6fbcd646ecd46443b7746ad94df71e257391c42f
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
4
5 Original code by
6 Center for Software Science
7 Department of Computer Science
8 University of Utah
9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
10 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
11 TLS support written by Randolph Chung <tausq@debian.org>
12
13 This file is part of BFD, the Binary File Descriptor library.
14
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 3 of the License, or
18 (at your option) any later version.
19
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
28 MA 02110-1301, USA. */
29
30 #include "sysdep.h"
31 #include "bfd.h"
32 #include "libbfd.h"
33 #include "elf-bfd.h"
34 #include "elf/hppa.h"
35 #include "libhppa.h"
36 #include "elf32-hppa.h"
37 #define ARCH_SIZE 32
38 #include "elf32-hppa.h"
39 #include "elf-hppa.h"
40
41 /* In order to gain some understanding of code in this file without
42 knowing all the intricate details of the linker, note the
43 following:
44
45 Functions named elf32_hppa_* are called by external routines, other
46 functions are only called locally. elf32_hppa_* functions appear
47 in this file more or less in the order in which they are called
48 from external routines. eg. elf32_hppa_check_relocs is called
49 early in the link process, elf32_hppa_finish_dynamic_sections is
50 one of the last functions. */
51
52 /* We use two hash tables to hold information for linking PA ELF objects.
53
54 The first is the elf32_hppa_link_hash_table which is derived
55 from the standard ELF linker hash table. We use this as a place to
56 attach other hash tables and static information.
57
58 The second is the stub hash table which is derived from the
59 base BFD hash table. The stub hash table holds the information
60 necessary to build the linker stubs during a link.
61
62 There are a number of different stubs generated by the linker.
63
64 Long branch stub:
65 : ldil LR'X,%r1
66 : be,n RR'X(%sr4,%r1)
67
68 PIC long branch stub:
69 : b,l .+8,%r1
70 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
71 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
72
73 Import stub to call shared library routine from normal object file
74 (single sub-space version)
75 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
76 : ldw RR'lt_ptr+ltoff(%r1),%r21
77 : bv %r0(%r21)
78 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
79
80 Import stub to call shared library routine from shared library
81 (single sub-space version)
82 : addil LR'ltoff,%r19 ; get procedure entry point
83 : ldw RR'ltoff(%r1),%r21
84 : bv %r0(%r21)
85 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
86
87 Import stub to call shared library routine from normal object file
88 (multiple sub-space support)
89 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
90 : ldw RR'lt_ptr+ltoff(%r1),%r21
91 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
92 : ldsid (%r21),%r1
93 : mtsp %r1,%sr0
94 : be 0(%sr0,%r21) ; branch to target
95 : stw %rp,-24(%sp) ; save rp
96
97 Import stub to call shared library routine from shared library
98 (multiple sub-space support)
99 : addil LR'ltoff,%r19 ; get procedure entry point
100 : ldw RR'ltoff(%r1),%r21
101 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
102 : ldsid (%r21),%r1
103 : mtsp %r1,%sr0
104 : be 0(%sr0,%r21) ; branch to target
105 : stw %rp,-24(%sp) ; save rp
106
107 Export stub to return from shared lib routine (multiple sub-space support)
108 One of these is created for each exported procedure in a shared
109 library (and stored in the shared lib). Shared lib routines are
110 called via the first instruction in the export stub so that we can
111 do an inter-space return. Not required for single sub-space.
112 : bl,n X,%rp ; trap the return
113 : nop
114 : ldw -24(%sp),%rp ; restore the original rp
115 : ldsid (%rp),%r1
116 : mtsp %r1,%sr0
117 : be,n 0(%sr0,%rp) ; inter-space return. */
118
119
120 /* Variable names follow a coding style.
121 Please follow this (Apps Hungarian) style:
122
123 Structure/Variable Prefix
124 elf_link_hash_table "etab"
125 elf_link_hash_entry "eh"
126
127 elf32_hppa_link_hash_table "htab"
128 elf32_hppa_link_hash_entry "hh"
129
130 bfd_hash_table "btab"
131 bfd_hash_entry "bh"
132
133 bfd_hash_table containing stubs "bstab"
134 elf32_hppa_stub_hash_entry "hsh"
135
136 elf32_hppa_dyn_reloc_entry "hdh"
137
138 Always remember to use GNU Coding Style. */
139
140 #define PLT_ENTRY_SIZE 8
141 #define GOT_ENTRY_SIZE 4
142 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
143
144 static const bfd_byte plt_stub[] =
145 {
146 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
147 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
148 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
149 #define PLT_STUB_ENTRY (3*4)
150 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
151 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
152 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
153 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
154 };
155
156 /* Section name for stubs is the associated section name plus this
157 string. */
158 #define STUB_SUFFIX ".stub"
159
160 /* We don't need to copy certain PC- or GP-relative dynamic relocs
161 into a shared object's dynamic section. All the relocs of the
162 limited class we are interested in, are absolute. */
163 #ifndef RELATIVE_DYNRELOCS
164 #define RELATIVE_DYNRELOCS 0
165 #define IS_ABSOLUTE_RELOC(r_type) 1
166 #endif
167
168 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
169 copying dynamic variables from a shared lib into an app's dynbss
170 section, and instead use a dynamic relocation to point into the
171 shared lib. */
172 #define ELIMINATE_COPY_RELOCS 1
173
174 enum elf32_hppa_stub_type
175 {
176 hppa_stub_long_branch,
177 hppa_stub_long_branch_shared,
178 hppa_stub_import,
179 hppa_stub_import_shared,
180 hppa_stub_export,
181 hppa_stub_none
182 };
183
184 struct elf32_hppa_stub_hash_entry
185 {
186 /* Base hash table entry structure. */
187 struct bfd_hash_entry bh_root;
188
189 /* The stub section. */
190 asection *stub_sec;
191
192 /* Offset within stub_sec of the beginning of this stub. */
193 bfd_vma stub_offset;
194
195 /* Given the symbol's value and its section we can determine its final
196 value when building the stubs (so the stub knows where to jump. */
197 bfd_vma target_value;
198 asection *target_section;
199
200 enum elf32_hppa_stub_type stub_type;
201
202 /* The symbol table entry, if any, that this was derived from. */
203 struct elf32_hppa_link_hash_entry *hh;
204
205 /* Where this stub is being called from, or, in the case of combined
206 stub sections, the first input section in the group. */
207 asection *id_sec;
208 };
209
210 struct elf32_hppa_link_hash_entry
211 {
212 struct elf_link_hash_entry eh;
213
214 /* A pointer to the most recently used stub hash entry against this
215 symbol. */
216 struct elf32_hppa_stub_hash_entry *hsh_cache;
217
218 /* Used to count relocations for delayed sizing of relocation
219 sections. */
220 struct elf32_hppa_dyn_reloc_entry
221 {
222 /* Next relocation in the chain. */
223 struct elf32_hppa_dyn_reloc_entry *hdh_next;
224
225 /* The input section of the reloc. */
226 asection *sec;
227
228 /* Number of relocs copied in this section. */
229 bfd_size_type count;
230
231 #if RELATIVE_DYNRELOCS
232 /* Number of relative relocs copied for the input section. */
233 bfd_size_type relative_count;
234 #endif
235 } *dyn_relocs;
236
237 enum
238 {
239 GOT_UNKNOWN = 0, GOT_NORMAL = 1, GOT_TLS_GD = 2, GOT_TLS_LDM = 4, GOT_TLS_IE = 8
240 } tls_type;
241
242 /* Set if this symbol is used by a plabel reloc. */
243 unsigned int plabel:1;
244 };
245
246 struct elf32_hppa_link_hash_table
247 {
248 /* The main hash table. */
249 struct elf_link_hash_table etab;
250
251 /* The stub hash table. */
252 struct bfd_hash_table bstab;
253
254 /* Linker stub bfd. */
255 bfd *stub_bfd;
256
257 /* Linker call-backs. */
258 asection * (*add_stub_section) (const char *, asection *);
259 void (*layout_sections_again) (void);
260
261 /* Array to keep track of which stub sections have been created, and
262 information on stub grouping. */
263 struct map_stub
264 {
265 /* This is the section to which stubs in the group will be
266 attached. */
267 asection *link_sec;
268 /* The stub section. */
269 asection *stub_sec;
270 } *stub_group;
271
272 /* Assorted information used by elf32_hppa_size_stubs. */
273 unsigned int bfd_count;
274 int top_index;
275 asection **input_list;
276 Elf_Internal_Sym **all_local_syms;
277
278 /* Short-cuts to get to dynamic linker sections. */
279 asection *sgot;
280 asection *srelgot;
281 asection *splt;
282 asection *srelplt;
283 asection *sdynbss;
284 asection *srelbss;
285
286 /* Used during a final link to store the base of the text and data
287 segments so that we can perform SEGREL relocations. */
288 bfd_vma text_segment_base;
289 bfd_vma data_segment_base;
290
291 /* Whether we support multiple sub-spaces for shared libs. */
292 unsigned int multi_subspace:1;
293
294 /* Flags set when various size branches are detected. Used to
295 select suitable defaults for the stub group size. */
296 unsigned int has_12bit_branch:1;
297 unsigned int has_17bit_branch:1;
298 unsigned int has_22bit_branch:1;
299
300 /* Set if we need a .plt stub to support lazy dynamic linking. */
301 unsigned int need_plt_stub:1;
302
303 /* Small local sym to section mapping cache. */
304 struct sym_sec_cache sym_sec;
305
306 /* Data for LDM relocations. */
307 union
308 {
309 bfd_signed_vma refcount;
310 bfd_vma offset;
311 } tls_ldm_got;
312 };
313
314 /* Various hash macros and functions. */
315 #define hppa_link_hash_table(p) \
316 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
317
318 #define hppa_elf_hash_entry(ent) \
319 ((struct elf32_hppa_link_hash_entry *)(ent))
320
321 #define hppa_stub_hash_entry(ent) \
322 ((struct elf32_hppa_stub_hash_entry *)(ent))
323
324 #define hppa_stub_hash_lookup(table, string, create, copy) \
325 ((struct elf32_hppa_stub_hash_entry *) \
326 bfd_hash_lookup ((table), (string), (create), (copy)))
327
328 #define hppa_elf_local_got_tls_type(abfd) \
329 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
330
331 #define hh_name(hh) \
332 (hh ? hh->eh.root.root.string : "<undef>")
333
334 #define eh_name(eh) \
335 (eh ? eh->root.root.string : "<undef>")
336
337 /* Assorted hash table functions. */
338
339 /* Initialize an entry in the stub hash table. */
340
341 static struct bfd_hash_entry *
342 stub_hash_newfunc (struct bfd_hash_entry *entry,
343 struct bfd_hash_table *table,
344 const char *string)
345 {
346 /* Allocate the structure if it has not already been allocated by a
347 subclass. */
348 if (entry == NULL)
349 {
350 entry = bfd_hash_allocate (table,
351 sizeof (struct elf32_hppa_stub_hash_entry));
352 if (entry == NULL)
353 return entry;
354 }
355
356 /* Call the allocation method of the superclass. */
357 entry = bfd_hash_newfunc (entry, table, string);
358 if (entry != NULL)
359 {
360 struct elf32_hppa_stub_hash_entry *hsh;
361
362 /* Initialize the local fields. */
363 hsh = hppa_stub_hash_entry (entry);
364 hsh->stub_sec = NULL;
365 hsh->stub_offset = 0;
366 hsh->target_value = 0;
367 hsh->target_section = NULL;
368 hsh->stub_type = hppa_stub_long_branch;
369 hsh->hh = NULL;
370 hsh->id_sec = NULL;
371 }
372
373 return entry;
374 }
375
376 /* Initialize an entry in the link hash table. */
377
378 static struct bfd_hash_entry *
379 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
380 struct bfd_hash_table *table,
381 const char *string)
382 {
383 /* Allocate the structure if it has not already been allocated by a
384 subclass. */
385 if (entry == NULL)
386 {
387 entry = bfd_hash_allocate (table,
388 sizeof (struct elf32_hppa_link_hash_entry));
389 if (entry == NULL)
390 return entry;
391 }
392
393 /* Call the allocation method of the superclass. */
394 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
395 if (entry != NULL)
396 {
397 struct elf32_hppa_link_hash_entry *hh;
398
399 /* Initialize the local fields. */
400 hh = hppa_elf_hash_entry (entry);
401 hh->hsh_cache = NULL;
402 hh->dyn_relocs = NULL;
403 hh->plabel = 0;
404 hh->tls_type = GOT_UNKNOWN;
405 }
406
407 return entry;
408 }
409
410 /* Create the derived linker hash table. The PA ELF port uses the derived
411 hash table to keep information specific to the PA ELF linker (without
412 using static variables). */
413
414 static struct bfd_link_hash_table *
415 elf32_hppa_link_hash_table_create (bfd *abfd)
416 {
417 struct elf32_hppa_link_hash_table *htab;
418 bfd_size_type amt = sizeof (*htab);
419
420 htab = bfd_malloc (amt);
421 if (htab == NULL)
422 return NULL;
423
424 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
425 sizeof (struct elf32_hppa_link_hash_entry)))
426 {
427 free (htab);
428 return NULL;
429 }
430
431 /* Init the stub hash table too. */
432 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
433 sizeof (struct elf32_hppa_stub_hash_entry)))
434 return NULL;
435
436 htab->stub_bfd = NULL;
437 htab->add_stub_section = NULL;
438 htab->layout_sections_again = NULL;
439 htab->stub_group = NULL;
440 htab->sgot = NULL;
441 htab->srelgot = NULL;
442 htab->splt = NULL;
443 htab->srelplt = NULL;
444 htab->sdynbss = NULL;
445 htab->srelbss = NULL;
446 htab->text_segment_base = (bfd_vma) -1;
447 htab->data_segment_base = (bfd_vma) -1;
448 htab->multi_subspace = 0;
449 htab->has_12bit_branch = 0;
450 htab->has_17bit_branch = 0;
451 htab->has_22bit_branch = 0;
452 htab->need_plt_stub = 0;
453 htab->sym_sec.abfd = NULL;
454 htab->tls_ldm_got.refcount = 0;
455
456 return &htab->etab.root;
457 }
458
459 /* Free the derived linker hash table. */
460
461 static void
462 elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *btab)
463 {
464 struct elf32_hppa_link_hash_table *htab
465 = (struct elf32_hppa_link_hash_table *) btab;
466
467 bfd_hash_table_free (&htab->bstab);
468 _bfd_generic_link_hash_table_free (btab);
469 }
470
471 /* Build a name for an entry in the stub hash table. */
472
473 static char *
474 hppa_stub_name (const asection *input_section,
475 const asection *sym_sec,
476 const struct elf32_hppa_link_hash_entry *hh,
477 const Elf_Internal_Rela *rela)
478 {
479 char *stub_name;
480 bfd_size_type len;
481
482 if (hh)
483 {
484 len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
485 stub_name = bfd_malloc (len);
486 if (stub_name != NULL)
487 sprintf (stub_name, "%08x_%s+%x",
488 input_section->id & 0xffffffff,
489 hh_name (hh),
490 (int) rela->r_addend & 0xffffffff);
491 }
492 else
493 {
494 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
495 stub_name = bfd_malloc (len);
496 if (stub_name != NULL)
497 sprintf (stub_name, "%08x_%x:%x+%x",
498 input_section->id & 0xffffffff,
499 sym_sec->id & 0xffffffff,
500 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
501 (int) rela->r_addend & 0xffffffff);
502 }
503 return stub_name;
504 }
505
506 /* Look up an entry in the stub hash. Stub entries are cached because
507 creating the stub name takes a bit of time. */
508
509 static struct elf32_hppa_stub_hash_entry *
510 hppa_get_stub_entry (const asection *input_section,
511 const asection *sym_sec,
512 struct elf32_hppa_link_hash_entry *hh,
513 const Elf_Internal_Rela *rela,
514 struct elf32_hppa_link_hash_table *htab)
515 {
516 struct elf32_hppa_stub_hash_entry *hsh_entry;
517 const asection *id_sec;
518
519 /* If this input section is part of a group of sections sharing one
520 stub section, then use the id of the first section in the group.
