Fix compile time warnings from a GCC 4.0 compiler
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 Original code by
6 Center for Software Science
7 Department of Computer Science
8 University of Utah
9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
26
27 #include "bfd.h"
28 #include "sysdep.h"
29 #include "libbfd.h"
30 #include "elf-bfd.h"
31 #include "elf/hppa.h"
32 #include "libhppa.h"
33 #include "elf32-hppa.h"
34 #define ARCH_SIZE 32
35 #include "elf32-hppa.h"
36 #include "elf-hppa.h"
37
38 /* In order to gain some understanding of code in this file without
39 knowing all the intricate details of the linker, note the
40 following:
41
42 Functions named elf32_hppa_* are called by external routines, other
43 functions are only called locally. elf32_hppa_* functions appear
44 in this file more or less in the order in which they are called
45 from external routines. eg. elf32_hppa_check_relocs is called
46 early in the link process, elf32_hppa_finish_dynamic_sections is
47 one of the last functions. */
48
49 /* We use two hash tables to hold information for linking PA ELF objects.
50
51 The first is the elf32_hppa_link_hash_table which is derived
52 from the standard ELF linker hash table. We use this as a place to
53 attach other hash tables and static information.
54
55 The second is the stub hash table which is derived from the
56 base BFD hash table. The stub hash table holds the information
57 necessary to build the linker stubs during a link.
58
59 There are a number of different stubs generated by the linker.
60
61 Long branch stub:
62 : ldil LR'X,%r1
63 : be,n RR'X(%sr4,%r1)
64
65 PIC long branch stub:
66 : b,l .+8,%r1
67 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
68 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
69
70 Import stub to call shared library routine from normal object file
71 (single sub-space version)
72 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
73 : ldw RR'lt_ptr+ltoff(%r1),%r21
74 : bv %r0(%r21)
75 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
76
77 Import stub to call shared library routine from shared library
78 (single sub-space version)
79 : addil LR'ltoff,%r19 ; get procedure entry point
80 : ldw RR'ltoff(%r1),%r21
81 : bv %r0(%r21)
82 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
83
84 Import stub to call shared library routine from normal object file
85 (multiple sub-space support)
86 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
87 : ldw RR'lt_ptr+ltoff(%r1),%r21
88 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
89 : ldsid (%r21),%r1
90 : mtsp %r1,%sr0
91 : be 0(%sr0,%r21) ; branch to target
92 : stw %rp,-24(%sp) ; save rp
93
94 Import stub to call shared library routine from shared library
95 (multiple sub-space support)
96 : addil LR'ltoff,%r19 ; get procedure entry point
97 : ldw RR'ltoff(%r1),%r21
98 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
99 : ldsid (%r21),%r1
100 : mtsp %r1,%sr0
101 : be 0(%sr0,%r21) ; branch to target
102 : stw %rp,-24(%sp) ; save rp
103
104 Export stub to return from shared lib routine (multiple sub-space support)
105 One of these is created for each exported procedure in a shared
106 library (and stored in the shared lib). Shared lib routines are
107 called via the first instruction in the export stub so that we can
108 do an inter-space return. Not required for single sub-space.
109 : bl,n X,%rp ; trap the return
110 : nop
111 : ldw -24(%sp),%rp ; restore the original rp
112 : ldsid (%rp),%r1
113 : mtsp %r1,%sr0
114 : be,n 0(%sr0,%rp) ; inter-space return. */
115
116
117 /* Variable names follow a coding style.
