609c5fd037c5437de9ce6d8b620de7e79c701b05
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright (C) 1990, 91, 92, 93, 94, 95, 96, 97, 98, 99, 2000
3 Free Software Foundation, Inc.
4
5 Original code by
6 Center for Software Science
7 Department of Computer Science
8 University of Utah
9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
26
27 #include "bfd.h"
28 #include "sysdep.h"
29 #include "libbfd.h"
30 #include "elf-bfd.h"
31 #include "elf/hppa.h"
32 #include "libhppa.h"
33 #include "elf32-hppa.h"
34 #define ARCH_SIZE 32
35 #include "elf-hppa.h"
36 #include "elf32-hppa.h"
37
38
39 /* In order to gain some understanding of code in this file without
40 knowing all the intricate details of the linker, note the
41 following:
42
43 Functions named elf32_hppa_* are called by external routines, other
44 functions are only called locally. elf32_hppa_* functions appear
45 in this file more or less in the order in which they are called
46 from external routines. eg. elf32_hppa_check_relocs is called
47 early in the link process, elf32_hppa_finish_dynamic_sections is
48 one of the last functions. */
49
50
51 /* We use two hash tables to hold information for linking PA ELF objects.
52
53 The first is the elf32_hppa_link_hash_table which is derived
54 from the standard ELF linker hash table. We use this as a place to
55 attach other hash tables and static information.
56
57 The second is the stub hash table which is derived from the
58 base BFD hash table. The stub hash table holds the information
59 necessary to build the linker stubs during a link.
60
61 There are a number of different stubs generated by the linker.
62
63 Long branch stub:
64 : ldil LR'X,%r1
65 : be,n RR'X(%sr4,%r1)
66
67 PIC long branch stub:
68 : b,l .+8,%r1
69 : addil L'X - ($PIC_pcrel$0 - 4),%r1
70 : be,n R'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
71
72 Import stub to call shared library routine from normal object file
73 (single sub-space version)
74 : addil L'lt_ptr+ltoff,%dp ; get procedure entry point
75 : ldw R'lt_ptr+ltoff(%r1),%r21
76 : bv %r0(%r21)
77 : ldw R'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
78
79 Import stub to call shared library routine from shared library
80 (single sub-space version)
81 : addil L'ltoff,%r19 ; get procedure entry point
82 : ldw R'ltoff(%r1),%r21
83 : bv %r0(%r21)
84 : ldw R'ltoff+4(%r1),%r19 ; get new dlt value.
85
86 Import stub to call shared library routine from normal object file
87 (multiple sub-space support)
88 : addil L'lt_ptr+ltoff,%dp ; get procedure entry point
89 : ldw R'lt_ptr+ltoff(%r1),%r21
90 : ldw R'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
91 : ldsid (%r21),%r1
92 : mtsp %r1,%sr0
93 : be 0(%sr0,%r21) ; branch to target
94 : stw %rp,-24(%sp) ; save rp
95
96 Import stub to call shared library routine from shared library
97 (multiple sub-space support)
98 : addil L'ltoff,%r19 ; get procedure entry point
99 : ldw R'ltoff(%r1),%r21
100 : ldw R'ltoff+4(%r1),%r19 ; get new dlt value.
101 : ldsid (%r21),%r1
102 : mtsp %r1,%sr0
103 : be 0(%sr0,%r21) ; branch to target
104 : stw %rp,-24(%sp) ; save rp
105
106 Export stub to return from shared lib routine (multiple sub-space support)
107 One of these is created for each exported procedure in a shared
108 library (and stored in the shared lib). Shared lib routines are
109 called via the first instruction in the export stub so that we can
110 do an inter-space return. Not required for single sub-space.
111 : bl,n X,%rp ; trap the return
112 : nop
113 : ldw -24(%sp),%rp ; restore the original rp
114 : ldsid (%rp),%r1
115 : mtsp %r1,%sr0
116 : be,n 0(%sr0,%rp) ; inter-space return */
117
118 #define PLT_ENTRY_SIZE 8
119 #define PLABEL_PLT_ENTRY_SIZE PLT_ENTRY_SIZE
120 #define GOT_ENTRY_SIZE 4
121 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
122
123 static const bfd_byte plt_stub[] =
124 {
125 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
126 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
127 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
128 #define PLT_STUB_ENTRY (3*4)
129 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
130 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
131 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
132 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
133 };
134
135 /* Section name for stubs is the associated section name plus this
136 string. */
137 #define STUB_SUFFIX ".stub"
138
139 /* Setting the following non-zero makes all long branch stubs
140 generated during a shared link of the PIC variety. This saves on
141 relocs, but costs one extra instruction per stub. */
142 #ifndef LONG_BRANCH_PIC_IN_SHLIB
143 #define LONG_BRANCH_PIC_IN_SHLIB 1
144 #endif
145
146 /* Set this non-zero to use import stubs instead of long branch stubs
147 where a .plt entry exists for the symbol. This is a fairly useless
148 option as import stubs are bigger than PIC long branch stubs. */
149 #ifndef LONG_BRANCH_VIA_PLT
150 #define LONG_BRANCH_VIA_PLT 0
151 #endif
152
153 /* We don't need to copy any PC- or GP-relative dynamic relocs into a
154 shared object's dynamic section. */
155 #ifndef RELATIVE_DYNAMIC_RELOCS
156 #define RELATIVE_DYNAMIC_RELOCS 0
157 #endif
158
159
160 enum elf32_hppa_stub_type {
161 hppa_stub_long_branch,
162 hppa_stub_long_branch_shared,
163 hppa_stub_import,
164 hppa_stub_import_shared,
165 hppa_stub_export,
166 hppa_stub_none
167 };
168
169
170 struct elf32_hppa_stub_hash_entry {
171
172 /* Base hash table entry structure. */
173 struct bfd_hash_entry root;
174
175 /* The stub section. */
176 asection *stub_sec;
177
178 #if ! LONG_BRANCH_PIC_IN_SHLIB
179 /* It's associated reloc section. */
180 asection *reloc_sec;
181 #endif
182
183 /* Offset within stub_sec of the beginning of this stub. */
184 bfd_vma stub_offset;
185
186 /* Given the symbol's value and its section we can determine its final
187 value when building the stubs (so the stub knows where to jump. */
188 bfd_vma target_value;
189 asection *target_section;
190
191 enum elf32_hppa_stub_type stub_type;
192
193 /* The symbol table entry, if any, that this was derived from. */
194 struct elf32_hppa_link_hash_entry *h;
195
196 /* Where this stub is being called from, or, in the case of combined
197 stub sections, the first input section in the group. */
198 asection *id_sec;
199 };
200
201
202 struct elf32_hppa_link_hash_entry {
203
204 struct elf_link_hash_entry elf;
205
206 /* A pointer to the most recently used stub hash entry against this
207 symbol. */
208 struct elf32_hppa_stub_hash_entry *stub_cache;
209
210 #if ! LONG_BRANCH_PIC_IN_SHLIB
211 /* Used to track whether we have allocated space for a long branch
212 stub relocation for this symbol in the given section. */
213 asection *stub_reloc_sec;
214 #endif
215
216 #if ! LONG_BRANCH_PIC_IN_SHLIB || RELATIVE_DYNAMIC_RELOCS
217 /* Used to count relocations for delayed sizing of relocation
218 sections. */
219 struct elf32_hppa_dyn_reloc_entry {
220
221 /* Next relocation in the chain. */
222 struct elf32_hppa_dyn_reloc_entry *next;
223
224 /* The section in dynobj. */
225 asection *section;
226
227 /* Number of relocs copied in this section. */
228 bfd_size_type count;
229 } *reloc_entries;
230 #endif
231
232 /* Set during a static link if we detect a function is PIC. */
233 unsigned int pic_call:1;
234
235 /* Set if this symbol is used by a plabel reloc. */
236 unsigned int plabel:1;
237
238 /* Set if this symbol is an init or fini function and thus should
239 use an absolute reloc. */
240 unsigned int plt_abs:1;
241 };
242
243
244 struct elf32_hppa_link_hash_table {
245
246 /* The main hash table. */
247 struct elf_link_hash_table root;
248
249 /* The stub hash table. */
250 struct bfd_hash_table stub_hash_table;
251
252 /* Linker stub bfd. */
253 bfd *stub_bfd;
254
255 /* Linker call-backs. */
256 asection * (*add_stub_section) PARAMS ((const char *, asection *));
257 void (*layout_sections_again) PARAMS ((void));
258
259 /* Array to keep track of which stub sections have been created, and
260 information on stub grouping. */
261 struct map_stub {
262 /* This is the section to which stubs in the group will be
263 attached. */
264 asection *link_sec;
265 /* The stub section. */
266 asection *stub_sec;
267 #if ! LONG_BRANCH_PIC_IN_SHLIB
268 /* The stub section's reloc section. */
269 asection *reloc_sec;
270 #endif
271 } *stub_group;
272
273 /* Short-cuts to get to dynamic linker sections. */
274 asection *sgot;
275 asection *srelgot;
276 asection *splt;
277 asection *srelplt;
278 asection *sdynbss;
279 asection *srelbss;
280
281 /* Whether we support multiple sub-spaces for shared libs. */
282 unsigned int multi_subspace:1;
283
284 /* Flags set when PCREL12F and PCREL17F branches detected. Used to
285 select suitable defaults for the stub group size. */
286 unsigned int has_12bit_branch:1;
287 unsigned int has_17bit_branch:1;
288
289 /* Set if we need a .plt stub to support lazy dynamic linking. */
290 unsigned int need_plt_stub:1;
291 };
292
293
294 /* Various hash macros and functions. */
295 #define hppa_link_hash_table(p) \
296 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
297
298 #define hppa_stub_hash_lookup(table, string, create, copy) \
299 ((struct elf32_hppa_stub_hash_entry *) \
300 bfd_hash_lookup ((table), (string), (create), (copy)))
301
302 static struct bfd_hash_entry *stub_hash_newfunc
303 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
304
305 static struct bfd_hash_entry *hppa_link_hash_newfunc
306 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
307
308 static struct bfd_link_hash_table *elf32_hppa_link_hash_table_create
309 PARAMS ((bfd *));
310
311
312 /* Stub handling functions. */
313 static char *hppa_stub_name
314 PARAMS ((const asection *, const asection *,
315 const struct elf32_hppa_link_hash_entry *,
316 const Elf_Internal_Rela *));
317
318 static struct elf32_hppa_stub_hash_entry *hppa_get_stub_entry
319 PARAMS ((const asection *, const asection *,
320 struct elf32_hppa_link_hash_entry *,
321 const Elf_Internal_Rela *,
322 struct elf32_hppa_link_hash_table *));
323
324 static struct elf32_hppa_stub_hash_entry *hppa_add_stub
325 PARAMS ((const char *, asection *, struct elf32_hppa_link_hash_table *));
326
327 static enum elf32_hppa_stub_type hppa_type_of_stub
328 PARAMS ((asection *, const Elf_Internal_Rela *,
329 struct elf32_hppa_link_hash_entry *, bfd_vma));
330
331 static boolean hppa_build_one_stub
332 PARAMS ((struct bfd_hash_entry *, PTR));
333
334 static boolean hppa_size_one_stub
335 PARAMS ((struct bfd_hash_entry *, PTR));
336
337
338 /* BFD and elf backend functions. */
339 static boolean elf32_hppa_object_p PARAMS ((bfd *));
340
341 static boolean elf32_hppa_add_symbol_hook
342 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
343 const char **, flagword *, asection **, bfd_vma *));
344
345 static boolean elf32_hppa_create_dynamic_sections
346 PARAMS ((bfd *, struct bfd_link_info *));
347
348 static boolean elf32_hppa_check_relocs
349 PARAMS ((bfd *, struct bfd_link_info *,
350 asection *, const Elf_Internal_Rela *));
351
352 static asection *elf32_hppa_gc_mark_hook
353 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
354 struct elf_link_hash_entry *, Elf_Internal_Sym *));
355
356 static boolean elf32_hppa_gc_sweep_hook
357 PARAMS ((bfd *, struct bfd_link_info *,
358 asection *, const Elf_Internal_Rela *));
359
360 static void elf32_hppa_hide_symbol
361 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
362
363 static boolean elf32_hppa_adjust_dynamic_symbol
364 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
365
366 static boolean hppa_handle_PIC_calls
367 PARAMS ((struct elf_link_hash_entry *, PTR));
368
369 #if ((! LONG_BRANCH_PIC_IN_SHLIB && LONG_BRANCH_VIA_PLT) \
370 || RELATIVE_DYNAMIC_RELOCS)
371 static boolean hppa_discard_copies
372 PARAMS ((struct elf_link_hash_entry *, PTR));
373 #endif
374
375 static boolean clobber_millicode_symbols
376 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
377
378 static boolean elf32_hppa_size_dynamic_sections
379 PARAMS ((bfd *, struct bfd_link_info *));
380
381 static bfd_reloc_status_type final_link_relocate
382 PARAMS ((asection *, bfd_byte *, const Elf_Internal_Rela *,
383 bfd_vma, struct elf32_hppa_link_hash_table *, asection *,
384 struct elf32_hppa_link_hash_entry *));
385
386 static boolean elf32_hppa_relocate_section
387 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *,
388 bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
389
390 static boolean elf32_hppa_finish_dynamic_symbol
391 PARAMS ((bfd *, struct bfd_link_info *,
392 struct elf_link_hash_entry *, Elf_Internal_Sym *));
393
394 static boolean elf32_hppa_finish_dynamic_sections
395 PARAMS ((bfd *, struct bfd_link_info *));
396
397 static int elf32_hppa_elf_get_symbol_type
398 PARAMS ((Elf_Internal_Sym *, int));
399
400
401 /* Assorted hash table functions. */
402
403 /* Initialize an entry in the stub hash table. */
404
405 static struct bfd_hash_entry *
406 stub_hash_newfunc (entry, table, string)
407 struct bfd_hash_entry *entry;
408 struct bfd_hash_table *table;
409 const char *string;
410 {
411 struct elf32_hppa_stub_hash_entry *ret;
412
413 ret = (struct elf32_hppa_stub_hash_entry *) entry;
414
415 /* Allocate the structure if it has not already been allocated by a
416 subclass. */
417 if (ret == NULL)
418 {
419 ret = ((struct elf32_hppa_stub_hash_entry *)
420 bfd_hash_allocate (table,
421 sizeof (struct elf32_hppa_stub_hash_entry)));
422 if (ret == NULL)
423 return NULL;
424 }
425
426 /* Call the allocation method of the superclass. */
427 ret = ((struct elf32_hppa_stub_hash_entry *)
428 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
429
430 if (ret)
431 {
432 /* Initialize the local fields. */
433 ret->stub_sec = NULL;
434 #if ! LONG_BRANCH_PIC_IN_SHLIB
435 ret->reloc_sec = NULL;
436 #endif
437 ret->stub_offset = 0;
438 ret->target_value = 0;
439 ret->target_section = NULL;
440 ret->stub_type = hppa_stub_long_branch;
441 ret->h = NULL;
442 ret->id_sec = NULL;
443 }
444
445 return (struct bfd_hash_entry *) ret;
446 }
447
448
449 /* Initialize an entry in the link hash table. */
450
451 static struct bfd_hash_entry *
452 hppa_link_hash_newfunc (entry, table, string)
453 struct bfd_hash_entry *entry;
454 struct bfd_hash_table *table;
455 const char *string;
456 {
457 struct elf32_hppa_link_hash_entry *ret;
458
459 ret = (struct elf32_hppa_link_hash_entry *) entry;
460
461 /* Allocate the structure if it has not already been allocated by a
462 subclass. */
463 if (ret == NULL)
464 {
465 ret = ((struct elf32_hppa_link_hash_entry *)
466 bfd_hash_allocate (table,
467 sizeof (struct elf32_hppa_link_hash_entry)));
468 if (ret == NULL)
469 return NULL;
470 }
471
472 /* Call the allocation method of the superclass. */
473 ret = ((struct elf32_hppa_link_hash_entry *)
474 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
475 table, string));
476
477 if (ret)
478 {
479 /* Initialize the local fields. */
480 #if ! LONG_BRANCH_PIC_IN_SHLIB
481 ret->stub_reloc_sec = NULL;
482 #endif
483 ret->stub_cache = NULL;
484 #if ! LONG_BRANCH_PIC_IN_SHLIB || RELATIVE_DYNAMIC_RELOCS
485 ret->reloc_entries = NULL;
486 #endif
487 ret->pic_call = 0;
488 ret->plabel = 0;
489 ret->plt_abs = 0;
490 }
491
492 return (struct bfd_hash_entry *) ret;
493 }
494
495
496 /* Create the derived linker hash table. The PA ELF port uses the derived
497 hash table to keep information specific to the PA ELF linker (without
498 using static variables). */
499
500 static struct bfd_link_hash_table *
501 elf32_hppa_link_hash_table_create (abfd)
502 bfd *abfd;
503 {
504 struct elf32_hppa_link_hash_table *ret;
505
506 ret = ((struct elf32_hppa_link_hash_table *) bfd_alloc (abfd, sizeof (*ret)));
507 if (ret == NULL)
508 return NULL;
509
510 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, hppa_link_hash_newfunc))
511 {
512 bfd_release (abfd, ret);
513 return NULL;
514 }
515
516 /* Init the stub hash table too. */
517 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc))
518 return NULL;
519
520 ret->stub_bfd = NULL;
521 ret->add_stub_section = NULL;
522 ret->layout_sections_again = NULL;
523 ret->stub_group = NULL;
524 ret->sgot = NULL;
525 ret->srelgot = NULL;
526 ret->splt = NULL;
527 ret->srelplt = NULL;
528 ret->sdynbss = NULL;
529 ret->srelbss = NULL;
530 ret->multi_subspace = 0;
531 ret->has_12bit_branch = 0;
532 ret->has_17bit_branch = 0;
533 ret->need_plt_stub = 0;
534
535 return &ret->root.root;
536 }
537
538
539 /* Build a name for an entry in the stub hash table. */
540
541 static char *
542 hppa_stub_name (input_section, sym_sec, hash, rel)
543 const asection *input_section;
544 const asection *sym_sec;
545 const struct elf32_hppa_link_hash_entry *hash;
546 const Elf_Internal_Rela *rel;
547 {
548 char *stub_name;
549 size_t len;
550
551 if (hash)
552 {
553 len = 8 + 1 + strlen (hash->elf.root.root.string) + 1 + 8 + 1;
554 stub_name = bfd_malloc (len);
555 if (stub_name != NULL)
556 {
557 sprintf (stub_name, "%08x_%s+%x",
558 input_section->id & 0xffffffff,
559 hash->elf.root.root.string,
560 (int) rel->r_addend & 0xffffffff);
561 }
562 }
563 else
564 {
565 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
566 stub_name = bfd_malloc (len);
567 if (stub_name != NULL)
568 {
569 sprintf (stub_name, "%08x_%x:%x+%x",
570 input_section->id & 0xffffffff,
571 sym_sec->id & 0xffffffff,
572 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
573 (int) rel->r_addend & 0xffffffff);
574 }
575 }
576 return stub_name;
577 }
578
579
580 /* Look up an entry in the stub hash. Stub entries are cached because
581 creating the stub name takes a bit of time. */
582
583 static struct elf32_hppa_stub_hash_entry *
584 hppa_get_stub_entry (input_section, sym_sec, hash, rel, hplink)
585 const asection *input_section;
586 const asection *sym_sec;
587 struct elf32_hppa_link_hash_entry *hash;
588 const Elf_Internal_Rela *rel;
589 struct elf32_hppa_link_hash_table *hplink;
590 {
591 struct elf32_hppa_stub_hash_entry *stub_entry;
592 const asection *id_sec;
593
594 /* If this input section is part of a group of sections sharing one
595 stub section, then use the id of the first section in the group.
