Add support for non-contiguous memory regions
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright (C) 1990-2020 Free Software Foundation, Inc.
3
4 Original code by
5 Center for Software Science
6 Department of Computer Science
7 University of Utah
8 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
9 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
10 TLS support written by Randolph Chung <tausq@debian.org>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
28
29 #include "sysdep.h"
30 #include "bfd.h"
31 #include "libbfd.h"
32 #include "elf-bfd.h"
33 #include "elf/hppa.h"
34 #include "libhppa.h"
35 #include "elf32-hppa.h"
36 #define ARCH_SIZE 32
37 #include "elf32-hppa.h"
38 #include "elf-hppa.h"
39
40 /* In order to gain some understanding of code in this file without
41 knowing all the intricate details of the linker, note the
42 following:
43
44 Functions named elf32_hppa_* are called by external routines, other
45 functions are only called locally. elf32_hppa_* functions appear
46 in this file more or less in the order in which they are called
47 from external routines. eg. elf32_hppa_check_relocs is called
48 early in the link process, elf32_hppa_finish_dynamic_sections is
49 one of the last functions. */
50
51 /* We use two hash tables to hold information for linking PA ELF objects.
52
53 The first is the elf32_hppa_link_hash_table which is derived
54 from the standard ELF linker hash table. We use this as a place to
55 attach other hash tables and static information.
56
57 The second is the stub hash table which is derived from the
58 base BFD hash table. The stub hash table holds the information
59 necessary to build the linker stubs during a link.
60
61 There are a number of different stubs generated by the linker.
62
63 Long branch stub:
64 : ldil LR'X,%r1
65 : be,n RR'X(%sr4,%r1)
66
67 PIC long branch stub:
68 : b,l .+8,%r1
69 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
70 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
71
72 Import stub to call shared library routine from normal object file
73 (single sub-space version)
74 : addil LR'lt_ptr+ltoff,%dp ; get PLT address
75 : ldo RR'lt_ptr+ltoff(%r1),%r22 ;
76 : ldw 0(%r22),%r21 ; get procedure entry point
77 : bv %r0(%r21)
78 : ldw 4(%r22),%r19 ; get new dlt value.
79
80 Import stub to call shared library routine from shared library
81 (single sub-space version)
82 : addil LR'ltoff,%r19 ; get PLT address
83 : ldo RR'ltoff(%r1),%r22
84 : ldw 0(%r22),%r21 ; get procedure entry point
85 : bv %r0(%r21)
86 : ldw 4(%r22),%r19 ; get new dlt value.
87
88 Import stub to call shared library routine from normal object file
89 (multiple sub-space support)
90 : addil LR'lt_ptr+ltoff,%dp ; get PLT address
91 : ldo RR'lt_ptr+ltoff(%r1),%r22 ;
92 : ldw 0(%r22),%r21 ; get procedure entry point
93 : ldsid (%r21),%r1 ; get target sid
94 : ldw 4(%r22),%r19 ; get new dlt value.
95 : mtsp %r1,%sr0
96 : be 0(%sr0,%r21) ; branch to target
97 : stw %rp,-24(%sp) ; save rp
98
99 Import stub to call shared library routine from shared library
100 (multiple sub-space support)
101 : addil LR'ltoff,%r19 ; get PLT address
102 : ldo RR'ltoff(%r1),%r22
103 : ldw 0(%r22),%r21 ; get procedure entry point
104 : ldsid (%r21),%r1 ; get target sid
105 : ldw 4(%r22),%r19 ; get new dlt value.
106 : mtsp %r1,%sr0
107 : be 0(%sr0,%r21) ; branch to target
108 : stw %rp,-24(%sp) ; save rp
109
110 Export stub to return from shared lib routine (multiple sub-space support)
111 One of these is created for each exported procedure in a shared
112 library (and stored in the shared lib). Shared lib routines are
113 called via the first instruction in the export stub so that we can
114 do an inter-space return. Not required for single sub-space.
115 : bl,n X,%rp ; trap the return
116 : nop
117 : ldw -24(%sp),%rp ; restore the original rp
118 : ldsid (%rp),%r1
119 : mtsp %r1,%sr0
120 : be,n 0(%sr0,%rp) ; inter-space return. */
121
122
123 /* Variable names follow a coding style.
124 Please follow this (Apps Hungarian) style:
125
126 Structure/Variable Prefix
127 elf_link_hash_table "etab"
128 elf_link_hash_entry "eh"
129
130 elf32_hppa_link_hash_table "htab"
131 elf32_hppa_link_hash_entry "hh"
132
133 bfd_hash_table "btab"
134 bfd_hash_entry "bh"
135
136 bfd_hash_table containing stubs "bstab"
137 elf32_hppa_stub_hash_entry "hsh"
138
139 Always remember to use GNU Coding Style. */
140
141 #define PLT_ENTRY_SIZE 8
142 #define GOT_ENTRY_SIZE 4
143 #define LONG_BRANCH_STUB_SIZE 8
144 #define LONG_BRANCH_SHARED_STUB_SIZE 12
145 #define IMPORT_STUB_SIZE 20
146 #define IMPORT_SHARED_STUB_SIZE 32
147 #define EXPORT_STUB_SIZE 24
148 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
149
150 static const bfd_byte plt_stub[] =
151 {
152 0x0e, 0x80, 0x10, 0x95, /* 1: ldw 0(%r20),%r21 */
153 0xea, 0xa0, 0xc0, 0x00, /* bv %r0(%r21) */
154 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
155 #define PLT_STUB_ENTRY (3*4)
156 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
157 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
158 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
159 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
160 };
161
162 /* Section name for stubs is the associated section name plus this
163 string. */
164 #define STUB_SUFFIX ".stub"
165
166 /* We don't need to copy certain PC- or GP-relative dynamic relocs
167 into a shared object's dynamic section. All the relocs of the
168 limited class we are interested in, are absolute. */
169 #ifndef RELATIVE_DYNRELOCS
170 #define RELATIVE_DYNRELOCS 0
171 #define IS_ABSOLUTE_RELOC(r_type) 1
172 #define pc_dynrelocs(hh) 0
173 #endif
174
175 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
176 copying dynamic variables from a shared lib into an app's dynbss
177 section, and instead use a dynamic relocation to point into the
178 shared lib. */
179 #define ELIMINATE_COPY_RELOCS 1
180
181 enum elf32_hppa_stub_type
182 {
183 hppa_stub_long_branch,
184 hppa_stub_long_branch_shared,
185 hppa_stub_import,
186 hppa_stub_import_shared,
187 hppa_stub_export,
188 hppa_stub_none
189 };
190
191 struct elf32_hppa_stub_hash_entry
192 {
193 /* Base hash table entry structure. */
194 struct bfd_hash_entry bh_root;
195
196 /* The stub section. */
197 asection *stub_sec;
198
199 /* Offset within stub_sec of the beginning of this stub. */
200 bfd_vma stub_offset;
201
202 /* Given the symbol's value and its section we can determine its final
203 value when building the stubs (so the stub knows where to jump. */
204 bfd_vma target_value;
205 asection *target_section;
206
207 enum elf32_hppa_stub_type stub_type;
208
209 /* The symbol table entry, if any, that this was derived from. */
210 struct elf32_hppa_link_hash_entry *hh;
211
212 /* Where this stub is being called from, or, in the case of combined
213 stub sections, the first input section in the group. */
214 asection *id_sec;
215 };
216
217 enum _tls_type
218 {
219 GOT_UNKNOWN = 0,
220 GOT_NORMAL = 1,
221 GOT_TLS_GD = 2,
222 GOT_TLS_LDM = 4,
223 GOT_TLS_IE = 8
224 };
225
226 struct elf32_hppa_link_hash_entry
227 {
228 struct elf_link_hash_entry eh;
229
230 /* A pointer to the most recently used stub hash entry against this
231 symbol. */
232 struct elf32_hppa_stub_hash_entry *hsh_cache;
233
234 /* Used to count relocations for delayed sizing of relocation
235 sections. */
236 struct elf_dyn_relocs *dyn_relocs;
237
238 ENUM_BITFIELD (_tls_type) tls_type : 8;
239
240 /* Set if this symbol is used by a plabel reloc. */
241 unsigned int plabel:1;
242 };
243
244 struct elf32_hppa_link_hash_table
245 {
246 /* The main hash table. */
247 struct elf_link_hash_table etab;
248
249 /* The stub hash table. */
250 struct bfd_hash_table bstab;
251
252 /* Linker stub bfd. */
253 bfd *stub_bfd;
254
255 /* Linker call-backs. */
256 asection * (*add_stub_section) (const char *, asection *);
257 void (*layout_sections_again) (void);
258
259 /* Array to keep track of which stub sections have been created, and
260 information on stub grouping. */
261 struct map_stub
262 {
263 /* This is the section to which stubs in the group will be
264 attached. */
265 asection *link_sec;
266 /* The stub section. */
267 asection *stub_sec;
268 } *stub_group;
269
270 /* Assorted information used by elf32_hppa_size_stubs. */
271 unsigned int bfd_count;
272 unsigned int top_index;
273 asection **input_list;
274 Elf_Internal_Sym **all_local_syms;
275
276 /* Used during a final link to store the base of the text and data
277 segments so that we can perform SEGREL relocations. */
278 bfd_vma text_segment_base;
279 bfd_vma data_segment_base;
280
281 /* Whether we support multiple sub-spaces for shared libs. */
282 unsigned int multi_subspace:1;
283
284 /* Flags set when various size branches are detected. Used to
285 select suitable defaults for the stub group size. */
286 unsigned int has_12bit_branch:1;
287 unsigned int has_17bit_branch:1;
288 unsigned int has_22bit_branch:1;
289
290 /* Set if we need a .plt stub to support lazy dynamic linking. */
291 unsigned int need_plt_stub:1;
292
293 /* Small local sym cache. */
294 struct sym_cache sym_cache;
295
296 /* Data for LDM relocations. */
297 union
298 {
299 bfd_signed_vma refcount;
300 bfd_vma offset;
301 } tls_ldm_got;
302 };
303
304 /* Various hash macros and functions. */
305 #define hppa_link_hash_table(p) \
306 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
307 == HPPA32_ELF_DATA ? ((struct elf32_hppa_link_hash_table *) ((p)->hash)) : NULL)
308
309 #define hppa_elf_hash_entry(ent) \
310 ((struct elf32_hppa_link_hash_entry *)(ent))
311
312 #define hppa_stub_hash_entry(ent) \
313 ((struct elf32_hppa_stub_hash_entry *)(ent))
314
315 #define hppa_stub_hash_lookup(table, string, create, copy) \
316 ((struct elf32_hppa_stub_hash_entry *) \
317 bfd_hash_lookup ((table), (string), (create), (copy)))
318
319 #define hppa_elf_local_got_tls_type(abfd) \
320 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
321
322 #define hh_name(hh) \
323 (hh ? hh->eh.root.root.string : "<undef>")
324
325 #define eh_name(eh) \
326 (eh ? eh->root.root.string : "<undef>")
327
328 /* Assorted hash table functions. */
329
330 /* Initialize an entry in the stub hash table. */
331
332 static struct bfd_hash_entry *
333 stub_hash_newfunc (struct bfd_hash_entry *entry,
334 struct bfd_hash_table *table,
335 const char *string)
336 {
337 /* Allocate the structure if it has not already been allocated by a
338 subclass. */
339 if (entry == NULL)
340 {
341 entry = bfd_hash_allocate (table,
342 sizeof (struct elf32_hppa_stub_hash_entry));
343 if (entry == NULL)
344 return entry;
345 }
346
347 /* Call the allocation method of the superclass. */
348 entry = bfd_hash_newfunc (entry, table, string);
349 if (entry != NULL)
350 {
351 struct elf32_hppa_stub_hash_entry *hsh;
352
353 /* Initialize the local fields. */
354 hsh = hppa_stub_hash_entry (entry);
355 hsh->stub_sec = NULL;
356 hsh->stub_offset = 0;
357 hsh->target_value = 0;
358 hsh->target_section = NULL;
359 hsh->stub_type = hppa_stub_long_branch;
360 hsh->hh = NULL;
361 hsh->id_sec = NULL;
362 }
363
364 return entry;
365 }
366
367 /* Initialize an entry in the link hash table. */
368
369 static struct bfd_hash_entry *
370 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
371 struct bfd_hash_table *table,
372 const char *string)
373 {
374 /* Allocate the structure if it has not already been allocated by a
375 subclass. */
376 if (entry == NULL)
377 {
378 entry = bfd_hash_allocate (table,
379 sizeof (struct elf32_hppa_link_hash_entry));
380 if (entry == NULL)
381 return entry;
382 }
383
384 /* Call the allocation method of the superclass. */
385 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
386 if (entry != NULL)
387 {
388 struct elf32_hppa_link_hash_entry *hh;
389
390 /* Initialize the local fields. */
391 hh = hppa_elf_hash_entry (entry);
392 hh->hsh_cache = NULL;
393 hh->dyn_relocs = NULL;
394 hh->plabel = 0;
395 hh->tls_type = GOT_UNKNOWN;
396 }
397
398 return entry;
399 }
400
401 /* Free the derived linker hash table. */
402
403 static void
404 elf32_hppa_link_hash_table_free (bfd *obfd)
405 {
406 struct elf32_hppa_link_hash_table *htab
407 = (struct elf32_hppa_link_hash_table *) obfd->link.hash;
408
409 bfd_hash_table_free (&htab->bstab);
410 _bfd_elf_link_hash_table_free (obfd);
411 }
412
413 /* Create the derived linker hash table. The PA ELF port uses the derived
414 hash table to keep information specific to the PA ELF linker (without
415 using static variables). */
416
417 static struct bfd_link_hash_table *
418 elf32_hppa_link_hash_table_create (bfd *abfd)
419 {
420 struct elf32_hppa_link_hash_table *htab;
421 size_t amt = sizeof (*htab);
422
423 htab = bfd_zmalloc (amt);
424 if (htab == NULL)
425 return NULL;
426
427 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
428 sizeof (struct elf32_hppa_link_hash_entry),
429 HPPA32_ELF_DATA))
430 {
431 free (htab);
432 return NULL;
433 }
434
435 /* Init the stub hash table too. */
436 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
437 sizeof (struct elf32_hppa_stub_hash_entry)))
438 {
439 _bfd_elf_link_hash_table_free (abfd);
440 return NULL;
441 }
442 htab->etab.root.hash_table_free = elf32_hppa_link_hash_table_free;
443
444 htab->text_segment_base = (bfd_vma) -1;
445 htab->data_segment_base = (bfd_vma) -1;
446 return &htab->etab.root;
447 }
448
449 /* Initialize the linker stubs BFD so that we can use it for linker
450 created dynamic sections. */
451
452 void
453 elf32_hppa_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
454 {
455 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
456
457 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS32;
458 htab->etab.dynobj = abfd;
459 }
460
461 /* Build a name for an entry in the stub hash table. */
462
463 static char *
464 hppa_stub_name (const asection *input_section,
465 const asection *sym_sec,
466 const struct elf32_hppa_link_hash_entry *hh,
467 const Elf_Internal_Rela *rela)
468 {
469 char *stub_name;
470 bfd_size_type len;
471
472 if (hh)
473 {
474 len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
475 stub_name = bfd_malloc (len);
476 if (stub_name != NULL)
477 sprintf (stub_name, "%08x_%s+%x",
478 input_section->id & 0xffffffff,
479 hh_name (hh),
480 (int) rela->r_addend & 0xffffffff);
481 }
482 else
483 {
484 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
485 stub_name = bfd_malloc (len);
486 if (stub_name != NULL)
487 sprintf (stub_name, "%08x_%x:%x+%x",
488 input_section->id & 0xffffffff,
489 sym_sec->id & 0xffffffff,
490 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
491 (int) rela->r_addend & 0xffffffff);
492 }
493 return stub_name;
494 }
495
496 /* Look up an entry in the stub hash. Stub entries are cached because
497 creating the stub name takes a bit of time. */
498
499 static struct elf32_hppa_stub_hash_entry *
500 hppa_get_stub_entry (const asection *input_section,
501 const asection *sym_sec,
502 struct elf32_hppa_link_hash_entry *hh,
503 const Elf_Internal_Rela *rela,
504 struct elf32_hppa_link_hash_table *htab)
505 {
506 struct elf32_hppa_stub_hash_entry *hsh_entry;
507 const asection *id_sec;
508
509 /* If this input section is part of a group of sections sharing one
510 stub section, then use the id of the first section in the group.
