* i386-tdep.c (i386_reg_struct_return_p): Handle structures with a
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 Original code by
6 Center for Software Science
7 Department of Computer Science
8 University of Utah
9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
26
27 #include "bfd.h"
28 #include "sysdep.h"
29 #include "libbfd.h"
30 #include "elf-bfd.h"
31 #include "elf/hppa.h"
32 #include "libhppa.h"
33 #include "elf32-hppa.h"
34 #define ARCH_SIZE 32
35 #include "elf32-hppa.h"
36 #include "elf-hppa.h"
37
38 /* In order to gain some understanding of code in this file without
39 knowing all the intricate details of the linker, note the
40 following:
41
42 Functions named elf32_hppa_* are called by external routines, other
43 functions are only called locally. elf32_hppa_* functions appear
44 in this file more or less in the order in which they are called
45 from external routines. eg. elf32_hppa_check_relocs is called
46 early in the link process, elf32_hppa_finish_dynamic_sections is
47 one of the last functions. */
48
49 /* We use two hash tables to hold information for linking PA ELF objects.
50
51 The first is the elf32_hppa_link_hash_table which is derived
52 from the standard ELF linker hash table. We use this as a place to
53 attach other hash tables and static information.
54
55 The second is the stub hash table which is derived from the
56 base BFD hash table. The stub hash table holds the information
57 necessary to build the linker stubs during a link.
58
59 There are a number of different stubs generated by the linker.
60
61 Long branch stub:
62 : ldil LR'X,%r1
63 : be,n RR'X(%sr4,%r1)
64
65 PIC long branch stub:
66 : b,l .+8,%r1
67 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
68 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
69
70 Import stub to call shared library routine from normal object file
71 (single sub-space version)
72 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
73 : ldw RR'lt_ptr+ltoff(%r1),%r21
74 : bv %r0(%r21)
75 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
76
77 Import stub to call shared library routine from shared library
78 (single sub-space version)
79 : addil LR'ltoff,%r19 ; get procedure entry point
80 : ldw RR'ltoff(%r1),%r21
81 : bv %r0(%r21)
82 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
83
84 Import stub to call shared library routine from normal object file
85 (multiple sub-space support)
86 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
87 : ldw RR'lt_ptr+ltoff(%r1),%r21
88 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
89 : ldsid (%r21),%r1
90 : mtsp %r1,%sr0
91 : be 0(%sr0,%r21) ; branch to target
92 : stw %rp,-24(%sp) ; save rp
93
94 Import stub to call shared library routine from shared library
95 (multiple sub-space support)
96 : addil LR'ltoff,%r19 ; get procedure entry point
97 : ldw RR'ltoff(%r1),%r21
98 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
99 : ldsid (%r21),%r1
100 : mtsp %r1,%sr0
101 : be 0(%sr0,%r21) ; branch to target
102 : stw %rp,-24(%sp) ; save rp
103
104 Export stub to return from shared lib routine (multiple sub-space support)
105 One of these is created for each exported procedure in a shared
106 library (and stored in the shared lib). Shared lib routines are
107 called via the first instruction in the export stub so that we can
108 do an inter-space return. Not required for single sub-space.
109 : bl,n X,%rp ; trap the return
110 : nop
111 : ldw -24(%sp),%rp ; restore the original rp
112 : ldsid (%rp),%r1
113 : mtsp %r1,%sr0
114 : be,n 0(%sr0,%rp) ; inter-space return. */
115
116
117 /* Variable names follow a coding style.
118 Please follow this (Apps Hungarian) style:
119
120 Structure/Variable Prefix
121 elf_link_hash_table "etab"
122 elf_link_hash_entry "eh"
123
124 elf32_hppa_link_hash_table "htab"
125 elf32_hppa_link_hash_entry "hh"
126
127 bfd_hash_table "btab"
128 bfd_hash_entry "bh"
129
130 bfd_hash_table containing stubs "bstab"
131 elf32_hppa_stub_hash_entry "hsh"
132
133 elf32_hppa_dyn_reloc_entry "hdh"
134
135 Always remember to use GNU Coding Style. */
136
137 #define PLT_ENTRY_SIZE 8
138 #define GOT_ENTRY_SIZE 4
139 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
140
141 static const bfd_byte plt_stub[] =
142 {
143 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
144 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
145 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
146 #define PLT_STUB_ENTRY (3*4)
147 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
148 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
149 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
150 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
151 };
152
153 /* Section name for stubs is the associated section name plus this
154 string. */
155 #define STUB_SUFFIX ".stub"
156
157 /* We don't need to copy certain PC- or GP-relative dynamic relocs
158 into a shared object's dynamic section. All the relocs of the
159 limited class we are interested in, are absolute. */
160 #ifndef RELATIVE_DYNRELOCS
161 #define RELATIVE_DYNRELOCS 0
162 #define IS_ABSOLUTE_RELOC(r_type) 1
163 #endif
164
165 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
166 copying dynamic variables from a shared lib into an app's dynbss
167 section, and instead use a dynamic relocation to point into the
168 shared lib. */
169 #define ELIMINATE_COPY_RELOCS 1
170
171 enum elf32_hppa_stub_type {
172 hppa_stub_long_branch,
173 hppa_stub_long_branch_shared,
174 hppa_stub_import,
175 hppa_stub_import_shared,
176 hppa_stub_export,
177 hppa_stub_none
178 };
179
180 struct elf32_hppa_stub_hash_entry {
181
182 /* Base hash table entry structure. */
183 struct bfd_hash_entry bh_root;
184
185 /* The stub section. */
186 asection *stub_sec;
187
188 /* Offset within stub_sec of the beginning of this stub. */
189 bfd_vma stub_offset;
190
191 /* Given the symbol's value and its section we can determine its final
192 value when building the stubs (so the stub knows where to jump. */
193 bfd_vma target_value;
194 asection *target_section;
195
196 enum elf32_hppa_stub_type stub_type;
197
198 /* The symbol table entry, if any, that this was derived from. */
199 struct elf32_hppa_link_hash_entry *hh;
200
201 /* Where this stub is being called from, or, in the case of combined
202 stub sections, the first input section in the group. */
203 asection *id_sec;
204 };
205
206 struct elf32_hppa_link_hash_entry {
207
208 struct elf_link_hash_entry eh;
209
210 /* A pointer to the most recently used stub hash entry against this
211 symbol. */
212 struct elf32_hppa_stub_hash_entry *hsh_cache;
213
214 /* Used to count relocations for delayed sizing of relocation
215 sections. */
216 struct elf32_hppa_dyn_reloc_entry {
217
218 /* Next relocation in the chain. */
219 struct elf32_hppa_dyn_reloc_entry *hdh_next;
220
221 /* The input section of the reloc. */
222 asection *sec;
223
224 /* Number of relocs copied in this section. */
225 bfd_size_type count;
226
227 #if RELATIVE_DYNRELOCS
228 /* Number of relative relocs copied for the input section. */
229 bfd_size_type relative_count;
230 #endif
231 } *dyn_relocs;
232
233 /* Set if this symbol is used by a plabel reloc. */
234 unsigned int plabel:1;
235 };
236
237 struct elf32_hppa_link_hash_table {
238
239 /* The main hash table. */
240 struct elf_link_hash_table etab;
241
242 /* The stub hash table. */
243 struct bfd_hash_table bstab;
244
245 /* Linker stub bfd. */
246 bfd *stub_bfd;
247
248 /* Linker call-backs. */
249 asection * (*add_stub_section) (const char *, asection *);
250 void (*layout_sections_again) (void);
251
252 /* Array to keep track of which stub sections have been created, and
253 information on stub grouping. */
254 struct map_stub {
255 /* This is the section to which stubs in the group will be
256 attached. */
257 asection *link_sec;
258 /* The stub section. */
259 asection *stub_sec;
260 } *stub_group;
261
262 /* Assorted information used by elf32_hppa_size_stubs. */
263 unsigned int bfd_count;
264 int top_index;
265 asection **input_list;
266 Elf_Internal_Sym **all_local_syms;
267
268 /* Short-cuts to get to dynamic linker sections. */
269 asection *sgot;
270 asection *srelgot;
271 asection *splt;
272 asection *srelplt;
273 asection *sdynbss;
274 asection *srelbss;
275
276 /* Used during a final link to store the base of the text and data
277 segments so that we can perform SEGREL relocations. */
278 bfd_vma text_segment_base;
279 bfd_vma data_segment_base;
280
281 /* Whether we support multiple sub-spaces for shared libs. */
282 unsigned int multi_subspace:1;
283
284 /* Flags set when various size branches are detected. Used to
285 select suitable defaults for the stub group size. */
286 unsigned int has_12bit_branch:1;
287 unsigned int has_17bit_branch:1;
288 unsigned int has_22bit_branch:1;
289
290 /* Set if we need a .plt stub to support lazy dynamic linking. */
291 unsigned int need_plt_stub:1;
292
293 /* Small local sym to section mapping cache. */
294 struct sym_sec_cache sym_sec;
295 };
296
297 /* Various hash macros and functions. */
298 #define hppa_link_hash_table(p) \
299 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
300
301 #define hppa_elf_hash_entry(ent) \
302 ((struct elf32_hppa_link_hash_entry *)(ent))
303
304 #define hppa_stub_hash_entry(ent) \
305 ((struct elf32_hppa_stub_hash_entry *)(ent))
306
307 #define hppa_stub_hash_lookup(table, string, create, copy) \
308 ((struct elf32_hppa_stub_hash_entry *) \
309 bfd_hash_lookup ((table), (string), (create), (copy)))
310
311 /* Assorted hash table functions. */
312
313 /* Initialize an entry in the stub hash table. */
314
315 static struct bfd_hash_entry *
316 stub_hash_newfunc (struct bfd_hash_entry *entry,
317 struct bfd_hash_table *table,
318 const char *string)
319 {
320 /* Allocate the structure if it has not already been allocated by a
321 subclass. */
322 if (entry == NULL)
323 {
324 entry = bfd_hash_allocate (table,
325 sizeof (struct elf32_hppa_stub_hash_entry));
326 if (entry == NULL)
327 return entry;
328 }
329
330 /* Call the allocation method of the superclass. */
331 entry = bfd_hash_newfunc (entry, table, string);
332 if (entry != NULL)
333 {
334 struct elf32_hppa_stub_hash_entry *hsh;
335
336 /* Initialize the local fields. */
337 hsh = hppa_stub_hash_entry (entry);
338 hsh->stub_sec = NULL;
339 hsh->stub_offset = 0;
340 hsh->target_value = 0;
341 hsh->target_section = NULL;
342 hsh->stub_type = hppa_stub_long_branch;
343 hsh->hh = NULL;
344 hsh->id_sec = NULL;
345 }
346
347 return entry;
348 }
349
350 /* Initialize an entry in the link hash table. */
351
352 static struct bfd_hash_entry *
353 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
354 struct bfd_hash_table *table,
355 const char *string)
356 {
357 /* Allocate the structure if it has not already been allocated by a
358 subclass. */
359 if (entry == NULL)
360 {
361 entry = bfd_hash_allocate (table,
362 sizeof (struct elf32_hppa_link_hash_entry));
363 if (entry == NULL)
364 return entry;
365 }
366
367 /* Call the allocation method of the superclass. */
368 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
369 if (entry != NULL)
370 {
371 struct elf32_hppa_link_hash_entry *hh;
372
373 /* Initialize the local fields. */
374 hh = hppa_elf_hash_entry (entry);
375 hh->hsh_cache = NULL;
376 hh->dyn_relocs = NULL;
377 hh->plabel = 0;
378 }
379
380 return entry;
381 }
382
383 /* Create the derived linker hash table. The PA ELF port uses the derived
384 hash table to keep information specific to the PA ELF linker (without
385 using static variables). */
386
387 static struct bfd_link_hash_table *
388 elf32_hppa_link_hash_table_create (bfd *abfd)
389 {
390 struct elf32_hppa_link_hash_table *htab;
391 bfd_size_type amt = sizeof (*htab);
392
393 htab = (struct elf32_hppa_link_hash_table *) bfd_malloc (amt);
394 if (htab == NULL)
395 return NULL;
396
397 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc))
398 {
399 free (htab);
400 return NULL;
401 }
402
403 /* Init the stub hash table too. */
404 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc))
405 return NULL;
406
407 htab->stub_bfd = NULL;
408 htab->add_stub_section = NULL;
409 htab->layout_sections_again = NULL;
410 htab->stub_group = NULL;
411 htab->sgot = NULL;
412 htab->srelgot = NULL;
413 htab->splt = NULL;
414 htab->srelplt = NULL;
415 htab->sdynbss = NULL;
416 htab->srelbss = NULL;
417 htab->text_segment_base = (bfd_vma) -1;
418 htab->data_segment_base = (bfd_vma) -1;
419 htab->multi_subspace = 0;
420 htab->has_12bit_branch = 0;
421 htab->has_17bit_branch = 0;
422 htab->has_22bit_branch = 0;
423 htab->need_plt_stub = 0;
424 htab->sym_sec.abfd = NULL;
425
426 return &htab->etab.root;
427 }
428
429 /* Free the derived linker hash table. */
430
431 static void
432 elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *btab)
433 {
434 struct elf32_hppa_link_hash_table *htab
435 = (struct elf32_hppa_link_hash_table *) btab;
436
437 bfd_hash_table_free (&htab->bstab);
438 _bfd_generic_link_hash_table_free (btab);
439 }
440
441 /* Build a name for an entry in the stub hash table. */
442
443 static char *
444 hppa_stub_name (const asection *input_section,
445 const asection *sym_sec,
446 const struct elf32_hppa_link_hash_entry *hh,
447 const Elf_Internal_Rela *rela)
448 {
449 char *stub_name;
450 bfd_size_type len;
451
452 if (hh)
453 {
454 len = 8 + 1 + strlen (hh->eh.root.root.string) + 1 + 8 + 1;
455 stub_name = bfd_malloc (len);
456 if (stub_name != NULL)
457 {
458 sprintf (stub_name, "%08x_%s+%x",
459 input_section->id & 0xffffffff,
460 hh->eh.root.root.string,
461 (int) rela->r_addend & 0xffffffff);
462 }
463 }
464 else
465 {
466 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
467 stub_name = bfd_malloc (len);
468 if (stub_name != NULL)
469 {
470 sprintf (stub_name, "%08x_%x:%x+%x",
471 input_section->id & 0xffffffff,
472 sym_sec->id & 0xffffffff,
473 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
474 (int) rela->r_addend & 0xffffffff);
475 }
476 }
477 return stub_name;
478 }
479
480 /* Look up an entry in the stub hash. Stub entries are cached because
481 creating the stub name takes a bit of time. */
482
483 static struct elf32_hppa_stub_hash_entry *
484 hppa_get_stub_entry (const asection *input_section,
485 const asection *sym_sec,
486 struct elf32_hppa_link_hash_entry *hh,
487 const Elf_Internal_Rela *rela,
488 struct elf32_hppa_link_hash_table *htab)
489 {
490 struct elf32_hppa_stub_hash_entry *hsh_entry;
491 const asection *id_sec;
492
493 /* If this input section is part of a group of sections sharing one
494 stub section, then use the id of the first section in the group.
