CHange FSF sources over to GPLv3
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
4
5 Original code by
6 Center for Software Science
7 Department of Computer Science
8 University of Utah
9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
10 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
11 TLS support written by Randolph Chung <tausq@debian.org>
12
13 This file is part of BFD, the Binary File Descriptor library.
14
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 3 of the License, or
18 (at your option) any later version.
19
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
28 MA 02110-1301, USA. */
29
30 #include "sysdep.h"
31 #include "bfd.h"
32 #include "libbfd.h"
33 #include "elf-bfd.h"
34 #include "elf/hppa.h"
35 #include "libhppa.h"
36 #include "elf32-hppa.h"
37 #define ARCH_SIZE 32
38 #include "elf32-hppa.h"
39 #include "elf-hppa.h"
40
41 /* In order to gain some understanding of code in this file without
42 knowing all the intricate details of the linker, note the
43 following:
44
45 Functions named elf32_hppa_* are called by external routines, other
46 functions are only called locally. elf32_hppa_* functions appear
47 in this file more or less in the order in which they are called
48 from external routines. eg. elf32_hppa_check_relocs is called
49 early in the link process, elf32_hppa_finish_dynamic_sections is
50 one of the last functions. */
51
52 /* We use two hash tables to hold information for linking PA ELF objects.
53
54 The first is the elf32_hppa_link_hash_table which is derived
55 from the standard ELF linker hash table. We use this as a place to
56 attach other hash tables and static information.
57
58 The second is the stub hash table which is derived from the
59 base BFD hash table. The stub hash table holds the information
60 necessary to build the linker stubs during a link.
61
62 There are a number of different stubs generated by the linker.
63
64 Long branch stub:
65 : ldil LR'X,%r1
66 : be,n RR'X(%sr4,%r1)
67
68 PIC long branch stub:
69 : b,l .+8,%r1
70 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
71 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
72
73 Import stub to call shared library routine from normal object file
74 (single sub-space version)
75 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
76 : ldw RR'lt_ptr+ltoff(%r1),%r21
77 : bv %r0(%r21)
78 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
79
80 Import stub to call shared library routine from shared library
81 (single sub-space version)
82 : addil LR'ltoff,%r19 ; get procedure entry point
83 : ldw RR'ltoff(%r1),%r21
84 : bv %r0(%r21)
85 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
86
87 Import stub to call shared library routine from normal object file
88 (multiple sub-space support)
89 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
90 : ldw RR'lt_ptr+ltoff(%r1),%r21
91 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
92 : ldsid (%r21),%r1
93 : mtsp %r1,%sr0
94 : be 0(%sr0,%r21) ; branch to target
95 : stw %rp,-24(%sp) ; save rp
96
97 Import stub to call shared library routine from shared library
98 (multiple sub-space support)
99 : addil LR'ltoff,%r19 ; get procedure entry point
100 : ldw RR'ltoff(%r1),%r21
101 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
102 : ldsid (%r21),%r1
103 : mtsp %r1,%sr0
104 : be 0(%sr0,%r21) ; branch to target
105 : stw %rp,-24(%sp) ; save rp
106
107 Export stub to return from shared lib routine (multiple sub-space support)
108 One of these is created for each exported procedure in a shared
109 library (and stored in the shared lib). Shared lib routines are
110 called via the first instruction in the export stub so that we can
111 do an inter-space return. Not required for single sub-space.
112 : bl,n X,%rp ; trap the return
113 : nop
114 : ldw -24(%sp),%rp ; restore the original rp
115 : ldsid (%rp),%r1
116 : mtsp %r1,%sr0
117 : be,n 0(%sr0,%rp) ; inter-space return. */
118
119
120 /* Variable names follow a coding style.
121 Please follow this (Apps Hungarian) style:
122
123 Structure/Variable Prefix
124 elf_link_hash_table "etab"
125 elf_link_hash_entry "eh"
126
127 elf32_hppa_link_hash_table "htab"
128 elf32_hppa_link_hash_entry "hh"
129
130 bfd_hash_table "btab"
131 bfd_hash_entry "bh"
132
133 bfd_hash_table containing stubs "bstab"
134 elf32_hppa_stub_hash_entry "hsh"
135
136 elf32_hppa_dyn_reloc_entry "hdh"
137
138 Always remember to use GNU Coding Style. */
139
140 #define PLT_ENTRY_SIZE 8
141 #define GOT_ENTRY_SIZE 4
142 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
143
144 static const bfd_byte plt_stub[] =
145 {
146 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
147 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
148 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
149 #define PLT_STUB_ENTRY (3*4)
150 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
151 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
152 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
153 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
154 };
155
156 /* Section name for stubs is the associated section name plus this
157 string. */
158 #define STUB_SUFFIX ".stub"
159
160 /* We don't need to copy certain PC- or GP-relative dynamic relocs
161 into a shared object's dynamic section. All the relocs of the
162 limited class we are interested in, are absolute. */
163 #ifndef RELATIVE_DYNRELOCS
164 #define RELATIVE_DYNRELOCS 0
165 #define IS_ABSOLUTE_RELOC(r_type) 1
166 #endif
167
168 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
169 copying dynamic variables from a shared lib into an app's dynbss
170 section, and instead use a dynamic relocation to point into the
171 shared lib. */
172 #define ELIMINATE_COPY_RELOCS 1
173
174 enum elf32_hppa_stub_type
175 {
176 hppa_stub_long_branch,
177 hppa_stub_long_branch_shared,
178 hppa_stub_import,
179 hppa_stub_import_shared,
180 hppa_stub_export,
181 hppa_stub_none
182 };
183
184 struct elf32_hppa_stub_hash_entry
185 {
186 /* Base hash table entry structure. */
187 struct bfd_hash_entry bh_root;
188
189 /* The stub section. */
190 asection *stub_sec;
191
192 /* Offset within stub_sec of the beginning of this stub. */
193 bfd_vma stub_offset;
194
195 /* Given the symbol's value and its section we can determine its final
196 value when building the stubs (so the stub knows where to jump. */
197 bfd_vma target_value;
198 asection *target_section;
199
200 enum elf32_hppa_stub_type stub_type;
201
202 /* The symbol table entry, if any, that this was derived from. */
203 struct elf32_hppa_link_hash_entry *hh;
204
205 /* Where this stub is being called from, or, in the case of combined
206 stub sections, the first input section in the group. */
207 asection *id_sec;
208 };
209
210 struct elf32_hppa_link_hash_entry
211 {
212 struct elf_link_hash_entry eh;
213
214 /* A pointer to the most recently used stub hash entry against this
215 symbol. */
216 struct elf32_hppa_stub_hash_entry *hsh_cache;
217
218 /* Used to count relocations for delayed sizing of relocation
219 sections. */
220 struct elf32_hppa_dyn_reloc_entry
221 {
222 /* Next relocation in the chain. */
223 struct elf32_hppa_dyn_reloc_entry *hdh_next;
224
225 /* The input section of the reloc. */
226 asection *sec;
227
228 /* Number of relocs copied in this section. */
229 bfd_size_type count;
230
231 #if RELATIVE_DYNRELOCS
232 /* Number of relative relocs copied for the input section. */
233 bfd_size_type relative_count;
234 #endif
235 } *dyn_relocs;
236
237 enum
238 {
239 GOT_UNKNOWN = 0, GOT_NORMAL = 1, GOT_TLS_GD = 2, GOT_TLS_LDM = 4, GOT_TLS_IE = 8
240 } tls_type;
241
242 /* Set if this symbol is used by a plabel reloc. */
243 unsigned int plabel:1;
244 };
245
246 struct elf32_hppa_link_hash_table
247 {
248 /* The main hash table. */
249 struct elf_link_hash_table etab;
250
251 /* The stub hash table. */
252 struct bfd_hash_table bstab;
253
254 /* Linker stub bfd. */
255 bfd *stub_bfd;
256
257 /* Linker call-backs. */
258 asection * (*add_stub_section) (const char *, asection *);
259 void (*layout_sections_again) (void);
260
261 /* Array to keep track of which stub sections have been created, and
262 information on stub grouping. */
263 struct map_stub
264 {
265 /* This is the section to which stubs in the group will be
266 attached. */
267 asection *link_sec;
268 /* The stub section. */
269 asection *stub_sec;
270 } *stub_group;
271
272 /* Assorted information used by elf32_hppa_size_stubs. */
273 unsigned int bfd_count;
274 int top_index;
275 asection **input_list;
276 Elf_Internal_Sym **all_local_syms;
277
278 /* Short-cuts to get to dynamic linker sections. */
279 asection *sgot;
280 asection *srelgot;
281 asection *splt;
282 asection *srelplt;
283 asection *sdynbss;
284 asection *srelbss;
285
286 /* Used during a final link to store the base of the text and data
287 segments so that we can perform SEGREL relocations. */
288 bfd_vma text_segment_base;
289 bfd_vma data_segment_base;
290
291 /* Whether we support multiple sub-spaces for shared libs. */
292 unsigned int multi_subspace:1;
293
294 /* Flags set when various size branches are detected. Used to
295 select suitable defaults for the stub group size. */
296 unsigned int has_12bit_branch:1;
297 unsigned int has_17bit_branch:1;
298 unsigned int has_22bit_branch:1;
299
300 /* Set if we need a .plt stub to support lazy dynamic linking. */
301 unsigned int need_plt_stub:1;
302
303 /* Small local sym to section mapping cache. */
304 struct sym_sec_cache sym_sec;
305
306 /* Data for LDM relocations. */
307 union
308 {
309 bfd_signed_vma refcount;
310 bfd_vma offset;
311 } tls_ldm_got;
312 };
313
314 /* Various hash macros and functions. */
315 #define hppa_link_hash_table(p) \
316 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
317
318 #define hppa_elf_hash_entry(ent) \
319 ((struct elf32_hppa_link_hash_entry *)(ent))
320
321 #define hppa_stub_hash_entry(ent) \
322 ((struct elf32_hppa_stub_hash_entry *)(ent))
323
324 #define hppa_stub_hash_lookup(table, string, create, copy) \
325 ((struct elf32_hppa_stub_hash_entry *) \
326 bfd_hash_lookup ((table), (string), (create), (copy)))
327
328 #define hppa_elf_local_got_tls_type(abfd) \
329 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
330
331 #define hh_name(hh) \
332 (hh ? hh->eh.root.root.string : "<undef>")
333
334 #define eh_name(eh) \
335 (eh ? eh->root.root.string : "<undef>")
336
337 /* Assorted hash table functions. */
338
339 /* Initialize an entry in the stub hash table. */
340
341 static struct bfd_hash_entry *
342 stub_hash_newfunc (struct bfd_hash_entry *entry,
343 struct bfd_hash_table *table,
344 const char *string)
345 {
346 /* Allocate the structure if it has not already been allocated by a
347 subclass. */
348 if (entry == NULL)
349 {
350 entry = bfd_hash_allocate (table,
351 sizeof (struct elf32_hppa_stub_hash_entry));
352 if (entry == NULL)
353 return entry;
354 }
355
356 /* Call the allocation method of the superclass. */
357 entry = bfd_hash_newfunc (entry, table, string);
358 if (entry != NULL)
359 {
360 struct elf32_hppa_stub_hash_entry *hsh;
361
362 /* Initialize the local fields. */
363 hsh = hppa_stub_hash_entry (entry);
364 hsh->stub_sec = NULL;
365 hsh->stub_offset = 0;
366 hsh->target_value = 0;
367 hsh->target_section = NULL;
368 hsh->stub_type = hppa_stub_long_branch;
369 hsh->hh = NULL;
370 hsh->id_sec = NULL;
371 }
372
373 return entry;
374 }
375
376 /* Initialize an entry in the link hash table. */
377
378 static struct bfd_hash_entry *
379 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
380 struct bfd_hash_table *table,
381 const char *string)
382 {
383 /* Allocate the structure if it has not already been allocated by a
384 subclass. */
385 if (entry == NULL)
386 {
387 entry = bfd_hash_allocate (table,
388 sizeof (struct elf32_hppa_link_hash_entry));
389 if (entry == NULL)
390 return entry;
391 }
392
393 /* Call the allocation method of the superclass. */
394 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
395 if (entry != NULL)
396 {
397 struct elf32_hppa_link_hash_entry *hh;
398
399 /* Initialize the local fields. */
400 hh = hppa_elf_hash_entry (entry);
401 hh->hsh_cache = NULL;
402 hh->dyn_relocs = NULL;
403 hh->plabel = 0;
404 hh->tls_type = GOT_UNKNOWN;
405 }
406
407 return entry;
408 }
409
410 /* Create the derived linker hash table. The PA ELF port uses the derived
411 hash table to keep information specific to the PA ELF linker (without
412 using static variables). */
413
414 static struct bfd_link_hash_table *
415 elf32_hppa_link_hash_table_create (bfd *abfd)
416 {
417 struct elf32_hppa_link_hash_table *htab;
418 bfd_size_type amt = sizeof (*htab);
419
420 htab = bfd_malloc (amt);
421 if (htab == NULL)
422 return NULL;
423
424 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
425 sizeof (struct elf32_hppa_link_hash_entry)))
426 {
427 free (htab);
428 return NULL;
429 }
430
431 /* Init the stub hash table too. */
432 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
433 sizeof (struct elf32_hppa_stub_hash_entry)))
434 return NULL;
435
436 htab->stub_bfd = NULL;
437 htab->add_stub_section = NULL;
438 htab->layout_sections_again = NULL;
439 htab->stub_group = NULL;
440 htab->sgot = NULL;
441 htab->srelgot = NULL;
442 htab->splt = NULL;
443 htab->srelplt = NULL;
444 htab->sdynbss = NULL;
445 htab->srelbss = NULL;
446 htab->text_segment_base = (bfd_vma) -1;
447 htab->data_segment_base = (bfd_vma) -1;
448 htab->multi_subspace = 0;
449 htab->has_12bit_branch = 0;
450 htab->has_17bit_branch = 0;
451 htab->has_22bit_branch = 0;
452 htab->need_plt_stub = 0;
453 htab->sym_sec.abfd = NULL;
454 htab->tls_ldm_got.refcount = 0;
455
456 return &htab->etab.root;
457 }
458
459 /* Free the derived linker hash table. */
460
461 static void
462 elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *btab)
463 {
464 struct elf32_hppa_link_hash_table *htab
465 = (struct elf32_hppa_link_hash_table *) btab;
466
467 bfd_hash_table_free (&htab->bstab);
468 _bfd_generic_link_hash_table_free (btab);
469 }
470
471 /* Build a name for an entry in the stub hash table. */
472
473 static char *
474 hppa_stub_name (const asection *input_section,
475 const asection *sym_sec,
476 const struct elf32_hppa_link_hash_entry *hh,
477 const Elf_Internal_Rela *rela)
478 {
479 char *stub_name;
480 bfd_size_type len;
481
482 if (hh)
483 {
484 len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
485 stub_name = bfd_malloc (len);
486 if (stub_name != NULL)
487 sprintf (stub_name, "%08x_%s+%x",
488 input_section->id & 0xffffffff,
489 hh_name (hh),
490 (int) rela->r_addend & 0xffffffff);
491 }
492 else
493 {
494 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
495 stub_name = bfd_malloc (len);
496 if (stub_name != NULL)
497 sprintf (stub_name, "%08x_%x:%x+%x",
498 input_section->id & 0xffffffff,
499 sym_sec->id & 0xffffffff,
500 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
501 (int) rela->r_addend & 0xffffffff);
502 }
503 return stub_name;
504 }
505
506 /* Look up an entry in the stub hash. Stub entries are cached because
507 creating the stub name takes a bit of time. */
508
509 static struct elf32_hppa_stub_hash_entry *
510 hppa_get_stub_entry (const asection *input_section,
511 const asection *sym_sec,
512 struct elf32_hppa_link_hash_entry *hh,
513 const Elf_Internal_Rela *rela,
514 struct elf32_hppa_link_hash_table *htab)
515 {
516 struct elf32_hppa_stub_hash_entry *hsh_entry;
517 const asection *id_sec;
518
519 /* If this input section is part of a group of sections sharing one
520 stub section, then use the id of the first section in the group.
