924f7af49f085df897bf6cc3c45d57fe962bf0f4
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002, 2003 Free Software Foundation, Inc.
4
5 Original code by
6 Center for Software Science
7 Department of Computer Science
8 University of Utah
9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
26
27 #include "bfd.h"
28 #include "sysdep.h"
29 #include "libbfd.h"
30 #include "elf-bfd.h"
31 #include "elf/hppa.h"
32 #include "libhppa.h"
33 #include "elf32-hppa.h"
34 #define ARCH_SIZE 32
35 #include "elf32-hppa.h"
36 #include "elf-hppa.h"
37
38 /* In order to gain some understanding of code in this file without
39 knowing all the intricate details of the linker, note the
40 following:
41
42 Functions named elf32_hppa_* are called by external routines, other
43 functions are only called locally. elf32_hppa_* functions appear
44 in this file more or less in the order in which they are called
45 from external routines. eg. elf32_hppa_check_relocs is called
46 early in the link process, elf32_hppa_finish_dynamic_sections is
47 one of the last functions. */
48
49 /* We use two hash tables to hold information for linking PA ELF objects.
50
51 The first is the elf32_hppa_link_hash_table which is derived
52 from the standard ELF linker hash table. We use this as a place to
53 attach other hash tables and static information.
54
55 The second is the stub hash table which is derived from the
56 base BFD hash table. The stub hash table holds the information
57 necessary to build the linker stubs during a link.
58
59 There are a number of different stubs generated by the linker.
60
61 Long branch stub:
62 : ldil LR'X,%r1
63 : be,n RR'X(%sr4,%r1)
64
65 PIC long branch stub:
66 : b,l .+8,%r1
67 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
68 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
69
70 Import stub to call shared library routine from normal object file
71 (single sub-space version)
72 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
73 : ldw RR'lt_ptr+ltoff(%r1),%r21
74 : bv %r0(%r21)
75 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
76
77 Import stub to call shared library routine from shared library
78 (single sub-space version)
79 : addil LR'ltoff,%r19 ; get procedure entry point
80 : ldw RR'ltoff(%r1),%r21
81 : bv %r0(%r21)
82 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
83
84 Import stub to call shared library routine from normal object file
85 (multiple sub-space support)
86 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
87 : ldw RR'lt_ptr+ltoff(%r1),%r21
88 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
89 : ldsid (%r21),%r1
90 : mtsp %r1,%sr0
91 : be 0(%sr0,%r21) ; branch to target
92 : stw %rp,-24(%sp) ; save rp
93
94 Import stub to call shared library routine from shared library
95 (multiple sub-space support)
96 : addil LR'ltoff,%r19 ; get procedure entry point
97 : ldw RR'ltoff(%r1),%r21
98 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
99 : ldsid (%r21),%r1
100 : mtsp %r1,%sr0
101 : be 0(%sr0,%r21) ; branch to target
102 : stw %rp,-24(%sp) ; save rp
103
104 Export stub to return from shared lib routine (multiple sub-space support)
105 One of these is created for each exported procedure in a shared
106 library (and stored in the shared lib). Shared lib routines are
107 called via the first instruction in the export stub so that we can
108 do an inter-space return. Not required for single sub-space.
109 : bl,n X,%rp ; trap the return
110 : nop
111 : ldw -24(%sp),%rp ; restore the original rp
112 : ldsid (%rp),%r1
113 : mtsp %r1,%sr0
114 : be,n 0(%sr0,%rp) ; inter-space return. */
115
116 #define PLT_ENTRY_SIZE 8
117 #define GOT_ENTRY_SIZE 4
118 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
119
120 static const bfd_byte plt_stub[] =
121 {
122 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
123 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
124 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
125 #define PLT_STUB_ENTRY (3*4)
126 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
127 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
128 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
129 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
130 };
131
132 /* Section name for stubs is the associated section name plus this
133 string. */
134 #define STUB_SUFFIX ".stub"
135
136 /* We don't need to copy certain PC- or GP-relative dynamic relocs
137 into a shared object's dynamic section. All the relocs of the
138 limited class we are interested in, are absolute. */
139 #ifndef RELATIVE_DYNRELOCS
140 #define RELATIVE_DYNRELOCS 0
141 #define IS_ABSOLUTE_RELOC(r_type) 1
142 #endif
143
144 enum elf32_hppa_stub_type {
145 hppa_stub_long_branch,
146 hppa_stub_long_branch_shared,
147 hppa_stub_import,
148 hppa_stub_import_shared,
149 hppa_stub_export,
150 hppa_stub_none
151 };
152
153 struct elf32_hppa_stub_hash_entry {
154
155 /* Base hash table entry structure. */
156 struct bfd_hash_entry root;
157
158 /* The stub section. */
159 asection *stub_sec;
160
161 /* Offset within stub_sec of the beginning of this stub. */
162 bfd_vma stub_offset;
163
164 /* Given the symbol's value and its section we can determine its final
165 value when building the stubs (so the stub knows where to jump. */
166 bfd_vma target_value;
167 asection *target_section;
168
169 enum elf32_hppa_stub_type stub_type;
170
171 /* The symbol table entry, if any, that this was derived from. */
172 struct elf32_hppa_link_hash_entry *h;
173
174 /* Where this stub is being called from, or, in the case of combined
175 stub sections, the first input section in the group. */
176 asection *id_sec;
177 };
178
179 struct elf32_hppa_link_hash_entry {
180
181 struct elf_link_hash_entry elf;
182
183 /* A pointer to the most recently used stub hash entry against this
184 symbol. */
185 struct elf32_hppa_stub_hash_entry *stub_cache;
186
187 /* Used to count relocations for delayed sizing of relocation
188 sections. */
189 struct elf32_hppa_dyn_reloc_entry {
190
191 /* Next relocation in the chain. */
192 struct elf32_hppa_dyn_reloc_entry *next;
193
194 /* The input section of the reloc. */
195 asection *sec;
196
197 /* Number of relocs copied in this section. */
198 bfd_size_type count;
199
200 #if RELATIVE_DYNRELOCS
201 /* Number of relative relocs copied for the input section. */
202 bfd_size_type relative_count;
203 #endif
204 } *dyn_relocs;
205
206 /* Set if the only reason we need a .plt entry is for a non-PIC to
207 PIC function call. */
208 unsigned int pic_call:1;
209
210 /* Set if this symbol is used by a plabel reloc. */
211 unsigned int plabel:1;
212 };
213
214 struct elf32_hppa_link_hash_table {
215
216 /* The main hash table. */
217 struct elf_link_hash_table elf;
218
219 /* The stub hash table. */
220 struct bfd_hash_table stub_hash_table;
221
222 /* Linker stub bfd. */
223 bfd *stub_bfd;
224
225 /* Linker call-backs. */
226 asection * (*add_stub_section) (const char *, asection *);
227 void (*layout_sections_again) (void);
228
229 /* Array to keep track of which stub sections have been created, and
230 information on stub grouping. */
231 struct map_stub {
232 /* This is the section to which stubs in the group will be
233 attached. */
234 asection *link_sec;
235 /* The stub section. */
236 asection *stub_sec;
237 } *stub_group;
238
239 /* Assorted information used by elf32_hppa_size_stubs. */
240 unsigned int bfd_count;
241 int top_index;
242 asection **input_list;
243 Elf_Internal_Sym **all_local_syms;
244
245 /* Short-cuts to get to dynamic linker sections. */
246 asection *sgot;
247 asection *srelgot;
248 asection *splt;
249 asection *srelplt;
250 asection *sdynbss;
251 asection *srelbss;
252
253 /* Used during a final link to store the base of the text and data
254 segments so that we can perform SEGREL relocations. */
255 bfd_vma text_segment_base;
256 bfd_vma data_segment_base;
257
258 /* Whether we support multiple sub-spaces for shared libs. */
259 unsigned int multi_subspace:1;
260
261 /* Flags set when various size branches are detected. Used to
262 select suitable defaults for the stub group size. */
263 unsigned int has_12bit_branch:1;
264 unsigned int has_17bit_branch:1;
265 unsigned int has_22bit_branch:1;
266
267 /* Set if we need a .plt stub to support lazy dynamic linking. */
268 unsigned int need_plt_stub:1;
269
270 /* Small local sym to section mapping cache. */
271 struct sym_sec_cache sym_sec;
272 };
273
274 /* Various hash macros and functions. */
275 #define hppa_link_hash_table(p) \
276 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
277
278 #define hppa_stub_hash_lookup(table, string, create, copy) \
279 ((struct elf32_hppa_stub_hash_entry *) \
280 bfd_hash_lookup ((table), (string), (create), (copy)))
281
282 /* Assorted hash table functions. */
283
284 /* Initialize an entry in the stub hash table. */
285
286 static struct bfd_hash_entry *
287 stub_hash_newfunc (struct bfd_hash_entry *entry,
288 struct bfd_hash_table *table,
289 const char *string)
290 {
291 /* Allocate the structure if it has not already been allocated by a
292 subclass. */
293 if (entry == NULL)
294 {
295 entry = bfd_hash_allocate (table,
296 sizeof (struct elf32_hppa_stub_hash_entry));
297 if (entry == NULL)
298 return entry;
299 }
300
301 /* Call the allocation method of the superclass. */
302 entry = bfd_hash_newfunc (entry, table, string);
303 if (entry != NULL)
304 {
305 struct elf32_hppa_stub_hash_entry *eh;
306
307 /* Initialize the local fields. */
308 eh = (struct elf32_hppa_stub_hash_entry *) entry;
309 eh->stub_sec = NULL;
310 eh->stub_offset = 0;
311 eh->target_value = 0;
312 eh->target_section = NULL;
313 eh->stub_type = hppa_stub_long_branch;
314 eh->h = NULL;
315 eh->id_sec = NULL;
316 }
317
318 return entry;
319 }
320
321 /* Initialize an entry in the link hash table. */
322
323 static struct bfd_hash_entry *
324 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
325 struct bfd_hash_table *table,
326 const char *string)
327 {
328 /* Allocate the structure if it has not already been allocated by a
329 subclass. */
330 if (entry == NULL)
331 {
332 entry = bfd_hash_allocate (table,
333 sizeof (struct elf32_hppa_link_hash_entry));
334 if (entry == NULL)
335 return entry;
336 }
337
338 /* Call the allocation method of the superclass. */
339 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
340 if (entry != NULL)
341 {
342 struct elf32_hppa_link_hash_entry *eh;
343
344 /* Initialize the local fields. */
345 eh = (struct elf32_hppa_link_hash_entry *) entry;
346 eh->stub_cache = NULL;
347 eh->dyn_relocs = NULL;
348 eh->pic_call = 0;
349 eh->plabel = 0;
350 }
351
352 return entry;
353 }
354
355 /* Create the derived linker hash table. The PA ELF port uses the derived
356 hash table to keep information specific to the PA ELF linker (without
357 using static variables). */
358
359 static struct bfd_link_hash_table *
360 elf32_hppa_link_hash_table_create (bfd *abfd)
361 {
362 struct elf32_hppa_link_hash_table *ret;
363 bfd_size_type amt = sizeof (*ret);
364
365 ret = bfd_malloc (amt);
366 if (ret == NULL)
367 return NULL;
368
369 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, hppa_link_hash_newfunc))
370 {
371 free (ret);
372 return NULL;
373 }
374
375 /* Init the stub hash table too. */
376 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc))
377 return NULL;
378
379 ret->stub_bfd = NULL;
380 ret->add_stub_section = NULL;
381 ret->layout_sections_again = NULL;
382 ret->stub_group = NULL;
383 ret->sgot = NULL;
384 ret->srelgot = NULL;
385 ret->splt = NULL;
386 ret->srelplt = NULL;
387 ret->sdynbss = NULL;
388 ret->srelbss = NULL;
389 ret->text_segment_base = (bfd_vma) -1;
390 ret->data_segment_base = (bfd_vma) -1;
391 ret->multi_subspace = 0;
392 ret->has_12bit_branch = 0;
393 ret->has_17bit_branch = 0;
394 ret->has_22bit_branch = 0;
395 ret->need_plt_stub = 0;
396 ret->sym_sec.abfd = NULL;
397
398 return &ret->elf.root;
399 }
400
401 /* Free the derived linker hash table. */
402
403 static void
404 elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *hash)
405 {
406 struct elf32_hppa_link_hash_table *ret
407 = (struct elf32_hppa_link_hash_table *) hash;
408
409 bfd_hash_table_free (&ret->stub_hash_table);
410 _bfd_generic_link_hash_table_free (hash);
411 }
412
413 /* Build a name for an entry in the stub hash table. */
414
415 static char *
416 hppa_stub_name (const asection *input_section,
417 const asection *sym_sec,
418 const struct elf32_hppa_link_hash_entry *hash,
419 const Elf_Internal_Rela *rel)
420 {
421 char *stub_name;
422 bfd_size_type len;
423
424 if (hash)
425 {
426 len = 8 + 1 + strlen (hash->elf.root.root.string) + 1 + 8 + 1;
427 stub_name = bfd_malloc (len);
428 if (stub_name != NULL)
429 {
430 sprintf (stub_name, "%08x_%s+%x",
431 input_section->id & 0xffffffff,
432 hash->elf.root.root.string,
433 (int) rel->r_addend & 0xffffffff);
434 }
435 }
436 else
437 {
438 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
439 stub_name = bfd_malloc (len);
440 if (stub_name != NULL)
441 {
442 sprintf (stub_name, "%08x_%x:%x+%x",
443 input_section->id & 0xffffffff,
444 sym_sec->id & 0xffffffff,
445 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
446 (int) rel->r_addend & 0xffffffff);
447 }
448 }
449 return stub_name;
450 }
451
452 /* Look up an entry in the stub hash. Stub entries are cached because
453 creating the stub name takes a bit of time. */
454
455 static struct elf32_hppa_stub_hash_entry *
456 hppa_get_stub_entry (const asection *input_section,
457 const asection *sym_sec,
458 struct elf32_hppa_link_hash_entry *hash,
459 const Elf_Internal_Rela *rel,
460 struct elf32_hppa_link_hash_table *htab)
461 {
462 struct elf32_hppa_stub_hash_entry *stub_entry;
463 const asection *id_sec;
464
465 /* If this input section is part of a group of sections sharing one
466 stub section, then use the id of the first section in the group.