118 Please follow this (Apps Hungarian) style:
119
120 Structure/Variable Prefix
121 elf_link_hash_table "etab"
122 elf_link_hash_entry "eh"
123
124 elf32_hppa_link_hash_table "htab"
125 elf32_hppa_link_hash_entry "hh"
126
127 bfd_hash_table "btab"
128 bfd_hash_entry "bh"
129
130 bfd_hash_table containing stubs "bstab"
131 elf32_hppa_stub_hash_entry "hsh"
132
133 elf32_hppa_dyn_reloc_entry "hdh"
134
135 Always remember to use GNU Coding Style. */
136
137 #define PLT_ENTRY_SIZE 8
138 #define GOT_ENTRY_SIZE 4
139 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
140
141 static const bfd_byte plt_stub[] =
142 {
143 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
144 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
145 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
146 #define PLT_STUB_ENTRY (3*4)
147 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
148 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
149 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
150 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
151 };
152
153 /* Section name for stubs is the associated section name plus this
154 string. */
155 #define STUB_SUFFIX ".stub"
156
157 /* We don't need to copy certain PC- or GP-relative dynamic relocs
158 into a shared object's dynamic section. All the relocs of the
159 limited class we are interested in, are absolute. */
160 #ifndef RELATIVE_DYNRELOCS
161 #define RELATIVE_DYNRELOCS 0
162 #define IS_ABSOLUTE_RELOC(r_type) 1
163 #endif
164
165 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
166 copying dynamic variables from a shared lib into an app's dynbss
167 section, and instead use a dynamic relocation to point into the
168 shared lib. */
169 #define ELIMINATE_COPY_RELOCS 1
170
171 enum elf32_hppa_stub_type {
172 hppa_stub_long_branch,
173 hppa_stub_long_branch_shared,
174 hppa_stub_import,
175 hppa_stub_import_shared,
176 hppa_stub_export,
177 hppa_stub_none
178 };
179
180 struct elf32_hppa_stub_hash_entry {
181
182 /* Base hash table entry structure. */
183 struct bfd_hash_entry bh_root;
184
185 /* The stub section. */
186 asection *stub_sec;
187
188 /* Offset within stub_sec of the beginning of this stub. */
189 bfd_vma stub_offset;
190
191 /* Given the symbol's value and its section we can determine its final
192 value when building the stubs (so the stub knows where to jump. */
193 bfd_vma target_value;
194 asection *target_section;
195
196 enum elf32_hppa_stub_type stub_type;
197
198 /* The symbol table entry, if any, that this was derived from. */
199 struct elf32_hppa_link_hash_entry *hh;
200
201 /* Where this stub is being called from, or, in the case of combined
202 stub sections, the first input section in the group. */
203 asection *id_sec;
204 };
205
206 struct elf32_hppa_link_hash_entry {
207
208 struct elf_link_hash_entry eh;
209
210 /* A pointer to the most recently used stub hash entry against this
211 symbol. */
212 struct elf32_hppa_stub_hash_entry *hsh_cache;
213
214 /* Used to count relocations for delayed sizing of relocation
215 sections. */
216 struct elf32_hppa_dyn_reloc_entry {
217
218 /* Next relocation in the chain. */
219 struct elf32_hppa_dyn_reloc_entry *hdh_next;
220
221 /* The input section of the reloc. */
222 asection *sec;
223
224 /* Number of relocs copied in this section. */
225 bfd_size_type count;
226
227 #if RELATIVE_DYNRELOCS
228 /* Number of relative relocs copied for the input section. */
229 bfd_size_type relative_count;
230 #endif
231 } *dyn_relocs;
232
233 /* Set if this symbol is used by a plabel reloc. */
234 unsigned int plabel:1;
235 };
236
237 struct elf32_hppa_link_hash_table {
238
239 /* The main hash table. */
240 struct elf_link_hash_table etab;
241
242 /* The stub hash table. */
243 struct bfd_hash_table bstab;
244
245 /* Linker stub bfd. */
246 bfd *stub_bfd;
247
248 /* Linker call-backs. */
249 asection * (*add_stub_section) (const char *, asection *);
250 void (*layout_sections_again) (void);
251
252 /* Array to keep track of which stub sections have been created, and
253 information on stub grouping. */
254 struct map_stub {
255 /* This is the section to which stubs in the group will be
256 attached. */
257 asection *link_sec;
258 /* The stub section. */
259 asection *stub_sec;
260 } *stub_group;
261
262 /* Assorted information used by elf32_hppa_size_stubs. */
263 unsigned int bfd_count;