521 Stub names need to include a section id, as there may well be
522 more than one stub used to reach say, printf, and we need to
523 distinguish between them. */
524 id_sec = htab->stub_group[input_section->id].link_sec;
525
526 if (hh != NULL && hh->hsh_cache != NULL
527 && hh->hsh_cache->hh == hh
528 && hh->hsh_cache->id_sec == id_sec)
529 {
530 hsh_entry = hh->hsh_cache;
531 }
532 else
533 {
534 char *stub_name;
535
536 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
537 if (stub_name == NULL)
538 return NULL;
539
540 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
541 stub_name, FALSE, FALSE);
542 if (hh != NULL)
543 hh->hsh_cache = hsh_entry;
544
545 free (stub_name);
546 }
547
548 return hsh_entry;
549 }
550
551 /* Add a new stub entry to the stub hash. Not all fields of the new
552 stub entry are initialised. */
553
554 static struct elf32_hppa_stub_hash_entry *
555 hppa_add_stub (const char *stub_name,
556 asection *section,
557 struct elf32_hppa_link_hash_table *htab)
558 {
559 asection *link_sec;
560 asection *stub_sec;
561 struct elf32_hppa_stub_hash_entry *hsh;
562
563 link_sec = htab->stub_group[section->id].link_sec;
564 stub_sec = htab->stub_group[section->id].stub_sec;
565 if (stub_sec == NULL)
566 {
567 stub_sec = htab->stub_group[link_sec->id].stub_sec;
568 if (stub_sec == NULL)
569 {
570 size_t namelen;
571 bfd_size_type len;
572 char *s_name;
573
574 namelen = strlen (link_sec->name);
575 len = namelen + sizeof (STUB_SUFFIX);
576 s_name = bfd_alloc (htab->stub_bfd, len);
577 if (s_name == NULL)
578 return NULL;
579
580 memcpy (s_name, link_sec->name, namelen);
581 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
582 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
583 if (stub_sec == NULL)
584 return NULL;
585 htab->stub_group[link_sec->id].stub_sec = stub_sec;
586 }
587 htab->stub_group[section->id].stub_sec = stub_sec;
588 }
589
590 /* Enter this entry into the linker stub hash table. */
591 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
592 TRUE, FALSE);
593 if (hsh == NULL)
594 {
595 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
596 section->owner,
597 stub_name);
598 return NULL;
599 }
600
601 hsh->stub_sec = stub_sec;
602 hsh->stub_offset = 0;
603 hsh->id_sec = link_sec;
604 return hsh;
605 }
606
607 /* Determine the type of stub needed, if any, for a call. */
608
609 static enum elf32_hppa_stub_type
610 hppa_type_of_stub (asection *input_sec,
611 const Elf_Internal_Rela *rela,
612 struct elf32_hppa_link_hash_entry *hh,
613 bfd_vma destination,
614 struct bfd_link_info *info)
615 {
616 bfd_vma location;
617 bfd_vma branch_offset;
618 bfd_vma max_branch_offset;
619 unsigned int r_type;
620
621 if (hh != NULL
622 && hh->eh.plt.offset != (bfd_vma) -1
623 && hh->eh.dynindx != -1
624 && !hh->plabel
625 && (info->shared
626 || !hh->eh.def_regular
627 || hh->eh.root.type == bfd_link_hash_defweak))
628 {
629 /* We need an import stub. Decide between hppa_stub_import
630 and hppa_stub_import_shared later. */
631 return hppa_stub_import;
632 }
633
634 /* Determine where the call point is. */
635 location = (input_sec->output_offset
636 + input_sec->output_section->vma
637 + rela->r_offset);
638
639 branch_offset = destination - location - 8;
640 r_type = ELF32_R_TYPE (rela->r_info);
641
642 /* Determine if a long branch stub is needed. parisc branch offsets
643 are relative to the second instruction past the branch, ie. +8
644 bytes on from the branch instruction location. The offset is
645 signed and counts in units of 4 bytes. */
646 if (r_type == (unsigned int) R_PARISC_PCREL17F)
647 max_branch_offset = (1 << (17 - 1)) << 2;
648
649 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
650 max_branch_offset = (1 << (12 - 1)) << 2;
651
652 else /* R_PARISC_PCREL22F. */
653 max_branch_offset = (1 << (22 - 1)) << 2;
654
655 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
656 return hppa_stub_long_branch;
657
658 return hppa_stub_none;
659 }
660
661 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
662 IN_ARG contains the link info pointer. */
663
664 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
665 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
666
667 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
668 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
669 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
670
671 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
672 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
673 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
674 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
675
676 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
677 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
678
679 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
680 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
681 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
682 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
683
684 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
685 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
686 #define NOP 0x08000240 /* nop */
687 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
688 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
689 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
690
691 #ifndef R19_STUBS
692 #define R19_STUBS 1
693 #endif
694
695 #if R19_STUBS
696 #define LDW_R1_DLT LDW_R1_R19
697 #else
698 #define LDW_R1_DLT LDW_R1_DP
699 #endif
700
701 static bfd_boolean
702 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
703 {
704 struct elf32_hppa_stub_hash_entry *hsh;
705 struct bfd_link_info *info;
706 struct elf32_hppa_link_hash_table *htab;
707 asection *stub_sec;
708 bfd *stub_bfd;
709 bfd_byte *loc;
710 bfd_vma sym_value;
711 bfd_vma insn;
712 bfd_vma off;
713 int val;
714 int size;
715
716 /* Massage our args to the form they really have. */
717 hsh = hppa_stub_hash_entry (bh);
718 info = (struct bfd_link_info *)in_arg;
719
720 htab = hppa_link_hash_table (info);
721 stub_sec = hsh->stub_sec;
722
723 /* Make a note of the offset within the stubs for this entry. */
724 hsh->stub_offset = stub_sec->size;
725 loc = stub_sec->contents + hsh->stub_offset;
726
727 stub_bfd = stub_sec->owner;
728
729 switch (hsh->stub_type)
730 {
731 case hppa_stub_long_branch:
732 /* Create the long branch. A long branch is formed with "ldil"
733 loading the upper bits of the target address into a register,
734 then branching with "be" which adds in the lower bits.
735 The "be" has its delay slot nullified. */
736 sym_value = (hsh->target_value
737 + hsh->target_section->output_offset
738 + hsh->target_section->output_section->vma);
739
740 val = hppa_field_adjust (sym_value, 0, e_lrsel);
741 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
742 bfd_put_32 (stub_bfd, insn, loc);
743
744 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
745 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
746 bfd_put_32 (stub_bfd, insn, loc + 4);
747
748 size = 8;
749 break;
750
751 case hppa_stub_long_branch_shared:
752 /* Branches are relative. This is where we are going to. */
753 sym_value = (hsh->target_value
754 + hsh->target_section->output_offset
755 + hsh->target_section->output_section->vma);
756
757 /* And this is where we are coming from, more or less. */
758 sym_value -= (hsh->stub_offset
759 + stub_sec->output_offset
760 + stub_sec->output_section->vma);
761
762 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
763 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
764 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
765 bfd_put_32 (stub_bfd, insn, loc + 4);
766
767 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
768 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
769 bfd_put_32 (stub_bfd, insn, loc + 8);
770 size = 12;
771 break;
772
773 case hppa_stub_import:
774 case hppa_stub_import_shared:
775 off = hsh->hh->eh.plt.offset;
776 if (off >= (bfd_vma) -2)
777 abort ();
778
779 off &= ~ (bfd_vma) 1;
780 sym_value = (off
781 + htab->splt->output_offset
782 + htab->splt->output_section->vma
783 - elf_gp (htab->splt->output_section->owner));
784
785 insn = ADDIL_DP;
786 #if R19_STUBS
787 if (hsh->stub_type == hppa_stub_import_shared)
788 insn = ADDIL_R19;
789 #endif
790 val = hppa_field_adjust (sym_value, 0, e_lrsel),
791 insn = hppa_rebuild_insn ((int) insn, val, 21);
792 bfd_put_32 (stub_bfd, insn, loc);
793
794 /* It is critical to use lrsel/rrsel here because we are using
795 two different offsets (+0 and +4) from sym_value. If we use
796 lsel/rsel then with unfortunate sym_values we will round
797 sym_value+4 up to the next 2k block leading to a mis-match
798 between the lsel and rsel value. */
799 val = hppa_field_adjust (sym_value, 0, e_rrsel);
800 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
801 bfd_put_32 (stub_bfd, insn, loc + 4);
802
803 if (htab->multi_subspace)
804 {
805 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
806 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
807 bfd_put_32 (stub_bfd, insn, loc + 8);
808
809 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
810 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
811 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
812 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
813
814 size = 28;
815 }
816 else
817 {
818 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
819 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
820 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
821 bfd_put_32 (stub_bfd, insn, loc + 12);
822
823 size = 16;
824 }
825
826 break;
827
828 case hppa_stub_export:
829 /* Branches are relative. This is where we are going to. */
830 sym_value = (hsh->target_value
831 + hsh->target_section->output_offset
832 + hsh->target_section->output_section->vma);
833
834 /* And this is where we are coming from. */
835 sym_value -= (hsh->stub_offset
836 + stub_sec->output_offset
837 + stub_sec->output_section->vma);
838
839 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
840 && (!htab->has_22bit_branch
841 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
842 {
843 (*_bfd_error_handler)
844 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
845 hsh->target_section->owner,
846 stub_sec,
847 (long) hsh->stub_offset,
848 hsh->bh_root.string);
849 bfd_set_error (bfd_error_bad_value);
850 return FALSE;
851 }
852
853 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
854 if (!htab->has_22bit_branch)
855 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
856 else
857 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
858 bfd_put_32 (stub_bfd, insn, loc);
859
860 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
861 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
862 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
863 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
864 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
865
866 /* Point the function symbol at the stub. */
867 hsh->hh->eh.root.u.def.section = stub_sec;
868 hsh->hh->eh.root.u.def.value = stub_sec->size;
869
870 size = 24;
871 break;
872
873 default:
874 BFD_FAIL ();
875 return FALSE;
876 }
877
878 stub_sec->size += size;
879 return TRUE;
880 }
881
882 #undef LDIL_R1
883 #undef BE_SR4_R1
884 #undef BL_R1
885 #undef ADDIL_R1
886 #undef DEPI_R1
887 #undef LDW_R1_R21
888 #undef LDW_R1_DLT
889 #undef LDW_R1_R19
890 #undef ADDIL_R19
891 #undef LDW_R1_DP
892 #undef LDSID_R21_R1
893 #undef MTSP_R1
894 #undef BE_SR0_R21
895 #undef STW_RP
896 #undef BV_R0_R21
897 #undef BL_RP
898 #undef NOP
899 #undef LDW_RP
900 #undef LDSID_RP_R1
901 #undef BE_SR0_RP
902
903 /* As above, but don't actually build the stub. Just bump offset so
904 we know stub section sizes. */
905
906 static bfd_boolean
907 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
908 {
909 struct elf32_hppa_stub_hash_entry *hsh;
910 struct elf32_hppa_link_hash_table *htab;
911 int size;
912
913 /* Massage our args to the form they really have. */
914 hsh = hppa_stub_hash_entry (bh);
915 htab = in_arg;
916
917 if (hsh->stub_type == hppa_stub_long_branch)
918 size = 8;
919 else if (hsh->stub_type == hppa_stub_long_branch_shared)
920 size = 12;
921 else if (hsh->stub_type == hppa_stub_export)
922 size = 24;
923 else /* hppa_stub_import or hppa_stub_import_shared. */
924 {
925 if (htab->multi_subspace)
926 size = 28;
927 else
928 size = 16;
929 }
930
931 hsh->stub_sec->size += size;
932 return TRUE;
933 }
934
935 /* Return nonzero if ABFD represents an HPPA ELF32 file.
936 Additionally we set the default architecture and machine. */
937
938 static bfd_boolean
939 elf32_hppa_object_p (bfd *abfd)
940 {
941 Elf_Internal_Ehdr * i_ehdrp;
942 unsigned int flags;
943
944 i_ehdrp = elf_elfheader (abfd);
945 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
946 {
947 /* GCC on hppa-linux produces binaries with OSABI=Linux,
948 but the kernel produces corefiles with OSABI=SysV. */
949 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX &&
950 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
951 return FALSE;
952 }
953 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
954 {
955 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
956 but the kernel produces corefiles with OSABI=SysV. */
957 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
958 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
959 return FALSE;
960 }
961 else
962 {
963 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
964 return FALSE;
965 }
966
967 flags = i_ehdrp->e_flags;
968 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
969 {
970 case EFA_PARISC_1_0:
971 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
972 case EFA_PARISC_1_1:
973 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
974 case EFA_PARISC_2_0:
975 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
976 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
977 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
978 }
979 return TRUE;
980 }
981
982 /* Create the .plt and .got sections, and set up our hash table
983 short-cuts to various dynamic sections. */
984
985 static bfd_boolean
986 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
987 {
988 struct elf32_hppa_link_hash_table *htab;
989 struct elf_link_hash_entry *eh;
990
991 /* Don't try to create the .plt and .got twice. */
992 htab = hppa_link_hash_table (info);
993 if (htab->splt != NULL)
994 return TRUE;
995
996 /* Call the generic code to do most of the work. */
997 if (! _bfd_elf_create_dynamic_sections (abfd, info))
998 return FALSE;
999
1000 htab->splt = bfd_get_section_by_name (abfd, ".plt");
1001 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
1002
1003 htab->sgot = bfd_get_section_by_name (abfd, ".got");
1004 htab->srelgot = bfd_make_section_with_flags (abfd, ".rela.got",
1005 (SEC_ALLOC
1006 | SEC_LOAD
1007 | SEC_HAS_CONTENTS
1008 | SEC_IN_MEMORY
1009 | SEC_LINKER_CREATED
1010 | SEC_READONLY));
1011 if (htab->srelgot == NULL
1012 || ! bfd_set_section_alignment (abfd, htab->srelgot, 2))
1013 return FALSE;
1014
1015 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
1016 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
1017
1018 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
1019 application, because __canonicalize_funcptr_for_compare needs it. */
1020 eh = elf_hash_table (info)->hgot;
1021 eh->forced_local = 0;
1022 eh->other = STV_DEFAULT;
1023 return bfd_elf_link_record_dynamic_symbol (info, eh);
1024 }
1025
1026 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1027
1028 static void
1029 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1030 struct elf_link_hash_entry *eh_dir,
1031 struct elf_link_hash_entry *eh_ind)
1032 {
1033 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1034
1035 hh_dir = hppa_elf_hash_entry (eh_dir);
1036 hh_ind = hppa_elf_hash_entry (eh_ind);
1037
1038 if (hh_ind->dyn_relocs != NULL)
1039 {
1040 if (hh_dir->dyn_relocs != NULL)
1041 {
1042 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1043 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1044
1045 /* Add reloc counts against the indirect sym to the direct sym
1046 list. Merge any entries against the same section. */
1047 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1048 {
1049 struct elf32_hppa_dyn_reloc_entry *hdh_q;
1050
1051 for (hdh_q = hh_dir->dyn_relocs;
1052 hdh_q != NULL;
1053 hdh_q = hdh_q->hdh_next)
1054 if (hdh_q->sec == hdh_p->sec)
1055 {
1056 #if RELATIVE_DYNRELOCS
1057 hdh_q->relative_count += hdh_p->relative_count;
1058 #endif
1059 hdh_q->count += hdh_p->count;
1060 *hdh_pp = hdh_p->hdh_next;
1061 break;
1062 }
1063 if (hdh_q == NULL)
1064 hdh_pp = &hdh_p->hdh_next;
1065 }
1066 *hdh_pp = hh_dir->dyn_relocs;
1067 }
1068
1069 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1070 hh_ind->dyn_relocs = NULL;
1071 }
1072
1073 if (ELIMINATE_COPY_RELOCS
1074 && eh_ind->root.type != bfd_link_hash_indirect
1075 && eh_dir->dynamic_adjusted)
1076 {
1077 /* If called to transfer flags for a weakdef during processing
1078 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1079 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1080 eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
1081 eh_dir->ref_regular |= eh_ind->ref_regular;
1082 eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
1083 eh_dir->needs_plt |= eh_ind->needs_plt;
1084 }
1085 else
1086 {
1087 if (eh_ind->root.type == bfd_link_hash_indirect
1088 && eh_dir->got.refcount <= 0)
1089 {
1090 hh_dir->tls_type = hh_ind->tls_type;
1091 hh_ind->tls_type = GOT_UNKNOWN;
1092 }
1093
1094 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1095 }
1096 }
1097
1098 static int
1099 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1100 int r_type, int is_local ATTRIBUTE_UNUSED)
1101 {
1102 /* For now we don't support linker optimizations. */
1103 return r_type;
1104 }
1105
1106 /* Look through the relocs for a section during the first phase, and
1107 calculate needed space in the global offset table, procedure linkage
1108 table, and dynamic reloc sections. At this point we haven't
1109 necessarily read all the input files. */
1110
1111 static bfd_boolean
1112 elf32_hppa_check_relocs (bfd *abfd,
1113 struct bfd_link_info *info,
1114 asection *sec,
1115 const Elf_Internal_Rela *relocs)
1116 {
1117 Elf_Internal_Shdr *symtab_hdr;
1118 struct elf_link_hash_entry **eh_syms;
1119 const Elf_Internal_Rela *rela;
1120 const Elf_Internal_Rela *rela_end;
1121 struct elf32_hppa_link_hash_table *htab;
1122 asection *sreloc;
1123 asection *stubreloc;
1124 int tls_type = GOT_UNKNOWN, old_tls_type = GOT_UNKNOWN;
1125
1126 if (info->relocatable)
1127 return TRUE;
1128
1129 htab = hppa_link_hash_table (info);
1130 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1131 eh_syms = elf_sym_hashes (abfd);
1132 sreloc = NULL;
1133 stubreloc = NULL;
1134
1135 rela_end = relocs + sec->reloc_count;
1136 for (rela = relocs; rela < rela_end; rela++)
1137 {
1138 enum {
1139 NEED_GOT = 1,
1140 NEED_PLT = 2,
1141 NEED_DYNREL = 4,
1142 PLT_PLABEL = 8
1143 };
1144
1145 unsigned int r_symndx, r_type;
1146 struct elf32_hppa_link_hash_entry *hh;
1147 int need_entry = 0;
1148
1149 r_symndx = ELF32_R_SYM (rela->r_info);
1150
1151 if (r_symndx < symtab_hdr->sh_info)
1152 hh = NULL;
1153 else
1154 {
1155 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1156 while (hh->eh.root.type == bfd_link_hash_indirect
1157 || hh->eh.root.type == bfd_link_hash_warning)
1158 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1159 }
1160
1161 r_type = ELF32_R_TYPE (rela->r_info);
1162 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1163
1164 switch (r_type)
1165 {
1166 case R_PARISC_DLTIND14F:
1167 case R_PARISC_DLTIND14R:
1168 case R_PARISC_DLTIND21L:
1169 /* This symbol requires a global offset table entry. */
1170 need_entry = NEED_GOT;
1171 break;
1172
1173 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1174 case R_PARISC_PLABEL21L:
1175 case R_PARISC_PLABEL32:
1176 /* If the addend is non-zero, we break badly. */
1177 if (rela->r_addend != 0)
1178 abort ();
1179
1180 /* If we are creating a shared library, then we need to
1181 create a PLT entry for all PLABELs, because PLABELs with
1182 local symbols may be passed via a pointer to another
1183 object. Additionally, output a dynamic relocation
1184 pointing to the PLT entry.
1185
1186 For executables, the original 32-bit ABI allowed two
1187 different styles of PLABELs (function pointers): For
1188 global functions, the PLABEL word points into the .plt
1189 two bytes past a (function address, gp) pair, and for
1190 local functions the PLABEL points directly at the
1191 function. The magic +2 for the first type allows us to
1192 differentiate between the two. As you can imagine, this
1193 is a real pain when it comes to generating code to call
1194 functions indirectly or to compare function pointers.
