2009-06-05 Tristan Gingold <gingold@adacore.com>
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 Original code by
7 Center for Software Science
8 Department of Computer Science
9 University of Utah
10 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
11 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
12 TLS support written by Randolph Chung <tausq@debian.org>
13
14 This file is part of BFD, the Binary File Descriptor library.
15
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 3 of the License, or
19 (at your option) any later version.
20
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public License
27 along with this program; if not, write to the Free Software
28 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
29 MA 02110-1301, USA. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "elf-bfd.h"
35 #include "elf/hppa.h"
36 #include "libhppa.h"
37 #include "elf32-hppa.h"
38 #define ARCH_SIZE 32
39 #include "elf32-hppa.h"
40 #include "elf-hppa.h"
41
42 /* In order to gain some understanding of code in this file without
43 knowing all the intricate details of the linker, note the
44 following:
45
46 Functions named elf32_hppa_* are called by external routines, other
47 functions are only called locally. elf32_hppa_* functions appear
48 in this file more or less in the order in which they are called
49 from external routines. eg. elf32_hppa_check_relocs is called
50 early in the link process, elf32_hppa_finish_dynamic_sections is
51 one of the last functions. */
52
53 /* We use two hash tables to hold information for linking PA ELF objects.
54
55 The first is the elf32_hppa_link_hash_table which is derived
56 from the standard ELF linker hash table. We use this as a place to
57 attach other hash tables and static information.
58
59 The second is the stub hash table which is derived from the
60 base BFD hash table. The stub hash table holds the information
61 necessary to build the linker stubs during a link.
62
63 There are a number of different stubs generated by the linker.
64
65 Long branch stub:
66 : ldil LR'X,%r1
67 : be,n RR'X(%sr4,%r1)
68
69 PIC long branch stub:
70 : b,l .+8,%r1
71 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
72 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
73
74 Import stub to call shared library routine from normal object file
75 (single sub-space version)
76 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
77 : ldw RR'lt_ptr+ltoff(%r1),%r21
78 : bv %r0(%r21)
79 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
80
81 Import stub to call shared library routine from shared library
82 (single sub-space version)
83 : addil LR'ltoff,%r19 ; get procedure entry point
84 : ldw RR'ltoff(%r1),%r21
85 : bv %r0(%r21)
86 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
87
88 Import stub to call shared library routine from normal object file
89 (multiple sub-space support)
90 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
91 : ldw RR'lt_ptr+ltoff(%r1),%r21
92 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
93 : ldsid (%r21),%r1
94 : mtsp %r1,%sr0
95 : be 0(%sr0,%r21) ; branch to target
96 : stw %rp,-24(%sp) ; save rp
97
98 Import stub to call shared library routine from shared library
99 (multiple sub-space support)
100 : addil LR'ltoff,%r19 ; get procedure entry point
101 : ldw RR'ltoff(%r1),%r21
102 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
103 : ldsid (%r21),%r1
104 : mtsp %r1,%sr0
105 : be 0(%sr0,%r21) ; branch to target
106 : stw %rp,-24(%sp) ; save rp
107
108 Export stub to return from shared lib routine (multiple sub-space support)
109 One of these is created for each exported procedure in a shared
110 library (and stored in the shared lib). Shared lib routines are
111 called via the first instruction in the export stub so that we can
112 do an inter-space return. Not required for single sub-space.
113 : bl,n X,%rp ; trap the return
114 : nop
115 : ldw -24(%sp),%rp ; restore the original rp
116 : ldsid (%rp),%r1
117 : mtsp %r1,%sr0
118 : be,n 0(%sr0,%rp) ; inter-space return. */
119
120
121 /* Variable names follow a coding style.
122 Please follow this (Apps Hungarian) style:
123
124 Structure/Variable Prefix
125 elf_link_hash_table "etab"
126 elf_link_hash_entry "eh"
127
128 elf32_hppa_link_hash_table "htab"
129 elf32_hppa_link_hash_entry "hh"
130
131 bfd_hash_table "btab"
132 bfd_hash_entry "bh"
133
134 bfd_hash_table containing stubs "bstab"
135 elf32_hppa_stub_hash_entry "hsh"
136
137 elf32_hppa_dyn_reloc_entry "hdh"
138
139 Always remember to use GNU Coding Style. */
140
141 #define PLT_ENTRY_SIZE 8
142 #define GOT_ENTRY_SIZE 4
143 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
144
145 static const bfd_byte plt_stub[] =
146 {
147 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
148 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
149 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
150 #define PLT_STUB_ENTRY (3*4)
151 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
152 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
153 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
154 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
155 };
156
157 /* Section name for stubs is the associated section name plus this
158 string. */
159 #define STUB_SUFFIX ".stub"
160
161 /* We don't need to copy certain PC- or GP-relative dynamic relocs
162 into a shared object's dynamic section. All the relocs of the
163 limited class we are interested in, are absolute. */
164 #ifndef RELATIVE_DYNRELOCS
165 #define RELATIVE_DYNRELOCS 0
166 #define IS_ABSOLUTE_RELOC(r_type) 1
167 #endif
168
169 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
170 copying dynamic variables from a shared lib into an app's dynbss
171 section, and instead use a dynamic relocation to point into the
172 shared lib. */
173 #define ELIMINATE_COPY_RELOCS 1
174
175 enum elf32_hppa_stub_type
176 {
177 hppa_stub_long_branch,
178 hppa_stub_long_branch_shared,
179 hppa_stub_import,
180 hppa_stub_import_shared,
181 hppa_stub_export,
182 hppa_stub_none
183 };
184
185 struct elf32_hppa_stub_hash_entry
186 {
187 /* Base hash table entry structure. */
188 struct bfd_hash_entry bh_root;
189
190 /* The stub section. */
191 asection *stub_sec;
192
193 /* Offset within stub_sec of the beginning of this stub. */
194 bfd_vma stub_offset;
195
196 /* Given the symbol's value and its section we can determine its final
197 value when building the stubs (so the stub knows where to jump. */
198 bfd_vma target_value;
199 asection *target_section;
200
201 enum elf32_hppa_stub_type stub_type;
202
203 /* The symbol table entry, if any, that this was derived from. */
204 struct elf32_hppa_link_hash_entry *hh;
205
206 /* Where this stub is being called from, or, in the case of combined
207 stub sections, the first input section in the group. */
208 asection *id_sec;
209 };
210
211 struct elf32_hppa_link_hash_entry
212 {
213 struct elf_link_hash_entry eh;
214
215 /* A pointer to the most recently used stub hash entry against this
216 symbol. */
217 struct elf32_hppa_stub_hash_entry *hsh_cache;
218
219 /* Used to count relocations for delayed sizing of relocation
220 sections. */
221 struct elf32_hppa_dyn_reloc_entry
222 {
223 /* Next relocation in the chain. */
224 struct elf32_hppa_dyn_reloc_entry *hdh_next;
225
226 /* The input section of the reloc. */
227 asection *sec;
228
229 /* Number of relocs copied in this section. */
230 bfd_size_type count;
231
232 #if RELATIVE_DYNRELOCS
233 /* Number of relative relocs copied for the input section. */
234 bfd_size_type relative_count;
235 #endif
236 } *dyn_relocs;
237
238 enum
239 {
240 GOT_UNKNOWN = 0, GOT_NORMAL = 1, GOT_TLS_GD = 2, GOT_TLS_LDM = 4, GOT_TLS_IE = 8
241 } tls_type;
242
243 /* Set if this symbol is used by a plabel reloc. */
244 unsigned int plabel:1;
245 };
246
247 struct elf32_hppa_link_hash_table
248 {
249 /* The main hash table. */
250 struct elf_link_hash_table etab;
251
252 /* The stub hash table. */
253 struct bfd_hash_table bstab;
254
255 /* Linker stub bfd. */
256 bfd *stub_bfd;
257
258 /* Linker call-backs. */
259 asection * (*add_stub_section) (const char *, asection *);
260 void (*layout_sections_again) (void);
261
262 /* Array to keep track of which stub sections have been created, and
263 information on stub grouping. */
264 struct map_stub
265 {
266 /* This is the section to which stubs in the group will be
267 attached. */
268 asection *link_sec;
269 /* The stub section. */
270 asection *stub_sec;
271 } *stub_group;
272
273 /* Assorted information used by elf32_hppa_size_stubs. */
274 unsigned int bfd_count;
275 int top_index;
276 asection **input_list;
277 Elf_Internal_Sym **all_local_syms;
278
279 /* Short-cuts to get to dynamic linker sections. */
280 asection *sgot;
281 asection *srelgot;
282 asection *splt;
283 asection *srelplt;
284 asection *sdynbss;
285 asection *srelbss;
286
287 /* Used during a final link to store the base of the text and data
288 segments so that we can perform SEGREL relocations. */
289 bfd_vma text_segment_base;
290 bfd_vma data_segment_base;
291
292 /* Whether we support multiple sub-spaces for shared libs. */
293 unsigned int multi_subspace:1;
294
295 /* Flags set when various size branches are detected. Used to
296 select suitable defaults for the stub group size. */
297 unsigned int has_12bit_branch:1;
298 unsigned int has_17bit_branch:1;
299 unsigned int has_22bit_branch:1;
300
301 /* Set if we need a .plt stub to support lazy dynamic linking. */
302 unsigned int need_plt_stub:1;
303
304 /* Small local sym to section mapping cache. */
305 struct sym_sec_cache sym_sec;
306
307 /* Data for LDM relocations. */
308 union
309 {
310 bfd_signed_vma refcount;
311 bfd_vma offset;
312 } tls_ldm_got;
313 };
314
315 /* Various hash macros and functions. */
316 #define hppa_link_hash_table(p) \
317 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
318
319 #define hppa_elf_hash_entry(ent) \
320 ((struct elf32_hppa_link_hash_entry *)(ent))
321
322 #define hppa_stub_hash_entry(ent) \
323 ((struct elf32_hppa_stub_hash_entry *)(ent))
324
325 #define hppa_stub_hash_lookup(table, string, create, copy) \
326 ((struct elf32_hppa_stub_hash_entry *) \
327 bfd_hash_lookup ((table), (string), (create), (copy)))
328
329 #define hppa_elf_local_got_tls_type(abfd) \
330 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
331
332 #define hh_name(hh) \
333 (hh ? hh->eh.root.root.string : "<undef>")
334
335 #define eh_name(eh) \
336 (eh ? eh->root.root.string : "<undef>")
337
338 /* Override the generic function because we want to mark our BFDs. */
339
340 static bfd_boolean
341 elf32_hppa_mkobject (bfd *abfd)
342 {
343 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
344 HPPA_ELF_TDATA);
345 }
346
347 /* Assorted hash table functions. */
348
349 /* Initialize an entry in the stub hash table. */
350
351 static struct bfd_hash_entry *
352 stub_hash_newfunc (struct bfd_hash_entry *entry,
353 struct bfd_hash_table *table,
354 const char *string)
355 {
356 /* Allocate the structure if it has not already been allocated by a
357 subclass. */
358 if (entry == NULL)
359 {
360 entry = bfd_hash_allocate (table,
361 sizeof (struct elf32_hppa_stub_hash_entry));
362 if (entry == NULL)
363 return entry;
364 }
365
366 /* Call the allocation method of the superclass. */
367 entry = bfd_hash_newfunc (entry, table, string);
368 if (entry != NULL)
369 {
370 struct elf32_hppa_stub_hash_entry *hsh;
371
372 /* Initialize the local fields. */
373 hsh = hppa_stub_hash_entry (entry);
374 hsh->stub_sec = NULL;
375 hsh->stub_offset = 0;
376 hsh->target_value = 0;
377 hsh->target_section = NULL;
378 hsh->stub_type = hppa_stub_long_branch;
379 hsh->hh = NULL;
380 hsh->id_sec = NULL;
381 }
382
383 return entry;
384 }
385
386 /* Initialize an entry in the link hash table. */
387
388 static struct bfd_hash_entry *
389 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
390 struct bfd_hash_table *table,
391 const char *string)
392 {
393 /* Allocate the structure if it has not already been allocated by a
394 subclass. */
395 if (entry == NULL)
396 {
397 entry = bfd_hash_allocate (table,
398 sizeof (struct elf32_hppa_link_hash_entry));
399 if (entry == NULL)
400 return entry;
401 }
402
403 /* Call the allocation method of the superclass. */
404 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
405 if (entry != NULL)
406 {
407 struct elf32_hppa_link_hash_entry *hh;
408
409 /* Initialize the local fields. */
410 hh = hppa_elf_hash_entry (entry);
411 hh->hsh_cache = NULL;
412 hh->dyn_relocs = NULL;
413 hh->plabel = 0;
414 hh->tls_type = GOT_UNKNOWN;
415 }
416
417 return entry;
418 }
419
420 /* Create the derived linker hash table. The PA ELF port uses the derived
421 hash table to keep information specific to the PA ELF linker (without
422 using static variables). */
423
424 static struct bfd_link_hash_table *
425 elf32_hppa_link_hash_table_create (bfd *abfd)
426 {
427 struct elf32_hppa_link_hash_table *htab;
428 bfd_size_type amt = sizeof (*htab);
429
430 htab = bfd_malloc (amt);
431 if (htab == NULL)
432 return NULL;
433
434 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
435 sizeof (struct elf32_hppa_link_hash_entry)))
436 {
437 free (htab);
438 return NULL;
439 }
440
441 /* Init the stub hash table too. */
442 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
443 sizeof (struct elf32_hppa_stub_hash_entry)))
444 return NULL;
445
446 htab->stub_bfd = NULL;
447 htab->add_stub_section = NULL;
448 htab->layout_sections_again = NULL;
449 htab->stub_group = NULL;
450 htab->sgot = NULL;
451 htab->srelgot = NULL;
452 htab->splt = NULL;
453 htab->srelplt = NULL;
454 htab->sdynbss = NULL;
455 htab->srelbss = NULL;
456 htab->text_segment_base = (bfd_vma) -1;
457 htab->data_segment_base = (bfd_vma) -1;
458 htab->multi_subspace = 0;
459 htab->has_12bit_branch = 0;
460 htab->has_17bit_branch = 0;
461 htab->has_22bit_branch = 0;
462 htab->need_plt_stub = 0;
463 htab->sym_sec.abfd = NULL;
464 htab->tls_ldm_got.refcount = 0;
465
466 return &htab->etab.root;
467 }
468
469 /* Free the derived linker hash table. */
470
471 static void
472 elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *btab)
473 {
474 struct elf32_hppa_link_hash_table *htab
475 = (struct elf32_hppa_link_hash_table *) btab;
476
477 bfd_hash_table_free (&htab->bstab);
478 _bfd_generic_link_hash_table_free (btab);
479 }
480
481 /* Build a name for an entry in the stub hash table. */
482
483 static char *
484 hppa_stub_name (const asection *input_section,
485 const asection *sym_sec,
486 const struct elf32_hppa_link_hash_entry *hh,
487 const Elf_Internal_Rela *rela)
488 {
489 char *stub_name;
490 bfd_size_type len;
491
492 if (hh)
493 {
494 len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
495 stub_name = bfd_malloc (len);
496 if (stub_name != NULL)
497 sprintf (stub_name, "%08x_%s+%x",
498 input_section->id & 0xffffffff,
499 hh_name (hh),
500 (int) rela->r_addend & 0xffffffff);
501 }
502 else
503 {
504 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
505 stub_name = bfd_malloc (len);
506 if (stub_name != NULL)
507 sprintf (stub_name, "%08x_%x:%x+%x",
508 input_section->id & 0xffffffff,
509 sym_sec->id & 0xffffffff,
510 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
511 (int) rela->r_addend & 0xffffffff);
512 }
513 return stub_name;
514 }
515
516 /* Look up an entry in the stub hash. Stub entries are cached because
517 creating the stub name takes a bit of time. */
518
519 static struct elf32_hppa_stub_hash_entry *
520 hppa_get_stub_entry (const asection *input_section,
521 const asection *sym_sec,
522 struct elf32_hppa_link_hash_entry *hh,
523 const Elf_Internal_Rela *rela,
524 struct elf32_hppa_link_hash_table *htab)
525 {
526 struct elf32_hppa_stub_hash_entry *hsh_entry;
527 const asection *id_sec;
528
529 /* If this input section is part of a group of sections sharing one
530 stub section, then use the id of the first section in the group.