264 int top_index;
265 asection **input_list;
266 Elf_Internal_Sym **all_local_syms;
267
268 /* Short-cuts to get to dynamic linker sections. */
269 asection *sgot;
270 asection *srelgot;
271 asection *splt;
272 asection *srelplt;
273 asection *sdynbss;
274 asection *srelbss;
275
276 /* Used during a final link to store the base of the text and data
277 segments so that we can perform SEGREL relocations. */
278 bfd_vma text_segment_base;
279 bfd_vma data_segment_base;
280
281 /* Whether we support multiple sub-spaces for shared libs. */
282 unsigned int multi_subspace:1;
283
284 /* Flags set when various size branches are detected. Used to
285 select suitable defaults for the stub group size. */
286 unsigned int has_12bit_branch:1;
287 unsigned int has_17bit_branch:1;
288 unsigned int has_22bit_branch:1;
289
290 /* Set if we need a .plt stub to support lazy dynamic linking. */
291 unsigned int need_plt_stub:1;
292
293 /* Small local sym to section mapping cache. */
294 struct sym_sec_cache sym_sec;
295 };
296
297 /* Various hash macros and functions. */
298 #define hppa_link_hash_table(p) \
299 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
300
301 #define hppa_elf_hash_entry(ent) \
302 ((struct elf32_hppa_link_hash_entry *)(ent))
303
304 #define hppa_stub_hash_entry(ent) \
305 ((struct elf32_hppa_stub_hash_entry *)(ent))
306
307 #define hppa_stub_hash_lookup(table, string, create, copy) \
308 ((struct elf32_hppa_stub_hash_entry *) \
309 bfd_hash_lookup ((table), (string), (create), (copy)))
310
311 /* Assorted hash table functions. */
312
313 /* Initialize an entry in the stub hash table. */
314
315 static struct bfd_hash_entry *
316 stub_hash_newfunc (struct bfd_hash_entry *entry,
317 struct bfd_hash_table *table,
318 const char *string)
319 {
320 /* Allocate the structure if it has not already been allocated by a
321 subclass. */
322 if (entry == NULL)
323 {
324 entry = bfd_hash_allocate (table,
325 sizeof (struct elf32_hppa_stub_hash_entry));
326 if (entry == NULL)
327 return entry;
328 }
329
330 /* Call the allocation method of the superclass. */
331 entry = bfd_hash_newfunc (entry, table, string);
332 if (entry != NULL)
333 {
334 struct elf32_hppa_stub_hash_entry *hsh;
335
336 /* Initialize the local fields. */
337 hsh = hppa_stub_hash_entry (entry);
338 hsh->stub_sec = NULL;
339 hsh->stub_offset = 0;
340 hsh->target_value = 0;
341 hsh->target_section = NULL;
342 hsh->stub_type = hppa_stub_long_branch;
343 hsh->hh = NULL;
344 hsh->id_sec = NULL;
345 }
346
347 return entry;
348 }
349
350 /* Initialize an entry in the link hash table. */
351
352 static struct bfd_hash_entry *
353 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
354 struct bfd_hash_table *table,
355 const char *string)
356 {
357 /* Allocate the structure if it has not already been allocated by a
358 subclass. */
359 if (entry == NULL)
360 {
361 entry = bfd_hash_allocate (table,
362 sizeof (struct elf32_hppa_link_hash_entry));
363 if (entry == NULL)
364 return entry;
365 }
366
367 /* Call the allocation method of the superclass. */
368 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
369 if (entry != NULL)
370 {
371 struct elf32_hppa_link_hash_entry *hh;
372
373 /* Initialize the local fields. */
374 hh = hppa_elf_hash_entry (entry);
375 hh->hsh_cache = NULL;
376 hh->dyn_relocs = NULL;
377 hh->plabel = 0;
378 }
379
380 return entry;
381 }
382
383 /* Create the derived linker hash table. The PA ELF port uses the derived
384 hash table to keep information specific to the PA ELF linker (without
385 using static variables). */
386
387 static struct bfd_link_hash_table *
388 elf32_hppa_link_hash_table_create (bfd *abfd)
389 {
390 struct elf32_hppa_link_hash_table *htab;
391 bfd_size_type amt = sizeof (*htab);
392
393 htab = (struct elf32_hppa_link_hash_table *) bfd_malloc (amt);
394 if (htab == NULL)
395 return NULL;
396
397 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc))
398 {
399 free (htab);
400 return NULL;
401 }
402
403 /* Init the stub hash table too. */
404 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc))
405 return NULL;
406
407 htab->stub_bfd = NULL;
408 htab->add_stub_section = NULL;
409 htab->layout_sections_again = NULL;
410 htab->stub_group = NULL;
411 htab->sgot = NULL;
412 htab->srelgot = NULL;
413 htab->splt = NULL;
414 htab->srelplt = NULL;
415 htab->sdynbss = NULL;
416 htab->srelbss = NULL;