1195 We avoid the mess by always pointing a PLABEL into the
1196 .plt, even for local functions. */
1197 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1198 break;
1199
1200 case R_PARISC_PCREL12F:
1201 htab->has_12bit_branch = 1;
1202 goto branch_common;
1203
1204 case R_PARISC_PCREL17C:
1205 case R_PARISC_PCREL17F:
1206 htab->has_17bit_branch = 1;
1207 goto branch_common;
1208
1209 case R_PARISC_PCREL22F:
1210 htab->has_22bit_branch = 1;
1211 branch_common:
1212 /* Function calls might need to go through the .plt, and
1213 might require long branch stubs. */
1214 if (hh == NULL)
1215 {
1216 /* We know local syms won't need a .plt entry, and if
1217 they need a long branch stub we can't guarantee that
1218 we can reach the stub. So just flag an error later
1219 if we're doing a shared link and find we need a long
1220 branch stub. */
1221 continue;
1222 }
1223 else
1224 {
1225 /* Global symbols will need a .plt entry if they remain
1226 global, and in most cases won't need a long branch
1227 stub. Unfortunately, we have to cater for the case
1228 where a symbol is forced local by versioning, or due
1229 to symbolic linking, and we lose the .plt entry. */
1230 need_entry = NEED_PLT;
1231 if (hh->eh.type == STT_PARISC_MILLI)
1232 need_entry = 0;
1233 }
1234 break;
1235
1236 case R_PARISC_SEGBASE: /* Used to set segment base. */
1237 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1238 case R_PARISC_PCREL14F: /* PC relative load/store. */
1239 case R_PARISC_PCREL14R:
1240 case R_PARISC_PCREL17R: /* External branches. */
1241 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1242 case R_PARISC_PCREL32:
1243 /* We don't need to propagate the relocation if linking a
1244 shared object since these are section relative. */
1245 continue;
1246
1247 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1248 case R_PARISC_DPREL14R:
1249 case R_PARISC_DPREL21L:
1250 if (info->shared)
1251 {
1252 (*_bfd_error_handler)
1253 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1254 abfd,
1255 elf_hppa_howto_table[r_type].name);
1256 bfd_set_error (bfd_error_bad_value);
1257 return FALSE;
1258 }
1259 /* Fall through. */
1260
1261 case R_PARISC_DIR17F: /* Used for external branches. */
1262 case R_PARISC_DIR17R:
1263 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1264 case R_PARISC_DIR14R:
1265 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1266 case R_PARISC_DIR32: /* .word relocs. */
1267 /* We may want to output a dynamic relocation later. */
1268 need_entry = NEED_DYNREL;
1269 break;
1270
1271 /* This relocation describes the C++ object vtable hierarchy.
1272 Reconstruct it for later use during GC. */
1273 case R_PARISC_GNU_VTINHERIT:
1274 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1275 return FALSE;
1276 continue;
1277
1278 /* This relocation describes which C++ vtable entries are actually
1279 used. Record for later use during GC. */
1280 case R_PARISC_GNU_VTENTRY:
1281 if (!bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1282 return FALSE;
1283 continue;
1284
1285 case R_PARISC_TLS_GD21L:
1286 case R_PARISC_TLS_GD14R:
1287 case R_PARISC_TLS_LDM21L:
1288 case R_PARISC_TLS_LDM14R:
1289 need_entry = NEED_GOT;
1290 break;
1291
1292 case R_PARISC_TLS_IE21L:
1293 case R_PARISC_TLS_IE14R:
1294 if (info->shared)
1295 info->flags |= DF_STATIC_TLS;
1296 need_entry = NEED_GOT;
1297 break;
1298
1299 default:
1300 continue;
1301 }
1302
1303 /* Now carry out our orders. */
1304 if (need_entry & NEED_GOT)
1305 {
1306 switch (r_type)
1307 {
1308 default:
1309 tls_type = GOT_NORMAL;
1310 break;
1311 case R_PARISC_TLS_GD21L:
1312 case R_PARISC_TLS_GD14R:
1313 tls_type |= GOT_TLS_GD;
1314 break;
1315 case R_PARISC_TLS_LDM21L:
1316 case R_PARISC_TLS_LDM14R:
1317 tls_type |= GOT_TLS_LDM;
1318 break;
1319 case R_PARISC_TLS_IE21L:
1320 case R_PARISC_TLS_IE14R:
1321 tls_type |= GOT_TLS_IE;
1322 break;
1323 }
1324
1325 /* Allocate space for a GOT entry, as well as a dynamic
1326 relocation for this entry. */
1327 if (htab->sgot == NULL)
1328 {
1329 if (htab->etab.dynobj == NULL)
1330 htab->etab.dynobj = abfd;
1331 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1332 return FALSE;
1333 }
1334
1335 if (r_type == R_PARISC_TLS_LDM21L
1336 || r_type == R_PARISC_TLS_LDM14R)
1337 hppa_link_hash_table (info)->tls_ldm_got.refcount += 1;
1338 else
1339 {
1340 if (hh != NULL)
1341 {
1342 hh->eh.got.refcount += 1;
1343 old_tls_type = hh->tls_type;
1344 }
1345 else
1346 {
1347 bfd_signed_vma *local_got_refcounts;
1348
1349 /* This is a global offset table entry for a local symbol. */
1350 local_got_refcounts = elf_local_got_refcounts (abfd);
1351 if (local_got_refcounts == NULL)
1352 {
1353 bfd_size_type size;
1354
1355 /* Allocate space for local got offsets and local
1356 plt offsets. Done this way to save polluting
1357 elf_obj_tdata with another target specific
1358 pointer. */
1359 size = symtab_hdr->sh_info;
1360 size *= 2 * sizeof (bfd_signed_vma);
1361 /* Add in space to store the local GOT TLS types. */
1362 size += symtab_hdr->sh_info;
1363 local_got_refcounts = bfd_zalloc (abfd, size);
1364 if (local_got_refcounts == NULL)
1365 return FALSE;
1366 elf_local_got_refcounts (abfd) = local_got_refcounts;
1367 memset (hppa_elf_local_got_tls_type (abfd),
1368 GOT_UNKNOWN, symtab_hdr->sh_info);
1369 }
1370 local_got_refcounts[r_symndx] += 1;
1371
1372 old_tls_type = hppa_elf_local_got_tls_type (abfd) [r_symndx];
1373 }
1374
1375 tls_type |= old_tls_type;
1376
1377 if (old_tls_type != tls_type)
1378 {
1379 if (hh != NULL)
1380 hh->tls_type = tls_type;
1381 else
1382 hppa_elf_local_got_tls_type (abfd) [r_symndx] = tls_type;
1383 }
1384
1385 }
1386 }
1387
1388 if (need_entry & NEED_PLT)
1389 {
1390 /* If we are creating a shared library, and this is a reloc
1391 against a weak symbol or a global symbol in a dynamic
1392 object, then we will be creating an import stub and a
1393 .plt entry for the symbol. Similarly, on a normal link
1394 to symbols defined in a dynamic object we'll need the
1395 import stub and a .plt entry. We don't know yet whether
1396 the symbol is defined or not, so make an entry anyway and
1397 clean up later in adjust_dynamic_symbol. */
1398 if ((sec->flags & SEC_ALLOC) != 0)
1399 {
1400 if (hh != NULL)
1401 {
1402 hh->eh.needs_plt = 1;
1403 hh->eh.plt.refcount += 1;
1404
1405 /* If this .plt entry is for a plabel, mark it so
1406 that adjust_dynamic_symbol will keep the entry
1407 even if it appears to be local. */
1408 if (need_entry & PLT_PLABEL)
1409 hh->plabel = 1;
1410 }
1411 else if (need_entry & PLT_PLABEL)
1412 {
1413 bfd_signed_vma *local_got_refcounts;
1414 bfd_signed_vma *local_plt_refcounts;
1415
1416 local_got_refcounts = elf_local_got_refcounts (abfd);
1417 if (local_got_refcounts == NULL)
1418 {
1419 bfd_size_type size;
1420
1421 /* Allocate space for local got offsets and local
1422 plt offsets. */
1423 size = symtab_hdr->sh_info;
1424 size *= 2 * sizeof (bfd_signed_vma);
1425 /* Add in space to store the local GOT TLS types. */
1426 size += symtab_hdr->sh_info;
1427 local_got_refcounts = bfd_zalloc (abfd, size);
1428 if (local_got_refcounts == NULL)
1429 return FALSE;
1430 elf_local_got_refcounts (abfd) = local_got_refcounts;
1431 }
1432 local_plt_refcounts = (local_got_refcounts
1433 + symtab_hdr->sh_info);
1434 local_plt_refcounts[r_symndx] += 1;
1435 }
1436 }
1437 }
1438
1439 if (need_entry & NEED_DYNREL)
1440 {
1441 /* Flag this symbol as having a non-got, non-plt reference
1442 so that we generate copy relocs if it turns out to be
1443 dynamic. */
1444 if (hh != NULL && !info->shared)
1445 hh->eh.non_got_ref = 1;
1446
1447 /* If we are creating a shared library then we need to copy
1448 the reloc into the shared library. However, if we are
1449 linking with -Bsymbolic, we need only copy absolute
1450 relocs or relocs against symbols that are not defined in
1451 an object we are including in the link. PC- or DP- or
1452 DLT-relative relocs against any local sym or global sym
1453 with DEF_REGULAR set, can be discarded. At this point we
1454 have not seen all the input files, so it is possible that
1455 DEF_REGULAR is not set now but will be set later (it is
1456 never cleared). We account for that possibility below by
1457 storing information in the dyn_relocs field of the
1458 hash table entry.
1459
1460 A similar situation to the -Bsymbolic case occurs when
1461 creating shared libraries and symbol visibility changes
1462 render the symbol local.
1463
1464 As it turns out, all the relocs we will be creating here
1465 are absolute, so we cannot remove them on -Bsymbolic
1466 links or visibility changes anyway. A STUB_REL reloc
1467 is absolute too, as in that case it is the reloc in the
1468 stub we will be creating, rather than copying the PCREL
1469 reloc in the branch.
1470
1471 If on the other hand, we are creating an executable, we
1472 may need to keep relocations for symbols satisfied by a
1473 dynamic library if we manage to avoid copy relocs for the
1474 symbol. */
1475 if ((info->shared
1476 && (sec->flags & SEC_ALLOC) != 0
1477 && (IS_ABSOLUTE_RELOC (r_type)
1478 || (hh != NULL
1479 && (!info->symbolic
1480 || hh->eh.root.type == bfd_link_hash_defweak
1481 || !hh->eh.def_regular))))
1482 || (ELIMINATE_COPY_RELOCS
1483 && !info->shared
1484 && (sec->flags & SEC_ALLOC) != 0
1485 && hh != NULL
1486 && (hh->eh.root.type == bfd_link_hash_defweak
1487 || !hh->eh.def_regular)))
1488 {
1489 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1490 struct elf32_hppa_dyn_reloc_entry **hdh_head;
1491
1492 /* Create a reloc section in dynobj and make room for
1493 this reloc. */
1494 if (sreloc == NULL)
1495 {
1496 char *name;
1497 bfd *dynobj;
1498
1499 name = (bfd_elf_string_from_elf_section
1500 (abfd,
1501 elf_elfheader (abfd)->e_shstrndx,
1502 elf_section_data (sec)->rel_hdr.sh_name));
1503 if (name == NULL)
1504 {
1505 (*_bfd_error_handler)
1506 (_("Could not find relocation section for %s"),
1507 sec->name);
1508 bfd_set_error (bfd_error_bad_value);
1509 return FALSE;
1510 }
1511
1512 if (htab->etab.dynobj == NULL)
1513 htab->etab.dynobj = abfd;
1514
1515 dynobj = htab->etab.dynobj;
1516 sreloc = bfd_get_section_by_name (dynobj, name);
1517 if (sreloc == NULL)
1518 {
1519 flagword flags;
1520
1521 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1522 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1523 if ((sec->flags & SEC_ALLOC) != 0)
1524 flags |= SEC_ALLOC | SEC_LOAD;
1525 sreloc = bfd_make_section_with_flags (dynobj,
1526 name,
1527 flags);
1528 if (sreloc == NULL
1529 || !bfd_set_section_alignment (dynobj, sreloc, 2))
1530 return FALSE;
1531 }
1532
1533 elf_section_data (sec)->sreloc = sreloc;
1534 }
1535
1536 /* If this is a global symbol, we count the number of
1537 relocations we need for this symbol. */
1538 if (hh != NULL)
1539 {
1540 hdh_head = &hh->dyn_relocs;
1541 }
1542 else
1543 {
1544 /* Track dynamic relocs needed for local syms too.
1545 We really need local syms available to do this
1546 easily. Oh well. */
1547
1548 asection *sr;
1549 void *vpp;
1550
1551 sr = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1552 sec, r_symndx);
1553 if (sr == NULL)
1554 return FALSE;
1555
1556 vpp = &elf_section_data (sr)->local_dynrel;
1557 hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp;
1558 }
1559
1560 hdh_p = *hdh_head;
1561 if (hdh_p == NULL || hdh_p->sec != sec)
1562 {
1563 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1564 if (hdh_p == NULL)
1565 return FALSE;
1566 hdh_p->hdh_next = *hdh_head;
1567 *hdh_head = hdh_p;
1568 hdh_p->sec = sec;
1569 hdh_p->count = 0;
1570 #if RELATIVE_DYNRELOCS
1571 hdh_p->relative_count = 0;
1572 #endif
1573 }
1574
1575 hdh_p->count += 1;
1576 #if RELATIVE_DYNRELOCS
1577 if (!IS_ABSOLUTE_RELOC (rtype))
1578 hdh_p->relative_count += 1;
1579 #endif
1580 }
1581 }
1582 }
1583
1584 return TRUE;
1585 }
1586
1587 /* Return the section that should be marked against garbage collection
1588 for a given relocation. */
1589
1590 static asection *
1591 elf32_hppa_gc_mark_hook (asection *sec,
1592 struct bfd_link_info *info,
1593 Elf_Internal_Rela *rela,
1594 struct elf_link_hash_entry *hh,
1595 Elf_Internal_Sym *sym)
1596 {
1597 if (hh != NULL)
1598 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1599 {
1600 case R_PARISC_GNU_VTINHERIT:
1601 case R_PARISC_GNU_VTENTRY:
1602 return NULL;
1603 }
1604
1605 return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1606 }
1607
1608 /* Update the got and plt entry reference counts for the section being
1609 removed. */
1610
1611 static bfd_boolean
1612 elf32_hppa_gc_sweep_hook (bfd *abfd,
1613 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1614 asection *sec,
1615 const Elf_Internal_Rela *relocs)
1616 {
1617 Elf_Internal_Shdr *symtab_hdr;
1618 struct elf_link_hash_entry **eh_syms;
1619 bfd_signed_vma *local_got_refcounts;
1620 bfd_signed_vma *local_plt_refcounts;
1621 const Elf_Internal_Rela *rela, *relend;
1622
1623 elf_section_data (sec)->local_dynrel = NULL;
1624
1625 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1626 eh_syms = elf_sym_hashes (abfd);
1627 local_got_refcounts = elf_local_got_refcounts (abfd);
1628 local_plt_refcounts = local_got_refcounts;
1629 if (local_plt_refcounts != NULL)
1630 local_plt_refcounts += symtab_hdr->sh_info;
1631
1632 relend = relocs + sec->reloc_count;
1633 for (rela = relocs; rela < relend; rela++)
1634 {
1635 unsigned long r_symndx;
1636 unsigned int r_type;
1637 struct elf_link_hash_entry *eh = NULL;
1638
1639 r_symndx = ELF32_R_SYM (rela->r_info);
1640 if (r_symndx >= symtab_hdr->sh_info)
1641 {
1642 struct elf32_hppa_link_hash_entry *hh;
1643 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1644 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1645
1646 eh = eh_syms[r_symndx - symtab_hdr->sh_info];
1647 while (eh->root.type == bfd_link_hash_indirect
1648 || eh->root.type == bfd_link_hash_warning)
1649 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1650 hh = hppa_elf_hash_entry (eh);
1651
1652 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next)
1653 if (hdh_p->sec == sec)
1654 {
1655 /* Everything must go for SEC. */
1656 *hdh_pp = hdh_p->hdh_next;
1657 break;
1658 }
1659 }
1660
1661 r_type = ELF32_R_TYPE (rela->r_info);
1662 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, eh != NULL);
1663
1664 switch (r_type)
1665 {
1666 case R_PARISC_DLTIND14F:
1667 case R_PARISC_DLTIND14R:
1668 case R_PARISC_DLTIND21L:
1669 case R_PARISC_TLS_GD21L:
1670 case R_PARISC_TLS_GD14R:
1671 case R_PARISC_TLS_IE21L:
1672 case R_PARISC_TLS_IE14R:
1673 if (eh != NULL)
1674 {
1675 if (eh->got.refcount > 0)
1676 eh->got.refcount -= 1;
1677 }
1678 else if (local_got_refcounts != NULL)
1679 {
1680 if (local_got_refcounts[r_symndx] > 0)
1681 local_got_refcounts[r_symndx] -= 1;
1682 }
1683 break;
1684
1685 case R_PARISC_TLS_LDM21L:
1686 case R_PARISC_TLS_LDM14R:
1687 hppa_link_hash_table (info)->tls_ldm_got.refcount -= 1;
1688 break;
1689
1690 case R_PARISC_PCREL12F:
1691 case R_PARISC_PCREL17C:
1692 case R_PARISC_PCREL17F:
1693 case R_PARISC_PCREL22F:
1694 if (eh != NULL)
1695 {
1696 if (eh->plt.refcount > 0)
1697 eh->plt.refcount -= 1;
1698 }
1699 break;
1700
1701 case R_PARISC_PLABEL14R:
1702 case R_PARISC_PLABEL21L:
1703 case R_PARISC_PLABEL32:
1704 if (eh != NULL)
1705 {
1706 if (eh->plt.refcount > 0)
1707 eh->plt.refcount -= 1;
1708 }
1709 else if (local_plt_refcounts != NULL)
1710 {
1711 if (local_plt_refcounts[r_symndx] > 0)
1712 local_plt_refcounts[r_symndx] -= 1;
1713 }
1714 break;
1715
1716 default:
1717 break;
1718 }
1719 }
1720
1721 return TRUE;
1722 }
1723
1724 /* Support for core dump NOTE sections. */
1725
1726 static bfd_boolean
1727 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1728 {
1729 int offset;
1730 size_t size;
1731
1732 switch (note->descsz)
1733 {
1734 default:
1735 return FALSE;
1736
1737 case 396: /* Linux/hppa */
1738 /* pr_cursig */
1739 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1740
1741 /* pr_pid */
1742 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1743
1744 /* pr_reg */
1745 offset = 72;
1746 size = 320;
1747
1748 break;
1749 }
1750
1751 /* Make a ".reg/999" section. */
1752 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1753 size, note->descpos + offset);
1754 }
1755
1756 static bfd_boolean
1757 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1758 {
1759 switch (note->descsz)
1760 {
1761 default:
1762 return FALSE;
1763
1764 case 124: /* Linux/hppa elf_prpsinfo. */
1765 elf_tdata (abfd)->core_program
1766 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1767 elf_tdata (abfd)->core_command
1768 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1769 }
1770
1771 /* Note that for some reason, a spurious space is tacked
1772 onto the end of the args in some (at least one anyway)
1773 implementations, so strip it off if it exists. */
1774 {
1775 char *command = elf_tdata (abfd)->core_command;
1776 int n = strlen (command);
1777
1778 if (0 < n && command[n - 1] == ' ')
1779 command[n - 1] = '\0';
1780 }
1781
1782 return TRUE;
1783 }
1784
1785 /* Our own version of hide_symbol, so that we can keep plt entries for
1786 plabels. */
1787
1788 static void
1789 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1790 struct elf_link_hash_entry *eh,
1791 bfd_boolean force_local)
1792 {
1793 if (force_local)
1794 {
1795 eh->forced_local = 1;
1796 if (eh->dynindx != -1)
1797 {
1798 eh->dynindx = -1;
1799 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1800 eh->dynstr_index);
1801 }
1802 }
1803
1804 if (! hppa_elf_hash_entry (eh)->plabel)
1805 {
1806 eh->needs_plt = 0;
1807 eh->plt = elf_hash_table (info)->init_plt_refcount;
1808 }
1809 }
1810
1811 /* Adjust a symbol defined by a dynamic object and referenced by a
1812 regular object. The current definition is in some section of the
1813 dynamic object, but we're not including those sections. We have to
1814 change the definition to something the rest of the link can
1815 understand. */
1816
1817 static bfd_boolean
1818 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1819 struct elf_link_hash_entry *eh)
1820 {
1821 struct elf32_hppa_link_hash_table *htab;
1822 asection *sec;
1823
1824 /* If this is a function, put it in the procedure linkage table. We
1825 will fill in the contents of the procedure linkage table later. */
1826 if (eh->type == STT_FUNC
1827 || eh->needs_plt)
1828 {
1829 if (eh->plt.refcount <= 0
1830 || (eh->def_regular
1831 && eh->root.type != bfd_link_hash_defweak
1832 && ! hppa_elf_hash_entry (eh)->plabel
1833 && (!info->shared || info->symbolic)))
1834 {
1835 /* The .plt entry is not needed when:
1836 a) Garbage collection has removed all references to the
1837 symbol, or
1838 b) We know for certain the symbol is defined in this
1839 object, and it's not a weak definition, nor is the symbol
1840 used by a plabel relocation. Either this object is the
1841 application or we are doing a shared symbolic link. */
1842
1843 eh->plt.offset = (bfd_vma) -1;
1844 eh->needs_plt = 0;
1845 }
1846
1847 return TRUE;
1848 }
1849 else
1850 eh->plt.offset = (bfd_vma) -1;
1851
1852 /* If this is a weak symbol, and there is a real definition, the
1853 processor independent code will have arranged for us to see the
1854 real definition first, and we can just use the same value. */
1855 if (eh->u.weakdef != NULL)
1856 {
1857 if (eh->u.weakdef->root.type != bfd_link_hash_defined
1858 && eh->u.weakdef->root.type != bfd_link_hash_defweak)
1859 abort ();
1860 eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1861 eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1862 if (ELIMINATE_COPY_RELOCS)
1863 eh->non_got_ref = eh->u.weakdef->non_got_ref;
1864 return TRUE;
1865 }
1866
1867 /* This is a reference to a symbol defined by a dynamic object which
1868 is not a function. */
1869
1870 /* If we are creating a shared library, we must presume that the
1871 only references to the symbol are via the global offset table.