596 Stub names need to include a section id, as there may well be
597 more than one stub used to reach say, printf, and we need to
598 distinguish between them. */
599 id_sec = hplink->stub_group[input_section->id].link_sec;
600
601 if (hash != NULL && hash->stub_cache != NULL
602 && hash->stub_cache->h == hash
603 && hash->stub_cache->id_sec == id_sec)
604 {
605 stub_entry = hash->stub_cache;
606 }
607 else
608 {
609 char *stub_name;
610
611 stub_name = hppa_stub_name (id_sec, sym_sec, hash, rel);
612 if (stub_name == NULL)
613 return NULL;
614
615 stub_entry = hppa_stub_hash_lookup (&hplink->stub_hash_table,
616 stub_name, false, false);
617 if (stub_entry == NULL)
618 {
619 if (hash == NULL || hash->elf.root.type != bfd_link_hash_undefweak)
620 (*_bfd_error_handler) (_("%s(%s+0x%lx): cannot find stub entry %s"),
621 bfd_get_filename (input_section->owner),
622 input_section->name,
623 (long) rel->r_offset,
624 stub_name);
625 }
626 else
627 {
628 if (hash != NULL)
629 hash->stub_cache = stub_entry;
630 }
631
632 free (stub_name);
633 }
634
635 return stub_entry;
636 }
637
638
639 /* Add a new stub entry to the stub hash. Not all fields of the new
640 stub entry are initialised. */
641
642 static struct elf32_hppa_stub_hash_entry *
643 hppa_add_stub (stub_name, section, hplink)
644 const char *stub_name;
645 asection *section;
646 struct elf32_hppa_link_hash_table *hplink;
647 {
648 asection *link_sec;
649 asection *stub_sec;
650 struct elf32_hppa_stub_hash_entry *stub_entry;
651
652 link_sec = hplink->stub_group[section->id].link_sec;
653 stub_sec = hplink->stub_group[section->id].stub_sec;
654 if (stub_sec == NULL)
655 {
656 stub_sec = hplink->stub_group[link_sec->id].stub_sec;
657 if (stub_sec == NULL)
658 {
659 size_t len;
660 char *s_name;
661
662 len = strlen (link_sec->name) + sizeof (STUB_SUFFIX);
663 s_name = bfd_alloc (hplink->stub_bfd, len);
664 if (s_name == NULL)
665 return NULL;
666
667 strcpy (s_name, link_sec->name);
668 strcpy (s_name + len - sizeof (STUB_SUFFIX), STUB_SUFFIX);
669 stub_sec = (*hplink->add_stub_section) (s_name, link_sec);
670 if (stub_sec == NULL)
671 return NULL;
672 hplink->stub_group[link_sec->id].stub_sec = stub_sec;
673 }
674 hplink->stub_group[section->id].stub_sec = stub_sec;
675 }
676
677 /* Enter this entry into the linker stub hash table. */
678 stub_entry = hppa_stub_hash_lookup (&hplink->stub_hash_table, stub_name,
679 true, false);
680 if (stub_entry == NULL)
681 {
682 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
683 bfd_get_filename (section->owner),
684 stub_name);
685 return NULL;
686 }
687
688 stub_entry->stub_sec = stub_sec;
689 #if ! LONG_BRANCH_PIC_IN_SHLIB
690 stub_entry->reloc_sec = hplink->stub_group[section->id].reloc_sec;
691 #endif
692 stub_entry->stub_offset = 0;
693 stub_entry->id_sec = link_sec;
694 return stub_entry;
695 }
696
697
698 /* Determine the type of stub needed, if any, for a call. */
699
700 static enum elf32_hppa_stub_type
701 hppa_type_of_stub (input_sec, rel, hash, destination)
702 asection *input_sec;
703 const Elf_Internal_Rela *rel;
704 struct elf32_hppa_link_hash_entry *hash;
705 bfd_vma destination;
706 {
707 bfd_vma location;
708 bfd_vma branch_offset;
709 bfd_vma max_branch_offset;
710 unsigned int r_type;
711
712 if (hash != NULL
713 && (((hash->elf.root.type == bfd_link_hash_defined
714 || hash->elf.root.type == bfd_link_hash_defweak)
715 && hash->elf.root.u.def.section->output_section == NULL)
716 || (hash->elf.root.type == bfd_link_hash_defweak
717 && hash->elf.dynindx != -1
718 && hash->elf.plt.offset != (bfd_vma) -1)
719 || hash->elf.root.type == bfd_link_hash_undefweak
720 || hash->elf.root.type == bfd_link_hash_undefined
721 || hash->pic_call))
722 {
723 /* If output_section is NULL, then it's a symbol defined in a
724 shared library. We will need an import stub. Decide between
725 hppa_stub_import and hppa_stub_import_shared later. For
726 shared links we need stubs for undefined or weak syms too;
727 They will presumably be resolved by the dynamic linker. */
728 return hppa_stub_import;
729 }
730
731 /* Determine where the call point is. */
732 location = (input_sec->output_offset
733 + input_sec->output_section->vma
734 + rel->r_offset);
735
736 branch_offset = destination - location - 8;
737 r_type = ELF32_R_TYPE (rel->r_info);
738
739 /* Determine if a long branch stub is needed. parisc branch offsets
740 are relative to the second instruction past the branch, ie. +8
741 bytes on from the branch instruction location. The offset is
742 signed and counts in units of 4 bytes. */
743 if (r_type == (unsigned int) R_PARISC_PCREL17F)
744 {
745 max_branch_offset = (1 << (17-1)) << 2;
746 }
747 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
748 {
749 max_branch_offset = (1 << (12-1)) << 2;
750 }
751 else /* R_PARISC_PCREL22F. */
752 {
753 max_branch_offset = (1 << (22-1)) << 2;
754 }
755
756 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
757 {
758 #if LONG_BRANCH_VIA_PLT
759 if (hash != NULL
760 && hash->elf.dynindx != -1
761 && hash->elf.plt.offset != (bfd_vma) -1)
762 {
763 /* If we are doing a shared link and find we need a long
764 branch stub, then go via the .plt if possible. */
765 return hppa_stub_import;
766 }
767 else
768 #endif
769 return hppa_stub_long_branch;
770 }
771 return hppa_stub_none;
772 }
773
774
775 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
776 IN_ARG contains the link info pointer. */
777
778 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
779 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
780
781 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
782 #define ADDIL_R1 0x28200000 /* addil L'XXX,%r1,%r1 */
783 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
784
785 #define ADDIL_DP 0x2b600000 /* addil L'XXX,%dp,%r1 */
786 #define LDW_R1_R21 0x48350000 /* ldw R'XXX(%sr0,%r1),%r21 */
787 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
788 #define LDW_R1_R19 0x48330000 /* ldw R'XXX(%sr0,%r1),%r19 */
789
790 #define ADDIL_R19 0x2a600000 /* addil L'XXX,%r19,%r1 */
791 #define LDW_R1_DP 0x483b0000 /* ldw R'XXX(%sr0,%r1),%dp */
792
793 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
794 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
795 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
796 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
797
798 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
799 #define NOP 0x08000240 /* nop */
800 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
801 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
802 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
803
804 #ifndef R19_STUBS
805 #define R19_STUBS 1
806 #endif
807
808 #if R19_STUBS
809 #define LDW_R1_DLT LDW_R1_R19
810 #else
811 #define LDW_R1_DLT LDW_R1_DP
812 #endif
813
814 static boolean
815 hppa_build_one_stub (gen_entry, in_arg)
816 struct bfd_hash_entry *gen_entry;
817 PTR in_arg;
818 {
819 struct elf32_hppa_stub_hash_entry *stub_entry;
820 struct bfd_link_info *info;
821 struct elf32_hppa_link_hash_table *hplink;
822 asection *stub_sec;
823 bfd *stub_bfd;
824 bfd_byte *loc;
825 bfd_vma sym_value;
826 bfd_vma insn;
827 int val;
828 int size;
829
830 /* Massage our args to the form they really have. */
831 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
832 info = (struct bfd_link_info *) in_arg;
833
834 hplink = hppa_link_hash_table (info);
835 stub_sec = stub_entry->stub_sec;
836
837 /* Make a note of the offset within the stubs for this entry. */
838 stub_entry->stub_offset = stub_sec->_raw_size;
839 loc = stub_sec->contents + stub_entry->stub_offset;
840
841 stub_bfd = stub_sec->owner;
842
843 switch (stub_entry->stub_type)
844 {
845 case hppa_stub_long_branch:
846 /* Create the long branch. A long branch is formed with "ldil"
847 loading the upper bits of the target address into a register,
848 then branching with "be" which adds in the lower bits.
849 The "be" has its delay slot nullified. */
850 sym_value = (stub_entry->target_value
851 + stub_entry->target_section->output_offset
852 + stub_entry->target_section->output_section->vma);
853
854 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel);
855 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
856 bfd_put_32 (stub_bfd, insn, loc);
857
858 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel) >> 2;
859 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
860 bfd_put_32 (stub_bfd, insn, loc + 4);
861
862 #if ! LONG_BRANCH_PIC_IN_SHLIB
863 if (info->shared)
864 {
865 /* Output a dynamic relocation for this stub. We only
866 output one PCREL21L reloc per stub, trusting that the
867 dynamic linker will also fix the implied PCREL17R for the
868 second instruction. PCREL21L dynamic relocs had better
869 never be emitted for some other purpose... */
870 asection *srel;
871 Elf_Internal_Rela outrel;
872
873 if (stub_entry->h == NULL)
874 {
875 (*_bfd_error_handler)
876 (_("%s(%s+0x%lx): cannot relocate %s, recompile with -ffunction-sections"),
877 bfd_get_filename (stub_entry->target_section->owner),
878 stub_sec->name,
879 (long) stub_entry->stub_offset,
880 stub_entry->root.string);
881 bfd_set_error (bfd_error_bad_value);
882 return false;
883 }
884
885 srel = stub_entry->reloc_sec;
886 if (srel == NULL)
887 {
888 (*_bfd_error_handler)
889 (_("Could not find relocation section for %s"),
890 stub_sec->name);
891 bfd_set_error (bfd_error_bad_value);
892 return false;
893 }
894
895 outrel.r_offset = (stub_entry->stub_offset
896 + stub_sec->output_offset
897 + stub_sec->output_section->vma);
898 outrel.r_info = ELF32_R_INFO (0, R_PARISC_PCREL21L);
899 outrel.r_addend = sym_value;
900 bfd_elf32_swap_reloca_out (stub_sec->output_section->owner,
901 &outrel,
902 ((Elf32_External_Rela *)
903 srel->contents + srel->reloc_count));
904 ++srel->reloc_count;
905 }
906 #endif
907 size = 8;
908 break;
909
910 case hppa_stub_long_branch_shared:
911 /* Branches are relative. This is where we are going to. */
912 sym_value = (stub_entry->target_value
913 + stub_entry->target_section->output_offset
914 + stub_entry->target_section->output_section->vma);
915
916 /* And this is where we are coming from, more or less. */
917 sym_value -= (stub_entry->stub_offset
918 + stub_sec->output_offset
919 + stub_sec->output_section->vma);
920
921 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
922 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
923 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
924 bfd_put_32 (stub_bfd, insn, loc + 4);
925
926 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
927 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
928 bfd_put_32 (stub_bfd, insn, loc + 8);
929 size = 12;
930 break;
931
932 case hppa_stub_import:
933 case hppa_stub_import_shared:
934 sym_value = (stub_entry->h->elf.plt.offset
935 + hplink->splt->output_offset
936 + hplink->splt->output_section->vma
937 - elf_gp (hplink->splt->output_section->owner));
938
939 insn = ADDIL_DP;
940 #if R19_STUBS
941 if (stub_entry->stub_type == hppa_stub_import_shared)
942 insn = ADDIL_R19;
943 #endif
944 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel),
945 insn = hppa_rebuild_insn ((int) insn, val, 21);
946 bfd_put_32 (stub_bfd, insn, loc);
947
948 /* It is critical to use lrsel/rrsel here because we are using
949 two different offsets (+0 and +4) from sym_value. If we use
950 lsel/rsel then with unfortunate sym_values we will round
951 sym_value+4 up to the next 2k block leading to a mis-match
952 between the lsel and rsel value. */
953 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel);
954 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
955 bfd_put_32 (stub_bfd, insn, loc + 4);
956
957 if (hplink->multi_subspace)
958 {
959 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
960 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
961 bfd_put_32 (stub_bfd, insn, loc + 8);
962
963 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
964 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
965 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
966 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
967
968 size = 28;
969 }
970 else
971 {
972 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
973 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
974 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
975 bfd_put_32 (stub_bfd, insn, loc + 12);
976
977 size = 16;
978 }
979
980 if (!info->shared
981 && stub_entry->h != NULL
982 && stub_entry->h->pic_call)
983 {
984 /* Build the .plt entry needed to call a PIC function from
985 statically linked code. We don't need any relocs. */
986 bfd *dynobj;
987 struct elf32_hppa_link_hash_entry *eh;
988 bfd_vma value;
989
990 dynobj = hplink->root.dynobj;
991 eh = (struct elf32_hppa_link_hash_entry *) stub_entry->h;
992
993 BFD_ASSERT (eh->elf.root.type == bfd_link_hash_defined
994 || eh->elf.root.type == bfd_link_hash_defweak);
995
996 value = (eh->elf.root.u.def.value
997 + eh->elf.root.u.def.section->output_offset
998 + eh->elf.root.u.def.section->output_section->vma);
999
1000 /* Fill in the entry in the procedure linkage table.
1001
1002 The format of a plt entry is
1003 <funcaddr>
1004 <__gp>. */
1005
1006 bfd_put_32 (hplink->splt->owner, value,
1007 hplink->splt->contents + eh->elf.plt.offset);
1008 value = elf_gp (hplink->splt->output_section->owner);
1009 bfd_put_32 (hplink->splt->owner, value,
1010 hplink->splt->contents + eh->elf.plt.offset + 4);
1011 }
1012 break;
1013
1014 case hppa_stub_export:
1015 /* Branches are relative. This is where we are going to. */
1016 sym_value = (stub_entry->target_value
1017 + stub_entry->target_section->output_offset
1018 + stub_entry->target_section->output_section->vma);
1019
1020 /* And this is where we are coming from. */
1021 sym_value -= (stub_entry->stub_offset
1022 + stub_sec->output_offset
1023 + stub_sec->output_section->vma);
1024
1025 if (sym_value - 8 + 0x40000 >= 0x80000)
1026 {
1027 (*_bfd_error_handler)
1028 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
1029 bfd_get_filename (stub_entry->target_section->owner),
1030 stub_sec->name,
1031 (long) stub_entry->stub_offset,
1032 stub_entry->root.string);
1033 bfd_set_error (bfd_error_bad_value);
1034 return false;
1035 }
1036
1037 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
1038 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
1039 bfd_put_32 (stub_bfd, insn, loc);
1040
1041 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
1042 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
1043 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
1044 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
1045 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
1046
1047 /* Point the function symbol at the stub. */
1048 stub_entry->h->elf.root.u.def.section = stub_sec;
1049 stub_entry->h->elf.root.u.def.value = stub_sec->_raw_size;
1050
1051 size = 24;
1052 break;
1053
1054 default:
1055 BFD_FAIL ();
1056 return false;
1057 }
1058
1059 stub_sec->_raw_size += size;
1060 return true;
1061 }
1062
1063 #undef LDIL_R1
1064 #undef BE_SR4_R1
1065 #undef BL_R1
1066 #undef ADDIL_R1
1067 #undef DEPI_R1
1068 #undef ADDIL_DP
1069 #undef LDW_R1_R21
1070 #undef LDW_R1_DLT
1071 #undef LDW_R1_R19
1072 #undef ADDIL_R19
1073 #undef LDW_R1_DP
1074 #undef LDSID_R21_R1
1075 #undef MTSP_R1
1076 #undef BE_SR0_R21
1077 #undef STW_RP
1078 #undef BV_R0_R21
1079 #undef BL_RP
1080 #undef NOP
1081 #undef LDW_RP
1082 #undef LDSID_RP_R1
1083 #undef BE_SR0_RP
1084
1085
1086 /* As above, but don't actually build the stub. Just bump offset so
1087 we know stub section sizes. */
1088
1089 static boolean
1090 hppa_size_one_stub (gen_entry, in_arg)
1091 struct bfd_hash_entry *gen_entry;
1092 PTR in_arg;
1093 {
1094 struct elf32_hppa_stub_hash_entry *stub_entry;
1095 struct elf32_hppa_link_hash_table *hplink;
1096 int size;
1097
1098 /* Massage our args to the form they really have. */
1099 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
1100 hplink = (struct elf32_hppa_link_hash_table *) in_arg;
1101
1102 if (stub_entry->stub_type == hppa_stub_long_branch)
1103 {
1104 #if ! LONG_BRANCH_PIC_IN_SHLIB
1105 if (stub_entry->reloc_sec != NULL)
1106 stub_entry->reloc_sec->_raw_size += sizeof (Elf32_External_Rela);
1107 #endif
1108 size = 8;
1109 }
1110 else if (stub_entry->stub_type == hppa_stub_long_branch_shared)
1111 size = 12;
1112 else if (stub_entry->stub_type == hppa_stub_export)
1113 size = 24;
1114 else /* hppa_stub_import or hppa_stub_import_shared. */
1115 {
1116 if (hplink->multi_subspace)
1117 size = 28;
1118 else
1119 size = 16;
1120 }
1121
1122 stub_entry->stub_sec->_raw_size += size;
1123 return true;
1124 }
1125
1126
1127 /* Return nonzero if ABFD represents an HPPA ELF32 file.