531 Stub names need to include a section id, as there may well be
532 more than one stub used to reach say, printf, and we need to
533 distinguish between them. */
534 id_sec = htab->stub_group[input_section->id].link_sec;
535
536 if (hh != NULL && hh->hsh_cache != NULL
537 && hh->hsh_cache->hh == hh
538 && hh->hsh_cache->id_sec == id_sec)
539 {
540 hsh_entry = hh->hsh_cache;
541 }
542 else
543 {
544 char *stub_name;
545
546 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
547 if (stub_name == NULL)
548 return NULL;
549
550 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
551 stub_name, FALSE, FALSE);
552 if (hh != NULL)
553 hh->hsh_cache = hsh_entry;
554
555 free (stub_name);
556 }
557
558 return hsh_entry;
559 }
560
561 /* Add a new stub entry to the stub hash. Not all fields of the new
562 stub entry are initialised. */
563
564 static struct elf32_hppa_stub_hash_entry *
565 hppa_add_stub (const char *stub_name,
566 asection *section,
567 struct elf32_hppa_link_hash_table *htab)
568 {
569 asection *link_sec;
570 asection *stub_sec;
571 struct elf32_hppa_stub_hash_entry *hsh;
572
573 link_sec = htab->stub_group[section->id].link_sec;
574 stub_sec = htab->stub_group[section->id].stub_sec;
575 if (stub_sec == NULL)
576 {
577 stub_sec = htab->stub_group[link_sec->id].stub_sec;
578 if (stub_sec == NULL)
579 {
580 size_t namelen;
581 bfd_size_type len;
582 char *s_name;
583
584 namelen = strlen (link_sec->name);
585 len = namelen + sizeof (STUB_SUFFIX);
586 s_name = bfd_alloc (htab->stub_bfd, len);
587 if (s_name == NULL)
588 return NULL;
589
590 memcpy (s_name, link_sec->name, namelen);
591 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
592 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
593 if (stub_sec == NULL)
594 return NULL;
595 htab->stub_group[link_sec->id].stub_sec = stub_sec;
596 }
597 htab->stub_group[section->id].stub_sec = stub_sec;
598 }
599
600 /* Enter this entry into the linker stub hash table. */
601 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
602 TRUE, FALSE);
603 if (hsh == NULL)
604 {
605 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
606 section->owner,
607 stub_name);
608 return NULL;
609 }
610
611 hsh->stub_sec = stub_sec;
612 hsh->stub_offset = 0;
613 hsh->id_sec = link_sec;
614 return hsh;
615 }
616
617 /* Determine the type of stub needed, if any, for a call. */
618
619 static enum elf32_hppa_stub_type
620 hppa_type_of_stub (asection *input_sec,
621 const Elf_Internal_Rela *rela,
622 struct elf32_hppa_link_hash_entry *hh,
623 bfd_vma destination,
624 struct bfd_link_info *info)
625 {
626 bfd_vma location;
627 bfd_vma branch_offset;
628 bfd_vma max_branch_offset;
629 unsigned int r_type;
630
631 if (hh != NULL
632 && hh->eh.plt.offset != (bfd_vma) -1
633 && hh->eh.dynindx != -1
634 && !hh->plabel
635 && (info->shared
636 || !hh->eh.def_regular
637 || hh->eh.root.type == bfd_link_hash_defweak))
638 {
639 /* We need an import stub. Decide between hppa_stub_import
640 and hppa_stub_import_shared later. */
641 return hppa_stub_import;
642 }
643
644 /* Determine where the call point is. */
645 location = (input_sec->output_offset
646 + input_sec->output_section->vma
647 + rela->r_offset);
648
649 branch_offset = destination - location - 8;
650 r_type = ELF32_R_TYPE (rela->r_info);
651
652 /* Determine if a long branch stub is needed. parisc branch offsets
653 are relative to the second instruction past the branch, ie. +8
654 bytes on from the branch instruction location. The offset is
655 signed and counts in units of 4 bytes. */
656 if (r_type == (unsigned int) R_PARISC_PCREL17F)
657 max_branch_offset = (1 << (17 - 1)) << 2;
658
659 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
660 max_branch_offset = (1 << (12 - 1)) << 2;
661
662 else /* R_PARISC_PCREL22F. */
663 max_branch_offset = (1 << (22 - 1)) << 2;
664
665 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
666 return hppa_stub_long_branch;
667
668 return hppa_stub_none;
669 }
670
671 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
672 IN_ARG contains the link info pointer. */
673
674 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
675 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
676
677 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
678 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
679 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
680
681 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
682 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
683 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
684 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
685
686 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
687 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
688
689 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
690 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
691 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
692 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
693
694 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
695 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
696 #define NOP 0x08000240 /* nop */
697 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
698 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
699 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
700
701 #ifndef R19_STUBS
702 #define R19_STUBS 1
703 #endif
704
705 #if R19_STUBS
706 #define LDW_R1_DLT LDW_R1_R19
707 #else
708 #define LDW_R1_DLT LDW_R1_DP
709 #endif
710
711 static bfd_boolean
712 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
713 {
714 struct elf32_hppa_stub_hash_entry *hsh;
715 struct bfd_link_info *info;
716 struct elf32_hppa_link_hash_table *htab;
717 asection *stub_sec;
718 bfd *stub_bfd;
719 bfd_byte *loc;
720 bfd_vma sym_value;
721 bfd_vma insn;
722 bfd_vma off;
723 int val;
724 int size;
725
726 /* Massage our args to the form they really have. */
727 hsh = hppa_stub_hash_entry (bh);
728 info = (struct bfd_link_info *)in_arg;
729
730 htab = hppa_link_hash_table (info);
731 stub_sec = hsh->stub_sec;
732
733 /* Make a note of the offset within the stubs for this entry. */
734 hsh->stub_offset = stub_sec->size;
735 loc = stub_sec->contents + hsh->stub_offset;
736
737 stub_bfd = stub_sec->owner;
738
739 switch (hsh->stub_type)
740 {
741 case hppa_stub_long_branch:
742 /* Create the long branch. A long branch is formed with "ldil"
743 loading the upper bits of the target address into a register,
744 then branching with "be" which adds in the lower bits.
745 The "be" has its delay slot nullified. */
746 sym_value = (hsh->target_value
747 + hsh->target_section->output_offset
748 + hsh->target_section->output_section->vma);
749
750 val = hppa_field_adjust (sym_value, 0, e_lrsel);
751 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
752 bfd_put_32 (stub_bfd, insn, loc);
753
754 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
755 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
756 bfd_put_32 (stub_bfd, insn, loc + 4);
757
758 size = 8;
759 break;
760
761 case hppa_stub_long_branch_shared:
762 /* Branches are relative. This is where we are going to. */
763 sym_value = (hsh->target_value
764 + hsh->target_section->output_offset
765 + hsh->target_section->output_section->vma);
766
767 /* And this is where we are coming from, more or less. */
768 sym_value -= (hsh->stub_offset
769 + stub_sec->output_offset
770 + stub_sec->output_section->vma);
771
772 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
773 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
774 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
775 bfd_put_32 (stub_bfd, insn, loc + 4);
776
777 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
778 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
779 bfd_put_32 (stub_bfd, insn, loc + 8);
780 size = 12;
781 break;
782
783 case hppa_stub_import:
784 case hppa_stub_import_shared:
785 off = hsh->hh->eh.plt.offset;
786 if (off >= (bfd_vma) -2)
787 abort ();
788
789 off &= ~ (bfd_vma) 1;
790 sym_value = (off
791 + htab->splt->output_offset
792 + htab->splt->output_section->vma
793 - elf_gp (htab->splt->output_section->owner));
794
795 insn = ADDIL_DP;
796 #if R19_STUBS
797 if (hsh->stub_type == hppa_stub_import_shared)
798 insn = ADDIL_R19;
799 #endif
800 val = hppa_field_adjust (sym_value, 0, e_lrsel),
801 insn = hppa_rebuild_insn ((int) insn, val, 21);
802 bfd_put_32 (stub_bfd, insn, loc);
803
804 /* It is critical to use lrsel/rrsel here because we are using
805 two different offsets (+0 and +4) from sym_value. If we use
806 lsel/rsel then with unfortunate sym_values we will round
807 sym_value+4 up to the next 2k block leading to a mis-match
808 between the lsel and rsel value. */
809 val = hppa_field_adjust (sym_value, 0, e_rrsel);
810 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
811 bfd_put_32 (stub_bfd, insn, loc + 4);
812
813 if (htab->multi_subspace)
814 {
815 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
816 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
817 bfd_put_32 (stub_bfd, insn, loc + 8);
818
819 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
820 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
821 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
822 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
823
824 size = 28;
825 }
826 else
827 {
828 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
829 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
830 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
831 bfd_put_32 (stub_bfd, insn, loc + 12);
832
833 size = 16;
834 }
835
836 break;
837
838 case hppa_stub_export:
839 /* Branches are relative. This is where we are going to. */
840 sym_value = (hsh->target_value
841 + hsh->target_section->output_offset
842 + hsh->target_section->output_section->vma);
843
844 /* And this is where we are coming from. */
845 sym_value -= (hsh->stub_offset
846 + stub_sec->output_offset
847 + stub_sec->output_section->vma);
848
849 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
850 && (!htab->has_22bit_branch
851 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
852 {
853 (*_bfd_error_handler)
854 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
855 hsh->target_section->owner,
856 stub_sec,
857 (long) hsh->stub_offset,
858 hsh->bh_root.string);
859 bfd_set_error (bfd_error_bad_value);
860 return FALSE;
861 }
862
863 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
864 if (!htab->has_22bit_branch)
865 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
866 else
867 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
868 bfd_put_32 (stub_bfd, insn, loc);
869
870 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
871 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
872 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
873 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
874 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
875
876 /* Point the function symbol at the stub. */
877 hsh->hh->eh.root.u.def.section = stub_sec;
878 hsh->hh->eh.root.u.def.value = stub_sec->size;
879
880 size = 24;
881 break;
882
883 default:
884 BFD_FAIL ();
885 return FALSE;
886 }
887
888 stub_sec->size += size;
889 return TRUE;
890 }
891
892 #undef LDIL_R1
893 #undef BE_SR4_R1
894 #undef BL_R1
895 #undef ADDIL_R1
896 #undef DEPI_R1
897 #undef LDW_R1_R21
898 #undef LDW_R1_DLT
899 #undef LDW_R1_R19
900 #undef ADDIL_R19
901 #undef LDW_R1_DP
902 #undef LDSID_R21_R1
903 #undef MTSP_R1
904 #undef BE_SR0_R21
905 #undef STW_RP
906 #undef BV_R0_R21
907 #undef BL_RP
908 #undef NOP
909 #undef LDW_RP
910 #undef LDSID_RP_R1
911 #undef BE_SR0_RP
912
913 /* As above, but don't actually build the stub. Just bump offset so
914 we know stub section sizes. */
915
916 static bfd_boolean
917 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
918 {
919 struct elf32_hppa_stub_hash_entry *hsh;
920 struct elf32_hppa_link_hash_table *htab;
921 int size;
922
923 /* Massage our args to the form they really have. */
924 hsh = hppa_stub_hash_entry (bh);
925 htab = in_arg;
926
927 if (hsh->stub_type == hppa_stub_long_branch)
928 size = 8;
929 else if (hsh->stub_type == hppa_stub_long_branch_shared)
930 size = 12;
931 else if (hsh->stub_type == hppa_stub_export)
932 size = 24;
933 else /* hppa_stub_import or hppa_stub_import_shared. */
934 {
935 if (htab->multi_subspace)
936 size = 28;
937 else
938 size = 16;
939 }
940
941 hsh->stub_sec->size += size;
942 return TRUE;
943 }
944
945 /* Return nonzero if ABFD represents an HPPA ELF32 file.
946 Additionally we set the default architecture and machine. */
947
948 static bfd_boolean
949 elf32_hppa_object_p (bfd *abfd)
950 {
951 Elf_Internal_Ehdr * i_ehdrp;
952 unsigned int flags;
953
954 i_ehdrp = elf_elfheader (abfd);
955 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
956 {
957 /* GCC on hppa-linux produces binaries with OSABI=Linux,
958 but the kernel produces corefiles with OSABI=SysV. */
959 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX &&
960 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
961 return FALSE;
962 }
963 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
964 {
965 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
966 but the kernel produces corefiles with OSABI=SysV. */
967 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
968 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
969 return FALSE;
970 }
971 else
972 {
973 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
974 return FALSE;
975 }
976
977 flags = i_ehdrp->e_flags;
978 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
979 {
980 case EFA_PARISC_1_0:
981 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
982 case EFA_PARISC_1_1:
983 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
984 case EFA_PARISC_2_0:
985 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
986 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
987 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
988 }
989 return TRUE;
990 }
991
992 /* Create the .plt and .got sections, and set up our hash table
993 short-cuts to various dynamic sections. */
994
995 static bfd_boolean
996 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
997 {
998 struct elf32_hppa_link_hash_table *htab;
999 struct elf_link_hash_entry *eh;
1000
1001 /* Don't try to create the .plt and .got twice. */
1002 htab = hppa_link_hash_table (info);
1003 if (htab->splt != NULL)
1004 return TRUE;
1005
1006 /* Call the generic code to do most of the work. */
1007 if (! _bfd_elf_create_dynamic_sections (abfd, info))
1008 return FALSE;
1009
1010 htab->splt = bfd_get_section_by_name (abfd, ".plt");
1011 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
1012
1013 htab->sgot = bfd_get_section_by_name (abfd, ".got");
1014 htab->srelgot = bfd_make_section_with_flags (abfd, ".rela.got",
1015 (SEC_ALLOC
1016 | SEC_LOAD
1017 | SEC_HAS_CONTENTS
1018 | SEC_IN_MEMORY
1019 | SEC_LINKER_CREATED
1020 | SEC_READONLY));
1021 if (htab->srelgot == NULL
1022 || ! bfd_set_section_alignment (abfd, htab->srelgot, 2))
1023 return FALSE;
1024
1025 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
1026 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
1027
1028 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
1029 application, because __canonicalize_funcptr_for_compare needs it. */
1030 eh = elf_hash_table (info)->hgot;
1031 eh->forced_local = 0;
1032 eh->other = STV_DEFAULT;
1033 return bfd_elf_link_record_dynamic_symbol (info, eh);
1034 }
1035
1036 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1037
1038 static void
1039 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1040 struct elf_link_hash_entry *eh_dir,
1041 struct elf_link_hash_entry *eh_ind)
1042 {
1043 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1044
1045 hh_dir = hppa_elf_hash_entry (eh_dir);
1046 hh_ind = hppa_elf_hash_entry (eh_ind);
1047
1048 if (hh_ind->dyn_relocs != NULL)
1049 {
1050 if (hh_dir->dyn_relocs != NULL)
1051 {
1052 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1053 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1054
1055 /* Add reloc counts against the indirect sym to the direct sym
1056 list. Merge any entries against the same section. */
1057 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1058 {
1059 struct elf32_hppa_dyn_reloc_entry *hdh_q;
1060
1061 for (hdh_q = hh_dir->dyn_relocs;
1062 hdh_q != NULL;
1063 hdh_q = hdh_q->hdh_next)
1064 if (hdh_q->sec == hdh_p->sec)
1065 {
1066 #if RELATIVE_DYNRELOCS
1067 hdh_q->relative_count += hdh_p->relative_count;
1068 #endif
1069 hdh_q->count += hdh_p->count;
1070 *hdh_pp = hdh_p->hdh_next;
1071 break;
1072 }
1073 if (hdh_q == NULL)
1074 hdh_pp = &hdh_p->hdh_next;
1075 }
1076 *hdh_pp = hh_dir->dyn_relocs;
1077 }
1078
1079 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1080 hh_ind->dyn_relocs = NULL;
1081 }
1082
1083 if (ELIMINATE_COPY_RELOCS
1084 && eh_ind->root.type != bfd_link_hash_indirect
1085 && eh_dir->dynamic_adjusted)
1086 {
1087 /* If called to transfer flags for a weakdef during processing
1088 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1089 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1090 eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
1091 eh_dir->ref_regular |= eh_ind->ref_regular;
1092 eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
1093 eh_dir->needs_plt |= eh_ind->needs_plt;
1094 }
1095 else
1096 {
1097 if (eh_ind->root.type == bfd_link_hash_indirect
1098 && eh_dir->got.refcount <= 0)
1099 {
1100 hh_dir->tls_type = hh_ind->tls_type;
1101 hh_ind->tls_type = GOT_UNKNOWN;
1102 }
1103
1104 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1105 }
1106 }
1107
1108 static int
1109 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1110 int r_type, int is_local ATTRIBUTE_UNUSED)
1111 {
1112 /* For now we don't support linker optimizations. */
1113 return r_type;
1114 }
1115
1116 /* Return a pointer to the local GOT, PLT and TLS reference counts
1117 for ABFD. Returns NULL if the storage allocation fails. */
1118
1119 static bfd_signed_vma *
1120 hppa32_elf_local_refcounts (bfd *abfd)
1121 {
1122 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1123 bfd_signed_vma *local_refcounts;
1124
1125 local_refcounts = elf_local_got_refcounts (abfd);
1126 if (local_refcounts == NULL)
1127 {
1128 bfd_size_type size;
1129
1130 /* Allocate space for local GOT and PLT reference
1131 counts. Done this way to save polluting elf_obj_tdata
1132 with another target specific pointer. */
1133 size = symtab_hdr->sh_info;
1134 size *= 2 * sizeof (bfd_signed_vma);
1135 /* Add in space to store the local GOT TLS types. */
1136 size += symtab_hdr->sh_info;
1137 local_refcounts = bfd_zalloc (abfd, size);
1138 if (local_refcounts == NULL)
1139 return NULL;
1140 elf_local_got_refcounts (abfd) = local_refcounts;
1141 memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN,
1142 symtab_hdr->sh_info);
1143 }
1144 return local_refcounts;
1145 }
1146
1147
1148 /* Look through the relocs for a section during the first phase, and
1149 calculate needed space in the global offset table, procedure linkage
1150 table, and dynamic reloc sections. At this point we haven't
1151 necessarily read all the input files. */
1152
1153 static bfd_boolean
1154 elf32_hppa_check_relocs (bfd *abfd,
1155 struct bfd_link_info *info,
1156 asection *sec,
1157 const Elf_Internal_Rela *relocs)
1158 {
1159 Elf_Internal_Shdr *symtab_hdr;
1160 struct elf_link_hash_entry **eh_syms;
1161 const Elf_Internal_Rela *rela;
1162 const Elf_Internal_Rela *rela_end;
1163 struct elf32_hppa_link_hash_table *htab;
1164 asection *sreloc;
1165 asection *stubreloc;
1166 int tls_type = GOT_UNKNOWN, old_tls_type = GOT_UNKNOWN;
1167
1168 if (info->relocatable)
1169 return TRUE;
1170
1171 htab = hppa_link_hash_table (info);
1172 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1173 eh_syms = elf_sym_hashes (abfd);
1174 sreloc = NULL;
1175 stubreloc = NULL;
1176
1177 rela_end = relocs + sec->reloc_count;
1178 for (rela = relocs; rela < rela_end; rela++)
1179 {
1180 enum {
1181 NEED_GOT = 1,
1182 NEED_PLT = 2,
1183 NEED_DYNREL = 4,
1184 PLT_PLABEL = 8
1185 };
1186
1187 unsigned int r_symndx, r_type;
1188 struct elf32_hppa_link_hash_entry *hh;
1189 int need_entry = 0;
1190
1191 r_symndx = ELF32_R_SYM (rela->r_info);
1192
1193 if (r_symndx < symtab_hdr->sh_info)
1194 hh = NULL;
1195 else
1196 {
1197 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1198 while (hh->eh.root.type == bfd_link_hash_indirect
1199 || hh->eh.root.type == bfd_link_hash_warning)
1200 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1201 }
1202
1203 r_type = ELF32_R_TYPE (rela->r_info);
1204 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1205
1206 switch (r_type)
1207 {
1208 case R_PARISC_DLTIND14F:
1209 case R_PARISC_DLTIND14R:
1210 case R_PARISC_DLTIND21L:
1211 /* This symbol requires a global offset table entry. */
1212 need_entry = NEED_GOT;
1213 break;
1214
1215 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1216 case R_PARISC_PLABEL21L:
1217 case R_PARISC_PLABEL32:
1218 /* If the addend is non-zero, we break badly. */
1219 if (rela->r_addend != 0)
1220 abort ();
1221
1222 /* If we are creating a shared library, then we need to
1223 create a PLT entry for all PLABELs, because PLABELs with
1224 local symbols may be passed via a pointer to another
1225 object. Additionally, output a dynamic relocation
1226 pointing to the PLT entry.