511 Stub names need to include a section id, as there may well be
512 more than one stub used to reach say, printf, and we need to
513 distinguish between them. */
514 id_sec = htab->stub_group[input_section->id].link_sec;
515 if (id_sec == NULL)
516 return NULL;
517
518 if (hh != NULL && hh->hsh_cache != NULL
519 && hh->hsh_cache->hh == hh
520 && hh->hsh_cache->id_sec == id_sec)
521 {
522 hsh_entry = hh->hsh_cache;
523 }
524 else
525 {
526 char *stub_name;
527
528 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
529 if (stub_name == NULL)
530 return NULL;
531
532 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
533 stub_name, FALSE, FALSE);
534 if (hh != NULL)
535 hh->hsh_cache = hsh_entry;
536
537 free (stub_name);
538 }
539
540 return hsh_entry;
541 }
542
543 /* Add a new stub entry to the stub hash. Not all fields of the new
544 stub entry are initialised. */
545
546 static struct elf32_hppa_stub_hash_entry *
547 hppa_add_stub (const char *stub_name,
548 asection *section,
549 struct elf32_hppa_link_hash_table *htab)
550 {
551 asection *link_sec;
552 asection *stub_sec;
553 struct elf32_hppa_stub_hash_entry *hsh;
554
555 link_sec = htab->stub_group[section->id].link_sec;
556 stub_sec = htab->stub_group[section->id].stub_sec;
557 if (stub_sec == NULL)
558 {
559 stub_sec = htab->stub_group[link_sec->id].stub_sec;
560 if (stub_sec == NULL)
561 {
562 size_t namelen;
563 bfd_size_type len;
564 char *s_name;
565
566 namelen = strlen (link_sec->name);
567 len = namelen + sizeof (STUB_SUFFIX);
568 s_name = bfd_alloc (htab->stub_bfd, len);
569 if (s_name == NULL)
570 return NULL;
571
572 memcpy (s_name, link_sec->name, namelen);
573 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
574 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
575 if (stub_sec == NULL)
576 return NULL;
577 htab->stub_group[link_sec->id].stub_sec = stub_sec;
578 }
579 htab->stub_group[section->id].stub_sec = stub_sec;
580 }
581
582 /* Enter this entry into the linker stub hash table. */
583 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
584 TRUE, FALSE);
585 if (hsh == NULL)
586 {
587 /* xgettext:c-format */
588 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
589 section->owner, stub_name);
590 return NULL;
591 }
592
593 hsh->stub_sec = stub_sec;
594 hsh->stub_offset = 0;
595 hsh->id_sec = link_sec;
596 return hsh;
597 }
598
599 /* Determine the type of stub needed, if any, for a call. */
600
601 static enum elf32_hppa_stub_type
602 hppa_type_of_stub (asection *input_sec,
603 const Elf_Internal_Rela *rela,
604 struct elf32_hppa_link_hash_entry *hh,
605 bfd_vma destination,
606 struct bfd_link_info *info)
607 {
608 bfd_vma location;
609 bfd_vma branch_offset;
610 bfd_vma max_branch_offset;
611 unsigned int r_type;
612
613 if (hh != NULL
614 && hh->eh.plt.offset != (bfd_vma) -1
615 && hh->eh.dynindx != -1
616 && !hh->plabel
617 && (bfd_link_pic (info)
618 || !hh->eh.def_regular
619 || hh->eh.root.type == bfd_link_hash_defweak))
620 {
621 /* We need an import stub. Decide between hppa_stub_import
622 and hppa_stub_import_shared later. */
623 return hppa_stub_import;
624 }
625
626 if (destination == (bfd_vma) -1)
627 return hppa_stub_none;
628
629 /* Determine where the call point is. */
630 location = (input_sec->output_offset
631 + input_sec->output_section->vma
632 + rela->r_offset);
633
634 branch_offset = destination - location - 8;
635 r_type = ELF32_R_TYPE (rela->r_info);
636
637 /* Determine if a long branch stub is needed. parisc branch offsets
638 are relative to the second instruction past the branch, ie. +8
639 bytes on from the branch instruction location. The offset is
640 signed and counts in units of 4 bytes. */
641 if (r_type == (unsigned int) R_PARISC_PCREL17F)
642 max_branch_offset = (1 << (17 - 1)) << 2;
643
644 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
645 max_branch_offset = (1 << (12 - 1)) << 2;
646
647 else /* R_PARISC_PCREL22F. */
648 max_branch_offset = (1 << (22 - 1)) << 2;
649
650 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
651 return hppa_stub_long_branch;
652
653 return hppa_stub_none;
654 }
655
656 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
657 IN_ARG contains the link info pointer. */
658
659 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
660 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
661
662 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
663 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
664 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
665
666 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
667 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
668 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
669 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
670
671 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
672 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
673
674 #define LDO_R1_R22 0x34360000 /* ldo RR'XXX(%r1),%r22 */
675 #define LDW_R22_R21 0x0ec01095 /* ldw 0(%r22),%r21 */
676 #define LDW_R22_R19 0x0ec81093 /* ldw 4(%r22),%r19 */
677
678 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
679 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
680 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
681 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
682
683 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
684 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
685 #define NOP 0x08000240 /* nop */
686 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
687 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
688 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
689
690 #ifndef R19_STUBS
691 #define R19_STUBS 1
692 #endif
693
694 #if R19_STUBS
695 #define LDW_R1_DLT LDW_R1_R19
696 #else
697 #define LDW_R1_DLT LDW_R1_DP
698 #endif
699
700 static bfd_boolean
701 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
702 {
703 struct elf32_hppa_stub_hash_entry *hsh;
704 struct bfd_link_info *info;
705 struct elf32_hppa_link_hash_table *htab;
706 asection *stub_sec;
707 bfd *stub_bfd;
708 bfd_byte *loc;
709 bfd_vma sym_value;
710 bfd_vma insn;
711 bfd_vma off;
712 int val;
713 int size;
714
715 /* Massage our args to the form they really have. */
716 hsh = hppa_stub_hash_entry (bh);
717 info = (struct bfd_link_info *)in_arg;
718
719 htab = hppa_link_hash_table (info);
720 if (htab == NULL)
721 return FALSE;
722
723 stub_sec = hsh->stub_sec;
724
725 /* Make a note of the offset within the stubs for this entry. */
726 hsh->stub_offset = stub_sec->size;
727 loc = stub_sec->contents + hsh->stub_offset;
728
729 stub_bfd = stub_sec->owner;
730
731 switch (hsh->stub_type)
732 {
733 case hppa_stub_long_branch:
734 /* Fail if the target section could not be assigned to an output
735 section. The user should fix his linker script. */
736 if (hsh->target_section->output_section == NULL
737 && info->non_contiguous_regions)
738 {
739 _bfd_error_handler (_("Could not assign '%pA' to an output section. "
740 "Retry without --enable-non-contiguous-regions.\n"),
741 hsh->target_section);
742 abort();
743 }
744
745 /* Create the long branch. A long branch is formed with "ldil"
746 loading the upper bits of the target address into a register,
747 then branching with "be" which adds in the lower bits.
748 The "be" has its delay slot nullified. */
749 sym_value = (hsh->target_value
750 + hsh->target_section->output_offset
751 + hsh->target_section->output_section->vma);
752
753 val = hppa_field_adjust (sym_value, 0, e_lrsel);
754 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
755 bfd_put_32 (stub_bfd, insn, loc);
756
757 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
758 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
759 bfd_put_32 (stub_bfd, insn, loc + 4);
760
761 size = LONG_BRANCH_STUB_SIZE;
762 break;
763
764 case hppa_stub_long_branch_shared:
765 /* Fail if the target section could not be assigned to an output
766 section. The user should fix his linker script. */
767 if (hsh->target_section->output_section == NULL
768 && info->non_contiguous_regions)
769 {
770 _bfd_error_handler (_("Could not assign %pA to an output section. "
771 "Retry without --enable-non-contiguous-regions.\n"),
772 hsh->target_section);
773 abort();
774 }
775 /* Branches are relative. This is where we are going to. */
776 sym_value = (hsh->target_value
777 + hsh->target_section->output_offset
778 + hsh->target_section->output_section->vma);
779
780 /* And this is where we are coming from, more or less. */
781 sym_value -= (hsh->stub_offset
782 + stub_sec->output_offset
783 + stub_sec->output_section->vma);
784
785 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
786 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
787 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
788 bfd_put_32 (stub_bfd, insn, loc + 4);
789
790 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
791 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
792 bfd_put_32 (stub_bfd, insn, loc + 8);
793 size = LONG_BRANCH_SHARED_STUB_SIZE;
794 break;
795
796 case hppa_stub_import:
797 case hppa_stub_import_shared:
798 off = hsh->hh->eh.plt.offset;
799 if (off >= (bfd_vma) -2)
800 abort ();
801
802 off &= ~ (bfd_vma) 1;
803 sym_value = (off
804 + htab->etab.splt->output_offset
805 + htab->etab.splt->output_section->vma
806 - elf_gp (htab->etab.splt->output_section->owner));
807
808 insn = ADDIL_DP;
809 #if R19_STUBS
810 if (hsh->stub_type == hppa_stub_import_shared)
811 insn = ADDIL_R19;
812 #endif
813
814 /* Load function descriptor address into register %r22. It is
815 sometimes needed for lazy binding. */
816 val = hppa_field_adjust (sym_value, 0, e_lrsel),
817 insn = hppa_rebuild_insn ((int) insn, val, 21);
818 bfd_put_32 (stub_bfd, insn, loc);
819
820 val = hppa_field_adjust (sym_value, 0, e_rrsel);
821 insn = hppa_rebuild_insn ((int) LDO_R1_R22, val, 14);
822 bfd_put_32 (stub_bfd, insn, loc + 4);
823
824 bfd_put_32 (stub_bfd, (bfd_vma) LDW_R22_R21, loc + 8);
825
826 if (htab->multi_subspace)
827 {
828 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
829 bfd_put_32 (stub_bfd, (bfd_vma) LDW_R22_R19, loc + 16);
830 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 20);
831 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 24);
832 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 28);
833
834 size = IMPORT_SHARED_STUB_SIZE;
835 }
836 else
837 {
838 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 12);
839 bfd_put_32 (stub_bfd, (bfd_vma) LDW_R22_R19, loc + 16);
840
841 size = IMPORT_STUB_SIZE;
842 }
843
844 break;
845
846 case hppa_stub_export:
847 /* Fail if the target section could not be assigned to an output
848 section. The user should fix his linker script. */
849 if (hsh->target_section->output_section == NULL
850 && info->non_contiguous_regions)
851 {
852 _bfd_error_handler (_("Could not assign %pA to an output section. "
853 "Retry without --enable-non-contiguous-regions.\n"),
854 hsh->target_section);
855 abort();
856 }
857 /* Branches are relative. This is where we are going to. */
858 sym_value = (hsh->target_value
859 + hsh->target_section->output_offset
860 + hsh->target_section->output_section->vma);
861
862 /* And this is where we are coming from. */
863 sym_value -= (hsh->stub_offset
864 + stub_sec->output_offset
865 + stub_sec->output_section->vma);
866
867 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
868 && (!htab->has_22bit_branch
869 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
870 {
871 _bfd_error_handler
872 /* xgettext:c-format */
873 (_("%pB(%pA+%#" PRIx64 "): "
874 "cannot reach %s, recompile with -ffunction-sections"),
875 hsh->target_section->owner,
876 stub_sec,
877 (uint64_t) hsh->stub_offset,
878 hsh->bh_root.string);
879 bfd_set_error (bfd_error_bad_value);
880 return FALSE;
881 }
882
883 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
884 if (!htab->has_22bit_branch)
885 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
886 else
887 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
888 bfd_put_32 (stub_bfd, insn, loc);
889
890 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
891 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
892 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
893 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
894 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
895
896 /* Point the function symbol at the stub. */
897 hsh->hh->eh.root.u.def.section = stub_sec;
898 hsh->hh->eh.root.u.def.value = stub_sec->size;
899
900 size = EXPORT_STUB_SIZE;
901 break;
902
903 default:
904 BFD_FAIL ();
905 return FALSE;
906 }
907
908 stub_sec->size += size;
909 return TRUE;
910 }
911
912 #undef LDIL_R1
913 #undef BE_SR4_R1
914 #undef BL_R1
915 #undef ADDIL_R1
916 #undef DEPI_R1
917 #undef LDW_R1_R21
918 #undef LDW_R1_DLT
919 #undef LDW_R1_R19
920 #undef ADDIL_R19
921 #undef LDW_R1_DP
922 #undef LDSID_R21_R1
923 #undef MTSP_R1
924 #undef BE_SR0_R21
925 #undef STW_RP
926 #undef BV_R0_R21
927 #undef BL_RP
928 #undef NOP
929 #undef LDW_RP
930 #undef LDSID_RP_R1
931 #undef BE_SR0_RP
932
933 /* As above, but don't actually build the stub. Just bump offset so
934 we know stub section sizes. */
935
936 static bfd_boolean
937 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
938 {
939 struct elf32_hppa_stub_hash_entry *hsh;
940 struct elf32_hppa_link_hash_table *htab;
941 int size;
942
943 /* Massage our args to the form they really have. */
944 hsh = hppa_stub_hash_entry (bh);
945 htab = in_arg;
946
947 if (hsh->stub_type == hppa_stub_long_branch)
948 size = LONG_BRANCH_STUB_SIZE;
949 else if (hsh->stub_type == hppa_stub_long_branch_shared)
950 size = LONG_BRANCH_SHARED_STUB_SIZE;
951 else if (hsh->stub_type == hppa_stub_export)
952 size = EXPORT_STUB_SIZE;
953 else /* hppa_stub_import or hppa_stub_import_shared. */
954 {
955 if (htab->multi_subspace)
956 size = IMPORT_SHARED_STUB_SIZE;
957 else
958 size = IMPORT_STUB_SIZE;
959 }
960
961 hsh->stub_sec->size += size;
962 return TRUE;
963 }
964
965 /* Return nonzero if ABFD represents an HPPA ELF32 file.
966 Additionally we set the default architecture and machine. */
967
968 static bfd_boolean
969 elf32_hppa_object_p (bfd *abfd)
970 {
971 Elf_Internal_Ehdr * i_ehdrp;
972 unsigned int flags;
973
974 i_ehdrp = elf_elfheader (abfd);
975 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
976 {
977 /* GCC on hppa-linux produces binaries with OSABI=GNU,
978 but the kernel produces corefiles with OSABI=SysV. */
979 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU &&
980 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
981 return FALSE;
982 }
983 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
984 {
985 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
986 but the kernel produces corefiles with OSABI=SysV. */
987 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
988 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
989 return FALSE;
990 }
991 else
992 {
993 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
994 return FALSE;
995 }
996
997 flags = i_ehdrp->e_flags;
998 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
999 {
1000 case EFA_PARISC_1_0:
1001 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
1002 case EFA_PARISC_1_1:
1003 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
1004 case EFA_PARISC_2_0:
1005 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
1006 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
1007 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
1008 }
1009 return TRUE;
1010 }
1011
1012 /* Create the .plt and .got sections, and set up our hash table
1013 short-cuts to various dynamic sections. */
1014
1015 static bfd_boolean
1016 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
1017 {
1018 struct elf32_hppa_link_hash_table *htab;
1019 struct elf_link_hash_entry *eh;
1020
1021 /* Don't try to create the .plt and .got twice. */
1022 htab = hppa_link_hash_table (info);
1023 if (htab == NULL)
1024 return FALSE;
1025 if (htab->etab.splt != NULL)
1026 return TRUE;
1027
1028 /* Call the generic code to do most of the work. */
1029 if (! _bfd_elf_create_dynamic_sections (abfd, info))
1030 return FALSE;
1031
1032 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
1033 application, because __canonicalize_funcptr_for_compare needs it. */
1034 eh = elf_hash_table (info)->hgot;
1035 eh->forced_local = 0;
1036 eh->other = STV_DEFAULT;
1037 return bfd_elf_link_record_dynamic_symbol (info, eh);
1038 }
1039
1040 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1041
1042 static void
1043 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1044 struct elf_link_hash_entry *eh_dir,
1045 struct elf_link_hash_entry *eh_ind)
1046 {
1047 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1048
1049 hh_dir = hppa_elf_hash_entry (eh_dir);
1050 hh_ind = hppa_elf_hash_entry (eh_ind);
1051
1052 if (hh_ind->dyn_relocs != NULL
1053 && eh_ind->root.type == bfd_link_hash_indirect)
1054 {
1055 if (hh_dir->dyn_relocs != NULL)
1056 {
1057 struct elf_dyn_relocs **hdh_pp;
1058 struct elf_dyn_relocs *hdh_p;
1059
1060 /* Add reloc counts against the indirect sym to the direct sym
1061 list. Merge any entries against the same section. */
1062 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1063 {
1064 struct elf_dyn_relocs *hdh_q;
1065
1066 for (hdh_q = hh_dir->dyn_relocs;
1067 hdh_q != NULL;
1068 hdh_q = hdh_q->next)
1069 if (hdh_q->sec == hdh_p->sec)
1070 {
1071 #if RELATIVE_DYNRELOCS
1072 hdh_q->pc_count += hdh_p->pc_count;
1073 #endif
1074 hdh_q->count += hdh_p->count;
1075 *hdh_pp = hdh_p->next;
1076 break;
1077 }
1078 if (hdh_q == NULL)
1079 hdh_pp = &hdh_p->next;
1080 }
1081 *hdh_pp = hh_dir->dyn_relocs;
1082 }
1083
1084 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1085 hh_ind->dyn_relocs = NULL;
1086 }
1087
1088 if (eh_ind->root.type == bfd_link_hash_indirect)
1089 {
1090 hh_dir->plabel |= hh_ind->plabel;
1091 hh_dir->tls_type |= hh_ind->tls_type;
1092 hh_ind->tls_type = GOT_UNKNOWN;
1093 }
1094
1095 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1096 }
1097
1098 static int
1099 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1100 int r_type, int is_local ATTRIBUTE_UNUSED)
1101 {
1102 /* For now we don't support linker optimizations. */
1103 return r_type;
1104 }
1105
1106 /* Return a pointer to the local GOT, PLT and TLS reference counts
1107 for ABFD. Returns NULL if the storage allocation fails. */
1108
1109 static bfd_signed_vma *
1110 hppa32_elf_local_refcounts (bfd *abfd)
1111 {
1112 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1113 bfd_signed_vma *local_refcounts;
1114
1115 local_refcounts = elf_local_got_refcounts (abfd);
1116 if (local_refcounts == NULL)
1117 {
1118 bfd_size_type size;
1119
1120 /* Allocate space for local GOT and PLT reference
1121 counts. Done this way to save polluting elf_obj_tdata
1122 with another target specific pointer. */
1123 size = symtab_hdr->sh_info;
1124 size *= 2 * sizeof (bfd_signed_vma);
1125 /* Add in space to store the local GOT TLS types. */
1126 size += symtab_hdr->sh_info;
1127 local_refcounts = bfd_zalloc (abfd, size);
1128 if (local_refcounts == NULL)
1129 return NULL;
1130 elf_local_got_refcounts (abfd) = local_refcounts;
1131 memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN,
1132 symtab_hdr->sh_info);
1133 }
1134 return local_refcounts;
1135 }
1136
1137
1138 /* Look through the relocs for a section during the first phase, and
1139 calculate needed space in the global offset table, procedure linkage
1140 table, and dynamic reloc sections. At this point we haven't
1141 necessarily read all the input files. */
1142
1143 static bfd_boolean
1144 elf32_hppa_check_relocs (bfd *abfd,
1145 struct bfd_link_info *info,
1146 asection *sec,
1147 const Elf_Internal_Rela *relocs)
1148 {
1149 Elf_Internal_Shdr *symtab_hdr;
1150 struct elf_link_hash_entry **eh_syms;
1151 const Elf_Internal_Rela *rela;
1152 const Elf_Internal_Rela *rela_end;
1153 struct elf32_hppa_link_hash_table *htab;
1154 asection *sreloc;
1155
1156 if (bfd_link_relocatable (info))
1157 return TRUE;
1158
1159 htab = hppa_link_hash_table (info);
1160 if (htab == NULL)
1161 return FALSE;
1162 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1163 eh_syms = elf_sym_hashes (abfd);
1164 sreloc = NULL;
1165
1166 rela_end = relocs + sec->reloc_count;
1167 for (rela = relocs; rela < rela_end; rela++)
1168 {
1169 enum {
1170 NEED_GOT = 1,
1171 NEED_PLT = 2,
1172 NEED_DYNREL = 4,
1173 PLT_PLABEL = 8
1174 };
1175
1176 unsigned int r_symndx, r_type;
1177 struct elf32_hppa_link_hash_entry *hh;
1178 int need_entry = 0;
1179
1180 r_symndx = ELF32_R_SYM (rela->r_info);
1181
1182 if (r_symndx < symtab_hdr->sh_info)
1183 hh = NULL;
1184 else
1185 {
1186 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1187 while (hh->eh.root.type == bfd_link_hash_indirect
1188 || hh->eh.root.type == bfd_link_hash_warning)
1189 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1190 }
1191
1192 r_type = ELF32_R_TYPE (rela->r_info);
1193 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1194
1195 switch (r_type)
1196 {
1197 case R_PARISC_DLTIND14F:
1198 case R_PARISC_DLTIND14R:
1199 case R_PARISC_DLTIND21L:
1200 /* This symbol requires a global offset table entry. */
1201 need_entry = NEED_GOT;
1202 break;
1203
1204 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1205 case R_PARISC_PLABEL21L:
1206 case R_PARISC_PLABEL32:
1207 /* If the addend is non-zero, we break badly. */
1208 if (rela->r_addend != 0)
1209 abort ();
1210
1211 /* If we are creating a shared library, then we need to
1212 create a PLT entry for all PLABELs, because PLABELs with
1213 local symbols may be passed via a pointer to another
1214 object. Additionally, output a dynamic relocation
1215 pointing to the PLT entry.
