* elf-m10300.c (_bfd_mn10300_elf_adjust_dynamic_symbol): Warn on
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 Original code by
6 Center for Software Science
7 Department of Computer Science
8 University of Utah
9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
26
27 #include "bfd.h"
28 #include "sysdep.h"
29 #include "libbfd.h"
30 #include "elf-bfd.h"
31 #include "elf/hppa.h"
32 #include "libhppa.h"
33 #include "elf32-hppa.h"
34 #define ARCH_SIZE 32
35 #include "elf32-hppa.h"
36 #include "elf-hppa.h"
37
38 /* In order to gain some understanding of code in this file without
39 knowing all the intricate details of the linker, note the
40 following:
41
42 Functions named elf32_hppa_* are called by external routines, other
43 functions are only called locally. elf32_hppa_* functions appear
44 in this file more or less in the order in which they are called
45 from external routines. eg. elf32_hppa_check_relocs is called
46 early in the link process, elf32_hppa_finish_dynamic_sections is
47 one of the last functions. */
48
49 /* We use two hash tables to hold information for linking PA ELF objects.
50
51 The first is the elf32_hppa_link_hash_table which is derived
52 from the standard ELF linker hash table. We use this as a place to
53 attach other hash tables and static information.
54
55 The second is the stub hash table which is derived from the
56 base BFD hash table. The stub hash table holds the information
57 necessary to build the linker stubs during a link.
58
59 There are a number of different stubs generated by the linker.
60
61 Long branch stub:
62 : ldil LR'X,%r1
63 : be,n RR'X(%sr4,%r1)
64
65 PIC long branch stub:
66 : b,l .+8,%r1
67 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
68 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
69
70 Import stub to call shared library routine from normal object file
71 (single sub-space version)
72 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
73 : ldw RR'lt_ptr+ltoff(%r1),%r21
74 : bv %r0(%r21)
75 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
76
77 Import stub to call shared library routine from shared library
78 (single sub-space version)
79 : addil LR'ltoff,%r19 ; get procedure entry point
80 : ldw RR'ltoff(%r1),%r21
81 : bv %r0(%r21)
82 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
83
84 Import stub to call shared library routine from normal object file
85 (multiple sub-space support)
86 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
87 : ldw RR'lt_ptr+ltoff(%r1),%r21
88 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
89 : ldsid (%r21),%r1
90 : mtsp %r1,%sr0
91 : be 0(%sr0,%r21) ; branch to target
92 : stw %rp,-24(%sp) ; save rp
93
94 Import stub to call shared library routine from shared library
95 (multiple sub-space support)
96 : addil LR'ltoff,%r19 ; get procedure entry point
97 : ldw RR'ltoff(%r1),%r21
98 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
99 : ldsid (%r21),%r1
100 : mtsp %r1,%sr0
101 : be 0(%sr0,%r21) ; branch to target
102 : stw %rp,-24(%sp) ; save rp
103
104 Export stub to return from shared lib routine (multiple sub-space support)
105 One of these is created for each exported procedure in a shared
106 library (and stored in the shared lib). Shared lib routines are
107 called via the first instruction in the export stub so that we can
108 do an inter-space return. Not required for single sub-space.
109 : bl,n X,%rp ; trap the return
110 : nop
111 : ldw -24(%sp),%rp ; restore the original rp
112 : ldsid (%rp),%r1
113 : mtsp %r1,%sr0
114 : be,n 0(%sr0,%rp) ; inter-space return. */
115
116
117 /* Variable names follow a coding style.
118 Please follow this (Apps Hungarian) style:
119
120 Structure/Variable Prefix
121 elf_link_hash_table "etab"
122 elf_link_hash_entry "eh"
123
124 elf32_hppa_link_hash_table "htab"
125 elf32_hppa_link_hash_entry "hh"
126
127 bfd_hash_table "btab"
128 bfd_hash_entry "bh"
129
130 bfd_hash_table containing stubs "bstab"
131 elf32_hppa_stub_hash_entry "hsh"
132
133 elf32_hppa_dyn_reloc_entry "hdh"
134
135 Always remember to use GNU Coding Style. */
136
137 #define PLT_ENTRY_SIZE 8
138 #define GOT_ENTRY_SIZE 4
139 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
140
141 static const bfd_byte plt_stub[] =
142 {
143 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
144 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
145 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
146 #define PLT_STUB_ENTRY (3*4)
147 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
148 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
149 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
150 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
151 };
152
153 /* Section name for stubs is the associated section name plus this
154 string. */
155 #define STUB_SUFFIX ".stub"
156
157 /* We don't need to copy certain PC- or GP-relative dynamic relocs
158 into a shared object's dynamic section. All the relocs of the
159 limited class we are interested in, are absolute. */
160 #ifndef RELATIVE_DYNRELOCS
161 #define RELATIVE_DYNRELOCS 0
162 #define IS_ABSOLUTE_RELOC(r_type) 1
163 #endif
164
165 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
166 copying dynamic variables from a shared lib into an app's dynbss
167 section, and instead use a dynamic relocation to point into the
168 shared lib. */
169 #define ELIMINATE_COPY_RELOCS 1
170
171 enum elf32_hppa_stub_type {
172 hppa_stub_long_branch,
173 hppa_stub_long_branch_shared,
174 hppa_stub_import,
175 hppa_stub_import_shared,
176 hppa_stub_export,
177 hppa_stub_none
178 };
179
180 struct elf32_hppa_stub_hash_entry {
181
182 /* Base hash table entry structure. */
183 struct bfd_hash_entry bh_root;
184
185 /* The stub section. */
186 asection *stub_sec;
187
188 /* Offset within stub_sec of the beginning of this stub. */
189 bfd_vma stub_offset;
190
191 /* Given the symbol's value and its section we can determine its final
192 value when building the stubs (so the stub knows where to jump. */
193 bfd_vma target_value;
194 asection *target_section;
195
196 enum elf32_hppa_stub_type stub_type;
197
198 /* The symbol table entry, if any, that this was derived from. */
199 struct elf32_hppa_link_hash_entry *hh;
200
201 /* Where this stub is being called from, or, in the case of combined
202 stub sections, the first input section in the group. */
203 asection *id_sec;
204 };
205
206 struct elf32_hppa_link_hash_entry {
207
208 struct elf_link_hash_entry eh;
209
210 /* A pointer to the most recently used stub hash entry against this
211 symbol. */
212 struct elf32_hppa_stub_hash_entry *hsh_cache;
213
214 /* Used to count relocations for delayed sizing of relocation
215 sections. */
216 struct elf32_hppa_dyn_reloc_entry {
217
218 /* Next relocation in the chain. */
219 struct elf32_hppa_dyn_reloc_entry *hdh_next;
220
221 /* The input section of the reloc. */
222 asection *sec;
223
224 /* Number of relocs copied in this section. */
225 bfd_size_type count;
226
227 #if RELATIVE_DYNRELOCS
228 /* Number of relative relocs copied for the input section. */
229 bfd_size_type relative_count;
230 #endif
231 } *dyn_relocs;
232
233 /* Set if this symbol is used by a plabel reloc. */
234 unsigned int plabel:1;
235 };
236
237 struct elf32_hppa_link_hash_table {
238
239 /* The main hash table. */
240 struct elf_link_hash_table etab;
241
242 /* The stub hash table. */
243 struct bfd_hash_table bstab;
244
245 /* Linker stub bfd. */
246 bfd *stub_bfd;
247
248 /* Linker call-backs. */
249 asection * (*add_stub_section) (const char *, asection *);
250 void (*layout_sections_again) (void);
251
252 /* Array to keep track of which stub sections have been created, and
253 information on stub grouping. */
254 struct map_stub {
255 /* This is the section to which stubs in the group will be
256 attached. */
257 asection *link_sec;
258 /* The stub section. */
259 asection *stub_sec;
260 } *stub_group;
261
262 /* Assorted information used by elf32_hppa_size_stubs. */
263 unsigned int bfd_count;
264 int top_index;
265 asection **input_list;
266 Elf_Internal_Sym **all_local_syms;
267
268 /* Short-cuts to get to dynamic linker sections. */
269 asection *sgot;
270 asection *srelgot;
271 asection *splt;
272 asection *srelplt;
273 asection *sdynbss;
274 asection *srelbss;
275
276 /* Used during a final link to store the base of the text and data
277 segments so that we can perform SEGREL relocations. */
278 bfd_vma text_segment_base;
279 bfd_vma data_segment_base;
280
281 /* Whether we support multiple sub-spaces for shared libs. */
282 unsigned int multi_subspace:1;
283
284 /* Flags set when various size branches are detected. Used to
285 select suitable defaults for the stub group size. */
286 unsigned int has_12bit_branch:1;
287 unsigned int has_17bit_branch:1;
288 unsigned int has_22bit_branch:1;
289
290 /* Set if we need a .plt stub to support lazy dynamic linking. */
291 unsigned int need_plt_stub:1;
292
293 /* Small local sym to section mapping cache. */
294 struct sym_sec_cache sym_sec;
295 };
296
297 /* Various hash macros and functions. */
298 #define hppa_link_hash_table(p) \
299 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
300
301 #define hppa_elf_hash_entry(ent) \
302 ((struct elf32_hppa_link_hash_entry *)(ent))
303
304 #define hppa_stub_hash_entry(ent) \
305 ((struct elf32_hppa_stub_hash_entry *)(ent))
306
307 #define hppa_stub_hash_lookup(table, string, create, copy) \
308 ((struct elf32_hppa_stub_hash_entry *) \
309 bfd_hash_lookup ((table), (string), (create), (copy)))
310
311 /* Assorted hash table functions. */
312
313 /* Initialize an entry in the stub hash table. */
314
315 static struct bfd_hash_entry *
316 stub_hash_newfunc (struct bfd_hash_entry *entry,
317 struct bfd_hash_table *table,
318 const char *string)
319 {
320 /* Allocate the structure if it has not already been allocated by a
321 subclass. */
322 if (entry == NULL)
323 {
324 entry = bfd_hash_allocate (table,
325 sizeof (struct elf32_hppa_stub_hash_entry));
326 if (entry == NULL)
327 return entry;
328 }
329
330 /* Call the allocation method of the superclass. */
331 entry = bfd_hash_newfunc (entry, table, string);
332 if (entry != NULL)
333 {
334 struct elf32_hppa_stub_hash_entry *hsh;
335
336 /* Initialize the local fields. */
337 hsh = hppa_stub_hash_entry (entry);
338 hsh->stub_sec = NULL;
339 hsh->stub_offset = 0;
340 hsh->target_value = 0;
341 hsh->target_section = NULL;
342 hsh->stub_type = hppa_stub_long_branch;
343 hsh->hh = NULL;
344 hsh->id_sec = NULL;
345 }
346
347 return entry;
348 }
349
350 /* Initialize an entry in the link hash table. */
351
352 static struct bfd_hash_entry *
353 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
354 struct bfd_hash_table *table,
355 const char *string)
356 {
357 /* Allocate the structure if it has not already been allocated by a
358 subclass. */
359 if (entry == NULL)
360 {
361 entry = bfd_hash_allocate (table,
362 sizeof (struct elf32_hppa_link_hash_entry));
363 if (entry == NULL)
364 return entry;
365 }
366
367 /* Call the allocation method of the superclass. */
368 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
369 if (entry != NULL)
370 {
371 struct elf32_hppa_link_hash_entry *hh;
372
373 /* Initialize the local fields. */
374 hh = hppa_elf_hash_entry (entry);
375 hh->hsh_cache = NULL;
376 hh->dyn_relocs = NULL;
377 hh->plabel = 0;
378 }
379
380 return entry;
381 }
382
383 /* Create the derived linker hash table. The PA ELF port uses the derived
384 hash table to keep information specific to the PA ELF linker (without
385 using static variables). */
386
387 static struct bfd_link_hash_table *
388 elf32_hppa_link_hash_table_create (bfd *abfd)
389 {
390 struct elf32_hppa_link_hash_table *htab;
391 bfd_size_type amt = sizeof (*htab);
392
393 htab = (struct elf32_hppa_link_hash_table *) bfd_malloc (amt);
394 if (htab == NULL)
395 return NULL;
396
397 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc))
398 {
399 free (htab);
400 return NULL;
401 }
402
403 /* Init the stub hash table too. */
404 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc))
405 return NULL;
406
407 htab->stub_bfd = NULL;
408 htab->add_stub_section = NULL;
409 htab->layout_sections_again = NULL;
410 htab->stub_group = NULL;
411 htab->sgot = NULL;
412 htab->srelgot = NULL;
413 htab->splt = NULL;
414 htab->srelplt = NULL;
415 htab->sdynbss = NULL;
416 htab->srelbss = NULL;
417 htab->text_segment_base = (bfd_vma) -1;
418 htab->data_segment_base = (bfd_vma) -1;
419 htab->multi_subspace = 0;
420 htab->has_12bit_branch = 0;
421 htab->has_17bit_branch = 0;
422 htab->has_22bit_branch = 0;
423 htab->need_plt_stub = 0;
424 htab->sym_sec.abfd = NULL;
425
426 return &htab->etab.root;
427 }
428
429 /* Free the derived linker hash table. */
430
431 static void
432 elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *btab)
433 {
434 struct elf32_hppa_link_hash_table *htab
435 = (struct elf32_hppa_link_hash_table *) btab;
436
437 bfd_hash_table_free (&htab->bstab);
438 _bfd_generic_link_hash_table_free (btab);
439 }
440
441 /* Build a name for an entry in the stub hash table. */
442
443 static char *
444 hppa_stub_name (const asection *input_section,
445 const asection *sym_sec,
446 const struct elf32_hppa_link_hash_entry *hh,
447 const Elf_Internal_Rela *rela)
448 {
449 char *stub_name;
450 bfd_size_type len;
451
452 if (hh)
453 {
454 len = 8 + 1 + strlen (hh->eh.root.root.string) + 1 + 8 + 1;
455 stub_name = bfd_malloc (len);
456 if (stub_name != NULL)
457 {
458 sprintf (stub_name, "%08x_%s+%x",
459 input_section->id & 0xffffffff,
460 hh->eh.root.root.string,
461 (int) rela->r_addend & 0xffffffff);
462 }
463 }
464 else
465 {
466 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
467 stub_name = bfd_malloc (len);
468 if (stub_name != NULL)
469 {
470 sprintf (stub_name, "%08x_%x:%x+%x",
471 input_section->id & 0xffffffff,
472 sym_sec->id & 0xffffffff,
473 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
474 (int) rela->r_addend & 0xffffffff);
475 }
476 }
477 return stub_name;
478 }
479
480 /* Look up an entry in the stub hash. Stub entries are cached because
481 creating the stub name takes a bit of time. */
482
483 static struct elf32_hppa_stub_hash_entry *
484 hppa_get_stub_entry (const asection *input_section,
485 const asection *sym_sec,
486 struct elf32_hppa_link_hash_entry *hh,
487 const Elf_Internal_Rela *rela,
488 struct elf32_hppa_link_hash_table *htab)
489 {
490 struct elf32_hppa_stub_hash_entry *hsh_entry;
491 const asection *id_sec;
492
493 /* If this input section is part of a group of sections sharing one
494 stub section, then use the id of the first section in the group.