1128 Additionally we set the default architecture and machine. */
1129
1130 static boolean
1131 elf32_hppa_object_p (abfd)
1132 bfd *abfd;
1133 {
1134 unsigned int flags = elf_elfheader (abfd)->e_flags;
1135
1136 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
1137 {
1138 case EFA_PARISC_1_0:
1139 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
1140 case EFA_PARISC_1_1:
1141 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
1142 case EFA_PARISC_2_0:
1143 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
1144 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
1145 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
1146 }
1147 return true;
1148 }
1149
1150
1151 /* Undo the generic ELF code's subtraction of section->vma from the
1152 value of each external symbol. */
1153
1154 static boolean
1155 elf32_hppa_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1156 bfd *abfd ATTRIBUTE_UNUSED;
1157 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1158 const Elf_Internal_Sym *sym ATTRIBUTE_UNUSED;
1159 const char **namep ATTRIBUTE_UNUSED;
1160 flagword *flagsp ATTRIBUTE_UNUSED;
1161 asection **secp;
1162 bfd_vma *valp;
1163 {
1164 *valp += (*secp)->vma;
1165 return true;
1166 }
1167
1168
1169 /* Create the .plt and .got sections, and set up our hash table
1170 short-cuts to various dynamic sections. */
1171
1172 static boolean
1173 elf32_hppa_create_dynamic_sections (abfd, info)
1174 bfd *abfd;
1175 struct bfd_link_info *info;
1176 {
1177 struct elf32_hppa_link_hash_table *hplink;
1178
1179 /* Don't try to create the .plt and .got twice. */
1180 hplink = hppa_link_hash_table (info);
1181 if (hplink->splt != NULL)
1182 return true;
1183
1184 /* Call the generic code to do most of the work. */
1185 if (! _bfd_elf_create_dynamic_sections (abfd, info))
1186 return false;
1187
1188 hplink->splt = bfd_get_section_by_name (abfd, ".plt");
1189 hplink->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
1190
1191 hplink->sgot = bfd_get_section_by_name (abfd, ".got");
1192 hplink->srelgot = bfd_make_section (abfd, ".rela.got");
1193 if (hplink->srelgot == NULL
1194 || ! bfd_set_section_flags (abfd, hplink->srelgot,
1195 (SEC_ALLOC
1196 | SEC_LOAD
1197 | SEC_HAS_CONTENTS
1198 | SEC_IN_MEMORY
1199 | SEC_LINKER_CREATED
1200 | SEC_READONLY))
1201 || ! bfd_set_section_alignment (abfd, hplink->srelgot, 2))
1202 return false;
1203
1204 hplink->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
1205 hplink->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
1206
1207 return true;
1208 }
1209
1210
1211 /* Look through the relocs for a section during the first phase, and
1212 allocate space in the global offset table or procedure linkage
1213 table. At this point we haven't necessarily read all the input
1214 files. */
1215
1216 static boolean
1217 elf32_hppa_check_relocs (abfd, info, sec, relocs)
1218 bfd *abfd;
1219 struct bfd_link_info *info;
1220 asection *sec;
1221 const Elf_Internal_Rela *relocs;
1222 {
1223 bfd *dynobj;
1224 Elf_Internal_Shdr *symtab_hdr;
1225 struct elf_link_hash_entry **sym_hashes;
1226 bfd_signed_vma *local_got_refcounts;
1227 const Elf_Internal_Rela *rel;
1228 const Elf_Internal_Rela *rel_end;
1229 struct elf32_hppa_link_hash_table *hplink;
1230 asection *sreloc;
1231 asection *stubreloc;
1232
1233 if (info->relocateable)
1234 return true;
1235
1236 hplink = hppa_link_hash_table (info);
1237 dynobj = hplink->root.dynobj;
1238 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1239 sym_hashes = elf_sym_hashes (abfd);
1240 local_got_refcounts = elf_local_got_refcounts (abfd);
1241 sreloc = NULL;
1242 stubreloc = NULL;
1243
1244 rel_end = relocs + sec->reloc_count;
1245 for (rel = relocs; rel < rel_end; rel++)
1246 {
1247 enum {
1248 NEED_GOT = 1,
1249 NEED_PLT = 2,
1250 NEED_DYNREL = 4,
1251 #if LONG_BRANCH_PIC_IN_SHLIB
1252 NEED_STUBREL = 0, /* We won't be needing them in this case. */
1253 #else
1254 NEED_STUBREL = 8,
1255 #endif
1256 PLT_PLABEL = 16
1257 };
1258
1259 unsigned int r_symndx, r_type;
1260 struct elf32_hppa_link_hash_entry *h;
1261 int need_entry;
1262
1263 r_symndx = ELF32_R_SYM (rel->r_info);
1264
1265 if (r_symndx < symtab_hdr->sh_info)
1266 h = NULL;
1267 else
1268 h = ((struct elf32_hppa_link_hash_entry *)
1269 sym_hashes[r_symndx - symtab_hdr->sh_info]);
1270
1271 r_type = ELF32_R_TYPE (rel->r_info);
1272
1273 switch (r_type)
1274 {
1275 case R_PARISC_DLTIND14F:
1276 case R_PARISC_DLTIND14R:
1277 case R_PARISC_DLTIND21L:
1278 /* This symbol requires a global offset table entry. */
1279 need_entry = NEED_GOT;
1280
1281 /* Mark this section as containing PIC code. */
1282 sec->flags |= SEC_HAS_GOT_REF;
1283 break;
1284
1285 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1286 case R_PARISC_PLABEL21L:
1287 case R_PARISC_PLABEL32:
1288 /* If the addend is non-zero, we break badly. */
1289 BFD_ASSERT (rel->r_addend == 0);
1290
1291 /* If we are creating a shared library, then we need to
1292 create a PLT entry for all PLABELs, because PLABELs with
1293 local symbols may be passed via a pointer to another
1294 object. Additionally, output a dynamic relocation
1295 pointing to the PLT entry. */
1296 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1297 break;
1298
1299 case R_PARISC_PCREL12F:
1300 hplink->has_12bit_branch = 1;
1301 /* Fall thru. */
1302 case R_PARISC_PCREL17C:
1303 case R_PARISC_PCREL17F:
1304 hplink->has_17bit_branch = 1;
1305 /* Fall thru. */
1306 case R_PARISC_PCREL22F:
1307 /* Function calls might need to go through the .plt, and
1308 might require long branch stubs. */
1309 if (h == NULL)
1310 {
1311 /* We know local syms won't need a .plt entry, and if
1312 they need a long branch stub we can't guarantee that
1313 we can reach the stub. So just flag an error later
1314 if we're doing a shared link and find we need a long
1315 branch stub. */
1316 continue;
1317 }
1318 else
1319 {
1320 /* Global symbols will need a .plt entry if they remain
1321 global, and in most cases won't need a long branch
1322 stub. Unfortunately, we have to cater for the case
1323 where a symbol is forced local by versioning, or due
1324 to symbolic linking, and we lose the .plt entry. */
1325 need_entry = NEED_PLT | NEED_STUBREL;
1326 }
1327 break;
1328
1329 case R_PARISC_SEGBASE: /* Used to set segment base. */
1330 case R_PARISC_SEGREL32: /* Relative reloc. */
1331 case R_PARISC_PCREL14F: /* PC relative load/store. */
1332 case R_PARISC_PCREL14R:
1333 case R_PARISC_PCREL17R: /* External branches. */
1334 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1335 /* We don't need to propagate the relocation if linking a
1336 shared object since these are section relative. */
1337 continue;
1338
1339 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1340 case R_PARISC_DPREL14R:
1341 case R_PARISC_DPREL21L:
1342 if (info->shared)
1343 {
1344 (*_bfd_error_handler)
1345 (_("%s: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1346 bfd_get_filename (abfd),
1347 elf_hppa_howto_table[r_type].name);
1348 bfd_set_error (bfd_error_bad_value);
1349 return false;
1350 }
1351 /* Fall through. */
1352
1353 case R_PARISC_DIR17F: /* Used for external branches. */
1354 case R_PARISC_DIR17R:
1355 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1356 case R_PARISC_DIR14R:
1357 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1358 #if 1
1359 /* Help debug shared library creation. Any of the above
1360 relocs can be used in shared libs, but they may cause
1361 pages to become unshared. */
1362 if (info->shared)
1363 {
1364 (*_bfd_error_handler)
1365 (_("%s: relocation %s should not be used when making a shared object; recompile with -fPIC"),
1366 bfd_get_filename (abfd),
1367 elf_hppa_howto_table[r_type].name);
1368 }
1369 /* Fall through. */
1370 #endif
1371
1372 case R_PARISC_DIR32: /* .word, PARISC.unwind relocs. */
1373 /* We may want to output a dynamic relocation later. */
1374 need_entry = NEED_DYNREL;
1375 break;
1376
1377 /* This relocation describes the C++ object vtable hierarchy.
1378 Reconstruct it for later use during GC. */
1379 case R_PARISC_GNU_VTINHERIT:
1380 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec,
1381 &h->elf, rel->r_offset))
1382 return false;
1383 continue;
1384
1385 /* This relocation describes which C++ vtable entries are actually
1386 used. Record for later use during GC. */
1387 case R_PARISC_GNU_VTENTRY:
1388 if (!_bfd_elf32_gc_record_vtentry (abfd, sec,
1389 &h->elf, rel->r_addend))
1390 return false;
1391 continue;
1392
1393 default:
1394 continue;
1395 }
1396
1397 /* Now carry out our orders. */
1398 if (need_entry & NEED_GOT)
1399 {
1400 /* Allocate space for a GOT entry, as well as a dynamic
1401 relocation for this entry. */
1402 if (dynobj == NULL)
1403 hplink->root.dynobj = dynobj = abfd;
1404
1405 if (hplink->sgot == NULL)
1406 {
1407 if (! elf32_hppa_create_dynamic_sections (dynobj, info))
1408 return false;
1409 }
1410
1411 if (h != NULL)
1412 {
1413 if (h->elf.got.refcount == -1)
1414 {
1415 h->elf.got.refcount = 1;
1416
1417 /* Make sure this symbol is output as a dynamic symbol. */
1418 if (h->elf.dynindx == -1)
1419 {
1420 if (! bfd_elf32_link_record_dynamic_symbol (info,
1421 &h->elf))
1422 return false;
1423 }
1424
1425 hplink->sgot->_raw_size += GOT_ENTRY_SIZE;
1426 hplink->srelgot->_raw_size += sizeof (Elf32_External_Rela);
1427 }
1428 else
1429 h->elf.got.refcount += 1;
1430 }
1431 else
1432 {
1433 /* This is a global offset table entry for a local symbol. */
1434 if (local_got_refcounts == NULL)
1435 {
1436 size_t size;
1437
1438 /* Allocate space for local got offsets and local
1439 plt offsets. Done this way to save polluting
1440 elf_obj_tdata with another target specific
1441 pointer. */
1442 size = symtab_hdr->sh_info * 2 * sizeof (bfd_signed_vma);
1443 local_got_refcounts = ((bfd_signed_vma *)
1444 bfd_alloc (abfd, size));
1445 if (local_got_refcounts == NULL)
1446 return false;
1447 elf_local_got_refcounts (abfd) = local_got_refcounts;
1448 memset (local_got_refcounts, -1, size);
1449 }
1450 if (local_got_refcounts[r_symndx] == -1)
1451 {
1452 local_got_refcounts[r_symndx] = 1;
1453
1454 hplink->sgot->_raw_size += GOT_ENTRY_SIZE;
1455 if (info->shared)
1456 {
1457 /* If we are generating a shared object, we need to
1458 output a reloc so that the dynamic linker can
1459 adjust this GOT entry (because the address
1460 the shared library is loaded at is not fixed). */
1461 hplink->srelgot->_raw_size +=
1462 sizeof (Elf32_External_Rela);
1463 }
1464 }
1465 else
1466 local_got_refcounts[r_symndx] += 1;
1467 }
1468 }
1469
1470 if (need_entry & NEED_PLT)
1471 {
1472 /* If we are creating a shared library, and this is a reloc
1473 against a weak symbol or a global symbol in a dynamic
1474 object, then we will be creating an import stub and a
1475 .plt entry for the symbol. Similarly, on a normal link
1476 to symbols defined in a dynamic object we'll need the
1477 import stub and a .plt entry. We don't know yet whether
1478 the symbol is defined or not, so make an entry anyway and
1479 clean up later in adjust_dynamic_symbol. */
1480 if ((sec->flags & SEC_ALLOC) != 0)
1481 {
1482 if (h != NULL)
1483 {
1484 if (h->elf.plt.refcount == -1)
1485 {
1486 h->elf.plt.refcount = 1;
1487 h->elf.elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1488 }
1489 else
1490 h->elf.plt.refcount += 1;
1491
1492 /* If this .plt entry is for a plabel, mark it so
1493 that adjust_dynamic_symbol will keep the entry
1494 even if it appears to be local. */
1495 if (need_entry & PLT_PLABEL)
1496 h->plabel = 1;
1497 }
1498 else if (need_entry & PLT_PLABEL)
1499 {
1500 int indx;
1501
1502 if (local_got_refcounts == NULL)
1503 {
1504 size_t size;
1505
1506 /* Allocate space for local got offsets and local
1507 plt offsets. */
1508 size = symtab_hdr->sh_info * 2 * sizeof (bfd_signed_vma);
1509 local_got_refcounts = ((bfd_signed_vma *)
1510 bfd_alloc (abfd, size));
1511 if (local_got_refcounts == NULL)
1512 return false;
1513 elf_local_got_refcounts (abfd) = local_got_refcounts;
1514 memset (local_got_refcounts, -1, size);
1515 }
1516 indx = r_symndx + symtab_hdr->sh_info;
1517 if (local_got_refcounts[indx] == -1)
1518 local_got_refcounts[indx] = 1;
1519 else
1520 local_got_refcounts[indx] += 1;
1521 }
1522 }
1523 }
1524
1525 if (need_entry & (NEED_DYNREL | NEED_STUBREL))
1526 {
1527 /* Flag this symbol as having a non-got, non-plt reference
1528 so that we generate copy relocs if it turns out to be
1529 dynamic. */
1530 if (h != NULL)
1531 h->elf.elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
1532
1533 /* If we are creating a shared library then we need to copy
1534 the reloc into the shared library. However, if we are
1535 linking with -Bsymbolic, we need only copy absolute
1536 relocs or relocs against symbols that are not defined in
1537 an object we are including in the link. PC- or DP- or
1538 DLT-relative relocs against any local sym or global sym
1539 with DEF_REGULAR set, can be discarded. At this point we
1540 have not seen all the input files, so it is possible that
1541 DEF_REGULAR is not set now but will be set later (it is
1542 never cleared). We account for that possibility below by
1543 storing information in the reloc_entries field of the
1544 hash table entry.
1545
1546 A similar situation to the -Bsymbolic case occurs when
1547 creating shared libraries and symbol visibility changes
1548 render the symbol local.