521 Stub names need to include a section id, as there may well be
522 more than one stub used to reach say, printf, and we need to
523 distinguish between them. */
524 id_sec = htab->stub_group[input_section->id].link_sec;
525
526 if (hh != NULL && hh->hsh_cache != NULL
527 && hh->hsh_cache->hh == hh
528 && hh->hsh_cache->id_sec == id_sec)
529 {
530 hsh_entry = hh->hsh_cache;
531 }
532 else
533 {
534 char *stub_name;
535
536 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
537 if (stub_name == NULL)
538 return NULL;
539
540 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
541 stub_name, FALSE, FALSE);
542 if (hh != NULL)
543 hh->hsh_cache = hsh_entry;
544
545 free (stub_name);
546 }
547
548 return hsh_entry;
549 }
550
551 /* Add a new stub entry to the stub hash. Not all fields of the new
552 stub entry are initialised. */
553
554 static struct elf32_hppa_stub_hash_entry *
555 hppa_add_stub (const char *stub_name,
556 asection *section,
557 struct elf32_hppa_link_hash_table *htab)
558 {
559 asection *link_sec;
560 asection *stub_sec;
561 struct elf32_hppa_stub_hash_entry *hsh;
562
563 link_sec = htab->stub_group[section->id].link_sec;
564 stub_sec = htab->stub_group[section->id].stub_sec;
565 if (stub_sec == NULL)
566 {
567 stub_sec = htab->stub_group[link_sec->id].stub_sec;
568 if (stub_sec == NULL)
569 {
570 size_t namelen;
571 bfd_size_type len;
572 char *s_name;
573
574 namelen = strlen (link_sec->name);
575 len = namelen + sizeof (STUB_SUFFIX);
576 s_name = bfd_alloc (htab->stub_bfd, len);
577 if (s_name == NULL)
578 return NULL;
579
580 memcpy (s_name, link_sec->name, namelen);
581 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
582 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
583 if (stub_sec == NULL)
584 return NULL;
585 htab->stub_group[link_sec->id].stub_sec = stub_sec;
586 }
587 htab->stub_group[section->id].stub_sec = stub_sec;
588 }
589
590 /* Enter this entry into the linker stub hash table. */
591 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
592 TRUE, FALSE);
593 if (hsh == NULL)
594 {
595 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
596 section->owner,
597 stub_name);
598 return NULL;
599 }
600
601 hsh->stub_sec = stub_sec;
602 hsh->stub_offset = 0;
603 hsh->id_sec = link_sec;
604 return hsh;
605 }
606
607 /* Determine the type of stub needed, if any, for a call. */
608
609 static enum elf32_hppa_stub_type
610 hppa_type_of_stub (asection *input_sec,
611 const Elf_Internal_Rela *rela,
612 struct elf32_hppa_link_hash_entry *hh,
613 bfd_vma destination,
614 struct bfd_link_info *info)
615 {
616 bfd_vma location;
617 bfd_vma branch_offset;
618 bfd_vma max_branch_offset;
619 unsigned int r_type;
620
621 if (hh != NULL
622 && hh->eh.plt.offset != (bfd_vma) -1
623 && hh->eh.dynindx != -1
624 && !hh->plabel
625 && (info->shared
626 || !hh->eh.def_regular
627 || hh->eh.root.type == bfd_link_hash_defweak))
628 {
629 /* We need an import stub. Decide between hppa_stub_import
630 and hppa_stub_import_shared later. */
631 return hppa_stub_import;
632 }
633
634 /* Determine where the call point is. */
635 location = (input_sec->output_offset
636 + input_sec->output_section->vma
637 + rela->r_offset);
638
639 branch_offset = destination - location - 8;
640 r_type = ELF32_R_TYPE (rela->r_info);
641
642 /* Determine if a long branch stub is needed. parisc branch offsets
643 are relative to the second instruction past the branch, ie. +8
644 bytes on from the branch instruction location. The offset is
645 signed and counts in units of 4 bytes. */
646 if (r_type == (unsigned int) R_PARISC_PCREL17F)
647 max_branch_offset = (1 << (17 - 1)) << 2;
648
649 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
650 max_branch_offset = (1 << (12 - 1)) << 2;
651
652 else /* R_PARISC_PCREL22F. */
653 max_branch_offset = (1 << (22 - 1)) << 2;
654
655 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
656 return hppa_stub_long_branch;
657
658 return hppa_stub_none;
659 }
660
661 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
662 IN_ARG contains the link info pointer. */
663
664 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
665 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
666
667 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
668 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
669 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
670
671 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
672 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
673 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
674 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
675
676 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
677 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
678
679 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
680 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
681 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
682 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
683
684 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
685 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
686 #define NOP 0x08000240 /* nop */
687 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
688 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
689 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
690
691 #ifndef R19_STUBS
692 #define R19_STUBS 1
693 #endif
694
695 #if R19_STUBS
696 #define LDW_R1_DLT LDW_R1_R19
697 #else
698 #define LDW_R1_DLT LDW_R1_DP
699 #endif
700
701 static bfd_boolean
702 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
703 {
704 struct elf32_hppa_stub_hash_entry *hsh;
705 struct bfd_link_info *info;
706 struct elf32_hppa_link_hash_table *htab;
707 asection *stub_sec;
708 bfd *stub_bfd;
709 bfd_byte *loc;
710 bfd_vma sym_value;
711 bfd_vma insn;
712 bfd_vma off;
713 int val;
714 int size;
715
716 /* Massage our args to the form they really have. */
717 hsh = hppa_stub_hash_entry (bh);
718 info = (struct bfd_link_info *)in_arg;
719
720 htab = hppa_link_hash_table (info);
721 stub_sec = hsh->stub_sec;
722
723 /* Make a note of the offset within the stubs for this entry. */
724 hsh->stub_offset = stub_sec->size;
725 loc = stub_sec->contents + hsh->stub_offset;
726
727 stub_bfd = stub_sec->owner;
728
729 switch (hsh->stub_type)
730 {
731 case hppa_stub_long_branch:
732 /* Create the long branch. A long branch is formed with "ldil"
733 loading the upper bits of the target address into a register,
734 then branching with "be" which adds in the lower bits.
735 The "be" has its delay slot nullified. */
736 sym_value = (hsh->target_value
737 + hsh->target_section->output_offset
738 + hsh->target_section->output_section->vma);
739
740 val = hppa_field_adjust (sym_value, 0, e_lrsel);
741 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
742 bfd_put_32 (stub_bfd, insn, loc);
743
744 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
745 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
746 bfd_put_32 (stub_bfd, insn, loc + 4);
747
748 size = 8;
749 break;
750
751 case hppa_stub_long_branch_shared:
752 /* Branches are relative. This is where we are going to. */
753 sym_value = (hsh->target_value
754 + hsh->target_section->output_offset
755 + hsh->target_section->output_section->vma);
756
757 /* And this is where we are coming from, more or less. */
758 sym_value -= (hsh->stub_offset
759 + stub_sec->output_offset
760 + stub_sec->output_section->vma);
761
762 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
763 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
764 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
765 bfd_put_32 (stub_bfd, insn, loc + 4);
766
767 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
768 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
769 bfd_put_32 (stub_bfd, insn, loc + 8);
770 size = 12;
771 break;
772
773 case hppa_stub_import:
774 case hppa_stub_import_shared:
775 off = hsh->hh->eh.plt.offset;
776 if (off >= (bfd_vma) -2)
777 abort ();
778
779 off &= ~ (bfd_vma) 1;
780 sym_value = (off
781 + htab->splt->output_offset
782 + htab->splt->output_section->vma
783 - elf_gp (htab->splt->output_section->owner));
784
785 insn = ADDIL_DP;
786 #if R19_STUBS
787 if (hsh->stub_type == hppa_stub_import_shared)
788 insn = ADDIL_R19;
789 #endif
790 val = hppa_field_adjust (sym_value, 0, e_lrsel),
791 insn = hppa_rebuild_insn ((int) insn, val, 21);
792 bfd_put_32 (stub_bfd, insn, loc);
793
794 /* It is critical to use lrsel/rrsel here because we are using
795 two different offsets (+0 and +4) from sym_value. If we use
796 lsel/rsel then with unfortunate sym_values we will round
797 sym_value+4 up to the next 2k block leading to a mis-match
798 between the lsel and rsel value. */
799 val = hppa_field_adjust (sym_value, 0, e_rrsel);
800 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
801 bfd_put_32 (stub_bfd, insn, loc + 4);
802
803 if (htab->multi_subspace)
804 {
805 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
806 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
807 bfd_put_32 (stub_bfd, insn, loc + 8);
808
809 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
810 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
811 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
812 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
813
814 size = 28;
815 }
816 else
817 {
818 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
819 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
820 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
821 bfd_put_32 (stub_bfd, insn, loc + 12);
822
823 size = 16;
824 }
825
826 break;
827
828 case hppa_stub_export:
829 /* Branches are relative. This is where we are going to. */
830 sym_value = (hsh->target_value
831 + hsh->target_section->output_offset
832 + hsh->target_section->output_section->vma);
833
834 /* And this is where we are coming from. */
835 sym_value -= (hsh->stub_offset
836 + stub_sec->output_offset
837 + stub_sec->output_section->vma);
838
839 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
840 && (!htab->has_22bit_branch
841 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
842 {
843 (*_bfd_error_handler)
844 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
845 hsh->target_section->owner,
846 stub_sec,
847 (long) hsh->stub_offset,
848 hsh->bh_root.string);
849 bfd_set_error (bfd_error_bad_value);
850 return FALSE;
851 }
852
853 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
854 if (!htab->has_22bit_branch)
855 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
856 else
857 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
858 bfd_put_32 (stub_bfd, insn, loc);
859
860 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
861 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
862 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
863 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
864 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
865
866 /* Point the function symbol at the stub. */
867 hsh->hh->eh.root.u.def.section = stub_sec;
868 hsh->hh->eh.root.u.def.value = stub_sec->size;
869
870 size = 24;
871 break;
872
873 default:
874 BFD_FAIL ();
875 return FALSE;
876 }
877
878 stub_sec->size += size;
879 return TRUE;
880 }
881
882 #undef LDIL_R1
883 #undef BE_SR4_R1
884 #undef BL_R1
885 #undef ADDIL_R1
886 #undef DEPI_R1
887 #undef LDW_R1_R21
888 #undef LDW_R1_DLT
889 #undef LDW_R1_R19
890 #undef ADDIL_R19
891 #undef LDW_R1_DP
892 #undef LDSID_R21_R1
893 #undef MTSP_R1
894 #undef BE_SR0_R21
895 #undef STW_RP
896 #undef BV_R0_R21
897 #undef BL_RP
898 #undef NOP
899 #undef LDW_RP
900 #undef LDSID_RP_R1
901 #undef BE_SR0_RP
902
903 /* As above, but don't actually build the stub. Just bump offset so
904 we know stub section sizes. */
905
906 static bfd_boolean
907 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
908 {
909 struct elf32_hppa_stub_hash_entry *hsh;
910 struct elf32_hppa_link_hash_table *htab;
911 int size;
912
913 /* Massage our args to the form they really have. */
914 hsh = hppa_stub_hash_entry (bh);
915 htab = in_arg;
916
917 if (hsh->stub_type == hppa_stub_long_branch)
918 size = 8;
919 else if (hsh->stub_type == hppa_stub_long_branch_shared)
920 size = 12;
921 else if (hsh->stub_type == hppa_stub_export)
922 size = 24;
923 else /* hppa_stub_import or hppa_stub_import_shared. */
924 {
925 if (htab->multi_subspace)
926 size = 28;
927 else
928 size = 16;
929 }
930
931 hsh->stub_sec->size += size;
932 return TRUE;
933 }
934
935 /* Return nonzero if ABFD represents an HPPA ELF32 file.
936 Additionally we set the default architecture and machine. */
937
938 static bfd_boolean
939 elf32_hppa_object_p (bfd *abfd)
940 {
941 Elf_Internal_Ehdr * i_ehdrp;
942 unsigned int flags;
943
944 i_ehdrp = elf_elfheader (abfd);
945 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
946 {
947 /* GCC on hppa-linux produces binaries with OSABI=Linux,
948 but the kernel produces corefiles with OSABI=SysV. */
949 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX &&
950 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
951 return FALSE;
952 }
953 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
954 {
955 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
956 but the kernel produces corefiles with OSABI=SysV. */
957 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
958 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
959 return FALSE;
960 }
961 else
962 {
963 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
964 return FALSE;
965 }
966
967 flags = i_ehdrp->e_flags;
968 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
969 {
970 case EFA_PARISC_1_0:
971 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
972 case EFA_PARISC_1_1:
973 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
974 case EFA_PARISC_2_0:
975 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
976 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
977 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
978 }
979 return TRUE;
980 }
981
982 /* Create the .plt and .got sections, and set up our hash table
983 short-cuts to various dynamic sections. */
984
985 static bfd_boolean
986 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
987 {
988 struct elf32_hppa_link_hash_table *htab;
989 struct elf_link_hash_entry *eh;
990
991 /* Don't try to create the .plt and .got twice. */
992 htab = hppa_link_hash_table (info);
993 if (htab->splt != NULL)
994 return TRUE;
995
996 /* Call the generic code to do most of the work. */
997 if (! _bfd_elf_create_dynamic_sections (abfd, info))
998 return FALSE;
999
1000 htab->splt = bfd_get_section_by_name (abfd, ".plt");
1001 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
1002
1003 htab->sgot = bfd_get_section_by_name (abfd, ".got");
1004 htab->srelgot = bfd_make_section_with_flags (abfd, ".rela.got",
1005 (SEC_ALLOC
1006 | SEC_LOAD
1007 | SEC_HAS_CONTENTS
1008 | SEC_IN_MEMORY
1009 | SEC_LINKER_CREATED
1010 | SEC_READONLY));
1011 if (htab->srelgot == NULL
1012 || ! bfd_set_section_alignment (abfd, htab->srelgot, 2))
1013 return FALSE;
1014
1015 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
1016 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
1017
1018 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
1019 application, because __canonicalize_funcptr_for_compare needs it. */
1020 eh = elf_hash_table (info)->hgot;
1021 eh->forced_local = 0;
1022 eh->other = STV_DEFAULT;
1023 return bfd_elf_link_record_dynamic_symbol (info, eh);
1024 }
1025
1026 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1027
1028 static void
1029 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1030 struct elf_link_hash_entry *eh_dir,
1031 struct elf_link_hash_entry *eh_ind)
1032 {
1033 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1034
1035 hh_dir = hppa_elf_hash_entry (eh_dir);
1036 hh_ind = hppa_elf_hash_entry (eh_ind);
1037
1038 if (hh_ind->dyn_relocs != NULL)
1039 {
1040 if (hh_dir->dyn_relocs != NULL)
1041 {
1042 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1043 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1044
1045 /* Add reloc counts against the indirect sym to the direct sym
1046 list. Merge any entries against the same section. */
1047 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1048 {
1049 struct elf32_hppa_dyn_reloc_entry *hdh_q;
1050
1051 for (hdh_q = hh_dir->dyn_relocs;
1052 hdh_q != NULL;
1053 hdh_q = hdh_q->hdh_next)
1054 if (hdh_q->sec == hdh_p->sec)
1055 {
1056 #if RELATIVE_DYNRELOCS
1057 hdh_q->relative_count += hdh_p->relative_count;
1058 #endif
1059 hdh_q->count += hdh_p->count;
1060 *hdh_pp = hdh_p->hdh_next;
1061 break;
1062 }
1063 if (hdh_q == NULL)
1064 hdh_pp = &hdh_p->hdh_next;
1065 }
1066 *hdh_pp = hh_dir->dyn_relocs;
1067 }
1068
1069 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1070 hh_ind->dyn_relocs = NULL;
1071 }
1072
1073 if (ELIMINATE_COPY_RELOCS
1074 && eh_ind->root.type != bfd_link_hash_indirect
1075 && eh_dir->dynamic_adjusted)
1076 {
1077 /* If called to transfer flags for a weakdef during processing
1078 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1079 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1080 eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
1081 eh_dir->ref_regular |= eh_ind->ref_regular;
1082 eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
1083 eh_dir->needs_plt |= eh_ind->needs_plt;
1084 }
1085 else
1086 {
1087 if (eh_ind->root.type == bfd_link_hash_indirect
1088 && eh_dir->got.refcount <= 0)
1089 {
1090 hh_dir->tls_type = hh_ind->tls_type;
1091 hh_ind->tls_type = GOT_UNKNOWN;
1092 }
1093
1094 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1095 }
1096 }
1097
1098 static int
1099 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1100 int r_type, int is_local ATTRIBUTE_UNUSED)
1101 {
1102 /* For now we don't support linker optimizations. */
1103 return r_type;
1104 }
1105
1106 /* Look through the relocs for a section during the first phase, and
1107 calculate needed space in the global offset table, procedure linkage
1108 table, and dynamic reloc sections. At this point we haven't
1109 necessarily read all the input files. */
1110
1111 static bfd_boolean
1112 elf32_hppa_check_relocs (bfd *abfd,
1113 struct bfd_link_info *info,
1114 asection *sec,
1115 const Elf_Internal_Rela *relocs)
1116 {
1117 Elf_Internal_Shdr *symtab_hdr;
1118 struct elf_link_hash_entry **eh_syms;
1119 const Elf_Internal_Rela *rela;
1120 const Elf_Internal_Rela *rela_end;
1121 struct elf32_hppa_link_hash_table *htab;
1122 asection *sreloc;
1123 asection *stubreloc;
1124 int tls_type = GOT_UNKNOWN, old_tls_type = GOT_UNKNOWN;
1125
1126 if (info->relocatable)
1127 return TRUE;
1128
1129 htab = hppa_link_hash_table (info);
1130 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1131 eh_syms = elf_sym_hashes (abfd);
1132 sreloc = NULL;
1133 stubreloc = NULL;
1134
1135 rela_end = relocs + sec->reloc_count;
1136 for (rela = relocs; rela < rela_end; rela++)
1137 {
1138 enum {
1139 NEED_GOT = 1,
1140 NEED_PLT = 2,
1141 NEED_DYNREL = 4,
1142 PLT_PLABEL = 8
1143 };
1144
1145 unsigned int r_symndx, r_type;
1146 struct elf32_hppa_link_hash_entry *hh;
1147 int need_entry = 0;
1148
1149 r_symndx = ELF32_R_SYM (rela->r_info);
1150
1151 if (r_symndx < symtab_hdr->sh_info)
1152 hh = NULL;
1153 else
1154 {
1155 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1156 while (hh->eh.root.type == bfd_link_hash_indirect
1157 || hh->eh.root.type == bfd_link_hash_warning)
1158 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1159 }
1160
1161 r_type = ELF32_R_TYPE (rela->r_info);
1162 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1163
1164 switch (r_type)
1165 {
1166 case R_PARISC_DLTIND14F:
1167 case R_PARISC_DLTIND14R:
1168 case R_PARISC_DLTIND21L:
1169 /* This symbol requires a global offset table entry. */
1170 need_entry = NEED_GOT;
1171 break;
1172
1173 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1174 case R_PARISC_PLABEL21L:
1175 case R_PARISC_PLABEL32:
1176 /* If the addend is non-zero, we break badly. */
1177 if (rela->r_addend != 0)
1178 abort ();
1179
1180 /* If we are creating a shared library, then we need to
1181 create a PLT entry for all PLABELs, because PLABELs with
1182 local symbols may be passed via a pointer to another
1183 object. Additionally, output a dynamic relocation
1184 pointing to the PLT entry.
1185
1186 For executables, the original 32-bit ABI allowed two
1187 different styles of PLABELs (function pointers): For
1188 global functions, the PLABEL word points into the .plt
1189 two bytes past a (function address, gp) pair, and for
1190 local functions the PLABEL points directly at the
1191 function. The magic +2 for the first type allows us to
1192 differentiate between the two. As you can imagine, this
1193 is a real pain when it comes to generating code to call
1194 functions indirectly or to compare function pointers.