495 Stub names need to include a section id, as there may well be
496 more than one stub used to reach say, printf, and we need to
497 distinguish between them. */
498 id_sec = htab->stub_group[input_section->id].link_sec;
499
500 if (hh != NULL && hh->hsh_cache != NULL
501 && hh->hsh_cache->hh == hh
502 && hh->hsh_cache->id_sec == id_sec)
503 {
504 hsh_entry = hh->hsh_cache;
505 }
506 else
507 {
508 char *stub_name;
509
510 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
511 if (stub_name == NULL)
512 return NULL;
513
514 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
515 stub_name, FALSE, FALSE);
516 if (hh != NULL)
517 hh->hsh_cache = hsh_entry;
518
519 free (stub_name);
520 }
521
522 return hsh_entry;
523 }
524
525 /* Add a new stub entry to the stub hash. Not all fields of the new
526 stub entry are initialised. */
527
528 static struct elf32_hppa_stub_hash_entry *
529 hppa_add_stub (const char *stub_name,
530 asection *section,
531 struct elf32_hppa_link_hash_table *htab)
532 {
533 asection *link_sec;
534 asection *stub_sec;
535 struct elf32_hppa_stub_hash_entry *hsh;
536
537 link_sec = htab->stub_group[section->id].link_sec;
538 stub_sec = htab->stub_group[section->id].stub_sec;
539 if (stub_sec == NULL)
540 {
541 stub_sec = htab->stub_group[link_sec->id].stub_sec;
542 if (stub_sec == NULL)
543 {
544 size_t namelen;
545 bfd_size_type len;
546 char *s_name;
547
548 namelen = strlen (link_sec->name);
549 len = namelen + sizeof (STUB_SUFFIX);
550 s_name = bfd_alloc (htab->stub_bfd, len);
551 if (s_name == NULL)
552 return NULL;
553
554 memcpy (s_name, link_sec->name, namelen);
555 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
556 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
557 if (stub_sec == NULL)
558 return NULL;
559 htab->stub_group[link_sec->id].stub_sec = stub_sec;
560 }
561 htab->stub_group[section->id].stub_sec = stub_sec;
562 }
563
564 /* Enter this entry into the linker stub hash table. */
565 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
566 TRUE, FALSE);
567 if (hsh == NULL)
568 {
569 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
570 section->owner,
571 stub_name);
572 return NULL;
573 }
574
575 hsh->stub_sec = stub_sec;
576 hsh->stub_offset = 0;
577 hsh->id_sec = link_sec;
578 return hsh;
579 }
580
581 /* Determine the type of stub needed, if any, for a call. */
582
583 static enum elf32_hppa_stub_type
584 hppa_type_of_stub (asection *input_sec,
585 const Elf_Internal_Rela *rela,
586 struct elf32_hppa_link_hash_entry *hh,
587 bfd_vma destination,
588 struct bfd_link_info *info)
589 {
590 bfd_vma location;
591 bfd_vma branch_offset;
592 bfd_vma max_branch_offset;
593 unsigned int r_type;
594
595 if (hh != NULL
596 && hh->eh.plt.offset != (bfd_vma) -1
597 && hh->eh.dynindx != -1
598 && !hh->plabel
599 && (info->shared
600 || !hh->eh.def_regular
601 || hh->eh.root.type == bfd_link_hash_defweak))
602 {
603 /* We need an import stub. Decide between hppa_stub_import
604 and hppa_stub_import_shared later. */
605 return hppa_stub_import;
606 }
607
608 /* Determine where the call point is. */
609 location = (input_sec->output_offset
610 + input_sec->output_section->vma
611 + rela->r_offset);
612
613 branch_offset = destination - location - 8;
614 r_type = ELF32_R_TYPE (rela->r_info);
615
616 /* Determine if a long branch stub is needed. parisc branch offsets
617 are relative to the second instruction past the branch, ie. +8
618 bytes on from the branch instruction location. The offset is
619 signed and counts in units of 4 bytes. */
620 if (r_type == (unsigned int) R_PARISC_PCREL17F)
621 {
622 max_branch_offset = (1 << (17-1)) << 2;
623 }
624 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
625 {
626 max_branch_offset = (1 << (12-1)) << 2;
627 }
628 else /* R_PARISC_PCREL22F. */
629 {
630 max_branch_offset = (1 << (22-1)) << 2;
631 }
632
633 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
634 return hppa_stub_long_branch;
635
636 return hppa_stub_none;
637 }
638
639 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
640 IN_ARG contains the link info pointer. */
641
642 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
643 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
644
645 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
646 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
647 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
648
649 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
650 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
651 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
652 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
653
654 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
655 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
656
657 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
658 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
659 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
660 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
661
662 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
663 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
664 #define NOP 0x08000240 /* nop */
665 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
666 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
667 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
668
669 #ifndef R19_STUBS
670 #define R19_STUBS 1
671 #endif
672
673 #if R19_STUBS
674 #define LDW_R1_DLT LDW_R1_R19
675 #else
676 #define LDW_R1_DLT LDW_R1_DP
677 #endif
678
679 static bfd_boolean
680 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
681 {
682 struct elf32_hppa_stub_hash_entry *hsh;
683 struct bfd_link_info *info;
684 struct elf32_hppa_link_hash_table *htab;
685 asection *stub_sec;
686 bfd *stub_bfd;
687 bfd_byte *loc;
688 bfd_vma sym_value;
689 bfd_vma insn;
690 bfd_vma off;
691 int val;
692 int size;
693
694 /* Massage our args to the form they really have. */
695 hsh = hppa_stub_hash_entry (bh);
696 info = (struct bfd_link_info *)in_arg;
697
698 htab = hppa_link_hash_table (info);
699 stub_sec = hsh->stub_sec;
700
701 /* Make a note of the offset within the stubs for this entry. */
702 hsh->stub_offset = stub_sec->size;
703 loc = stub_sec->contents + hsh->stub_offset;
704
705 stub_bfd = stub_sec->owner;
706
707 switch (hsh->stub_type)
708 {
709 case hppa_stub_long_branch:
710 /* Create the long branch. A long branch is formed with "ldil"
711 loading the upper bits of the target address into a register,
712 then branching with "be" which adds in the lower bits.
713 The "be" has its delay slot nullified. */
714 sym_value = (hsh->target_value
715 + hsh->target_section->output_offset
716 + hsh->target_section->output_section->vma);
717
718 val = hppa_field_adjust (sym_value, 0, e_lrsel);
719 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
720 bfd_put_32 (stub_bfd, insn, loc);
721
722 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
723 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
724 bfd_put_32 (stub_bfd, insn, loc + 4);
725
726 size = 8;
727 break;
728
729 case hppa_stub_long_branch_shared:
730 /* Branches are relative. This is where we are going to. */
731 sym_value = (hsh->target_value
732 + hsh->target_section->output_offset
733 + hsh->target_section->output_section->vma);
734
735 /* And this is where we are coming from, more or less. */
736 sym_value -= (hsh->stub_offset
737 + stub_sec->output_offset
738 + stub_sec->output_section->vma);
739
740 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
741 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
742 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
743 bfd_put_32 (stub_bfd, insn, loc + 4);
744
745 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
746 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
747 bfd_put_32 (stub_bfd, insn, loc + 8);
748 size = 12;
749 break;
750
751 case hppa_stub_import:
752 case hppa_stub_import_shared:
753 off = hsh->hh->eh.plt.offset;
754 if (off >= (bfd_vma) -2)
755 abort ();
756
757 off &= ~ (bfd_vma) 1;
758 sym_value = (off
759 + htab->splt->output_offset
760 + htab->splt->output_section->vma
761 - elf_gp (htab->splt->output_section->owner));
762
763 insn = ADDIL_DP;
764 #if R19_STUBS
765 if (hsh->stub_type == hppa_stub_import_shared)
766 insn = ADDIL_R19;
767 #endif
768 val = hppa_field_adjust (sym_value, 0, e_lrsel),
769 insn = hppa_rebuild_insn ((int) insn, val, 21);
770 bfd_put_32 (stub_bfd, insn, loc);
771
772 /* It is critical to use lrsel/rrsel here because we are using
773 two different offsets (+0 and +4) from sym_value. If we use
774 lsel/rsel then with unfortunate sym_values we will round
775 sym_value+4 up to the next 2k block leading to a mis-match
776 between the lsel and rsel value. */
777 val = hppa_field_adjust (sym_value, 0, e_rrsel);
778 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
779 bfd_put_32 (stub_bfd, insn, loc + 4);
780
781 if (htab->multi_subspace)
782 {
783 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
784 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
785 bfd_put_32 (stub_bfd, insn, loc + 8);
786
787 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
788 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
789 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
790 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
791
792 size = 28;
793 }
794 else
795 {
796 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
797 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
798 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
799 bfd_put_32 (stub_bfd, insn, loc + 12);
800
801 size = 16;
802 }
803
804 break;
805
806 case hppa_stub_export:
807 /* Branches are relative. This is where we are going to. */
808 sym_value = (hsh->target_value
809 + hsh->target_section->output_offset
810 + hsh->target_section->output_section->vma);
811
812 /* And this is where we are coming from. */
813 sym_value -= (hsh->stub_offset
814 + stub_sec->output_offset
815 + stub_sec->output_section->vma);
816
817 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
818 && (!htab->has_22bit_branch
819 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
820 {
821 (*_bfd_error_handler)
822 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
823 hsh->target_section->owner,
824 stub_sec,
825 (long) hsh->stub_offset,
826 hsh->bh_root.string);
827 bfd_set_error (bfd_error_bad_value);
828 return FALSE;
829 }
830
831 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
832 if (!htab->has_22bit_branch)
833 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
834 else
835 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
836 bfd_put_32 (stub_bfd, insn, loc);
837
838 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
839 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
840 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
841 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
842 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
843
844 /* Point the function symbol at the stub. */
845 hsh->hh->eh.root.u.def.section = stub_sec;
846 hsh->hh->eh.root.u.def.value = stub_sec->size;
847
848 size = 24;
849 break;
850
851 default:
852 BFD_FAIL ();
853 return FALSE;
854 }
855
856 stub_sec->size += size;
857 return TRUE;
858 }
859
860 #undef LDIL_R1
861 #undef BE_SR4_R1
862 #undef BL_R1
863 #undef ADDIL_R1
864 #undef DEPI_R1
865 #undef LDW_R1_R21
866 #undef LDW_R1_DLT
867 #undef LDW_R1_R19
868 #undef ADDIL_R19
869 #undef LDW_R1_DP
870 #undef LDSID_R21_R1
871 #undef MTSP_R1
872 #undef BE_SR0_R21
873 #undef STW_RP
874 #undef BV_R0_R21
875 #undef BL_RP
876 #undef NOP
877 #undef LDW_RP
878 #undef LDSID_RP_R1
879 #undef BE_SR0_RP
880
881 /* As above, but don't actually build the stub. Just bump offset so
882 we know stub section sizes. */
883
884 static bfd_boolean
885 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
886 {
887 struct elf32_hppa_stub_hash_entry *hsh;
888 struct elf32_hppa_link_hash_table *htab;
889 int size;
890
891 /* Massage our args to the form they really have. */
892 hsh = hppa_stub_hash_entry (bh);
893 htab = in_arg;
894
895 if (hsh->stub_type == hppa_stub_long_branch)
896 size = 8;
897 else if (hsh->stub_type == hppa_stub_long_branch_shared)
898 size = 12;
899 else if (hsh->stub_type == hppa_stub_export)
900 size = 24;
901 else /* hppa_stub_import or hppa_stub_import_shared. */
902 {
903 if (htab->multi_subspace)
904 size = 28;
905 else
906 size = 16;
907 }
908
909 hsh->stub_sec->size += size;
910 return TRUE;
911 }
912
913 /* Return nonzero if ABFD represents an HPPA ELF32 file.
914 Additionally we set the default architecture and machine. */
915
916 static bfd_boolean
917 elf32_hppa_object_p (bfd *abfd)
918 {
919 Elf_Internal_Ehdr * i_ehdrp;
920 unsigned int flags;
921
922 i_ehdrp = elf_elfheader (abfd);
923 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
924 {
925 /* GCC on hppa-linux produces binaries with OSABI=Linux,
926 but the kernel produces corefiles with OSABI=SysV. */
927 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX &&
928 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
929 return FALSE;
930 }
931 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
932 {
933 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
934 but the kernel produces corefiles with OSABI=SysV. */
935 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
936 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
937 return FALSE;
938 }
939 else
940 {
941 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
942 return FALSE;
943 }
944
945 flags = i_ehdrp->e_flags;
946 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
947 {
948 case EFA_PARISC_1_0:
949 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
950 case EFA_PARISC_1_1:
951 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
952 case EFA_PARISC_2_0:
953 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
954 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
955 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
956 }
957 return TRUE;
958 }
959
960 /* Create the .plt and .got sections, and set up our hash table
961 short-cuts to various dynamic sections. */
962
963 static bfd_boolean
964 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
965 {
966 struct elf32_hppa_link_hash_table *htab;
967 struct elf_link_hash_entry *eh;
968
969 /* Don't try to create the .plt and .got twice. */
970 htab = hppa_link_hash_table (info);
971 if (htab->splt != NULL)
972 return TRUE;
973
974 /* Call the generic code to do most of the work. */
975 if (! _bfd_elf_create_dynamic_sections (abfd, info))
976 return FALSE;
977
978 htab->splt = bfd_get_section_by_name (abfd, ".plt");
979 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
980
981 htab->sgot = bfd_get_section_by_name (abfd, ".got");
982 htab->srelgot = bfd_make_section_with_flags (abfd, ".rela.got",
983 (SEC_ALLOC
984 | SEC_LOAD
985 | SEC_HAS_CONTENTS
986 | SEC_IN_MEMORY
987 | SEC_LINKER_CREATED
988 | SEC_READONLY));
989 if (htab->srelgot == NULL
990 || ! bfd_set_section_alignment (abfd, htab->srelgot, 2))
991 return FALSE;
992
993 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
994 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
995
996 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
997 application, because __canonicalize_funcptr_for_compare needs it. */
998 eh = elf_hash_table (info)->hgot;
999 eh->forced_local = 0;
1000 eh->other = STV_DEFAULT;
1001 return bfd_elf_link_record_dynamic_symbol (info, eh);
1002 }
1003
1004 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1005
1006 static void
1007 elf32_hppa_copy_indirect_symbol (const struct elf_backend_data *bed,
1008 struct elf_link_hash_entry *eh_dir,
1009 struct elf_link_hash_entry *eh_ind)
1010 {
1011 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1012
1013 hh_dir = hppa_elf_hash_entry (eh_dir);
1014 hh_ind = hppa_elf_hash_entry (eh_ind);
1015
1016 if (hh_ind->dyn_relocs != NULL)
1017 {
1018 if (hh_dir->dyn_relocs != NULL)
1019 {
1020 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1021 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1022
1023 if (eh_ind->root.type == bfd_link_hash_indirect)
1024 abort ();
1025
1026 /* Add reloc counts against the weak sym to the strong sym
1027 list. Merge any entries against the same section. */
1028 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1029 {
1030 struct elf32_hppa_dyn_reloc_entry *hdh_q;
1031
1032 for (hdh_q = hh_dir->dyn_relocs; hdh_q != NULL; hdh_q = hdh_q->hdh_next)
1033 if (hdh_q->sec == hdh_p->sec)
1034 {
1035 #if RELATIVE_DYNRELOCS
1036 hdh_q->relative_count += hdh_p->relative_count;
1037 #endif
1038 hdh_q->count += hdh_p->count;
1039 *hdh_pp = hdh_p->hdh_next;
1040 break;
1041 }
1042 if (hdh_q == NULL)
1043 hdh_pp = &hdh_p->hdh_next;
1044 }
1045 *hdh_pp = hh_dir->dyn_relocs;
1046 }
1047
1048 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1049 hh_ind->dyn_relocs = NULL;
1050 }
1051
1052 if (ELIMINATE_COPY_RELOCS
1053 && eh_ind->root.type != bfd_link_hash_indirect
1054 && eh_dir->dynamic_adjusted)
1055 {
1056 /* If called to transfer flags for a weakdef during processing
1057 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1058 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1059 eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
1060 eh_dir->ref_regular |= eh_ind->ref_regular;
1061 eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
1062 eh_dir->needs_plt |= eh_ind->needs_plt;
1063 }
1064 else
1065 _bfd_elf_link_hash_copy_indirect (bed, eh_dir, eh_ind);
1066 }
1067
1068 /* Look through the relocs for a section during the first phase, and
1069 calculate needed space in the global offset table, procedure linkage
1070 table, and dynamic reloc sections. At this point we haven't
1071 necessarily read all the input files. */
1072
1073 static bfd_boolean
1074 elf32_hppa_check_relocs (bfd *abfd,
1075 struct bfd_link_info *info,
1076 asection *sec,
1077 const Elf_Internal_Rela *relocs)
1078 {
1079 Elf_Internal_Shdr *symtab_hdr;
1080 struct elf_link_hash_entry **eh_syms;
1081 const Elf_Internal_Rela *rela;
1082 const Elf_Internal_Rela *rela_end;
1083 struct elf32_hppa_link_hash_table *htab;
1084 asection *sreloc;
1085 asection *stubreloc;
1086
1087 if (info->relocatable)
1088 return TRUE;
1089
1090 htab = hppa_link_hash_table (info);
1091 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1092 eh_syms = elf_sym_hashes (abfd);
1093 sreloc = NULL;
1094 stubreloc = NULL;
1095
1096 rela_end = relocs + sec->reloc_count;
1097 for (rela = relocs; rela < rela_end; rela++)
1098 {
1099 enum {
1100 NEED_GOT = 1,
1101 NEED_PLT = 2,
1102 NEED_DYNREL = 4,
1103 PLT_PLABEL = 8
1104 };
1105
1106 unsigned int r_symndx, r_type;
1107 struct elf32_hppa_link_hash_entry *hh;
1108 int need_entry = 0;
1109
1110 r_symndx = ELF32_R_SYM (rela->r_info);
1111
1112 if (r_symndx < symtab_hdr->sh_info)
1113 hh = NULL;
1114 else
1115 {
1116 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1117 while (hh->eh.root.type == bfd_link_hash_indirect
1118 || hh->eh.root.type == bfd_link_hash_warning)
1119 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1120 }
1121
1122 r_type = ELF32_R_TYPE (rela->r_info);
1123
1124 switch (r_type)
1125 {
1126 case R_PARISC_DLTIND14F:
1127 case R_PARISC_DLTIND14R:
1128 case R_PARISC_DLTIND21L:
1129 /* This symbol requires a global offset table entry. */
1130 need_entry = NEED_GOT;
1131 break;
1132
1133 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1134 case R_PARISC_PLABEL21L:
1135 case R_PARISC_PLABEL32:
1136 /* If the addend is non-zero, we break badly. */
1137 if (rela->r_addend != 0)
1138 abort ();
1139
1140 /* If we are creating a shared library, then we need to
1141 create a PLT entry for all PLABELs, because PLABELs with
1142 local symbols may be passed via a pointer to another
1143 object. Additionally, output a dynamic relocation
1144 pointing to the PLT entry.
