* elf-bfd.h (struct elf_reloc_cookie): Remove locsym_shndx,
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002 Free Software Foundation, Inc.
4
5 Original code by
6 Center for Software Science
7 Department of Computer Science
8 University of Utah
9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
26
27 #include "bfd.h"
28 #include "sysdep.h"
29 #include "libbfd.h"
30 #include "elf-bfd.h"
31 #include "elf/hppa.h"
32 #include "libhppa.h"
33 #include "elf32-hppa.h"
34 #define ARCH_SIZE 32
35 #include "elf32-hppa.h"
36 #include "elf-hppa.h"
37
38 /* In order to gain some understanding of code in this file without
39 knowing all the intricate details of the linker, note the
40 following:
41
42 Functions named elf32_hppa_* are called by external routines, other
43 functions are only called locally. elf32_hppa_* functions appear
44 in this file more or less in the order in which they are called
45 from external routines. eg. elf32_hppa_check_relocs is called
46 early in the link process, elf32_hppa_finish_dynamic_sections is
47 one of the last functions. */
48
49 /* We use two hash tables to hold information for linking PA ELF objects.
50
51 The first is the elf32_hppa_link_hash_table which is derived
52 from the standard ELF linker hash table. We use this as a place to
53 attach other hash tables and static information.
54
55 The second is the stub hash table which is derived from the
56 base BFD hash table. The stub hash table holds the information
57 necessary to build the linker stubs during a link.
58
59 There are a number of different stubs generated by the linker.
60
61 Long branch stub:
62 : ldil LR'X,%r1
63 : be,n RR'X(%sr4,%r1)
64
65 PIC long branch stub:
66 : b,l .+8,%r1
67 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
68 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
69
70 Import stub to call shared library routine from normal object file
71 (single sub-space version)
72 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
73 : ldw RR'lt_ptr+ltoff(%r1),%r21
74 : bv %r0(%r21)
75 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
76
77 Import stub to call shared library routine from shared library
78 (single sub-space version)
79 : addil LR'ltoff,%r19 ; get procedure entry point
80 : ldw RR'ltoff(%r1),%r21
81 : bv %r0(%r21)
82 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
83
84 Import stub to call shared library routine from normal object file
85 (multiple sub-space support)
86 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
87 : ldw RR'lt_ptr+ltoff(%r1),%r21
88 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
89 : ldsid (%r21),%r1
90 : mtsp %r1,%sr0
91 : be 0(%sr0,%r21) ; branch to target
92 : stw %rp,-24(%sp) ; save rp
93
94 Import stub to call shared library routine from shared library
95 (multiple sub-space support)
96 : addil LR'ltoff,%r19 ; get procedure entry point
97 : ldw RR'ltoff(%r1),%r21
98 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
99 : ldsid (%r21),%r1
100 : mtsp %r1,%sr0
101 : be 0(%sr0,%r21) ; branch to target
102 : stw %rp,-24(%sp) ; save rp
103
104 Export stub to return from shared lib routine (multiple sub-space support)
105 One of these is created for each exported procedure in a shared
106 library (and stored in the shared lib). Shared lib routines are
107 called via the first instruction in the export stub so that we can
108 do an inter-space return. Not required for single sub-space.
109 : bl,n X,%rp ; trap the return
110 : nop
111 : ldw -24(%sp),%rp ; restore the original rp
112 : ldsid (%rp),%r1
113 : mtsp %r1,%sr0
114 : be,n 0(%sr0,%rp) ; inter-space return */
115
116 #define PLT_ENTRY_SIZE 8
117 #define GOT_ENTRY_SIZE 4
118 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
119
120 static const bfd_byte plt_stub[] =
121 {
122 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
123 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
124 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
125 #define PLT_STUB_ENTRY (3*4)
126 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
127 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
128 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
129 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
130 };
131
132 /* Section name for stubs is the associated section name plus this
133 string. */
134 #define STUB_SUFFIX ".stub"
135
136 /* We don't need to copy certain PC- or GP-relative dynamic relocs
137 into a shared object's dynamic section. All the relocs of the
138 limited class we are interested in, are absolute. */
139 #ifndef RELATIVE_DYNRELOCS
140 #define RELATIVE_DYNRELOCS 0
141 #define IS_ABSOLUTE_RELOC(r_type) 1
142 #endif
143
144 enum elf32_hppa_stub_type {
145 hppa_stub_long_branch,
146 hppa_stub_long_branch_shared,
147 hppa_stub_import,
148 hppa_stub_import_shared,
149 hppa_stub_export,
150 hppa_stub_none
151 };
152
153 struct elf32_hppa_stub_hash_entry {
154
155 /* Base hash table entry structure. */
156 struct bfd_hash_entry root;
157
158 /* The stub section. */
159 asection *stub_sec;
160
161 /* Offset within stub_sec of the beginning of this stub. */
162 bfd_vma stub_offset;
163
164 /* Given the symbol's value and its section we can determine its final
165 value when building the stubs (so the stub knows where to jump. */
166 bfd_vma target_value;
167 asection *target_section;
168
169 enum elf32_hppa_stub_type stub_type;
170
171 /* The symbol table entry, if any, that this was derived from. */
172 struct elf32_hppa_link_hash_entry *h;
173
174 /* Where this stub is being called from, or, in the case of combined
175 stub sections, the first input section in the group. */
176 asection *id_sec;
177 };
178
179 struct elf32_hppa_link_hash_entry {
180
181 struct elf_link_hash_entry elf;
182
183 /* A pointer to the most recently used stub hash entry against this
184 symbol. */
185 struct elf32_hppa_stub_hash_entry *stub_cache;
186
187 /* Used to count relocations for delayed sizing of relocation
188 sections. */
189 struct elf32_hppa_dyn_reloc_entry {
190
191 /* Next relocation in the chain. */
192 struct elf32_hppa_dyn_reloc_entry *next;
193
194 /* The input section of the reloc. */
195 asection *sec;
196
197 /* Number of relocs copied in this section. */
198 bfd_size_type count;
199
200 #if RELATIVE_DYNRELOCS
201 /* Number of relative relocs copied for the input section. */
202 bfd_size_type relative_count;
203 #endif
204 } *dyn_relocs;
205
206 /* Set if the only reason we need a .plt entry is for a non-PIC to
207 PIC function call. */
208 unsigned int pic_call:1;
209
210 /* Set if this symbol is used by a plabel reloc. */
211 unsigned int plabel:1;
212 };
213
214 struct elf32_hppa_link_hash_table {
215
216 /* The main hash table. */
217 struct elf_link_hash_table elf;
218
219 /* The stub hash table. */
220 struct bfd_hash_table stub_hash_table;
221
222 /* Linker stub bfd. */
223 bfd *stub_bfd;
224
225 /* Linker call-backs. */
226 asection * (*add_stub_section) PARAMS ((const char *, asection *));
227 void (*layout_sections_again) PARAMS ((void));
228
229 /* Array to keep track of which stub sections have been created, and
230 information on stub grouping. */
231 struct map_stub {
232 /* This is the section to which stubs in the group will be
233 attached. */
234 asection *link_sec;
235 /* The stub section. */
236 asection *stub_sec;
237 } *stub_group;
238
239 /* Assorted information used by elf32_hppa_size_stubs. */
240 unsigned int bfd_count;
241 int top_index;
242 asection **input_list;
243 Elf_Internal_Sym **all_local_syms;
244
245 /* Short-cuts to get to dynamic linker sections. */
246 asection *sgot;
247 asection *srelgot;
248 asection *splt;
249 asection *srelplt;
250 asection *sdynbss;
251 asection *srelbss;
252
253 /* Used during a final link to store the base of the text and data
254 segments so that we can perform SEGREL relocations. */
255 bfd_vma text_segment_base;
256 bfd_vma data_segment_base;
257
258 /* Whether we support multiple sub-spaces for shared libs. */
259 unsigned int multi_subspace:1;
260
261 /* Flags set when various size branches are detected. Used to
262 select suitable defaults for the stub group size. */
263 unsigned int has_12bit_branch:1;
264 unsigned int has_17bit_branch:1;
265 unsigned int has_22bit_branch:1;
266
267 /* Set if we need a .plt stub to support lazy dynamic linking. */
268 unsigned int need_plt_stub:1;
269
270 /* Small local sym to section mapping cache. */
271 struct sym_sec_cache sym_sec;
272 };
273
274 /* Various hash macros and functions. */
275 #define hppa_link_hash_table(p) \
276 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
277
278 #define hppa_stub_hash_lookup(table, string, create, copy) \
279 ((struct elf32_hppa_stub_hash_entry *) \
280 bfd_hash_lookup ((table), (string), (create), (copy)))
281
282 static struct bfd_hash_entry *stub_hash_newfunc
283 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
284
285 static struct bfd_hash_entry *hppa_link_hash_newfunc
286 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
287
288 static struct bfd_link_hash_table *elf32_hppa_link_hash_table_create
289 PARAMS ((bfd *));
290
291 static void elf32_hppa_link_hash_table_free
292 PARAMS ((struct bfd_link_hash_table *));
293
294 /* Stub handling functions. */
295 static char *hppa_stub_name
296 PARAMS ((const asection *, const asection *,
297 const struct elf32_hppa_link_hash_entry *,
298 const Elf_Internal_Rela *));
299
300 static struct elf32_hppa_stub_hash_entry *hppa_get_stub_entry
301 PARAMS ((const asection *, const asection *,
302 struct elf32_hppa_link_hash_entry *,
303 const Elf_Internal_Rela *,
304 struct elf32_hppa_link_hash_table *));
305
306 static struct elf32_hppa_stub_hash_entry *hppa_add_stub
307 PARAMS ((const char *, asection *, struct elf32_hppa_link_hash_table *));
308
309 static enum elf32_hppa_stub_type hppa_type_of_stub
310 PARAMS ((asection *, const Elf_Internal_Rela *,
311 struct elf32_hppa_link_hash_entry *, bfd_vma));
312
313 static boolean hppa_build_one_stub
314 PARAMS ((struct bfd_hash_entry *, PTR));
315
316 static boolean hppa_size_one_stub
317 PARAMS ((struct bfd_hash_entry *, PTR));
318
319 /* BFD and elf backend functions. */
320 static boolean elf32_hppa_object_p PARAMS ((bfd *));
321
322 static boolean elf32_hppa_add_symbol_hook
323 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
324 const char **, flagword *, asection **, bfd_vma *));
325
326 static boolean elf32_hppa_create_dynamic_sections
327 PARAMS ((bfd *, struct bfd_link_info *));
328
329 static void elf32_hppa_copy_indirect_symbol
330 PARAMS ((struct elf_link_hash_entry *, struct elf_link_hash_entry *));
331
332 static boolean elf32_hppa_check_relocs
333 PARAMS ((bfd *, struct bfd_link_info *,
334 asection *, const Elf_Internal_Rela *));
335
336 static asection *elf32_hppa_gc_mark_hook
337 PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
338 struct elf_link_hash_entry *, Elf_Internal_Sym *));
339
340 static boolean elf32_hppa_gc_sweep_hook
341 PARAMS ((bfd *, struct bfd_link_info *,
342 asection *, const Elf_Internal_Rela *));
343
344 static void elf32_hppa_hide_symbol
345 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *, boolean));
346
347 static boolean elf32_hppa_adjust_dynamic_symbol
348 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
349
350 static boolean mark_PIC_calls
351 PARAMS ((struct elf_link_hash_entry *, PTR));
352
353 static boolean allocate_plt_static
354 PARAMS ((struct elf_link_hash_entry *, PTR));
355
356 static boolean allocate_dynrelocs
357 PARAMS ((struct elf_link_hash_entry *, PTR));
358
359 static boolean readonly_dynrelocs
360 PARAMS ((struct elf_link_hash_entry *, PTR));
361
362 static boolean clobber_millicode_symbols
363 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
364
365 static boolean elf32_hppa_size_dynamic_sections
366 PARAMS ((bfd *, struct bfd_link_info *));
367
368 static void group_sections
369 PARAMS ((struct elf32_hppa_link_hash_table *, bfd_size_type, boolean));
370
371 static int get_local_syms
372 PARAMS ((bfd *, bfd *, struct bfd_link_info *));
373
374 static boolean elf32_hppa_final_link
375 PARAMS ((bfd *, struct bfd_link_info *));
376
377 static void hppa_record_segment_addr
378 PARAMS ((bfd *, asection *, PTR));
379
380 static bfd_reloc_status_type final_link_relocate
381 PARAMS ((asection *, bfd_byte *, const Elf_Internal_Rela *,
382 bfd_vma, struct elf32_hppa_link_hash_table *, asection *,
383 struct elf32_hppa_link_hash_entry *));
384
385 static boolean elf32_hppa_relocate_section
386 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *,
387 bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
388
389 static boolean elf32_hppa_finish_dynamic_symbol
390 PARAMS ((bfd *, struct bfd_link_info *,
391 struct elf_link_hash_entry *, Elf_Internal_Sym *));
392
393 static enum elf_reloc_type_class elf32_hppa_reloc_type_class
394 PARAMS ((const Elf_Internal_Rela *));
395
396 static boolean elf32_hppa_finish_dynamic_sections
397 PARAMS ((bfd *, struct bfd_link_info *));
398
399 static void elf32_hppa_post_process_headers
400 PARAMS ((bfd *, struct bfd_link_info *));
401
402 static int elf32_hppa_elf_get_symbol_type
403 PARAMS ((Elf_Internal_Sym *, int));
404
405 /* Assorted hash table functions. */
406
407 /* Initialize an entry in the stub hash table. */
408
409 static struct bfd_hash_entry *
410 stub_hash_newfunc (entry, table, string)
411 struct bfd_hash_entry *entry;
412 struct bfd_hash_table *table;
413 const char *string;
414 {
415 /* Allocate the structure if it has not already been allocated by a
416 subclass. */
417 if (entry == NULL)
418 {
419 entry = bfd_hash_allocate (table,
420 sizeof (struct elf32_hppa_stub_hash_entry));
421 if (entry == NULL)
422 return entry;
423 }
424
425 /* Call the allocation method of the superclass. */
426 entry = bfd_hash_newfunc (entry, table, string);
427 if (entry != NULL)
428 {
429 struct elf32_hppa_stub_hash_entry *eh;
430
431 /* Initialize the local fields. */
432 eh = (struct elf32_hppa_stub_hash_entry *) entry;
433 eh->stub_sec = NULL;
434 eh->stub_offset = 0;
435 eh->target_value = 0;
436 eh->target_section = NULL;
437 eh->stub_type = hppa_stub_long_branch;
438 eh->h = NULL;
439 eh->id_sec = NULL;
440 }
441
442 return entry;
443 }
444
445 /* Initialize an entry in the link hash table. */
446
447 static struct bfd_hash_entry *
448 hppa_link_hash_newfunc (entry, table, string)
449 struct bfd_hash_entry *entry;
450 struct bfd_hash_table *table;
451 const char *string;
452 {
453 /* Allocate the structure if it has not already been allocated by a
454 subclass. */
455 if (entry == NULL)
456 {
457 entry = bfd_hash_allocate (table,
458 sizeof (struct elf32_hppa_link_hash_entry));
459 if (entry == NULL)
460 return entry;
461 }
462
463 /* Call the allocation method of the superclass. */
464 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
465 if (entry != NULL)
466 {
467 struct elf32_hppa_link_hash_entry *eh;
468
469 /* Initialize the local fields. */
470 eh = (struct elf32_hppa_link_hash_entry *) entry;
471 eh->stub_cache = NULL;
472 eh->dyn_relocs = NULL;
473 eh->pic_call = 0;
474 eh->plabel = 0;
475 }
476
477 return entry;
478 }
479
480 /* Create the derived linker hash table. The PA ELF port uses the derived
481 hash table to keep information specific to the PA ELF linker (without
482 using static variables). */
483
484 static struct bfd_link_hash_table *
485 elf32_hppa_link_hash_table_create (abfd)
486 bfd *abfd;
487 {
488 struct elf32_hppa_link_hash_table *ret;
489 bfd_size_type amt = sizeof (*ret);
490
491 ret = (struct elf32_hppa_link_hash_table *) bfd_malloc (amt);
492 if (ret == NULL)
493 return NULL;
494
495 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, hppa_link_hash_newfunc))
496 {
497 free (ret);
498 return NULL;
499 }
500
501 /* Init the stub hash table too. */
502 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc))
503 return NULL;
504
505 ret->stub_bfd = NULL;
506 ret->add_stub_section = NULL;
507 ret->layout_sections_again = NULL;
508 ret->stub_group = NULL;
509 ret->sgot = NULL;
510 ret->srelgot = NULL;
511 ret->splt = NULL;
512 ret->srelplt = NULL;
513 ret->sdynbss = NULL;
514 ret->srelbss = NULL;
515 ret->text_segment_base = (bfd_vma) -1;
516 ret->data_segment_base = (bfd_vma) -1;
517 ret->multi_subspace = 0;
518 ret->has_12bit_branch = 0;
519 ret->has_17bit_branch = 0;
520 ret->has_22bit_branch = 0;
521 ret->need_plt_stub = 0;
522 ret->sym_sec.abfd = NULL;
523
524 return &ret->elf.root;
525 }
526
527 /* Free the derived linker hash table. */
528
529 static void
530 elf32_hppa_link_hash_table_free (hash)
531 struct bfd_link_hash_table *hash;
532 {
533 struct elf32_hppa_link_hash_table *ret
534 = (struct elf32_hppa_link_hash_table *) hash;
535
536 bfd_hash_table_free (&ret->stub_hash_table);
537 _bfd_generic_link_hash_table_free (hash);
538 }
539
540 /* Build a name for an entry in the stub hash table. */
541
542 static char *
543 hppa_stub_name (input_section, sym_sec, hash, rel)
544 const asection *input_section;
545 const asection *sym_sec;
546 const struct elf32_hppa_link_hash_entry *hash;
547 const Elf_Internal_Rela *rel;
548 {
549 char *stub_name;
550 bfd_size_type len;
551
552 if (hash)
553 {
554 len = 8 + 1 + strlen (hash->elf.root.root.string) + 1 + 8 + 1;
555 stub_name = bfd_malloc (len);
556 if (stub_name != NULL)
557 {
558 sprintf (stub_name, "%08x_%s+%x",
559 input_section->id & 0xffffffff,
560 hash->elf.root.root.string,
561 (int) rel->r_addend & 0xffffffff);
562 }
563 }
564 else
565 {
566 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
567 stub_name = bfd_malloc (len);
568 if (stub_name != NULL)
569 {
570 sprintf (stub_name, "%08x_%x:%x+%x",
571 input_section->id & 0xffffffff,
572 sym_sec->id & 0xffffffff,
573 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
574 (int) rel->r_addend & 0xffffffff);
575 }
576 }
577 return stub_name;
578 }
579
580 /* Look up an entry in the stub hash. Stub entries are cached because
581 creating the stub name takes a bit of time. */
582
583 static struct elf32_hppa_stub_hash_entry *
584 hppa_get_stub_entry (input_section, sym_sec, hash, rel, htab)
585 const asection *input_section;
586 const asection *sym_sec;
587 struct elf32_hppa_link_hash_entry *hash;
588 const Elf_Internal_Rela *rel;
589 struct elf32_hppa_link_hash_table *htab;
590 {
591 struct elf32_hppa_stub_hash_entry *stub_entry;
592 const asection *id_sec;
593
594 /* If this input section is part of a group of sections sharing one
595 stub section, then use the id of the first section in the group.