1195 We avoid the mess by always pointing a PLABEL into the
1196 .plt, even for local functions. */
1197 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1198 break;
1199
1200 case R_PARISC_PCREL12F:
1201 htab->has_12bit_branch = 1;
1202 goto branch_common;
1203
1204 case R_PARISC_PCREL17C:
1205 case R_PARISC_PCREL17F:
1206 htab->has_17bit_branch = 1;
1207 goto branch_common;
1208
1209 case R_PARISC_PCREL22F:
1210 htab->has_22bit_branch = 1;
1211 branch_common:
1212 /* Function calls might need to go through the .plt, and
1213 might require long branch stubs. */
1214 if (hh == NULL)
1215 {
1216 /* We know local syms won't need a .plt entry, and if
1217 they need a long branch stub we can't guarantee that
1218 we can reach the stub. So just flag an error later
1219 if we're doing a shared link and find we need a long
1220 branch stub. */
1221 continue;
1222 }
1223 else
1224 {
1225 /* Global symbols will need a .plt entry if they remain
1226 global, and in most cases won't need a long branch
1227 stub. Unfortunately, we have to cater for the case
1228 where a symbol is forced local by versioning, or due
1229 to symbolic linking, and we lose the .plt entry. */
1230 need_entry = NEED_PLT;
1231 if (hh->eh.type == STT_PARISC_MILLI)
1232 need_entry = 0;
1233 }
1234 break;
1235
1236 case R_PARISC_SEGBASE: /* Used to set segment base. */
1237 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1238 case R_PARISC_PCREL14F: /* PC relative load/store. */
1239 case R_PARISC_PCREL14R:
1240 case R_PARISC_PCREL17R: /* External branches. */
1241 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1242 case R_PARISC_PCREL32:
1243 /* We don't need to propagate the relocation if linking a
1244 shared object since these are section relative. */
1245 continue;
1246
1247 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1248 case R_PARISC_DPREL14R:
1249 case R_PARISC_DPREL21L:
1250 if (info->shared)
1251 {
1252 (*_bfd_error_handler)
1253 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1254 abfd,
1255 elf_hppa_howto_table[r_type].name);
1256 bfd_set_error (bfd_error_bad_value);
1257 return FALSE;
1258 }
1259 /* Fall through. */
1260
1261 case R_PARISC_DIR17F: /* Used for external branches. */
1262 case R_PARISC_DIR17R:
1263 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1264 case R_PARISC_DIR14R:
1265 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1266 case R_PARISC_DIR32: /* .word relocs. */
1267 /* We may want to output a dynamic relocation later. */
1268 need_entry = NEED_DYNREL;
1269 break;
1270
1271 /* This relocation describes the C++ object vtable hierarchy.
1272 Reconstruct it for later use during GC. */
1273 case R_PARISC_GNU_VTINHERIT:
1274 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1275 return FALSE;
1276 continue;
1277
1278 /* This relocation describes which C++ vtable entries are actually
1279 used. Record for later use during GC. */
1280 case R_PARISC_GNU_VTENTRY:
1281 BFD_ASSERT (hh != NULL);
1282 if (hh != NULL
1283 && !bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1284 return FALSE;
1285 continue;
1286
1287 case R_PARISC_TLS_GD21L:
1288 case R_PARISC_TLS_GD14R:
1289 case R_PARISC_TLS_LDM21L:
1290 case R_PARISC_TLS_LDM14R:
1291 need_entry = NEED_GOT;
1292 break;
1293
1294 case R_PARISC_TLS_IE21L:
1295 case R_PARISC_TLS_IE14R:
1296 if (info->shared)
1297 info->flags |= DF_STATIC_TLS;
1298 need_entry = NEED_GOT;
1299 break;
1300
1301 default:
1302 continue;
1303 }
1304
1305 /* Now carry out our orders. */
1306 if (need_entry & NEED_GOT)
1307 {
1308 switch (r_type)
1309 {
1310 default:
1311 tls_type = GOT_NORMAL;
1312 break;
1313 case R_PARISC_TLS_GD21L:
1314 case R_PARISC_TLS_GD14R:
1315 tls_type |= GOT_TLS_GD;
1316 break;
1317 case R_PARISC_TLS_LDM21L:
1318 case R_PARISC_TLS_LDM14R:
1319 tls_type |= GOT_TLS_LDM;
1320 break;
1321 case R_PARISC_TLS_IE21L:
1322 case R_PARISC_TLS_IE14R:
1323 tls_type |= GOT_TLS_IE;
1324 break;
1325 }
1326
1327 /* Allocate space for a GOT entry, as well as a dynamic
1328 relocation for this entry. */
1329 if (htab->sgot == NULL)
1330 {
1331 if (htab->etab.dynobj == NULL)
1332 htab->etab.dynobj = abfd;
1333 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1334 return FALSE;
1335 }
1336
1337 if (r_type == R_PARISC_TLS_LDM21L
1338 || r_type == R_PARISC_TLS_LDM14R)
1339 hppa_link_hash_table (info)->tls_ldm_got.refcount += 1;
1340 else
1341 {
1342 if (hh != NULL)
1343 {
1344 hh->eh.got.refcount += 1;
1345 old_tls_type = hh->tls_type;
1346 }
1347 else
1348 {
1349 bfd_signed_vma *local_got_refcounts;
1350
1351 /* This is a global offset table entry for a local symbol. */
1352 local_got_refcounts = elf_local_got_refcounts (abfd);
1353 if (local_got_refcounts == NULL)
1354 {
1355 bfd_size_type size;
1356
1357 /* Allocate space for local got offsets and local
1358 plt offsets. Done this way to save polluting
1359 elf_obj_tdata with another target specific
1360 pointer. */
1361 size = symtab_hdr->sh_info;
1362 size *= 2 * sizeof (bfd_signed_vma);
1363 /* Add in space to store the local GOT TLS types. */
1364 size += symtab_hdr->sh_info;
1365 local_got_refcounts = bfd_zalloc (abfd, size);
1366 if (local_got_refcounts == NULL)
1367 return FALSE;
1368 elf_local_got_refcounts (abfd) = local_got_refcounts;
1369 memset (hppa_elf_local_got_tls_type (abfd),
1370 GOT_UNKNOWN, symtab_hdr->sh_info);
1371 }
1372 local_got_refcounts[r_symndx] += 1;
1373
1374 old_tls_type = hppa_elf_local_got_tls_type (abfd) [r_symndx];
1375 }
1376
1377 tls_type |= old_tls_type;
1378
1379 if (old_tls_type != tls_type)
1380 {
1381 if (hh != NULL)
1382 hh->tls_type = tls_type;
1383 else
1384 hppa_elf_local_got_tls_type (abfd) [r_symndx] = tls_type;
1385 }
1386
1387 }
1388 }
1389
1390 if (need_entry & NEED_PLT)
1391 {
1392 /* If we are creating a shared library, and this is a reloc
1393 against a weak symbol or a global symbol in a dynamic
1394 object, then we will be creating an import stub and a
1395 .plt entry for the symbol. Similarly, on a normal link
1396 to symbols defined in a dynamic object we'll need the
1397 import stub and a .plt entry. We don't know yet whether
1398 the symbol is defined or not, so make an entry anyway and
1399 clean up later in adjust_dynamic_symbol. */
1400 if ((sec->flags & SEC_ALLOC) != 0)
1401 {
1402 if (hh != NULL)
1403 {
1404 hh->eh.needs_plt = 1;
1405 hh->eh.plt.refcount += 1;
1406
1407 /* If this .plt entry is for a plabel, mark it so
1408 that adjust_dynamic_symbol will keep the entry
1409 even if it appears to be local. */
1410 if (need_entry & PLT_PLABEL)
1411 hh->plabel = 1;
1412 }
1413 else if (need_entry & PLT_PLABEL)
1414 {
1415 bfd_signed_vma *local_got_refcounts;
1416 bfd_signed_vma *local_plt_refcounts;
1417
1418 local_got_refcounts = elf_local_got_refcounts (abfd);
1419 if (local_got_refcounts == NULL)
1420 {
1421 bfd_size_type size;
1422
1423 /* Allocate space for local got offsets and local
1424 plt offsets. */
1425 size = symtab_hdr->sh_info;
1426 size *= 2 * sizeof (bfd_signed_vma);
1427 /* Add in space to store the local GOT TLS types. */
1428 size += symtab_hdr->sh_info;
1429 local_got_refcounts = bfd_zalloc (abfd, size);
1430 if (local_got_refcounts == NULL)
1431 return FALSE;
1432 elf_local_got_refcounts (abfd) = local_got_refcounts;
1433 }
1434 local_plt_refcounts = (local_got_refcounts
1435 + symtab_hdr->sh_info);
1436 local_plt_refcounts[r_symndx] += 1;
1437 }
1438 }
1439 }
1440
1441 if (need_entry & NEED_DYNREL)
1442 {
1443 /* Flag this symbol as having a non-got, non-plt reference
1444 so that we generate copy relocs if it turns out to be
1445 dynamic. */
1446 if (hh != NULL && !info->shared)
1447 hh->eh.non_got_ref = 1;
1448
1449 /* If we are creating a shared library then we need to copy
1450 the reloc into the shared library. However, if we are
1451 linking with -Bsymbolic, we need only copy absolute
1452 relocs or relocs against symbols that are not defined in
1453 an object we are including in the link. PC- or DP- or
1454 DLT-relative relocs against any local sym or global sym
1455 with DEF_REGULAR set, can be discarded. At this point we
1456 have not seen all the input files, so it is possible that
1457 DEF_REGULAR is not set now but will be set later (it is
1458 never cleared). We account for that possibility below by
1459 storing information in the dyn_relocs field of the
1460 hash table entry.
1461
1462 A similar situation to the -Bsymbolic case occurs when
1463 creating shared libraries and symbol visibility changes
1464 render the symbol local.
1465
1466 As it turns out, all the relocs we will be creating here
1467 are absolute, so we cannot remove them on -Bsymbolic
1468 links or visibility changes anyway. A STUB_REL reloc
1469 is absolute too, as in that case it is the reloc in the
1470 stub we will be creating, rather than copying the PCREL
1471 reloc in the branch.
1472
1473 If on the other hand, we are creating an executable, we
1474 may need to keep relocations for symbols satisfied by a
1475 dynamic library if we manage to avoid copy relocs for the
1476 symbol. */
1477 if ((info->shared
1478 && (sec->flags & SEC_ALLOC) != 0
1479 && (IS_ABSOLUTE_RELOC (r_type)
1480 || (hh != NULL
1481 && (!info->symbolic
1482 || hh->eh.root.type == bfd_link_hash_defweak
1483 || !hh->eh.def_regular))))
1484 || (ELIMINATE_COPY_RELOCS
1485 && !info->shared
1486 && (sec->flags & SEC_ALLOC) != 0
1487 && hh != NULL
1488 && (hh->eh.root.type == bfd_link_hash_defweak
1489 || !hh->eh.def_regular)))
1490 {
1491 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1492 struct elf32_hppa_dyn_reloc_entry **hdh_head;
1493
1494 /* Create a reloc section in dynobj and make room for
1495 this reloc. */
1496 if (sreloc == NULL)
1497 {
1498 char *name;
1499 bfd *dynobj;
1500
1501 name = (bfd_elf_string_from_elf_section
1502 (abfd,
1503 elf_elfheader (abfd)->e_shstrndx,
1504 elf_section_data (sec)->rel_hdr.sh_name));
1505 if (name == NULL)
1506 {
1507 (*_bfd_error_handler)
1508 (_("Could not find relocation section for %s"),
1509 sec->name);
1510 bfd_set_error (bfd_error_bad_value);
1511 return FALSE;
1512 }
1513
1514 if (htab->etab.dynobj == NULL)
1515 htab->etab.dynobj = abfd;
1516
1517 dynobj = htab->etab.dynobj;
1518 sreloc = bfd_get_section_by_name (dynobj, name);
1519 if (sreloc == NULL)
1520 {
1521 flagword flags;
1522
1523 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1524 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1525 if ((sec->flags & SEC_ALLOC) != 0)
1526 flags |= SEC_ALLOC | SEC_LOAD;
1527 sreloc = bfd_make_section_with_flags (dynobj,
1528 name,
1529 flags);
1530 if (sreloc == NULL
1531 || !bfd_set_section_alignment (dynobj, sreloc, 2))
1532 return FALSE;
1533 }
1534
1535 elf_section_data (sec)->sreloc = sreloc;
1536 }
1537
1538 /* If this is a global symbol, we count the number of
1539 relocations we need for this symbol. */
1540 if (hh != NULL)
1541 {
1542 hdh_head = &hh->dyn_relocs;
1543 }
1544 else
1545 {
1546 /* Track dynamic relocs needed for local syms too.
1547 We really need local syms available to do this
1548 easily. Oh well. */
1549
1550 asection *sr;
1551 void *vpp;
1552
1553 sr = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1554 sec, r_symndx);
1555 if (sr == NULL)
1556 return FALSE;
1557
1558 vpp = &elf_section_data (sr)->local_dynrel;
1559 hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp;
1560 }
1561
1562 hdh_p = *hdh_head;
1563 if (hdh_p == NULL || hdh_p->sec != sec)
1564 {
1565 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1566 if (hdh_p == NULL)
1567 return FALSE;
1568 hdh_p->hdh_next = *hdh_head;
1569 *hdh_head = hdh_p;
1570 hdh_p->sec = sec;
1571 hdh_p->count = 0;
1572 #if RELATIVE_DYNRELOCS
1573 hdh_p->relative_count = 0;
1574 #endif
1575 }
1576
1577 hdh_p->count += 1;
1578 #if RELATIVE_DYNRELOCS
1579 if (!IS_ABSOLUTE_RELOC (rtype))
1580 hdh_p->relative_count += 1;
1581 #endif
1582 }
1583 }
1584 }
1585
1586 return TRUE;
1587 }
1588
1589 /* Return the section that should be marked against garbage collection
1590 for a given relocation. */
1591
1592 static asection *
1593 elf32_hppa_gc_mark_hook (asection *sec,
1594 struct bfd_link_info *info,
1595 Elf_Internal_Rela *rela,
1596 struct elf_link_hash_entry *hh,
1597 Elf_Internal_Sym *sym)
1598 {
1599 if (hh != NULL)
1600 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1601 {
1602 case R_PARISC_GNU_VTINHERIT:
1603 case R_PARISC_GNU_VTENTRY:
1604 return NULL;
1605 }
1606
1607 return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1608 }
1609
1610 /* Update the got and plt entry reference counts for the section being
1611 removed. */
1612
1613 static bfd_boolean
1614 elf32_hppa_gc_sweep_hook (bfd *abfd,
1615 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1616 asection *sec,
1617 const Elf_Internal_Rela *relocs)
1618 {
1619 Elf_Internal_Shdr *symtab_hdr;
1620 struct elf_link_hash_entry **eh_syms;
1621 bfd_signed_vma *local_got_refcounts;
1622 bfd_signed_vma *local_plt_refcounts;
1623 const Elf_Internal_Rela *rela, *relend;
1624
1625 elf_section_data (sec)->local_dynrel = NULL;
1626
1627 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1628 eh_syms = elf_sym_hashes (abfd);
1629 local_got_refcounts = elf_local_got_refcounts (abfd);
1630 local_plt_refcounts = local_got_refcounts;
1631 if (local_plt_refcounts != NULL)
1632 local_plt_refcounts += symtab_hdr->sh_info;
1633
1634 relend = relocs + sec->reloc_count;
1635 for (rela = relocs; rela < relend; rela++)
1636 {
1637 unsigned long r_symndx;
1638 unsigned int r_type;
1639 struct elf_link_hash_entry *eh = NULL;
1640
1641 r_symndx = ELF32_R_SYM (rela->r_info);
1642 if (r_symndx >= symtab_hdr->sh_info)
1643 {
1644 struct elf32_hppa_link_hash_entry *hh;
1645 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1646 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1647
1648 eh = eh_syms[r_symndx - symtab_hdr->sh_info];
1649 while (eh->root.type == bfd_link_hash_indirect
1650 || eh->root.type == bfd_link_hash_warning)
1651 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1652 hh = hppa_elf_hash_entry (eh);
1653
1654 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next)
1655 if (hdh_p->sec == sec)
1656 {
1657 /* Everything must go for SEC. */
1658 *hdh_pp = hdh_p->hdh_next;
1659 break;
1660 }
1661 }
1662
1663 r_type = ELF32_R_TYPE (rela->r_info);
1664 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, eh != NULL);
1665
1666 switch (r_type)
1667 {
1668 case R_PARISC_DLTIND14F:
1669 case R_PARISC_DLTIND14R:
1670 case R_PARISC_DLTIND21L:
1671 case R_PARISC_TLS_GD21L:
1672 case R_PARISC_TLS_GD14R:
1673 case R_PARISC_TLS_IE21L:
1674 case R_PARISC_TLS_IE14R:
1675 if (eh != NULL)
1676 {
1677 if (eh->got.refcount > 0)
1678 eh->got.refcount -= 1;
1679 }
1680 else if (local_got_refcounts != NULL)
1681 {
1682 if (local_got_refcounts[r_symndx] > 0)
1683 local_got_refcounts[r_symndx] -= 1;
1684 }
1685 break;
1686
1687 case R_PARISC_TLS_LDM21L:
1688 case R_PARISC_TLS_LDM14R:
1689 hppa_link_hash_table (info)->tls_ldm_got.refcount -= 1;
1690 break;
1691
1692 case R_PARISC_PCREL12F:
1693 case R_PARISC_PCREL17C:
1694 case R_PARISC_PCREL17F:
1695 case R_PARISC_PCREL22F:
1696 if (eh != NULL)
1697 {
1698 if (eh->plt.refcount > 0)
1699 eh->plt.refcount -= 1;
1700 }
1701 break;
1702
1703 case R_PARISC_PLABEL14R:
1704 case R_PARISC_PLABEL21L:
1705 case R_PARISC_PLABEL32:
1706 if (eh != NULL)
1707 {
1708 if (eh->plt.refcount > 0)
1709 eh->plt.refcount -= 1;
1710 }
1711 else if (local_plt_refcounts != NULL)
1712 {
1713 if (local_plt_refcounts[r_symndx] > 0)
1714 local_plt_refcounts[r_symndx] -= 1;
1715 }
1716 break;
1717
1718 default:
1719 break;
1720 }
1721 }
1722
1723 return TRUE;
1724 }
1725
1726 /* Support for core dump NOTE sections. */
1727
1728 static bfd_boolean
1729 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1730 {
1731 int offset;
1732 size_t size;
1733
1734 switch (note->descsz)
1735 {
1736 default:
1737 return FALSE;
1738
1739 case 396: /* Linux/hppa */
1740 /* pr_cursig */
1741 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1742
1743 /* pr_pid */
1744 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1745
1746 /* pr_reg */
1747 offset = 72;
1748 size = 320;
1749
1750 break;
1751 }
1752
1753 /* Make a ".reg/999" section. */
1754 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1755 size, note->descpos + offset);
1756 }
1757
1758 static bfd_boolean
1759 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1760 {
1761 switch (note->descsz)
1762 {
1763 default:
1764 return FALSE;
1765
1766 case 124: /* Linux/hppa elf_prpsinfo. */
1767 elf_tdata (abfd)->core_program
1768 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1769 elf_tdata (abfd)->core_command
1770 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1771 }
1772
1773 /* Note that for some reason, a spurious space is tacked
1774 onto the end of the args in some (at least one anyway)
1775 implementations, so strip it off if it exists. */
1776 {
1777 char *command = elf_tdata (abfd)->core_command;
1778 int n = strlen (command);
1779
1780 if (0 < n && command[n - 1] == ' ')
1781 command[n - 1] = '\0';
1782 }
1783
1784 return TRUE;
1785 }
1786
1787 /* Our own version of hide_symbol, so that we can keep plt entries for
1788 plabels. */
1789
1790 static void
1791 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1792 struct elf_link_hash_entry *eh,
1793 bfd_boolean force_local)
1794 {
1795 if (force_local)
1796 {
1797 eh->forced_local = 1;
1798 if (eh->dynindx != -1)
1799 {
1800 eh->dynindx = -1;
1801 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1802 eh->dynstr_index);
1803 }
1804 }
1805
1806 if (! hppa_elf_hash_entry (eh)->plabel)
1807 {
1808 eh->needs_plt = 0;
1809 eh->plt = elf_hash_table (info)->init_plt_refcount;
1810 }
1811 }
1812
1813 /* Adjust a symbol defined by a dynamic object and referenced by a
1814 regular object. The current definition is in some section of the
1815 dynamic object, but we're not including those sections. We have to
1816 change the definition to something the rest of the link can
1817 understand. */
1818
1819 static bfd_boolean
1820 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1821 struct elf_link_hash_entry *eh)
1822 {
1823 struct elf32_hppa_link_hash_table *htab;
1824 asection *sec;
1825
1826 /* If this is a function, put it in the procedure linkage table. We
1827 will fill in the contents of the procedure linkage table later. */
1828 if (eh->type == STT_FUNC
1829 || eh->needs_plt)
1830 {
1831 if (eh->plt.refcount <= 0
1832 || (eh->def_regular
1833 && eh->root.type != bfd_link_hash_defweak
1834 && ! hppa_elf_hash_entry (eh)->plabel
1835 && (!info->shared || info->symbolic)))
1836 {
1837 /* The .plt entry is not needed when:
1838 a) Garbage collection has removed all references to the
1839 symbol, or
1840 b) We know for certain the symbol is defined in this
1841 object, and it's not a weak definition, nor is the symbol
1842 used by a plabel relocation. Either this object is the
1843 application or we are doing a shared symbolic link. */
1844
1845 eh->plt.offset = (bfd_vma) -1;
1846 eh->needs_plt = 0;
1847 }
1848
1849 return TRUE;
1850 }
1851 else
1852 eh->plt.offset = (bfd_vma) -1;
1853
1854 /* If this is a weak symbol, and there is a real definition, the
1855 processor independent code will have arranged for us to see the
1856 real definition first, and we can just use the same value. */
1857 if (eh->u.weakdef != NULL)
1858 {
1859 if (eh->u.weakdef->root.type != bfd_link_hash_defined
1860 && eh->u.weakdef->root.type != bfd_link_hash_defweak)
1861 abort ();
1862 eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1863 eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1864 if (ELIMINATE_COPY_RELOCS)
1865 eh->non_got_ref = eh->u.weakdef->non_got_ref;
1866 return TRUE;
1867 }
1868
1869 /* This is a reference to a symbol defined by a dynamic object which
1870 is not a function. */
1871
1872 /* If we are creating a shared library, we must presume that the
1873 only references to the symbol are via the global offset table.