1145
1146 For executables, the original 32-bit ABI allowed two
1147 different styles of PLABELs (function pointers): For
1148 global functions, the PLABEL word points into the .plt
1149 two bytes past a (function address, gp) pair, and for
1150 local functions the PLABEL points directly at the
1151 function. The magic +2 for the first type allows us to
1152 differentiate between the two. As you can imagine, this
1153 is a real pain when it comes to generating code to call
1154 functions indirectly or to compare function pointers.
1155 We avoid the mess by always pointing a PLABEL into the
1156 .plt, even for local functions. */
1157 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1158 break;
1159
1160 case R_PARISC_PCREL12F:
1161 htab->has_12bit_branch = 1;
1162 goto branch_common;
1163
1164 case R_PARISC_PCREL17C:
1165 case R_PARISC_PCREL17F:
1166 htab->has_17bit_branch = 1;
1167 goto branch_common;
1168
1169 case R_PARISC_PCREL22F:
1170 htab->has_22bit_branch = 1;
1171 branch_common:
1172 /* Function calls might need to go through the .plt, and
1173 might require long branch stubs. */
1174 if (hh == NULL)
1175 {
1176 /* We know local syms won't need a .plt entry, and if
1177 they need a long branch stub we can't guarantee that
1178 we can reach the stub. So just flag an error later
1179 if we're doing a shared link and find we need a long
1180 branch stub. */
1181 continue;
1182 }
1183 else
1184 {
1185 /* Global symbols will need a .plt entry if they remain
1186 global, and in most cases won't need a long branch
1187 stub. Unfortunately, we have to cater for the case
1188 where a symbol is forced local by versioning, or due
1189 to symbolic linking, and we lose the .plt entry. */
1190 need_entry = NEED_PLT;
1191 if (hh->eh.type == STT_PARISC_MILLI)
1192 need_entry = 0;
1193 }
1194 break;
1195
1196 case R_PARISC_SEGBASE: /* Used to set segment base. */
1197 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1198 case R_PARISC_PCREL14F: /* PC relative load/store. */
1199 case R_PARISC_PCREL14R:
1200 case R_PARISC_PCREL17R: /* External branches. */
1201 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1202 case R_PARISC_PCREL32:
1203 /* We don't need to propagate the relocation if linking a
1204 shared object since these are section relative. */
1205 continue;
1206
1207 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1208 case R_PARISC_DPREL14R:
1209 case R_PARISC_DPREL21L:
1210 if (info->shared)
1211 {
1212 (*_bfd_error_handler)
1213 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1214 abfd,
1215 elf_hppa_howto_table[r_type].name);
1216 bfd_set_error (bfd_error_bad_value);
1217 return FALSE;
1218 }
1219 /* Fall through. */
1220
1221 case R_PARISC_DIR17F: /* Used for external branches. */
1222 case R_PARISC_DIR17R:
1223 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1224 case R_PARISC_DIR14R:
1225 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1226 case R_PARISC_DIR32: /* .word relocs. */
1227 /* We may want to output a dynamic relocation later. */
1228 need_entry = NEED_DYNREL;
1229 break;
1230
1231 /* This relocation describes the C++ object vtable hierarchy.
1232 Reconstruct it for later use during GC. */
1233 case R_PARISC_GNU_VTINHERIT:
1234 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1235 return FALSE;
1236 continue;
1237
1238 /* This relocation describes which C++ vtable entries are actually
1239 used. Record for later use during GC. */
1240 case R_PARISC_GNU_VTENTRY:
1241 if (!bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1242 return FALSE;
1243 continue;
1244
1245 default:
1246 continue;
1247 }
1248
1249 /* Now carry out our orders. */
1250 if (need_entry & NEED_GOT)
1251 {
1252 /* Allocate space for a GOT entry, as well as a dynamic
1253 relocation for this entry. */
1254 if (htab->sgot == NULL)
1255 {
1256 if (htab->etab.dynobj == NULL)
1257 htab->etab.dynobj = abfd;
1258 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1259 return FALSE;
1260 }
1261
1262 if (hh != NULL)
1263 {
1264 hh->eh.got.refcount += 1;
1265 }
1266 else
1267 {
1268 bfd_signed_vma *local_got_refcounts;
1269 /* This is a global offset table entry for a local symbol. */
1270 local_got_refcounts = elf_local_got_refcounts (abfd);
1271 if (local_got_refcounts == NULL)
1272 {
1273 bfd_size_type size;
1274
1275 /* Allocate space for local got offsets and local
1276 plt offsets. Done this way to save polluting
1277 elf_obj_tdata with another target specific
1278 pointer. */
1279 size = symtab_hdr->sh_info;
1280 size *= 2 * sizeof (bfd_signed_vma);
1281 local_got_refcounts = bfd_zalloc (abfd, size);
1282 if (local_got_refcounts == NULL)
1283 return FALSE;
1284 elf_local_got_refcounts (abfd) = local_got_refcounts;
1285 }
1286 local_got_refcounts[r_symndx] += 1;
1287 }
1288 }
1289
1290 if (need_entry & NEED_PLT)
1291 {
1292 /* If we are creating a shared library, and this is a reloc
1293 against a weak symbol or a global symbol in a dynamic
1294 object, then we will be creating an import stub and a
1295 .plt entry for the symbol. Similarly, on a normal link
1296 to symbols defined in a dynamic object we'll need the
1297 import stub and a .plt entry. We don't know yet whether
1298 the symbol is defined or not, so make an entry anyway and
1299 clean up later in adjust_dynamic_symbol. */
1300 if ((sec->flags & SEC_ALLOC) != 0)
1301 {
1302 if (hh != NULL)
1303 {
1304 hh->eh.needs_plt = 1;
1305 hh->eh.plt.refcount += 1;
1306
1307 /* If this .plt entry is for a plabel, mark it so
1308 that adjust_dynamic_symbol will keep the entry
1309 even if it appears to be local. */
1310 if (need_entry & PLT_PLABEL)
1311 hh->plabel = 1;
1312 }
1313 else if (need_entry & PLT_PLABEL)
1314 {
1315 bfd_signed_vma *local_got_refcounts;
1316 bfd_signed_vma *local_plt_refcounts;
1317
1318 local_got_refcounts = elf_local_got_refcounts (abfd);
1319 if (local_got_refcounts == NULL)
1320 {
1321 bfd_size_type size;
1322
1323 /* Allocate space for local got offsets and local
1324 plt offsets. */
1325 size = symtab_hdr->sh_info;
1326 size *= 2 * sizeof (bfd_signed_vma);
1327 local_got_refcounts = bfd_zalloc (abfd, size);
1328 if (local_got_refcounts == NULL)
1329 return FALSE;
1330 elf_local_got_refcounts (abfd) = local_got_refcounts;
1331 }
1332 local_plt_refcounts = (local_got_refcounts
1333 + symtab_hdr->sh_info);
1334 local_plt_refcounts[r_symndx] += 1;
1335 }
1336 }
1337 }
1338
1339 if (need_entry & NEED_DYNREL)
1340 {
1341 /* Flag this symbol as having a non-got, non-plt reference
1342 so that we generate copy relocs if it turns out to be
1343 dynamic. */
1344 if (hh != NULL && !info->shared)
1345 hh->eh.non_got_ref = 1;
1346
1347 /* If we are creating a shared library then we need to copy
1348 the reloc into the shared library. However, if we are
1349 linking with -Bsymbolic, we need only copy absolute
1350 relocs or relocs against symbols that are not defined in
1351 an object we are including in the link. PC- or DP- or
1352 DLT-relative relocs against any local sym or global sym
1353 with DEF_REGULAR set, can be discarded. At this point we
1354 have not seen all the input files, so it is possible that
1355 DEF_REGULAR is not set now but will be set later (it is
1356 never cleared). We account for that possibility below by
1357 storing information in the dyn_relocs field of the
1358 hash table entry.
1359
1360 A similar situation to the -Bsymbolic case occurs when
1361 creating shared libraries and symbol visibility changes
1362 render the symbol local.
1363
1364 As it turns out, all the relocs we will be creating here
1365 are absolute, so we cannot remove them on -Bsymbolic
1366 links or visibility changes anyway. A STUB_REL reloc
1367 is absolute too, as in that case it is the reloc in the
1368 stub we will be creating, rather than copying the PCREL
1369 reloc in the branch.
1370
1371 If on the other hand, we are creating an executable, we
1372 may need to keep relocations for symbols satisfied by a
1373 dynamic library if we manage to avoid copy relocs for the
1374 symbol. */
1375 if ((info->shared
1376 && (sec->flags & SEC_ALLOC) != 0
1377 && (IS_ABSOLUTE_RELOC (r_type)
1378 || (hh != NULL
1379 && (!info->symbolic
1380 || hh->eh.root.type == bfd_link_hash_defweak
1381 || !hh->eh.def_regular))))
1382 || (ELIMINATE_COPY_RELOCS
1383 && !info->shared
1384 && (sec->flags & SEC_ALLOC) != 0
1385 && hh != NULL
1386 && (hh->eh.root.type == bfd_link_hash_defweak
1387 || !hh->eh.def_regular)))
1388 {
1389 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1390 struct elf32_hppa_dyn_reloc_entry **hdh_head;
1391
1392 /* Create a reloc section in dynobj and make room for
1393 this reloc. */
1394 if (sreloc == NULL)
1395 {
1396 char *name;
1397 bfd *dynobj;
1398
1399 name = (bfd_elf_string_from_elf_section
1400 (abfd,
1401 elf_elfheader (abfd)->e_shstrndx,
1402 elf_section_data (sec)->rel_hdr.sh_name));
1403 if (name == NULL)
1404 {
1405 (*_bfd_error_handler)
1406 (_("Could not find relocation section for %s"),
1407 sec->name);
1408 bfd_set_error (bfd_error_bad_value);
1409 return FALSE;
1410 }
1411
1412 if (htab->etab.dynobj == NULL)
1413 htab->etab.dynobj = abfd;
1414
1415 dynobj = htab->etab.dynobj;
1416 sreloc = bfd_get_section_by_name (dynobj, name);
1417 if (sreloc == NULL)
1418 {
1419 flagword flags;
1420
1421 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1422 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1423 if ((sec->flags & SEC_ALLOC) != 0)
1424 flags |= SEC_ALLOC | SEC_LOAD;
1425 sreloc = bfd_make_section_with_flags (dynobj,
1426 name,
1427 flags);
1428 if (sreloc == NULL
1429 || !bfd_set_section_alignment (dynobj, sreloc, 2))
1430 return FALSE;
1431 }
1432
1433 elf_section_data (sec)->sreloc = sreloc;
1434 }
1435
1436 /* If this is a global symbol, we count the number of
1437 relocations we need for this symbol. */
1438 if (hh != NULL)
1439 {
1440 hdh_head = &hh->dyn_relocs;
1441 }
1442 else
1443 {
1444 /* Track dynamic relocs needed for local syms too.
1445 We really need local syms available to do this
1446 easily. Oh well. */
1447
1448 asection *sr;
1449 sr = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1450 sec, r_symndx);
1451 if (sr == NULL)
1452 return FALSE;
1453
1454 hdh_head = ((struct elf32_hppa_dyn_reloc_entry **)
1455 &elf_section_data (sr)->local_dynrel);
1456 }
1457
1458 hdh_p = *hdh_head;
1459 if (hdh_p == NULL || hdh_p->sec != sec)
1460 {
1461 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1462 if (hdh_p == NULL)
1463 return FALSE;
1464 hdh_p->hdh_next = *hdh_head;
1465 *hdh_head = hdh_p;
1466 hdh_p->sec = sec;
1467 hdh_p->count = 0;
1468 #if RELATIVE_DYNRELOCS
1469 hdh_p->relative_count = 0;
1470 #endif
1471 }
1472
1473 hdh_p->count += 1;
1474 #if RELATIVE_DYNRELOCS
1475 if (!IS_ABSOLUTE_RELOC (rtype))
1476 hdh_p->relative_count += 1;
1477 #endif
1478 }
1479 }
1480 }
1481
1482 return TRUE;
1483 }
1484
1485 /* Return the section that should be marked against garbage collection
1486 for a given relocation. */
1487
1488 static asection *
1489 elf32_hppa_gc_mark_hook (asection *sec,
1490 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1491 Elf_Internal_Rela *rela,
1492 struct elf_link_hash_entry *hh,
1493 Elf_Internal_Sym *sym)
1494 {
1495 if (hh != NULL)
1496 {
1497 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1498 {
1499 case R_PARISC_GNU_VTINHERIT:
1500 case R_PARISC_GNU_VTENTRY:
1501 break;
1502
1503 default:
1504 switch (hh->root.type)
1505 {
1506 case bfd_link_hash_defined:
1507 case bfd_link_hash_defweak:
1508 return hh->root.u.def.section;
1509
1510 case bfd_link_hash_common:
1511 return hh->root.u.c.p->section;
1512
1513 default:
1514 break;
1515 }
1516 }
1517 }
1518 else
1519 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1520
1521 return NULL;
1522 }
1523
1524 /* Update the got and plt entry reference counts for the section being
1525 removed. */
1526
1527 static bfd_boolean
1528 elf32_hppa_gc_sweep_hook (bfd *abfd,
1529 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1530 asection *sec,
1531 const Elf_Internal_Rela *relocs)
1532 {
1533 Elf_Internal_Shdr *symtab_hdr;
1534 struct elf_link_hash_entry **eh_syms;
1535 bfd_signed_vma *local_got_refcounts;
1536 bfd_signed_vma *local_plt_refcounts;
1537 const Elf_Internal_Rela *rela, *relend;
1538
1539 elf_section_data (sec)->local_dynrel = NULL;
1540
1541 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1542 eh_syms = elf_sym_hashes (abfd);
1543 local_got_refcounts = elf_local_got_refcounts (abfd);
1544 local_plt_refcounts = local_got_refcounts;
1545 if (local_plt_refcounts != NULL)
1546 local_plt_refcounts += symtab_hdr->sh_info;
1547
1548 relend = relocs + sec->reloc_count;
1549 for (rela = relocs; rela < relend; rela++)
1550 {
1551 unsigned long r_symndx;
1552 unsigned int r_type;
1553 struct elf_link_hash_entry *eh = NULL;
1554
1555 r_symndx = ELF32_R_SYM (rela->r_info);
1556 if (r_symndx >= symtab_hdr->sh_info)
1557 {
1558 struct elf32_hppa_link_hash_entry *hh;
1559 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1560 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1561
1562 eh = eh_syms[r_symndx - symtab_hdr->sh_info];
1563 while (eh->root.type == bfd_link_hash_indirect
1564 || eh->root.type == bfd_link_hash_warning)
1565 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1566 hh = hppa_elf_hash_entry (eh);
1567
1568 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next)
1569 if (hdh_p->sec == sec)
1570 {
1571 /* Everything must go for SEC. */
1572 *hdh_pp = hdh_p->hdh_next;
1573 break;
1574 }
1575 }
1576
1577 r_type = ELF32_R_TYPE (rela->r_info);
1578 switch (r_type)
1579 {
1580 case R_PARISC_DLTIND14F:
1581 case R_PARISC_DLTIND14R:
1582 case R_PARISC_DLTIND21L:
1583 if (eh != NULL)
1584 {
1585 if (eh->got.refcount > 0)
1586 eh->got.refcount -= 1;
1587 }
1588 else if (local_got_refcounts != NULL)
1589 {
1590 if (local_got_refcounts[r_symndx] > 0)
1591 local_got_refcounts[r_symndx] -= 1;
1592 }
1593 break;
1594
1595 case R_PARISC_PCREL12F:
1596 case R_PARISC_PCREL17C:
1597 case R_PARISC_PCREL17F:
1598 case R_PARISC_PCREL22F:
1599 if (eh != NULL)
1600 {
1601 if (eh->plt.refcount > 0)
1602 eh->plt.refcount -= 1;
1603 }
1604 break;
1605
1606 case R_PARISC_PLABEL14R:
1607 case R_PARISC_PLABEL21L:
1608 case R_PARISC_PLABEL32:
1609 if (eh != NULL)
1610 {
1611 if (eh->plt.refcount > 0)
1612 eh->plt.refcount -= 1;
1613 }
1614 else if (local_plt_refcounts != NULL)
1615 {
1616 if (local_plt_refcounts[r_symndx] > 0)
1617 local_plt_refcounts[r_symndx] -= 1;
1618 }
1619 break;
1620
1621 default:
1622 break;
1623 }
1624 }
1625
1626 return TRUE;
1627 }
1628
1629 /* Support for core dump NOTE sections. */
1630
1631 static bfd_boolean
1632 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1633 {
1634 int offset;
1635 size_t size;
1636
1637 switch (note->descsz)
1638 {
1639 default:
1640 return FALSE;
1641
1642 case 396: /* Linux/hppa */
1643 /* pr_cursig */
1644 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1645
1646 /* pr_pid */
1647 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1648
1649 /* pr_reg */
1650 offset = 72;
1651 size = 320;
1652
1653 break;
1654 }
1655
1656 /* Make a ".reg/999" section. */
1657 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1658 size, note->descpos + offset);
1659 }
1660
1661 static bfd_boolean
1662 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1663 {
1664 switch (note->descsz)
1665 {
1666 default:
1667 return FALSE;
1668
1669 case 124: /* Linux/hppa elf_prpsinfo. */
1670 elf_tdata (abfd)->core_program
1671 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1672 elf_tdata (abfd)->core_command
1673 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1674 }
1675
1676 /* Note that for some reason, a spurious space is tacked
1677 onto the end of the args in some (at least one anyway)
1678 implementations, so strip it off if it exists. */
1679 {
1680 char *command = elf_tdata (abfd)->core_command;
1681 int n = strlen (command);
1682
1683 if (0 < n && command[n - 1] == ' ')
1684 command[n - 1] = '\0';
1685 }
1686
1687 return TRUE;
1688 }
1689
1690 /* Our own version of hide_symbol, so that we can keep plt entries for
1691 plabels. */
1692
1693 static void
1694 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1695 struct elf_link_hash_entry *eh,
1696 bfd_boolean force_local)
1697 {
1698 if (force_local)
1699 {
1700 eh->forced_local = 1;
1701 if (eh->dynindx != -1)
1702 {
1703 eh->dynindx = -1;
1704 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1705 eh->dynstr_index);
1706 }
1707 }
1708
1709 if (! hppa_elf_hash_entry(eh)->plabel)
1710 {
1711 eh->needs_plt = 0;
1712 eh->plt = elf_hash_table (info)->init_plt_refcount;
1713 }
1714 }
1715
1716 /* Adjust a symbol defined by a dynamic object and referenced by a
1717 regular object. The current definition is in some section of the
1718 dynamic object, but we're not including those sections. We have to
1719 change the definition to something the rest of the link can
1720 understand. */
1721
1722 static bfd_boolean
1723 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1724 struct elf_link_hash_entry *eh)
1725 {
1726 struct elf32_hppa_link_hash_table *htab;
1727 asection *sec;
1728 unsigned int power_of_two;
1729
1730 /* If this is a function, put it in the procedure linkage table. We
1731 will fill in the contents of the procedure linkage table later. */
1732 if (eh->type == STT_FUNC
1733 || eh->needs_plt)
1734 {
1735 if (eh->plt.refcount <= 0
1736 || (eh->def_regular
1737 && eh->root.type != bfd_link_hash_defweak
1738 && ! hppa_elf_hash_entry (eh)->plabel
1739 && (!info->shared || info->symbolic)))
1740 {
1741 /* The .plt entry is not needed when:
1742 a) Garbage collection has removed all references to the
1743 symbol, or
1744 b) We know for certain the symbol is defined in this
1745 object, and it's not a weak definition, nor is the symbol
1746 used by a plabel relocation. Either this object is the
1747 application or we are doing a shared symbolic link. */
1748
1749 eh->plt.offset = (bfd_vma) -1;
1750 eh->needs_plt = 0;
1751 }
1752
1753 return TRUE;
1754 }
1755 else
1756 eh->plt.offset = (bfd_vma) -1;
1757
1758 /* If this is a weak symbol, and there is a real definition, the
1759 processor independent code will have arranged for us to see the
1760 real definition first, and we can just use the same value. */
1761 if (eh->u.weakdef != NULL)
1762 {
1763 if (eh->u.weakdef->root.type != bfd_link_hash_defined
1764 && eh->u.weakdef->root.type != bfd_link_hash_defweak)
1765 abort ();
1766 eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1767 eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1768 if (ELIMINATE_COPY_RELOCS)
1769 eh->non_got_ref = eh->u.weakdef->non_got_ref;
1770 return TRUE;
1771 }
1772
1773 /* This is a reference to a symbol defined by a dynamic object which
1774 is not a function. */
1775
1776 /* If we are creating a shared library, we must presume that the
1777 only references to the symbol are via the global offset table.
