 continue;
1246 }
1247
1248 /* Now carry out our orders. */
1249 if (need_entry & NEED_GOT)
1250 {
1251 /* Allocate space for a GOT entry, as well as a dynamic
1252 relocation for this entry. */
1253 if (htab->sgot == NULL)
1254 {
1255 if (htab->etab.dynobj == NULL)
1256 htab->etab.dynobj = abfd;
1257 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1258 return FALSE;
1259 }
1260
1261 if (hh != NULL)
1262 {
1263 hh->eh.got.refcount += 1;
1264 }
1265 else
1266 {
1267 bfd_signed_vma *local_got_refcounts;
1268 /* This is a global offset table entry for a local symbol. */
1269 local_got_refcounts = elf_local_got_refcounts (abfd);
1270 if (local_got_refcounts == NULL)
1271 {
1272 bfd_size_type size;
1273
1274 /* Allocate space for local got offsets and local
1275 plt offsets. Done this way to save polluting
1276 elf_obj_tdata with another target specific
1277 pointer. */
1278 size = symtab_hdr->sh_info;
1279 size *= 2 * sizeof (bfd_signed_vma);
1280 local_got_refcounts = bfd_zalloc (abfd, size);
1281 if (local_got_refcounts == NULL)
1282 return FALSE;
1283 elf_local_got_refcounts (abfd) = local_got_refcounts;
1284 }
1285 local_got_refcounts[r_symndx] += 1;
1286 }
1287 }
1288
1289 if (need_entry & NEED_PLT)
1290 {
1291 /* If we are creating a shared library, and this is a reloc
1292 against a weak symbol or a global symbol in a dynamic
1293 object, then we will be creating an import stub and a
1294 .plt entry for the symbol. Similarly, on a normal link
1295 to symbols defined in a dynamic object we'll need the
1296 import stub and a .plt entry. We don't know yet whether
1297 the symbol is defined or not, so make an entry anyway and
1298 clean up later in adjust_dynamic_symbol. */
1299 if ((sec->flags & SEC_ALLOC) != 0)
1300 {
1301 if (hh != NULL)
1302 {
1303 hh->eh.needs_plt = 1;
1304 hh->eh.plt.refcount += 1;
1305
1306 /* If this .plt entry is for a plabel, mark it so
1307 that adjust_dynamic_symbol will keep the entry
1308 even if it appears to be local. */
1309 if (need_entry & PLT_PLABEL)
1310 hh->plabel = 1;
1311 }
1312 else if (need_entry & PLT_PLABEL)
1313 {
1314 bfd_signed_vma *local_got_refcounts;
1315 bfd_signed_vma *local_plt_refcounts;
1316
1317 local_got_refcounts = elf_local_got_refcounts (abfd);
1318 if (local_got_refcounts == NULL)
1319 {
1320 bfd_size_type size;
1321
1322 /* Allocate space for local got offsets and local
1323 plt offsets. */
1324 size = symtab_hdr->sh_info;
1325 size *= 2 * sizeof (bfd_signed_vma);
1326 local_got_refcounts = bfd_zalloc (abfd, size);
1327 if (local_got_refcounts == NULL)
1328 return FALSE;
1329 elf_local_got_refcounts (abfd) = local_got_refcounts;
1330 }
1331 local_plt_refcounts = (local_got_refcounts
1332 + symtab_hdr->sh_info);
1333 local_plt_refcounts[r_symndx] += 1;
1334 }
1335 }
1336 }
1337
1338 if (need_entry & NEED_DYNREL)
1339 {
1340 /* Flag this symbol as having a non-got, non-plt reference
1341 so that we generate copy relocs if it turns out to be
1342 dynamic. */
1343 if (hh != NULL && !info->shared)
1344 hh->eh.non_got_ref = 1;
1345
1346 /* If we are creating a shared library then we need to copy
1347 the reloc into the shared library. However, if we are
1348 linking with -Bsymbolic, we need only copy absolute
1349 relocs or relocs against symbols that are not defined in
1350 an object we are including in the link. PC- or DP- or
1351 DLT-relative relocs against any local sym or global sym
1352 with DEF_REGULAR set, can be discarded. At this point we
1353 have not seen all the input files, so it is possible that
1354 DEF_REGULAR is not set now but will be set later (it is
1355 never cleared). We account for that possibility below by
1356 storing information in the dyn_relocs field of the
1357 hash table entry.
1358
1359 A similar situation to the -Bsymbolic case occurs when
1360 creating shared libraries and symbol visibility changes
1361 render the symbol local.
1362
1363 As it turns out, all the relocs we will be creating here
1364 are absolute, so we cannot remove them on -Bsymbolic
1365 links or visibility changes anyway. A STUB_REL reloc
1366 is absolute too, as in that case it is the reloc in the
1367 stub we will be creating, rather than copying the PCREL
1368 reloc in the branch.
1369
1370 If on the other hand, we are creating an executable, we
1371 may need to keep relocations for symbols satisfied by a
1372 dynamic library if we manage to avoid copy relocs for the
1373 symbol. */
1374 if ((info->shared
1375 && (sec->flags & SEC_ALLOC) != 0
1376 && (IS_ABSOLUTE_RELOC (r_type)
1377 || (hh != NULL
1378 && (!info->symbolic
1379 || hh->eh.root.type == bfd_link_hash_defweak
1380 || !hh->eh.def_regular))))
1381 || (ELIMINATE_COPY_RELOCS
1382 && !info->shared
1383 && (sec->flags & SEC_ALLOC) != 0
1384 && hh != NULL
1385 && (hh->eh.root.type == bfd_link_hash_defweak
1386 || !hh->eh.def_regular)))
1387 {
1388 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1389 struct elf32_hppa_dyn_reloc_entry **hdh_head;
1390
1391 /* Create a reloc section in dynobj and make room for
1392 this reloc. */
1393 if (sreloc == NULL)
1394 {
1395 char *name;
1396 bfd *dynobj;
1397
1398 name = (bfd_elf_string_from_elf_section
1399 (abfd,
1400 elf_elfheader (abfd)->e_shstrndx,
1401 elf_section_data (sec)->rel_hdr.sh_name));
1402 if (name == NULL)
1403 {
1404 (*_bfd_error_handler)
1405 (_("Could not find relocation section for %s"),
1406 sec->name);
1407 bfd_set_error (bfd_error_bad_value);
1408 return FALSE;
1409 }
1410
1411 if (htab->etab.dynobj == NULL)
1412 htab->etab.dynobj = abfd;
1413
1414 dynobj = htab->etab.dynobj;
1415 sreloc = bfd_get_section_by_name (dynobj, name);
1416 if (sreloc == NULL)
1417 {
1418 flagword flags;
1419
1420 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1421 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1422 if ((sec->flags & SEC_ALLOC) != 0)
1423 flags |= SEC_ALLOC | SEC_LOAD;
1424 sreloc = bfd_make_section_with_flags (dynobj,
1425 name,
1426 flags);
1427 if (sreloc == NULL
1428 || !bfd_set_section_alignment (dynobj, sreloc, 2))
1429 return FALSE;
1430 }
1431
1432 elf_section_data (sec)->sreloc = sreloc;
1433 }
1434
1435 /* If this is a global symbol, we count the number of
1436 relocations we need for this symbol. */
1437 if (hh != NULL)
1438 {
1439 hdh_head = &hh->dyn_relocs;
1440 }
1441 else
1442 {
1443 /* Track dynamic relocs needed for local syms too.
1444 We really need local syms available to do this
1445 easily. Oh well. */
1446
1447 asection *sr;
1448 void *vpp;
1449
1450 sr = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1451 sec, r_symndx);
1452 if (sr == NULL)
1453 return FALSE;
1454
1455 vpp = &elf_section_data (sr)->local_dynrel;
1456 hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp;
1457 }
1458
1459 hdh_p = *hdh_head;
1460 if (hdh_p == NULL || hdh_p->sec != sec)
1461 {
1462 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1463 if (hdh_p == NULL)
1464 return FALSE;
1465 hdh_p->hdh_next = *hdh_head;
1466 *hdh_head = hdh_p;
1467 hdh_p->sec = sec;
1468 hdh_p->count = 0;
1469 #if RELATIVE_DYNRELOCS
1470 hdh_p->relative_count = 0;
1471 #endif
1472 }
1473
1474 hdh_p->count += 1;
1475 #if RELATIVE_DYNRELOCS
1476 if (!IS_ABSOLUTE_RELOC (rtype))
1477 hdh_p->relative_count += 1;
1478 #endif
1479 }
1480 }
1481 }
1482
1483 return TRUE;
1484 }
1485
1486 /* Return the section that should be marked against garbage collection
1487 for a given relocation. */
1488
1489 static asection *
1490 elf32_hppa_gc_mark_hook (asection *sec,
1491 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1492 Elf_Internal_Rela *rela,
1493 struct elf_link_hash_entry *hh,
1494 Elf_Internal_Sym *sym)
1495 {
1496 if (hh != NULL)
1497 {
1498 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1499 {
1500 case R_PARISC_GNU_VTINHERIT:
1501 case R_PARISC_GNU_VTENTRY:
1502 break;
1503
1504 default:
1505 switch (hh->root.type)
1506 {
1507 case bfd_link_hash_defined:
1508 case bfd_link_hash_defweak:
1509 return hh->root.u.def.section;
1510
1511 case bfd_link_hash_common:
1512 return hh->root.u.c.p->section;
1513
1514 default:
1515 break;
1516 }
1517 }
1518 }
1519 else
1520 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1521
1522 return NULL;
1523 }
1524
1525 /* Update the got and plt entry reference counts for the section being
1526 removed. */
1527
1528 static bfd_boolean
1529 elf32_hppa_gc_sweep_hook (bfd *abfd,
1530 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1531 asection *sec,
1532 const Elf_Internal_Rela *relocs)
1533 {
1534 Elf_Internal_Shdr *symtab_hdr;
1535 struct elf_link_hash_entry **eh_syms;
1536 bfd_signed_vma *local_got_refcounts;
1537 bfd_signed_vma *local_plt_refcounts;
1538 const Elf_Internal_Rela *rela, *relend;
1539
1540 elf_section_data (sec)->local_dynrel = NULL;
1541
1542 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1543 eh_syms = elf_sym_hashes (abfd);
1544 local_got_refcounts = elf_local_got_refcounts (abfd);
1545 local_plt_refcounts = local_got_refcounts;
1546 if (local_plt_refcounts != NULL)
1547 local_plt_refcounts += symtab_hdr->sh_info;
1548
1549 relend = relocs + sec->reloc_count;
1550 for (rela = relocs; rela < relend; rela++)
1551 {
1552 unsigned long r_symndx;
1553 unsigned int r_type;
1554 struct elf_link_hash_entry *eh = NULL;
1555
1556 r_symndx = ELF32_R_SYM (rela->r_info);
1557 if (r_symndx >= symtab_hdr->sh_info)
1558 {
1559 struct elf32_hppa_link_hash_entry *hh;
1560 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1561 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1562
1563 eh = eh_syms[r_symndx - symtab_hdr->sh_info];
1564 while (eh->root.type == bfd_link_hash_indirect
1565 || eh->root.type == bfd_link_hash_warning)
1566 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1567 hh = hppa_elf_hash_entry (eh);
1568
1569 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next)
1570 if (hdh_p->sec == sec)
1571 {
1572 /* Everything must go for SEC. */
1573 *hdh_pp = hdh_p->hdh_next;
1574 break;
1575 }
1576 }
1577
1578 r_type = ELF32_R_TYPE (rela->r_info);
1579 switch (r_type)
1580 {
1581 case R_PARISC_DLTIND14F:
1582 case R_PARISC_DLTIND14R:
1583 case R_PARISC_DLTIND21L:
1584 if (eh != NULL)
1585 {
1586 if (eh->got.refcount > 0)
1587 eh->got.refcount -= 1;
1588 }
1589 else if (local_got_refcounts != NULL)
1590 {
1591 if (local_got_refcounts[r_symndx] > 0)
1592 local_got_refcounts[r_symndx] -= 1;
1593 }
1594 break;
1595
1596 case R_PARISC_PCREL12F:
1597 case R_PARISC_PCREL17C:
1598 case R_PARISC_PCREL17F:
1599 case R_PARISC_PCREL22F:
1600 if (eh != NULL)
1601 {
1602 if (eh->plt.refcount > 0)
1603 eh->plt.refcount -= 1;
1604 }
1605 break;
1606
1607 case R_PARISC_PLABEL14R:
1608 case R_PARISC_PLABEL21L:
1609 case R_PARISC_PLABEL32:
1610 if (eh != NULL)
1611 {
1612 if (eh->plt.refcount > 0)
1613 eh->plt.refcount -= 1;
1614 }
1615 else if (local_plt_refcounts != NULL)
1616 {
1617 if (local_plt_refcounts[r_symndx] > 0)
1618 local_plt_refcounts[r_symndx] -= 1;
1619 }
1620 break;
1621
1622 default:
1623 break;
1624 }
1625 }
1626
1627 return TRUE;
1628 }
1629
1630 /* Support for core dump NOTE sections. */
1631
1632 static bfd_boolean
1633 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1634 {
1635 int offset;
1636 size_t size;
1637
1638 switch (note->descsz)
1639 {
1640 default:
1641 return FALSE;
1642
1643 case 396: /* Linux/hppa */
1644 /* pr_cursig */
1645 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1646
1647 /* pr_pid */
1648 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1649
1650 /* pr_reg */
1651 offset = 72;
1652 size = 320;
1653
1654 break;
1655 }
1656
1657 /* Make a ".reg/999" section. */
1658 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1659 size, note->descpos + offset);
1660 }
1661
1662 static bfd_boolean
1663 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1664 {
1665 switch (note->descsz)
1666 {
1667 default:
1668 return FALSE;
1669
1670 case 124: /* Linux/hppa elf_prpsinfo. */
1671 elf_tdata (abfd)->core_program
1672 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1673 elf_tdata (abfd)->core_command
1674 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1675 }
1676
1677 /* Note that for some reason, a spurious space is tacked
1678 onto the end of the args in some (at least one anyway)
1679 implementations, so strip it off if it exists. */
1680 {
1681 char *command = elf_tdata (abfd)->core_command;
1682 int n = strlen (command);
1683
1684 if (0 < n && command[n - 1] == ' ')
1685 command[n - 1] = '\0';
1686 }
1687
1688 return TRUE;
1689 }
1690
1691 /* Our own version of hide_symbol, so that we can keep plt entries for
1692 plabels. */
1693
1694 static void
1695 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1696 struct elf_link_hash_entry *eh,
1697 bfd_boolean force_local)
1698 {
1699 if (force_local)
1700 {
1701 eh->forced_local = 1;
1702 if (eh->dynindx != -1)
1703 {
1704 eh->dynindx = -1;
1705 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1706 eh->dynstr_index);
1707 }
1708 }
1709
1710 if (! hppa_elf_hash_entry(eh)->plabel)
1711 {
1712 eh->needs_plt = 0;
1713 eh->plt = elf_hash_table (info)->init_plt_refcount;
1714 }
1715 }
1716
1717 /* Adjust a symbol defined by a dynamic object and referenced by a
1718 regular object. The current definition is in some section of the
1719 dynamic object, but we're not including those sections. We have to
1720 change the definition to something the rest of the link can
1721 understand. */
1722
1723 static bfd_boolean
1724 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1725 struct elf_link_hash_entry *eh)
1726 {
1727 struct elf32_hppa_link_hash_table *htab;
1728 asection *sec;
1729 unsigned int power_of_two;
1730
1731 /* If this is a function, put it in the procedure linkage table. We
1732 will fill in the contents of the procedure linkage table later. */
1733 if (eh->type == STT_FUNC
1734 || eh->needs_plt)
1735 {
1736 if (eh->plt.refcount <= 0
1737 || (eh->def_regular
1738 && eh->root.type != bfd_link_hash_defweak
1739 && ! hppa_elf_hash_entry (eh)->plabel
1740 && (!info->shared || info->symbolic)))
1741 {
1742 /* The .plt entry is not needed when:
1743 a) Garbage collection has removed all references to the
1744 symbol, or
1745 b) We know for certain the symbol is defined in this
1746 object, and it's not a weak definition, nor is the symbol
1747 used by a plabel relocation. Either this object is the
1748 application or we are doing a shared symbolic link. */
1749
1750 eh->plt.offset = (bfd_vma) -1;
1751 eh->needs_plt = 0;
1752 }
1753
1754 return TRUE;
1755 }
1756 else
1757 eh->plt.offset = (bfd_vma) -1;
1758
1759 /* If this is a weak symbol, and there is a real definition, the
1760 processor independent code will have arranged for us to see the
1761 real definition first, and we can just use the same value. */
1762 if (eh->u.weakdef != NULL)
1763 {
1764 if (eh->u.weakdef->root.type != bfd_link_hash_defined
1765 && eh->u.weakdef->root.type != bfd_link_hash_defweak)
1766 abort ();
1767 eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1768 eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1769 if (ELIMINATE_COPY_RELOCS)
1770 eh->non_got_ref = eh->u.weakdef->non_got_ref;
1771 return TRUE;
1772 }
1773
1774 /* This is a reference to a symbol defined by a dynamic object which
1775 is not a function. */
1776
1777 /* If we are creating a shared library, we must presume that the
1778 only references to the symbol are via the global offset table.
1779 For such cases we need not do anything here; the relocations will
1780 be handled correctly by relocate_section. */
1781 if (info->shared)
1782 return TRUE;
1783
1784 /* If there are no references to this symbol that do not use the
1785 GOT, we don't need to generate a copy reloc. */
1786 if (!eh->non_got_ref)
1787 return TRUE;
1788
1789 if (ELIMINATE_COPY_RELOCS)
1790 {
1791 struct elf32_hppa_link_hash_entry *hh;
1792 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1793
1794 hh = hppa_elf_hash_entry (eh);
1795 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
1796 {
1797 sec = hdh_p->sec->output_section;
1798 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1799 break;
1800 }
1801
1802 /* If we didn't find any dynamic relocs in read-only sections, then
1803 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1804 if (hdh_p == NULL)
1805 {
1806 eh->non_got_ref = 0;
1807 return TRUE;
1808 }
1809 }
1810
1811 if (eh->size == 0)
1812 {
1813 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
1814 eh->root.root.string);
1815 return TRUE;
1816 }
1817
1818 /* We must allocate the symbol in our .dynbss section, which will
1819 become part of the .bss section of the executable. There will be
1820 an entry for this symbol in the .dynsym section. The dynamic
1821 object will contain position independent code, so all references
1822 from the dynamic object to this symbol will go through the global
1823 offset table. The dynamic linker will use the .dynsym entry to
1824 determine the address it must put in the global offset table, so
1825 both the dynamic object and the regular object will refer to the
1826 same memory location for the variable. */
1827
1828 htab = hppa_link_hash_table (info);
1829
1830 /* We must generate a COPY reloc to tell the dynamic linker to
1831 copy the initial value out of the dynamic object and into the
1832 runtime process image. */
1833 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0)
1834 {
1835 htab->srelbss->size += sizeof (Elf32_External_Rela);
1836 eh->needs_copy = 1;
1837 }
1838
1839 /* We need to figure out the alignment required for this symbol. I
1840 have no idea how other ELF linkers handle this. */
1841
1842 power_of_two = bfd_log2 (eh->size);
1843 if (power_of_two > 3)
1844 power_of_two = 3;
1845
1846 /* Apply the required alignment. */
1847 sec = htab->sdynbss;
1848 sec->size = BFD_ALIGN (sec->size, (bfd_size_type) (1 << power_of_two));
1849 if (power_of_two > bfd_get_section_alignment (htab->etab.dynobj, sec))
1850 {
1851 if (! bfd_set_section_alignment (htab->etab.dynobj, sec, power_of_two))
1852 return FALSE;
1853 }
1854
1855 /* Define the symbol as being at this point in the section. */
1856 eh->root.u.def.section = sec;
1857 eh->root.u.def.value = sec->size;
1858
1859 /* Increment the section size to make room for the symbol. */
1860 sec->size += eh->size;
1861
1862 return TRUE;
1863 }
1864
1865 /* Allocate space in the .plt for entries that won't have relocations.
1866 ie. plabel entries. */
1867
1868 static bfd_boolean
1869 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1870 {
1871 struct bfd_link_info *info;
1872 struct elf32_hppa_link_hash_table *htab;
1873 struct elf32_hppa_link_hash_entry *hh;
1874 asection *sec;
1875
1876 if (eh->root.type == bfd_link_hash_indirect)
1877 return TRUE;
1878
1879 if (eh->root.type == bfd_link_hash_warning)
1880 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1881
1882 info = (struct bfd_link_info *) inf;
1883 hh = hppa_elf_hash_entry(eh);
1884 htab = hppa_link_hash_table (info);
1885 if (htab->etab.dynamic_sections_created
1886 && eh->plt.refcount > 0)
1887 {
1888 /* Make sure this symbol is output as a dynamic symbol.
1889 Undefined weak syms won't yet be marked as dynamic. */
1890 if (eh->dynindx == -1
1891 && !eh->forced_local
1892 && eh->type != STT_PARISC_MILLI)
1893 {
1894 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
1895 return FALSE;
1896 }
1897
1898 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, eh))
1899 {
1900 /* Allocate these later. From this point on, h->plabel
1901 means that the plt entry is only used by a plabel.
1902 We'll be using a normal plt entry for this symbol, so
1903 clear the plabel indicator. */
1904
1905 hh->plabel = 0;
1906 }
1907 else if (hh->plabel)
1908 {
1909 /* Make an entry in the .plt section for plabel references
1910 that won't have a .plt entry for other reasons. */
1911 sec = htab->splt;
1912 eh->plt.offset = sec->size;
1913 sec->size += PLT_ENTRY_SIZE;
1914 }
1915 else
1916 {
1917 /* No .plt entry needed. */
1918 eh->plt.offset = (bfd_vma) -1;
1919 eh->needs_plt = 0;
1920 }
1921 }
1922 else
1923 {
1924 eh->plt.offset = (bfd_vma) -1;
1925 eh->needs_plt = 0;
1926 }
1927
1928 return TRUE;
1929 }
1930
1931 /* Allocate space in .plt, .got and associated reloc sections for
1932 global syms. */
1933
1934 static bfd_boolean
1935 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
1936 {
1937 struct bfd_link_info *info;
1938 struct elf32_hppa_link_hash_table *htab;
1939 asection *sec;
1940 struct elf32_hppa_link_hash_entry *hh;
1941 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1942
1943 if (eh->root.type == bfd_link_hash_indirect)
1944 return TRUE;
1945
1946 if (eh->root.type == bfd_link_hash_warning)
1947 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1948
1949 info = inf;
1950 htab = hppa_link_hash_table (info);
1951 hh = hppa_elf_hash_entry (eh);
1952
1953 if (htab->etab.dynamic_sections_created
1954 && eh->plt.offset != (bfd_vma) -1
1955 && !hh->plabel
1956 && eh->plt.refcount > 0)
1957 {
1958 /* Make an entry in the .plt section. */
1959 sec = htab->splt;
1960 eh->plt.offset = sec->size;
1961 sec->size += PLT_ENTRY_SIZE;
1962
1963 /* We also need to make an entry in the .rela.plt section. */
1964 htab->srelplt->size += sizeof (Elf32_External_Rela);
1965 htab->need_plt_stub = 1;
1966 }
1967
1968 if (eh->got.refcount > 0)
1969 {
1970 /* Make sure this symbol is output as a dynamic symbol.