1227
1228 For executables, the original 32-bit ABI allowed two
1229 different styles of PLABELs (function pointers): For
1230 global functions, the PLABEL word points into the .plt
1231 two bytes past a (function address, gp) pair, and for
1232 local functions the PLABEL points directly at the
1233 function. The magic +2 for the first type allows us to
1234 differentiate between the two. As you can imagine, this
1235 is a real pain when it comes to generating code to call
1236 functions indirectly or to compare function pointers.
1237 We avoid the mess by always pointing a PLABEL into the
1238 .plt, even for local functions. */
1239 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1240 break;
1241
1242 case R_PARISC_PCREL12F:
1243 htab->has_12bit_branch = 1;
1244 goto branch_common;
1245
1246 case R_PARISC_PCREL17C:
1247 case R_PARISC_PCREL17F:
1248 htab->has_17bit_branch = 1;
1249 goto branch_common;
1250
1251 case R_PARISC_PCREL22F:
1252 htab->has_22bit_branch = 1;
1253 branch_common:
1254 /* Function calls might need to go through the .plt, and
1255 might require long branch stubs. */
1256 if (hh == NULL)
1257 {
1258 /* We know local syms won't need a .plt entry, and if
1259 they need a long branch stub we can't guarantee that
1260 we can reach the stub. So just flag an error later
1261 if we're doing a shared link and find we need a long
1262 branch stub. */
1263 continue;
1264 }
1265 else
1266 {
1267 /* Global symbols will need a .plt entry if they remain
1268 global, and in most cases won't need a long branch
1269 stub. Unfortunately, we have to cater for the case
1270 where a symbol is forced local by versioning, or due
1271 to symbolic linking, and we lose the .plt entry. */
1272 need_entry = NEED_PLT;
1273 if (hh->eh.type == STT_PARISC_MILLI)
1274 need_entry = 0;
1275 }
1276 break;
1277
1278 case R_PARISC_SEGBASE: /* Used to set segment base. */
1279 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1280 case R_PARISC_PCREL14F: /* PC relative load/store. */
1281 case R_PARISC_PCREL14R:
1282 case R_PARISC_PCREL17R: /* External branches. */
1283 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1284 case R_PARISC_PCREL32:
1285 /* We don't need to propagate the relocation if linking a
1286 shared object since these are section relative. */
1287 continue;
1288
1289 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1290 case R_PARISC_DPREL14R:
1291 case R_PARISC_DPREL21L:
1292 if (info->shared)
1293 {
1294 (*_bfd_error_handler)
1295 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1296 abfd,
1297 elf_hppa_howto_table[r_type].name);
1298 bfd_set_error (bfd_error_bad_value);
1299 return FALSE;
1300 }
1301 /* Fall through. */
1302
1303 case R_PARISC_DIR17F: /* Used for external branches. */
1304 case R_PARISC_DIR17R:
1305 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1306 case R_PARISC_DIR14R:
1307 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1308 case R_PARISC_DIR32: /* .word relocs. */
1309 /* We may want to output a dynamic relocation later. */
1310 need_entry = NEED_DYNREL;
1311 break;
1312
1313 /* This relocation describes the C++ object vtable hierarchy.
1314 Reconstruct it for later use during GC. */
1315 case R_PARISC_GNU_VTINHERIT:
1316 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1317 return FALSE;
1318 continue;
1319
1320 /* This relocation describes which C++ vtable entries are actually
1321 used. Record for later use during GC. */
1322 case R_PARISC_GNU_VTENTRY:
1323 BFD_ASSERT (hh != NULL);
1324 if (hh != NULL
1325 && !bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1326 return FALSE;
1327 continue;
1328
1329 case R_PARISC_TLS_GD21L:
1330 case R_PARISC_TLS_GD14R:
1331 case R_PARISC_TLS_LDM21L:
1332 case R_PARISC_TLS_LDM14R:
1333 need_entry = NEED_GOT;
1334 break;
1335
1336 case R_PARISC_TLS_IE21L:
1337 case R_PARISC_TLS_IE14R:
1338 if (info->shared)
1339 info->flags |= DF_STATIC_TLS;
1340 need_entry = NEED_GOT;
1341 break;
1342
1343 default:
1344 continue;
1345 }
1346
1347 /* Now carry out our orders. */
1348 if (need_entry & NEED_GOT)
1349 {
1350 switch (r_type)
1351 {
1352 default:
1353 tls_type = GOT_NORMAL;
1354 break;
1355 case R_PARISC_TLS_GD21L:
1356 case R_PARISC_TLS_GD14R:
1357 tls_type |= GOT_TLS_GD;
1358 break;
1359 case R_PARISC_TLS_LDM21L:
1360 case R_PARISC_TLS_LDM14R:
1361 tls_type |= GOT_TLS_LDM;
1362 break;
1363 case R_PARISC_TLS_IE21L:
1364 case R_PARISC_TLS_IE14R:
1365 tls_type |= GOT_TLS_IE;
1366 break;
1367 }
1368
1369 /* Allocate space for a GOT entry, as well as a dynamic
1370 relocation for this entry. */
1371 if (htab->sgot == NULL)
1372 {
1373 if (htab->etab.dynobj == NULL)
1374 htab->etab.dynobj = abfd;
1375 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1376 return FALSE;
1377 }
1378
1379 if (r_type == R_PARISC_TLS_LDM21L
1380 || r_type == R_PARISC_TLS_LDM14R)
1381 hppa_link_hash_table (info)->tls_ldm_got.refcount += 1;
1382 else
1383 {
1384 if (hh != NULL)
1385 {
1386 hh->eh.got.refcount += 1;
1387 old_tls_type = hh->tls_type;
1388 }
1389 else
1390 {
1391 bfd_signed_vma *local_got_refcounts;
1392
1393 /* This is a global offset table entry for a local symbol. */
1394 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1395 if (local_got_refcounts == NULL)
1396 return FALSE;
1397 local_got_refcounts[r_symndx] += 1;
1398
1399 old_tls_type = hppa_elf_local_got_tls_type (abfd) [r_symndx];
1400 }
1401
1402 tls_type |= old_tls_type;
1403
1404 if (old_tls_type != tls_type)
1405 {
1406 if (hh != NULL)
1407 hh->tls_type = tls_type;
1408 else
1409 hppa_elf_local_got_tls_type (abfd) [r_symndx] = tls_type;
1410 }
1411
1412 }
1413 }
1414
1415 if (need_entry & NEED_PLT)
1416 {
1417 /* If we are creating a shared library, and this is a reloc
1418 against a weak symbol or a global symbol in a dynamic
1419 object, then we will be creating an import stub and a
1420 .plt entry for the symbol. Similarly, on a normal link
1421 to symbols defined in a dynamic object we'll need the
1422 import stub and a .plt entry. We don't know yet whether
1423 the symbol is defined or not, so make an entry anyway and
1424 clean up later in adjust_dynamic_symbol. */
1425 if ((sec->flags & SEC_ALLOC) != 0)
1426 {
1427 if (hh != NULL)
1428 {
1429 hh->eh.needs_plt = 1;
1430 hh->eh.plt.refcount += 1;
1431
1432 /* If this .plt entry is for a plabel, mark it so
1433 that adjust_dynamic_symbol will keep the entry
1434 even if it appears to be local. */
1435 if (need_entry & PLT_PLABEL)
1436 hh->plabel = 1;
1437 }
1438 else if (need_entry & PLT_PLABEL)
1439 {
1440 bfd_signed_vma *local_got_refcounts;
1441 bfd_signed_vma *local_plt_refcounts;
1442
1443 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1444 if (local_got_refcounts == NULL)
1445 return FALSE;
1446 local_plt_refcounts = (local_got_refcounts
1447 + symtab_hdr->sh_info);
1448 local_plt_refcounts[r_symndx] += 1;
1449 }
1450 }
1451 }
1452
1453 if (need_entry & NEED_DYNREL)
1454 {
1455 /* Flag this symbol as having a non-got, non-plt reference
1456 so that we generate copy relocs if it turns out to be
1457 dynamic. */
1458 if (hh != NULL && !info->shared)
1459 hh->eh.non_got_ref = 1;
1460
1461 /* If we are creating a shared library then we need to copy
1462 the reloc into the shared library. However, if we are
1463 linking with -Bsymbolic, we need only copy absolute
1464 relocs or relocs against symbols that are not defined in
1465 an object we are including in the link. PC- or DP- or
1466 DLT-relative relocs against any local sym or global sym
1467 with DEF_REGULAR set, can be discarded. At this point we
1468 have not seen all the input files, so it is possible that
1469 DEF_REGULAR is not set now but will be set later (it is
1470 never cleared). We account for that possibility below by
1471 storing information in the dyn_relocs field of the
1472 hash table entry.
1473
1474 A similar situation to the -Bsymbolic case occurs when
1475 creating shared libraries and symbol visibility changes
1476 render the symbol local.
1477
1478 As it turns out, all the relocs we will be creating here
1479 are absolute, so we cannot remove them on -Bsymbolic
1480 links or visibility changes anyway. A STUB_REL reloc
1481 is absolute too, as in that case it is the reloc in the
1482 stub we will be creating, rather than copying the PCREL
1483 reloc in the branch.
1484
1485 If on the other hand, we are creating an executable, we
1486 may need to keep relocations for symbols satisfied by a
1487 dynamic library if we manage to avoid copy relocs for the
1488 symbol. */
1489 if ((info->shared
1490 && (sec->flags & SEC_ALLOC) != 0
1491 && (IS_ABSOLUTE_RELOC (r_type)
1492 || (hh != NULL
1493 && (!info->symbolic
1494 || hh->eh.root.type == bfd_link_hash_defweak
1495 || !hh->eh.def_regular))))
1496 || (ELIMINATE_COPY_RELOCS
1497 && !info->shared
1498 && (sec->flags & SEC_ALLOC) != 0
1499 && hh != NULL
1500 && (hh->eh.root.type == bfd_link_hash_defweak
1501 || !hh->eh.def_regular)))
1502 {
1503 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1504 struct elf32_hppa_dyn_reloc_entry **hdh_head;
1505
1506 /* Create a reloc section in dynobj and make room for
1507 this reloc. */
1508 if (sreloc == NULL)
1509 {
1510 if (htab->etab.dynobj == NULL)
1511 htab->etab.dynobj = abfd;
1512
1513 sreloc = _bfd_elf_make_dynamic_reloc_section
1514 (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
1515
1516 if (sreloc == NULL)
1517 {
1518 bfd_set_error (bfd_error_bad_value);
1519 return FALSE;
1520 }
1521 }
1522
1523 /* If this is a global symbol, we count the number of
1524 relocations we need for this symbol. */
1525 if (hh != NULL)
1526 {
1527 hdh_head = &hh->dyn_relocs;
1528 }
1529 else
1530 {
1531 /* Track dynamic relocs needed for local syms too.
1532 We really need local syms available to do this
1533 easily. Oh well. */
1534
1535 asection *sr;
1536 void *vpp;
1537
1538 sr = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1539 sec, r_symndx);
1540 if (sr == NULL)
1541 return FALSE;
1542
1543 vpp = &elf_section_data (sr)->local_dynrel;
1544 hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp;
1545 }
1546
1547 hdh_p = *hdh_head;
1548 if (hdh_p == NULL || hdh_p->sec != sec)
1549 {
1550 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1551 if (hdh_p == NULL)
1552 return FALSE;
1553 hdh_p->hdh_next = *hdh_head;
1554 *hdh_head = hdh_p;
1555 hdh_p->sec = sec;
1556 hdh_p->count = 0;
1557 #if RELATIVE_DYNRELOCS
1558 hdh_p->relative_count = 0;
1559 #endif
1560 }
1561
1562 hdh_p->count += 1;
1563 #if RELATIVE_DYNRELOCS
1564 if (!IS_ABSOLUTE_RELOC (rtype))
1565 hdh_p->relative_count += 1;
1566 #endif
1567 }
1568 }
1569 }
1570
1571 return TRUE;
1572 }
1573
1574 /* Return the section that should be marked against garbage collection
1575 for a given relocation. */
1576
1577 static asection *
1578 elf32_hppa_gc_mark_hook (asection *sec,
1579 struct bfd_link_info *info,
1580 Elf_Internal_Rela *rela,
1581 struct elf_link_hash_entry *hh,
1582 Elf_Internal_Sym *sym)
1583 {
1584 if (hh != NULL)
1585 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1586 {
1587 case R_PARISC_GNU_VTINHERIT:
1588 case R_PARISC_GNU_VTENTRY:
1589 return NULL;
1590 }
1591
1592 return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1593 }
1594
1595 /* Update the got and plt entry reference counts for the section being
1596 removed. */
1597
1598 static bfd_boolean
1599 elf32_hppa_gc_sweep_hook (bfd *abfd,
1600 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1601 asection *sec,
1602 const Elf_Internal_Rela *relocs)
1603 {
1604 Elf_Internal_Shdr *symtab_hdr;
1605 struct elf_link_hash_entry **eh_syms;
1606 bfd_signed_vma *local_got_refcounts;
1607 bfd_signed_vma *local_plt_refcounts;
1608 const Elf_Internal_Rela *rela, *relend;
1609
1610 if (info->relocatable)
1611 return TRUE;
1612
1613 elf_section_data (sec)->local_dynrel = NULL;
1614
1615 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1616 eh_syms = elf_sym_hashes (abfd);
1617 local_got_refcounts = elf_local_got_refcounts (abfd);
1618 local_plt_refcounts = local_got_refcounts;
1619 if (local_plt_refcounts != NULL)
1620 local_plt_refcounts += symtab_hdr->sh_info;
1621
1622 relend = relocs + sec->reloc_count;
1623 for (rela = relocs; rela < relend; rela++)
1624 {
1625 unsigned long r_symndx;
1626 unsigned int r_type;
1627 struct elf_link_hash_entry *eh = NULL;
1628
1629 r_symndx = ELF32_R_SYM (rela->r_info);
1630 if (r_symndx >= symtab_hdr->sh_info)
1631 {
1632 struct elf32_hppa_link_hash_entry *hh;
1633 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1634 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1635
1636 eh = eh_syms[r_symndx - symtab_hdr->sh_info];
1637 while (eh->root.type == bfd_link_hash_indirect
1638 || eh->root.type == bfd_link_hash_warning)
1639 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1640 hh = hppa_elf_hash_entry (eh);
1641
1642 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next)
1643 if (hdh_p->sec == sec)
1644 {
1645 /* Everything must go for SEC. */
1646 *hdh_pp = hdh_p->hdh_next;
1647 break;
1648 }
1649 }
1650
1651 r_type = ELF32_R_TYPE (rela->r_info);
1652 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, eh != NULL);
1653
1654 switch (r_type)
1655 {
1656 case R_PARISC_DLTIND14F:
1657 case R_PARISC_DLTIND14R:
1658 case R_PARISC_DLTIND21L:
1659 case R_PARISC_TLS_GD21L:
1660 case R_PARISC_TLS_GD14R:
1661 case R_PARISC_TLS_IE21L:
1662 case R_PARISC_TLS_IE14R:
1663 if (eh != NULL)
1664 {
1665 if (eh->got.refcount > 0)
1666 eh->got.refcount -= 1;
1667 }
1668 else if (local_got_refcounts != NULL)
1669 {
1670 if (local_got_refcounts[r_symndx] > 0)
1671 local_got_refcounts[r_symndx] -= 1;
1672 }
1673 break;
1674
1675 case R_PARISC_TLS_LDM21L:
1676 case R_PARISC_TLS_LDM14R:
1677 hppa_link_hash_table (info)->tls_ldm_got.refcount -= 1;
1678 break;
1679
1680 case R_PARISC_PCREL12F:
1681 case R_PARISC_PCREL17C:
1682 case R_PARISC_PCREL17F:
1683 case R_PARISC_PCREL22F:
1684 if (eh != NULL)
1685 {
1686 if (eh->plt.refcount > 0)
1687 eh->plt.refcount -= 1;
1688 }
1689 break;
1690
1691 case R_PARISC_PLABEL14R:
1692 case R_PARISC_PLABEL21L:
1693 case R_PARISC_PLABEL32:
1694 if (eh != NULL)
1695 {
1696 if (eh->plt.refcount > 0)
1697 eh->plt.refcount -= 1;
1698 }
1699 else if (local_plt_refcounts != NULL)
1700 {
1701 if (local_plt_refcounts[r_symndx] > 0)
1702 local_plt_refcounts[r_symndx] -= 1;
1703 }
1704 break;
1705
1706 default:
1707 break;
1708 }
1709 }
1710
1711 return TRUE;
1712 }
1713
1714 /* Support for core dump NOTE sections. */
1715
1716 static bfd_boolean
1717 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1718 {
1719 int offset;
1720 size_t size;
1721
1722 switch (note->descsz)
1723 {
1724 default:
1725 return FALSE;
1726
1727 case 396: /* Linux/hppa */
1728 /* pr_cursig */
1729 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1730
1731 /* pr_pid */
1732 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1733
1734 /* pr_reg */
1735 offset = 72;
1736 size = 320;
1737
1738 break;
1739 }
1740
1741 /* Make a ".reg/999" section. */
1742 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1743 size, note->descpos + offset);
1744 }
1745
1746 static bfd_boolean
1747 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1748 {
1749 switch (note->descsz)
1750 {
1751 default:
1752 return FALSE;
1753
1754 case 124: /* Linux/hppa elf_prpsinfo. */
1755 elf_tdata (abfd)->core_program
1756 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1757 elf_tdata (abfd)->core_command
1758 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1759 }
1760
1761 /* Note that for some reason, a spurious space is tacked
1762 onto the end of the args in some (at least one anyway)
1763 implementations, so strip it off if it exists. */
1764 {
1765 char *command = elf_tdata (abfd)->core_command;
1766 int n = strlen (command);
1767
1768 if (0 < n && command[n - 1] == ' ')
1769 command[n - 1] = '\0';
1770 }
1771
1772 return TRUE;
1773 }
1774
1775 /* Our own version of hide_symbol, so that we can keep plt entries for
1776 plabels. */
1777
1778 static void
1779 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1780 struct elf_link_hash_entry *eh,
1781 bfd_boolean force_local)
1782 {
1783 if (force_local)
1784 {
1785 eh->forced_local = 1;
1786 if (eh->dynindx != -1)
1787 {
1788 eh->dynindx = -1;
1789 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1790 eh->dynstr_index);
1791 }
1792 }
1793
1794 if (! hppa_elf_hash_entry (eh)->plabel)
1795 {
1796 eh->needs_plt = 0;
1797 eh->plt = elf_hash_table (info)->init_plt_refcount;
1798 }
1799 }
1800
1801 /* Adjust a symbol defined by a dynamic object and referenced by a
1802 regular object. The current definition is in some section of the
1803 dynamic object, but we're not including those sections. We have to
1804 change the definition to something the rest of the link can
1805 understand. */
1806
1807 static bfd_boolean
1808 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1809 struct elf_link_hash_entry *eh)
1810 {
1811 struct elf32_hppa_link_hash_table *htab;
1812 asection *sec;
1813
1814 /* If this is a function, put it in the procedure linkage table. We
1815 will fill in the contents of the procedure linkage table later. */
1816 if (eh->type == STT_FUNC
1817 || eh->needs_plt)
1818 {
1819 if (eh->plt.refcount <= 0
1820 || (eh->def_regular
1821 && eh->root.type != bfd_link_hash_defweak
1822 && ! hppa_elf_hash_entry (eh)->plabel
1823 && (!info->shared || info->symbolic)))
1824 {
1825 /* The .plt entry is not needed when:
1826 a) Garbage collection has removed all references to the
1827 symbol, or
1828 b) We know for certain the symbol is defined in this
1829 object, and it's not a weak definition, nor is the symbol
1830 used by a plabel relocation. Either this object is the
1831 application or we are doing a shared symbolic link. */
1832
1833 eh->plt.offset = (bfd_vma) -1;
1834 eh->needs_plt = 0;
1835 }
1836
1837 return TRUE;
1838 }
1839 else
1840 eh->plt.offset = (bfd_vma) -1;
1841
1842 /* If this is a weak symbol, and there is a real definition, the
1843 processor independent code will have arranged for us to see the
1844 real definition first, and we can just use the same value. */
1845 if (eh->u.weakdef != NULL)
1846 {
1847 if (eh->u.weakdef->root.type != bfd_link_hash_defined
1848 && eh->u.weakdef->root.type != bfd_link_hash_defweak)
1849 abort ();
1850 eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1851 eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1852 if (ELIMINATE_COPY_RELOCS)
1853 eh->non_got_ref = eh->u.weakdef->non_got_ref;
1854 return TRUE;
1855 }
1856
1857 /* This is a reference to a symbol defined by a dynamic object which
1858 is not a function. */
1859
1860 /* If we are creating a shared library, we must presume that the
1861 only references to the symbol are via the global offset table.