1872 For such cases we need not do anything here; the relocations will
1873 be handled correctly by relocate_section. */
1874 if (info->shared)
1875 return TRUE;
1876
1877 /* If there are no references to this symbol that do not use the
1878 GOT, we don't need to generate a copy reloc. */
1879 if (!eh->non_got_ref)
1880 return TRUE;
1881
1882 if (ELIMINATE_COPY_RELOCS)
1883 {
1884 struct elf32_hppa_link_hash_entry *hh;
1885 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1886
1887 hh = hppa_elf_hash_entry (eh);
1888 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
1889 {
1890 sec = hdh_p->sec->output_section;
1891 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1892 break;
1893 }
1894
1895 /* If we didn't find any dynamic relocs in read-only sections, then
1896 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1897 if (hdh_p == NULL)
1898 {
1899 eh->non_got_ref = 0;
1900 return TRUE;
1901 }
1902 }
1903
1904 if (eh->size == 0)
1905 {
1906 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
1907 eh->root.root.string);
1908 return TRUE;
1909 }
1910
1911 /* We must allocate the symbol in our .dynbss section, which will
1912 become part of the .bss section of the executable. There will be
1913 an entry for this symbol in the .dynsym section. The dynamic
1914 object will contain position independent code, so all references
1915 from the dynamic object to this symbol will go through the global
1916 offset table. The dynamic linker will use the .dynsym entry to
1917 determine the address it must put in the global offset table, so
1918 both the dynamic object and the regular object will refer to the
1919 same memory location for the variable. */
1920
1921 htab = hppa_link_hash_table (info);
1922
1923 /* We must generate a COPY reloc to tell the dynamic linker to
1924 copy the initial value out of the dynamic object and into the
1925 runtime process image. */
1926 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0)
1927 {
1928 htab->srelbss->size += sizeof (Elf32_External_Rela);
1929 eh->needs_copy = 1;
1930 }
1931
1932 sec = htab->sdynbss;
1933
1934 return _bfd_elf_adjust_dynamic_copy (eh, sec);
1935 }
1936
1937 /* Allocate space in the .plt for entries that won't have relocations.
1938 ie. plabel entries. */
1939
1940 static bfd_boolean
1941 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1942 {
1943 struct bfd_link_info *info;
1944 struct elf32_hppa_link_hash_table *htab;
1945 struct elf32_hppa_link_hash_entry *hh;
1946 asection *sec;
1947
1948 if (eh->root.type == bfd_link_hash_indirect)
1949 return TRUE;
1950
1951 if (eh->root.type == bfd_link_hash_warning)
1952 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1953
1954 info = (struct bfd_link_info *) inf;
1955 hh = hppa_elf_hash_entry (eh);
1956 htab = hppa_link_hash_table (info);
1957 if (htab->etab.dynamic_sections_created
1958 && eh->plt.refcount > 0)
1959 {
1960 /* Make sure this symbol is output as a dynamic symbol.
1961 Undefined weak syms won't yet be marked as dynamic. */
1962 if (eh->dynindx == -1
1963 && !eh->forced_local
1964 && eh->type != STT_PARISC_MILLI)
1965 {
1966 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
1967 return FALSE;
1968 }
1969
1970 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, eh))
1971 {
1972 /* Allocate these later. From this point on, h->plabel
1973 means that the plt entry is only used by a plabel.
1974 We'll be using a normal plt entry for this symbol, so
1975 clear the plabel indicator. */
1976
1977 hh->plabel = 0;
1978 }
1979 else if (hh->plabel)
1980 {
1981 /* Make an entry in the .plt section for plabel references
1982 that won't have a .plt entry for other reasons. */
1983 sec = htab->splt;
1984 eh->plt.offset = sec->size;
1985 sec->size += PLT_ENTRY_SIZE;
1986 }
1987 else
1988 {
1989 /* No .plt entry needed. */
1990 eh->plt.offset = (bfd_vma) -1;
1991 eh->needs_plt = 0;
1992 }
1993 }
1994 else
1995 {
1996 eh->plt.offset = (bfd_vma) -1;
1997 eh->needs_plt = 0;
1998 }
1999
2000 return TRUE;
2001 }
2002
2003 /* Allocate space in .plt, .got and associated reloc sections for
2004 global syms. */
2005
2006 static bfd_boolean
2007 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2008 {
2009 struct bfd_link_info *info;
2010 struct elf32_hppa_link_hash_table *htab;
2011 asection *sec;
2012 struct elf32_hppa_link_hash_entry *hh;
2013 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2014
2015 if (eh->root.type == bfd_link_hash_indirect)
2016 return TRUE;
2017
2018 if (eh->root.type == bfd_link_hash_warning)
2019 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2020
2021 info = inf;
2022 htab = hppa_link_hash_table (info);
2023 hh = hppa_elf_hash_entry (eh);
2024
2025 if (htab->etab.dynamic_sections_created
2026 && eh->plt.offset != (bfd_vma) -1
2027 && !hh->plabel
2028 && eh->plt.refcount > 0)
2029 {
2030 /* Make an entry in the .plt section. */
2031 sec = htab->splt;
2032 eh->plt.offset = sec->size;
2033 sec->size += PLT_ENTRY_SIZE;
2034
2035 /* We also need to make an entry in the .rela.plt section. */
2036 htab->srelplt->size += sizeof (Elf32_External_Rela);
2037 htab->need_plt_stub = 1;
2038 }
2039
2040 if (eh->got.refcount > 0)
2041 {
2042 /* Make sure this symbol is output as a dynamic symbol.
2043 Undefined weak syms won't yet be marked as dynamic. */
2044 if (eh->dynindx == -1
2045 && !eh->forced_local
2046 && eh->type != STT_PARISC_MILLI)
2047 {
2048 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2049 return FALSE;
2050 }
2051
2052 sec = htab->sgot;
2053 eh->got.offset = sec->size;
2054 sec->size += GOT_ENTRY_SIZE;
2055 /* R_PARISC_TLS_GD* needs two GOT entries */
2056 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2057 sec->size += GOT_ENTRY_SIZE * 2;
2058 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2059 sec->size += GOT_ENTRY_SIZE;
2060 if (htab->etab.dynamic_sections_created
2061 && (info->shared
2062 || (eh->dynindx != -1
2063 && !eh->forced_local)))
2064 {
2065 htab->srelgot->size += sizeof (Elf32_External_Rela);
2066 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2067 htab->srelgot->size += 2 * sizeof (Elf32_External_Rela);
2068 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2069 htab->srelgot->size += sizeof (Elf32_External_Rela);
2070 }
2071 }
2072 else
2073 eh->got.offset = (bfd_vma) -1;
2074
2075 if (hh->dyn_relocs == NULL)
2076 return TRUE;
2077
2078 /* If this is a -Bsymbolic shared link, then we need to discard all
2079 space allocated for dynamic pc-relative relocs against symbols
2080 defined in a regular object. For the normal shared case, discard
2081 space for relocs that have become local due to symbol visibility
2082 changes. */
2083 if (info->shared)
2084 {
2085 #if RELATIVE_DYNRELOCS
2086 if (SYMBOL_CALLS_LOCAL (info, eh))
2087 {
2088 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
2089
2090 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2091 {
2092 hdh_p->count -= hdh_p->relative_count;
2093 hdh_p->relative_count = 0;
2094 if (hdh_p->count == 0)
2095 *hdh_pp = hdh_p->hdh_next;
2096 else
2097 hdh_pp = &hdh_p->hdh_next;
2098 }
2099 }
2100 #endif
2101
2102 /* Also discard relocs on undefined weak syms with non-default
2103 visibility. */
2104 if (hh->dyn_relocs != NULL
2105 && eh->root.type == bfd_link_hash_undefweak)
2106 {
2107 if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
2108 hh->dyn_relocs = NULL;
2109
2110 /* Make sure undefined weak symbols are output as a dynamic
2111 symbol in PIEs. */
2112 else if (eh->dynindx == -1
2113 && !eh->forced_local)
2114 {
2115 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2116 return FALSE;
2117 }
2118 }
2119 }
2120 else
2121 {
2122 /* For the non-shared case, discard space for relocs against
2123 symbols which turn out to need copy relocs or are not
2124 dynamic. */
2125
2126 if (!eh->non_got_ref
2127 && ((ELIMINATE_COPY_RELOCS
2128 && eh->def_dynamic
2129 && !eh->def_regular)
2130 || (htab->etab.dynamic_sections_created
2131 && (eh->root.type == bfd_link_hash_undefweak
2132 || eh->root.type == bfd_link_hash_undefined))))
2133 {
2134 /* Make sure this symbol is output as a dynamic symbol.
2135 Undefined weak syms won't yet be marked as dynamic. */
2136 if (eh->dynindx == -1
2137 && !eh->forced_local
2138 && eh->type != STT_PARISC_MILLI)
2139 {
2140 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2141 return FALSE;
2142 }
2143
2144 /* If that succeeded, we know we'll be keeping all the
2145 relocs. */
2146 if (eh->dynindx != -1)
2147 goto keep;
2148 }
2149
2150 hh->dyn_relocs = NULL;
2151 return TRUE;
2152
2153 keep: ;
2154 }
2155
2156 /* Finally, allocate space. */
2157 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2158 {
2159 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2160 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2161 }
2162
2163 return TRUE;
2164 }
2165
2166 /* This function is called via elf_link_hash_traverse to force
2167 millicode symbols local so they do not end up as globals in the
2168 dynamic symbol table. We ought to be able to do this in
2169 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2170 for all dynamic symbols. Arguably, this is a bug in
2171 elf_adjust_dynamic_symbol. */
2172
2173 static bfd_boolean
2174 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2175 struct bfd_link_info *info)
2176 {
2177 if (eh->root.type == bfd_link_hash_warning)
2178 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2179
2180 if (eh->type == STT_PARISC_MILLI
2181 && !eh->forced_local)
2182 {
2183 elf32_hppa_hide_symbol (info, eh, TRUE);
2184 }
2185 return TRUE;
2186 }
2187
2188 /* Find any dynamic relocs that apply to read-only sections. */
2189
2190 static bfd_boolean
2191 readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2192 {
2193 struct elf32_hppa_link_hash_entry *hh;
2194 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2195
2196 if (eh->root.type == bfd_link_hash_warning)
2197 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2198
2199 hh = hppa_elf_hash_entry (eh);
2200 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2201 {
2202 asection *sec = hdh_p->sec->output_section;
2203
2204 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
2205 {
2206 struct bfd_link_info *info = inf;
2207
2208 info->flags |= DF_TEXTREL;
2209
2210 /* Not an error, just cut short the traversal. */
2211 return FALSE;
2212 }
2213 }
2214 return TRUE;
2215 }
2216
2217 /* Set the sizes of the dynamic sections. */
2218
2219 static bfd_boolean
2220 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2221 struct bfd_link_info *info)
2222 {
2223 struct elf32_hppa_link_hash_table *htab;
2224 bfd *dynobj;
2225 bfd *ibfd;
2226 asection *sec;
2227 bfd_boolean relocs;
2228
2229 htab = hppa_link_hash_table (info);
2230 dynobj = htab->etab.dynobj;
2231 if (dynobj == NULL)
2232 abort ();
2233
2234 if (htab->etab.dynamic_sections_created)
2235 {
2236 /* Set the contents of the .interp section to the interpreter. */
2237 if (info->executable)
2238 {
2239 sec = bfd_get_section_by_name (dynobj, ".interp");
2240 if (sec == NULL)
2241 abort ();
2242 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2243 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2244 }
2245
2246 /* Force millicode symbols local. */
2247 elf_link_hash_traverse (&htab->etab,
2248 clobber_millicode_symbols,
2249 info);
2250 }
2251
2252 /* Set up .got and .plt offsets for local syms, and space for local
2253 dynamic relocs. */
2254 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2255 {
2256 bfd_signed_vma *local_got;
2257 bfd_signed_vma *end_local_got;
2258 bfd_signed_vma *local_plt;
2259 bfd_signed_vma *end_local_plt;
2260 bfd_size_type locsymcount;
2261 Elf_Internal_Shdr *symtab_hdr;
2262 asection *srel;
2263 char *local_tls_type;
2264
2265 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2266 continue;
2267
2268 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2269 {
2270 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2271
2272 for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
2273 elf_section_data (sec)->local_dynrel);
2274 hdh_p != NULL;
2275 hdh_p = hdh_p->hdh_next)
2276 {
2277 if (!bfd_is_abs_section (hdh_p->sec)
2278 && bfd_is_abs_section (hdh_p->sec->output_section))
2279 {
2280 /* Input section has been discarded, either because
2281 it is a copy of a linkonce section or due to
2282 linker script /DISCARD/, so we'll be discarding
2283 the relocs too. */
2284 }
2285 else if (hdh_p->count != 0)
2286 {
2287 srel = elf_section_data (hdh_p->sec)->sreloc;
2288 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2289 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2290 info->flags |= DF_TEXTREL;
2291 }
2292 }
2293 }
2294
2295 local_got = elf_local_got_refcounts (ibfd);
2296 if (!local_got)
2297 continue;
2298
2299 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2300 locsymcount = symtab_hdr->sh_info;
2301 end_local_got = local_got + locsymcount;
2302 local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2303 sec = htab->sgot;
2304 srel = htab->srelgot;
2305 for (; local_got < end_local_got; ++local_got)
2306 {
2307 if (*local_got > 0)
2308 {
2309 *local_got = sec->size;
2310 sec->size += GOT_ENTRY_SIZE;
2311 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2312 sec->size += 2 * GOT_ENTRY_SIZE;
2313 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2314 sec->size += GOT_ENTRY_SIZE;
2315 if (info->shared)
2316 {
2317 srel->size += sizeof (Elf32_External_Rela);
2318 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2319 srel->size += 2 * sizeof (Elf32_External_Rela);
2320 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2321 srel->size += sizeof (Elf32_External_Rela);
2322 }
2323 }
2324 else
2325 *local_got = (bfd_vma) -1;
2326
2327 ++local_tls_type;
2328 }
2329
2330 local_plt = end_local_got;
2331 end_local_plt = local_plt + locsymcount;
2332 if (! htab->etab.dynamic_sections_created)
2333 {
2334 /* Won't be used, but be safe. */
2335 for (; local_plt < end_local_plt; ++local_plt)
2336 *local_plt = (bfd_vma) -1;
2337 }
2338 else
2339 {
2340 sec = htab->splt;
2341 srel = htab->srelplt;
2342 for (; local_plt < end_local_plt; ++local_plt)
2343 {
2344 if (*local_plt > 0)
2345 {
2346 *local_plt = sec->size;
2347 sec->size += PLT_ENTRY_SIZE;
2348 if (info->shared)
2349 srel->size += sizeof (Elf32_External_Rela);
2350 }
2351 else
2352 *local_plt = (bfd_vma) -1;
2353 }
2354 }
2355 }
2356
2357 if (htab->tls_ldm_got.refcount > 0)
2358 {
2359 /* Allocate 2 got entries and 1 dynamic reloc for
2360 R_PARISC_TLS_DTPMOD32 relocs. */
2361 htab->tls_ldm_got.offset = htab->sgot->size;