1549
1550 As it turns out, all the relocs we will be creating here
1551 are absolute, so we cannot remove them on -Bsymbolic
1552 links or visibility changes anyway. A STUB_REL reloc
1553 is absolute too, as in that case it is the reloc in the
1554 stub we will be creating, rather than copying the PCREL
1555 reloc in the branch. */
1556 if ((sec->flags & SEC_ALLOC) != 0
1557 && info->shared
1558 #if RELATIVE_DYNAMIC_RELOCS
1559 && (!info->symbolic
1560 || is_absolute_reloc (r_type)
1561 || (h != NULL
1562 && ((h->elf.elf_link_hash_flags
1563 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
1564 #endif
1565 )
1566 {
1567 boolean doit;
1568 asection *srel;
1569
1570 srel = sreloc;
1571 if ((need_entry & NEED_STUBREL))
1572 srel = stubreloc;
1573
1574 /* Create a reloc section in dynobj and make room for
1575 this reloc. */
1576 if (srel == NULL)
1577 {
1578 char *name;
1579
1580 if (dynobj == NULL)
1581 hplink->root.dynobj = dynobj = abfd;
1582
1583 name = bfd_elf_string_from_elf_section
1584 (abfd,
1585 elf_elfheader (abfd)->e_shstrndx,
1586 elf_section_data (sec)->rel_hdr.sh_name);
1587 if (name == NULL)
1588 {
1589 (*_bfd_error_handler)
1590 (_("Could not find relocation section for %s"),
1591 sec->name);
1592 bfd_set_error (bfd_error_bad_value);
1593 return false;
1594 }
1595
1596 if ((need_entry & NEED_STUBREL))
1597 {
1598 size_t len = strlen (name) + sizeof (STUB_SUFFIX);
1599 char *newname = bfd_malloc (len);
1600
1601 if (newname == NULL)
1602 return false;
1603 strcpy (newname, name);
1604 strcpy (newname + len - sizeof (STUB_SUFFIX),
1605 STUB_SUFFIX);
1606 name = newname;
1607 }
1608
1609 srel = bfd_get_section_by_name (dynobj, name);
1610 if (srel == NULL)
1611 {
1612 flagword flags;
1613
1614 srel = bfd_make_section (dynobj, name);
1615 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1616 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1617 if ((sec->flags & SEC_ALLOC) != 0)
1618 flags |= SEC_ALLOC | SEC_LOAD;
1619 if (srel == NULL
1620 || !bfd_set_section_flags (dynobj, srel, flags)
1621 || !bfd_set_section_alignment (dynobj, srel, 2))
1622 return false;
1623 }
1624 else if ((need_entry & NEED_STUBREL))
1625 free (name);
1626
1627 if ((need_entry & NEED_STUBREL))
1628 stubreloc = srel;
1629 else
1630 sreloc = srel;
1631 }
1632
1633 #if ! LONG_BRANCH_PIC_IN_SHLIB
1634 /* If this is a function call, we only need one dynamic
1635 reloc for the stub as all calls to a particular
1636 function will go through the same stub. Actually, a
1637 long branch stub needs two relocations, but we count
1638 on some intelligence on the part of the dynamic
1639 linker. */
1640 if ((need_entry & NEED_STUBREL))
1641 {
1642 doit = h->stub_reloc_sec != stubreloc;
1643 h->stub_reloc_sec = stubreloc;
1644 }
1645 else
1646 #endif
1647 doit = 1;
1648
1649 if (doit)
1650 {
1651 srel->_raw_size += sizeof (Elf32_External_Rela);
1652
1653 #if ! LONG_BRANCH_PIC_IN_SHLIB || RELATIVE_DYNAMIC_RELOCS
1654 /* Keep track of relocations we have entered for
1655 this global symbol, so that we can discard them
1656 later if necessary. */
1657 if (h != NULL
1658 && (0
1659 #if RELATIVE_DYNAMIC_RELOCS
1660 || ! is_absolute_reloc (rtype)
1661 #endif
1662 || (need_entry & NEED_STUBREL)))
1663 {
1664 struct elf32_hppa_dyn_reloc_entry *p;
1665
1666 for (p = h->reloc_entries; p != NULL; p = p->next)
1667 if (p->section == srel)
1668 break;
1669
1670 if (p == NULL)
1671 {
1672 p = ((struct elf32_hppa_dyn_reloc_entry *)
1673 bfd_alloc (dynobj, sizeof *p));
1674 if (p == NULL)
1675 return false;
1676 p->next = h->reloc_entries;
1677 h->reloc_entries = p;
1678 p->section = srel;
1679 p->count = 0;
1680 }
1681
1682 /* NEED_STUBREL and NEED_DYNREL are never both
1683 set. Leave the count at zero for the
1684 NEED_STUBREL case as we only ever have one
1685 stub reloc per section per symbol, and this
1686 simplifies code in hppa_discard_copies. */
1687 if (! (need_entry & NEED_STUBREL))
1688 ++p->count;
1689 }
1690 #endif
1691 }
1692 }
1693 }
1694 }
1695
1696 return true;
1697 }
1698
1699
1700 /* Return the section that should be marked against garbage collection
1701 for a given relocation. */
1702
1703 static asection *
1704 elf32_hppa_gc_mark_hook (abfd, info, rel, h, sym)
1705 bfd *abfd;
1706 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1707 Elf_Internal_Rela *rel;
1708 struct elf_link_hash_entry *h;
1709 Elf_Internal_Sym *sym;
1710 {
1711 if (h != NULL)
1712 {
1713 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1714 {
1715 case R_PARISC_GNU_VTINHERIT:
1716 case R_PARISC_GNU_VTENTRY:
1717 break;
1718
1719 default:
1720 switch (h->root.type)
1721 {
1722 case bfd_link_hash_defined:
1723 case bfd_link_hash_defweak:
1724 return h->root.u.def.section;
1725
1726 case bfd_link_hash_common:
1727 return h->root.u.c.p->section;
1728
1729 default:
1730 break;
1731 }
1732 }
1733 }
1734 else
1735 {
1736 if (!(elf_bad_symtab (abfd)
1737 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
1738 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
1739 && sym->st_shndx != SHN_COMMON))
1740 {
1741 return bfd_section_from_elf_index (abfd, sym->st_shndx);
1742 }
1743 }
1744
1745 return NULL;
1746 }
1747
1748
1749 /* Update the got and plt entry reference counts for the section being
1750 removed. */
1751
1752 static boolean
1753 elf32_hppa_gc_sweep_hook (abfd, info, sec, relocs)
1754 bfd *abfd;
1755 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1756 asection *sec;
1757 const Elf_Internal_Rela *relocs;
1758 {
1759 Elf_Internal_Shdr *symtab_hdr;
1760 struct elf_link_hash_entry **sym_hashes;
1761 bfd_signed_vma *local_got_refcounts;
1762 bfd_signed_vma *local_plt_refcounts;
1763 const Elf_Internal_Rela *rel, *relend;
1764 unsigned long r_symndx;
1765 struct elf_link_hash_entry *h;
1766 struct elf32_hppa_link_hash_table *hplink;
1767 bfd *dynobj;
1768 asection *sgot;
1769 asection *srelgot;
1770
1771 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1772 sym_hashes = elf_sym_hashes (abfd);
1773 local_got_refcounts = elf_local_got_refcounts (abfd);
1774 local_plt_refcounts = local_got_refcounts;
1775 if (local_plt_refcounts != NULL)
1776 local_plt_refcounts += symtab_hdr->sh_info;
1777 hplink = hppa_link_hash_table (info);
1778 dynobj = hplink->root.dynobj;
1779 if (dynobj == NULL)
1780 return true;
1781
1782 sgot = hplink->sgot;
1783 srelgot = hplink->srelgot;
1784
1785 relend = relocs + sec->reloc_count;
1786 for (rel = relocs; rel < relend; rel++)
1787 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1788 {
1789 case R_PARISC_DLTIND14F:
1790 case R_PARISC_DLTIND14R:
1791 case R_PARISC_DLTIND21L:
1792 r_symndx = ELF32_R_SYM (rel->r_info);
1793 if (r_symndx >= symtab_hdr->sh_info)
1794 {
1795 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1796 if (h->got.refcount > 0)
1797 {
1798 h->got.refcount -= 1;
1799 if (h->got.refcount == 0)
1800 {
1801 sgot->_raw_size -= GOT_ENTRY_SIZE;
1802 srelgot->_raw_size -= sizeof (Elf32_External_Rela);
1803 }
1804 }
1805 }
1806 else if (local_got_refcounts != NULL)
1807 {
1808 if (local_got_refcounts[r_symndx] > 0)
1809 {
1810 local_got_refcounts[r_symndx] -= 1;
1811 if (local_got_refcounts[r_symndx] == 0)
1812 {
1813 sgot->_raw_size -= GOT_ENTRY_SIZE;
1814 if (info->shared)
1815 srelgot->_raw_size -= sizeof (Elf32_External_Rela);
1816 }
1817 }
1818 }
1819 break;
1820
1821 case R_PARISC_PCREL12F:
1822 case R_PARISC_PCREL17C:
1823 case R_PARISC_PCREL17F:
1824 case R_PARISC_PCREL22F:
1825 r_symndx = ELF32_R_SYM (rel->r_info);
1826 if (r_symndx >= symtab_hdr->sh_info)
1827 {
1828 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1829 if (h->plt.refcount > 0)
1830 h->plt.refcount -= 1;
1831 }
1832 break;
1833
1834 case R_PARISC_PLABEL14R:
1835 case R_PARISC_PLABEL21L:
1836 case R_PARISC_PLABEL32:
1837 r_symndx = ELF32_R_SYM (rel->r_info);
1838 if (r_symndx >= symtab_hdr->sh_info)
1839 {
1840 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1841 if (h->plt.refcount > 0)
1842 h->plt.refcount -= 1;
1843 }
1844 else if (local_plt_refcounts != NULL)
1845 {
1846 if (local_plt_refcounts[r_symndx] > 0)
1847 local_plt_refcounts[r_symndx] -= 1;
1848 }
1849 break;
1850
1851 default:
1852 break;
1853 }
1854
1855 return true;
1856 }
1857
1858
1859 /* Our own version of hide_symbol, so that we can keep plt entries for
1860 plabels. */
1861
1862 static void
1863 elf32_hppa_hide_symbol (info, h)
1864 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1865 struct elf_link_hash_entry *h;
1866 {
1867 h->dynindx = -1;
1868 if (! ((struct elf32_hppa_link_hash_entry *) h)->plabel)
1869 {
1870 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1871 h->plt.offset = (bfd_vma) -1;
1872 }
1873 }
1874
1875
1876 /* Adjust a symbol defined by a dynamic object and referenced by a
1877 regular object. The current definition is in some section of the
1878 dynamic object, but we're not including those sections. We have to
1879 change the definition to something the rest of the link can
1880 understand. */
1881
1882 static boolean
1883 elf32_hppa_adjust_dynamic_symbol (info, h)
1884 struct bfd_link_info *info;
1885 struct elf_link_hash_entry *h;
1886 {
1887 bfd *dynobj;
1888 struct elf32_hppa_link_hash_table *hplink;
1889 asection *s;
1890
1891 hplink = hppa_link_hash_table (info);
1892 dynobj = hplink->root.dynobj;
1893
1894 /* If this is a function, put it in the procedure linkage table. We
1895 will fill in the contents of the procedure linkage table later,
1896 when we know the address of the .got section. */
1897 if (h->type == STT_FUNC
1898 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1899 {
1900 if (h->plt.refcount <= 0
1901 || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1902 && h->root.type != bfd_link_hash_defweak
1903 && ! ((struct elf32_hppa_link_hash_entry *) h)->plabel
1904 && (!info->shared || info->symbolic)))
1905 {
1906 /* The .plt entry is not needed when:
1907 a) Garbage collection has removed all references to the
1908 symbol, or
1909 b) We know for certain the symbol is defined in this
1910 object, and it's not a weak definition, nor is the symbol
1911 used by a plabel relocation. Either this object is the
1912 application or we are doing a shared symbolic link. */
1913
1914 /* As a special sop to the hppa ABI, we keep a .plt entry
1915 for functions in sections containing PIC code. */
1916 if (!info->shared
1917 && h->plt.refcount > 0
1918 && (h->root.type == bfd_link_hash_defined
1919 || h->root.type == bfd_link_hash_defweak)
1920 && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0)
1921 {
1922 ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
1923 }
1924 else
1925 {
1926 h->plt.offset = (bfd_vma) -1;
1927 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1928 return true;
1929 }
1930 }
1931
1932 /* Make an entry in the .plt section. */
1933 s = hplink->splt;
1934 h->plt.offset = s->_raw_size;
1935 if (PLABEL_PLT_ENTRY_SIZE != PLT_ENTRY_SIZE
1936 && ((struct elf32_hppa_link_hash_entry *) h)->plabel
1937 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1938 {
1939 /* Add some extra space for the dynamic linker to use. */
1940 s->_raw_size += PLABEL_PLT_ENTRY_SIZE;
1941 }
1942 else
1943 s->_raw_size += PLT_ENTRY_SIZE;
1944
1945 if (! ((struct elf32_hppa_link_hash_entry *) h)->pic_call)
1946 {
1947 /* Make sure this symbol is output as a dynamic symbol. */
1948 if (h->dynindx == -1
1949 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1950 {
1951 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1952 return false;
1953 }
1954
1955 /* We also need to make an entry in the .rela.plt section. */
1956 s = hplink->srelplt;
1957 s->_raw_size += sizeof (Elf32_External_Rela);
1958
1959 hplink->need_plt_stub = 1;
1960 }
1961 return true;
1962 }
1963
1964 /* If this is a weak symbol, and there is a real definition, the
1965 processor independent code will have arranged for us to see the
1966 real definition first, and we can just use the same value. */
1967 if (h->weakdef != NULL)
1968 {
1969 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1970 || h->weakdef->root.type == bfd_link_hash_defweak);
1971 h->root.u.def.section = h->weakdef->root.u.def.section;
1972 h->root.u.def.value = h->weakdef->root.u.def.value;
1973 return true;
1974 }
1975
1976 /* This is a reference to a symbol defined by a dynamic object which
1977 is not a function. */
1978
1979 /* If we are creating a shared library, we must presume that the
1980 only references to the symbol are via the global offset table.
1981 For such cases we need not do anything here; the relocations will
1982 be handled correctly by relocate_section. */
1983 if (info->shared)
1984 return true;
1985
1986 /* If there are no references to this symbol that do not use the
1987 GOT, we don't need to generate a copy reloc. */
1988 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1989 return true;
1990
1991 /* We must allocate the symbol in our .dynbss section, which will
1992 become part of the .bss section of the executable. There will be
1993 an entry for this symbol in the .dynsym section. The dynamic
1994 object will contain position independent code, so all references
1995 from the dynamic object to this symbol will go through the global
1996 offset table. The dynamic linker will use the .dynsym entry to
1997 determine the address it must put in the global offset table, so
1998 both the dynamic object and the regular object will refer to the
1999 same memory location for the variable. */
2000
2001 s = hplink->sdynbss;
2002
2003 /* We must generate a COPY reloc to tell the dynamic linker to
2004 copy the initial value out of the dynamic object and into the
2005 runtime process image. We need to remember the offset into the
2006 .rela.bss section we are going to use. */
2007 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
2008 {
2009 asection *srel;
2010
2011 srel = hplink->srelbss;
2012 srel->_raw_size += sizeof (Elf32_External_Rela);
2013 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
2014 }
2015
2016 {
2017 /* We need to figure out the alignment required for this symbol. I
2018 have no idea how other ELF linkers handle this. */
2019 unsigned int power_of_two;
2020
2021 power_of_two = bfd_log2 (h->size);
2022 if (power_of_two > 3)
2023 power_of_two = 3;
2024
2025 /* Apply the required alignment. */
2026 s->_raw_size = BFD_ALIGN (s->_raw_size,
2027 (bfd_size_type) (1 << power_of_two));
2028 if (power_of_two > bfd_get_section_alignment (dynobj, s))
2029 {
2030 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
2031 return false;
2032 }
2033 }
2034 /* Define the symbol as being at this point in the section. */
2035 h->root.u.def.section = s;
2036 h->root.u.def.value = s->_raw_size;
2037
2038 /* Increment the section size to make room for the symbol. */
2039 s->_raw_size += h->size;
2040
2041 return true;
2042 }
2043
2044
2045 /* Called via elf_link_hash_traverse to create .plt entries for an
2046 application that uses statically linked PIC functions. Similar to
2047 the first part of elf32_hppa_adjust_dynamic_symbol. */
2048
2049 static boolean
2050 hppa_handle_PIC_calls (h, inf)
2051 struct elf_link_hash_entry *h;
2052 PTR inf;
2053 {
2054 struct bfd_link_info *info;
2055 bfd *dynobj;
2056 struct elf32_hppa_link_hash_table *hplink;
2057 asection *s;
2058
2059 if (! (h->plt.refcount > 0
2060 && (h->root.type == bfd_link_hash_defined
2061 || h->root.type == bfd_link_hash_defweak)
2062 && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0))
2063 {
2064 h->plt.offset = (bfd_vma) -1;
2065 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2066 return true;
2067 }
2068
2069 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
2070 ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
2071
2072 info = (struct bfd_link_info *) inf;
2073 hplink = hppa_link_hash_table (info);
2074 dynobj = hplink->root.dynobj;
2075
2076 /* Make an entry in the .plt section. */
2077 s = hplink->splt;
2078 h->plt.offset = s->_raw_size;
2079 s->_raw_size += PLT_ENTRY_SIZE;
2080
2081 return true;
2082 }
2083
2084
2085 #if ((! LONG_BRANCH_PIC_IN_SHLIB && LONG_BRANCH_VIA_PLT) \
2086 || RELATIVE_DYNAMIC_RELOCS)
2087 /* This function is called via elf_link_hash_traverse to discard space
2088 we allocated for relocs that it turned out we didn't need. */
2089
2090 static boolean
2091 hppa_discard_copies (h, inf)
2092 struct elf_link_hash_entry *h;
2093 PTR inf;
2094 {
2095 struct elf32_hppa_dyn_reloc_entry *s;
2096 struct elf32_hppa_link_hash_entry *eh;
2097 struct bfd_link_info *info;
2098
2099 eh = (struct elf32_hppa_link_hash_entry *) h;
2100 info = (struct bfd_link_info *) inf;
2101
2102 #if ! LONG_BRANCH_PIC_IN_SHLIB && LONG_BRANCH_VIA_PLT
2103 /* Handle the stub reloc case. If we have a plt entry for the
2104 function, we won't be needing long branch stubs. s->count will
2105 only be zero for stub relocs, which provides a handy way of
2106 flagging these relocs, and means we need do nothing special for
2107 the forced local and symbolic link case. */
2108 if (eh->stub_reloc_sec != NULL
2109 && eh->elf.plt.offset != (bfd_vma) -1)
2110 {
2111 for (s = eh->reloc_entries; s != NULL; s = s->next)
2112 if (s->count == 0)
2113 s->section->_raw_size -= sizeof (Elf32_External_Rela);
2114 }
2115 #endif
2116
2117 #if RELATIVE_DYNAMIC_RELOCS
2118 /* If a symbol has been forced local or we have found a regular
2119 definition for the symbolic link case, then we won't be needing
2120 any relocs. */
2121 if (eh->elf.dynindx == -1
2122 || ((eh->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
2123 && !is_absolute_reloc (r_type)
2124 && info->symbolic))
2125 {
2126 for (s = eh->reloc_entries; s != NULL; s = s->next)
2127 s->section->_raw_size -= s->count * sizeof (Elf32_External_Rela);
2128 }
2129 #endif
2130
2131 return true;
2132 }
2133 #endif
2134
2135
2136 /* This function is called via elf_link_hash_traverse to force
2137 millicode symbols local so they do not end up as globals in the
2138 dynamic symbol table. We ought to be able to do this in
2139 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2140 for all dynamic symbols. Arguably, this is a bug in
2141 elf_adjust_dynamic_symbol. */
2142
2143 static boolean
2144 clobber_millicode_symbols (h, info)
2145 struct elf_link_hash_entry *h;
2146 struct bfd_link_info *info;
2147 {
2148 /* Note! We only want to remove these from the dynamic symbol
2149 table. Therefore we do not set ELF_LINK_FORCED_LOCAL. */
2150 if (h->type == STT_PARISC_MILLI)
2151 elf32_hppa_hide_symbol(info, h);
2152 return true;
2153 }
2154
2155
2156 /* Set the sizes of the dynamic sections. */
2157
2158 static boolean
2159 elf32_hppa_size_dynamic_sections (output_bfd, info)
2160 bfd *output_bfd;
2161 struct bfd_link_info *info;
2162 {
2163 struct elf32_hppa_link_hash_table *hplink;
2164 bfd *dynobj;
2165 asection *s;
2166 boolean relocs;
2167 boolean reltext;
2168
2169 hplink = hppa_link_hash_table (info);
2170 dynobj = hplink->root.dynobj;
2171 BFD_ASSERT (dynobj != NULL);
2172
2173 if (hplink->root.dynamic_sections_created)
2174 {
2175 const char *funcname;
2176 bfd *i;
2177
2178 /* Set the contents of the .interp section to the interpreter. */
2179 if (! info->shared)
2180 {
2181 s = bfd_get_section_by_name (dynobj, ".interp");
2182 BFD_ASSERT (s != NULL);
2183 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
2184 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2185 }
2186
2187 /* Force millicode symbols local. */
2188 elf_link_hash_traverse (&hplink->root,
2189 clobber_millicode_symbols,
2190 info);
2191
2192 /* DT_INIT and DT_FINI need a .plt entry. Make sure they have
2193 one. */
2194 funcname = info->init_function;
2195 while (1)
2196 {
2197 if (funcname != NULL)
2198 {
2199 struct elf_link_hash_entry *h;
2200
2201 h = elf_link_hash_lookup (&hplink->root,
2202 funcname,
2203 false, false, false);
2204 if (h != NULL
2205 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
2206 | ELF_LINK_HASH_DEF_REGULAR)))
2207 {
2208 if (h->plt.refcount <= 0)
2209 {
2210 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
2211
2212 /* Make an entry in the .plt section. We know
2213 the function doesn't have a plabel by the
2214 refcount. */
2215 s = hplink->splt;
2216 h->plt.offset = s->_raw_size;
2217 s->_raw_size += PLT_ENTRY_SIZE;
2218
2219 /* Make sure this symbol is output as a dynamic
2220 symbol. */
2221 if (h->dynindx == -1)
2222 {
2223 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2224 return false;
2225 }
2226
2227 /* Make an entry for the reloc too. */
2228 s = hplink->srelplt;
2229 s->_raw_size += sizeof (Elf32_External_Rela);
2230 }
2231
2232 ((struct elf32_hppa_link_hash_entry *) h)->plt_abs = 1;
2233 }
2234 }
2235 if (funcname == info->fini_function)
2236 break;
2237 funcname = info->fini_function;
2238 }
2239
2240 /* Set up .plt offsets for local plabels. */
2241 for (i = info->input_bfds; i; i = i->link_next)
2242 {
2243 bfd_signed_vma *local_plt;
2244 bfd_signed_vma *end_local_plt;
2245 bfd_size_type locsymcount;
2246 Elf_Internal_Shdr *symtab_hdr;
2247
2248 local_plt = elf_local_got_refcounts (i);
2249 if (!local_plt)
2250 continue;
2251
2252 symtab_hdr = &elf_tdata (i)->symtab_hdr;
2253 locsymcount = symtab_hdr->sh_info;
2254 local_plt += locsymcount;
2255 end_local_plt = local_plt + locsymcount;
2256
2257 for (; local_plt < end_local_plt; ++local_plt)
2258 {
2259 if (*local_plt > 0)
2260 {
2261 s = hplink->splt;
2262 *local_plt = s->_raw_size;
2263 s->_raw_size += PLT_ENTRY_SIZE;
2264 if (info->shared)
2265 hplink->srelplt->_raw_size += sizeof (Elf32_External_Rela);
2266 }
2267 else
2268 *local_plt = (bfd_vma) -1;
2269 }
2270 }
2271 }
2272 else
2273 {
2274 /* Run through the function symbols, looking for any that are
2275 PIC, and allocate space for the necessary .plt entries so
2276 that %r19 will be set up. */
2277 if (! info->shared)
2278 elf_link_hash_traverse (&hplink->root,
2279 hppa_handle_PIC_calls,
2280 info);
2281
2282 /* We may have created entries in the .rela.got section.