1216
1217 For executables, the original 32-bit ABI allowed two
1218 different styles of PLABELs (function pointers): For
1219 global functions, the PLABEL word points into the .plt
1220 two bytes past a (function address, gp) pair, and for
1221 local functions the PLABEL points directly at the
1222 function. The magic +2 for the first type allows us to
1223 differentiate between the two. As you can imagine, this
1224 is a real pain when it comes to generating code to call
1225 functions indirectly or to compare function pointers.
1226 We avoid the mess by always pointing a PLABEL into the
1227 .plt, even for local functions. */
1228 need_entry = PLT_PLABEL | NEED_PLT;
1229 if (bfd_link_pic (info))
1230 need_entry |= NEED_DYNREL;
1231 break;
1232
1233 case R_PARISC_PCREL12F:
1234 htab->has_12bit_branch = 1;
1235 goto branch_common;
1236
1237 case R_PARISC_PCREL17C:
1238 case R_PARISC_PCREL17F:
1239 htab->has_17bit_branch = 1;
1240 goto branch_common;
1241
1242 case R_PARISC_PCREL22F:
1243 htab->has_22bit_branch = 1;
1244 branch_common:
1245 /* Function calls might need to go through the .plt, and
1246 might require long branch stubs. */
1247 if (hh == NULL)
1248 {
1249 /* We know local syms won't need a .plt entry, and if
1250 they need a long branch stub we can't guarantee that
1251 we can reach the stub. So just flag an error later
1252 if we're doing a shared link and find we need a long
1253 branch stub. */
1254 continue;
1255 }
1256 else
1257 {
1258 /* Global symbols will need a .plt entry if they remain
1259 global, and in most cases won't need a long branch
1260 stub. Unfortunately, we have to cater for the case
1261 where a symbol is forced local by versioning, or due
1262 to symbolic linking, and we lose the .plt entry. */
1263 need_entry = NEED_PLT;
1264 if (hh->eh.type == STT_PARISC_MILLI)
1265 need_entry = 0;
1266 }
1267 break;
1268
1269 case R_PARISC_SEGBASE: /* Used to set segment base. */
1270 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1271 case R_PARISC_PCREL14F: /* PC relative load/store. */
1272 case R_PARISC_PCREL14R:
1273 case R_PARISC_PCREL17R: /* External branches. */
1274 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1275 case R_PARISC_PCREL32:
1276 /* We don't need to propagate the relocation if linking a
1277 shared object since these are section relative. */
1278 continue;
1279
1280 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1281 case R_PARISC_DPREL14R:
1282 case R_PARISC_DPREL21L:
1283 if (bfd_link_pic (info))
1284 {
1285 _bfd_error_handler
1286 /* xgettext:c-format */
1287 (_("%pB: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1288 abfd,
1289 elf_hppa_howto_table[r_type].name);
1290 bfd_set_error (bfd_error_bad_value);
1291 return FALSE;
1292 }
1293 /* Fall through. */
1294
1295 case R_PARISC_DIR17F: /* Used for external branches. */
1296 case R_PARISC_DIR17R:
1297 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1298 case R_PARISC_DIR14R:
1299 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1300 case R_PARISC_DIR32: /* .word relocs. */
1301 /* We may want to output a dynamic relocation later. */
1302 need_entry = NEED_DYNREL;
1303 break;
1304
1305 /* This relocation describes the C++ object vtable hierarchy.
1306 Reconstruct it for later use during GC. */
1307 case R_PARISC_GNU_VTINHERIT:
1308 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1309 return FALSE;
1310 continue;
1311
1312 /* This relocation describes which C++ vtable entries are actually
1313 used. Record for later use during GC. */
1314 case R_PARISC_GNU_VTENTRY:
1315 if (!bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1316 return FALSE;
1317 continue;
1318
1319 case R_PARISC_TLS_GD21L:
1320 case R_PARISC_TLS_GD14R:
1321 case R_PARISC_TLS_LDM21L:
1322 case R_PARISC_TLS_LDM14R:
1323 need_entry = NEED_GOT;
1324 break;
1325
1326 case R_PARISC_TLS_IE21L:
1327 case R_PARISC_TLS_IE14R:
1328 if (bfd_link_dll (info))
1329 info->flags |= DF_STATIC_TLS;
1330 need_entry = NEED_GOT;
1331 break;
1332
1333 default:
1334 continue;
1335 }
1336
1337 /* Now carry out our orders. */
1338 if (need_entry & NEED_GOT)
1339 {
1340 int tls_type = GOT_NORMAL;
1341
1342 switch (r_type)
1343 {
1344 default:
1345 break;
1346 case R_PARISC_TLS_GD21L:
1347 case R_PARISC_TLS_GD14R:
1348 tls_type = GOT_TLS_GD;
1349 break;
1350 case R_PARISC_TLS_LDM21L:
1351 case R_PARISC_TLS_LDM14R:
1352 tls_type = GOT_TLS_LDM;
1353 break;
1354 case R_PARISC_TLS_IE21L:
1355 case R_PARISC_TLS_IE14R:
1356 tls_type = GOT_TLS_IE;
1357 break;
1358 }
1359
1360 /* Allocate space for a GOT entry, as well as a dynamic
1361 relocation for this entry. */
1362 if (htab->etab.sgot == NULL)
1363 {
1364 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1365 return FALSE;
1366 }
1367
1368 if (hh != NULL)
1369 {
1370 if (tls_type == GOT_TLS_LDM)
1371 htab->tls_ldm_got.refcount += 1;
1372 else
1373 hh->eh.got.refcount += 1;
1374 hh->tls_type |= tls_type;
1375 }
1376 else
1377 {
1378 bfd_signed_vma *local_got_refcounts;
1379
1380 /* This is a global offset table entry for a local symbol. */
1381 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1382 if (local_got_refcounts == NULL)
1383 return FALSE;
1384 if (tls_type == GOT_TLS_LDM)
1385 htab->tls_ldm_got.refcount += 1;
1386 else
1387 local_got_refcounts[r_symndx] += 1;
1388
1389 hppa_elf_local_got_tls_type (abfd) [r_symndx] |= tls_type;
1390 }
1391 }
1392
1393 if (need_entry & NEED_PLT)
1394 {
1395 /* If we are creating a shared library, and this is a reloc
1396 against a weak symbol or a global symbol in a dynamic
1397 object, then we will be creating an import stub and a
1398 .plt entry for the symbol. Similarly, on a normal link
1399 to symbols defined in a dynamic object we'll need the
1400 import stub and a .plt entry. We don't know yet whether
1401 the symbol is defined or not, so make an entry anyway and
1402 clean up later in adjust_dynamic_symbol. */
1403 if ((sec->flags & SEC_ALLOC) != 0)
1404 {
1405 if (hh != NULL)
1406 {
1407 hh->eh.needs_plt = 1;
1408 hh->eh.plt.refcount += 1;
1409
1410 /* If this .plt entry is for a plabel, mark it so
1411 that adjust_dynamic_symbol will keep the entry
1412 even if it appears to be local. */
1413 if (need_entry & PLT_PLABEL)
1414 hh->plabel = 1;
1415 }
1416 else if (need_entry & PLT_PLABEL)
1417 {
1418 bfd_signed_vma *local_got_refcounts;
1419 bfd_signed_vma *local_plt_refcounts;
1420
1421 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1422 if (local_got_refcounts == NULL)
1423 return FALSE;
1424 local_plt_refcounts = (local_got_refcounts
1425 + symtab_hdr->sh_info);
1426 local_plt_refcounts[r_symndx] += 1;
1427 }
1428 }
1429 }
1430
1431 if ((need_entry & NEED_DYNREL) != 0
1432 && (sec->flags & SEC_ALLOC) != 0)
1433 {
1434 /* Flag this symbol as having a non-got, non-plt reference
1435 so that we generate copy relocs if it turns out to be
1436 dynamic. */
1437 if (hh != NULL)
1438 hh->eh.non_got_ref = 1;
1439
1440 /* If we are creating a shared library then we need to copy
1441 the reloc into the shared library. However, if we are
1442 linking with -Bsymbolic, we need only copy absolute
1443 relocs or relocs against symbols that are not defined in
1444 an object we are including in the link. PC- or DP- or
1445 DLT-relative relocs against any local sym or global sym
1446 with DEF_REGULAR set, can be discarded. At this point we
1447 have not seen all the input files, so it is possible that
1448 DEF_REGULAR is not set now but will be set later (it is
1449 never cleared). We account for that possibility below by
1450 storing information in the dyn_relocs field of the
1451 hash table entry.
1452
1453 A similar situation to the -Bsymbolic case occurs when
1454 creating shared libraries and symbol visibility changes
1455 render the symbol local.
1456
1457 As it turns out, all the relocs we will be creating here
1458 are absolute, so we cannot remove them on -Bsymbolic
1459 links or visibility changes anyway. A STUB_REL reloc
1460 is absolute too, as in that case it is the reloc in the
1461 stub we will be creating, rather than copying the PCREL
1462 reloc in the branch.
1463
1464 If on the other hand, we are creating an executable, we
1465 may need to keep relocations for symbols satisfied by a
1466 dynamic library if we manage to avoid copy relocs for the
1467 symbol. */
1468 if ((bfd_link_pic (info)
1469 && (IS_ABSOLUTE_RELOC (r_type)
1470 || (hh != NULL
1471 && (!SYMBOLIC_BIND (info, &hh->eh)
1472 || hh->eh.root.type == bfd_link_hash_defweak
1473 || !hh->eh.def_regular))))
1474 || (ELIMINATE_COPY_RELOCS
1475 && !bfd_link_pic (info)
1476 && hh != NULL
1477 && (hh->eh.root.type == bfd_link_hash_defweak
1478 || !hh->eh.def_regular)))
1479 {
1480 struct elf_dyn_relocs *hdh_p;
1481 struct elf_dyn_relocs **hdh_head;
1482
1483 /* Create a reloc section in dynobj and make room for
1484 this reloc. */
1485 if (sreloc == NULL)
1486 {
1487 sreloc = _bfd_elf_make_dynamic_reloc_section
1488 (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
1489
1490 if (sreloc == NULL)
1491 {
1492 bfd_set_error (bfd_error_bad_value);
1493 return FALSE;
1494 }
1495 }
1496
1497 /* If this is a global symbol, we count the number of
1498 relocations we need for this symbol. */
1499 if (hh != NULL)
1500 {
1501 hdh_head = &hh->dyn_relocs;
1502 }
1503 else
1504 {
1505 /* Track dynamic relocs needed for local syms too.
1506 We really need local syms available to do this
1507 easily. Oh well. */
1508 asection *sr;
1509 void *vpp;
1510 Elf_Internal_Sym *isym;
1511
1512 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1513 abfd, r_symndx);
1514 if (isym == NULL)
1515 return FALSE;
1516
1517 sr = bfd_section_from_elf_index (abfd, isym->st_shndx);
1518 if (sr == NULL)
1519 sr = sec;
1520
1521 vpp = &elf_section_data (sr)->local_dynrel;
1522 hdh_head = (struct elf_dyn_relocs **) vpp;
1523 }
1524
1525 hdh_p = *hdh_head;
1526 if (hdh_p == NULL || hdh_p->sec != sec)
1527 {
1528 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1529 if (hdh_p == NULL)
1530 return FALSE;
1531 hdh_p->next = *hdh_head;
1532 *hdh_head = hdh_p;
1533 hdh_p->sec = sec;
1534 hdh_p->count = 0;
1535 #if RELATIVE_DYNRELOCS
1536 hdh_p->pc_count = 0;
1537 #endif
1538 }
1539
1540 hdh_p->count += 1;
1541 #if RELATIVE_DYNRELOCS
1542 if (!IS_ABSOLUTE_RELOC (rtype))
1543 hdh_p->pc_count += 1;
1544 #endif
1545 }
1546 }
1547 }
1548
1549 return TRUE;
1550 }
1551
1552 /* Return the section that should be marked against garbage collection
1553 for a given relocation. */
1554
1555 static asection *
1556 elf32_hppa_gc_mark_hook (asection *sec,
1557 struct bfd_link_info *info,
1558 Elf_Internal_Rela *rela,
1559 struct elf_link_hash_entry *hh,
1560 Elf_Internal_Sym *sym)
1561 {
1562 if (hh != NULL)
1563 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1564 {
1565 case R_PARISC_GNU_VTINHERIT:
1566 case R_PARISC_GNU_VTENTRY:
1567 return NULL;
1568 }
1569
1570 return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1571 }
1572
1573 /* Support for core dump NOTE sections. */
1574
1575 static bfd_boolean
1576 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1577 {
1578 int offset;
1579 size_t size;
1580
1581 switch (note->descsz)
1582 {
1583 default:
1584 return FALSE;
1585
1586 case 396: /* Linux/hppa */
1587 /* pr_cursig */
1588 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1589
1590 /* pr_pid */
1591 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
1592
1593 /* pr_reg */
1594 offset = 72;
1595 size = 320;
1596
1597 break;
1598 }
1599
1600 /* Make a ".reg/999" section. */
1601 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1602 size, note->descpos + offset);
1603 }
1604
1605 static bfd_boolean
1606 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1607 {
1608 switch (note->descsz)
1609 {
1610 default:
1611 return FALSE;
1612
1613 case 124: /* Linux/hppa elf_prpsinfo. */
1614 elf_tdata (abfd)->core->program
1615 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1616 elf_tdata (abfd)->core->command
1617 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1618 }
1619
1620 /* Note that for some reason, a spurious space is tacked
1621 onto the end of the args in some (at least one anyway)
1622 implementations, so strip it off if it exists. */
1623 {
1624 char *command = elf_tdata (abfd)->core->command;
1625 int n = strlen (command);
1626
1627 if (0 < n && command[n - 1] == ' ')
1628 command[n - 1] = '\0';
1629 }
1630
1631 return TRUE;
1632 }
1633
1634 /* Our own version of hide_symbol, so that we can keep plt entries for
1635 plabels. */
1636
1637 static void
1638 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1639 struct elf_link_hash_entry *eh,
1640 bfd_boolean force_local)
1641 {
1642 if (force_local)
1643 {
1644 eh->forced_local = 1;
1645 if (eh->dynindx != -1)
1646 {
1647 eh->dynindx = -1;
1648 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1649 eh->dynstr_index);
1650 }
1651
1652 /* PR 16082: Remove version information from hidden symbol. */
1653 eh->verinfo.verdef = NULL;
1654 eh->verinfo.vertree = NULL;
1655 }
1656
1657 /* STT_GNU_IFUNC symbol must go through PLT. */
1658 if (! hppa_elf_hash_entry (eh)->plabel
1659 && eh->type != STT_GNU_IFUNC)
1660 {
1661 eh->needs_plt = 0;
1662 eh->plt = elf_hash_table (info)->init_plt_offset;
1663 }
1664 }
1665
1666 /* Find any dynamic relocs that apply to read-only sections. */
1667
1668 static asection *
1669 readonly_dynrelocs (struct elf_link_hash_entry *eh)
1670 {
1671 struct elf32_hppa_link_hash_entry *hh;
1672 struct elf_dyn_relocs *hdh_p;
1673
1674 hh = hppa_elf_hash_entry (eh);
1675 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->next)
1676 {
1677 asection *sec = hdh_p->sec->output_section;
1678
1679 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1680 return hdh_p->sec;
1681 }
1682 return NULL;
1683 }
1684
1685 /* Return true if we have dynamic relocs against H or any of its weak
1686 aliases, that apply to read-only sections. Cannot be used after
1687 size_dynamic_sections. */
1688
1689 static bfd_boolean
1690 alias_readonly_dynrelocs (struct elf_link_hash_entry *eh)
1691 {
1692 struct elf32_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1693 do
1694 {
1695 if (readonly_dynrelocs (&hh->eh))
1696 return TRUE;
1697 hh = hppa_elf_hash_entry (hh->eh.u.alias);
1698 } while (hh != NULL && &hh->eh != eh);
1699
1700 return FALSE;
1701 }
1702
1703 /* Adjust a symbol defined by a dynamic object and referenced by a
1704 regular object. The current definition is in some section of the
1705 dynamic object, but we're not including those sections. We have to
1706 change the definition to something the rest of the link can
1707 understand. */
1708
1709 static bfd_boolean
1710 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1711 struct elf_link_hash_entry *eh)
1712 {
1713 struct elf32_hppa_link_hash_table *htab;
1714 asection *sec, *srel;
1715
1716 /* If this is a function, put it in the procedure linkage table. We
1717 will fill in the contents of the procedure linkage table later. */
1718 if (eh->type == STT_FUNC
1719 || eh->needs_plt)
1720 {
1721 bfd_boolean local = (SYMBOL_CALLS_LOCAL (info, eh)
1722 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh));
1723 /* Discard dyn_relocs when non-pic if we've decided that a
1724 function symbol is local. */
1725 if (!bfd_link_pic (info) && local)
1726 hppa_elf_hash_entry (eh)->dyn_relocs = NULL;
1727
1728 /* If the symbol is used by a plabel, we must allocate a PLT slot.
1729 The refcounts are not reliable when it has been hidden since
1730 hide_symbol can be called before the plabel flag is set. */
1731 if (hppa_elf_hash_entry (eh)->plabel)
1732 eh->plt.refcount = 1;
1733
1734 /* Note that unlike some other backends, the refcount is not
1735 incremented for a non-call (and non-plabel) function reference. */
1736 else if (eh->plt.refcount <= 0
1737 || local)
1738 {
1739 /* The .plt entry is not needed when:
1740 a) Garbage collection has removed all references to the
1741 symbol, or
1742 b) We know for certain the symbol is defined in this
1743 object, and it's not a weak definition, nor is the symbol
1744 used by a plabel relocation. Either this object is the
1745 application or we are doing a shared symbolic link. */
1746 eh->plt.offset = (bfd_vma) -1;
1747 eh->needs_plt = 0;
1748 }
1749
1750 /* Unlike other targets, elf32-hppa.c does not define a function
1751 symbol in a non-pic executable on PLT stub code, so we don't
1752 have a local definition in that case. ie. dyn_relocs can't
1753 be discarded. */
1754
1755 /* Function symbols can't have copy relocs. */
1756 return TRUE;
1757 }
1758 else
1759 eh->plt.offset = (bfd_vma) -1;
1760
1761 htab = hppa_link_hash_table (info);
1762 if (htab == NULL)
1763 return FALSE;
1764
1765 /* If this is a weak symbol, and there is a real definition, the
1766 processor independent code will have arranged for us to see the
1767 real definition first, and we can just use the same value. */
1768 if (eh->is_weakalias)
1769 {
1770 struct elf_link_hash_entry *def = weakdef (eh);
1771 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
1772 eh->root.u.def.section = def->root.u.def.section;
1773 eh->root.u.def.value = def->root.u.def.value;
1774 if (def->root.u.def.section == htab->etab.sdynbss
1775 || def->root.u.def.section == htab->etab.sdynrelro)
1776 hppa_elf_hash_entry (eh)->dyn_relocs = NULL;
1777 return TRUE;
1778 }
1779
1780 /* This is a reference to a symbol defined by a dynamic object which
1781 is not a function. */
1782
1783 /* If we are creating a shared library, we must presume that the
1784 only references to the symbol are via the global offset table.