1862 For such cases we need not do anything here; the relocations will
1863 be handled correctly by relocate_section. */
1864 if (info->shared)
1865 return TRUE;
1866
1867 /* If there are no references to this symbol that do not use the
1868 GOT, we don't need to generate a copy reloc. */
1869 if (!eh->non_got_ref)
1870 return TRUE;
1871
1872 if (ELIMINATE_COPY_RELOCS)
1873 {
1874 struct elf32_hppa_link_hash_entry *hh;
1875 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1876
1877 hh = hppa_elf_hash_entry (eh);
1878 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
1879 {
1880 sec = hdh_p->sec->output_section;
1881 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1882 break;
1883 }
1884
1885 /* If we didn't find any dynamic relocs in read-only sections, then
1886 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1887 if (hdh_p == NULL)
1888 {
1889 eh->non_got_ref = 0;
1890 return TRUE;
1891 }
1892 }
1893
1894 if (eh->size == 0)
1895 {
1896 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
1897 eh->root.root.string);
1898 return TRUE;
1899 }
1900
1901 /* We must allocate the symbol in our .dynbss section, which will
1902 become part of the .bss section of the executable. There will be
1903 an entry for this symbol in the .dynsym section. The dynamic
1904 object will contain position independent code, so all references
1905 from the dynamic object to this symbol will go through the global
1906 offset table. The dynamic linker will use the .dynsym entry to
1907 determine the address it must put in the global offset table, so
1908 both the dynamic object and the regular object will refer to the
1909 same memory location for the variable. */
1910
1911 htab = hppa_link_hash_table (info);
1912
1913 /* We must generate a COPY reloc to tell the dynamic linker to
1914 copy the initial value out of the dynamic object and into the
1915 runtime process image. */
1916 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0)
1917 {
1918 htab->srelbss->size += sizeof (Elf32_External_Rela);
1919 eh->needs_copy = 1;
1920 }
1921
1922 sec = htab->sdynbss;
1923
1924 return _bfd_elf_adjust_dynamic_copy (eh, sec);
1925 }
1926
1927 /* Allocate space in the .plt for entries that won't have relocations.
1928 ie. plabel entries. */
1929
1930 static bfd_boolean
1931 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1932 {
1933 struct bfd_link_info *info;
1934 struct elf32_hppa_link_hash_table *htab;
1935 struct elf32_hppa_link_hash_entry *hh;
1936 asection *sec;
1937
1938 if (eh->root.type == bfd_link_hash_indirect)
1939 return TRUE;
1940
1941 if (eh->root.type == bfd_link_hash_warning)
1942 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1943
1944 info = (struct bfd_link_info *) inf;
1945 hh = hppa_elf_hash_entry (eh);
1946 htab = hppa_link_hash_table (info);
1947 if (htab->etab.dynamic_sections_created
1948 && eh->plt.refcount > 0)
1949 {
1950 /* Make sure this symbol is output as a dynamic symbol.
1951 Undefined weak syms won't yet be marked as dynamic. */
1952 if (eh->dynindx == -1
1953 && !eh->forced_local
1954 && eh->type != STT_PARISC_MILLI)
1955 {
1956 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
1957 return FALSE;
1958 }
1959
1960 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, eh))
1961 {
1962 /* Allocate these later. From this point on, h->plabel
1963 means that the plt entry is only used by a plabel.
1964 We'll be using a normal plt entry for this symbol, so
1965 clear the plabel indicator. */
1966
1967 hh->plabel = 0;
1968 }
1969 else if (hh->plabel)
1970 {
1971 /* Make an entry in the .plt section for plabel references
1972 that won't have a .plt entry for other reasons. */
1973 sec = htab->splt;
1974 eh->plt.offset = sec->size;
1975 sec->size += PLT_ENTRY_SIZE;
1976 }
1977 else
1978 {
1979 /* No .plt entry needed. */
1980 eh->plt.offset = (bfd_vma) -1;
1981 eh->needs_plt = 0;
1982 }
1983 }
1984 else
1985 {
1986 eh->plt.offset = (bfd_vma) -1;
1987 eh->needs_plt = 0;
1988 }
1989
1990 return TRUE;
1991 }
1992
1993 /* Allocate space in .plt, .got and associated reloc sections for
1994 global syms. */
1995
1996 static bfd_boolean
1997 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
1998 {
1999 struct bfd_link_info *info;
2000 struct elf32_hppa_link_hash_table *htab;
2001 asection *sec;
2002 struct elf32_hppa_link_hash_entry *hh;
2003 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2004
2005 if (eh->root.type == bfd_link_hash_indirect)
2006 return TRUE;
2007
2008 if (eh->root.type == bfd_link_hash_warning)
2009 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2010
2011 info = inf;
2012 htab = hppa_link_hash_table (info);
2013 hh = hppa_elf_hash_entry (eh);
2014
2015 if (htab->etab.dynamic_sections_created
2016 && eh->plt.offset != (bfd_vma) -1
2017 && !hh->plabel
2018 && eh->plt.refcount > 0)
2019 {
2020 /* Make an entry in the .plt section. */
2021 sec = htab->splt;
2022 eh->plt.offset = sec->size;
2023 sec->size += PLT_ENTRY_SIZE;
2024
2025 /* We also need to make an entry in the .rela.plt section. */
2026 htab->srelplt->size += sizeof (Elf32_External_Rela);
2027 htab->need_plt_stub = 1;
2028 }
2029
2030 if (eh->got.refcount > 0)
2031 {
2032 /* Make sure this symbol is output as a dynamic symbol.
2033 Undefined weak syms won't yet be marked as dynamic. */
2034 if (eh->dynindx == -1
2035 && !eh->forced_local
2036 && eh->type != STT_PARISC_MILLI)
2037 {
2038 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2039 return FALSE;
2040 }
2041
2042 sec = htab->sgot;
2043 eh->got.offset = sec->size;
2044 sec->size += GOT_ENTRY_SIZE;
2045 /* R_PARISC_TLS_GD* needs two GOT entries */
2046 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2047 sec->size += GOT_ENTRY_SIZE * 2;
2048 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2049 sec->size += GOT_ENTRY_SIZE;
2050 if (htab->etab.dynamic_sections_created
2051 && (info->shared
2052 || (eh->dynindx != -1
2053 && !eh->forced_local)))
2054 {
2055 htab->srelgot->size += sizeof (Elf32_External_Rela);
2056 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2057 htab->srelgot->size += 2 * sizeof (Elf32_External_Rela);
2058 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2059 htab->srelgot->size += sizeof (Elf32_External_Rela);
2060 }
2061 }
2062 else
2063 eh->got.offset = (bfd_vma) -1;
2064
2065 if (hh->dyn_relocs == NULL)
2066 return TRUE;
2067
2068 /* If this is a -Bsymbolic shared link, then we need to discard all
2069 space allocated for dynamic pc-relative relocs against symbols
2070 defined in a regular object. For the normal shared case, discard
2071 space for relocs that have become local due to symbol visibility
2072 changes. */
2073 if (info->shared)
2074 {
2075 #if RELATIVE_DYNRELOCS
2076 if (SYMBOL_CALLS_LOCAL (info, eh))
2077 {
2078 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
2079
2080 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2081 {
2082 hdh_p->count -= hdh_p->relative_count;
2083 hdh_p->relative_count = 0;
2084 if (hdh_p->count == 0)
2085 *hdh_pp = hdh_p->hdh_next;
2086 else
2087 hdh_pp = &hdh_p->hdh_next;
2088 }
2089 }
2090 #endif
2091
2092 /* Also discard relocs on undefined weak syms with non-default
2093 visibility. */
2094 if (hh->dyn_relocs != NULL
2095 && eh->root.type == bfd_link_hash_undefweak)
2096 {
2097 if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
2098 hh->dyn_relocs = NULL;
2099
2100 /* Make sure undefined weak symbols are output as a dynamic
2101 symbol in PIEs. */
2102 else if (eh->dynindx == -1
2103 && !eh->forced_local)
2104 {
2105 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2106 return FALSE;
2107 }
2108 }
2109 }
2110 else
2111 {
2112 /* For the non-shared case, discard space for relocs against
2113 symbols which turn out to need copy relocs or are not
2114 dynamic. */
2115
2116 if (!eh->non_got_ref
2117 && ((ELIMINATE_COPY_RELOCS
2118 && eh->def_dynamic
2119 && !eh->def_regular)
2120 || (htab->etab.dynamic_sections_created
2121 && (eh->root.type == bfd_link_hash_undefweak
2122 || eh->root.type == bfd_link_hash_undefined))))
2123 {
2124 /* Make sure this symbol is output as a dynamic symbol.
2125 Undefined weak syms won't yet be marked as dynamic. */
2126 if (eh->dynindx == -1
2127 && !eh->forced_local
2128 && eh->type != STT_PARISC_MILLI)
2129 {
2130 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2131 return FALSE;
2132 }
2133
2134 /* If that succeeded, we know we'll be keeping all the
2135 relocs. */
2136 if (eh->dynindx != -1)
2137 goto keep;
2138 }
2139
2140 hh->dyn_relocs = NULL;
2141 return TRUE;
2142
2143 keep: ;
2144 }
2145
2146 /* Finally, allocate space. */
2147 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2148 {
2149 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2150 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2151 }
2152
2153 return TRUE;
2154 }
2155
2156 /* This function is called via elf_link_hash_traverse to force
2157 millicode symbols local so they do not end up as globals in the
2158 dynamic symbol table. We ought to be able to do this in
2159 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2160 for all dynamic symbols. Arguably, this is a bug in
2161 elf_adjust_dynamic_symbol. */
2162
2163 static bfd_boolean
2164 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2165 struct bfd_link_info *info)
2166 {
2167 if (eh->root.type == bfd_link_hash_warning)
2168 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2169
2170 if (eh->type == STT_PARISC_MILLI
2171 && !eh->forced_local)
2172 {
2173 elf32_hppa_hide_symbol (info, eh, TRUE);
2174 }
2175 return TRUE;
2176 }
2177
2178 /* Find any dynamic relocs that apply to read-only sections. */
2179
2180 static bfd_boolean
2181 readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2182 {
2183 struct elf32_hppa_link_hash_entry *hh;
2184 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2185
2186 if (eh->root.type == bfd_link_hash_warning)
2187 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2188
2189 hh = hppa_elf_hash_entry (eh);
2190 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2191 {
2192 asection *sec = hdh_p->sec->output_section;
2193
2194 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
2195 {
2196 struct bfd_link_info *info = inf;
2197
2198 info->flags |= DF_TEXTREL;
2199
2200 /* Not an error, just cut short the traversal. */
2201 return FALSE;
2202 }
2203 }
2204 return TRUE;
2205 }
2206
2207 /* Set the sizes of the dynamic sections. */
2208
2209 static bfd_boolean
2210 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2211 struct bfd_link_info *info)
2212 {
2213 struct elf32_hppa_link_hash_table *htab;
2214 bfd *dynobj;
2215 bfd *ibfd;
2216 asection *sec;
2217 bfd_boolean relocs;
2218
2219 htab = hppa_link_hash_table (info);
2220 dynobj = htab->etab.dynobj;
2221 if (dynobj == NULL)
2222 abort ();
2223
2224 if (htab->etab.dynamic_sections_created)
2225 {
2226 /* Set the contents of the .interp section to the interpreter. */
2227 if (info->executable)
2228 {
2229 sec = bfd_get_section_by_name (dynobj, ".interp");
2230 if (sec == NULL)
2231 abort ();
2232 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2233 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2234 }
2235
2236 /* Force millicode symbols local. */
2237 elf_link_hash_traverse (&htab->etab,
2238 clobber_millicode_symbols,
2239 info);
2240 }
2241
2242 /* Set up .got and .plt offsets for local syms, and space for local
2243 dynamic relocs. */
2244 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2245 {
2246 bfd_signed_vma *local_got;
2247 bfd_signed_vma *end_local_got;
2248 bfd_signed_vma *local_plt;
2249 bfd_signed_vma *end_local_plt;
2250 bfd_size_type locsymcount;
2251 Elf_Internal_Shdr *symtab_hdr;
2252 asection *srel;
2253 char *local_tls_type;
2254
2255 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2256 continue;
2257
2258 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2259 {
2260 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2261
2262 for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
2263 elf_section_data (sec)->local_dynrel);
2264 hdh_p != NULL;
2265 hdh_p = hdh_p->hdh_next)
2266 {
2267 if (!bfd_is_abs_section (hdh_p->sec)
2268 && bfd_is_abs_section (hdh_p->sec->output_section))
2269 {
2270 /* Input section has been discarded, either because
2271 it is a copy of a linkonce section or due to
2272 linker script /DISCARD/, so we'll be discarding
2273 the relocs too. */
2274 }
2275 else if (hdh_p->count != 0)
2276 {
2277 srel = elf_section_data (hdh_p->sec)->sreloc;
2278 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2279 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2280 info->flags |= DF_TEXTREL;
2281 }
2282 }
2283 }
2284
2285 local_got = elf_local_got_refcounts (ibfd);
2286 if (!local_got)
2287 continue;
2288
2289 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2290 locsymcount = symtab_hdr->sh_info;
2291 end_local_got = local_got + locsymcount;
2292 local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2293 sec = htab->sgot;
2294 srel = htab->srelgot;
2295 for (; local_got < end_local_got; ++local_got)
2296 {
2297 if (*local_got > 0)
2298 {
2299 *local_got = sec->size;
2300 sec->size += GOT_ENTRY_SIZE;
2301 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2302 sec->size += 2 * GOT_ENTRY_SIZE;
2303 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2304 sec->size += GOT_ENTRY_SIZE;
2305 if (info->shared)
2306 {
2307 srel->size += sizeof (Elf32_External_Rela);
2308 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2309 srel->size += 2 * sizeof (Elf32_External_Rela);
2310 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2311 srel->size += sizeof (Elf32_External_Rela);
2312 }
2313 }
2314 else
2315 *local_got = (bfd_vma) -1;
2316
2317 ++local_tls_type;
2318 }
2319
2320 local_plt = end_local_got;
2321 end_local_plt = local_plt + locsymcount;
2322 if (! htab->etab.dynamic_sections_created)
2323 {
2324 /* Won't be used, but be safe. */
2325 for (; local_plt < end_local_plt; ++local_plt)
2326 *local_plt = (bfd_vma) -1;
2327 }
2328 else
2329 {
2330 sec = htab->splt;
2331 srel = htab->srelplt;
2332 for (; local_plt < end_local_plt; ++local_plt)
2333 {
2334 if (*local_plt > 0)
2335 {
2336 *local_plt = sec->size;
2337 sec->size += PLT_ENTRY_SIZE;
2338 if (info->shared)
2339 srel->size += sizeof (Elf32_External_Rela);
2340 }
2341 else
2342 *local_plt = (bfd_vma) -1;
2343 }
2344 }
2345 }
2346
2347 if (htab->tls_ldm_got.refcount > 0)
2348 {
2349 /* Allocate 2 got entries and 1 dynamic reloc for
2350 R_PARISC_TLS_DTPMOD32 relocs. */
2351 htab->tls_ldm_got.offset = htab->sgot->size;