495 Stub names need to include a section id, as there may well be
496 more than one stub used to reach say, printf, and we need to
497 distinguish between them. */
498 id_sec = htab->stub_group[input_section->id].link_sec;
499
500 if (hh != NULL && hh->hsh_cache != NULL
501 && hh->hsh_cache->hh == hh
502 && hh->hsh_cache->id_sec == id_sec)
503 {
504 hsh_entry = hh->hsh_cache;
505 }
506 else
507 {
508 char *stub_name;
509
510 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
511 if (stub_name == NULL)
512 return NULL;
513
514 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
515 stub_name, FALSE, FALSE);
516 if (hh != NULL)
517 hh->hsh_cache = hsh_entry;
518
519 free (stub_name);
520 }
521
522 return hsh_entry;
523 }
524
525 /* Add a new stub entry to the stub hash. Not all fields of the new
526 stub entry are initialised. */
527
528 static struct elf32_hppa_stub_hash_entry *
529 hppa_add_stub (const char *stub_name,
530 asection *section,
531 struct elf32_hppa_link_hash_table *htab)
532 {
533 asection *link_sec;
534 asection *stub_sec;
535 struct elf32_hppa_stub_hash_entry *hsh;
536
537 link_sec = htab->stub_group[section->id].link_sec;
538 stub_sec = htab->stub_group[section->id].stub_sec;
539 if (stub_sec == NULL)
540 {
541 stub_sec = htab->stub_group[link_sec->id].stub_sec;
542 if (stub_sec == NULL)
543 {
544 size_t namelen;
545 bfd_size_type len;
546 char *s_name;
547
548 namelen = strlen (link_sec->name);
549 len = namelen + sizeof (STUB_SUFFIX);
550 s_name = bfd_alloc (htab->stub_bfd, len);
551 if (s_name == NULL)
552 return NULL;
553
554 memcpy (s_name, link_sec->name, namelen);
555 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
556 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
557 if (stub_sec == NULL)
558 return NULL;
559 htab->stub_group[link_sec->id].stub_sec = stub_sec;
560 }
561 htab->stub_group[section->id].stub_sec = stub_sec;
562 }
563
564 /* Enter this entry into the linker stub hash table. */
565 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
566 TRUE, FALSE);
567 if (hsh == NULL)
568 {
569 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
570 section->owner,
571 stub_name);
572 return NULL;
573 }
574
575 hsh->stub_sec = stub_sec;
576 hsh->stub_offset = 0;
577 hsh->id_sec = link_sec;
578 return hsh;
579 }
580
581 /* Determine the type of stub needed, if any, for a call. */
582
583 static enum elf32_hppa_stub_type
584 hppa_type_of_stub (asection *input_sec,
585 const Elf_Internal_Rela *rela,
586 struct elf32_hppa_link_hash_entry *hh,
587 bfd_vma destination,
588 struct bfd_link_info *info)
589 {
590 bfd_vma location;
591 bfd_vma branch_offset;
592 bfd_vma max_branch_offset;
593 unsigned int r_type;
594
595 if (hh != NULL
596 && hh->eh.plt.offset != (bfd_vma) -1
597 && hh->eh.dynindx != -1
598 && !hh->plabel
599 && (info->shared
600 || !hh->eh.def_regular
601 || hh->eh.root.type == bfd_link_hash_defweak))
602 {
603 /* We need an import stub. Decide between hppa_stub_import
604 and hppa_stub_import_shared later. */
605 return hppa_stub_import;
606 }
607
608 /* Determine where the call point is. */
609 location = (input_sec->output_offset
610 + input_sec->output_section->vma
611 + rela->r_offset);
612
613 branch_offset = destination - location - 8;
614 r_type = ELF32_R_TYPE (rela->r_info);
615
616 /* Determine if a long branch stub is needed. parisc branch offsets
617 are relative to the second instruction past the branch, ie. +8
618 bytes on from the branch instruction location. The offset is
619 signed and counts in units of 4 bytes. */
620 if (r_type == (unsigned int) R_PARISC_PCREL17F)
621 {
622 max_branch_offset = (1 << (17-1)) << 2;
623 }
624 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
625 {
626 max_branch_offset = (1 << (12-1)) << 2;
627 }
628 else /* R_PARISC_PCREL22F. */
629 {
630 max_branch_offset = (1 << (22-1)) << 2;
631 }
632
633 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
634 return hppa_stub_long_branch;
635
636 return hppa_stub_none;
637 }
638
639 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
640 IN_ARG contains the link info pointer. */
641
642 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
643 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
644
645 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
646 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
647 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
648
649 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
650 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
651 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
652 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
653
654 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
655 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
656
657 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
658 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
659 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
660 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
661
662 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
663 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
664 #define NOP 0x08000240 /* nop */
665 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
666 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
667 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
668
669 #ifndef R19_STUBS
670 #define R19_STUBS 1
671 #endif
672
673 #if R19_STUBS
674 #define LDW_R1_DLT LDW_R1_R19
675 #else
676 #define LDW_R1_DLT LDW_R1_DP
677 #endif
678
679 static bfd_boolean
680 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
681 {
682 struct elf32_hppa_stub_hash_entry *hsh;
683 struct bfd_link_info *info;
684 struct elf32_hppa_link_hash_table *htab;
685 asection *stub_sec;
686 bfd *stub_bfd;
687 bfd_byte *loc;
688 bfd_vma sym_value;
689 bfd_vma insn;
690 bfd_vma off;
691 int val;
692 int size;
693
694 /* Massage our args to the form they really have. */
695 hsh = hppa_stub_hash_entry (bh);
696 info = (struct bfd_link_info *)in_arg;
697
698 htab = hppa_link_hash_table (info);
699 stub_sec = hsh->stub_sec;
700
701 /* Make a note of the offset within the stubs for this entry. */
702 hsh->stub_offset = stub_sec->size;
703 loc = stub_sec->contents + hsh->stub_offset;
704
705 stub_bfd = stub_sec->owner;
706
707 switch (hsh->stub_type)
708 {
709 case hppa_stub_long_branch:
710 /* Create the long branch. A long branch is formed with "ldil"
711 loading the upper bits of the target address into a register,
712 then branching with "be" which adds in the lower bits.
713 The "be" has its delay slot nullified. */
714 sym_value = (hsh->target_value
715 + hsh->target_section->output_offset
716 + hsh->target_section->output_section->vma);
717
718 val = hppa_field_adjust (sym_value, 0, e_lrsel);
719 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
720 bfd_put_32 (stub_bfd, insn, loc);
721
722 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
723 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
724 bfd_put_32 (stub_bfd, insn, loc + 4);
725
726 size = 8;
727 break;
728
729 case hppa_stub_long_branch_shared:
730 /* Branches are relative. This is where we are going to. */
731 sym_value = (hsh->target_value
732 + hsh->target_section->output_offset
733 + hsh->target_section->output_section->vma);
734
735 /* And this is where we are coming from, more or less. */
736 sym_value -= (hsh->stub_offset
737 + stub_sec->output_offset
738 + stub_sec->output_section->vma);
739
740 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
741 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
742 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
743 bfd_put_32 (stub_bfd, insn, loc + 4);
744
745 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
746 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
747 bfd_put_32 (stub_bfd, insn, loc + 8);
748 size = 12;
749 break;
750
751 case hppa_stub_import:
752 case hppa_stub_import_shared:
753 off = hsh->hh->eh.plt.offset;
754 if (off >= (bfd_vma) -2)
755 abort ();
756
757 off &= ~ (bfd_vma) 1;
758 sym_value = (off
759 + htab->splt->output_offset
760 + htab->splt->output_section->vma
761 - elf_gp (htab->splt->output_section->owner));
762
763 insn = ADDIL_DP;
764 #if R19_STUBS
765 if (hsh->stub_type == hppa_stub_import_shared)
766 insn = ADDIL_R19;
767 #endif
768 val = hppa_field_adjust (sym_value, 0, e_lrsel),
769 insn = hppa_rebuild_insn ((int) insn, val, 21);
770 bfd_put_32 (stub_bfd, insn, loc);
771
772 /* It is critical to use lrsel/rrsel here because we are using
773 two different offsets (+0 and +4) from sym_value. If we use
774 lsel/rsel then with unfortunate sym_values we will round
775 sym_value+4 up to the next 2k block leading to a mis-match
776 between the lsel and rsel value. */
777 val = hppa_field_adjust (sym_value, 0, e_rrsel);
778 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
779 bfd_put_32 (stub_bfd, insn, loc + 4);
780
781 if (htab->multi_subspace)
782 {
783 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
784 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
785 bfd_put_32 (stub_bfd, insn, loc + 8);
786
787 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
788 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
789 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
790 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
791
792 size = 28;
793 }
794 else
795 {
796 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
797 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
798 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
799 bfd_put_32 (stub_bfd, insn, loc + 12);
800
801 size = 16;
802 }
803
804 break;
805
806 case hppa_stub_export:
807 /* Branches are relative. This is where we are going to. */
808 sym_value = (hsh->target_value
809 + hsh->target_section->output_offset
810 + hsh->target_section->output_section->vma);
811
812 /* And this is where we are coming from. */
813 sym_value -= (hsh->stub_offset
814 + stub_sec->output_offset
815 + stub_sec->output_section->vma);
816
817 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
818 && (!htab->has_22bit_branch
819 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
820 {
821 (*_bfd_error_handler)
822 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
823 hsh->target_section->owner,
824 stub_sec,
825 (long) hsh->stub_offset,
826 hsh->bh_root.string);
827 bfd_set_error (bfd_error_bad_value);
828 return FALSE;
829 }
830
831 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
832 if (!htab->has_22bit_branch)
833 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
834 else
835 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
836 bfd_put_32 (stub_bfd, insn, loc);
837
838 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
839 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
840 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
841 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
842 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
843
844 /* Point the function symbol at the stub. */
845 hsh->hh->eh.root.u.def.section = stub_sec;
846 hsh->hh->eh.root.u.def.value = stub_sec->size;
847
848 size = 24;
849 break;
850
851 default:
852 BFD_FAIL ();
853 return FALSE;
854 }
855
856 stub_sec->size += size;
857 return TRUE;
858 }
859
860 #undef LDIL_R1
861 #undef BE_SR4_R1
862 #undef BL_R1
863 #undef ADDIL_R1
864 #undef DEPI_R1
865 #undef LDW_R1_R21
866 #undef LDW_R1_DLT
867 #undef LDW_R1_R19
868 #undef ADDIL_R19
869 #undef LDW_R1_DP
870 #undef LDSID_R21_R1
871 #undef MTSP_R1
872 #undef BE_SR0_R21
873 #undef STW_RP
874 #undef BV_R0_R21
875 #undef BL_RP
876 #undef NOP
877 #undef LDW_RP
878 #undef LDSID_RP_R1
879 #undef BE_SR0_RP
880
881 /* As above, but don't actually build the stub. Just bump offset so
882 we know stub section sizes. */
883
884 static bfd_boolean
885 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
886 {
887 struct elf32_hppa_stub_hash_entry *hsh;
888 struct elf32_hppa_link_hash_table *htab;
889 int size;
890
891 /* Massage our args to the form they really have. */
892 hsh = hppa_stub_hash_entry (bh);
893 htab = in_arg;
894
895 if (hsh->stub_type == hppa_stub_long_branch)
896 size = 8;
897 else if (hsh->stub_type == hppa_stub_long_branch_shared)
898 size = 12;
899 else if (hsh->stub_type == hppa_stub_export)
900 size = 24;
901 else /* hppa_stub_import or hppa_stub_import_shared. */
902 {
903 if (htab->multi_subspace)
904 size = 28;
905 else
906 size = 16;
907 }
908
909 hsh->stub_sec->size += size;
910 return TRUE;
911 }
912
913 /* Return nonzero if ABFD represents an HPPA ELF32 file.
914 Additionally we set the default architecture and machine. */
915
916 static bfd_boolean
917 elf32_hppa_object_p (bfd *abfd)
918 {
919 Elf_Internal_Ehdr * i_ehdrp;
920 unsigned int flags;
921
922 i_ehdrp = elf_elfheader (abfd);
923 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
924 {
925 /* GCC on hppa-linux produces binaries with OSABI=Linux,
926 but the kernel produces corefiles with OSABI=SysV. */
927 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX &&
928 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
929 return FALSE;
930 }
931 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
932 {
933 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
934 but the kernel produces corefiles with OSABI=SysV. */
935 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
936 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
937 return FALSE;
938 }
939 else
940 {
941 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
942 return FALSE;
943 }
944
945 flags = i_ehdrp->e_flags;
946 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
947 {
948 case EFA_PARISC_1_0:
949 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
950 case EFA_PARISC_1_1:
951 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
952 case EFA_PARISC_2_0:
953 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
954 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
955 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
956 }
957 return TRUE;
958 }
959
960 /* Create the .plt and .got sections, and set up our hash table
961 short-cuts to various dynamic sections. */
962
963 static bfd_boolean
964 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
965 {
966 struct elf32_hppa_link_hash_table *htab;
967 struct elf_link_hash_entry *eh;
968
969 /* Don't try to create the .plt and .got twice. */
970 htab = hppa_link_hash_table (info);
971 if (htab->splt != NULL)
972 return TRUE;
973
974 /* Call the generic code to do most of the work. */
975 if (! _bfd_elf_create_dynamic_sections (abfd, info))
976 return FALSE;
977
978 htab->splt = bfd_get_section_by_name (abfd, ".plt");
979 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
980
981 htab->sgot = bfd_get_section_by_name (abfd, ".got");
982 htab->srelgot = bfd_make_section_with_flags (abfd, ".rela.got",
983 (SEC_ALLOC
984 | SEC_LOAD
985 | SEC_HAS_CONTENTS
986 | SEC_IN_MEMORY
987 | SEC_LINKER_CREATED
988 | SEC_READONLY));
989 if (htab->srelgot == NULL
990 || ! bfd_set_section_alignment (abfd, htab->srelgot, 2))
991 return FALSE;
992
993 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
994 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
995
996 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
997 application, because __canonicalize_funcptr_for_compare needs it. */
998 eh = elf_hash_table (info)->hgot;
999 eh->forced_local = 0;
1000 eh->other = STV_DEFAULT;
1001 return bfd_elf_link_record_dynamic_symbol (info, eh);
1002 }
1003
1004 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1005
1006 static void
1007 elf32_hppa_copy_indirect_symbol (const struct elf_backend_data *bed,
1008 struct elf_link_hash_entry *eh_dir,
1009 struct elf_link_hash_entry *eh_ind)
1010 {
1011 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1012
1013 hh_dir = hppa_elf_hash_entry (eh_dir);
1014 hh_ind = hppa_elf_hash_entry (eh_ind);
1015
1016 if (hh_ind->dyn_relocs != NULL)
1017 {
1018 if (hh_dir->dyn_relocs != NULL)
1019 {
1020 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1021 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1022
1023 if (eh_ind->root.type == bfd_link_hash_indirect)
1024 abort ();
1025
1026 /* Add reloc counts against the weak sym to the strong sym
1027 list. Merge any entries against the same section. */
1028 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1029 {
1030 struct elf32_hppa_dyn_reloc_entry *hdh_q;
1031
1032 for (hdh_q = hh_dir->dyn_relocs; hdh_q != NULL; hdh_q = hdh_q->hdh_next)
1033 if (hdh_q->sec == hdh_p->sec)
1034 {
1035 #if RELATIVE_DYNRELOCS
1036 hdh_q->relative_count += hdh_p->relative_count;
1037 #endif
1038 hdh_q->count += hdh_p->count;
1039 *hdh_pp = hdh_p->hdh_next;
1040 break;
1041 }
1042 if (hdh_q == NULL)
1043 hdh_pp = &hdh_p->hdh_next;
1044 }
1045 *hdh_pp = hh_dir->dyn_relocs;
1046 }
1047
1048 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1049 hh_ind->dyn_relocs = NULL;
1050 }
1051
1052 if (ELIMINATE_COPY_RELOCS
1053 && eh_ind->root.type != bfd_link_hash_indirect
1054 && eh_dir->dynamic_adjusted)
1055 {
1056 /* If called to transfer flags for a weakdef during processing
1057 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1058 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1059 eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
1060 eh_dir->ref_regular |= eh_ind->ref_regular;
1061 eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
1062 eh_dir->needs_plt |= eh_ind->needs_plt;
1063 }
1064 else
1065 _bfd_elf_link_hash_copy_indirect (bed, eh_dir, eh_ind);
1066 }
1067
1068 /* Look through the relocs for a section during the first phase, and
1069 calculate needed space in the global offset table, procedure linkage
1070 table, and dynamic reloc sections. At this point we haven't
1071 necessarily read all the input files. */
1072
1073 static bfd_boolean
1074 elf32_hppa_check_relocs (bfd *abfd,
1075 struct bfd_link_info *info,
1076 asection *sec,
1077 const Elf_Internal_Rela *relocs)
1078 {
1079 Elf_Internal_Shdr *symtab_hdr;
1080 struct elf_link_hash_entry **eh_syms;
1081 const Elf_Internal_Rela *rela;
1082 const Elf_Internal_Rela *rela_end;
1083 struct elf32_hppa_link_hash_table *htab;
1084 asection *sreloc;
1085 asection *stubreloc;
1086
1087 if (info->relocatable)
1088 return TRUE;
1089
1090 htab = hppa_link_hash_table (info);
1091 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1092 eh_syms = elf_sym_hashes (abfd);
1093 sreloc = NULL;
1094 stubreloc = NULL;
1095
1096 rela_end = relocs + sec->reloc_count;
1097 for (rela = relocs; rela < rela_end; rela++)
1098 {
1099 enum {
1100 NEED_GOT = 1,
1101 NEED_PLT = 2,
1102 NEED_DYNREL = 4,
1103 PLT_PLABEL = 8
1104 };
1105
1106 unsigned int r_symndx, r_type;
1107 struct elf32_hppa_link_hash_entry *hh;
1108 int need_entry = 0;
1109
1110 r_symndx = ELF32_R_SYM (rela->r_info);
1111
1112 if (r_symndx < symtab_hdr->sh_info)
1113 hh = NULL;
1114 else
1115 {
1116 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1117 while (hh->eh.root.type == bfd_link_hash_indirect
1118 || hh->eh.root.type == bfd_link_hash_warning)
1119 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1120 }
1121
1122 r_type = ELF32_R_TYPE (rela->r_info);
1123
1124 switch (r_type)
1125 {
1126 case R_PARISC_DLTIND14F:
1127 case R_PARISC_DLTIND14R:
1128 case R_PARISC_DLTIND21L:
1129 /* This symbol requires a global offset table entry. */
1130 need_entry = NEED_GOT;
1131 break;
1132
1133 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1134 case R_PARISC_PLABEL21L:
1135 case R_PARISC_PLABEL32:
1136 /* If the addend is non-zero, we break badly. */
1137 if (rela->r_addend != 0)
1138 abort ();
1139
1140 /* If we are creating a shared library, then we need to
1141 create a PLT entry for all PLABELs, because PLABELs with
1142 local symbols may be passed via a pointer to another
1143 object. Additionally, output a dynamic relocation
1144 pointing to the PLT entry.