2362 htab->sgot->size += (GOT_ENTRY_SIZE * 2);
2363 htab->srelgot->size += sizeof (Elf32_External_Rela);
2364 }
2365 else
2366 htab->tls_ldm_got.offset = -1;
2367
2368 /* Do all the .plt entries without relocs first. The dynamic linker
2369 uses the last .plt reloc to find the end of the .plt (and hence
2370 the start of the .got) for lazy linking. */
2371 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2372
2373 /* Allocate global sym .plt and .got entries, and space for global
2374 sym dynamic relocs. */
2375 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2376
2377 /* The check_relocs and adjust_dynamic_symbol entry points have
2378 determined the sizes of the various dynamic sections. Allocate
2379 memory for them. */
2380 relocs = FALSE;
2381 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2382 {
2383 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2384 continue;
2385
2386 if (sec == htab->splt)
2387 {
2388 if (htab->need_plt_stub)
2389 {
2390 /* Make space for the plt stub at the end of the .plt
2391 section. We want this stub right at the end, up
2392 against the .got section. */
2393 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2394 int pltalign = bfd_section_alignment (dynobj, sec);
2395 bfd_size_type mask;
2396
2397 if (gotalign > pltalign)
2398 bfd_set_section_alignment (dynobj, sec, gotalign);
2399 mask = ((bfd_size_type) 1 << gotalign) - 1;
2400 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2401 }
2402 }
2403 else if (sec == htab->sgot
2404 || sec == htab->sdynbss)
2405 ;
2406 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
2407 {
2408 if (sec->size != 0)
2409 {
2410 /* Remember whether there are any reloc sections other
2411 than .rela.plt. */
2412 if (sec != htab->srelplt)
2413 relocs = TRUE;
2414
2415 /* We use the reloc_count field as a counter if we need
2416 to copy relocs into the output file. */
2417 sec->reloc_count = 0;
2418 }
2419 }
2420 else
2421 {
2422 /* It's not one of our sections, so don't allocate space. */
2423 continue;
2424 }
2425
2426 if (sec->size == 0)
2427 {
2428 /* If we don't need this section, strip it from the
2429 output file. This is mostly to handle .rela.bss and
2430 .rela.plt. We must create both sections in
2431 create_dynamic_sections, because they must be created
2432 before the linker maps input sections to output
2433 sections. The linker does that before
2434 adjust_dynamic_symbol is called, and it is that
2435 function which decides whether anything needs to go
2436 into these sections. */
2437 sec->flags |= SEC_EXCLUDE;
2438 continue;
2439 }
2440
2441 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2442 continue;
2443
2444 /* Allocate memory for the section contents. Zero it, because
2445 we may not fill in all the reloc sections. */
2446 sec->contents = bfd_zalloc (dynobj, sec->size);
2447 if (sec->contents == NULL)
2448 return FALSE;
2449 }
2450
2451 if (htab->etab.dynamic_sections_created)
2452 {
2453 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2454 actually has nothing to do with the PLT, it is how we
2455 communicate the LTP value of a load module to the dynamic
2456 linker. */
2457 #define add_dynamic_entry(TAG, VAL) \
2458 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2459
2460 if (!add_dynamic_entry (DT_PLTGOT, 0))
2461 return FALSE;
2462
2463 /* Add some entries to the .dynamic section. We fill in the
2464 values later, in elf32_hppa_finish_dynamic_sections, but we
2465 must add the entries now so that we get the correct size for
2466 the .dynamic section. The DT_DEBUG entry is filled in by the
2467 dynamic linker and used by the debugger. */
2468 if (info->executable)
2469 {
2470 if (!add_dynamic_entry (DT_DEBUG, 0))
2471 return FALSE;
2472 }
2473
2474 if (htab->srelplt->size != 0)
2475 {
2476 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2477 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2478 || !add_dynamic_entry (DT_JMPREL, 0))
2479 return FALSE;
2480 }
2481
2482 if (relocs)
2483 {
2484 if (!add_dynamic_entry (DT_RELA, 0)
2485 || !add_dynamic_entry (DT_RELASZ, 0)
2486 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2487 return FALSE;
2488
2489 /* If any dynamic relocs apply to a read-only section,
2490 then we need a DT_TEXTREL entry. */
2491 if ((info->flags & DF_TEXTREL) == 0)
2492 elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info);
2493
2494 if ((info->flags & DF_TEXTREL) != 0)
2495 {
2496 if (!add_dynamic_entry (DT_TEXTREL, 0))
2497 return FALSE;
2498 }
2499 }
2500 }
2501 #undef add_dynamic_entry
2502
2503 return TRUE;
2504 }
2505
2506 /* External entry points for sizing and building linker stubs. */
2507
2508 /* Set up various things so that we can make a list of input sections
2509 for each output section included in the link. Returns -1 on error,
2510 0 when no stubs will be needed, and 1 on success. */
2511
2512 int
2513 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2514 {
2515 bfd *input_bfd;
2516 unsigned int bfd_count;
2517 int top_id, top_index;
2518 asection *section;
2519 asection **input_list, **list;
2520 bfd_size_type amt;
2521 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2522
2523 /* Count the number of input BFDs and find the top input section id. */
2524 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2525 input_bfd != NULL;
2526 input_bfd = input_bfd->link_next)
2527 {
2528 bfd_count += 1;
2529 for (section = input_bfd->sections;
2530 section != NULL;
2531 section = section->next)
2532 {
2533 if (top_id < section->id)
2534 top_id = section->id;
2535 }
2536 }
2537 htab->bfd_count = bfd_count;
2538
2539 amt = sizeof (struct map_stub) * (top_id + 1);
2540 htab->stub_group = bfd_zmalloc (amt);
2541 if (htab->stub_group == NULL)
2542 return -1;
2543
2544 /* We can't use output_bfd->section_count here to find the top output
2545 section index as some sections may have been removed, and
2546 strip_excluded_output_sections doesn't renumber the indices. */
2547 for (section = output_bfd->sections, top_index = 0;
2548 section != NULL;
2549 section = section->next)
2550 {
2551 if (top_index < section->index)
2552 top_index = section->index;
2553 }
2554
2555 htab->top_index = top_index;
2556 amt = sizeof (asection *) * (top_index + 1);
2557 input_list = bfd_malloc (amt);
2558 htab->input_list = input_list;
2559 if (input_list == NULL)
2560 return -1;
2561
2562 /* For sections we aren't interested in, mark their entries with a
2563 value we can check later. */
2564 list = input_list + top_index;
2565 do
2566 *list = bfd_abs_section_ptr;
2567 while (list-- != input_list);
2568
2569 for (section = output_bfd->sections;
2570 section != NULL;
2571 section = section->next)
2572 {
2573 if ((section->flags & SEC_CODE) != 0)
2574 input_list[section->index] = NULL;
2575 }
2576
2577 return 1;
2578 }
2579
2580 /* The linker repeatedly calls this function for each input section,
2581 in the order that input sections are linked into output sections.
2582 Build lists of input sections to determine groupings between which
2583 we may insert linker stubs. */
2584
2585 void
2586 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2587 {
2588 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2589
2590 if (isec->output_section->index <= htab->top_index)
2591 {
2592 asection **list = htab->input_list + isec->output_section->index;
2593 if (*list != bfd_abs_section_ptr)
2594 {
2595 /* Steal the link_sec pointer for our list. */
2596 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2597 /* This happens to make the list in reverse order,
2598 which is what we want. */
2599 PREV_SEC (isec) = *list;
2600 *list = isec;
2601 }
2602 }
2603 }
2604
2605 /* See whether we can group stub sections together. Grouping stub
2606 sections may result in fewer stubs. More importantly, we need to
2607 put all .init* and .fini* stubs at the beginning of the .init or
2608 .fini output sections respectively, because glibc splits the
2609 _init and _fini functions into multiple parts. Putting a stub in
2610 the middle of a function is not a good idea. */
2611
2612 static void
2613 group_sections (struct elf32_hppa_link_hash_table *htab,
2614 bfd_size_type stub_group_size,
2615 bfd_boolean stubs_always_before_branch)
2616 {
2617 asection **list = htab->input_list + htab->top_index;
2618 do
2619 {
2620 asection *tail = *list;
2621 if (tail == bfd_abs_section_ptr)
2622 continue;
2623 while (tail != NULL)
2624 {
2625 asection *curr;
2626 asection *prev;
2627 bfd_size_type total;
2628 bfd_boolean big_sec;
2629
2630 curr = tail;
2631 total = tail->size;
2632 big_sec = total >= stub_group_size;
2633
2634 while ((prev = PREV_SEC (curr)) != NULL
2635 && ((total += curr->output_offset - prev->output_offset)
2636 < stub_group_size))
2637 curr = prev;
2638
2639 /* OK, the size from the start of CURR to the end is less
2640 than 240000 bytes and thus can be handled by one stub
2641 section. (or the tail section is itself larger than
2642 240000 bytes, in which case we may be toast.)
2643 We should really be keeping track of the total size of
2644 stubs added here, as stubs contribute to the final output
2645 section size. That's a little tricky, and this way will
2646 only break if stubs added total more than 22144 bytes, or
2647 2768 long branch stubs. It seems unlikely for more than
2648 2768 different functions to be called, especially from
2649 code only 240000 bytes long. This limit used to be
2650 250000, but c++ code tends to generate lots of little
2651 functions, and sometimes violated the assumption. */
2652 do
2653 {
2654 prev = PREV_SEC (tail);
2655 /* Set up this stub group. */
2656 htab->stub_group[tail->id].link_sec = curr;
2657 }
2658 while (tail != curr && (tail = prev) != NULL);
2659
2660 /* But wait, there's more! Input sections up to 240000
2661 bytes before the stub section can be handled by it too.
2662 Don't do this if we have a really large section after the
2663 stubs, as adding more stubs increases the chance that
2664 branches may not reach into the stub section. */
2665 if (!stubs_always_before_branch && !big_sec)
2666 {
2667 total = 0;
2668 while (prev != NULL
2669 && ((total += tail->output_offset - prev->output_offset)
2670 < stub_group_size))
2671 {
2672 tail = prev;
2673 prev = PREV_SEC (tail);
2674 htab->stub_group[tail->id].link_sec = curr;
2675 }
2676 }
2677 tail = prev;
2678 }
2679 }
2680 while (list-- != htab->input_list);
2681 free (htab->input_list);
2682 #undef PREV_SEC
2683 }
2684
2685 /* Read in all local syms for all input bfds, and create hash entries
2686 for export stubs if we are building a multi-subspace shared lib.
2687 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2688
2689 static int
2690 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2691 {
2692 unsigned int bfd_indx;
2693 Elf_Internal_Sym *local_syms, **all_local_syms;
2694 int stub_changed = 0;
2695 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2696
2697 /* We want to read in symbol extension records only once. To do this
2698 we need to read in the local symbols in parallel and save them for
2699 later use; so hold pointers to the local symbols in an array. */
2700 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2701 all_local_syms = bfd_zmalloc (amt);
2702 htab->all_local_syms = all_local_syms;
2703 if (all_local_syms == NULL)
2704 return -1;
2705
2706 /* Walk over all the input BFDs, swapping in local symbols.
2707 If we are creating a shared library, create hash entries for the
2708 export stubs. */
2709 for (bfd_indx = 0;
2710 input_bfd != NULL;
2711 input_bfd = input_bfd->link_next, bfd_indx++)
2712 {
2713 Elf_Internal_Shdr *symtab_hdr;
2714
2715 /* We'll need the symbol table in a second. */
2716 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2717 if (symtab_hdr->sh_info == 0)
2718 continue;
2719
2720 /* We need an array of the local symbols attached to the input bfd. */
2721 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2722 if (local_syms == NULL)
2723 {
2724 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2725 symtab_hdr->sh_info, 0,
2726 NULL, NULL, NULL);
2727 /* Cache them for elf_link_input_bfd. */
2728 symtab_hdr->contents = (unsigned char *) local_syms;
2729 }
2730 if (local_syms == NULL)
2731 return -1;
2732
2733 all_local_syms[bfd_indx] = local_syms;
2734
2735 if (info->shared && htab->multi_subspace)
2736 {
2737 struct elf_link_hash_entry **eh_syms;
2738 struct elf_link_hash_entry **eh_symend;
2739 unsigned int symcount;
2740
2741 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2742 - symtab_hdr->sh_info);
2743 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2744 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2745
2746 /* Look through the global syms for functions; We need to
2747 build export stubs for all globally visible functions. */
2748 for (; eh_syms < eh_symend; eh_syms++)
2749 {
2750 struct elf32_hppa_link_hash_entry *hh;
2751
2752 hh = hppa_elf_hash_entry (*eh_syms);
2753
2754 while (hh->eh.root.type == bfd_link_hash_indirect
2755 || hh->eh.root.type == bfd_link_hash_warning)
2756 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2757
2758 /* At this point in the link, undefined syms have been
2759 resolved, so we need to check that the symbol was
2760 defined in this BFD. */
2761 if ((hh->eh.root.type == bfd_link_hash_defined
2762 || hh->eh.root.type == bfd_link_hash_defweak)
2763 && hh->eh.type == STT_FUNC
2764 && hh->eh.root.u.def.section->output_section != NULL
2765 && (hh->eh.root.u.def.section->output_section->owner
2766 == output_bfd)
2767 && hh->eh.root.u.def.section->owner == input_bfd
2768 && hh->eh.def_regular
2769 && !hh->eh.forced_local
2770 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2771 {
2772 asection *sec;
2773 const char *stub_name;
2774 struct elf32_hppa_stub_hash_entry *hsh;
2775
2776 sec = hh->eh.root.u.def.section;
2777 stub_name = hh_name (hh);
2778 hsh = hppa_stub_hash_lookup (&htab->bstab,
2779 stub_name,
2780 FALSE, FALSE);
2781 if (hsh == NULL)
2782 {
2783 hsh = hppa_add_stub (stub_name, sec, htab);
2784 if (!hsh)
2785 return -1;
2786
2787 hsh->target_value = hh->eh.root.u.def.value;
2788 hsh->target_section = hh->eh.root.u.def.section;
2789 hsh->stub_type = hppa_stub_export;
2790 hsh->hh = hh;
2791 stub_changed = 1;
2792 }
2793 else
2794 {
2795 (*_bfd_error_handler) (_("%B: duplicate export stub %s"),
2796 input_bfd,
2797 stub_name);
2798 }
2799 }
2800 }
2801 }
2802 }
2803
2804 return stub_changed;
2805 }
2806
2807 /* Determine and set the size of the stub section for a final link.