596 Stub names need to include a section id, as there may well be
597 more than one stub used to reach say, printf, and we need to
598 distinguish between them. */
599 id_sec = htab->stub_group[input_section->id].link_sec;
600
601 if (hash != NULL && hash->stub_cache != NULL
602 && hash->stub_cache->h == hash
603 && hash->stub_cache->id_sec == id_sec)
604 {
605 stub_entry = hash->stub_cache;
606 }
607 else
608 {
609 char *stub_name;
610
611 stub_name = hppa_stub_name (id_sec, sym_sec, hash, rel);
612 if (stub_name == NULL)
613 return NULL;
614
615 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
616 stub_name, false, false);
617 if (hash != NULL)
618 hash->stub_cache = stub_entry;
619
620 free (stub_name);
621 }
622
623 return stub_entry;
624 }
625
626 /* Add a new stub entry to the stub hash. Not all fields of the new
627 stub entry are initialised. */
628
629 static struct elf32_hppa_stub_hash_entry *
630 hppa_add_stub (stub_name, section, htab)
631 const char *stub_name;
632 asection *section;
633 struct elf32_hppa_link_hash_table *htab;
634 {
635 asection *link_sec;
636 asection *stub_sec;
637 struct elf32_hppa_stub_hash_entry *stub_entry;
638
639 link_sec = htab->stub_group[section->id].link_sec;
640 stub_sec = htab->stub_group[section->id].stub_sec;
641 if (stub_sec == NULL)
642 {
643 stub_sec = htab->stub_group[link_sec->id].stub_sec;
644 if (stub_sec == NULL)
645 {
646 size_t namelen;
647 bfd_size_type len;
648 char *s_name;
649
650 namelen = strlen (link_sec->name);
651 len = namelen + sizeof (STUB_SUFFIX);
652 s_name = bfd_alloc (htab->stub_bfd, len);
653 if (s_name == NULL)
654 return NULL;
655
656 memcpy (s_name, link_sec->name, namelen);
657 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
658 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
659 if (stub_sec == NULL)
660 return NULL;
661 htab->stub_group[link_sec->id].stub_sec = stub_sec;
662 }
663 htab->stub_group[section->id].stub_sec = stub_sec;
664 }
665
666 /* Enter this entry into the linker stub hash table. */
667 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table, stub_name,
668 true, false);
669 if (stub_entry == NULL)
670 {
671 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
672 bfd_archive_filename (section->owner),
673 stub_name);
674 return NULL;
675 }
676
677 stub_entry->stub_sec = stub_sec;
678 stub_entry->stub_offset = 0;
679 stub_entry->id_sec = link_sec;
680 return stub_entry;
681 }
682
683 /* Determine the type of stub needed, if any, for a call. */
684
685 static enum elf32_hppa_stub_type
686 hppa_type_of_stub (input_sec, rel, hash, destination)
687 asection *input_sec;
688 const Elf_Internal_Rela *rel;
689 struct elf32_hppa_link_hash_entry *hash;
690 bfd_vma destination;
691 {
692 bfd_vma location;
693 bfd_vma branch_offset;
694 bfd_vma max_branch_offset;
695 unsigned int r_type;
696
697 if (hash != NULL
698 && hash->elf.plt.offset != (bfd_vma) -1
699 && (hash->elf.dynindx != -1 || hash->pic_call)
700 && !hash->plabel)
701 {
702 /* We need an import stub. Decide between hppa_stub_import
703 and hppa_stub_import_shared later. */
704 return hppa_stub_import;
705 }
706
707 /* Determine where the call point is. */
708 location = (input_sec->output_offset
709 + input_sec->output_section->vma
710 + rel->r_offset);
711
712 branch_offset = destination - location - 8;
713 r_type = ELF32_R_TYPE (rel->r_info);
714
715 /* Determine if a long branch stub is needed. parisc branch offsets
716 are relative to the second instruction past the branch, ie. +8
717 bytes on from the branch instruction location. The offset is
718 signed and counts in units of 4 bytes. */
719 if (r_type == (unsigned int) R_PARISC_PCREL17F)
720 {
721 max_branch_offset = (1 << (17-1)) << 2;
722 }
723 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
724 {
725 max_branch_offset = (1 << (12-1)) << 2;
726 }
727 else /* R_PARISC_PCREL22F. */
728 {
729 max_branch_offset = (1 << (22-1)) << 2;
730 }
731
732 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
733 return hppa_stub_long_branch;
734
735 return hppa_stub_none;
736 }
737
738 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
739 IN_ARG contains the link info pointer. */
740
741 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
742 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
743
744 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
745 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
746 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
747
748 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
749 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
750 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
751 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
752
753 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
754 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
755
756 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
757 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
758 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
759 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
760
761 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
762 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
763 #define NOP 0x08000240 /* nop */
764 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
765 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
766 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
767
768 #ifndef R19_STUBS
769 #define R19_STUBS 1
770 #endif
771
772 #if R19_STUBS
773 #define LDW_R1_DLT LDW_R1_R19
774 #else
775 #define LDW_R1_DLT LDW_R1_DP
776 #endif
777
778 static boolean
779 hppa_build_one_stub (gen_entry, in_arg)
780 struct bfd_hash_entry *gen_entry;
781 PTR in_arg;
782 {
783 struct elf32_hppa_stub_hash_entry *stub_entry;
784 struct bfd_link_info *info;
785 struct elf32_hppa_link_hash_table *htab;
786 asection *stub_sec;
787 bfd *stub_bfd;
788 bfd_byte *loc;
789 bfd_vma sym_value;
790 bfd_vma insn;
791 bfd_vma off;
792 int val;
793 int size;
794
795 /* Massage our args to the form they really have. */
796 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
797 info = (struct bfd_link_info *) in_arg;
798
799 htab = hppa_link_hash_table (info);
800 stub_sec = stub_entry->stub_sec;
801
802 /* Make a note of the offset within the stubs for this entry. */
803 stub_entry->stub_offset = stub_sec->_raw_size;
804 loc = stub_sec->contents + stub_entry->stub_offset;
805
806 stub_bfd = stub_sec->owner;
807
808 switch (stub_entry->stub_type)
809 {
810 case hppa_stub_long_branch:
811 /* Create the long branch. A long branch is formed with "ldil"
812 loading the upper bits of the target address into a register,
813 then branching with "be" which adds in the lower bits.
814 The "be" has its delay slot nullified. */
815 sym_value = (stub_entry->target_value
816 + stub_entry->target_section->output_offset
817 + stub_entry->target_section->output_section->vma);
818
819 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel);
820 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
821 bfd_put_32 (stub_bfd, insn, loc);
822
823 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel) >> 2;
824 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
825 bfd_put_32 (stub_bfd, insn, loc + 4);
826
827 size = 8;
828 break;
829
830 case hppa_stub_long_branch_shared:
831 /* Branches are relative. This is where we are going to. */
832 sym_value = (stub_entry->target_value
833 + stub_entry->target_section->output_offset
834 + stub_entry->target_section->output_section->vma);
835
836 /* And this is where we are coming from, more or less. */
837 sym_value -= (stub_entry->stub_offset
838 + stub_sec->output_offset
839 + stub_sec->output_section->vma);
840
841 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
842 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
843 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
844 bfd_put_32 (stub_bfd, insn, loc + 4);
845
846 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
847 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
848 bfd_put_32 (stub_bfd, insn, loc + 8);
849 size = 12;
850 break;
851
852 case hppa_stub_import:
853 case hppa_stub_import_shared:
854 off = stub_entry->h->elf.plt.offset;
855 if (off >= (bfd_vma) -2)
856 abort ();
857
858 off &= ~ (bfd_vma) 1;
859 sym_value = (off
860 + htab->splt->output_offset
861 + htab->splt->output_section->vma
862 - elf_gp (htab->splt->output_section->owner));
863
864 insn = ADDIL_DP;
865 #if R19_STUBS
866 if (stub_entry->stub_type == hppa_stub_import_shared)
867 insn = ADDIL_R19;
868 #endif
869 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel),
870 insn = hppa_rebuild_insn ((int) insn, val, 21);
871 bfd_put_32 (stub_bfd, insn, loc);
872
873 /* It is critical to use lrsel/rrsel here because we are using
874 two different offsets (+0 and +4) from sym_value. If we use
875 lsel/rsel then with unfortunate sym_values we will round
876 sym_value+4 up to the next 2k block leading to a mis-match
877 between the lsel and rsel value. */
878 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel);
879 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
880 bfd_put_32 (stub_bfd, insn, loc + 4);
881
882 if (htab->multi_subspace)
883 {
884 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
885 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
886 bfd_put_32 (stub_bfd, insn, loc + 8);
887
888 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
889 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
890 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
891 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
892
893 size = 28;
894 }
895 else
896 {
897 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
898 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
899 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
900 bfd_put_32 (stub_bfd, insn, loc + 12);
901
902 size = 16;
903 }
904
905 if (!info->shared
906 && stub_entry->h != NULL
907 && stub_entry->h->pic_call)
908 {
909 /* Build the .plt entry needed to call a PIC function from
910 statically linked code. We don't need any relocs. */
911 bfd *dynobj;
912 struct elf32_hppa_link_hash_entry *eh;
913 bfd_vma value;
914
915 dynobj = htab->elf.dynobj;
916 eh = (struct elf32_hppa_link_hash_entry *) stub_entry->h;
917
918 if (eh->elf.root.type != bfd_link_hash_defined
919 && eh->elf.root.type != bfd_link_hash_defweak)
920 abort ();
921
922 value = (eh->elf.root.u.def.value
923 + eh->elf.root.u.def.section->output_offset
924 + eh->elf.root.u.def.section->output_section->vma);
925
926 /* Fill in the entry in the procedure linkage table.
927
928 The format of a plt entry is
929 <funcaddr>
930 <__gp>. */
931
932 bfd_put_32 (htab->splt->owner, value,
933 htab->splt->contents + off);
934 value = elf_gp (htab->splt->output_section->owner);
935 bfd_put_32 (htab->splt->owner, value,
936 htab->splt->contents + off + 4);
937 }
938 break;
939
940 case hppa_stub_export:
941 /* Branches are relative. This is where we are going to. */
942 sym_value = (stub_entry->target_value
943 + stub_entry->target_section->output_offset
944 + stub_entry->target_section->output_section->vma);
945
946 /* And this is where we are coming from. */
947 sym_value -= (stub_entry->stub_offset
948 + stub_sec->output_offset
949 + stub_sec->output_section->vma);
950
951 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
952 && (!htab->has_22bit_branch
953 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
954 {
955 (*_bfd_error_handler)
956 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
957 bfd_archive_filename (stub_entry->target_section->owner),
958 stub_sec->name,
959 (long) stub_entry->stub_offset,
960 stub_entry->root.string);
961 bfd_set_error (bfd_error_bad_value);
962 return false;
963 }
964
965 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
966 if (!htab->has_22bit_branch)
967 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
968 else
969 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
970 bfd_put_32 (stub_bfd, insn, loc);
971
972 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
973 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
974 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
975 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
976 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
977
978 /* Point the function symbol at the stub. */
979 stub_entry->h->elf.root.u.def.section = stub_sec;
980 stub_entry->h->elf.root.u.def.value = stub_sec->_raw_size;
981
982 size = 24;
983 break;
984
985 default:
986 BFD_FAIL ();
987 return false;
988 }
989
990 stub_sec->_raw_size += size;
991 return true;
992 }
993
994 #undef LDIL_R1
995 #undef BE_SR4_R1
996 #undef BL_R1
997 #undef ADDIL_R1
998 #undef DEPI_R1
999 #undef ADDIL_DP
1000 #undef LDW_R1_R21
1001 #undef LDW_R1_DLT
1002 #undef LDW_R1_R19
1003 #undef ADDIL_R19
1004 #undef LDW_R1_DP
1005 #undef LDSID_R21_R1
1006 #undef MTSP_R1
1007 #undef BE_SR0_R21
1008 #undef STW_RP
1009 #undef BV_R0_R21
1010 #undef BL_RP
1011 #undef NOP
1012 #undef LDW_RP
1013 #undef LDSID_RP_R1
1014 #undef BE_SR0_RP
1015
1016 /* As above, but don't actually build the stub. Just bump offset so
1017 we know stub section sizes. */
1018
1019 static boolean
1020 hppa_size_one_stub (gen_entry, in_arg)
1021 struct bfd_hash_entry *gen_entry;
1022 PTR in_arg;
1023 {
1024 struct elf32_hppa_stub_hash_entry *stub_entry;
1025 struct elf32_hppa_link_hash_table *htab;
1026 int size;
1027
1028 /* Massage our args to the form they really have. */
1029 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
1030 htab = (struct elf32_hppa_link_hash_table *) in_arg;
1031
1032 if (stub_entry->stub_type == hppa_stub_long_branch)
1033 size = 8;
1034 else if (stub_entry->stub_type == hppa_stub_long_branch_shared)
1035 size = 12;
1036 else if (stub_entry->stub_type == hppa_stub_export)
1037 size = 24;
1038 else /* hppa_stub_import or hppa_stub_import_shared. */
1039 {
1040 if (htab->multi_subspace)
1041 size = 28;
1042 else
1043 size = 16;
1044 }
1045
1046 stub_entry->stub_sec->_raw_size += size;
1047 return true;
1048 }
1049
1050 /* Return nonzero if ABFD represents an HPPA ELF32 file.
1051 Additionally we set the default architecture and machine. */
1052
1053 static boolean
1054 elf32_hppa_object_p (abfd)
1055 bfd *abfd;
1056 {
1057 Elf_Internal_Ehdr * i_ehdrp;
1058 unsigned int flags;
1059
1060 i_ehdrp = elf_elfheader (abfd);
1061 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
1062 {
1063 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX)
1064 return false;
1065 }
1066 else
1067 {
1068 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
1069 return false;
1070 }
1071
1072 flags = i_ehdrp->e_flags;
1073 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
1074 {
1075 case EFA_PARISC_1_0:
1076 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
1077 case EFA_PARISC_1_1:
1078 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
1079 case EFA_PARISC_2_0:
1080 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
1081 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
1082 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
1083 }
1084 return true;
1085 }
1086
1087 /* Undo the generic ELF code's subtraction of section->vma from the
1088 value of each external symbol. */
1089
1090 static boolean
1091 elf32_hppa_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1092 bfd *abfd ATTRIBUTE_UNUSED;
1093 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1094 const Elf_Internal_Sym *sym ATTRIBUTE_UNUSED;
1095 const char **namep ATTRIBUTE_UNUSED;
1096 flagword *flagsp ATTRIBUTE_UNUSED;
1097 asection **secp;
1098 bfd_vma *valp;
1099 {
1100 *valp += (*secp)->vma;
1101 return true;
1102 }
1103
1104 /* Create the .plt and .got sections, and set up our hash table
1105 short-cuts to various dynamic sections. */
1106
1107 static boolean
1108 elf32_hppa_create_dynamic_sections (abfd, info)
1109 bfd *abfd;
1110 struct bfd_link_info *info;
1111 {
1112 struct elf32_hppa_link_hash_table *htab;
1113
1114 /* Don't try to create the .plt and .got twice. */
1115 htab = hppa_link_hash_table (info);
1116 if (htab->splt != NULL)
1117 return true;
1118
1119 /* Call the generic code to do most of the work. */
1120 if (! _bfd_elf_create_dynamic_sections (abfd, info))
1121 return false;
1122
1123 htab->splt = bfd_get_section_by_name (abfd, ".plt");
1124 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
1125
1126 htab->sgot = bfd_get_section_by_name (abfd, ".got");
1127 htab->srelgot = bfd_make_section (abfd, ".rela.got");
1128 if (htab->srelgot == NULL
1129 || ! bfd_set_section_flags (abfd, htab->srelgot,
1130 (SEC_ALLOC
1131 | SEC_LOAD
1132 | SEC_HAS_CONTENTS
1133 | SEC_IN_MEMORY
1134 | SEC_LINKER_CREATED
1135 | SEC_READONLY))
1136 || ! bfd_set_section_alignment (abfd, htab->srelgot, 2))
1137 return false;
1138
1139 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
1140 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
1141
1142 return true;
1143 }
1144
1145 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1146
1147 static void
1148 elf32_hppa_copy_indirect_symbol (dir, ind)
1149 struct elf_link_hash_entry *dir, *ind;
1150 {
1151 struct elf32_hppa_link_hash_entry *edir, *eind;
1152
1153 edir = (struct elf32_hppa_link_hash_entry *) dir;
1154 eind = (struct elf32_hppa_link_hash_entry *) ind;
1155
1156 if (eind->dyn_relocs != NULL)
1157 {
1158 if (edir->dyn_relocs != NULL)
1159 {
1160 struct elf32_hppa_dyn_reloc_entry **pp;
1161 struct elf32_hppa_dyn_reloc_entry *p;
1162
1163 if (ind->root.type == bfd_link_hash_indirect)
1164 abort ();
1165
1166 /* Add reloc counts against the weak sym to the strong sym
1167 list. Merge any entries against the same section. */
1168 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
1169 {
1170 struct elf32_hppa_dyn_reloc_entry *q;
1171
1172 for (q = edir->dyn_relocs; q != NULL; q = q->next)
1173 if (q->sec == p->sec)
1174 {
1175 #if RELATIVE_DYNRELOCS
1176 q->relative_count += p->relative_count;
1177 #endif
1178 q->count += p->count;
1179 *pp = p->next;
1180 break;
1181 }
1182 if (q == NULL)
1183 pp = &p->next;
1184 }
1185 *pp = edir->dyn_relocs;
1186 }
1187
1188 edir->dyn_relocs = eind->dyn_relocs;
1189 eind->dyn_relocs = NULL;
1190 }
1191
1192 _bfd_elf_link_hash_copy_indirect (dir, ind);
1193 }
1194
1195 /* Look through the relocs for a section during the first phase, and
1196 calculate needed space in the global offset table, procedure linkage
1197 table, and dynamic reloc sections. At this point we haven't
1198 necessarily read all the input files. */
1199
1200 static boolean
1201 elf32_hppa_check_relocs (abfd, info, sec, relocs)
1202 bfd *abfd;
1203 struct bfd_link_info *info;
1204 asection *sec;
1205 const Elf_Internal_Rela *relocs;
1206 {
1207 Elf_Internal_Shdr *symtab_hdr;
1208 struct elf_link_hash_entry **sym_hashes;
1209 const Elf_Internal_Rela *rel;
1210 const Elf_Internal_Rela *rel_end;
1211 struct elf32_hppa_link_hash_table *htab;
1212 asection *sreloc;
1213 asection *stubreloc;
1214
1215 if (info->relocateable)
1216 return true;
1217
1218 htab = hppa_link_hash_table (info);
1219 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1220 sym_hashes = elf_sym_hashes (abfd);
1221 sreloc = NULL;
1222 stubreloc = NULL;
1223
1224 rel_end = relocs + sec->reloc_count;
1225 for (rel = relocs; rel < rel_end; rel++)
1226 {
1227 enum {
1228 NEED_GOT = 1,
1229 NEED_PLT = 2,
1230 NEED_DYNREL = 4,
1231 PLT_PLABEL = 8
1232 };
1233
1234 unsigned int r_symndx, r_type;
1235 struct elf32_hppa_link_hash_entry *h;
1236 int need_entry;
1237
1238 r_symndx = ELF32_R_SYM (rel->r_info);
1239
1240 if (r_symndx < symtab_hdr->sh_info)
1241 h = NULL;
1242 else
1243 h = ((struct elf32_hppa_link_hash_entry *)
1244 sym_hashes[r_symndx - symtab_hdr->sh_info]);
1245
1246 r_type = ELF32_R_TYPE (rel->r_info);
1247
1248 switch (r_type)
1249 {
1250 case R_PARISC_DLTIND14F:
1251 case R_PARISC_DLTIND14R:
1252 case R_PARISC_DLTIND21L:
1253 /* This symbol requires a global offset table entry. */
1254 need_entry = NEED_GOT;
1255
1256 /* Mark this section as containing PIC code. */
1257 sec->flags |= SEC_HAS_GOT_REF;
1258 break;
1259
1260 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1261 case R_PARISC_PLABEL21L:
1262 case R_PARISC_PLABEL32:
1263 /* If the addend is non-zero, we break badly. */
1264 if (rel->r_addend != 0)
1265 abort ();
1266
1267 /* If we are creating a shared library, then we need to
1268 create a PLT entry for all PLABELs, because PLABELs with
1269 local symbols may be passed via a pointer to another
1270 object. Additionally, output a dynamic relocation
1271 pointing to the PLT entry.