1778 For such cases we need not do anything here; the relocations will
1779 be handled correctly by relocate_section. */
1780 if (info->shared)
1781 return TRUE;
1782
1783 /* If there are no references to this symbol that do not use the
1784 GOT, we don't need to generate a copy reloc. */
1785 if (!eh->non_got_ref)
1786 return TRUE;
1787
1788 if (ELIMINATE_COPY_RELOCS)
1789 {
1790 struct elf32_hppa_link_hash_entry *hh;
1791 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1792
1793 hh = hppa_elf_hash_entry (eh);
1794 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
1795 {
1796 sec = hdh_p->sec->output_section;
1797 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1798 break;
1799 }
1800
1801 /* If we didn't find any dynamic relocs in read-only sections, then
1802 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1803 if (hdh_p == NULL)
1804 {
1805 eh->non_got_ref = 0;
1806 return TRUE;
1807 }
1808 }
1809
1810 if (eh->size == 0)
1811 {
1812 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
1813 eh->root.root.string);
1814 return TRUE;
1815 }
1816
1817 /* We must allocate the symbol in our .dynbss section, which will
1818 become part of the .bss section of the executable. There will be
1819 an entry for this symbol in the .dynsym section. The dynamic
1820 object will contain position independent code, so all references
1821 from the dynamic object to this symbol will go through the global
1822 offset table. The dynamic linker will use the .dynsym entry to
1823 determine the address it must put in the global offset table, so
1824 both the dynamic object and the regular object will refer to the
1825 same memory location for the variable. */
1826
1827 htab = hppa_link_hash_table (info);
1828
1829 /* We must generate a COPY reloc to tell the dynamic linker to
1830 copy the initial value out of the dynamic object and into the
1831 runtime process image. */
1832 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0)
1833 {
1834 htab->srelbss->size += sizeof (Elf32_External_Rela);
1835 eh->needs_copy = 1;
1836 }
1837
1838 /* We need to figure out the alignment required for this symbol. I
1839 have no idea how other ELF linkers handle this. */
1840
1841 power_of_two = bfd_log2 (eh->size);
1842 if (power_of_two > 3)
1843 power_of_two = 3;
1844
1845 /* Apply the required alignment. */
1846 sec = htab->sdynbss;
1847 sec->size = BFD_ALIGN (sec->size, (bfd_size_type) (1 << power_of_two));
1848 if (power_of_two > bfd_get_section_alignment (htab->etab.dynobj, sec))
1849 {
1850 if (! bfd_set_section_alignment (htab->etab.dynobj, sec, power_of_two))
1851 return FALSE;
1852 }
1853
1854 /* Define the symbol as being at this point in the section. */
1855 eh->root.u.def.section = sec;
1856 eh->root.u.def.value = sec->size;
1857
1858 /* Increment the section size to make room for the symbol. */
1859 sec->size += eh->size;
1860
1861 return TRUE;
1862 }
1863
1864 /* Allocate space in the .plt for entries that won't have relocations.
1865 ie. plabel entries. */
1866
1867 static bfd_boolean
1868 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1869 {
1870 struct bfd_link_info *info;
1871 struct elf32_hppa_link_hash_table *htab;
1872 struct elf32_hppa_link_hash_entry *hh;
1873 asection *sec;
1874
1875 if (eh->root.type == bfd_link_hash_indirect)
1876 return TRUE;
1877
1878 if (eh->root.type == bfd_link_hash_warning)
1879 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1880
1881 info = (struct bfd_link_info *) inf;
1882 hh = hppa_elf_hash_entry(eh);
1883 htab = hppa_link_hash_table (info);
1884 if (htab->etab.dynamic_sections_created
1885 && eh->plt.refcount > 0)
1886 {
1887 /* Make sure this symbol is output as a dynamic symbol.
1888 Undefined weak syms won't yet be marked as dynamic. */
1889 if (eh->dynindx == -1
1890 && !eh->forced_local
1891 && eh->type != STT_PARISC_MILLI)
1892 {
1893 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
1894 return FALSE;
1895 }
1896
1897 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, eh))
1898 {
1899 /* Allocate these later. From this point on, h->plabel
1900 means that the plt entry is only used by a plabel.
1901 We'll be using a normal plt entry for this symbol, so
1902 clear the plabel indicator. */
1903
1904 hh->plabel = 0;
1905 }
1906 else if (hh->plabel)
1907 {
1908 /* Make an entry in the .plt section for plabel references
1909 that won't have a .plt entry for other reasons. */
1910 sec = htab->splt;
1911 eh->plt.offset = sec->size;
1912 sec->size += PLT_ENTRY_SIZE;
1913 }
1914 else
1915 {
1916 /* No .plt entry needed. */
1917 eh->plt.offset = (bfd_vma) -1;
1918 eh->needs_plt = 0;
1919 }
1920 }
1921 else
1922 {
1923 eh->plt.offset = (bfd_vma) -1;
1924 eh->needs_plt = 0;
1925 }
1926
1927 return TRUE;
1928 }
1929
1930 /* Allocate space in .plt, .got and associated reloc sections for
1931 global syms. */
1932
1933 static bfd_boolean
1934 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
1935 {
1936 struct bfd_link_info *info;
1937 struct elf32_hppa_link_hash_table *htab;
1938 asection *sec;
1939 struct elf32_hppa_link_hash_entry *hh;
1940 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1941
1942 if (eh->root.type == bfd_link_hash_indirect)
1943 return TRUE;
1944
1945 if (eh->root.type == bfd_link_hash_warning)
1946 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1947
1948 info = inf;
1949 htab = hppa_link_hash_table (info);
1950 hh = hppa_elf_hash_entry (eh);
1951
1952 if (htab->etab.dynamic_sections_created
1953 && eh->plt.offset != (bfd_vma) -1
1954 && !hh->plabel
1955 && eh->plt.refcount > 0)
1956 {
1957 /* Make an entry in the .plt section. */
1958 sec = htab->splt;
1959 eh->plt.offset = sec->size;
1960 sec->size += PLT_ENTRY_SIZE;
1961
1962 /* We also need to make an entry in the .rela.plt section. */
1963 htab->srelplt->size += sizeof (Elf32_External_Rela);
1964 htab->need_plt_stub = 1;
1965 }
1966
1967 if (eh->got.refcount > 0)
1968 {
1969 /* Make sure this symbol is output as a dynamic symbol.
1970 Undefined weak syms won't yet be marked as dynamic. */
1971 if (eh->dynindx == -1
1972 && !eh->forced_local
1973 && eh->type != STT_PARISC_MILLI)
1974 {
1975 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
1976 return FALSE;
1977 }
1978
1979 sec = htab->sgot;
1980 eh->got.offset = sec->size;
1981 sec->size += GOT_ENTRY_SIZE;
1982 if (htab->etab.dynamic_sections_created
1983 && (info->shared
1984 || (eh->dynindx != -1
1985 && !eh->forced_local)))
1986 {
1987 htab->srelgot->size += sizeof (Elf32_External_Rela);
1988 }
1989 }
1990 else
1991 eh->got.offset = (bfd_vma) -1;
1992
1993 if (hh->dyn_relocs == NULL)
1994 return TRUE;
1995
1996 /* If this is a -Bsymbolic shared link, then we need to discard all
1997 space allocated for dynamic pc-relative relocs against symbols
1998 defined in a regular object. For the normal shared case, discard
1999 space for relocs that have become local due to symbol visibility
2000 changes. */
2001 if (info->shared)
2002 {
2003 #if RELATIVE_DYNRELOCS
2004 if (SYMBOL_CALLS_LOCAL (info, eh))
2005 {
2006 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
2007
2008 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2009 {
2010 hdh_p->count -= hdh_p->relative_count;
2011 hdh_p->relative_count = 0;
2012 if (hdh_p->count == 0)
2013 *hdh_pp = hdh_p->hdh_next;
2014 else
2015 hdh_pp = &hdh_p->hdh_next;
2016 }
2017 }
2018 #endif
2019
2020 /* Also discard relocs on undefined weak syms with non-default
2021 visibility. */
2022 if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT
2023 && eh->root.type == bfd_link_hash_undefweak)
2024 hh->dyn_relocs = NULL;
2025 }
2026 else
2027 {
2028 /* For the non-shared case, discard space for relocs against
2029 symbols which turn out to need copy relocs or are not
2030 dynamic. */
2031
2032 if (!eh->non_got_ref
2033 && ((ELIMINATE_COPY_RELOCS
2034 && eh->def_dynamic
2035 && !eh->def_regular)
2036 || (htab->etab.dynamic_sections_created
2037 && (eh->root.type == bfd_link_hash_undefweak
2038 || eh->root.type == bfd_link_hash_undefined))))
2039 {
2040 /* Make sure this symbol is output as a dynamic symbol.