1145
1146 For executables, the original 32-bit ABI allowed two
1147 different styles of PLABELs (function pointers): For
1148 global functions, the PLABEL word points into the .plt
1149 two bytes past a (function address, gp) pair, and for
1150 local functions the PLABEL points directly at the
1151 function. The magic +2 for the first type allows us to
1152 differentiate between the two. As you can imagine, this
1153 is a real pain when it comes to generating code to call
1154 functions indirectly or to compare function pointers.
1155 We avoid the mess by always pointing a PLABEL into the
1156 .plt, even for local functions. */
1157 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1158 break;
1159
1160 case R_PARISC_PCREL12F:
1161 htab->has_12bit_branch = 1;
1162 goto branch_common;
1163
1164 case R_PARISC_PCREL17C:
1165 case R_PARISC_PCREL17F:
1166 htab->has_17bit_branch = 1;
1167 goto branch_common;
1168
1169 case R_PARISC_PCREL22F:
1170 htab->has_22bit_branch = 1;
1171 branch_common:
1172 /* Function calls might need to go through the .plt, and
1173 might require long branch stubs. */
1174 if (hh == NULL)
1175 {
1176 /* We know local syms won't need a .plt entry, and if
1177 they need a long branch stub we can't guarantee that
1178 we can reach the stub. So just flag an error later
1179 if we're doing a shared link and find we need a long
1180 branch stub. */
1181 continue;
1182 }
1183 else
1184 {
1185 /* Global symbols will need a .plt entry if they remain
1186 global, and in most cases won't need a long branch
1187 stub. Unfortunately, we have to cater for the case
1188 where a symbol is forced local by versioning, or due
1189 to symbolic linking, and we lose the .plt entry. */
1190 need_entry = NEED_PLT;
1191 if (hh->eh.type == STT_PARISC_MILLI)
1192 need_entry = 0;
1193 }
1194 break;
1195
1196 case R_PARISC_SEGBASE: /* Used to set segment base. */
1197 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1198 case R_PARISC_PCREL14F: /* PC relative load/store. */
1199 case R_PARISC_PCREL14R:
1200 case R_PARISC_PCREL17R: /* External branches. */
1201 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1202 case R_PARISC_PCREL32:
1203 /* We don't need to propagate the relocation if linking a
1204 shared object since these are section relative. */
1205 continue;
1206
1207 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1208 case R_PARISC_DPREL14R:
1209 case R_PARISC_DPREL21L:
1210 if (info->shared)
1211 {
1212 (*_bfd_error_handler)
1213 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1214 abfd,
1215 elf_hppa_howto_table[r_type].name);
1216 bfd_set_error (bfd_error_bad_value);
1217 return FALSE;
1218 }
1219 /* Fall through. */
1220
1221 case R_PARISC_DIR17F: /* Used for external branches. */
1222 case R_PARISC_DIR17R:
1223 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1224 case R_PARISC_DIR14R:
1225 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1226 case R_PARISC_DIR32: /* .word relocs. */
1227 /* We may want to output a dynamic relocation later. */
1228 need_entry = NEED_DYNREL;
1229 break;
1230
1231 /* This relocation describes the C++ object vtable hierarchy.
1232 Reconstruct it for later use during GC. */
1233 case R_PARISC_GNU_VTINHERIT:
1234 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1235 return FALSE;
1236 continue;
1237
1238 /* This relocation describes which C++ vtable entries are actually
1239 used. Record for later use during GC. */
1240 case R_PARISC_GNU_VTENTRY:
1241 if (!bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1242 return FALSE;
1243 continue;
1244
1245 default:
1246 continue;
1247 }
1248
1249 /* Now carry out our orders. */
1250 if (need_entry & NEED_GOT)
1251 {
1252 /* Allocate space for a GOT entry, as well as a dynamic
1253 relocation for this entry. */
1254 if (htab->sgot == NULL)
1255 {
1256 if (htab->etab.dynobj == NULL)
1257 htab->etab.dynobj = abfd;
1258 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1259 return FALSE;
1260 }
1261
1262 if (hh != NULL)
1263 {
1264 hh->eh.got.refcount += 1;
1265 }
1266 else
1267 {
1268 bfd_signed_vma *local_got_refcounts;
1269 /* This is a global offset table entry for a local symbol. */
1270 local_got_refcounts = elf_local_got_refcounts (abfd);
1271 if (local_got_refcounts == NULL)
1272 {
1273 bfd_size_type size;
1274
1275 /* Allocate space for local got offsets and local
1276 plt offsets. Done this way to save polluting
1277 elf_obj_tdata with another target specific
1278 pointer. */
1279 size = symtab_hdr->sh_info;
1280 size *= 2 * sizeof (bfd_signed_vma);
1281 local_got_refcounts = bfd_zalloc (abfd, size);
1282 if (local_got_refcounts == NULL)
1283 return FALSE;
1284 elf_local_got_refcounts (abfd) = local_got_refcounts;
1285 }
1286 local_got_refcounts[r_symndx] += 1;
1287 }
1288 }
1289
1290 if (need_entry & NEED_PLT)
1291 {
1292 /* If we are creating a shared library, and this is a reloc
1293 against a weak symbol or a global symbol in a dynamic
1294 object, then we will be creating an import stub and a
1295 .plt entry for the symbol. Similarly, on a normal link
1296 to symbols defined in a dynamic object we'll need the
1297 import stub and a .plt entry. We don't know yet whether
1298 the symbol is defined or not, so make an entry anyway and
1299 clean up later in adjust_dynamic_symbol. */
1300 if ((sec->flags & SEC_ALLOC) != 0)
1301 {
1302 if (hh != NULL)
1303 {
1304 hh->eh.needs_plt = 1;
1305 hh->eh.plt.refcount += 1;
1306
1307 /* If this .plt entry is for a plabel, mark it so
1308 that adjust_dynamic_symbol will keep the entry
1309 even if it appears to be local. */
1310 if (need_entry & PLT_PLABEL)
1311 hh->plabel = 1;
1312 }
1313 else if (need_entry & PLT_PLABEL)
1314 {
1315 bfd_signed_vma *local_got_refcounts;
1316 bfd_signed_vma *local_plt_refcounts;
1317
1318 local_got_refcounts = elf_local_got_refcounts (abfd);
1319 if (local_got_refcounts == NULL)
1320 {
1321 bfd_size_type size;
1322
1323 /* Allocate space for local got offsets and local
1324 plt offsets. */
1325 size = symtab_hdr->sh_info;
1326 size *= 2 * sizeof (bfd_signed_vma);
1327 local_got_refcounts = bfd_zalloc (abfd, size);
1328 if (local_got_refcounts == NULL)
1329 return FALSE;
1330 elf_local_got_refcounts (abfd) = local_got_refcounts;
1331 }
1332 local_plt_refcounts = (local_got_refcounts
1333 + symtab_hdr->sh_info);
1334 local_plt_refcounts[r_symndx] += 1;
1335 }
1336 }
1337 }
1338
1339 if (need_entry & NEED_DYNREL)
1340 {
1341 /* Flag this symbol as having a non-got, non-plt reference
1342 so that we generate copy relocs if it turns out to be
1343 dynamic. */
1344 if (hh != NULL && !info->shared)
1345 hh->eh.non_got_ref = 1;
1346
1347 /* If we are creating a shared library then we need to copy
1348 the reloc into the shared library. However, if we are
1349 linking with -Bsymbolic, we need only copy absolute
1350 relocs or relocs against symbols that are not defined in
1351 an object we are including in the link. PC- or DP- or
1352 DLT-relative relocs against any local sym or global sym
1353 with DEF_REGULAR set, can be discarded. At this point we
1354 have not seen all the input files, so it is possible that
1355 DEF_REGULAR is not set now but will be set later (it is
1356 never cleared). We account for that possibility below by
1357 storing information in the dyn_relocs field of the
1358 hash table entry.
1359
1360 A similar situation to the -Bsymbolic case occurs when
1361 creating shared libraries and symbol visibility changes
1362 render the symbol local.
1363
1364 As it turns out, all the relocs we will be creating here
1365 are absolute, so we cannot remove them on -Bsymbolic
1366 links or visibility changes anyway. A STUB_REL reloc
1367 is absolute too, as in that case it is the reloc in the
1368 stub we will be creating, rather than copying the PCREL
1369 reloc in the branch.
1370
1371 If on the other hand, we are creating an executable, we
1372 may need to keep relocations for symbols satisfied by a
1373 dynamic library if we manage to avoid copy relocs for the
1374 symbol. */
1375 if ((info->shared
1376 && (sec->flags & SEC_ALLOC) != 0
1377 && (IS_ABSOLUTE_RELOC (r_type)
1378 || (hh != NULL
1379 && (!info->symbolic
1380 || hh->eh.root.type == bfd_link_hash_defweak
1381 || !hh->eh.def_regular))))
1382 || (ELIMINATE_COPY_RELOCS
1383 && !info->shared
1384 && (sec->flags & SEC_ALLOC) != 0
1385 && hh != NULL
1386 && (hh->eh.root.type == bfd_link_hash_defweak
1387 || !hh->eh.def_regular)))
1388 {
1389 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1390 struct elf32_hppa_dyn_reloc_entry **hdh_head;
1391
1392 /* Create a reloc section in dynobj and make room for
1393 this reloc. */
1394 if (sreloc == NULL)
1395 {
1396 char *name;
1397 bfd *dynobj;
1398
1399 name = (bfd_elf_string_from_elf_section
1400 (abfd,
1401 elf_elfheader (abfd)->e_shstrndx,
1402 elf_section_data (sec)->rel_hdr.sh_name));
1403 if (name == NULL)
1404 {
1405 (*_bfd_error_handler)
1406 (_("Could not find relocation section for %s"),
1407 sec->name);
1408 bfd_set_error (bfd_error_bad_value);
1409 return FALSE;
1410 }
1411
1412 if (htab->etab.dynobj == NULL)
1413 htab->etab.dynobj = abfd;
1414
1415 dynobj = htab->etab.dynobj;
1416 sreloc = bfd_get_section_by_name (dynobj, name);
1417 if (sreloc == NULL)
1418 {
1419 flagword flags;
1420
1421 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1422 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1423 if ((sec->flags & SEC_ALLOC) != 0)
1424 flags |= SEC_ALLOC | SEC_LOAD;
1425 sreloc = bfd_make_section_with_flags (dynobj,
1426 name,
1427 flags);
1428 if (sreloc == NULL
1429 || !bfd_set_section_alignment (dynobj, sreloc, 2))
1430 return FALSE;
1431 }
1432
1433 elf_section_data (sec)->sreloc = sreloc;
1434 }
1435
1436 /* If this is a global symbol, we count the number of
1437 relocations we need for this symbol. */
1438 if (hh != NULL)
1439 {
1440 hdh_head = &hh->dyn_relocs;
1441 }
1442 else
1443 {
1444 /* Track dynamic relocs needed for local syms too.
1445 We really need local syms available to do this
1446 easily. Oh well. */
1447
1448 asection *sr;
1449 sr = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1450 sec, r_symndx);
1451 if (sr == NULL)
1452 return FALSE;
1453
1454 hdh_head = ((struct elf32_hppa_dyn_reloc_entry **)
1455 &elf_section_data (sr)->local_dynrel);
1456 }
1457
1458 hdh_p = *hdh_head;
1459 if (hdh_p == NULL || hdh_p->sec != sec)
1460 {
1461 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1462 if (hdh_p == NULL)
1463 return FALSE;
1464 hdh_p->hdh_next = *hdh_head;
1465 *hdh_head = hdh_p;
1466 hdh_p->sec = sec;
1467 hdh_p->count = 0;
1468 #if RELATIVE_DYNRELOCS
1469 hdh_p->relative_count = 0;
1470 #endif
1471 }
1472
1473 hdh_p->count += 1;
1474 #if RELATIVE_DYNRELOCS
1475 if (!IS_ABSOLUTE_RELOC (rtype))
1476 hdh_p->relative_count += 1;
1477 #endif
1478 }
1479 }
1480 }
1481
1482 return TRUE;
1483 }
1484
1485 /* Return the section that should be marked against garbage collection
1486 for a given relocation. */
1487
1488 static asection *
1489 elf32_hppa_gc_mark_hook (asection *sec,
1490 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1491 Elf_Internal_Rela *rela,
1492 struct elf_link_hash_entry *hh,
1493 Elf_Internal_Sym *sym)
1494 {
1495 if (hh != NULL)
1496 {
1497 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1498 {
1499 case R_PARISC_GNU_VTINHERIT:
1500 case R_PARISC_GNU_VTENTRY:
1501 break;
1502
1503 default:
1504 switch (hh->root.type)
1505 {
1506 case bfd_link_hash_defined:
1507 case bfd_link_hash_defweak:
1508 return hh->root.u.def.section;
1509
1510 case bfd_link_hash_common:
1511 return hh->root.u.c.p->section;
1512
1513 default:
1514 break;
1515 }
1516 }
1517 }
1518 else
1519 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1520
1521 return NULL;
1522 }
1523
1524 /* Update the got and plt entry reference counts for the section being
1525 removed. */
1526
1527 static bfd_boolean
1528 elf32_hppa_gc_sweep_hook (bfd *abfd,
1529 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1530 asection *sec,
1531 const Elf_Internal_Rela *relocs)
1532 {
1533 Elf_Internal_Shdr *symtab_hdr;
1534 struct elf_link_hash_entry **eh_syms;
1535 bfd_signed_vma *local_got_refcounts;
1536 bfd_signed_vma *local_plt_refcounts;
1537 const Elf_Internal_Rela *rela, *relend;
1538
1539 elf_section_data (sec)->local_dynrel = NULL;
1540
1541 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1542 eh_syms = elf_sym_hashes (abfd);
1543 local_got_refcounts = elf_local_got_refcounts (abfd);
1544 local_plt_refcounts = local_got_refcounts;
1545 if (local_plt_refcounts != NULL)
1546 local_plt_refcounts += symtab_hdr->sh_info;
1547
1548 relend = relocs + sec->reloc_count;
1549 for (rela = relocs; rela < relend; rela++)
1550 {
1551 unsigned long r_symndx;
1552 unsigned int r_type;
1553 struct elf_link_hash_entry *eh = NULL;
1554
1555 r_symndx = ELF32_R_SYM (rela->r_info);
1556 if (r_symndx >= symtab_hdr->sh_info)
1557 {
1558 struct elf32_hppa_link_hash_entry *hh;
1559 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1560 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1561
1562 eh = eh_syms[r_symndx - symtab_hdr->sh_info];
1563 while (eh->root.type == bfd_link_hash_indirect
1564 || eh->root.type == bfd_link_hash_warning)
1565 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1566 hh = hppa_elf_hash_entry (eh);
1567
1568 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next)
1569 if (hdh_p->sec == sec)
1570 {
1571 /* Everything must go for SEC. */
1572 *hdh_pp = hdh_p->hdh_next;
1573 break;
1574 }
1575 }
1576
1577 r_type = ELF32_R_TYPE (rela->r_info);
1578 switch (r_type)
1579 {
1580 case R_PARISC_DLTIND14F:
1581 case R_PARISC_DLTIND14R:
1582 case R_PARISC_DLTIND21L:
1583 if (eh != NULL)
1584 {
1585 if (eh->got.refcount > 0)
1586 eh->got.refcount -= 1;
1587 }
1588 else if (local_got_refcounts != NULL)
1589 {
1590 if (local_got_refcounts[r_symndx] > 0)
1591 local_got_refcounts[r_symndx] -= 1;
1592 }
1593 break;
1594
1595 case R_PARISC_PCREL12F:
1596 case R_PARISC_PCREL17C:
1597 case R_PARISC_PCREL17F:
1598 case R_PARISC_PCREL22F:
1599 if (eh != NULL)
1600 {
1601 if (eh->plt.refcount > 0)
1602 eh->plt.refcount -= 1;
1603 }
1604 break;
1605
1606 case R_PARISC_PLABEL14R:
1607 case R_PARISC_PLABEL21L:
1608 case R_PARISC_PLABEL32:
1609 if (eh != NULL)
1610 {
1611 if (eh->plt.refcount > 0)
1612 eh->plt.refcount -= 1;
1613 }
1614 else if (local_plt_refcounts != NULL)
1615 {
1616 if (local_plt_refcounts[r_symndx] > 0)
1617 local_plt_refcounts[r_symndx] -= 1;
1618 }
1619 break;
1620
1621 default:
1622 break;
1623 }
1624 }
1625
1626 return TRUE;
1627 }
1628
1629 /* Support for core dump NOTE sections. */
1630
1631 static bfd_boolean
1632 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1633 {
1634 int offset;
1635 size_t size;
1636
1637 switch (note->descsz)
1638 {
1639 default:
1640 return FALSE;
1641
1642 case 396: /* Linux/hppa */
1643 /* pr_cursig */
1644 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1645
1646 /* pr_pid */
1647 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1648
1649 /* pr_reg */
1650 offset = 72;
1651 size = 320;
1652
1653 break;
1654 }
1655
1656 /* Make a ".reg/999" section. */
1657 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1658 size, note->descpos + offset);
1659 }
1660
1661 static bfd_boolean
1662 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1663 {
1664 switch (note->descsz)
1665 {
1666 default:
1667 return FALSE;
1668
1669 case 124: /* Linux/hppa elf_prpsinfo. */
1670 elf_tdata (abfd)->core_program
1671 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1672 elf_tdata (abfd)->core_command
1673 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1674 }
1675
1676 /* Note that for some reason, a spurious space is tacked
1677 onto the end of the args in some (at least one anyway)
1678 implementations, so strip it off if it exists. */
1679 {
1680 char *command = elf_tdata (abfd)->core_command;
1681 int n = strlen (command);
1682
1683 if (0 < n && command[n - 1] == ' ')
1684 command[n - 1] = '\0';
1685 }
1686
1687 return TRUE;
1688 }
1689
1690 /* Our own version of hide_symbol, so that we can keep plt entries for
1691 plabels. */
1692
1693 static void
1694 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1695 struct elf_link_hash_entry *eh,
1696 bfd_boolean force_local)
1697 {
1698 if (force_local)
1699 {
1700 eh->forced_local = 1;
1701 if (eh->dynindx != -1)
1702 {
1703 eh->dynindx = -1;
1704 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1705 eh->dynstr_index);
1706 }
1707 }
1708
1709 if (! hppa_elf_hash_entry(eh)->plabel)
1710 {
1711 eh->needs_plt = 0;
1712 eh->plt = elf_hash_table (info)->init_plt_refcount;
1713 }
1714 }
1715
1716 /* Adjust a symbol defined by a dynamic object and referenced by a
1717 regular object. The current definition is in some section of the
1718 dynamic object, but we're not including those sections. We have to
1719 change the definition to something the rest of the link can
1720 understand. */
1721
1722 static bfd_boolean
1723 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1724 struct elf_link_hash_entry *eh)
1725 {
1726 struct elf32_hppa_link_hash_table *htab;
1727 asection *sec;
1728 unsigned int power_of_two;
1729
1730 /* If this is a function, put it in the procedure linkage table. We
1731 will fill in the contents of the procedure linkage table later. */
1732 if (eh->type == STT_FUNC
1733 || eh->needs_plt)
1734 {
1735 if (eh->plt.refcount <= 0
1736 || (eh->def_regular
1737 && eh->root.type != bfd_link_hash_defweak
1738 && ! hppa_elf_hash_entry (eh)->plabel
1739 && (!info->shared || info->symbolic)))
1740 {
1741 /* The .plt entry is not needed when:
1742 a) Garbage collection has removed all references to the
1743 symbol, or
1744 b) We know for certain the symbol is defined in this
1745 object, and it's not a weak definition, nor is the symbol
1746 used by a plabel relocation. Either this object is the
1747 application or we are doing a shared symbolic link. */
1748
1749 eh->plt.offset = (bfd_vma) -1;
1750 eh->needs_plt = 0;
1751 }
1752
1753 return TRUE;
1754 }
1755 else
1756 eh->plt.offset = (bfd_vma) -1;
1757
1758 /* If this is a weak symbol, and there is a real definition, the
1759 processor independent code will have arranged for us to see the
1760 real definition first, and we can just use the same value. */
1761 if (eh->u.weakdef != NULL)
1762 {
1763 if (eh->u.weakdef->root.type != bfd_link_hash_defined
1764 && eh->u.weakdef->root.type != bfd_link_hash_defweak)
1765 abort ();
1766 eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1767 eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1768 if (ELIMINATE_COPY_RELOCS)
1769 eh->non_got_ref = eh->u.weakdef->non_got_ref;
1770 return TRUE;
1771 }
1772
1773 /* This is a reference to a symbol defined by a dynamic object which
1774 is not a function. */
1775
1776 /* If we are creating a shared library, we must presume that the
1777 only references to the symbol are via the global offset table.