1272 For executables, the original 32-bit ABI allowed two
1273 different styles of PLABELs (function pointers): For
1274 global functions, the PLABEL word points into the .plt
1275 two bytes past a (function address, gp) pair, and for
1276 local functions the PLABEL points directly at the
1277 function. The magic +2 for the first type allows us to
1278 differentiate between the two. As you can imagine, this
1279 is a real pain when it comes to generating code to call
1280 functions indirectly or to compare function pointers.
1281 We avoid the mess by always pointing a PLABEL into the
1282 .plt, even for local functions. */
1283 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1284 break;
1285
1286 case R_PARISC_PCREL12F:
1287 htab->has_12bit_branch = 1;
1288 goto branch_common;
1289
1290 case R_PARISC_PCREL17C:
1291 case R_PARISC_PCREL17F:
1292 htab->has_17bit_branch = 1;
1293 goto branch_common;
1294
1295 case R_PARISC_PCREL22F:
1296 htab->has_22bit_branch = 1;
1297 branch_common:
1298 /* Function calls might need to go through the .plt, and
1299 might require long branch stubs. */
1300 if (h == NULL)
1301 {
1302 /* We know local syms won't need a .plt entry, and if
1303 they need a long branch stub we can't guarantee that
1304 we can reach the stub. So just flag an error later
1305 if we're doing a shared link and find we need a long
1306 branch stub. */
1307 continue;
1308 }
1309 else
1310 {
1311 /* Global symbols will need a .plt entry if they remain
1312 global, and in most cases won't need a long branch
1313 stub. Unfortunately, we have to cater for the case
1314 where a symbol is forced local by versioning, or due
1315 to symbolic linking, and we lose the .plt entry. */
1316 need_entry = NEED_PLT;
1317 if (h->elf.type == STT_PARISC_MILLI)
1318 need_entry = 0;
1319 }
1320 break;
1321
1322 case R_PARISC_SEGBASE: /* Used to set segment base. */
1323 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1324 case R_PARISC_PCREL14F: /* PC relative load/store. */
1325 case R_PARISC_PCREL14R:
1326 case R_PARISC_PCREL17R: /* External branches. */
1327 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1328 /* We don't need to propagate the relocation if linking a
1329 shared object since these are section relative. */
1330 continue;
1331
1332 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1333 case R_PARISC_DPREL14R:
1334 case R_PARISC_DPREL21L:
1335 if (info->shared)
1336 {
1337 (*_bfd_error_handler)
1338 (_("%s: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1339 bfd_archive_filename (abfd),
1340 elf_hppa_howto_table[r_type].name);
1341 bfd_set_error (bfd_error_bad_value);
1342 return false;
1343 }
1344 /* Fall through. */
1345
1346 case R_PARISC_DIR17F: /* Used for external branches. */
1347 case R_PARISC_DIR17R:
1348 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1349 case R_PARISC_DIR14R:
1350 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1351 #if 0
1352 /* Help debug shared library creation. Any of the above
1353 relocs can be used in shared libs, but they may cause
1354 pages to become unshared. */
1355 if (info->shared)
1356 {
1357 (*_bfd_error_handler)
1358 (_("%s: relocation %s should not be used when making a shared object; recompile with -fPIC"),
1359 bfd_archive_filename (abfd),
1360 elf_hppa_howto_table[r_type].name);
1361 }
1362 /* Fall through. */
1363 #endif
1364
1365 case R_PARISC_DIR32: /* .word relocs. */
1366 /* We may want to output a dynamic relocation later. */
1367 need_entry = NEED_DYNREL;
1368 break;
1369
1370 /* This relocation describes the C++ object vtable hierarchy.
1371 Reconstruct it for later use during GC. */
1372 case R_PARISC_GNU_VTINHERIT:
1373 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec,
1374 &h->elf, rel->r_offset))
1375 return false;
1376 continue;
1377
1378 /* This relocation describes which C++ vtable entries are actually
1379 used. Record for later use during GC. */
1380 case R_PARISC_GNU_VTENTRY:
1381 if (!_bfd_elf32_gc_record_vtentry (abfd, sec,
1382 &h->elf, rel->r_addend))
1383 return false;
1384 continue;
1385
1386 default:
1387 continue;
1388 }
1389
1390 /* Now carry out our orders. */
1391 if (need_entry & NEED_GOT)
1392 {
1393 /* Allocate space for a GOT entry, as well as a dynamic
1394 relocation for this entry. */
1395 if (htab->sgot == NULL)
1396 {
1397 if (htab->elf.dynobj == NULL)
1398 htab->elf.dynobj = abfd;
1399 if (!elf32_hppa_create_dynamic_sections (htab->elf.dynobj, info))
1400 return false;
1401 }
1402
1403 if (h != NULL)
1404 {
1405 h->elf.got.refcount += 1;
1406 }
1407 else
1408 {
1409 bfd_signed_vma *local_got_refcounts;
1410
1411 /* This is a global offset table entry for a local symbol. */
1412 local_got_refcounts = elf_local_got_refcounts (abfd);
1413 if (local_got_refcounts == NULL)
1414 {
1415 bfd_size_type size;
1416
1417 /* Allocate space for local got offsets and local
1418 plt offsets. Done this way to save polluting
1419 elf_obj_tdata with another target specific
1420 pointer. */
1421 size = symtab_hdr->sh_info;
1422 size *= 2 * sizeof (bfd_signed_vma);
1423 local_got_refcounts = ((bfd_signed_vma *)
1424 bfd_zalloc (abfd, size));
1425 if (local_got_refcounts == NULL)
1426 return false;
1427 elf_local_got_refcounts (abfd) = local_got_refcounts;
1428 }
1429 local_got_refcounts[r_symndx] += 1;
1430 }
1431 }
1432
1433 if (need_entry & NEED_PLT)
1434 {
1435 /* If we are creating a shared library, and this is a reloc
1436 against a weak symbol or a global symbol in a dynamic
1437 object, then we will be creating an import stub and a
1438 .plt entry for the symbol. Similarly, on a normal link
1439 to symbols defined in a dynamic object we'll need the
1440 import stub and a .plt entry. We don't know yet whether
1441 the symbol is defined or not, so make an entry anyway and
1442 clean up later in adjust_dynamic_symbol. */
1443 if ((sec->flags & SEC_ALLOC) != 0)
1444 {
1445 if (h != NULL)
1446 {
1447 h->elf.elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1448 h->elf.plt.refcount += 1;
1449
1450 /* If this .plt entry is for a plabel, mark it so
1451 that adjust_dynamic_symbol will keep the entry
1452 even if it appears to be local. */
1453 if (need_entry & PLT_PLABEL)
1454 h->plabel = 1;
1455 }
1456 else if (need_entry & PLT_PLABEL)
1457 {
1458 bfd_signed_vma *local_got_refcounts;
1459 bfd_signed_vma *local_plt_refcounts;
1460
1461 local_got_refcounts = elf_local_got_refcounts (abfd);
1462 if (local_got_refcounts == NULL)
1463 {
1464 bfd_size_type size;
1465
1466 /* Allocate space for local got offsets and local
1467 plt offsets. */
1468 size = symtab_hdr->sh_info;
1469 size *= 2 * sizeof (bfd_signed_vma);
1470 local_got_refcounts = ((bfd_signed_vma *)
1471 bfd_zalloc (abfd, size));
1472 if (local_got_refcounts == NULL)
1473 return false;
1474 elf_local_got_refcounts (abfd) = local_got_refcounts;
1475 }
1476 local_plt_refcounts = (local_got_refcounts
1477 + symtab_hdr->sh_info);
1478 local_plt_refcounts[r_symndx] += 1;
1479 }
1480 }
1481 }
1482
1483 if (need_entry & NEED_DYNREL)
1484 {
1485 /* Flag this symbol as having a non-got, non-plt reference
1486 so that we generate copy relocs if it turns out to be
1487 dynamic. */
1488 if (h != NULL && !info->shared)
1489 h->elf.elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
1490
1491 /* If we are creating a shared library then we need to copy
1492 the reloc into the shared library. However, if we are
1493 linking with -Bsymbolic, we need only copy absolute
1494 relocs or relocs against symbols that are not defined in
1495 an object we are including in the link. PC- or DP- or
1496 DLT-relative relocs against any local sym or global sym
1497 with DEF_REGULAR set, can be discarded. At this point we
1498 have not seen all the input files, so it is possible that
1499 DEF_REGULAR is not set now but will be set later (it is
1500 never cleared). We account for that possibility below by
1501 storing information in the dyn_relocs field of the
1502 hash table entry.
1503
1504 A similar situation to the -Bsymbolic case occurs when
1505 creating shared libraries and symbol visibility changes
1506 render the symbol local.
1507
1508 As it turns out, all the relocs we will be creating here
1509 are absolute, so we cannot remove them on -Bsymbolic
1510 links or visibility changes anyway. A STUB_REL reloc
1511 is absolute too, as in that case it is the reloc in the
1512 stub we will be creating, rather than copying the PCREL
1513 reloc in the branch.
1514
1515 If on the other hand, we are creating an executable, we
1516 may need to keep relocations for symbols satisfied by a
1517 dynamic library if we manage to avoid copy relocs for the
1518 symbol. */
1519 if ((info->shared
1520 && (sec->flags & SEC_ALLOC) != 0
1521 && (IS_ABSOLUTE_RELOC (r_type)
1522 || (h != NULL
1523 && (!info->symbolic
1524 || h->elf.root.type == bfd_link_hash_defweak
1525 || (h->elf.elf_link_hash_flags
1526 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1527 || (!info->shared
1528 && (sec->flags & SEC_ALLOC) != 0
1529 && h != NULL
1530 && (h->elf.root.type == bfd_link_hash_defweak
1531 || (h->elf.elf_link_hash_flags
1532 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
1533 {
1534 struct elf32_hppa_dyn_reloc_entry *p;
1535 struct elf32_hppa_dyn_reloc_entry **head;
1536
1537 /* Create a reloc section in dynobj and make room for
1538 this reloc. */
1539 if (sreloc == NULL)
1540 {
1541 char *name;
1542 bfd *dynobj;
1543
1544 name = (bfd_elf_string_from_elf_section
1545 (abfd,
1546 elf_elfheader (abfd)->e_shstrndx,
1547 elf_section_data (sec)->rel_hdr.sh_name));
1548 if (name == NULL)
1549 {
1550 (*_bfd_error_handler)
1551 (_("Could not find relocation section for %s"),
1552 sec->name);
1553 bfd_set_error (bfd_error_bad_value);
1554 return false;
1555 }
1556
1557 if (htab->elf.dynobj == NULL)
1558 htab->elf.dynobj = abfd;
1559
1560 dynobj = htab->elf.dynobj;
1561 sreloc = bfd_get_section_by_name (dynobj, name);
1562 if (sreloc == NULL)
1563 {
1564 flagword flags;
1565
1566 sreloc = bfd_make_section (dynobj, name);
1567 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1568 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1569 if ((sec->flags & SEC_ALLOC) != 0)
1570 flags |= SEC_ALLOC | SEC_LOAD;
1571 if (sreloc == NULL
1572 || !bfd_set_section_flags (dynobj, sreloc, flags)
1573 || !bfd_set_section_alignment (dynobj, sreloc, 2))
1574 return false;
1575 }
1576
1577 elf_section_data (sec)->sreloc = sreloc;
1578 }
1579
1580 /* If this is a global symbol, we count the number of
1581 relocations we need for this symbol. */
1582 if (h != NULL)
1583 {
1584 head = &h->dyn_relocs;
1585 }
1586 else
1587 {
1588 /* Track dynamic relocs needed for local syms too.