1971 Undefined weak syms won't yet be marked as dynamic. */
1972 if (eh->dynindx == -1
1973 && !eh->forced_local
1974 && eh->type != STT_PARISC_MILLI)
1975 {
1976 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
1977 return FALSE;
1978 }
1979
1980 sec = htab->sgot;
1981 eh->got.offset = sec->size;
1982 sec->size += GOT_ENTRY_SIZE;
1983 if (htab->etab.dynamic_sections_created
1984 && (info->shared
1985 || (eh->dynindx != -1
1986 && !eh->forced_local)))
1987 {
1988 htab->srelgot->size += sizeof (Elf32_External_Rela);
1989 }
1990 }
1991 else
1992 eh->got.offset = (bfd_vma) -1;
1993
1994 if (hh->dyn_relocs == NULL)
1995 return TRUE;
1996
1997 /* If this is a -Bsymbolic shared link, then we need to discard all
1998 space allocated for dynamic pc-relative relocs against symbols
1999 defined in a regular object. For the normal shared case, discard
2000 space for relocs that have become local due to symbol visibility
2001 changes. */
2002 if (info->shared)
2003 {
2004 #if RELATIVE_DYNRELOCS
2005 if (SYMBOL_CALLS_LOCAL (info, eh))
2006 {
2007 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
2008
2009 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2010 {
2011 hdh_p->count -= hdh_p->relative_count;
2012 hdh_p->relative_count = 0;
2013 if (hdh_p->count == 0)
2014 *hdh_pp = hdh_p->hdh_next;
2015 else
2016 hdh_pp = &hdh_p->hdh_next;
2017 }
2018 }
2019 #endif
2020
2021 /* Also discard relocs on undefined weak syms with non-default
2022 visibility. */
2023 if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT
2024 && eh->root.type == bfd_link_hash_undefweak)
2025 hh->dyn_relocs = NULL;
2026 }
2027 else
2028 {
2029 /* For the non-shared case, discard space for relocs against
2030 symbols which turn out to need copy relocs or are not
2031 dynamic. */
2032
2033 if (!eh->non_got_ref
2034 && ((ELIMINATE_COPY_RELOCS
2035 && eh->def_dynamic
2036 && !eh->def_regular)
2037 || (htab->etab.dynamic_sections_created
2038 && (eh->root.type == bfd_link_hash_undefweak
2039 || eh->root.type == bfd_link_hash_undefined))))
2040 {
2041 /* Make sure this symbol is output as a dynamic symbol.
2042 Undefined weak syms won't yet be marked as dynamic. */
2043 if (eh->dynindx == -1
2044 && !eh->forced_local
2045 && eh->type != STT_PARISC_MILLI)
2046 {
2047 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2048 return FALSE;
2049 }
2050
2051 /* If that succeeded, we know we'll be keeping all the
2052 relocs. */
2053 if (eh->dynindx != -1)
2054 goto keep;
2055 }
2056
2057 hh->dyn_relocs = NULL;
2058 return TRUE;
2059
2060 keep: ;
2061 }
2062
2063 /* Finally, allocate space. */
2064 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2065 {
2066 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2067 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2068 }
2069
2070 return TRUE;
2071 }
2072
2073 /* This function is called via elf_link_hash_traverse to force
2074 millicode symbols local so they do not end up as globals in the
2075 dynamic symbol table. We ought to be able to do this in
2076 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2077 for all dynamic symbols. Arguably, this is a bug in
2078 elf_adjust_dynamic_symbol. */
2079
2080 static bfd_boolean
2081 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2082 struct bfd_link_info *info)
2083 {
2084 if (eh->root.type == bfd_link_hash_warning)
2085 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2086
2087 if (eh->type == STT_PARISC_MILLI
2088 && !eh->forced_local)
2089 {
2090 elf32_hppa_hide_symbol (info, eh, TRUE);
2091 }
2092 return TRUE;
2093 }
2094
2095 /* Find any dynamic relocs that apply to read-only sections. */
2096
2097 static bfd_boolean
2098 readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2099 {
2100 struct elf32_hppa_link_hash_entry *hh;
2101 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2102
2103 if (eh->root.type == bfd_link_hash_warning)
2104 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2105
2106 hh = hppa_elf_hash_entry (eh);
2107 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2108 {
2109 asection *sec = hdh_p->sec->output_section;
2110
2111 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
2112 {
2113 struct bfd_link_info *info = inf;
2114
2115 info->flags |= DF_TEXTREL;
2116
2117 /* Not an error, just cut short the traversal. */
2118 return FALSE;
2119 }
2120 }
2121 return TRUE;
2122 }
2123
2124 /* Set the sizes of the dynamic sections. */
2125
2126 static bfd_boolean
2127 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2128 struct bfd_link_info *info)
2129 {
2130 struct elf32_hppa_link_hash_table *htab;
2131 bfd *dynobj;
2132 bfd *ibfd;
2133 asection *sec;
2134 bfd_boolean relocs;
2135
2136 htab = hppa_link_hash_table (info);
2137 dynobj = htab->etab.dynobj;
2138 if (dynobj == NULL)
2139 abort ();
2140
2141 if (htab->etab.dynamic_sections_created)
2142 {
2143 /* Set the contents of the .interp section to the interpreter. */
2144 if (info->executable)
2145 {
2146 sec = bfd_get_section_by_name (dynobj, ".interp");
2147 if (sec == NULL)
2148 abort ();
2149 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2150 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2151 }
2152
2153 /* Force millicode symbols local. */
2154 elf_link_hash_traverse (&htab->etab,
2155 clobber_millicode_symbols,
2156 info);
2157 }
2158
2159 /* Set up .got and .plt offsets for local syms, and space for local
2160 dynamic relocs. */
2161 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2162 {
2163 bfd_signed_vma *local_got;
2164 bfd_signed_vma *end_local_got;
2165 bfd_signed_vma *local_plt;
2166 bfd_signed_vma *end_local_plt;
2167 bfd_size_type locsymcount;
2168 Elf_Internal_Shdr *symtab_hdr;
2169 asection *srel;
2170
2171 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2172 continue;
2173
2174 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2175 {
2176 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2177
2178 for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
2179 elf_section_data (sec)->local_dynrel);
2180 hdh_p != NULL;
2181 hdh_p = hdh_p->hdh_next)
2182 {
2183 if (!bfd_is_abs_section (hdh_p->sec)
2184 && bfd_is_abs_section (hdh_p->sec->output_section))
2185 {
2186 /* Input section has been discarded, either because
2187 it is a copy of a linkonce section or due to
2188 linker script /DISCARD/, so we'll be discarding
2189 the relocs too. */
2190 }
2191 else if (hdh_p->count != 0)
2192 {
2193 srel = elf_section_data (hdh_p->sec)->sreloc;
2194 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2195 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2196 info->flags |= DF_TEXTREL;
2197 }
2198 }
2199 }
2200
2201 local_got = elf_local_got_refcounts (ibfd);
2202 if (!local_got)
2203 continue;
2204
2205 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2206 locsymcount = symtab_hdr->sh_info;
2207 end_local_got = local_got + locsymcount;
2208 sec = htab->sgot;
2209 srel = htab->srelgot;
2210 for (; local_got < end_local_got; ++local_got)
2211 {
2212 if (*local_got > 0)
2213 {
2214 *local_got = sec->size;
2215 sec->size += GOT_ENTRY_SIZE;
2216 if (info->shared)
2217 srel->size += sizeof (Elf32_External_Rela);
2218 }
2219 else
2220 *local_got = (bfd_vma) -1;
2221 }
2222
2223 local_plt = end_local_got;
2224 end_local_plt = local_plt + locsymcount;
2225 if (! htab->etab.dynamic_sections_created)
2226 {
2227 /* Won't be used, but be safe. */
2228 for (; local_plt < end_local_plt; ++local_plt)
2229 *local_plt = (bfd_vma) -1;
2230 }
2231 else
2232 {
2233 sec = htab->splt;
2234 srel = htab->srelplt;
2235 for (; local_plt < end_local_plt; ++local_plt)
2236 {
2237 if (*local_plt > 0)
2238 {
2239 *local_plt = sec->size;
2240 sec->size += PLT_ENTRY_SIZE;
2241 if (info->shared)
2242 srel->size += sizeof (Elf32_External_Rela);
2243 }
2244 else
2245 *local_plt = (bfd_vma) -1;
2246 }
2247 }
2248 }
2249
2250 /* Do all the .plt entries without relocs first. The dynamic linker
2251 uses the last .plt reloc to find the end of the .plt (and hence
2252 the start of the .got) for lazy linking. */
2253 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2254
2255 /* Allocate global sym .plt and .got entries, and space for global
2256 sym dynamic relocs. */
2257 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2258
2259 /* The check_relocs and adjust_dynamic_symbol entry points have
2260 determined the sizes of the various dynamic sections. Allocate
2261 memory for them. */
2262 relocs = FALSE;
2263 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2264 {
2265 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2266 continue;
2267
2268 if (sec == htab->splt)
2269 {
2270 if (htab->need_plt_stub)
2271 {
2272 /* Make space for the plt stub at the end of the .plt
2273 section. We want this stub right at the end, up
2274 against the .got section. */
2275 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2276 int pltalign = bfd_section_alignment (dynobj, sec);
2277 bfd_size_type mask;
2278
2279 if (gotalign > pltalign)
2280 bfd_set_section_alignment (dynobj, sec, gotalign);
2281 mask = ((bfd_size_type) 1 << gotalign) - 1;
2282 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2283 }
2284 }
2285 else if (sec == htab->sgot
2286 || sec == htab->sdynbss)
2287 ;
2288 else if (strncmp (bfd_get_section_name (dynobj, sec), ".rela", 5) == 0)
2289 {
2290 if (sec->size != 0)
2291 {
2292 /* Remember whether there are any reloc sections other
2293 than .rela.plt. */
2294 if (sec != htab->srelplt)
2295 relocs = TRUE;
2296
2297 /* We use the reloc_count field as a counter if we need
2298 to copy relocs into the output file. */
2299 sec->reloc_count = 0;
2300 }
2301 }
2302 else
2303 {
2304 /* It's not one of our sections, so don't allocate space. */
2305 continue;
2306 }
2307
2308 if (sec->size == 0)
2309 {
2310 /* If we don't need this section, strip it from the
2311 output file. This is mostly to handle .rela.bss and
2312 .rela.plt. We must create both sections in
2313 create_dynamic_sections, because they must be created
2314 before the linker maps input sections to output
2315 sections. The linker does that before
2316 adjust_dynamic_symbol is called, and it is that
2317 function which decides whether anything needs to go
2318 into these sections. */
2319 sec->flags |= SEC_EXCLUDE;
2320 continue;
2321 }
2322
2323 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2324 continue;
2325
2326 /* Allocate memory for the section contents. Zero it, because
2327 we may not fill in all the reloc sections. */
2328 sec->contents = bfd_zalloc (dynobj, sec->size);
2329 if (sec->contents == NULL)
2330 return FALSE;
2331 }
2332
2333 if (htab->etab.dynamic_sections_created)
2334 {
2335 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2336 actually has nothing to do with the PLT, it is how we
2337 communicate the LTP value of a load module to the dynamic
2338 linker. */
2339 #define add_dynamic_entry(TAG, VAL) \
2340 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2341
2342 if (!add_dynamic_entry (DT_PLTGOT, 0))
2343 return FALSE;
2344
2345 /* Add some entries to the .dynamic section. We fill in the
2346 values later, in elf32_hppa_finish_dynamic_sections, but we
2347 must add the entries now so that we get the correct size for
2348 the .dynamic section. The DT_DEBUG entry is filled in by the
2349 dynamic linker and used by the debugger. */
2350 if (!info->shared)
2351 {
2352 if (!add_dynamic_entry (DT_DEBUG, 0))
2353 return FALSE;
2354 }
2355
2356 if (htab->srelplt->size != 0)
2357 {
2358 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2359 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2360 || !add_dynamic_entry (DT_JMPREL, 0))
2361 return FALSE;
2362 }
2363
2364 if (relocs)
2365 {
2366 if (!add_dynamic_entry (DT_RELA, 0)
2367 || !add_dynamic_entry (DT_RELASZ, 0)
2368 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2369 return FALSE;
2370
2371 /* If any dynamic relocs apply to a read-only section,
2372 then we need a DT_TEXTREL entry. */
2373 if ((info->flags & DF_TEXTREL) == 0)
2374 elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info);
2375
2376 if ((info->flags & DF_TEXTREL) != 0)
2377 {
2378 if (!add_dynamic_entry (DT_TEXTREL, 0))
2379 return FALSE;
2380 }
2381 }
2382 }
2383 #undef add_dynamic_entry
2384
2385 return TRUE;
2386 }
2387
2388 /* External entry points for sizing and building linker stubs. */
2389
2390 /* Set up various things so that we can make a list of input sections
2391 for each output section included in the link. Returns -1 on error,
2392 0 when no stubs will be needed, and 1 on success. */
2393
2394 int
2395 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2396 {
2397 bfd *input_bfd;
2398 unsigned int bfd_count;
2399 int top_id, top_index;
2400 asection *section;
2401 asection **input_list, **list;
2402 bfd_size_type amt;
2403 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2404
2405 /* Count the number of input BFDs and find the top input section id. */
2406 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2407 input_bfd != NULL;
2408 input_bfd = input_bfd->link_next)
2409 {
2410 bfd_count += 1;
2411 for (section = input_bfd->sections;
2412 section != NULL;
2413 section = section->next)
2414 {
2415 if (top_id < section->id)
2416 top_id = section->id;
2417 }
2418 }
2419 htab->bfd_count = bfd_count;
2420
2421 amt = sizeof (struct map_stub) * (top_id + 1);
2422 htab->stub_group = bfd_zmalloc (amt);
2423 if (htab->stub_group == NULL)
2424 return -1;
2425
2426 /* We can't use output_bfd->section_count here to find the top output
2427 section index as some sections may have been removed, and
2428 strip_excluded_output_sections doesn't renumber the indices. */
2429 for (section = output_bfd->sections, top_index = 0;
2430 section != NULL;
2431 section = section->next)
2432 {
2433 if (top_index < section->index)
2434 top_index = section->index;
2435 }
2436
2437 htab->top_index = top_index;
2438 amt = sizeof (asection *) * (top_index + 1);
2439 input_list = bfd_malloc (amt);
2440 htab->input_list = input_list;
2441 if (input_list == NULL)
2442 return -1;
2443
2444 /* For sections we aren't interested in, mark their entries with a
2445 value we can check later. */
2446 list = input_list + top_index;
2447 do
2448 *list = bfd_abs_section_ptr;
2449 while (list-- != input_list);
2450
2451 for (section = output_bfd->sections;
2452 section != NULL;
2453 section = section->next)
2454 {
2455 if ((section->flags & SEC_CODE) != 0)
2456 input_list[section->index] = NULL;
2457 }
2458
2459 return 1;
2460 }
2461
2462 /* The linker repeatedly calls this function for each input section,
2463 in the order that input sections are linked into output sections.