467 Stub names need to include a section id, as there may well be
468 more than one stub used to reach say, printf, and we need to
469 distinguish between them. */
470 id_sec = htab->stub_group[input_section->id].link_sec;
471
472 if (hash != NULL && hash->stub_cache != NULL
473 && hash->stub_cache->h == hash
474 && hash->stub_cache->id_sec == id_sec)
475 {
476 stub_entry = hash->stub_cache;
477 }
478 else
479 {
480 char *stub_name;
481
482 stub_name = hppa_stub_name (id_sec, sym_sec, hash, rel);
483 if (stub_name == NULL)
484 return NULL;
485
486 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
487 stub_name, FALSE, FALSE);
488 if (hash != NULL)
489 hash->stub_cache = stub_entry;
490
491 free (stub_name);
492 }
493
494 return stub_entry;
495 }
496
497 /* Add a new stub entry to the stub hash. Not all fields of the new
498 stub entry are initialised. */
499
500 static struct elf32_hppa_stub_hash_entry *
501 hppa_add_stub (const char *stub_name,
502 asection *section,
503 struct elf32_hppa_link_hash_table *htab)
504 {
505 asection *link_sec;
506 asection *stub_sec;
507 struct elf32_hppa_stub_hash_entry *stub_entry;
508
509 link_sec = htab->stub_group[section->id].link_sec;
510 stub_sec = htab->stub_group[section->id].stub_sec;
511 if (stub_sec == NULL)
512 {
513 stub_sec = htab->stub_group[link_sec->id].stub_sec;
514 if (stub_sec == NULL)
515 {
516 size_t namelen;
517 bfd_size_type len;
518 char *s_name;
519
520 namelen = strlen (link_sec->name);
521 len = namelen + sizeof (STUB_SUFFIX);
522 s_name = bfd_alloc (htab->stub_bfd, len);
523 if (s_name == NULL)
524 return NULL;
525
526 memcpy (s_name, link_sec->name, namelen);
527 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
528 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
529 if (stub_sec == NULL)
530 return NULL;
531 htab->stub_group[link_sec->id].stub_sec = stub_sec;
532 }
533 htab->stub_group[section->id].stub_sec = stub_sec;
534 }
535
536 /* Enter this entry into the linker stub hash table. */
537 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table, stub_name,
538 TRUE, FALSE);
539 if (stub_entry == NULL)
540 {
541 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
542 bfd_archive_filename (section->owner),
543 stub_name);
544 return NULL;
545 }
546
547 stub_entry->stub_sec = stub_sec;
548 stub_entry->stub_offset = 0;
549 stub_entry->id_sec = link_sec;
550 return stub_entry;
551 }
552
553 /* Determine the type of stub needed, if any, for a call. */
554
555 static enum elf32_hppa_stub_type
556 hppa_type_of_stub (asection *input_sec,
557 const Elf_Internal_Rela *rel,
558 struct elf32_hppa_link_hash_entry *hash,
559 bfd_vma destination)
560 {
561 bfd_vma location;
562 bfd_vma branch_offset;
563 bfd_vma max_branch_offset;
564 unsigned int r_type;
565
566 if (hash != NULL
567 && hash->elf.plt.offset != (bfd_vma) -1
568 && (hash->elf.dynindx != -1 || hash->pic_call)
569 && !hash->plabel)
570 {
571 /* We need an import stub. Decide between hppa_stub_import
572 and hppa_stub_import_shared later. */
573 return hppa_stub_import;
574 }
575
576 /* Determine where the call point is. */
577 location = (input_sec->output_offset
578 + input_sec->output_section->vma
579 + rel->r_offset);
580
581 branch_offset = destination - location - 8;
582 r_type = ELF32_R_TYPE (rel->r_info);
583
584 /* Determine if a long branch stub is needed. parisc branch offsets
585 are relative to the second instruction past the branch, ie. +8
586 bytes on from the branch instruction location. The offset is
587 signed and counts in units of 4 bytes. */
588 if (r_type == (unsigned int) R_PARISC_PCREL17F)
589 {
590 max_branch_offset = (1 << (17-1)) << 2;
591 }
592 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
593 {
594 max_branch_offset = (1 << (12-1)) << 2;
595 }
596 else /* R_PARISC_PCREL22F. */
597 {
598 max_branch_offset = (1 << (22-1)) << 2;
599 }
600
601 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
602 return hppa_stub_long_branch;
603
604 return hppa_stub_none;
605 }
606
607 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
608 IN_ARG contains the link info pointer. */
609
610 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
611 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
612
613 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
614 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
615 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
616
617 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
618 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
619 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
620 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
621
622 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
623 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
624
625 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
626 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
627 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
628 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
629
630 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
631 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
632 #define NOP 0x08000240 /* nop */
633 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
634 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
635 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
636
637 #ifndef R19_STUBS
638 #define R19_STUBS 1
639 #endif
640
641 #if R19_STUBS
642 #define LDW_R1_DLT LDW_R1_R19
643 #else
644 #define LDW_R1_DLT LDW_R1_DP
645 #endif
646
647 static bfd_boolean
648 hppa_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
649 {
650 struct elf32_hppa_stub_hash_entry *stub_entry;
651 struct bfd_link_info *info;
652 struct elf32_hppa_link_hash_table *htab;
653 asection *stub_sec;
654 bfd *stub_bfd;
655 bfd_byte *loc;
656 bfd_vma sym_value;
657 bfd_vma insn;
658 bfd_vma off;
659 int val;
660 int size;
661
662 /* Massage our args to the form they really have. */
663 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
664 info = in_arg;
665
666 htab = hppa_link_hash_table (info);
667 stub_sec = stub_entry->stub_sec;
668
669 /* Make a note of the offset within the stubs for this entry. */
670 stub_entry->stub_offset = stub_sec->_raw_size;
671 loc = stub_sec->contents + stub_entry->stub_offset;
672
673 stub_bfd = stub_sec->owner;
674
675 switch (stub_entry->stub_type)
676 {
677 case hppa_stub_long_branch:
678 /* Create the long branch. A long branch is formed with "ldil"
679 loading the upper bits of the target address into a register,
680 then branching with "be" which adds in the lower bits.
681 The "be" has its delay slot nullified. */
682 sym_value = (stub_entry->target_value
683 + stub_entry->target_section->output_offset
684 + stub_entry->target_section->output_section->vma);
685
686 val = hppa_field_adjust (sym_value, 0, e_lrsel);
687 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
688 bfd_put_32 (stub_bfd, insn, loc);
689
690 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
691 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
692 bfd_put_32 (stub_bfd, insn, loc + 4);
693
694 size = 8;
695 break;
696
697 case hppa_stub_long_branch_shared:
698 /* Branches are relative. This is where we are going to. */
699 sym_value = (stub_entry->target_value
700 + stub_entry->target_section->output_offset
701 + stub_entry->target_section->output_section->vma);
702
703 /* And this is where we are coming from, more or less. */
704 sym_value -= (stub_entry->stub_offset
705 + stub_sec->output_offset
706 + stub_sec->output_section->vma);
707
708 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
709 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
710 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
711 bfd_put_32 (stub_bfd, insn, loc + 4);
712
713 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
714 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
715 bfd_put_32 (stub_bfd, insn, loc + 8);
716 size = 12;
717 break;
718
719 case hppa_stub_import:
720 case hppa_stub_import_shared:
721 off = stub_entry->h->elf.plt.offset;
722 if (off >= (bfd_vma) -2)
723 abort ();
724
725 off &= ~ (bfd_vma) 1;
726 sym_value = (off
727 + htab->splt->output_offset
728 + htab->splt->output_section->vma
729 - elf_gp (htab->splt->output_section->owner));
730
731 insn = ADDIL_DP;
732 #if R19_STUBS
733 if (stub_entry->stub_type == hppa_stub_import_shared)
734 insn = ADDIL_R19;
735 #endif
736 val = hppa_field_adjust (sym_value, 0, e_lrsel),
737 insn = hppa_rebuild_insn ((int) insn, val, 21);
738 bfd_put_32 (stub_bfd, insn, loc);
739
740 /* It is critical to use lrsel/rrsel here because we are using
741 two different offsets (+0 and +4) from sym_value. If we use
742 lsel/rsel then with unfortunate sym_values we will round
743 sym_value+4 up to the next 2k block leading to a mis-match
744 between the lsel and rsel value. */
745 val = hppa_field_adjust (sym_value, 0, e_rrsel);
746 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
747 bfd_put_32 (stub_bfd, insn, loc + 4);
748
749 if (htab->multi_subspace)
750 {
751 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
752 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
753 bfd_put_32 (stub_bfd, insn, loc + 8);
754
755 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
756 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
757 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
758 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
759
760 size = 28;
761 }
762 else
763 {
764 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
765 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
766 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
767 bfd_put_32 (stub_bfd, insn, loc + 12);
768
769 size = 16;
770 }
771
772 if (!info->shared
773 && stub_entry->h != NULL
774 && stub_entry->h->pic_call)
775 {
776 /* Build the .plt entry needed to call a PIC function from
777 statically linked code. We don't need any relocs. */
778 bfd *dynobj;
779 struct elf32_hppa_link_hash_entry *eh;
780 bfd_vma value;
781
782 dynobj = htab->elf.dynobj;
783 eh = (struct elf32_hppa_link_hash_entry *) stub_entry->h;
784
785 if (eh->elf.root.type != bfd_link_hash_defined
786 && eh->elf.root.type != bfd_link_hash_defweak)
787 abort ();
788
789 value = (eh->elf.root.u.def.value
790 + eh->elf.root.u.def.section->output_offset
791 + eh->elf.root.u.def.section->output_section->vma);
792
793 /* Fill in the entry in the procedure linkage table.
794
795 The format of a plt entry is
796 <funcaddr>
797 <__gp>. */
798
799 bfd_put_32 (htab->splt->owner, value,
800 htab->splt->contents + off);
801 value = elf_gp (htab->splt->output_section->owner);
802 bfd_put_32 (htab->splt->owner, value,
803 htab->splt->contents + off + 4);
804 }
805 break;
806
807 case hppa_stub_export:
808 /* Branches are relative. This is where we are going to. */
809 sym_value = (stub_entry->target_value
810 + stub_entry->target_section->output_offset
811 + stub_entry->target_section->output_section->vma);
812
813 /* And this is where we are coming from. */
814 sym_value -= (stub_entry->stub_offset
815 + stub_sec->output_offset
816 + stub_sec->output_section->vma);
817
818 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
819 && (!htab->has_22bit_branch
820 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
821 {
822 (*_bfd_error_handler)
823 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
824 bfd_archive_filename (stub_entry->target_section->owner),
825 stub_sec->name,
826 (long) stub_entry->stub_offset,
827 stub_entry->root.string);
828 bfd_set_error (bfd_error_bad_value);
829 return FALSE;
830 }
831
832 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
833 if (!htab->has_22bit_branch)
834 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
835 else
836 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
837 bfd_put_32 (stub_bfd, insn, loc);
838
839 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
840 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
841 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
842 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
843 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
844
845 /* Point the function symbol at the stub. */
846 stub_entry->h->elf.root.u.def.section = stub_sec;
847 stub_entry->h->elf.root.u.def.value = stub_sec->_raw_size;
848
849 size = 24;
850 break;
851
852 default:
853 BFD_FAIL ();
854 return FALSE;
855 }
856
857 stub_sec->_raw_size += size;
858 return TRUE;
859 }
860
861 #undef LDIL_R1
862 #undef BE_SR4_R1
863 #undef BL_R1
864 #undef ADDIL_R1
865 #undef DEPI_R1
866 #undef ADDIL_DP
867 #undef LDW_R1_R21
868 #undef LDW_R1_DLT
869 #undef LDW_R1_R19
870 #undef ADDIL_R19
871 #undef LDW_R1_DP
872 #undef LDSID_R21_R1
873 #undef MTSP_R1
874 #undef BE_SR0_R21
875 #undef STW_RP
876 #undef BV_R0_R21
877 #undef BL_RP
878 #undef NOP
879 #undef LDW_RP
880 #undef LDSID_RP_R1
881 #undef BE_SR0_RP
882
883 /* As above, but don't actually build the stub. Just bump offset so
884 we know stub section sizes. */
885
886 static bfd_boolean
887 hppa_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
888 {
889 struct elf32_hppa_stub_hash_entry *stub_entry;
890 struct elf32_hppa_link_hash_table *htab;
891 int size;
892
893 /* Massage our args to the form they really have. */
894 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
895 htab = in_arg;
896
897 if (stub_entry->stub_type == hppa_stub_long_branch)
898 size = 8;
899 else if (stub_entry->stub_type == hppa_stub_long_branch_shared)
900 size = 12;
901 else if (stub_entry->stub_type == hppa_stub_export)
902 size = 24;
903 else /* hppa_stub_import or hppa_stub_import_shared. */
904 {
905 if (htab->multi_subspace)
906 size = 28;
907 else
908 size = 16;
909 }
910
911 stub_entry->stub_sec->_raw_size += size;
912 return TRUE;
913 }
914
915 /* Return nonzero if ABFD represents an HPPA ELF32 file.
916 Additionally we set the default architecture and machine. */
917
918 static bfd_boolean
919 elf32_hppa_object_p (bfd *abfd)
920 {
921 Elf_Internal_Ehdr * i_ehdrp;
922 unsigned int flags;
923
924 i_ehdrp = elf_elfheader (abfd);
925 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
926 {
927 /* GCC on hppa-linux produces binaries with OSABI=Linux,
928 but the kernel produces corefiles with OSABI=SysV. */
929 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX &&
930 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
931 return FALSE;
932 }
933 else
934 {
935 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
936 return FALSE;
937 }
938
939 flags = i_ehdrp->e_flags;
940 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
941 {
942 case EFA_PARISC_1_0:
943 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
944 case EFA_PARISC_1_1:
945 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
946 case EFA_PARISC_2_0:
947 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
948 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
949 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
950 }
951 return TRUE;
952 }
953
954 /* Create the .plt and .got sections, and set up our hash table
955 short-cuts to various dynamic sections. */
956
957 static bfd_boolean
958 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
959 {
960 struct elf32_hppa_link_hash_table *htab;
961
962 /* Don't try to create the .plt and .got twice. */
963 htab = hppa_link_hash_table (info);
964 if (htab->splt != NULL)
965 return TRUE;
966
967 /* Call the generic code to do most of the work. */
968 if (! _bfd_elf_create_dynamic_sections (abfd, info))
969 return FALSE;
970
971 htab->splt = bfd_get_section_by_name (abfd, ".plt");
972 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
973
974 htab->sgot = bfd_get_section_by_name (abfd, ".got");
975 htab->srelgot = bfd_make_section (abfd, ".rela.got");
976 if (htab->srelgot == NULL
977 || ! bfd_set_section_flags (abfd, htab->srelgot,
978 (SEC_ALLOC
979 | SEC_LOAD
980 | SEC_HAS_CONTENTS
981 | SEC_IN_MEMORY
982 | SEC_LINKER_CREATED
983 | SEC_READONLY))
984 || ! bfd_set_section_alignment (abfd, htab->srelgot, 2))
985 return FALSE;
986
987 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
988 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
989
990 return TRUE;
991 }
992
993 /* Copy the extra info we tack onto an elf_link_hash_entry. */
994
995 static void
996 elf32_hppa_copy_indirect_symbol (const struct elf_backend_data *bed,
997 struct elf_link_hash_entry *dir,
998 struct elf_link_hash_entry *ind)
999 {
1000 struct elf32_hppa_link_hash_entry *edir, *eind;
1001
1002 edir = (struct elf32_hppa_link_hash_entry *) dir;
1003 eind = (struct elf32_hppa_link_hash_entry *) ind;
1004
1005 if (eind->dyn_relocs != NULL)
1006 {
1007 if (edir->dyn_relocs != NULL)
1008 {
1009 struct elf32_hppa_dyn_reloc_entry **pp;
1010 struct elf32_hppa_dyn_reloc_entry *p;
1011
1012 if (ind->root.type == bfd_link_hash_indirect)
1013 abort ();
1014
1015 /* Add reloc counts against the weak sym to the strong sym
1016 list. Merge any entries against the same section. */
1017 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
1018 {
1019 struct elf32_hppa_dyn_reloc_entry *q;
1020
1021 for (q = edir->dyn_relocs; q != NULL; q = q->next)
1022 if (q->sec == p->sec)
1023 {
1024 #if RELATIVE_DYNRELOCS
1025 q->relative_count += p->relative_count;
1026 #endif
1027 q->count += p->count;
1028 *pp = p->next;
1029 break;
1030 }
1031 if (q == NULL)
1032 pp = &p->next;
1033 }
1034 *pp = edir->dyn_relocs;
1035 }
1036
1037 edir->dyn_relocs = eind->dyn_relocs;
1038 eind->dyn_relocs = NULL;
1039 }
1040
1041 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
1042 }
1043
1044 /* Look through the relocs for a section during the first phase, and
1045 calculate needed space in the global offset table, procedure linkage
1046 table, and dynamic reloc sections. At this point we haven't
1047 necessarily read all the input files. */
1048
1049 static bfd_boolean
1050 elf32_hppa_check_relocs (bfd *abfd,
1051 struct bfd_link_info *info,
1052 asection *sec,
1053 const Elf_Internal_Rela *relocs)
1054 {
1055 Elf_Internal_Shdr *symtab_hdr;
1056 struct elf_link_hash_entry **sym_hashes;
1057 const Elf_Internal_Rela *rel;
1058 const Elf_Internal_Rela *rel_end;
1059 struct elf32_hppa_link_hash_table *htab;
1060 asection *sreloc;
1061 asection *stubreloc;
1062
1063 if (info->relocatable)
1064 return TRUE;
1065
1066 htab = hppa_link_hash_table (info);
1067 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1068 sym_hashes = elf_sym_hashes (abfd);
1069 sreloc = NULL;
1070 stubreloc = NULL;
1071
1072 rel_end = relocs + sec->reloc_count;
1073 for (rel = relocs; rel < rel_end; rel++)
1074 {
1075 enum {
1076 NEED_GOT = 1,
1077 NEED_PLT = 2,
1078 NEED_DYNREL = 4,
1079 PLT_PLABEL = 8
1080 };
1081
1082 unsigned int r_symndx, r_type;
1083 struct elf32_hppa_link_hash_entry *h;
1084 int need_entry;
1085
1086 r_symndx = ELF32_R_SYM (rel->r_info);
1087
1088 if (r_symndx < symtab_hdr->sh_info)
1089 h = NULL;
1090 else
1091 h = ((struct elf32_hppa_link_hash_entry *)
1092 sym_hashes[r_symndx - symtab_hdr->sh_info]);
1093
1094 r_type = ELF32_R_TYPE (rel->r_info);
1095
1096 switch (r_type)
1097 {
1098 case R_PARISC_DLTIND14F:
1099 case R_PARISC_DLTIND14R:
1100 case R_PARISC_DLTIND21L:
1101 /* This symbol requires a global offset table entry. */
1102 need_entry = NEED_GOT;
1103
1104 /* Mark this section as containing PIC code. */
1105 sec->flags |= SEC_HAS_GOT_REF;
1106 break;
1107
1108 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1109 case R_PARISC_PLABEL21L:
1110 case R_PARISC_PLABEL32:
1111 /* If the addend is non-zero, we break badly. */
1112 if (rel->r_addend != 0)
1113 abort ();
1114
1115 /* If we are creating a shared library, then we need to
1116 create a PLT entry for all PLABELs, because PLABELs with
1117 local symbols may be passed via a pointer to another
1118 object. Additionally, output a dynamic relocation
1119 pointing to the PLT entry.