1874 For such cases we need not do anything here; the relocations will
1875 be handled correctly by relocate_section. */
1876 if (info->shared)
1877 return TRUE;
1878
1879 /* If there are no references to this symbol that do not use the
1880 GOT, we don't need to generate a copy reloc. */
1881 if (!eh->non_got_ref)
1882 return TRUE;
1883
1884 if (ELIMINATE_COPY_RELOCS)
1885 {
1886 struct elf32_hppa_link_hash_entry *hh;
1887 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1888
1889 hh = hppa_elf_hash_entry (eh);
1890 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
1891 {
1892 sec = hdh_p->sec->output_section;
1893 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1894 break;
1895 }
1896
1897 /* If we didn't find any dynamic relocs in read-only sections, then
1898 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1899 if (hdh_p == NULL)
1900 {
1901 eh->non_got_ref = 0;
1902 return TRUE;
1903 }
1904 }
1905
1906 if (eh->size == 0)
1907 {
1908 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
1909 eh->root.root.string);
1910 return TRUE;
1911 }
1912
1913 /* We must allocate the symbol in our .dynbss section, which will
1914 become part of the .bss section of the executable. There will be
1915 an entry for this symbol in the .dynsym section. The dynamic
1916 object will contain position independent code, so all references
1917 from the dynamic object to this symbol will go through the global
1918 offset table. The dynamic linker will use the .dynsym entry to
1919 determine the address it must put in the global offset table, so
1920 both the dynamic object and the regular object will refer to the
1921 same memory location for the variable. */
1922
1923 htab = hppa_link_hash_table (info);
1924
1925 /* We must generate a COPY reloc to tell the dynamic linker to
1926 copy the initial value out of the dynamic object and into the
1927 runtime process image. */
1928 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0)
1929 {
1930 htab->srelbss->size += sizeof (Elf32_External_Rela);
1931 eh->needs_copy = 1;
1932 }
1933
1934 sec = htab->sdynbss;
1935
1936 return _bfd_elf_adjust_dynamic_copy (eh, sec);
1937 }
1938
1939 /* Allocate space in the .plt for entries that won't have relocations.
1940 ie. plabel entries. */
1941
1942 static bfd_boolean
1943 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1944 {
1945 struct bfd_link_info *info;
1946 struct elf32_hppa_link_hash_table *htab;
1947 struct elf32_hppa_link_hash_entry *hh;
1948 asection *sec;
1949
1950 if (eh->root.type == bfd_link_hash_indirect)
1951 return TRUE;
1952
1953 if (eh->root.type == bfd_link_hash_warning)
1954 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1955
1956 info = (struct bfd_link_info *) inf;
1957 hh = hppa_elf_hash_entry (eh);
1958 htab = hppa_link_hash_table (info);
1959 if (htab->etab.dynamic_sections_created
1960 && eh->plt.refcount > 0)
1961 {
1962 /* Make sure this symbol is output as a dynamic symbol.
1963 Undefined weak syms won't yet be marked as dynamic. */
1964 if (eh->dynindx == -1
1965 && !eh->forced_local
1966 && eh->type != STT_PARISC_MILLI)
1967 {
1968 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
1969 return FALSE;
1970 }
1971
1972 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, eh))
1973 {
1974 /* Allocate these later. From this point on, h->plabel
1975 means that the plt entry is only used by a plabel.
1976 We'll be using a normal plt entry for this symbol, so
1977 clear the plabel indicator. */
1978
1979 hh->plabel = 0;
1980 }
1981 else if (hh->plabel)
1982 {
1983 /* Make an entry in the .plt section for plabel references
1984 that won't have a .plt entry for other reasons. */
1985 sec = htab->splt;
1986 eh->plt.offset = sec->size;
1987 sec->size += PLT_ENTRY_SIZE;
1988 }
1989 else
1990 {
1991 /* No .plt entry needed. */
1992 eh->plt.offset = (bfd_vma) -1;
1993 eh->needs_plt = 0;
1994 }
1995 }
1996 else
1997 {
1998 eh->plt.offset = (bfd_vma) -1;
1999 eh->needs_plt = 0;
2000 }
2001
2002 return TRUE;
2003 }
2004
2005 /* Allocate space in .plt, .got and associated reloc sections for
2006 global syms. */
2007
2008 static bfd_boolean
2009 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2010 {
2011 struct bfd_link_info *info;
2012 struct elf32_hppa_link_hash_table *htab;
2013 asection *sec;
2014 struct elf32_hppa_link_hash_entry *hh;
2015 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2016
2017 if (eh->root.type == bfd_link_hash_indirect)
2018 return TRUE;
2019
2020 if (eh->root.type == bfd_link_hash_warning)
2021 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2022
2023 info = inf;
2024 htab = hppa_link_hash_table (info);
2025 hh = hppa_elf_hash_entry (eh);
2026
2027 if (htab->etab.dynamic_sections_created
2028 && eh->plt.offset != (bfd_vma) -1
2029 && !hh->plabel
2030 && eh->plt.refcount > 0)
2031 {
2032 /* Make an entry in the .plt section. */
2033 sec = htab->splt;
2034 eh->plt.offset = sec->size;
2035 sec->size += PLT_ENTRY_SIZE;
2036
2037 /* We also need to make an entry in the .rela.plt section. */
2038 htab->srelplt->size += sizeof (Elf32_External_Rela);
2039 htab->need_plt_stub = 1;
2040 }
2041
2042 if (eh->got.refcount > 0)
2043 {
2044 /* Make sure this symbol is output as a dynamic symbol.
2045 Undefined weak syms won't yet be marked as dynamic. */
2046 if (eh->dynindx == -1
2047 && !eh->forced_local
2048 && eh->type != STT_PARISC_MILLI)
2049 {
2050 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2051 return FALSE;
2052 }
2053
2054 sec = htab->sgot;
2055 eh->got.offset = sec->size;
2056 sec->size += GOT_ENTRY_SIZE;
2057 /* R_PARISC_TLS_GD* needs two GOT entries */
2058 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2059 sec->size += GOT_ENTRY_SIZE * 2;
2060 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2061 sec->size += GOT_ENTRY_SIZE;
2062 if (htab->etab.dynamic_sections_created
2063 && (info->shared
2064 || (eh->dynindx != -1
2065 && !eh->forced_local)))
2066 {
2067 htab->srelgot->size += sizeof (Elf32_External_Rela);
2068 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2069 htab->srelgot->size += 2 * sizeof (Elf32_External_Rela);
2070 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2071 htab->srelgot->size += sizeof (Elf32_External_Rela);
2072 }
2073 }
2074 else
2075 eh->got.offset = (bfd_vma) -1;
2076
2077 if (hh->dyn_relocs == NULL)
2078 return TRUE;
2079
2080 /* If this is a -Bsymbolic shared link, then we need to discard all
2081 space allocated for dynamic pc-relative relocs against symbols
2082 defined in a regular object. For the normal shared case, discard
2083 space for relocs that have become local due to symbol visibility
2084 changes. */
2085 if (info->shared)
2086 {
2087 #if RELATIVE_DYNRELOCS
2088 if (SYMBOL_CALLS_LOCAL (info, eh))
2089 {
2090 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
2091
2092 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2093 {
2094 hdh_p->count -= hdh_p->relative_count;
2095 hdh_p->relative_count = 0;
2096 if (hdh_p->count == 0)
2097 *hdh_pp = hdh_p->hdh_next;
2098 else
2099 hdh_pp = &hdh_p->hdh_next;
2100 }
2101 }
2102 #endif
2103
2104 /* Also discard relocs on undefined weak syms with non-default
2105 visibility. */
2106 if (hh->dyn_relocs != NULL
2107 && eh->root.type == bfd_link_hash_undefweak)
2108 {
2109 if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
2110 hh->dyn_relocs = NULL;
2111
2112 /* Make sure undefined weak symbols are output as a dynamic
2113 symbol in PIEs. */
2114 else if (eh->dynindx == -1
2115 && !eh->forced_local)
2116 {
2117 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2118 return FALSE;
2119 }
2120 }
2121 }
2122 else
2123 {
2124 /* For the non-shared case, discard space for relocs against
2125 symbols which turn out to need copy relocs or are not
2126 dynamic. */
2127
2128 if (!eh->non_got_ref
2129 && ((ELIMINATE_COPY_RELOCS
2130 && eh->def_dynamic
2131 && !eh->def_regular)
2132 || (htab->etab.dynamic_sections_created
2133 && (eh->root.type == bfd_link_hash_undefweak
2134 || eh->root.type == bfd_link_hash_undefined))))
2135 {
2136 /* Make sure this symbol is output as a dynamic symbol.
2137 Undefined weak syms won't yet be marked as dynamic. */
2138 if (eh->dynindx == -1
2139 && !eh->forced_local
2140 && eh->type != STT_PARISC_MILLI)
2141 {
2142 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2143 return FALSE;
2144 }
2145
2146 /* If that succeeded, we know we'll be keeping all the
2147 relocs. */
2148 if (eh->dynindx != -1)
2149 goto keep;
2150 }
2151
2152 hh->dyn_relocs = NULL;
2153 return TRUE;
2154
2155 keep: ;
2156 }
2157
2158 /* Finally, allocate space. */
2159 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2160 {
2161 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2162 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2163 }
2164
2165 return TRUE;
2166 }
2167
2168 /* This function is called via elf_link_hash_traverse to force
2169 millicode symbols local so they do not end up as globals in the
2170 dynamic symbol table. We ought to be able to do this in
2171 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2172 for all dynamic symbols. Arguably, this is a bug in
2173 elf_adjust_dynamic_symbol. */
2174
2175 static bfd_boolean
2176 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2177 struct bfd_link_info *info)
2178 {
2179 if (eh->root.type == bfd_link_hash_warning)
2180 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2181
2182 if (eh->type == STT_PARISC_MILLI
2183 && !eh->forced_local)
2184 {
2185 elf32_hppa_hide_symbol (info, eh, TRUE);
2186 }
2187 return TRUE;
2188 }
2189
2190 /* Find any dynamic relocs that apply to read-only sections. */
2191
2192 static bfd_boolean
2193 readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2194 {
2195 struct elf32_hppa_link_hash_entry *hh;
2196 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2197
2198 if (eh->root.type == bfd_link_hash_warning)
2199 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2200
2201 hh = hppa_elf_hash_entry (eh);
2202 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2203 {
2204 asection *sec = hdh_p->sec->output_section;
2205
2206 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
2207 {
2208 struct bfd_link_info *info = inf;
2209
2210 info->flags |= DF_TEXTREL;
2211
2212 /* Not an error, just cut short the traversal. */
2213 return FALSE;
2214 }
2215 }
2216 return TRUE;
2217 }
2218
2219 /* Set the sizes of the dynamic sections. */
2220
2221 static bfd_boolean
2222 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2223 struct bfd_link_info *info)
2224 {
2225 struct elf32_hppa_link_hash_table *htab;
2226 bfd *dynobj;
2227 bfd *ibfd;
2228 asection *sec;
2229 bfd_boolean relocs;
2230
2231 htab = hppa_link_hash_table (info);
2232 dynobj = htab->etab.dynobj;
2233 if (dynobj == NULL)
2234 abort ();
2235
2236 if (htab->etab.dynamic_sections_created)
2237 {
2238 /* Set the contents of the .interp section to the interpreter. */
2239 if (info->executable)
2240 {
2241 sec = bfd_get_section_by_name (dynobj, ".interp");
2242 if (sec == NULL)
2243 abort ();
2244 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2245 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2246 }
2247
2248 /* Force millicode symbols local. */
2249 elf_link_hash_traverse (&htab->etab,
2250 clobber_millicode_symbols,
2251 info);
2252 }
2253
2254 /* Set up .got and .plt offsets for local syms, and space for local
2255 dynamic relocs. */
2256 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2257 {
2258 bfd_signed_vma *local_got;
2259 bfd_signed_vma *end_local_got;
2260 bfd_signed_vma *local_plt;
2261 bfd_signed_vma *end_local_plt;
2262 bfd_size_type locsymcount;
2263 Elf_Internal_Shdr *symtab_hdr;
2264 asection *srel;
2265 char *local_tls_type;
2266
2267 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2268 continue;
2269
2270 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2271 {
2272 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2273
2274 for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
2275 elf_section_data (sec)->local_dynrel);
2276 hdh_p != NULL;
2277 hdh_p = hdh_p->hdh_next)
2278 {
2279 if (!bfd_is_abs_section (hdh_p->sec)
2280 && bfd_is_abs_section (hdh_p->sec->output_section))
2281 {
2282 /* Input section has been discarded, either because
2283 it is a copy of a linkonce section or due to
2284 linker script /DISCARD/, so we'll be discarding
2285 the relocs too. */
2286 }
2287 else if (hdh_p->count != 0)
2288 {
2289 srel = elf_section_data (hdh_p->sec)->sreloc;
2290 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2291 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2292 info->flags |= DF_TEXTREL;
2293 }
2294 }
2295 }
2296
2297 local_got = elf_local_got_refcounts (ibfd);
2298 if (!local_got)
2299 continue;
2300
2301 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2302 locsymcount = symtab_hdr->sh_info;
2303 end_local_got = local_got + locsymcount;
2304 local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2305 sec = htab->sgot;
2306 srel = htab->srelgot;
2307 for (; local_got < end_local_got; ++local_got)
2308 {
2309 if (*local_got > 0)
2310 {
2311 *local_got = sec->size;
2312 sec->size += GOT_ENTRY_SIZE;
2313 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2314 sec->size += 2 * GOT_ENTRY_SIZE;
2315 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2316 sec->size += GOT_ENTRY_SIZE;
2317 if (info->shared)
2318 {
2319 srel->size += sizeof (Elf32_External_Rela);
2320 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2321 srel->size += 2 * sizeof (Elf32_External_Rela);
2322 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2323 srel->size += sizeof (Elf32_External_Rela);
2324 }
2325 }
2326 else
2327 *local_got = (bfd_vma) -1;
2328
2329 ++local_tls_type;
2330 }
2331
2332 local_plt = end_local_got;
2333 end_local_plt = local_plt + locsymcount;
2334 if (! htab->etab.dynamic_sections_created)
2335 {
2336 /* Won't be used, but be safe. */
2337 for (; local_plt < end_local_plt; ++local_plt)
2338 *local_plt = (bfd_vma) -1;
2339 }
2340 else
2341 {
2342 sec = htab->splt;
2343 srel = htab->srelplt;
2344 for (; local_plt < end_local_plt; ++local_plt)
2345 {
2346 if (*local_plt > 0)
2347 {
2348 *local_plt = sec->size;
2349 sec->size += PLT_ENTRY_SIZE;
2350 if (info->shared)
2351 srel->size += sizeof (Elf32_External_Rela);
2352 }
2353 else
2354 *local_plt = (bfd_vma) -1;
2355 }
2356 }
2357 }
2358
2359 if (htab->tls_ldm_got.refcount > 0)
2360 {
2361 /* Allocate 2 got entries and 1 dynamic reloc for
2362 R_PARISC_TLS_DTPMOD32 relocs. */
2363 htab->tls_ldm_got.offset = htab->sgot->size;