417 htab->text_segment_base = (bfd_vma) -1;
418 htab->data_segment_base = (bfd_vma) -1;
419 htab->multi_subspace = 0;
420 htab->has_12bit_branch = 0;
421 htab->has_17bit_branch = 0;
422 htab->has_22bit_branch = 0;
423 htab->need_plt_stub = 0;
424 htab->sym_sec.abfd = NULL;
425
426 return &htab->etab.root;
427 }
428
429 /* Free the derived linker hash table. */
430
431 static void
432 elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *btab)
433 {
434 struct elf32_hppa_link_hash_table *htab
435 = (struct elf32_hppa_link_hash_table *) btab;
436
437 bfd_hash_table_free (&htab->bstab);
438 _bfd_generic_link_hash_table_free (btab);
439 }
440
441 /* Build a name for an entry in the stub hash table. */
442
443 static char *
444 hppa_stub_name (const asection *input_section,
445 const asection *sym_sec,
446 const struct elf32_hppa_link_hash_entry *hh,
447 const Elf_Internal_Rela *rela)
448 {
449 char *stub_name;
450 bfd_size_type len;
451
452 if (hh)
453 {
454 len = 8 + 1 + strlen (hh->eh.root.root.string) + 1 + 8 + 1;
455 stub_name = bfd_malloc (len);
456 if (stub_name != NULL)
457 {
458 sprintf (stub_name, "%08x_%s+%x",
459 input_section->id & 0xffffffff,
460 hh->eh.root.root.string,
461 (int) rela->r_addend & 0xffffffff);
462 }
463 }
464 else
465 {
466 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
467 stub_name = bfd_malloc (len);
468 if (stub_name != NULL)
469 {
470 sprintf (stub_name, "%08x_%x:%x+%x",
471 input_section->id & 0xffffffff,
472 sym_sec->id & 0xffffffff,
473 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
474 (int) rela->r_addend & 0xffffffff);
475 }
476 }
477 return stub_name;
478 }
479
480 /* Look up an entry in the stub hash. Stub entries are cached because
481 creating the stub name takes a bit of time. */
482
483 static struct elf32_hppa_stub_hash_entry *
484 hppa_get_stub_entry (const asection *input_section,
485 const asection *sym_sec,
486 struct elf32_hppa_link_hash_entry *hh,
487 const Elf_Internal_Rela *rela,
488 struct elf32_hppa_link_hash_table *htab)
489 {
490 struct elf32_hppa_stub_hash_entry *hsh_entry;
491 const asection *id_sec;
492
493 /* If this input section is part of a group of sections sharing one
494 stub section, then use the id of the first section in the group.
495 Stub names need to include a section id, as there may well be
496 more than one stub used to reach say, printf, and we need to
497 distinguish between them. */
498 id_sec = htab->stub_group[input_section->id].link_sec;
499
500 if (hh != NULL && hh->hsh_cache != NULL
501 && hh->hsh_cache->hh == hh
502 && hh->hsh_cache->id_sec == id_sec)
503 {
504 hsh_entry = hh->hsh_cache;
505 }
506 else
507 {
508 char *stub_name;
509
510 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
511 if (stub_name == NULL)
512 return NULL;
513
514 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
515 stub_name, FALSE, FALSE);
516 if (hh != NULL)
517 hh->hsh_cache = hsh_entry;
518
519 free (stub_name);
520 }
521
522 return hsh_entry;
523 }
524
525 /* Add a new stub entry to the stub hash. Not all fields of the new
526 stub entry are initialised. */
527
528 static struct elf32_hppa_stub_hash_entry *
529 hppa_add_stub (const char *stub_name,
530 asection *section,
531 struct elf32_hppa_link_hash_table *htab)
532 {
533 asection *link_sec;
534 asection *stub_sec;
535 struct elf32_hppa_stub_hash_entry *hsh;
536
537 link_sec = htab->stub_group[section->id].link_sec;
538 stub_sec = htab->stub_group[section->id].stub_sec;
539 if (stub_sec == NULL)
540 {
541 stub_sec = htab->stub_group[link_sec->id].stub_sec;
542 if (stub_sec == NULL)
543 {
544 size_t namelen;
545 bfd_size_type len;
546 char *s_name;
547
548 namelen = strlen (link_sec->name);
549 len = namelen + sizeof (STUB_SUFFIX);
550 s_name = bfd_alloc (htab->stub_bfd, len);
551 if (s_name == NULL)
552 return NULL;
553
554 memcpy (s_name, link_sec->name, namelen);
555 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
556 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
557 if (stub_sec == NULL)
558 return NULL;
559 htab->stub_group[link_sec->id].stub_sec = stub_sec;
560 }
561 htab->stub_group[section->id].stub_sec = stub_sec;
562 }
563
564 /* Enter this entry into the linker stub hash table. */
565 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
566 TRUE, FALSE);
567 if (hsh == NULL)
568 {
569 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
570 section->owner,