1778 For such cases we need not do anything here; the relocations will
1779 be handled correctly by relocate_section. */
1780 if (info->shared)
1781 return TRUE;
1782
1783 /* If there are no references to this symbol that do not use the
1784 GOT, we don't need to generate a copy reloc. */
1785 if (!eh->non_got_ref)
1786 return TRUE;
1787
1788 if (ELIMINATE_COPY_RELOCS)
1789 {
1790 struct elf32_hppa_link_hash_entry *hh;
1791 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1792
1793 hh = hppa_elf_hash_entry (eh);
1794 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
1795 {
1796 sec = hdh_p->sec->output_section;
1797 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1798 break;
1799 }
1800
1801 /* If we didn't find any dynamic relocs in read-only sections, then
1802 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1803 if (hdh_p == NULL)
1804 {
1805 eh->non_got_ref = 0;
1806 return TRUE;
1807 }
1808 }
1809
1810 /* We must allocate the symbol in our .dynbss section, which will
1811 become part of the .bss section of the executable. There will be
1812 an entry for this symbol in the .dynsym section. The dynamic
1813 object will contain position independent code, so all references
1814 from the dynamic object to this symbol will go through the global
1815 offset table. The dynamic linker will use the .dynsym entry to
1816 determine the address it must put in the global offset table, so
1817 both the dynamic object and the regular object will refer to the
1818 same memory location for the variable. */
1819
1820 htab = hppa_link_hash_table (info);
1821
1822 /* We must generate a COPY reloc to tell the dynamic linker to
1823 copy the initial value out of the dynamic object and into the
1824 runtime process image. */
1825 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0)
1826 {
1827 htab->srelbss->size += sizeof (Elf32_External_Rela);
1828 eh->needs_copy = 1;
1829 }
1830
1831 /* We need to figure out the alignment required for this symbol. I
1832 have no idea how other ELF linkers handle this. */
1833
1834 power_of_two = bfd_log2 (eh->size);
1835 if (power_of_two > 3)
1836 power_of_two = 3;
1837
1838 /* Apply the required alignment. */
1839 sec = htab->sdynbss;
1840 sec->size = BFD_ALIGN (sec->size, (bfd_size_type) (1 << power_of_two));
1841 if (power_of_two > bfd_get_section_alignment (htab->etab.dynobj, sec))
1842 {
1843 if (! bfd_set_section_alignment (htab->etab.dynobj, sec, power_of_two))
1844 return FALSE;
1845 }
1846
1847 /* Define the symbol as being at this point in the section. */
1848 eh->root.u.def.section = sec;
1849 eh->root.u.def.value = sec->size;
1850
1851 /* Increment the section size to make room for the symbol. */
1852 sec->size += eh->size;
1853
1854 return TRUE;
1855 }
1856
1857 /* Allocate space in the .plt for entries that won't have relocations.
1858 ie. plabel entries. */
1859
1860 static bfd_boolean
1861 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1862 {
1863 struct bfd_link_info *info;
1864 struct elf32_hppa_link_hash_table *htab;
1865 struct elf32_hppa_link_hash_entry *hh;
1866 asection *sec;
1867
1868 if (eh->root.type == bfd_link_hash_indirect)
1869 return TRUE;
1870
1871 if (eh->root.type == bfd_link_hash_warning)
1872 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1873
1874 info = (struct bfd_link_info *) inf;
1875 hh = hppa_elf_hash_entry(eh);
1876 htab = hppa_link_hash_table (info);
1877 if (htab->etab.dynamic_sections_created
1878 && eh->plt.refcount > 0)
1879 {
1880 /* Make sure this symbol is output as a dynamic symbol.
1881 Undefined weak syms won't yet be marked as dynamic. */
1882 if (eh->dynindx == -1
1883 && !eh->forced_local
1884 && eh->type != STT_PARISC_MILLI)
1885 {
1886 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
1887 return FALSE;
1888 }
1889
1890 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, eh))
1891 {
1892 /* Allocate these later. From this point on, h->plabel
1893 means that the plt entry is only used by a plabel.
1894 We'll be using a normal plt entry for this symbol, so
1895 clear the plabel indicator. */
1896
1897 hh->plabel = 0;
1898 }
1899 else if (hh->plabel)
1900 {
1901 /* Make an entry in the .plt section for plabel references
1902 that won't have a .plt entry for other reasons. */
1903 sec = htab->splt;
1904 eh->plt.offset = sec->size;
1905 sec->size += PLT_ENTRY_SIZE;
1906 }
1907 else
1908 {
1909 /* No .plt entry needed. */
1910 eh->plt.offset = (bfd_vma) -1;
1911 eh->needs_plt = 0;
1912 }
1913 }
1914 else
1915 {
1916 eh->plt.offset = (bfd_vma) -1;
1917 eh->needs_plt = 0;
1918 }
1919
1920 return TRUE;
1921 }
1922
1923 /* Allocate space in .plt, .got and associated reloc sections for
1924 global syms. */
1925
1926 static bfd_boolean
1927 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
1928 {
1929 struct bfd_link_info *info;
1930 struct elf32_hppa_link_hash_table *htab;
1931 asection *sec;
1932 struct elf32_hppa_link_hash_entry *hh;
1933 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1934
1935 if (eh->root.type == bfd_link_hash_indirect)
1936 return TRUE;
1937
1938 if (eh->root.type == bfd_link_hash_warning)
1939 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1940
1941 info = inf;
1942 htab = hppa_link_hash_table (info);
1943 hh = hppa_elf_hash_entry (eh);
1944
1945 if (htab->etab.dynamic_sections_created
1946 && eh->plt.offset != (bfd_vma) -1
1947 && !hh->plabel
1948 && eh->plt.refcount > 0)
1949 {
1950 /* Make an entry in the .plt section. */
1951 sec = htab->splt;
1952 eh->plt.offset = sec->size;
1953 sec->size += PLT_ENTRY_SIZE;
1954
1955 /* We also need to make an entry in the .rela.plt section. */
1956 htab->srelplt->size += sizeof (Elf32_External_Rela);
1957 htab->need_plt_stub = 1;
1958 }
1959
1960 if (eh->got.refcount > 0)
1961 {
1962 /* Make sure this symbol is output as a dynamic symbol.
1963 Undefined weak syms won't yet be marked as dynamic. */
1964 if (eh->dynindx == -1
1965 && !eh->forced_local
1966 && eh->type != STT_PARISC_MILLI)
1967 {
1968 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
1969 return FALSE;
1970 }
1971
1972 sec = htab->sgot;
1973 eh->got.offset = sec->size;
1974 sec->size += GOT_ENTRY_SIZE;
1975 if (htab->etab.dynamic_sections_created
1976 && (info->shared
1977 || (eh->dynindx != -1
1978 && !eh->forced_local)))
1979 {
1980 htab->srelgot->size += sizeof (Elf32_External_Rela);
1981 }
1982 }
1983 else
1984 eh->got.offset = (bfd_vma) -1;
1985
1986 if (hh->dyn_relocs == NULL)
1987 return TRUE;
1988
1989 /* If this is a -Bsymbolic shared link, then we need to discard all
1990 space allocated for dynamic pc-relative relocs against symbols
1991 defined in a regular object. For the normal shared case, discard
1992 space for relocs that have become local due to symbol visibility
1993 changes. */
1994 if (info->shared)
1995 {
1996 #if RELATIVE_DYNRELOCS
1997 if (SYMBOL_CALLS_LOCAL (info, eh))
1998 {
1999 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
2000
2001 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2002 {
2003 hdh_p->count -= hdh_p->relative_count;
2004 hdh_p->relative_count = 0;
2005 if (hdh_p->count == 0)
2006 *hdh_pp = hdh_p->hdh_next;
2007 else
2008 hdh_pp = &hdh_p->hdh_next;
2009 }
2010 }
2011 #endif
2012
2013 /* Also discard relocs on undefined weak syms with non-default
2014 visibility. */
2015 if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT
2016 && eh->root.type == bfd_link_hash_undefweak)
2017 hh->dyn_relocs = NULL;
2018 }
2019 else
2020 {
2021 /* For the non-shared case, discard space for relocs against
2022 symbols which turn out to need copy relocs or are not
2023 dynamic. */
2024
2025 if (!eh->non_got_ref
2026 && ((ELIMINATE_COPY_RELOCS
2027 && eh->def_dynamic
2028 && !eh->def_regular)
2029 || (htab->etab.dynamic_sections_created
2030 && (eh->root.type == bfd_link_hash_undefweak
2031 || eh->root.type == bfd_link_hash_undefined))))
2032 {
2033 /* Make sure this symbol is output as a dynamic symbol.