1589 We really need local syms available to do this
1590 easily. Oh well. */
1591
1592 asection *s;
1593 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1594 sec, r_symndx);
1595 if (s == NULL)
1596 return false;
1597
1598 head = ((struct elf32_hppa_dyn_reloc_entry **)
1599 &elf_section_data (s)->local_dynrel);
1600 }
1601
1602 p = *head;
1603 if (p == NULL || p->sec != sec)
1604 {
1605 p = ((struct elf32_hppa_dyn_reloc_entry *)
1606 bfd_alloc (htab->elf.dynobj,
1607 (bfd_size_type) sizeof *p));
1608 if (p == NULL)
1609 return false;
1610 p->next = *head;
1611 *head = p;
1612 p->sec = sec;
1613 p->count = 0;
1614 #if RELATIVE_DYNRELOCS
1615 p->relative_count = 0;
1616 #endif
1617 }
1618
1619 p->count += 1;
1620 #if RELATIVE_DYNRELOCS
1621 if (!IS_ABSOLUTE_RELOC (rtype))
1622 p->relative_count += 1;
1623 #endif
1624 }
1625 }
1626 }
1627
1628 return true;
1629 }
1630
1631 /* Return the section that should be marked against garbage collection
1632 for a given relocation. */
1633
1634 static asection *
1635 elf32_hppa_gc_mark_hook (sec, info, rel, h, sym)
1636 asection *sec;
1637 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1638 Elf_Internal_Rela *rel;
1639 struct elf_link_hash_entry *h;
1640 Elf_Internal_Sym *sym;
1641 {
1642 if (h != NULL)
1643 {
1644 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1645 {
1646 case R_PARISC_GNU_VTINHERIT:
1647 case R_PARISC_GNU_VTENTRY:
1648 break;
1649
1650 default:
1651 switch (h->root.type)
1652 {
1653 case bfd_link_hash_defined:
1654 case bfd_link_hash_defweak:
1655 return h->root.u.def.section;
1656
1657 case bfd_link_hash_common:
1658 return h->root.u.c.p->section;
1659
1660 default:
1661 break;
1662 }
1663 }
1664 }
1665 else
1666 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1667
1668 return NULL;
1669 }
1670
1671 /* Update the got and plt entry reference counts for the section being
1672 removed. */
1673
1674 static boolean
1675 elf32_hppa_gc_sweep_hook (abfd, info, sec, relocs)
1676 bfd *abfd;
1677 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1678 asection *sec;
1679 const Elf_Internal_Rela *relocs;
1680 {
1681 Elf_Internal_Shdr *symtab_hdr;
1682 struct elf_link_hash_entry **sym_hashes;
1683 bfd_signed_vma *local_got_refcounts;
1684 bfd_signed_vma *local_plt_refcounts;
1685 const Elf_Internal_Rela *rel, *relend;
1686 unsigned long r_symndx;
1687 struct elf_link_hash_entry *h;
1688 struct elf32_hppa_link_hash_table *htab;
1689 bfd *dynobj;
1690
1691 elf_section_data (sec)->local_dynrel = NULL;
1692
1693 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1694 sym_hashes = elf_sym_hashes (abfd);
1695 local_got_refcounts = elf_local_got_refcounts (abfd);
1696 local_plt_refcounts = local_got_refcounts;
1697 if (local_plt_refcounts != NULL)
1698 local_plt_refcounts += symtab_hdr->sh_info;
1699 htab = hppa_link_hash_table (info);
1700 dynobj = htab->elf.dynobj;
1701 if (dynobj == NULL)
1702 return true;
1703
1704 relend = relocs + sec->reloc_count;
1705 for (rel = relocs; rel < relend; rel++)
1706 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1707 {
1708 case R_PARISC_DLTIND14F:
1709 case R_PARISC_DLTIND14R:
1710 case R_PARISC_DLTIND21L:
1711 r_symndx = ELF32_R_SYM (rel->r_info);
1712 if (r_symndx >= symtab_hdr->sh_info)
1713 {
1714 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1715 if (h->got.refcount > 0)
1716 h->got.refcount -= 1;
1717 }
1718 else if (local_got_refcounts != NULL)
1719 {
1720 if (local_got_refcounts[r_symndx] > 0)
1721 local_got_refcounts[r_symndx] -= 1;
1722 }
1723 break;
1724
1725 case R_PARISC_PCREL12F:
1726 case R_PARISC_PCREL17C:
1727 case R_PARISC_PCREL17F:
1728 case R_PARISC_PCREL22F:
1729 r_symndx = ELF32_R_SYM (rel->r_info);
1730 if (r_symndx >= symtab_hdr->sh_info)
1731 {
1732 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1733 if (h->plt.refcount > 0)
1734 h->plt.refcount -= 1;
1735 }
1736 break;
1737
1738 case R_PARISC_PLABEL14R:
1739 case R_PARISC_PLABEL21L:
1740 case R_PARISC_PLABEL32:
1741 r_symndx = ELF32_R_SYM (rel->r_info);
1742 if (r_symndx >= symtab_hdr->sh_info)
1743 {
1744 struct elf32_hppa_link_hash_entry *eh;
1745 struct elf32_hppa_dyn_reloc_entry **pp;
1746 struct elf32_hppa_dyn_reloc_entry *p;
1747
1748 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1749
1750 if (h->plt.refcount > 0)
1751 h->plt.refcount -= 1;
1752
1753 eh = (struct elf32_hppa_link_hash_entry *) h;
1754
1755 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1756 if (p->sec == sec)
1757 {
1758 #if RELATIVE_DYNRELOCS
1759 if (!IS_ABSOLUTE_RELOC (rtype))
1760 p->relative_count -= 1;
1761 #endif
1762 p->count -= 1;
1763 if (p->count == 0)
1764 *pp = p->next;
1765 break;
1766 }
1767 }
1768 else if (local_plt_refcounts != NULL)
1769 {
1770 if (local_plt_refcounts[r_symndx] > 0)
1771 local_plt_refcounts[r_symndx] -= 1;
1772 }
1773 break;
1774
1775 case R_PARISC_DIR32:
1776 r_symndx = ELF32_R_SYM (rel->r_info);
1777 if (r_symndx >= symtab_hdr->sh_info)
1778 {
1779 struct elf32_hppa_link_hash_entry *eh;
1780 struct elf32_hppa_dyn_reloc_entry **pp;
1781 struct elf32_hppa_dyn_reloc_entry *p;
1782
1783 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1784
1785 eh = (struct elf32_hppa_link_hash_entry *) h;
1786
1787 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1788 if (p->sec == sec)
1789 {
1790 #if RELATIVE_DYNRELOCS
1791 if (!IS_ABSOLUTE_RELOC (R_PARISC_DIR32))
1792 p->relative_count -= 1;
1793 #endif
1794 p->count -= 1;
1795 if (p->count == 0)
1796 *pp = p->next;
1797 break;
1798 }
1799 }
1800 break;
1801
1802 default:
1803 break;
1804 }
1805
1806 return true;
1807 }
1808
1809 /* Our own version of hide_symbol, so that we can keep plt entries for
1810 plabels. */
1811
1812 static void
1813 elf32_hppa_hide_symbol (info, h, force_local)
1814 struct bfd_link_info *info;
1815 struct elf_link_hash_entry *h;
1816 boolean force_local;
1817 {
1818 if (force_local)
1819 {
1820 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
1821 if (h->dynindx != -1)
1822 {
1823 h->dynindx = -1;
1824 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1825 h->dynstr_index);
1826 }
1827 }
1828
1829 if (! ((struct elf32_hppa_link_hash_entry *) h)->plabel)
1830 {
1831 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1832 h->plt.offset = (bfd_vma) -1;
1833 }
1834 }
1835
1836 /* This is the condition under which elf32_hppa_finish_dynamic_symbol
1837 will be called from elflink.h. If elflink.h doesn't call our
1838 finish_dynamic_symbol routine, we'll need to do something about
1839 initializing any .plt and .got entries in elf32_hppa_relocate_section. */
1840 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1841 ((DYN) \
1842 && ((INFO)->shared \
1843 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1844 && ((H)->dynindx != -1 \
1845 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1846
1847 /* Adjust a symbol defined by a dynamic object and referenced by a
1848 regular object. The current definition is in some section of the
1849 dynamic object, but we're not including those sections. We have to
1850 change the definition to something the rest of the link can
1851 understand. */
1852
1853 static boolean
1854 elf32_hppa_adjust_dynamic_symbol (info, h)
1855 struct bfd_link_info *info;
1856 struct elf_link_hash_entry *h;
1857 {
1858 struct elf32_hppa_link_hash_table *htab;
1859 struct elf32_hppa_link_hash_entry *eh;
1860 struct elf32_hppa_dyn_reloc_entry *p;
1861 asection *s;
1862 unsigned int power_of_two;
1863
1864 /* If this is a function, put it in the procedure linkage table. We
1865 will fill in the contents of the procedure linkage table later. */
1866 if (h->type == STT_FUNC
1867 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1868 {
1869 if (h->plt.refcount <= 0
1870 || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1871 && h->root.type != bfd_link_hash_defweak
1872 && ! ((struct elf32_hppa_link_hash_entry *) h)->plabel
1873 && (!info->shared || info->symbolic)))
1874 {
1875 /* The .plt entry is not needed when:
1876 a) Garbage collection has removed all references to the
1877 symbol, or
1878 b) We know for certain the symbol is defined in this
1879 object, and it's not a weak definition, nor is the symbol
1880 used by a plabel relocation. Either this object is the
1881 application or we are doing a shared symbolic link. */
1882
1883 /* As a special sop to the hppa ABI, we keep a .plt entry
1884 for functions in sections containing PIC code. */
1885 if (!info->shared
1886 && h->plt.refcount > 0
1887 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1888 && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0)
1889 ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
1890 else
1891 {
1892 h->plt.offset = (bfd_vma) -1;
1893 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1894 }
1895 }
1896
1897 return true;
1898 }
1899 else
1900 h->plt.offset = (bfd_vma) -1;
1901
1902 /* If this is a weak symbol, and there is a real definition, the
1903 processor independent code will have arranged for us to see the
1904 real definition first, and we can just use the same value. */
1905 if (h->weakdef != NULL)
1906 {
1907 if (h->weakdef->root.type != bfd_link_hash_defined
1908 && h->weakdef->root.type != bfd_link_hash_defweak)
1909 abort ();
1910 h->root.u.def.section = h->weakdef->root.u.def.section;
1911 h->root.u.def.value = h->weakdef->root.u.def.value;
1912 return true;
1913 }
1914
1915 /* This is a reference to a symbol defined by a dynamic object which
1916 is not a function. */
1917
1918 /* If we are creating a shared library, we must presume that the
1919 only references to the symbol are via the global offset table.
1920 For such cases we need not do anything here; the relocations will
1921 be handled correctly by relocate_section. */
1922 if (info->shared)
1923 return true;
1924
1925 /* If there are no references to this symbol that do not use the
1926 GOT, we don't need to generate a copy reloc. */
1927 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1928 return true;
1929
1930 eh = (struct elf32_hppa_link_hash_entry *) h;
1931 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1932 {
1933 s = p->sec->output_section;
1934 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1935 break;
1936 }
1937
1938 /* If we didn't find any dynamic relocs in read-only sections, then
1939 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1940 if (p == NULL)
1941 {
1942 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1943 return true;
1944 }
1945
1946 /* We must allocate the symbol in our .dynbss section, which will
1947 become part of the .bss section of the executable. There will be
1948 an entry for this symbol in the .dynsym section. The dynamic
1949 object will contain position independent code, so all references
1950 from the dynamic object to this symbol will go through the global
1951 offset table. The dynamic linker will use the .dynsym entry to
1952 determine the address it must put in the global offset table, so
1953 both the dynamic object and the regular object will refer to the
1954 same memory location for the variable. */
1955
1956 htab = hppa_link_hash_table (info);
1957
1958 /* We must generate a COPY reloc to tell the dynamic linker to
1959 copy the initial value out of the dynamic object and into the
1960 runtime process image. */
1961 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1962 {
1963 htab->srelbss->_raw_size += sizeof (Elf32_External_Rela);
1964 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1965 }
1966
1967 /* We need to figure out the alignment required for this symbol. I
1968 have no idea how other ELF linkers handle this. */
1969
1970 power_of_two = bfd_log2 (h->size);
1971 if (power_of_two > 3)
1972 power_of_two = 3;
1973
1974 /* Apply the required alignment. */
1975 s = htab->sdynbss;
1976 s->_raw_size = BFD_ALIGN (s->_raw_size,
1977 (bfd_size_type) (1 << power_of_two));
1978 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1979 {
1980 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1981 return false;
1982 }
1983
1984 /* Define the symbol as being at this point in the section. */
1985 h->root.u.def.section = s;
1986 h->root.u.def.value = s->_raw_size;
1987
1988 /* Increment the section size to make room for the symbol. */
1989 s->_raw_size += h->size;
1990
1991 return true;
1992 }
1993
1994 /* Called via elf_link_hash_traverse to create .plt entries for an
1995 application that uses statically linked PIC functions. Similar to
1996 the first part of elf32_hppa_adjust_dynamic_symbol. */
1997
1998 static boolean
1999 mark_PIC_calls (h, inf)
2000 struct elf_link_hash_entry *h;
2001 PTR inf ATTRIBUTE_UNUSED;
2002 {
2003 if (h->root.type == bfd_link_hash_warning)
2004 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2005
2006 if (! (h->plt.refcount > 0
2007 && (h->root.type == bfd_link_hash_defined
2008 || h->root.type == bfd_link_hash_defweak)
2009 && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0))
2010 {
2011 h->plt.offset = (bfd_vma) -1;
2012 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2013 return true;
2014 }
2015
2016 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
2017 ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
2018
2019 return true;
2020 }
2021
2022 /* Allocate space in the .plt for entries that won't have relocations.
2023 ie. pic_call and plabel entries. */
2024
2025 static boolean
2026 allocate_plt_static (h, inf)
2027 struct elf_link_hash_entry *h;
2028 PTR inf;
2029 {
2030 struct bfd_link_info *info;
2031 struct elf32_hppa_link_hash_table *htab;
2032 asection *s;
2033
2034 if (h->root.type == bfd_link_hash_indirect)
2035 return true;
2036
2037 if (h->root.type == bfd_link_hash_warning)
2038 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2039
2040 info = (struct bfd_link_info *) inf;
2041 htab = hppa_link_hash_table (info);
2042 if (((struct elf32_hppa_link_hash_entry *) h)->pic_call)
2043 {
2044 /* Make an entry in the .plt section for non-pic code that is
2045 calling pic code. */
2046 ((struct elf32_hppa_link_hash_entry *) h)->plabel = 0;
2047 s = htab->splt;
2048 h->plt.offset = s->_raw_size;
2049 s->_raw_size += PLT_ENTRY_SIZE;
2050 }
2051 else if (htab->elf.dynamic_sections_created
2052 && h->plt.refcount > 0)
2053 {
2054 /* Make sure this symbol is output as a dynamic symbol.
2055 Undefined weak syms won't yet be marked as dynamic. */
2056 if (h->dynindx == -1
2057 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
2058 && h->type != STT_PARISC_MILLI)
2059 {
2060 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2061 return false;
2062 }
2063
2064 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
2065 {
2066 /* Allocate these later. From this point on, h->plabel
2067 means that the plt entry is only used by a plabel.
2068 We'll be using a normal plt entry for this symbol, so
2069 clear the plabel indicator. */
2070 ((struct elf32_hppa_link_hash_entry *) h)->plabel = 0;
2071 }
2072 else if (((struct elf32_hppa_link_hash_entry *) h)->plabel)
2073 {
2074 /* Make an entry in the .plt section for plabel references
2075 that won't have a .plt entry for other reasons. */
2076 s = htab->splt;
2077 h->plt.offset = s->_raw_size;
2078 s->_raw_size += PLT_ENTRY_SIZE;
2079 }
2080 else
2081 {
2082 /* No .plt entry needed. */
2083 h->plt.offset = (bfd_vma) -1;
2084 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2085 }
2086 }
2087 else
2088 {
2089 h->plt.offset = (bfd_vma) -1;
2090 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2091 }
2092
2093 return true;
2094 }
2095
2096 /* Allocate space in .plt, .got and associated reloc sections for
2097 global syms. */
2098
2099 static boolean
2100 allocate_dynrelocs (h, inf)
2101 struct elf_link_hash_entry *h;
2102 PTR inf;
2103 {
2104 struct bfd_link_info *info;
2105 struct elf32_hppa_link_hash_table *htab;
2106 asection *s;
2107 struct elf32_hppa_link_hash_entry *eh;
2108 struct elf32_hppa_dyn_reloc_entry *p;
2109
2110 if (h->root.type == bfd_link_hash_indirect)
2111 return true;
2112
2113 if (h->root.type == bfd_link_hash_warning)
2114 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2115
2116 info = (struct bfd_link_info *) inf;
2117 htab = hppa_link_hash_table (info);
2118 if (htab->elf.dynamic_sections_created
2119 && h->plt.offset != (bfd_vma) -1
2120 && !((struct elf32_hppa_link_hash_entry *) h)->pic_call
2121 && !((struct elf32_hppa_link_hash_entry *) h)->plabel)
2122 {
2123 /* Make an entry in the .plt section. */
2124 s = htab->splt;
2125 h->plt.offset = s->_raw_size;
2126 s->_raw_size += PLT_ENTRY_SIZE;
2127
2128 /* We also need to make an entry in the .rela.plt section. */
2129 htab->srelplt->_raw_size += sizeof (Elf32_External_Rela);
2130 htab->need_plt_stub = 1;
2131 }
2132
2133 if (h->got.refcount > 0)
2134 {
2135 /* Make sure this symbol is output as a dynamic symbol.
2136 Undefined weak syms won't yet be marked as dynamic. */
2137 if (h->dynindx == -1
2138 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
2139 && h->type != STT_PARISC_MILLI)
2140 {
2141 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2142 return false;
2143 }
2144
2145 s = htab->sgot;
2146 h->got.offset = s->_raw_size;
2147 s->_raw_size += GOT_ENTRY_SIZE;
2148 if (htab->elf.dynamic_sections_created
2149 && (info->shared
2150 || (h->dynindx != -1
2151 && h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0))
2152 {
2153 htab->srelgot->_raw_size += sizeof (Elf32_External_Rela);
2154 }
2155 }
2156 else
2157 h->got.offset = (bfd_vma) -1;
2158
2159 eh = (struct elf32_hppa_link_hash_entry *) h;
2160 if (eh->dyn_relocs == NULL)
2161 return true;
2162
2163 /* If this is a -Bsymbolic shared link, then we need to discard all
2164 space allocated for dynamic pc-relative relocs against symbols
2165 defined in a regular object. For the normal shared case, discard
2166 space for relocs that have become local due to symbol visibility
2167 changes. */
2168 if (info->shared)
2169 {
2170 #if RELATIVE_DYNRELOCS
2171 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
2172 && ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
2173 || info->symbolic))
2174 {
2175 struct elf32_hppa_dyn_reloc_entry **pp;
2176
2177 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2178 {
2179 p->count -= p->relative_count;
2180 p->relative_count = 0;
2181 if (p->count == 0)
2182 *pp = p->next;
2183 else
2184 pp = &p->next;
2185 }
2186 }
2187 #endif
2188 }
2189 else
2190 {
2191 /* For the non-shared case, discard space for relocs against
2192 symbols which turn out to need copy relocs or are not
2193 dynamic. */
2194 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
2195 && (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2196 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2197 || (htab->elf.dynamic_sections_created
2198 && (h->root.type == bfd_link_hash_undefweak
2199 || h->root.type == bfd_link_hash_undefined))))
2200 {
2201 /* Make sure this symbol is output as a dynamic symbol.