2283 However, if we are not creating the dynamic sections, we will
2284 not actually use these entries. Reset the size of .rela.got,
2285 which will cause it to get stripped from the output file
2286 below. */
2287 hplink->srelgot->_raw_size = 0;
2288 }
2289
2290 #if ((! LONG_BRANCH_PIC_IN_SHLIB && LONG_BRANCH_VIA_PLT) \
2291 || RELATIVE_DYNAMIC_RELOCS)
2292 /* If this is a -Bsymbolic shared link, then we need to discard all
2293 relocs against symbols defined in a regular object. We also need
2294 to lose relocs we've allocated for long branch stubs if we know
2295 we won't be generating a stub. */
2296 if (info->shared)
2297 elf_link_hash_traverse (&hplink->root,
2298 hppa_discard_copies,
2299 info);
2300 #endif
2301
2302 /* The check_relocs and adjust_dynamic_symbol entry points have
2303 determined the sizes of the various dynamic sections. Allocate
2304 memory for them. */
2305 relocs = false;
2306 reltext = false;
2307 for (s = dynobj->sections; s != NULL; s = s->next)
2308 {
2309 const char *name;
2310
2311 if ((s->flags & SEC_LINKER_CREATED) == 0)
2312 continue;
2313
2314 /* It's OK to base decisions on the section name, because none
2315 of the dynobj section names depend upon the input files. */
2316 name = bfd_get_section_name (dynobj, s);
2317
2318 if (strncmp (name, ".rela", 5) == 0)
2319 {
2320 if (s->_raw_size != 0)
2321 {
2322 asection *target;
2323 const char *outname;
2324
2325 /* Remember whether there are any reloc sections other
2326 than .rela.plt. */
2327 if (strcmp (name+5, ".plt") != 0)
2328 relocs = true;
2329
2330 /* If this relocation section applies to a read only
2331 section, then we probably need a DT_TEXTREL entry. */
2332 outname = bfd_get_section_name (output_bfd,
2333 s->output_section);
2334 target = bfd_get_section_by_name (output_bfd, outname + 5);
2335 if (target != NULL
2336 && (target->flags & SEC_READONLY) != 0
2337 && (target->flags & SEC_ALLOC) != 0)
2338 reltext = true;
2339
2340 /* We use the reloc_count field as a counter if we need
2341 to copy relocs into the output file. */
2342 s->reloc_count = 0;
2343 }
2344 }
2345 else if (strcmp (name, ".plt") == 0)
2346 {
2347 if (hplink->need_plt_stub)
2348 {
2349 /* Make space for the plt stub at the end of the .plt
2350 section. We want this stub right at the end, up
2351 against the .got section. */
2352 int gotalign = bfd_section_alignment (dynobj, hplink->sgot);
2353 int pltalign = bfd_section_alignment (dynobj, s);
2354 bfd_size_type mask;
2355
2356 if (gotalign > pltalign)
2357 bfd_set_section_alignment (dynobj, s, gotalign);
2358 mask = ((bfd_size_type) 1 << gotalign) - 1;
2359 s->_raw_size = (s->_raw_size + sizeof (plt_stub) + mask) & ~mask;
2360 }
2361 }
2362 else if (strcmp (name, ".got") == 0)
2363 ;
2364 else
2365 {
2366 /* It's not one of our sections, so don't allocate space. */
2367 continue;
2368 }
2369
2370 if (s->_raw_size == 0)
2371 {
2372 /* If we don't need this section, strip it from the
2373 output file. This is mostly to handle .rela.bss and
2374 .rela.plt. We must create both sections in
2375 create_dynamic_sections, because they must be created
2376 before the linker maps input sections to output
2377 sections. The linker does that before
2378 adjust_dynamic_symbol is called, and it is that
2379 function which decides whether anything needs to go
2380 into these sections. */
2381 _bfd_strip_section_from_output (info, s);
2382 continue;
2383 }
2384
2385 /* Allocate memory for the section contents. Zero it, because
2386 we may not fill in all the reloc sections. */
2387 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
2388 if (s->contents == NULL && s->_raw_size != 0)
2389 return false;
2390 }
2391
2392 if (hplink->root.dynamic_sections_created)
2393 {
2394 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2395 actually has nothing to do with the PLT, it is how we
2396 communicate the LTP value of a load module to the dynamic
2397 linker. */
2398 if (! bfd_elf32_add_dynamic_entry (info, DT_PLTGOT, 0))
2399 return false;
2400
2401 /* Add some entries to the .dynamic section. We fill in the
2402 values later, in elf32_hppa_finish_dynamic_sections, but we
2403 must add the entries now so that we get the correct size for
2404 the .dynamic section. The DT_DEBUG entry is filled in by the
2405 dynamic linker and used by the debugger. */
2406 if (! info->shared)
2407 {
2408 if (! bfd_elf32_add_dynamic_entry (info, DT_DEBUG, 0))
2409 return false;
2410 }
2411
2412 if (hplink->srelplt->_raw_size != 0)
2413 {
2414 if (! bfd_elf32_add_dynamic_entry (info, DT_PLTRELSZ, 0)
2415 || ! bfd_elf32_add_dynamic_entry (info, DT_PLTREL, DT_RELA)
2416 || ! bfd_elf32_add_dynamic_entry (info, DT_JMPREL, 0))
2417 return false;
2418 }
2419
2420 if (relocs)
2421 {
2422 if (! bfd_elf32_add_dynamic_entry (info, DT_RELA, 0)
2423 || ! bfd_elf32_add_dynamic_entry (info, DT_RELASZ, 0)
2424 || ! bfd_elf32_add_dynamic_entry (info, DT_RELAENT,
2425 sizeof (Elf32_External_Rela)))
2426 return false;
2427 }
2428
2429 if (reltext)
2430 {
2431 if (! bfd_elf32_add_dynamic_entry (info, DT_TEXTREL, 0))
2432 return false;
2433 info->flags |= DF_TEXTREL;
2434 }
2435 }
2436
2437 return true;
2438 }
2439
2440
2441 /* External entry points for sizing and building linker stubs. */
2442
2443 /* Determine and set the size of the stub section for a final link.
2444
2445 The basic idea here is to examine all the relocations looking for
2446 PC-relative calls to a target that is unreachable with a "bl"
2447 instruction. */
2448
2449 boolean
2450 elf32_hppa_size_stubs (output_bfd, stub_bfd, info, multi_subspace, group_size,
2451 add_stub_section, layout_sections_again)
2452 bfd *output_bfd;
2453 bfd *stub_bfd;
2454 struct bfd_link_info *info;
2455 boolean multi_subspace;
2456 bfd_signed_vma group_size;
2457 asection * (*add_stub_section) PARAMS ((const char *, asection *));
2458 void (*layout_sections_again) PARAMS ((void));
2459 {
2460 bfd *input_bfd;
2461 asection *section;
2462 asection **input_list, **list;
2463 Elf_Internal_Sym *local_syms, **all_local_syms;
2464 unsigned int bfd_indx, bfd_count;
2465 int top_id, top_index;
2466 struct elf32_hppa_link_hash_table *hplink;
2467 bfd_size_type stub_group_size;
2468 boolean stubs_always_before_branch;
2469 boolean stub_changed = 0;
2470 boolean ret = 0;
2471
2472 hplink = hppa_link_hash_table (info);
2473
2474 /* Stash our params away. */
2475 hplink->stub_bfd = stub_bfd;
2476 hplink->multi_subspace = multi_subspace;
2477 hplink->add_stub_section = add_stub_section;
2478 hplink->layout_sections_again = layout_sections_again;
2479 stubs_always_before_branch = group_size < 0;
2480 if (group_size < 0)
2481 stub_group_size = -group_size;
2482 else
2483 stub_group_size = group_size;
2484 if (stub_group_size == 1)
2485 {
2486 /* Default values. */
2487 stub_group_size = 8000000;
2488 if (hplink->has_17bit_branch || hplink->multi_subspace)
2489 stub_group_size = 250000;
2490 if (hplink->has_12bit_branch)
2491 stub_group_size = 7812;
2492 }
2493
2494 /* Count the number of input BFDs and find the top input section id. */
2495 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2496 input_bfd != NULL;
2497 input_bfd = input_bfd->link_next)
2498 {
2499 bfd_count += 1;
2500 for (section = input_bfd->sections;
2501 section != NULL;
2502 section = section->next)
2503 {
2504 if (top_id < section->id)
2505 top_id = section->id;
2506 }
2507 }
2508
2509 hplink->stub_group
2510 = (struct map_stub *) bfd_zmalloc (sizeof (struct map_stub) * (top_id + 1));
2511 if (hplink->stub_group == NULL)
2512 return false;
2513
2514 /* Make a list of input sections for each output section included in
2515 the link.
2516
2517 We can't use output_bfd->section_count here to find the top output
2518 section index as some sections may have been removed, and
2519 _bfd_strip_section_from_output doesn't renumber the indices. */
2520 for (section = output_bfd->sections, top_index = 0;
2521 section != NULL;
2522 section = section->next)
2523 {
2524 if (top_index < section->index)
2525 top_index = section->index;
2526 }
2527
2528 input_list
2529 = (asection **) bfd_malloc (sizeof (asection *) * (top_index + 1));
2530 if (input_list == NULL)
2531 return false;
2532
2533 /* For sections we aren't interested in, mark their entries with a
2534 value we can check later. */
2535 list = input_list + top_index;
2536 do
2537 *list = bfd_abs_section_ptr;
2538 while (list-- != input_list);
2539
2540 for (section = output_bfd->sections;
2541 section != NULL;
2542 section = section->next)
2543 {
2544 if ((section->flags & SEC_CODE) != 0)
2545 input_list[section->index] = NULL;
2546 }
2547
2548 /* Now actually build the lists. */
2549 for (input_bfd = info->input_bfds;
2550 input_bfd != NULL;
2551 input_bfd = input_bfd->link_next)
2552 {
2553 for (section = input_bfd->sections;
2554 section != NULL;
2555 section = section->next)
2556 {
2557 if (section->output_section != NULL
2558 && section->output_section->owner == output_bfd
2559 && section->output_section->index <= top_index)
2560 {
2561 list = input_list + section->output_section->index;
2562 if (*list != bfd_abs_section_ptr)
2563 {
2564 /* Steal the link_sec pointer for our list. */
2565 #define PREV_SEC(sec) (hplink->stub_group[(sec)->id].link_sec)
2566 /* This happens to make the list in reverse order,
2567 which is what we want. */
2568 PREV_SEC (section) = *list;
2569 *list = section;
2570 }
2571 }
2572 }
2573 }
2574
2575 /* See whether we can group stub sections together. Grouping stub
2576 sections may result in fewer stubs. More importantly, we need to
2577 put all .init* and .fini* stubs at the beginning of the .init or
2578 .fini output sections respectively, because glibc splits the
2579 _init and _fini functions into multiple parts. Putting a stub in
2580 the middle of a function is not a good idea. */
2581 list = input_list + top_index;
2582 do
2583 {
2584 asection *tail = *list;
2585 if (tail == bfd_abs_section_ptr)
2586 continue;
2587 while (tail != NULL)
2588 {
2589 asection *curr;
2590 asection *prev;
2591 bfd_size_type total;
2592
2593 curr = tail;
2594 if (tail->_cooked_size)
2595 total = tail->_cooked_size;
2596 else
2597 total = tail->_raw_size;
2598 while ((prev = PREV_SEC (curr)) != NULL
2599 && ((total += curr->output_offset - prev->output_offset)
2600 < stub_group_size))
2601 curr = prev;
2602
2603 /* OK, the size from the start of CURR to the end is less
2604 than 250000 bytes and thus can be handled by one stub
2605 section. (or the tail section is itself larger than
2606 250000 bytes, in which case we may be toast.)
2607 We should really be keeping track of the total size of
2608 stubs added here, as stubs contribute to the final output
2609 section size. That's a little tricky, and this way will
2610 only break if stubs added total more than 12144 bytes, or
2611 1518 long branch stubs. It seems unlikely for more than
2612 1518 different functions to be called, especially from
2613 code only 250000 bytes long. */
2614 do
2615 {
2616 prev = PREV_SEC (tail);
2617 /* Set up this stub group. */
2618 hplink->stub_group[tail->id].link_sec = curr;
2619 }
2620 while (tail != curr && (tail = prev) != NULL);
2621
2622 /* But wait, there's more! Input sections up to 250000
2623 bytes before the stub section can be handled by it too. */
2624 if (!stubs_always_before_branch)
2625 {
2626 total = 0;
2627 while (prev != NULL
2628 && ((total += tail->output_offset - prev->output_offset)
2629 < stub_group_size))
2630 {
2631 tail = prev;
2632 prev = PREV_SEC (tail);
2633 hplink->stub_group[tail->id].link_sec = curr;
2634 }
2635 }
2636 tail = prev;
2637 }
2638 }
2639 while (list-- != input_list);
2640 free (input_list);
2641 #undef PREV_SEC
2642
2643 /* We want to read in symbol extension records only once. To do this
2644 we need to read in the local symbols in parallel and save them for
2645 later use; so hold pointers to the local symbols in an array. */
2646 all_local_syms
2647 = (Elf_Internal_Sym **) bfd_zmalloc (sizeof (Elf_Internal_Sym *)
2648 * bfd_count);
2649 if (all_local_syms == NULL)
2650 return false;
2651
2652 /* Walk over all the input BFDs, swapping in local symbols.
2653 If we are creating a shared library, create hash entries for the
2654 export stubs. */
2655 for (input_bfd = info->input_bfds, bfd_indx = 0;
2656 input_bfd != NULL;
2657 input_bfd = input_bfd->link_next, bfd_indx++)
2658 {
2659 Elf_Internal_Shdr *symtab_hdr;
2660 Elf_Internal_Sym *isym;
2661 Elf32_External_Sym *ext_syms, *esym, *end_sy;
2662
2663 /* We'll need the symbol table in a second. */
2664 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2665 if (symtab_hdr->sh_info == 0)
2666 continue;
2667
2668 /* We need an array of the local symbols attached to the input bfd.