2464 Build lists of input sections to determine groupings between which
2465 we may insert linker stubs. */
2466
2467 void
2468 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2469 {
2470 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2471
2472 if (isec->output_section->index <= htab->top_index)
2473 {
2474 asection **list = htab->input_list + isec->output_section->index;
2475 if (*list != bfd_abs_section_ptr)
2476 {
2477 /* Steal the link_sec pointer for our list. */
2478 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2479 /* This happens to make the list in reverse order,
2480 which is what we want. */
2481 PREV_SEC (isec) = *list;
2482 *list = isec;
2483 }
2484 }
2485 }
2486
2487 /* See whether we can group stub sections together. Grouping stub
2488 sections may result in fewer stubs. More importantly, we need to
2489 put all .init* and .fini* stubs at the beginning of the .init or
2490 .fini output sections respectively, because glibc splits the
2491 _init and _fini functions into multiple parts. Putting a stub in
2492 the middle of a function is not a good idea. */
2493
2494 static void
2495 group_sections (struct elf32_hppa_link_hash_table *htab,
2496 bfd_size_type stub_group_size,
2497 bfd_boolean stubs_always_before_branch)
2498 {
2499 asection **list = htab->input_list + htab->top_index;
2500 do
2501 {
2502 asection *tail = *list;
2503 if (tail == bfd_abs_section_ptr)
2504 continue;
2505 while (tail != NULL)
2506 {
2507 asection *curr;
2508 asection *prev;
2509 bfd_size_type total;
2510 bfd_boolean big_sec;
2511
2512 curr = tail;
2513 total = tail->size;
2514 big_sec = total >= stub_group_size;
2515
2516 while ((prev = PREV_SEC (curr)) != NULL
2517 && ((total += curr->output_offset - prev->output_offset)
2518 < stub_group_size))
2519 curr = prev;
2520
2521 /* OK, the size from the start of CURR to the end is less
2522 than 240000 bytes and thus can be handled by one stub
2523 section. (or the tail section is itself larger than
2524 240000 bytes, in which case we may be toast.)
2525 We should really be keeping track of the total size of
2526 stubs added here, as stubs contribute to the final output
2527 section size. That's a little tricky, and this way will
2528 only break if stubs added total more than 22144 bytes, or
2529 2768 long branch stubs. It seems unlikely for more than
2530 2768 different functions to be called, especially from
2531 code only 240000 bytes long. This limit used to be
2532 250000, but c++ code tends to generate lots of little
2533 functions, and sometimes violated the assumption. */
2534 do
2535 {
2536 prev = PREV_SEC (tail);
2537 /* Set up this stub group. */
2538 htab->stub_group[tail->id].link_sec = curr;
2539 }
2540 while (tail != curr && (tail = prev) != NULL);
2541
2542 /* But wait, there's more! Input sections up to 240000
2543 bytes before the stub section can be handled by it too.
2544 Don't do this if we have a really large section after the
2545 stubs, as adding more stubs increases the chance that
2546 branches may not reach into the stub section. */
2547 if (!stubs_always_before_branch && !big_sec)
2548 {
2549 total = 0;
2550 while (prev != NULL
2551 && ((total += tail->output_offset - prev->output_offset)
2552 < stub_group_size))
2553 {
2554 tail = prev;
2555 prev = PREV_SEC (tail);
2556 htab->stub_group[tail->id].link_sec = curr;
2557 }
2558 }
2559 tail = prev;
2560 }
2561 }
2562 while (list-- != htab->input_list);
2563 free (htab->input_list);
2564 #undef PREV_SEC
2565 }
2566
2567 /* Read in all local syms for all input bfds, and create hash entries
2568 for export stubs if we are building a multi-subspace shared lib.
2569 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2570
2571 static int
2572 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2573 {
2574 unsigned int bfd_indx;
2575 Elf_Internal_Sym *local_syms, **all_local_syms;
2576 int stub_changed = 0;
2577 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2578
2579 /* We want to read in symbol extension records only once. To do this
2580 we need to read in the local symbols in parallel and save them for
2581 later use; so hold pointers to the local symbols in an array. */
2582 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2583 all_local_syms = bfd_zmalloc (amt);
2584 htab->all_local_syms = all_local_syms;
2585 if (all_local_syms == NULL)
2586 return -1;
2587
2588 /* Walk over all the input BFDs, swapping in local symbols.
2589 If we are creating a shared library, create hash entries for the
2590 export stubs. */
2591 for (bfd_indx = 0;
2592 input_bfd != NULL;
2593 input_bfd = input_bfd->link_next, bfd_indx++)
2594 {
2595 Elf_Internal_Shdr *symtab_hdr;
2596
2597 /* We'll need the symbol table in a second. */
2598 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2599 if (symtab_hdr->sh_info == 0)
2600 continue;
2601
2602 /* We need an array of the local symbols attached to the input bfd. */
2603 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2604 if (local_syms == NULL)
2605 {
2606 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2607 symtab_hdr->sh_info, 0,
2608 NULL, NULL, NULL);
2609 /* Cache them for elf_link_input_bfd. */
2610 symtab_hdr->contents = (unsigned char *) local_syms;
2611 }
2612 if (local_syms == NULL)
2613 return -1;
2614
2615 all_local_syms[bfd_indx] = local_syms;
2616
2617 if (info->shared && htab->multi_subspace)
2618 {
2619 struct elf_link_hash_entry **eh_syms;
2620 struct elf_link_hash_entry **eh_symend;
2621 unsigned int symcount;
2622
2623 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2624 - symtab_hdr->sh_info);
2625 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2626 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2627
2628 /* Look through the global syms for functions; We need to
2629 build export stubs for all globally visible functions. */
2630 for (; eh_syms < eh_symend; eh_syms++)
2631 {
2632 struct elf32_hppa_link_hash_entry *hh;
2633
2634 hh = hppa_elf_hash_entry (*eh_syms);
2635
2636 while (hh->eh.root.type == bfd_link_hash_indirect
2637 || hh->eh.root.type == bfd_link_hash_warning)
2638 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2639
2640 /* At this point in the link, undefined syms have been
2641 resolved, so we need to check that the symbol was
2642 defined in this BFD. */
2643 if ((hh->eh.root.type == bfd_link_hash_defined
2644 || hh->eh.root.type == bfd_link_hash_defweak)
2645 && hh->eh.type == STT_FUNC
2646 && hh->eh.root.u.def.section->output_section != NULL
2647 && (hh->eh.root.u.def.section->output_section->owner
2648 == output_bfd)
2649 && hh->eh.root.u.def.section->owner == input_bfd
2650 && hh->eh.def_regular
2651 && !hh->eh.forced_local
2652 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2653 {
2654 asection *sec;
2655 const char *stub_name;
2656 struct elf32_hppa_stub_hash_entry *hsh;
2657
2658 sec = hh->eh.root.u.def.section;
2659 stub_name = hh->eh.root.root.string;
2660 hsh = hppa_stub_hash_lookup (&htab->bstab,
2661 stub_name,
2662 FALSE, FALSE);
2663 if (hsh == NULL)
2664 {
2665 hsh = hppa_add_stub (stub_name, sec, htab);
2666 if (!hsh)
2667 return -1;
2668
2669 hsh->target_value = hh->eh.root.u.def.value;
2670 hsh->target_section = hh->eh.root.u.def.section;
2671 hsh->stub_type = hppa_stub_export;
2672 hsh->hh = hh;
2673 stub_changed = 1;
2674 }
2675 else
2676 {
2677 (*_bfd_error_handler) (_("%B: duplicate export stub %s"),
2678 input_bfd,
2679 stub_name);
2680 }
2681 }
2682 }
2683 }
2684 }
2685
2686 return stub_changed;
2687 }
2688
2689 /* Determine and set the size of the stub section for a final link.