571 stub_name);
572 return NULL;
573 }
574
575 hsh->stub_sec = stub_sec;
576 hsh->stub_offset = 0;
577 hsh->id_sec = link_sec;
578 return hsh;
579 }
580
581 /* Determine the type of stub needed, if any, for a call. */
582
583 static enum elf32_hppa_stub_type
584 hppa_type_of_stub (asection *input_sec,
585 const Elf_Internal_Rela *rela,
586 struct elf32_hppa_link_hash_entry *hh,
587 bfd_vma destination,
588 struct bfd_link_info *info)
589 {
590 bfd_vma location;
591 bfd_vma branch_offset;
592 bfd_vma max_branch_offset;
593 unsigned int r_type;
594
595 if (hh != NULL
596 && hh->eh.plt.offset != (bfd_vma) -1
597 && hh->eh.dynindx != -1
598 && !hh->plabel
599 && (info->shared
600 || !hh->eh.def_regular
601 || hh->eh.root.type == bfd_link_hash_defweak))
602 {
603 /* We need an import stub. Decide between hppa_stub_import
604 and hppa_stub_import_shared later. */
605 return hppa_stub_import;
606 }
607
608 /* Determine where the call point is. */
609 location = (input_sec->output_offset
610 + input_sec->output_section->vma
611 + rela->r_offset);
612
613 branch_offset = destination - location - 8;
614 r_type = ELF32_R_TYPE (rela->r_info);
615
616 /* Determine if a long branch stub is needed. parisc branch offsets
617 are relative to the second instruction past the branch, ie. +8
618 bytes on from the branch instruction location. The offset is
619 signed and counts in units of 4 bytes. */
620 if (r_type == (unsigned int) R_PARISC_PCREL17F)
621 {
622 max_branch_offset = (1 << (17-1)) << 2;
623 }
624 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
625 {
626 max_branch_offset = (1 << (12-1)) << 2;
627 }
628 else /* R_PARISC_PCREL22F. */
629 {
630 max_branch_offset = (1 << (22-1)) << 2;
631 }
632
633 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
634 return hppa_stub_long_branch;
635
636 return hppa_stub_none;
637 }
638
639 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
640 IN_ARG contains the link info pointer. */
641
642 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
643 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
644
645 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
646 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
647 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
648
649 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
650 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
651 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
652 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
653
654 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
655 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
656
657 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
658 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
659 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
660 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
661
662 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
663 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
664 #define NOP 0x08000240 /* nop */
665 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
666 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
667 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
668
669 #ifndef R19_STUBS
670 #define R19_STUBS 1
671 #endif
672
673 #if R19_STUBS
674 #define LDW_R1_DLT LDW_R1_R19
675 #else
676 #define LDW_R1_DLT LDW_R1_DP
677 #endif
678
679 static bfd_boolean
680 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
681 {
682 struct elf32_hppa_stub_hash_entry *hsh;
683 struct bfd_link_info *info;
684 struct elf32_hppa_link_hash_table *htab;
685 asection *stub_sec;
686 bfd *stub_bfd;
687 bfd_byte *loc;
688 bfd_vma sym_value;
689 bfd_vma insn;
690 bfd_vma off;
691 int val;
692 int size;
693
694 /* Massage our args to the form they really have. */
695 hsh = hppa_stub_hash_entry (bh);
696 info = (struct bfd_link_info *)in_arg;
697
698 htab = hppa_link_hash_table (info);
699 stub_sec = hsh->stub_sec;
700
701 /* Make a note of the offset within the stubs for this entry. */
702 hsh->stub_offset = stub_sec->size;
703 loc = stub_sec->contents + hsh->stub_offset;
704
705 stub_bfd = stub_sec->owner;
706
707 switch (hsh->stub_type)
708 {
709 case hppa_stub_long_branch:
710 /* Create the long branch. A long branch is formed with "ldil"
711 loading the upper bits of the target address into a register,
712 then branching with "be" which adds in the lower bits.