2669 Unfortunately, we're going to have to read & swap them in. */
2670 local_syms = (Elf_Internal_Sym *)
2671 bfd_malloc (symtab_hdr->sh_info * sizeof (Elf_Internal_Sym));
2672 if (local_syms == NULL)
2673 {
2674 goto error_ret_free_local;
2675 }
2676 all_local_syms[bfd_indx] = local_syms;
2677 ext_syms = (Elf32_External_Sym *)
2678 bfd_malloc (symtab_hdr->sh_info * sizeof (Elf32_External_Sym));
2679 if (ext_syms == NULL)
2680 {
2681 goto error_ret_free_local;
2682 }
2683
2684 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
2685 || (bfd_read (ext_syms, 1,
2686 (symtab_hdr->sh_info * sizeof (Elf32_External_Sym)),
2687 input_bfd)
2688 != (symtab_hdr->sh_info * sizeof (Elf32_External_Sym))))
2689 {
2690 free (ext_syms);
2691 goto error_ret_free_local;
2692 }
2693
2694 /* Swap the local symbols in. */
2695 isym = local_syms;
2696 esym = ext_syms;
2697 for (end_sy = esym + symtab_hdr->sh_info; esym < end_sy; esym++, isym++)
2698 bfd_elf32_swap_symbol_in (input_bfd, esym, isym);
2699
2700 /* Now we can free the external symbols. */
2701 free (ext_syms);
2702
2703 #if ! LONG_BRANCH_PIC_IN_SHLIB
2704 /* If this is a shared link, find all the stub reloc sections. */
2705 if (info->shared)
2706 for (section = input_bfd->sections;
2707 section != NULL;
2708 section = section->next)
2709 {
2710 char *name;
2711 asection *reloc_sec;
2712
2713 name = bfd_malloc (strlen (section->name)
2714 + sizeof STUB_SUFFIX
2715 + 5);
2716 if (name == NULL)
2717 return false;
2718 sprintf (name, ".rela%s%s", section->name, STUB_SUFFIX);
2719 reloc_sec = bfd_get_section_by_name (hplink->root.dynobj, name);
2720 hplink->stub_group[section->id].reloc_sec = reloc_sec;
2721 free (name);
2722 }
2723 #endif
2724
2725 if (info->shared && hplink->multi_subspace)
2726 {
2727 struct elf_link_hash_entry **sym_hashes;
2728 struct elf_link_hash_entry **end_hashes;
2729 unsigned int symcount;
2730
2731 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2732 - symtab_hdr->sh_info);
2733 sym_hashes = elf_sym_hashes (input_bfd);
2734 end_hashes = sym_hashes + symcount;
2735
2736 /* Look through the global syms for functions; We need to
2737 build export stubs for all globally visible functions. */
2738 for (; sym_hashes < end_hashes; sym_hashes++)
2739 {
2740 struct elf32_hppa_link_hash_entry *hash;
2741
2742 hash = (struct elf32_hppa_link_hash_entry *) *sym_hashes;
2743
2744 while (hash->elf.root.type == bfd_link_hash_indirect
2745 || hash->elf.root.type == bfd_link_hash_warning)
2746 hash = ((struct elf32_hppa_link_hash_entry *)
2747 hash->elf.root.u.i.link);
2748
2749 /* At this point in the link, undefined syms have been
2750 resolved, so we need to check that the symbol was
2751 defined in this BFD. */
2752 if ((hash->elf.root.type == bfd_link_hash_defined
2753 || hash->elf.root.type == bfd_link_hash_defweak)
2754 && hash->elf.type == STT_FUNC
2755 && hash->elf.root.u.def.section->output_section != NULL
2756 && (hash->elf.root.u.def.section->output_section->owner
2757 == output_bfd)
2758 && hash->elf.root.u.def.section->owner == input_bfd
2759 && (hash->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
2760 && !(hash->elf.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)
2761 && ELF_ST_VISIBILITY (hash->elf.other) == STV_DEFAULT)
2762 {
2763 asection *sec;
2764 const char *stub_name;
2765 struct elf32_hppa_stub_hash_entry *stub_entry;
2766
2767 sec = hash->elf.root.u.def.section;
2768 stub_name = hash->elf.root.root.string;
2769 stub_entry = hppa_stub_hash_lookup (&hplink->stub_hash_table,
2770 stub_name,
2771 false, false);
2772 if (stub_entry == NULL)
2773 {
2774 stub_entry = hppa_add_stub (stub_name, sec, hplink);
2775 if (!stub_entry)
2776 goto error_ret_free_local;
2777
2778 stub_entry->target_value = hash->elf.root.u.def.value;
2779 stub_entry->target_section = hash->elf.root.u.def.section;
2780 stub_entry->stub_type = hppa_stub_export;
2781 stub_entry->h = hash;
2782 stub_changed = 1;
2783 }
2784 else
2785 {
2786 (*_bfd_error_handler) (_("%s: duplicate export stub %s"),
2787 bfd_get_filename (input_bfd),
2788 stub_name);
2789 }
2790 }
2791 }
2792 }
2793 }
2794
2795 while (1)
2796 {
2797 asection *stub_sec;
2798
2799 for (input_bfd = info->input_bfds, bfd_indx = 0;
2800 input_bfd != NULL;
2801 input_bfd = input_bfd->link_next, bfd_indx++)
2802 {
2803 Elf_Internal_Shdr *symtab_hdr;
2804
2805 /* We'll need the symbol table in a second. */
2806 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2807 if (symtab_hdr->sh_info == 0)
2808 continue;
2809
2810 local_syms = all_local_syms[bfd_indx];
2811
2812 /* Walk over each section attached to the input bfd. */
2813 for (section = input_bfd->sections;
2814 section != NULL;
2815 section = section->next)
2816 {
2817 Elf_Internal_Shdr *input_rel_hdr;
2818 Elf32_External_Rela *external_relocs, *erelaend, *erela;
2819 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2820
2821 /* If there aren't any relocs, then there's nothing more
2822 to do. */
2823 if ((section->flags & SEC_RELOC) == 0
2824 || section->reloc_count == 0)
2825 continue;
2826
2827 /* If this section is a link-once section that will be
2828 discarded, then don't create any stubs. */
2829 if (section->output_section == NULL
2830 || section->output_section->owner != output_bfd)
2831 continue;
2832
2833 /* Allocate space for the external relocations. */
2834 external_relocs
2835 = ((Elf32_External_Rela *)
2836 bfd_malloc (section->reloc_count
2837 * sizeof (Elf32_External_Rela)));
2838 if (external_relocs == NULL)
2839 {
2840 goto error_ret_free_local;
2841 }
2842
2843 /* Likewise for the internal relocations. */
2844 internal_relocs = ((Elf_Internal_Rela *)
2845 bfd_malloc (section->reloc_count
2846 * sizeof (Elf_Internal_Rela)));
2847 if (internal_relocs == NULL)
2848 {
2849 free (external_relocs);
2850 goto error_ret_free_local;
2851 }
2852
2853 /* Read in the external relocs. */
2854 input_rel_hdr = &elf_section_data (section)->rel_hdr;
2855 if (bfd_seek (input_bfd, input_rel_hdr->sh_offset, SEEK_SET) != 0
2856 || bfd_read (external_relocs, 1,
2857 input_rel_hdr->sh_size,
2858 input_bfd) != input_rel_hdr->sh_size)
2859 {
2860 free (external_relocs);
2861 error_ret_free_internal:
2862 free (internal_relocs);
2863 goto error_ret_free_local;
2864 }
2865
2866 /* Swap in the relocs. */
2867 erela = external_relocs;
2868 erelaend = erela + section->reloc_count;
2869 irela = internal_relocs;
2870 for (; erela < erelaend; erela++, irela++)
2871 bfd_elf32_swap_reloca_in (input_bfd, erela, irela);
2872
2873 /* We're done with the external relocs, free them. */
2874 free (external_relocs);
2875
2876 /* Now examine each relocation. */
2877 irela = internal_relocs;
2878 irelaend = irela + section->reloc_count;
2879 for (; irela < irelaend; irela++)
2880 {
2881 unsigned int r_type, r_indx;
2882 enum elf32_hppa_stub_type stub_type;
2883 struct elf32_hppa_stub_hash_entry *stub_entry;
2884 asection *sym_sec;
2885 bfd_vma sym_value;
2886 bfd_vma destination;
2887 struct elf32_hppa_link_hash_entry *hash;
2888 char *stub_name;
2889 const asection *id_sec;
2890
2891 r_type = ELF32_R_TYPE (irela->r_info);
2892 r_indx = ELF32_R_SYM (irela->r_info);
2893
2894 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2895 {
2896 bfd_set_error (bfd_error_bad_value);
2897 goto error_ret_free_internal;
2898 }
2899
2900 /* Only look for stubs on call instructions. */
2901 if (r_type != (unsigned int) R_PARISC_PCREL12F
2902 && r_type != (unsigned int) R_PARISC_PCREL17F
2903 && r_type != (unsigned int) R_PARISC_PCREL22F)
2904 continue;
2905
2906 /* Now determine the call target, its name, value,
2907 section. */
2908 sym_sec = NULL;
2909 sym_value = 0;
2910 destination = 0;
2911 hash = NULL;
2912 if (r_indx < symtab_hdr->sh_info)
2913 {
2914 /* It's a local symbol. */
2915 Elf_Internal_Sym *sym;
2916 Elf_Internal_Shdr *hdr;
2917
2918 sym = local_syms + r_indx;
2919 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2920 sym_sec = hdr->bfd_section;
2921 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2922 sym_value = sym->st_value;
2923 destination = (sym_value + irela->r_addend
2924 + sym_sec->output_offset
2925 + sym_sec->output_section->vma);
2926 }
2927 else
2928 {
2929 /* It's an external symbol. */
2930 int e_indx;
2931
2932 e_indx = r_indx - symtab_hdr->sh_info;
2933 hash = ((struct elf32_hppa_link_hash_entry *)
2934 elf_sym_hashes (input_bfd)[e_indx]);
2935
2936 while (hash->elf.root.type == bfd_link_hash_indirect
2937 || hash->elf.root.type == bfd_link_hash_warning)
2938 hash = ((struct elf32_hppa_link_hash_entry *)
2939 hash->elf.root.u.i.link);
2940
2941 if (hash->elf.root.type == bfd_link_hash_defined
2942 || hash->elf.root.type == bfd_link_hash_defweak)
2943 {
2944 sym_sec = hash->elf.root.u.def.section;
2945 sym_value = hash->elf.root.u.def.value;
2946 if (sym_sec->output_section != NULL)
2947 destination = (sym_value + irela->r_addend
2948 + sym_sec->output_offset
2949 + sym_sec->output_section->vma);
2950 }
2951 else if (hash->elf.root.type == bfd_link_hash_undefweak)
2952 {
2953 if (! info->shared)
2954 continue;
2955 }
2956 else if (hash->elf.root.type == bfd_link_hash_undefined)
2957 {
2958 if (! (info->shared
2959 && !info->no_undefined
2960 && (ELF_ST_VISIBILITY (hash->elf.other)
2961 == STV_DEFAULT)))
2962 continue;
2963 }
2964 else
2965 {
2966 bfd_set_error (bfd_error_bad_value);
2967 goto error_ret_free_internal;
2968 }
2969 }
2970
2971 /* Determine what (if any) linker stub is needed. */
2972 stub_type = hppa_type_of_stub (section, irela, hash,
2973 destination);
2974 if (stub_type == hppa_stub_none)
2975 continue;
2976
2977 /* Support for grouping stub sections. */
2978 id_sec = hplink->stub_group[section->id].link_sec;
2979
2980 /* Get the name of this stub. */
2981 stub_name = hppa_stub_name (id_sec, sym_sec, hash, irela);
2982 if (!stub_name)
2983 goto error_ret_free_internal;
2984
2985 stub_entry = hppa_stub_hash_lookup (&hplink->stub_hash_table,
2986 stub_name,
2987 false, false);
2988 if (stub_entry != NULL)
2989 {
2990 /* The proper stub has already been created. */
2991 free (stub_name);
2992 continue;
2993 }
2994
2995 stub_entry = hppa_add_stub (stub_name, section, hplink);
2996 if (stub_entry == NULL)
2997 {
2998 free (stub_name);
2999 goto error_ret_free_local;
3000 }
3001
3002 stub_entry->target_value = sym_value;
3003 stub_entry->target_section = sym_sec;
3004 stub_entry->stub_type = stub_type;
3005 if (info->shared)
3006 {
3007 if (stub_type == hppa_stub_import)
3008 stub_entry->stub_type = hppa_stub_import_shared;
3009 else if (stub_type == hppa_stub_long_branch
3010 && (LONG_BRANCH_PIC_IN_SHLIB || hash == NULL))
3011 stub_entry->stub_type = hppa_stub_long_branch_shared;
3012 }
3013 stub_entry->h = hash;
3014 stub_changed = 1;
3015 }
3016
3017 /* We're done with the internal relocs, free them. */
3018 free (internal_relocs);
3019 }
3020 }
3021
3022 if (!stub_changed)
3023 break;
3024
3025 /* OK, we've added some stubs. Find out the new size of the
3026 stub sections. */
3027 for (stub_sec = hplink->stub_bfd->sections;
3028 stub_sec != NULL;
3029 stub_sec = stub_sec->next)
3030 {
3031 stub_sec->_raw_size = 0;
3032 stub_sec->_cooked_size = 0;
3033 }
3034 #if ! LONG_BRANCH_PIC_IN_SHLIB
3035 {
3036 int i;
3037
3038 for (i = top_id; i >= 0; --i)
3039 {
3040 /* This will probably hit the same section many times.. */
3041 stub_sec = hplink->stub_group[i].reloc_sec;
3042 if (stub_sec != NULL)
3043 {
3044 stub_sec->_raw_size = 0;
3045 stub_sec->_cooked_size = 0;
3046 }
3047 }
3048 }
3049 #endif
3050
3051 bfd_hash_traverse (&hplink->stub_hash_table,
3052 hppa_size_one_stub,
3053 hplink);
3054
3055 /* Ask the linker to do its stuff. */
3056 (*hplink->layout_sections_again) ();
3057 stub_changed = 0;
3058 }
3059
3060 ret = 1;
3061
3062 error_ret_free_local:
3063 while (bfd_count-- > 0)
3064 if (all_local_syms[bfd_count])
3065 free (all_local_syms[bfd_count]);
3066 free (all_local_syms);
3067
3068 return ret;
3069 }
3070
3071
3072 /* For a final link, this function is called after we have sized the
3073 stubs to provide a value for __gp. */
3074
3075 boolean
3076 elf32_hppa_set_gp (abfd, info)
3077 bfd *abfd;
3078 struct bfd_link_info *info;
3079 {
3080 struct elf32_hppa_link_hash_table *hplink;
3081 struct elf_link_hash_entry *h;
3082 asection *sec;
3083 bfd_vma gp_val;
3084
3085 hplink = hppa_link_hash_table (info);
3086 h = elf_link_hash_lookup (&hplink->root, "$global$",
3087 false, false, false);
3088
3089 if (h != NULL && h->root.type == bfd_link_hash_defined)
3090 {
3091 gp_val = h->root.u.def.value;
3092 sec = h->root.u.def.section;
3093 }
3094 else
3095 {
3096 /* Choose to point our LTP at, in this order, one of .plt, .got,
3097 or .data, if these sections exist. In the case of choosing
3098 .plt try to make the LTP ideal for addressing anywhere in the
3099 .plt or .got with a 14 bit signed offset. Typically, the end
3100 of the .plt is the start of the .got, so choose .plt + 0x2000
3101 if either the .plt or .got is larger than 0x2000. If both
3102 the .plt and .got are smaller than 0x2000, choose the end of
3103 the .plt section. */
3104
3105 sec = hplink->splt;
3106 if (sec != NULL)
3107 {
3108 gp_val = sec->_raw_size;
3109 if (gp_val > 0x2000
3110 || (hplink->sgot && hplink->sgot->_raw_size > 0x2000))
3111 {
3112 gp_val = 0x2000;
3113 }
3114 }
3115 else
3116 {
3117 gp_val = 0;
3118 sec = hplink->sgot;
3119 if (sec != NULL)
3120 {
3121 /* We know we don't have a .plt. If .got is large,
3122 offset our LTP. */
3123 if (sec->_raw_size > 0x2000)
3124 gp_val = 0x2000;
3125 }
3126 else
3127 {
3128 /* No .plt or .got. Who cares what the LTP is? */
3129 sec = bfd_get_section_by_name (abfd, ".data");
3130 }
3131 }
3132 }
3133
3134 if (sec != NULL)
3135 gp_val += sec->output_section->vma + sec->output_offset;
3136
3137 elf_gp (abfd) = gp_val;
3138 return true;
3139 }
3140
3141
3142 /* Build all the stubs associated with the current output file. The
3143 stubs are kept in a hash table attached to the main linker hash
3144 table. We also set up the .plt entries for statically linked PIC
3145 functions here. This function is called via hppaelf_finish in the
3146 linker. */
3147
3148 boolean
3149 elf32_hppa_build_stubs (info)
3150 struct bfd_link_info *info;
3151 {
3152 asection *stub_sec;
3153 struct bfd_hash_table *table;
3154 struct elf32_hppa_link_hash_table *hplink;
3155
3156 hplink = hppa_link_hash_table (info);
3157
3158 for (stub_sec = hplink->stub_bfd->sections;
3159 stub_sec != NULL;
3160 stub_sec = stub_sec->next)
3161 {
3162 size_t size;
3163
3164 /* Allocate memory to hold the linker stubs. */
3165 size = stub_sec->_raw_size;
3166 stub_sec->contents = (unsigned char *) bfd_zalloc (hplink->stub_bfd,
3167 size);
3168 if (stub_sec->contents == NULL && size != 0)
3169 return false;
3170 stub_sec->_raw_size = 0;
3171 }
3172
3173 /* Build the stubs as directed by the stub hash table. */
3174 table = &hplink->stub_hash_table;
3175 bfd_hash_traverse (table, hppa_build_one_stub, info);
3176
3177 return true;
3178 }
3179
3180
3181 /* Perform a relocation as part of a final link. */
3182
3183 static bfd_reloc_status_type
3184 final_link_relocate (input_section, contents, rel, value, hplink, sym_sec, h)
3185 asection *input_section;
3186 bfd_byte *contents;
3187 const Elf_Internal_Rela *rel;
3188 bfd_vma value;
3189 struct elf32_hppa_link_hash_table *hplink;
3190 asection *sym_sec;
3191 struct elf32_hppa_link_hash_entry *h;
3192 {
3193 int insn;
3194 unsigned int r_type = ELF32_R_TYPE (rel->r_info);