1120 For executables, the original 32-bit ABI allowed two
1121 different styles of PLABELs (function pointers): For
1122 global functions, the PLABEL word points into the .plt
1123 two bytes past a (function address, gp) pair, and for
1124 local functions the PLABEL points directly at the
1125 function. The magic +2 for the first type allows us to
1126 differentiate between the two. As you can imagine, this
1127 is a real pain when it comes to generating code to call
1128 functions indirectly or to compare function pointers.
1129 We avoid the mess by always pointing a PLABEL into the
1130 .plt, even for local functions. */
1131 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1132 break;
1133
1134 case R_PARISC_PCREL12F:
1135 htab->has_12bit_branch = 1;
1136 goto branch_common;
1137
1138 case R_PARISC_PCREL17C:
1139 case R_PARISC_PCREL17F:
1140 htab->has_17bit_branch = 1;
1141 goto branch_common;
1142
1143 case R_PARISC_PCREL22F:
1144 htab->has_22bit_branch = 1;
1145 branch_common:
1146 /* Function calls might need to go through the .plt, and
1147 might require long branch stubs. */
1148 if (h == NULL)
1149 {
1150 /* We know local syms won't need a .plt entry, and if
1151 they need a long branch stub we can't guarantee that
1152 we can reach the stub. So just flag an error later
1153 if we're doing a shared link and find we need a long
1154 branch stub. */
1155 continue;
1156 }
1157 else
1158 {
1159 /* Global symbols will need a .plt entry if they remain
1160 global, and in most cases won't need a long branch
1161 stub. Unfortunately, we have to cater for the case
1162 where a symbol is forced local by versioning, or due
1163 to symbolic linking, and we lose the .plt entry. */
1164 need_entry = NEED_PLT;
1165 if (h->elf.type == STT_PARISC_MILLI)
1166 need_entry = 0;
1167 }
1168 break;
1169
1170 case R_PARISC_SEGBASE: /* Used to set segment base. */
1171 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1172 case R_PARISC_PCREL14F: /* PC relative load/store. */
1173 case R_PARISC_PCREL14R:
1174 case R_PARISC_PCREL17R: /* External branches. */
1175 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1176 /* We don't need to propagate the relocation if linking a
1177 shared object since these are section relative. */
1178 continue;
1179
1180 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1181 case R_PARISC_DPREL14R:
1182 case R_PARISC_DPREL21L:
1183 if (info->shared)
1184 {
1185 (*_bfd_error_handler)
1186 (_("%s: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1187 bfd_archive_filename (abfd),
1188 elf_hppa_howto_table[r_type].name);
1189 bfd_set_error (bfd_error_bad_value);
1190 return FALSE;
1191 }
1192 /* Fall through. */
1193
1194 case R_PARISC_DIR17F: /* Used for external branches. */
1195 case R_PARISC_DIR17R:
1196 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1197 case R_PARISC_DIR14R:
1198 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1199 #if 0
1200 /* Help debug shared library creation. Any of the above
1201 relocs can be used in shared libs, but they may cause
1202 pages to become unshared. */
1203 if (info->shared)
1204 {
1205 (*_bfd_error_handler)
1206 (_("%s: relocation %s should not be used when making a shared object; recompile with -fPIC"),
1207 bfd_archive_filename (abfd),
1208 elf_hppa_howto_table[r_type].name);
1209 }
1210 /* Fall through. */
1211 #endif
1212
1213 case R_PARISC_DIR32: /* .word relocs. */
1214 /* We may want to output a dynamic relocation later. */
1215 need_entry = NEED_DYNREL;
1216 break;
1217
1218 /* This relocation describes the C++ object vtable hierarchy.
1219 Reconstruct it for later use during GC. */
1220 case R_PARISC_GNU_VTINHERIT:
1221 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec,
1222 &h->elf, rel->r_offset))
1223 return FALSE;
1224 continue;
1225
1226 /* This relocation describes which C++ vtable entries are actually
1227 used. Record for later use during GC. */
1228 case R_PARISC_GNU_VTENTRY:
1229 if (!_bfd_elf32_gc_record_vtentry (abfd, sec,
1230 &h->elf, rel->r_addend))
1231 return FALSE;
1232 continue;
1233
1234 default:
1235 continue;
1236 }
1237
1238 /* Now carry out our orders. */
1239 if (need_entry & NEED_GOT)
1240 {
1241 /* Allocate space for a GOT entry, as well as a dynamic
1242 relocation for this entry. */
1243 if (htab->sgot == NULL)
1244 {
1245 if (htab->elf.dynobj == NULL)
1246 htab->elf.dynobj = abfd;
1247 if (!elf32_hppa_create_dynamic_sections (htab->elf.dynobj, info))
1248 return FALSE;
1249 }
1250
1251 if (h != NULL)
1252 {
1253 h->elf.got.refcount += 1;
1254 }
1255 else
1256 {
1257 bfd_signed_vma *local_got_refcounts;
1258
1259 /* This is a global offset table entry for a local symbol. */
1260 local_got_refcounts = elf_local_got_refcounts (abfd);
1261 if (local_got_refcounts == NULL)
1262 {
1263 bfd_size_type size;
1264
1265 /* Allocate space for local got offsets and local
1266 plt offsets. Done this way to save polluting
1267 elf_obj_tdata with another target specific
1268 pointer. */
1269 size = symtab_hdr->sh_info;
1270 size *= 2 * sizeof (bfd_signed_vma);
1271 local_got_refcounts = bfd_zalloc (abfd, size);
1272 if (local_got_refcounts == NULL)
1273 return FALSE;
1274 elf_local_got_refcounts (abfd) = local_got_refcounts;
1275 }
1276 local_got_refcounts[r_symndx] += 1;
1277 }
1278 }
1279
1280 if (need_entry & NEED_PLT)
1281 {
1282 /* If we are creating a shared library, and this is a reloc
1283 against a weak symbol or a global symbol in a dynamic
1284 object, then we will be creating an import stub and a
1285 .plt entry for the symbol. Similarly, on a normal link
1286 to symbols defined in a dynamic object we'll need the
1287 import stub and a .plt entry. We don't know yet whether
1288 the symbol is defined or not, so make an entry anyway and
1289 clean up later in adjust_dynamic_symbol. */
1290 if ((sec->flags & SEC_ALLOC) != 0)
1291 {
1292 if (h != NULL)
1293 {
1294 h->elf.elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1295 h->elf.plt.refcount += 1;
1296
1297 /* If this .plt entry is for a plabel, mark it so
1298 that adjust_dynamic_symbol will keep the entry
1299 even if it appears to be local. */
1300 if (need_entry & PLT_PLABEL)
1301 h->plabel = 1;
1302 }
1303 else if (need_entry & PLT_PLABEL)
1304 {
1305 bfd_signed_vma *local_got_refcounts;
1306 bfd_signed_vma *local_plt_refcounts;
1307
1308 local_got_refcounts = elf_local_got_refcounts (abfd);
1309 if (local_got_refcounts == NULL)
1310 {
1311 bfd_size_type size;
1312
1313 /* Allocate space for local got offsets and local
1314 plt offsets. */
1315 size = symtab_hdr->sh_info;
1316 size *= 2 * sizeof (bfd_signed_vma);
1317 local_got_refcounts = bfd_zalloc (abfd, size);
1318 if (local_got_refcounts == NULL)
1319 return FALSE;
1320 elf_local_got_refcounts (abfd) = local_got_refcounts;
1321 }
1322 local_plt_refcounts = (local_got_refcounts
1323 + symtab_hdr->sh_info);
1324 local_plt_refcounts[r_symndx] += 1;
1325 }
1326 }
1327 }
1328
1329 if (need_entry & NEED_DYNREL)
1330 {
1331 /* Flag this symbol as having a non-got, non-plt reference
1332 so that we generate copy relocs if it turns out to be
1333 dynamic. */
1334 if (h != NULL && !info->shared)
1335 h->elf.elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
1336
1337 /* If we are creating a shared library then we need to copy
1338 the reloc into the shared library. However, if we are
1339 linking with -Bsymbolic, we need only copy absolute
1340 relocs or relocs against symbols that are not defined in
1341 an object we are including in the link. PC- or DP- or
1342 DLT-relative relocs against any local sym or global sym
1343 with DEF_REGULAR set, can be discarded. At this point we
1344 have not seen all the input files, so it is possible that
1345 DEF_REGULAR is not set now but will be set later (it is
1346 never cleared). We account for that possibility below by
1347 storing information in the dyn_relocs field of the
1348 hash table entry.
1349
1350 A similar situation to the -Bsymbolic case occurs when
1351 creating shared libraries and symbol visibility changes
1352 render the symbol local.
1353
1354 As it turns out, all the relocs we will be creating here
1355 are absolute, so we cannot remove them on -Bsymbolic
1356 links or visibility changes anyway. A STUB_REL reloc
1357 is absolute too, as in that case it is the reloc in the
1358 stub we will be creating, rather than copying the PCREL
1359 reloc in the branch.
1360
1361 If on the other hand, we are creating an executable, we
1362 may need to keep relocations for symbols satisfied by a
1363 dynamic library if we manage to avoid copy relocs for the
1364 symbol. */
1365 if ((info->shared
1366 && (sec->flags & SEC_ALLOC) != 0
1367 && (IS_ABSOLUTE_RELOC (r_type)
1368 || (h != NULL
1369 && (!info->symbolic
1370 || h->elf.root.type == bfd_link_hash_defweak
1371 || (h->elf.elf_link_hash_flags
1372 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1373 || (!info->shared
1374 && (sec->flags & SEC_ALLOC) != 0
1375 && h != NULL
1376 && (h->elf.root.type == bfd_link_hash_defweak
1377 || (h->elf.elf_link_hash_flags
1378 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
1379 {
1380 struct elf32_hppa_dyn_reloc_entry *p;
1381 struct elf32_hppa_dyn_reloc_entry **head;
1382
1383 /* Create a reloc section in dynobj and make room for
1384 this reloc. */
1385 if (sreloc == NULL)
1386 {
1387 char *name;
1388 bfd *dynobj;
1389
1390 name = (bfd_elf_string_from_elf_section
1391 (abfd,
1392 elf_elfheader (abfd)->e_shstrndx,
1393 elf_section_data (sec)->rel_hdr.sh_name));
1394 if (name == NULL)
1395 {
1396 (*_bfd_error_handler)
1397 (_("Could not find relocation section for %s"),
1398 sec->name);
1399 bfd_set_error (bfd_error_bad_value);
1400 return FALSE;
1401 }
1402
1403 if (htab->elf.dynobj == NULL)
1404 htab->elf.dynobj = abfd;
1405
1406 dynobj = htab->elf.dynobj;
1407 sreloc = bfd_get_section_by_name (dynobj, name);
1408 if (sreloc == NULL)
1409 {
1410 flagword flags;
1411
1412 sreloc = bfd_make_section (dynobj, name);
1413 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1414 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1415 if ((sec->flags & SEC_ALLOC) != 0)
1416 flags |= SEC_ALLOC | SEC_LOAD;
1417 if (sreloc == NULL
1418 || !bfd_set_section_flags (dynobj, sreloc, flags)
1419 || !bfd_set_section_alignment (dynobj, sreloc, 2))
1420 return FALSE;
1421 }
1422
1423 elf_section_data (sec)->sreloc = sreloc;
1424 }
1425
1426 /* If this is a global symbol, we count the number of
1427 relocations we need for this symbol. */
1428 if (h != NULL)
1429 {
1430 head = &h->dyn_relocs;
1431 }
1432 else
1433 {
1434 /* Track dynamic relocs needed for local syms too.
1435 We really need local syms available to do this
1436 easily. Oh well. */
1437
1438 asection *s;
1439 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1440 sec, r_symndx);
1441 if (s == NULL)
1442 return FALSE;
1443
1444 head = ((struct elf32_hppa_dyn_reloc_entry **)
1445 &elf_section_data (s)->local_dynrel);
1446 }
1447
1448 p = *head;
1449 if (p == NULL || p->sec != sec)
1450 {
1451 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
1452 if (p == NULL)
1453 return FALSE;
1454 p->next = *head;
1455 *head = p;
1456 p->sec = sec;
1457 p->count = 0;
1458 #if RELATIVE_DYNRELOCS
1459 p->relative_count = 0;
1460 #endif
1461 }
1462
1463 p->count += 1;
1464 #if RELATIVE_DYNRELOCS
1465 if (!IS_ABSOLUTE_RELOC (rtype))
1466 p->relative_count += 1;
1467 #endif
1468 }
1469 }
1470 }
1471
1472 return TRUE;
1473 }
1474
1475 /* Return the section that should be marked against garbage collection
1476 for a given relocation. */
1477
1478 static asection *
1479 elf32_hppa_gc_mark_hook (asection *sec,
1480 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1481 Elf_Internal_Rela *rel,
1482 struct elf_link_hash_entry *h,
1483 Elf_Internal_Sym *sym)
1484 {
1485 if (h != NULL)
1486 {
1487 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1488 {
1489 case R_PARISC_GNU_VTINHERIT:
1490 case R_PARISC_GNU_VTENTRY:
1491 break;
1492
1493 default:
1494 switch (h->root.type)
1495 {
1496 case bfd_link_hash_defined:
1497 case bfd_link_hash_defweak:
1498 return h->root.u.def.section;
1499
1500 case bfd_link_hash_common:
1501 return h->root.u.c.p->section;
1502
1503 default:
1504 break;
1505 }
1506 }
1507 }
1508 else
1509 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1510
1511 return NULL;
1512 }
1513
1514 /* Update the got and plt entry reference counts for the section being
1515 removed. */
1516
1517 static bfd_boolean
1518 elf32_hppa_gc_sweep_hook (bfd *abfd,
1519 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1520 asection *sec,
1521 const Elf_Internal_Rela *relocs)
1522 {
1523 Elf_Internal_Shdr *symtab_hdr;
1524 struct elf_link_hash_entry **sym_hashes;
1525 bfd_signed_vma *local_got_refcounts;
1526 bfd_signed_vma *local_plt_refcounts;
1527 const Elf_Internal_Rela *rel, *relend;
1528
1529 elf_section_data (sec)->local_dynrel = NULL;
1530
1531 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1532 sym_hashes = elf_sym_hashes (abfd);
1533 local_got_refcounts = elf_local_got_refcounts (abfd);
1534 local_plt_refcounts = local_got_refcounts;
1535 if (local_plt_refcounts != NULL)
1536 local_plt_refcounts += symtab_hdr->sh_info;
1537
1538 relend = relocs + sec->reloc_count;
1539 for (rel = relocs; rel < relend; rel++)
1540 {
1541 unsigned long r_symndx;
1542 unsigned int r_type;
1543 struct elf_link_hash_entry *h = NULL;
1544
1545 r_symndx = ELF32_R_SYM (rel->r_info);
1546 if (r_symndx >= symtab_hdr->sh_info)
1547 {
1548 struct elf32_hppa_link_hash_entry *eh;
1549 struct elf32_hppa_dyn_reloc_entry **pp;
1550 struct elf32_hppa_dyn_reloc_entry *p;
1551
1552 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1553 eh = (struct elf32_hppa_link_hash_entry *) h;
1554
1555 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1556 if (p->sec == sec)
1557 {
1558 /* Everything must go for SEC. */
1559 *pp = p->next;
1560 break;
1561 }
1562 }
1563
1564 r_type = ELF32_R_TYPE (rel->r_info);
1565 switch (r_type)
1566 {
1567 case R_PARISC_DLTIND14F:
1568 case R_PARISC_DLTIND14R:
1569 case R_PARISC_DLTIND21L:
1570 if (h != NULL)
1571 {
1572 if (h->got.refcount > 0)
1573 h->got.refcount -= 1;
1574 }
1575 else if (local_got_refcounts != NULL)
1576 {
1577 if (local_got_refcounts[r_symndx] > 0)
1578 local_got_refcounts[r_symndx] -= 1;
1579 }
1580 break;
1581
1582 case R_PARISC_PCREL12F:
1583 case R_PARISC_PCREL17C:
1584 case R_PARISC_PCREL17F:
1585 case R_PARISC_PCREL22F:
1586 if (h != NULL)
1587 {
1588 if (h->plt.refcount > 0)
1589 h->plt.refcount -= 1;
1590 }
1591 break;
1592
1593 case R_PARISC_PLABEL14R:
1594 case R_PARISC_PLABEL21L:
1595 case R_PARISC_PLABEL32:
1596 if (h != NULL)
1597 {
1598 if (h->plt.refcount > 0)
1599 h->plt.refcount -= 1;
1600 }
1601 else if (local_plt_refcounts != NULL)
1602 {
1603 if (local_plt_refcounts[r_symndx] > 0)
1604 local_plt_refcounts[r_symndx] -= 1;
1605 }
1606 break;
1607
1608 default:
1609 break;
1610 }
1611 }
1612
1613 return TRUE;
1614 }
1615
1616 /* Our own version of hide_symbol, so that we can keep plt entries for
1617 plabels. */
1618
1619 static void
1620 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1621 struct elf_link_hash_entry *h,
1622 bfd_boolean force_local)
1623 {
1624 if (force_local)
1625 {
1626 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
1627 if (h->dynindx != -1)
1628 {
1629 h->dynindx = -1;
1630 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1631 h->dynstr_index);
1632 }
1633 }
1634
1635 if (! ((struct elf32_hppa_link_hash_entry *) h)->plabel)
1636 {
1637 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1638 h->plt.offset = (bfd_vma) -1;
1639 }
1640 }
1641
1642 /* This is the condition under which elf32_hppa_finish_dynamic_symbol
1643 will be called from elflink.h. If elflink.h doesn't call our
1644 finish_dynamic_symbol routine, we'll need to do something about
1645 initializing any .plt and .got entries in elf32_hppa_relocate_section. */
1646 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1647 ((DYN) \
1648 && ((INFO)->shared \
1649 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1650 && ((H)->dynindx != -1 \
1651 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1652
1653 /* Adjust a symbol defined by a dynamic object and referenced by a
1654 regular object. The current definition is in some section of the
1655 dynamic object, but we're not including those sections. We have to
1656 change the definition to something the rest of the link can
1657 understand. */
1658
1659 static bfd_boolean
1660 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1661 struct elf_link_hash_entry *h)
1662 {
1663 struct elf32_hppa_link_hash_table *htab;
1664 struct elf32_hppa_link_hash_entry *eh;
1665 struct elf32_hppa_dyn_reloc_entry *p;
1666 asection *s;
1667 unsigned int power_of_two;
1668
1669 /* If this is a function, put it in the procedure linkage table. We
1670 will fill in the contents of the procedure linkage table later. */
1671 if (h->type == STT_FUNC
1672 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1673 {
1674 if (h->plt.refcount <= 0
1675 || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1676 && h->root.type != bfd_link_hash_defweak
1677 && ! ((struct elf32_hppa_link_hash_entry *) h)->plabel
1678 && (!info->shared || info->symbolic)))
1679 {
1680 /* The .plt entry is not needed when:
1681 a) Garbage collection has removed all references to the
1682 symbol, or
1683 b) We know for certain the symbol is defined in this
1684 object, and it's not a weak definition, nor is the symbol
1685 used by a plabel relocation. Either this object is the
1686 application or we are doing a shared symbolic link. */
1687
1688 /* As a special sop to the hppa ABI, we keep a .plt entry
1689 for functions in sections containing PIC code. */
1690 if (!info->shared
1691 && h->plt.refcount > 0
1692 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1693 && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0)
1694 ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
1695 else
1696 {
1697 h->plt.offset = (bfd_vma) -1;
1698 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1699 }
1700 }
1701
1702 return TRUE;
1703 }
1704 else
1705 h->plt.offset = (bfd_vma) -1;
1706
1707 /* If this is a weak symbol, and there is a real definition, the
1708 processor independent code will have arranged for us to see the
1709 real definition first, and we can just use the same value. */
1710 if (h->weakdef != NULL)
1711 {
1712 if (h->weakdef->root.type != bfd_link_hash_defined
1713 && h->weakdef->root.type != bfd_link_hash_defweak)
1714 abort ();
1715 h->root.u.def.section = h->weakdef->root.u.def.section;
1716 h->root.u.def.value = h->weakdef->root.u.def.value;
1717 return TRUE;
1718 }
1719
1720 /* This is a reference to a symbol defined by a dynamic object which
1721 is not a function. */
1722
1723 /* If we are creating a shared library, we must presume that the
1724 only references to the symbol are via the global offset table.