1785 For such cases we need not do anything here; the relocations will
1786 be handled correctly by relocate_section. */
1787 if (bfd_link_pic (info))
1788 return TRUE;
1789
1790 /* If there are no references to this symbol that do not use the
1791 GOT, we don't need to generate a copy reloc. */
1792 if (!eh->non_got_ref)
1793 return TRUE;
1794
1795 /* If -z nocopyreloc was given, we won't generate them either. */
1796 if (info->nocopyreloc)
1797 return TRUE;
1798
1799 /* If we don't find any dynamic relocs in read-only sections, then
1800 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1801 if (ELIMINATE_COPY_RELOCS
1802 && !alias_readonly_dynrelocs (eh))
1803 return TRUE;
1804
1805 /* We must allocate the symbol in our .dynbss section, which will
1806 become part of the .bss section of the executable. There will be
1807 an entry for this symbol in the .dynsym section. The dynamic
1808 object will contain position independent code, so all references
1809 from the dynamic object to this symbol will go through the global
1810 offset table. The dynamic linker will use the .dynsym entry to
1811 determine the address it must put in the global offset table, so
1812 both the dynamic object and the regular object will refer to the
1813 same memory location for the variable. */
1814 if ((eh->root.u.def.section->flags & SEC_READONLY) != 0)
1815 {
1816 sec = htab->etab.sdynrelro;
1817 srel = htab->etab.sreldynrelro;
1818 }
1819 else
1820 {
1821 sec = htab->etab.sdynbss;
1822 srel = htab->etab.srelbss;
1823 }
1824 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0 && eh->size != 0)
1825 {
1826 /* We must generate a COPY reloc to tell the dynamic linker to
1827 copy the initial value out of the dynamic object and into the
1828 runtime process image. */
1829 srel->size += sizeof (Elf32_External_Rela);
1830 eh->needs_copy = 1;
1831 }
1832
1833 /* We no longer want dyn_relocs. */
1834 hppa_elf_hash_entry (eh)->dyn_relocs = NULL;
1835 return _bfd_elf_adjust_dynamic_copy (info, eh, sec);
1836 }
1837
1838 /* If EH is undefined, make it dynamic if that makes sense. */
1839
1840 static bfd_boolean
1841 ensure_undef_dynamic (struct bfd_link_info *info,
1842 struct elf_link_hash_entry *eh)
1843 {
1844 struct elf_link_hash_table *htab = elf_hash_table (info);
1845
1846 if (htab->dynamic_sections_created
1847 && (eh->root.type == bfd_link_hash_undefweak
1848 || eh->root.type == bfd_link_hash_undefined)
1849 && eh->dynindx == -1
1850 && !eh->forced_local
1851 && eh->type != STT_PARISC_MILLI
1852 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh)
1853 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT)
1854 return bfd_elf_link_record_dynamic_symbol (info, eh);
1855 return TRUE;
1856 }
1857
1858 /* Allocate space in the .plt for entries that won't have relocations.
1859 ie. plabel entries. */
1860
1861 static bfd_boolean
1862 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1863 {
1864 struct bfd_link_info *info;
1865 struct elf32_hppa_link_hash_table *htab;
1866 struct elf32_hppa_link_hash_entry *hh;
1867 asection *sec;
1868
1869 if (eh->root.type == bfd_link_hash_indirect)
1870 return TRUE;
1871
1872 info = (struct bfd_link_info *) inf;
1873 hh = hppa_elf_hash_entry (eh);
1874 htab = hppa_link_hash_table (info);
1875 if (htab == NULL)
1876 return FALSE;
1877
1878 if (htab->etab.dynamic_sections_created
1879 && eh->plt.refcount > 0)
1880 {
1881 if (!ensure_undef_dynamic (info, eh))
1882 return FALSE;
1883
1884 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), eh))
1885 {
1886 /* Allocate these later. From this point on, h->plabel
1887 means that the plt entry is only used by a plabel.
1888 We'll be using a normal plt entry for this symbol, so
1889 clear the plabel indicator. */
1890
1891 hh->plabel = 0;
1892 }
1893 else if (hh->plabel)
1894 {
1895 /* Make an entry in the .plt section for plabel references
1896 that won't have a .plt entry for other reasons. */
1897 sec = htab->etab.splt;
1898 eh->plt.offset = sec->size;
1899 sec->size += PLT_ENTRY_SIZE;
1900 if (bfd_link_pic (info))
1901 htab->etab.srelplt->size += sizeof (Elf32_External_Rela);
1902 }
1903 else
1904 {
1905 /* No .plt entry needed. */
1906 eh->plt.offset = (bfd_vma) -1;
1907 eh->needs_plt = 0;
1908 }
1909 }
1910 else
1911 {
1912 eh->plt.offset = (bfd_vma) -1;
1913 eh->needs_plt = 0;
1914 }
1915
1916 return TRUE;
1917 }
1918
1919 /* Calculate size of GOT entries for symbol given its TLS_TYPE. */
1920
1921 static inline unsigned int
1922 got_entries_needed (int tls_type)
1923 {
1924 unsigned int need = 0;
1925
1926 if ((tls_type & GOT_NORMAL) != 0)
1927 need += GOT_ENTRY_SIZE;
1928 if ((tls_type & GOT_TLS_GD) != 0)
1929 need += GOT_ENTRY_SIZE * 2;
1930 if ((tls_type & GOT_TLS_IE) != 0)
1931 need += GOT_ENTRY_SIZE;
1932 return need;
1933 }
1934
1935 /* Calculate size of relocs needed for symbol given its TLS_TYPE and
1936 NEEDed GOT entries. TPREL_KNOWN says a TPREL offset can be
1937 calculated at link time. DTPREL_KNOWN says the same for a DTPREL
1938 offset. */
1939
1940 static inline unsigned int
1941 got_relocs_needed (int tls_type, unsigned int need,
1942 bfd_boolean dtprel_known, bfd_boolean tprel_known)
1943 {
1944 /* All the entries we allocated need relocs.
1945 Except for GD and IE with local symbols. */
1946 if ((tls_type & GOT_TLS_GD) != 0 && dtprel_known)
1947 need -= GOT_ENTRY_SIZE;
1948 if ((tls_type & GOT_TLS_IE) != 0 && tprel_known)
1949 need -= GOT_ENTRY_SIZE;
1950 return need * sizeof (Elf32_External_Rela) / GOT_ENTRY_SIZE;
1951 }
1952
1953 /* Allocate space in .plt, .got and associated reloc sections for
1954 global syms. */
1955
1956 static bfd_boolean
1957 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
1958 {
1959 struct bfd_link_info *info;
1960 struct elf32_hppa_link_hash_table *htab;
1961 asection *sec;
1962 struct elf32_hppa_link_hash_entry *hh;
1963 struct elf_dyn_relocs *hdh_p;
1964
1965 if (eh->root.type == bfd_link_hash_indirect)
1966 return TRUE;
1967
1968 info = inf;
1969 htab = hppa_link_hash_table (info);
1970 if (htab == NULL)
1971 return FALSE;
1972
1973 hh = hppa_elf_hash_entry (eh);
1974
1975 if (htab->etab.dynamic_sections_created
1976 && eh->plt.offset != (bfd_vma) -1
1977 && !hh->plabel
1978 && eh->plt.refcount > 0)
1979 {
1980 /* Make an entry in the .plt section. */
1981 sec = htab->etab.splt;
1982 eh->plt.offset = sec->size;
1983 sec->size += PLT_ENTRY_SIZE;
1984
1985 /* We also need to make an entry in the .rela.plt section. */
1986 htab->etab.srelplt->size += sizeof (Elf32_External_Rela);
1987 htab->need_plt_stub = 1;
1988 }
1989
1990 if (eh->got.refcount > 0)
1991 {
1992 unsigned int need;
1993
1994 if (!ensure_undef_dynamic (info, eh))
1995 return FALSE;
1996
1997 sec = htab->etab.sgot;
1998 eh->got.offset = sec->size;
1999 need = got_entries_needed (hh->tls_type);
2000 sec->size += need;
2001 if (htab->etab.dynamic_sections_created
2002 && (bfd_link_dll (info)
2003 || (bfd_link_pic (info) && (hh->tls_type & GOT_NORMAL) != 0)
2004 || (eh->dynindx != -1
2005 && !SYMBOL_REFERENCES_LOCAL (info, eh)))
2006 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
2007 {
2008 bfd_boolean local = SYMBOL_REFERENCES_LOCAL (info, eh);
2009 htab->etab.srelgot->size
2010 += got_relocs_needed (hh->tls_type, need, local,
2011 local && bfd_link_executable (info));
2012 }
2013 }
2014 else
2015 eh->got.offset = (bfd_vma) -1;
2016
2017 /* If no dynamic sections we can't have dynamic relocs. */
2018 if (!htab->etab.dynamic_sections_created)
2019 hh->dyn_relocs = NULL;
2020
2021 /* Discard relocs on undefined syms with non-default visibility. */
2022 else if ((eh->root.type == bfd_link_hash_undefined
2023 && ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
2024 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
2025 hh->dyn_relocs = NULL;
2026
2027 if (hh->dyn_relocs == NULL)
2028 return TRUE;
2029
2030 /* If this is a -Bsymbolic shared link, then we need to discard all
2031 space allocated for dynamic pc-relative relocs against symbols
2032 defined in a regular object. For the normal shared case, discard
2033 space for relocs that have become local due to symbol visibility
2034 changes. */
2035 if (bfd_link_pic (info))
2036 {
2037 #if RELATIVE_DYNRELOCS
2038 if (SYMBOL_CALLS_LOCAL (info, eh))
2039 {
2040 struct elf_dyn_relocs **hdh_pp;
2041
2042 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2043 {
2044 hdh_p->count -= hdh_p->pc_count;
2045 hdh_p->pc_count = 0;
2046 if (hdh_p->count == 0)
2047 *hdh_pp = hdh_p->next;
2048 else
2049 hdh_pp = &hdh_p->next;
2050 }
2051 }
2052 #endif
2053
2054 if (hh->dyn_relocs != NULL)
2055 {
2056 if (!ensure_undef_dynamic (info, eh))
2057 return FALSE;
2058 }
2059 }
2060 else if (ELIMINATE_COPY_RELOCS)
2061 {
2062 /* For the non-shared case, discard space for relocs against
2063 symbols which turn out to need copy relocs or are not
2064 dynamic. */
2065
2066 if (eh->dynamic_adjusted
2067 && !eh->def_regular
2068 && !ELF_COMMON_DEF_P (eh))
2069 {
2070 if (!ensure_undef_dynamic (info, eh))
2071 return FALSE;
2072
2073 if (eh->dynindx == -1)
2074 hh->dyn_relocs = NULL;
2075 }
2076 else
2077 hh->dyn_relocs = NULL;
2078 }
2079
2080 /* Finally, allocate space. */
2081 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->next)
2082 {
2083 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2084 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2085 }
2086
2087 return TRUE;
2088 }
2089
2090 /* This function is called via elf_link_hash_traverse to force
2091 millicode symbols local so they do not end up as globals in the
2092 dynamic symbol table. We ought to be able to do this in
2093 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2094 for all dynamic symbols. Arguably, this is a bug in
2095 elf_adjust_dynamic_symbol. */
2096
2097 static bfd_boolean
2098 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2099 struct bfd_link_info *info)
2100 {
2101 if (eh->type == STT_PARISC_MILLI
2102 && !eh->forced_local)
2103 {
2104 elf32_hppa_hide_symbol (info, eh, TRUE);
2105 }
2106 return TRUE;
2107 }
2108
2109 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
2110 read-only sections. */
2111
2112 static bfd_boolean
2113 maybe_set_textrel (struct elf_link_hash_entry *eh, void *inf)
2114 {
2115 asection *sec;
2116
2117 if (eh->root.type == bfd_link_hash_indirect)
2118 return TRUE;
2119
2120 sec = readonly_dynrelocs (eh);
2121 if (sec != NULL)
2122 {
2123 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2124
2125 info->flags |= DF_TEXTREL;
2126 info->callbacks->minfo
2127 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
2128 sec->owner, eh->root.root.string, sec);
2129
2130 /* Not an error, just cut short the traversal. */
2131 return FALSE;
2132 }
2133 return TRUE;
2134 }
2135
2136 /* Set the sizes of the dynamic sections. */
2137
2138 static bfd_boolean
2139 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2140 struct bfd_link_info *info)
2141 {
2142 struct elf32_hppa_link_hash_table *htab;
2143 bfd *dynobj;
2144 bfd *ibfd;
2145 asection *sec;
2146 bfd_boolean relocs;
2147
2148 htab = hppa_link_hash_table (info);
2149 if (htab == NULL)
2150 return FALSE;
2151
2152 dynobj = htab->etab.dynobj;
2153 if (dynobj == NULL)
2154 abort ();
2155
2156 if (htab->etab.dynamic_sections_created)
2157 {
2158 /* Set the contents of the .interp section to the interpreter. */
2159 if (bfd_link_executable (info) && !info->nointerp)
2160 {
2161 sec = bfd_get_linker_section (dynobj, ".interp");
2162 if (sec == NULL)
2163 abort ();
2164 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2165 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2166 }
2167
2168 /* Force millicode symbols local. */
2169 elf_link_hash_traverse (&htab->etab,
2170 clobber_millicode_symbols,
2171 info);
2172 }
2173
2174 /* Set up .got and .plt offsets for local syms, and space for local
2175 dynamic relocs. */
2176 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
2177 {
2178 bfd_signed_vma *local_got;
2179 bfd_signed_vma *end_local_got;
2180 bfd_signed_vma *local_plt;
2181 bfd_signed_vma *end_local_plt;
2182 bfd_size_type locsymcount;
2183 Elf_Internal_Shdr *symtab_hdr;
2184 asection *srel;
2185 char *local_tls_type;
2186
2187 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2188 continue;
2189
2190 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2191 {
2192 struct elf_dyn_relocs *hdh_p;
2193
2194 for (hdh_p = ((struct elf_dyn_relocs *)
2195 elf_section_data (sec)->local_dynrel);
2196 hdh_p != NULL;
2197 hdh_p = hdh_p->next)
2198 {
2199 if (!bfd_is_abs_section (hdh_p->sec)
2200 && bfd_is_abs_section (hdh_p->sec->output_section))
2201 {
2202 /* Input section has been discarded, either because
2203 it is a copy of a linkonce section or due to
2204 linker script /DISCARD/, so we'll be discarding
2205 the relocs too. */
2206 }
2207 else if (hdh_p->count != 0)
2208 {
2209 srel = elf_section_data (hdh_p->sec)->sreloc;
2210 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2211 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2212 info->flags |= DF_TEXTREL;
2213 }
2214 }
2215 }
2216
2217 local_got = elf_local_got_refcounts (ibfd);
2218 if (!local_got)
2219 continue;
2220
2221 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2222 locsymcount = symtab_hdr->sh_info;
2223 end_local_got = local_got + locsymcount;
2224 local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2225 sec = htab->etab.sgot;
2226 srel = htab->etab.srelgot;
2227 for (; local_got < end_local_got; ++local_got)
2228 {
2229 if (*local_got > 0)
2230 {
2231 unsigned int need;
2232
2233 *local_got = sec->size;
2234 need = got_entries_needed (*local_tls_type);
2235 sec->size += need;
2236 if (bfd_link_dll (info)
2237 || (bfd_link_pic (info)
2238 && (*local_tls_type & GOT_NORMAL) != 0))
2239 htab->etab.srelgot->size
2240 += got_relocs_needed (*local_tls_type, need, TRUE,
2241 bfd_link_executable (info));
2242 }
2243 else
2244 *local_got = (bfd_vma) -1;
2245
2246 ++local_tls_type;
2247 }
2248
2249 local_plt = end_local_got;
2250 end_local_plt = local_plt + locsymcount;
2251 if (! htab->etab.dynamic_sections_created)
2252 {
2253 /* Won't be used, but be safe. */
2254 for (; local_plt < end_local_plt; ++local_plt)
2255 *local_plt = (bfd_vma) -1;
2256 }
2257 else
2258 {
2259 sec = htab->etab.splt;
2260 srel = htab->etab.srelplt;
2261 for (; local_plt < end_local_plt; ++local_plt)
2262 {
2263 if (*local_plt > 0)
2264 {
2265 *local_plt = sec->size;
2266 sec->size += PLT_ENTRY_SIZE;
2267 if (bfd_link_pic (info))
2268 srel->size += sizeof (Elf32_External_Rela);
2269 }
2270 else
2271 *local_plt = (bfd_vma) -1;
2272 }
2273 }
2274 }
2275
2276 if (htab->tls_ldm_got.refcount > 0)
2277 {
2278 /* Allocate 2 got entries and 1 dynamic reloc for
2279 R_PARISC_TLS_DTPMOD32 relocs. */
2280 htab->tls_ldm_got.offset = htab->etab.sgot->size;
2281 htab->etab.sgot->size += (GOT_ENTRY_SIZE * 2);
2282 htab->etab.srelgot->size += sizeof (Elf32_External_Rela);
2283 }
2284 else
2285 htab->tls_ldm_got.offset = -1;
2286
2287 /* Do all the .plt entries without relocs first. The dynamic linker
2288 uses the last .plt reloc to find the end of the .plt (and hence
2289 the start of the .got) for lazy linking. */
2290 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2291
2292 /* Allocate global sym .plt and .got entries, and space for global
2293 sym dynamic relocs. */
2294 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2295
2296 /* The check_relocs and adjust_dynamic_symbol entry points have
2297 determined the sizes of the various dynamic sections. Allocate
2298 memory for them. */
2299 relocs = FALSE;
2300 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2301 {
2302 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2303 continue;
2304
2305 if (sec == htab->etab.splt)
2306 {
2307 if (htab->need_plt_stub)
2308 {
2309 /* Make space for the plt stub at the end of the .plt
2310 section. We want this stub right at the end, up
2311 against the .got section. */
2312 int gotalign = bfd_section_alignment (htab->etab.sgot);
2313 int pltalign = bfd_section_alignment (sec);
2314 int align = gotalign > 3 ? gotalign : 3;
2315 bfd_size_type mask;
2316
2317 if (align > pltalign)
2318 bfd_set_section_alignment (sec, align);
2319 mask = ((bfd_size_type) 1 << gotalign) - 1;
2320 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2321 }
2322 }
2323 else if (sec == htab->etab.sgot
2324 || sec == htab->etab.sdynbss
2325 || sec == htab->etab.sdynrelro)
2326 ;
2327 else if (CONST_STRNEQ (bfd_section_name (sec), ".rela"))
2328 {
2329 if (sec->size != 0)
2330 {
2331 /* Remember whether there are any reloc sections other
2332 than .rela.plt. */
2333 if (sec != htab->etab.srelplt)
2334 relocs = TRUE;
2335
2336 /* We use the reloc_count field as a counter if we need
2337 to copy relocs into the output file. */
2338 sec->reloc_count = 0;
2339 }
2340 }
2341 else
2342 {
2343 /* It's not one of our sections, so don't allocate space. */
2344 continue;
2345 }
2346
2347 if (sec->size == 0)
2348 {
2349 /* If we don't need this section, strip it from the
2350 output file. This is mostly to handle .rela.bss and
2351 .rela.plt. We must create both sections in
2352 create_dynamic_sections, because they must be created
2353 before the linker maps input sections to output
2354 sections. The linker does that before
2355 adjust_dynamic_symbol is called, and it is that
2356 function which decides whether anything needs to go
2357 into these sections. */
2358 sec->flags |= SEC_EXCLUDE;
2359 continue;
2360 }
2361
2362 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2363 continue;
2364
2365 /* Allocate memory for the section contents. Zero it, because
2366 we may not fill in all the reloc sections. */
2367 sec->contents = bfd_zalloc (dynobj, sec->size);
2368 if (sec->contents == NULL)
2369 return FALSE;
2370 }
2371
2372 if (htab->etab.dynamic_sections_created)
2373 {
2374 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2375 actually has nothing to do with the PLT, it is how we
2376 communicate the LTP value of a load module to the dynamic
2377 linker. */
2378 #define add_dynamic_entry(TAG, VAL) \
2379 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2380
2381 if (!add_dynamic_entry (DT_PLTGOT, 0))
2382 return FALSE;
2383
2384 /* Add some entries to the .dynamic section. We fill in the
2385 values later, in elf32_hppa_finish_dynamic_sections, but we
2386 must add the entries now so that we get the correct size for
2387 the .dynamic section. The DT_DEBUG entry is filled in by the
2388 dynamic linker and used by the debugger. */
2389 if (bfd_link_executable (info))
2390 {
2391 if (!add_dynamic_entry (DT_DEBUG, 0))
2392 return FALSE;
2393 }
2394
2395 if (htab->etab.srelplt->size != 0)
2396 {
2397 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2398 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2399 || !add_dynamic_entry (DT_JMPREL, 0))
2400 return FALSE;
2401 }
2402
2403 if (relocs)
2404 {
2405 if (!add_dynamic_entry (DT_RELA, 0)
2406 || !add_dynamic_entry (DT_RELASZ, 0)
2407 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2408 return FALSE;
2409
2410 /* If any dynamic relocs apply to a read-only section,
2411 then we need a DT_TEXTREL entry. */
2412 if ((info->flags & DF_TEXTREL) == 0)
2413 elf_link_hash_traverse (&htab->etab, maybe_set_textrel, info);
2414
2415 if ((info->flags & DF_TEXTREL) != 0)
2416 {
2417 if (!add_dynamic_entry (DT_TEXTREL, 0))
2418 return FALSE;
2419 }
2420 }
2421 }
2422 #undef add_dynamic_entry
2423
2424 return TRUE;
2425 }
2426
2427 /* External entry points for sizing and building linker stubs. */
2428
2429 /* Set up various things so that we can make a list of input sections
2430 for each output section included in the link. Returns -1 on error,
2431 0 when no stubs will be needed, and 1 on success. */
2432
2433 int
2434 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2435 {
2436 bfd *input_bfd;
2437 unsigned int bfd_count;
2438 unsigned int top_id, top_index;
2439 asection *section;
2440 asection **input_list, **list;
2441 size_t amt;
2442 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2443
2444 if (htab == NULL)
2445 return -1;
2446
2447 /* Count the number of input BFDs and find the top input section id. */
2448 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2449 input_bfd != NULL;
2450 input_bfd = input_bfd->link.next)
2451 {
2452 bfd_count += 1;
2453 for (section = input_bfd->sections;
2454 section != NULL;
2455 section = section->next)
2456 {
2457 if (top_id < section->id)
2458 top_id = section->id;
2459 }
2460 }
2461 htab->bfd_count = bfd_count;
2462
2463 amt = sizeof (struct map_stub) * (top_id + 1);
2464 htab->stub_group = bfd_zmalloc (amt);
2465 if (htab->stub_group == NULL)
2466 return -1;
2467
2468 /* We can't use output_bfd->section_count here to find the top output
2469 section index as some sections may have been removed, and
2470 strip_excluded_output_sections doesn't renumber the indices. */
2471 for (section = output_bfd->sections, top_index = 0;
2472 section != NULL;
2473 section = section->next)
2474 {
2475 if (top_index < section->index)
2476 top_index = section->index;
2477 }
2478
2479 htab->top_index = top_index;
2480 amt = sizeof (asection *) * (top_index + 1);
2481 input_list = bfd_malloc (amt);
2482 htab->input_list = input_list;
2483 if (input_list == NULL)
2484 return -1;
2485
2486 /* For sections we aren't interested in, mark their entries with a
2487 value we can check later. */
2488 list = input_list + top_index;
2489 do
2490 *list = bfd_abs_section_ptr;
2491 while (list-- != input_list);
2492
2493 for (section = output_bfd->sections;
2494 section != NULL;
2495 section = section->next)
2496 {
2497 if ((section->flags & SEC_CODE) != 0)
2498 input_list[section->index] = NULL;
2499 }
2500
2501 return 1;
2502 }
2503
2504 /* The linker repeatedly calls this function for each input section,
2505 in the order that input sections are linked into output sections.