2352 htab->sgot->size += (GOT_ENTRY_SIZE * 2);
2353 htab->srelgot->size += sizeof (Elf32_External_Rela);
2354 }
2355 else
2356 htab->tls_ldm_got.offset = -1;
2357
2358 /* Do all the .plt entries without relocs first. The dynamic linker
2359 uses the last .plt reloc to find the end of the .plt (and hence
2360 the start of the .got) for lazy linking. */
2361 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2362
2363 /* Allocate global sym .plt and .got entries, and space for global
2364 sym dynamic relocs. */
2365 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2366
2367 /* The check_relocs and adjust_dynamic_symbol entry points have
2368 determined the sizes of the various dynamic sections. Allocate
2369 memory for them. */
2370 relocs = FALSE;
2371 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2372 {
2373 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2374 continue;
2375
2376 if (sec == htab->splt)
2377 {
2378 if (htab->need_plt_stub)
2379 {
2380 /* Make space for the plt stub at the end of the .plt
2381 section. We want this stub right at the end, up
2382 against the .got section. */
2383 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2384 int pltalign = bfd_section_alignment (dynobj, sec);
2385 bfd_size_type mask;
2386
2387 if (gotalign > pltalign)
2388 bfd_set_section_alignment (dynobj, sec, gotalign);
2389 mask = ((bfd_size_type) 1 << gotalign) - 1;
2390 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2391 }
2392 }
2393 else if (sec == htab->sgot
2394 || sec == htab->sdynbss)
2395 ;
2396 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
2397 {
2398 if (sec->size != 0)
2399 {
2400 /* Remember whether there are any reloc sections other
2401 than .rela.plt. */
2402 if (sec != htab->srelplt)
2403 relocs = TRUE;
2404
2405 /* We use the reloc_count field as a counter if we need
2406 to copy relocs into the output file. */
2407 sec->reloc_count = 0;
2408 }
2409 }
2410 else
2411 {
2412 /* It's not one of our sections, so don't allocate space. */
2413 continue;
2414 }
2415
2416 if (sec->size == 0)
2417 {
2418 /* If we don't need this section, strip it from the
2419 output file. This is mostly to handle .rela.bss and
2420 .rela.plt. We must create both sections in
2421 create_dynamic_sections, because they must be created
2422 before the linker maps input sections to output
2423 sections. The linker does that before
2424 adjust_dynamic_symbol is called, and it is that
2425 function which decides whether anything needs to go
2426 into these sections. */
2427 sec->flags |= SEC_EXCLUDE;
2428 continue;
2429 }
2430
2431 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2432 continue;
2433
2434 /* Allocate memory for the section contents. Zero it, because
2435 we may not fill in all the reloc sections. */
2436 sec->contents = bfd_zalloc (dynobj, sec->size);
2437 if (sec->contents == NULL)
2438 return FALSE;
2439 }
2440
2441 if (htab->etab.dynamic_sections_created)
2442 {
2443 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2444 actually has nothing to do with the PLT, it is how we
2445 communicate the LTP value of a load module to the dynamic
2446 linker. */
2447 #define add_dynamic_entry(TAG, VAL) \
2448 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2449
2450 if (!add_dynamic_entry (DT_PLTGOT, 0))
2451 return FALSE;
2452
2453 /* Add some entries to the .dynamic section. We fill in the
2454 values later, in elf32_hppa_finish_dynamic_sections, but we
2455 must add the entries now so that we get the correct size for
2456 the .dynamic section. The DT_DEBUG entry is filled in by the
2457 dynamic linker and used by the debugger. */
2458 if (info->executable)
2459 {
2460 if (!add_dynamic_entry (DT_DEBUG, 0))
2461 return FALSE;
2462 }
2463
2464 if (htab->srelplt->size != 0)
2465 {
2466 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2467 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2468 || !add_dynamic_entry (DT_JMPREL, 0))
2469 return FALSE;
2470 }
2471
2472 if (relocs)
2473 {
2474 if (!add_dynamic_entry (DT_RELA, 0)
2475 || !add_dynamic_entry (DT_RELASZ, 0)
2476 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2477 return FALSE;
2478
2479 /* If any dynamic relocs apply to a read-only section,
2480 then we need a DT_TEXTREL entry. */
2481 if ((info->flags & DF_TEXTREL) == 0)
2482 elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info);
2483
2484 if ((info->flags & DF_TEXTREL) != 0)
2485 {
2486 if (!add_dynamic_entry (DT_TEXTREL, 0))
2487 return FALSE;
2488 }
2489 }
2490 }
2491 #undef add_dynamic_entry
2492
2493 return TRUE;
2494 }
2495
2496 /* External entry points for sizing and building linker stubs. */
2497
2498 /* Set up various things so that we can make a list of input sections
2499 for each output section included in the link. Returns -1 on error,
2500 0 when no stubs will be needed, and 1 on success. */
2501
2502 int
2503 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2504 {
2505 bfd *input_bfd;
2506 unsigned int bfd_count;
2507 int top_id, top_index;
2508 asection *section;
2509 asection **input_list, **list;
2510 bfd_size_type amt;
2511 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2512
2513 /* Count the number of input BFDs and find the top input section id. */
2514 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2515 input_bfd != NULL;
2516 input_bfd = input_bfd->link_next)
2517 {
2518 bfd_count += 1;
2519 for (section = input_bfd->sections;
2520 section != NULL;
2521 section = section->next)
2522 {
2523 if (top_id < section->id)
2524 top_id = section->id;
2525 }
2526 }
2527 htab->bfd_count = bfd_count;
2528
2529 amt = sizeof (struct map_stub) * (top_id + 1);
2530 htab->stub_group = bfd_zmalloc (amt);
2531 if (htab->stub_group == NULL)
2532 return -1;
2533
2534 /* We can't use output_bfd->section_count here to find the top output
2535 section index as some sections may have been removed, and
2536 strip_excluded_output_sections doesn't renumber the indices. */
2537 for (section = output_bfd->sections, top_index = 0;
2538 section != NULL;
2539 section = section->next)
2540 {
2541 if (top_index < section->index)
2542 top_index = section->index;
2543 }
2544
2545 htab->top_index = top_index;
2546 amt = sizeof (asection *) * (top_index + 1);
2547 input_list = bfd_malloc (amt);
2548 htab->input_list = input_list;
2549 if (input_list == NULL)
2550 return -1;
2551
2552 /* For sections we aren't interested in, mark their entries with a
2553 value we can check later. */
2554 list = input_list + top_index;
2555 do
2556 *list = bfd_abs_section_ptr;
2557 while (list-- != input_list);
2558
2559 for (section = output_bfd->sections;
2560 section != NULL;
2561 section = section->next)
2562 {
2563 if ((section->flags & SEC_CODE) != 0)
2564 input_list[section->index] = NULL;
2565 }
2566
2567 return 1;
2568 }
2569
2570 /* The linker repeatedly calls this function for each input section,
2571 in the order that input sections are linked into output sections.
2572 Build lists of input sections to determine groupings between which
2573 we may insert linker stubs. */
2574
2575 void
2576 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2577 {
2578 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2579
2580 if (isec->output_section->index <= htab->top_index)
2581 {
2582 asection **list = htab->input_list + isec->output_section->index;
2583 if (*list != bfd_abs_section_ptr)
2584 {
2585 /* Steal the link_sec pointer for our list. */
2586 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2587 /* This happens to make the list in reverse order,
2588 which is what we want. */
2589 PREV_SEC (isec) = *list;
2590 *list = isec;
2591 }
2592 }
2593 }
2594
2595 /* See whether we can group stub sections together. Grouping stub
2596 sections may result in fewer stubs. More importantly, we need to
2597 put all .init* and .fini* stubs at the beginning of the .init or
2598 .fini output sections respectively, because glibc splits the
2599 _init and _fini functions into multiple parts. Putting a stub in
2600 the middle of a function is not a good idea. */
2601
2602 static void
2603 group_sections (struct elf32_hppa_link_hash_table *htab,
2604 bfd_size_type stub_group_size,
2605 bfd_boolean stubs_always_before_branch)
2606 {
2607 asection **list = htab->input_list + htab->top_index;
2608 do
2609 {
2610 asection *tail = *list;
2611 if (tail == bfd_abs_section_ptr)
2612 continue;
2613 while (tail != NULL)
2614 {
2615 asection *curr;
2616 asection *prev;
2617 bfd_size_type total;
2618 bfd_boolean big_sec;
2619
2620 curr = tail;
2621 total = tail->size;
2622 big_sec = total >= stub_group_size;
2623
2624 while ((prev = PREV_SEC (curr)) != NULL
2625 && ((total += curr->output_offset - prev->output_offset)
2626 < stub_group_size))
2627 curr = prev;
2628
2629 /* OK, the size from the start of CURR to the end is less
2630 than 240000 bytes and thus can be handled by one stub
2631 section. (or the tail section is itself larger than
2632 240000 bytes, in which case we may be toast.)
2633 We should really be keeping track of the total size of
2634 stubs added here, as stubs contribute to the final output
2635 section size. That's a little tricky, and this way will
2636 only break if stubs added total more than 22144 bytes, or
2637 2768 long branch stubs. It seems unlikely for more than
2638 2768 different functions to be called, especially from
2639 code only 240000 bytes long. This limit used to be
2640 250000, but c++ code tends to generate lots of little
2641 functions, and sometimes violated the assumption. */
2642 do
2643 {
2644 prev = PREV_SEC (tail);
2645 /* Set up this stub group. */
2646 htab->stub_group[tail->id].link_sec = curr;
2647 }
2648 while (tail != curr && (tail = prev) != NULL);
2649
2650 /* But wait, there's more! Input sections up to 240000
2651 bytes before the stub section can be handled by it too.
2652 Don't do this if we have a really large section after the
2653 stubs, as adding more stubs increases the chance that
2654 branches may not reach into the stub section. */
2655 if (!stubs_always_before_branch && !big_sec)
2656 {
2657 total = 0;
2658 while (prev != NULL
2659 && ((total += tail->output_offset - prev->output_offset)
2660 < stub_group_size))
2661 {
2662 tail = prev;
2663 prev = PREV_SEC (tail);
2664 htab->stub_group[tail->id].link_sec = curr;
2665 }
2666 }
2667 tail = prev;
2668 }
2669 }
2670 while (list-- != htab->input_list);
2671 free (htab->input_list);
2672 #undef PREV_SEC
2673 }
2674
2675 /* Read in all local syms for all input bfds, and create hash entries
2676 for export stubs if we are building a multi-subspace shared lib.
2677 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2678
2679 static int
2680 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2681 {
2682 unsigned int bfd_indx;
2683 Elf_Internal_Sym *local_syms, **all_local_syms;
2684 int stub_changed = 0;
2685 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2686
2687 /* We want to read in symbol extension records only once. To do this
2688 we need to read in the local symbols in parallel and save them for
2689 later use; so hold pointers to the local symbols in an array. */
2690 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2691 all_local_syms = bfd_zmalloc (amt);
2692 htab->all_local_syms = all_local_syms;
2693 if (all_local_syms == NULL)
2694 return -1;
2695
2696 /* Walk over all the input BFDs, swapping in local symbols.
2697 If we are creating a shared library, create hash entries for the
2698 export stubs. */
2699 for (bfd_indx = 0;
2700 input_bfd != NULL;
2701 input_bfd = input_bfd->link_next, bfd_indx++)
2702 {
2703 Elf_Internal_Shdr *symtab_hdr;
2704
2705 /* We'll need the symbol table in a second. */
2706 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2707 if (symtab_hdr->sh_info == 0)
2708 continue;
2709
2710 /* We need an array of the local symbols attached to the input bfd. */
2711 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2712 if (local_syms == NULL)
2713 {
2714 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2715 symtab_hdr->sh_info, 0,
2716 NULL, NULL, NULL);
2717 /* Cache them for elf_link_input_bfd. */
2718 symtab_hdr->contents = (unsigned char *) local_syms;
2719 }
2720 if (local_syms == NULL)
2721 return -1;
2722
2723 all_local_syms[bfd_indx] = local_syms;
2724
2725 if (info->shared && htab->multi_subspace)
2726 {
2727 struct elf_link_hash_entry **eh_syms;
2728 struct elf_link_hash_entry **eh_symend;
2729 unsigned int symcount;
2730
2731 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2732 - symtab_hdr->sh_info);
2733 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2734 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2735
2736 /* Look through the global syms for functions; We need to
2737 build export stubs for all globally visible functions. */
2738 for (; eh_syms < eh_symend; eh_syms++)
2739 {
2740 struct elf32_hppa_link_hash_entry *hh;
2741
2742 hh = hppa_elf_hash_entry (*eh_syms);
2743
2744 while (hh->eh.root.type == bfd_link_hash_indirect
2745 || hh->eh.root.type == bfd_link_hash_warning)
2746 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2747
2748 /* At this point in the link, undefined syms have been
2749 resolved, so we need to check that the symbol was
2750 defined in this BFD. */
2751 if ((hh->eh.root.type == bfd_link_hash_defined
2752 || hh->eh.root.type == bfd_link_hash_defweak)
2753 && hh->eh.type == STT_FUNC
2754 && hh->eh.root.u.def.section->output_section != NULL
2755 && (hh->eh.root.u.def.section->output_section->owner
2756 == output_bfd)
2757 && hh->eh.root.u.def.section->owner == input_bfd
2758 && hh->eh.def_regular
2759 && !hh->eh.forced_local
2760 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2761 {
2762 asection *sec;
2763 const char *stub_name;
2764 struct elf32_hppa_stub_hash_entry *hsh;
2765
2766 sec = hh->eh.root.u.def.section;
2767 stub_name = hh_name (hh);
2768 hsh = hppa_stub_hash_lookup (&htab->bstab,
2769 stub_name,
2770 FALSE, FALSE);
2771 if (hsh == NULL)
2772 {
2773 hsh = hppa_add_stub (stub_name, sec, htab);
2774 if (!hsh)
2775 return -1;
2776
2777 hsh->target_value = hh->eh.root.u.def.value;
2778 hsh->target_section = hh->eh.root.u.def.section;
2779 hsh->stub_type = hppa_stub_export;
2780 hsh->hh = hh;
2781 stub_changed = 1;
2782 }
2783 else
2784 {
2785 (*_bfd_error_handler) (_("%B: duplicate export stub %s"),
2786 input_bfd,
2787 stub_name);
2788 }
2789 }
2790 }
2791 }
2792 }
2793
2794 return stub_changed;
2795 }
2796
2797 /* Determine and set the size of the stub section for a final link.