1725 For such cases we need not do anything here; the relocations will
1726 be handled correctly by relocate_section. */
1727 if (info->shared)
1728 return TRUE;
1729
1730 /* If there are no references to this symbol that do not use the
1731 GOT, we don't need to generate a copy reloc. */
1732 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1733 return TRUE;
1734
1735 eh = (struct elf32_hppa_link_hash_entry *) h;
1736 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1737 {
1738 s = p->sec->output_section;
1739 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1740 break;
1741 }
1742
1743 /* If we didn't find any dynamic relocs in read-only sections, then
1744 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1745 if (p == NULL)
1746 {
1747 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1748 return TRUE;
1749 }
1750
1751 /* We must allocate the symbol in our .dynbss section, which will
1752 become part of the .bss section of the executable. There will be
1753 an entry for this symbol in the .dynsym section. The dynamic
1754 object will contain position independent code, so all references
1755 from the dynamic object to this symbol will go through the global
1756 offset table. The dynamic linker will use the .dynsym entry to
1757 determine the address it must put in the global offset table, so
1758 both the dynamic object and the regular object will refer to the
1759 same memory location for the variable. */
1760
1761 htab = hppa_link_hash_table (info);
1762
1763 /* We must generate a COPY reloc to tell the dynamic linker to
1764 copy the initial value out of the dynamic object and into the
1765 runtime process image. */
1766 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1767 {
1768 htab->srelbss->_raw_size += sizeof (Elf32_External_Rela);
1769 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1770 }
1771
1772 /* We need to figure out the alignment required for this symbol. I
1773 have no idea how other ELF linkers handle this. */
1774
1775 power_of_two = bfd_log2 (h->size);
1776 if (power_of_two > 3)
1777 power_of_two = 3;
1778
1779 /* Apply the required alignment. */
1780 s = htab->sdynbss;
1781 s->_raw_size = BFD_ALIGN (s->_raw_size,
1782 (bfd_size_type) (1 << power_of_two));
1783 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1784 {
1785 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1786 return FALSE;
1787 }
1788
1789 /* Define the symbol as being at this point in the section. */
1790 h->root.u.def.section = s;
1791 h->root.u.def.value = s->_raw_size;
1792
1793 /* Increment the section size to make room for the symbol. */
1794 s->_raw_size += h->size;
1795
1796 return TRUE;
1797 }
1798
1799 /* Called via elf_link_hash_traverse to create .plt entries for an
1800 application that uses statically linked PIC functions. Similar to
1801 the first part of elf32_hppa_adjust_dynamic_symbol. */
1802
1803 static bfd_boolean
1804 mark_PIC_calls (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
1805 {
1806 if (h->root.type == bfd_link_hash_warning)
1807 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1808
1809 if (! (h->plt.refcount > 0
1810 && (h->root.type == bfd_link_hash_defined
1811 || h->root.type == bfd_link_hash_defweak)
1812 && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0))
1813 {
1814 h->plt.offset = (bfd_vma) -1;
1815 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1816 return TRUE;
1817 }
1818
1819 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1820 ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
1821
1822 return TRUE;
1823 }
1824
1825 /* Allocate space in the .plt for entries that won't have relocations.
1826 ie. pic_call and plabel entries. */
1827
1828 static bfd_boolean
1829 allocate_plt_static (struct elf_link_hash_entry *h, void *inf)
1830 {
1831 struct bfd_link_info *info;
1832 struct elf32_hppa_link_hash_table *htab;
1833 asection *s;
1834
1835 if (h->root.type == bfd_link_hash_indirect)
1836 return TRUE;
1837
1838 if (h->root.type == bfd_link_hash_warning)
1839 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1840
1841 info = inf;
1842 htab = hppa_link_hash_table (info);
1843 if (((struct elf32_hppa_link_hash_entry *) h)->pic_call)
1844 {
1845 /* Make an entry in the .plt section for non-pic code that is
1846 calling pic code. */
1847 ((struct elf32_hppa_link_hash_entry *) h)->plabel = 0;
1848 s = htab->splt;
1849 h->plt.offset = s->_raw_size;
1850 s->_raw_size += PLT_ENTRY_SIZE;
1851 }
1852 else if (htab->elf.dynamic_sections_created
1853 && h->plt.refcount > 0)
1854 {
1855 /* Make sure this symbol is output as a dynamic symbol.
1856 Undefined weak syms won't yet be marked as dynamic. */
1857 if (h->dynindx == -1
1858 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
1859 && h->type != STT_PARISC_MILLI)
1860 {
1861 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1862 return FALSE;
1863 }
1864
1865 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
1866 {
1867 /* Allocate these later. From this point on, h->plabel
1868 means that the plt entry is only used by a plabel.
1869 We'll be using a normal plt entry for this symbol, so
1870 clear the plabel indicator. */
1871 ((struct elf32_hppa_link_hash_entry *) h)->plabel = 0;
1872 }
1873 else if (((struct elf32_hppa_link_hash_entry *) h)->plabel)
1874 {
1875 /* Make an entry in the .plt section for plabel references
1876 that won't have a .plt entry for other reasons. */
1877 s = htab->splt;
1878 h->plt.offset = s->_raw_size;
1879 s->_raw_size += PLT_ENTRY_SIZE;
1880 }
1881 else
1882 {
1883 /* No .plt entry needed. */
1884 h->plt.offset = (bfd_vma) -1;
1885 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1886 }
1887 }
1888 else
1889 {
1890 h->plt.offset = (bfd_vma) -1;
1891 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1892 }
1893
1894 return TRUE;
1895 }
1896
1897 /* Allocate space in .plt, .got and associated reloc sections for
1898 global syms. */
1899
1900 static bfd_boolean
1901 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
1902 {
1903 struct bfd_link_info *info;
1904 struct elf32_hppa_link_hash_table *htab;
1905 asection *s;
1906 struct elf32_hppa_link_hash_entry *eh;
1907 struct elf32_hppa_dyn_reloc_entry *p;
1908
1909 if (h->root.type == bfd_link_hash_indirect)
1910 return TRUE;
1911
1912 if (h->root.type == bfd_link_hash_warning)
1913 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1914
1915 info = inf;
1916 htab = hppa_link_hash_table (info);
1917 if (htab->elf.dynamic_sections_created
1918 && h->plt.offset != (bfd_vma) -1
1919 && !((struct elf32_hppa_link_hash_entry *) h)->pic_call
1920 && !((struct elf32_hppa_link_hash_entry *) h)->plabel)
1921 {
1922 /* Make an entry in the .plt section. */
1923 s = htab->splt;
1924 h->plt.offset = s->_raw_size;
1925 s->_raw_size += PLT_ENTRY_SIZE;
1926
1927 /* We also need to make an entry in the .rela.plt section. */
1928 htab->srelplt->_raw_size += sizeof (Elf32_External_Rela);
1929 htab->need_plt_stub = 1;
1930 }
1931
1932 if (h->got.refcount > 0)
1933 {
1934 /* Make sure this symbol is output as a dynamic symbol.
1935 Undefined weak syms won't yet be marked as dynamic. */
1936 if (h->dynindx == -1
1937 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
1938 && h->type != STT_PARISC_MILLI)
1939 {
1940 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1941 return FALSE;
1942 }
1943
1944 s = htab->sgot;
1945 h->got.offset = s->_raw_size;
1946 s->_raw_size += GOT_ENTRY_SIZE;
1947 if (htab->elf.dynamic_sections_created
1948 && (info->shared
1949 || (h->dynindx != -1
1950 && h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0))
1951 {
1952 htab->srelgot->_raw_size += sizeof (Elf32_External_Rela);
1953 }
1954 }
1955 else
1956 h->got.offset = (bfd_vma) -1;
1957
1958 eh = (struct elf32_hppa_link_hash_entry *) h;
1959 if (eh->dyn_relocs == NULL)
1960 return TRUE;
1961
1962 /* If this is a -Bsymbolic shared link, then we need to discard all
1963 space allocated for dynamic pc-relative relocs against symbols
1964 defined in a regular object. For the normal shared case, discard
1965 space for relocs that have become local due to symbol visibility
1966 changes. */
1967 if (info->shared)
1968 {
1969 #if RELATIVE_DYNRELOCS
1970 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1971 && ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
1972 || info->symbolic))
1973 {
1974 struct elf32_hppa_dyn_reloc_entry **pp;
1975
1976 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1977 {
1978 p->count -= p->relative_count;
1979 p->relative_count = 0;
1980 if (p->count == 0)
1981 *pp = p->next;
1982 else
1983 pp = &p->next;
1984 }
1985 }
1986 #endif
1987 }
1988 else
1989 {
1990 /* For the non-shared case, discard space for relocs against
1991 symbols which turn out to need copy relocs or are not
1992 dynamic. */
1993 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1994 && (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1995 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1996 || (htab->elf.dynamic_sections_created
1997 && (h->root.type == bfd_link_hash_undefweak
1998 || h->root.type == bfd_link_hash_undefined))))
1999 {
2000 /* Make sure this symbol is output as a dynamic symbol.