2364 htab->sgot->size += (GOT_ENTRY_SIZE * 2);
2365 htab->srelgot->size += sizeof (Elf32_External_Rela);
2366 }
2367 else
2368 htab->tls_ldm_got.offset = -1;
2369
2370 /* Do all the .plt entries without relocs first. The dynamic linker
2371 uses the last .plt reloc to find the end of the .plt (and hence
2372 the start of the .got) for lazy linking. */
2373 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2374
2375 /* Allocate global sym .plt and .got entries, and space for global
2376 sym dynamic relocs. */
2377 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2378
2379 /* The check_relocs and adjust_dynamic_symbol entry points have
2380 determined the sizes of the various dynamic sections. Allocate
2381 memory for them. */
2382 relocs = FALSE;
2383 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2384 {
2385 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2386 continue;
2387
2388 if (sec == htab->splt)
2389 {
2390 if (htab->need_plt_stub)
2391 {
2392 /* Make space for the plt stub at the end of the .plt
2393 section. We want this stub right at the end, up
2394 against the .got section. */
2395 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2396 int pltalign = bfd_section_alignment (dynobj, sec);
2397 bfd_size_type mask;
2398
2399 if (gotalign > pltalign)
2400 bfd_set_section_alignment (dynobj, sec, gotalign);
2401 mask = ((bfd_size_type) 1 << gotalign) - 1;
2402 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2403 }
2404 }
2405 else if (sec == htab->sgot
2406 || sec == htab->sdynbss)
2407 ;
2408 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
2409 {
2410 if (sec->size != 0)
2411 {
2412 /* Remember whether there are any reloc sections other
2413 than .rela.plt. */
2414 if (sec != htab->srelplt)
2415 relocs = TRUE;
2416
2417 /* We use the reloc_count field as a counter if we need
2418 to copy relocs into the output file. */
2419 sec->reloc_count = 0;
2420 }
2421 }
2422 else
2423 {
2424 /* It's not one of our sections, so don't allocate space. */
2425 continue;
2426 }
2427
2428 if (sec->size == 0)
2429 {
2430 /* If we don't need this section, strip it from the
2431 output file. This is mostly to handle .rela.bss and
2432 .rela.plt. We must create both sections in
2433 create_dynamic_sections, because they must be created
2434 before the linker maps input sections to output
2435 sections. The linker does that before
2436 adjust_dynamic_symbol is called, and it is that
2437 function which decides whether anything needs to go
2438 into these sections. */
2439 sec->flags |= SEC_EXCLUDE;
2440 continue;
2441 }
2442
2443 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2444 continue;
2445
2446 /* Allocate memory for the section contents. Zero it, because
2447 we may not fill in all the reloc sections. */
2448 sec->contents = bfd_zalloc (dynobj, sec->size);
2449 if (sec->contents == NULL)
2450 return FALSE;
2451 }
2452
2453 if (htab->etab.dynamic_sections_created)
2454 {
2455 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2456 actually has nothing to do with the PLT, it is how we
2457 communicate the LTP value of a load module to the dynamic
2458 linker. */
2459 #define add_dynamic_entry(TAG, VAL) \
2460 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2461
2462 if (!add_dynamic_entry (DT_PLTGOT, 0))
2463 return FALSE;
2464
2465 /* Add some entries to the .dynamic section. We fill in the
2466 values later, in elf32_hppa_finish_dynamic_sections, but we
2467 must add the entries now so that we get the correct size for
2468 the .dynamic section. The DT_DEBUG entry is filled in by the
2469 dynamic linker and used by the debugger. */
2470 if (info->executable)
2471 {
2472 if (!add_dynamic_entry (DT_DEBUG, 0))
2473 return FALSE;
2474 }
2475
2476 if (htab->srelplt->size != 0)
2477 {
2478 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2479 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2480 || !add_dynamic_entry (DT_JMPREL, 0))
2481 return FALSE;
2482 }
2483
2484 if (relocs)
2485 {
2486 if (!add_dynamic_entry (DT_RELA, 0)
2487 || !add_dynamic_entry (DT_RELASZ, 0)
2488 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2489 return FALSE;
2490
2491 /* If any dynamic relocs apply to a read-only section,
2492 then we need a DT_TEXTREL entry. */
2493 if ((info->flags & DF_TEXTREL) == 0)
2494 elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info);
2495
2496 if ((info->flags & DF_TEXTREL) != 0)
2497 {
2498 if (!add_dynamic_entry (DT_TEXTREL, 0))
2499 return FALSE;
2500 }
2501 }
2502 }
2503 #undef add_dynamic_entry
2504
2505 return TRUE;
2506 }
2507
2508 /* External entry points for sizing and building linker stubs. */
2509
2510 /* Set up various things so that we can make a list of input sections
2511 for each output section included in the link. Returns -1 on error,
2512 0 when no stubs will be needed, and 1 on success. */
2513
2514 int
2515 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2516 {
2517 bfd *input_bfd;
2518 unsigned int bfd_count;
2519 int top_id, top_index;
2520 asection *section;
2521 asection **input_list, **list;
2522 bfd_size_type amt;
2523 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2524
2525 /* Count the number of input BFDs and find the top input section id. */
2526 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2527 input_bfd != NULL;
2528 input_bfd = input_bfd->link_next)
2529 {
2530 bfd_count += 1;
2531 for (section = input_bfd->sections;
2532 section != NULL;
2533 section = section->next)
2534 {
2535 if (top_id < section->id)
2536 top_id = section->id;
2537 }
2538 }
2539 htab->bfd_count = bfd_count;
2540
2541 amt = sizeof (struct map_stub) * (top_id + 1);
2542 htab->stub_group = bfd_zmalloc (amt);
2543 if (htab->stub_group == NULL)
2544 return -1;
2545
2546 /* We can't use output_bfd->section_count here to find the top output
2547 section index as some sections may have been removed, and
2548 strip_excluded_output_sections doesn't renumber the indices. */
2549 for (section = output_bfd->sections, top_index = 0;
2550 section != NULL;
2551 section = section->next)
2552 {
2553 if (top_index < section->index)
2554 top_index = section->index;
2555 }
2556
2557 htab->top_index = top_index;
2558 amt = sizeof (asection *) * (top_index + 1);
2559 input_list = bfd_malloc (amt);
2560 htab->input_list = input_list;
2561 if (input_list == NULL)
2562 return -1;
2563
2564 /* For sections we aren't interested in, mark their entries with a
2565 value we can check later. */
2566 list = input_list + top_index;
2567 do
2568 *list = bfd_abs_section_ptr;
2569 while (list-- != input_list);
2570
2571 for (section = output_bfd->sections;
2572 section != NULL;
2573 section = section->next)
2574 {
2575 if ((section->flags & SEC_CODE) != 0)
2576 input_list[section->index] = NULL;
2577 }
2578
2579 return 1;
2580 }
2581
2582 /* The linker repeatedly calls this function for each input section,
2583 in the order that input sections are linked into output sections.
2584 Build lists of input sections to determine groupings between which
2585 we may insert linker stubs. */
2586
2587 void
2588 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2589 {
2590 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2591
2592 if (isec->output_section->index <= htab->top_index)
2593 {
2594 asection **list = htab->input_list + isec->output_section->index;
2595 if (*list != bfd_abs_section_ptr)
2596 {
2597 /* Steal the link_sec pointer for our list. */
2598 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2599 /* This happens to make the list in reverse order,
2600 which is what we want. */
2601 PREV_SEC (isec) = *list;
2602 *list = isec;
2603 }
2604 }
2605 }
2606
2607 /* See whether we can group stub sections together. Grouping stub
2608 sections may result in fewer stubs. More importantly, we need to
2609 put all .init* and .fini* stubs at the beginning of the .init or
2610 .fini output sections respectively, because glibc splits the
2611 _init and _fini functions into multiple parts. Putting a stub in
2612 the middle of a function is not a good idea. */
2613
2614 static void
2615 group_sections (struct elf32_hppa_link_hash_table *htab,
2616 bfd_size_type stub_group_size,
2617 bfd_boolean stubs_always_before_branch)
2618 {
2619 asection **list = htab->input_list + htab->top_index;
2620 do
2621 {
2622 asection *tail = *list;
2623 if (tail == bfd_abs_section_ptr)
2624 continue;
2625 while (tail != NULL)
2626 {
2627 asection *curr;
2628 asection *prev;
2629 bfd_size_type total;
2630 bfd_boolean big_sec;
2631
2632 curr = tail;
2633 total = tail->size;
2634 big_sec = total >= stub_group_size;
2635
2636 while ((prev = PREV_SEC (curr)) != NULL
2637 && ((total += curr->output_offset - prev->output_offset)
2638 < stub_group_size))
2639 curr = prev;
2640
2641 /* OK, the size from the start of CURR to the end is less
2642 than 240000 bytes and thus can be handled by one stub
2643 section. (or the tail section is itself larger than
2644 240000 bytes, in which case we may be toast.)
2645 We should really be keeping track of the total size of
2646 stubs added here, as stubs contribute to the final output
2647 section size. That's a little tricky, and this way will
2648 only break if stubs added total more than 22144 bytes, or
2649 2768 long branch stubs. It seems unlikely for more than
2650 2768 different functions to be called, especially from
2651 code only 240000 bytes long. This limit used to be
2652 250000, but c++ code tends to generate lots of little
2653 functions, and sometimes violated the assumption. */
2654 do
2655 {
2656 prev = PREV_SEC (tail);
2657 /* Set up this stub group. */
2658 htab->stub_group[tail->id].link_sec = curr;
2659 }
2660 while (tail != curr && (tail = prev) != NULL);
2661
2662 /* But wait, there's more! Input sections up to 240000
2663 bytes before the stub section can be handled by it too.
2664 Don't do this if we have a really large section after the
2665 stubs, as adding more stubs increases the chance that
2666 branches may not reach into the stub section. */
2667 if (!stubs_always_before_branch && !big_sec)
2668 {
2669 total = 0;
2670 while (prev != NULL
2671 && ((total += tail->output_offset - prev->output_offset)
2672 < stub_group_size))
2673 {
2674 tail = prev;
2675 prev = PREV_SEC (tail);
2676 htab->stub_group[tail->id].link_sec = curr;
2677 }
2678 }
2679 tail = prev;
2680 }
2681 }
2682 while (list-- != htab->input_list);
2683 free (htab->input_list);
2684 #undef PREV_SEC
2685 }
2686
2687 /* Read in all local syms for all input bfds, and create hash entries
2688 for export stubs if we are building a multi-subspace shared lib.
2689 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2690
2691 static int
2692 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2693 {
2694 unsigned int bfd_indx;
2695 Elf_Internal_Sym *local_syms, **all_local_syms;
2696 int stub_changed = 0;
2697 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2698
2699 /* We want to read in symbol extension records only once. To do this
2700 we need to read in the local symbols in parallel and save them for
2701 later use; so hold pointers to the local symbols in an array. */
2702 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2703 all_local_syms = bfd_zmalloc (amt);
2704 htab->all_local_syms = all_local_syms;
2705 if (all_local_syms == NULL)
2706 return -1;
2707
2708 /* Walk over all the input BFDs, swapping in local symbols.
2709 If we are creating a shared library, create hash entries for the
2710 export stubs. */
2711 for (bfd_indx = 0;
2712 input_bfd != NULL;
2713 input_bfd = input_bfd->link_next, bfd_indx++)
2714 {
2715 Elf_Internal_Shdr *symtab_hdr;
2716
2717 /* We'll need the symbol table in a second. */
2718 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2719 if (symtab_hdr->sh_info == 0)
2720 continue;
2721
2722 /* We need an array of the local symbols attached to the input bfd. */
2723 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2724 if (local_syms == NULL)
2725 {
2726 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2727 symtab_hdr->sh_info, 0,
2728 NULL, NULL, NULL);
2729 /* Cache them for elf_link_input_bfd. */
2730 symtab_hdr->contents = (unsigned char *) local_syms;
2731 }
2732 if (local_syms == NULL)
2733 return -1;
2734
2735 all_local_syms[bfd_indx] = local_syms;
2736
2737 if (info->shared && htab->multi_subspace)
2738 {
2739 struct elf_link_hash_entry **eh_syms;
2740 struct elf_link_hash_entry **eh_symend;
2741 unsigned int symcount;
2742
2743 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2744 - symtab_hdr->sh_info);
2745 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2746 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2747
2748 /* Look through the global syms for functions; We need to
2749 build export stubs for all globally visible functions. */
2750 for (; eh_syms < eh_symend; eh_syms++)
2751 {
2752 struct elf32_hppa_link_hash_entry *hh;
2753
2754 hh = hppa_elf_hash_entry (*eh_syms);
2755
2756 while (hh->eh.root.type == bfd_link_hash_indirect
2757 || hh->eh.root.type == bfd_link_hash_warning)
2758 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2759
2760 /* At this point in the link, undefined syms have been
2761 resolved, so we need to check that the symbol was
2762 defined in this BFD. */
2763 if ((hh->eh.root.type == bfd_link_hash_defined
2764 || hh->eh.root.type == bfd_link_hash_defweak)
2765 && hh->eh.type == STT_FUNC
2766 && hh->eh.root.u.def.section->output_section != NULL
2767 && (hh->eh.root.u.def.section->output_section->owner
2768 == output_bfd)
2769 && hh->eh.root.u.def.section->owner == input_bfd
2770 && hh->eh.def_regular
2771 && !hh->eh.forced_local
2772 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2773 {
2774 asection *sec;
2775 const char *stub_name;
2776 struct elf32_hppa_stub_hash_entry *hsh;
2777
2778 sec = hh->eh.root.u.def.section;
2779 stub_name = hh_name (hh);
2780 hsh = hppa_stub_hash_lookup (&htab->bstab,
2781 stub_name,
2782 FALSE, FALSE);
2783 if (hsh == NULL)
2784 {
2785 hsh = hppa_add_stub (stub_name, sec, htab);
2786 if (!hsh)
2787 return -1;
2788
2789 hsh->target_value = hh->eh.root.u.def.value;
2790 hsh->target_section = hh->eh.root.u.def.section;
2791 hsh->stub_type = hppa_stub_export;
2792 hsh->hh = hh;
2793 stub_changed = 1;
2794 }
2795 else
2796 {
2797 (*_bfd_error_handler) (_("%B: duplicate export stub %s"),
2798 input_bfd,
2799 stub_name);
2800 }
2801 }
2802 }
2803 }
2804 }
2805
2806 return stub_changed;
2807 }
2808
2809 /* Determine and set the size of the stub section for a final link.