713 The "be" has its delay slot nullified. */
714 sym_value = (hsh->target_value
715 + hsh->target_section->output_offset
716 + hsh->target_section->output_section->vma);
717
718 val = hppa_field_adjust (sym_value, 0, e_lrsel);
719 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
720 bfd_put_32 (stub_bfd, insn, loc);
721
722 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
723 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
724 bfd_put_32 (stub_bfd, insn, loc + 4);
725
726 size = 8;
727 break;
728
729 case hppa_stub_long_branch_shared:
730 /* Branches are relative. This is where we are going to. */
731 sym_value = (hsh->target_value
732 + hsh->target_section->output_offset
733 + hsh->target_section->output_section->vma);
734
735 /* And this is where we are coming from, more or less. */
736 sym_value -= (hsh->stub_offset
737 + stub_sec->output_offset
738 + stub_sec->output_section->vma);
739
740 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
741 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
742 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
743 bfd_put_32 (stub_bfd, insn, loc + 4);
744
745 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
746 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
747 bfd_put_32 (stub_bfd, insn, loc + 8);
748 size = 12;
749 break;
750
751 case hppa_stub_import:
752 case hppa_stub_import_shared:
753 off = hsh->hh->eh.plt.offset;
754 if (off >= (bfd_vma) -2)
755 abort ();
756
757 off &= ~ (bfd_vma) 1;
758 sym_value = (off
759 + htab->splt->output_offset
760 + htab->splt->output_section->vma
761 - elf_gp (htab->splt->output_section->owner));
762
763 insn = ADDIL_DP;
764 #if R19_STUBS
765 if (hsh->stub_type == hppa_stub_import_shared)
766 insn = ADDIL_R19;
767 #endif
768 val = hppa_field_adjust (sym_value, 0, e_lrsel),
769 insn = hppa_rebuild_insn ((int) insn, val, 21);
770 bfd_put_32 (stub_bfd, insn, loc);
771
772 /* It is critical to use lrsel/rrsel here because we are using
773 two different offsets (+0 and +4) from sym_value. If we use
774 lsel/rsel then with unfortunate sym_values we will round
775 sym_value+4 up to the next 2k block leading to a mis-match
776 between the lsel and rsel value. */
777 val = hppa_field_adjust (sym_value, 0, e_rrsel);
778 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
779 bfd_put_32 (stub_bfd, insn, loc + 4);
780
781 if (htab->multi_subspace)
782 {
783 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
784 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
785 bfd_put_32 (stub_bfd, insn, loc + 8);
786
787 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
788 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
789 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
790 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
791
792 size = 28;
793 }
794 else
795 {
796 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
797 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
798 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
799 bfd_put_32 (stub_bfd, insn, loc + 12);
800
801 size = 16;
802 }
803
804 break;
805
806 case hppa_stub_export:
807 /* Branches are relative. This is where we are going to. */
808 sym_value = (hsh->target_value
809 + hsh->target_section->output_offset
810 + hsh->target_section->output_section->vma);
811
812 /* And this is where we are coming from. */
813 sym_value -= (hsh->stub_offset
814 + stub_sec->output_offset
815 + stub_sec->output_section->vma);
816
817 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
818 && (!htab->has_22bit_branch
819 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
820 {
821 (*_bfd_error_handler)
822 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
823 hsh->target_section->owner,
824 stub_sec,
825 (long) hsh->stub_offset,
826 hsh->bh_root.string);
827 bfd_set_error (bfd_error_bad_value);
828 return FALSE;
829 }
830
831 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
832 if (!htab->has_22bit_branch)
833 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
834 else
835 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
836 bfd_put_32 (stub_bfd, insn, loc);
837
838 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
839 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
840 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
841 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
842 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
843
844 /* Point the function symbol at the stub. */
845 hsh->hh->eh.root.u.def.section = stub_sec;
846 hsh->hh->eh.root.u.def.value = stub_sec->size;
847
848 size = 24;
849 break;
850
851 default:
852 BFD_FAIL ();
853 return FALSE;
854 }
855
856 stub_sec->size += size;
857 return TRUE;
858 }
859
860 #undef LDIL_R1
861 #undef BE_SR4_R1
862 #undef BL_R1
863 #undef ADDIL_R1
864 #undef DEPI_R1
865 #undef LDW_R1_R21
866 #undef LDW_R1_DLT
867 #undef LDW_R1_R19
868 #undef ADDIL_R19
869 #undef LDW_R1_DP
870 #undef LDSID_R21_R1
871 #undef MTSP_R1
872 #undef BE_SR0_R21
873 #undef STW_RP
874 #undef BV_R0_R21
875 #undef BL_RP
876 #undef NOP
877 #undef LDW_RP
878 #undef LDSID_RP_R1
879 #undef BE_SR0_RP
880
881 /* As above, but don't actually build the stub. Just bump offset so
882 we know stub section sizes. */
883
884 static bfd_boolean
885 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
886 {
887 struct elf32_hppa_stub_hash_entry *hsh;
888 struct elf32_hppa_link_hash_table *htab;
889 int size;
890
891 /* Massage our args to the form they really have. */
892 hsh = hppa_stub_hash_entry (bh);
893 htab = in_arg;
894
895 if (hsh->stub_type == hppa_stub_long_branch)
896 size = 8;
897 else if (hsh->stub_type == hppa_stub_long_branch_shared)
898 size = 12;
899 else if (hsh->stub_type == hppa_stub_export)
900 size = 24;
901 else /* hppa_stub_import or hppa_stub_import_shared. */
902 {
903 if (htab->multi_subspace)
904 size = 28;
905 else
906 size = 16;
907 }
908
909 hsh->stub_sec->size += size;
910 return TRUE;
911 }
912
913 /* Return nonzero if ABFD represents an HPPA ELF32 file.