2034 Undefined weak syms won't yet be marked as dynamic. */
2035 if (eh->dynindx == -1
2036 && !eh->forced_local
2037 && eh->type != STT_PARISC_MILLI)
2038 {
2039 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2040 return FALSE;
2041 }
2042
2043 /* If that succeeded, we know we'll be keeping all the
2044 relocs. */
2045 if (eh->dynindx != -1)
2046 goto keep;
2047 }
2048
2049 hh->dyn_relocs = NULL;
2050 return TRUE;
2051
2052 keep: ;
2053 }
2054
2055 /* Finally, allocate space. */
2056 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2057 {
2058 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2059 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2060 }
2061
2062 return TRUE;
2063 }
2064
2065 /* This function is called via elf_link_hash_traverse to force
2066 millicode symbols local so they do not end up as globals in the
2067 dynamic symbol table. We ought to be able to do this in
2068 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2069 for all dynamic symbols. Arguably, this is a bug in
2070 elf_adjust_dynamic_symbol. */
2071
2072 static bfd_boolean
2073 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2074 struct bfd_link_info *info)
2075 {
2076 if (eh->root.type == bfd_link_hash_warning)
2077 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2078
2079 if (eh->type == STT_PARISC_MILLI
2080 && !eh->forced_local)
2081 {
2082 elf32_hppa_hide_symbol (info, eh, TRUE);
2083 }
2084 return TRUE;
2085 }
2086
2087 /* Find any dynamic relocs that apply to read-only sections. */
2088
2089 static bfd_boolean
2090 readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2091 {
2092 struct elf32_hppa_link_hash_entry *hh;
2093 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2094
2095 if (eh->root.type == bfd_link_hash_warning)
2096 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2097
2098 hh = hppa_elf_hash_entry (eh);
2099 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2100 {
2101 asection *sec = hdh_p->sec->output_section;
2102
2103 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
2104 {
2105 struct bfd_link_info *info = inf;
2106
2107 info->flags |= DF_TEXTREL;
2108
2109 /* Not an error, just cut short the traversal. */
2110 return FALSE;
2111 }
2112 }
2113 return TRUE;
2114 }
2115
2116 /* Set the sizes of the dynamic sections. */
2117
2118 static bfd_boolean
2119 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2120 struct bfd_link_info *info)
2121 {
2122 struct elf32_hppa_link_hash_table *htab;
2123 bfd *dynobj;
2124 bfd *ibfd;
2125 asection *sec;
2126 bfd_boolean relocs;
2127
2128 htab = hppa_link_hash_table (info);
2129 dynobj = htab->etab.dynobj;
2130 if (dynobj == NULL)
2131 abort ();
2132
2133 if (htab->etab.dynamic_sections_created)
2134 {
2135 /* Set the contents of the .interp section to the interpreter. */
2136 if (info->executable)
2137 {
2138 sec = bfd_get_section_by_name (dynobj, ".interp");
2139 if (sec == NULL)
2140 abort ();
2141 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2142 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2143 }
2144
2145 /* Force millicode symbols local. */
2146 elf_link_hash_traverse (&htab->etab,
2147 clobber_millicode_symbols,
2148 info);
2149 }
2150
2151 /* Set up .got and .plt offsets for local syms, and space for local
2152 dynamic relocs. */
2153 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2154 {
2155 bfd_signed_vma *local_got;
2156 bfd_signed_vma *end_local_got;
2157 bfd_signed_vma *local_plt;
2158 bfd_signed_vma *end_local_plt;
2159 bfd_size_type locsymcount;
2160 Elf_Internal_Shdr *symtab_hdr;
2161 asection *srel;
2162
2163 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2164 continue;
2165
2166 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2167 {
2168 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2169
2170 for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
2171 elf_section_data (sec)->local_dynrel);
2172 hdh_p != NULL;
2173 hdh_p = hdh_p->hdh_next)
2174 {
2175 if (!bfd_is_abs_section (hdh_p->sec)
2176 && bfd_is_abs_section (hdh_p->sec->output_section))
2177 {
2178 /* Input section has been discarded, either because
2179 it is a copy of a linkonce section or due to
2180 linker script /DISCARD/, so we'll be discarding
2181 the relocs too. */
2182 }
2183 else if (hdh_p->count != 0)
2184 {
2185 srel = elf_section_data (hdh_p->sec)->sreloc;
2186 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2187 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2188 info->flags |= DF_TEXTREL;
2189 }
2190 }
2191 }
2192
2193 local_got = elf_local_got_refcounts (ibfd);
2194 if (!local_got)
2195 continue;
2196
2197 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2198 locsymcount = symtab_hdr->sh_info;
2199 end_local_got = local_got + locsymcount;
2200 sec = htab->sgot;
2201 srel = htab->srelgot;
2202 for (; local_got < end_local_got; ++local_got)
2203 {
2204 if (*local_got > 0)
2205 {
2206 *local_got = sec->size;
2207 sec->size += GOT_ENTRY_SIZE;
2208 if (info->shared)
2209 srel->size += sizeof (Elf32_External_Rela);
2210 }
2211 else
2212 *local_got = (bfd_vma) -1;
2213 }
2214
2215 local_plt = end_local_got;
2216 end_local_plt = local_plt + locsymcount;
2217 if (! htab->etab.dynamic_sections_created)
2218 {
2219 /* Won't be used, but be safe. */
2220 for (; local_plt < end_local_plt; ++local_plt)
2221 *local_plt = (bfd_vma) -1;
2222 }
2223 else
2224 {
2225 sec = htab->splt;
2226 srel = htab->srelplt;
2227 for (; local_plt < end_local_plt; ++local_plt)
2228 {
2229 if (*local_plt > 0)
2230 {
2231 *local_plt = sec->size;
2232 sec->size += PLT_ENTRY_SIZE;
2233 if (info->shared)
2234 srel->size += sizeof (Elf32_External_Rela);
2235 }
2236 else
2237 *local_plt = (bfd_vma) -1;
2238 }
2239 }
2240 }
2241
2242 /* Do all the .plt entries without relocs first. The dynamic linker
2243 uses the last .plt reloc to find the end of the .plt (and hence
2244 the start of the .got) for lazy linking. */
2245 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2246
2247 /* Allocate global sym .plt and .got entries, and space for global
2248 sym dynamic relocs. */
2249 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2250
2251 /* The check_relocs and adjust_dynamic_symbol entry points have
2252 determined the sizes of the various dynamic sections. Allocate
2253 memory for them. */
2254 relocs = FALSE;
2255 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2256 {
2257 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2258 continue;
2259
2260 if (sec == htab->splt)
2261 {
2262 if (htab->need_plt_stub)
2263 {
2264 /* Make space for the plt stub at the end of the .plt
2265 section. We want this stub right at the end, up
2266 against the .got section. */
2267 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2268 int pltalign = bfd_section_alignment (dynobj, sec);
2269 bfd_size_type mask;
2270
2271 if (gotalign > pltalign)
2272 bfd_set_section_alignment (dynobj, sec, gotalign);
2273 mask = ((bfd_size_type) 1 << gotalign) - 1;
2274 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2275 }
2276 }
2277 else if (sec == htab->sgot
2278 || sec == htab->sdynbss)
2279 ;
2280 else if (strncmp (bfd_get_section_name (dynobj, sec), ".rela", 5) == 0)
2281 {
2282 if (sec->size != 0)
2283 {
2284 /* Remember whether there are any reloc sections other
2285 than .rela.plt. */
2286 if (sec != htab->srelplt)
2287 relocs = TRUE;
2288
2289 /* We use the reloc_count field as a counter if we need
2290 to copy relocs into the output file. */
2291 sec->reloc_count = 0;
2292 }
2293 }
2294 else
2295 {
2296 /* It's not one of our sections, so don't allocate space. */
2297 continue;
2298 }
2299
2300 if (sec->size == 0)
2301 {
2302 /* If we don't need this section, strip it from the
2303 output file. This is mostly to handle .rela.bss and
2304 .rela.plt. We must create both sections in
2305 create_dynamic_sections, because they must be created
2306 before the linker maps input sections to output
2307 sections. The linker does that before
2308 adjust_dynamic_symbol is called, and it is that
2309 function which decides whether anything needs to go
2310 into these sections. */
2311 sec->flags |= SEC_EXCLUDE;
2312 continue;
2313 }
2314
2315 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2316 continue;
2317
2318 /* Allocate memory for the section contents. Zero it, because
2319 we may not fill in all the reloc sections. */
2320 sec->contents = bfd_zalloc (dynobj, sec->size);
2321 if (sec->contents == NULL)
2322 return FALSE;
2323 }
2324
2325 if (htab->etab.dynamic_sections_created)
2326 {
2327 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2328 actually has nothing to do with the PLT, it is how we
2329 communicate the LTP value of a load module to the dynamic
2330 linker. */
2331 #define add_dynamic_entry(TAG, VAL) \
2332 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2333
2334 if (!add_dynamic_entry (DT_PLTGOT, 0))
2335 return FALSE;
2336
2337 /* Add some entries to the .dynamic section. We fill in the
2338 values later, in elf32_hppa_finish_dynamic_sections, but we
2339 must add the entries now so that we get the correct size for
2340 the .dynamic section. The DT_DEBUG entry is filled in by the
2341 dynamic linker and used by the debugger. */
2342 if (!info->shared)
2343 {
2344 if (!add_dynamic_entry (DT_DEBUG, 0))
2345 return FALSE;
2346 }
2347
2348 if (htab->srelplt->size != 0)
2349 {
2350 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2351 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2352 || !add_dynamic_entry (DT_JMPREL, 0))
2353 return FALSE;
2354 }
2355
2356 if (relocs)
2357 {
2358 if (!add_dynamic_entry (DT_RELA, 0)
2359 || !add_dynamic_entry (DT_RELASZ, 0)
2360 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2361 return FALSE;
2362
2363 /* If any dynamic relocs apply to a read-only section,
2364 then we need a DT_TEXTREL entry. */
2365 if ((info->flags & DF_TEXTREL) == 0)
2366 elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info);
2367
2368 if ((info->flags & DF_TEXTREL) != 0)
2369 {
2370 if (!add_dynamic_entry (DT_TEXTREL, 0))
2371 return FALSE;
2372 }
2373 }
2374 }
2375 #undef add_dynamic_entry
2376
2377 return TRUE;
2378 }
2379
2380 /* External entry points for sizing and building linker stubs. */
2381
2382 /* Set up various things so that we can make a list of input sections
2383 for each output section included in the link. Returns -1 on error,
2384 0 when no stubs will be needed, and 1 on success. */
2385
2386 int
2387 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2388 {
2389 bfd *input_bfd;
2390 unsigned int bfd_count;
2391 int top_id, top_index;
2392 asection *section;
2393 asection **input_list, **list;
2394 bfd_size_type amt;
2395 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2396
2397 /* Count the number of input BFDs and find the top input section id. */
2398 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2399 input_bfd != NULL;
2400 input_bfd = input_bfd->link_next)
2401 {
2402 bfd_count += 1;
2403 for (section = input_bfd->sections;
2404 section != NULL;
2405 section = section->next)
2406 {
2407 if (top_id < section->id)
2408 top_id = section->id;
2409 }
2410 }
2411 htab->bfd_count = bfd_count;
2412
2413 amt = sizeof (struct map_stub) * (top_id + 1);
2414 htab->stub_group = bfd_zmalloc (amt);
2415 if (htab->stub_group == NULL)
2416 return -1;
2417
2418 /* We can't use output_bfd->section_count here to find the top output
2419 section index as some sections may have been removed, and
2420 strip_excluded_output_sections doesn't renumber the indices. */
2421 for (section = output_bfd->sections, top_index = 0;
2422 section != NULL;
2423 section = section->next)
2424 {
2425 if (top_index < section->index)
2426 top_index = section->index;
2427 }
2428
2429 htab->top_index = top_index;
2430 amt = sizeof (asection *) * (top_index + 1);
2431 input_list = bfd_malloc (amt);
2432 htab->input_list = input_list;
2433 if (input_list == NULL)
2434 return -1;
2435
2436 /* For sections we aren't interested in, mark their entries with a
2437 value we can check later. */
2438 list = input_list + top_index;
2439 do
2440 *list = bfd_abs_section_ptr;
2441 while (list-- != input_list);
2442
2443 for (section = output_bfd->sections;
2444 section != NULL;
2445 section = section->next)
2446 {
2447 if ((section->flags & SEC_CODE) != 0)
2448 input_list[section->index] = NULL;
2449 }
2450
2451 return 1;
2452 }
2453
2454 /* The linker repeatedly calls this function for each input section,
2455 in the order that input sections are linked into output sections.
2456 Build lists of input sections to determine groupings between which
2457 we may insert linker stubs. */
2458
2459 void
2460 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2461 {
2462 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2463
2464 if (isec->output_section->index <= htab->top_index)
2465 {
2466 asection **list = htab->input_list + isec->output_section->index;
2467 if (*list != bfd_abs_section_ptr)
2468 {
2469 /* Steal the link_sec pointer for our list. */
2470 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2471 /* This happens to make the list in reverse order,
2472 which is what we want. */
2473 PREV_SEC (isec) = *list;
2474 *list = isec;
2475 }
2476 }
2477 }
2478
2479 /* See whether we can group stub sections together. Grouping stub
2480 sections may result in fewer stubs. More importantly, we need to
2481 put all .init* and .fini* stubs at the beginning of the .init or
2482 .fini output sections respectively, because glibc splits the
2483 _init and _fini functions into multiple parts. Putting a stub in
2484 the middle of a function is not a good idea. */
2485
2486 static void
2487 group_sections (struct elf32_hppa_link_hash_table *htab,
2488 bfd_size_type stub_group_size,
2489 bfd_boolean stubs_always_before_branch)
2490 {
2491 asection **list = htab->input_list + htab->top_index;
2492 do
2493 {
2494 asection *tail = *list;
2495 if (tail == bfd_abs_section_ptr)
2496 continue;
2497 while (tail != NULL)
2498 {
2499 asection *curr;
2500 asection *prev;
2501 bfd_size_type total;
2502 bfd_boolean big_sec;
2503
2504 curr = tail;
2505 total = tail->size;
2506 big_sec = total >= stub_group_size;
2507
2508 while ((prev = PREV_SEC (curr)) != NULL
2509 && ((total += curr->output_offset - prev->output_offset)
2510 < stub_group_size))
2511 curr = prev;
2512
2513 /* OK, the size from the start of CURR to the end is less
2514 than 240000 bytes and thus can be handled by one stub
2515 section. (or the tail section is itself larger than
2516 240000 bytes, in which case we may be toast.)
2517 We should really be keeping track of the total size of
2518 stubs added here, as stubs contribute to the final output
2519 section size. That's a little tricky, and this way will
2520 only break if stubs added total more than 22144 bytes, or
2521 2768 long branch stubs. It seems unlikely for more than
2522 2768 different functions to be called, especially from
2523 code only 240000 bytes long. This limit used to be
2524 250000, but c++ code tends to generate lots of little
2525 functions, and sometimes violated the assumption. */
2526 do
2527 {
2528 prev = PREV_SEC (tail);
2529 /* Set up this stub group. */
2530 htab->stub_group[tail->id].link_sec = curr;
2531 }
2532 while (tail != curr && (tail = prev) != NULL);
2533
2534 /* But wait, there's more! Input sections up to 240000
2535 bytes before the stub section can be handled by it too.
2536 Don't do this if we have a really large section after the
2537 stubs, as adding more stubs increases the chance that
2538 branches may not reach into the stub section. */
2539 if (!stubs_always_before_branch && !big_sec)
2540 {
2541 total = 0;
2542 while (prev != NULL
2543 && ((total += tail->output_offset - prev->output_offset)
2544 < stub_group_size))
2545 {
2546 tail = prev;
2547 prev = PREV_SEC (tail);
2548 htab->stub_group[tail->id].link_sec = curr;
2549 }
2550 }
2551 tail = prev;
2552 }
2553 }
2554 while (list-- != htab->input_list);
2555 free (htab->input_list);
2556 #undef PREV_SEC
2557 }
2558
2559 /* Read in all local syms for all input bfds, and create hash entries
2560 for export stubs if we are building a multi-subspace shared lib.
2561 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2562
2563 static int
2564 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2565 {
2566 unsigned int bfd_indx;
2567 Elf_Internal_Sym *local_syms, **all_local_syms;
2568 int stub_changed = 0;
2569 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2570
2571 /* We want to read in symbol extension records only once. To do this
2572 we need to read in the local symbols in parallel and save them for
2573 later use; so hold pointers to the local symbols in an array. */
2574 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2575 all_local_syms = bfd_zmalloc (amt);
2576 htab->all_local_syms = all_local_syms;
2577 if (all_local_syms == NULL)
2578 return -1;
2579
2580 /* Walk over all the input BFDs, swapping in local symbols.
2581 If we are creating a shared library, create hash entries for the
2582 export stubs. */
2583 for (bfd_indx = 0;
2584 input_bfd != NULL;
2585 input_bfd = input_bfd->link_next, bfd_indx++)
2586 {
2587 Elf_Internal_Shdr *symtab_hdr;
2588
2589 /* We'll need the symbol table in a second. */
2590 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2591 if (symtab_hdr->sh_info == 0)
2592 continue;
2593
2594 /* We need an array of the local symbols attached to the input bfd. */
2595 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2596 if (local_syms == NULL)
2597 {
2598 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2599 symtab_hdr->sh_info, 0,
2600 NULL, NULL, NULL);
2601 /* Cache them for elf_link_input_bfd. */
2602 symtab_hdr->contents = (unsigned char *) local_syms;
2603 }
2604 if (local_syms == NULL)
2605 return -1;
2606
2607 all_local_syms[bfd_indx] = local_syms;
2608
2609 if (info->shared && htab->multi_subspace)
2610 {
2611 struct elf_link_hash_entry **eh_syms;
2612 struct elf_link_hash_entry **eh_symend;
2613 unsigned int symcount;
2614
2615 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2616 - symtab_hdr->sh_info);
2617 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2618 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2619
2620 /* Look through the global syms for functions; We need to
2621 build export stubs for all globally visible functions. */
2622 for (; eh_syms < eh_symend; eh_syms++)
2623 {
2624 struct elf32_hppa_link_hash_entry *hh;
2625
2626 hh = hppa_elf_hash_entry (*eh_syms);
2627
2628 while (hh->eh.root.type == bfd_link_hash_indirect
2629 || hh->eh.root.type == bfd_link_hash_warning)
2630 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2631
2632 /* At this point in the link, undefined syms have been
2633 resolved, so we need to check that the symbol was
2634 defined in this BFD. */
2635 if ((hh->eh.root.type == bfd_link_hash_defined
2636 || hh->eh.root.type == bfd_link_hash_defweak)
2637 && hh->eh.type == STT_FUNC
2638 && hh->eh.root.u.def.section->output_section != NULL
2639 && (hh->eh.root.u.def.section->output_section->owner
2640 == output_bfd)
2641 && hh->eh.root.u.def.section->owner == input_bfd
2642 && hh->eh.def_regular
2643 && !hh->eh.forced_local
2644 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2645 {
2646 asection *sec;
2647 const char *stub_name;
2648 struct elf32_hppa_stub_hash_entry *hsh;
2649
2650 sec = hh->eh.root.u.def.section;
2651 stub_name = hh->eh.root.root.string;
2652 hsh = hppa_stub_hash_lookup (&htab->bstab,
2653 stub_name,
2654 FALSE, FALSE);
2655 if (hsh == NULL)
2656 {
2657 hsh = hppa_add_stub (stub_name, sec, htab);
2658 if (!hsh)
2659 return -1;
2660
2661 hsh->target_value = hh->eh.root.u.def.value;
2662 hsh->target_section = hh->eh.root.u.def.section;
2663 hsh->stub_type = hppa_stub_export;
2664 hsh->hh = hh;
2665 stub_changed = 1;
2666 }
2667 else
2668 {
2669 (*_bfd_error_handler) (_("%B: duplicate export stub %s"),
2670 input_bfd,
2671 stub_name);
2672 }
2673 }
2674 }
2675 }
2676 }
2677
2678 return stub_changed;
2679 }
2680
2681 /* Determine and set the size of the stub section for a final link.