2808
2809 The basic idea here is to examine all the relocations looking for
2810 PC-relative calls to a target that is unreachable with a "bl"
2811 instruction. */
2812
2813 bfd_boolean
2814 elf32_hppa_size_stubs
2815 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2816 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2817 asection * (*add_stub_section) (const char *, asection *),
2818 void (*layout_sections_again) (void))
2819 {
2820 bfd_size_type stub_group_size;
2821 bfd_boolean stubs_always_before_branch;
2822 bfd_boolean stub_changed;
2823 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2824
2825 /* Stash our params away. */
2826 htab->stub_bfd = stub_bfd;
2827 htab->multi_subspace = multi_subspace;
2828 htab->add_stub_section = add_stub_section;
2829 htab->layout_sections_again = layout_sections_again;
2830 stubs_always_before_branch = group_size < 0;
2831 if (group_size < 0)
2832 stub_group_size = -group_size;
2833 else
2834 stub_group_size = group_size;
2835 if (stub_group_size == 1)
2836 {
2837 /* Default values. */
2838 if (stubs_always_before_branch)
2839 {
2840 stub_group_size = 7680000;
2841 if (htab->has_17bit_branch || htab->multi_subspace)
2842 stub_group_size = 240000;
2843 if (htab->has_12bit_branch)
2844 stub_group_size = 7500;
2845 }
2846 else
2847 {
2848 stub_group_size = 6971392;
2849 if (htab->has_17bit_branch || htab->multi_subspace)
2850 stub_group_size = 217856;
2851 if (htab->has_12bit_branch)
2852 stub_group_size = 6808;
2853 }
2854 }
2855
2856 group_sections (htab, stub_group_size, stubs_always_before_branch);
2857
2858 switch (get_local_syms (output_bfd, info->input_bfds, info))
2859 {
2860 default:
2861 if (htab->all_local_syms)
2862 goto error_ret_free_local;
2863 return FALSE;
2864
2865 case 0:
2866 stub_changed = FALSE;
2867 break;
2868
2869 case 1:
2870 stub_changed = TRUE;
2871 break;
2872 }
2873
2874 while (1)
2875 {
2876 bfd *input_bfd;
2877 unsigned int bfd_indx;
2878 asection *stub_sec;
2879
2880 for (input_bfd = info->input_bfds, bfd_indx = 0;
2881 input_bfd != NULL;
2882 input_bfd = input_bfd->link_next, bfd_indx++)
2883 {
2884 Elf_Internal_Shdr *symtab_hdr;
2885 asection *section;
2886 Elf_Internal_Sym *local_syms;
2887
2888 /* We'll need the symbol table in a second. */
2889 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2890 if (symtab_hdr->sh_info == 0)
2891 continue;
2892
2893 local_syms = htab->all_local_syms[bfd_indx];
2894
2895 /* Walk over each section attached to the input bfd. */
2896 for (section = input_bfd->sections;
2897 section != NULL;
2898 section = section->next)
2899 {
2900 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2901
2902 /* If there aren't any relocs, then there's nothing more
2903 to do. */
2904 if ((section->flags & SEC_RELOC) == 0
2905 || section->reloc_count == 0)
2906 continue;
2907
2908 /* If this section is a link-once section that will be
2909 discarded, then don't create any stubs. */
2910 if (section->output_section == NULL
2911 || section->output_section->owner != output_bfd)
2912 continue;
2913
2914 /* Get the relocs. */
2915 internal_relocs
2916 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2917 info->keep_memory);
2918 if (internal_relocs == NULL)
2919 goto error_ret_free_local;
2920
2921 /* Now examine each relocation. */
2922 irela = internal_relocs;
2923 irelaend = irela + section->reloc_count;
2924 for (; irela < irelaend; irela++)
2925 {
2926 unsigned int r_type, r_indx;
2927 enum elf32_hppa_stub_type stub_type;
2928 struct elf32_hppa_stub_hash_entry *hsh;
2929 asection *sym_sec;
2930 bfd_vma sym_value;
2931 bfd_vma destination;
2932 struct elf32_hppa_link_hash_entry *hh;
2933 char *stub_name;
2934 const asection *id_sec;
2935
2936 r_type = ELF32_R_TYPE (irela->r_info);
2937 r_indx = ELF32_R_SYM (irela->r_info);
2938
2939 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2940 {
2941 bfd_set_error (bfd_error_bad_value);
2942 error_ret_free_internal:
2943 if (elf_section_data (section)->relocs == NULL)
2944 free (internal_relocs);
2945 goto error_ret_free_local;
2946 }
2947
2948 /* Only look for stubs on call instructions. */
2949 if (r_type != (unsigned int) R_PARISC_PCREL12F
2950 && r_type != (unsigned int) R_PARISC_PCREL17F
2951 && r_type != (unsigned int) R_PARISC_PCREL22F)
2952 continue;
2953
2954 /* Now determine the call target, its name, value,
2955 section. */
2956 sym_sec = NULL;
2957 sym_value = 0;
2958 destination = 0;
2959 hh = NULL;
2960 if (r_indx < symtab_hdr->sh_info)
2961 {
2962 /* It's a local symbol. */
2963 Elf_Internal_Sym *sym;
2964 Elf_Internal_Shdr *hdr;
2965
2966 sym = local_syms + r_indx;
2967 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2968 sym_sec = hdr->bfd_section;
2969 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2970 sym_value = sym->st_value;
2971 destination = (sym_value + irela->r_addend
2972 + sym_sec->output_offset
2973 + sym_sec->output_section->vma);
2974 }
2975 else
2976 {
2977 /* It's an external symbol. */
2978 int e_indx;
2979
2980 e_indx = r_indx - symtab_hdr->sh_info;
2981 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2982
2983 while (hh->eh.root.type == bfd_link_hash_indirect
2984 || hh->eh.root.type == bfd_link_hash_warning)
2985 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2986
2987 if (hh->eh.root.type == bfd_link_hash_defined
2988 || hh->eh.root.type == bfd_link_hash_defweak)
2989 {
2990 sym_sec = hh->eh.root.u.def.section;
2991 sym_value = hh->eh.root.u.def.value;
2992 if (sym_sec->output_section != NULL)
2993 destination = (sym_value + irela->r_addend
2994 + sym_sec->output_offset
2995 + sym_sec->output_section->vma);
2996 }
2997 else if (hh->eh.root.type == bfd_link_hash_undefweak)
2998 {
2999 if (! info->shared)
3000 continue;
3001 }
3002 else if (hh->eh.root.type == bfd_link_hash_undefined)
3003 {
3004 if (! (info->unresolved_syms_in_objects == RM_IGNORE
3005 && (ELF_ST_VISIBILITY (hh->eh.other)
3006 == STV_DEFAULT)
3007 && hh->eh.type != STT_PARISC_MILLI))
3008 continue;
3009 }
3010 else
3011 {
3012 bfd_set_error (bfd_error_bad_value);
3013 goto error_ret_free_internal;
3014 }
3015 }
3016
3017 /* Determine what (if any) linker stub is needed. */
3018 stub_type = hppa_type_of_stub (section, irela, hh,
3019 destination, info);
3020 if (stub_type == hppa_stub_none)
3021 continue;
3022
3023 /* Support for grouping stub sections. */
3024 id_sec = htab->stub_group[section->id].link_sec;
3025
3026 /* Get the name of this stub. */
3027 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
3028 if (!stub_name)
3029 goto error_ret_free_internal;
3030
3031 hsh = hppa_stub_hash_lookup (&htab->bstab,
3032 stub_name,
3033 FALSE, FALSE);
3034 if (hsh != NULL)
3035 {
3036 /* The proper stub has already been created. */
3037 free (stub_name);
3038 continue;
3039 }
3040
3041 hsh = hppa_add_stub (stub_name, section, htab);
3042 if (hsh == NULL)
3043 {
3044 free (stub_name);
3045 goto error_ret_free_internal;
3046 }
3047
3048 hsh->target_value = sym_value;
3049 hsh->target_section = sym_sec;
3050 hsh->stub_type = stub_type;
3051 if (info->shared)
3052 {
3053 if (stub_type == hppa_stub_import)
3054 hsh->stub_type = hppa_stub_import_shared;
3055 else if (stub_type == hppa_stub_long_branch)
3056 hsh->stub_type = hppa_stub_long_branch_shared;
3057 }
3058 hsh->hh = hh;
3059 stub_changed = TRUE;
3060 }
3061
3062 /* We're done with the internal relocs, free them. */
3063 if (elf_section_data (section)->relocs == NULL)
3064 free (internal_relocs);
3065 }
3066 }
3067
3068 if (!stub_changed)
3069 break;
3070
3071 /* OK, we've added some stubs. Find out the new size of the
3072 stub sections. */
3073 for (stub_sec = htab->stub_bfd->sections;
3074 stub_sec != NULL;
3075 stub_sec = stub_sec->next)
3076 stub_sec->size = 0;
3077
3078 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
3079
3080 /* Ask the linker to do its stuff. */
3081 (*htab->layout_sections_again) ();
3082 stub_changed = FALSE;
3083 }
3084
3085 free (htab->all_local_syms);
3086 return TRUE;
3087
3088 error_ret_free_local:
3089 free (htab->all_local_syms);
3090 return FALSE;
3091 }
3092
3093 /* For a final link, this function is called after we have sized the
3094 stubs to provide a value for __gp. */
3095
3096 bfd_boolean
3097 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
3098 {
3099 struct bfd_link_hash_entry *h;
3100 asection *sec = NULL;
3101 bfd_vma gp_val = 0;
3102 struct elf32_hppa_link_hash_table *htab;
3103
3104 htab = hppa_link_hash_table (info);
3105 h = bfd_link_hash_lookup (&htab->etab.root, "$global$", FALSE, FALSE, FALSE);
3106
3107 if (h != NULL
3108 && (h->type == bfd_link_hash_defined
3109 || h->type == bfd_link_hash_defweak))
3110 {
3111 gp_val = h->u.def.value;
3112 sec = h->u.def.section;
3113 }
3114 else
3115 {
3116 asection *splt = bfd_get_section_by_name (abfd, ".plt");
3117 asection *sgot = bfd_get_section_by_name (abfd, ".got");
3118
3119 /* Choose to point our LTP at, in this order, one of .plt, .got,
3120 or .data, if these sections exist. In the case of choosing
3121 .plt try to make the LTP ideal for addressing anywhere in the
3122 .plt or .got with a 14 bit signed offset. Typically, the end
3123 of the .plt is the start of the .got, so choose .plt + 0x2000
3124 if either the .plt or .got is larger than 0x2000. If both
3125 the .plt and .got are smaller than 0x2000, choose the end of
3126 the .plt section. */
3127 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3128 ? NULL : splt;
3129 if (sec != NULL)
3130 {
3131 gp_val = sec->size;
3132 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3133 {
3134 gp_val = 0x2000;
3135 }
3136 }
3137 else
3138 {
3139 sec = sgot;
3140 if (sec != NULL)
3141 {
3142 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3143 {
3144 /* We know we don't have a .plt. If .got is large,
3145 offset our LTP. */
3146 if (sec->size > 0x2000)
3147 gp_val = 0x2000;
3148 }
3149 }
3150 else
3151 {
3152 /* No .plt or .got. Who cares what the LTP is? */
3153 sec = bfd_get_section_by_name (abfd, ".data");
3154 }
3155 }
3156
3157 if (h != NULL)
3158 {
3159 h->type = bfd_link_hash_defined;
3160 h->u.def.value = gp_val;
3161 if (sec != NULL)
3162 h->u.def.section = sec;
3163 else
3164 h->u.def.section = bfd_abs_section_ptr;
3165 }
3166 }
3167
3168 if (sec != NULL && sec->output_section != NULL)
3169 gp_val += sec->output_section->vma + sec->output_offset;
3170
3171 elf_gp (abfd) = gp_val;
3172 return TRUE;
3173 }
3174
3175 /* Build all the stubs associated with the current output file. The
3176 stubs are kept in a hash table attached to the main linker hash
3177 table. We also set up the .plt entries for statically linked PIC
3178 functions here. This function is called via hppaelf_finish in the
3179 linker. */
3180
3181 bfd_boolean
3182 elf32_hppa_build_stubs (struct bfd_link_info *info)
3183 {
3184 asection *stub_sec;
3185 struct bfd_hash_table *table;
3186 struct elf32_hppa_link_hash_table *htab;
3187
3188 htab = hppa_link_hash_table (info);
3189
3190 for (stub_sec = htab->stub_bfd->sections;
3191 stub_sec != NULL;
3192 stub_sec = stub_sec->next)
3193 {
3194 bfd_size_type size;
3195
3196 /* Allocate memory to hold the linker stubs. */
3197 size = stub_sec->size;
3198 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3199 if (stub_sec->contents == NULL && size != 0)
3200 return FALSE;
3201 stub_sec->size = 0;
3202 }
3203
3204 /* Build the stubs as directed by the stub hash table. */
3205 table = &htab->bstab;
3206 bfd_hash_traverse (table, hppa_build_one_stub, info);
3207
3208 return TRUE;
3209 }
3210
3211 /* Return the base vma address which should be subtracted from the real
3212 address when resolving a dtpoff relocation.
3213 This is PT_TLS segment p_vaddr. */
3214
3215 static bfd_vma
3216 dtpoff_base (struct bfd_link_info *info)
3217 {
3218 /* If tls_sec is NULL, we should have signalled an error already. */
3219 if (elf_hash_table (info)->tls_sec == NULL)
3220 return 0;
3221 return elf_hash_table (info)->tls_sec->vma;
3222 }
3223
3224 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3225
3226 static bfd_vma
3227 tpoff (struct bfd_link_info *info, bfd_vma address)
3228 {
3229 struct elf_link_hash_table *htab = elf_hash_table (info);
3230
3231 /* If tls_sec is NULL, we should have signalled an error already. */
3232 if (htab->tls_sec == NULL)
3233 return 0;
3234 /* hppa TLS ABI is variant I and static TLS block start just after
3235 tcbhead structure which has 2 pointer fields. */
3236 return (address - htab->tls_sec->vma
3237 + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3238 }
3239
3240 /* Perform a final link. */
3241
3242 static bfd_boolean
3243 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3244 {
3245 /* Invoke the regular ELF linker to do all the work. */
3246 if (!bfd_elf_final_link (abfd, info))
3247 return FALSE;
3248
3249 /* If we're producing a final executable, sort the contents of the
3250 unwind section. */
3251 return elf_hppa_sort_unwind (abfd);
3252 }
3253
3254 /* Record the lowest address for the data and text segments. */
3255
3256 static void
3257 hppa_record_segment_addr (bfd *abfd ATTRIBUTE_UNUSED,
3258 asection *section,
3259 void *data)
3260 {
3261 struct elf32_hppa_link_hash_table *htab;
3262
3263 htab = (struct elf32_hppa_link_hash_table*) data;
3264
3265 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3266 {
3267 bfd_vma value = section->vma - section->filepos;
3268
3269 if ((section->flags & SEC_READONLY) != 0)
3270 {
3271 if (value < htab->text_segment_base)
3272 htab->text_segment_base = value;
3273 }
3274 else
3275 {
3276 if (value < htab->data_segment_base)
3277 htab->data_segment_base = value;
3278 }
3279 }
3280 }
3281
3282 /* Perform a relocation as part of a final link. */
3283
3284 static bfd_reloc_status_type
3285 final_link_relocate (asection *input_section,
3286 bfd_byte *contents,
3287 const Elf_Internal_Rela *rela,
3288 bfd_vma value,
3289 struct elf32_hppa_link_hash_table *htab,
3290 asection *sym_sec,
3291 struct elf32_hppa_link_hash_entry *hh,
3292 struct bfd_link_info *info)
3293 {
3294 int insn;
3295 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3296 unsigned int orig_r_type = r_type;
3297 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3298 int r_format = howto->bitsize;
3299 enum hppa_reloc_field_selector_type_alt r_field;
3300 bfd *input_bfd = input_section->owner;
3301 bfd_vma offset = rela->r_offset;
3302 bfd_vma max_branch_offset = 0;
3303 bfd_byte *hit_data = contents + offset;
3304 bfd_signed_vma addend = rela->r_addend;
3305 bfd_vma location;
3306 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3307 int val;
3308
3309 if (r_type == R_PARISC_NONE)
3310 return bfd_reloc_ok;
3311
3312 insn = bfd_get_32 (input_bfd, hit_data);
3313
3314 /* Find out where we are and where we're going. */
3315 location = (offset +
3316 input_section->output_offset +
3317 input_section->output_section->vma);
3318
3319 /* If we are not building a shared library, convert DLTIND relocs to
3320 DPREL relocs. */
3321 if (!info->shared)
3322 {
3323 switch (r_type)
3324 {
3325 case R_PARISC_DLTIND21L:
3326 r_type = R_PARISC_DPREL21L;
3327 break;
3328
3329 case R_PARISC_DLTIND14R:
3330 r_type = R_PARISC_DPREL14R;
3331 break;
3332
3333 case R_PARISC_DLTIND14F:
3334 r_type = R_PARISC_DPREL14F;
3335 break;
3336 }
3337 }
3338
3339 switch (r_type)
3340 {
3341 case R_PARISC_PCREL12F:
3342 case R_PARISC_PCREL17F:
3343 case R_PARISC_PCREL22F:
3344 /* If this call should go via the plt, find the import stub in
3345 the stub hash. */
3346 if (sym_sec == NULL
3347 || sym_sec->output_section == NULL
3348 || (hh != NULL
3349 && hh->eh.plt.offset != (bfd_vma) -1
3350 && hh->eh.dynindx != -1
3351 && !hh->plabel
3352 && (info->shared
3353 || !hh->eh.def_regular
3354 || hh->eh.root.type == bfd_link_hash_defweak)))
3355 {
3356 hsh = hppa_get_stub_entry (input_section, sym_sec,
3357 hh, rela, htab);
3358 if (hsh != NULL)
3359 {
3360 value = (hsh->stub_offset
3361 + hsh->stub_sec->output_offset
3362 + hsh->stub_sec->output_section->vma);
3363 addend = 0;
3364 }
3365 else if (sym_sec == NULL && hh != NULL
3366 && hh->eh.root.type == bfd_link_hash_undefweak)
3367 {
3368 /* It's OK if undefined weak. Calls to undefined weak
3369 symbols behave as if the "called" function
3370 immediately returns. We can thus call to a weak
3371 function without first checking whether the function
3372 is defined. */
3373 value = location;
3374 addend = 8;
3375 }
3376 else
3377 return bfd_reloc_undefined;
3378 }
3379 /* Fall thru. */
3380
3381 case R_PARISC_PCREL21L:
3382 case R_PARISC_PCREL17C:
3383 case R_PARISC_PCREL17R:
3384 case R_PARISC_PCREL14R:
3385 case R_PARISC_PCREL14F:
3386 case R_PARISC_PCREL32:
3387 /* Make it a pc relative offset. */
3388 value -= location;
3389 addend -= 8;
3390 break;
3391
3392 case R_PARISC_DPREL21L:
3393 case R_PARISC_DPREL14R:
3394 case R_PARISC_DPREL14F:
3395 /* Convert instructions that use the linkage table pointer (r19) to
3396 instructions that use the global data pointer (dp). This is the
3397 most efficient way of using PIC code in an incomplete executable,
3398 but the user must follow the standard runtime conventions for
3399 accessing data for this to work. */
3400 if (orig_r_type == R_PARISC_DLTIND21L)
3401 {
3402 /* Convert addil instructions if the original reloc was a
3403 DLTIND21L. GCC sometimes uses a register other than r19 for
3404 the operation, so we must convert any addil instruction
3405 that uses this relocation. */
3406 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3407 insn = ADDIL_DP;
3408 else
3409 /* We must have a ldil instruction. It's too hard to find
3410 and convert the associated add instruction, so issue an
3411 error. */
3412 (*_bfd_error_handler)
3413 (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3414 input_bfd,
3415 input_section,
3416 offset,
3417 howto->name,
3418 insn);
3419 }
3420 else if (orig_r_type == R_PARISC_DLTIND14F)
3421 {
3422 /* This must be a format 1 load/store. Change the base
3423 register to dp. */
3424 insn = (insn & 0xfc1ffff) | (27 << 21);
3425 }
3426
3427 /* For all the DP relative relocations, we need to examine the symbol's
3428 section. If it has no section or if it's a code section, then
3429 "data pointer relative" makes no sense. In that case we don't
3430 adjust the "value", and for 21 bit addil instructions, we change the
3431 source addend register from %dp to %r0. This situation commonly
3432 arises for undefined weak symbols and when a variable's "constness"
3433 is declared differently from the way the variable is defined. For
3434 instance: "extern int foo" with foo defined as "const int foo". */
3435 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3436 {
3437 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3438 == (((int) OP_ADDIL << 26) | (27 << 21)))
3439 {
3440 insn &= ~ (0x1f << 21);
3441 }
3442 /* Now try to make things easy for the dynamic linker. */
3443
3444 break;
3445 }
3446 /* Fall thru. */
3447
3448 case R_PARISC_DLTIND21L:
3449 case R_PARISC_DLTIND14R:
3450 case R_PARISC_DLTIND14F:
3451 case R_PARISC_TLS_GD21L:
3452 case R_PARISC_TLS_GD14R:
3453 case R_PARISC_TLS_LDM21L:
3454 case R_PARISC_TLS_LDM14R:
3455 case R_PARISC_TLS_IE21L:
3456 case R_PARISC_TLS_IE14R:
3457 value -= elf_gp (input_section->output_section->owner);
3458 break;
3459
3460 case R_PARISC_SEGREL32:
3461 if ((sym_sec->flags & SEC_CODE) != 0)
3462 value -= htab->text_segment_base;
3463 else
3464 value -= htab->data_segment_base;
3465 break;
3466
3467 default:
3468 break;
3469 }
3470
3471 switch (r_type)
3472 {
3473 case R_PARISC_DIR32:
3474 case R_PARISC_DIR14F:
3475 case R_PARISC_DIR17F:
3476 case R_PARISC_PCREL17C:
3477 case R_PARISC_PCREL14F:
3478 case R_PARISC_PCREL32:
3479 case R_PARISC_DPREL14F:
3480 case R_PARISC_PLABEL32:
3481 case R_PARISC_DLTIND14F:
3482 case R_PARISC_SEGBASE:
3483 case R_PARISC_SEGREL32:
3484 case R_PARISC_TLS_DTPMOD32:
3485 case R_PARISC_TLS_DTPOFF32:
3486 case R_PARISC_TLS_TPREL32:
3487 r_field = e_fsel;
3488 break;
3489
3490 case R_PARISC_DLTIND21L:
3491 case R_PARISC_PCREL21L:
3492 case R_PARISC_PLABEL21L:
3493 r_field = e_lsel;
3494 break;
3495
3496 case R_PARISC_DIR21L:
3497 case R_PARISC_DPREL21L:
3498 case R_PARISC_TLS_GD21L:
3499 case R_PARISC_TLS_LDM21L:
3500 case R_PARISC_TLS_LDO21L:
3501 case R_PARISC_TLS_IE21L:
3502 case R_PARISC_TLS_LE21L:
3503 r_field = e_lrsel;
3504 break;
3505
3506 case R_PARISC_PCREL17R:
3507 case R_PARISC_PCREL14R:
3508 case R_PARISC_PLABEL14R:
3509 case R_PARISC_DLTIND14R:
3510 r_field = e_rsel;
3511 break;
3512
3513 case R_PARISC_DIR17R:
3514 case R_PARISC_DIR14R:
3515 case R_PARISC_DPREL14R:
3516 case R_PARISC_TLS_GD14R:
3517 case R_PARISC_TLS_LDM14R:
3518 case R_PARISC_TLS_LDO14R:
3519 case R_PARISC_TLS_IE14R:
3520 case R_PARISC_TLS_LE14R:
3521 r_field = e_rrsel;
3522 break;
3523
3524 case R_PARISC_PCREL12F:
3525 case R_PARISC_PCREL17F:
3526 case R_PARISC_PCREL22F:
3527 r_field = e_fsel;
3528
3529 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3530 {
3531 max_branch_offset = (1 << (17-1)) << 2;
3532 }
3533 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3534 {
3535 max_branch_offset = (1 << (12-1)) << 2;
3536 }
3537 else
3538 {
3539 max_branch_offset = (1 << (22-1)) << 2;
3540 }
3541
3542 /* sym_sec is NULL on undefined weak syms or when shared on
3543 undefined syms. We've already checked for a stub for the
3544 shared undefined case. */
3545 if (sym_sec == NULL)
3546 break;
3547
3548 /* If the branch is out of reach, then redirect the
3549 call to the local stub for this function. */
3550 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3551 {
3552 hsh = hppa_get_stub_entry (input_section, sym_sec,
3553 hh, rela, htab);
3554 if (hsh == NULL)
3555 return bfd_reloc_undefined;
3556
3557 /* Munge up the value and addend so that we call the stub
3558 rather than the procedure directly. */
3559 value = (hsh->stub_offset
3560 + hsh->stub_sec->output_offset
3561 + hsh->stub_sec->output_section->vma
3562 - location);
3563 addend = -8;
3564 }
3565 break;
3566
3567 /* Something we don't know how to handle. */
3568 default:
3569 return bfd_reloc_notsupported;
3570 }
3571
3572 /* Make sure we can reach the stub. */
3573 if (max_branch_offset != 0
3574 && value + addend + max_branch_offset >= 2*max_branch_offset)
3575 {
3576 (*_bfd_error_handler)
3577 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3578 input_bfd,
3579 input_section,
3580 offset,
3581 hsh->bh_root.string);
3582 bfd_set_error (bfd_error_bad_value);
3583 return bfd_reloc_notsupported;
3584 }
3585
3586 val = hppa_field_adjust (value, addend, r_field);
3587
3588 switch (r_type)
3589 {
3590 case R_PARISC_PCREL12F:
3591 case R_PARISC_PCREL17C:
3592 case R_PARISC_PCREL17F:
3593 case R_PARISC_PCREL17R:
3594 case R_PARISC_PCREL22F:
3595 case R_PARISC_DIR17F:
3596 case R_PARISC_DIR17R:
3597 /* This is a branch. Divide the offset by four.