2202 Undefined weak syms won't yet be marked as dynamic. */
2203 if (h->dynindx == -1
2204 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
2205 && h->type != STT_PARISC_MILLI)
2206 {
2207 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2208 return false;
2209 }
2210
2211 /* If that succeeded, we know we'll be keeping all the
2212 relocs. */
2213 if (h->dynindx != -1)
2214 goto keep;
2215 }
2216
2217 eh->dyn_relocs = NULL;
2218 return true;
2219
2220 keep: ;
2221 }
2222
2223 /* Finally, allocate space. */
2224 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2225 {
2226 asection *sreloc = elf_section_data (p->sec)->sreloc;
2227 sreloc->_raw_size += p->count * sizeof (Elf32_External_Rela);
2228 }
2229
2230 return true;
2231 }
2232
2233 /* This function is called via elf_link_hash_traverse to force
2234 millicode symbols local so they do not end up as globals in the
2235 dynamic symbol table. We ought to be able to do this in
2236 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2237 for all dynamic symbols. Arguably, this is a bug in
2238 elf_adjust_dynamic_symbol. */
2239
2240 static boolean
2241 clobber_millicode_symbols (h, info)
2242 struct elf_link_hash_entry *h;
2243 struct bfd_link_info *info;
2244 {
2245 if (h->root.type == bfd_link_hash_warning)
2246 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2247
2248 if (h->type == STT_PARISC_MILLI
2249 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
2250 {
2251 elf32_hppa_hide_symbol (info, h, true);
2252 }
2253 return true;
2254 }
2255
2256 /* Find any dynamic relocs that apply to read-only sections. */
2257
2258 static boolean
2259 readonly_dynrelocs (h, inf)
2260 struct elf_link_hash_entry *h;
2261 PTR inf;
2262 {
2263 struct elf32_hppa_link_hash_entry *eh;
2264 struct elf32_hppa_dyn_reloc_entry *p;
2265
2266 if (h->root.type == bfd_link_hash_warning)
2267 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2268
2269 eh = (struct elf32_hppa_link_hash_entry *) h;
2270 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2271 {
2272 asection *s = p->sec->output_section;
2273
2274 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2275 {
2276 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2277
2278 info->flags |= DF_TEXTREL;
2279
2280 /* Not an error, just cut short the traversal. */
2281 return false;
2282 }
2283 }
2284 return true;
2285 }
2286
2287 /* Set the sizes of the dynamic sections. */
2288
2289 static boolean
2290 elf32_hppa_size_dynamic_sections (output_bfd, info)
2291 bfd *output_bfd ATTRIBUTE_UNUSED;
2292 struct bfd_link_info *info;
2293 {
2294 struct elf32_hppa_link_hash_table *htab;
2295 bfd *dynobj;
2296 bfd *ibfd;
2297 asection *s;
2298 boolean relocs;
2299
2300 htab = hppa_link_hash_table (info);
2301 dynobj = htab->elf.dynobj;
2302 if (dynobj == NULL)
2303 abort ();
2304
2305 if (htab->elf.dynamic_sections_created)
2306 {
2307 /* Set the contents of the .interp section to the interpreter. */
2308 if (! info->shared)
2309 {
2310 s = bfd_get_section_by_name (dynobj, ".interp");
2311 if (s == NULL)
2312 abort ();
2313 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
2314 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2315 }
2316
2317 /* Force millicode symbols local. */
2318 elf_link_hash_traverse (&htab->elf,
2319 clobber_millicode_symbols,
2320 info);
2321 }
2322 else
2323 {
2324 /* Run through the function symbols, looking for any that are
2325 PIC, and mark them as needing .plt entries so that %r19 will
2326 be set up. */
2327 if (! info->shared)
2328 elf_link_hash_traverse (&htab->elf, mark_PIC_calls, (PTR) info);
2329 }
2330
2331 /* Set up .got and .plt offsets for local syms, and space for local
2332 dynamic relocs. */
2333 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2334 {
2335 bfd_signed_vma *local_got;
2336 bfd_signed_vma *end_local_got;
2337 bfd_signed_vma *local_plt;
2338 bfd_signed_vma *end_local_plt;
2339 bfd_size_type locsymcount;
2340 Elf_Internal_Shdr *symtab_hdr;
2341 asection *srel;
2342
2343 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2344 continue;
2345
2346 for (s = ibfd->sections; s != NULL; s = s->next)
2347 {
2348 struct elf32_hppa_dyn_reloc_entry *p;
2349
2350 for (p = ((struct elf32_hppa_dyn_reloc_entry *)
2351 elf_section_data (s)->local_dynrel);
2352 p != NULL;
2353 p = p->next)
2354 {
2355 if (!bfd_is_abs_section (p->sec)
2356 && bfd_is_abs_section (p->sec->output_section))
2357 {
2358 /* Input section has been discarded, either because
2359 it is a copy of a linkonce section or due to
2360 linker script /DISCARD/, so we'll be discarding
2361 the relocs too. */
2362 }
2363 else if (p->count != 0)
2364 {
2365 srel = elf_section_data (p->sec)->sreloc;
2366 srel->_raw_size += p->count * sizeof (Elf32_External_Rela);
2367 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
2368 info->flags |= DF_TEXTREL;
2369 }
2370 }
2371 }
2372
2373 local_got = elf_local_got_refcounts (ibfd);
2374 if (!local_got)
2375 continue;
2376
2377 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2378 locsymcount = symtab_hdr->sh_info;
2379 end_local_got = local_got + locsymcount;
2380 s = htab->sgot;
2381 srel = htab->srelgot;
2382 for (; local_got < end_local_got; ++local_got)
2383 {
2384 if (*local_got > 0)
2385 {
2386 *local_got = s->_raw_size;
2387 s->_raw_size += GOT_ENTRY_SIZE;
2388 if (info->shared)
2389 srel->_raw_size += sizeof (Elf32_External_Rela);
2390 }
2391 else
2392 *local_got = (bfd_vma) -1;
2393 }
2394
2395 local_plt = end_local_got;
2396 end_local_plt = local_plt + locsymcount;
2397 if (! htab->elf.dynamic_sections_created)
2398 {
2399 /* Won't be used, but be safe. */
2400 for (; local_plt < end_local_plt; ++local_plt)
2401 *local_plt = (bfd_vma) -1;
2402 }
2403 else
2404 {
2405 s = htab->splt;
2406 srel = htab->srelplt;
2407 for (; local_plt < end_local_plt; ++local_plt)
2408 {
2409 if (*local_plt > 0)
2410 {
2411 *local_plt = s->_raw_size;
2412 s->_raw_size += PLT_ENTRY_SIZE;
2413 if (info->shared)
2414 srel->_raw_size += sizeof (Elf32_External_Rela);
2415 }
2416 else
2417 *local_plt = (bfd_vma) -1;
2418 }
2419 }
2420 }
2421
2422 /* Do all the .plt entries without relocs first. The dynamic linker
2423 uses the last .plt reloc to find the end of the .plt (and hence
2424 the start of the .got) for lazy linking. */
2425 elf_link_hash_traverse (&htab->elf, allocate_plt_static, (PTR) info);
2426
2427 /* Allocate global sym .plt and .got entries, and space for global
2428 sym dynamic relocs. */
2429 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
2430
2431 /* The check_relocs and adjust_dynamic_symbol entry points have
2432 determined the sizes of the various dynamic sections. Allocate
2433 memory for them. */
2434 relocs = false;
2435 for (s = dynobj->sections; s != NULL; s = s->next)
2436 {
2437 if ((s->flags & SEC_LINKER_CREATED) == 0)
2438 continue;
2439
2440 if (s == htab->splt)
2441 {
2442 if (htab->need_plt_stub)
2443 {
2444 /* Make space for the plt stub at the end of the .plt
2445 section. We want this stub right at the end, up
2446 against the .got section. */
2447 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2448 int pltalign = bfd_section_alignment (dynobj, s);
2449 bfd_size_type mask;
2450
2451 if (gotalign > pltalign)
2452 bfd_set_section_alignment (dynobj, s, gotalign);
2453 mask = ((bfd_size_type) 1 << gotalign) - 1;
2454 s->_raw_size = (s->_raw_size + sizeof (plt_stub) + mask) & ~mask;
2455 }
2456 }
2457 else if (s == htab->sgot)
2458 ;
2459 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
2460 {
2461 if (s->_raw_size != 0)
2462 {
2463 /* Remember whether there are any reloc sections other
2464 than .rela.plt. */
2465 if (s != htab->srelplt)
2466 relocs = true;
2467
2468 /* We use the reloc_count field as a counter if we need
2469 to copy relocs into the output file. */
2470 s->reloc_count = 0;
2471 }
2472 }
2473 else
2474 {
2475 /* It's not one of our sections, so don't allocate space. */
2476 continue;
2477 }
2478
2479 if (s->_raw_size == 0)
2480 {
2481 /* If we don't need this section, strip it from the
2482 output file. This is mostly to handle .rela.bss and
2483 .rela.plt. We must create both sections in
2484 create_dynamic_sections, because they must be created
2485 before the linker maps input sections to output
2486 sections. The linker does that before
2487 adjust_dynamic_symbol is called, and it is that
2488 function which decides whether anything needs to go
2489 into these sections. */
2490 _bfd_strip_section_from_output (info, s);
2491 continue;
2492 }
2493
2494 /* Allocate memory for the section contents. Zero it, because
2495 we may not fill in all the reloc sections. */
2496 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
2497 if (s->contents == NULL && s->_raw_size != 0)
2498 return false;
2499 }
2500
2501 if (htab->elf.dynamic_sections_created)
2502 {
2503 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2504 actually has nothing to do with the PLT, it is how we
2505 communicate the LTP value of a load module to the dynamic
2506 linker. */
2507 #define add_dynamic_entry(TAG, VAL) \
2508 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
2509
2510 if (!add_dynamic_entry (DT_PLTGOT, 0))
2511 return false;
2512
2513 /* Add some entries to the .dynamic section. We fill in the
2514 values later, in elf32_hppa_finish_dynamic_sections, but we
2515 must add the entries now so that we get the correct size for
2516 the .dynamic section. The DT_DEBUG entry is filled in by the
2517 dynamic linker and used by the debugger. */
2518 if (!info->shared)
2519 {
2520 if (!add_dynamic_entry (DT_DEBUG, 0))
2521 return false;
2522 }
2523
2524 if (htab->srelplt->_raw_size != 0)
2525 {
2526 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2527 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2528 || !add_dynamic_entry (DT_JMPREL, 0))
2529 return false;
2530 }
2531
2532 if (relocs)
2533 {
2534 if (!add_dynamic_entry (DT_RELA, 0)
2535 || !add_dynamic_entry (DT_RELASZ, 0)
2536 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2537 return false;
2538
2539 /* If any dynamic relocs apply to a read-only section,
2540 then we need a DT_TEXTREL entry. */
2541 if ((info->flags & DF_TEXTREL) == 0)
2542 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs,
2543 (PTR) info);
2544
2545 if ((info->flags & DF_TEXTREL) != 0)
2546 {
2547 if (!add_dynamic_entry (DT_TEXTREL, 0))
2548 return false;
2549 }
2550 }
2551 }
2552 #undef add_dynamic_entry
2553
2554 return true;
2555 }
2556
2557 /* External entry points for sizing and building linker stubs. */
2558
2559 /* Set up various things so that we can make a list of input sections
2560 for each output section included in the link. Returns -1 on error,
2561 0 when no stubs will be needed, and 1 on success. */
2562
2563 int
2564 elf32_hppa_setup_section_lists (output_bfd, info)
2565 bfd *output_bfd;
2566 struct bfd_link_info *info;
2567 {
2568 bfd *input_bfd;
2569 unsigned int bfd_count;
2570 int top_id, top_index;
2571 asection *section;
2572 asection **input_list, **list;
2573 bfd_size_type amt;
2574 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2575
2576 if (htab->elf.root.creator->flavour != bfd_target_elf_flavour)
2577 return 0;
2578
2579 /* Count the number of input BFDs and find the top input section id. */
2580 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2581 input_bfd != NULL;
2582 input_bfd = input_bfd->link_next)
2583 {
2584 bfd_count += 1;
2585 for (section = input_bfd->sections;
2586 section != NULL;
2587 section = section->next)
2588 {
2589 if (top_id < section->id)
2590 top_id = section->id;
2591 }
2592 }
2593 htab->bfd_count = bfd_count;
2594
2595 amt = sizeof (struct map_stub) * (top_id + 1);
2596 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
2597 if (htab->stub_group == NULL)
2598 return -1;
2599
2600 /* We can't use output_bfd->section_count here to find the top output
2601 section index as some sections may have been removed, and
2602 _bfd_strip_section_from_output doesn't renumber the indices. */
2603 for (section = output_bfd->sections, top_index = 0;
2604 section != NULL;
2605 section = section->next)
2606 {
2607 if (top_index < section->index)
2608 top_index = section->index;
2609 }
2610
2611 htab->top_index = top_index;
2612 amt = sizeof (asection *) * (top_index + 1);
2613 input_list = (asection **) bfd_malloc (amt);
2614 htab->input_list = input_list;
2615 if (input_list == NULL)
2616 return -1;
2617
2618 /* For sections we aren't interested in, mark their entries with a
2619 value we can check later. */
2620 list = input_list + top_index;
2621 do
2622 *list = bfd_abs_section_ptr;
2623 while (list-- != input_list);
2624
2625 for (section = output_bfd->sections;
2626 section != NULL;
2627 section = section->next)
2628 {
2629 if ((section->flags & SEC_CODE) != 0)
2630 input_list[section->index] = NULL;
2631 }
2632
2633 return 1;
2634 }
2635
2636 /* The linker repeatedly calls this function for each input section,
2637 in the order that input sections are linked into output sections.
2638 Build lists of input sections to determine groupings between which
2639 we may insert linker stubs. */
2640
2641 void
2642 elf32_hppa_next_input_section (info, isec)
2643 struct bfd_link_info *info;
2644 asection *isec;
2645 {
2646 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2647
2648 if (isec->output_section->index <= htab->top_index)
2649 {
2650 asection **list = htab->input_list + isec->output_section->index;
2651 if (*list != bfd_abs_section_ptr)
2652 {
2653 /* Steal the link_sec pointer for our list. */
2654 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2655 /* This happens to make the list in reverse order,
2656 which is what we want. */
2657 PREV_SEC (isec) = *list;
2658 *list = isec;
2659 }
2660 }
2661 }
2662
2663 /* See whether we can group stub sections together. Grouping stub
2664 sections may result in fewer stubs. More importantly, we need to
2665 put all .init* and .fini* stubs at the beginning of the .init or
2666 .fini output sections respectively, because glibc splits the
2667 _init and _fini functions into multiple parts. Putting a stub in
2668 the middle of a function is not a good idea. */
2669
2670 static void
2671 group_sections (htab, stub_group_size, stubs_always_before_branch)
2672 struct elf32_hppa_link_hash_table *htab;
2673 bfd_size_type stub_group_size;
2674 boolean stubs_always_before_branch;
2675 {
2676 asection **list = htab->input_list + htab->top_index;
2677 do
2678 {
2679 asection *tail = *list;
2680 if (tail == bfd_abs_section_ptr)
2681 continue;
2682 while (tail != NULL)
2683 {
2684 asection *curr;
2685 asection *prev;
2686 bfd_size_type total;
2687
2688 curr = tail;
2689 if (tail->_cooked_size)
2690 total = tail->_cooked_size;
2691 else
2692 total = tail->_raw_size;
2693 while ((prev = PREV_SEC (curr)) != NULL
2694 && ((total += curr->output_offset - prev->output_offset)
2695 < stub_group_size))
2696 curr = prev;
2697
2698 /* OK, the size from the start of CURR to the end is less
2699 than 240000 bytes and thus can be handled by one stub
2700 section. (or the tail section is itself larger than
2701 240000 bytes, in which case we may be toast.)
2702 We should really be keeping track of the total size of
2703 stubs added here, as stubs contribute to the final output
2704 section size. That's a little tricky, and this way will
2705 only break if stubs added total more than 22144 bytes, or
2706 2768 long branch stubs. It seems unlikely for more than
2707 2768 different functions to be called, especially from
2708 code only 240000 bytes long. This limit used to be
2709 250000, but c++ code tends to generate lots of little
2710 functions, and sometimes violated the assumption. */
2711 do
2712 {
2713 prev = PREV_SEC (tail);
2714 /* Set up this stub group. */
2715 htab->stub_group[tail->id].link_sec = curr;
2716 }
2717 while (tail != curr && (tail = prev) != NULL);
2718
2719 /* But wait, there's more! Input sections up to 240000
2720 bytes before the stub section can be handled by it too. */
2721 if (!stubs_always_before_branch)
2722 {
2723 total = 0;
2724 while (prev != NULL
2725 && ((total += tail->output_offset - prev->output_offset)
2726 < stub_group_size))
2727 {
2728 tail = prev;
2729 prev = PREV_SEC (tail);
2730 htab->stub_group[tail->id].link_sec = curr;
2731 }
2732 }
2733 tail = prev;
2734 }
2735 }
2736 while (list-- != htab->input_list);
2737 free (htab->input_list);
2738 #undef PREV_SEC
2739 }
2740
2741 /* Read in all local syms for all input bfds, and create hash entries
2742 for export stubs if we are building a multi-subspace shared lib.
2743 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2744
2745 static int
2746 get_local_syms (output_bfd, input_bfd, info)
2747 bfd *output_bfd;
2748 bfd *input_bfd;
2749 struct bfd_link_info *info;
2750 {
2751 unsigned int bfd_indx;
2752 Elf_Internal_Sym *local_syms, **all_local_syms;
2753 int stub_changed = 0;
2754 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2755
2756 /* We want to read in symbol extension records only once. To do this
2757 we need to read in the local symbols in parallel and save them for
2758 later use; so hold pointers to the local symbols in an array. */
2759 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2760 all_local_syms = (Elf_Internal_Sym **) bfd_zmalloc (amt);
2761 htab->all_local_syms = all_local_syms;
2762 if (all_local_syms == NULL)
2763 return -1;
2764
2765 /* Walk over all the input BFDs, swapping in local symbols.
2766 If we are creating a shared library, create hash entries for the
2767 export stubs. */
2768 for (bfd_indx = 0;
2769 input_bfd != NULL;
2770 input_bfd = input_bfd->link_next, bfd_indx++)
2771 {
2772 Elf_Internal_Shdr *symtab_hdr;
2773
2774 /* We'll need the symbol table in a second. */
2775 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2776 if (symtab_hdr->sh_info == 0)
2777 continue;
2778
2779 /* We need an array of the local symbols attached to the input bfd. */
2780 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2781 if (local_syms == NULL)
2782 {
2783 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2784 symtab_hdr->sh_info, 0,
2785 NULL, NULL, NULL);
2786 /* Cache them for elf_link_input_bfd. */
2787 symtab_hdr->contents = (unsigned char *) local_syms;
2788 }
2789 if (local_syms == NULL)
2790 return -1;
2791
2792 all_local_syms[bfd_indx] = local_syms;
2793
2794 if (info->shared && htab->multi_subspace)
2795 {
2796 struct elf_link_hash_entry **sym_hashes;
2797 struct elf_link_hash_entry **end_hashes;
2798 unsigned int symcount;
2799
2800 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2801 - symtab_hdr->sh_info);
2802 sym_hashes = elf_sym_hashes (input_bfd);
2803 end_hashes = sym_hashes + symcount;
2804
2805 /* Look through the global syms for functions; We need to
2806 build export stubs for all globally visible functions. */
2807 for (; sym_hashes < end_hashes; sym_hashes++)
2808 {
2809 struct elf32_hppa_link_hash_entry *hash;
2810
2811 hash = (struct elf32_hppa_link_hash_entry *) *sym_hashes;
2812
2813 while (hash->elf.root.type == bfd_link_hash_indirect
2814 || hash->elf.root.type == bfd_link_hash_warning)
2815 hash = ((struct elf32_hppa_link_hash_entry *)
2816 hash->elf.root.u.i.link);
2817
2818 /* At this point in the link, undefined syms have been
2819 resolved, so we need to check that the symbol was
2820 defined in this BFD. */
2821 if ((hash->elf.root.type == bfd_link_hash_defined
2822 || hash->elf.root.type == bfd_link_hash_defweak)
2823 && hash->elf.type == STT_FUNC
2824 && hash->elf.root.u.def.section->output_section != NULL
2825 && (hash->elf.root.u.def.section->output_section->owner
2826 == output_bfd)
2827 && hash->elf.root.u.def.section->owner == input_bfd
2828 && (hash->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
2829 && !(hash->elf.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)
2830 && ELF_ST_VISIBILITY (hash->elf.other) == STV_DEFAULT)
2831 {
2832 asection *sec;
2833 const char *stub_name;
2834 struct elf32_hppa_stub_hash_entry *stub_entry;
2835
2836 sec = hash->elf.root.u.def.section;
2837 stub_name = hash->elf.root.root.string;
2838 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
2839 stub_name,
2840 false, false);
2841 if (stub_entry == NULL)
2842 {
2843 stub_entry = hppa_add_stub (stub_name, sec, htab);
2844 if (!stub_entry)
2845 return -1;
2846
2847 stub_entry->target_value = hash->elf.root.u.def.value;
2848 stub_entry->target_section = hash->elf.root.u.def.section;
2849 stub_entry->stub_type = hppa_stub_export;
2850 stub_entry->h = hash;
2851 stub_changed = 1;
2852 }
2853 else
2854 {
2855 (*_bfd_error_handler) (_("%s: duplicate export stub %s"),
2856 bfd_archive_filename (input_bfd),
2857 stub_name);
2858 }
2859 }
2860 }
2861 }
2862 }
2863
2864 return stub_changed;
2865 }
2866
2867 /* Determine and set the size of the stub section for a final link.