2682
2683 The basic idea here is to examine all the relocations looking for
2684 PC-relative calls to a target that is unreachable with a "bl"
2685 instruction. */
2686
2687 bfd_boolean
2688 elf32_hppa_size_stubs
2689 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2690 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2691 asection * (*add_stub_section) (const char *, asection *),
2692 void (*layout_sections_again) (void))
2693 {
2694 bfd_size_type stub_group_size;
2695 bfd_boolean stubs_always_before_branch;
2696 bfd_boolean stub_changed;
2697 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2698
2699 /* Stash our params away. */
2700 htab->stub_bfd = stub_bfd;
2701 htab->multi_subspace = multi_subspace;
2702 htab->add_stub_section = add_stub_section;
2703 htab->layout_sections_again = layout_sections_again;
2704 stubs_always_before_branch = group_size < 0;
2705 if (group_size < 0)
2706 stub_group_size = -group_size;
2707 else
2708 stub_group_size = group_size;
2709 if (stub_group_size == 1)
2710 {
2711 /* Default values. */
2712 if (stubs_always_before_branch)
2713 {
2714 stub_group_size = 7680000;
2715 if (htab->has_17bit_branch || htab->multi_subspace)
2716 stub_group_size = 240000;
2717 if (htab->has_12bit_branch)
2718 stub_group_size = 7500;
2719 }
2720 else
2721 {
2722 stub_group_size = 6971392;
2723 if (htab->has_17bit_branch || htab->multi_subspace)
2724 stub_group_size = 217856;
2725 if (htab->has_12bit_branch)
2726 stub_group_size = 6808;
2727 }
2728 }
2729
2730 group_sections (htab, stub_group_size, stubs_always_before_branch);
2731
2732 switch (get_local_syms (output_bfd, info->input_bfds, info))
2733 {
2734 default:
2735 if (htab->all_local_syms)
2736 goto error_ret_free_local;
2737 return FALSE;
2738
2739 case 0:
2740 stub_changed = FALSE;
2741 break;
2742
2743 case 1:
2744 stub_changed = TRUE;
2745 break;
2746 }
2747
2748 while (1)
2749 {
2750 bfd *input_bfd;
2751 unsigned int bfd_indx;
2752 asection *stub_sec;
2753
2754 for (input_bfd = info->input_bfds, bfd_indx = 0;
2755 input_bfd != NULL;
2756 input_bfd = input_bfd->link_next, bfd_indx++)
2757 {
2758 Elf_Internal_Shdr *symtab_hdr;
2759 asection *section;
2760 Elf_Internal_Sym *local_syms;
2761
2762 /* We'll need the symbol table in a second. */
2763 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2764 if (symtab_hdr->sh_info == 0)
2765 continue;
2766
2767 local_syms = htab->all_local_syms[bfd_indx];
2768
2769 /* Walk over each section attached to the input bfd. */
2770 for (section = input_bfd->sections;
2771 section != NULL;
2772 section = section->next)
2773 {
2774 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2775
2776 /* If there aren't any relocs, then there's nothing more
2777 to do. */
2778 if ((section->flags & SEC_RELOC) == 0
2779 || section->reloc_count == 0)
2780 continue;
2781
2782 /* If this section is a link-once section that will be
2783 discarded, then don't create any stubs. */
2784 if (section->output_section == NULL
2785 || section->output_section->owner != output_bfd)
2786 continue;
2787
2788 /* Get the relocs. */
2789 internal_relocs
2790 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2791 info->keep_memory);
2792 if (internal_relocs == NULL)
2793 goto error_ret_free_local;
2794
2795 /* Now examine each relocation. */
2796 irela = internal_relocs;
2797 irelaend = irela + section->reloc_count;
2798 for (; irela < irelaend; irela++)
2799 {
2800 unsigned int r_type, r_indx;
2801 enum elf32_hppa_stub_type stub_type;
2802 struct elf32_hppa_stub_hash_entry *hsh;
2803 asection *sym_sec;
2804 bfd_vma sym_value;
2805 bfd_vma destination;
2806 struct elf32_hppa_link_hash_entry *hh;
2807 char *stub_name;
2808 const asection *id_sec;
2809
2810 r_type = ELF32_R_TYPE (irela->r_info);
2811 r_indx = ELF32_R_SYM (irela->r_info);
2812
2813 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2814 {
2815 bfd_set_error (bfd_error_bad_value);
2816 error_ret_free_internal:
2817 if (elf_section_data (section)->relocs == NULL)
2818 free (internal_relocs);
2819 goto error_ret_free_local;
2820 }
2821
2822 /* Only look for stubs on call instructions. */
2823 if (r_type != (unsigned int) R_PARISC_PCREL12F
2824 && r_type != (unsigned int) R_PARISC_PCREL17F
2825 && r_type != (unsigned int) R_PARISC_PCREL22F)
2826 continue;
2827
2828 /* Now determine the call target, its name, value,
2829 section. */
2830 sym_sec = NULL;
2831 sym_value = 0;
2832 destination = 0;
2833 hh = NULL;
2834 if (r_indx < symtab_hdr->sh_info)
2835 {
2836 /* It's a local symbol. */
2837 Elf_Internal_Sym *sym;
2838 Elf_Internal_Shdr *hdr;
2839
2840 sym = local_syms + r_indx;
2841 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2842 sym_sec = hdr->bfd_section;
2843 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2844 sym_value = sym->st_value;
2845 destination = (sym_value + irela->r_addend
2846 + sym_sec->output_offset
2847 + sym_sec->output_section->vma);
2848 }
2849 else
2850 {
2851 /* It's an external symbol. */
2852 int e_indx;
2853
2854 e_indx = r_indx - symtab_hdr->sh_info;
2855 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2856
2857 while (hh->eh.root.type == bfd_link_hash_indirect
2858 || hh->eh.root.type == bfd_link_hash_warning)
2859 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2860
2861 if (hh->eh.root.type == bfd_link_hash_defined
2862 || hh->eh.root.type == bfd_link_hash_defweak)
2863 {
2864 sym_sec = hh->eh.root.u.def.section;
2865 sym_value = hh->eh.root.u.def.value;
2866 if (sym_sec->output_section != NULL)
2867 destination = (sym_value + irela->r_addend
2868 + sym_sec->output_offset
2869 + sym_sec->output_section->vma);
2870 }
2871 else if (hh->eh.root.type == bfd_link_hash_undefweak)
2872 {
2873 if (! info->shared)
2874 continue;
2875 }
2876 else if (hh->eh.root.type == bfd_link_hash_undefined)
2877 {
2878 if (! (info->unresolved_syms_in_objects == RM_IGNORE
2879 && (ELF_ST_VISIBILITY (hh->eh.other)
2880 == STV_DEFAULT)
2881 && hh->eh.type != STT_PARISC_MILLI))
2882 continue;
2883 }
2884 else
2885 {
2886 bfd_set_error (bfd_error_bad_value);
2887 goto error_ret_free_internal;
2888 }
2889 }
2890
2891 /* Determine what (if any) linker stub is needed. */
2892 stub_type = hppa_type_of_stub (section, irela, hh,
2893 destination, info);
2894 if (stub_type == hppa_stub_none)
2895 continue;
2896
2897 /* Support for grouping stub sections. */
2898 id_sec = htab->stub_group[section->id].link_sec;
2899
2900 /* Get the name of this stub. */
2901 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
2902 if (!stub_name)
2903 goto error_ret_free_internal;
2904
2905 hsh = hppa_stub_hash_lookup (&htab->bstab,
2906 stub_name,
2907 FALSE, FALSE);
2908 if (hsh != NULL)
2909 {
2910 /* The proper stub has already been created. */
2911 free (stub_name);
2912 continue;
2913 }
2914
2915 hsh = hppa_add_stub (stub_name, section, htab);
2916 if (hsh == NULL)
2917 {
2918 free (stub_name);
2919 goto error_ret_free_internal;
2920 }
2921
2922 hsh->target_value = sym_value;
2923 hsh->target_section = sym_sec;
2924 hsh->stub_type = stub_type;
2925 if (info->shared)
2926 {
2927 if (stub_type == hppa_stub_import)
2928 hsh->stub_type = hppa_stub_import_shared;
2929 else if (stub_type == hppa_stub_long_branch)
2930 hsh->stub_type = hppa_stub_long_branch_shared;
2931 }
2932 hsh->hh = hh;
2933 stub_changed = TRUE;
2934 }
2935
2936 /* We're done with the internal relocs, free them. */
2937 if (elf_section_data (section)->relocs == NULL)
2938 free (internal_relocs);
2939 }
2940 }
2941
2942 if (!stub_changed)
2943 break;
2944
2945 /* OK, we've added some stubs. Find out the new size of the
2946 stub sections. */
2947 for (stub_sec = htab->stub_bfd->sections;
2948 stub_sec != NULL;
2949 stub_sec = stub_sec->next)
2950 stub_sec->size = 0;
2951
2952 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
2953
2954 /* Ask the linker to do its stuff. */
2955 (*htab->layout_sections_again) ();
2956 stub_changed = FALSE;
2957 }
2958
2959 free (htab->all_local_syms);
2960 return TRUE;
2961
2962 error_ret_free_local:
2963 free (htab->all_local_syms);
2964 return FALSE;
2965 }
2966
2967 /* For a final link, this function is called after we have sized the
2968 stubs to provide a value for __gp. */
2969
2970 bfd_boolean
2971 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
2972 {
2973 struct bfd_link_hash_entry *h;
2974 asection *sec = NULL;
2975 bfd_vma gp_val = 0;
2976 struct elf32_hppa_link_hash_table *htab;
2977
2978 htab = hppa_link_hash_table (info);
2979 h = bfd_link_hash_lookup (&htab->etab.root, "$global$", FALSE, FALSE, FALSE);
2980
2981 if (h != NULL
2982 && (h->type == bfd_link_hash_defined
2983 || h->type == bfd_link_hash_defweak))
2984 {
2985 gp_val = h->u.def.value;
2986 sec = h->u.def.section;
2987 }
2988 else
2989 {
2990 asection *splt = bfd_get_section_by_name (abfd, ".plt");
2991 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2992
2993 /* Choose to point our LTP at, in this order, one of .plt, .got,
2994 or .data, if these sections exist. In the case of choosing
2995 .plt try to make the LTP ideal for addressing anywhere in the
2996 .plt or .got with a 14 bit signed offset. Typically, the end
2997 of the .plt is the start of the .got, so choose .plt + 0x2000
2998 if either the .plt or .got is larger than 0x2000. If both
2999 the .plt and .got are smaller than 0x2000, choose the end of
3000 the .plt section. */
3001 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3002 ? NULL : splt;
3003 if (sec != NULL)
3004 {
3005 gp_val = sec->size;
3006 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3007 {
3008 gp_val = 0x2000;
3009 }
3010 }
3011 else
3012 {
3013 sec = sgot;
3014 if (sec != NULL)
3015 {
3016 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3017 {
3018 /* We know we don't have a .plt. If .got is large,
3019 offset our LTP. */
3020 if (sec->size > 0x2000)
3021 gp_val = 0x2000;
3022 }
3023 }
3024 else
3025 {
3026 /* No .plt or .got. Who cares what the LTP is? */
3027 sec = bfd_get_section_by_name (abfd, ".data");
3028 }
3029 }
3030
3031 if (h != NULL)
3032 {
3033 h->type = bfd_link_hash_defined;
3034 h->u.def.value = gp_val;
3035 if (sec != NULL)
3036 h->u.def.section = sec;
3037 else
3038 h->u.def.section = bfd_abs_section_ptr;
3039 }
3040 }
3041
3042 if (sec != NULL && sec->output_section != NULL)
3043 gp_val += sec->output_section->vma + sec->output_offset;
3044
3045 elf_gp (abfd) = gp_val;
3046 return TRUE;
3047 }
3048
3049 /* Build all the stubs associated with the current output file. The
3050 stubs are kept in a hash table attached to the main linker hash
3051 table. We also set up the .plt entries for statically linked PIC
3052 functions here. This function is called via hppaelf_finish in the
3053 linker. */
3054
3055 bfd_boolean
3056 elf32_hppa_build_stubs (struct bfd_link_info *info)
3057 {
3058 asection *stub_sec;
3059 struct bfd_hash_table *table;
3060 struct elf32_hppa_link_hash_table *htab;
3061
3062 htab = hppa_link_hash_table (info);
3063
3064 for (stub_sec = htab->stub_bfd->sections;
3065 stub_sec != NULL;
3066 stub_sec = stub_sec->next)
3067 {
3068 bfd_size_type size;
3069
3070 /* Allocate memory to hold the linker stubs. */
3071 size = stub_sec->size;
3072 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3073 if (stub_sec->contents == NULL && size != 0)
3074 return FALSE;
3075 stub_sec->size = 0;
3076 }
3077
3078 /* Build the stubs as directed by the stub hash table. */
3079 table = &htab->bstab;
3080 bfd_hash_traverse (table, hppa_build_one_stub, info);
3081
3082 return TRUE;
3083 }
3084
3085 /* Perform a final link. */
3086
3087 static bfd_boolean
3088 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3089 {
3090 /* Invoke the regular ELF linker to do all the work. */
3091 if (!bfd_elf_final_link (abfd, info))
3092 return FALSE;
3093
3094 /* If we're producing a final executable, sort the contents of the
3095 unwind section. */
3096 return elf_hppa_sort_unwind (abfd);
3097 }
3098
3099 /* Record the lowest address for the data and text segments. */
3100
3101 static void
3102 hppa_record_segment_addr (bfd *abfd ATTRIBUTE_UNUSED,
3103 asection *section,
3104 void *data)
3105 {
3106 struct elf32_hppa_link_hash_table *htab;
3107
3108 htab = (struct elf32_hppa_link_hash_table*) data;
3109
3110 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3111 {
3112 bfd_vma value = section->vma - section->filepos;
3113
3114 if ((section->flags & SEC_READONLY) != 0)
3115 {
3116 if (value < htab->text_segment_base)
3117 htab->text_segment_base = value;
3118 }
3119 else
3120 {
3121 if (value < htab->data_segment_base)
3122 htab->data_segment_base = value;
3123 }
3124 }
3125 }
3126
3127 /* Perform a relocation as part of a final link. */
3128
3129 static bfd_reloc_status_type
3130 final_link_relocate (asection *input_section,
3131 bfd_byte *contents,
3132 const Elf_Internal_Rela *rela,
3133 bfd_vma value,
3134 struct elf32_hppa_link_hash_table *htab,
3135 asection *sym_sec,
3136 struct elf32_hppa_link_hash_entry *hh,
3137 struct bfd_link_info *info)
3138 {
3139 int insn;
3140 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3141 unsigned int orig_r_type = r_type;
3142 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3143 int r_format = howto->bitsize;
3144 enum hppa_reloc_field_selector_type_alt r_field;
3145 bfd *input_bfd = input_section->owner;
3146 bfd_vma offset = rela->r_offset;
3147 bfd_vma max_branch_offset = 0;
3148 bfd_byte *hit_data = contents + offset;
3149 bfd_signed_vma addend = rela->r_addend;
3150 bfd_vma location;
3151 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3152 int val;
3153
3154 if (r_type == R_PARISC_NONE)
3155 return bfd_reloc_ok;
3156
3157 insn = bfd_get_32 (input_bfd, hit_data);
3158
3159 /* Find out where we are and where we're going. */
3160 location = (offset +
3161 input_section->output_offset +
3162 input_section->output_section->vma);
3163
3164 /* If we are not building a shared library, convert DLTIND relocs to
3165 DPREL relocs. */
3166 if (!info->shared)
3167 {
3168 switch (r_type)
3169 {
3170 case R_PARISC_DLTIND21L:
3171 r_type = R_PARISC_DPREL21L;
3172 break;
3173
3174 case R_PARISC_DLTIND14R:
3175 r_type = R_PARISC_DPREL14R;
3176 break;
3177
3178 case R_PARISC_DLTIND14F:
3179 r_type = R_PARISC_DPREL14F;
3180 break;
3181 }
3182 }
3183
3184 switch (r_type)
3185 {
3186 case R_PARISC_PCREL12F:
3187 case R_PARISC_PCREL17F:
3188 case R_PARISC_PCREL22F:
3189 /* If this call should go via the plt, find the import stub in
3190 the stub hash. */
3191 if (sym_sec == NULL
3192 || sym_sec->output_section == NULL
3193 || (hh != NULL
3194 && hh->eh.plt.offset != (bfd_vma) -1
3195 && hh->eh.dynindx != -1
3196 && !hh->plabel
3197 && (info->shared
3198 || !hh->eh.def_regular
3199 || hh->eh.root.type == bfd_link_hash_defweak)))