2041 Undefined weak syms won't yet be marked as dynamic. */
2042 if (eh->dynindx == -1
2043 && !eh->forced_local
2044 && eh->type != STT_PARISC_MILLI)
2045 {
2046 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2047 return FALSE;
2048 }
2049
2050 /* If that succeeded, we know we'll be keeping all the
2051 relocs. */
2052 if (eh->dynindx != -1)
2053 goto keep;
2054 }
2055
2056 hh->dyn_relocs = NULL;
2057 return TRUE;
2058
2059 keep: ;
2060 }
2061
2062 /* Finally, allocate space. */
2063 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2064 {
2065 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2066 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2067 }
2068
2069 return TRUE;
2070 }
2071
2072 /* This function is called via elf_link_hash_traverse to force
2073 millicode symbols local so they do not end up as globals in the
2074 dynamic symbol table. We ought to be able to do this in
2075 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2076 for all dynamic symbols. Arguably, this is a bug in
2077 elf_adjust_dynamic_symbol. */
2078
2079 static bfd_boolean
2080 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2081 struct bfd_link_info *info)
2082 {
2083 if (eh->root.type == bfd_link_hash_warning)
2084 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2085
2086 if (eh->type == STT_PARISC_MILLI
2087 && !eh->forced_local)
2088 {
2089 elf32_hppa_hide_symbol (info, eh, TRUE);
2090 }
2091 return TRUE;
2092 }
2093
2094 /* Find any dynamic relocs that apply to read-only sections. */
2095
2096 static bfd_boolean
2097 readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2098 {
2099 struct elf32_hppa_link_hash_entry *hh;
2100 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2101
2102 if (eh->root.type == bfd_link_hash_warning)
2103 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2104
2105 hh = hppa_elf_hash_entry (eh);
2106 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2107 {
2108 asection *sec = hdh_p->sec->output_section;
2109
2110 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
2111 {
2112 struct bfd_link_info *info = inf;
2113
2114 info->flags |= DF_TEXTREL;
2115
2116 /* Not an error, just cut short the traversal. */
2117 return FALSE;
2118 }
2119 }
2120 return TRUE;
2121 }
2122
2123 /* Set the sizes of the dynamic sections. */
2124
2125 static bfd_boolean
2126 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2127 struct bfd_link_info *info)
2128 {
2129 struct elf32_hppa_link_hash_table *htab;
2130 bfd *dynobj;
2131 bfd *ibfd;
2132 asection *sec;
2133 bfd_boolean relocs;
2134
2135 htab = hppa_link_hash_table (info);
2136 dynobj = htab->etab.dynobj;
2137 if (dynobj == NULL)
2138 abort ();
2139
2140 if (htab->etab.dynamic_sections_created)
2141 {
2142 /* Set the contents of the .interp section to the interpreter. */
2143 if (info->executable)
2144 {
2145 sec = bfd_get_section_by_name (dynobj, ".interp");
2146 if (sec == NULL)
2147 abort ();
2148 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2149 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2150 }
2151
2152 /* Force millicode symbols local. */
2153 elf_link_hash_traverse (&htab->etab,
2154 clobber_millicode_symbols,
2155 info);
2156 }
2157
2158 /* Set up .got and .plt offsets for local syms, and space for local
2159 dynamic relocs. */
2160 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2161 {
2162 bfd_signed_vma *local_got;
2163 bfd_signed_vma *end_local_got;
2164 bfd_signed_vma *local_plt;
2165 bfd_signed_vma *end_local_plt;
2166 bfd_size_type locsymcount;
2167 Elf_Internal_Shdr *symtab_hdr;
2168 asection *srel;
2169
2170 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2171 continue;
2172
2173 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2174 {
2175 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2176
2177 for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
2178 elf_section_data (sec)->local_dynrel);
2179 hdh_p != NULL;
2180 hdh_p = hdh_p->hdh_next)
2181 {
2182 if (!bfd_is_abs_section (hdh_p->sec)
2183 && bfd_is_abs_section (hdh_p->sec->output_section))
2184 {
2185 /* Input section has been discarded, either because
2186 it is a copy of a linkonce section or due to
2187 linker script /DISCARD/, so we'll be discarding
2188 the relocs too. */
2189 }
2190 else if (hdh_p->count != 0)
2191 {
2192 srel = elf_section_data (hdh_p->sec)->sreloc;
2193 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2194 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2195 info->flags |= DF_TEXTREL;
2196 }
2197 }
2198 }
2199
2200 local_got = elf_local_got_refcounts (ibfd);
2201 if (!local_got)
2202 continue;
2203
2204 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2205 locsymcount = symtab_hdr->sh_info;
2206 end_local_got = local_got + locsymcount;
2207 sec = htab->sgot;
2208 srel = htab->srelgot;
2209 for (; local_got < end_local_got; ++local_got)
2210 {
2211 if (*local_got > 0)
2212 {
2213 *local_got = sec->size;
2214 sec->size += GOT_ENTRY_SIZE;
2215 if (info->shared)
2216 srel->size += sizeof (Elf32_External_Rela);
2217 }
2218 else
2219 *local_got = (bfd_vma) -1;
2220 }
2221
2222 local_plt = end_local_got;
2223 end_local_plt = local_plt + locsymcount;
2224 if (! htab->etab.dynamic_sections_created)
2225 {
2226 /* Won't be used, but be safe. */
2227 for (; local_plt < end_local_plt; ++local_plt)
2228 *local_plt = (bfd_vma) -1;
2229 }
2230 else
2231 {
2232 sec = htab->splt;
2233 srel = htab->srelplt;
2234 for (; local_plt < end_local_plt; ++local_plt)
2235 {
2236 if (*local_plt > 0)
2237 {
2238 *local_plt = sec->size;
2239 sec->size += PLT_ENTRY_SIZE;
2240 if (info->shared)
2241 srel->size += sizeof (Elf32_External_Rela);
2242 }
2243 else
2244 *local_plt = (bfd_vma) -1;
2245 }
2246 }
2247 }
2248
2249 /* Do all the .plt entries without relocs first. The dynamic linker
2250 uses the last .plt reloc to find the end of the .plt (and hence
2251 the start of the .got) for lazy linking. */
2252 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2253
2254 /* Allocate global sym .plt and .got entries, and space for global
2255 sym dynamic relocs. */
2256 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2257
2258 /* The check_relocs and adjust_dynamic_symbol entry points have
2259 determined the sizes of the various dynamic sections. Allocate
2260 memory for them. */
2261 relocs = FALSE;
2262 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2263 {
2264 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2265 continue;
2266
2267 if (sec == htab->splt)
2268 {
2269 if (htab->need_plt_stub)
2270 {
2271 /* Make space for the plt stub at the end of the .plt
2272 section. We want this stub right at the end, up
2273 against the .got section. */
2274 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2275 int pltalign = bfd_section_alignment (dynobj, sec);
2276 bfd_size_type mask;
2277
2278 if (gotalign > pltalign)
2279 bfd_set_section_alignment (dynobj, sec, gotalign);
2280 mask = ((bfd_size_type) 1 << gotalign) - 1;
2281 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2282 }
2283 }
2284 else if (sec == htab->sgot
2285 || sec == htab->sdynbss)
2286 ;
2287 else if (strncmp (bfd_get_section_name (dynobj, sec), ".rela", 5) == 0)
2288 {
2289 if (sec->size != 0)
2290 {
2291 /* Remember whether there are any reloc sections other
2292 than .rela.plt. */
2293 if (sec != htab->srelplt)
2294 relocs = TRUE;
2295
2296 /* We use the reloc_count field as a counter if we need
2297 to copy relocs into the output file. */
2298 sec->reloc_count = 0;
2299 }
2300 }
2301 else
2302 {
2303 /* It's not one of our sections, so don't allocate space. */
2304 continue;
2305 }
2306
2307 if (sec->size == 0)
2308 {
2309 /* If we don't need this section, strip it from the
2310 output file. This is mostly to handle .rela.bss and
2311 .rela.plt. We must create both sections in
2312 create_dynamic_sections, because they must be created
2313 before the linker maps input sections to output
2314 sections. The linker does that before
2315 adjust_dynamic_symbol is called, and it is that
2316 function which decides whether anything needs to go
2317 into these sections. */
2318 sec->flags |= SEC_EXCLUDE;
2319 continue;
2320 }
2321
2322 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2323 continue;
2324
2325 /* Allocate memory for the section contents. Zero it, because
2326 we may not fill in all the reloc sections. */
2327 sec->contents = bfd_zalloc (dynobj, sec->size);
2328 if (sec->contents == NULL)
2329 return FALSE;
2330 }
2331
2332 if (htab->etab.dynamic_sections_created)
2333 {
2334 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2335 actually has nothing to do with the PLT, it is how we
2336 communicate the LTP value of a load module to the dynamic
2337 linker. */
2338 #define add_dynamic_entry(TAG, VAL) \
2339 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2340
2341 if (!add_dynamic_entry (DT_PLTGOT, 0))
2342 return FALSE;
2343
2344 /* Add some entries to the .dynamic section. We fill in the
2345 values later, in elf32_hppa_finish_dynamic_sections, but we
2346 must add the entries now so that we get the correct size for
2347 the .dynamic section. The DT_DEBUG entry is filled in by the
2348 dynamic linker and used by the debugger. */
2349 if (!info->shared)
2350 {
2351 if (!add_dynamic_entry (DT_DEBUG, 0))
2352 return FALSE;
2353 }
2354
2355 if (htab->srelplt->size != 0)
2356 {
2357 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2358 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2359 || !add_dynamic_entry (DT_JMPREL, 0))
2360 return FALSE;
2361 }
2362
2363 if (relocs)
2364 {
2365 if (!add_dynamic_entry (DT_RELA, 0)
2366 || !add_dynamic_entry (DT_RELASZ, 0)
2367 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2368 return FALSE;
2369
2370 /* If any dynamic relocs apply to a read-only section,
2371 then we need a DT_TEXTREL entry. */
2372 if ((info->flags & DF_TEXTREL) == 0)
2373 elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info);
2374
2375 if ((info->flags & DF_TEXTREL) != 0)
2376 {
2377 if (!add_dynamic_entry (DT_TEXTREL, 0))
2378 return FALSE;
2379 }
2380 }
2381 }
2382 #undef add_dynamic_entry
2383
2384 return TRUE;
2385 }
2386
2387 /* External entry points for sizing and building linker stubs. */
2388
2389 /* Set up various things so that we can make a list of input sections
2390 for each output section included in the link. Returns -1 on error,
2391 0 when no stubs will be needed, and 1 on success. */
2392
2393 int
2394 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2395 {
2396 bfd *input_bfd;
2397 unsigned int bfd_count;
2398 int top_id, top_index;
2399 asection *section;
2400 asection **input_list, **list;
2401 bfd_size_type amt;
2402 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2403
2404 /* Count the number of input BFDs and find the top input section id. */
2405 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2406 input_bfd != NULL;
2407 input_bfd = input_bfd->link_next)
2408 {
2409 bfd_count += 1;
2410 for (section = input_bfd->sections;
2411 section != NULL;
2412 section = section->next)
2413 {
2414 if (top_id < section->id)
2415 top_id = section->id;
2416 }
2417 }
2418 htab->bfd_count = bfd_count;
2419
2420 amt = sizeof (struct map_stub) * (top_id + 1);
2421 htab->stub_group = bfd_zmalloc (amt);
2422 if (htab->stub_group == NULL)
2423 return -1;
2424
2425 /* We can't use output_bfd->section_count here to find the top output
2426 section index as some sections may have been removed, and
2427 strip_excluded_output_sections doesn't renumber the indices. */
2428 for (section = output_bfd->sections, top_index = 0;
2429 section != NULL;
2430 section = section->next)
2431 {
2432 if (top_index < section->index)
2433 top_index = section->index;
2434 }
2435
2436 htab->top_index = top_index;
2437 amt = sizeof (asection *) * (top_index + 1);
2438 input_list = bfd_malloc (amt);
2439 htab->input_list = input_list;
2440 if (input_list == NULL)
2441 return -1;
2442
2443 /* For sections we aren't interested in, mark their entries with a
2444 value we can check later. */
2445 list = input_list + top_index;
2446 do
2447 *list = bfd_abs_section_ptr;
2448 while (list-- != input_list);
2449
2450 for (section = output_bfd->sections;
2451 section != NULL;
2452 section = section->next)
2453 {
2454 if ((section->flags & SEC_CODE) != 0)
2455 input_list[section->index] = NULL;
2456 }
2457
2458 return 1;
2459 }
2460
2461 /* The linker repeatedly calls this function for each input section,
2462 in the order that input sections are linked into output sections.
2463 Build lists of input sections to determine groupings between which
2464 we may insert linker stubs. */
2465
2466 void
2467 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2468 {
2469 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2470
2471 if (isec->output_section->index <= htab->top_index)
2472 {
2473 asection **list = htab->input_list + isec->output_section->index;
2474 if (*list != bfd_abs_section_ptr)
2475 {
2476 /* Steal the link_sec pointer for our list. */
2477 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2478 /* This happens to make the list in reverse order,
2479 which is what we want. */
2480 PREV_SEC (isec) = *list;
2481 *list = isec;
2482 }
2483 }
2484 }
2485
2486 /* See whether we can group stub sections together. Grouping stub
2487 sections may result in fewer stubs. More importantly, we need to
2488 put all .init* and .fini* stubs at the beginning of the .init or
2489 .fini output sections respectively, because glibc splits the
2490 _init and _fini functions into multiple parts. Putting a stub in
2491 the middle of a function is not a good idea. */
2492
2493 static void
2494 group_sections (struct elf32_hppa_link_hash_table *htab,
2495 bfd_size_type stub_group_size,
2496 bfd_boolean stubs_always_before_branch)
2497 {
2498 asection **list = htab->input_list + htab->top_index;
2499 do
2500 {
2501 asection *tail = *list;
2502 if (tail == bfd_abs_section_ptr)
2503 continue;
2504 while (tail != NULL)
2505 {
2506 asection *curr;
2507 asection *prev;
2508 bfd_size_type total;
2509 bfd_boolean big_sec;
2510
2511 curr = tail;
2512 total = tail->size;
2513 big_sec = total >= stub_group_size;
2514
2515 while ((prev = PREV_SEC (curr)) != NULL
2516 && ((total += curr->output_offset - prev->output_offset)
2517 < stub_group_size))
2518 curr = prev;
2519
2520 /* OK, the size from the start of CURR to the end is less
2521 than 240000 bytes and thus can be handled by one stub
2522 section. (or the tail section is itself larger than
2523 240000 bytes, in which case we may be toast.)
2524 We should really be keeping track of the total size of
2525 stubs added here, as stubs contribute to the final output
2526 section size. That's a little tricky, and this way will
2527 only break if stubs added total more than 22144 bytes, or
2528 2768 long branch stubs. It seems unlikely for more than
2529 2768 different functions to be called, especially from
2530 code only 240000 bytes long. This limit used to be
2531 250000, but c++ code tends to generate lots of little
2532 functions, and sometimes violated the assumption. */
2533 do
2534 {
2535 prev = PREV_SEC (tail);
2536 /* Set up this stub group. */
2537 htab->stub_group[tail->id].link_sec = curr;
2538 }
2539 while (tail != curr && (tail = prev) != NULL);
2540
2541 /* But wait, there's more! Input sections up to 240000
2542 bytes before the stub section can be handled by it too.
2543 Don't do this if we have a really large section after the
2544 stubs, as adding more stubs increases the chance that
2545 branches may not reach into the stub section. */
2546 if (!stubs_always_before_branch && !big_sec)
2547 {
2548 total = 0;
2549 while (prev != NULL
2550 && ((total += tail->output_offset - prev->output_offset)
2551 < stub_group_size))
2552 {
2553 tail = prev;
2554 prev = PREV_SEC (tail);
2555 htab->stub_group[tail->id].link_sec = curr;
2556 }
2557 }
2558 tail = prev;
2559 }
2560 }
2561 while (list-- != htab->input_list);
2562 free (htab->input_list);
2563 #undef PREV_SEC
2564 }
2565
2566 /* Read in all local syms for all input bfds, and create hash entries
2567 for export stubs if we are building a multi-subspace shared lib.
2568 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2569
2570 static int
2571 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2572 {
2573 unsigned int bfd_indx;
2574 Elf_Internal_Sym *local_syms, **all_local_syms;
2575 int stub_changed = 0;
2576 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2577
2578 /* We want to read in symbol extension records only once. To do this
2579 we need to read in the local symbols in parallel and save them for
2580 later use; so hold pointers to the local symbols in an array. */
2581 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2582 all_local_syms = bfd_zmalloc (amt);
2583 htab->all_local_syms = all_local_syms;
2584 if (all_local_syms == NULL)
2585 return -1;
2586
2587 /* Walk over all the input BFDs, swapping in local symbols.
2588 If we are creating a shared library, create hash entries for the
2589 export stubs. */
2590 for (bfd_indx = 0;
2591 input_bfd != NULL;
2592 input_bfd = input_bfd->link_next, bfd_indx++)
2593 {
2594 Elf_Internal_Shdr *symtab_hdr;
2595
2596 /* We'll need the symbol table in a second. */
2597 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2598 if (symtab_hdr->sh_info == 0)
2599 continue;
2600
2601 /* We need an array of the local symbols attached to the input bfd. */
2602 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2603 if (local_syms == NULL)
2604 {
2605 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2606 symtab_hdr->sh_info, 0,
2607 NULL, NULL, NULL);
2608 /* Cache them for elf_link_input_bfd. */
2609 symtab_hdr->contents = (unsigned char *) local_syms;
2610 }
2611 if (local_syms == NULL)
2612 return -1;
2613
2614 all_local_syms[bfd_indx] = local_syms;
2615
2616 if (info->shared && htab->multi_subspace)
2617 {
2618 struct elf_link_hash_entry **eh_syms;
2619 struct elf_link_hash_entry **eh_symend;
2620 unsigned int symcount;
2621
2622 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2623 - symtab_hdr->sh_info);
2624 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2625 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2626
2627 /* Look through the global syms for functions; We need to
2628 build export stubs for all globally visible functions. */
2629 for (; eh_syms < eh_symend; eh_syms++)
2630 {
2631 struct elf32_hppa_link_hash_entry *hh;
2632
2633 hh = hppa_elf_hash_entry (*eh_syms);
2634
2635 while (hh->eh.root.type == bfd_link_hash_indirect
2636 || hh->eh.root.type == bfd_link_hash_warning)
2637 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2638
2639 /* At this point in the link, undefined syms have been
2640 resolved, so we need to check that the symbol was
2641 defined in this BFD. */
2642 if ((hh->eh.root.type == bfd_link_hash_defined
2643 || hh->eh.root.type == bfd_link_hash_defweak)
2644 && hh->eh.type == STT_FUNC
2645 && hh->eh.root.u.def.section->output_section != NULL
2646 && (hh->eh.root.u.def.section->output_section->owner
2647 == output_bfd)
2648 && hh->eh.root.u.def.section->owner == input_bfd
2649 && hh->eh.def_regular
2650 && !hh->eh.forced_local
2651 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2652 {
2653 asection *sec;
2654 const char *stub_name;
2655 struct elf32_hppa_stub_hash_entry *hsh;
2656
2657 sec = hh->eh.root.u.def.section;
2658 stub_name = hh->eh.root.root.string;
2659 hsh = hppa_stub_hash_lookup (&htab->bstab,
2660 stub_name,
2661 FALSE, FALSE);
2662 if (hsh == NULL)
2663 {
2664 hsh = hppa_add_stub (stub_name, sec, htab);
2665 if (!hsh)
2666 return -1;
2667
2668 hsh->target_value = hh->eh.root.u.def.value;
2669 hsh->target_section = hh->eh.root.u.def.section;
2670 hsh->stub_type = hppa_stub_export;
2671 hsh->hh = hh;
2672 stub_changed = 1;
2673 }
2674 else
2675 {
2676 (*_bfd_error_handler) (_("%B: duplicate export stub %s"),
2677 input_bfd,
2678 stub_name);
2679 }
2680 }
2681 }
2682 }
2683 }
2684
2685 return stub_changed;
2686 }
2687
2688 /* Determine and set the size of the stub section for a final link.