3598 Note that we need to decide whether it's a branch or
3599 otherwise by inspecting the reloc. Inspecting insn won't
3600 work as insn might be from a .word directive. */
3601 val >>= 2;
3602 break;
3603
3604 default:
3605 break;
3606 }
3607
3608 insn = hppa_rebuild_insn (insn, val, r_format);
3609
3610 /* Update the instruction word. */
3611 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3612 return bfd_reloc_ok;
3613 }
3614
3615 /* Relocate an HPPA ELF section. */
3616
3617 static bfd_boolean
3618 elf32_hppa_relocate_section (bfd *output_bfd,
3619 struct bfd_link_info *info,
3620 bfd *input_bfd,
3621 asection *input_section,
3622 bfd_byte *contents,
3623 Elf_Internal_Rela *relocs,
3624 Elf_Internal_Sym *local_syms,
3625 asection **local_sections)
3626 {
3627 bfd_vma *local_got_offsets;
3628 struct elf32_hppa_link_hash_table *htab;
3629 Elf_Internal_Shdr *symtab_hdr;
3630 Elf_Internal_Rela *rela;
3631 Elf_Internal_Rela *relend;
3632
3633 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3634
3635 htab = hppa_link_hash_table (info);
3636 local_got_offsets = elf_local_got_offsets (input_bfd);
3637
3638 rela = relocs;
3639 relend = relocs + input_section->reloc_count;
3640 for (; rela < relend; rela++)
3641 {
3642 unsigned int r_type;
3643 reloc_howto_type *howto;
3644 unsigned int r_symndx;
3645 struct elf32_hppa_link_hash_entry *hh;
3646 Elf_Internal_Sym *sym;
3647 asection *sym_sec;
3648 bfd_vma relocation;
3649 bfd_reloc_status_type rstatus;
3650 const char *sym_name;
3651 bfd_boolean plabel;
3652 bfd_boolean warned_undef;
3653
3654 r_type = ELF32_R_TYPE (rela->r_info);
3655 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3656 {
3657 bfd_set_error (bfd_error_bad_value);
3658 return FALSE;
3659 }
3660 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3661 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3662 continue;
3663
3664 r_symndx = ELF32_R_SYM (rela->r_info);
3665 hh = NULL;
3666 sym = NULL;
3667 sym_sec = NULL;
3668 warned_undef = FALSE;
3669 if (r_symndx < symtab_hdr->sh_info)
3670 {
3671 /* This is a local symbol, h defaults to NULL. */
3672 sym = local_syms + r_symndx;
3673 sym_sec = local_sections[r_symndx];
3674 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3675 }
3676 else
3677 {
3678 struct elf_link_hash_entry *eh;
3679 bfd_boolean unresolved_reloc;
3680 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3681
3682 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3683 r_symndx, symtab_hdr, sym_hashes,
3684 eh, sym_sec, relocation,
3685 unresolved_reloc, warned_undef);
3686
3687 if (!info->relocatable
3688 && relocation == 0
3689 && eh->root.type != bfd_link_hash_defined
3690 && eh->root.type != bfd_link_hash_defweak
3691 && eh->root.type != bfd_link_hash_undefweak)
3692 {
3693 if (info->unresolved_syms_in_objects == RM_IGNORE
3694 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3695 && eh->type == STT_PARISC_MILLI)
3696 {
3697 if (! info->callbacks->undefined_symbol
3698 (info, eh_name (eh), input_bfd,
3699 input_section, rela->r_offset, FALSE))
3700 return FALSE;
3701 warned_undef = TRUE;
3702 }
3703 }
3704 hh = hppa_elf_hash_entry (eh);
3705 }
3706
3707 if (sym_sec != NULL && elf_discarded_section (sym_sec))
3708 {
3709 /* For relocs against symbols from removed linkonce
3710 sections, or sections discarded by a linker script,
3711 we just want the section contents zeroed. Avoid any
3712 special processing. */
3713 _bfd_clear_contents (elf_hppa_howto_table + r_type, input_bfd,
3714 contents + rela->r_offset);
3715 rela->r_info = 0;
3716 rela->r_addend = 0;
3717 continue;
3718 }
3719
3720 if (info->relocatable)
3721 continue;
3722
3723 /* Do any required modifications to the relocation value, and
3724 determine what types of dynamic info we need to output, if
3725 any. */
3726 plabel = 0;
3727 switch (r_type)
3728 {
3729 case R_PARISC_DLTIND14F:
3730 case R_PARISC_DLTIND14R:
3731 case R_PARISC_DLTIND21L:
3732 {
3733 bfd_vma off;
3734 bfd_boolean do_got = 0;
3735
3736 /* Relocation is to the entry for this symbol in the
3737 global offset table. */
3738 if (hh != NULL)
3739 {
3740 bfd_boolean dyn;
3741
3742 off = hh->eh.got.offset;
3743 dyn = htab->etab.dynamic_sections_created;
3744 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
3745 &hh->eh))
3746 {
3747 /* If we aren't going to call finish_dynamic_symbol,
3748 then we need to handle initialisation of the .got
3749 entry and create needed relocs here. Since the
3750 offset must always be a multiple of 4, we use the
3751 least significant bit to record whether we have
3752 initialised it already. */
3753 if ((off & 1) != 0)
3754 off &= ~1;
3755 else
3756 {
3757 hh->eh.got.offset |= 1;
3758 do_got = 1;
3759 }
3760 }
3761 }
3762 else
3763 {
3764 /* Local symbol case. */
3765 if (local_got_offsets == NULL)
3766 abort ();
3767
3768 off = local_got_offsets[r_symndx];
3769
3770 /* The offset must always be a multiple of 4. We use
3771 the least significant bit to record whether we have
3772 already generated the necessary reloc. */
3773 if ((off & 1) != 0)
3774 off &= ~1;
3775 else
3776 {
3777 local_got_offsets[r_symndx] |= 1;
3778 do_got = 1;
3779 }
3780 }
3781
3782 if (do_got)
3783 {
3784 if (info->shared)
3785 {
3786 /* Output a dynamic relocation for this GOT entry.
3787 In this case it is relative to the base of the
3788 object because the symbol index is zero. */
3789 Elf_Internal_Rela outrel;
3790 bfd_byte *loc;
3791 asection *sec = htab->srelgot;
3792
3793 outrel.r_offset = (off
3794 + htab->sgot->output_offset
3795 + htab->sgot->output_section->vma);
3796 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3797 outrel.r_addend = relocation;
3798 loc = sec->contents;
3799 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3800 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3801 }
3802 else
3803 bfd_put_32 (output_bfd, relocation,
3804 htab->sgot->contents + off);
3805 }
3806
3807 if (off >= (bfd_vma) -2)
3808 abort ();
3809
3810 /* Add the base of the GOT to the relocation value. */
3811 relocation = (off
3812 + htab->sgot->output_offset
3813 + htab->sgot->output_section->vma);
3814 }
3815 break;
3816
3817 case R_PARISC_SEGREL32:
3818 /* If this is the first SEGREL relocation, then initialize
3819 the segment base values. */
3820 if (htab->text_segment_base == (bfd_vma) -1)
3821 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3822 break;
3823
3824 case R_PARISC_PLABEL14R:
3825 case R_PARISC_PLABEL21L:
3826 case R_PARISC_PLABEL32:
3827 if (htab->etab.dynamic_sections_created)
3828 {
3829 bfd_vma off;
3830 bfd_boolean do_plt = 0;
3831 /* If we have a global symbol with a PLT slot, then
3832 redirect this relocation to it. */
3833 if (hh != NULL)
3834 {
3835 off = hh->eh.plt.offset;
3836 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared,
3837 &hh->eh))
3838 {
3839 /* In a non-shared link, adjust_dynamic_symbols
3840 isn't called for symbols forced local. We
3841 need to write out the plt entry here. */
3842 if ((off & 1) != 0)
3843 off &= ~1;
3844 else
3845 {
3846 hh->eh.plt.offset |= 1;
3847 do_plt = 1;
3848 }
3849 }
3850 }
3851 else
3852 {
3853 bfd_vma *local_plt_offsets;
3854
3855 if (local_got_offsets == NULL)
3856 abort ();
3857
3858 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3859 off = local_plt_offsets[r_symndx];
3860
3861 /* As for the local .got entry case, we use the last
3862 bit to record whether we've already initialised
3863 this local .plt entry. */
3864 if ((off & 1) != 0)
3865 off &= ~1;
3866 else
3867 {
3868 local_plt_offsets[r_symndx] |= 1;
3869 do_plt = 1;
3870 }
3871 }
3872
3873 if (do_plt)
3874 {
3875 if (info->shared)
3876 {
3877 /* Output a dynamic IPLT relocation for this
3878 PLT entry. */
3879 Elf_Internal_Rela outrel;
3880 bfd_byte *loc;
3881 asection *s = htab->srelplt;
3882
3883 outrel.r_offset = (off
3884 + htab->splt->output_offset
3885 + htab->splt->output_section->vma);
3886 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3887 outrel.r_addend = relocation;
3888 loc = s->contents;
3889 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3890 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3891 }
3892 else
3893 {
3894 bfd_put_32 (output_bfd,
3895 relocation,
3896 htab->splt->contents + off);
3897 bfd_put_32 (output_bfd,
3898 elf_gp (htab->splt->output_section->owner),
3899 htab->splt->contents + off + 4);
3900 }
3901 }
3902
3903 if (off >= (bfd_vma) -2)
3904 abort ();
3905
3906 /* PLABELs contain function pointers. Relocation is to
3907 the entry for the function in the .plt. The magic +2
3908 offset signals to $$dyncall that the function pointer
3909 is in the .plt and thus has a gp pointer too.
3910 Exception: Undefined PLABELs should have a value of
3911 zero. */
3912 if (hh == NULL
3913 || (hh->eh.root.type != bfd_link_hash_undefweak
3914 && hh->eh.root.type != bfd_link_hash_undefined))
3915 {
3916 relocation = (off
3917 + htab->splt->output_offset
3918 + htab->splt->output_section->vma
3919 + 2);
3920 }
3921 plabel = 1;
3922 }
3923 /* Fall through and possibly emit a dynamic relocation. */
3924
3925 case R_PARISC_DIR17F:
3926 case R_PARISC_DIR17R:
3927 case R_PARISC_DIR14F:
3928 case R_PARISC_DIR14R:
3929 case R_PARISC_DIR21L:
3930 case R_PARISC_DPREL14F:
3931 case R_PARISC_DPREL14R:
3932 case R_PARISC_DPREL21L:
3933 case R_PARISC_DIR32:
3934 if ((input_section->flags & SEC_ALLOC) == 0)
3935 break;
3936
3937 /* The reloc types handled here and this conditional
3938 expression must match the code in ..check_relocs and
3939 allocate_dynrelocs. ie. We need exactly the same condition
3940 as in ..check_relocs, with some extra conditions (dynindx
3941 test in this case) to cater for relocs removed by
3942 allocate_dynrelocs. If you squint, the non-shared test
3943 here does indeed match the one in ..check_relocs, the
3944 difference being that here we test DEF_DYNAMIC as well as
3945 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3946 which is why we can't use just that test here.