2868
2869 The basic idea here is to examine all the relocations looking for
2870 PC-relative calls to a target that is unreachable with a "bl"
2871 instruction. */
2872
2873 boolean
2874 elf32_hppa_size_stubs (output_bfd, stub_bfd, info, multi_subspace, group_size,
2875 add_stub_section, layout_sections_again)
2876 bfd *output_bfd;
2877 bfd *stub_bfd;
2878 struct bfd_link_info *info;
2879 boolean multi_subspace;
2880 bfd_signed_vma group_size;
2881 asection * (*add_stub_section) PARAMS ((const char *, asection *));
2882 void (*layout_sections_again) PARAMS ((void));
2883 {
2884 bfd_size_type stub_group_size;
2885 boolean stubs_always_before_branch;
2886 boolean stub_changed;
2887 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2888
2889 /* Stash our params away. */
2890 htab->stub_bfd = stub_bfd;
2891 htab->multi_subspace = multi_subspace;
2892 htab->add_stub_section = add_stub_section;
2893 htab->layout_sections_again = layout_sections_again;
2894 stubs_always_before_branch = group_size < 0;
2895 if (group_size < 0)
2896 stub_group_size = -group_size;
2897 else
2898 stub_group_size = group_size;
2899 if (stub_group_size == 1)
2900 {
2901 /* Default values. */
2902 stub_group_size = 7680000;
2903 if (htab->has_17bit_branch || htab->multi_subspace)
2904 stub_group_size = 240000;
2905 if (htab->has_12bit_branch)
2906 stub_group_size = 7500;
2907 }
2908
2909 group_sections (htab, stub_group_size, stubs_always_before_branch);
2910
2911 switch (get_local_syms (output_bfd, info->input_bfds, info))
2912 {
2913 default:
2914 if (htab->all_local_syms)
2915 goto error_ret_free_local;
2916 return false;
2917
2918 case 0:
2919 stub_changed = false;
2920 break;
2921
2922 case 1:
2923 stub_changed = true;
2924 break;
2925 }
2926
2927 while (1)
2928 {
2929 bfd *input_bfd;
2930 unsigned int bfd_indx;
2931 asection *stub_sec;
2932
2933 for (input_bfd = info->input_bfds, bfd_indx = 0;
2934 input_bfd != NULL;
2935 input_bfd = input_bfd->link_next, bfd_indx++)
2936 {
2937 Elf_Internal_Shdr *symtab_hdr;
2938 asection *section;
2939 Elf_Internal_Sym *local_syms;
2940
2941 /* We'll need the symbol table in a second. */
2942 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2943 if (symtab_hdr->sh_info == 0)
2944 continue;
2945
2946 local_syms = htab->all_local_syms[bfd_indx];
2947
2948 /* Walk over each section attached to the input bfd. */
2949 for (section = input_bfd->sections;
2950 section != NULL;
2951 section = section->next)
2952 {
2953 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2954
2955 /* If there aren't any relocs, then there's nothing more
2956 to do. */
2957 if ((section->flags & SEC_RELOC) == 0
2958 || section->reloc_count == 0)
2959 continue;
2960
2961 /* If this section is a link-once section that will be
2962 discarded, then don't create any stubs. */
2963 if (section->output_section == NULL
2964 || section->output_section->owner != output_bfd)
2965 continue;
2966
2967 /* Get the relocs. */
2968 internal_relocs
2969 = _bfd_elf32_link_read_relocs (input_bfd, section, NULL,
2970 (Elf_Internal_Rela *) NULL,
2971 info->keep_memory);
2972 if (internal_relocs == NULL)
2973 goto error_ret_free_local;
2974
2975 /* Now examine each relocation. */
2976 irela = internal_relocs;
2977 irelaend = irela + section->reloc_count;
2978 for (; irela < irelaend; irela++)
2979 {
2980 unsigned int r_type, r_indx;
2981 enum elf32_hppa_stub_type stub_type;
2982 struct elf32_hppa_stub_hash_entry *stub_entry;
2983 asection *sym_sec;
2984 bfd_vma sym_value;
2985 bfd_vma destination;
2986 struct elf32_hppa_link_hash_entry *hash;
2987 char *stub_name;
2988 const asection *id_sec;
2989
2990 r_type = ELF32_R_TYPE (irela->r_info);
2991 r_indx = ELF32_R_SYM (irela->r_info);
2992
2993 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2994 {
2995 bfd_set_error (bfd_error_bad_value);
2996 error_ret_free_internal:
2997 if (elf_section_data (section)->relocs == NULL)
2998 free (internal_relocs);
2999 goto error_ret_free_local;
3000 }
3001
3002 /* Only look for stubs on call instructions. */
3003 if (r_type != (unsigned int) R_PARISC_PCREL12F
3004 && r_type != (unsigned int) R_PARISC_PCREL17F
3005 && r_type != (unsigned int) R_PARISC_PCREL22F)
3006 continue;
3007
3008 /* Now determine the call target, its name, value,
3009 section. */
3010 sym_sec = NULL;
3011 sym_value = 0;
3012 destination = 0;
3013 hash = NULL;
3014 if (r_indx < symtab_hdr->sh_info)
3015 {
3016 /* It's a local symbol. */
3017 Elf_Internal_Sym *sym;
3018 Elf_Internal_Shdr *hdr;
3019
3020 sym = local_syms + r_indx;
3021 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
3022 sym_sec = hdr->bfd_section;
3023 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
3024 sym_value = sym->st_value;
3025 destination = (sym_value + irela->r_addend
3026 + sym_sec->output_offset
3027 + sym_sec->output_section->vma);
3028 }
3029 else
3030 {
3031 /* It's an external symbol. */
3032 int e_indx;
3033
3034 e_indx = r_indx - symtab_hdr->sh_info;
3035 hash = ((struct elf32_hppa_link_hash_entry *)
3036 elf_sym_hashes (input_bfd)[e_indx]);
3037
3038 while (hash->elf.root.type == bfd_link_hash_indirect
3039 || hash->elf.root.type == bfd_link_hash_warning)
3040 hash = ((struct elf32_hppa_link_hash_entry *)
3041 hash->elf.root.u.i.link);
3042
3043 if (hash->elf.root.type == bfd_link_hash_defined
3044 || hash->elf.root.type == bfd_link_hash_defweak)
3045 {
3046 sym_sec = hash->elf.root.u.def.section;
3047 sym_value = hash->elf.root.u.def.value;
3048 if (sym_sec->output_section != NULL)
3049 destination = (sym_value + irela->r_addend
3050 + sym_sec->output_offset
3051 + sym_sec->output_section->vma);
3052 }
3053 else if (hash->elf.root.type == bfd_link_hash_undefweak)
3054 {
3055 if (! info->shared)
3056 continue;
3057 }
3058 else if (hash->elf.root.type == bfd_link_hash_undefined)
3059 {
3060 if (! (info->shared
3061 && !info->no_undefined
3062 && (ELF_ST_VISIBILITY (hash->elf.other)
3063 == STV_DEFAULT)
3064 && hash->elf.type != STT_PARISC_MILLI))
3065 continue;
3066 }
3067 else
3068 {
3069 bfd_set_error (bfd_error_bad_value);
3070 goto error_ret_free_internal;
3071 }
3072 }
3073
3074 /* Determine what (if any) linker stub is needed. */
3075 stub_type = hppa_type_of_stub (section, irela, hash,
3076 destination);
3077 if (stub_type == hppa_stub_none)
3078 continue;
3079
3080 /* Support for grouping stub sections. */
3081 id_sec = htab->stub_group[section->id].link_sec;
3082
3083 /* Get the name of this stub. */
3084 stub_name = hppa_stub_name (id_sec, sym_sec, hash, irela);
3085 if (!stub_name)
3086 goto error_ret_free_internal;
3087
3088 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
3089 stub_name,
3090 false, false);
3091 if (stub_entry != NULL)
3092 {
3093 /* The proper stub has already been created. */
3094 free (stub_name);
3095 continue;
3096 }
3097
3098 stub_entry = hppa_add_stub (stub_name, section, htab);
3099 if (stub_entry == NULL)
3100 {
3101 free (stub_name);
3102 goto error_ret_free_internal;
3103 }
3104
3105 stub_entry->target_value = sym_value;
3106 stub_entry->target_section = sym_sec;
3107 stub_entry->stub_type = stub_type;
3108 if (info->shared)
3109 {
3110 if (stub_type == hppa_stub_import)
3111 stub_entry->stub_type = hppa_stub_import_shared;
3112 else if (stub_type == hppa_stub_long_branch)
3113 stub_entry->stub_type = hppa_stub_long_branch_shared;
3114 }
3115 stub_entry->h = hash;
3116 stub_changed = true;
3117 }
3118
3119 /* We're done with the internal relocs, free them. */
3120 if (elf_section_data (section)->relocs == NULL)
3121 free (internal_relocs);
3122 }
3123 }
3124
3125 if (!stub_changed)
3126 break;
3127
3128 /* OK, we've added some stubs. Find out the new size of the
3129 stub sections. */
3130 for (stub_sec = htab->stub_bfd->sections;
3131 stub_sec != NULL;
3132 stub_sec = stub_sec->next)
3133 {
3134 stub_sec->_raw_size = 0;
3135 stub_sec->_cooked_size = 0;
3136 }
3137
3138 bfd_hash_traverse (&htab->stub_hash_table, hppa_size_one_stub, htab);
3139
3140 /* Ask the linker to do its stuff. */
3141 (*htab->layout_sections_again) ();
3142 stub_changed = false;
3143 }
3144
3145 free (htab->all_local_syms);
3146 return true;
3147
3148 error_ret_free_local:
3149 free (htab->all_local_syms);
3150 return false;
3151 }
3152
3153 /* For a final link, this function is called after we have sized the
3154 stubs to provide a value for __gp. */
3155
3156 boolean
3157 elf32_hppa_set_gp (abfd, info)
3158 bfd *abfd;
3159 struct bfd_link_info *info;
3160 {
3161 struct bfd_link_hash_entry *h;
3162 asection *sec = NULL;
3163 bfd_vma gp_val = 0;
3164 struct elf32_hppa_link_hash_table *htab;
3165
3166 htab = hppa_link_hash_table (info);
3167 h = bfd_link_hash_lookup (&htab->elf.root, "$global$", false, false, false);
3168
3169 if (h != NULL
3170 && (h->type == bfd_link_hash_defined
3171 || h->type == bfd_link_hash_defweak))
3172 {
3173 gp_val = h->u.def.value;
3174 sec = h->u.def.section;
3175 }
3176 else
3177 {
3178 asection *splt;
3179 asection *sgot;
3180
3181 if (htab->elf.root.creator->flavour == bfd_target_elf_flavour)
3182 {
3183 splt = htab->splt;
3184 sgot = htab->sgot;
3185 }
3186 else
3187 {
3188 /* If we're not elf, look up the output sections in the
3189 hope we may actually find them. */
3190 splt = bfd_get_section_by_name (abfd, ".plt");
3191 sgot = bfd_get_section_by_name (abfd, ".got");
3192 }
3193
3194 /* Choose to point our LTP at, in this order, one of .plt, .got,
3195 or .data, if these sections exist. In the case of choosing
3196 .plt try to make the LTP ideal for addressing anywhere in the
3197 .plt or .got with a 14 bit signed offset. Typically, the end
3198 of the .plt is the start of the .got, so choose .plt + 0x2000
3199 if either the .plt or .got is larger than 0x2000. If both
3200 the .plt and .got are smaller than 0x2000, choose the end of
3201 the .plt section. */
3202 sec = splt;
3203 if (sec != NULL)
3204 {
3205 gp_val = sec->_raw_size;
3206 if (gp_val > 0x2000 || (sgot && sgot->_raw_size > 0x2000))
3207 {
3208 gp_val = 0x2000;
3209 }
3210 }
3211 else
3212 {
3213 sec = sgot;
3214 if (sec != NULL)
3215 {
3216 /* We know we don't have a .plt. If .got is large,
3217 offset our LTP. */
3218 if (sec->_raw_size > 0x2000)
3219 gp_val = 0x2000;
3220 }
3221 else
3222 {
3223 /* No .plt or .got. Who cares what the LTP is? */
3224 sec = bfd_get_section_by_name (abfd, ".data");
3225 }
3226 }
3227
3228 if (h != NULL)
3229 {
3230 h->type = bfd_link_hash_defined;
3231 h->u.def.value = gp_val;
3232 if (sec != NULL)
3233 h->u.def.section = sec;
3234 else
3235 h->u.def.section = bfd_abs_section_ptr;
3236 }
3237 }
3238
3239 if (sec != NULL && sec->output_section != NULL)
3240 gp_val += sec->output_section->vma + sec->output_offset;
3241
3242 elf_gp (abfd) = gp_val;
3243 return true;
3244 }
3245
3246 /* Build all the stubs associated with the current output file. The
3247 stubs are kept in a hash table attached to the main linker hash
3248 table. We also set up the .plt entries for statically linked PIC
3249 functions here. This function is called via hppaelf_finish in the
3250 linker. */
3251
3252 boolean
3253 elf32_hppa_build_stubs (info)
3254 struct bfd_link_info *info;
3255 {
3256 asection *stub_sec;
3257 struct bfd_hash_table *table;
3258 struct elf32_hppa_link_hash_table *htab;
3259
3260 htab = hppa_link_hash_table (info);
3261
3262 for (stub_sec = htab->stub_bfd->sections;
3263 stub_sec != NULL;
3264 stub_sec = stub_sec->next)
3265 {
3266 bfd_size_type size;
3267
3268 /* Allocate memory to hold the linker stubs. */
3269 size = stub_sec->_raw_size;
3270 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
3271 if (stub_sec->contents == NULL && size != 0)
3272 return false;
3273 stub_sec->_raw_size = 0;
3274 }
3275
3276 /* Build the stubs as directed by the stub hash table. */
3277 table = &htab->stub_hash_table;
3278 bfd_hash_traverse (table, hppa_build_one_stub, info);
3279
3280 return true;
3281 }
3282
3283 /* Perform a final link. */
3284
3285 static boolean
3286 elf32_hppa_final_link (abfd, info)
3287 bfd *abfd;
3288 struct bfd_link_info *info;
3289 {
3290 /* Invoke the regular ELF linker to do all the work. */
3291 if (!bfd_elf32_bfd_final_link (abfd, info))
3292 return false;
3293
3294 /* If we're producing a final executable, sort the contents of the
3295 unwind section. */
3296 return elf_hppa_sort_unwind (abfd);
3297 }
3298
3299 /* Record the lowest address for the data and text segments. */
3300
3301 static void
3302 hppa_record_segment_addr (abfd, section, data)
3303 bfd *abfd ATTRIBUTE_UNUSED;
3304 asection *section;
3305 PTR data;
3306 {
3307 struct elf32_hppa_link_hash_table *htab;
3308
3309 htab = (struct elf32_hppa_link_hash_table *) data;
3310
3311 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3312 {
3313 bfd_vma value = section->vma - section->filepos;
3314
3315 if ((section->flags & SEC_READONLY) != 0)
3316 {
3317 if (value < htab->text_segment_base)
3318 htab->text_segment_base = value;
3319 }
3320 else
3321 {
3322 if (value < htab->data_segment_base)
3323 htab->data_segment_base = value;
3324 }
3325 }
3326 }
3327
3328 /* Perform a relocation as part of a final link. */
3329
3330 static bfd_reloc_status_type
3331 final_link_relocate (input_section, contents, rel, value, htab, sym_sec, h)
3332 asection *input_section;
3333 bfd_byte *contents;
3334 const Elf_Internal_Rela *rel;
3335 bfd_vma value;
3336 struct elf32_hppa_link_hash_table *htab;
3337 asection *sym_sec;
3338 struct elf32_hppa_link_hash_entry *h;
3339 {
3340 int insn;
3341 unsigned int r_type = ELF32_R_TYPE (rel->r_info);
3342 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3343 int r_format = howto->bitsize;
3344 enum hppa_reloc_field_selector_type_alt r_field;
3345 bfd *input_bfd = input_section->owner;
3346 bfd_vma offset = rel->r_offset;
3347 bfd_vma max_branch_offset = 0;
3348 bfd_byte *hit_data = contents + offset;
3349 bfd_signed_vma addend = rel->r_addend;
3350 bfd_vma location;
3351 struct elf32_hppa_stub_hash_entry *stub_entry = NULL;
3352 int val;
3353
3354 if (r_type == R_PARISC_NONE)
3355 return bfd_reloc_ok;
3356
3357 insn = bfd_get_32 (input_bfd, hit_data);
3358
3359 /* Find out where we are and where we're going. */
3360 location = (offset +
3361 input_section->output_offset +
3362 input_section->output_section->vma);
3363
3364 switch (r_type)
3365 {
3366 case R_PARISC_PCREL12F:
3367 case R_PARISC_PCREL17F:
3368 case R_PARISC_PCREL22F:
3369 /* If this call should go via the plt, find the import stub in
3370 the stub hash. */
3371 if (sym_sec == NULL
3372 || sym_sec->output_section == NULL
3373 || (h != NULL
3374 && h->elf.plt.offset != (bfd_vma) -1
3375 && (h->elf.dynindx != -1 || h->pic_call)
3376 && !h->plabel))
3377 {
3378 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3379 h, rel, htab);
3380 if (stub_entry != NULL)
3381 {
3382 value = (stub_entry->stub_offset