2798
2799 The basic idea here is to examine all the relocations looking for
2800 PC-relative calls to a target that is unreachable with a "bl"
2801 instruction. */
2802
2803 bfd_boolean
2804 elf32_hppa_size_stubs
2805 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2806 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2807 asection * (*add_stub_section) (const char *, asection *),
2808 void (*layout_sections_again) (void))
2809 {
2810 bfd_size_type stub_group_size;
2811 bfd_boolean stubs_always_before_branch;
2812 bfd_boolean stub_changed;
2813 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2814
2815 /* Stash our params away. */
2816 htab->stub_bfd = stub_bfd;
2817 htab->multi_subspace = multi_subspace;
2818 htab->add_stub_section = add_stub_section;
2819 htab->layout_sections_again = layout_sections_again;
2820 stubs_always_before_branch = group_size < 0;
2821 if (group_size < 0)
2822 stub_group_size = -group_size;
2823 else
2824 stub_group_size = group_size;
2825 if (stub_group_size == 1)
2826 {
2827 /* Default values. */
2828 if (stubs_always_before_branch)
2829 {
2830 stub_group_size = 7680000;
2831 if (htab->has_17bit_branch || htab->multi_subspace)
2832 stub_group_size = 240000;
2833 if (htab->has_12bit_branch)
2834 stub_group_size = 7500;
2835 }
2836 else
2837 {
2838 stub_group_size = 6971392;
2839 if (htab->has_17bit_branch || htab->multi_subspace)
2840 stub_group_size = 217856;
2841 if (htab->has_12bit_branch)
2842 stub_group_size = 6808;
2843 }
2844 }
2845
2846 group_sections (htab, stub_group_size, stubs_always_before_branch);
2847
2848 switch (get_local_syms (output_bfd, info->input_bfds, info))
2849 {
2850 default:
2851 if (htab->all_local_syms)
2852 goto error_ret_free_local;
2853 return FALSE;
2854
2855 case 0:
2856 stub_changed = FALSE;
2857 break;
2858
2859 case 1:
2860 stub_changed = TRUE;
2861 break;
2862 }
2863
2864 while (1)
2865 {
2866 bfd *input_bfd;
2867 unsigned int bfd_indx;
2868 asection *stub_sec;
2869
2870 for (input_bfd = info->input_bfds, bfd_indx = 0;
2871 input_bfd != NULL;
2872 input_bfd = input_bfd->link_next, bfd_indx++)
2873 {
2874 Elf_Internal_Shdr *symtab_hdr;
2875 asection *section;
2876 Elf_Internal_Sym *local_syms;
2877
2878 /* We'll need the symbol table in a second. */
2879 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2880 if (symtab_hdr->sh_info == 0)
2881 continue;
2882
2883 local_syms = htab->all_local_syms[bfd_indx];
2884
2885 /* Walk over each section attached to the input bfd. */
2886 for (section = input_bfd->sections;
2887 section != NULL;
2888 section = section->next)
2889 {
2890 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2891
2892 /* If there aren't any relocs, then there's nothing more
2893 to do. */
2894 if ((section->flags & SEC_RELOC) == 0
2895 || section->reloc_count == 0)
2896 continue;
2897
2898 /* If this section is a link-once section that will be
2899 discarded, then don't create any stubs. */
2900 if (section->output_section == NULL
2901 || section->output_section->owner != output_bfd)
2902 continue;
2903
2904 /* Get the relocs. */
2905 internal_relocs
2906 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2907 info->keep_memory);
2908 if (internal_relocs == NULL)
2909 goto error_ret_free_local;
2910
2911 /* Now examine each relocation. */
2912 irela = internal_relocs;
2913 irelaend = irela + section->reloc_count;
2914 for (; irela < irelaend; irela++)
2915 {
2916 unsigned int r_type, r_indx;
2917 enum elf32_hppa_stub_type stub_type;
2918 struct elf32_hppa_stub_hash_entry *hsh;
2919 asection *sym_sec;
2920 bfd_vma sym_value;
2921 bfd_vma destination;
2922 struct elf32_hppa_link_hash_entry *hh;
2923 char *stub_name;
2924 const asection *id_sec;
2925
2926 r_type = ELF32_R_TYPE (irela->r_info);
2927 r_indx = ELF32_R_SYM (irela->r_info);
2928
2929 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2930 {
2931 bfd_set_error (bfd_error_bad_value);
2932 error_ret_free_internal:
2933 if (elf_section_data (section)->relocs == NULL)
2934 free (internal_relocs);
2935 goto error_ret_free_local;
2936 }
2937
2938 /* Only look for stubs on call instructions. */
2939 if (r_type != (unsigned int) R_PARISC_PCREL12F
2940 && r_type != (unsigned int) R_PARISC_PCREL17F
2941 && r_type != (unsigned int) R_PARISC_PCREL22F)
2942 continue;
2943
2944 /* Now determine the call target, its name, value,
2945 section. */
2946 sym_sec = NULL;
2947 sym_value = 0;
2948 destination = 0;
2949 hh = NULL;
2950 if (r_indx < symtab_hdr->sh_info)
2951 {
2952 /* It's a local symbol. */
2953 Elf_Internal_Sym *sym;
2954 Elf_Internal_Shdr *hdr;
2955 unsigned int shndx;
2956
2957 sym = local_syms + r_indx;
2958 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2959 sym_value = sym->st_value;
2960 shndx = sym->st_shndx;
2961 if (shndx < elf_numsections (input_bfd))
2962 {
2963 hdr = elf_elfsections (input_bfd)[shndx];
2964 sym_sec = hdr->bfd_section;
2965 destination = (sym_value + irela->r_addend
2966 + sym_sec->output_offset
2967 + sym_sec->output_section->vma);
2968 }
2969 }
2970 else
2971 {
2972 /* It's an external symbol. */
2973 int e_indx;
2974
2975 e_indx = r_indx - symtab_hdr->sh_info;
2976 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2977
2978 while (hh->eh.root.type == bfd_link_hash_indirect
2979 || hh->eh.root.type == bfd_link_hash_warning)
2980 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2981
2982 if (hh->eh.root.type == bfd_link_hash_defined
2983 || hh->eh.root.type == bfd_link_hash_defweak)
2984 {
2985 sym_sec = hh->eh.root.u.def.section;
2986 sym_value = hh->eh.root.u.def.value;
2987 if (sym_sec->output_section != NULL)
2988 destination = (sym_value + irela->r_addend
2989 + sym_sec->output_offset
2990 + sym_sec->output_section->vma);
2991 }
2992 else if (hh->eh.root.type == bfd_link_hash_undefweak)
2993 {
2994 if (! info->shared)
2995 continue;
2996 }
2997 else if (hh->eh.root.type == bfd_link_hash_undefined)
2998 {
2999 if (! (info->unresolved_syms_in_objects == RM_IGNORE
3000 && (ELF_ST_VISIBILITY (hh->eh.other)
3001 == STV_DEFAULT)
3002 && hh->eh.type != STT_PARISC_MILLI))
3003 continue;
3004 }
3005 else
3006 {
3007 bfd_set_error (bfd_error_bad_value);
3008 goto error_ret_free_internal;
3009 }
3010 }
3011
3012 /* Determine what (if any) linker stub is needed. */
3013 stub_type = hppa_type_of_stub (section, irela, hh,
3014 destination, info);
3015 if (stub_type == hppa_stub_none)
3016 continue;
3017
3018 /* Support for grouping stub sections. */
3019 id_sec = htab->stub_group[section->id].link_sec;
3020
3021 /* Get the name of this stub. */
3022 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
3023 if (!stub_name)
3024 goto error_ret_free_internal;
3025
3026 hsh = hppa_stub_hash_lookup (&htab->bstab,
3027 stub_name,
3028 FALSE, FALSE);
3029 if (hsh != NULL)
3030 {
3031 /* The proper stub has already been created. */
3032 free (stub_name);
3033 continue;
3034 }
3035
3036 hsh = hppa_add_stub (stub_name, section, htab);
3037 if (hsh == NULL)
3038 {
3039 free (stub_name);
3040 goto error_ret_free_internal;
3041 }
3042
3043 hsh->target_value = sym_value;
3044 hsh->target_section = sym_sec;
3045 hsh->stub_type = stub_type;
3046 if (info->shared)
3047 {
3048 if (stub_type == hppa_stub_import)
3049 hsh->stub_type = hppa_stub_import_shared;
3050 else if (stub_type == hppa_stub_long_branch)
3051 hsh->stub_type = hppa_stub_long_branch_shared;
3052 }
3053 hsh->hh = hh;
3054 stub_changed = TRUE;
3055 }
3056
3057 /* We're done with the internal relocs, free them. */
3058 if (elf_section_data (section)->relocs == NULL)
3059 free (internal_relocs);
3060 }
3061 }
3062
3063 if (!stub_changed)
3064 break;
3065
3066 /* OK, we've added some stubs. Find out the new size of the
3067 stub sections. */
3068 for (stub_sec = htab->stub_bfd->sections;
3069 stub_sec != NULL;
3070 stub_sec = stub_sec->next)
3071 stub_sec->size = 0;
3072
3073 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
3074
3075 /* Ask the linker to do its stuff. */
3076 (*htab->layout_sections_again) ();
3077 stub_changed = FALSE;
3078 }
3079
3080 free (htab->all_local_syms);
3081 return TRUE;
3082
3083 error_ret_free_local:
3084 free (htab->all_local_syms);
3085 return FALSE;
3086 }
3087
3088 /* For a final link, this function is called after we have sized the
3089 stubs to provide a value for __gp. */
3090
3091 bfd_boolean
3092 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
3093 {
3094 struct bfd_link_hash_entry *h;
3095 asection *sec = NULL;
3096 bfd_vma gp_val = 0;
3097 struct elf32_hppa_link_hash_table *htab;
3098
3099 htab = hppa_link_hash_table (info);
3100 h = bfd_link_hash_lookup (&htab->etab.root, "$global$", FALSE, FALSE, FALSE);
3101
3102 if (h != NULL
3103 && (h->type == bfd_link_hash_defined
3104 || h->type == bfd_link_hash_defweak))
3105 {
3106 gp_val = h->u.def.value;
3107 sec = h->u.def.section;
3108 }
3109 else
3110 {
3111 asection *splt = bfd_get_section_by_name (abfd, ".plt");
3112 asection *sgot = bfd_get_section_by_name (abfd, ".got");
3113
3114 /* Choose to point our LTP at, in this order, one of .plt, .got,
3115 or .data, if these sections exist. In the case of choosing
3116 .plt try to make the LTP ideal for addressing anywhere in the
3117 .plt or .got with a 14 bit signed offset. Typically, the end
3118 of the .plt is the start of the .got, so choose .plt + 0x2000
3119 if either the .plt or .got is larger than 0x2000. If both
3120 the .plt and .got are smaller than 0x2000, choose the end of
3121 the .plt section. */
3122 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3123 ? NULL : splt;
3124 if (sec != NULL)
3125 {
3126 gp_val = sec->size;
3127 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3128 {
3129 gp_val = 0x2000;
3130 }
3131 }
3132 else
3133 {
3134 sec = sgot;
3135 if (sec != NULL)
3136 {
3137 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3138 {
3139 /* We know we don't have a .plt. If .got is large,
3140 offset our LTP. */
3141 if (sec->size > 0x2000)
3142 gp_val = 0x2000;
3143 }
3144 }
3145 else
3146 {
3147 /* No .plt or .got. Who cares what the LTP is? */
3148 sec = bfd_get_section_by_name (abfd, ".data");
3149 }
3150 }
3151
3152 if (h != NULL)
3153 {
3154 h->type = bfd_link_hash_defined;
3155 h->u.def.value = gp_val;
3156 if (sec != NULL)
3157 h->u.def.section = sec;
3158 else
3159 h->u.def.section = bfd_abs_section_ptr;
3160 }
3161 }
3162
3163 if (sec != NULL && sec->output_section != NULL)
3164 gp_val += sec->output_section->vma + sec->output_offset;
3165
3166 elf_gp (abfd) = gp_val;
3167 return TRUE;
3168 }
3169
3170 /* Build all the stubs associated with the current output file. The
3171 stubs are kept in a hash table attached to the main linker hash
3172 table. We also set up the .plt entries for statically linked PIC
3173 functions here. This function is called via hppaelf_finish in the
3174 linker. */
3175
3176 bfd_boolean
3177 elf32_hppa_build_stubs (struct bfd_link_info *info)
3178 {
3179 asection *stub_sec;
3180 struct bfd_hash_table *table;
3181 struct elf32_hppa_link_hash_table *htab;
3182
3183 htab = hppa_link_hash_table (info);
3184
3185 for (stub_sec = htab->stub_bfd->sections;
3186 stub_sec != NULL;
3187 stub_sec = stub_sec->next)
3188 {
3189 bfd_size_type size;
3190
3191 /* Allocate memory to hold the linker stubs. */
3192 size = stub_sec->size;
3193 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3194 if (stub_sec->contents == NULL && size != 0)
3195 return FALSE;
3196 stub_sec->size = 0;
3197 }
3198
3199 /* Build the stubs as directed by the stub hash table. */
3200 table = &htab->bstab;
3201 bfd_hash_traverse (table, hppa_build_one_stub, info);
3202
3203 return TRUE;
3204 }
3205
3206 /* Return the base vma address which should be subtracted from the real
3207 address when resolving a dtpoff relocation.
3208 This is PT_TLS segment p_vaddr. */
3209
3210 static bfd_vma
3211 dtpoff_base (struct bfd_link_info *info)
3212 {
3213 /* If tls_sec is NULL, we should have signalled an error already. */
3214 if (elf_hash_table (info)->tls_sec == NULL)
3215 return 0;
3216 return elf_hash_table (info)->tls_sec->vma;
3217 }
3218
3219 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3220
3221 static bfd_vma
3222 tpoff (struct bfd_link_info *info, bfd_vma address)
3223 {
3224 struct elf_link_hash_table *htab = elf_hash_table (info);
3225
3226 /* If tls_sec is NULL, we should have signalled an error already. */
3227 if (htab->tls_sec == NULL)
3228 return 0;
3229 /* hppa TLS ABI is variant I and static TLS block start just after
3230 tcbhead structure which has 2 pointer fields. */
3231 return (address - htab->tls_sec->vma
3232 + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3233 }
3234
3235 /* Perform a final link. */
3236
3237 static bfd_boolean
3238 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3239 {
3240 /* Invoke the regular ELF linker to do all the work. */
3241 if (!bfd_elf_final_link (abfd, info))
3242 return FALSE;
3243
3244 /* If we're producing a final executable, sort the contents of the
3245 unwind section. */
3246 return elf_hppa_sort_unwind (abfd);
3247 }
3248
3249 /* Record the lowest address for the data and text segments. */
3250
3251 static void
3252 hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
3253 {
3254 struct elf32_hppa_link_hash_table *htab;
3255
3256 htab = (struct elf32_hppa_link_hash_table*) data;
3257
3258 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3259 {
3260 bfd_vma value;
3261 Elf_Internal_Phdr *p;
3262
3263 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
3264 BFD_ASSERT (p != NULL);
3265 value = p->p_vaddr;
3266
3267 if ((section->flags & SEC_READONLY) != 0)
3268 {
3269 if (value < htab->text_segment_base)
3270 htab->text_segment_base = value;
3271 }
3272 else
3273 {
3274 if (value < htab->data_segment_base)
3275 htab->data_segment_base = value;
3276 }
3277 }
3278 }
3279
3280 /* Perform a relocation as part of a final link. */
3281
3282 static bfd_reloc_status_type
3283 final_link_relocate (asection *input_section,
3284 bfd_byte *contents,
3285 const Elf_Internal_Rela *rela,
3286 bfd_vma value,
3287 struct elf32_hppa_link_hash_table *htab,
3288 asection *sym_sec,
3289 struct elf32_hppa_link_hash_entry *hh,
3290 struct bfd_link_info *info)
3291 {
3292 int insn;
3293 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3294 unsigned int orig_r_type = r_type;
3295 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3296 int r_format = howto->bitsize;
3297 enum hppa_reloc_field_selector_type_alt r_field;
3298 bfd *input_bfd = input_section->owner;
3299 bfd_vma offset = rela->r_offset;
3300 bfd_vma max_branch_offset = 0;
3301 bfd_byte *hit_data = contents + offset;
3302 bfd_signed_vma addend = rela->r_addend;
3303 bfd_vma location;
3304 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3305 int val;
3306
3307 if (r_type == R_PARISC_NONE)
3308 return bfd_reloc_ok;
3309
3310 insn = bfd_get_32 (input_bfd, hit_data);
3311
3312 /* Find out where we are and where we're going. */
3313 location = (offset +
3314 input_section->output_offset +
3315 input_section->output_section->vma);
3316
3317 /* If we are not building a shared library, convert DLTIND relocs to
3318 DPREL relocs. */
3319 if (!info->shared)
3320 {
3321 switch (r_type)
3322 {
3323 case R_PARISC_DLTIND21L:
3324 r_type = R_PARISC_DPREL21L;
3325 break;
3326
3327 case R_PARISC_DLTIND14R:
3328 r_type = R_PARISC_DPREL14R;
3329 break;
3330
3331 case R_PARISC_DLTIND14F:
3332 r_type = R_PARISC_DPREL14F;
3333 break;
3334 }
3335 }
3336
3337 switch (r_type)
3338 {
3339 case R_PARISC_PCREL12F:
3340 case R_PARISC_PCREL17F:
3341 case R_PARISC_PCREL22F:
3342 /* If this call should go via the plt, find the import stub in
3343 the stub hash. */
3344 if (sym_sec == NULL
3345 || sym_sec->output_section == NULL
3346 || (hh != NULL
3347 && hh->eh.plt.offset != (bfd_vma) -1
3348 && hh->eh.dynindx != -1
3349 && !hh->plabel
3350 && (info->shared
3351 || !hh->eh.def_regular
3352 || hh->eh.root.type == bfd_link_hash_defweak)))
3353 {
3354 hsh = hppa_get_stub_entry (input_section, sym_sec,
3355 hh, rela, htab);
3356 if (hsh != NULL)
3357 {
3358 value = (hsh->stub_offset
3359 + hsh->stub_sec->output_offset
3360 + hsh->stub_sec->output_section->vma);
3361 addend = 0;
3362 }
3363 else if (sym_sec == NULL && hh != NULL
3364 && hh->eh.root.type == bfd_link_hash_undefweak)
3365 {
3366 /* It's OK if undefined weak. Calls to undefined weak
3367 symbols behave as if the "called" function
3368 immediately returns. We can thus call to a weak
3369 function without first checking whether the function
3370 is defined. */
3371 value = location;
3372 addend = 8;
3373 }
3374 else
3375 return bfd_reloc_undefined;
3376 }
3377 /* Fall thru. */
3378
3379 case R_PARISC_PCREL21L:
3380 case R_PARISC_PCREL17C:
3381 case R_PARISC_PCREL17R:
3382 case R_PARISC_PCREL14R:
3383 case R_PARISC_PCREL14F:
3384 case R_PARISC_PCREL32:
3385 /* Make it a pc relative offset. */
3386 value -= location;
3387 addend -= 8;
3388 break;
3389
3390 case R_PARISC_DPREL21L:
3391 case R_PARISC_DPREL14R:
3392 case R_PARISC_DPREL14F:
3393 /* Convert instructions that use the linkage table pointer (r19) to
3394 instructions that use the global data pointer (dp). This is the
3395 most efficient way of using PIC code in an incomplete executable,
3396 but the user must follow the standard runtime conventions for
3397 accessing data for this to work. */
3398 if (orig_r_type == R_PARISC_DLTIND21L)
3399 {
3400 /* Convert addil instructions if the original reloc was a
3401 DLTIND21L. GCC sometimes uses a register other than r19 for
3402 the operation, so we must convert any addil instruction
3403 that uses this relocation. */
3404 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3405 insn = ADDIL_DP;
3406 else
3407 /* We must have a ldil instruction. It's too hard to find
3408 and convert the associated add instruction, so issue an
3409 error. */
3410 (*_bfd_error_handler)
3411 (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3412 input_bfd,
3413 input_section,
3414 (long) offset,
3415 howto->name,
3416 insn);
3417 }
3418 else if (orig_r_type == R_PARISC_DLTIND14F)
3419 {
3420 /* This must be a format 1 load/store. Change the base
3421 register to dp. */
3422 insn = (insn & 0xfc1ffff) | (27 << 21);
3423 }
3424
3425 /* For all the DP relative relocations, we need to examine the symbol's
3426 section. If it has no section or if it's a code section, then
3427 "data pointer relative" makes no sense. In that case we don't
3428 adjust the "value", and for 21 bit addil instructions, we change the
3429 source addend register from %dp to %r0. This situation commonly
3430 arises for undefined weak symbols and when a variable's "constness"
3431 is declared differently from the way the variable is defined. For
3432 instance: "extern int foo" with foo defined as "const int foo". */
3433 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3434 {
3435 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3436 == (((int) OP_ADDIL << 26) | (27 << 21)))
3437 {
3438 insn &= ~ (0x1f << 21);
3439 }
3440 /* Now try to make things easy for the dynamic linker. */
3441
3442 break;
3443 }
3444 /* Fall thru. */
3445
3446 case R_PARISC_DLTIND21L:
3447 case R_PARISC_DLTIND14R:
3448 case R_PARISC_DLTIND14F:
3449 case R_PARISC_TLS_GD21L:
3450 case R_PARISC_TLS_GD14R:
3451 case R_PARISC_TLS_LDM21L:
3452 case R_PARISC_TLS_LDM14R:
3453 case R_PARISC_TLS_IE21L:
3454 case R_PARISC_TLS_IE14R:
3455 value -= elf_gp (input_section->output_section->owner);
3456 break;
3457
3458 case R_PARISC_SEGREL32:
3459 if ((sym_sec->flags & SEC_CODE) != 0)
3460 value -= htab->text_segment_base;
3461 else
3462 value -= htab->data_segment_base;
3463 break;
3464
3465 default:
3466 break;
3467 }
3468
3469 switch (r_type)
3470 {
3471 case R_PARISC_DIR32:
3472 case R_PARISC_DIR14F:
3473 case R_PARISC_DIR17F:
3474 case R_PARISC_PCREL17C:
3475 case R_PARISC_PCREL14F:
3476 case R_PARISC_PCREL32:
3477 case R_PARISC_DPREL14F:
3478 case R_PARISC_PLABEL32:
3479 case R_PARISC_DLTIND14F:
3480 case R_PARISC_SEGBASE:
3481 case R_PARISC_SEGREL32:
3482 case R_PARISC_TLS_DTPMOD32:
3483 case R_PARISC_TLS_DTPOFF32:
3484 case R_PARISC_TLS_TPREL32:
3485 r_field = e_fsel;
3486 break;
3487
3488 case R_PARISC_DLTIND21L:
3489 case R_PARISC_PCREL21L:
3490 case R_PARISC_PLABEL21L:
3491 r_field = e_lsel;
3492 break;
3493
3494 case R_PARISC_DIR21L:
3495 case R_PARISC_DPREL21L:
3496 case R_PARISC_TLS_GD21L:
3497 case R_PARISC_TLS_LDM21L:
3498 case R_PARISC_TLS_LDO21L:
3499 case R_PARISC_TLS_IE21L:
3500 case R_PARISC_TLS_LE21L:
3501 r_field = e_lrsel;
3502 break;
3503
3504 case R_PARISC_PCREL17R:
3505 case R_PARISC_PCREL14R:
3506 case R_PARISC_PLABEL14R:
3507 case R_PARISC_DLTIND14R:
3508 r_field = e_rsel;
3509 break;
3510
3511 case R_PARISC_DIR17R:
3512 case R_PARISC_DIR14R:
3513 case R_PARISC_DPREL14R:
3514 case R_PARISC_TLS_GD14R:
3515 case R_PARISC_TLS_LDM14R:
3516 case R_PARISC_TLS_LDO14R:
3517 case R_PARISC_TLS_IE14R:
3518 case R_PARISC_TLS_LE14R:
3519 r_field = e_rrsel;
3520 break;
3521
3522 case R_PARISC_PCREL12F:
3523 case R_PARISC_PCREL17F:
3524 case R_PARISC_PCREL22F:
3525 r_field = e_fsel;
3526
3527 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3528 {
3529 max_branch_offset = (1 << (17-1)) << 2;
3530 }
3531 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3532 {
3533 max_branch_offset = (1 << (12-1)) << 2;
3534 }
3535 else
3536 {
3537 max_branch_offset = (1 << (22-1)) << 2;
3538 }
3539
3540 /* sym_sec is NULL on undefined weak syms or when shared on
3541 undefined syms. We've already checked for a stub for the
3542 shared undefined case. */
3543 if (sym_sec == NULL)
3544 break;
3545
3546 /* If the branch is out of reach, then redirect the
3547 call to the local stub for this function. */
3548 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3549 {
3550 hsh = hppa_get_stub_entry (input_section, sym_sec,
3551 hh, rela, htab);
3552 if (hsh == NULL)
3553 return bfd_reloc_undefined;
3554
3555 /* Munge up the value and addend so that we call the stub
3556 rather than the procedure directly. */
3557 value = (hsh->stub_offset
3558 + hsh->stub_sec->output_offset
3559 + hsh->stub_sec->output_section->vma
3560 - location);
3561 addend = -8;
3562 }
3563 break;
3564
3565 /* Something we don't know how to handle. */
3566 default:
3567 return bfd_reloc_notsupported;
3568 }
3569
3570 /* Make sure we can reach the stub. */
3571 if (max_branch_offset != 0
3572 && value + addend + max_branch_offset >= 2*max_branch_offset)
3573 {
3574 (*_bfd_error_handler)
3575 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3576 input_bfd,
3577 input_section,
3578 (long) offset,
3579 hsh->bh_root.string);
3580 bfd_set_error (bfd_error_bad_value);
3581 return bfd_reloc_notsupported;
3582 }
3583
3584 val = hppa_field_adjust (value, addend, r_field);
3585
3586 switch (r_type)
3587 {
3588 case R_PARISC_PCREL12F:
3589 case R_PARISC_PCREL17C:
3590 case R_PARISC_PCREL17F:
3591 case R_PARISC_PCREL17R:
3592 case R_PARISC_PCREL22F:
3593 case R_PARISC_DIR17F:
3594 case R_PARISC_DIR17R:
3595 /* This is a branch. Divide the offset by four.