3947 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3948 there all files have not been loaded. */
3949 if ((info->shared
3950 && (hh == NULL
3951 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
3952 || hh->eh.root.type != bfd_link_hash_undefweak)
3953 && (IS_ABSOLUTE_RELOC (r_type)
3954 || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
3955 || (!info->shared
3956 && hh != NULL
3957 && hh->eh.dynindx != -1
3958 && !hh->eh.non_got_ref
3959 && ((ELIMINATE_COPY_RELOCS
3960 && hh->eh.def_dynamic
3961 && !hh->eh.def_regular)
3962 || hh->eh.root.type == bfd_link_hash_undefweak
3963 || hh->eh.root.type == bfd_link_hash_undefined)))
3964 {
3965 Elf_Internal_Rela outrel;
3966 bfd_boolean skip;
3967 asection *sreloc;
3968 bfd_byte *loc;
3969
3970 /* When generating a shared object, these relocations
3971 are copied into the output file to be resolved at run
3972 time. */
3973
3974 outrel.r_addend = rela->r_addend;
3975 outrel.r_offset =
3976 _bfd_elf_section_offset (output_bfd, info, input_section,
3977 rela->r_offset);
3978 skip = (outrel.r_offset == (bfd_vma) -1
3979 || outrel.r_offset == (bfd_vma) -2);
3980 outrel.r_offset += (input_section->output_offset
3981 + input_section->output_section->vma);
3982
3983 if (skip)
3984 {
3985 memset (&outrel, 0, sizeof (outrel));
3986 }
3987 else if (hh != NULL
3988 && hh->eh.dynindx != -1
3989 && (plabel
3990 || !IS_ABSOLUTE_RELOC (r_type)
3991 || !info->shared
3992 || !info->symbolic
3993 || !hh->eh.def_regular))
3994 {
3995 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
3996 }
3997 else /* It's a local symbol, or one marked to become local. */
3998 {
3999 int indx = 0;
4000
4001 /* Add the absolute offset of the symbol. */
4002 outrel.r_addend += relocation;
4003
4004 /* Global plabels need to be processed by the
4005 dynamic linker so that functions have at most one
4006 fptr. For this reason, we need to differentiate
4007 between global and local plabels, which we do by
4008 providing the function symbol for a global plabel
4009 reloc, and no symbol for local plabels. */
4010 if (! plabel
4011 && sym_sec != NULL
4012 && sym_sec->output_section != NULL
4013 && ! bfd_is_abs_section (sym_sec))
4014 {
4015 asection *osec;
4016
4017 osec = sym_sec->output_section;
4018 indx = elf_section_data (osec)->dynindx;
4019 if (indx == 0)
4020 {
4021 osec = htab->etab.text_index_section;
4022 indx = elf_section_data (osec)->dynindx;
4023 }
4024 BFD_ASSERT (indx != 0);
4025
4026 /* We are turning this relocation into one
4027 against a section symbol, so subtract out the
4028 output section's address but not the offset
4029 of the input section in the output section. */
4030 outrel.r_addend -= osec->vma;
4031 }
4032
4033 outrel.r_info = ELF32_R_INFO (indx, r_type);
4034 }
4035 sreloc = elf_section_data (input_section)->sreloc;
4036 if (sreloc == NULL)
4037 abort ();
4038
4039 loc = sreloc->contents;
4040 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
4041 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4042 }
4043 break;
4044
4045 case R_PARISC_TLS_LDM21L:
4046 case R_PARISC_TLS_LDM14R:
4047 {
4048 bfd_vma off;
4049
4050 off = htab->tls_ldm_got.offset;
4051 if (off & 1)
4052 off &= ~1;
4053 else
4054 {
4055 Elf_Internal_Rela outrel;
4056 bfd_byte *loc;
4057
4058 outrel.r_offset = (off
4059 + htab->sgot->output_section->vma
4060 + htab->sgot->output_offset);
4061 outrel.r_addend = 0;
4062 outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
4063 loc = htab->srelgot->contents;
4064 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4065
4066 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4067 htab->tls_ldm_got.offset |= 1;
4068 }
4069
4070 /* Add the base of the GOT to the relocation value. */
4071 relocation = (off
4072 + htab->sgot->output_offset
4073 + htab->sgot->output_section->vma);
4074
4075 break;
4076 }
4077
4078 case R_PARISC_TLS_LDO21L:
4079 case R_PARISC_TLS_LDO14R:
4080 relocation -= dtpoff_base (info);
4081 break;
4082
4083 case R_PARISC_TLS_GD21L:
4084 case R_PARISC_TLS_GD14R:
4085 case R_PARISC_TLS_IE21L:
4086 case R_PARISC_TLS_IE14R:
4087 {
4088 bfd_vma off;
4089 int indx;
4090 char tls_type;
4091
4092 indx = 0;
4093 if (hh != NULL)
4094 {
4095 bfd_boolean dyn;
4096 dyn = htab->etab.dynamic_sections_created;
4097
4098 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &hh->eh)
4099 && (!info->shared
4100 || !SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4101 {
4102 indx = hh->eh.dynindx;
4103 }
4104 off = hh->eh.got.offset;
4105 tls_type = hh->tls_type;
4106 }
4107 else
4108 {
4109 off = local_got_offsets[r_symndx];
4110 tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4111 }
4112
4113 if (tls_type == GOT_UNKNOWN)
4114 abort ();
4115
4116 if ((off & 1) != 0)
4117 off &= ~1;
4118 else
4119 {
4120 bfd_boolean need_relocs = FALSE;
4121 Elf_Internal_Rela outrel;
4122 bfd_byte *loc = NULL;
4123 int cur_off = off;
4124
4125 /* The GOT entries have not been initialized yet. Do it
4126 now, and emit any relocations. If both an IE GOT and a
4127 GD GOT are necessary, we emit the GD first. */
4128
4129 if ((info->shared || indx != 0)
4130 && (hh == NULL
4131 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
4132 || hh->eh.root.type != bfd_link_hash_undefweak))
4133 {
4134 need_relocs = TRUE;
4135 loc = htab->srelgot->contents;
4136 /* FIXME (CAO): Should this be reloc_count++ ? */
4137 loc += htab->srelgot->reloc_count * sizeof (Elf32_External_Rela);
4138 }
4139
4140 if (tls_type & GOT_TLS_GD)
4141 {
4142 if (need_relocs)
4143 {
4144 outrel.r_offset = (cur_off
4145 + htab->sgot->output_section->vma
4146 + htab->sgot->output_offset);
4147 outrel.r_info = ELF32_R_INFO (indx,R_PARISC_TLS_DTPMOD32);
4148 outrel.r_addend = 0;
4149 bfd_put_32 (output_bfd, 0, htab->sgot->contents + cur_off);
4150 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4151 htab->srelgot->reloc_count++;
4152 loc += sizeof (Elf32_External_Rela);
4153
4154 if (indx == 0)
4155 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4156 htab->sgot->contents + cur_off + 4);
4157 else
4158 {
4159 bfd_put_32 (output_bfd, 0,
4160 htab->sgot->contents + cur_off + 4);
4161 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4162 outrel.r_offset += 4;
4163 bfd_elf32_swap_reloca_out (output_bfd, &outrel,loc);
4164 htab->srelgot->reloc_count++;
4165 loc += sizeof (Elf32_External_Rela);
4166 }
4167 }
4168 else
4169 {
4170 /* If we are not emitting relocations for a
4171 general dynamic reference, then we must be in a
4172 static link or an executable link with the
4173 symbol binding locally. Mark it as belonging
4174 to module 1, the executable. */
4175 bfd_put_32 (output_bfd, 1,
4176 htab->sgot->contents + cur_off);
4177 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4178 htab->sgot->contents + cur_off + 4);
4179 }
4180
4181
4182 cur_off += 8;
4183 }
4184
4185 if (tls_type & GOT_TLS_IE)
4186 {
4187 if (need_relocs)
4188 {
4189 outrel.r_offset = (cur_off
4190 + htab->sgot->output_section->vma
4191 + htab->sgot->output_offset);
4192 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_TPREL32);
4193
4194 if (indx == 0)
4195 outrel.r_addend = relocation - dtpoff_base (info);
4196 else
4197 outrel.r_addend = 0;
4198
4199 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4200 htab->srelgot->reloc_count++;
4201 loc += sizeof (Elf32_External_Rela);
4202 }
4203 else
4204 bfd_put_32 (output_bfd, tpoff (info, relocation),
4205 htab->sgot->contents + cur_off);
4206
4207 cur_off += 4;
4208 }
4209
4210 if (hh != NULL)
4211 hh->eh.got.offset |= 1;
4212 else
4213 local_got_offsets[r_symndx] |= 1;
4214 }
4215
4216 if ((tls_type & GOT_TLS_GD)
4217 && r_type != R_PARISC_TLS_GD21L
4218 && r_type != R_PARISC_TLS_GD14R)
4219 off += 2 * GOT_ENTRY_SIZE;
4220
4221 /* Add the base of the GOT to the relocation value. */
4222 relocation = (off
4223 + htab->sgot->output_offset
4224 + htab->sgot->output_section->vma);
4225
4226 break;
4227 }
4228
4229 case R_PARISC_TLS_LE21L:
4230 case R_PARISC_TLS_LE14R:
4231 {
4232 relocation = tpoff (info, relocation);
4233 break;
4234 }
4235 break;
4236
4237 default:
4238 break;
4239 }
4240
4241 rstatus = final_link_relocate (input_section, contents, rela, relocation,
4242 htab, sym_sec, hh, info);
4243
4244 if (rstatus == bfd_reloc_ok)
4245 continue;
4246
4247 if (hh != NULL)
4248 sym_name = hh_name (hh);
4249 else
4250 {
4251 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4252 symtab_hdr->sh_link,
4253 sym->st_name);
4254 if (sym_name == NULL)
4255 return FALSE;
4256 if (*sym_name == '\0')
4257 sym_name = bfd_section_name (input_bfd, sym_sec);
4258 }
4259
4260 howto = elf_hppa_howto_table + r_type;
4261
4262 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4263 {
4264 if (rstatus == bfd_reloc_notsupported || !warned_undef)
4265 {
4266 (*_bfd_error_handler)
4267 (_("%B(%A+0x%lx): cannot handle %s for %s"),
4268 input_bfd,
4269 input_section,
4270 (long) rela->r_offset,
4271 howto->name,
4272 sym_name);
4273 bfd_set_error (bfd_error_bad_value);
4274 return FALSE;
4275 }
4276 }
4277 else
4278 {
4279 if (!((*info->callbacks->reloc_overflow)
4280 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4281 (bfd_vma) 0, input_bfd, input_section, rela->r_offset)))
4282 return FALSE;
4283 }
4284 }
4285
4286 return TRUE;
4287 }
4288
4289 /* Finish up dynamic symbol handling. We set the contents of various
4290 dynamic sections here. */
4291
4292 static bfd_boolean
4293 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4294 struct bfd_link_info *info,
4295 struct elf_link_hash_entry *eh,
4296 Elf_Internal_Sym *sym)
4297 {
4298 struct elf32_hppa_link_hash_table *htab;
4299 Elf_Internal_Rela rela;
4300 bfd_byte *loc;
4301
4302 htab = hppa_link_hash_table (info);
4303
4304 if (eh->plt.offset != (bfd_vma) -1)
4305 {
4306 bfd_vma value;
4307
4308 if (eh->plt.offset & 1)
4309 abort ();
4310
4311 /* This symbol has an entry in the procedure linkage table. Set
4312 it up.
4313
4314 The format of a plt entry is
4315 <funcaddr>
4316 <__gp>
4317 */
4318 value = 0;
4319 if (eh->root.type == bfd_link_hash_defined
4320 || eh->root.type == bfd_link_hash_defweak)
4321 {
4322 value = eh->root.u.def.value;
4323 if (eh->root.u.def.section->output_section != NULL)
4324 value += (eh->root.u.def.section->output_offset
4325 + eh->root.u.def.section->output_section->vma);
4326 }
4327
4328 /* Create a dynamic IPLT relocation for this entry. */
4329 rela.r_offset = (eh->plt.offset
4330 + htab->splt->output_offset
4331 + htab->splt->output_section->vma);
4332 if (eh->dynindx != -1)
4333 {
4334 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4335 rela.r_addend = 0;
4336 }
4337 else
4338 {
4339 /* This symbol has been marked to become local, and is
4340 used by a plabel so must be kept in the .plt. */
4341 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4342 rela.r_addend = value;
4343 }
4344
4345 loc = htab->srelplt->contents;
4346 loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4347 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rela, loc);
4348
4349 if (!eh->def_regular)
4350 {
4351 /* Mark the symbol as undefined, rather than as defined in
4352 the .plt section. Leave the value alone. */
4353 sym->st_shndx = SHN_UNDEF;
4354 }
4355 }
4356
4357 if (eh->got.offset != (bfd_vma) -1
4358 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_GD) == 0
4359 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_IE) == 0)
4360 {
4361 /* This symbol has an entry in the global offset table. Set it
4362 up. */
4363
4364 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4365 + htab->sgot->output_offset
4366 + htab->sgot->output_section->vma);
4367
4368 /* If this is a -Bsymbolic link and the symbol is defined
4369 locally or was forced to be local because of a version file,
4370 we just want to emit a RELATIVE reloc. The entry in the
4371 global offset table will already have been initialized in the
4372 relocate_section function. */
4373 if (info->shared
4374 && (info->symbolic || eh->dynindx == -1)
4375 && eh->def_regular)
4376 {
4377 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4378 rela.r_addend = (eh->root.u.def.value
4379 + eh->root.u.def.section->output_offset
4380 + eh->root.u.def.section->output_section->vma);
4381 }
4382 else
4383 {
4384 if ((eh->got.offset & 1) != 0)
4385 abort ();
4386
4387 bfd_put_32 (output_bfd, 0, htab->sgot->contents + (eh->got.offset & ~1));
4388 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4389 rela.r_addend = 0;
4390 }
4391
4392 loc = htab->srelgot->contents;
4393 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4394 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4395 }
4396
4397 if (eh->needs_copy)
4398 {
4399 asection *sec;
4400
4401 /* This symbol needs a copy reloc. Set it up. */
4402
4403 if (! (eh->dynindx != -1
4404 && (eh->root.type == bfd_link_hash_defined
4405 || eh->root.type == bfd_link_hash_defweak)))
4406 abort ();
4407
4408 sec = htab->srelbss;
4409
4410 rela.r_offset = (eh->root.u.def.value
4411 + eh->root.u.def.section->output_offset
4412 + eh->root.u.def.section->output_section->vma);
4413 rela.r_addend = 0;
4414 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4415 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4416 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4417 }
4418
4419 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4420 if (eh_name (eh)[0] == '_'
4421 && (strcmp (eh_name (eh), "_DYNAMIC") == 0
4422 || eh == htab->etab.hgot))
4423 {
4424 sym->st_shndx = SHN_ABS;
4425 }
4426
4427 return TRUE;
4428 }
4429
4430 /* Used to decide how to sort relocs in an optimal manner for the
4431 dynamic linker, before writing them out. */
4432
4433 static enum elf_reloc_type_class
4434 elf32_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
4435 {
4436 /* Handle TLS relocs first; we don't want them to be marked
4437 relative by the "if (ELF32_R_SYM (rela->r_info) == 0)"
4438 check below. */
4439 switch ((int) ELF32_R_TYPE (rela->r_info))
4440 {
4441 case R_PARISC_TLS_DTPMOD32:
4442 case R_PARISC_TLS_DTPOFF32:
4443 case R_PARISC_TLS_TPREL32:
4444 return reloc_class_normal;
4445 }
4446
4447 if (ELF32_R_SYM (rela->r_info) == 0)
4448 return reloc_class_relative;
4449
4450 switch ((int) ELF32_R_TYPE (rela->r_info))
4451 {
4452 case R_PARISC_IPLT:
4453 return reloc_class_plt;
4454 case R_PARISC_COPY:
4455 return reloc_class_copy;
4456 default:
4457 return reloc_class_normal;
4458 }
4459 }
4460
4461 /* Finish up the dynamic sections. */
4462
4463 static bfd_boolean
4464 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4465 struct bfd_link_info *info)
4466 {
4467 bfd *dynobj;
4468 struct elf32_hppa_link_hash_table *htab;
4469 asection *sdyn;
4470
4471 htab = hppa_link_hash_table (info);
4472 dynobj = htab->etab.dynobj;
4473
4474 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4475
4476 if (htab->etab.dynamic_sections_created)
4477 {
4478 Elf32_External_Dyn *dyncon, *dynconend;
4479
4480 if (sdyn == NULL)
4481 abort ();
4482
4483 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4484 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4485 for (; dyncon < dynconend; dyncon++)
4486 {
4487 Elf_Internal_Dyn dyn;
4488 asection *s;
4489
4490 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4491
4492 switch (dyn.d_tag)
4493 {
4494 default:
4495 continue;
4496
4497 case DT_PLTGOT:
4498 /* Use PLTGOT to set the GOT register. */
4499 dyn.d_un.d_ptr = elf_gp (output_bfd);
4500 break;
4501
4502 case DT_JMPREL:
4503 s = htab->srelplt;
4504 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4505 break;
4506
4507 case DT_PLTRELSZ:
4508 s = htab->srelplt;
4509 dyn.d_un.d_val = s->size;
4510 break;
4511
4512 case DT_RELASZ:
4513 /* Don't count procedure linkage table relocs in the
4514 overall reloc count. */
4515 s = htab->srelplt;
4516 if (s == NULL)
4517 continue;
4518 dyn.d_un.d_val -= s->size;
4519 break;
4520
4521 case DT_RELA:
4522 /* We may not be using the standard ELF linker script.
4523 If .rela.plt is the first .rela section, we adjust
4524 DT_RELA to not include it. */
4525 s = htab->srelplt;
4526 if (s == NULL)
4527 continue;
4528 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4529 continue;
4530 dyn.d_un.d_ptr += s->size;
4531 break;
4532 }
4533
4534 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4535 }
4536 }
4537
4538 if (htab->sgot != NULL && htab->sgot->size != 0)
4539 {
4540 /* Fill in the first entry in the global offset table.
4541 We use it to point to our dynamic section, if we have one. */
4542 bfd_put_32 (output_bfd,
4543 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4544 htab->sgot->contents);
4545
4546 /* The second entry is reserved for use by the dynamic linker. */
4547 memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4548
4549 /* Set .got entry size. */
4550 elf_section_data (htab->sgot->output_section)
4551 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4552 }
4553
4554 if (htab->splt != NULL && htab->splt->size != 0)
4555 {
4556 /* Set plt entry size. */
4557 elf_section_data (htab->splt->output_section)
4558 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4559
4560 if (htab->need_plt_stub)
4561 {
4562 /* Set up the .plt stub. */
4563 memcpy (htab->splt->contents
4564 + htab->splt->size - sizeof (plt_stub),
4565 plt_stub, sizeof (plt_stub));
4566
4567 if ((htab->splt->output_offset
4568 + htab->splt->output_section->vma
4569 + htab->splt->size)
4570 != (htab->sgot->output_offset
4571 + htab->sgot->output_section->vma))
4572 {
4573 (*_bfd_error_handler)
4574 (_(".got section not immediately after .plt section"));
4575 return FALSE;
4576 }
4577 }
4578 }
4579
4580 return TRUE;
4581 }
4582
4583 /* Called when writing out an object file to decide the type of a
4584 symbol. */
4585 static int
4586 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4587 {
4588 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4589 return STT_PARISC_MILLI;
4590 else
4591 return type;
4592 }
4593
4594 /* Misc BFD support code. */
4595 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4596 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4597 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4598 #define elf_info_to_howto elf_hppa_info_to_howto
4599 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4600
4601 /* Stuff for the BFD linker. */
4602 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4603 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4604 #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
4605 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4606 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4607 #define elf_backend_check_relocs elf32_hppa_check_relocs
4608 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4609 #define elf_backend_fake_sections elf_hppa_fake_sections
4610 #define elf_backend_relocate_section elf32_hppa_relocate_section
4611 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4612 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4613 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4614 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4615 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4616 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4617 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4618 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4619 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4620 #define elf_backend_object_p elf32_hppa_object_p
4621 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4622 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4623 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4624 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4625 #define elf_backend_action_discarded elf_hppa_action_discarded
4626
4627 #define elf_backend_can_gc_sections 1
4628 #define elf_backend_can_refcount 1
4629 #define elf_backend_plt_alignment 2
4630 #define elf_backend_want_got_plt 0
4631 #define elf_backend_plt_readonly 0
4632 #define elf_backend_want_plt_sym 0
4633 #define elf_backend_got_header_size 8
4634 #define elf_backend_rela_normal 1
4635
4636 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4637 #define TARGET_BIG_NAME "elf32-hppa"
4638 #define ELF_ARCH bfd_arch_hppa
4639 #define ELF_MACHINE_CODE EM_PARISC
4640 #define ELF_MAXPAGESIZE 0x1000
4641 #define ELF_OSABI ELFOSABI_HPUX
4642 #define elf32_bed elf32_hppa_hpux_bed
4643
4644 #include "elf32-target.h"
4645
4646 #undef TARGET_BIG_SYM
4647 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4648 #undef TARGET_BIG_NAME
4649 #define TARGET_BIG_NAME "elf32-hppa-linux"
4650 #undef ELF_OSABI
4651 #define ELF_OSABI ELFOSABI_LINUX
4652 #undef elf32_bed
4653 #define elf32_bed elf32_hppa_linux_bed
4654
4655 #include "elf32-target.h"
4656
4657 #undef TARGET_BIG_SYM
4658 #define TARGET_BIG_SYM bfd_elf32_hppa_nbsd_vec
4659 #undef TARGET_BIG_NAME
4660 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4661 #undef ELF_OSABI
4662 #define ELF_OSABI ELFOSABI_NETBSD
4663 #undef elf32_bed
4664 #define elf32_bed elf32_hppa_netbsd_bed
4665
4666 #include "elf32-target.h"
This page took 0.126849 seconds and 4 git commands to generate.