2810
2811 The basic idea here is to examine all the relocations looking for
2812 PC-relative calls to a target that is unreachable with a "bl"
2813 instruction. */
2814
2815 bfd_boolean
2816 elf32_hppa_size_stubs
2817 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2818 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2819 asection * (*add_stub_section) (const char *, asection *),
2820 void (*layout_sections_again) (void))
2821 {
2822 bfd_size_type stub_group_size;
2823 bfd_boolean stubs_always_before_branch;
2824 bfd_boolean stub_changed;
2825 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2826
2827 /* Stash our params away. */
2828 htab->stub_bfd = stub_bfd;
2829 htab->multi_subspace = multi_subspace;
2830 htab->add_stub_section = add_stub_section;
2831 htab->layout_sections_again = layout_sections_again;
2832 stubs_always_before_branch = group_size < 0;
2833 if (group_size < 0)
2834 stub_group_size = -group_size;
2835 else
2836 stub_group_size = group_size;
2837 if (stub_group_size == 1)
2838 {
2839 /* Default values. */
2840 if (stubs_always_before_branch)
2841 {
2842 stub_group_size = 7680000;
2843 if (htab->has_17bit_branch || htab->multi_subspace)
2844 stub_group_size = 240000;
2845 if (htab->has_12bit_branch)
2846 stub_group_size = 7500;
2847 }
2848 else
2849 {
2850 stub_group_size = 6971392;
2851 if (htab->has_17bit_branch || htab->multi_subspace)
2852 stub_group_size = 217856;
2853 if (htab->has_12bit_branch)
2854 stub_group_size = 6808;
2855 }
2856 }
2857
2858 group_sections (htab, stub_group_size, stubs_always_before_branch);
2859
2860 switch (get_local_syms (output_bfd, info->input_bfds, info))
2861 {
2862 default:
2863 if (htab->all_local_syms)
2864 goto error_ret_free_local;
2865 return FALSE;
2866
2867 case 0:
2868 stub_changed = FALSE;
2869 break;
2870
2871 case 1:
2872 stub_changed = TRUE;
2873 break;
2874 }
2875
2876 while (1)
2877 {
2878 bfd *input_bfd;
2879 unsigned int bfd_indx;
2880 asection *stub_sec;
2881
2882 for (input_bfd = info->input_bfds, bfd_indx = 0;
2883 input_bfd != NULL;
2884 input_bfd = input_bfd->link_next, bfd_indx++)
2885 {
2886 Elf_Internal_Shdr *symtab_hdr;
2887 asection *section;
2888 Elf_Internal_Sym *local_syms;
2889
2890 /* We'll need the symbol table in a second. */
2891 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2892 if (symtab_hdr->sh_info == 0)
2893 continue;
2894
2895 local_syms = htab->all_local_syms[bfd_indx];
2896
2897 /* Walk over each section attached to the input bfd. */
2898 for (section = input_bfd->sections;
2899 section != NULL;
2900 section = section->next)
2901 {
2902 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2903
2904 /* If there aren't any relocs, then there's nothing more
2905 to do. */
2906 if ((section->flags & SEC_RELOC) == 0
2907 || section->reloc_count == 0)
2908 continue;
2909
2910 /* If this section is a link-once section that will be
2911 discarded, then don't create any stubs. */
2912 if (section->output_section == NULL
2913 || section->output_section->owner != output_bfd)
2914 continue;
2915
2916 /* Get the relocs. */
2917 internal_relocs
2918 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2919 info->keep_memory);
2920 if (internal_relocs == NULL)
2921 goto error_ret_free_local;
2922
2923 /* Now examine each relocation. */
2924 irela = internal_relocs;
2925 irelaend = irela + section->reloc_count;
2926 for (; irela < irelaend; irela++)
2927 {
2928 unsigned int r_type, r_indx;
2929 enum elf32_hppa_stub_type stub_type;
2930 struct elf32_hppa_stub_hash_entry *hsh;
2931 asection *sym_sec;
2932 bfd_vma sym_value;
2933 bfd_vma destination;
2934 struct elf32_hppa_link_hash_entry *hh;
2935 char *stub_name;
2936 const asection *id_sec;
2937
2938 r_type = ELF32_R_TYPE (irela->r_info);
2939 r_indx = ELF32_R_SYM (irela->r_info);
2940
2941 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2942 {
2943 bfd_set_error (bfd_error_bad_value);
2944 error_ret_free_internal:
2945 if (elf_section_data (section)->relocs == NULL)
2946 free (internal_relocs);
2947 goto error_ret_free_local;
2948 }
2949
2950 /* Only look for stubs on call instructions. */
2951 if (r_type != (unsigned int) R_PARISC_PCREL12F
2952 && r_type != (unsigned int) R_PARISC_PCREL17F
2953 && r_type != (unsigned int) R_PARISC_PCREL22F)
2954 continue;
2955
2956 /* Now determine the call target, its name, value,
2957 section. */
2958 sym_sec = NULL;
2959 sym_value = 0;
2960 destination = 0;
2961 hh = NULL;
2962 if (r_indx < symtab_hdr->sh_info)
2963 {
2964 /* It's a local symbol. */
2965 Elf_Internal_Sym *sym;
2966 Elf_Internal_Shdr *hdr;
2967
2968 sym = local_syms + r_indx;
2969 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2970 sym_sec = hdr->bfd_section;
2971 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2972 sym_value = sym->st_value;
2973 destination = (sym_value + irela->r_addend
2974 + sym_sec->output_offset
2975 + sym_sec->output_section->vma);
2976 }
2977 else
2978 {
2979 /* It's an external symbol. */
2980 int e_indx;
2981
2982 e_indx = r_indx - symtab_hdr->sh_info;
2983 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2984
2985 while (hh->eh.root.type == bfd_link_hash_indirect
2986 || hh->eh.root.type == bfd_link_hash_warning)
2987 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2988
2989 if (hh->eh.root.type == bfd_link_hash_defined
2990 || hh->eh.root.type == bfd_link_hash_defweak)
2991 {
2992 sym_sec = hh->eh.root.u.def.section;
2993 sym_value = hh->eh.root.u.def.value;
2994 if (sym_sec->output_section != NULL)
2995 destination = (sym_value + irela->r_addend
2996 + sym_sec->output_offset
2997 + sym_sec->output_section->vma);
2998 }
2999 else if (hh->eh.root.type == bfd_link_hash_undefweak)
3000 {
3001 if (! info->shared)
3002 continue;
3003 }
3004 else if (hh->eh.root.type == bfd_link_hash_undefined)
3005 {
3006 if (! (info->unresolved_syms_in_objects == RM_IGNORE
3007 && (ELF_ST_VISIBILITY (hh->eh.other)
3008 == STV_DEFAULT)
3009 && hh->eh.type != STT_PARISC_MILLI))
3010 continue;
3011 }
3012 else
3013 {
3014 bfd_set_error (bfd_error_bad_value);
3015 goto error_ret_free_internal;
3016 }
3017 }
3018
3019 /* Determine what (if any) linker stub is needed. */
3020 stub_type = hppa_type_of_stub (section, irela, hh,
3021 destination, info);
3022 if (stub_type == hppa_stub_none)
3023 continue;
3024
3025 /* Support for grouping stub sections. */
3026 id_sec = htab->stub_group[section->id].link_sec;
3027
3028 /* Get the name of this stub. */
3029 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
3030 if (!stub_name)
3031 goto error_ret_free_internal;
3032
3033 hsh = hppa_stub_hash_lookup (&htab->bstab,
3034 stub_name,
3035 FALSE, FALSE);
3036 if (hsh != NULL)
3037 {
3038 /* The proper stub has already been created. */
3039 free (stub_name);
3040 continue;
3041 }
3042
3043 hsh = hppa_add_stub (stub_name, section, htab);
3044 if (hsh == NULL)
3045 {
3046 free (stub_name);
3047 goto error_ret_free_internal;
3048 }
3049
3050 hsh->target_value = sym_value;
3051 hsh->target_section = sym_sec;
3052 hsh->stub_type = stub_type;
3053 if (info->shared)
3054 {
3055 if (stub_type == hppa_stub_import)
3056 hsh->stub_type = hppa_stub_import_shared;
3057 else if (stub_type == hppa_stub_long_branch)
3058 hsh->stub_type = hppa_stub_long_branch_shared;
3059 }
3060 hsh->hh = hh;
3061 stub_changed = TRUE;
3062 }
3063
3064 /* We're done with the internal relocs, free them. */
3065 if (elf_section_data (section)->relocs == NULL)
3066 free (internal_relocs);
3067 }
3068 }
3069
3070 if (!stub_changed)
3071 break;
3072
3073 /* OK, we've added some stubs. Find out the new size of the
3074 stub sections. */
3075 for (stub_sec = htab->stub_bfd->sections;
3076 stub_sec != NULL;
3077 stub_sec = stub_sec->next)
3078 stub_sec->size = 0;
3079
3080 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
3081
3082 /* Ask the linker to do its stuff. */
3083 (*htab->layout_sections_again) ();
3084 stub_changed = FALSE;
3085 }
3086
3087 free (htab->all_local_syms);
3088 return TRUE;
3089
3090 error_ret_free_local:
3091 free (htab->all_local_syms);
3092 return FALSE;
3093 }
3094
3095 /* For a final link, this function is called after we have sized the
3096 stubs to provide a value for __gp. */
3097
3098 bfd_boolean
3099 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
3100 {
3101 struct bfd_link_hash_entry *h;
3102 asection *sec = NULL;
3103 bfd_vma gp_val = 0;
3104 struct elf32_hppa_link_hash_table *htab;
3105
3106 htab = hppa_link_hash_table (info);
3107 h = bfd_link_hash_lookup (&htab->etab.root, "$global$", FALSE, FALSE, FALSE);
3108
3109 if (h != NULL
3110 && (h->type == bfd_link_hash_defined
3111 || h->type == bfd_link_hash_defweak))
3112 {
3113 gp_val = h->u.def.value;
3114 sec = h->u.def.section;
3115 }
3116 else
3117 {
3118 asection *splt = bfd_get_section_by_name (abfd, ".plt");
3119 asection *sgot = bfd_get_section_by_name (abfd, ".got");
3120
3121 /* Choose to point our LTP at, in this order, one of .plt, .got,
3122 or .data, if these sections exist. In the case of choosing
3123 .plt try to make the LTP ideal for addressing anywhere in the
3124 .plt or .got with a 14 bit signed offset. Typically, the end
3125 of the .plt is the start of the .got, so choose .plt + 0x2000
3126 if either the .plt or .got is larger than 0x2000. If both
3127 the .plt and .got are smaller than 0x2000, choose the end of
3128 the .plt section. */
3129 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3130 ? NULL : splt;
3131 if (sec != NULL)
3132 {
3133 gp_val = sec->size;
3134 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3135 {
3136 gp_val = 0x2000;
3137 }
3138 }
3139 else
3140 {
3141 sec = sgot;
3142 if (sec != NULL)
3143 {
3144 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3145 {
3146 /* We know we don't have a .plt. If .got is large,
3147 offset our LTP. */
3148 if (sec->size > 0x2000)
3149 gp_val = 0x2000;
3150 }
3151 }
3152 else
3153 {
3154 /* No .plt or .got. Who cares what the LTP is? */
3155 sec = bfd_get_section_by_name (abfd, ".data");
3156 }
3157 }
3158
3159 if (h != NULL)
3160 {
3161 h->type = bfd_link_hash_defined;
3162 h->u.def.value = gp_val;
3163 if (sec != NULL)
3164 h->u.def.section = sec;
3165 else
3166 h->u.def.section = bfd_abs_section_ptr;
3167 }
3168 }
3169
3170 if (sec != NULL && sec->output_section != NULL)
3171 gp_val += sec->output_section->vma + sec->output_offset;
3172
3173 elf_gp (abfd) = gp_val;
3174 return TRUE;
3175 }
3176
3177 /* Build all the stubs associated with the current output file. The
3178 stubs are kept in a hash table attached to the main linker hash
3179 table. We also set up the .plt entries for statically linked PIC
3180 functions here. This function is called via hppaelf_finish in the
3181 linker. */
3182
3183 bfd_boolean
3184 elf32_hppa_build_stubs (struct bfd_link_info *info)
3185 {
3186 asection *stub_sec;
3187 struct bfd_hash_table *table;
3188 struct elf32_hppa_link_hash_table *htab;
3189
3190 htab = hppa_link_hash_table (info);
3191
3192 for (stub_sec = htab->stub_bfd->sections;
3193 stub_sec != NULL;
3194 stub_sec = stub_sec->next)
3195 {
3196 bfd_size_type size;
3197
3198 /* Allocate memory to hold the linker stubs. */
3199 size = stub_sec->size;
3200 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3201 if (stub_sec->contents == NULL && size != 0)
3202 return FALSE;
3203 stub_sec->size = 0;
3204 }
3205
3206 /* Build the stubs as directed by the stub hash table. */
3207 table = &htab->bstab;
3208 bfd_hash_traverse (table, hppa_build_one_stub, info);
3209
3210 return TRUE;
3211 }
3212
3213 /* Return the base vma address which should be subtracted from the real
3214 address when resolving a dtpoff relocation.
3215 This is PT_TLS segment p_vaddr. */
3216
3217 static bfd_vma
3218 dtpoff_base (struct bfd_link_info *info)
3219 {
3220 /* If tls_sec is NULL, we should have signalled an error already. */
3221 if (elf_hash_table (info)->tls_sec == NULL)
3222 return 0;
3223 return elf_hash_table (info)->tls_sec->vma;
3224 }
3225
3226 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3227
3228 static bfd_vma
3229 tpoff (struct bfd_link_info *info, bfd_vma address)
3230 {
3231 struct elf_link_hash_table *htab = elf_hash_table (info);
3232
3233 /* If tls_sec is NULL, we should have signalled an error already. */
3234 if (htab->tls_sec == NULL)
3235 return 0;
3236 /* hppa TLS ABI is variant I and static TLS block start just after
3237 tcbhead structure which has 2 pointer fields. */
3238 return (address - htab->tls_sec->vma
3239 + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3240 }
3241
3242 /* Perform a final link. */
3243
3244 static bfd_boolean
3245 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3246 {
3247 /* Invoke the regular ELF linker to do all the work. */
3248 if (!bfd_elf_final_link (abfd, info))
3249 return FALSE;
3250
3251 /* If we're producing a final executable, sort the contents of the
3252 unwind section. */
3253 return elf_hppa_sort_unwind (abfd);
3254 }
3255
3256 /* Record the lowest address for the data and text segments. */
3257
3258 static void
3259 hppa_record_segment_addr (bfd *abfd,
3260 asection *section,
3261 void *data)
3262 {
3263 struct elf32_hppa_link_hash_table *htab;
3264
3265 htab = (struct elf32_hppa_link_hash_table*) data;
3266
3267 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3268 {
3269 unsigned seg = elf_hppa_osec_to_segment (abfd, section->output_section);
3270 bfd_vma value = elf_tdata (abfd)->phdr[seg].p_vaddr;
3271
3272 if ((section->flags & SEC_READONLY) != 0)
3273 {
3274 if (value < htab->text_segment_base)
3275 htab->text_segment_base = value;
3276 }
3277 else
3278 {
3279 if (value < htab->data_segment_base)
3280 htab->data_segment_base = value;
3281 }
3282 }
3283 }
3284
3285 /* Perform a relocation as part of a final link. */
3286
3287 static bfd_reloc_status_type
3288 final_link_relocate (asection *input_section,
3289 bfd_byte *contents,
3290 const Elf_Internal_Rela *rela,
3291 bfd_vma value,
3292 struct elf32_hppa_link_hash_table *htab,
3293 asection *sym_sec,
3294 struct elf32_hppa_link_hash_entry *hh,
3295 struct bfd_link_info *info)
3296 {
3297 int insn;
3298 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3299 unsigned int orig_r_type = r_type;
3300 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3301 int r_format = howto->bitsize;
3302 enum hppa_reloc_field_selector_type_alt r_field;
3303 bfd *input_bfd = input_section->owner;
3304 bfd_vma offset = rela->r_offset;
3305 bfd_vma max_branch_offset = 0;
3306 bfd_byte *hit_data = contents + offset;
3307 bfd_signed_vma addend = rela->r_addend;
3308 bfd_vma location;
3309 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3310 int val;
3311
3312 if (r_type == R_PARISC_NONE)
3313 return bfd_reloc_ok;
3314
3315 insn = bfd_get_32 (input_bfd, hit_data);
3316
3317 /* Find out where we are and where we're going. */
3318 location = (offset +
3319 input_section->output_offset +
3320 input_section->output_section->vma);
3321
3322 /* If we are not building a shared library, convert DLTIND relocs to
3323 DPREL relocs. */
3324 if (!info->shared)
3325 {
3326 switch (r_type)
3327 {
3328 case R_PARISC_DLTIND21L:
3329 r_type = R_PARISC_DPREL21L;
3330 break;
3331
3332 case R_PARISC_DLTIND14R:
3333 r_type = R_PARISC_DPREL14R;
3334 break;
3335
3336 case R_PARISC_DLTIND14F:
3337 r_type = R_PARISC_DPREL14F;
3338 break;
3339 }
3340 }
3341
3342 switch (r_type)
3343 {
3344 case R_PARISC_PCREL12F:
3345 case R_PARISC_PCREL17F:
3346 case R_PARISC_PCREL22F:
3347 /* If this call should go via the plt, find the import stub in
3348 the stub hash. */
3349 if (sym_sec == NULL
3350 || sym_sec->output_section == NULL
3351 || (hh != NULL
3352 && hh->eh.plt.offset != (bfd_vma) -1
3353 && hh->eh.dynindx != -1
3354 && !hh->plabel
3355 && (info->shared
3356 || !hh->eh.def_regular
3357 || hh->eh.root.type == bfd_link_hash_defweak)))
3358 {
3359 hsh = hppa_get_stub_entry (input_section, sym_sec,
3360 hh, rela, htab);
3361 if (hsh != NULL)
3362 {
3363 value = (hsh->stub_offset
3364 + hsh->stub_sec->output_offset
3365 + hsh->stub_sec->output_section->vma);
3366 addend = 0;
3367 }
3368 else if (sym_sec == NULL && hh != NULL
3369 && hh->eh.root.type == bfd_link_hash_undefweak)
3370 {
3371 /* It's OK if undefined weak. Calls to undefined weak
3372 symbols behave as if the "called" function
3373 immediately returns. We can thus call to a weak
3374 function without first checking whether the function
3375 is defined. */
3376 value = location;
3377 addend = 8;
3378 }
3379 else
3380 return bfd_reloc_undefined;
3381 }
3382 /* Fall thru. */
3383
3384 case R_PARISC_PCREL21L:
3385 case R_PARISC_PCREL17C:
3386 case R_PARISC_PCREL17R:
3387 case R_PARISC_PCREL14R:
3388 case R_PARISC_PCREL14F:
3389 case R_PARISC_PCREL32:
3390 /* Make it a pc relative offset. */
3391 value -= location;
3392 addend -= 8;
3393 break;
3394
3395 case R_PARISC_DPREL21L:
3396 case R_PARISC_DPREL14R:
3397 case R_PARISC_DPREL14F:
3398 /* Convert instructions that use the linkage table pointer (r19) to
3399 instructions that use the global data pointer (dp). This is the
3400 most efficient way of using PIC code in an incomplete executable,
3401 but the user must follow the standard runtime conventions for
3402 accessing data for this to work. */
3403 if (orig_r_type == R_PARISC_DLTIND21L)
3404 {
3405 /* Convert addil instructions if the original reloc was a
3406 DLTIND21L. GCC sometimes uses a register other than r19 for
3407 the operation, so we must convert any addil instruction
3408 that uses this relocation. */
3409 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3410 insn = ADDIL_DP;
3411 else
3412 /* We must have a ldil instruction. It's too hard to find
3413 and convert the associated add instruction, so issue an
3414 error. */
3415 (*_bfd_error_handler)
3416 (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3417 input_bfd,
3418 input_section,
3419 offset,
3420 howto->name,
3421 insn);
3422 }
3423 else if (orig_r_type == R_PARISC_DLTIND14F)
3424 {
3425 /* This must be a format 1 load/store. Change the base
3426 register to dp. */
3427 insn = (insn & 0xfc1ffff) | (27 << 21);
3428 }
3429
3430 /* For all the DP relative relocations, we need to examine the symbol's
3431 section. If it has no section or if it's a code section, then
3432 "data pointer relative" makes no sense. In that case we don't
3433 adjust the "value", and for 21 bit addil instructions, we change the
3434 source addend register from %dp to %r0. This situation commonly
3435 arises for undefined weak symbols and when a variable's "constness"
3436 is declared differently from the way the variable is defined. For
3437 instance: "extern int foo" with foo defined as "const int foo". */
3438 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3439 {
3440 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3441 == (((int) OP_ADDIL << 26) | (27 << 21)))
3442 {
3443 insn &= ~ (0x1f << 21);
3444 }
3445 /* Now try to make things easy for the dynamic linker. */
3446
3447 break;
3448 }
3449 /* Fall thru. */
3450
3451 case R_PARISC_DLTIND21L:
3452 case R_PARISC_DLTIND14R:
3453 case R_PARISC_DLTIND14F:
3454 case R_PARISC_TLS_GD21L:
3455 case R_PARISC_TLS_GD14R:
3456 case R_PARISC_TLS_LDM21L:
3457 case R_PARISC_TLS_LDM14R:
3458 case R_PARISC_TLS_IE21L:
3459 case R_PARISC_TLS_IE14R:
3460 value -= elf_gp (input_section->output_section->owner);
3461 break;
3462
3463 case R_PARISC_SEGREL32:
3464 if ((sym_sec->flags & SEC_CODE) != 0)
3465 value -= htab->text_segment_base;
3466 else
3467 value -= htab->data_segment_base;
3468 break;
3469
3470 default:
3471 break;
3472 }
3473
3474 switch (r_type)
3475 {
3476 case R_PARISC_DIR32:
3477 case R_PARISC_DIR14F:
3478 case R_PARISC_DIR17F:
3479 case R_PARISC_PCREL17C:
3480 case R_PARISC_PCREL14F:
3481 case R_PARISC_PCREL32:
3482 case R_PARISC_DPREL14F:
3483 case R_PARISC_PLABEL32:
3484 case R_PARISC_DLTIND14F:
3485 case R_PARISC_SEGBASE:
3486 case R_PARISC_SEGREL32:
3487 case R_PARISC_TLS_DTPMOD32:
3488 case R_PARISC_TLS_DTPOFF32:
3489 case R_PARISC_TLS_TPREL32:
3490 r_field = e_fsel;
3491 break;
3492
3493 case R_PARISC_DLTIND21L:
3494 case R_PARISC_PCREL21L:
3495 case R_PARISC_PLABEL21L:
3496 r_field = e_lsel;
3497 break;
3498
3499 case R_PARISC_DIR21L:
3500 case R_PARISC_DPREL21L:
3501 case R_PARISC_TLS_GD21L:
3502 case R_PARISC_TLS_LDM21L:
3503 case R_PARISC_TLS_LDO21L:
3504 case R_PARISC_TLS_IE21L:
3505 case R_PARISC_TLS_LE21L:
3506 r_field = e_lrsel;
3507 break;
3508
3509 case R_PARISC_PCREL17R:
3510 case R_PARISC_PCREL14R:
3511 case R_PARISC_PLABEL14R:
3512 case R_PARISC_DLTIND14R:
3513 r_field = e_rsel;
3514 break;
3515
3516 case R_PARISC_DIR17R:
3517 case R_PARISC_DIR14R:
3518 case R_PARISC_DPREL14R:
3519 case R_PARISC_TLS_GD14R:
3520 case R_PARISC_TLS_LDM14R:
3521 case R_PARISC_TLS_LDO14R:
3522 case R_PARISC_TLS_IE14R:
3523 case R_PARISC_TLS_LE14R:
3524 r_field = e_rrsel;
3525 break;
3526
3527 case R_PARISC_PCREL12F:
3528 case R_PARISC_PCREL17F:
3529 case R_PARISC_PCREL22F:
3530 r_field = e_fsel;
3531
3532 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3533 {
3534 max_branch_offset = (1 << (17-1)) << 2;
3535 }
3536 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3537 {
3538 max_branch_offset = (1 << (12-1)) << 2;
3539 }
3540 else
3541 {
3542 max_branch_offset = (1 << (22-1)) << 2;
3543 }
3544
3545 /* sym_sec is NULL on undefined weak syms or when shared on
3546 undefined syms. We've already checked for a stub for the
3547 shared undefined case. */
3548 if (sym_sec == NULL)
3549 break;
3550
3551 /* If the branch is out of reach, then redirect the
3552 call to the local stub for this function. */
3553 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3554 {
3555 hsh = hppa_get_stub_entry (input_section, sym_sec,
3556 hh, rela, htab);
3557 if (hsh == NULL)
3558 return bfd_reloc_undefined;
3559
3560 /* Munge up the value and addend so that we call the stub
3561 rather than the procedure directly. */
3562 value = (hsh->stub_offset
3563 + hsh->stub_sec->output_offset
3564 + hsh->stub_sec->output_section->vma
3565 - location);
3566 addend = -8;
3567 }
3568 break;
3569
3570 /* Something we don't know how to handle. */
3571 default:
3572 return bfd_reloc_notsupported;
3573 }
3574
3575 /* Make sure we can reach the stub. */
3576 if (max_branch_offset != 0
3577 && value + addend + max_branch_offset >= 2*max_branch_offset)
3578 {
3579 (*_bfd_error_handler)
3580 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3581 input_bfd,
3582 input_section,
3583 offset,
3584 hsh->bh_root.string);
3585 bfd_set_error (bfd_error_bad_value);
3586 return bfd_reloc_notsupported;
3587 }
3588
3589 val = hppa_field_adjust (value, addend, r_field);
3590
3591 switch (r_type)
3592 {
3593 case R_PARISC_PCREL12F:
3594 case R_PARISC_PCREL17C:
3595 case R_PARISC_PCREL17F:
3596 case R_PARISC_PCREL17R:
3597 case R_PARISC_PCREL22F:
3598 case R_PARISC_DIR17F:
3599 case R_PARISC_DIR17R:
3600 /* This is a branch. Divide the offset by four.