2506 Build lists of input sections to determine groupings between which
2507 we may insert linker stubs. */
2508
2509 void
2510 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2511 {
2512 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2513
2514 if (htab == NULL)
2515 return;
2516
2517 if (isec->output_section->index <= htab->top_index)
2518 {
2519 asection **list = htab->input_list + isec->output_section->index;
2520 if (*list != bfd_abs_section_ptr)
2521 {
2522 /* Steal the link_sec pointer for our list. */
2523 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2524 /* This happens to make the list in reverse order,
2525 which is what we want. */
2526 PREV_SEC (isec) = *list;
2527 *list = isec;
2528 }
2529 }
2530 }
2531
2532 /* See whether we can group stub sections together. Grouping stub
2533 sections may result in fewer stubs. More importantly, we need to
2534 put all .init* and .fini* stubs at the beginning of the .init or
2535 .fini output sections respectively, because glibc splits the
2536 _init and _fini functions into multiple parts. Putting a stub in
2537 the middle of a function is not a good idea. */
2538
2539 static void
2540 group_sections (struct elf32_hppa_link_hash_table *htab,
2541 bfd_size_type stub_group_size,
2542 bfd_boolean stubs_always_before_branch)
2543 {
2544 asection **list = htab->input_list + htab->top_index;
2545 do
2546 {
2547 asection *tail = *list;
2548 if (tail == bfd_abs_section_ptr)
2549 continue;
2550 while (tail != NULL)
2551 {
2552 asection *curr;
2553 asection *prev;
2554 bfd_size_type total;
2555 bfd_boolean big_sec;
2556
2557 curr = tail;
2558 total = tail->size;
2559 big_sec = total >= stub_group_size;
2560
2561 while ((prev = PREV_SEC (curr)) != NULL
2562 && ((total += curr->output_offset - prev->output_offset)
2563 < stub_group_size))
2564 curr = prev;
2565
2566 /* OK, the size from the start of CURR to the end is less
2567 than 240000 bytes and thus can be handled by one stub
2568 section. (or the tail section is itself larger than
2569 240000 bytes, in which case we may be toast.)
2570 We should really be keeping track of the total size of
2571 stubs added here, as stubs contribute to the final output
2572 section size. That's a little tricky, and this way will
2573 only break if stubs added total more than 22144 bytes, or
2574 2768 long branch stubs. It seems unlikely for more than
2575 2768 different functions to be called, especially from
2576 code only 240000 bytes long. This limit used to be
2577 250000, but c++ code tends to generate lots of little
2578 functions, and sometimes violated the assumption. */
2579 do
2580 {
2581 prev = PREV_SEC (tail);
2582 /* Set up this stub group. */
2583 htab->stub_group[tail->id].link_sec = curr;
2584 }
2585 while (tail != curr && (tail = prev) != NULL);
2586
2587 /* But wait, there's more! Input sections up to 240000
2588 bytes before the stub section can be handled by it too.
2589 Don't do this if we have a really large section after the
2590 stubs, as adding more stubs increases the chance that
2591 branches may not reach into the stub section. */
2592 if (!stubs_always_before_branch && !big_sec)
2593 {
2594 total = 0;
2595 while (prev != NULL
2596 && ((total += tail->output_offset - prev->output_offset)
2597 < stub_group_size))
2598 {
2599 tail = prev;
2600 prev = PREV_SEC (tail);
2601 htab->stub_group[tail->id].link_sec = curr;
2602 }
2603 }
2604 tail = prev;
2605 }
2606 }
2607 while (list-- != htab->input_list);
2608 free (htab->input_list);
2609 #undef PREV_SEC
2610 }
2611
2612 /* Read in all local syms for all input bfds, and create hash entries
2613 for export stubs if we are building a multi-subspace shared lib.
2614 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2615
2616 static int
2617 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2618 {
2619 unsigned int bfd_indx;
2620 Elf_Internal_Sym *local_syms, **all_local_syms;
2621 int stub_changed = 0;
2622 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2623
2624 if (htab == NULL)
2625 return -1;
2626
2627 /* We want to read in symbol extension records only once. To do this
2628 we need to read in the local symbols in parallel and save them for
2629 later use; so hold pointers to the local symbols in an array. */
2630 size_t amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2631 all_local_syms = bfd_zmalloc (amt);
2632 htab->all_local_syms = all_local_syms;
2633 if (all_local_syms == NULL)
2634 return -1;
2635
2636 /* Walk over all the input BFDs, swapping in local symbols.
2637 If we are creating a shared library, create hash entries for the
2638 export stubs. */
2639 for (bfd_indx = 0;
2640 input_bfd != NULL;
2641 input_bfd = input_bfd->link.next, bfd_indx++)
2642 {
2643 Elf_Internal_Shdr *symtab_hdr;
2644
2645 /* We'll need the symbol table in a second. */
2646 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2647 if (symtab_hdr->sh_info == 0)
2648 continue;
2649
2650 /* We need an array of the local symbols attached to the input bfd. */
2651 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2652 if (local_syms == NULL)
2653 {
2654 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2655 symtab_hdr->sh_info, 0,
2656 NULL, NULL, NULL);
2657 /* Cache them for elf_link_input_bfd. */
2658 symtab_hdr->contents = (unsigned char *) local_syms;
2659 }
2660 if (local_syms == NULL)
2661 return -1;
2662
2663 all_local_syms[bfd_indx] = local_syms;
2664
2665 if (bfd_link_pic (info) && htab->multi_subspace)
2666 {
2667 struct elf_link_hash_entry **eh_syms;
2668 struct elf_link_hash_entry **eh_symend;
2669 unsigned int symcount;
2670
2671 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2672 - symtab_hdr->sh_info);
2673 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2674 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2675
2676 /* Look through the global syms for functions; We need to
2677 build export stubs for all globally visible functions. */
2678 for (; eh_syms < eh_symend; eh_syms++)
2679 {
2680 struct elf32_hppa_link_hash_entry *hh;
2681
2682 hh = hppa_elf_hash_entry (*eh_syms);
2683
2684 while (hh->eh.root.type == bfd_link_hash_indirect
2685 || hh->eh.root.type == bfd_link_hash_warning)
2686 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2687
2688 /* At this point in the link, undefined syms have been
2689 resolved, so we need to check that the symbol was
2690 defined in this BFD. */
2691 if ((hh->eh.root.type == bfd_link_hash_defined
2692 || hh->eh.root.type == bfd_link_hash_defweak)
2693 && hh->eh.type == STT_FUNC
2694 && hh->eh.root.u.def.section->output_section != NULL
2695 && (hh->eh.root.u.def.section->output_section->owner
2696 == output_bfd)
2697 && hh->eh.root.u.def.section->owner == input_bfd
2698 && hh->eh.def_regular
2699 && !hh->eh.forced_local
2700 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2701 {
2702 asection *sec;
2703 const char *stub_name;
2704 struct elf32_hppa_stub_hash_entry *hsh;
2705
2706 sec = hh->eh.root.u.def.section;
2707 stub_name = hh_name (hh);
2708 hsh = hppa_stub_hash_lookup (&htab->bstab,
2709 stub_name,
2710 FALSE, FALSE);
2711 if (hsh == NULL)
2712 {
2713 hsh = hppa_add_stub (stub_name, sec, htab);
2714 if (!hsh)
2715 return -1;
2716
2717 hsh->target_value = hh->eh.root.u.def.value;
2718 hsh->target_section = hh->eh.root.u.def.section;
2719 hsh->stub_type = hppa_stub_export;
2720 hsh->hh = hh;
2721 stub_changed = 1;
2722 }
2723 else
2724 {
2725 /* xgettext:c-format */
2726 _bfd_error_handler (_("%pB: duplicate export stub %s"),
2727 input_bfd, stub_name);
2728 }
2729 }
2730 }
2731 }
2732 }
2733
2734 return stub_changed;
2735 }
2736
2737 /* Determine and set the size of the stub section for a final link.