2690
2691 The basic idea here is to examine all the relocations looking for
2692 PC-relative calls to a target that is unreachable with a "bl"
2693 instruction. */
2694
2695 bfd_boolean
2696 elf32_hppa_size_stubs
2697 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2698 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2699 asection * (*add_stub_section) (const char *, asection *),
2700 void (*layout_sections_again) (void))
2701 {
2702 bfd_size_type stub_group_size;
2703 bfd_boolean stubs_always_before_branch;
2704 bfd_boolean stub_changed;
2705 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2706
2707 /* Stash our params away. */
2708 htab->stub_bfd = stub_bfd;
2709 htab->multi_subspace = multi_subspace;
2710 htab->add_stub_section = add_stub_section;
2711 htab->layout_sections_again = layout_sections_again;
2712 stubs_always_before_branch = group_size < 0;
2713 if (group_size < 0)
2714 stub_group_size = -group_size;
2715 else
2716 stub_group_size = group_size;
2717 if (stub_group_size == 1)
2718 {
2719 /* Default values. */
2720 if (stubs_always_before_branch)
2721 {
2722 stub_group_size = 7680000;
2723 if (htab->has_17bit_branch || htab->multi_subspace)
2724 stub_group_size = 240000;
2725 if (htab->has_12bit_branch)
2726 stub_group_size = 7500;
2727 }
2728 else
2729 {
2730 stub_group_size = 6971392;
2731 if (htab->has_17bit_branch || htab->multi_subspace)
2732 stub_group_size = 217856;
2733 if (htab->has_12bit_branch)
2734 stub_group_size = 6808;
2735 }
2736 }
2737
2738 group_sections (htab, stub_group_size, stubs_always_before_branch);
2739
2740 switch (get_local_syms (output_bfd, info->input_bfds, info))
2741 {
2742 default:
2743 if (htab->all_local_syms)
2744 goto error_ret_free_local;
2745 return FALSE;
2746
2747 case 0:
2748 stub_changed = FALSE;
2749 break;
2750
2751 case 1:
2752 stub_changed = TRUE;
2753 break;
2754 }
2755
2756 while (1)
2757 {
2758 bfd *input_bfd;
2759 unsigned int bfd_indx;
2760 asection *stub_sec;
2761
2762 for (input_bfd = info->input_bfds, bfd_indx = 0;
2763 input_bfd != NULL;
2764 input_bfd = input_bfd->link_next, bfd_indx++)
2765 {
2766 Elf_Internal_Shdr *symtab_hdr;
2767 asection *section;
2768 Elf_Internal_Sym *local_syms;
2769
2770 /* We'll need the symbol table in a second. */
2771 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2772 if (symtab_hdr->sh_info == 0)
2773 continue;
2774
2775 local_syms = htab->all_local_syms[bfd_indx];
2776
2777 /* Walk over each section attached to the input bfd. */
2778 for (section = input_bfd->sections;
2779 section != NULL;
2780 section = section->next)
2781 {
2782 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2783
2784 /* If there aren't any relocs, then there's nothing more
2785 to do. */
2786 if ((section->flags & SEC_RELOC) == 0
2787 || section->reloc_count == 0)
2788 continue;
2789
2790 /* If this section is a link-once section that will be
2791 discarded, then don't create any stubs. */
2792 if (section->output_section == NULL
2793 || section->output_section->owner != output_bfd)
2794 continue;
2795
2796 /* Get the relocs. */
2797 internal_relocs
2798 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2799 info->keep_memory);
2800 if (internal_relocs == NULL)
2801 goto error_ret_free_local;
2802
2803 /* Now examine each relocation. */
2804 irela = internal_relocs;
2805 irelaend = irela + section->reloc_count;
2806 for (; irela < irelaend; irela++)
2807 {
2808 unsigned int r_type, r_indx;
2809 enum elf32_hppa_stub_type stub_type;
2810 struct elf32_hppa_stub_hash_entry *hsh;
2811 asection *sym_sec;
2812 bfd_vma sym_value;
2813 bfd_vma destination;
2814 struct elf32_hppa_link_hash_entry *hh;
2815 char *stub_name;
2816 const asection *id_sec;
2817
2818 r_type = ELF32_R_TYPE (irela->r_info);
2819 r_indx = ELF32_R_SYM (irela->r_info);
2820
2821 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2822 {
2823 bfd_set_error (bfd_error_bad_value);
2824 error_ret_free_internal:
2825 if (elf_section_data (section)->relocs == NULL)
2826 free (internal_relocs);
2827 goto error_ret_free_local;
2828 }
2829
2830 /* Only look for stubs on call instructions. */
2831 if (r_type != (unsigned int) R_PARISC_PCREL12F
2832 && r_type != (unsigned int) R_PARISC_PCREL17F
2833 && r_type != (unsigned int) R_PARISC_PCREL22F)
2834 continue;
2835
2836 /* Now determine the call target, its name, value,
2837 section. */
2838 sym_sec = NULL;
2839 sym_value = 0;
2840 destination = 0;
2841 hh = NULL;
2842 if (r_indx < symtab_hdr->sh_info)
2843 {
2844 /* It's a local symbol. */
2845 Elf_Internal_Sym *sym;
2846 Elf_Internal_Shdr *hdr;
2847
2848 sym = local_syms + r_indx;
2849 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2850 sym_sec = hdr->bfd_section;
2851 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2852 sym_value = sym->st_value;
2853 destination = (sym_value + irela->r_addend
2854 + sym_sec->output_offset
2855 + sym_sec->output_section->vma);
2856 }
2857 else
2858 {
2859 /* It's an external symbol. */
2860 int e_indx;
2861
2862 e_indx = r_indx - symtab_hdr->sh_info;
2863 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2864
2865 while (hh->eh.root.type == bfd_link_hash_indirect
2866 || hh->eh.root.type == bfd_link_hash_warning)
2867 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2868
2869 if (hh->eh.root.type == bfd_link_hash_defined
2870 || hh->eh.root.type == bfd_link_hash_defweak)
2871 {
2872 sym_sec = hh->eh.root.u.def.section;
2873 sym_value = hh->eh.root.u.def.value;
2874 if (sym_sec->output_section != NULL)
2875 destination = (sym_value + irela->r_addend
2876 + sym_sec->output_offset
2877 + sym_sec->output_section->vma);
2878 }
2879 else if (hh->eh.root.type == bfd_link_hash_undefweak)
2880 {
2881 if (! info->shared)
2882 continue;
2883 }
2884 else if (hh->eh.root.type == bfd_link_hash_undefined)
2885 {
2886 if (! (info->unresolved_syms_in_objects == RM_IGNORE
2887 && (ELF_ST_VISIBILITY (hh->eh.other)
2888 == STV_DEFAULT)
2889 && hh->eh.type != STT_PARISC_MILLI))
2890 continue;
2891 }
2892 else
2893 {
2894 bfd_set_error (bfd_error_bad_value);
2895 goto error_ret_free_internal;
2896 }
2897 }
2898
2899 /* Determine what (if any) linker stub is needed. */
2900 stub_type = hppa_type_of_stub (section, irela, hh,
2901 destination, info);
2902 if (stub_type == hppa_stub_none)
2903 continue;
2904
2905 /* Support for grouping stub sections. */
2906 id_sec = htab->stub_group[section->id].link_sec;
2907
2908 /* Get the name of this stub. */
2909 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
2910 if (!stub_name)
2911 goto error_ret_free_internal;
2912
2913 hsh = hppa_stub_hash_lookup (&htab->bstab,
2914 stub_name,
2915 FALSE, FALSE);
2916 if (hsh != NULL)
2917 {
2918 /* The proper stub has already been created. */
2919 free (stub_name);
2920 continue;
2921 }
2922
2923 hsh = hppa_add_stub (stub_name, section, htab);
2924 if (hsh == NULL)
2925 {
2926 free (stub_name);
2927 goto error_ret_free_internal;
2928 }
2929
2930 hsh->target_value = sym_value;
2931 hsh->target_section = sym_sec;
2932 hsh->stub_type = stub_type;
2933 if (info->shared)
2934 {
2935 if (stub_type == hppa_stub_import)
2936 hsh->stub_type = hppa_stub_import_shared;
2937 else if (stub_type == hppa_stub_long_branch)
2938 hsh->stub_type = hppa_stub_long_branch_shared;
2939 }
2940 hsh->hh = hh;
2941 stub_changed = TRUE;
2942 }
2943
2944 /* We're done with the internal relocs, free them. */
2945 if (elf_section_data (section)->relocs == NULL)
2946 free (internal_relocs);
2947 }
2948 }
2949
2950 if (!stub_changed)
2951 break;
2952
2953 /* OK, we've added some stubs. Find out the new size of the
2954 stub sections. */
2955 for (stub_sec = htab->stub_bfd->sections;
2956 stub_sec != NULL;
2957 stub_sec = stub_sec->next)
2958 stub_sec->size = 0;
2959
2960 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
2961
2962 /* Ask the linker to do its stuff. */
2963 (*htab->layout_sections_again) ();
2964 stub_changed = FALSE;
2965 }
2966
2967 free (htab->all_local_syms);
2968 return TRUE;
2969
2970 error_ret_free_local:
2971 free (htab->all_local_syms);
2972 return FALSE;
2973 }
2974
2975 /* For a final link, this function is called after we have sized the
2976 stubs to provide a value for __gp. */
2977
2978 bfd_boolean
2979 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
2980 {
2981 struct bfd_link_hash_entry *h;
2982 asection *sec = NULL;
2983 bfd_vma gp_val = 0;
2984 struct elf32_hppa_link_hash_table *htab;
2985
2986 htab = hppa_link_hash_table (info);
2987 h = bfd_link_hash_lookup (&htab->etab.root, "$global$", FALSE, FALSE, FALSE);
2988
2989 if (h != NULL
2990 && (h->type == bfd_link_hash_defined
2991 || h->type == bfd_link_hash_defweak))
2992 {
2993 gp_val = h->u.def.value;
2994 sec = h->u.def.section;
2995 }
2996 else
2997 {
2998 asection *splt = bfd_get_section_by_name (abfd, ".plt");
2999 asection *sgot = bfd_get_section_by_name (abfd, ".got");
3000
3001 /* Choose to point our LTP at, in this order, one of .plt, .got,
3002 or .data, if these sections exist. In the case of choosing
3003 .plt try to make the LTP ideal for addressing anywhere in the
3004 .plt or .got with a 14 bit signed offset. Typically, the end
3005 of the .plt is the start of the .got, so choose .plt + 0x2000
3006 if either the .plt or .got is larger than 0x2000. If both
3007 the .plt and .got are smaller than 0x2000, choose the end of
3008 the .plt section. */
3009 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3010 ? NULL : splt;
3011 if (sec != NULL)
3012 {
3013 gp_val = sec->size;
3014 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3015 {
3016 gp_val = 0x2000;
3017 }
3018 }
3019 else
3020 {
3021 sec = sgot;
3022 if (sec != NULL)
3023 {
3024 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3025 {
3026 /* We know we don't have a .plt. If .got is large,
3027 offset our LTP. */
3028 if (sec->size > 0x2000)
3029 gp_val = 0x2000;
3030 }
3031 }
3032 else
3033 {
3034 /* No .plt or .got. Who cares what the LTP is? */
3035 sec = bfd_get_section_by_name (abfd, ".data");
3036 }
3037 }
3038
3039 if (h != NULL)
3040 {
3041 h->type = bfd_link_hash_defined;
3042 h->u.def.value = gp_val;
3043 if (sec != NULL)
3044 h->u.def.section = sec;
3045 else
3046 h->u.def.section = bfd_abs_section_ptr;
3047 }
3048 }
3049
3050 if (sec != NULL && sec->output_section != NULL)
3051 gp_val += sec->output_section->vma + sec->output_offset;
3052
3053 elf_gp (abfd) = gp_val;
3054 return TRUE;
3055 }
3056
3057 /* Build all the stubs associated with the current output file. The
3058 stubs are kept in a hash table attached to the main linker hash
3059 table. We also set up the .plt entries for statically linked PIC