2689
2690 The basic idea here is to examine all the relocations looking for
2691 PC-relative calls to a target that is unreachable with a "bl"
2692 instruction. */
2693
2694 bfd_boolean
2695 elf32_hppa_size_stubs
2696 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2697 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2698 asection * (*add_stub_section) (const char *, asection *),
2699 void (*layout_sections_again) (void))
2700 {
2701 bfd_size_type stub_group_size;
2702 bfd_boolean stubs_always_before_branch;
2703 bfd_boolean stub_changed;
2704 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2705
2706 /* Stash our params away. */
2707 htab->stub_bfd = stub_bfd;
2708 htab->multi_subspace = multi_subspace;
2709 htab->add_stub_section = add_stub_section;
2710 htab->layout_sections_again = layout_sections_again;
2711 stubs_always_before_branch = group_size < 0;
2712 if (group_size < 0)
2713 stub_group_size = -group_size;
2714 else
2715 stub_group_size = group_size;
2716 if (stub_group_size == 1)
2717 {
2718 /* Default values. */
2719 if (stubs_always_before_branch)
2720 {
2721 stub_group_size = 7680000;
2722 if (htab->has_17bit_branch || htab->multi_subspace)
2723 stub_group_size = 240000;
2724 if (htab->has_12bit_branch)
2725 stub_group_size = 7500;
2726 }
2727 else
2728 {
2729 stub_group_size = 6971392;
2730 if (htab->has_17bit_branch || htab->multi_subspace)
2731 stub_group_size = 217856;
2732 if (htab->has_12bit_branch)
2733 stub_group_size = 6808;
2734 }
2735 }
2736
2737 group_sections (htab, stub_group_size, stubs_always_before_branch);
2738
2739 switch (get_local_syms (output_bfd, info->input_bfds, info))
2740 {
2741 default:
2742 if (htab->all_local_syms)
2743 goto error_ret_free_local;
2744 return FALSE;
2745
2746 case 0:
2747 stub_changed = FALSE;
2748 break;
2749
2750 case 1:
2751 stub_changed = TRUE;
2752 break;
2753 }
2754
2755 while (1)
2756 {
2757 bfd *input_bfd;
2758 unsigned int bfd_indx;
2759 asection *stub_sec;
2760
2761 for (input_bfd = info->input_bfds, bfd_indx = 0;
2762 input_bfd != NULL;
2763 input_bfd = input_bfd->link_next, bfd_indx++)
2764 {
2765 Elf_Internal_Shdr *symtab_hdr;
2766 asection *section;
2767 Elf_Internal_Sym *local_syms;
2768
2769 /* We'll need the symbol table in a second. */
2770 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2771 if (symtab_hdr->sh_info == 0)
2772 continue;
2773
2774 local_syms = htab->all_local_syms[bfd_indx];
2775
2776 /* Walk over each section attached to the input bfd. */
2777 for (section = input_bfd->sections;
2778 section != NULL;
2779 section = section->next)
2780 {
2781 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2782
2783 /* If there aren't any relocs, then there's nothing more
2784 to do. */
2785 if ((section->flags & SEC_RELOC) == 0
2786 || section->reloc_count == 0)
2787 continue;
2788
2789 /* If this section is a link-once section that will be
2790 discarded, then don't create any stubs. */
2791 if (section->output_section == NULL
2792 || section->output_section->owner != output_bfd)
2793 continue;
2794
2795 /* Get the relocs. */
2796 internal_relocs
2797 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2798 info->keep_memory);
2799 if (internal_relocs == NULL)
2800 goto error_ret_free_local;
2801
2802 /* Now examine each relocation. */
2803 irela = internal_relocs;
2804 irelaend = irela + section->reloc_count;
2805 for (; irela < irelaend; irela++)
2806 {
2807 unsigned int r_type, r_indx;
2808 enum elf32_hppa_stub_type stub_type;
2809 struct elf32_hppa_stub_hash_entry *hsh;
2810 asection *sym_sec;
2811 bfd_vma sym_value;
2812 bfd_vma destination;
2813 struct elf32_hppa_link_hash_entry *hh;
2814 char *stub_name;
2815 const asection *id_sec;
2816
2817 r_type = ELF32_R_TYPE (irela->r_info);
2818 r_indx = ELF32_R_SYM (irela->r_info);
2819
2820 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2821 {
2822 bfd_set_error (bfd_error_bad_value);
2823 error_ret_free_internal:
2824 if (elf_section_data (section)->relocs == NULL)
2825 free (internal_relocs);
2826 goto error_ret_free_local;
2827 }
2828
2829 /* Only look for stubs on call instructions. */
2830 if (r_type != (unsigned int) R_PARISC_PCREL12F
2831 && r_type != (unsigned int) R_PARISC_PCREL17F
2832 && r_type != (unsigned int) R_PARISC_PCREL22F)
2833 continue;
2834
2835 /* Now determine the call target, its name, value,
2836 section. */
2837 sym_sec = NULL;
2838 sym_value = 0;
2839 destination = 0;
2840 hh = NULL;
2841 if (r_indx < symtab_hdr->sh_info)
2842 {
2843 /* It's a local symbol. */
2844 Elf_Internal_Sym *sym;
2845 Elf_Internal_Shdr *hdr;
2846
2847 sym = local_syms + r_indx;
2848 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2849 sym_sec = hdr->bfd_section;
2850 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2851 sym_value = sym->st_value;
2852 destination = (sym_value + irela->r_addend
2853 + sym_sec->output_offset
2854 + sym_sec->output_section->vma);
2855 }
2856 else
2857 {
2858 /* It's an external symbol. */
2859 int e_indx;
2860
2861 e_indx = r_indx - symtab_hdr->sh_info;
2862 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2863
2864 while (hh->eh.root.type == bfd_link_hash_indirect
2865 || hh->eh.root.type == bfd_link_hash_warning)
2866 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2867
2868 if (hh->eh.root.type == bfd_link_hash_defined
2869 || hh->eh.root.type == bfd_link_hash_defweak)
2870 {
2871 sym_sec = hh->eh.root.u.def.section;
2872 sym_value = hh->eh.root.u.def.value;
2873 if (sym_sec->output_section != NULL)
2874 destination = (sym_value + irela->r_addend
2875 + sym_sec->output_offset
2876 + sym_sec->output_section->vma);
2877 }
2878 else if (hh->eh.root.type == bfd_link_hash_undefweak)
2879 {
2880 if (! info->shared)
2881 continue;
2882 }
2883 else if (hh->eh.root.type == bfd_link_hash_undefined)
2884 {
2885 if (! (info->unresolved_syms_in_objects == RM_IGNORE
2886 && (ELF_ST_VISIBILITY (hh->eh.other)
2887 == STV_DEFAULT)
2888 && hh->eh.type != STT_PARISC_MILLI))
2889 continue;
2890 }
2891 else
2892 {
2893 bfd_set_error (bfd_error_bad_value);
2894 goto error_ret_free_internal;
2895 }
2896 }
2897
2898 /* Determine what (if any) linker stub is needed. */
2899 stub_type = hppa_type_of_stub (section, irela, hh,
2900 destination, info);
2901 if (stub_type == hppa_stub_none)
2902 continue;
2903
2904 /* Support for grouping stub sections. */
2905 id_sec = htab->stub_group[section->id].link_sec;
2906
2907 /* Get the name of this stub. */
2908 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
2909 if (!stub_name)
2910 goto error_ret_free_internal;
2911
2912 hsh = hppa_stub_hash_lookup (&htab->bstab,
2913 stub_name,
2914 FALSE, FALSE);
2915 if (hsh != NULL)
2916 {
2917 /* The proper stub has already been created. */
2918 free (stub_name);
2919 continue;
2920 }
2921
2922 hsh = hppa_add_stub (stub_name, section, htab);
2923 if (hsh == NULL)
2924 {
2925 free (stub_name);
2926 goto error_ret_free_internal;
2927 }
2928
2929 hsh->target_value = sym_value;
2930 hsh->target_section = sym_sec;
2931 hsh->stub_type = stub_type;
2932 if (info->shared)
2933 {
2934 if (stub_type == hppa_stub_import)
2935 hsh->stub_type = hppa_stub_import_shared;
2936 else if (stub_type == hppa_stub_long_branch)
2937 hsh->stub_type = hppa_stub_long_branch_shared;
2938 }
2939 hsh->hh = hh;
2940 stub_changed = TRUE;
2941 }
2942
2943 /* We're done with the internal relocs, free them. */
2944 if (elf_section_data (section)->relocs == NULL)
2945 free (internal_relocs);
2946 }
2947 }
2948
2949 if (!stub_changed)
2950 break;
2951
2952 /* OK, we've added some stubs. Find out the new size of the
2953 stub sections. */
2954 for (stub_sec = htab->stub_bfd->sections;
2955 stub_sec != NULL;
2956 stub_sec = stub_sec->next)
2957 stub_sec->size = 0;
2958
2959 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
2960
2961 /* Ask the linker to do its stuff. */
2962 (*htab->layout_sections_again) ();
2963 stub_changed = FALSE;
2964 }
2965
2966 free (htab->all_local_syms);
2967 return TRUE;
2968
2969 error_ret_free_local:
2970 free (htab->all_local_syms);
2971 return FALSE;
2972 }
2973
2974 /* For a final link, this function is called after we have sized the
2975 stubs to provide a value for __gp. */
2976
2977 bfd_boolean
2978 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
2979 {
2980 struct bfd_link_hash_entry *h;
2981 asection *sec = NULL;
2982 bfd_vma gp_val = 0;
2983 struct elf32_hppa_link_hash_table *htab;
2984
2985 htab = hppa_link_hash_table (info);
2986 h = bfd_link_hash_lookup (&htab->etab.root, "$global$", FALSE, FALSE, FALSE);
2987
2988 if (h != NULL
2989 && (h->type == bfd_link_hash_defined
2990 || h->type == bfd_link_hash_defweak))
2991 {
2992 gp_val = h->u.def.value;
2993 sec = h->u.def.section;
2994 }
2995 else
2996 {
2997 asection *splt = bfd_get_section_by_name (abfd, ".plt");
2998 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2999
3000 /* Choose to point our LTP at, in this order, one of .plt, .got,
3001 or .data, if these sections exist. In the case of choosing
3002 .plt try to make the LTP ideal for addressing anywhere in the
3003 .plt or .got with a 14 bit signed offset. Typically, the end
3004 of the .plt is the start of the .got, so choose .plt + 0x2000
3005 if either the .plt or .got is larger than 0x2000. If both
3006 the .plt and .got are smaller than 0x2000, choose the end of
3007 the .plt section. */
3008 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3009 ? NULL : splt;
3010 if (sec != NULL)
3011 {
3012 gp_val = sec->size;
3013 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3014 {
3015 gp_val = 0x2000;
3016 }
3017 }
3018 else
3019 {
3020 sec = sgot;
3021 if (sec != NULL)
3022 {
3023 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3024 {
3025 /* We know we don't have a .plt. If .got is large,
3026 offset our LTP. */
3027 if (sec->size > 0x2000)
3028 gp_val = 0x2000;
3029 }
3030 }
3031 else
3032 {
3033 /* No .plt or .got. Who cares what the LTP is? */
3034 sec = bfd_get_section_by_name (abfd, ".data");
3035 }
3036 }
3037
3038 if (h != NULL)
3039 {
3040 h->type = bfd_link_hash_defined;
3041 h->u.def.value = gp_val;
3042 if (sec != NULL)
3043 h->u.def.section = sec;
3044 else
3045 h->u.def.section = bfd_abs_section_ptr;
3046 }
3047 }
3048
3049 if (sec != NULL && sec->output_section != NULL)
3050 gp_val += sec->output_section->vma + sec->output_offset;
3051
3052 elf_gp (abfd) = gp_val;
3053 return TRUE;
3054 }
3055
3056 /* Build all the stubs associated with the current output file. The
3057 stubs are kept in a hash table attached to the main linker hash
3058 table. We also set up the .plt entries for statically linked PIC
3059 functions here. This function is called via hppaelf_finish in the
3060 linker. */
3061
3062 bfd_boolean
3063 elf32_hppa_build_stubs (struct bfd_link_info *info)
3064 {
3065 asection *stub_sec;
3066 struct bfd_hash_table *table;
3067 struct elf32_hppa_link_hash_table *htab;
3068
3069 htab = hppa_link_hash_table (info);
3070
3071 for (stub_sec = htab->stub_bfd->sections;
3072 stub_sec != NULL;
3073 stub_sec = stub_sec->next)
3074 {
3075 bfd_size_type size;
3076
3077 /* Allocate memory to hold the linker stubs. */
3078 size = stub_sec->size;
3079 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3080 if (stub_sec->contents == NULL && size != 0)
3081 return FALSE;
3082 stub_sec->size = 0;
3083 }
3084
3085 /* Build the stubs as directed by the stub hash table. */
3086 table = &htab->bstab;
3087 bfd_hash_traverse (table, hppa_build_one_stub, info);
3088
3089 return TRUE;
3090 }
3091
3092 /* Perform a final link. */
3093
3094 static bfd_boolean
3095 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3096 {
3097 /* Invoke the regular ELF linker to do all the work. */
3098 if (!bfd_elf_final_link (abfd, info))
3099 return FALSE;
3100
3101 /* If we're producing a final executable, sort the contents of the
3102 unwind section. */
3103 return elf_hppa_sort_unwind (abfd);
3104 }
3105
3106 /* Record the lowest address for the data and text segments. */
3107
3108 static void
3109 hppa_record_segment_addr (bfd *abfd ATTRIBUTE_UNUSED,
3110 asection *section,
3111 void *data)
3112 {
3113 struct elf32_hppa_link_hash_table *htab;
3114
3115 htab = (struct elf32_hppa_link_hash_table*) data;
3116
3117 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3118 {
3119 bfd_vma value = section->vma - section->filepos;
3120
3121 if ((section->flags & SEC_READONLY) != 0)
3122 {
3123 if (value < htab->text_segment_base)
3124 htab->text_segment_base = value;
3125 }
3126 else
3127 {
3128 if (value < htab->data_segment_base)
3129 htab->data_segment_base = value;
3130 }
3131 }
3132 }
3133
3134 /* Perform a relocation as part of a final link. */
3135
3136 static bfd_reloc_status_type
3137 final_link_relocate (asection *input_section,
3138 bfd_byte *contents,
3139 const Elf_Internal_Rela *rela,
3140 bfd_vma value,
3141 struct elf32_hppa_link_hash_table *htab,
3142 asection *sym_sec,
3143 struct elf32_hppa_link_hash_entry *hh,
3144 struct bfd_link_info *info)
3145 {
3146 int insn;
3147 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3148 unsigned int orig_r_type = r_type;
3149 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3150 int r_format = howto->bitsize;
3151 enum hppa_reloc_field_selector_type_alt r_field;
3152 bfd *input_bfd = input_section->owner;
3153 bfd_vma offset = rela->r_offset;
3154 bfd_vma max_branch_offset = 0;
3155 bfd_byte *hit_data = contents + offset;
3156 bfd_signed_vma addend = rela->r_addend;
3157 bfd_vma location;
3158 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3159 int val;
3160
3161 if (r_type == R_PARISC_NONE)
3162 return bfd_reloc_ok;
3163
3164 insn = bfd_get_32 (input_bfd, hit_data);
3165
3166 /* Find out where we are and where we're going. */
3167 location = (offset +
3168 input_section->output_offset +
3169 input_section->output_section->vma);
3170
3171 /* If we are not building a shared library, convert DLTIND relocs to
3172 DPREL relocs. */
3173 if (!info->shared)
3174 {
3175 switch (r_type)
3176 {
3177 case R_PARISC_DLTIND21L:
3178 r_type = R_PARISC_DPREL21L;
3179 break;
3180
3181 case R_PARISC_DLTIND14R:
3182 r_type = R_PARISC_DPREL14R;
3183 break;
3184
3185 case R_PARISC_DLTIND14F:
3186 r_type = R_PARISC_DPREL14F;
3187 break;
3188 }
3189 }
3190
3191 switch (r_type)
3192 {
3193 case R_PARISC_PCREL12F:
3194 case R_PARISC_PCREL17F:
3195 case R_PARISC_PCREL22F:
3196 /* If this call should go via the plt, find the import stub in
3197 the stub hash. */
3198 if (sym_sec == NULL
3199 || sym_sec->output_section == NULL
3200 || (hh != NULL
3201 && hh->eh.plt.offset != (bfd_vma) -1
3202 && hh->eh.dynindx != -1
3203 && !hh->plabel
3204 && (info->shared
3205 || !hh->eh.def_regular
3206 || hh->eh.root.type == bfd_link_hash_defweak)))