2738
2739 The basic idea here is to examine all the relocations looking for
2740 PC-relative calls to a target that is unreachable with a "bl"
2741 instruction. */
2742
2743 bfd_boolean
2744 elf32_hppa_size_stubs
2745 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2746 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2747 asection * (*add_stub_section) (const char *, asection *),
2748 void (*layout_sections_again) (void))
2749 {
2750 bfd_size_type stub_group_size;
2751 bfd_boolean stubs_always_before_branch;
2752 bfd_boolean stub_changed;
2753 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2754
2755 if (htab == NULL)
2756 return FALSE;
2757
2758 /* Stash our params away. */
2759 htab->stub_bfd = stub_bfd;
2760 htab->multi_subspace = multi_subspace;
2761 htab->add_stub_section = add_stub_section;
2762 htab->layout_sections_again = layout_sections_again;
2763 stubs_always_before_branch = group_size < 0;
2764 if (group_size < 0)
2765 stub_group_size = -group_size;
2766 else
2767 stub_group_size = group_size;
2768 if (stub_group_size == 1)
2769 {
2770 /* Default values. */
2771 if (stubs_always_before_branch)
2772 {
2773 stub_group_size = 7680000;
2774 if (htab->has_17bit_branch || htab->multi_subspace)
2775 stub_group_size = 240000;
2776 if (htab->has_12bit_branch)
2777 stub_group_size = 7500;
2778 }
2779 else
2780 {
2781 stub_group_size = 6971392;
2782 if (htab->has_17bit_branch || htab->multi_subspace)
2783 stub_group_size = 217856;
2784 if (htab->has_12bit_branch)
2785 stub_group_size = 6808;
2786 }
2787 }
2788
2789 group_sections (htab, stub_group_size, stubs_always_before_branch);
2790
2791 switch (get_local_syms (output_bfd, info->input_bfds, info))
2792 {
2793 default:
2794 if (htab->all_local_syms)
2795 goto error_ret_free_local;
2796 return FALSE;
2797
2798 case 0:
2799 stub_changed = FALSE;
2800 break;
2801
2802 case 1:
2803 stub_changed = TRUE;
2804 break;
2805 }
2806
2807 while (1)
2808 {
2809 bfd *input_bfd;
2810 unsigned int bfd_indx;
2811 asection *stub_sec;
2812
2813 for (input_bfd = info->input_bfds, bfd_indx = 0;
2814 input_bfd != NULL;
2815 input_bfd = input_bfd->link.next, bfd_indx++)
2816 {
2817 Elf_Internal_Shdr *symtab_hdr;
2818 asection *section;
2819 Elf_Internal_Sym *local_syms;
2820
2821 /* We'll need the symbol table in a second. */
2822 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2823 if (symtab_hdr->sh_info == 0)
2824 continue;
2825
2826 local_syms = htab->all_local_syms[bfd_indx];
2827
2828 /* Walk over each section attached to the input bfd. */
2829 for (section = input_bfd->sections;
2830 section != NULL;
2831 section = section->next)
2832 {
2833 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2834
2835 /* If there aren't any relocs, then there's nothing more
2836 to do. */
2837 if ((section->flags & SEC_RELOC) == 0
2838 || (section->flags & SEC_ALLOC) == 0
2839 || (section->flags & SEC_LOAD) == 0
2840 || (section->flags & SEC_CODE) == 0
2841 || section->reloc_count == 0)
2842 continue;
2843
2844 /* If this section is a link-once section that will be
2845 discarded, then don't create any stubs. */
2846 if (section->output_section == NULL
2847 || section->output_section->owner != output_bfd)
2848 continue;
2849
2850 /* Get the relocs. */
2851 internal_relocs
2852 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2853 info->keep_memory);
2854 if (internal_relocs == NULL)
2855 goto error_ret_free_local;
2856
2857 /* Now examine each relocation. */
2858 irela = internal_relocs;
2859 irelaend = irela + section->reloc_count;
2860 for (; irela < irelaend; irela++)
2861 {
2862 unsigned int r_type, r_indx;
2863 enum elf32_hppa_stub_type stub_type;
2864 struct elf32_hppa_stub_hash_entry *hsh;
2865 asection *sym_sec;
2866 bfd_vma sym_value;
2867 bfd_vma destination;
2868 struct elf32_hppa_link_hash_entry *hh;
2869 char *stub_name;
2870 const asection *id_sec;
2871
2872 r_type = ELF32_R_TYPE (irela->r_info);
2873 r_indx = ELF32_R_SYM (irela->r_info);
2874
2875 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2876 {
2877 bfd_set_error (bfd_error_bad_value);
2878 error_ret_free_internal:
2879 if (elf_section_data (section)->relocs == NULL)
2880 free (internal_relocs);
2881 goto error_ret_free_local;
2882 }
2883
2884 /* Only look for stubs on call instructions. */
2885 if (r_type != (unsigned int) R_PARISC_PCREL12F
2886 && r_type != (unsigned int) R_PARISC_PCREL17F
2887 && r_type != (unsigned int) R_PARISC_PCREL22F)
2888 continue;
2889
2890 /* Now determine the call target, its name, value,
2891 section. */
2892 sym_sec = NULL;
2893 sym_value = 0;
2894 destination = -1;
2895 hh = NULL;
2896 if (r_indx < symtab_hdr->sh_info)
2897 {
2898 /* It's a local symbol. */
2899 Elf_Internal_Sym *sym;
2900 Elf_Internal_Shdr *hdr;
2901 unsigned int shndx;
2902
2903 sym = local_syms + r_indx;
2904 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2905 sym_value = sym->st_value;
2906 shndx = sym->st_shndx;
2907 if (shndx < elf_numsections (input_bfd))
2908 {
2909 hdr = elf_elfsections (input_bfd)[shndx];
2910 sym_sec = hdr->bfd_section;
2911 destination = (sym_value + irela->r_addend
2912 + sym_sec->output_offset
2913 + sym_sec->output_section->vma);
2914 }
2915 }
2916 else
2917 {
2918 /* It's an external symbol. */
2919 int e_indx;
2920
2921 e_indx = r_indx - symtab_hdr->sh_info;
2922 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2923
2924 while (hh->eh.root.type == bfd_link_hash_indirect
2925 || hh->eh.root.type == bfd_link_hash_warning)
2926 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2927
2928 if (hh->eh.root.type == bfd_link_hash_defined
2929 || hh->eh.root.type == bfd_link_hash_defweak)
2930 {
2931 sym_sec = hh->eh.root.u.def.section;
2932 sym_value = hh->eh.root.u.def.value;
2933 if (sym_sec->output_section != NULL)
2934 destination = (sym_value + irela->r_addend
2935 + sym_sec->output_offset
2936 + sym_sec->output_section->vma);
2937 }
2938 else if (hh->eh.root.type == bfd_link_hash_undefweak)
2939 {
2940 if (! bfd_link_pic (info))
2941 continue;
2942 }
2943 else if (hh->eh.root.type == bfd_link_hash_undefined)
2944 {
2945 if (! (info->unresolved_syms_in_objects == RM_IGNORE
2946 && (ELF_ST_VISIBILITY (hh->eh.other)
2947 == STV_DEFAULT)
2948 && hh->eh.type != STT_PARISC_MILLI))
2949 continue;
2950 }
2951 else
2952 {
2953 bfd_set_error (bfd_error_bad_value);
2954 goto error_ret_free_internal;
2955 }
2956 }
2957
2958 /* Determine what (if any) linker stub is needed. */
2959 stub_type = hppa_type_of_stub (section, irela, hh,
2960 destination, info);
2961 if (stub_type == hppa_stub_none)
2962 continue;
2963
2964 /* Support for grouping stub sections. */
2965 id_sec = htab->stub_group[section->id].link_sec;
2966
2967 /* Get the name of this stub. */
2968 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
2969 if (!stub_name)
2970 goto error_ret_free_internal;
2971
2972 hsh = hppa_stub_hash_lookup (&htab->bstab,
2973 stub_name,
2974 FALSE, FALSE);
2975 if (hsh != NULL)
2976 {
2977 /* The proper stub has already been created. */
2978 free (stub_name);
2979 continue;
2980 }
2981
2982 hsh = hppa_add_stub (stub_name, section, htab);
2983 if (hsh == NULL)
2984 {
2985 free (stub_name);
2986 goto error_ret_free_internal;
2987 }
2988
2989 hsh->target_value = sym_value;
2990 hsh->target_section = sym_sec;
2991 hsh->stub_type = stub_type;
2992 if (bfd_link_pic (info))
2993 {
2994 if (stub_type == hppa_stub_import)
2995 hsh->stub_type = hppa_stub_import_shared;
2996 else if (stub_type == hppa_stub_long_branch)
2997 hsh->stub_type = hppa_stub_long_branch_shared;
2998 }
2999 hsh->hh = hh;
3000 stub_changed = TRUE;
3001 }
3002
3003 /* We're done with the internal relocs, free them. */
3004 if (elf_section_data (section)->relocs == NULL)
3005 free (internal_relocs);
3006 }
3007 }
3008
3009 if (!stub_changed)
3010 break;
3011
3012 /* OK, we've added some stubs. Find out the new size of the
3013 stub sections. */
3014 for (stub_sec = htab->stub_bfd->sections;
3015 stub_sec != NULL;
3016 stub_sec = stub_sec->next)
3017 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
3018 stub_sec->size = 0;
3019
3020 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
3021
3022 /* Ask the linker to do its stuff. */
3023 (*htab->layout_sections_again) ();
3024 stub_changed = FALSE;
3025 }
3026
3027 free (htab->all_local_syms);
3028 return TRUE;
3029
3030 error_ret_free_local:
3031 free (htab->all_local_syms);
3032 return FALSE;
3033 }
3034
3035 /* For a final link, this function is called after we have sized the
3036 stubs to provide a value for __gp. */
3037
3038 bfd_boolean
3039 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
3040 {
3041 struct bfd_link_hash_entry *h;
3042 asection *sec = NULL;
3043 bfd_vma gp_val = 0;
3044
3045 h = bfd_link_hash_lookup (info->hash, "$global$", FALSE, FALSE, FALSE);
3046
3047 if (h != NULL
3048 && (h->type == bfd_link_hash_defined
3049 || h->type == bfd_link_hash_defweak))
3050 {
3051 gp_val = h->u.def.value;
3052 sec = h->u.def.section;
3053 }
3054 else
3055 {
3056 asection *splt = bfd_get_section_by_name (abfd, ".plt");
3057 asection *sgot = bfd_get_section_by_name (abfd, ".got");
3058
3059 /* Choose to point our LTP at, in this order, one of .plt, .got,
3060 or .data, if these sections exist. In the case of choosing
3061 .plt try to make the LTP ideal for addressing anywhere in the
3062 .plt or .got with a 14 bit signed offset. Typically, the end
3063 of the .plt is the start of the .got, so choose .plt + 0x2000
3064 if either the .plt or .got is larger than 0x2000. If both
3065 the .plt and .got are smaller than 0x2000, choose the end of
3066 the .plt section. */
3067 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3068 ? NULL : splt;
3069 if (sec != NULL)
3070 {
3071 gp_val = sec->size;
3072 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3073 {
3074 gp_val = 0x2000;
3075 }
3076 }
3077 else
3078 {
3079 sec = sgot;
3080 if (sec != NULL)
3081 {
3082 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3083 {
3084 /* We know we don't have a .plt. If .got is large,
3085 offset our LTP. */
3086 if (sec->size > 0x2000)
3087 gp_val = 0x2000;
3088 }
3089 }
3090 else
3091 {
3092 /* No .plt or .got. Who cares what the LTP is? */
3093 sec = bfd_get_section_by_name (abfd, ".data");
3094 }
3095 }
3096
3097 if (h != NULL)
3098 {
3099 h->type = bfd_link_hash_defined;
3100 h->u.def.value = gp_val;
3101 if (sec != NULL)
3102 h->u.def.section = sec;
3103 else
3104 h->u.def.section = bfd_abs_section_ptr;
3105 }
3106 }
3107
3108 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
3109 {
3110 if (sec != NULL && sec->output_section != NULL)
3111 gp_val += sec->output_section->vma + sec->output_offset;
3112
3113 elf_gp (abfd) = gp_val;
3114 }
3115 return TRUE;
3116 }
3117
3118 /* Build all the stubs associated with the current output file. The
3119 stubs are kept in a hash table attached to the main linker hash
3120 table. We also set up the .plt entries for statically linked PIC
3121 functions here. This function is called via hppaelf_finish in the
3122 linker. */
3123
3124 bfd_boolean
3125 elf32_hppa_build_stubs (struct bfd_link_info *info)
3126 {
3127 asection *stub_sec;
3128 struct bfd_hash_table *table;
3129 struct elf32_hppa_link_hash_table *htab;
3130
3131 htab = hppa_link_hash_table (info);
3132 if (htab == NULL)
3133 return FALSE;
3134
3135 for (stub_sec = htab->stub_bfd->sections;
3136 stub_sec != NULL;
3137 stub_sec = stub_sec->next)
3138 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
3139 && stub_sec->size != 0)
3140 {
3141 /* Allocate memory to hold the linker stubs. */
3142 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
3143 if (stub_sec->contents == NULL)
3144 return FALSE;
3145 stub_sec->size = 0;
3146 }
3147
3148 /* Build the stubs as directed by the stub hash table. */
3149 table = &htab->bstab;
3150 bfd_hash_traverse (table, hppa_build_one_stub, info);
3151
3152 return TRUE;
3153 }
3154
3155 /* Return the base vma address which should be subtracted from the real
3156 address when resolving a dtpoff relocation.
3157 This is PT_TLS segment p_vaddr. */
3158
3159 static bfd_vma
3160 dtpoff_base (struct bfd_link_info *info)
3161 {
3162 /* If tls_sec is NULL, we should have signalled an error already. */
3163 if (elf_hash_table (info)->tls_sec == NULL)
3164 return 0;
3165 return elf_hash_table (info)->tls_sec->vma;
3166 }
3167
3168 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3169
3170 static bfd_vma
3171 tpoff (struct bfd_link_info *info, bfd_vma address)
3172 {
3173 struct elf_link_hash_table *htab = elf_hash_table (info);
3174
3175 /* If tls_sec is NULL, we should have signalled an error already. */
3176 if (htab->tls_sec == NULL)
3177 return 0;
3178 /* hppa TLS ABI is variant I and static TLS block start just after
3179 tcbhead structure which has 2 pointer fields. */
3180 return (address - htab->tls_sec->vma
3181 + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3182 }
3183
3184 /* Perform a final link. */
3185
3186 static bfd_boolean
3187 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3188 {
3189 struct stat buf;
3190
3191 /* Invoke the regular ELF linker to do all the work. */
3192 if (!bfd_elf_final_link (abfd, info))
3193 return FALSE;
3194
3195 /* If we're producing a final executable, sort the contents of the
3196 unwind section. */
3197 if (bfd_link_relocatable (info))
3198 return TRUE;
3199
3200 /* Do not attempt to sort non-regular files. This is here
3201 especially for configure scripts and kernel builds which run
3202 tests with "ld [...] -o /dev/null". */
3203 if (stat (abfd->filename, &buf) != 0
3204 || !S_ISREG(buf.st_mode))
3205 return TRUE;
3206
3207 return elf_hppa_sort_unwind (abfd);
3208 }
3209
3210 /* Record the lowest address for the data and text segments. */
3211
3212 static void
3213 hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
3214 {
3215 struct elf32_hppa_link_hash_table *htab;
3216
3217 htab = (struct elf32_hppa_link_hash_table*) data;
3218 if (htab == NULL)
3219 return;
3220
3221 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3222 {
3223 bfd_vma value;
3224 Elf_Internal_Phdr *p;
3225
3226 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
3227 BFD_ASSERT (p != NULL);
3228 value = p->p_vaddr;
3229
3230 if ((section->flags & SEC_READONLY) != 0)
3231 {
3232 if (value < htab->text_segment_base)
3233 htab->text_segment_base = value;
3234 }
3235 else
3236 {
3237 if (value < htab->data_segment_base)
3238 htab->data_segment_base = value;
3239 }
3240 }
3241 }
3242
3243 /* Perform a relocation as part of a final link. */
3244
3245 static bfd_reloc_status_type
3246 final_link_relocate (asection *input_section,
3247 bfd_byte *contents,
3248 const Elf_Internal_Rela *rela,
3249 bfd_vma value,
3250 struct elf32_hppa_link_hash_table *htab,
3251 asection *sym_sec,
3252 struct elf32_hppa_link_hash_entry *hh,
3253 struct bfd_link_info *info)
3254 {
3255 unsigned int insn;
3256 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3257 unsigned int orig_r_type = r_type;
3258 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3259 int r_format = howto->bitsize;
3260 enum hppa_reloc_field_selector_type_alt r_field;
3261 bfd *input_bfd = input_section->owner;
3262 bfd_vma offset = rela->r_offset;
3263 bfd_vma max_branch_offset = 0;
3264 bfd_byte *hit_data = contents + offset;
3265 bfd_signed_vma addend = rela->r_addend;
3266 bfd_vma location;
3267 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3268 int val;
3269
3270 if (r_type == R_PARISC_NONE)
3271 return bfd_reloc_ok;
3272
3273 insn = bfd_get_32 (input_bfd, hit_data);
3274
3275 /* Find out where we are and where we're going. */
3276 location = (offset +
3277 input_section->output_offset +
3278 input_section->output_section->vma);
3279
3280 /* If we are not building a shared library, convert DLTIND relocs to
3281 DPREL relocs. */
3282 if (!bfd_link_pic (info))
3283 {
3284 switch (r_type)
3285 {
3286 case R_PARISC_DLTIND21L:
3287 case R_PARISC_TLS_GD21L:
3288 case R_PARISC_TLS_LDM21L:
3289 case R_PARISC_TLS_IE21L:
3290 r_type = R_PARISC_DPREL21L;
3291 break;
3292
3293 case R_PARISC_DLTIND14R:
3294 case R_PARISC_TLS_GD14R:
3295 case R_PARISC_TLS_LDM14R:
3296 case R_PARISC_TLS_IE14R:
3297 r_type = R_PARISC_DPREL14R;
3298 break;
3299
3300 case R_PARISC_DLTIND14F:
3301 r_type = R_PARISC_DPREL14F;
3302 break;
3303 }
3304 }
3305
3306 switch (r_type)
3307 {
3308 case R_PARISC_PCREL12F:
3309 case R_PARISC_PCREL17F:
3310 case R_PARISC_PCREL22F:
3311 /* If this call should go via the plt, find the import stub in
3312 the stub hash. */
3313 if (sym_sec == NULL
3314 || sym_sec->output_section == NULL
3315 || (hh != NULL
3316 && hh->eh.plt.offset != (bfd_vma) -1
3317 && hh->eh.dynindx != -1
3318 && !hh->plabel
3319 && (bfd_link_pic (info)
3320 || !hh->eh.def_regular
3321 || hh->eh.root.type == bfd_link_hash_defweak)))
3322 {
3323 hsh = hppa_get_stub_entry (input_section, sym_sec,
3324 hh, rela, htab);
3325 if (hsh != NULL)
3326 {
3327 value = (hsh->stub_offset
3328 + hsh->stub_sec->output_offset
3329 + hsh->stub_sec->output_section->vma);
3330 addend = 0;
3331 }
3332 else if (sym_sec == NULL && hh != NULL
3333 && hh->eh.root.type == bfd_link_hash_undefweak)
3334 {
3335 /* It's OK if undefined weak. Calls to undefined weak
3336 symbols behave as if the "called" function
3337 immediately returns. We can thus call to a weak
3338 function without first checking whether the function
3339 is defined. */
3340 value = location;
3341 addend = 8;
3342 }
3343 else
3344 return bfd_reloc_undefined;
3345 }
3346 /* Fall thru. */
3347
3348 case R_PARISC_PCREL21L:
3349 case R_PARISC_PCREL17C:
3350 case R_PARISC_PCREL17R:
3351 case R_PARISC_PCREL14R:
3352 case R_PARISC_PCREL14F:
3353 case R_PARISC_PCREL32:
3354 /* Make it a pc relative offset. */
3355 value -= location;
3356 addend -= 8;
3357 break;
3358
3359 case R_PARISC_DPREL21L:
3360 case R_PARISC_DPREL14R:
3361 case R_PARISC_DPREL14F:
3362 /* Convert instructions that use the linkage table pointer (r19) to
3363 instructions that use the global data pointer (dp). This is the
3364 most efficient way of using PIC code in an incomplete executable,
3365 but the user must follow the standard runtime conventions for
3366 accessing data for this to work. */
3367 if (orig_r_type != r_type)
3368 {
3369 if (r_type == R_PARISC_DPREL21L)
3370 {
3371 /* GCC sometimes uses a register other than r19 for the
3372 operation, so we must convert any addil instruction
3373 that uses this relocation. */
3374 if ((insn & 0xfc000000) == OP_ADDIL << 26)
3375 insn = ADDIL_DP;
3376 else
3377 /* We must have a ldil instruction. It's too hard to find
3378 and convert the associated add instruction, so issue an
3379 error. */
3380 _bfd_error_handler
3381 /* xgettext:c-format */
3382 (_("%pB(%pA+%#" PRIx64 "): %s fixup for insn %#x "
3383 "is not supported in a non-shared link"),
3384 input_bfd,
3385 input_section,
3386 (uint64_t) offset,
3387 howto->name,
3388 insn);
3389 }
3390 else if (r_type == R_PARISC_DPREL14F)
3391 {
3392 /* This must be a format 1 load/store. Change the base
3393 register to dp. */
3394 insn = (insn & 0xfc1ffff) | (27 << 21);
3395 }
3396 }
3397
3398 /* For all the DP relative relocations, we need to examine the symbol's
3399 section. If it has no section or if it's a code section, then
3400 "data pointer relative" makes no sense. In that case we don't
3401 adjust the "value", and for 21 bit addil instructions, we change the
3402 source addend register from %dp to %r0. This situation commonly
3403 arises for undefined weak symbols and when a variable's "constness"
3404 is declared differently from the way the variable is defined. For
3405 instance: "extern int foo" with foo defined as "const int foo". */
3406 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3407 {
3408 if ((insn & ((0x3fu << 26) | (0x1f << 21)))
3409 == ((OP_ADDIL << 26) | (27 << 21)))
3410 {
3411 insn &= ~ (0x1f << 21);
3412 }
3413 /* Now try to make things easy for the dynamic linker. */
3414
3415 break;
3416 }
3417 /* Fall thru. */
3418
3419 case R_PARISC_DLTIND21L:
3420 case R_PARISC_DLTIND14R:
3421 case R_PARISC_DLTIND14F:
3422 case R_PARISC_TLS_GD21L:
3423 case R_PARISC_TLS_LDM21L:
3424 case R_PARISC_TLS_IE21L:
3425 case R_PARISC_TLS_GD14R:
3426 case R_PARISC_TLS_LDM14R:
3427 case R_PARISC_TLS_IE14R:
3428 value -= elf_gp (input_section->output_section->owner);
3429 break;
3430
3431 case R_PARISC_SEGREL32:
3432 if ((sym_sec->flags & SEC_CODE) != 0)
3433 value -= htab->text_segment_base;
3434 else
3435 value -= htab->data_segment_base;
3436 break;
3437
3438 default:
3439 break;
3440 }
3441
3442 switch (r_type)
3443 {
3444 case R_PARISC_DIR32:
3445 case R_PARISC_DIR14F:
3446 case R_PARISC_DIR17F:
3447 case R_PARISC_PCREL17C:
3448 case R_PARISC_PCREL14F:
3449 case R_PARISC_PCREL32:
3450 case R_PARISC_DPREL14F:
3451 case R_PARISC_PLABEL32:
3452 case R_PARISC_DLTIND14F:
3453 case R_PARISC_SEGBASE:
3454 case R_PARISC_SEGREL32:
3455 case R_PARISC_TLS_DTPMOD32:
3456 case R_PARISC_TLS_DTPOFF32:
3457 case R_PARISC_TLS_TPREL32:
3458 r_field = e_fsel;
3459 break;
3460
3461 case R_PARISC_DLTIND21L:
3462 case R_PARISC_PCREL21L:
3463 case R_PARISC_PLABEL21L:
3464 r_field = e_lsel;
3465 break;
3466
3467 case R_PARISC_DIR21L:
3468 case R_PARISC_DPREL21L:
3469 case R_PARISC_TLS_GD21L:
3470 case R_PARISC_TLS_LDM21L:
3471 case R_PARISC_TLS_LDO21L:
3472 case R_PARISC_TLS_IE21L:
3473 case R_PARISC_TLS_LE21L:
3474 r_field = e_lrsel;
3475 break;
3476
3477 case R_PARISC_PCREL17R:
3478 case R_PARISC_PCREL14R:
3479 case R_PARISC_PLABEL14R:
3480 case R_PARISC_DLTIND14R:
3481 r_field = e_rsel;
3482 break;
3483
3484 case R_PARISC_DIR17R:
3485 case R_PARISC_DIR14R:
3486 case R_PARISC_DPREL14R:
3487 case R_PARISC_TLS_GD14R:
3488 case R_PARISC_TLS_LDM14R:
3489 case R_PARISC_TLS_LDO14R:
3490 case R_PARISC_TLS_IE14R:
3491 case R_PARISC_TLS_LE14R:
3492 r_field = e_rrsel;
3493 break;
3494
3495 case R_PARISC_PCREL12F:
3496 case R_PARISC_PCREL17F:
3497 case R_PARISC_PCREL22F:
3498 r_field = e_fsel;
3499
3500 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3501 {
3502 max_branch_offset = (1 << (17-1)) << 2;
3503 }
3504 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3505 {
3506 max_branch_offset = (1 << (12-1)) << 2;
3507 }
3508 else
3509 {
3510 max_branch_offset = (1 << (22-1)) << 2;
3511 }
3512
3513 /* sym_sec is NULL on undefined weak syms or when shared on
3514 undefined syms. We've already checked for a stub for the
3515 shared undefined case. */
3516 if (sym_sec == NULL)
3517 break;
3518
3519 /* If the branch is out of reach, then redirect the
3520 call to the local stub for this function. */
3521 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3522 {
3523 hsh = hppa_get_stub_entry (input_section, sym_sec,
3524 hh, rela, htab);
3525 if (hsh == NULL)
3526 return bfd_reloc_undefined;
3527
3528 /* Munge up the value and addend so that we call the stub
3529 rather than the procedure directly. */
3530 value = (hsh->stub_offset
3531 + hsh->stub_sec->output_offset
3532 + hsh->stub_sec->output_section->vma
3533 - location);
3534 addend = -8;
3535 }
3536 break;
3537
3538 /* Something we don't know how to handle. */
3539 default:
3540 return bfd_reloc_notsupported;
3541 }
3542
3543 /* Make sure we can reach the stub. */
3544 if (max_branch_offset != 0
3545 && value + addend + max_branch_offset >= 2*max_branch_offset)
3546 {
3547 _bfd_error_handler
3548 /* xgettext:c-format */
3549 (_("%pB(%pA+%#" PRIx64 "): cannot reach %s, "
3550 "recompile with -ffunction-sections"),
3551 input_bfd,
3552 input_section,
3553 (uint64_t) offset,
3554 hsh->bh_root.string);
3555 bfd_set_error (bfd_error_bad_value);
3556 return bfd_reloc_notsupported;
3557 }
3558
3559 val = hppa_field_adjust (value, addend, r_field);
3560
3561 switch (r_type)
3562 {
3563 case R_PARISC_PCREL12F:
3564 case R_PARISC_PCREL17C:
3565 case R_PARISC_PCREL17F:
3566 case R_PARISC_PCREL17R:
3567 case R_PARISC_PCREL22F:
3568 case R_PARISC_DIR17F:
3569 case R_PARISC_DIR17R:
3570 /* This is a branch. Divide the offset by four.