2001 Undefined weak syms won't yet be marked as dynamic. */
2002 if (h->dynindx == -1
2003 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
2004 && h->type != STT_PARISC_MILLI)
2005 {
2006 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2007 return FALSE;
2008 }
2009
2010 /* If that succeeded, we know we'll be keeping all the
2011 relocs. */
2012 if (h->dynindx != -1)
2013 goto keep;
2014 }
2015
2016 eh->dyn_relocs = NULL;
2017 return TRUE;
2018
2019 keep: ;
2020 }
2021
2022 /* Finally, allocate space. */
2023 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2024 {
2025 asection *sreloc = elf_section_data (p->sec)->sreloc;
2026 sreloc->_raw_size += p->count * sizeof (Elf32_External_Rela);
2027 }
2028
2029 return TRUE;
2030 }
2031
2032 /* This function is called via elf_link_hash_traverse to force
2033 millicode symbols local so they do not end up as globals in the
2034 dynamic symbol table. We ought to be able to do this in
2035 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2036 for all dynamic symbols. Arguably, this is a bug in
2037 elf_adjust_dynamic_symbol. */
2038
2039 static bfd_boolean
2040 clobber_millicode_symbols (struct elf_link_hash_entry *h,
2041 struct bfd_link_info *info)
2042 {
2043 if (h->root.type == bfd_link_hash_warning)
2044 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2045
2046 if (h->type == STT_PARISC_MILLI
2047 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
2048 {
2049 elf32_hppa_hide_symbol (info, h, TRUE);
2050 }
2051 return TRUE;
2052 }
2053
2054 /* Find any dynamic relocs that apply to read-only sections. */
2055
2056 static bfd_boolean
2057 readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf)
2058 {
2059 struct elf32_hppa_link_hash_entry *eh;
2060 struct elf32_hppa_dyn_reloc_entry *p;
2061
2062 if (h->root.type == bfd_link_hash_warning)
2063 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2064
2065 eh = (struct elf32_hppa_link_hash_entry *) h;
2066 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2067 {
2068 asection *s = p->sec->output_section;
2069
2070 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2071 {
2072 struct bfd_link_info *info = inf;
2073
2074 info->flags |= DF_TEXTREL;
2075
2076 /* Not an error, just cut short the traversal. */
2077 return FALSE;
2078 }
2079 }
2080 return TRUE;
2081 }
2082
2083 /* Set the sizes of the dynamic sections. */
2084
2085 static bfd_boolean
2086 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2087 struct bfd_link_info *info)
2088 {
2089 struct elf32_hppa_link_hash_table *htab;
2090 bfd *dynobj;
2091 bfd *ibfd;
2092 asection *s;
2093 bfd_boolean relocs;
2094
2095 htab = hppa_link_hash_table (info);
2096 dynobj = htab->elf.dynobj;
2097 if (dynobj == NULL)
2098 abort ();
2099
2100 if (htab->elf.dynamic_sections_created)
2101 {
2102 /* Set the contents of the .interp section to the interpreter. */
2103 if (! info->shared)
2104 {
2105 s = bfd_get_section_by_name (dynobj, ".interp");
2106 if (s == NULL)
2107 abort ();
2108 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
2109 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2110 }
2111
2112 /* Force millicode symbols local. */
2113 elf_link_hash_traverse (&htab->elf,
2114 clobber_millicode_symbols,
2115 info);
2116 }
2117 else
2118 {
2119 /* Run through the function symbols, looking for any that are
2120 PIC, and mark them as needing .plt entries so that %r19 will
2121 be set up. */
2122 if (! info->shared)
2123 elf_link_hash_traverse (&htab->elf, mark_PIC_calls, info);
2124 }
2125
2126 /* Set up .got and .plt offsets for local syms, and space for local
2127 dynamic relocs. */
2128 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2129 {
2130 bfd_signed_vma *local_got;
2131 bfd_signed_vma *end_local_got;
2132 bfd_signed_vma *local_plt;
2133 bfd_signed_vma *end_local_plt;
2134 bfd_size_type locsymcount;
2135 Elf_Internal_Shdr *symtab_hdr;
2136 asection *srel;
2137
2138 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2139 continue;
2140
2141 for (s = ibfd->sections; s != NULL; s = s->next)
2142 {
2143 struct elf32_hppa_dyn_reloc_entry *p;
2144
2145 for (p = ((struct elf32_hppa_dyn_reloc_entry *)
2146 elf_section_data (s)->local_dynrel);
2147 p != NULL;
2148 p = p->next)
2149 {
2150 if (!bfd_is_abs_section (p->sec)
2151 && bfd_is_abs_section (p->sec->output_section))
2152 {
2153 /* Input section has been discarded, either because
2154 it is a copy of a linkonce section or due to
2155 linker script /DISCARD/, so we'll be discarding
2156 the relocs too. */
2157 }
2158 else if (p->count != 0)
2159 {
2160 srel = elf_section_data (p->sec)->sreloc;
2161 srel->_raw_size += p->count * sizeof (Elf32_External_Rela);
2162 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
2163 info->flags |= DF_TEXTREL;
2164 }
2165 }
2166 }
2167
2168 local_got = elf_local_got_refcounts (ibfd);
2169 if (!local_got)
2170 continue;
2171
2172 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2173 locsymcount = symtab_hdr->sh_info;
2174 end_local_got = local_got + locsymcount;
2175 s = htab->sgot;
2176 srel = htab->srelgot;
2177 for (; local_got < end_local_got; ++local_got)
2178 {
2179 if (*local_got > 0)
2180 {
2181 *local_got = s->_raw_size;
2182 s->_raw_size += GOT_ENTRY_SIZE;
2183 if (info->shared)
2184 srel->_raw_size += sizeof (Elf32_External_Rela);
2185 }
2186 else
2187 *local_got = (bfd_vma) -1;
2188 }
2189
2190 local_plt = end_local_got;
2191 end_local_plt = local_plt + locsymcount;
2192 if (! htab->elf.dynamic_sections_created)
2193 {
2194 /* Won't be used, but be safe. */
2195 for (; local_plt < end_local_plt; ++local_plt)
2196 *local_plt = (bfd_vma) -1;
2197 }
2198 else
2199 {
2200 s = htab->splt;
2201 srel = htab->srelplt;
2202 for (; local_plt < end_local_plt; ++local_plt)
2203 {
2204 if (*local_plt > 0)
2205 {
2206 *local_plt = s->_raw_size;
2207 s->_raw_size += PLT_ENTRY_SIZE;
2208 if (info->shared)
2209 srel->_raw_size += sizeof (Elf32_External_Rela);
2210 }
2211 else
2212 *local_plt = (bfd_vma) -1;
2213 }
2214 }
2215 }
2216
2217 /* Do all the .plt entries without relocs first. The dynamic linker
2218 uses the last .plt reloc to find the end of the .plt (and hence
2219 the start of the .got) for lazy linking. */
2220 elf_link_hash_traverse (&htab->elf, allocate_plt_static, info);
2221
2222 /* Allocate global sym .plt and .got entries, and space for global
2223 sym dynamic relocs. */
2224 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
2225
2226 /* The check_relocs and adjust_dynamic_symbol entry points have
2227 determined the sizes of the various dynamic sections. Allocate
2228 memory for them. */
2229 relocs = FALSE;
2230 for (s = dynobj->sections; s != NULL; s = s->next)
2231 {
2232 if ((s->flags & SEC_LINKER_CREATED) == 0)
2233 continue;
2234
2235 if (s == htab->splt)
2236 {
2237 if (htab->need_plt_stub)
2238 {
2239 /* Make space for the plt stub at the end of the .plt
2240 section. We want this stub right at the end, up
2241 against the .got section. */
2242 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2243 int pltalign = bfd_section_alignment (dynobj, s);
2244 bfd_size_type mask;
2245
2246 if (gotalign > pltalign)
2247 bfd_set_section_alignment (dynobj, s, gotalign);
2248 mask = ((bfd_size_type) 1 << gotalign) - 1;
2249 s->_raw_size = (s->_raw_size + sizeof (plt_stub) + mask) & ~mask;
2250 }
2251 }
2252 else if (s == htab->sgot)
2253 ;
2254 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
2255 {
2256 if (s->_raw_size != 0)
2257 {
2258 /* Remember whether there are any reloc sections other
2259 than .rela.plt. */
2260 if (s != htab->srelplt)
2261 relocs = TRUE;
2262
2263 /* We use the reloc_count field as a counter if we need
2264 to copy relocs into the output file. */
2265 s->reloc_count = 0;
2266 }
2267 }
2268 else
2269 {
2270 /* It's not one of our sections, so don't allocate space. */
2271 continue;
2272 }
2273
2274 if (s->_raw_size == 0)
2275 {
2276 /* If we don't need this section, strip it from the
2277 output file. This is mostly to handle .rela.bss and
2278 .rela.plt. We must create both sections in
2279 create_dynamic_sections, because they must be created
2280 before the linker maps input sections to output
2281 sections. The linker does that before
2282 adjust_dynamic_symbol is called, and it is that
2283 function which decides whether anything needs to go
2284 into these sections. */
2285 _bfd_strip_section_from_output (info, s);
2286 continue;
2287 }
2288
2289 /* Allocate memory for the section contents. Zero it, because
2290 we may not fill in all the reloc sections. */
2291 s->contents = bfd_zalloc (dynobj, s->_raw_size);
2292 if (s->contents == NULL && s->_raw_size != 0)
2293 return FALSE;
2294 }
2295
2296 if (htab->elf.dynamic_sections_created)
2297 {
2298 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2299 actually has nothing to do with the PLT, it is how we
2300 communicate the LTP value of a load module to the dynamic
2301 linker. */
2302 #define add_dynamic_entry(TAG, VAL) \
2303 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
2304
2305 if (!add_dynamic_entry (DT_PLTGOT, 0))
2306 return FALSE;
2307
2308 /* Add some entries to the .dynamic section. We fill in the
2309 values later, in elf32_hppa_finish_dynamic_sections, but we
2310 must add the entries now so that we get the correct size for
2311 the .dynamic section. The DT_DEBUG entry is filled in by the
2312 dynamic linker and used by the debugger. */
2313 if (!info->shared)
2314 {
2315 if (!add_dynamic_entry (DT_DEBUG, 0))
2316 return FALSE;
2317 }
2318
2319 if (htab->srelplt->_raw_size != 0)
2320 {
2321 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2322 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2323 || !add_dynamic_entry (DT_JMPREL, 0))
2324 return FALSE;
2325 }
2326
2327 if (relocs)
2328 {
2329 if (!add_dynamic_entry (DT_RELA, 0)
2330 || !add_dynamic_entry (DT_RELASZ, 0)
2331 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2332 return FALSE;
2333
2334 /* If any dynamic relocs apply to a read-only section,
2335 then we need a DT_TEXTREL entry. */
2336 if ((info->flags & DF_TEXTREL) == 0)
2337 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, info);
2338
2339 if ((info->flags & DF_TEXTREL) != 0)
2340 {
2341 if (!add_dynamic_entry (DT_TEXTREL, 0))
2342 return FALSE;
2343 }
2344 }
2345 }
2346 #undef add_dynamic_entry
2347
2348 return TRUE;
2349 }
2350
2351 /* External entry points for sizing and building linker stubs. */
2352
2353 /* Set up various things so that we can make a list of input sections
2354 for each output section included in the link. Returns -1 on error,
2355 0 when no stubs will be needed, and 1 on success. */
2356
2357 int
2358 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2359 {
2360 bfd *input_bfd;
2361 unsigned int bfd_count;
2362 int top_id, top_index;
2363 asection *section;
2364 asection **input_list, **list;
2365 bfd_size_type amt;
2366 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2367
2368 if (htab->elf.root.creator->flavour != bfd_target_elf_flavour)
2369 return 0;
2370
2371 /* Count the number of input BFDs and find the top input section id. */
2372 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2373 input_bfd != NULL;
2374 input_bfd = input_bfd->link_next)
2375 {
2376 bfd_count += 1;
2377 for (section = input_bfd->sections;
2378 section != NULL;
2379 section = section->next)
2380 {
2381 if (top_id < section->id)
2382 top_id = section->id;
2383 }
2384 }
2385 htab->bfd_count = bfd_count;
2386
2387 amt = sizeof (struct map_stub) * (top_id + 1);
2388 htab->stub_group = bfd_zmalloc (amt);
2389 if (htab->stub_group == NULL)
2390 return -1;
2391
2392 /* We can't use output_bfd->section_count here to find the top output
2393 section index as some sections may have been removed, and
2394 _bfd_strip_section_from_output doesn't renumber the indices. */
2395 for (section = output_bfd->sections, top_index = 0;
2396 section != NULL;
2397 section = section->next)
2398 {
2399 if (top_index < section->index)
2400 top_index = section->index;
2401 }
2402
2403 htab->top_index = top_index;
2404 amt = sizeof (asection *) * (top_index + 1);
2405 input_list = bfd_malloc (amt);
2406 htab->input_list = input_list;
2407 if (input_list == NULL)
2408 return -1;
2409
2410 /* For sections we aren't interested in, mark their entries with a
2411 value we can check later. */
2412 list = input_list + top_index;
2413 do
2414 *list = bfd_abs_section_ptr;
2415 while (list-- != input_list);
2416
2417 for (section = output_bfd->sections;
2418 section != NULL;
2419 section = section->next)
2420 {
2421 if ((section->flags & SEC_CODE) != 0)
2422 input_list[section->index] = NULL;
2423 }
2424
2425 return 1;
2426 }
2427
2428 /* The linker repeatedly calls this function for each input section,
2429 in the order that input sections are linked into output sections.
2430 Build lists of input sections to determine groupings between which
2431 we may insert linker stubs. */
2432
2433 void
2434 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2435 {
2436 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2437
2438 if (isec->output_section->index <= htab->top_index)
2439 {
2440 asection **list = htab->input_list + isec->output_section->index;
2441 if (*list != bfd_abs_section_ptr)
2442 {
2443 /* Steal the link_sec pointer for our list. */
2444 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2445 /* This happens to make the list in reverse order,
2446 which is what we want. */
2447 PREV_SEC (isec) = *list;
2448 *list = isec;
2449 }
2450 }
2451 }
2452
2453 /* See whether we can group stub sections together. Grouping stub
2454 sections may result in fewer stubs. More importantly, we need to
2455 put all .init* and .fini* stubs at the beginning of the .init or
2456 .fini output sections respectively, because glibc splits the
2457 _init and _fini functions into multiple parts. Putting a stub in
2458 the middle of a function is not a good idea. */
2459
2460 static void
2461 group_sections (struct elf32_hppa_link_hash_table *htab,
2462 bfd_size_type stub_group_size,
2463 bfd_boolean stubs_always_before_branch)
2464 {
2465 asection **list = htab->input_list + htab->top_index;
2466 do
2467 {
2468 asection *tail = *list;
2469 if (tail == bfd_abs_section_ptr)
2470 continue;
2471 while (tail != NULL)
2472 {
2473 asection *curr;
2474 asection *prev;
2475 bfd_size_type total;
2476 bfd_boolean big_sec;
2477
2478 curr = tail;
2479 if (tail->_cooked_size)
2480 total = tail->_cooked_size;
2481 else
2482 total = tail->_raw_size;
2483 big_sec = total >= stub_group_size;
2484
2485 while ((prev = PREV_SEC (curr)) != NULL
2486 && ((total += curr->output_offset - prev->output_offset)
2487 < stub_group_size))
2488 curr = prev;
2489
2490 /* OK, the size from the start of CURR to the end is less
2491 than 240000 bytes and thus can be handled by one stub
2492 section. (or the tail section is itself larger than
2493 240000 bytes, in which case we may be toast.)
2494 We should really be keeping track of the total size of
2495 stubs added here, as stubs contribute to the final output
2496 section size. That's a little tricky, and this way will
2497 only break if stubs added total more than 22144 bytes, or
2498 2768 long branch stubs. It seems unlikely for more than
2499 2768 different functions to be called, especially from
2500 code only 240000 bytes long. This limit used to be
2501 250000, but c++ code tends to generate lots of little
2502 functions, and sometimes violated the assumption. */
2503 do
2504 {
2505 prev = PREV_SEC (tail);
2506 /* Set up this stub group. */
2507 htab->stub_group[tail->id].link_sec = curr;
2508 }
2509 while (tail != curr && (tail = prev) != NULL);
2510
2511 /* But wait, there's more! Input sections up to 240000
2512 bytes before the stub section can be handled by it too.
2513 Don't do this if we have a really large section after the
2514 stubs, as adding more stubs increases the chance that
2515 branches may not reach into the stub section. */
2516 if (!stubs_always_before_branch && !big_sec)
2517 {
2518 total = 0;
2519 while (prev != NULL
2520 && ((total += tail->output_offset - prev->output_offset)
2521 < stub_group_size))
2522 {
2523 tail = prev;
2524 prev = PREV_SEC (tail);
2525 htab->stub_group[tail->id].link_sec = curr;
2526 }
2527 }
2528 tail = prev;
2529 }
2530 }
2531 while (list-- != htab->input_list);
2532 free (htab->input_list);
2533 #undef PREV_SEC
2534 }
2535
2536 /* Read in all local syms for all input bfds, and create hash entries
2537 for export stubs if we are building a multi-subspace shared lib.
2538 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2539
2540 static int
2541 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2542 {
2543 unsigned int bfd_indx;
2544 Elf_Internal_Sym *local_syms, **all_local_syms;
2545 int stub_changed = 0;
2546 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2547
2548 /* We want to read in symbol extension records only once. To do this
2549 we need to read in the local symbols in parallel and save them for
2550 later use; so hold pointers to the local symbols in an array. */
2551 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2552 all_local_syms = bfd_zmalloc (amt);
2553 htab->all_local_syms = all_local_syms;
2554 if (all_local_syms == NULL)
2555 return -1;
2556
2557 /* Walk over all the input BFDs, swapping in local symbols.
2558 If we are creating a shared library, create hash entries for the
2559 export stubs. */
2560 for (bfd_indx = 0;
2561 input_bfd != NULL;
2562 input_bfd = input_bfd->link_next, bfd_indx++)
2563 {
2564 Elf_Internal_Shdr *symtab_hdr;
2565
2566 /* We'll need the symbol table in a second. */
2567 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2568 if (symtab_hdr->sh_info == 0)
2569 continue;
2570
2571 /* We need an array of the local symbols attached to the input bfd. */
2572 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2573 if (local_syms == NULL)
2574 {
2575 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2576 symtab_hdr->sh_info, 0,
2577 NULL, NULL, NULL);
2578 /* Cache them for elf_link_input_bfd. */
2579 symtab_hdr->contents = (unsigned char *) local_syms;
2580 }
2581 if (local_syms == NULL)
2582 return -1;
2583
2584 all_local_syms[bfd_indx] = local_syms;
2585
2586 if (info->shared && htab->multi_subspace)
2587 {
2588 struct elf_link_hash_entry **sym_hashes;
2589 struct elf_link_hash_entry **end_hashes;
2590 unsigned int symcount;
2591
2592 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2593 - symtab_hdr->sh_info);
2594 sym_hashes = elf_sym_hashes (input_bfd);
2595 end_hashes = sym_hashes + symcount;
2596
2597 /* Look through the global syms for functions; We need to
2598 build export stubs for all globally visible functions. */
2599 for (; sym_hashes < end_hashes; sym_hashes++)
2600 {
2601 struct elf32_hppa_link_hash_entry *hash;
2602
2603 hash = (struct elf32_hppa_link_hash_entry *) *sym_hashes;
2604
2605 while (hash->elf.root.type == bfd_link_hash_indirect
2606 || hash->elf.root.type == bfd_link_hash_warning)
2607 hash = ((struct elf32_hppa_link_hash_entry *)
2608 hash->elf.root.u.i.link);
2609
2610 /* At this point in the link, undefined syms have been
2611 resolved, so we need to check that the symbol was
2612 defined in this BFD. */
2613 if ((hash->elf.root.type == bfd_link_hash_defined
2614 || hash->elf.root.type == bfd_link_hash_defweak)
2615 && hash->elf.type == STT_FUNC
2616 && hash->elf.root.u.def.section->output_section != NULL
2617 && (hash->elf.root.u.def.section->output_section->owner
2618 == output_bfd)
2619 && hash->elf.root.u.def.section->owner == input_bfd
2620 && (hash->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
2621 && !(hash->elf.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)
2622 && ELF_ST_VISIBILITY (hash->elf.other) == STV_DEFAULT)
2623 {
2624 asection *sec;
2625 const char *stub_name;
2626 struct elf32_hppa_stub_hash_entry *stub_entry;
2627
2628 sec = hash->elf.root.u.def.section;
2629 stub_name = hash->elf.root.root.string;
2630 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
2631 stub_name,
2632 FALSE, FALSE);
2633 if (stub_entry == NULL)
2634 {
2635 stub_entry = hppa_add_stub (stub_name, sec, htab);
2636 if (!stub_entry)
2637 return -1;
2638
2639 stub_entry->target_value = hash->elf.root.u.def.value;
2640 stub_entry->target_section = hash->elf.root.u.def.section;
2641 stub_entry->stub_type = hppa_stub_export;
2642 stub_entry->h = hash;
2643 stub_changed = 1;
2644 }
2645 else
2646 {
2647 (*_bfd_error_handler) (_("%s: duplicate export stub %s"),
2648 bfd_archive_filename (input_bfd),
2649 stub_name);
2650 }
2651 }
2652 }
2653 }
2654 }
2655
2656 return stub_changed;
2657 }
2658
2659 /* Determine and set the size of the stub section for a final link.