3207 {
3208 hsh = hppa_get_stub_entry (input_section, sym_sec,
3209 hh, rela, htab);
3210 if (hsh != NULL)
3211 {
3212 value = (hsh->stub_offset
3213 + hsh->stub_sec->output_offset
3214 + hsh->stub_sec->output_section->vma);
3215 addend = 0;
3216 }
3217 else if (sym_sec == NULL && hh != NULL
3218 && hh->eh.root.type == bfd_link_hash_undefweak)
3219 {
3220 /* It's OK if undefined weak. Calls to undefined weak
3221 symbols behave as if the "called" function
3222 immediately returns. We can thus call to a weak
3223 function without first checking whether the function
3224 is defined. */
3225 value = location;
3226 addend = 8;
3227 }
3228 else
3229 return bfd_reloc_undefined;
3230 }
3231 /* Fall thru. */
3232
3233 case R_PARISC_PCREL21L:
3234 case R_PARISC_PCREL17C:
3235 case R_PARISC_PCREL17R:
3236 case R_PARISC_PCREL14R:
3237 case R_PARISC_PCREL14F:
3238 case R_PARISC_PCREL32:
3239 /* Make it a pc relative offset. */
3240 value -= location;
3241 addend -= 8;
3242 break;
3243
3244 case R_PARISC_DPREL21L:
3245 case R_PARISC_DPREL14R:
3246 case R_PARISC_DPREL14F:
3247 /* Convert instructions that use the linkage table pointer (r19) to
3248 instructions that use the global data pointer (dp). This is the
3249 most efficient way of using PIC code in an incomplete executable,
3250 but the user must follow the standard runtime conventions for
3251 accessing data for this to work. */
3252 if (orig_r_type == R_PARISC_DLTIND21L)
3253 {
3254 /* Convert addil instructions if the original reloc was a
3255 DLTIND21L. GCC sometimes uses a register other than r19 for
3256 the operation, so we must convert any addil instruction
3257 that uses this relocation. */
3258 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3259 insn = ADDIL_DP;
3260 else
3261 /* We must have a ldil instruction. It's too hard to find
3262 and convert the associated add instruction, so issue an
3263 error. */
3264 (*_bfd_error_handler)
3265 (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3266 input_bfd,
3267 input_section,
3268 offset,
3269 howto->name,
3270 insn);
3271 }
3272 else if (orig_r_type == R_PARISC_DLTIND14F)
3273 {
3274 /* This must be a format 1 load/store. Change the base
3275 register to dp. */
3276 insn = (insn & 0xfc1ffff) | (27 << 21);
3277 }
3278
3279 /* For all the DP relative relocations, we need to examine the symbol's
3280 section. If it has no section or if it's a code section, then
3281 "data pointer relative" makes no sense. In that case we don't
3282 adjust the "value", and for 21 bit addil instructions, we change the
3283 source addend register from %dp to %r0. This situation commonly
3284 arises for undefined weak symbols and when a variable's "constness"
3285 is declared differently from the way the variable is defined. For
3286 instance: "extern int foo" with foo defined as "const int foo". */
3287 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3288 {
3289 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3290 == (((int) OP_ADDIL << 26) | (27 << 21)))
3291 {
3292 insn &= ~ (0x1f << 21);
3293 }
3294 /* Now try to make things easy for the dynamic linker. */
3295
3296 break;
3297 }
3298 /* Fall thru. */
3299
3300 case R_PARISC_DLTIND21L:
3301 case R_PARISC_DLTIND14R:
3302 case R_PARISC_DLTIND14F:
3303 value -= elf_gp (input_section->output_section->owner);
3304 break;
3305
3306 case R_PARISC_SEGREL32:
3307 if ((sym_sec->flags & SEC_CODE) != 0)
3308 value -= htab->text_segment_base;
3309 else
3310 value -= htab->data_segment_base;
3311 break;
3312
3313 default:
3314 break;
3315 }
3316
3317 switch (r_type)
3318 {
3319 case R_PARISC_DIR32:
3320 case R_PARISC_DIR14F:
3321 case R_PARISC_DIR17F:
3322 case R_PARISC_PCREL17C:
3323 case R_PARISC_PCREL14F:
3324 case R_PARISC_PCREL32:
3325 case R_PARISC_DPREL14F:
3326 case R_PARISC_PLABEL32:
3327 case R_PARISC_DLTIND14F:
3328 case R_PARISC_SEGBASE:
3329 case R_PARISC_SEGREL32:
3330 r_field = e_fsel;
3331 break;
3332
3333 case R_PARISC_DLTIND21L:
3334 case R_PARISC_PCREL21L:
3335 case R_PARISC_PLABEL21L:
3336 r_field = e_lsel;
3337 break;
3338
3339 case R_PARISC_DIR21L:
3340 case R_PARISC_DPREL21L:
3341 r_field = e_lrsel;
3342 break;
3343
3344 case R_PARISC_PCREL17R:
3345 case R_PARISC_PCREL14R:
3346 case R_PARISC_PLABEL14R:
3347 case R_PARISC_DLTIND14R:
3348 r_field = e_rsel;
3349 break;
3350
3351 case R_PARISC_DIR17R:
3352 case R_PARISC_DIR14R:
3353 case R_PARISC_DPREL14R:
3354 r_field = e_rrsel;
3355 break;
3356
3357 case R_PARISC_PCREL12F:
3358 case R_PARISC_PCREL17F:
3359 case R_PARISC_PCREL22F:
3360 r_field = e_fsel;
3361
3362 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3363 {
3364 max_branch_offset = (1 << (17-1)) << 2;
3365 }
3366 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3367 {
3368 max_branch_offset = (1 << (12-1)) << 2;
3369 }
3370 else
3371 {
3372 max_branch_offset = (1 << (22-1)) << 2;
3373 }
3374
3375 /* sym_sec is NULL on undefined weak syms or when shared on
3376 undefined syms. We've already checked for a stub for the
3377 shared undefined case. */
3378 if (sym_sec == NULL)
3379 break;
3380
3381 /* If the branch is out of reach, then redirect the
3382 call to the local stub for this function. */
3383 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3384 {
3385 hsh = hppa_get_stub_entry (input_section, sym_sec,
3386 hh, rela, htab);
3387 if (hsh == NULL)
3388 return bfd_reloc_undefined;
3389
3390 /* Munge up the value and addend so that we call the stub
3391 rather than the procedure directly. */
3392 value = (hsh->stub_offset
3393 + hsh->stub_sec->output_offset
3394 + hsh->stub_sec->output_section->vma
3395 - location);
3396 addend = -8;
3397 }
3398 break;
3399
3400 /* Something we don't know how to handle. */
3401 default:
3402 return bfd_reloc_notsupported;
3403 }
3404
3405 /* Make sure we can reach the stub. */
3406 if (max_branch_offset != 0
3407 && value + addend + max_branch_offset >= 2*max_branch_offset)
3408 {
3409 (*_bfd_error_handler)
3410 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3411 input_bfd,
3412 input_section,
3413 offset,
3414 hsh->bh_root.string);
3415 bfd_set_error (bfd_error_bad_value);
3416 return bfd_reloc_notsupported;
3417 }
3418
3419 val = hppa_field_adjust (value, addend, r_field);
3420
3421 switch (r_type)
3422 {
3423 case R_PARISC_PCREL12F:
3424 case R_PARISC_PCREL17C:
3425 case R_PARISC_PCREL17F:
3426 case R_PARISC_PCREL17R:
3427 case R_PARISC_PCREL22F:
3428 case R_PARISC_DIR17F:
3429 case R_PARISC_DIR17R:
3430 /* This is a branch. Divide the offset by four.
3431 Note that we need to decide whether it's a branch or
3432 otherwise by inspecting the reloc. Inspecting insn won't
3433 work as insn might be from a .word directive. */
3434 val >>= 2;
3435 break;
3436
3437 default:
3438 break;
3439 }
3440
3441 insn = hppa_rebuild_insn (insn, val, r_format);
3442
3443 /* Update the instruction word. */
3444 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3445 return bfd_reloc_ok;
3446 }
3447
3448 /* Relocate an HPPA ELF section. */
3449
3450 static bfd_boolean
3451 elf32_hppa_relocate_section (bfd *output_bfd,
3452 struct bfd_link_info *info,
3453 bfd *input_bfd,
3454 asection *input_section,
3455 bfd_byte *contents,
3456 Elf_Internal_Rela *relocs,
3457 Elf_Internal_Sym *local_syms,
3458 asection **local_sections)
3459 {
3460 bfd_vma *local_got_offsets;
3461 struct elf32_hppa_link_hash_table *htab;
3462 Elf_Internal_Shdr *symtab_hdr;
3463 Elf_Internal_Rela *rela;
3464 Elf_Internal_Rela *relend;
3465
3466 if (info->relocatable)
3467 return TRUE;
3468
3469 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3470
3471 htab = hppa_link_hash_table (info);
3472 local_got_offsets = elf_local_got_offsets (input_bfd);
3473
3474 rela = relocs;
3475 relend = relocs + input_section->reloc_count;
3476 for (; rela < relend; rela++)
3477 {
3478 unsigned int r_type;
3479 reloc_howto_type *howto;
3480 unsigned int r_symndx;
3481 struct elf32_hppa_link_hash_entry *hh;
3482 Elf_Internal_Sym *sym;
3483 asection *sym_sec;
3484 bfd_vma relocation;
3485 bfd_reloc_status_type rstatus;
3486 const char *sym_name;
3487 bfd_boolean plabel;
3488 bfd_boolean warned_undef;
3489
3490 r_type = ELF32_R_TYPE (rela->r_info);
3491 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3492 {
3493 bfd_set_error (bfd_error_bad_value);
3494 return FALSE;
3495 }
3496 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3497 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3498 continue;
3499
3500 /* This is a final link. */
3501 r_symndx = ELF32_R_SYM (rela->r_info);
3502 hh = NULL;
3503 sym = NULL;
3504 sym_sec = NULL;
3505 warned_undef = FALSE;
3506 if (r_symndx < symtab_hdr->sh_info)
3507 {
3508 /* This is a local symbol, h defaults to NULL. */
3509 sym = local_syms + r_symndx;
3510 sym_sec = local_sections[r_symndx];
3511 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3512 }
3513 else
3514 {
3515 struct elf_link_hash_entry *eh;
3516 bfd_boolean unresolved_reloc;
3517 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3518
3519 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3520 r_symndx, symtab_hdr, sym_hashes,
3521 eh, sym_sec, relocation,
3522 unresolved_reloc, warned_undef);
3523
3524 if (relocation == 0
3525 && eh->root.type != bfd_link_hash_defined
3526 && eh->root.type != bfd_link_hash_defweak
3527 && eh->root.type != bfd_link_hash_undefweak)
3528 {
3529 if (info->unresolved_syms_in_objects == RM_IGNORE
3530 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3531 && eh->type == STT_PARISC_MILLI)
3532 {
3533 if (! info->callbacks->undefined_symbol
3534 (info, eh->root.root.string, input_bfd,
3535 input_section, rela->r_offset, FALSE))
3536 return FALSE;
3537 warned_undef = TRUE;
3538 }
3539 }
3540 hh = hppa_elf_hash_entry (eh);
3541 }
3542
3543 /* Do any required modifications to the relocation value, and
3544 determine what types of dynamic info we need to output, if
3545 any. */
3546 plabel = 0;
3547 switch (r_type)
3548 {
3549 case R_PARISC_DLTIND14F:
3550 case R_PARISC_DLTIND14R:
3551 case R_PARISC_DLTIND21L:
3552 {
3553 bfd_vma off;
3554 bfd_boolean do_got = 0;
3555
3556 /* Relocation is to the entry for this symbol in the
3557 global offset table. */
3558 if (hh != NULL)
3559 {
3560 bfd_boolean dyn;
3561
3562 off = hh->eh.got.offset;
3563 dyn = htab->etab.dynamic_sections_created;
3564 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
3565 &hh->eh))
3566 {
3567 /* If we aren't going to call finish_dynamic_symbol,
3568 then we need to handle initialisation of the .got
3569 entry and create needed relocs here. Since the
3570 offset must always be a multiple of 4, we use the
3571 least significant bit to record whether we have
3572 initialised it already. */
3573 if ((off & 1) != 0)
3574 off &= ~1;
3575 else
3576 {
3577 hh->eh.got.offset |= 1;
3578 do_got = 1;
3579 }
3580 }
3581 }
3582 else
3583 {
3584 /* Local symbol case. */
3585 if (local_got_offsets == NULL)
3586 abort ();
3587
3588 off = local_got_offsets[r_symndx];
3589
3590 /* The offset must always be a multiple of 4. We use
3591 the least significant bit to record whether we have
3592 already generated the necessary reloc. */
3593 if ((off & 1) != 0)
3594 off &= ~1;
3595 else
3596 {
3597 local_got_offsets[r_symndx] |= 1;
3598 do_got = 1;
3599 }
3600 }
3601
3602 if (do_got)
3603 {
3604 if (info->shared)
3605 {
3606 /* Output a dynamic relocation for this GOT entry.
3607 In this case it is relative to the base of the
3608 object because the symbol index is zero. */
3609 Elf_Internal_Rela outrel;
3610 bfd_byte *loc;
3611 asection *sec = htab->srelgot;
3612
3613 outrel.r_offset = (off
3614 + htab->sgot->output_offset
3615 + htab->sgot->output_section->vma);
3616 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3617 outrel.r_addend = relocation;
3618 loc = sec->contents;
3619 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3620 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3621 }
3622 else
3623 bfd_put_32 (output_bfd, relocation,
3624 htab->sgot->contents + off);
3625 }
3626
3627 if (off >= (bfd_vma) -2)
3628 abort ();
3629
3630 /* Add the base of the GOT to the relocation value. */
3631 relocation = (off
3632 + htab->sgot->output_offset
3633 + htab->sgot->output_section->vma);
3634 }
3635 break;
3636
3637 case R_PARISC_SEGREL32:
3638 /* If this is the first SEGREL relocation, then initialize
3639 the segment base values. */
3640 if (htab->text_segment_base == (bfd_vma) -1)
3641 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3642 break;
3643
3644 case R_PARISC_PLABEL14R:
3645 case R_PARISC_PLABEL21L:
3646 case R_PARISC_PLABEL32:
3647 if (htab->etab.dynamic_sections_created)
3648 {
3649 bfd_vma off;
3650 bfd_boolean do_plt = 0;
3651 /* If we have a global symbol with a PLT slot, then
3652 redirect this relocation to it. */
3653 if (hh != NULL)
3654 {
3655 off = hh->eh.plt.offset;
3656 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared,
3657 &hh->eh))
3658 {
3659 /* In a non-shared link, adjust_dynamic_symbols
3660 isn't called for symbols forced local. We
3661 need to write out the plt entry here. */
3662 if ((off & 1) != 0)
3663 off &= ~1;
3664 else
3665 {
3666 hh->eh.plt.offset |= 1;
3667 do_plt = 1;
3668 }
3669 }
3670 }
3671 else
3672 {
3673 bfd_vma *local_plt_offsets;
3674
3675 if (local_got_offsets == NULL)
3676 abort ();
3677
3678 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3679 off = local_plt_offsets[r_symndx];
3680
3681 /* As for the local .got entry case, we use the last
3682 bit to record whether we've already initialised
3683 this local .plt entry. */
3684 if ((off & 1) != 0)
3685 off &= ~1;
3686 else
3687 {
3688 local_plt_offsets[r_symndx] |= 1;
3689 do_plt = 1;
3690 }
3691 }
3692
3693 if (do_plt)
3694 {
3695 if (info->shared)
3696 {
3697 /* Output a dynamic IPLT relocation for this
3698 PLT entry. */
3699 Elf_Internal_Rela outrel;
3700 bfd_byte *loc;
3701 asection *s = htab->srelplt;
3702
3703 outrel.r_offset = (off
3704 + htab->splt->output_offset
3705 + htab->splt->output_section->vma);
3706 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3707 outrel.r_addend = relocation;
3708 loc = s->contents;
3709 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3710 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3711 }
3712 else
3713 {
3714 bfd_put_32 (output_bfd,
3715 relocation,
3716 htab->splt->contents + off);
3717 bfd_put_32 (output_bfd,
3718 elf_gp (htab->splt->output_section->owner),
3719 htab->splt->contents + off + 4);
3720 }
3721 }
3722
3723 if (off >= (bfd_vma) -2)
3724 abort ();
3725
3726 /* PLABELs contain function pointers. Relocation is to
3727 the entry for the function in the .plt. The magic +2
3728 offset signals to $$dyncall that the function pointer
3729 is in the .plt and thus has a gp pointer too.