3571 Note that we need to decide whether it's a branch or
3572 otherwise by inspecting the reloc. Inspecting insn won't
3573 work as insn might be from a .word directive. */
3574 val >>= 2;
3575 break;
3576
3577 default:
3578 break;
3579 }
3580
3581 insn = hppa_rebuild_insn (insn, val, r_format);
3582
3583 /* Update the instruction word. */
3584 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3585 return bfd_reloc_ok;
3586 }
3587
3588 /* Relocate an HPPA ELF section. */
3589
3590 static bfd_boolean
3591 elf32_hppa_relocate_section (bfd *output_bfd,
3592 struct bfd_link_info *info,
3593 bfd *input_bfd,
3594 asection *input_section,
3595 bfd_byte *contents,
3596 Elf_Internal_Rela *relocs,
3597 Elf_Internal_Sym *local_syms,
3598 asection **local_sections)
3599 {
3600 bfd_vma *local_got_offsets;
3601 struct elf32_hppa_link_hash_table *htab;
3602 Elf_Internal_Shdr *symtab_hdr;
3603 Elf_Internal_Rela *rela;
3604 Elf_Internal_Rela *relend;
3605
3606 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3607
3608 htab = hppa_link_hash_table (info);
3609 if (htab == NULL)
3610 return FALSE;
3611
3612 local_got_offsets = elf_local_got_offsets (input_bfd);
3613
3614 rela = relocs;
3615 relend = relocs + input_section->reloc_count;
3616 for (; rela < relend; rela++)
3617 {
3618 unsigned int r_type;
3619 reloc_howto_type *howto;
3620 unsigned int r_symndx;
3621 struct elf32_hppa_link_hash_entry *hh;
3622 Elf_Internal_Sym *sym;
3623 asection *sym_sec;
3624 bfd_vma relocation;
3625 bfd_reloc_status_type rstatus;
3626 const char *sym_name;
3627 bfd_boolean plabel;
3628 bfd_boolean warned_undef;
3629
3630 r_type = ELF32_R_TYPE (rela->r_info);
3631 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3632 {
3633 bfd_set_error (bfd_error_bad_value);
3634 return FALSE;
3635 }
3636 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3637 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3638 continue;
3639
3640 r_symndx = ELF32_R_SYM (rela->r_info);
3641 hh = NULL;
3642 sym = NULL;
3643 sym_sec = NULL;
3644 warned_undef = FALSE;
3645 if (r_symndx < symtab_hdr->sh_info)
3646 {
3647 /* This is a local symbol, h defaults to NULL. */
3648 sym = local_syms + r_symndx;
3649 sym_sec = local_sections[r_symndx];
3650 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3651 }
3652 else
3653 {
3654 struct elf_link_hash_entry *eh;
3655 bfd_boolean unresolved_reloc, ignored;
3656 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3657
3658 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3659 r_symndx, symtab_hdr, sym_hashes,
3660 eh, sym_sec, relocation,
3661 unresolved_reloc, warned_undef,
3662 ignored);
3663
3664 if (!bfd_link_relocatable (info)
3665 && relocation == 0
3666 && eh->root.type != bfd_link_hash_defined
3667 && eh->root.type != bfd_link_hash_defweak
3668 && eh->root.type != bfd_link_hash_undefweak)
3669 {
3670 if (info->unresolved_syms_in_objects == RM_IGNORE
3671 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3672 && eh->type == STT_PARISC_MILLI)
3673 {
3674 (*info->callbacks->undefined_symbol)
3675 (info, eh_name (eh), input_bfd,
3676 input_section, rela->r_offset, FALSE);
3677 warned_undef = TRUE;
3678 }
3679 }
3680 hh = hppa_elf_hash_entry (eh);
3681 }
3682
3683 if (sym_sec != NULL && discarded_section (sym_sec))
3684 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3685 rela, 1, relend,
3686 elf_hppa_howto_table + r_type, 0,
3687 contents);
3688
3689 if (bfd_link_relocatable (info))
3690 continue;
3691
3692 /* Do any required modifications to the relocation value, and
3693 determine what types of dynamic info we need to output, if
3694 any. */
3695 plabel = 0;
3696 switch (r_type)
3697 {
3698 case R_PARISC_DLTIND14F:
3699 case R_PARISC_DLTIND14R:
3700 case R_PARISC_DLTIND21L:
3701 {
3702 bfd_vma off;
3703 bfd_boolean do_got = FALSE;
3704 bfd_boolean reloc = bfd_link_pic (info);
3705
3706 /* Relocation is to the entry for this symbol in the
3707 global offset table. */
3708 if (hh != NULL)
3709 {
3710 bfd_boolean dyn;
3711
3712 off = hh->eh.got.offset;
3713 dyn = htab->etab.dynamic_sections_created;
3714 reloc = (!UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh)
3715 && (reloc
3716 || (hh->eh.dynindx != -1
3717 && !SYMBOL_REFERENCES_LOCAL (info, &hh->eh))));
3718 if (!reloc
3719 || !WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
3720 bfd_link_pic (info),
3721 &hh->eh))
3722 {
3723 /* If we aren't going to call finish_dynamic_symbol,
3724 then we need to handle initialisation of the .got
3725 entry and create needed relocs here. Since the
3726 offset must always be a multiple of 4, we use the
3727 least significant bit to record whether we have
3728 initialised it already. */
3729 if ((off & 1) != 0)
3730 off &= ~1;
3731 else
3732 {
3733 hh->eh.got.offset |= 1;
3734 do_got = TRUE;
3735 }
3736 }
3737 }
3738 else
3739 {
3740 /* Local symbol case. */
3741 if (local_got_offsets == NULL)
3742 abort ();
3743
3744 off = local_got_offsets[r_symndx];
3745
3746 /* The offset must always be a multiple of 4. We use
3747 the least significant bit to record whether we have
3748 already generated the necessary reloc. */
3749 if ((off & 1) != 0)
3750 off &= ~1;
3751 else
3752 {
3753 local_got_offsets[r_symndx] |= 1;
3754 do_got = TRUE;
3755 }
3756 }
3757
3758 if (do_got)
3759 {
3760 if (reloc)
3761 {
3762 /* Output a dynamic relocation for this GOT entry.
3763 In this case it is relative to the base of the
3764 object because the symbol index is zero. */
3765 Elf_Internal_Rela outrel;
3766 bfd_byte *loc;
3767 asection *sec = htab->etab.srelgot;
3768
3769 outrel.r_offset = (off
3770 + htab->etab.sgot->output_offset
3771 + htab->etab.sgot->output_section->vma);
3772 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3773 outrel.r_addend = relocation;
3774 loc = sec->contents;
3775 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3776 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3777 }
3778 else
3779 bfd_put_32 (output_bfd, relocation,
3780 htab->etab.sgot->contents + off);
3781 }
3782
3783 if (off >= (bfd_vma) -2)
3784 abort ();
3785
3786 /* Add the base of the GOT to the relocation value. */
3787 relocation = (off
3788 + htab->etab.sgot->output_offset
3789 + htab->etab.sgot->output_section->vma);
3790 }
3791 break;
3792
3793 case R_PARISC_SEGREL32:
3794 /* If this is the first SEGREL relocation, then initialize
3795 the segment base values. */
3796 if (htab->text_segment_base == (bfd_vma) -1)
3797 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3798 break;
3799
3800 case R_PARISC_PLABEL14R:
3801 case R_PARISC_PLABEL21L:
3802 case R_PARISC_PLABEL32:
3803 if (htab->etab.dynamic_sections_created)
3804 {
3805 bfd_vma off;
3806 bfd_boolean do_plt = 0;
3807 /* If we have a global symbol with a PLT slot, then
3808 redirect this relocation to it. */
3809 if (hh != NULL)
3810 {
3811 off = hh->eh.plt.offset;
3812 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1,
3813 bfd_link_pic (info),
3814 &hh->eh))
3815 {
3816 /* In a non-shared link, adjust_dynamic_symbol
3817 isn't called for symbols forced local. We
3818 need to write out the plt entry here. */
3819 if ((off & 1) != 0)
3820 off &= ~1;
3821 else
3822 {
3823 hh->eh.plt.offset |= 1;
3824 do_plt = 1;
3825 }
3826 }
3827 }
3828 else
3829 {
3830 bfd_vma *local_plt_offsets;
3831
3832 if (local_got_offsets == NULL)
3833 abort ();
3834
3835 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3836 off = local_plt_offsets[r_symndx];
3837
3838 /* As for the local .got entry case, we use the last
3839 bit to record whether we've already initialised
3840 this local .plt entry. */
3841 if ((off & 1) != 0)
3842 off &= ~1;
3843 else
3844 {
3845 local_plt_offsets[r_symndx] |= 1;
3846 do_plt = 1;
3847 }
3848 }
3849
3850 if (do_plt)
3851 {
3852 if (bfd_link_pic (info))
3853 {
3854 /* Output a dynamic IPLT relocation for this
3855 PLT entry. */
3856 Elf_Internal_Rela outrel;
3857 bfd_byte *loc;
3858 asection *s = htab->etab.srelplt;
3859
3860 outrel.r_offset = (off
3861 + htab->etab.splt->output_offset
3862 + htab->etab.splt->output_section->vma);
3863 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3864 outrel.r_addend = relocation;
3865 loc = s->contents;
3866 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3867 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3868 }
3869 else
3870 {
3871 bfd_put_32 (output_bfd,
3872 relocation,
3873 htab->etab.splt->contents + off);
3874 bfd_put_32 (output_bfd,
3875 elf_gp (htab->etab.splt->output_section->owner),
3876 htab->etab.splt->contents + off + 4);
3877 }
3878 }
3879
3880 if (off >= (bfd_vma) -2)
3881 abort ();
3882
3883 /* PLABELs contain function pointers. Relocation is to
3884 the entry for the function in the .plt. The magic +2
3885 offset signals to $$dyncall that the function pointer
3886 is in the .plt and thus has a gp pointer too.
3887 Exception: Undefined PLABELs should have a value of
3888 zero. */
3889 if (hh == NULL
3890 || (hh->eh.root.type != bfd_link_hash_undefweak
3891 && hh->eh.root.type != bfd_link_hash_undefined))
3892 {
3893 relocation = (off
3894 + htab->etab.splt->output_offset
3895 + htab->etab.splt->output_section->vma
3896 + 2);
3897 }
3898 plabel = 1;
3899 }
3900 /* Fall through. */
3901
3902 case R_PARISC_DIR17F:
3903 case R_PARISC_DIR17R:
3904 case R_PARISC_DIR14F:
3905 case R_PARISC_DIR14R:
3906 case R_PARISC_DIR21L:
3907 case R_PARISC_DPREL14F:
3908 case R_PARISC_DPREL14R:
3909 case R_PARISC_DPREL21L:
3910 case R_PARISC_DIR32:
3911 if ((input_section->flags & SEC_ALLOC) == 0)
3912 break;
3913
3914 if (bfd_link_pic (info)
3915 ? ((hh == NULL
3916 || hh->dyn_relocs != NULL)
3917 && ((hh != NULL && pc_dynrelocs (hh))
3918 || IS_ABSOLUTE_RELOC (r_type)))
3919 : (hh != NULL
3920 && hh->dyn_relocs != NULL))
3921 {
3922 Elf_Internal_Rela outrel;
3923 bfd_boolean skip;
3924 asection *sreloc;
3925 bfd_byte *loc;
3926
3927 /* When generating a shared object, these relocations
3928 are copied into the output file to be resolved at run
3929 time. */
3930
3931 outrel.r_addend = rela->r_addend;
3932 outrel.r_offset =
3933 _bfd_elf_section_offset (output_bfd, info, input_section,
3934 rela->r_offset);
3935 skip = (outrel.r_offset == (bfd_vma) -1
3936 || outrel.r_offset == (bfd_vma) -2);
3937 outrel.r_offset += (input_section->output_offset
3938 + input_section->output_section->vma);
3939
3940 if (skip)
3941 {
3942 memset (&outrel, 0, sizeof (outrel));
3943 }
3944 else if (hh != NULL
3945 && hh->eh.dynindx != -1
3946 && (plabel
3947 || !IS_ABSOLUTE_RELOC (r_type)
3948 || !bfd_link_pic (info)
3949 || !SYMBOLIC_BIND (info, &hh->eh)
3950 || !hh->eh.def_regular))
3951 {
3952 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
3953 }
3954 else /* It's a local symbol, or one marked to become local. */
3955 {
3956 int indx = 0;
3957
3958 /* Add the absolute offset of the symbol. */
3959 outrel.r_addend += relocation;
3960
3961 /* Global plabels need to be processed by the
3962 dynamic linker so that functions have at most one
3963 fptr. For this reason, we need to differentiate
3964 between global and local plabels, which we do by
3965 providing the function symbol for a global plabel
3966 reloc, and no symbol for local plabels. */
3967 if (! plabel
3968 && sym_sec != NULL
3969 && sym_sec->output_section != NULL
3970 && ! bfd_is_abs_section (sym_sec))
3971 {
3972 asection *osec;
3973
3974 osec = sym_sec->output_section;
3975 indx = elf_section_data (osec)->dynindx;
3976 if (indx == 0)
3977 {
3978 osec = htab->etab.text_index_section;
3979 indx = elf_section_data (osec)->dynindx;
3980 }
3981 BFD_ASSERT (indx != 0);
3982
3983 /* We are turning this relocation into one
3984 against a section symbol, so subtract out the
3985 output section's address but not the offset
3986 of the input section in the output section. */
3987 outrel.r_addend -= osec->vma;
3988 }
3989
3990 outrel.r_info = ELF32_R_INFO (indx, r_type);
3991 }
3992 sreloc = elf_section_data (input_section)->sreloc;
3993 if (sreloc == NULL)
3994 abort ();
3995
3996 loc = sreloc->contents;
3997 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3998 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3999 }
4000 break;
4001
4002 case R_PARISC_TLS_LDM21L:
4003 case R_PARISC_TLS_LDM14R:
4004 {
4005 bfd_vma off;
4006
4007 off = htab->tls_ldm_got.offset;
4008 if (off & 1)
4009 off &= ~1;
4010 else
4011 {
4012 Elf_Internal_Rela outrel;
4013 bfd_byte *loc;
4014
4015 outrel.r_offset = (off
4016 + htab->etab.sgot->output_section->vma
4017 + htab->etab.sgot->output_offset);
4018 outrel.r_addend = 0;
4019 outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
4020 loc = htab->etab.srelgot->contents;
4021 loc += htab->etab.srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4022
4023 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4024 htab->tls_ldm_got.offset |= 1;
4025 }
4026
4027 /* Add the base of the GOT to the relocation value. */
4028 relocation = (off
4029 + htab->etab.sgot->output_offset
4030 + htab->etab.sgot->output_section->vma);
4031
4032 break;
4033 }
4034
4035 case R_PARISC_TLS_LDO21L:
4036 case R_PARISC_TLS_LDO14R:
4037 relocation -= dtpoff_base (info);
4038 break;
4039
4040 case R_PARISC_TLS_GD21L:
4041 case R_PARISC_TLS_GD14R:
4042 case R_PARISC_TLS_IE21L:
4043 case R_PARISC_TLS_IE14R:
4044 {
4045 bfd_vma off;
4046 int indx;
4047 char tls_type;
4048
4049 indx = 0;
4050 if (hh != NULL)
4051 {
4052 if (!htab->etab.dynamic_sections_created
4053 || hh->eh.dynindx == -1
4054 || SYMBOL_REFERENCES_LOCAL (info, &hh->eh)
4055 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh))
4056 /* This is actually a static link, or it is a
4057 -Bsymbolic link and the symbol is defined
4058 locally, or the symbol was forced to be local
4059 because of a version file. */
4060 ;
4061 else
4062 indx = hh->eh.dynindx;
4063 off = hh->eh.got.offset;
4064 tls_type = hh->tls_type;
4065 }
4066 else
4067 {
4068 off = local_got_offsets[r_symndx];
4069 tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4070 }
4071
4072 if (tls_type == GOT_UNKNOWN)
4073 abort ();
4074
4075 if ((off & 1) != 0)
4076 off &= ~1;
4077 else
4078 {
4079 bfd_boolean need_relocs = FALSE;
4080 Elf_Internal_Rela outrel;
4081 bfd_byte *loc = NULL;
4082 int cur_off = off;
4083
4084 /* The GOT entries have not been initialized yet. Do it
4085 now, and emit any relocations. If both an IE GOT and a
4086 GD GOT are necessary, we emit the GD first. */
4087
4088 if (indx != 0
4089 || (bfd_link_dll (info)
4090 && (hh == NULL
4091 || !UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh))))
4092 {
4093 need_relocs = TRUE;
4094 loc = htab->etab.srelgot->contents;
4095 loc += (htab->etab.srelgot->reloc_count
4096 * sizeof (Elf32_External_Rela));
4097 }
4098
4099 if (tls_type & GOT_TLS_GD)
4100 {
4101 if (need_relocs)
4102 {
4103 outrel.r_offset
4104 = (cur_off
4105 + htab->etab.sgot->output_section->vma
4106 + htab->etab.sgot->output_offset);
4107 outrel.r_info
4108 = ELF32_R_INFO (indx, R_PARISC_TLS_DTPMOD32);
4109 outrel.r_addend = 0;
4110 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4111 htab->etab.srelgot->reloc_count++;
4112 loc += sizeof (Elf32_External_Rela);
4113 bfd_put_32 (output_bfd, 0,
4114 htab->etab.sgot->contents + cur_off);
4115 }
4116 else
4117 /* If we are not emitting relocations for a
4118 general dynamic reference, then we must be in a
4119 static link or an executable link with the
4120 symbol binding locally. Mark it as belonging
4121 to module 1, the executable. */
4122 bfd_put_32 (output_bfd, 1,
4123 htab->etab.sgot->contents + cur_off);
4124
4125 if (indx != 0)
4126 {
4127 outrel.r_info
4128 = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4129 outrel.r_offset += 4;
4130 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4131 htab->etab.srelgot->reloc_count++;