3200 {
3201 hsh = hppa_get_stub_entry (input_section, sym_sec,
3202 hh, rela, htab);
3203 if (hsh != NULL)
3204 {
3205 value = (hsh->stub_offset
3206 + hsh->stub_sec->output_offset
3207 + hsh->stub_sec->output_section->vma);
3208 addend = 0;
3209 }
3210 else if (sym_sec == NULL && hh != NULL
3211 && hh->eh.root.type == bfd_link_hash_undefweak)
3212 {
3213 /* It's OK if undefined weak. Calls to undefined weak
3214 symbols behave as if the "called" function
3215 immediately returns. We can thus call to a weak
3216 function without first checking whether the function
3217 is defined. */
3218 value = location;
3219 addend = 8;
3220 }
3221 else
3222 return bfd_reloc_undefined;
3223 }
3224 /* Fall thru. */
3225
3226 case R_PARISC_PCREL21L:
3227 case R_PARISC_PCREL17C:
3228 case R_PARISC_PCREL17R:
3229 case R_PARISC_PCREL14R:
3230 case R_PARISC_PCREL14F:
3231 case R_PARISC_PCREL32:
3232 /* Make it a pc relative offset. */
3233 value -= location;
3234 addend -= 8;
3235 break;
3236
3237 case R_PARISC_DPREL21L:
3238 case R_PARISC_DPREL14R:
3239 case R_PARISC_DPREL14F:
3240 /* Convert instructions that use the linkage table pointer (r19) to
3241 instructions that use the global data pointer (dp). This is the
3242 most efficient way of using PIC code in an incomplete executable,
3243 but the user must follow the standard runtime conventions for
3244 accessing data for this to work. */
3245 if (orig_r_type == R_PARISC_DLTIND21L)
3246 {
3247 /* Convert addil instructions if the original reloc was a
3248 DLTIND21L. GCC sometimes uses a register other than r19 for
3249 the operation, so we must convert any addil instruction
3250 that uses this relocation. */
3251 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3252 insn = ADDIL_DP;
3253 else
3254 /* We must have a ldil instruction. It's too hard to find
3255 and convert the associated add instruction, so issue an
3256 error. */
3257 (*_bfd_error_handler)
3258 (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3259 input_bfd,
3260 input_section,
3261 offset,
3262 howto->name,
3263 insn);
3264 }
3265 else if (orig_r_type == R_PARISC_DLTIND14F)
3266 {
3267 /* This must be a format 1 load/store. Change the base
3268 register to dp. */
3269 insn = (insn & 0xfc1ffff) | (27 << 21);
3270 }
3271
3272 /* For all the DP relative relocations, we need to examine the symbol's
3273 section. If it has no section or if it's a code section, then
3274 "data pointer relative" makes no sense. In that case we don't
3275 adjust the "value", and for 21 bit addil instructions, we change the
3276 source addend register from %dp to %r0. This situation commonly
3277 arises for undefined weak symbols and when a variable's "constness"
3278 is declared differently from the way the variable is defined. For
3279 instance: "extern int foo" with foo defined as "const int foo". */
3280 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3281 {
3282 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3283 == (((int) OP_ADDIL << 26) | (27 << 21)))
3284 {
3285 insn &= ~ (0x1f << 21);
3286 }
3287 /* Now try to make things easy for the dynamic linker. */
3288
3289 break;
3290 }
3291 /* Fall thru. */
3292
3293 case R_PARISC_DLTIND21L:
3294 case R_PARISC_DLTIND14R:
3295 case R_PARISC_DLTIND14F:
3296 value -= elf_gp (input_section->output_section->owner);
3297 break;
3298
3299 case R_PARISC_SEGREL32:
3300 if ((sym_sec->flags & SEC_CODE) != 0)
3301 value -= htab->text_segment_base;
3302 else
3303 value -= htab->data_segment_base;
3304 break;
3305
3306 default:
3307 break;
3308 }
3309
3310 switch (r_type)
3311 {
3312 case R_PARISC_DIR32:
3313 case R_PARISC_DIR14F:
3314 case R_PARISC_DIR17F:
3315 case R_PARISC_PCREL17C:
3316 case R_PARISC_PCREL14F:
3317 case R_PARISC_PCREL32:
3318 case R_PARISC_DPREL14F:
3319 case R_PARISC_PLABEL32:
3320 case R_PARISC_DLTIND14F:
3321 case R_PARISC_SEGBASE:
3322 case R_PARISC_SEGREL32:
3323 r_field = e_fsel;
3324 break;
3325
3326 case R_PARISC_DLTIND21L:
3327 case R_PARISC_PCREL21L:
3328 case R_PARISC_PLABEL21L:
3329 r_field = e_lsel;
3330 break;
3331
3332 case R_PARISC_DIR21L:
3333 case R_PARISC_DPREL21L:
3334 r_field = e_lrsel;
3335 break;
3336
3337 case R_PARISC_PCREL17R:
3338 case R_PARISC_PCREL14R:
3339 case R_PARISC_PLABEL14R:
3340 case R_PARISC_DLTIND14R:
3341 r_field = e_rsel;
3342 break;
3343
3344 case R_PARISC_DIR17R:
3345 case R_PARISC_DIR14R:
3346 case R_PARISC_DPREL14R:
3347 r_field = e_rrsel;
3348 break;
3349
3350 case R_PARISC_PCREL12F:
3351 case R_PARISC_PCREL17F:
3352 case R_PARISC_PCREL22F:
3353 r_field = e_fsel;
3354
3355 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3356 {
3357 max_branch_offset = (1 << (17-1)) << 2;
3358 }
3359 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3360 {
3361 max_branch_offset = (1 << (12-1)) << 2;
3362 }
3363 else
3364 {
3365 max_branch_offset = (1 << (22-1)) << 2;
3366 }
3367
3368 /* sym_sec is NULL on undefined weak syms or when shared on
3369 undefined syms. We've already checked for a stub for the
3370 shared undefined case. */
3371 if (sym_sec == NULL)
3372 break;
3373
3374 /* If the branch is out of reach, then redirect the
3375 call to the local stub for this function. */
3376 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3377 {
3378 hsh = hppa_get_stub_entry (input_section, sym_sec,
3379 hh, rela, htab);
3380 if (hsh == NULL)
3381 return bfd_reloc_undefined;
3382
3383 /* Munge up the value and addend so that we call the stub
3384 rather than the procedure directly. */
3385 value = (hsh->stub_offset
3386 + hsh->stub_sec->output_offset
3387 + hsh->stub_sec->output_section->vma
3388 - location);
3389 addend = -8;
3390 }
3391 break;
3392
3393 /* Something we don't know how to handle. */
3394 default:
3395 return bfd_reloc_notsupported;
3396 }
3397
3398 /* Make sure we can reach the stub. */
3399 if (max_branch_offset != 0
3400 && value + addend + max_branch_offset >= 2*max_branch_offset)
3401 {
3402 (*_bfd_error_handler)
3403 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3404 input_bfd,
3405 input_section,
3406 offset,
3407 hsh->bh_root.string);
3408 bfd_set_error (bfd_error_bad_value);
3409 return bfd_reloc_notsupported;
3410 }
3411
3412 val = hppa_field_adjust (value, addend, r_field);
3413
3414 switch (r_type)
3415 {
3416 case R_PARISC_PCREL12F:
3417 case R_PARISC_PCREL17C:
3418 case R_PARISC_PCREL17F:
3419 case R_PARISC_PCREL17R:
3420 case R_PARISC_PCREL22F:
3421 case R_PARISC_DIR17F:
3422 case R_PARISC_DIR17R:
3423 /* This is a branch. Divide the offset by four.
3424 Note that we need to decide whether it's a branch or
3425 otherwise by inspecting the reloc. Inspecting insn won't
3426 work as insn might be from a .word directive. */
3427 val >>= 2;
3428 break;
3429
3430 default:
3431 break;
3432 }
3433
3434 insn = hppa_rebuild_insn (insn, val, r_format);
3435
3436 /* Update the instruction word. */
3437 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3438 return bfd_reloc_ok;
3439 }
3440
3441 /* Relocate an HPPA ELF section. */
3442
3443 static bfd_boolean
3444 elf32_hppa_relocate_section (bfd *output_bfd,
3445 struct bfd_link_info *info,
3446 bfd *input_bfd,
3447 asection *input_section,
3448 bfd_byte *contents,
3449 Elf_Internal_Rela *relocs,
3450 Elf_Internal_Sym *local_syms,
3451 asection **local_sections)
3452 {
3453 bfd_vma *local_got_offsets;
3454 struct elf32_hppa_link_hash_table *htab;
3455 Elf_Internal_Shdr *symtab_hdr;
3456 Elf_Internal_Rela *rela;
3457 Elf_Internal_Rela *relend;
3458
3459 if (info->relocatable)
3460 return TRUE;
3461
3462 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3463
3464 htab = hppa_link_hash_table (info);
3465 local_got_offsets = elf_local_got_offsets (input_bfd);
3466
3467 rela = relocs;
3468 relend = relocs + input_section->reloc_count;
3469 for (; rela < relend; rela++)
3470 {
3471 unsigned int r_type;
3472 reloc_howto_type *howto;
3473 unsigned int r_symndx;
3474 struct elf32_hppa_link_hash_entry *hh;
3475 Elf_Internal_Sym *sym;
3476 asection *sym_sec;
3477 bfd_vma relocation;
3478 bfd_reloc_status_type rstatus;
3479 const char *sym_name;
3480 bfd_boolean plabel;
3481 bfd_boolean warned_undef;
3482
3483 r_type = ELF32_R_TYPE (rela->r_info);
3484 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3485 {
3486 bfd_set_error (bfd_error_bad_value);
3487 return FALSE;
3488 }
3489 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3490 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3491 continue;
3492
3493 /* This is a final link. */
3494 r_symndx = ELF32_R_SYM (rela->r_info);
3495 hh = NULL;
3496 sym = NULL;
3497 sym_sec = NULL;
3498 warned_undef = FALSE;
3499 if (r_symndx < symtab_hdr->sh_info)
3500 {
3501 /* This is a local symbol, h defaults to NULL. */
3502 sym = local_syms + r_symndx;
3503 sym_sec = local_sections[r_symndx];
3504 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3505 }
3506 else
3507 {
3508 struct elf_link_hash_entry *eh;
3509 bfd_boolean unresolved_reloc;
3510 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3511
3512 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3513 r_symndx, symtab_hdr, sym_hashes,
3514 eh, sym_sec, relocation,
3515 unresolved_reloc, warned_undef);
3516
3517 if (relocation == 0
3518 && eh->root.type != bfd_link_hash_defined
3519 && eh->root.type != bfd_link_hash_defweak
3520 && eh->root.type != bfd_link_hash_undefweak)
3521 {
3522 if (info->unresolved_syms_in_objects == RM_IGNORE
3523 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3524 && eh->type == STT_PARISC_MILLI)
3525 {
3526 if (! info->callbacks->undefined_symbol
3527 (info, eh->root.root.string, input_bfd,
3528 input_section, rela->r_offset, FALSE))
3529 return FALSE;
3530 warned_undef = TRUE;
3531 }
3532 }
3533 hh = hppa_elf_hash_entry (eh);
3534 }
3535
3536 /* Do any required modifications to the relocation value, and
3537 determine what types of dynamic info we need to output, if
3538 any. */
3539 plabel = 0;
3540 switch (r_type)
3541 {
3542 case R_PARISC_DLTIND14F:
3543 case R_PARISC_DLTIND14R:
3544 case R_PARISC_DLTIND21L:
3545 {
3546 bfd_vma off;
3547 bfd_boolean do_got = 0;
3548
3549 /* Relocation is to the entry for this symbol in the
3550 global offset table. */
3551 if (hh != NULL)
3552 {
3553 bfd_boolean dyn;
3554
3555 off = hh->eh.got.offset;
3556 dyn = htab->etab.dynamic_sections_created;
3557 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
3558 &hh->eh))
3559 {
3560 /* If we aren't going to call finish_dynamic_symbol,
3561 then we need to handle initialisation of the .got
3562 entry and create needed relocs here. Since the
3563 offset must always be a multiple of 4, we use the
3564 least significant bit to record whether we have
3565 initialised it already. */
3566 if ((off & 1) != 0)
3567 off &= ~1;
3568 else
3569 {
3570 hh->eh.got.offset |= 1;
3571 do_got = 1;
3572 }
3573 }
3574 }
3575 else
3576 {
3577 /* Local symbol case. */
3578 if (local_got_offsets == NULL)
3579 abort ();
3580
3581 off = local_got_offsets[r_symndx];
3582
3583 /* The offset must always be a multiple of 4. We use
3584 the least significant bit to record whether we have
3585 already generated the necessary reloc. */
3586 if ((off & 1) != 0)
3587 off &= ~1;
3588 else
3589 {
3590 local_got_offsets[r_symndx] |= 1;
3591 do_got = 1;
3592 }
3593 }
3594
3595 if (do_got)
3596 {
3597 if (info->shared)
3598 {
3599 /* Output a dynamic relocation for this GOT entry.
3600 In this case it is relative to the base of the
3601 object because the symbol index is zero. */
3602 Elf_Internal_Rela outrel;
3603 bfd_byte *loc;
3604 asection *sec = htab->srelgot;
3605
3606 outrel.r_offset = (off
3607 + htab->sgot->output_offset
3608 + htab->sgot->output_section->vma);
3609 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3610 outrel.r_addend = relocation;
3611 loc = sec->contents;
3612 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3613 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3614 }
3615 else
3616 bfd_put_32 (output_bfd, relocation,
3617 htab->sgot->contents + off);
3618 }
3619
3620 if (off >= (bfd_vma) -2)
3621 abort ();
3622
3623 /* Add the base of the GOT to the relocation value. */
3624 relocation = (off
3625 + htab->sgot->output_offset
3626 + htab->sgot->output_section->vma);
3627 }
3628 break;
3629
3630 case R_PARISC_SEGREL32:
3631 /* If this is the first SEGREL relocation, then initialize
3632 the segment base values. */
3633 if (htab->text_segment_base == (bfd_vma) -1)
3634 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3635 break;
3636
3637 case R_PARISC_PLABEL14R:
3638 case R_PARISC_PLABEL21L:
3639 case R_PARISC_PLABEL32:
3640 if (htab->etab.dynamic_sections_created)
3641 {
3642 bfd_vma off;
3643 bfd_boolean do_plt = 0;
3644 /* If we have a global symbol with a PLT slot, then
3645 redirect this relocation to it. */
3646 if (hh != NULL)
3647 {
3648 off = hh->eh.plt.offset;
3649 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared,
3650 &hh->eh))
3651 {
3652 /* In a non-shared link, adjust_dynamic_symbols
3653 isn't called for symbols forced local. We
3654 need to write out the plt entry here. */
3655 if ((off & 1) != 0)
3656 off &= ~1;
3657 else
3658 {
3659 hh->eh.plt.offset |= 1;
3660 do_plt = 1;
3661 }
3662 }
3663 }
3664 else
3665 {
3666 bfd_vma *local_plt_offsets;
3667
3668 if (local_got_offsets == NULL)
3669 abort ();
3670
3671 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3672 off = local_plt_offsets[r_symndx];
3673
3674 /* As for the local .got entry case, we use the last
3675 bit to record whether we've already initialised
3676 this local .plt entry. */
3677 if ((off & 1) != 0)
3678 off &= ~1;
3679 else
3680 {
3681 local_plt_offsets[r_symndx] |= 1;
3682 do_plt = 1;
3683 }
3684 }
3685
3686 if (do_plt)
3687 {
3688 if (info->shared)
3689 {
3690 /* Output a dynamic IPLT relocation for this
3691 PLT entry. */
3692 Elf_Internal_Rela outrel;
3693 bfd_byte *loc;
3694 asection *s = htab->srelplt;
3695
3696 outrel.r_offset = (off
3697 + htab->splt->output_offset
3698 + htab->splt->output_section->vma);
3699 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3700 outrel.r_addend = relocation;
3701 loc = s->contents;
3702 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3703 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3704 }
3705 else
3706 {
3707 bfd_put_32 (output_bfd,
3708 relocation,
3709 htab->splt->contents + off);
3710 bfd_put_32 (output_bfd,
3711 elf_gp (htab->splt->output_section->owner),
3712 htab->splt->contents + off + 4);
3713 }
3714 }
3715
3716 if (off >= (bfd_vma) -2)
3717 abort ();
3718
3719 /* PLABELs contain function pointers. Relocation is to
3720 the entry for the function in the .plt. The magic +2
3721 offset signals to $$dyncall that the function pointer
3722 is in the .plt and thus has a gp pointer too.