2660
2661 The basic idea here is to examine all the relocations looking for
2662 PC-relative calls to a target that is unreachable with a "bl"
2663 instruction. */
2664
2665 bfd_boolean
2666 elf32_hppa_size_stubs
2667 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2668 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2669 asection * (*add_stub_section) (const char *, asection *),
2670 void (*layout_sections_again) (void))
2671 {
2672 bfd_size_type stub_group_size;
2673 bfd_boolean stubs_always_before_branch;
2674 bfd_boolean stub_changed;
2675 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2676
2677 /* Stash our params away. */
2678 htab->stub_bfd = stub_bfd;
2679 htab->multi_subspace = multi_subspace;
2680 htab->add_stub_section = add_stub_section;
2681 htab->layout_sections_again = layout_sections_again;
2682 stubs_always_before_branch = group_size < 0;
2683 if (group_size < 0)
2684 stub_group_size = -group_size;
2685 else
2686 stub_group_size = group_size;
2687 if (stub_group_size == 1)
2688 {
2689 /* Default values. */
2690 if (stubs_always_before_branch)
2691 {
2692 stub_group_size = 7680000;
2693 if (htab->has_17bit_branch || htab->multi_subspace)
2694 stub_group_size = 240000;
2695 if (htab->has_12bit_branch)
2696 stub_group_size = 7500;
2697 }
2698 else
2699 {
2700 stub_group_size = 6971392;
2701 if (htab->has_17bit_branch || htab->multi_subspace)
2702 stub_group_size = 217856;
2703 if (htab->has_12bit_branch)
2704 stub_group_size = 6808;
2705 }
2706 }
2707
2708 group_sections (htab, stub_group_size, stubs_always_before_branch);
2709
2710 switch (get_local_syms (output_bfd, info->input_bfds, info))
2711 {
2712 default:
2713 if (htab->all_local_syms)
2714 goto error_ret_free_local;
2715 return FALSE;
2716
2717 case 0:
2718 stub_changed = FALSE;
2719 break;
2720
2721 case 1:
2722 stub_changed = TRUE;
2723 break;
2724 }
2725
2726 while (1)
2727 {
2728 bfd *input_bfd;
2729 unsigned int bfd_indx;
2730 asection *stub_sec;
2731
2732 for (input_bfd = info->input_bfds, bfd_indx = 0;
2733 input_bfd != NULL;
2734 input_bfd = input_bfd->link_next, bfd_indx++)
2735 {
2736 Elf_Internal_Shdr *symtab_hdr;
2737 asection *section;
2738 Elf_Internal_Sym *local_syms;
2739
2740 /* We'll need the symbol table in a second. */
2741 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2742 if (symtab_hdr->sh_info == 0)
2743 continue;
2744
2745 local_syms = htab->all_local_syms[bfd_indx];
2746
2747 /* Walk over each section attached to the input bfd. */
2748 for (section = input_bfd->sections;
2749 section != NULL;
2750 section = section->next)
2751 {
2752 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2753
2754 /* If there aren't any relocs, then there's nothing more
2755 to do. */
2756 if ((section->flags & SEC_RELOC) == 0
2757 || section->reloc_count == 0)
2758 continue;
2759
2760 /* If this section is a link-once section that will be
2761 discarded, then don't create any stubs. */
2762 if (section->output_section == NULL
2763 || section->output_section->owner != output_bfd)
2764 continue;
2765
2766 /* Get the relocs. */
2767 internal_relocs
2768 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2769 info->keep_memory);
2770 if (internal_relocs == NULL)
2771 goto error_ret_free_local;
2772
2773 /* Now examine each relocation. */
2774 irela = internal_relocs;
2775 irelaend = irela + section->reloc_count;
2776 for (; irela < irelaend; irela++)
2777 {
2778 unsigned int r_type, r_indx;
2779 enum elf32_hppa_stub_type stub_type;
2780 struct elf32_hppa_stub_hash_entry *stub_entry;
2781 asection *sym_sec;
2782 bfd_vma sym_value;
2783 bfd_vma destination;
2784 struct elf32_hppa_link_hash_entry *hash;
2785 char *stub_name;
2786 const asection *id_sec;
2787
2788 r_type = ELF32_R_TYPE (irela->r_info);
2789 r_indx = ELF32_R_SYM (irela->r_info);
2790
2791 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2792 {
2793 bfd_set_error (bfd_error_bad_value);
2794 error_ret_free_internal:
2795 if (elf_section_data (section)->relocs == NULL)
2796 free (internal_relocs);
2797 goto error_ret_free_local;
2798 }
2799
2800 /* Only look for stubs on call instructions. */
2801 if (r_type != (unsigned int) R_PARISC_PCREL12F
2802 && r_type != (unsigned int) R_PARISC_PCREL17F
2803 && r_type != (unsigned int) R_PARISC_PCREL22F)
2804 continue;
2805
2806 /* Now determine the call target, its name, value,
2807 section. */
2808 sym_sec = NULL;
2809 sym_value = 0;
2810 destination = 0;
2811 hash = NULL;
2812 if (r_indx < symtab_hdr->sh_info)
2813 {
2814 /* It's a local symbol. */
2815 Elf_Internal_Sym *sym;
2816 Elf_Internal_Shdr *hdr;
2817
2818 sym = local_syms + r_indx;
2819 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2820 sym_sec = hdr->bfd_section;
2821 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2822 sym_value = sym->st_value;
2823 destination = (sym_value + irela->r_addend
2824 + sym_sec->output_offset
2825 + sym_sec->output_section->vma);
2826 }
2827 else
2828 {
2829 /* It's an external symbol. */
2830 int e_indx;
2831
2832 e_indx = r_indx - symtab_hdr->sh_info;
2833 hash = ((struct elf32_hppa_link_hash_entry *)
2834 elf_sym_hashes (input_bfd)[e_indx]);
2835
2836 while (hash->elf.root.type == bfd_link_hash_indirect
2837 || hash->elf.root.type == bfd_link_hash_warning)
2838 hash = ((struct elf32_hppa_link_hash_entry *)
2839 hash->elf.root.u.i.link);
2840
2841 if (hash->elf.root.type == bfd_link_hash_defined
2842 || hash->elf.root.type == bfd_link_hash_defweak)
2843 {
2844 sym_sec = hash->elf.root.u.def.section;
2845 sym_value = hash->elf.root.u.def.value;
2846 if (sym_sec->output_section != NULL)
2847 destination = (sym_value + irela->r_addend
2848 + sym_sec->output_offset
2849 + sym_sec->output_section->vma);
2850 }
2851 else if (hash->elf.root.type == bfd_link_hash_undefweak)
2852 {
2853 if (! info->shared)
2854 continue;
2855 }
2856 else if (hash->elf.root.type == bfd_link_hash_undefined)
2857 {
2858 if (! (info->shared
2859 && info->unresolved_syms_in_objects == RM_IGNORE
2860 && (ELF_ST_VISIBILITY (hash->elf.other)
2861 == STV_DEFAULT)
2862 && hash->elf.type != STT_PARISC_MILLI))
2863 continue;
2864 }
2865 else
2866 {
2867 bfd_set_error (bfd_error_bad_value);
2868 goto error_ret_free_internal;
2869 }
2870 }
2871
2872 /* Determine what (if any) linker stub is needed. */
2873 stub_type = hppa_type_of_stub (section, irela, hash,
2874 destination);
2875 if (stub_type == hppa_stub_none)
2876 continue;
2877
2878 /* Support for grouping stub sections. */
2879 id_sec = htab->stub_group[section->id].link_sec;
2880
2881 /* Get the name of this stub. */
2882 stub_name = hppa_stub_name (id_sec, sym_sec, hash, irela);
2883 if (!stub_name)
2884 goto error_ret_free_internal;
2885
2886 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
2887 stub_name,
2888 FALSE, FALSE);
2889 if (stub_entry != NULL)
2890 {
2891 /* The proper stub has already been created. */
2892 free (stub_name);
2893 continue;
2894 }
2895
2896 stub_entry = hppa_add_stub (stub_name, section, htab);
2897 if (stub_entry == NULL)
2898 {
2899 free (stub_name);
2900 goto error_ret_free_internal;
2901 }
2902
2903 stub_entry->target_value = sym_value;
2904 stub_entry->target_section = sym_sec;
2905 stub_entry->stub_type = stub_type;
2906 if (info->shared)
2907 {
2908 if (stub_type == hppa_stub_import)
2909 stub_entry->stub_type = hppa_stub_import_shared;
2910 else if (stub_type == hppa_stub_long_branch)
2911 stub_entry->stub_type = hppa_stub_long_branch_shared;
2912 }
2913 stub_entry->h = hash;
2914 stub_changed = TRUE;
2915 }
2916
2917 /* We're done with the internal relocs, free them. */
2918 if (elf_section_data (section)->relocs == NULL)
2919 free (internal_relocs);
2920 }
2921 }
2922
2923 if (!stub_changed)
2924 break;
2925
2926 /* OK, we've added some stubs. Find out the new size of the
2927 stub sections. */
2928 for (stub_sec = htab->stub_bfd->sections;
2929 stub_sec != NULL;
2930 stub_sec = stub_sec->next)
2931 {
2932 stub_sec->_raw_size = 0;
2933 stub_sec->_cooked_size = 0;
2934 }
2935
2936 bfd_hash_traverse (&htab->stub_hash_table, hppa_size_one_stub, htab);
2937
2938 /* Ask the linker to do its stuff. */
2939 (*htab->layout_sections_again) ();
2940 stub_changed = FALSE;
2941 }
2942
2943 free (htab->all_local_syms);
2944 return TRUE;
2945
2946 error_ret_free_local:
2947 free (htab->all_local_syms);
2948 return FALSE;
2949 }
2950
2951 /* For a final link, this function is called after we have sized the
2952 stubs to provide a value for __gp. */
2953
2954 bfd_boolean
2955 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
2956 {
2957 struct bfd_link_hash_entry *h;
2958 asection *sec = NULL;
2959 bfd_vma gp_val = 0;
2960 struct elf32_hppa_link_hash_table *htab;
2961
2962 htab = hppa_link_hash_table (info);
2963 h = bfd_link_hash_lookup (&htab->elf.root, "$global$", FALSE, FALSE, FALSE);
2964
2965 if (h != NULL
2966 && (h->type == bfd_link_hash_defined
2967 || h->type == bfd_link_hash_defweak))
2968 {
2969 gp_val = h->u.def.value;
2970 sec = h->u.def.section;
2971 }
2972 else
2973 {
2974 asection *splt;
2975 asection *sgot;
2976
2977 if (htab->elf.root.creator->flavour == bfd_target_elf_flavour)
2978 {
2979 splt = htab->splt;
2980 sgot = htab->sgot;
2981 }
2982 else
2983 {
2984 /* If we're not elf, look up the output sections in the
2985 hope we may actually find them. */
2986 splt = bfd_get_section_by_name (abfd, ".plt");
2987 sgot = bfd_get_section_by_name (abfd, ".got");
2988 }
2989
2990 /* Choose to point our LTP at, in this order, one of .plt, .got,
2991 or .data, if these sections exist. In the case of choosing
2992 .plt try to make the LTP ideal for addressing anywhere in the
2993 .plt or .got with a 14 bit signed offset. Typically, the end
2994 of the .plt is the start of the .got, so choose .plt + 0x2000
2995 if either the .plt or .got is larger than 0x2000. If both
2996 the .plt and .got are smaller than 0x2000, choose the end of
2997 the .plt section. */
2998 sec = splt;
2999 if (sec != NULL)
3000 {
3001 gp_val = sec->_raw_size;
3002 if (gp_val > 0x2000 || (sgot && sgot->_raw_size > 0x2000))
3003 {
3004 gp_val = 0x2000;
3005 }
3006 }
3007 else
3008 {
3009 sec = sgot;
3010 if (sec != NULL)
3011 {
3012 /* We know we don't have a .plt. If .got is large,
3013 offset our LTP. */
3014 if (sec->_raw_size > 0x2000)
3015 gp_val = 0x2000;
3016 }
3017 else
3018 {
3019 /* No .plt or .got. Who cares what the LTP is? */
3020 sec = bfd_get_section_by_name (abfd, ".data");
3021 }
3022 }
3023
3024 if (h != NULL)
3025 {
3026 h->type = bfd_link_hash_defined;
3027 h->u.def.value = gp_val;
3028 if (sec != NULL)
3029 h->u.def.section = sec;
3030 else
3031 h->u.def.section = bfd_abs_section_ptr;
3032 }
3033 }
3034
3035 if (sec != NULL && sec->output_section != NULL)
3036 gp_val += sec->output_section->vma + sec->output_offset;
3037
3038 elf_gp (abfd) = gp_val;
3039 return TRUE;
3040 }
3041
3042 /* Build all the stubs associated with the current output file. The
3043 stubs are kept in a hash table attached to the main linker hash
3044 table. We also set up the .plt entries for statically linked PIC
3045 functions here. This function is called via hppaelf_finish in the
3046 linker. */
3047
3048 bfd_boolean
3049 elf32_hppa_build_stubs (struct bfd_link_info *info)
3050 {
3051 asection *stub_sec;
3052 struct bfd_hash_table *table;
3053 struct elf32_hppa_link_hash_table *htab;
3054
3055 htab = hppa_link_hash_table (info);
3056
3057 for (stub_sec = htab->stub_bfd->sections;
3058 stub_sec != NULL;
3059 stub_sec = stub_sec->next)
3060 {
3061 bfd_size_type size;
3062
3063 /* Allocate memory to hold the linker stubs. */
3064 size = stub_sec->_raw_size;
3065 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3066 if (stub_sec->contents == NULL && size != 0)
3067 return FALSE;
3068 stub_sec->_raw_size = 0;
3069 }
3070
3071 /* Build the stubs as directed by the stub hash table. */
3072 table = &htab->stub_hash_table;
3073 bfd_hash_traverse (table, hppa_build_one_stub, info);
3074
3075 return TRUE;
3076 }
3077
3078 /* Perform a final link. */
3079
3080 static bfd_boolean
3081 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3082 {
3083 /* Invoke the regular ELF linker to do all the work. */
3084 if (!bfd_elf32_bfd_final_link (abfd, info))
3085 return FALSE;
3086
3087 /* If we're producing a final executable, sort the contents of the
3088 unwind section. */
3089 return elf_hppa_sort_unwind (abfd);
3090 }
3091
3092 /* Record the lowest address for the data and text segments. */
3093
3094 static void
3095 hppa_record_segment_addr (bfd *abfd ATTRIBUTE_UNUSED,
3096 asection *section,
3097 void *data)
3098 {
3099 struct elf32_hppa_link_hash_table *htab;
3100
3101 htab = (struct elf32_hppa_link_hash_table *) data;
3102
3103 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3104 {
3105 bfd_vma value = section->vma - section->filepos;
3106
3107 if ((section->flags & SEC_READONLY) != 0)
3108 {
3109 if (value < htab->text_segment_base)
3110 htab->text_segment_base = value;
3111 }
3112 else
3113 {
3114 if (value < htab->data_segment_base)
3115 htab->data_segment_base = value;
3116 }
3117 }
3118 }
3119
3120 /* Perform a relocation as part of a final link. */
3121
3122 static bfd_reloc_status_type
3123 final_link_relocate (asection *input_section,
3124 bfd_byte *contents,
3125 const Elf_Internal_Rela *rel,
3126 bfd_vma value,
3127 struct elf32_hppa_link_hash_table *htab,
3128 asection *sym_sec,
3129 struct elf32_hppa_link_hash_entry *h)
3130 {
3131 int insn;
3132 unsigned int r_type = ELF32_R_TYPE (rel->r_info);
3133 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3134 int r_format = howto->bitsize;
3135 enum hppa_reloc_field_selector_type_alt r_field;
3136 bfd *input_bfd = input_section->owner;
3137 bfd_vma offset = rel->r_offset;
3138 bfd_vma max_branch_offset = 0;
3139 bfd_byte *hit_data = contents + offset;
3140 bfd_signed_vma addend = rel->r_addend;
3141 bfd_vma location;
3142 struct elf32_hppa_stub_hash_entry *stub_entry = NULL;
3143 int val;
3144
3145 if (r_type == R_PARISC_NONE)
3146 return bfd_reloc_ok;
3147
3148 insn = bfd_get_32 (input_bfd, hit_data);
3149
3150 /* Find out where we are and where we're going. */
3151 location = (offset +
3152 input_section->output_offset +
3153 input_section->output_section->vma);
3154
3155 switch (r_type)
3156 {
3157 case R_PARISC_PCREL12F:
3158 case R_PARISC_PCREL17F:
3159 case R_PARISC_PCREL22F:
3160 /* If this call should go via the plt, find the import stub in
3161 the stub hash. */
3162 if (sym_sec == NULL
3163 || sym_sec->output_section == NULL
3164 || (h != NULL
3165 && h->elf.plt.offset != (bfd_vma) -1
3166 && (h->elf.dynindx != -1 || h->pic_call)
3167 && !h->plabel))
3168 {
3169 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3170 h, rel, htab);
3171 if (stub_entry != NULL)
3172 {
3173 value = (stub_entry->stub_offset
3174 + stub_entry->stub_sec->output_offset
3175 + stub_entry->stub_sec->output_section->vma);
3176 addend = 0;
3177 }
3178 else if (sym_sec == NULL && h != NULL
3179 && h->elf.root.type == bfd_link_hash_undefweak)