3596 Note that we need to decide whether it's a branch or
3597 otherwise by inspecting the reloc. Inspecting insn won't
3598 work as insn might be from a .word directive. */
3599 val >>= 2;
3600 break;
3601
3602 default:
3603 break;
3604 }
3605
3606 insn = hppa_rebuild_insn (insn, val, r_format);
3607
3608 /* Update the instruction word. */
3609 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3610 return bfd_reloc_ok;
3611 }
3612
3613 /* Relocate an HPPA ELF section. */
3614
3615 static bfd_boolean
3616 elf32_hppa_relocate_section (bfd *output_bfd,
3617 struct bfd_link_info *info,
3618 bfd *input_bfd,
3619 asection *input_section,
3620 bfd_byte *contents,
3621 Elf_Internal_Rela *relocs,
3622 Elf_Internal_Sym *local_syms,
3623 asection **local_sections)
3624 {
3625 bfd_vma *local_got_offsets;
3626 struct elf32_hppa_link_hash_table *htab;
3627 Elf_Internal_Shdr *symtab_hdr;
3628 Elf_Internal_Rela *rela;
3629 Elf_Internal_Rela *relend;
3630
3631 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3632
3633 htab = hppa_link_hash_table (info);
3634 local_got_offsets = elf_local_got_offsets (input_bfd);
3635
3636 rela = relocs;
3637 relend = relocs + input_section->reloc_count;
3638 for (; rela < relend; rela++)
3639 {
3640 unsigned int r_type;
3641 reloc_howto_type *howto;
3642 unsigned int r_symndx;
3643 struct elf32_hppa_link_hash_entry *hh;
3644 Elf_Internal_Sym *sym;
3645 asection *sym_sec;
3646 bfd_vma relocation;
3647 bfd_reloc_status_type rstatus;
3648 const char *sym_name;
3649 bfd_boolean plabel;
3650 bfd_boolean warned_undef;
3651
3652 r_type = ELF32_R_TYPE (rela->r_info);
3653 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3654 {
3655 bfd_set_error (bfd_error_bad_value);
3656 return FALSE;
3657 }
3658 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3659 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3660 continue;
3661
3662 r_symndx = ELF32_R_SYM (rela->r_info);
3663 hh = NULL;
3664 sym = NULL;
3665 sym_sec = NULL;
3666 warned_undef = FALSE;
3667 if (r_symndx < symtab_hdr->sh_info)
3668 {
3669 /* This is a local symbol, h defaults to NULL. */
3670 sym = local_syms + r_symndx;
3671 sym_sec = local_sections[r_symndx];
3672 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3673 }
3674 else
3675 {
3676 struct elf_link_hash_entry *eh;
3677 bfd_boolean unresolved_reloc;
3678 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3679
3680 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3681 r_symndx, symtab_hdr, sym_hashes,
3682 eh, sym_sec, relocation,
3683 unresolved_reloc, warned_undef);
3684
3685 if (!info->relocatable
3686 && relocation == 0
3687 && eh->root.type != bfd_link_hash_defined
3688 && eh->root.type != bfd_link_hash_defweak
3689 && eh->root.type != bfd_link_hash_undefweak)
3690 {
3691 if (info->unresolved_syms_in_objects == RM_IGNORE
3692 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3693 && eh->type == STT_PARISC_MILLI)
3694 {
3695 if (! info->callbacks->undefined_symbol
3696 (info, eh_name (eh), input_bfd,
3697 input_section, rela->r_offset, FALSE))
3698 return FALSE;
3699 warned_undef = TRUE;
3700 }
3701 }
3702 hh = hppa_elf_hash_entry (eh);
3703 }
3704
3705 if (sym_sec != NULL && elf_discarded_section (sym_sec))
3706 {
3707 /* For relocs against symbols from removed linkonce
3708 sections, or sections discarded by a linker script,
3709 we just want the section contents zeroed. Avoid any
3710 special processing. */
3711 _bfd_clear_contents (elf_hppa_howto_table + r_type, input_bfd,
3712 contents + rela->r_offset);
3713 rela->r_info = 0;
3714 rela->r_addend = 0;
3715 continue;
3716 }
3717
3718 if (info->relocatable)
3719 continue;
3720
3721 /* Do any required modifications to the relocation value, and
3722 determine what types of dynamic info we need to output, if
3723 any. */
3724 plabel = 0;
3725 switch (r_type)
3726 {
3727 case R_PARISC_DLTIND14F:
3728 case R_PARISC_DLTIND14R:
3729 case R_PARISC_DLTIND21L:
3730 {
3731 bfd_vma off;
3732 bfd_boolean do_got = 0;
3733
3734 /* Relocation is to the entry for this symbol in the
3735 global offset table. */
3736 if (hh != NULL)
3737 {
3738 bfd_boolean dyn;
3739
3740 off = hh->eh.got.offset;
3741 dyn = htab->etab.dynamic_sections_created;
3742 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
3743 &hh->eh))
3744 {
3745 /* If we aren't going to call finish_dynamic_symbol,
3746 then we need to handle initialisation of the .got
3747 entry and create needed relocs here. Since the
3748 offset must always be a multiple of 4, we use the
3749 least significant bit to record whether we have
3750 initialised it already. */
3751 if ((off & 1) != 0)
3752 off &= ~1;
3753 else
3754 {
3755 hh->eh.got.offset |= 1;
3756 do_got = 1;
3757 }
3758 }
3759 }
3760 else
3761 {
3762 /* Local symbol case. */
3763 if (local_got_offsets == NULL)
3764 abort ();
3765
3766 off = local_got_offsets[r_symndx];
3767
3768 /* The offset must always be a multiple of 4. We use
3769 the least significant bit to record whether we have
3770 already generated the necessary reloc. */
3771 if ((off & 1) != 0)
3772 off &= ~1;
3773 else
3774 {
3775 local_got_offsets[r_symndx] |= 1;
3776 do_got = 1;
3777 }
3778 }
3779
3780 if (do_got)
3781 {
3782 if (info->shared)
3783 {
3784 /* Output a dynamic relocation for this GOT entry.
3785 In this case it is relative to the base of the
3786 object because the symbol index is zero. */
3787 Elf_Internal_Rela outrel;
3788 bfd_byte *loc;
3789 asection *sec = htab->srelgot;
3790
3791 outrel.r_offset = (off
3792 + htab->sgot->output_offset
3793 + htab->sgot->output_section->vma);
3794 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3795 outrel.r_addend = relocation;
3796 loc = sec->contents;
3797 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3798 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3799 }
3800 else
3801 bfd_put_32 (output_bfd, relocation,
3802 htab->sgot->contents + off);
3803 }
3804
3805 if (off >= (bfd_vma) -2)
3806 abort ();
3807
3808 /* Add the base of the GOT to the relocation value. */
3809 relocation = (off
3810 + htab->sgot->output_offset
3811 + htab->sgot->output_section->vma);
3812 }
3813 break;
3814
3815 case R_PARISC_SEGREL32:
3816 /* If this is the first SEGREL relocation, then initialize
3817 the segment base values. */
3818 if (htab->text_segment_base == (bfd_vma) -1)
3819 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3820 break;
3821
3822 case R_PARISC_PLABEL14R:
3823 case R_PARISC_PLABEL21L:
3824 case R_PARISC_PLABEL32:
3825 if (htab->etab.dynamic_sections_created)
3826 {
3827 bfd_vma off;
3828 bfd_boolean do_plt = 0;
3829 /* If we have a global symbol with a PLT slot, then
3830 redirect this relocation to it. */
3831 if (hh != NULL)
3832 {
3833 off = hh->eh.plt.offset;
3834 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared,
3835 &hh->eh))
3836 {
3837 /* In a non-shared link, adjust_dynamic_symbols
3838 isn't called for symbols forced local. We
3839 need to write out the plt entry here. */
3840 if ((off & 1) != 0)
3841 off &= ~1;
3842 else
3843 {
3844 hh->eh.plt.offset |= 1;
3845 do_plt = 1;
3846 }
3847 }
3848 }
3849 else
3850 {
3851 bfd_vma *local_plt_offsets;
3852
3853 if (local_got_offsets == NULL)
3854 abort ();
3855
3856 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3857 off = local_plt_offsets[r_symndx];
3858
3859 /* As for the local .got entry case, we use the last
3860 bit to record whether we've already initialised
3861 this local .plt entry. */
3862 if ((off & 1) != 0)
3863 off &= ~1;
3864 else
3865 {
3866 local_plt_offsets[r_symndx] |= 1;
3867 do_plt = 1;
3868 }
3869 }
3870
3871 if (do_plt)
3872 {
3873 if (info->shared)
3874 {
3875 /* Output a dynamic IPLT relocation for this
3876 PLT entry. */
3877 Elf_Internal_Rela outrel;
3878 bfd_byte *loc;
3879 asection *s = htab->srelplt;
3880
3881 outrel.r_offset = (off
3882 + htab->splt->output_offset
3883 + htab->splt->output_section->vma);
3884 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3885 outrel.r_addend = relocation;
3886 loc = s->contents;
3887 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3888 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3889 }
3890 else
3891 {
3892 bfd_put_32 (output_bfd,
3893 relocation,
3894 htab->splt->contents + off);
3895 bfd_put_32 (output_bfd,
3896 elf_gp (htab->splt->output_section->owner),
3897 htab->splt->contents + off + 4);
3898 }
3899 }
3900
3901 if (off >= (bfd_vma) -2)
3902 abort ();
3903
3904 /* PLABELs contain function pointers. Relocation is to
3905 the entry for the function in the .plt. The magic +2
3906 offset signals to $$dyncall that the function pointer
3907 is in the .plt and thus has a gp pointer too.
3908 Exception: Undefined PLABELs should have a value of
3909 zero. */
3910 if (hh == NULL
3911 || (hh->eh.root.type != bfd_link_hash_undefweak
3912 && hh->eh.root.type != bfd_link_hash_undefined))
3913 {
3914 relocation = (off
3915 + htab->splt->output_offset
3916 + htab->splt->output_section->vma
3917 + 2);
3918 }
3919 plabel = 1;
3920 }
3921 /* Fall through and possibly emit a dynamic relocation. */
3922
3923 case R_PARISC_DIR17F:
3924 case R_PARISC_DIR17R:
3925 case R_PARISC_DIR14F:
3926 case R_PARISC_DIR14R:
3927 case R_PARISC_DIR21L:
3928 case R_PARISC_DPREL14F:
3929 case R_PARISC_DPREL14R:
3930 case R_PARISC_DPREL21L:
3931 case R_PARISC_DIR32:
3932 if ((input_section->flags & SEC_ALLOC) == 0)
3933 break;
3934
3935 /* The reloc types handled here and this conditional
3936 expression must match the code in ..check_relocs and
3937 allocate_dynrelocs. ie. We need exactly the same condition
3938 as in ..check_relocs, with some extra conditions (dynindx
3939 test in this case) to cater for relocs removed by
3940 allocate_dynrelocs. If you squint, the non-shared test
3941 here does indeed match the one in ..check_relocs, the
3942 difference being that here we test DEF_DYNAMIC as well as
3943 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3944 which is why we can't use just that test here.