3195 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3196 int r_format = howto->bitsize;
3197 enum hppa_reloc_field_selector_type_alt r_field;
3198 bfd *input_bfd = input_section->owner;
3199 bfd_vma offset = rel->r_offset;
3200 bfd_vma max_branch_offset = 0;
3201 bfd_byte *hit_data = contents + offset;
3202 bfd_signed_vma addend = rel->r_addend;
3203 bfd_vma location;
3204 struct elf32_hppa_stub_hash_entry *stub_entry = NULL;
3205 int val;
3206
3207 if (r_type == R_PARISC_NONE)
3208 return bfd_reloc_ok;
3209
3210 insn = bfd_get_32 (input_bfd, hit_data);
3211
3212 /* Find out where we are and where we're going. */
3213 location = (offset +
3214 input_section->output_offset +
3215 input_section->output_section->vma);
3216
3217 switch (r_type)
3218 {
3219 case R_PARISC_PCREL12F:
3220 case R_PARISC_PCREL17F:
3221 case R_PARISC_PCREL22F:
3222 /* If this is a call to a function defined in another dynamic
3223 library, or if it is a call to a PIC function in the same
3224 object, or if this is a shared link and it is a call to a
3225 weak symbol which may or may not be in the same object, then
3226 find the import stub in the stub hash. */
3227 if (sym_sec == NULL
3228 || sym_sec->output_section == NULL
3229 || (h != NULL &&
3230 (h->pic_call
3231 || (h->elf.root.type == bfd_link_hash_defweak
3232 && h->elf.dynindx != -1
3233 && h->elf.plt.offset != (bfd_vma) -1))))
3234 {
3235 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3236 h, rel, hplink);
3237 if (stub_entry != NULL)
3238 {
3239 value = (stub_entry->stub_offset
3240 + stub_entry->stub_sec->output_offset
3241 + stub_entry->stub_sec->output_section->vma);
3242 addend = 0;
3243 }
3244 else if (sym_sec == NULL && h != NULL
3245 && h->elf.root.type == bfd_link_hash_undefweak)
3246 {
3247 /* It's OK if undefined weak. Make undefined weak
3248 branches go nowhere. */
3249 value = location;
3250 addend = 0;
3251 }
3252 else
3253 return bfd_reloc_notsupported;
3254 }
3255 /* Fall thru. */
3256
3257 case R_PARISC_PCREL21L:
3258 case R_PARISC_PCREL17C:
3259 case R_PARISC_PCREL17R:
3260 case R_PARISC_PCREL14R:
3261 case R_PARISC_PCREL14F:
3262 /* Make it a pc relative offset. */
3263 value -= location;
3264 addend -= 8;
3265 break;
3266
3267 case R_PARISC_DPREL21L:
3268 case R_PARISC_DPREL14R:
3269 case R_PARISC_DPREL14F:
3270 /* For all the DP relative relocations, we need to examine the symbol's
3271 section. If it's a code section, then "data pointer relative" makes
3272 no sense. In that case we don't adjust the "value", and for 21 bit
3273 addil instructions, we change the source addend register from %dp to
3274 %r0. This situation commonly arises when a variable's "constness"
3275 is declared differently from the way the variable is defined. For
3276 instance: "extern int foo" with foo defined as "const int foo". */
3277 if (sym_sec == NULL)
3278 break;
3279 if ((sym_sec->flags & SEC_CODE) != 0)
3280 {
3281 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3282 == (((int) OP_ADDIL << 26) | (27 << 21)))
3283 {
3284 insn &= ~ (0x1f << 21);
3285 #if 1 /* debug them. */
3286 (*_bfd_error_handler)
3287 (_("%s(%s+0x%lx): fixing %s"),
3288 bfd_get_filename (input_bfd),
3289 input_section->name,
3290 (long) rel->r_offset,
3291 howto->name);
3292 #endif
3293 }
3294 /* Now try to make things easy for the dynamic linker. */
3295
3296 break;
3297 }
3298 /* Fall thru. */
3299
3300 case R_PARISC_DLTIND21L:
3301 case R_PARISC_DLTIND14R:
3302 case R_PARISC_DLTIND14F:
3303 value -= elf_gp (input_section->output_section->owner);
3304 break;
3305
3306 default:
3307 break;
3308 }
3309
3310 switch (r_type)
3311 {
3312 case R_PARISC_DIR32:
3313 case R_PARISC_DIR14F:
3314 case R_PARISC_DIR17F:
3315 case R_PARISC_PCREL17C:
3316 case R_PARISC_PCREL14F:
3317 case R_PARISC_DPREL14F:
3318 case R_PARISC_PLABEL32:
3319 case R_PARISC_DLTIND14F:
3320 case R_PARISC_SEGBASE:
3321 case R_PARISC_SEGREL32:
3322 r_field = e_fsel;
3323 break;
3324
3325 case R_PARISC_DIR21L:
3326 case R_PARISC_PCREL21L:
3327 case R_PARISC_DPREL21L:
3328 case R_PARISC_PLABEL21L:
3329 case R_PARISC_DLTIND21L:
3330 r_field = e_lrsel;
3331 break;
3332
3333 case R_PARISC_DIR17R:
3334 case R_PARISC_PCREL17R:
3335 case R_PARISC_DIR14R:
3336 case R_PARISC_PCREL14R:
3337 case R_PARISC_DPREL14R:
3338 case R_PARISC_PLABEL14R:
3339 case R_PARISC_DLTIND14R:
3340 r_field = e_rrsel;
3341 break;
3342
3343 case R_PARISC_PCREL12F:
3344 case R_PARISC_PCREL17F:
3345 case R_PARISC_PCREL22F:
3346 r_field = e_fsel;
3347
3348 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3349 {
3350 max_branch_offset = (1 << (17-1)) << 2;
3351 }
3352 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3353 {
3354 max_branch_offset = (1 << (12-1)) << 2;
3355 }
3356 else
3357 {
3358 max_branch_offset = (1 << (22-1)) << 2;
3359 }
3360
3361 /* sym_sec is NULL on undefined weak syms or when shared on
3362 undefined syms. We've already checked for a stub for the
3363 shared undefined case. */
3364 if (sym_sec == NULL)
3365 break;
3366
3367 /* If the branch is out of reach, then redirect the
3368 call to the local stub for this function. */
3369 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3370 {
3371 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3372 h, rel, hplink);
3373 if (stub_entry == NULL)
3374 return bfd_reloc_notsupported;
3375
3376 /* Munge up the value and addend so that we call the stub
3377 rather than the procedure directly. */
3378 value = (stub_entry->stub_offset
3379 + stub_entry->stub_sec->output_offset
3380 + stub_entry->stub_sec->output_section->vma
3381 - location);
3382 addend = -8;
3383 }
3384 break;
3385
3386 /* Something we don't know how to handle. */
3387 default:
3388 return bfd_reloc_notsupported;
3389 }
3390
3391 /* Make sure we can reach the stub. */
3392 if (max_branch_offset != 0
3393 && value + addend + max_branch_offset >= 2*max_branch_offset)
3394 {
3395 (*_bfd_error_handler)
3396 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3397 bfd_get_filename (input_bfd),
3398 input_section->name,
3399 (long) rel->r_offset,
3400 stub_entry->root.string);
3401 return bfd_reloc_notsupported;
3402 }
3403
3404 val = hppa_field_adjust (value, addend, r_field);
3405
3406 switch (r_type)
3407 {
3408 case R_PARISC_PCREL12F:
3409 case R_PARISC_PCREL17C:
3410 case R_PARISC_PCREL17F:
3411 case R_PARISC_PCREL17R:
3412 case R_PARISC_PCREL22F:
3413 case R_PARISC_DIR17F:
3414 case R_PARISC_DIR17R:
3415 /* This is a branch. Divide the offset by four.
3416 Note that we need to decide whether it's a branch or
3417 otherwise by inspecting the reloc. Inspecting insn won't
3418 work as insn might be from a .word directive. */
3419 val >>= 2;
3420 break;
3421
3422 default:
3423 break;
3424 }
3425
3426 insn = hppa_rebuild_insn (insn, val, r_format);
3427
3428 /* Update the instruction word. */
3429 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3430 return bfd_reloc_ok;
3431 }
3432
3433
3434 /* Relocate an HPPA ELF section. */
3435
3436 static boolean
3437 elf32_hppa_relocate_section (output_bfd, info, input_bfd, input_section,
3438 contents, relocs, local_syms, local_sections)
3439 bfd *output_bfd;
3440 struct bfd_link_info *info;
3441 bfd *input_bfd;
3442 asection *input_section;
3443 bfd_byte *contents;
3444 Elf_Internal_Rela *relocs;
3445 Elf_Internal_Sym *local_syms;
3446 asection **local_sections;
3447 {
3448 bfd *dynobj;
3449 bfd_vma *local_got_offsets;
3450 struct elf32_hppa_link_hash_table *hplink;
3451 Elf_Internal_Shdr *symtab_hdr;
3452 Elf_Internal_Rela *rel;
3453 Elf_Internal_Rela *relend;
3454 asection *sreloc;
3455
3456 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3457
3458 hplink = hppa_link_hash_table (info);
3459 dynobj = hplink->root.dynobj;
3460 local_got_offsets = elf_local_got_offsets (input_bfd);
3461 sreloc = NULL;
3462
3463 rel = relocs;
3464 relend = relocs + input_section->reloc_count;
3465 for (; rel < relend; rel++)
3466 {
3467 unsigned int r_type;
3468 reloc_howto_type *howto;
3469 unsigned int r_symndx;
3470 struct elf32_hppa_link_hash_entry *h;
3471 Elf_Internal_Sym *sym;
3472 asection *sym_sec;
3473 bfd_vma relocation;
3474 bfd_reloc_status_type r;
3475 const char *sym_name;
3476 boolean plabel;
3477
3478 r_type = ELF32_R_TYPE (rel->r_info);
3479 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3480 {
3481 bfd_set_error (bfd_error_bad_value);
3482 return false;
3483 }
3484 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3485 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3486 continue;
3487
3488 r_symndx = ELF32_R_SYM (rel->r_info);
3489
3490 if (info->relocateable)
3491 {
3492 /* This is a relocateable link. We don't have to change
3493 anything, unless the reloc is against a section symbol,
3494 in which case we have to adjust according to where the
3495 section symbol winds up in the output section. */
3496 if (r_symndx < symtab_hdr->sh_info)
3497 {
3498 sym = local_syms + r_symndx;
3499 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3500 {
3501 sym_sec = local_sections[r_symndx];
3502 rel->r_addend += sym_sec->output_offset;
3503 }
3504 }
3505 continue;
3506 }
3507
3508 /* This is a final link. */
3509 h = NULL;
3510 sym = NULL;
3511 sym_sec = NULL;
3512 if (r_symndx < symtab_hdr->sh_info)
3513 {
3514 /* This is a local symbol, h defaults to NULL. */
3515 sym = local_syms + r_symndx;
3516 sym_sec = local_sections[r_symndx];
3517 relocation = ((ELF_ST_TYPE (sym->st_info) == STT_SECTION
3518 ? 0 : sym->st_value)
3519 + sym_sec->output_offset
3520 + sym_sec->output_section->vma);
3521 }
3522 else
3523 {
3524 int indx;
3525
3526 /* It's a global; Find its entry in the link hash. */
3527 indx = r_symndx - symtab_hdr->sh_info;
3528 h = ((struct elf32_hppa_link_hash_entry *)
3529 elf_sym_hashes (input_bfd)[indx]);
3530 while (h->elf.root.type == bfd_link_hash_indirect
3531 || h->elf.root.type == bfd_link_hash_warning)
3532 h = (struct elf32_hppa_link_hash_entry *) h->elf.root.u.i.link;
3533
3534 relocation = 0;
3535 if (h->elf.root.type == bfd_link_hash_defined
3536 || h->elf.root.type == bfd_link_hash_defweak)
3537 {
3538 sym_sec = h->elf.root.u.def.section;
3539 /* If sym_sec->output_section is NULL, then it's a
3540 symbol defined in a shared library. */
3541 if (sym_sec->output_section != NULL)
3542 relocation = (h->elf.root.u.def.value
3543 + sym_sec->output_offset
3544 + sym_sec->output_section->vma);
3545 }
3546 else if (h->elf.root.type == bfd_link_hash_undefweak)
3547 ;
3548 else if (info->shared && !info->no_undefined
3549 && ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT)
3550 {
3551 if (info->symbolic)
3552 if (!((*info->callbacks->undefined_symbol)
3553 (info, h->elf.root.root.string, input_bfd,
3554 input_section, rel->r_offset, false)))
3555 return false;
3556 }
3557 else
3558 {
3559 if (!((*info->callbacks->undefined_symbol)
3560 (info, h->elf.root.root.string, input_bfd,
3561 input_section, rel->r_offset, true)))
3562 return false;
3563 }
3564 }
3565
3566 /* Do any required modifications to the relocation value, and
3567 determine what types of dynamic info we need to output, if
3568 any. */
3569 plabel = 0;
3570 switch (r_type)
3571 {
3572 case R_PARISC_DLTIND14F:
3573 case R_PARISC_DLTIND14R:
3574 case R_PARISC_DLTIND21L:
3575 /* Relocation is to the entry for this symbol in the global
3576 offset table. */
3577 if (h != NULL)
3578 {
3579 bfd_vma off;
3580
3581 off = h->elf.got.offset;
3582 BFD_ASSERT (off != (bfd_vma) -1);
3583
3584 if (! hplink->root.dynamic_sections_created
3585 || (info->shared
3586 && (info->symbolic || h->elf.dynindx == -1)
3587 && (h->elf.elf_link_hash_flags
3588 & ELF_LINK_HASH_DEF_REGULAR) != 0))
3589 {
3590 /* This is actually a static link, or it is a
3591 -Bsymbolic link and the symbol is defined
3592 locally, or the symbol was forced to be local
3593 because of a version file. We must initialize
3594 this entry in the global offset table. Since the
3595 offset must always be a multiple of 4, we use the
3596 least significant bit to record whether we have
3597 initialized it already.
3598
3599 When doing a dynamic link, we create a .rela.got
3600 relocation entry to initialize the value. This
3601 is done in the finish_dynamic_symbol routine. */
3602 if ((off & 1) != 0)
3603 off &= ~1;
3604 else
3605 {
3606 bfd_put_32 (output_bfd, relocation,
3607 hplink->sgot->contents + off);
3608 h->elf.got.offset |= 1;
3609 }
3610 }
3611
3612 relocation = off;
3613 }
3614 else
3615 {
3616 /* Local symbol case. */
3617 bfd_vma off;
3618
3619 BFD_ASSERT (local_got_offsets != NULL
3620 && local_got_offsets[r_symndx] != (bfd_vma) -1);
3621
3622 off = local_got_offsets[r_symndx];
3623
3624 /* The offset must always be a multiple of 4. We use
3625 the least significant bit to record whether we have
3626 already generated the necessary reloc. */
3627 if ((off & 1) != 0)
3628 off &= ~1;
3629 else
3630 {
3631 bfd_put_32 (output_bfd, relocation,
3632 hplink->sgot->contents + off);
3633
3634 if (info->shared)
3635 {
3636 /* Output a dynamic *ABS* relocation for this
3637 GOT entry. In this case it is relative to
3638 the base of the object because the symbol
3639 index is zero. */
3640 Elf_Internal_Rela outrel;
3641 asection *srelgot = hplink->srelgot;
3642
3643 outrel.r_offset = (off
3644 + hplink->sgot->output_offset
3645 + hplink->sgot->output_section->vma);
3646 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3647 outrel.r_addend = relocation;
3648 bfd_elf32_swap_reloca_out (output_bfd, &outrel,
3649 ((Elf32_External_Rela *)
3650 srelgot->contents
3651 + srelgot->reloc_count));
3652 ++srelgot->reloc_count;
3653 }
3654
3655 local_got_offsets[r_symndx] |= 1;
3656 }
3657
3658 relocation = off;
3659 }
3660
3661 /* Add the base of the GOT to the relocation value. */
3662 relocation += (hplink->sgot->output_offset
3663 + hplink->sgot->output_section->vma);
3664 break;
3665
3666 case R_PARISC_PLABEL14R:
3667 case R_PARISC_PLABEL21L:
3668 case R_PARISC_PLABEL32:
3669 if (hplink->root.dynamic_sections_created)
3670 {
3671 bfd_vma off;
3672
3673 /* If we have a global symbol with a PLT slot, then
3674 redirect this relocation to it. */
3675 if (h != NULL)
3676 {
3677 off = h->elf.plt.offset;
3678 }
3679 else
3680 {
3681 int indx;
3682
3683 indx = r_symndx + symtab_hdr->sh_info;
3684 off = local_got_offsets[indx];
3685
3686 /* As for the local .got entry case, we use the last
3687 bit to record whether we've already initialised
3688 this local .plt entry. */
3689 if ((off & 1) != 0)
3690 off &= ~1;
3691 else
3692 {
3693 bfd_put_32 (output_bfd,
3694 relocation,
3695 hplink->splt->contents + off);
3696 bfd_put_32 (output_bfd,
3697 elf_gp (hplink->splt->output_section->owner),
3698 hplink->splt->contents + off + 4);
3699
3700 if (info->shared)
3701 {
3702 /* Output a dynamic IPLT relocation for this
3703 PLT entry. */
3704 Elf_Internal_Rela outrel;
3705 asection *srelplt = hplink->srelplt;
3706
3707 outrel.r_offset = (off
3708 + hplink->splt->output_offset
3709 + hplink->splt->output_section->vma);
3710 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3711 outrel.r_addend = relocation;
3712 bfd_elf32_swap_reloca_out (output_bfd, &outrel,
3713 ((Elf32_External_Rela *)
3714 srelplt->contents
3715 + srelplt->reloc_count));
3716 ++srelplt->reloc_count;
3717 }
3718
3719 local_got_offsets[indx] |= 1;
3720 }
3721 }
3722
3723 BFD_ASSERT (off < (bfd_vma) -2);
3724
3725 /* PLABELs contain function pointers. Relocation is to
3726 the entry for the function in the .plt. The magic +2
3727 offset signals to $$dyncall that the function pointer
3728 is in the .plt and thus has a gp pointer too.