3180 {
3181 /* It's OK if undefined weak. Calls to undefined weak
3182 symbols behave as if the "called" function
3183 immediately returns. We can thus call to a weak
3184 function without first checking whether the function
3185 is defined. */
3186 value = location;
3187 addend = 8;
3188 }
3189 else
3190 return bfd_reloc_undefined;
3191 }
3192 /* Fall thru. */
3193
3194 case R_PARISC_PCREL21L:
3195 case R_PARISC_PCREL17C:
3196 case R_PARISC_PCREL17R:
3197 case R_PARISC_PCREL14R:
3198 case R_PARISC_PCREL14F:
3199 /* Make it a pc relative offset. */
3200 value -= location;
3201 addend -= 8;
3202 break;
3203
3204 case R_PARISC_DPREL21L:
3205 case R_PARISC_DPREL14R:
3206 case R_PARISC_DPREL14F:
3207 /* For all the DP relative relocations, we need to examine the symbol's
3208 section. If it has no section or if it's a code section, then
3209 "data pointer relative" makes no sense. In that case we don't
3210 adjust the "value", and for 21 bit addil instructions, we change the
3211 source addend register from %dp to %r0. This situation commonly
3212 arises for undefined weak symbols and when a variable's "constness"
3213 is declared differently from the way the variable is defined. For
3214 instance: "extern int foo" with foo defined as "const int foo". */
3215 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3216 {
3217 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3218 == (((int) OP_ADDIL << 26) | (27 << 21)))
3219 {
3220 insn &= ~ (0x1f << 21);
3221 #if 0 /* debug them. */
3222 (*_bfd_error_handler)
3223 (_("%s(%s+0x%lx): fixing %s"),
3224 bfd_archive_filename (input_bfd),
3225 input_section->name,
3226 (long) rel->r_offset,
3227 howto->name);
3228 #endif
3229 }
3230 /* Now try to make things easy for the dynamic linker. */
3231
3232 break;
3233 }
3234 /* Fall thru. */
3235
3236 case R_PARISC_DLTIND21L:
3237 case R_PARISC_DLTIND14R:
3238 case R_PARISC_DLTIND14F:
3239 value -= elf_gp (input_section->output_section->owner);
3240 break;
3241
3242 case R_PARISC_SEGREL32:
3243 if ((sym_sec->flags & SEC_CODE) != 0)
3244 value -= htab->text_segment_base;
3245 else
3246 value -= htab->data_segment_base;
3247 break;
3248
3249 default:
3250 break;
3251 }
3252
3253 switch (r_type)
3254 {
3255 case R_PARISC_DIR32:
3256 case R_PARISC_DIR14F:
3257 case R_PARISC_DIR17F:
3258 case R_PARISC_PCREL17C:
3259 case R_PARISC_PCREL14F:
3260 case R_PARISC_DPREL14F:
3261 case R_PARISC_PLABEL32:
3262 case R_PARISC_DLTIND14F:
3263 case R_PARISC_SEGBASE:
3264 case R_PARISC_SEGREL32:
3265 r_field = e_fsel;
3266 break;
3267
3268 case R_PARISC_DLTIND21L:
3269 case R_PARISC_PCREL21L:
3270 case R_PARISC_PLABEL21L:
3271 r_field = e_lsel;
3272 break;
3273
3274 case R_PARISC_DIR21L:
3275 case R_PARISC_DPREL21L:
3276 r_field = e_lrsel;
3277 break;
3278
3279 case R_PARISC_PCREL17R:
3280 case R_PARISC_PCREL14R:
3281 case R_PARISC_PLABEL14R:
3282 case R_PARISC_DLTIND14R:
3283 r_field = e_rsel;
3284 break;
3285
3286 case R_PARISC_DIR17R:
3287 case R_PARISC_DIR14R:
3288 case R_PARISC_DPREL14R:
3289 r_field = e_rrsel;
3290 break;
3291
3292 case R_PARISC_PCREL12F:
3293 case R_PARISC_PCREL17F:
3294 case R_PARISC_PCREL22F:
3295 r_field = e_fsel;
3296
3297 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3298 {
3299 max_branch_offset = (1 << (17-1)) << 2;
3300 }
3301 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3302 {
3303 max_branch_offset = (1 << (12-1)) << 2;
3304 }
3305 else
3306 {
3307 max_branch_offset = (1 << (22-1)) << 2;
3308 }
3309
3310 /* sym_sec is NULL on undefined weak syms or when shared on
3311 undefined syms. We've already checked for a stub for the
3312 shared undefined case. */
3313 if (sym_sec == NULL)
3314 break;
3315
3316 /* If the branch is out of reach, then redirect the
3317 call to the local stub for this function. */
3318 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3319 {
3320 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3321 h, rel, htab);
3322 if (stub_entry == NULL)
3323 return bfd_reloc_undefined;
3324
3325 /* Munge up the value and addend so that we call the stub
3326 rather than the procedure directly. */
3327 value = (stub_entry->stub_offset
3328 + stub_entry->stub_sec->output_offset
3329 + stub_entry->stub_sec->output_section->vma
3330 - location);
3331 addend = -8;
3332 }
3333 break;
3334
3335 /* Something we don't know how to handle. */
3336 default:
3337 return bfd_reloc_notsupported;
3338 }
3339
3340 /* Make sure we can reach the stub. */
3341 if (max_branch_offset != 0
3342 && value + addend + max_branch_offset >= 2*max_branch_offset)
3343 {
3344 (*_bfd_error_handler)
3345 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3346 bfd_archive_filename (input_bfd),
3347 input_section->name,
3348 (long) rel->r_offset,
3349 stub_entry->root.string);
3350 bfd_set_error (bfd_error_bad_value);
3351 return bfd_reloc_notsupported;
3352 }
3353
3354 val = hppa_field_adjust (value, addend, r_field);
3355
3356 switch (r_type)
3357 {
3358 case R_PARISC_PCREL12F:
3359 case R_PARISC_PCREL17C:
3360 case R_PARISC_PCREL17F:
3361 case R_PARISC_PCREL17R:
3362 case R_PARISC_PCREL22F:
3363 case R_PARISC_DIR17F:
3364 case R_PARISC_DIR17R:
3365 /* This is a branch. Divide the offset by four.
3366 Note that we need to decide whether it's a branch or
3367 otherwise by inspecting the reloc. Inspecting insn won't
3368 work as insn might be from a .word directive. */
3369 val >>= 2;
3370 break;
3371
3372 default:
3373 break;
3374 }
3375
3376 insn = hppa_rebuild_insn (insn, val, r_format);
3377
3378 /* Update the instruction word. */
3379 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3380 return bfd_reloc_ok;
3381 }
3382
3383 /* Relocate an HPPA ELF section. */
3384
3385 static bfd_boolean
3386 elf32_hppa_relocate_section (bfd *output_bfd,
3387 struct bfd_link_info *info,
3388 bfd *input_bfd,
3389 asection *input_section,
3390 bfd_byte *contents,
3391 Elf_Internal_Rela *relocs,
3392 Elf_Internal_Sym *local_syms,
3393 asection **local_sections)
3394 {
3395 bfd_vma *local_got_offsets;
3396 struct elf32_hppa_link_hash_table *htab;
3397 Elf_Internal_Shdr *symtab_hdr;
3398 Elf_Internal_Rela *rel;
3399 Elf_Internal_Rela *relend;
3400
3401 if (info->relocatable)
3402 return TRUE;
3403
3404 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3405
3406 htab = hppa_link_hash_table (info);
3407 local_got_offsets = elf_local_got_offsets (input_bfd);
3408
3409 rel = relocs;
3410 relend = relocs + input_section->reloc_count;
3411 for (; rel < relend; rel++)
3412 {
3413 unsigned int r_type;
3414 reloc_howto_type *howto;
3415 unsigned int r_symndx;
3416 struct elf32_hppa_link_hash_entry *h;
3417 Elf_Internal_Sym *sym;
3418 asection *sym_sec;
3419 bfd_vma relocation;
3420 bfd_reloc_status_type r;
3421 const char *sym_name;
3422 bfd_boolean plabel;
3423 bfd_boolean warned_undef;
3424
3425 r_type = ELF32_R_TYPE (rel->r_info);
3426 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3427 {
3428 bfd_set_error (bfd_error_bad_value);
3429 return FALSE;
3430 }
3431 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3432 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3433 continue;
3434
3435 /* This is a final link. */
3436 r_symndx = ELF32_R_SYM (rel->r_info);
3437 h = NULL;
3438 sym = NULL;
3439 sym_sec = NULL;
3440 warned_undef = FALSE;
3441 if (r_symndx < symtab_hdr->sh_info)
3442 {
3443 /* This is a local symbol, h defaults to NULL. */
3444 sym = local_syms + r_symndx;
3445 sym_sec = local_sections[r_symndx];
3446 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sym_sec, rel);
3447 }
3448 else
3449 {
3450 struct elf_link_hash_entry *hh;
3451 bfd_boolean unresolved_reloc;
3452
3453 RELOC_FOR_GLOBAL_SYMBOL (hh, elf_sym_hashes (input_bfd), r_symndx, symtab_hdr,
3454 relocation, sym_sec, unresolved_reloc, info,
3455 warned_undef);
3456
3457 if (relocation == 0
3458 && hh->root.type != bfd_link_hash_defined
3459 && hh->root.type != bfd_link_hash_defweak
3460 && hh->root.type != bfd_link_hash_undefweak)
3461 {
3462 if (!info->executable
3463 && info->unresolved_syms_in_objects == RM_IGNORE
3464 && ELF_ST_VISIBILITY (hh->other) == STV_DEFAULT
3465 && hh->type == STT_PARISC_MILLI)
3466 {
3467 if (! info->callbacks->undefined_symbol
3468 (info, hh->root.root.string, input_bfd,
3469 input_section, rel->r_offset,
3470 ((info->shared && info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)
3471 || (!info->shared && info->unresolved_syms_in_objects == RM_GENERATE_ERROR))))
3472 return FALSE;
3473 warned_undef = TRUE;
3474 }
3475 }
3476 h = (struct elf32_hppa_link_hash_entry *) hh;
3477 }
3478
3479 /* Do any required modifications to the relocation value, and
3480 determine what types of dynamic info we need to output, if
3481 any. */
3482 plabel = 0;
3483 switch (r_type)
3484 {
3485 case R_PARISC_DLTIND14F:
3486 case R_PARISC_DLTIND14R:
3487 case R_PARISC_DLTIND21L:
3488 {
3489 bfd_vma off;
3490 bfd_boolean do_got = 0;
3491
3492 /* Relocation is to the entry for this symbol in the
3493 global offset table. */
3494 if (h != NULL)
3495 {
3496 bfd_boolean dyn;
3497
3498 off = h->elf.got.offset;
3499 dyn = htab->elf.dynamic_sections_created;
3500 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, &h->elf))
3501 {
3502 /* If we aren't going to call finish_dynamic_symbol,
3503 then we need to handle initialisation of the .got
3504 entry and create needed relocs here. Since the
3505 offset must always be a multiple of 4, we use the
3506 least significant bit to record whether we have
3507 initialised it already. */
3508 if ((off & 1) != 0)
3509 off &= ~1;
3510 else
3511 {
3512 h->elf.got.offset |= 1;
3513 do_got = 1;
3514 }
3515 }
3516 }
3517 else
3518 {
3519 /* Local symbol case. */
3520 if (local_got_offsets == NULL)
3521 abort ();
3522
3523 off = local_got_offsets[r_symndx];
3524
3525 /* The offset must always be a multiple of 4. We use
3526 the least significant bit to record whether we have
3527 already generated the necessary reloc. */
3528 if ((off & 1) != 0)
3529 off &= ~1;
3530 else
3531 {
3532 local_got_offsets[r_symndx] |= 1;
3533 do_got = 1;
3534 }
3535 }
3536
3537 if (do_got)
3538 {
3539 if (info->shared)
3540 {
3541 /* Output a dynamic relocation for this GOT entry.
3542 In this case it is relative to the base of the
3543 object because the symbol index is zero. */
3544 Elf_Internal_Rela outrel;
3545 bfd_byte *loc;
3546 asection *s = htab->srelgot;
3547
3548 outrel.r_offset = (off
3549 + htab->sgot->output_offset
3550 + htab->sgot->output_section->vma);
3551 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3552 outrel.r_addend = relocation;
3553 loc = s->contents;
3554 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3555 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3556 }
3557 else
3558 bfd_put_32 (output_bfd, relocation,
3559 htab->sgot->contents + off);
3560 }
3561
3562 if (off >= (bfd_vma) -2)
3563 abort ();
3564
3565 /* Add the base of the GOT to the relocation value. */
3566 relocation = (off
3567 + htab->sgot->output_offset
3568 + htab->sgot->output_section->vma);
3569 }
3570 break;
3571
3572 case R_PARISC_SEGREL32:
3573 /* If this is the first SEGREL relocation, then initialize
3574 the segment base values. */
3575 if (htab->text_segment_base == (bfd_vma) -1)
3576 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3577 break;
3578
3579 case R_PARISC_PLABEL14R:
3580 case R_PARISC_PLABEL21L:
3581 case R_PARISC_PLABEL32:
3582 if (htab->elf.dynamic_sections_created)
3583 {
3584 bfd_vma off;
3585 bfd_boolean do_plt = 0;
3586
3587 /* If we have a global symbol with a PLT slot, then
3588 redirect this relocation to it. */
3589 if (h != NULL)
3590 {
3591 off = h->elf.plt.offset;
3592 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, &h->elf))
3593 {
3594 /* In a non-shared link, adjust_dynamic_symbols
3595 isn't called for symbols forced local. We
3596 need to write out the plt entry here. */
3597 if ((off & 1) != 0)
3598 off &= ~1;
3599 else
3600 {
3601 h->elf.plt.offset |= 1;
3602 do_plt = 1;
3603 }
3604 }
3605 }
3606 else
3607 {
3608 bfd_vma *local_plt_offsets;
3609
3610 if (local_got_offsets == NULL)
3611 abort ();
3612
3613 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3614 off = local_plt_offsets[r_symndx];
3615
3616 /* As for the local .got entry case, we use the last
3617 bit to record whether we've already initialised
3618 this local .plt entry. */
3619 if ((off & 1) != 0)
3620 off &= ~1;
3621 else
3622 {
3623 local_plt_offsets[r_symndx] |= 1;
3624 do_plt = 1;
3625 }
3626 }
3627
3628 if (do_plt)
3629 {
3630 if (info->shared)
3631 {
3632 /* Output a dynamic IPLT relocation for this
3633 PLT entry. */
3634 Elf_Internal_Rela outrel;
3635 bfd_byte *loc;
3636 asection *s = htab->srelplt;
3637
3638 outrel.r_offset = (off
3639 + htab->splt->output_offset
3640 + htab->splt->output_section->vma);
3641 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3642 outrel.r_addend = relocation;
3643 loc = s->contents;
3644 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3645 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3646 }
3647 else
3648 {
3649 bfd_put_32 (output_bfd,
3650 relocation,
3651 htab->splt->contents + off);
3652 bfd_put_32 (output_bfd,
3653 elf_gp (htab->splt->output_section->owner),
3654 htab->splt->contents + off + 4);
3655 }
3656 }
3657
3658 if (off >= (bfd_vma) -2)
3659 abort ();
3660
3661 /* PLABELs contain function pointers. Relocation is to
3662 the entry for the function in the .plt. The magic +2
3663 offset signals to $$dyncall that the function pointer
3664 is in the .plt and thus has a gp pointer too.
3665 Exception: Undefined PLABELs should have a value of
3666 zero. */
3667 if (h == NULL
3668 || (h->elf.root.type != bfd_link_hash_undefweak
3669 && h->elf.root.type != bfd_link_hash_undefined))
3670 {
3671 relocation = (off
3672 + htab->splt->output_offset
3673 + htab->splt->output_section->vma
3674 + 2);
3675 }
3676 plabel = 1;
3677 }
3678 /* Fall through and possibly emit a dynamic relocation. */
3679
3680 case R_PARISC_DIR17F:
3681 case R_PARISC_DIR17R:
3682 case R_PARISC_DIR14F:
3683 case R_PARISC_DIR14R:
3684 case R_PARISC_DIR21L:
3685 case R_PARISC_DPREL14F:
3686 case R_PARISC_DPREL14R:
3687 case R_PARISC_DPREL21L:
3688 case R_PARISC_DIR32:
3689 /* r_symndx will be zero only for relocs against symbols
3690 from removed linkonce sections, or sections discarded by
3691 a linker script. */
3692 if (r_symndx == 0
3693 || (input_section->flags & SEC_ALLOC) == 0)
3694 break;
3695
3696 /* The reloc types handled here and this conditional
3697 expression must match the code in ..check_relocs and
3698 allocate_dynrelocs. ie. We need exactly the same condition
3699 as in ..check_relocs, with some extra conditions (dynindx
3700 test in this case) to cater for relocs removed by
3701 allocate_dynrelocs. If you squint, the non-shared test
3702 here does indeed match the one in ..check_relocs, the
3703 difference being that here we test DEF_DYNAMIC as well as
3704 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3705 which is why we can't use just that test here.