3945 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3946 there all files have not been loaded. */
3947 if ((info->shared
3948 && (hh == NULL
3949 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
3950 || hh->eh.root.type != bfd_link_hash_undefweak)
3951 && (IS_ABSOLUTE_RELOC (r_type)
3952 || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
3953 || (!info->shared
3954 && hh != NULL
3955 && hh->eh.dynindx != -1
3956 && !hh->eh.non_got_ref
3957 && ((ELIMINATE_COPY_RELOCS
3958 && hh->eh.def_dynamic
3959 && !hh->eh.def_regular)
3960 || hh->eh.root.type == bfd_link_hash_undefweak
3961 || hh->eh.root.type == bfd_link_hash_undefined)))
3962 {
3963 Elf_Internal_Rela outrel;
3964 bfd_boolean skip;
3965 asection *sreloc;
3966 bfd_byte *loc;
3967
3968 /* When generating a shared object, these relocations
3969 are copied into the output file to be resolved at run
3970 time. */
3971
3972 outrel.r_addend = rela->r_addend;
3973 outrel.r_offset =
3974 _bfd_elf_section_offset (output_bfd, info, input_section,
3975 rela->r_offset);
3976 skip = (outrel.r_offset == (bfd_vma) -1
3977 || outrel.r_offset == (bfd_vma) -2);
3978 outrel.r_offset += (input_section->output_offset
3979 + input_section->output_section->vma);
3980
3981 if (skip)
3982 {
3983 memset (&outrel, 0, sizeof (outrel));
3984 }
3985 else if (hh != NULL
3986 && hh->eh.dynindx != -1
3987 && (plabel
3988 || !IS_ABSOLUTE_RELOC (r_type)
3989 || !info->shared
3990 || !info->symbolic
3991 || !hh->eh.def_regular))
3992 {
3993 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
3994 }
3995 else /* It's a local symbol, or one marked to become local. */
3996 {
3997 int indx = 0;
3998
3999 /* Add the absolute offset of the symbol. */
4000 outrel.r_addend += relocation;
4001
4002 /* Global plabels need to be processed by the
4003 dynamic linker so that functions have at most one
4004 fptr. For this reason, we need to differentiate
4005 between global and local plabels, which we do by
4006 providing the function symbol for a global plabel
4007 reloc, and no symbol for local plabels. */
4008 if (! plabel
4009 && sym_sec != NULL
4010 && sym_sec->output_section != NULL
4011 && ! bfd_is_abs_section (sym_sec))
4012 {
4013 asection *osec;
4014
4015 osec = sym_sec->output_section;
4016 indx = elf_section_data (osec)->dynindx;
4017 if (indx == 0)
4018 {
4019 osec = htab->etab.text_index_section;
4020 indx = elf_section_data (osec)->dynindx;
4021 }
4022 BFD_ASSERT (indx != 0);
4023
4024 /* We are turning this relocation into one
4025 against a section symbol, so subtract out the
4026 output section's address but not the offset
4027 of the input section in the output section. */
4028 outrel.r_addend -= osec->vma;
4029 }
4030
4031 outrel.r_info = ELF32_R_INFO (indx, r_type);
4032 }
4033 sreloc = elf_section_data (input_section)->sreloc;
4034 if (sreloc == NULL)
4035 abort ();
4036
4037 loc = sreloc->contents;
4038 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
4039 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4040 }
4041 break;
4042
4043 case R_PARISC_TLS_LDM21L:
4044 case R_PARISC_TLS_LDM14R:
4045 {
4046 bfd_vma off;
4047
4048 off = htab->tls_ldm_got.offset;
4049 if (off & 1)
4050 off &= ~1;
4051 else
4052 {
4053 Elf_Internal_Rela outrel;
4054 bfd_byte *loc;
4055
4056 outrel.r_offset = (off
4057 + htab->sgot->output_section->vma
4058 + htab->sgot->output_offset);
4059 outrel.r_addend = 0;
4060 outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
4061 loc = htab->srelgot->contents;
4062 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4063
4064 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4065 htab->tls_ldm_got.offset |= 1;
4066 }
4067
4068 /* Add the base of the GOT to the relocation value. */
4069 relocation = (off
4070 + htab->sgot->output_offset
4071 + htab->sgot->output_section->vma);
4072
4073 break;
4074 }
4075
4076 case R_PARISC_TLS_LDO21L:
4077 case R_PARISC_TLS_LDO14R:
4078 relocation -= dtpoff_base (info);
4079 break;
4080
4081 case R_PARISC_TLS_GD21L:
4082 case R_PARISC_TLS_GD14R:
4083 case R_PARISC_TLS_IE21L:
4084 case R_PARISC_TLS_IE14R:
4085 {
4086 bfd_vma off;
4087 int indx;
4088 char tls_type;
4089
4090 indx = 0;
4091 if (hh != NULL)
4092 {
4093 bfd_boolean dyn;
4094 dyn = htab->etab.dynamic_sections_created;
4095
4096 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &hh->eh)
4097 && (!info->shared
4098 || !SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4099 {
4100 indx = hh->eh.dynindx;
4101 }
4102 off = hh->eh.got.offset;
4103 tls_type = hh->tls_type;
4104 }
4105 else
4106 {
4107 off = local_got_offsets[r_symndx];
4108 tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4109 }
4110
4111 if (tls_type == GOT_UNKNOWN)
4112 abort ();
4113
4114 if ((off & 1) != 0)
4115 off &= ~1;
4116 else
4117 {
4118 bfd_boolean need_relocs = FALSE;
4119 Elf_Internal_Rela outrel;
4120 bfd_byte *loc = NULL;
4121 int cur_off = off;
4122
4123 /* The GOT entries have not been initialized yet. Do it
4124 now, and emit any relocations. If both an IE GOT and a
4125 GD GOT are necessary, we emit the GD first. */
4126
4127 if ((info->shared || indx != 0)
4128 && (hh == NULL
4129 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
4130 || hh->eh.root.type != bfd_link_hash_undefweak))
4131 {
4132 need_relocs = TRUE;
4133 loc = htab->srelgot->contents;
4134 /* FIXME (CAO): Should this be reloc_count++ ? */
4135 loc += htab->srelgot->reloc_count * sizeof (Elf32_External_Rela);
4136 }
4137
4138 if (tls_type & GOT_TLS_GD)
4139 {
4140 if (need_relocs)
4141 {
4142 outrel.r_offset = (cur_off
4143 + htab->sgot->output_section->vma
4144 + htab->sgot->output_offset);
4145 outrel.r_info = ELF32_R_INFO (indx,R_PARISC_TLS_DTPMOD32);
4146 outrel.r_addend = 0;
4147 bfd_put_32 (output_bfd, 0, htab->sgot->contents + cur_off);
4148 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4149 htab->srelgot->reloc_count++;
4150 loc += sizeof (Elf32_External_Rela);
4151
4152 if (indx == 0)
4153 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4154 htab->sgot->contents + cur_off + 4);
4155 else
4156 {
4157 bfd_put_32 (output_bfd, 0,
4158 htab->sgot->contents + cur_off + 4);
4159 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4160 outrel.r_offset += 4;
4161 bfd_elf32_swap_reloca_out (output_bfd, &outrel,loc);
4162 htab->srelgot->reloc_count++;
4163 loc += sizeof (Elf32_External_Rela);
4164 }
4165 }
4166 else
4167 {
4168 /* If we are not emitting relocations for a
4169 general dynamic reference, then we must be in a
4170 static link or an executable link with the
4171 symbol binding locally. Mark it as belonging
4172 to module 1, the executable. */
4173 bfd_put_32 (output_bfd, 1,
4174 htab->sgot->contents + cur_off);
4175 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4176 htab->sgot->contents + cur_off + 4);
4177 }
4178
4179
4180 cur_off += 8;
4181 }
4182
4183 if (tls_type & GOT_TLS_IE)
4184 {
4185 if (need_relocs)
4186 {
4187 outrel.r_offset = (cur_off
4188 + htab->sgot->output_section->vma
4189 + htab->sgot->output_offset);
4190 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_TPREL32);
4191
4192 if (indx == 0)
4193 outrel.r_addend = relocation - dtpoff_base (info);
4194 else
4195 outrel.r_addend = 0;
4196
4197 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4198 htab->srelgot->reloc_count++;
4199 loc += sizeof (Elf32_External_Rela);
4200 }
4201 else
4202 bfd_put_32 (output_bfd, tpoff (info, relocation),
4203 htab->sgot->contents + cur_off);
4204
4205 cur_off += 4;
4206 }
4207
4208 if (hh != NULL)
4209 hh->eh.got.offset |= 1;
4210 else
4211 local_got_offsets[r_symndx] |= 1;
4212 }
4213
4214 if ((tls_type & GOT_TLS_GD)
4215 && r_type != R_PARISC_TLS_GD21L
4216 && r_type != R_PARISC_TLS_GD14R)
4217 off += 2 * GOT_ENTRY_SIZE;
4218
4219 /* Add the base of the GOT to the relocation value. */
4220 relocation = (off
4221 + htab->sgot->output_offset
4222 + htab->sgot->output_section->vma);
4223
4224 break;
4225 }
4226
4227 case R_PARISC_TLS_LE21L:
4228 case R_PARISC_TLS_LE14R:
4229 {
4230 relocation = tpoff (info, relocation);
4231 break;
4232 }
4233 break;
4234
4235 default:
4236 break;
4237 }
4238
4239 rstatus = final_link_relocate (input_section, contents, rela, relocation,
4240 htab, sym_sec, hh, info);
4241
4242 if (rstatus == bfd_reloc_ok)
4243 continue;
4244
4245 if (hh != NULL)
4246 sym_name = hh_name (hh);
4247 else
4248 {
4249 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4250 symtab_hdr->sh_link,
4251 sym->st_name);
4252 if (sym_name == NULL)
4253 return FALSE;
4254 if (*sym_name == '\0')
4255 sym_name = bfd_section_name (input_bfd, sym_sec);
4256 }
4257
4258 howto = elf_hppa_howto_table + r_type;
4259
4260 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4261 {
4262 if (rstatus == bfd_reloc_notsupported || !warned_undef)
4263 {
4264 (*_bfd_error_handler)
4265 (_("%B(%A+0x%lx): cannot handle %s for %s"),
4266 input_bfd,
4267 input_section,
4268 (long) rela->r_offset,
4269 howto->name,
4270 sym_name);
4271 bfd_set_error (bfd_error_bad_value);
4272 return FALSE;
4273 }
4274 }
4275 else
4276 {
4277 if (!((*info->callbacks->reloc_overflow)
4278 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4279 (bfd_vma) 0, input_bfd, input_section, rela->r_offset)))
4280 return FALSE;
4281 }
4282 }
4283
4284 return TRUE;
4285 }
4286
4287 /* Finish up dynamic symbol handling. We set the contents of various
4288 dynamic sections here. */
4289
4290 static bfd_boolean
4291 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4292 struct bfd_link_info *info,
4293 struct elf_link_hash_entry *eh,
4294 Elf_Internal_Sym *sym)
4295 {
4296 struct elf32_hppa_link_hash_table *htab;
4297 Elf_Internal_Rela rela;
4298 bfd_byte *loc;
4299
4300 htab = hppa_link_hash_table (info);
4301
4302 if (eh->plt.offset != (bfd_vma) -1)
4303 {
4304 bfd_vma value;
4305
4306 if (eh->plt.offset & 1)
4307 abort ();
4308
4309 /* This symbol has an entry in the procedure linkage table. Set
4310 it up.
4311
4312 The format of a plt entry is
4313 <funcaddr>
4314 <__gp>
4315 */
4316 value = 0;
4317 if (eh->root.type == bfd_link_hash_defined
4318 || eh->root.type == bfd_link_hash_defweak)
4319 {
4320 value = eh->root.u.def.value;
4321 if (eh->root.u.def.section->output_section != NULL)
4322 value += (eh->root.u.def.section->output_offset
4323 + eh->root.u.def.section->output_section->vma);
4324 }
4325
4326 /* Create a dynamic IPLT relocation for this entry. */
4327 rela.r_offset = (eh->plt.offset
4328 + htab->splt->output_offset
4329 + htab->splt->output_section->vma);
4330 if (eh->dynindx != -1)
4331 {
4332 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4333 rela.r_addend = 0;
4334 }
4335 else
4336 {
4337 /* This symbol has been marked to become local, and is
4338 used by a plabel so must be kept in the .plt. */
4339 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4340 rela.r_addend = value;
4341 }
4342
4343 loc = htab->srelplt->contents;
4344 loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4345 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rela, loc);
4346
4347 if (!eh->def_regular)
4348 {
4349 /* Mark the symbol as undefined, rather than as defined in
4350 the .plt section. Leave the value alone. */
4351 sym->st_shndx = SHN_UNDEF;
4352 }
4353 }
4354
4355 if (eh->got.offset != (bfd_vma) -1
4356 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_GD) == 0
4357 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_IE) == 0)
4358 {
4359 /* This symbol has an entry in the global offset table. Set it
4360 up. */
4361
4362 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4363 + htab->sgot->output_offset
4364 + htab->sgot->output_section->vma);
4365
4366 /* If this is a -Bsymbolic link and the symbol is defined
4367 locally or was forced to be local because of a version file,
4368 we just want to emit a RELATIVE reloc. The entry in the
4369 global offset table will already have been initialized in the
4370 relocate_section function. */
4371 if (info->shared
4372 && (info->symbolic || eh->dynindx == -1)
4373 && eh->def_regular)
4374 {
4375 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4376 rela.r_addend = (eh->root.u.def.value
4377 + eh->root.u.def.section->output_offset
4378 + eh->root.u.def.section->output_section->vma);
4379 }
4380 else
4381 {
4382 if ((eh->got.offset & 1) != 0)
4383 abort ();
4384
4385 bfd_put_32 (output_bfd, 0, htab->sgot->contents + (eh->got.offset & ~1));
4386 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4387 rela.r_addend = 0;
4388 }
4389
4390 loc = htab->srelgot->contents;
4391 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4392 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4393 }
4394
4395 if (eh->needs_copy)
4396 {
4397 asection *sec;
4398
4399 /* This symbol needs a copy reloc. Set it up. */
4400
4401 if (! (eh->dynindx != -1
4402 && (eh->root.type == bfd_link_hash_defined
4403 || eh->root.type == bfd_link_hash_defweak)))
4404 abort ();
4405
4406 sec = htab->srelbss;
4407
4408 rela.r_offset = (eh->root.u.def.value
4409 + eh->root.u.def.section->output_offset
4410 + eh->root.u.def.section->output_section->vma);
4411 rela.r_addend = 0;
4412 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4413 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4414 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4415 }
4416
4417 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4418 if (eh_name (eh)[0] == '_'
4419 && (strcmp (eh_name (eh), "_DYNAMIC") == 0
4420 || eh == htab->etab.hgot))
4421 {
4422 sym->st_shndx = SHN_ABS;
4423 }
4424
4425 return TRUE;
4426 }
4427
4428 /* Used to decide how to sort relocs in an optimal manner for the
4429 dynamic linker, before writing them out. */
4430
4431 static enum elf_reloc_type_class
4432 elf32_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
4433 {
4434 /* Handle TLS relocs first; we don't want them to be marked
4435 relative by the "if (ELF32_R_SYM (rela->r_info) == 0)"
4436 check below. */
4437 switch ((int) ELF32_R_TYPE (rela->r_info))
4438 {
4439 case R_PARISC_TLS_DTPMOD32:
4440 case R_PARISC_TLS_DTPOFF32:
4441 case R_PARISC_TLS_TPREL32:
4442 return reloc_class_normal;
4443 }
4444
4445 if (ELF32_R_SYM (rela->r_info) == 0)
4446 return reloc_class_relative;
4447
4448 switch ((int) ELF32_R_TYPE (rela->r_info))
4449 {
4450 case R_PARISC_IPLT:
4451 return reloc_class_plt;
4452 case R_PARISC_COPY:
4453 return reloc_class_copy;
4454 default:
4455 return reloc_class_normal;
4456 }
4457 }
4458
4459 /* Finish up the dynamic sections. */
4460
4461 static bfd_boolean
4462 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4463 struct bfd_link_info *info)
4464 {
4465 bfd *dynobj;
4466 struct elf32_hppa_link_hash_table *htab;
4467 asection *sdyn;
4468
4469 htab = hppa_link_hash_table (info);
4470 dynobj = htab->etab.dynobj;
4471
4472 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4473
4474 if (htab->etab.dynamic_sections_created)
4475 {
4476 Elf32_External_Dyn *dyncon, *dynconend;
4477
4478 if (sdyn == NULL)
4479 abort ();
4480
4481 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4482 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4483 for (; dyncon < dynconend; dyncon++)
4484 {
4485 Elf_Internal_Dyn dyn;
4486 asection *s;
4487
4488 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4489
4490 switch (dyn.d_tag)
4491 {
4492 default:
4493 continue;
4494
4495 case DT_PLTGOT:
4496 /* Use PLTGOT to set the GOT register. */
4497 dyn.d_un.d_ptr = elf_gp (output_bfd);
4498 break;
4499
4500 case DT_JMPREL:
4501 s = htab->srelplt;
4502 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4503 break;
4504
4505 case DT_PLTRELSZ:
4506 s = htab->srelplt;
4507 dyn.d_un.d_val = s->size;
4508 break;
4509
4510 case DT_RELASZ:
4511 /* Don't count procedure linkage table relocs in the
4512 overall reloc count. */
4513 s = htab->srelplt;
4514 if (s == NULL)
4515 continue;
4516 dyn.d_un.d_val -= s->size;
4517 break;
4518
4519 case DT_RELA:
4520 /* We may not be using the standard ELF linker script.
4521 If .rela.plt is the first .rela section, we adjust
4522 DT_RELA to not include it. */
4523 s = htab->srelplt;
4524 if (s == NULL)
4525 continue;
4526 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4527 continue;
4528 dyn.d_un.d_ptr += s->size;
4529 break;
4530 }
4531
4532 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4533 }
4534 }
4535
4536 if (htab->sgot != NULL && htab->sgot->size != 0)
4537 {
4538 /* Fill in the first entry in the global offset table.
4539 We use it to point to our dynamic section, if we have one. */
4540 bfd_put_32 (output_bfd,
4541 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4542 htab->sgot->contents);
4543
4544 /* The second entry is reserved for use by the dynamic linker. */
4545 memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4546
4547 /* Set .got entry size. */
4548 elf_section_data (htab->sgot->output_section)
4549 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4550 }
4551
4552 if (htab->splt != NULL && htab->splt->size != 0)
4553 {
4554 /* Set plt entry size. */
4555 elf_section_data (htab->splt->output_section)
4556 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4557
4558 if (htab->need_plt_stub)
4559 {
4560 /* Set up the .plt stub. */
4561 memcpy (htab->splt->contents
4562 + htab->splt->size - sizeof (plt_stub),
4563 plt_stub, sizeof (plt_stub));
4564
4565 if ((htab->splt->output_offset
4566 + htab->splt->output_section->vma
4567 + htab->splt->size)
4568 != (htab->sgot->output_offset
4569 + htab->sgot->output_section->vma))
4570 {
4571 (*_bfd_error_handler)
4572 (_(".got section not immediately after .plt section"));
4573 return FALSE;
4574 }
4575 }
4576 }
4577
4578 return TRUE;
4579 }
4580
4581 /* Called when writing out an object file to decide the type of a
4582 symbol. */
4583 static int
4584 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4585 {
4586 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4587 return STT_PARISC_MILLI;
4588 else
4589 return type;
4590 }
4591
4592 /* Misc BFD support code. */
4593 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4594 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4595 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4596 #define elf_info_to_howto elf_hppa_info_to_howto
4597 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4598
4599 /* Stuff for the BFD linker. */
4600 #define bfd_elf32_mkobject elf32_hppa_mkobject
4601 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4602 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4603 #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
4604 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4605 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4606 #define elf_backend_check_relocs elf32_hppa_check_relocs
4607 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4608 #define elf_backend_fake_sections elf_hppa_fake_sections
4609 #define elf_backend_relocate_section elf32_hppa_relocate_section
4610 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4611 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4612 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4613 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4614 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4615 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4616 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4617 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4618 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4619 #define elf_backend_object_p elf32_hppa_object_p
4620 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4621 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4622 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4623 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4624 #define elf_backend_action_discarded elf_hppa_action_discarded
4625
4626 #define elf_backend_can_gc_sections 1
4627 #define elf_backend_can_refcount 1
4628 #define elf_backend_plt_alignment 2
4629 #define elf_backend_want_got_plt 0
4630 #define elf_backend_plt_readonly 0
4631 #define elf_backend_want_plt_sym 0
4632 #define elf_backend_got_header_size 8
4633 #define elf_backend_rela_normal 1
4634
4635 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4636 #define TARGET_BIG_NAME "elf32-hppa"
4637 #define ELF_ARCH bfd_arch_hppa
4638 #define ELF_MACHINE_CODE EM_PARISC
4639 #define ELF_MAXPAGESIZE 0x1000
4640 #define ELF_OSABI ELFOSABI_HPUX
4641 #define elf32_bed elf32_hppa_hpux_bed
4642
4643 #include "elf32-target.h"
4644
4645 #undef TARGET_BIG_SYM
4646 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4647 #undef TARGET_BIG_NAME
4648 #define TARGET_BIG_NAME "elf32-hppa-linux"
4649 #undef ELF_OSABI
4650 #define ELF_OSABI ELFOSABI_LINUX
4651 #undef elf32_bed
4652 #define elf32_bed elf32_hppa_linux_bed
4653
4654 #include "elf32-target.h"
4655
4656 #undef TARGET_BIG_SYM
4657 #define TARGET_BIG_SYM bfd_elf32_hppa_nbsd_vec
4658 #undef TARGET_BIG_NAME
4659 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4660 #undef ELF_OSABI
4661 #define ELF_OSABI ELFOSABI_NETBSD
4662 #undef elf32_bed
4663 #define elf32_bed elf32_hppa_netbsd_bed
4664
4665 #include "elf32-target.h"
This page took 0.164923 seconds and 4 git commands to generate.