4132 loc += sizeof (Elf32_External_Rela);
4133 bfd_put_32 (output_bfd, 0,
4134 htab->etab.sgot->contents + cur_off + 4);
4135 }
4136 else
4137 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4138 htab->etab.sgot->contents + cur_off + 4);
4139 cur_off += 8;
4140 }
4141
4142 if (tls_type & GOT_TLS_IE)
4143 {
4144 if (need_relocs
4145 && !(bfd_link_executable (info)
4146 && SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4147 {
4148 outrel.r_offset
4149 = (cur_off
4150 + htab->etab.sgot->output_section->vma
4151 + htab->etab.sgot->output_offset);
4152 outrel.r_info = ELF32_R_INFO (indx,
4153 R_PARISC_TLS_TPREL32);
4154 if (indx == 0)
4155 outrel.r_addend = relocation - dtpoff_base (info);
4156 else
4157 outrel.r_addend = 0;
4158 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4159 htab->etab.srelgot->reloc_count++;
4160 loc += sizeof (Elf32_External_Rela);
4161 }
4162 else
4163 bfd_put_32 (output_bfd, tpoff (info, relocation),
4164 htab->etab.sgot->contents + cur_off);
4165 cur_off += 4;
4166 }
4167
4168 if (hh != NULL)
4169 hh->eh.got.offset |= 1;
4170 else
4171 local_got_offsets[r_symndx] |= 1;
4172 }
4173
4174 if ((tls_type & GOT_NORMAL) != 0
4175 && (tls_type & (GOT_TLS_GD | GOT_TLS_LDM | GOT_TLS_IE)) != 0)
4176 {
4177 if (hh != NULL)
4178 _bfd_error_handler (_("%s has both normal and TLS relocs"),
4179 hh_name (hh));
4180 else
4181 {
4182 Elf_Internal_Sym *isym
4183 = bfd_sym_from_r_symndx (&htab->sym_cache,
4184 input_bfd, r_symndx);
4185 if (isym == NULL)
4186 return FALSE;
4187 sym_name
4188 = bfd_elf_string_from_elf_section (input_bfd,
4189 symtab_hdr->sh_link,
4190 isym->st_name);
4191 if (sym_name == NULL)
4192 return FALSE;
4193 if (*sym_name == '\0')
4194 sym_name = bfd_section_name (sym_sec);
4195 _bfd_error_handler
4196 (_("%pB:%s has both normal and TLS relocs"),
4197 input_bfd, sym_name);
4198 }
4199 bfd_set_error (bfd_error_bad_value);
4200 return FALSE;
4201 }
4202
4203 if ((tls_type & GOT_TLS_GD)
4204 && r_type != R_PARISC_TLS_GD21L
4205 && r_type != R_PARISC_TLS_GD14R)
4206 off += 2 * GOT_ENTRY_SIZE;
4207
4208 /* Add the base of the GOT to the relocation value. */
4209 relocation = (off
4210 + htab->etab.sgot->output_offset
4211 + htab->etab.sgot->output_section->vma);
4212
4213 break;
4214 }
4215
4216 case R_PARISC_TLS_LE21L:
4217 case R_PARISC_TLS_LE14R:
4218 {
4219 relocation = tpoff (info, relocation);
4220 break;
4221 }
4222 break;
4223
4224 default:
4225 break;
4226 }
4227
4228 rstatus = final_link_relocate (input_section, contents, rela, relocation,
4229 htab, sym_sec, hh, info);
4230
4231 if (rstatus == bfd_reloc_ok)
4232 continue;
4233
4234 if (hh != NULL)
4235 sym_name = hh_name (hh);
4236 else
4237 {
4238 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4239 symtab_hdr->sh_link,
4240 sym->st_name);
4241 if (sym_name == NULL)
4242 return FALSE;
4243 if (*sym_name == '\0')
4244 sym_name = bfd_section_name (sym_sec);
4245 }
4246
4247 howto = elf_hppa_howto_table + r_type;
4248
4249 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4250 {
4251 if (rstatus == bfd_reloc_notsupported || !warned_undef)
4252 {
4253 _bfd_error_handler
4254 /* xgettext:c-format */
4255 (_("%pB(%pA+%#" PRIx64 "): cannot handle %s for %s"),
4256 input_bfd,
4257 input_section,
4258 (uint64_t) rela->r_offset,
4259 howto->name,
4260 sym_name);
4261 bfd_set_error (bfd_error_bad_value);
4262 return FALSE;
4263 }
4264 }
4265 else
4266 (*info->callbacks->reloc_overflow)
4267 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4268 (bfd_vma) 0, input_bfd, input_section, rela->r_offset);
4269 }
4270
4271 return TRUE;
4272 }
4273
4274 /* Finish up dynamic symbol handling. We set the contents of various
4275 dynamic sections here. */
4276
4277 static bfd_boolean
4278 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4279 struct bfd_link_info *info,
4280 struct elf_link_hash_entry *eh,
4281 Elf_Internal_Sym *sym)
4282 {
4283 struct elf32_hppa_link_hash_table *htab;
4284 Elf_Internal_Rela rela;
4285 bfd_byte *loc;
4286
4287 htab = hppa_link_hash_table (info);
4288 if (htab == NULL)
4289 return FALSE;
4290
4291 if (eh->plt.offset != (bfd_vma) -1)
4292 {
4293 bfd_vma value;
4294
4295 if (eh->plt.offset & 1)
4296 abort ();
4297
4298 /* This symbol has an entry in the procedure linkage table. Set
4299 it up.
4300
4301 The format of a plt entry is
4302 <funcaddr>
4303 <__gp>
4304 */
4305 value = 0;
4306 if (eh->root.type == bfd_link_hash_defined
4307 || eh->root.type == bfd_link_hash_defweak)
4308 {
4309 value = eh->root.u.def.value;
4310 if (eh->root.u.def.section->output_section != NULL)
4311 value += (eh->root.u.def.section->output_offset
4312 + eh->root.u.def.section->output_section->vma);
4313 }
4314
4315 /* Create a dynamic IPLT relocation for this entry. */
4316 rela.r_offset = (eh->plt.offset
4317 + htab->etab.splt->output_offset
4318 + htab->etab.splt->output_section->vma);
4319 if (eh->dynindx != -1)
4320 {
4321 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4322 rela.r_addend = 0;
4323 }
4324 else
4325 {
4326 /* This symbol has been marked to become local, and is
4327 used by a plabel so must be kept in the .plt. */
4328 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4329 rela.r_addend = value;
4330 }
4331
4332 loc = htab->etab.srelplt->contents;
4333 loc += htab->etab.srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4334 bfd_elf32_swap_reloca_out (htab->etab.splt->output_section->owner, &rela, loc);
4335
4336 if (!eh->def_regular)
4337 {
4338 /* Mark the symbol as undefined, rather than as defined in
4339 the .plt section. Leave the value alone. */
4340 sym->st_shndx = SHN_UNDEF;
4341 }
4342 }
4343
4344 if (eh->got.offset != (bfd_vma) -1
4345 && (hppa_elf_hash_entry (eh)->tls_type & GOT_NORMAL) != 0
4346 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
4347 {
4348 bfd_boolean is_dyn = (eh->dynindx != -1
4349 && !SYMBOL_REFERENCES_LOCAL (info, eh));
4350
4351 if (is_dyn || bfd_link_pic (info))
4352 {
4353 /* This symbol has an entry in the global offset table. Set
4354 it up. */
4355
4356 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4357 + htab->etab.sgot->output_offset
4358 + htab->etab.sgot->output_section->vma);
4359
4360 /* If this is a -Bsymbolic link and the symbol is defined
4361 locally or was forced to be local because of a version
4362 file, we just want to emit a RELATIVE reloc. The entry
4363 in the global offset table will already have been
4364 initialized in the relocate_section function. */
4365 if (!is_dyn)
4366 {
4367 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4368 rela.r_addend = (eh->root.u.def.value
4369 + eh->root.u.def.section->output_offset
4370 + eh->root.u.def.section->output_section->vma);
4371 }
4372 else
4373 {
4374 if ((eh->got.offset & 1) != 0)
4375 abort ();
4376
4377 bfd_put_32 (output_bfd, 0,
4378 htab->etab.sgot->contents + (eh->got.offset & ~1));
4379 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4380 rela.r_addend = 0;
4381 }
4382
4383 loc = htab->etab.srelgot->contents;
4384 loc += (htab->etab.srelgot->reloc_count++
4385 * sizeof (Elf32_External_Rela));
4386 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4387 }
4388 }
4389
4390 if (eh->needs_copy)
4391 {
4392 asection *sec;
4393
4394 /* This symbol needs a copy reloc. Set it up. */
4395
4396 if (! (eh->dynindx != -1
4397 && (eh->root.type == bfd_link_hash_defined
4398 || eh->root.type == bfd_link_hash_defweak)))
4399 abort ();
4400
4401 rela.r_offset = (eh->root.u.def.value
4402 + eh->root.u.def.section->output_offset
4403 + eh->root.u.def.section->output_section->vma);
4404 rela.r_addend = 0;
4405 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4406 if (eh->root.u.def.section == htab->etab.sdynrelro)
4407 sec = htab->etab.sreldynrelro;
4408 else
4409 sec = htab->etab.srelbss;
4410 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4411 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4412 }
4413
4414 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4415 if (eh == htab->etab.hdynamic || eh == htab->etab.hgot)
4416 {
4417 sym->st_shndx = SHN_ABS;
4418 }
4419
4420 return TRUE;
4421 }
4422
4423 /* Used to decide how to sort relocs in an optimal manner for the
4424 dynamic linker, before writing them out. */
4425
4426 static enum elf_reloc_type_class
4427 elf32_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4428 const asection *rel_sec ATTRIBUTE_UNUSED,
4429 const Elf_Internal_Rela *rela)
4430 {
4431 /* Handle TLS relocs first; we don't want them to be marked
4432 relative by the "if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)"
4433 check below. */
4434 switch ((int) ELF32_R_TYPE (rela->r_info))
4435 {
4436 case R_PARISC_TLS_DTPMOD32:
4437 case R_PARISC_TLS_DTPOFF32:
4438 case R_PARISC_TLS_TPREL32:
4439 return reloc_class_normal;
4440 }
4441
4442 if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)
4443 return reloc_class_relative;
4444
4445 switch ((int) ELF32_R_TYPE (rela->r_info))
4446 {
4447 case R_PARISC_IPLT:
4448 return reloc_class_plt;
4449 case R_PARISC_COPY:
4450 return reloc_class_copy;
4451 default:
4452 return reloc_class_normal;
4453 }
4454 }
4455
4456 /* Finish up the dynamic sections. */
4457
4458 static bfd_boolean
4459 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4460 struct bfd_link_info *info)
4461 {
4462 bfd *dynobj;
4463 struct elf32_hppa_link_hash_table *htab;
4464 asection *sdyn;
4465 asection * sgot;
4466
4467 htab = hppa_link_hash_table (info);
4468 if (htab == NULL)
4469 return FALSE;
4470
4471 dynobj = htab->etab.dynobj;
4472
4473 sgot = htab->etab.sgot;
4474 /* A broken linker script might have discarded the dynamic sections.
4475 Catch this here so that we do not seg-fault later on. */
4476 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
4477 return FALSE;
4478
4479 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4480
4481 if (htab->etab.dynamic_sections_created)
4482 {
4483 Elf32_External_Dyn *dyncon, *dynconend;
4484
4485 if (sdyn == NULL)
4486 abort ();
4487
4488 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4489 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4490 for (; dyncon < dynconend; dyncon++)
4491 {
4492 Elf_Internal_Dyn dyn;
4493 asection *s;
4494
4495 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4496
4497 switch (dyn.d_tag)
4498 {
4499 default:
4500 continue;
4501
4502 case DT_PLTGOT:
4503 /* Use PLTGOT to set the GOT register. */
4504 dyn.d_un.d_ptr = elf_gp (output_bfd);
4505 break;
4506
4507 case DT_JMPREL:
4508 s = htab->etab.srelplt;
4509 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4510 break;
4511
4512 case DT_PLTRELSZ:
4513 s = htab->etab.srelplt;
4514 dyn.d_un.d_val = s->size;
4515 break;
4516 }
4517
4518 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4519 }
4520 }
4521
4522 if (sgot != NULL && sgot->size != 0)
4523 {
4524 /* Fill in the first entry in the global offset table.
4525 We use it to point to our dynamic section, if we have one. */
4526 bfd_put_32 (output_bfd,
4527 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4528 sgot->contents);
4529
4530 /* The second entry is reserved for use by the dynamic linker. */
4531 memset (sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4532
4533 /* Set .got entry size. */
4534 elf_section_data (sgot->output_section)
4535 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4536 }
4537
4538 if (htab->etab.splt != NULL && htab->etab.splt->size != 0)
4539 {
4540 /* Set plt entry size to 0 instead of PLT_ENTRY_SIZE, since we add the
4541 plt stubs and as such the section does not hold a table of fixed-size
4542 entries. */
4543 elf_section_data (htab->etab.splt->output_section)->this_hdr.sh_entsize = 0;
4544
4545 if (htab->need_plt_stub)
4546 {
4547 /* Set up the .plt stub. */
4548 memcpy (htab->etab.splt->contents
4549 + htab->etab.splt->size - sizeof (plt_stub),
4550 plt_stub, sizeof (plt_stub));
4551
4552 if ((htab->etab.splt->output_offset
4553 + htab->etab.splt->output_section->vma
4554 + htab->etab.splt->size)
4555 != (sgot->output_offset
4556 + sgot->output_section->vma))
4557 {
4558 _bfd_error_handler
4559 (_(".got section not immediately after .plt section"));
4560 return FALSE;
4561 }
4562 }
4563 }
4564
4565 return TRUE;
4566 }
4567
4568 /* Called when writing out an object file to decide the type of a
4569 symbol. */
4570 static int
4571 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4572 {
4573 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4574 return STT_PARISC_MILLI;
4575 else
4576 return type;
4577 }
4578
4579 /* Misc BFD support code. */
4580 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4581 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4582 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4583 #define elf_info_to_howto elf_hppa_info_to_howto
4584 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4585
4586 /* Stuff for the BFD linker. */
4587 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4588 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4589 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4590 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4591 #define elf_backend_check_relocs elf32_hppa_check_relocs
4592 #define elf_backend_relocs_compatible _bfd_elf_relocs_compatible
4593 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4594 #define elf_backend_fake_sections elf_hppa_fake_sections
4595 #define elf_backend_relocate_section elf32_hppa_relocate_section
4596 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4597 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4598 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4599 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4600 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4601 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4602 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4603 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4604 #define elf_backend_object_p elf32_hppa_object_p
4605 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4606 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4607 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4608 #define elf_backend_action_discarded elf_hppa_action_discarded
4609
4610 #define elf_backend_can_gc_sections 1
4611 #define elf_backend_can_refcount 1
4612 #define elf_backend_plt_alignment 2
4613 #define elf_backend_want_got_plt 0
4614 #define elf_backend_plt_readonly 0
4615 #define elf_backend_want_plt_sym 0
4616 #define elf_backend_got_header_size 8
4617 #define elf_backend_want_dynrelro 1
4618 #define elf_backend_rela_normal 1
4619 #define elf_backend_dtrel_excludes_plt 1
4620 #define elf_backend_no_page_alias 1
4621
4622 #define TARGET_BIG_SYM hppa_elf32_vec
4623 #define TARGET_BIG_NAME "elf32-hppa"
4624 #define ELF_ARCH bfd_arch_hppa
4625 #define ELF_TARGET_ID HPPA32_ELF_DATA
4626 #define ELF_MACHINE_CODE EM_PARISC
4627 #define ELF_MAXPAGESIZE 0x1000
4628 #define ELF_OSABI ELFOSABI_HPUX
4629 #define elf32_bed elf32_hppa_hpux_bed
4630
4631 #include "elf32-target.h"
4632
4633 #undef TARGET_BIG_SYM
4634 #define TARGET_BIG_SYM hppa_elf32_linux_vec
4635 #undef TARGET_BIG_NAME
4636 #define TARGET_BIG_NAME "elf32-hppa-linux"
4637 #undef ELF_OSABI
4638 #define ELF_OSABI ELFOSABI_GNU
4639 #undef elf32_bed
4640 #define elf32_bed elf32_hppa_linux_bed
4641
4642 #include "elf32-target.h"
4643
4644 #undef TARGET_BIG_SYM
4645 #define TARGET_BIG_SYM hppa_elf32_nbsd_vec
4646 #undef TARGET_BIG_NAME
4647 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4648 #undef ELF_OSABI
4649 #define ELF_OSABI ELFOSABI_NETBSD
4650 #undef elf32_bed
4651 #define elf32_bed elf32_hppa_netbsd_bed
4652
4653 #include "elf32-target.h"
This page took 0.153473 seconds and 4 git commands to generate.