3601 Note that we need to decide whether it's a branch or
3602 otherwise by inspecting the reloc. Inspecting insn won't
3603 work as insn might be from a .word directive. */
3604 val >>= 2;
3605 break;
3606
3607 default:
3608 break;
3609 }
3610
3611 insn = hppa_rebuild_insn (insn, val, r_format);
3612
3613 /* Update the instruction word. */
3614 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3615 return bfd_reloc_ok;
3616 }
3617
3618 /* Relocate an HPPA ELF section. */
3619
3620 static bfd_boolean
3621 elf32_hppa_relocate_section (bfd *output_bfd,
3622 struct bfd_link_info *info,
3623 bfd *input_bfd,
3624 asection *input_section,
3625 bfd_byte *contents,
3626 Elf_Internal_Rela *relocs,
3627 Elf_Internal_Sym *local_syms,
3628 asection **local_sections)
3629 {
3630 bfd_vma *local_got_offsets;
3631 struct elf32_hppa_link_hash_table *htab;
3632 Elf_Internal_Shdr *symtab_hdr;
3633 Elf_Internal_Rela *rela;
3634 Elf_Internal_Rela *relend;
3635
3636 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3637
3638 htab = hppa_link_hash_table (info);
3639 local_got_offsets = elf_local_got_offsets (input_bfd);
3640
3641 rela = relocs;
3642 relend = relocs + input_section->reloc_count;
3643 for (; rela < relend; rela++)
3644 {
3645 unsigned int r_type;
3646 reloc_howto_type *howto;
3647 unsigned int r_symndx;
3648 struct elf32_hppa_link_hash_entry *hh;
3649 Elf_Internal_Sym *sym;
3650 asection *sym_sec;
3651 bfd_vma relocation;
3652 bfd_reloc_status_type rstatus;
3653 const char *sym_name;
3654 bfd_boolean plabel;
3655 bfd_boolean warned_undef;
3656
3657 r_type = ELF32_R_TYPE (rela->r_info);
3658 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3659 {
3660 bfd_set_error (bfd_error_bad_value);
3661 return FALSE;
3662 }
3663 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3664 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3665 continue;
3666
3667 r_symndx = ELF32_R_SYM (rela->r_info);
3668 hh = NULL;
3669 sym = NULL;
3670 sym_sec = NULL;
3671 warned_undef = FALSE;
3672 if (r_symndx < symtab_hdr->sh_info)
3673 {
3674 /* This is a local symbol, h defaults to NULL. */
3675 sym = local_syms + r_symndx;
3676 sym_sec = local_sections[r_symndx];
3677 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3678 }
3679 else
3680 {
3681 struct elf_link_hash_entry *eh;
3682 bfd_boolean unresolved_reloc;
3683 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3684
3685 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3686 r_symndx, symtab_hdr, sym_hashes,
3687 eh, sym_sec, relocation,
3688 unresolved_reloc, warned_undef);
3689
3690 if (!info->relocatable
3691 && relocation == 0
3692 && eh->root.type != bfd_link_hash_defined
3693 && eh->root.type != bfd_link_hash_defweak
3694 && eh->root.type != bfd_link_hash_undefweak)
3695 {
3696 if (info->unresolved_syms_in_objects == RM_IGNORE
3697 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3698 && eh->type == STT_PARISC_MILLI)
3699 {
3700 if (! info->callbacks->undefined_symbol
3701 (info, eh_name (eh), input_bfd,
3702 input_section, rela->r_offset, FALSE))
3703 return FALSE;
3704 warned_undef = TRUE;
3705 }
3706 }
3707 hh = hppa_elf_hash_entry (eh);
3708 }
3709
3710 if (sym_sec != NULL && elf_discarded_section (sym_sec))
3711 {
3712 /* For relocs against symbols from removed linkonce
3713 sections, or sections discarded by a linker script,
3714 we just want the section contents zeroed. Avoid any
3715 special processing. */
3716 _bfd_clear_contents (elf_hppa_howto_table + r_type, input_bfd,
3717 contents + rela->r_offset);
3718 rela->r_info = 0;
3719 rela->r_addend = 0;
3720 continue;
3721 }
3722
3723 if (info->relocatable)
3724 continue;
3725
3726 /* Do any required modifications to the relocation value, and
3727 determine what types of dynamic info we need to output, if
3728 any. */
3729 plabel = 0;
3730 switch (r_type)
3731 {
3732 case R_PARISC_DLTIND14F:
3733 case R_PARISC_DLTIND14R:
3734 case R_PARISC_DLTIND21L:
3735 {
3736 bfd_vma off;
3737 bfd_boolean do_got = 0;
3738
3739 /* Relocation is to the entry for this symbol in the
3740 global offset table. */
3741 if (hh != NULL)
3742 {
3743 bfd_boolean dyn;
3744
3745 off = hh->eh.got.offset;
3746 dyn = htab->etab.dynamic_sections_created;
3747 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
3748 &hh->eh))
3749 {
3750 /* If we aren't going to call finish_dynamic_symbol,
3751 then we need to handle initialisation of the .got
3752 entry and create needed relocs here. Since the
3753 offset must always be a multiple of 4, we use the
3754 least significant bit to record whether we have
3755 initialised it already. */
3756 if ((off & 1) != 0)
3757 off &= ~1;
3758 else
3759 {
3760 hh->eh.got.offset |= 1;
3761 do_got = 1;
3762 }
3763 }
3764 }
3765 else
3766 {
3767 /* Local symbol case. */
3768 if (local_got_offsets == NULL)
3769 abort ();
3770
3771 off = local_got_offsets[r_symndx];
3772
3773 /* The offset must always be a multiple of 4. We use
3774 the least significant bit to record whether we have
3775 already generated the necessary reloc. */
3776 if ((off & 1) != 0)
3777 off &= ~1;
3778 else
3779 {
3780 local_got_offsets[r_symndx] |= 1;
3781 do_got = 1;
3782 }
3783 }
3784
3785 if (do_got)
3786 {
3787 if (info->shared)
3788 {
3789 /* Output a dynamic relocation for this GOT entry.
3790 In this case it is relative to the base of the
3791 object because the symbol index is zero. */
3792 Elf_Internal_Rela outrel;
3793 bfd_byte *loc;
3794 asection *sec = htab->srelgot;
3795
3796 outrel.r_offset = (off
3797 + htab->sgot->output_offset
3798 + htab->sgot->output_section->vma);
3799 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3800 outrel.r_addend = relocation;
3801 loc = sec->contents;
3802 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3803 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3804 }
3805 else
3806 bfd_put_32 (output_bfd, relocation,
3807 htab->sgot->contents + off);
3808 }
3809
3810 if (off >= (bfd_vma) -2)
3811 abort ();
3812
3813 /* Add the base of the GOT to the relocation value. */
3814 relocation = (off
3815 + htab->sgot->output_offset
3816 + htab->sgot->output_section->vma);
3817 }
3818 break;
3819
3820 case R_PARISC_SEGREL32:
3821 /* If this is the first SEGREL relocation, then initialize
3822 the segment base values. */
3823 if (htab->text_segment_base == (bfd_vma) -1)
3824 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3825 break;
3826
3827 case R_PARISC_PLABEL14R:
3828 case R_PARISC_PLABEL21L:
3829 case R_PARISC_PLABEL32:
3830 if (htab->etab.dynamic_sections_created)
3831 {
3832 bfd_vma off;
3833 bfd_boolean do_plt = 0;
3834 /* If we have a global symbol with a PLT slot, then
3835 redirect this relocation to it. */
3836 if (hh != NULL)
3837 {
3838 off = hh->eh.plt.offset;
3839 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared,
3840 &hh->eh))
3841 {
3842 /* In a non-shared link, adjust_dynamic_symbols
3843 isn't called for symbols forced local. We
3844 need to write out the plt entry here. */
3845 if ((off & 1) != 0)
3846 off &= ~1;
3847 else
3848 {
3849 hh->eh.plt.offset |= 1;
3850 do_plt = 1;
3851 }
3852 }
3853 }
3854 else
3855 {
3856 bfd_vma *local_plt_offsets;
3857
3858 if (local_got_offsets == NULL)
3859 abort ();
3860
3861 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3862 off = local_plt_offsets[r_symndx];
3863
3864 /* As for the local .got entry case, we use the last
3865 bit to record whether we've already initialised
3866 this local .plt entry. */
3867 if ((off & 1) != 0)
3868 off &= ~1;
3869 else
3870 {
3871 local_plt_offsets[r_symndx] |= 1;
3872 do_plt = 1;
3873 }
3874 }
3875
3876 if (do_plt)
3877 {
3878 if (info->shared)
3879 {
3880 /* Output a dynamic IPLT relocation for this
3881 PLT entry. */
3882 Elf_Internal_Rela outrel;
3883 bfd_byte *loc;
3884 asection *s = htab->srelplt;
3885
3886 outrel.r_offset = (off
3887 + htab->splt->output_offset
3888 + htab->splt->output_section->vma);
3889 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3890 outrel.r_addend = relocation;
3891 loc = s->contents;
3892 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3893 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3894 }
3895 else
3896 {
3897 bfd_put_32 (output_bfd,
3898 relocation,
3899 htab->splt->contents + off);
3900 bfd_put_32 (output_bfd,
3901 elf_gp (htab->splt->output_section->owner),
3902 htab->splt->contents + off + 4);
3903 }
3904 }
3905
3906 if (off >= (bfd_vma) -2)
3907 abort ();
3908
3909 /* PLABELs contain function pointers. Relocation is to
3910 the entry for the function in the .plt. The magic +2
3911 offset signals to $$dyncall that the function pointer
3912 is in the .plt and thus has a gp pointer too.
3913 Exception: Undefined PLABELs should have a value of
3914 zero. */
3915 if (hh == NULL
3916 || (hh->eh.root.type != bfd_link_hash_undefweak
3917 && hh->eh.root.type != bfd_link_hash_undefined))
3918 {
3919 relocation = (off
3920 + htab->splt->output_offset
3921 + htab->splt->output_section->vma
3922 + 2);
3923 }
3924 plabel = 1;
3925 }
3926 /* Fall through and possibly emit a dynamic relocation. */
3927
3928 case R_PARISC_DIR17F:
3929 case R_PARISC_DIR17R:
3930 case R_PARISC_DIR14F:
3931 case R_PARISC_DIR14R:
3932 case R_PARISC_DIR21L:
3933 case R_PARISC_DPREL14F:
3934 case R_PARISC_DPREL14R:
3935 case R_PARISC_DPREL21L:
3936 case R_PARISC_DIR32:
3937 if ((input_section->flags & SEC_ALLOC) == 0)
3938 break;
3939
3940 /* The reloc types handled here and this conditional
3941 expression must match the code in ..check_relocs and
3942 allocate_dynrelocs. ie. We need exactly the same condition
3943 as in ..check_relocs, with some extra conditions (dynindx
3944 test in this case) to cater for relocs removed by
3945 allocate_dynrelocs. If you squint, the non-shared test
3946 here does indeed match the one in ..check_relocs, the
3947 difference being that here we test DEF_DYNAMIC as well as
3948 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3949 which is why we can't use just that test here.