3383 + stub_entry->stub_sec->output_offset
3384 + stub_entry->stub_sec->output_section->vma);
3385 addend = 0;
3386 }
3387 else if (sym_sec == NULL && h != NULL
3388 && h->elf.root.type == bfd_link_hash_undefweak)
3389 {
3390 /* It's OK if undefined weak. Calls to undefined weak
3391 symbols behave as if the "called" function
3392 immediately returns. We can thus call to a weak
3393 function without first checking whether the function
3394 is defined. */
3395 value = location;
3396 addend = 8;
3397 }
3398 else
3399 return bfd_reloc_undefined;
3400 }
3401 /* Fall thru. */
3402
3403 case R_PARISC_PCREL21L:
3404 case R_PARISC_PCREL17C:
3405 case R_PARISC_PCREL17R:
3406 case R_PARISC_PCREL14R:
3407 case R_PARISC_PCREL14F:
3408 /* Make it a pc relative offset. */
3409 value -= location;
3410 addend -= 8;
3411 break;
3412
3413 case R_PARISC_DPREL21L:
3414 case R_PARISC_DPREL14R:
3415 case R_PARISC_DPREL14F:
3416 /* For all the DP relative relocations, we need to examine the symbol's
3417 section. If it's a code section, then "data pointer relative" makes
3418 no sense. In that case we don't adjust the "value", and for 21 bit
3419 addil instructions, we change the source addend register from %dp to
3420 %r0. This situation commonly arises when a variable's "constness"
3421 is declared differently from the way the variable is defined. For
3422 instance: "extern int foo" with foo defined as "const int foo". */
3423 if (sym_sec == NULL)
3424 break;
3425 if ((sym_sec->flags & SEC_CODE) != 0)
3426 {
3427 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3428 == (((int) OP_ADDIL << 26) | (27 << 21)))
3429 {
3430 insn &= ~ (0x1f << 21);
3431 #if 0 /* debug them. */
3432 (*_bfd_error_handler)
3433 (_("%s(%s+0x%lx): fixing %s"),
3434 bfd_archive_filename (input_bfd),
3435 input_section->name,
3436 (long) rel->r_offset,
3437 howto->name);
3438 #endif
3439 }
3440 /* Now try to make things easy for the dynamic linker. */
3441
3442 break;
3443 }
3444 /* Fall thru. */
3445
3446 case R_PARISC_DLTIND21L:
3447 case R_PARISC_DLTIND14R:
3448 case R_PARISC_DLTIND14F:
3449 value -= elf_gp (input_section->output_section->owner);
3450 break;
3451
3452 case R_PARISC_SEGREL32:
3453 if ((sym_sec->flags & SEC_CODE) != 0)
3454 value -= htab->text_segment_base;
3455 else
3456 value -= htab->data_segment_base;
3457 break;
3458
3459 default:
3460 break;
3461 }
3462
3463 switch (r_type)
3464 {
3465 case R_PARISC_DIR32:
3466 case R_PARISC_DIR14F:
3467 case R_PARISC_DIR17F:
3468 case R_PARISC_PCREL17C:
3469 case R_PARISC_PCREL14F:
3470 case R_PARISC_DPREL14F:
3471 case R_PARISC_PLABEL32:
3472 case R_PARISC_DLTIND14F:
3473 case R_PARISC_SEGBASE:
3474 case R_PARISC_SEGREL32:
3475 r_field = e_fsel;
3476 break;
3477
3478 case R_PARISC_DLTIND21L:
3479 case R_PARISC_PCREL21L:
3480 case R_PARISC_PLABEL21L:
3481 r_field = e_lsel;
3482 break;
3483
3484 case R_PARISC_DIR21L:
3485 case R_PARISC_DPREL21L:
3486 r_field = e_lrsel;
3487 break;
3488
3489 case R_PARISC_PCREL17R:
3490 case R_PARISC_PCREL14R:
3491 case R_PARISC_PLABEL14R:
3492 case R_PARISC_DLTIND14R:
3493 r_field = e_rsel;
3494 break;
3495
3496 case R_PARISC_DIR17R:
3497 case R_PARISC_DIR14R:
3498 case R_PARISC_DPREL14R:
3499 r_field = e_rrsel;
3500 break;
3501
3502 case R_PARISC_PCREL12F:
3503 case R_PARISC_PCREL17F:
3504 case R_PARISC_PCREL22F:
3505 r_field = e_fsel;
3506
3507 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3508 {
3509 max_branch_offset = (1 << (17-1)) << 2;
3510 }
3511 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3512 {
3513 max_branch_offset = (1 << (12-1)) << 2;
3514 }
3515 else
3516 {
3517 max_branch_offset = (1 << (22-1)) << 2;
3518 }
3519
3520 /* sym_sec is NULL on undefined weak syms or when shared on
3521 undefined syms. We've already checked for a stub for the
3522 shared undefined case. */
3523 if (sym_sec == NULL)
3524 break;
3525
3526 /* If the branch is out of reach, then redirect the
3527 call to the local stub for this function. */
3528 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3529 {
3530 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3531 h, rel, htab);
3532 if (stub_entry == NULL)
3533 return bfd_reloc_undefined;
3534
3535 /* Munge up the value and addend so that we call the stub
3536 rather than the procedure directly. */
3537 value = (stub_entry->stub_offset
3538 + stub_entry->stub_sec->output_offset
3539 + stub_entry->stub_sec->output_section->vma
3540 - location);
3541 addend = -8;
3542 }
3543 break;
3544
3545 /* Something we don't know how to handle. */
3546 default:
3547 return bfd_reloc_notsupported;
3548 }
3549
3550 /* Make sure we can reach the stub. */
3551 if (max_branch_offset != 0
3552 && value + addend + max_branch_offset >= 2*max_branch_offset)
3553 {
3554 (*_bfd_error_handler)
3555 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3556 bfd_archive_filename (input_bfd),
3557 input_section->name,
3558 (long) rel->r_offset,
3559 stub_entry->root.string);
3560 bfd_set_error (bfd_error_bad_value);
3561 return bfd_reloc_notsupported;
3562 }
3563
3564 val = hppa_field_adjust (value, addend, r_field);
3565
3566 switch (r_type)
3567 {
3568 case R_PARISC_PCREL12F:
3569 case R_PARISC_PCREL17C:
3570 case R_PARISC_PCREL17F:
3571 case R_PARISC_PCREL17R:
3572 case R_PARISC_PCREL22F:
3573 case R_PARISC_DIR17F:
3574 case R_PARISC_DIR17R:
3575 /* This is a branch. Divide the offset by four.
3576 Note that we need to decide whether it's a branch or
3577 otherwise by inspecting the reloc. Inspecting insn won't
3578 work as insn might be from a .word directive. */
3579 val >>= 2;
3580 break;
3581
3582 default:
3583 break;
3584 }
3585
3586 insn = hppa_rebuild_insn (insn, val, r_format);
3587
3588 /* Update the instruction word. */
3589 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3590 return bfd_reloc_ok;
3591 }
3592
3593 /* Relocate an HPPA ELF section. */
3594
3595 static boolean
3596 elf32_hppa_relocate_section (output_bfd, info, input_bfd, input_section,
3597 contents, relocs, local_syms, local_sections)
3598 bfd *output_bfd;
3599 struct bfd_link_info *info;
3600 bfd *input_bfd;
3601 asection *input_section;
3602 bfd_byte *contents;
3603 Elf_Internal_Rela *relocs;
3604 Elf_Internal_Sym *local_syms;
3605 asection **local_sections;
3606 {
3607 bfd_vma *local_got_offsets;
3608 struct elf32_hppa_link_hash_table *htab;
3609 Elf_Internal_Shdr *symtab_hdr;
3610 Elf_Internal_Rela *rel;
3611 Elf_Internal_Rela *relend;
3612
3613 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3614
3615 htab = hppa_link_hash_table (info);
3616 local_got_offsets = elf_local_got_offsets (input_bfd);
3617
3618 rel = relocs;
3619 relend = relocs + input_section->reloc_count;
3620 for (; rel < relend; rel++)
3621 {
3622 unsigned int r_type;
3623 reloc_howto_type *howto;
3624 unsigned int r_symndx;
3625 struct elf32_hppa_link_hash_entry *h;
3626 Elf_Internal_Sym *sym;
3627 asection *sym_sec;
3628 bfd_vma relocation;
3629 bfd_reloc_status_type r;
3630 const char *sym_name;
3631 boolean plabel;
3632 boolean warned_undef;
3633
3634 r_type = ELF32_R_TYPE (rel->r_info);
3635 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3636 {
3637 bfd_set_error (bfd_error_bad_value);
3638 return false;
3639 }
3640 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3641 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3642 continue;
3643
3644 r_symndx = ELF32_R_SYM (rel->r_info);
3645
3646 if (info->relocateable)
3647 {
3648 /* This is a relocatable link. We don't have to change
3649 anything, unless the reloc is against a section symbol,
3650 in which case we have to adjust according to where the
3651 section symbol winds up in the output section. */
3652 if (r_symndx < symtab_hdr->sh_info)
3653 {
3654 sym = local_syms + r_symndx;
3655 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3656 {
3657 sym_sec = local_sections[r_symndx];
3658 rel->r_addend += sym_sec->output_offset;
3659 }
3660 }
3661 continue;
3662 }
3663
3664 /* This is a final link. */
3665 h = NULL;
3666 sym = NULL;
3667 sym_sec = NULL;
3668 warned_undef = false;
3669 if (r_symndx < symtab_hdr->sh_info)
3670 {
3671 /* This is a local symbol, h defaults to NULL. */
3672 sym = local_syms + r_symndx;
3673 sym_sec = local_sections[r_symndx];
3674 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sym_sec, rel);
3675 }
3676 else
3677 {
3678 int indx;
3679
3680 /* It's a global; Find its entry in the link hash. */
3681 indx = r_symndx - symtab_hdr->sh_info;
3682 h = ((struct elf32_hppa_link_hash_entry *)
3683 elf_sym_hashes (input_bfd)[indx]);
3684 while (h->elf.root.type == bfd_link_hash_indirect
3685 || h->elf.root.type == bfd_link_hash_warning)
3686 h = (struct elf32_hppa_link_hash_entry *) h->elf.root.u.i.link;
3687
3688 relocation = 0;
3689 if (h->elf.root.type == bfd_link_hash_defined
3690 || h->elf.root.type == bfd_link_hash_defweak)
3691 {
3692 sym_sec = h->elf.root.u.def.section;
3693 /* If sym_sec->output_section is NULL, then it's a
3694 symbol defined in a shared library. */
3695 if (sym_sec->output_section != NULL)
3696 relocation = (h->elf.root.u.def.value
3697 + sym_sec->output_offset
3698 + sym_sec->output_section->vma);
3699 }
3700 else if (h->elf.root.type == bfd_link_hash_undefweak)
3701 ;
3702 else if (info->shared && !info->no_undefined
3703 && ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
3704 && h->elf.type != STT_PARISC_MILLI)
3705 {
3706 if (info->symbolic && !info->allow_shlib_undefined)
3707 {
3708 if (!((*info->callbacks->undefined_symbol)
3709 (info, h->elf.root.root.string, input_bfd,
3710 input_section, rel->r_offset, false)))
3711 return false;
3712 warned_undef = true;
3713 }
3714 }
3715 else
3716 {
3717 if (!((*info->callbacks->undefined_symbol)
3718 (info, h->elf.root.root.string, input_bfd,
3719 input_section, rel->r_offset, true)))
3720 return false;
3721 warned_undef = true;
3722 }
3723 }
3724
3725 /* Do any required modifications to the relocation value, and
3726 determine what types of dynamic info we need to output, if
3727 any. */
3728 plabel = 0;
3729 switch (r_type)
3730 {
3731 case R_PARISC_DLTIND14F:
3732 case R_PARISC_DLTIND14R:
3733 case R_PARISC_DLTIND21L:
3734 {
3735 bfd_vma off;
3736 boolean do_got = 0;
3737
3738 /* Relocation is to the entry for this symbol in the
3739 global offset table. */
3740 if (h != NULL)
3741 {
3742 boolean dyn;
3743
3744 off = h->elf.got.offset;
3745 dyn = htab->elf.dynamic_sections_created;
3746 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, &h->elf))
3747 {
3748 /* If we aren't going to call finish_dynamic_symbol,
3749 then we need to handle initialisation of the .got
3750 entry and create needed relocs here. Since the
3751 offset must always be a multiple of 4, we use the
3752 least significant bit to record whether we have
3753 initialised it already. */
3754 if ((off & 1) != 0)
3755 off &= ~1;
3756 else
3757 {
3758 h->elf.got.offset |= 1;
3759 do_got = 1;
3760 }
3761 }
3762 }
3763 else
3764 {
3765 /* Local symbol case. */
3766 if (local_got_offsets == NULL)
3767 abort ();
3768
3769 off = local_got_offsets[r_symndx];
3770
3771 /* The offset must always be a multiple of 4. We use
3772 the least significant bit to record whether we have
3773 already generated the necessary reloc. */
3774 if ((off & 1) != 0)
3775 off &= ~1;
3776 else
3777 {
3778 local_got_offsets[r_symndx] |= 1;
3779 do_got = 1;
3780 }
3781 }
3782
3783 if (do_got)
3784 {
3785 if (info->shared)
3786 {
3787 /* Output a dynamic relocation for this GOT entry.
3788 In this case it is relative to the base of the
3789 object because the symbol index is zero. */
3790 Elf_Internal_Rela outrel;
3791 asection *srelgot = htab->srelgot;
3792 Elf32_External_Rela *loc;
3793
3794 outrel.r_offset = (off
3795 + htab->sgot->output_offset
3796 + htab->sgot->output_section->vma);
3797 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3798 outrel.r_addend = relocation;
3799 loc = (Elf32_External_Rela *) srelgot->contents;
3800 loc += srelgot->reloc_count++;
3801 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3802 }
3803 else
3804 bfd_put_32 (output_bfd, relocation,
3805 htab->sgot->contents + off);
3806 }
3807
3808 if (off >= (bfd_vma) -2)
3809 abort ();
3810
3811 /* Add the base of the GOT to the relocation value. */
3812 relocation = (off
3813 + htab->sgot->output_offset
3814 + htab->sgot->output_section->vma);
3815 }
3816 break;
3817
3818 case R_PARISC_SEGREL32:
3819 /* If this is the first SEGREL relocation, then initialize
3820 the segment base values. */
3821 if (htab->text_segment_base == (bfd_vma) -1)
3822 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3823 break;
3824
3825 case R_PARISC_PLABEL14R:
3826 case R_PARISC_PLABEL21L:
3827 case R_PARISC_PLABEL32:
3828 if (htab->elf.dynamic_sections_created)
3829 {
3830 bfd_vma off;
3831 boolean do_plt = 0;
3832
3833 /* If we have a global symbol with a PLT slot, then
3834 redirect this relocation to it. */
3835 if (h != NULL)
3836 {
3837 off = h->elf.plt.offset;
3838 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, &h->elf))
3839 {
3840 /* In a non-shared link, adjust_dynamic_symbols
3841 isn't called for symbols forced local. We
3842 need to write out the plt entry here. */
3843 if ((off & 1) != 0)
3844 off &= ~1;
3845 else
3846 {
3847 h->elf.plt.offset |= 1;
3848 do_plt = 1;
3849 }
3850 }
3851 }
3852 else
3853 {
3854 bfd_vma *local_plt_offsets;
3855
3856 if (local_got_offsets == NULL)
3857 abort ();
3858
3859 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3860 off = local_plt_offsets[r_symndx];
3861
3862 /* As for the local .got entry case, we use the last
3863 bit to record whether we've already initialised
3864 this local .plt entry. */
3865 if ((off & 1) != 0)
3866 off &= ~1;
3867 else
3868 {
3869 local_plt_offsets[r_symndx] |= 1;
3870 do_plt = 1;
3871 }
3872 }
3873
3874 if (do_plt)
3875 {
3876 if (info->shared)
3877 {
3878 /* Output a dynamic IPLT relocation for this
3879 PLT entry. */
3880 Elf_Internal_Rela outrel;
3881 asection *srelplt = htab->srelplt;
3882 Elf32_External_Rela *loc;
3883
3884 outrel.r_offset = (off
3885 + htab->splt->output_offset
3886 + htab->splt->output_section->vma);
3887 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3888 outrel.r_addend = relocation;
3889 loc = (Elf32_External_Rela *) srelplt->contents;
3890 loc += srelplt->reloc_count++;
3891 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3892 }
3893 else
3894 {
3895 bfd_put_32 (output_bfd,
3896 relocation,
3897 htab->splt->contents + off);
3898 bfd_put_32 (output_bfd,
3899 elf_gp (htab->splt->output_section->owner),
3900 htab->splt->contents + off + 4);
3901 }
3902 }
3903
3904 if (off >= (bfd_vma) -2)
3905 abort ();
3906
3907 /* PLABELs contain function pointers. Relocation is to
3908 the entry for the function in the .plt. The magic +2
3909 offset signals to $$dyncall that the function pointer
3910 is in the .plt and thus has a gp pointer too.