3060 functions here. This function is called via hppaelf_finish in the
3061 linker. */
3062
3063 bfd_boolean
3064 elf32_hppa_build_stubs (struct bfd_link_info *info)
3065 {
3066 asection *stub_sec;
3067 struct bfd_hash_table *table;
3068 struct elf32_hppa_link_hash_table *htab;
3069
3070 htab = hppa_link_hash_table (info);
3071
3072 for (stub_sec = htab->stub_bfd->sections;
3073 stub_sec != NULL;
3074 stub_sec = stub_sec->next)
3075 {
3076 bfd_size_type size;
3077
3078 /* Allocate memory to hold the linker stubs. */
3079 size = stub_sec->size;
3080 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3081 if (stub_sec->contents == NULL && size != 0)
3082 return FALSE;
3083 stub_sec->size = 0;
3084 }
3085
3086 /* Build the stubs as directed by the stub hash table. */
3087 table = &htab->bstab;
3088 bfd_hash_traverse (table, hppa_build_one_stub, info);
3089
3090 return TRUE;
3091 }
3092
3093 /* Perform a final link. */
3094
3095 static bfd_boolean
3096 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3097 {
3098 /* Invoke the regular ELF linker to do all the work. */
3099 if (!bfd_elf_final_link (abfd, info))
3100 return FALSE;
3101
3102 /* If we're producing a final executable, sort the contents of the
3103 unwind section. */
3104 return elf_hppa_sort_unwind (abfd);
3105 }
3106
3107 /* Record the lowest address for the data and text segments. */
3108
3109 static void
3110 hppa_record_segment_addr (bfd *abfd ATTRIBUTE_UNUSED,
3111 asection *section,
3112 void *data)
3113 {
3114 struct elf32_hppa_link_hash_table *htab;
3115
3116 htab = (struct elf32_hppa_link_hash_table*) data;
3117
3118 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3119 {
3120 bfd_vma value = section->vma - section->filepos;
3121
3122 if ((section->flags & SEC_READONLY) != 0)
3123 {
3124 if (value < htab->text_segment_base)
3125 htab->text_segment_base = value;
3126 }
3127 else
3128 {
3129 if (value < htab->data_segment_base)
3130 htab->data_segment_base = value;
3131 }
3132 }
3133 }
3134
3135 /* Perform a relocation as part of a final link. */
3136
3137 static bfd_reloc_status_type
3138 final_link_relocate (asection *input_section,
3139 bfd_byte *contents,
3140 const Elf_Internal_Rela *rela,
3141 bfd_vma value,
3142 struct elf32_hppa_link_hash_table *htab,
3143 asection *sym_sec,
3144 struct elf32_hppa_link_hash_entry *hh,
3145 struct bfd_link_info *info)
3146 {
3147 int insn;
3148 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3149 unsigned int orig_r_type = r_type;
3150 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3151 int r_format = howto->bitsize;
3152 enum hppa_reloc_field_selector_type_alt r_field;
3153 bfd *input_bfd = input_section->owner;
3154 bfd_vma offset = rela->r_offset;
3155 bfd_vma max_branch_offset = 0;
3156 bfd_byte *hit_data = contents + offset;
3157 bfd_signed_vma addend = rela->r_addend;
3158 bfd_vma location;
3159 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3160 int val;
3161
3162 if (r_type == R_PARISC_NONE)
3163 return bfd_reloc_ok;
3164
3165 insn = bfd_get_32 (input_bfd, hit_data);
3166
3167 /* Find out where we are and where we're going. */
3168 location = (offset +
3169 input_section->output_offset +
3170 input_section->output_section->vma);
3171
3172 /* If we are not building a shared library, convert DLTIND relocs to
3173 DPREL relocs. */
3174 if (!info->shared)
3175 {
3176 switch (r_type)
3177 {
3178 case R_PARISC_DLTIND21L:
3179 r_type = R_PARISC_DPREL21L;
3180 break;
3181
3182 case R_PARISC_DLTIND14R:
3183 r_type = R_PARISC_DPREL14R;
3184 break;
3185
3186 case R_PARISC_DLTIND14F:
3187 r_type = R_PARISC_DPREL14F;
3188 break;
3189 }
3190 }
3191
3192 switch (r_type)
3193 {
3194 case R_PARISC_PCREL12F:
3195 case R_PARISC_PCREL17F:
3196 case R_PARISC_PCREL22F:
3197 /* If this call should go via the plt, find the import stub in
3198 the stub hash. */
3199 if (sym_sec == NULL
3200 || sym_sec->output_section == NULL
3201 || (hh != NULL
3202 && hh->eh.plt.offset != (bfd_vma) -1
3203 && hh->eh.dynindx != -1
3204 && !hh->plabel
3205 && (info->shared
3206 || !hh->eh.def_regular
3207 || hh->eh.root.type == bfd_link_hash_defweak)))
3208 {
3209 hsh = hppa_get_stub_entry (input_section, sym_sec,
3210 hh, rela, htab);
3211 if (hsh != NULL)
3212 {
3213 value = (hsh->stub_offset
3214 + hsh->stub_sec->output_offset
3215 + hsh->stub_sec->output_section->vma);
3216 addend = 0;
3217 }
3218 else if (sym_sec == NULL && hh != NULL
3219 && hh->eh.root.type == bfd_link_hash_undefweak)
3220 {
3221 /* It's OK if undefined weak. Calls to undefined weak
3222 symbols behave as if the "called" function
3223 immediately returns. We can thus call to a weak
3224 function without first checking whether the function
3225 is defined. */
3226 value = location;
3227 addend = 8;
3228 }
3229 else
3230 return bfd_reloc_undefined;
3231 }
3232 /* Fall thru. */
3233
3234 case R_PARISC_PCREL21L:
3235 case R_PARISC_PCREL17C:
3236 case R_PARISC_PCREL17R:
3237 case R_PARISC_PCREL14R:
3238 case R_PARISC_PCREL14F:
3239 case R_PARISC_PCREL32:
3240 /* Make it a pc relative offset. */
3241 value -= location;
3242 addend -= 8;
3243 break;
3244
3245 case R_PARISC_DPREL21L:
3246 case R_PARISC_DPREL14R:
3247 case R_PARISC_DPREL14F:
3248 /* Convert instructions that use the linkage table pointer (r19) to
3249 instructions that use the global data pointer (dp). This is the
3250 most efficient way of using PIC code in an incomplete executable,
3251 but the user must follow the standard runtime conventions for
3252 accessing data for this to work. */
3253 if (orig_r_type == R_PARISC_DLTIND21L)
3254 {
3255 /* Convert addil instructions if the original reloc was a
3256 DLTIND21L. GCC sometimes uses a register other than r19 for
3257 the operation, so we must convert any addil instruction
3258 that uses this relocation. */
3259 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3260 insn = ADDIL_DP;
3261 else
3262 /* We must have a ldil instruction. It's too hard to find
3263 and convert the associated add instruction, so issue an
3264 error. */
3265 (*_bfd_error_handler)
3266 (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3267 input_bfd,
3268 input_section,
3269 offset,
3270 howto->name,
3271 insn);
3272 }
3273 else if (orig_r_type == R_PARISC_DLTIND14F)
3274 {
3275 /* This must be a format 1 load/store. Change the base
3276 register to dp. */
3277 insn = (insn & 0xfc1ffff) | (27 << 21);
3278 }
3279
3280 /* For all the DP relative relocations, we need to examine the symbol's
3281 section. If it has no section or if it's a code section, then
3282 "data pointer relative" makes no sense. In that case we don't
3283 adjust the "value", and for 21 bit addil instructions, we change the
3284 source addend register from %dp to %r0. This situation commonly
3285 arises for undefined weak symbols and when a variable's "constness"
3286 is declared differently from the way the variable is defined. For
3287 instance: "extern int foo" with foo defined as "const int foo". */
3288 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3289 {
3290 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3291 == (((int) OP_ADDIL << 26) | (27 << 21)))
3292 {
3293 insn &= ~ (0x1f << 21);
3294 }
3295 /* Now try to make things easy for the dynamic linker. */
3296
3297 break;
3298 }
3299 /* Fall thru. */
3300
3301 case R_PARISC_DLTIND21L:
3302 case R_PARISC_DLTIND14R:
3303 case R_PARISC_DLTIND14F:
3304 value -= elf_gp (input_section->output_section->owner);
3305 break;
3306
3307 case R_PARISC_SEGREL32:
3308 if ((sym_sec->flags & SEC_CODE) != 0)
3309 value -= htab->text_segment_base;
3310 else
3311 value -= htab->data_segment_base;
3312 break;
3313
3314 default:
3315 break;
3316 }
3317
3318 switch (r_type)
3319 {
3320 case R_PARISC_DIR32:
3321 case R_PARISC_DIR14F:
3322 case R_PARISC_DIR17F:
3323 case R_PARISC_PCREL17C:
3324 case R_PARISC_PCREL14F:
3325 case R_PARISC_PCREL32:
3326 case R_PARISC_DPREL14F:
3327 case R_PARISC_PLABEL32:
3328 case R_PARISC_DLTIND14F:
3329 case R_PARISC_SEGBASE:
3330 case R_PARISC_SEGREL32:
3331 r_field = e_fsel;
3332 break;
3333
3334 case R_PARISC_DLTIND21L:
3335 case R_PARISC_PCREL21L:
3336 case R_PARISC_PLABEL21L:
3337 r_field = e_lsel;
3338 break;
3339
3340 case R_PARISC_DIR21L:
3341 case R_PARISC_DPREL21L:
3342 r_field = e_lrsel;
3343 break;
3344
3345 case R_PARISC_PCREL17R:
3346 case R_PARISC_PCREL14R:
3347 case R_PARISC_PLABEL14R:
3348 case R_PARISC_DLTIND14R:
3349 r_field = e_rsel;
3350 break;
3351
3352 case R_PARISC_DIR17R:
3353 case R_PARISC_DIR14R:
3354 case R_PARISC_DPREL14R:
3355 r_field = e_rrsel;
3356 break;
3357
3358 case R_PARISC_PCREL12F:
3359 case R_PARISC_PCREL17F:
3360 case R_PARISC_PCREL22F:
3361 r_field = e_fsel;
3362
3363 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3364 {
3365 max_branch_offset = (1 << (17-1)) << 2;
3366 }
3367 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3368 {
3369 max_branch_offset = (1 << (12-1)) << 2;
3370 }
3371 else
3372 {
3373 max_branch_offset = (1 << (22-1)) << 2;
3374 }
3375
3376 /* sym_sec is NULL on undefined weak syms or when shared on
3377 undefined syms. We've already checked for a stub for the
3378 shared undefined case. */
3379 if (sym_sec == NULL)
3380 break;
3381
3382 /* If the branch is out of reach, then redirect the
3383 call to the local stub for this function. */
3384 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3385 {
3386 hsh = hppa_get_stub_entry (input_section, sym_sec,
3387 hh, rela, htab);
3388 if (hsh == NULL)
3389 return bfd_reloc_undefined;
3390
3391 /* Munge up the value and addend so that we call the stub
3392 rather than the procedure directly. */
3393 value = (hsh->stub_offset
3394 + hsh->stub_sec->output_offset
3395 + hsh->stub_sec->output_section->vma
3396 - location);
3397 addend = -8;
3398 }
3399 break;
3400
3401 /* Something we don't know how to handle. */
3402 default:
3403 return bfd_reloc_notsupported;
3404 }
3405
3406 /* Make sure we can reach the stub. */
3407 if (max_branch_offset != 0
3408 && value + addend + max_branch_offset >= 2*max_branch_offset)
3409 {
3410 (*_bfd_error_handler)
3411 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3412 input_bfd,
3413 input_section,
3414 offset,
3415 hsh->bh_root.string);
3416 bfd_set_error (bfd_error_bad_value);
3417 return bfd_reloc_notsupported;
3418 }
3419
3420 val = hppa_field_adjust (value, addend, r_field);
3421
3422 switch (r_type)
3423 {
3424 case R_PARISC_PCREL12F:
3425 case R_PARISC_PCREL17C:
3426 case R_PARISC_PCREL17F:
3427 case R_PARISC_PCREL17R:
3428 case R_PARISC_PCREL22F:
3429 case R_PARISC_DIR17F:
3430 case R_PARISC_DIR17R:
3431 /* This is a branch. Divide the offset by four.