3950 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3951 there all files have not been loaded. */
3952 if ((info->shared
3953 && (hh == NULL
3954 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
3955 || hh->eh.root.type != bfd_link_hash_undefweak)
3956 && (IS_ABSOLUTE_RELOC (r_type)
3957 || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
3958 || (!info->shared
3959 && hh != NULL
3960 && hh->eh.dynindx != -1
3961 && !hh->eh.non_got_ref
3962 && ((ELIMINATE_COPY_RELOCS
3963 && hh->eh.def_dynamic
3964 && !hh->eh.def_regular)
3965 || hh->eh.root.type == bfd_link_hash_undefweak
3966 || hh->eh.root.type == bfd_link_hash_undefined)))
3967 {
3968 Elf_Internal_Rela outrel;
3969 bfd_boolean skip;
3970 asection *sreloc;
3971 bfd_byte *loc;
3972
3973 /* When generating a shared object, these relocations
3974 are copied into the output file to be resolved at run
3975 time. */
3976
3977 outrel.r_addend = rela->r_addend;
3978 outrel.r_offset =
3979 _bfd_elf_section_offset (output_bfd, info, input_section,
3980 rela->r_offset);
3981 skip = (outrel.r_offset == (bfd_vma) -1
3982 || outrel.r_offset == (bfd_vma) -2);
3983 outrel.r_offset += (input_section->output_offset
3984 + input_section->output_section->vma);
3985
3986 if (skip)
3987 {
3988 memset (&outrel, 0, sizeof (outrel));
3989 }
3990 else if (hh != NULL
3991 && hh->eh.dynindx != -1
3992 && (plabel
3993 || !IS_ABSOLUTE_RELOC (r_type)
3994 || !info->shared
3995 || !info->symbolic
3996 || !hh->eh.def_regular))
3997 {
3998 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
3999 }
4000 else /* It's a local symbol, or one marked to become local. */
4001 {
4002 int indx = 0;
4003
4004 /* Add the absolute offset of the symbol. */
4005 outrel.r_addend += relocation;
4006
4007 /* Global plabels need to be processed by the
4008 dynamic linker so that functions have at most one
4009 fptr. For this reason, we need to differentiate
4010 between global and local plabels, which we do by
4011 providing the function symbol for a global plabel
4012 reloc, and no symbol for local plabels. */
4013 if (! plabel
4014 && sym_sec != NULL
4015 && sym_sec->output_section != NULL
4016 && ! bfd_is_abs_section (sym_sec))
4017 {
4018 asection *osec;
4019
4020 osec = sym_sec->output_section;
4021 indx = elf_section_data (osec)->dynindx;
4022 if (indx == 0)
4023 {
4024 osec = htab->etab.text_index_section;
4025 indx = elf_section_data (osec)->dynindx;
4026 }
4027 BFD_ASSERT (indx != 0);
4028
4029 /* We are turning this relocation into one
4030 against a section symbol, so subtract out the
4031 output section's address but not the offset
4032 of the input section in the output section. */
4033 outrel.r_addend -= osec->vma;
4034 }
4035
4036 outrel.r_info = ELF32_R_INFO (indx, r_type);
4037 }
4038 sreloc = elf_section_data (input_section)->sreloc;
4039 if (sreloc == NULL)
4040 abort ();
4041
4042 loc = sreloc->contents;
4043 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
4044 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4045 }
4046 break;
4047
4048 case R_PARISC_TLS_LDM21L:
4049 case R_PARISC_TLS_LDM14R:
4050 {
4051 bfd_vma off;
4052
4053 off = htab->tls_ldm_got.offset;
4054 if (off & 1)
4055 off &= ~1;
4056 else
4057 {
4058 Elf_Internal_Rela outrel;
4059 bfd_byte *loc;
4060
4061 outrel.r_offset = (off
4062 + htab->sgot->output_section->vma
4063 + htab->sgot->output_offset);
4064 outrel.r_addend = 0;
4065 outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
4066 loc = htab->srelgot->contents;
4067 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4068
4069 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4070 htab->tls_ldm_got.offset |= 1;
4071 }
4072
4073 /* Add the base of the GOT to the relocation value. */
4074 relocation = (off
4075 + htab->sgot->output_offset
4076 + htab->sgot->output_section->vma);
4077
4078 break;
4079 }
4080
4081 case R_PARISC_TLS_LDO21L:
4082 case R_PARISC_TLS_LDO14R:
4083 relocation -= dtpoff_base (info);
4084 break;
4085
4086 case R_PARISC_TLS_GD21L:
4087 case R_PARISC_TLS_GD14R:
4088 case R_PARISC_TLS_IE21L:
4089 case R_PARISC_TLS_IE14R:
4090 {
4091 bfd_vma off;
4092 int indx;
4093 char tls_type;
4094
4095 indx = 0;
4096 if (hh != NULL)
4097 {
4098 bfd_boolean dyn;
4099 dyn = htab->etab.dynamic_sections_created;
4100
4101 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &hh->eh)
4102 && (!info->shared
4103 || !SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4104 {
4105 indx = hh->eh.dynindx;
4106 }
4107 off = hh->eh.got.offset;
4108 tls_type = hh->tls_type;
4109 }
4110 else
4111 {
4112 off = local_got_offsets[r_symndx];
4113 tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4114 }
4115
4116 if (tls_type == GOT_UNKNOWN)
4117 abort ();
4118
4119 if ((off & 1) != 0)
4120 off &= ~1;
4121 else
4122 {
4123 bfd_boolean need_relocs = FALSE;
4124 Elf_Internal_Rela outrel;
4125 bfd_byte *loc = NULL;
4126 int cur_off = off;
4127
4128 /* The GOT entries have not been initialized yet. Do it
4129 now, and emit any relocations. If both an IE GOT and a
4130 GD GOT are necessary, we emit the GD first. */
4131
4132 if ((info->shared || indx != 0)
4133 && (hh == NULL
4134 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
4135 || hh->eh.root.type != bfd_link_hash_undefweak))
4136 {
4137 need_relocs = TRUE;
4138 loc = htab->srelgot->contents;
4139 /* FIXME (CAO): Should this be reloc_count++ ? */
4140 loc += htab->srelgot->reloc_count * sizeof (Elf32_External_Rela);
4141 }
4142
4143 if (tls_type & GOT_TLS_GD)
4144 {
4145 if (need_relocs)
4146 {
4147 outrel.r_offset = (cur_off
4148 + htab->sgot->output_section->vma
4149 + htab->sgot->output_offset);
4150 outrel.r_info = ELF32_R_INFO (indx,R_PARISC_TLS_DTPMOD32);
4151 outrel.r_addend = 0;
4152 bfd_put_32 (output_bfd, 0, htab->sgot->contents + cur_off);
4153 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4154 htab->srelgot->reloc_count++;
4155 loc += sizeof (Elf32_External_Rela);
4156
4157 if (indx == 0)
4158 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4159 htab->sgot->contents + cur_off + 4);
4160 else
4161 {
4162 bfd_put_32 (output_bfd, 0,
4163 htab->sgot->contents + cur_off + 4);
4164 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4165 outrel.r_offset += 4;
4166 bfd_elf32_swap_reloca_out (output_bfd, &outrel,loc);
4167 htab->srelgot->reloc_count++;
4168 loc += sizeof (Elf32_External_Rela);
4169 }
4170 }
4171 else
4172 {
4173 /* If we are not emitting relocations for a
4174 general dynamic reference, then we must be in a
4175 static link or an executable link with the
4176 symbol binding locally. Mark it as belonging
4177 to module 1, the executable. */
4178 bfd_put_32 (output_bfd, 1,
4179 htab->sgot->contents + cur_off);
4180 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4181 htab->sgot->contents + cur_off + 4);
4182 }
4183
4184
4185 cur_off += 8;
4186 }
4187
4188 if (tls_type & GOT_TLS_IE)
4189 {
4190 if (need_relocs)
4191 {
4192 outrel.r_offset = (cur_off
4193 + htab->sgot->output_section->vma
4194 + htab->sgot->output_offset);
4195 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_TPREL32);
4196
4197 if (indx == 0)
4198 outrel.r_addend = relocation - dtpoff_base (info);
4199 else
4200 outrel.r_addend = 0;
4201
4202 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4203 htab->srelgot->reloc_count++;
4204 loc += sizeof (Elf32_External_Rela);
4205 }
4206 else
4207 bfd_put_32 (output_bfd, tpoff (info, relocation),
4208 htab->sgot->contents + cur_off);
4209
4210 cur_off += 4;
4211 }
4212
4213 if (hh != NULL)
4214 hh->eh.got.offset |= 1;
4215 else
4216 local_got_offsets[r_symndx] |= 1;
4217 }
4218
4219 if ((tls_type & GOT_TLS_GD)
4220 && r_type != R_PARISC_TLS_GD21L
4221 && r_type != R_PARISC_TLS_GD14R)
4222 off += 2 * GOT_ENTRY_SIZE;
4223
4224 /* Add the base of the GOT to the relocation value. */
4225 relocation = (off
4226 + htab->sgot->output_offset
4227 + htab->sgot->output_section->vma);
4228
4229 break;
4230 }
4231
4232 case R_PARISC_TLS_LE21L:
4233 case R_PARISC_TLS_LE14R:
4234 {
4235 relocation = tpoff (info, relocation);
4236 break;
4237 }
4238 break;
4239
4240 default:
4241 break;
4242 }
4243
4244 rstatus = final_link_relocate (input_section, contents, rela, relocation,
4245 htab, sym_sec, hh, info);
4246
4247 if (rstatus == bfd_reloc_ok)
4248 continue;
4249
4250 if (hh != NULL)
4251 sym_name = hh_name (hh);
4252 else
4253 {
4254 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4255 symtab_hdr->sh_link,
4256 sym->st_name);
4257 if (sym_name == NULL)
4258 return FALSE;
4259 if (*sym_name == '\0')
4260 sym_name = bfd_section_name (input_bfd, sym_sec);
4261 }
4262
4263 howto = elf_hppa_howto_table + r_type;
4264
4265 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4266 {
4267 if (rstatus == bfd_reloc_notsupported || !warned_undef)
4268 {
4269 (*_bfd_error_handler)
4270 (_("%B(%A+0x%lx): cannot handle %s for %s"),
4271 input_bfd,
4272 input_section,
4273 (long) rela->r_offset,
4274 howto->name,
4275 sym_name);
4276 bfd_set_error (bfd_error_bad_value);
4277 return FALSE;
4278 }
4279 }
4280 else
4281 {
4282 if (!((*info->callbacks->reloc_overflow)
4283 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4284 (bfd_vma) 0, input_bfd, input_section, rela->r_offset)))
4285 return FALSE;
4286 }
4287 }
4288
4289 return TRUE;
4290 }
4291
4292 /* Finish up dynamic symbol handling. We set the contents of various
4293 dynamic sections here. */
4294
4295 static bfd_boolean
4296 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4297 struct bfd_link_info *info,
4298 struct elf_link_hash_entry *eh,
4299 Elf_Internal_Sym *sym)
4300 {
4301 struct elf32_hppa_link_hash_table *htab;
4302 Elf_Internal_Rela rela;
4303 bfd_byte *loc;
4304
4305 htab = hppa_link_hash_table (info);
4306
4307 if (eh->plt.offset != (bfd_vma) -1)
4308 {
4309 bfd_vma value;
4310
4311 if (eh->plt.offset & 1)
4312 abort ();
4313
4314 /* This symbol has an entry in the procedure linkage table. Set
4315 it up.
4316
4317 The format of a plt entry is
4318 <funcaddr>
4319 <__gp>
4320 */
4321 value = 0;
4322 if (eh->root.type == bfd_link_hash_defined
4323 || eh->root.type == bfd_link_hash_defweak)
4324 {
4325 value = eh->root.u.def.value;
4326 if (eh->root.u.def.section->output_section != NULL)
4327 value += (eh->root.u.def.section->output_offset
4328 + eh->root.u.def.section->output_section->vma);
4329 }
4330
4331 /* Create a dynamic IPLT relocation for this entry. */
4332 rela.r_offset = (eh->plt.offset
4333 + htab->splt->output_offset
4334 + htab->splt->output_section->vma);
4335 if (eh->dynindx != -1)
4336 {
4337 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4338 rela.r_addend = 0;
4339 }
4340 else
4341 {
4342 /* This symbol has been marked to become local, and is
4343 used by a plabel so must be kept in the .plt. */
4344 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4345 rela.r_addend = value;
4346 }
4347
4348 loc = htab->srelplt->contents;
4349 loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4350 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rela, loc);
4351
4352 if (!eh->def_regular)
4353 {
4354 /* Mark the symbol as undefined, rather than as defined in
4355 the .plt section. Leave the value alone. */
4356 sym->st_shndx = SHN_UNDEF;
4357 }
4358 }
4359
4360 if (eh->got.offset != (bfd_vma) -1
4361 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_GD) == 0
4362 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_IE) == 0)
4363 {
4364 /* This symbol has an entry in the global offset table. Set it
4365 up. */
4366
4367 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4368 + htab->sgot->output_offset
4369 + htab->sgot->output_section->vma);
4370
4371 /* If this is a -Bsymbolic link and the symbol is defined
4372 locally or was forced to be local because of a version file,
4373 we just want to emit a RELATIVE reloc. The entry in the
4374 global offset table will already have been initialized in the
4375 relocate_section function. */
4376 if (info->shared
4377 && (info->symbolic || eh->dynindx == -1)
4378 && eh->def_regular)
4379 {
4380 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4381 rela.r_addend = (eh->root.u.def.value
4382 + eh->root.u.def.section->output_offset
4383 + eh->root.u.def.section->output_section->vma);
4384 }
4385 else
4386 {
4387 if ((eh->got.offset & 1) != 0)
4388 abort ();
4389
4390 bfd_put_32 (output_bfd, 0, htab->sgot->contents + (eh->got.offset & ~1));
4391 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4392 rela.r_addend = 0;
4393 }
4394
4395 loc = htab->srelgot->contents;
4396 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4397 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4398 }
4399
4400 if (eh->needs_copy)
4401 {
4402 asection *sec;
4403
4404 /* This symbol needs a copy reloc. Set it up. */
4405
4406 if (! (eh->dynindx != -1
4407 && (eh->root.type == bfd_link_hash_defined
4408 || eh->root.type == bfd_link_hash_defweak)))
4409 abort ();
4410
4411 sec = htab->srelbss;
4412
4413 rela.r_offset = (eh->root.u.def.value
4414 + eh->root.u.def.section->output_offset
4415 + eh->root.u.def.section->output_section->vma);
4416 rela.r_addend = 0;
4417 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4418 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4419 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4420 }
4421
4422 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4423 if (eh_name (eh)[0] == '_'
4424 && (strcmp (eh_name (eh), "_DYNAMIC") == 0
4425 || eh == htab->etab.hgot))
4426 {
4427 sym->st_shndx = SHN_ABS;
4428 }
4429
4430 return TRUE;
4431 }
4432
4433 /* Used to decide how to sort relocs in an optimal manner for the
4434 dynamic linker, before writing them out. */
4435
4436 static enum elf_reloc_type_class
4437 elf32_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
4438 {
4439 /* Handle TLS relocs first; we don't want them to be marked
4440 relative by the "if (ELF32_R_SYM (rela->r_info) == 0)"
4441 check below. */
4442 switch ((int) ELF32_R_TYPE (rela->r_info))
4443 {
4444 case R_PARISC_TLS_DTPMOD32:
4445 case R_PARISC_TLS_DTPOFF32:
4446 case R_PARISC_TLS_TPREL32:
4447 return reloc_class_normal;
4448 }
4449
4450 if (ELF32_R_SYM (rela->r_info) == 0)
4451 return reloc_class_relative;
4452
4453 switch ((int) ELF32_R_TYPE (rela->r_info))
4454 {
4455 case R_PARISC_IPLT:
4456 return reloc_class_plt;
4457 case R_PARISC_COPY:
4458 return reloc_class_copy;
4459 default:
4460 return reloc_class_normal;
4461 }
4462 }
4463
4464 /* Finish up the dynamic sections. */
4465
4466 static bfd_boolean
4467 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4468 struct bfd_link_info *info)
4469 {
4470 bfd *dynobj;
4471 struct elf32_hppa_link_hash_table *htab;
4472 asection *sdyn;
4473
4474 htab = hppa_link_hash_table (info);
4475 dynobj = htab->etab.dynobj;
4476
4477 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4478
4479 if (htab->etab.dynamic_sections_created)
4480 {
4481 Elf32_External_Dyn *dyncon, *dynconend;
4482
4483 if (sdyn == NULL)
4484 abort ();
4485
4486 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4487 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4488 for (; dyncon < dynconend; dyncon++)
4489 {
4490 Elf_Internal_Dyn dyn;
4491 asection *s;
4492
4493 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4494
4495 switch (dyn.d_tag)
4496 {
4497 default:
4498 continue;
4499
4500 case DT_PLTGOT:
4501 /* Use PLTGOT to set the GOT register. */
4502 dyn.d_un.d_ptr = elf_gp (output_bfd);
4503 break;
4504
4505 case DT_JMPREL:
4506 s = htab->srelplt;
4507 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4508 break;
4509
4510 case DT_PLTRELSZ:
4511 s = htab->srelplt;
4512 dyn.d_un.d_val = s->size;
4513 break;
4514
4515 case DT_RELASZ:
4516 /* Don't count procedure linkage table relocs in the
4517 overall reloc count. */
4518 s = htab->srelplt;
4519 if (s == NULL)
4520 continue;
4521 dyn.d_un.d_val -= s->size;
4522 break;
4523
4524 case DT_RELA:
4525 /* We may not be using the standard ELF linker script.
4526 If .rela.plt is the first .rela section, we adjust
4527 DT_RELA to not include it. */
4528 s = htab->srelplt;
4529 if (s == NULL)
4530 continue;
4531 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4532 continue;
4533 dyn.d_un.d_ptr += s->size;
4534 break;
4535 }
4536
4537 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4538 }
4539 }
4540
4541 if (htab->sgot != NULL && htab->sgot->size != 0)
4542 {
4543 /* Fill in the first entry in the global offset table.
4544 We use it to point to our dynamic section, if we have one. */
4545 bfd_put_32 (output_bfd,
4546 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4547 htab->sgot->contents);
4548
4549 /* The second entry is reserved for use by the dynamic linker. */
4550 memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4551
4552 /* Set .got entry size. */
4553 elf_section_data (htab->sgot->output_section)
4554 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4555 }
4556
4557 if (htab->splt != NULL && htab->splt->size != 0)
4558 {
4559 /* Set plt entry size. */
4560 elf_section_data (htab->splt->output_section)
4561 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4562
4563 if (htab->need_plt_stub)
4564 {
4565 /* Set up the .plt stub. */
4566 memcpy (htab->splt->contents
4567 + htab->splt->size - sizeof (plt_stub),
4568 plt_stub, sizeof (plt_stub));
4569
4570 if ((htab->splt->output_offset
4571 + htab->splt->output_section->vma
4572 + htab->splt->size)
4573 != (htab->sgot->output_offset
4574 + htab->sgot->output_section->vma))
4575 {
4576 (*_bfd_error_handler)
4577 (_(".got section not immediately after .plt section"));
4578 return FALSE;
4579 }
4580 }
4581 }
4582
4583 return TRUE;
4584 }
4585
4586 /* Called when writing out an object file to decide the type of a
4587 symbol. */
4588 static int
4589 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4590 {
4591 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4592 return STT_PARISC_MILLI;
4593 else
4594 return type;
4595 }
4596
4597 /* Misc BFD support code. */
4598 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4599 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4600 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4601 #define elf_info_to_howto elf_hppa_info_to_howto
4602 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4603
4604 /* Stuff for the BFD linker. */
4605 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4606 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4607 #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
4608 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4609 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4610 #define elf_backend_check_relocs elf32_hppa_check_relocs
4611 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4612 #define elf_backend_fake_sections elf_hppa_fake_sections
4613 #define elf_backend_relocate_section elf32_hppa_relocate_section
4614 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4615 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4616 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4617 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4618 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4619 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4620 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4621 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4622 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4623 #define elf_backend_object_p elf32_hppa_object_p
4624 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4625 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4626 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4627 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4628 #define elf_backend_action_discarded elf_hppa_action_discarded
4629
4630 #define elf_backend_can_gc_sections 1
4631 #define elf_backend_can_refcount 1
4632 #define elf_backend_plt_alignment 2
4633 #define elf_backend_want_got_plt 0
4634 #define elf_backend_plt_readonly 0
4635 #define elf_backend_want_plt_sym 0
4636 #define elf_backend_got_header_size 8
4637 #define elf_backend_rela_normal 1
4638
4639 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4640 #define TARGET_BIG_NAME "elf32-hppa"
4641 #define ELF_ARCH bfd_arch_hppa
4642 #define ELF_MACHINE_CODE EM_PARISC
4643 #define ELF_MAXPAGESIZE 0x1000
4644 #define ELF_OSABI ELFOSABI_HPUX
4645 #define elf32_bed elf32_hppa_hpux_bed
4646
4647 #include "elf32-target.h"
4648
4649 #undef TARGET_BIG_SYM
4650 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4651 #undef TARGET_BIG_NAME
4652 #define TARGET_BIG_NAME "elf32-hppa-linux"
4653 #undef ELF_OSABI
4654 #define ELF_OSABI ELFOSABI_LINUX
4655 #undef elf32_bed
4656 #define elf32_bed elf32_hppa_linux_bed
4657
4658 #include "elf32-target.h"
4659
4660 #undef TARGET_BIG_SYM
4661 #define TARGET_BIG_SYM bfd_elf32_hppa_nbsd_vec
4662 #undef TARGET_BIG_NAME
4663 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4664 #undef ELF_OSABI
4665 #define ELF_OSABI ELFOSABI_NETBSD
4666 #undef elf32_bed
4667 #define elf32_bed elf32_hppa_netbsd_bed
4668
4669 #include "elf32-target.h"
This page took 0.122198 seconds and 3 git commands to generate.