3729 Exception: Undefined PLABELs should have a value of
3730 zero. */
3731 if (h == NULL
3732 || (h->elf.root.type != bfd_link_hash_undefweak
3733 && h->elf.root.type != bfd_link_hash_undefined))
3734 {
3735 relocation = (off
3736 + hplink->splt->output_offset
3737 + hplink->splt->output_section->vma
3738 + 2);
3739 }
3740 plabel = 1;
3741 }
3742 /* Fall through and possibly emit a dynamic relocation. */
3743
3744 case R_PARISC_DIR17F:
3745 case R_PARISC_DIR17R:
3746 case R_PARISC_DIR14F:
3747 case R_PARISC_DIR14R:
3748 case R_PARISC_DIR21L:
3749 case R_PARISC_DPREL14F:
3750 case R_PARISC_DPREL14R:
3751 case R_PARISC_DPREL21L:
3752 case R_PARISC_DIR32:
3753 /* The reloc types handled here and this conditional
3754 expression must match the code in check_relocs and
3755 hppa_discard_copies. ie. We need exactly the same
3756 condition as in check_relocs, with some extra conditions
3757 (dynindx test in this case) to cater for relocs removed
3758 by hppa_discard_copies. */
3759 if ((input_section->flags & SEC_ALLOC) != 0
3760 && info->shared
3761 #if RELATIVE_DYNAMIC_RELOCS
3762 && (is_absolute_reloc (r_type)
3763 || ((!info->symbolic
3764 || (h != NULL
3765 && ((h->elf.elf_link_hash_flags
3766 & ELF_LINK_HASH_DEF_REGULAR) == 0
3767 || h->elf.root.type == bfd_link_hash_defweak)))
3768 && (h == NULL || h->elf.dynindx != -1)))
3769 #endif
3770 )
3771 {
3772 Elf_Internal_Rela outrel;
3773 boolean skip;
3774
3775 /* When generating a shared object, these relocations
3776 are copied into the output file to be resolved at run
3777 time. */
3778
3779 if (sreloc == NULL)
3780 {
3781 const char *name;
3782
3783 name = (bfd_elf_string_from_elf_section
3784 (input_bfd,
3785 elf_elfheader (input_bfd)->e_shstrndx,
3786 elf_section_data (input_section)->rel_hdr.sh_name));
3787 if (name == NULL)
3788 return false;
3789 sreloc = bfd_get_section_by_name (dynobj, name);
3790 BFD_ASSERT (sreloc != NULL);
3791 }
3792
3793 outrel.r_offset = rel->r_offset;
3794 outrel.r_addend = rel->r_addend;
3795 skip = false;
3796 if (elf_section_data (input_section)->stab_info != NULL)
3797 {
3798 bfd_vma off;
3799
3800 off = (_bfd_stab_section_offset
3801 (output_bfd, &hplink->root.stab_info,
3802 input_section,
3803 &elf_section_data (input_section)->stab_info,
3804 rel->r_offset));
3805 if (off == (bfd_vma) -1)
3806 skip = true;
3807 outrel.r_offset = off;
3808 }
3809
3810 outrel.r_offset += (input_section->output_offset
3811 + input_section->output_section->vma);
3812
3813 if (skip)
3814 {
3815 memset (&outrel, 0, sizeof (outrel));
3816 }
3817 else if (h != NULL
3818 && h->elf.dynindx != -1
3819 && (plabel
3820 || !info->symbolic
3821 || (h->elf.elf_link_hash_flags
3822 & ELF_LINK_HASH_DEF_REGULAR) == 0))
3823 {
3824 outrel.r_info = ELF32_R_INFO (h->elf.dynindx, r_type);
3825 }
3826 else /* It's a local symbol, or one marked to become local. */
3827 {
3828 int indx = 0;
3829
3830 /* Add the absolute offset of the symbol. */
3831 outrel.r_addend += relocation;
3832
3833 /* Global plabels need to be processed by the
3834 dynamic linker so that functions have at most one
3835 fptr. For this reason, we need to differentiate
3836 between global and local plabels, which we do by
3837 providing the function symbol for a global plabel
3838 reloc, and no symbol for local plabels. */
3839 if (! plabel
3840 && sym_sec != NULL
3841 && sym_sec->output_section != NULL
3842 && ! bfd_is_abs_section (sym_sec))
3843 {
3844 indx = elf_section_data (sym_sec->output_section)->dynindx;
3845 /* We are turning this relocation into one
3846 against a section symbol, so subtract out the
3847 output section's address but not the offset
3848 of the input section in the output section. */
3849 outrel.r_addend -= sym_sec->output_section->vma;
3850 }
3851
3852 outrel.r_info = ELF32_R_INFO (indx, r_type);
3853 }
3854
3855 bfd_elf32_swap_reloca_out (output_bfd, &outrel,
3856 ((Elf32_External_Rela *)
3857 sreloc->contents
3858 + sreloc->reloc_count));
3859 ++sreloc->reloc_count;
3860 }
3861 break;
3862
3863 default:
3864 break;
3865 }
3866
3867 r = final_link_relocate (input_section, contents, rel, relocation,
3868 hplink, sym_sec, h);
3869
3870 if (r == bfd_reloc_ok)
3871 continue;
3872
3873 if (h != NULL)
3874 sym_name = h->elf.root.root.string;
3875 else
3876 {
3877 sym_name = bfd_elf_string_from_elf_section (input_bfd,
3878 symtab_hdr->sh_link,
3879 sym->st_name);
3880 if (sym_name == NULL)
3881 return false;
3882 if (*sym_name == '\0')
3883 sym_name = bfd_section_name (input_bfd, sym_sec);
3884 }
3885
3886 howto = elf_hppa_howto_table + r_type;
3887
3888 if (r == bfd_reloc_undefined || r == bfd_reloc_notsupported)
3889 {
3890 (*_bfd_error_handler)
3891 (_("%s(%s+0x%lx): cannot handle %s for %s"),
3892 bfd_get_filename (input_bfd),
3893 input_section->name,
3894 (long) rel->r_offset,
3895 howto->name,
3896 sym_name);
3897 }
3898 else
3899 {
3900 if (!((*info->callbacks->reloc_overflow)
3901 (info, sym_name, howto->name, (bfd_vma) 0,
3902 input_bfd, input_section, rel->r_offset)))
3903 return false;
3904 }
3905 }
3906
3907 return true;
3908 }
3909
3910
3911 /* Finish up dynamic symbol handling. We set the contents of various
3912 dynamic sections here. */
3913
3914 static boolean
3915 elf32_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
3916 bfd *output_bfd;
3917 struct bfd_link_info *info;
3918 struct elf_link_hash_entry *h;
3919 Elf_Internal_Sym *sym;
3920 {
3921 struct elf32_hppa_link_hash_table *hplink;
3922 bfd *dynobj;
3923
3924 hplink = hppa_link_hash_table (info);
3925 dynobj = hplink->root.dynobj;
3926
3927 if (h->plt.offset != (bfd_vma) -1)
3928 {
3929 bfd_vma value;
3930
3931 /* This symbol has an entry in the procedure linkage table. Set
3932 it up.
3933
3934 The format of a plt entry is
3935 <funcaddr>
3936 <__gp>
3937 */
3938 value = 0;
3939 if (h->root.type == bfd_link_hash_defined
3940 || h->root.type == bfd_link_hash_defweak)
3941 {
3942 value = h->root.u.def.value;
3943 if (h->root.u.def.section->output_section != NULL)
3944 value += (h->root.u.def.section->output_offset
3945 + h->root.u.def.section->output_section->vma);
3946 }
3947
3948 if (! ((struct elf32_hppa_link_hash_entry *) h)->pic_call)
3949 {
3950 Elf_Internal_Rela rel;
3951
3952 /* Create a dynamic IPLT relocation for this entry. */
3953 rel.r_offset = (h->plt.offset
3954 + hplink->splt->output_offset
3955 + hplink->splt->output_section->vma);
3956 if (! ((struct elf32_hppa_link_hash_entry *) h)->plt_abs
3957 && h->dynindx != -1)
3958 {
3959 /* To support lazy linking, the function pointer is
3960 initialised to point to a special stub stored at the
3961 end of the .plt. This is only done for plt entries
3962 with a non-*ABS* dynamic relocation. */
3963 value = (hplink->splt->output_offset
3964 + hplink->splt->output_section->vma
3965 + hplink->splt->_raw_size
3966 - sizeof (plt_stub)
3967 + PLT_STUB_ENTRY);
3968 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_IPLT);
3969 rel.r_addend = 0;
3970 }
3971 else
3972 {
3973 /* This symbol has been marked to become local, and is
3974 used by a plabel so must be kept in the .plt. */
3975 rel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3976 rel.r_addend = value;
3977 }
3978
3979 bfd_elf32_swap_reloca_out (hplink->splt->output_section->owner,
3980 &rel,
3981 ((Elf32_External_Rela *)
3982 hplink->srelplt->contents
3983 + hplink->srelplt->reloc_count));
3984 hplink->srelplt->reloc_count++;
3985 }
3986
3987 bfd_put_32 (hplink->splt->owner,
3988 value,
3989 hplink->splt->contents + h->plt.offset);
3990 bfd_put_32 (hplink->splt->owner,
3991 elf_gp (hplink->splt->output_section->owner),
3992 hplink->splt->contents + h->plt.offset + 4);
3993 if (PLABEL_PLT_ENTRY_SIZE != PLT_ENTRY_SIZE
3994 && ((struct elf32_hppa_link_hash_entry *) h)->plabel
3995 && h->dynindx != -1)
3996 {
3997 memset (hplink->splt->contents + h->plt.offset + 8,
3998 0, PLABEL_PLT_ENTRY_SIZE - PLT_ENTRY_SIZE);
3999 }
4000
4001 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
4002 {
4003 /* Mark the symbol as undefined, rather than as defined in
4004 the .plt section. Leave the value alone. */
4005 sym->st_shndx = SHN_UNDEF;
4006 }
4007 }
4008
4009 if (h->got.offset != (bfd_vma) -1)
4010 {
4011 Elf_Internal_Rela rel;
4012
4013 /* This symbol has an entry in the global offset table. Set it
4014 up. */
4015
4016 rel.r_offset = ((h->got.offset &~ (bfd_vma) 1)
4017 + hplink->sgot->output_offset
4018 + hplink->sgot->output_section->vma);
4019
4020 /* If this is a static link, or it is a -Bsymbolic link and the
4021 symbol is defined locally or was forced to be local because
4022 of a version file, we just want to emit a RELATIVE reloc.
4023 The entry in the global offset table will already have been
4024 initialized in the relocate_section function. */
4025 if (! hplink->root.dynamic_sections_created
4026 || (info->shared
4027 && (info->symbolic || h->dynindx == -1)
4028 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
4029 {
4030 rel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4031 rel.r_addend = (h->root.u.def.value
4032 + h->root.u.def.section->output_offset
4033 + h->root.u.def.section->output_section->vma);
4034 }
4035 else
4036 {
4037 BFD_ASSERT((h->got.offset & 1) == 0);
4038 bfd_put_32 (output_bfd, (bfd_vma) 0,
4039 hplink->sgot->contents + h->got.offset);
4040 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_DIR32);
4041 rel.r_addend = 0;
4042 }
4043
4044 bfd_elf32_swap_reloca_out (output_bfd, &rel,
4045 ((Elf32_External_Rela *)
4046 hplink->srelgot->contents
4047 + hplink->srelgot->reloc_count));
4048 ++hplink->srelgot->reloc_count;
4049 }
4050
4051 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
4052 {
4053 asection *s;
4054 Elf_Internal_Rela rel;
4055
4056 /* This symbol needs a copy reloc. Set it up. */
4057
4058 BFD_ASSERT (h->dynindx != -1
4059 && (h->root.type == bfd_link_hash_defined
4060 || h->root.type == bfd_link_hash_defweak));
4061
4062 s = hplink->srelbss;
4063
4064 rel.r_offset = (h->root.u.def.value
4065 + h->root.u.def.section->output_offset
4066 + h->root.u.def.section->output_section->vma);
4067 rel.r_addend = 0;
4068 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_COPY);
4069 bfd_elf32_swap_reloca_out (output_bfd, &rel,
4070 ((Elf32_External_Rela *) s->contents
4071 + s->reloc_count));
4072 ++s->reloc_count;
4073 }
4074
4075 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4076 if (h->root.root.string[0] == '_'
4077 && (strcmp (h->root.root.string, "_DYNAMIC") == 0
4078 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0))
4079 {
4080 sym->st_shndx = SHN_ABS;
4081 }
4082
4083 return true;
4084 }
4085
4086
4087 /* Finish up the dynamic sections. */
4088
4089 static boolean
4090 elf32_hppa_finish_dynamic_sections (output_bfd, info)
4091 bfd *output_bfd;
4092 struct bfd_link_info *info;
4093 {
4094 bfd *dynobj;
4095 struct elf32_hppa_link_hash_table *hplink;
4096 asection *sdyn;
4097
4098 hplink = hppa_link_hash_table (info);
4099 dynobj = hplink->root.dynobj;
4100
4101 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4102
4103 if (hplink->root.dynamic_sections_created)
4104 {
4105 Elf32_External_Dyn *dyncon, *dynconend;
4106
4107 BFD_ASSERT (sdyn != NULL);
4108
4109 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4110 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
4111 for (; dyncon < dynconend; dyncon++)
4112 {
4113 Elf_Internal_Dyn dyn;
4114 asection *s;
4115
4116 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4117
4118 switch (dyn.d_tag)
4119 {
4120 default:
4121 break;
4122
4123 case DT_PLTGOT:
4124 /* Use PLTGOT to set the GOT register. */
4125 dyn.d_un.d_ptr = elf_gp (output_bfd);
4126 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4127 break;
4128
4129 case DT_JMPREL:
4130 s = hplink->srelplt;
4131 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4132 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4133 break;
4134
4135 case DT_PLTRELSZ:
4136 s = hplink->srelplt;
4137 if (s->_cooked_size != 0)
4138 dyn.d_un.d_val = s->_cooked_size;
4139 else
4140 dyn.d_un.d_val = s->_raw_size;
4141 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4142 break;
4143
4144 case DT_INIT:
4145 case DT_FINI:
4146 {
4147 struct elf_link_hash_entry *h;
4148 const char *funcname;
4149
4150 if (dyn.d_tag == DT_INIT)
4151 funcname = info->init_function;
4152 else
4153 funcname = info->fini_function;
4154
4155 h = elf_link_hash_lookup (&hplink->root, funcname,
4156 false, false, false);
4157
4158 /* This is a function pointer. The magic +2 offset
4159 signals to $$dyncall that the function pointer
4160 is in the .plt and thus has a gp pointer too. */
4161 dyn.d_un.d_ptr = (h->plt.offset
4162 + hplink->splt->output_offset
4163 + hplink->splt->output_section->vma
4164 + 2);
4165 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4166 break;
4167 }
4168 }
4169 }
4170 }
4171
4172 if (hplink->sgot->_raw_size != 0)
4173 {
4174 /* Fill in the first entry in the global offset table.
4175 We use it to point to our dynamic section, if we have one. */
4176 bfd_put_32 (output_bfd,
4177 (sdyn != NULL
4178 ? sdyn->output_section->vma + sdyn->output_offset
4179 : (bfd_vma) 0),
4180 hplink->sgot->contents);
4181
4182 /* The second entry is reserved for use by the dynamic linker. */
4183 memset (hplink->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4184
4185 /* Set .got entry size. */
4186 elf_section_data (hplink->sgot->output_section)
4187 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4188 }
4189
4190 if (hplink->splt->_raw_size != 0)
4191 {
4192 /* Set plt entry size. */
4193 elf_section_data (hplink->splt->output_section)
4194 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4195
4196 if (hplink->need_plt_stub)
4197 {
4198 /* Set up the .plt stub. */
4199 memcpy (hplink->splt->contents
4200 + hplink->splt->_raw_size - sizeof (plt_stub),
4201 plt_stub, sizeof (plt_stub));
4202
4203 if ((hplink->splt->output_offset
4204 + hplink->splt->output_section->vma
4205 + hplink->splt->_raw_size)
4206 != (hplink->sgot->output_offset
4207 + hplink->sgot->output_section->vma))
4208 {
4209 (*_bfd_error_handler)
4210 (_(".got section not immediately after .plt section"));
4211 return false;
4212 }
4213 }
4214 }
4215
4216 return true;
4217 }
4218
4219
4220 /* Called when writing out an object file to decide the type of a
4221 symbol. */
4222 static int
4223 elf32_hppa_elf_get_symbol_type (elf_sym, type)
4224 Elf_Internal_Sym *elf_sym;
4225 int type;
4226 {
4227 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4228 return STT_PARISC_MILLI;
4229 else
4230 return type;
4231 }
4232
4233
4234 /* Misc BFD support code. */
4235 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4236 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4237 #define elf_info_to_howto elf_hppa_info_to_howto
4238 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4239
4240 /* Stuff for the BFD linker. */
4241 #define bfd_elf32_bfd_final_link _bfd_elf32_gc_common_final_link
4242 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4243 #define elf_backend_add_symbol_hook elf32_hppa_add_symbol_hook
4244 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4245 #define elf_backend_check_relocs elf32_hppa_check_relocs
4246 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4247 #define elf_backend_fake_sections elf_hppa_fake_sections
4248 #define elf_backend_relocate_section elf32_hppa_relocate_section
4249 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4250 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4251 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4252 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4253 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4254 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4255 #define elf_backend_object_p elf32_hppa_object_p
4256 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4257 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4258
4259 #define elf_backend_can_gc_sections 1
4260 #define elf_backend_plt_alignment 2
4261 #define elf_backend_want_got_plt 0
4262 #define elf_backend_plt_readonly 0
4263 #define elf_backend_want_plt_sym 0
4264 #define elf_backend_got_header_size 8
4265
4266 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4267 #define TARGET_BIG_NAME "elf32-hppa"
4268 #define ELF_ARCH bfd_arch_hppa
4269 #define ELF_MACHINE_CODE EM_PARISC
4270 #define ELF_MAXPAGESIZE 0x1000
4271
4272 #include "elf32-target.h"
This page took 0.121061 seconds and 3 git commands to generate.