3730 Exception: Undefined PLABELs should have a value of
3731 zero. */
3732 if (hh == NULL
3733 || (hh->eh.root.type != bfd_link_hash_undefweak
3734 && hh->eh.root.type != bfd_link_hash_undefined))
3735 {
3736 relocation = (off
3737 + htab->splt->output_offset
3738 + htab->splt->output_section->vma
3739 + 2);
3740 }
3741 plabel = 1;
3742 }
3743 /* Fall through and possibly emit a dynamic relocation. */
3744
3745 case R_PARISC_DIR17F:
3746 case R_PARISC_DIR17R:
3747 case R_PARISC_DIR14F:
3748 case R_PARISC_DIR14R:
3749 case R_PARISC_DIR21L:
3750 case R_PARISC_DPREL14F:
3751 case R_PARISC_DPREL14R:
3752 case R_PARISC_DPREL21L:
3753 case R_PARISC_DIR32:
3754 /* r_symndx will be zero only for relocs against symbols
3755 from removed linkonce sections, or sections discarded by
3756 a linker script. */
3757 if (r_symndx == 0
3758 || (input_section->flags & SEC_ALLOC) == 0)
3759 break;
3760
3761 /* The reloc types handled here and this conditional
3762 expression must match the code in ..check_relocs and
3763 allocate_dynrelocs. ie. We need exactly the same condition
3764 as in ..check_relocs, with some extra conditions (dynindx
3765 test in this case) to cater for relocs removed by
3766 allocate_dynrelocs. If you squint, the non-shared test
3767 here does indeed match the one in ..check_relocs, the
3768 difference being that here we test DEF_DYNAMIC as well as
3769 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3770 which is why we can't use just that test here.
3771 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3772 there all files have not been loaded. */
3773 if ((info->shared
3774 && (hh == NULL
3775 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
3776 || hh->eh.root.type != bfd_link_hash_undefweak)
3777 && (IS_ABSOLUTE_RELOC (r_type)
3778 || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
3779 || (!info->shared
3780 && hh != NULL
3781 && hh->eh.dynindx != -1
3782 && !hh->eh.non_got_ref
3783 && ((ELIMINATE_COPY_RELOCS
3784 && hh->eh.def_dynamic
3785 && !hh->eh.def_regular)
3786 || hh->eh.root.type == bfd_link_hash_undefweak
3787 || hh->eh.root.type == bfd_link_hash_undefined)))
3788 {
3789 Elf_Internal_Rela outrel;
3790 bfd_boolean skip;
3791 asection *sreloc;
3792 bfd_byte *loc;
3793
3794 /* When generating a shared object, these relocations
3795 are copied into the output file to be resolved at run
3796 time. */
3797
3798 outrel.r_addend = rela->r_addend;
3799 outrel.r_offset =
3800 _bfd_elf_section_offset (output_bfd, info, input_section,
3801 rela->r_offset);
3802 skip = (outrel.r_offset == (bfd_vma) -1
3803 || outrel.r_offset == (bfd_vma) -2);
3804 outrel.r_offset += (input_section->output_offset
3805 + input_section->output_section->vma);
3806
3807 if (skip)
3808 {
3809 memset (&outrel, 0, sizeof (outrel));
3810 }
3811 else if (hh != NULL
3812 && hh->eh.dynindx != -1
3813 && (plabel
3814 || !IS_ABSOLUTE_RELOC (r_type)
3815 || !info->shared
3816 || !info->symbolic
3817 || !hh->eh.def_regular))
3818 {
3819 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
3820 }
3821 else /* It's a local symbol, or one marked to become local. */
3822 {
3823 int indx = 0;
3824
3825 /* Add the absolute offset of the symbol. */
3826 outrel.r_addend += relocation;
3827
3828 /* Global plabels need to be processed by the
3829 dynamic linker so that functions have at most one
3830 fptr. For this reason, we need to differentiate
3831 between global and local plabels, which we do by
3832 providing the function symbol for a global plabel
3833 reloc, and no symbol for local plabels. */
3834 if (! plabel
3835 && sym_sec != NULL
3836 && sym_sec->output_section != NULL
3837 && ! bfd_is_abs_section (sym_sec))
3838 {
3839 /* Skip this relocation if the output section has
3840 been discarded. */
3841 if (bfd_is_abs_section (sym_sec->output_section))
3842 break;
3843
3844 indx = elf_section_data (sym_sec->output_section)->dynindx;
3845 /* We are turning this relocation into one
3846 against a section symbol, so subtract out the
3847 output section's address but not the offset
3848 of the input section in the output section. */
3849 outrel.r_addend -= sym_sec->output_section->vma;
3850 }
3851
3852 outrel.r_info = ELF32_R_INFO (indx, r_type);
3853 }
3854 sreloc = elf_section_data (input_section)->sreloc;
3855 if (sreloc == NULL)
3856 abort ();
3857
3858 loc = sreloc->contents;
3859 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3860 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3861 }
3862 break;
3863
3864 default:
3865 break;
3866 }
3867
3868 rstatus = final_link_relocate (input_section, contents, rela, relocation,
3869 htab, sym_sec, hh, info);
3870
3871 if (rstatus == bfd_reloc_ok)
3872 continue;
3873
3874 if (hh != NULL)
3875 sym_name = hh->eh.root.root.string;
3876 else
3877 {
3878 sym_name = bfd_elf_string_from_elf_section (input_bfd,
3879 symtab_hdr->sh_link,
3880 sym->st_name);
3881 if (sym_name == NULL)
3882 return FALSE;
3883 if (*sym_name == '\0')
3884 sym_name = bfd_section_name (input_bfd, sym_sec);
3885 }
3886
3887 howto = elf_hppa_howto_table + r_type;
3888
3889 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
3890 {
3891 if (rstatus == bfd_reloc_notsupported || !warned_undef)
3892 {
3893 (*_bfd_error_handler)
3894 (_("%B(%A+0x%lx): cannot handle %s for %s"),
3895 input_bfd,
3896 input_section,
3897 (long) rela->r_offset,
3898 howto->name,
3899 sym_name);
3900 bfd_set_error (bfd_error_bad_value);
3901 return FALSE;
3902 }
3903 }
3904 else
3905 {
3906 if (!((*info->callbacks->reloc_overflow)
3907 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
3908 (bfd_vma) 0, input_bfd, input_section, rela->r_offset)))
3909 return FALSE;
3910 }
3911 }
3912
3913 return TRUE;
3914 }
3915
3916 /* Finish up dynamic symbol handling. We set the contents of various
3917 dynamic sections here. */
3918
3919 static bfd_boolean
3920 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
3921 struct bfd_link_info *info,
3922 struct elf_link_hash_entry *eh,
3923 Elf_Internal_Sym *sym)
3924 {
3925 struct elf32_hppa_link_hash_table *htab;
3926 Elf_Internal_Rela rela;
3927 bfd_byte *loc;
3928
3929 htab = hppa_link_hash_table (info);
3930
3931 if (eh->plt.offset != (bfd_vma) -1)
3932 {
3933 bfd_vma value;
3934
3935 if (eh->plt.offset & 1)
3936 abort ();
3937
3938 /* This symbol has an entry in the procedure linkage table. Set
3939 it up.
3940
3941 The format of a plt entry is
3942 <funcaddr>
3943 <__gp>
3944 */
3945 value = 0;
3946 if (eh->root.type == bfd_link_hash_defined
3947 || eh->root.type == bfd_link_hash_defweak)
3948 {
3949 value = eh->root.u.def.value;
3950 if (eh->root.u.def.section->output_section != NULL)
3951 value += (eh->root.u.def.section->output_offset
3952 + eh->root.u.def.section->output_section->vma);
3953 }
3954
3955 /* Create a dynamic IPLT relocation for this entry. */
3956 rela.r_offset = (eh->plt.offset
3957 + htab->splt->output_offset
3958 + htab->splt->output_section->vma);
3959 if (eh->dynindx != -1)
3960 {
3961 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
3962 rela.r_addend = 0;
3963 }
3964 else
3965 {
3966 /* This symbol has been marked to become local, and is
3967 used by a plabel so must be kept in the .plt. */
3968 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3969 rela.r_addend = value;
3970 }
3971
3972 loc = htab->srelplt->contents;
3973 loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
3974 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rela, loc);
3975
3976 if (!eh->def_regular)
3977 {
3978 /* Mark the symbol as undefined, rather than as defined in
3979 the .plt section. Leave the value alone. */
3980 sym->st_shndx = SHN_UNDEF;
3981 }
3982 }
3983
3984 if (eh->got.offset != (bfd_vma) -1)
3985 {
3986 /* This symbol has an entry in the global offset table. Set it
3987 up. */
3988
3989 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
3990 + htab->sgot->output_offset
3991 + htab->sgot->output_section->vma);
3992
3993 /* If this is a -Bsymbolic link and the symbol is defined
3994 locally or was forced to be local because of a version file,
3995 we just want to emit a RELATIVE reloc. The entry in the
3996 global offset table will already have been initialized in the
3997 relocate_section function. */
3998 if (info->shared
3999 && (info->symbolic || eh->dynindx == -1)
4000 && eh->def_regular)
4001 {
4002 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4003 rela.r_addend = (eh->root.u.def.value
4004 + eh->root.u.def.section->output_offset
4005 + eh->root.u.def.section->output_section->vma);
4006 }
4007 else
4008 {
4009 if ((eh->got.offset & 1) != 0)
4010 abort ();
4011
4012 bfd_put_32 (output_bfd, 0, htab->sgot->contents + (eh->got.offset & ~1));
4013 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4014 rela.r_addend = 0;
4015 }
4016
4017 loc = htab->srelgot->contents;
4018 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4019 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4020 }
4021
4022 if (eh->needs_copy)
4023 {
4024 asection *sec;
4025
4026 /* This symbol needs a copy reloc. Set it up. */
4027
4028 if (! (eh->dynindx != -1
4029 && (eh->root.type == bfd_link_hash_defined
4030 || eh->root.type == bfd_link_hash_defweak)))
4031 abort ();
4032
4033 sec = htab->srelbss;
4034
4035 rela.r_offset = (eh->root.u.def.value
4036 + eh->root.u.def.section->output_offset
4037 + eh->root.u.def.section->output_section->vma);
4038 rela.r_addend = 0;
4039 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4040 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4041 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4042 }
4043
4044 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4045 if (eh->root.root.string[0] == '_'
4046 && (strcmp (eh->root.root.string, "_DYNAMIC") == 0
4047 || strcmp (eh->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0))
4048 {
4049 sym->st_shndx = SHN_ABS;
4050 }
4051
4052 return TRUE;
4053 }
4054
4055 /* Used to decide how to sort relocs in an optimal manner for the
4056 dynamic linker, before writing them out. */
4057
4058 static enum elf_reloc_type_class
4059 elf32_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
4060 {
4061 if (ELF32_R_SYM (rela->r_info) == 0)
4062 return reloc_class_relative;
4063
4064 switch ((int) ELF32_R_TYPE (rela->r_info))
4065 {
4066 case R_PARISC_IPLT:
4067 return reloc_class_plt;
4068 case R_PARISC_COPY:
4069 return reloc_class_copy;
4070 default:
4071 return reloc_class_normal;
4072 }
4073 }
4074
4075 /* Finish up the dynamic sections. */
4076
4077 static bfd_boolean
4078 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4079 struct bfd_link_info *info)
4080 {
4081 bfd *dynobj;
4082 struct elf32_hppa_link_hash_table *htab;
4083 asection *sdyn;
4084
4085 htab = hppa_link_hash_table (info);
4086 dynobj = htab->etab.dynobj;
4087
4088 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4089
4090 if (htab->etab.dynamic_sections_created)
4091 {
4092 Elf32_External_Dyn *dyncon, *dynconend;
4093
4094 if (sdyn == NULL)
4095 abort ();
4096
4097 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4098 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4099 for (; dyncon < dynconend; dyncon++)
4100 {
4101 Elf_Internal_Dyn dyn;
4102 asection *s;
4103
4104 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4105
4106 switch (dyn.d_tag)
4107 {
4108 default:
4109 continue;
4110
4111 case DT_PLTGOT:
4112 /* Use PLTGOT to set the GOT register. */
4113 dyn.d_un.d_ptr = elf_gp (output_bfd);
4114 break;
4115
4116 case DT_JMPREL:
4117 s = htab->srelplt;
4118 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4119 break;
4120
4121 case DT_PLTRELSZ:
4122 s = htab->srelplt;
4123 dyn.d_un.d_val = s->size;
4124 break;
4125
4126 case DT_RELASZ:
4127 /* Don't count procedure linkage table relocs in the
4128 overall reloc count. */
4129 s = htab->srelplt;
4130 if (s == NULL)
4131 continue;
4132 dyn.d_un.d_val -= s->size;
4133 break;
4134
4135 case DT_RELA:
4136 /* We may not be using the standard ELF linker script.
4137 If .rela.plt is the first .rela section, we adjust
4138 DT_RELA to not include it. */
4139 s = htab->srelplt;
4140 if (s == NULL)
4141 continue;
4142 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4143 continue;
4144 dyn.d_un.d_ptr += s->size;
4145 break;
4146 }
4147
4148 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4149 }
4150 }
4151
4152 if (htab->sgot != NULL && htab->sgot->size != 0)
4153 {
4154 /* Fill in the first entry in the global offset table.
4155 We use it to point to our dynamic section, if we have one. */
4156 bfd_put_32 (output_bfd,
4157 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4158 htab->sgot->contents);
4159
4160 /* The second entry is reserved for use by the dynamic linker. */
4161 memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4162
4163 /* Set .got entry size. */
4164 elf_section_data (htab->sgot->output_section)
4165 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4166 }
4167
4168 if (htab->splt != NULL && htab->splt->size != 0)
4169 {
4170 /* Set plt entry size. */
4171 elf_section_data (htab->splt->output_section)
4172 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4173
4174 if (htab->need_plt_stub)
4175 {
4176 /* Set up the .plt stub. */
4177 memcpy (htab->splt->contents
4178 + htab->splt->size - sizeof (plt_stub),
4179 plt_stub, sizeof (plt_stub));
4180
4181 if ((htab->splt->output_offset
4182 + htab->splt->output_section->vma
4183 + htab->splt->size)
4184 != (htab->sgot->output_offset
4185 + htab->sgot->output_section->vma))
4186 {
4187 (*_bfd_error_handler)
4188 (_(".got section not immediately after .plt section"));
4189 return FALSE;
4190 }
4191 }
4192 }
4193
4194 return TRUE;
4195 }
4196
4197 /* Tweak the OSABI field of the elf header. */
4198
4199 static void
4200 elf32_hppa_post_process_headers (bfd *abfd,
4201 struct bfd_link_info *info ATTRIBUTE_UNUSED)
4202 {
4203 Elf_Internal_Ehdr * i_ehdrp;
4204
4205 i_ehdrp = elf_elfheader (abfd);
4206
4207 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
4208 {
4209 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
4210 }
4211 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
4212 {
4213 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_NETBSD;
4214 }
4215 else
4216 {
4217 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
4218 }
4219 }
4220
4221 /* Called when writing out an object file to decide the type of a
4222 symbol. */
4223 static int
4224 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4225 {
4226 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4227 return STT_PARISC_MILLI;
4228 else
4229 return type;
4230 }
4231
4232 /* Misc BFD support code. */
4233 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4234 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4235 #define elf_info_to_howto elf_hppa_info_to_howto
4236 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4237
4238 /* Stuff for the BFD linker. */
4239 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4240 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4241 #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
4242 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4243 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4244 #define elf_backend_check_relocs elf32_hppa_check_relocs
4245 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4246 #define elf_backend_fake_sections elf_hppa_fake_sections
4247 #define elf_backend_relocate_section elf32_hppa_relocate_section
4248 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4249 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4250 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4251 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4252 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4253 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4254 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4255 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4256 #define elf_backend_object_p elf32_hppa_object_p
4257 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4258 #define elf_backend_post_process_headers elf32_hppa_post_process_headers
4259 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4260 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4261 #define elf_backend_action_discarded elf_hppa_action_discarded
4262
4263 #define elf_backend_can_gc_sections 1
4264 #define elf_backend_can_refcount 1
4265 #define elf_backend_plt_alignment 2
4266 #define elf_backend_want_got_plt 0
4267 #define elf_backend_plt_readonly 0
4268 #define elf_backend_want_plt_sym 0
4269 #define elf_backend_got_header_size 8
4270 #define elf_backend_rela_normal 1
4271
4272 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4273 #define TARGET_BIG_NAME "elf32-hppa"
4274 #define ELF_ARCH bfd_arch_hppa
4275 #define ELF_MACHINE_CODE EM_PARISC
4276 #define ELF_MAXPAGESIZE 0x1000
4277
4278 #include "elf32-target.h"
4279
4280 #undef TARGET_BIG_SYM
4281 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4282 #undef TARGET_BIG_NAME
4283 #define TARGET_BIG_NAME "elf32-hppa-linux"
4284
4285 #define INCLUDED_TARGET_FILE 1
4286 #include "elf32-target.h"
4287
4288 #undef TARGET_BIG_SYM
4289 #define TARGET_BIG_SYM bfd_elf32_hppa_nbsd_vec
4290 #undef TARGET_BIG_NAME
4291 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4292
4293 #include "elf32-target.h"
This page took 0.117676 seconds and 4 git commands to generate.