3432 Note that we need to decide whether it's a branch or
3433 otherwise by inspecting the reloc. Inspecting insn won't
3434 work as insn might be from a .word directive. */
3435 val >>= 2;
3436 break;
3437
3438 default:
3439 break;
3440 }
3441
3442 insn = hppa_rebuild_insn (insn, val, r_format);
3443
3444 /* Update the instruction word. */
3445 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3446 return bfd_reloc_ok;
3447 }
3448
3449 /* Relocate an HPPA ELF section. */
3450
3451 static bfd_boolean
3452 elf32_hppa_relocate_section (bfd *output_bfd,
3453 struct bfd_link_info *info,
3454 bfd *input_bfd,
3455 asection *input_section,
3456 bfd_byte *contents,
3457 Elf_Internal_Rela *relocs,
3458 Elf_Internal_Sym *local_syms,
3459 asection **local_sections)
3460 {
3461 bfd_vma *local_got_offsets;
3462 struct elf32_hppa_link_hash_table *htab;
3463 Elf_Internal_Shdr *symtab_hdr;
3464 Elf_Internal_Rela *rela;
3465 Elf_Internal_Rela *relend;
3466
3467 if (info->relocatable)
3468 return TRUE;
3469
3470 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3471
3472 htab = hppa_link_hash_table (info);
3473 local_got_offsets = elf_local_got_offsets (input_bfd);
3474
3475 rela = relocs;
3476 relend = relocs + input_section->reloc_count;
3477 for (; rela < relend; rela++)
3478 {
3479 unsigned int r_type;
3480 reloc_howto_type *howto;
3481 unsigned int r_symndx;
3482 struct elf32_hppa_link_hash_entry *hh;
3483 Elf_Internal_Sym *sym;
3484 asection *sym_sec;
3485 bfd_vma relocation;
3486 bfd_reloc_status_type rstatus;
3487 const char *sym_name;
3488 bfd_boolean plabel;
3489 bfd_boolean warned_undef;
3490
3491 r_type = ELF32_R_TYPE (rela->r_info);
3492 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3493 {
3494 bfd_set_error (bfd_error_bad_value);
3495 return FALSE;
3496 }
3497 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3498 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3499 continue;
3500
3501 /* This is a final link. */
3502 r_symndx = ELF32_R_SYM (rela->r_info);
3503 hh = NULL;
3504 sym = NULL;
3505 sym_sec = NULL;
3506 warned_undef = FALSE;
3507 if (r_symndx < symtab_hdr->sh_info)
3508 {
3509 /* This is a local symbol, h defaults to NULL. */
3510 sym = local_syms + r_symndx;
3511 sym_sec = local_sections[r_symndx];
3512 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3513 }
3514 else
3515 {
3516 struct elf_link_hash_entry *eh;
3517 bfd_boolean unresolved_reloc;
3518 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3519
3520 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3521 r_symndx, symtab_hdr, sym_hashes,
3522 eh, sym_sec, relocation,
3523 unresolved_reloc, warned_undef);
3524
3525 if (relocation == 0
3526 && eh->root.type != bfd_link_hash_defined
3527 && eh->root.type != bfd_link_hash_defweak
3528 && eh->root.type != bfd_link_hash_undefweak)
3529 {
3530 if (info->unresolved_syms_in_objects == RM_IGNORE
3531 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3532 && eh->type == STT_PARISC_MILLI)
3533 {
3534 if (! info->callbacks->undefined_symbol
3535 (info, eh->root.root.string, input_bfd,
3536 input_section, rela->r_offset, FALSE))
3537 return FALSE;
3538 warned_undef = TRUE;
3539 }
3540 }
3541 hh = hppa_elf_hash_entry (eh);
3542 }
3543
3544 /* Do any required modifications to the relocation value, and
3545 determine what types of dynamic info we need to output, if
3546 any. */
3547 plabel = 0;
3548 switch (r_type)
3549 {
3550 case R_PARISC_DLTIND14F:
3551 case R_PARISC_DLTIND14R:
3552 case R_PARISC_DLTIND21L:
3553 {
3554 bfd_vma off;
3555 bfd_boolean do_got = 0;
3556
3557 /* Relocation is to the entry for this symbol in the
3558 global offset table. */
3559 if (hh != NULL)
3560 {
3561 bfd_boolean dyn;
3562
3563 off = hh->eh.got.offset;
3564 dyn = htab->etab.dynamic_sections_created;
3565 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
3566 &hh->eh))
3567 {
3568 /* If we aren't going to call finish_dynamic_symbol,
3569 then we need to handle initialisation of the .got
3570 entry and create needed relocs here. Since the
3571 offset must always be a multiple of 4, we use the
3572 least significant bit to record whether we have
3573 initialised it already. */
3574 if ((off & 1) != 0)
3575 off &= ~1;
3576 else
3577 {
3578 hh->eh.got.offset |= 1;
3579 do_got = 1;
3580 }
3581 }
3582 }
3583 else
3584 {
3585 /* Local symbol case. */
3586 if (local_got_offsets == NULL)
3587 abort ();
3588
3589 off = local_got_offsets[r_symndx];
3590
3591 /* The offset must always be a multiple of 4. We use
3592 the least significant bit to record whether we have
3593 already generated the necessary reloc. */
3594 if ((off & 1) != 0)
3595 off &= ~1;
3596 else
3597 {
3598 local_got_offsets[r_symndx] |= 1;
3599 do_got = 1;
3600 }
3601 }
3602
3603 if (do_got)
3604 {
3605 if (info->shared)
3606 {
3607 /* Output a dynamic relocation for this GOT entry.
3608 In this case it is relative to the base of the
3609 object because the symbol index is zero. */
3610 Elf_Internal_Rela outrel;
3611 bfd_byte *loc;
3612 asection *sec = htab->srelgot;
3613
3614 outrel.r_offset = (off
3615 + htab->sgot->output_offset
3616 + htab->sgot->output_section->vma);
3617 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3618 outrel.r_addend = relocation;
3619 loc = sec->contents;
3620 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3621 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3622 }
3623 else
3624 bfd_put_32 (output_bfd, relocation,
3625 htab->sgot->contents + off);
3626 }
3627
3628 if (off >= (bfd_vma) -2)
3629 abort ();
3630
3631 /* Add the base of the GOT to the relocation value. */
3632 relocation = (off
3633 + htab->sgot->output_offset
3634 + htab->sgot->output_section->vma);
3635 }
3636 break;
3637
3638 case R_PARISC_SEGREL32:
3639 /* If this is the first SEGREL relocation, then initialize
3640 the segment base values. */
3641 if (htab->text_segment_base == (bfd_vma) -1)
3642 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3643 break;
3644
3645 case R_PARISC_PLABEL14R:
3646 case R_PARISC_PLABEL21L:
3647 case R_PARISC_PLABEL32:
3648 if (htab->etab.dynamic_sections_created)
3649 {
3650 bfd_vma off;
3651 bfd_boolean do_plt = 0;
3652 /* If we have a global symbol with a PLT slot, then
3653 redirect this relocation to it. */
3654 if (hh != NULL)
3655 {
3656 off = hh->eh.plt.offset;
3657 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared,
3658 &hh->eh))
3659 {
3660 /* In a non-shared link, adjust_dynamic_symbols
3661 isn't called for symbols forced local. We
3662 need to write out the plt entry here. */
3663 if ((off & 1) != 0)
3664 off &= ~1;
3665 else
3666 {
3667 hh->eh.plt.offset |= 1;
3668 do_plt = 1;
3669 }
3670 }
3671 }
3672 else
3673 {
3674 bfd_vma *local_plt_offsets;
3675
3676 if (local_got_offsets == NULL)
3677 abort ();
3678
3679 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3680 off = local_plt_offsets[r_symndx];
3681
3682 /* As for the local .got entry case, we use the last
3683 bit to record whether we've already initialised
3684 this local .plt entry. */
3685 if ((off & 1) != 0)
3686 off &= ~1;
3687 else
3688 {
3689 local_plt_offsets[r_symndx] |= 1;
3690 do_plt = 1;
3691 }
3692 }
3693
3694 if (do_plt)
3695 {
3696 if (info->shared)
3697 {
3698 /* Output a dynamic IPLT relocation for this
3699 PLT entry. */
3700 Elf_Internal_Rela outrel;
3701 bfd_byte *loc;
3702 asection *s = htab->srelplt;
3703
3704 outrel.r_offset = (off
3705 + htab->splt->output_offset
3706 + htab->splt->output_section->vma);
3707 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3708 outrel.r_addend = relocation;
3709 loc = s->contents;
3710 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3711 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3712 }
3713 else
3714 {
3715 bfd_put_32 (output_bfd,
3716 relocation,
3717 htab->splt->contents + off);
3718 bfd_put_32 (output_bfd,
3719 elf_gp (htab->splt->output_section->owner),
3720 htab->splt->contents + off + 4);
3721 }
3722 }
3723
3724 if (off >= (bfd_vma) -2)
3725 abort ();
3726
3727 /* PLABELs contain function pointers. Relocation is to
3728 the entry for the function in the .plt. The magic +2
3729 offset signals to $$dyncall that the function pointer
3730 is in the .plt and thus has a gp pointer too.
3731 Exception: Undefined PLABELs should have a value of
3732 zero. */
3733 if (hh == NULL
3734 || (hh->eh.root.type != bfd_link_hash_undefweak
3735 && hh->eh.root.type != bfd_link_hash_undefined))
3736 {
3737 relocation = (off
3738 + htab->splt->output_offset
3739 + htab->splt->output_section->vma
3740 + 2);
3741 }
3742 plabel = 1;
3743 }
3744 /* Fall through and possibly emit a dynamic relocation. */
3745
3746 case R_PARISC_DIR17F:
3747 case R_PARISC_DIR17R:
3748 case R_PARISC_DIR14F:
3749 case R_PARISC_DIR14R:
3750 case R_PARISC_DIR21L:
3751 case R_PARISC_DPREL14F:
3752 case R_PARISC_DPREL14R:
3753 case R_PARISC_DPREL21L:
3754 case R_PARISC_DIR32:
3755 /* r_symndx will be zero only for relocs against symbols
3756 from removed linkonce sections, or sections discarded by
3757 a linker script. */
3758 if (r_symndx == 0
3759 || (input_section->flags & SEC_ALLOC) == 0)
3760 break;
3761
3762 /* The reloc types handled here and this conditional
3763 expression must match the code in ..check_relocs and
3764 allocate_dynrelocs. ie. We need exactly the same condition
3765 as in ..check_relocs, with some extra conditions (dynindx
3766 test in this case) to cater for relocs removed by
3767 allocate_dynrelocs. If you squint, the non-shared test
3768 here does indeed match the one in ..check_relocs, the
3769 difference being that here we test DEF_DYNAMIC as well as
3770 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3771 which is why we can't use just that test here.
3772 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3773 there all files have not been loaded. */
3774 if ((info->shared
3775 && (hh == NULL
3776 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
3777 || hh->eh.root.type != bfd_link_hash_undefweak)
3778 && (IS_ABSOLUTE_RELOC (r_type)
3779 || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
3780 || (!info->shared
3781 && hh != NULL
3782 && hh->eh.dynindx != -1
3783 && !hh->eh.non_got_ref
3784 && ((ELIMINATE_COPY_RELOCS
3785 && hh->eh.def_dynamic
3786 && !hh->eh.def_regular)
3787 || hh->eh.root.type == bfd_link_hash_undefweak
3788 || hh->eh.root.type == bfd_link_hash_undefined)))
3789 {
3790 Elf_Internal_Rela outrel;
3791 bfd_boolean skip;
3792 asection *sreloc;
3793 bfd_byte *loc;
3794
3795 /* When generating a shared object, these relocations
3796 are copied into the output file to be resolved at run
3797 time. */
3798
3799 outrel.r_addend = rela->r_addend;
3800 outrel.r_offset =
3801 _bfd_elf_section_offset (output_bfd, info, input_section,
3802 rela->r_offset);
3803 skip = (outrel.r_offset == (bfd_vma) -1
3804 || outrel.r_offset == (bfd_vma) -2);
3805 outrel.r_offset += (input_section->output_offset
3806 + input_section->output_section->vma);
3807
3808 if (skip)
3809 {
3810 memset (&outrel, 0, sizeof (outrel));
3811 }
3812 else if (hh != NULL
3813 && hh->eh.dynindx != -1
3814 && (plabel
3815 || !IS_ABSOLUTE_RELOC (r_type)
3816 || !info->shared
3817 || !info->symbolic
3818 || !hh->eh.def_regular))
3819 {
3820 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
3821 }
3822 else /* It's a local symbol, or one marked to become local. */
3823 {
3824 int indx = 0;
3825
3826 /* Add the absolute offset of the symbol. */
3827 outrel.r_addend += relocation;
3828
3829 /* Global plabels need to be processed by the
3830 dynamic linker so that functions have at most one
3831 fptr. For this reason, we need to differentiate
3832 between global and local plabels, which we do by
3833 providing the function symbol for a global plabel
3834 reloc, and no symbol for local plabels. */
3835 if (! plabel
3836 && sym_sec != NULL
3837 && sym_sec->output_section != NULL
3838 && ! bfd_is_abs_section (sym_sec))
3839 {
3840 /* Skip this relocation if the output section has
3841 been discarded. */
3842 if (bfd_is_abs_section (sym_sec->output_section))
3843 break;
3844
3845 indx = elf_section_data (sym_sec->output_section)->dynindx;
3846 /* We are turning this relocation into one
3847 against a section symbol, so subtract out the
3848 output section's address but not the offset
3849 of the input section in the output section. */
3850 outrel.r_addend -= sym_sec->output_section->vma;
3851 }
3852
3853 outrel.r_info = ELF32_R_INFO (indx, r_type);
3854 }
3855 sreloc = elf_section_data (input_section)->sreloc;
3856 if (sreloc == NULL)
3857 abort ();
3858
3859 loc = sreloc->contents;
3860 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3861 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3862 }
3863 break;
3864
3865 default:
3866 break;
3867 }
3868
3869 rstatus = final_link_relocate (input_section, contents, rela, relocation,
3870 htab, sym_sec, hh, info);
3871
3872 if (rstatus == bfd_reloc_ok)
3873 continue;
3874
3875 if (hh != NULL)
3876 sym_name = hh->eh.root.root.string;
3877 else
3878 {
3879 sym_name = bfd_elf_string_from_elf_section (input_bfd,
3880 symtab_hdr->sh_link,
3881 sym->st_name);
3882 if (sym_name == NULL)
3883 return FALSE;
3884 if (*sym_name == '\0')
3885 sym_name = bfd_section_name (input_bfd, sym_sec);
3886 }
3887
3888 howto = elf_hppa_howto_table + r_type;
3889
3890 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
3891 {
3892 if (rstatus == bfd_reloc_notsupported || !warned_undef)
3893 {
3894 (*_bfd_error_handler)
3895 (_("%B(%A+0x%lx): cannot handle %s for %s"),
3896 input_bfd,
3897 input_section,
3898 (long) rela->r_offset,
3899 howto->name,
3900 sym_name);
3901 bfd_set_error (bfd_error_bad_value);
3902 return FALSE;
3903 }
3904 }
3905 else
3906 {
3907 if (!((*info->callbacks->reloc_overflow)
3908 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
3909 (bfd_vma) 0, input_bfd, input_section, rela->r_offset)))
3910 return FALSE;
3911 }
3912 }
3913
3914 return TRUE;
3915 }
3916
3917 /* Finish up dynamic symbol handling. We set the contents of various
3918 dynamic sections here. */
3919
3920 static bfd_boolean
3921 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
3922 struct bfd_link_info *info,
3923 struct elf_link_hash_entry *eh,
3924 Elf_Internal_Sym *sym)
3925 {
3926 struct elf32_hppa_link_hash_table *htab;
3927 Elf_Internal_Rela rela;
3928 bfd_byte *loc;
3929
3930 htab = hppa_link_hash_table (info);
3931
3932 if (eh->plt.offset != (bfd_vma) -1)
3933 {
3934 bfd_vma value;
3935
3936 if (eh->plt.offset & 1)
3937 abort ();
3938
3939 /* This symbol has an entry in the procedure linkage table. Set
3940 it up.