3706 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3707 there all files have not been loaded. */
3708 if ((info->shared
3709 && (IS_ABSOLUTE_RELOC (r_type)
3710 || (h != NULL
3711 && h->elf.dynindx != -1
3712 && (!info->symbolic
3713 || (h->elf.elf_link_hash_flags
3714 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
3715 || (!info->shared
3716 && h != NULL
3717 && h->elf.dynindx != -1
3718 && (h->elf.elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
3719 && (((h->elf.elf_link_hash_flags
3720 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3721 && (h->elf.elf_link_hash_flags
3722 & ELF_LINK_HASH_DEF_REGULAR) == 0)
3723 || h->elf.root.type == bfd_link_hash_undefweak
3724 || h->elf.root.type == bfd_link_hash_undefined)))
3725 {
3726 Elf_Internal_Rela outrel;
3727 bfd_boolean skip;
3728 asection *sreloc;
3729 bfd_byte *loc;
3730
3731 /* When generating a shared object, these relocations
3732 are copied into the output file to be resolved at run
3733 time. */
3734
3735 outrel.r_addend = rel->r_addend;
3736 outrel.r_offset =
3737 _bfd_elf_section_offset (output_bfd, info, input_section,
3738 rel->r_offset);
3739 skip = (outrel.r_offset == (bfd_vma) -1
3740 || outrel.r_offset == (bfd_vma) -2);
3741 outrel.r_offset += (input_section->output_offset
3742 + input_section->output_section->vma);
3743
3744 if (skip)
3745 {
3746 memset (&outrel, 0, sizeof (outrel));
3747 }
3748 else if (h != NULL
3749 && h->elf.dynindx != -1
3750 && (plabel
3751 || !IS_ABSOLUTE_RELOC (r_type)
3752 || !info->shared
3753 || !info->symbolic
3754 || (h->elf.elf_link_hash_flags
3755 & ELF_LINK_HASH_DEF_REGULAR) == 0))
3756 {
3757 outrel.r_info = ELF32_R_INFO (h->elf.dynindx, r_type);
3758 }
3759 else /* It's a local symbol, or one marked to become local. */
3760 {
3761 int indx = 0;
3762
3763 /* Add the absolute offset of the symbol. */
3764 outrel.r_addend += relocation;
3765
3766 /* Global plabels need to be processed by the
3767 dynamic linker so that functions have at most one
3768 fptr. For this reason, we need to differentiate
3769 between global and local plabels, which we do by
3770 providing the function symbol for a global plabel
3771 reloc, and no symbol for local plabels. */
3772 if (! plabel
3773 && sym_sec != NULL
3774 && sym_sec->output_section != NULL
3775 && ! bfd_is_abs_section (sym_sec))
3776 {
3777 indx = elf_section_data (sym_sec->output_section)->dynindx;
3778 /* We are turning this relocation into one
3779 against a section symbol, so subtract out the
3780 output section's address but not the offset
3781 of the input section in the output section. */
3782 outrel.r_addend -= sym_sec->output_section->vma;
3783 }
3784
3785 outrel.r_info = ELF32_R_INFO (indx, r_type);
3786 }
3787 #if 0
3788 /* EH info can cause unaligned DIR32 relocs.
3789 Tweak the reloc type for the dynamic linker. */
3790 if (r_type == R_PARISC_DIR32 && (outrel.r_offset & 3) != 0)
3791 outrel.r_info = ELF32_R_INFO (ELF32_R_SYM (outrel.r_info),
3792 R_PARISC_DIR32U);
3793 #endif
3794 sreloc = elf_section_data (input_section)->sreloc;
3795 if (sreloc == NULL)
3796 abort ();
3797
3798 loc = sreloc->contents;
3799 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3800 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3801 }
3802 break;
3803
3804 default:
3805 break;
3806 }
3807
3808 r = final_link_relocate (input_section, contents, rel, relocation,
3809 htab, sym_sec, h);
3810
3811 if (r == bfd_reloc_ok)
3812 continue;
3813
3814 if (h != NULL)
3815 sym_name = h->elf.root.root.string;
3816 else
3817 {
3818 sym_name = bfd_elf_string_from_elf_section (input_bfd,
3819 symtab_hdr->sh_link,
3820 sym->st_name);
3821 if (sym_name == NULL)
3822 return FALSE;
3823 if (*sym_name == '\0')
3824 sym_name = bfd_section_name (input_bfd, sym_sec);
3825 }
3826
3827 howto = elf_hppa_howto_table + r_type;
3828
3829 if (r == bfd_reloc_undefined || r == bfd_reloc_notsupported)
3830 {
3831 if (r == bfd_reloc_notsupported || !warned_undef)
3832 {
3833 (*_bfd_error_handler)
3834 (_("%s(%s+0x%lx): cannot handle %s for %s"),
3835 bfd_archive_filename (input_bfd),
3836 input_section->name,
3837 (long) rel->r_offset,
3838 howto->name,
3839 sym_name);
3840 bfd_set_error (bfd_error_bad_value);
3841 return FALSE;
3842 }
3843 }
3844 else
3845 {
3846 if (!((*info->callbacks->reloc_overflow)
3847 (info, sym_name, howto->name, 0, input_bfd, input_section,
3848 rel->r_offset)))
3849 return FALSE;
3850 }
3851 }
3852
3853 return TRUE;
3854 }
3855
3856 /* Finish up dynamic symbol handling. We set the contents of various
3857 dynamic sections here. */
3858
3859 static bfd_boolean
3860 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
3861 struct bfd_link_info *info,
3862 struct elf_link_hash_entry *h,
3863 Elf_Internal_Sym *sym)
3864 {
3865 struct elf32_hppa_link_hash_table *htab;
3866
3867 htab = hppa_link_hash_table (info);
3868
3869 if (h->plt.offset != (bfd_vma) -1)
3870 {
3871 bfd_vma value;
3872
3873 if (h->plt.offset & 1)
3874 abort ();
3875
3876 /* This symbol has an entry in the procedure linkage table. Set
3877 it up.
3878
3879 The format of a plt entry is
3880 <funcaddr>
3881 <__gp>
3882 */
3883 value = 0;
3884 if (h->root.type == bfd_link_hash_defined
3885 || h->root.type == bfd_link_hash_defweak)
3886 {
3887 value = h->root.u.def.value;
3888 if (h->root.u.def.section->output_section != NULL)
3889 value += (h->root.u.def.section->output_offset
3890 + h->root.u.def.section->output_section->vma);
3891 }
3892
3893 if (! ((struct elf32_hppa_link_hash_entry *) h)->pic_call)
3894 {
3895 Elf_Internal_Rela rel;
3896 bfd_byte *loc;
3897
3898 /* Create a dynamic IPLT relocation for this entry. */
3899 rel.r_offset = (h->plt.offset
3900 + htab->splt->output_offset
3901 + htab->splt->output_section->vma);
3902 if (h->dynindx != -1)
3903 {
3904 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_IPLT);
3905 rel.r_addend = 0;
3906 }
3907 else
3908 {
3909 /* This symbol has been marked to become local, and is
3910 used by a plabel so must be kept in the .plt. */
3911 rel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3912 rel.r_addend = value;
3913 }
3914
3915 loc = htab->srelplt->contents;
3916 loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
3917 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner,
3918 &rel, loc);
3919 }
3920 else
3921 {
3922 bfd_put_32 (htab->splt->owner,
3923 value,
3924 htab->splt->contents + h->plt.offset);
3925 bfd_put_32 (htab->splt->owner,
3926 elf_gp (htab->splt->output_section->owner),
3927 htab->splt->contents + h->plt.offset + 4);
3928 }
3929
3930 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3931 {
3932 /* Mark the symbol as undefined, rather than as defined in
3933 the .plt section. Leave the value alone. */
3934 sym->st_shndx = SHN_UNDEF;
3935 }
3936 }
3937
3938 if (h->got.offset != (bfd_vma) -1)
3939 {
3940 Elf_Internal_Rela rel;
3941 bfd_byte *loc;
3942
3943 /* This symbol has an entry in the global offset table. Set it
3944 up. */
3945
3946 rel.r_offset = ((h->got.offset &~ (bfd_vma) 1)
3947 + htab->sgot->output_offset
3948 + htab->sgot->output_section->vma);
3949
3950 /* If this is a -Bsymbolic link and the symbol is defined
3951 locally or was forced to be local because of a version file,
3952 we just want to emit a RELATIVE reloc. The entry in the
3953 global offset table will already have been initialized in the
3954 relocate_section function. */
3955 if (info->shared
3956 && (info->symbolic || h->dynindx == -1)
3957 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
3958 {
3959 rel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3960 rel.r_addend = (h->root.u.def.value
3961 + h->root.u.def.section->output_offset
3962 + h->root.u.def.section->output_section->vma);
3963 }
3964 else
3965 {
3966 if ((h->got.offset & 1) != 0)
3967 abort ();
3968 bfd_put_32 (output_bfd, 0, htab->sgot->contents + h->got.offset);
3969 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_DIR32);
3970 rel.r_addend = 0;
3971 }
3972
3973 loc = htab->srelgot->contents;
3974 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
3975 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
3976 }
3977
3978 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
3979 {
3980 asection *s;
3981 Elf_Internal_Rela rel;
3982 bfd_byte *loc;
3983
3984 /* This symbol needs a copy reloc. Set it up. */
3985
3986 if (! (h->dynindx != -1
3987 && (h->root.type == bfd_link_hash_defined
3988 || h->root.type == bfd_link_hash_defweak)))
3989 abort ();
3990
3991 s = htab->srelbss;
3992
3993 rel.r_offset = (h->root.u.def.value
3994 + h->root.u.def.section->output_offset
3995 + h->root.u.def.section->output_section->vma);
3996 rel.r_addend = 0;
3997 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_COPY);
3998 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
3999 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
4000 }
4001
4002 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4003 if (h->root.root.string[0] == '_'
4004 && (strcmp (h->root.root.string, "_DYNAMIC") == 0
4005 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0))
4006 {
4007 sym->st_shndx = SHN_ABS;
4008 }
4009
4010 return TRUE;
4011 }
4012
4013 /* Used to decide how to sort relocs in an optimal manner for the
4014 dynamic linker, before writing them out. */
4015
4016 static enum elf_reloc_type_class
4017 elf32_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
4018 {
4019 if (ELF32_R_SYM (rela->r_info) == 0)
4020 return reloc_class_relative;
4021
4022 switch ((int) ELF32_R_TYPE (rela->r_info))
4023 {
4024 case R_PARISC_IPLT:
4025 return reloc_class_plt;
4026 case R_PARISC_COPY:
4027 return reloc_class_copy;
4028 default:
4029 return reloc_class_normal;
4030 }
4031 }
4032
4033 /* Finish up the dynamic sections. */
4034
4035 static bfd_boolean
4036 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4037 struct bfd_link_info *info)
4038 {
4039 bfd *dynobj;
4040 struct elf32_hppa_link_hash_table *htab;
4041 asection *sdyn;
4042
4043 htab = hppa_link_hash_table (info);
4044 dynobj = htab->elf.dynobj;
4045
4046 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4047
4048 if (htab->elf.dynamic_sections_created)
4049 {
4050 Elf32_External_Dyn *dyncon, *dynconend;
4051
4052 if (sdyn == NULL)
4053 abort ();
4054
4055 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4056 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
4057 for (; dyncon < dynconend; dyncon++)
4058 {
4059 Elf_Internal_Dyn dyn;
4060 asection *s;
4061
4062 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4063
4064 switch (dyn.d_tag)
4065 {
4066 default:
4067 continue;
4068
4069 case DT_PLTGOT:
4070 /* Use PLTGOT to set the GOT register. */
4071 dyn.d_un.d_ptr = elf_gp (output_bfd);
4072 break;
4073
4074 case DT_JMPREL:
4075 s = htab->srelplt;
4076 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4077 break;
4078
4079 case DT_PLTRELSZ:
4080 s = htab->srelplt;
4081 dyn.d_un.d_val = s->_raw_size;
4082 break;
4083
4084 case DT_RELASZ:
4085 /* Don't count procedure linkage table relocs in the
4086 overall reloc count. */
4087 s = htab->srelplt;
4088 if (s == NULL)
4089 continue;
4090 dyn.d_un.d_val -= s->_raw_size;
4091 break;
4092
4093 case DT_RELA:
4094 /* We may not be using the standard ELF linker script.
4095 If .rela.plt is the first .rela section, we adjust
4096 DT_RELA to not include it. */
4097 s = htab->srelplt;
4098 if (s == NULL)
4099 continue;
4100 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4101 continue;
4102 dyn.d_un.d_ptr += s->_raw_size;
4103 break;
4104 }
4105
4106 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4107 }
4108 }
4109
4110 if (htab->sgot != NULL && htab->sgot->_raw_size != 0)
4111 {
4112 /* Fill in the first entry in the global offset table.
4113 We use it to point to our dynamic section, if we have one. */
4114 bfd_put_32 (output_bfd,
4115 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4116 htab->sgot->contents);
4117
4118 /* The second entry is reserved for use by the dynamic linker. */
4119 memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4120
4121 /* Set .got entry size. */
4122 elf_section_data (htab->sgot->output_section)
4123 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4124 }
4125
4126 if (htab->splt != NULL && htab->splt->_raw_size != 0)
4127 {
4128 /* Set plt entry size. */
4129 elf_section_data (htab->splt->output_section)
4130 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4131
4132 if (htab->need_plt_stub)
4133 {
4134 /* Set up the .plt stub. */
4135 memcpy (htab->splt->contents
4136 + htab->splt->_raw_size - sizeof (plt_stub),
4137 plt_stub, sizeof (plt_stub));
4138
4139 if ((htab->splt->output_offset
4140 + htab->splt->output_section->vma
4141 + htab->splt->_raw_size)
4142 != (htab->sgot->output_offset
4143 + htab->sgot->output_section->vma))
4144 {
4145 (*_bfd_error_handler)
4146 (_(".got section not immediately after .plt section"));
4147 return FALSE;
4148 }
4149 }
4150 }
4151
4152 return TRUE;
4153 }
4154
4155 /* Tweak the OSABI field of the elf header. */
4156
4157 static void
4158 elf32_hppa_post_process_headers (bfd *abfd,
4159 struct bfd_link_info *info ATTRIBUTE_UNUSED)
4160 {
4161 Elf_Internal_Ehdr * i_ehdrp;
4162
4163 i_ehdrp = elf_elfheader (abfd);
4164
4165 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
4166 {
4167 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
4168 }
4169 else
4170 {
4171 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
4172 }
4173 }
4174
4175 /* Called when writing out an object file to decide the type of a
4176 symbol. */
4177 static int
4178 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4179 {
4180 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4181 return STT_PARISC_MILLI;
4182 else
4183 return type;
4184 }
4185
4186 /* Misc BFD support code. */
4187 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4188 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4189 #define elf_info_to_howto elf_hppa_info_to_howto
4190 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4191
4192 /* Stuff for the BFD linker. */
4193 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4194 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4195 #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
4196 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4197 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4198 #define elf_backend_check_relocs elf32_hppa_check_relocs
4199 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4200 #define elf_backend_fake_sections elf_hppa_fake_sections
4201 #define elf_backend_relocate_section elf32_hppa_relocate_section
4202 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4203 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4204 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4205 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4206 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4207 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4208 #define elf_backend_object_p elf32_hppa_object_p
4209 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4210 #define elf_backend_post_process_headers elf32_hppa_post_process_headers
4211 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4212 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4213
4214 #define elf_backend_can_gc_sections 1
4215 #define elf_backend_can_refcount 1
4216 #define elf_backend_plt_alignment 2
4217 #define elf_backend_want_got_plt 0
4218 #define elf_backend_plt_readonly 0
4219 #define elf_backend_want_plt_sym 0
4220 #define elf_backend_got_header_size 8
4221 #define elf_backend_rela_normal 1
4222
4223 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4224 #define TARGET_BIG_NAME "elf32-hppa"
4225 #define ELF_ARCH bfd_arch_hppa
4226 #define ELF_MACHINE_CODE EM_PARISC
4227 #define ELF_MAXPAGESIZE 0x1000
4228
4229 #include "elf32-target.h"
4230
4231 #undef TARGET_BIG_SYM
4232 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4233 #undef TARGET_BIG_NAME
4234 #define TARGET_BIG_NAME "elf32-hppa-linux"
4235
4236 #define INCLUDED_TARGET_FILE 1
4237 #include "elf32-target.h"
This page took 0.158576 seconds and 4 git commands to generate.