914 Additionally we set the default architecture and machine. */
915
916 static bfd_boolean
917 elf32_hppa_object_p (bfd *abfd)
918 {
919 Elf_Internal_Ehdr * i_ehdrp;
920 unsigned int flags;
921
922 i_ehdrp = elf_elfheader (abfd);
923 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
924 {
925 /* GCC on hppa-linux produces binaries with OSABI=Linux,
926 but the kernel produces corefiles with OSABI=SysV. */
927 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX &&
928 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
929 return FALSE;
930 }
931 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
932 {
933 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
934 but the kernel produces corefiles with OSABI=SysV. */
935 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
936 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
937 return FALSE;
938 }
939 else
940 {
941 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
942 return FALSE;
943 }
944
945 flags = i_ehdrp->e_flags;
946 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
947 {
948 case EFA_PARISC_1_0:
949 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
950 case EFA_PARISC_1_1:
951 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
952 case EFA_PARISC_2_0:
953 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
954 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
955 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
956 }
957 return TRUE;
958 }
959
960 /* Create the .plt and .got sections, and set up our hash table
961 short-cuts to various dynamic sections. */
962
963 static bfd_boolean
964 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
965 {
966 struct elf32_hppa_link_hash_table *htab;
967 struct elf_link_hash_entry *eh;
968
969 /* Don't try to create the .plt and .got twice. */
970 htab = hppa_link_hash_table (info);
971 if (htab->splt != NULL)
972 return TRUE;
973
974 /* Call the generic code to do most of the work. */
975 if (! _bfd_elf_create_dynamic_sections (abfd, info))
976 return FALSE;
977
978 htab->splt = bfd_get_section_by_name (abfd, ".plt");
979 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
980
981 htab->sgot = bfd_get_section_by_name (abfd, ".got");
982 htab->srelgot = bfd_make_section_with_flags (abfd, ".rela.got",
983 (SEC_ALLOC
984 | SEC_LOAD
985 | SEC_HAS_CONTENTS
986 | SEC_IN_MEMORY
987 | SEC_LINKER_CREATED
988 | SEC_READONLY));
989 if (htab->srelgot == NULL
990 || ! bfd_set_section_alignment (abfd, htab->srelgot, 2))
991 return FALSE;
992
993 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
994 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
995
996 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
997 application, because __canonicalize_funcptr_for_compare needs it. */
998 eh = elf_hash_table (info)->hgot;
999 eh->forced_local = 0;
1000 eh->other = STV_DEFAULT;
1001 return bfd_elf_link_record_dynamic_symbol (info, eh);
1002 }
1003
1004 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1005
1006 static void
1007 elf32_hppa_copy_indirect_symbol (const struct elf_backend_data *bed,
1008 struct elf_link_hash_entry *eh_dir,
1009 struct elf_link_hash_entry *eh_ind)
1010 {
1011 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1012
1013 hh_dir = hppa_elf_hash_entry (eh_dir);
1014 hh_ind = hppa_elf_hash_entry (eh_ind);
1015
1016 if (hh_ind->dyn_relocs != NULL)
1017 {
1018 if (hh_dir->dyn_relocs != NULL)
1019 {
1020 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1021 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1022
1023 if (eh_ind->root.type == bfd_link_hash_indirect)
1024 abort ();
1025