3911 Exception: Undefined PLABELs should have a value of
3912 zero. */
3913 if (h == NULL
3914 || (h->elf.root.type != bfd_link_hash_undefweak
3915 && h->elf.root.type != bfd_link_hash_undefined))
3916 {
3917 relocation = (off
3918 + htab->splt->output_offset
3919 + htab->splt->output_section->vma
3920 + 2);
3921 }
3922 plabel = 1;
3923 }
3924 /* Fall through and possibly emit a dynamic relocation. */
3925
3926 case R_PARISC_DIR17F:
3927 case R_PARISC_DIR17R:
3928 case R_PARISC_DIR14F:
3929 case R_PARISC_DIR14R:
3930 case R_PARISC_DIR21L:
3931 case R_PARISC_DPREL14F:
3932 case R_PARISC_DPREL14R:
3933 case R_PARISC_DPREL21L:
3934 case R_PARISC_DIR32:
3935 /* r_symndx will be zero only for relocs against symbols
3936 from removed linkonce sections, or sections discarded by
3937 a linker script. */
3938 if (r_symndx == 0
3939 || (input_section->flags & SEC_ALLOC) == 0)
3940 break;
3941
3942 /* The reloc types handled here and this conditional
3943 expression must match the code in ..check_relocs and
3944 allocate_dynrelocs. ie. We need exactly the same condition
3945 as in ..check_relocs, with some extra conditions (dynindx
3946 test in this case) to cater for relocs removed by
3947 allocate_dynrelocs. If you squint, the non-shared test
3948 here does indeed match the one in ..check_relocs, the
3949 difference being that here we test DEF_DYNAMIC as well as
3950 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3951 which is why we can't use just that test here.
3952 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3953 there all files have not been loaded. */
3954 if ((info->shared
3955 && (IS_ABSOLUTE_RELOC (r_type)
3956 || (h != NULL
3957 && h->elf.dynindx != -1
3958 && (!info->symbolic
3959 || (h->elf.elf_link_hash_flags
3960 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
3961 || (!info->shared
3962 && h != NULL
3963 && h->elf.dynindx != -1
3964 && (h->elf.elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
3965 && (((h->elf.elf_link_hash_flags
3966 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3967 && (h->elf.elf_link_hash_flags
3968 & ELF_LINK_HASH_DEF_REGULAR) == 0)
3969 || h->elf.root.type == bfd_link_hash_undefweak
3970 || h->elf.root.type == bfd_link_hash_undefined)))
3971 {
3972 Elf_Internal_Rela outrel;
3973 boolean skip;
3974 asection *sreloc;
3975 Elf32_External_Rela *loc;
3976
3977 /* When generating a shared object, these relocations
3978 are copied into the output file to be resolved at run
3979 time. */
3980
3981 outrel.r_addend = rel->r_addend;
3982 outrel.r_offset =
3983 _bfd_elf_section_offset (output_bfd, info, input_section,
3984 rel->r_offset);
3985 skip = (outrel.r_offset == (bfd_vma) -1
3986 || outrel.r_offset == (bfd_vma) -2);
3987 outrel.r_offset += (input_section->output_offset
3988 + input_section->output_section->vma);
3989
3990 if (skip)
3991 {
3992 memset (&outrel, 0, sizeof (outrel));
3993 }
3994 else if (h != NULL
3995 && h->elf.dynindx != -1
3996 && (plabel
3997 || !IS_ABSOLUTE_RELOC (r_type)
3998 || !info->shared
3999 || !info->symbolic
4000 || (h->elf.elf_link_hash_flags
4001 & ELF_LINK_HASH_DEF_REGULAR) == 0))
4002 {
4003 outrel.r_info = ELF32_R_INFO (h->elf.dynindx, r_type);
4004 }
4005 else /* It's a local symbol, or one marked to become local. */
4006 {
4007 int indx = 0;
4008
4009 /* Add the absolute offset of the symbol. */
4010 outrel.r_addend += relocation;
4011
4012 /* Global plabels need to be processed by the
4013 dynamic linker so that functions have at most one
4014 fptr. For this reason, we need to differentiate
4015 between global and local plabels, which we do by
4016 providing the function symbol for a global plabel
4017 reloc, and no symbol for local plabels. */
4018 if (! plabel
4019 && sym_sec != NULL
4020 && sym_sec->output_section != NULL
4021 && ! bfd_is_abs_section (sym_sec))
4022 {
4023 indx = elf_section_data (sym_sec->output_section)->dynindx;
4024 /* We are turning this relocation into one
4025 against a section symbol, so subtract out the
4026 output section's address but not the offset
4027 of the input section in the output section. */
4028 outrel.r_addend -= sym_sec->output_section->vma;
4029 }
4030
4031 outrel.r_info = ELF32_R_INFO (indx, r_type);
4032 }
4033 #if 0
4034 /* EH info can cause unaligned DIR32 relocs.
4035 Tweak the reloc type for the dynamic linker. */
4036 if (r_type == R_PARISC_DIR32 && (outrel.r_offset & 3) != 0)
4037 outrel.r_info = ELF32_R_INFO (ELF32_R_SYM (outrel.r_info),
4038 R_PARISC_DIR32U);
4039 #endif
4040 sreloc = elf_section_data (input_section)->sreloc;
4041 if (sreloc == NULL)
4042 abort ();
4043
4044 loc = (Elf32_External_Rela *) sreloc->contents;
4045 loc += sreloc->reloc_count++;
4046 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4047 }
4048 break;
4049
4050 default:
4051 break;
4052 }
4053
4054 r = final_link_relocate (input_section, contents, rel, relocation,
4055 htab, sym_sec, h);
4056
4057 if (r == bfd_reloc_ok)
4058 continue;
4059
4060 if (h != NULL)
4061 sym_name = h->elf.root.root.string;
4062 else
4063 {
4064 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4065 symtab_hdr->sh_link,
4066 sym->st_name);
4067 if (sym_name == NULL)
4068 return false;
4069 if (*sym_name == '\0')
4070 sym_name = bfd_section_name (input_bfd, sym_sec);
4071 }
4072
4073 howto = elf_hppa_howto_table + r_type;
4074
4075 if (r == bfd_reloc_undefined || r == bfd_reloc_notsupported)
4076 {
4077 if (r == bfd_reloc_notsupported || !warned_undef)
4078 {
4079 (*_bfd_error_handler)
4080 (_("%s(%s+0x%lx): cannot handle %s for %s"),
4081 bfd_archive_filename (input_bfd),
4082 input_section->name,
4083 (long) rel->r_offset,
4084 howto->name,
4085 sym_name);
4086 bfd_set_error (bfd_error_bad_value);
4087 return false;
4088 }
4089 }
4090 else
4091 {
4092 if (!((*info->callbacks->reloc_overflow)
4093 (info, sym_name, howto->name, (bfd_vma) 0,
4094 input_bfd, input_section, rel->r_offset)))
4095 return false;
4096 }
4097 }
4098
4099 return true;
4100 }
4101
4102 /* Finish up dynamic symbol handling. We set the contents of various
4103 dynamic sections here. */
4104
4105 static boolean
4106 elf32_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
4107 bfd *output_bfd;
4108 struct bfd_link_info *info;
4109 struct elf_link_hash_entry *h;
4110 Elf_Internal_Sym *sym;
4111 {
4112 struct elf32_hppa_link_hash_table *htab;
4113
4114 htab = hppa_link_hash_table (info);
4115
4116 if (h->plt.offset != (bfd_vma) -1)
4117 {
4118 bfd_vma value;
4119
4120 if (h->plt.offset & 1)
4121 abort ();
4122
4123 /* This symbol has an entry in the procedure linkage table. Set
4124 it up.
4125
4126 The format of a plt entry is
4127 <funcaddr>
4128 <__gp>
4129 */
4130 value = 0;
4131 if (h->root.type == bfd_link_hash_defined
4132 || h->root.type == bfd_link_hash_defweak)
4133 {
4134 value = h->root.u.def.value;
4135 if (h->root.u.def.section->output_section != NULL)
4136 value += (h->root.u.def.section->output_offset
4137 + h->root.u.def.section->output_section->vma);
4138 }
4139
4140 if (! ((struct elf32_hppa_link_hash_entry *) h)->pic_call)
4141 {
4142 Elf_Internal_Rela rel;
4143 Elf32_External_Rela *loc;
4144
4145 /* Create a dynamic IPLT relocation for this entry. */
4146 rel.r_offset = (h->plt.offset
4147 + htab->splt->output_offset
4148 + htab->splt->output_section->vma);
4149 if (h->dynindx != -1)
4150 {
4151 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_IPLT);
4152 rel.r_addend = 0;
4153 }
4154 else
4155 {
4156 /* This symbol has been marked to become local, and is
4157 used by a plabel so must be kept in the .plt. */
4158 rel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4159 rel.r_addend = value;
4160 }
4161
4162 loc = (Elf32_External_Rela *) htab->srelplt->contents;
4163 loc += htab->srelplt->reloc_count++;
4164 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner,
4165 &rel, loc);
4166 }
4167 else
4168 {
4169 bfd_put_32 (htab->splt->owner,
4170 value,
4171 htab->splt->contents + h->plt.offset);
4172 bfd_put_32 (htab->splt->owner,
4173 elf_gp (htab->splt->output_section->owner),
4174 htab->splt->contents + h->plt.offset + 4);
4175 }
4176
4177 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
4178 {
4179 /* Mark the symbol as undefined, rather than as defined in
4180 the .plt section. Leave the value alone. */
4181 sym->st_shndx = SHN_UNDEF;
4182 }
4183 }
4184
4185 if (h->got.offset != (bfd_vma) -1)
4186 {
4187 Elf_Internal_Rela rel;
4188 Elf32_External_Rela *loc;
4189
4190 /* This symbol has an entry in the global offset table. Set it
4191 up. */
4192
4193 rel.r_offset = ((h->got.offset &~ (bfd_vma) 1)
4194 + htab->sgot->output_offset
4195 + htab->sgot->output_section->vma);
4196
4197 /* If this is a -Bsymbolic link and the symbol is defined
4198 locally or was forced to be local because of a version file,
4199 we just want to emit a RELATIVE reloc. The entry in the
4200 global offset table will already have been initialized in the
4201 relocate_section function. */
4202 if (info->shared
4203 && (info->symbolic || h->dynindx == -1)
4204 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
4205 {
4206 rel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4207 rel.r_addend = (h->root.u.def.value
4208 + h->root.u.def.section->output_offset
4209 + h->root.u.def.section->output_section->vma);
4210 }
4211 else
4212 {
4213 if ((h->got.offset & 1) != 0)
4214 abort ();
4215 bfd_put_32 (output_bfd, (bfd_vma) 0,
4216 htab->sgot->contents + h->got.offset);
4217 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_DIR32);
4218 rel.r_addend = 0;
4219 }
4220
4221 loc = (Elf32_External_Rela *) htab->srelgot->contents;
4222 loc += htab->srelgot->reloc_count++;
4223 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
4224 }
4225
4226 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
4227 {
4228 asection *s;
4229 Elf_Internal_Rela rel;
4230 Elf32_External_Rela *loc;
4231
4232 /* This symbol needs a copy reloc. Set it up. */
4233
4234 if (! (h->dynindx != -1
4235 && (h->root.type == bfd_link_hash_defined
4236 || h->root.type == bfd_link_hash_defweak)))
4237 abort ();
4238
4239 s = htab->srelbss;
4240
4241 rel.r_offset = (h->root.u.def.value
4242 + h->root.u.def.section->output_offset
4243 + h->root.u.def.section->output_section->vma);
4244 rel.r_addend = 0;
4245 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_COPY);
4246 loc = (Elf32_External_Rela *) s->contents + s->reloc_count++;
4247 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
4248 }
4249
4250 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4251 if (h->root.root.string[0] == '_'
4252 && (strcmp (h->root.root.string, "_DYNAMIC") == 0
4253 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0))
4254 {
4255 sym->st_shndx = SHN_ABS;
4256 }
4257
4258 return true;
4259 }
4260
4261 /* Used to decide how to sort relocs in an optimal manner for the
4262 dynamic linker, before writing them out. */
4263
4264 static enum elf_reloc_type_class
4265 elf32_hppa_reloc_type_class (rela)
4266 const Elf_Internal_Rela *rela;
4267 {
4268 if (ELF32_R_SYM (rela->r_info) == 0)
4269 return reloc_class_relative;
4270
4271 switch ((int) ELF32_R_TYPE (rela->r_info))
4272 {
4273 case R_PARISC_IPLT:
4274 return reloc_class_plt;
4275 case R_PARISC_COPY:
4276 return reloc_class_copy;
4277 default:
4278 return reloc_class_normal;
4279 }
4280 }
4281
4282 /* Finish up the dynamic sections. */
4283
4284 static boolean
4285 elf32_hppa_finish_dynamic_sections (output_bfd, info)
4286 bfd *output_bfd;
4287 struct bfd_link_info *info;
4288 {
4289 bfd *dynobj;
4290 struct elf32_hppa_link_hash_table *htab;
4291 asection *sdyn;
4292
4293 htab = hppa_link_hash_table (info);
4294 dynobj = htab->elf.dynobj;
4295
4296 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4297
4298 if (htab->elf.dynamic_sections_created)
4299 {
4300 Elf32_External_Dyn *dyncon, *dynconend;
4301
4302 if (sdyn == NULL)
4303 abort ();
4304
4305 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4306 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
4307 for (; dyncon < dynconend; dyncon++)
4308 {
4309 Elf_Internal_Dyn dyn;
4310 asection *s;
4311
4312 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4313
4314 switch (dyn.d_tag)
4315 {
4316 default:
4317 continue;
4318
4319 case DT_PLTGOT:
4320 /* Use PLTGOT to set the GOT register. */
4321 dyn.d_un.d_ptr = elf_gp (output_bfd);
4322 break;
4323
4324 case DT_JMPREL:
4325 s = htab->srelplt;
4326 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4327 break;
4328
4329 case DT_PLTRELSZ:
4330 s = htab->srelplt;
4331 if (s->_cooked_size != 0)
4332 dyn.d_un.d_val = s->_cooked_size;
4333 else
4334 dyn.d_un.d_val = s->_raw_size;
4335 break;
4336
4337 case DT_RELASZ:
4338 /* Don't count procedure linkage table relocs in the
4339 overall reloc count. */
4340 if (htab->srelplt != NULL)
4341 {
4342 s = htab->srelplt->output_section;
4343 if (s->_cooked_size != 0)
4344 dyn.d_un.d_val -= s->_cooked_size;
4345 else
4346 dyn.d_un.d_val -= s->_raw_size;
4347 }
4348 break;
4349 }
4350
4351 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4352 }
4353 }
4354
4355 if (htab->sgot != NULL && htab->sgot->_raw_size != 0)
4356 {
4357 /* Fill in the first entry in the global offset table.
4358 We use it to point to our dynamic section, if we have one. */
4359 bfd_put_32 (output_bfd,
4360 (sdyn != NULL
4361 ? sdyn->output_section->vma + sdyn->output_offset
4362 : (bfd_vma) 0),
4363 htab->sgot->contents);
4364
4365 /* The second entry is reserved for use by the dynamic linker. */
4366 memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4367
4368 /* Set .got entry size. */
4369 elf_section_data (htab->sgot->output_section)
4370 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4371 }
4372
4373 if (htab->splt != NULL && htab->splt->_raw_size != 0)
4374 {
4375 /* Set plt entry size. */
4376 elf_section_data (htab->splt->output_section)
4377 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4378
4379 if (htab->need_plt_stub)
4380 {
4381 /* Set up the .plt stub. */
4382 memcpy (htab->splt->contents
4383 + htab->splt->_raw_size - sizeof (plt_stub),
4384 plt_stub, sizeof (plt_stub));
4385
4386 if ((htab->splt->output_offset
4387 + htab->splt->output_section->vma
4388 + htab->splt->_raw_size)
4389 != (htab->sgot->output_offset
4390 + htab->sgot->output_section->vma))
4391 {
4392 (*_bfd_error_handler)
4393 (_(".got section not immediately after .plt section"));
4394 return false;
4395 }
4396 }
4397 }
4398
4399 return true;
4400 }
4401
4402 /* Tweak the OSABI field of the elf header. */
4403
4404 static void
4405 elf32_hppa_post_process_headers (abfd, link_info)
4406 bfd *abfd;
4407 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
4408 {
4409 Elf_Internal_Ehdr * i_ehdrp;
4410
4411 i_ehdrp = elf_elfheader (abfd);
4412
4413 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
4414 {
4415 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
4416 }
4417 else
4418 {
4419 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
4420 }
4421 }
4422
4423 /* Called when writing out an object file to decide the type of a
4424 symbol. */
4425 static int
4426 elf32_hppa_elf_get_symbol_type (elf_sym, type)
4427 Elf_Internal_Sym *elf_sym;
4428 int type;
4429 {
4430 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4431 return STT_PARISC_MILLI;
4432 else
4433 return type;
4434 }
4435
4436 /* Misc BFD support code. */
4437 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4438 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4439 #define elf_info_to_howto elf_hppa_info_to_howto
4440 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4441
4442 /* Stuff for the BFD linker. */
4443 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4444 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4445 #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
4446 #define elf_backend_add_symbol_hook elf32_hppa_add_symbol_hook
4447 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4448 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4449 #define elf_backend_check_relocs elf32_hppa_check_relocs
4450 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4451 #define elf_backend_fake_sections elf_hppa_fake_sections
4452 #define elf_backend_relocate_section elf32_hppa_relocate_section
4453 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4454 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4455 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4456 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4457 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4458 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4459 #define elf_backend_object_p elf32_hppa_object_p
4460 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4461 #define elf_backend_post_process_headers elf32_hppa_post_process_headers
4462 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4463 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4464
4465 #define elf_backend_can_gc_sections 1
4466 #define elf_backend_can_refcount 1
4467 #define elf_backend_plt_alignment 2
4468 #define elf_backend_want_got_plt 0
4469 #define elf_backend_plt_readonly 0
4470 #define elf_backend_want_plt_sym 0
4471 #define elf_backend_got_header_size 8
4472
4473 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4474 #define TARGET_BIG_NAME "elf32-hppa"
4475 #define ELF_ARCH bfd_arch_hppa
4476 #define ELF_MACHINE_CODE EM_PARISC
4477 #define ELF_MAXPAGESIZE 0x1000
4478
4479 #include "elf32-target.h"
4480
4481 #undef TARGET_BIG_SYM
4482 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4483 #undef TARGET_BIG_NAME
4484 #define TARGET_BIG_NAME "elf32-hppa-linux"
4485
4486 #define INCLUDED_TARGET_FILE 1
4487 #include "elf32-target.h"
This page took 0.125364 seconds and 4 git commands to generate.