3723 Exception: Undefined PLABELs should have a value of
3724 zero. */
3725 if (hh == NULL
3726 || (hh->eh.root.type != bfd_link_hash_undefweak
3727 && hh->eh.root.type != bfd_link_hash_undefined))
3728 {
3729 relocation = (off
3730 + htab->splt->output_offset
3731 + htab->splt->output_section->vma
3732 + 2);
3733 }
3734 plabel = 1;
3735 }
3736 /* Fall through and possibly emit a dynamic relocation. */
3737
3738 case R_PARISC_DIR17F:
3739 case R_PARISC_DIR17R:
3740 case R_PARISC_DIR14F:
3741 case R_PARISC_DIR14R:
3742 case R_PARISC_DIR21L:
3743 case R_PARISC_DPREL14F:
3744 case R_PARISC_DPREL14R:
3745 case R_PARISC_DPREL21L:
3746 case R_PARISC_DIR32:
3747 /* r_symndx will be zero only for relocs against symbols
3748 from removed linkonce sections, or sections discarded by
3749 a linker script. */
3750 if (r_symndx == 0
3751 || (input_section->flags & SEC_ALLOC) == 0)
3752 break;
3753
3754 /* The reloc types handled here and this conditional
3755 expression must match the code in ..check_relocs and
3756 allocate_dynrelocs. ie. We need exactly the same condition
3757 as in ..check_relocs, with some extra conditions (dynindx
3758 test in this case) to cater for relocs removed by
3759 allocate_dynrelocs. If you squint, the non-shared test
3760 here does indeed match the one in ..check_relocs, the
3761 difference being that here we test DEF_DYNAMIC as well as
3762 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3763 which is why we can't use just that test here.
3764 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3765 there all files have not been loaded. */
3766 if ((info->shared
3767 && (hh == NULL
3768 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
3769 || hh->eh.root.type != bfd_link_hash_undefweak)
3770 && (IS_ABSOLUTE_RELOC (r_type)
3771 || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
3772 || (!info->shared
3773 && hh != NULL
3774 && hh->eh.dynindx != -1
3775 && !hh->eh.non_got_ref
3776 && ((ELIMINATE_COPY_RELOCS
3777 && hh->eh.def_dynamic
3778 && !hh->eh.def_regular)
3779 || hh->eh.root.type == bfd_link_hash_undefweak
3780 || hh->eh.root.type == bfd_link_hash_undefined)))
3781 {
3782 Elf_Internal_Rela outrel;
3783 bfd_boolean skip;
3784 asection *sreloc;
3785 bfd_byte *loc;
3786
3787 /* When generating a shared object, these relocations
3788 are copied into the output file to be resolved at run
3789 time. */
3790
3791 outrel.r_addend = rela->r_addend;
3792 outrel.r_offset =
3793 _bfd_elf_section_offset (output_bfd, info, input_section,
3794 rela->r_offset);
3795 skip = (outrel.r_offset == (bfd_vma) -1
3796 || outrel.r_offset == (bfd_vma) -2);
3797 outrel.r_offset += (input_section->output_offset
3798 + input_section->output_section->vma);
3799
3800 if (skip)
3801 {
3802 memset (&outrel, 0, sizeof (outrel));
3803 }
3804 else if (hh != NULL
3805 && hh->eh.dynindx != -1
3806 && (plabel
3807 || !IS_ABSOLUTE_RELOC (r_type)
3808 || !info->shared
3809 || !info->symbolic
3810 || !hh->eh.def_regular))
3811 {
3812 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
3813 }
3814 else /* It's a local symbol, or one marked to become local. */
3815 {
3816 int indx = 0;
3817
3818 /* Add the absolute offset of the symbol. */
3819 outrel.r_addend += relocation;
3820
3821 /* Global plabels need to be processed by the
3822 dynamic linker so that functions have at most one
3823 fptr. For this reason, we need to differentiate
3824 between global and local plabels, which we do by
3825 providing the function symbol for a global plabel
3826 reloc, and no symbol for local plabels. */
3827 if (! plabel
3828 && sym_sec != NULL
3829 && sym_sec->output_section != NULL
3830 && ! bfd_is_abs_section (sym_sec))
3831 {
3832 /* Skip this relocation if the output section has
3833 been discarded. */
3834 if (bfd_is_abs_section (sym_sec->output_section))
3835 break;
3836
3837 indx = elf_section_data (sym_sec->output_section)->dynindx;
3838 /* We are turning this relocation into one
3839 against a section symbol, so subtract out the
3840 output section's address but not the offset
3841 of the input section in the output section. */
3842 outrel.r_addend -= sym_sec->output_section->vma;
3843 }
3844
3845 outrel.r_info = ELF32_R_INFO (indx, r_type);
3846 }
3847 sreloc = elf_section_data (input_section)->sreloc;
3848 if (sreloc == NULL)
3849 abort ();
3850
3851 loc = sreloc->contents;
3852 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3853 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3854 }
3855 break;
3856
3857 default:
3858 break;
3859 }
3860
3861 rstatus = final_link_relocate (input_section, contents, rela, relocation,
3862 htab, sym_sec, hh, info);
3863
3864 if (rstatus == bfd_reloc_ok)
3865 continue;
3866
3867 if (hh != NULL)
3868 sym_name = hh->eh.root.root.string;
3869 else
3870 {
3871 sym_name = bfd_elf_string_from_elf_section (input_bfd,
3872 symtab_hdr->sh_link,
3873 sym->st_name);
3874 if (sym_name == NULL)
3875 return FALSE;
3876 if (*sym_name == '\0')
3877 sym_name = bfd_section_name (input_bfd, sym_sec);
3878 }
3879
3880 howto = elf_hppa_howto_table + r_type;
3881
3882 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
3883 {
3884 if (rstatus == bfd_reloc_notsupported || !warned_undef)
3885 {
3886 (*_bfd_error_handler)
3887 (_("%B(%A+0x%lx): cannot handle %s for %s"),
3888 input_bfd,
3889 input_section,
3890 (long) rela->r_offset,
3891 howto->name,
3892 sym_name);
3893 bfd_set_error (bfd_error_bad_value);
3894 return FALSE;
3895 }
3896 }
3897 else
3898 {
3899 if (!((*info->callbacks->reloc_overflow)
3900 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
3901 (bfd_vma) 0, input_bfd, input_section, rela->r_offset)))
3902 return FALSE;
3903 }
3904 }
3905
3906 return TRUE;
3907 }
3908
3909 /* Finish up dynamic symbol handling. We set the contents of various
3910 dynamic sections here. */
3911
3912 static bfd_boolean
3913 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
3914 struct bfd_link_info *info,
3915 struct elf_link_hash_entry *eh,
3916 Elf_Internal_Sym *sym)
3917 {
3918 struct elf32_hppa_link_hash_table *htab;
3919 Elf_Internal_Rela rela;
3920 bfd_byte *loc;
3921
3922 htab = hppa_link_hash_table (info);
3923
3924 if (eh->plt.offset != (bfd_vma) -1)
3925 {
3926 bfd_vma value;
3927
3928 if (eh->plt.offset & 1)
3929 abort ();
3930
3931 /* This symbol has an entry in the procedure linkage table. Set
3932 it up.
3933
3934 The format of a plt entry is
3935 <funcaddr>
3936 <__gp>
3937 */
3938 value = 0;
3939 if (eh->root.type == bfd_link_hash_defined
3940 || eh->root.type == bfd_link_hash_defweak)
3941 {
3942 value = eh->root.u.def.value;
3943 if (eh->root.u.def.section->output_section != NULL)
3944 value += (eh->root.u.def.section->output_offset
3945 + eh->root.u.def.section->output_section->vma);
3946 }
3947
3948 /* Create a dynamic IPLT relocation for this entry. */
3949 rela.r_offset = (eh->plt.offset
3950 + htab->splt->output_offset
3951 + htab->splt->output_section->vma);
3952 if (eh->dynindx != -1)
3953 {
3954 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
3955 rela.r_addend = 0;
3956 }
3957 else
3958 {
3959 /* This symbol has been marked to become local, and is
3960 used by a plabel so must be kept in the .plt. */
3961 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3962 rela.r_addend = value;
3963 }
3964
3965 loc = htab->srelplt->contents;
3966 loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
3967 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rela, loc);
3968
3969 if (!eh->def_regular)
3970 {
3971 /* Mark the symbol as undefined, rather than as defined in
3972 the .plt section. Leave the value alone. */
3973 sym->st_shndx = SHN_UNDEF;
3974 }
3975 }
3976
3977 if (eh->got.offset != (bfd_vma) -1)
3978 {
3979 /* This symbol has an entry in the global offset table. Set it
3980 up. */
3981
3982 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
3983 + htab->sgot->output_offset
3984 + htab->sgot->output_section->vma);
3985
3986 /* If this is a -Bsymbolic link and the symbol is defined
3987 locally or was forced to be local because of a version file,
3988 we just want to emit a RELATIVE reloc. The entry in the
3989 global offset table will already have been initialized in the
3990 relocate_section function. */
3991 if (info->shared
3992 && (info->symbolic || eh->dynindx == -1)
3993 && eh->def_regular)
3994 {
3995 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3996 rela.r_addend = (eh->root.u.def.value
3997 + eh->root.u.def.section->output_offset
3998 + eh->root.u.def.section->output_section->vma);
3999 }
4000 else
4001 {
4002 if ((eh->got.offset & 1) != 0)
4003 abort ();
4004
4005 bfd_put_32 (output_bfd, 0, htab->sgot->contents + (eh->got.offset & ~1));
4006 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4007 rela.r_addend = 0;
4008 }
4009
4010 loc = htab->srelgot->contents;
4011 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4012 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4013 }
4014
4015 if (eh->needs_copy)
4016 {
4017 asection *sec;
4018
4019 /* This symbol needs a copy reloc. Set it up. */
4020
4021 if (! (eh->dynindx != -1
4022 && (eh->root.type == bfd_link_hash_defined
4023 || eh->root.type == bfd_link_hash_defweak)))
4024 abort ();
4025
4026 sec = htab->srelbss;
4027
4028 rela.r_offset = (eh->root.u.def.value
4029 + eh->root.u.def.section->output_offset
4030 + eh->root.u.def.section->output_section->vma);
4031 rela.r_addend = 0;
4032 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4033 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4034 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4035 }
4036
4037 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4038 if (eh->root.root.string[0] == '_'
4039 && (strcmp (eh->root.root.string, "_DYNAMIC") == 0
4040 || strcmp (eh->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0))
4041 {
4042 sym->st_shndx = SHN_ABS;
4043 }
4044
4045 return TRUE;
4046 }
4047
4048 /* Used to decide how to sort relocs in an optimal manner for the
4049 dynamic linker, before writing them out. */
4050
4051 static enum elf_reloc_type_class
4052 elf32_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
4053 {
4054 if (ELF32_R_SYM (rela->r_info) == 0)
4055 return reloc_class_relative;
4056
4057 switch ((int) ELF32_R_TYPE (rela->r_info))
4058 {
4059 case R_PARISC_IPLT:
4060 return reloc_class_plt;
4061 case R_PARISC_COPY:
4062 return reloc_class_copy;
4063 default:
4064 return reloc_class_normal;
4065 }
4066 }
4067
4068 /* Finish up the dynamic sections. */
4069
4070 static bfd_boolean
4071 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4072 struct bfd_link_info *info)
4073 {
4074 bfd *dynobj;
4075 struct elf32_hppa_link_hash_table *htab;
4076 asection *sdyn;
4077
4078 htab = hppa_link_hash_table (info);
4079 dynobj = htab->etab.dynobj;
4080
4081 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4082
4083 if (htab->etab.dynamic_sections_created)
4084 {
4085 Elf32_External_Dyn *dyncon, *dynconend;
4086
4087 if (sdyn == NULL)
4088 abort ();
4089
4090 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4091 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4092 for (; dyncon < dynconend; dyncon++)
4093 {
4094 Elf_Internal_Dyn dyn;
4095 asection *s;
4096
4097 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4098
4099 switch (dyn.d_tag)
4100 {
4101 default:
4102 continue;
4103
4104 case DT_PLTGOT:
4105 /* Use PLTGOT to set the GOT register. */
4106 dyn.d_un.d_ptr = elf_gp (output_bfd);
4107 break;
4108
4109 case DT_JMPREL:
4110 s = htab->srelplt;
4111 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4112 break;
4113
4114 case DT_PLTRELSZ:
4115 s = htab->srelplt;
4116 dyn.d_un.d_val = s->size;
4117 break;
4118
4119 case DT_RELASZ:
4120 /* Don't count procedure linkage table relocs in the
4121 overall reloc count. */
4122 s = htab->srelplt;
4123 if (s == NULL)
4124 continue;
4125 dyn.d_un.d_val -= s->size;
4126 break;
4127
4128 case DT_RELA:
4129 /* We may not be using the standard ELF linker script.
4130 If .rela.plt is the first .rela section, we adjust
4131 DT_RELA to not include it. */
4132 s = htab->srelplt;
4133 if (s == NULL)
4134 continue;
4135 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4136 continue;
4137 dyn.d_un.d_ptr += s->size;
4138 break;
4139 }
4140
4141 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4142 }
4143 }
4144
4145 if (htab->sgot != NULL && htab->sgot->size != 0)
4146 {
4147 /* Fill in the first entry in the global offset table.
4148 We use it to point to our dynamic section, if we have one. */
4149 bfd_put_32 (output_bfd,
4150 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4151 htab->sgot->contents);
4152
4153 /* The second entry is reserved for use by the dynamic linker. */
4154 memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4155
4156 /* Set .got entry size. */
4157 elf_section_data (htab->sgot->output_section)
4158 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4159 }
4160
4161 if (htab->splt != NULL && htab->splt->size != 0)
4162 {
4163 /* Set plt entry size. */
4164 elf_section_data (htab->splt->output_section)
4165 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4166
4167 if (htab->need_plt_stub)
4168 {
4169 /* Set up the .plt stub. */
4170 memcpy (htab->splt->contents
4171 + htab->splt->size - sizeof (plt_stub),
4172 plt_stub, sizeof (plt_stub));
4173
4174 if ((htab->splt->output_offset
4175 + htab->splt->output_section->vma
4176 + htab->splt->size)
4177 != (htab->sgot->output_offset
4178 + htab->sgot->output_section->vma))
4179 {
4180 (*_bfd_error_handler)
4181 (_(".got section not immediately after .plt section"));
4182 return FALSE;
4183 }
4184 }
4185 }
4186
4187 return TRUE;
4188 }
4189
4190 /* Tweak the OSABI field of the elf header. */
4191
4192 static void
4193 elf32_hppa_post_process_headers (bfd *abfd,
4194 struct bfd_link_info *info ATTRIBUTE_UNUSED)
4195 {
4196 Elf_Internal_Ehdr * i_ehdrp;
4197
4198 i_ehdrp = elf_elfheader (abfd);
4199
4200 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
4201 {
4202 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
4203 }
4204 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
4205 {
4206 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_NETBSD;
4207 }
4208 else
4209 {
4210 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
4211 }
4212 }
4213
4214 /* Called when writing out an object file to decide the type of a
4215 symbol. */
4216 static int
4217 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4218 {
4219 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4220 return STT_PARISC_MILLI;
4221 else
4222 return type;
4223 }
4224
4225 /* Misc BFD support code. */
4226 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4227 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4228 #define elf_info_to_howto elf_hppa_info_to_howto
4229 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4230
4231 /* Stuff for the BFD linker. */
4232 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4233 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4234 #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
4235 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4236 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4237 #define elf_backend_check_relocs elf32_hppa_check_relocs
4238 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4239 #define elf_backend_fake_sections elf_hppa_fake_sections
4240 #define elf_backend_relocate_section elf32_hppa_relocate_section
4241 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4242 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4243 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4244 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4245 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4246 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4247 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4248 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4249 #define elf_backend_object_p elf32_hppa_object_p
4250 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4251 #define elf_backend_post_process_headers elf32_hppa_post_process_headers
4252 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4253 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4254
4255 #define elf_backend_can_gc_sections 1
4256 #define elf_backend_can_refcount 1
4257 #define elf_backend_plt_alignment 2
4258 #define elf_backend_want_got_plt 0
4259 #define elf_backend_plt_readonly 0
4260 #define elf_backend_want_plt_sym 0
4261 #define elf_backend_got_header_size 8
4262 #define elf_backend_rela_normal 1
4263
4264 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4265 #define TARGET_BIG_NAME "elf32-hppa"
4266 #define ELF_ARCH bfd_arch_hppa
4267 #define ELF_MACHINE_CODE EM_PARISC
4268 #define ELF_MAXPAGESIZE 0x1000
4269
4270 #include "elf32-target.h"
4271
4272 #undef TARGET_BIG_SYM
4273 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4274 #undef TARGET_BIG_NAME
4275 #define TARGET_BIG_NAME "elf32-hppa-linux"
4276
4277 #define INCLUDED_TARGET_FILE 1
4278 #include "elf32-target.h"
4279
4280 #undef TARGET_BIG_SYM
4281 #define TARGET_BIG_SYM bfd_elf32_hppa_nbsd_vec
4282 #undef TARGET_BIG_NAME
4283 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4284
4285 #include "elf32-target.h"
This page took 0.127169 seconds and 4 git commands to generate.