3941
3942 The format of a plt entry is
3943 <funcaddr>
3944 <__gp>
3945 */
3946 value = 0;
3947 if (eh->root.type == bfd_link_hash_defined
3948 || eh->root.type == bfd_link_hash_defweak)
3949 {
3950 value = eh->root.u.def.value;
3951 if (eh->root.u.def.section->output_section != NULL)
3952 value += (eh->root.u.def.section->output_offset
3953 + eh->root.u.def.section->output_section->vma);
3954 }
3955
3956 /* Create a dynamic IPLT relocation for this entry. */
3957 rela.r_offset = (eh->plt.offset
3958 + htab->splt->output_offset
3959 + htab->splt->output_section->vma);
3960 if (eh->dynindx != -1)
3961 {
3962 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
3963 rela.r_addend = 0;
3964 }
3965 else
3966 {
3967 /* This symbol has been marked to become local, and is
3968 used by a plabel so must be kept in the .plt. */
3969 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3970 rela.r_addend = value;
3971 }
3972
3973 loc = htab->srelplt->contents;
3974 loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
3975 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rela, loc);
3976
3977 if (!eh->def_regular)
3978 {
3979 /* Mark the symbol as undefined, rather than as defined in
3980 the .plt section. Leave the value alone. */
3981 sym->st_shndx = SHN_UNDEF;
3982 }
3983 }
3984
3985 if (eh->got.offset != (bfd_vma) -1)
3986 {
3987 /* This symbol has an entry in the global offset table. Set it
3988 up. */
3989
3990 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
3991 + htab->sgot->output_offset
3992 + htab->sgot->output_section->vma);
3993
3994 /* If this is a -Bsymbolic link and the symbol is defined
3995 locally or was forced to be local because of a version file,
3996 we just want to emit a RELATIVE reloc. The entry in the
3997 global offset table will already have been initialized in the
3998 relocate_section function. */
3999 if (info->shared
4000 && (info->symbolic || eh->dynindx == -1)
4001 && eh->def_regular)
4002 {
4003 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4004 rela.r_addend = (eh->root.u.def.value
4005 + eh->root.u.def.section->output_offset
4006 + eh->root.u.def.section->output_section->vma);
4007 }
4008 else
4009 {
4010 if ((eh->got.offset & 1) != 0)
4011 abort ();
4012
4013 bfd_put_32 (output_bfd, 0, htab->sgot->contents + (eh->got.offset & ~1));
4014 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4015 rela.r_addend = 0;
4016 }
4017
4018 loc = htab->srelgot->contents;
4019 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4020 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4021 }
4022
4023 if (eh->needs_copy)
4024 {
4025 asection *sec;
4026
4027 /* This symbol needs a copy reloc. Set it up. */
4028
4029 if (! (eh->dynindx != -1
4030 && (eh->root.type == bfd_link_hash_defined
4031 || eh->root.type == bfd_link_hash_defweak)))
4032 abort ();
4033
4034 sec = htab->srelbss;
4035
4036 rela.r_offset = (eh->root.u.def.value
4037 + eh->root.u.def.section->output_offset
4038 + eh->root.u.def.section->output_section->vma);
4039 rela.r_addend = 0;
4040 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4041 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4042 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4043 }
4044
4045 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4046 if (eh->root.root.string[0] == '_'
4047 && (strcmp (eh->root.root.string, "_DYNAMIC") == 0
4048 || strcmp (eh->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0))
4049 {
4050 sym->st_shndx = SHN_ABS;
4051 }
4052
4053 return TRUE;
4054 }
4055
4056 /* Used to decide how to sort relocs in an optimal manner for the
4057 dynamic linker, before writing them out. */
4058
4059 static enum elf_reloc_type_class
4060 elf32_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
4061 {
4062 if (ELF32_R_SYM (rela->r_info) == 0)
4063 return reloc_class_relative;
4064
4065 switch ((int) ELF32_R_TYPE (rela->r_info))
4066 {
4067 case R_PARISC_IPLT:
4068 return reloc_class_plt;
4069 case R_PARISC_COPY:
4070 return reloc_class_copy;
4071 default:
4072 return reloc_class_normal;
4073 }
4074 }
4075
4076 /* Finish up the dynamic sections. */
4077
4078 static bfd_boolean
4079 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4080 struct bfd_link_info *info)
4081 {
4082 bfd *dynobj;
4083 struct elf32_hppa_link_hash_table *htab;
4084 asection *sdyn;
4085
4086 htab = hppa_link_hash_table (info);
4087 dynobj = htab->etab.dynobj;
4088
4089 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4090
4091 if (htab->etab.dynamic_sections_created)
4092 {
4093 Elf32_External_Dyn *dyncon, *dynconend;
4094
4095 if (sdyn == NULL)
4096 abort ();
4097
4098 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4099 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4100 for (; dyncon < dynconend; dyncon++)
4101 {
4102 Elf_Internal_Dyn dyn;
4103 asection *s;
4104
4105 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4106
4107 switch (dyn.d_tag)
4108 {
4109 default:
4110 continue;
4111
4112 case DT_PLTGOT:
4113 /* Use PLTGOT to set the GOT register. */
4114 dyn.d_un.d_ptr = elf_gp (output_bfd);
4115 break;
4116
4117 case DT_JMPREL:
4118 s = htab->srelplt;
4119 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4120 break;
4121
4122 case DT_PLTRELSZ:
4123 s = htab->srelplt;
4124 dyn.d_un.d_val = s->size;
4125 break;
4126
4127 case DT_RELASZ:
4128 /* Don't count procedure linkage table relocs in the
4129 overall reloc count. */
4130 s = htab->srelplt;
4131 if (s == NULL)
4132 continue;
4133 dyn.d_un.d_val -= s->size;
4134 break;
4135
4136 case DT_RELA:
4137 /* We may not be using the standard ELF linker script.
4138 If .rela.plt is the first .rela section, we adjust
4139 DT_RELA to not include it. */
4140 s = htab->srelplt;
4141 if (s == NULL)
4142 continue;
4143 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4144 continue;
4145 dyn.d_un.d_ptr += s->size;
4146 break;
4147 }
4148
4149 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4150 }
4151 }
4152
4153 if (htab->sgot != NULL && htab->sgot->size != 0)
4154 {
4155 /* Fill in the first entry in the global offset table.
4156 We use it to point to our dynamic section, if we have one. */
4157 bfd_put_32 (output_bfd,
4158 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4159 htab->sgot->contents);
4160
4161 /* The second entry is reserved for use by the dynamic linker. */
4162 memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4163
4164 /* Set .got entry size. */
4165 elf_section_data (htab->sgot->output_section)
4166 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4167 }
4168
4169 if (htab->splt != NULL && htab->splt->size != 0)
4170 {
4171 /* Set plt entry size. */
4172 elf_section_data (htab->splt->output_section)
4173 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4174
4175 if (htab->need_plt_stub)
4176 {
4177 /* Set up the .plt stub. */
4178 memcpy (htab->splt->contents
4179 + htab->splt->size - sizeof (plt_stub),
4180 plt_stub, sizeof (plt_stub));
4181
4182 if ((htab->splt->output_offset
4183 + htab->splt->output_section->vma
4184 + htab->splt->size)
4185 != (htab->sgot->output_offset
4186 + htab->sgot->output_section->vma))
4187 {
4188 (*_bfd_error_handler)
4189 (_(".got section not immediately after .plt section"));
4190 return FALSE;
4191 }
4192 }
4193 }
4194
4195 return TRUE;
4196 }
4197
4198 /* Tweak the OSABI field of the elf header. */
4199
4200 static void
4201 elf32_hppa_post_process_headers (bfd *abfd,
4202 struct bfd_link_info *info ATTRIBUTE_UNUSED)
4203 {
4204 Elf_Internal_Ehdr * i_ehdrp;
4205
4206 i_ehdrp = elf_elfheader (abfd);
4207
4208 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
4209 {
4210 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
4211 }
4212 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
4213 {
4214 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_NETBSD;
4215 }
4216 else
4217 {
4218 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
4219 }
4220 }
4221
4222 /* Called when writing out an object file to decide the type of a
4223 symbol. */
4224 static int
4225 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4226 {
4227 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4228 return STT_PARISC_MILLI;
4229 else
4230 return type;
4231 }
4232
4233 /* Misc BFD support code. */
4234 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4235 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4236 #define elf_info_to_howto elf_hppa_info_to_howto
4237 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4238
4239 /* Stuff for the BFD linker. */
4240 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4241 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4242 #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
4243 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4244 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4245 #define elf_backend_check_relocs elf32_hppa_check_relocs
4246 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4247 #define elf_backend_fake_sections elf_hppa_fake_sections
4248 #define elf_backend_relocate_section elf32_hppa_relocate_section
4249 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4250 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4251 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4252 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4253 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4254 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4255 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4256 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4257 #define elf_backend_object_p elf32_hppa_object_p
4258 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4259 #define elf_backend_post_process_headers elf32_hppa_post_process_headers
4260 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4261 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4262 #define elf_backend_action_discarded elf_hppa_action_discarded
4263
4264 #define elf_backend_can_gc_sections 1
4265 #define elf_backend_can_refcount 1
4266 #define elf_backend_plt_alignment 2
4267 #define elf_backend_want_got_plt 0
4268 #define elf_backend_plt_readonly 0
4269 #define elf_backend_want_plt_sym 0
4270 #define elf_backend_got_header_size 8
4271 #define elf_backend_rela_normal 1
4272
4273 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4274 #define TARGET_BIG_NAME "elf32-hppa"
4275 #define ELF_ARCH bfd_arch_hppa
4276 #define ELF_MACHINE_CODE EM_PARISC
4277 #define ELF_MAXPAGESIZE 0x1000
4278
4279 #include "elf32-target.h"
4280
4281 #undef TARGET_BIG_SYM
4282 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4283 #undef TARGET_BIG_NAME
4284 #define TARGET_BIG_NAME "elf32-hppa-linux"
4285
4286 #define INCLUDED_TARGET_FILE 1
4287 #include "elf32-target.h"
4288
4289 #undef TARGET_BIG_SYM
4290 #define TARGET_BIG_SYM bfd_elf32_hppa_nbsd_vec
4291 #undef TARGET_BIG_NAME
4292 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4293
4294 #include "elf32-target.h"
This page took 0.12147 seconds and 4 git commands to generate.