1026 /* Add reloc counts against the weak sym to the strong sym
1027 list. Merge any entries against the same section. */
1028 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1029 {
1030 struct elf32_hppa_dyn_reloc_entry *hdh_q;
1031
1032 for (hdh_q = hh_dir->dyn_relocs; hdh_q != NULL; hdh_q = hdh_q->hdh_next)
1033 if (hdh_q->sec == hdh_p->sec)
1034 {
1035 #if RELATIVE_DYNRELOCS
1036 hdh_q->relative_count += hdh_p->relative_count;
1037 #endif
1038 hdh_q->count += hdh_p->count;
1039 *hdh_pp = hdh_p->hdh_next;
1040 break;
1041 }
1042 if (hdh_q == NULL)
1043 hdh_pp = &hdh_p->hdh_next;
1044 }
1045 *hdh_pp = hh_dir->dyn_relocs;
1046 }
1047
1048 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1049 hh_ind->dyn_relocs = NULL;
1050 }
1051
1052 if (ELIMINATE_COPY_RELOCS
1053 && eh_ind->root.type != bfd_link_hash_indirect
1054 && eh_dir->dynamic_adjusted)
1055 {
1056 /* If called to transfer flags for a weakdef during processing
1057 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1058 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1059 eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
1060 eh_dir->ref_regular |= eh_ind->ref_regular;
1061 eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
1062 eh_dir->needs_plt |= eh_ind->needs_plt;
1063 }
1064 else
1065 _bfd_elf_link_hash_copy_indirect (bed, eh_dir, eh_ind);
1066 }
1067
1068 /* Look through the relocs for a section during the first phase, and
1069 calculate needed space in the global offset table, procedure linkage
1070 table, and dynamic reloc sections. At this point we haven't
1071 necessarily read all the input files. */
1072
1073 static bfd_boolean
1074 elf32_hppa_check_relocs (bfd *abfd,
1075 struct bfd_link_info *info,
1076 asection *sec,
1077 const Elf_Internal_Rela *relocs)
1078 {
1079 Elf_Internal_Shdr *symtab_hdr;
1080 struct elf_link_hash_entry **eh_syms;
1081 const Elf_Internal_Rela *rela;
1082 const Elf_Internal_Rela *rela_end;
1083 struct elf32_hppa_link_hash_table *htab;
1084 asection *sreloc;
1085 asection *stubreloc;
1086
1087 if (info->relocatable)
1088 return TRUE;
1089
1090 htab = hppa_link_hash_table (info);
1091 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1092 eh_syms = elf_sym_hashes (abfd);
1093 sreloc = NULL;
1094 stubreloc = NULL;
1095
1096 rela_end = relocs + sec->reloc_count;
1097 for (rela = relocs; rela < rela_end; rela++)
1098 {
1099 enum {
1100 NEED_GOT = 1,
1101 NEED_PLT = 2,
1102 NEED_DYNREL = 4,
1103 PLT_PLABEL = 8
1104 };
1105
1106 unsigned int r_symndx, r_type;
1107 struct elf32_hppa_link_hash_entry *hh;
1108 int need_entry = 0;
1109
1110 r_symndx = ELF32_R_SYM (rela->r_info);
1111
1112 if (r_symndx < symtab_hdr->sh_info)
1113 hh = NULL;
1114 else
1115 {
1116 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1117 while (hh->eh.root.type == bfd_link_hash_indirect
1118 || hh->eh.root.type == bfd_link_hash_warning)
1119 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1120 }
1121
1122 r_type = ELF32_R_TYPE (rela->r_info);
1123
1124 switch (r_type)
1125 {
1126 case R_PARISC_DLTIND14F:
1127 case R_PARISC_DLTIND14R:
1128 case R_PARISC_DLTIND21L:
1129 /* This symbol requires a global offset table entry. */
1130 need_entry = NEED_GOT;
1131 break;
1132
1133 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1134 case R_PARISC_PLABEL21L:
1135 case R_PARISC_PLABEL32:
1136 /* If the addend is non-zero, we break badly. */
1137 if (rela->r_addend != 0)
1138 abort ();
1139
1140 /* If we are creating a shared library, then we need to
1141 create a PLT entry for all PLABELs, because PLABELs with
1142 local symbols may be passed via a pointer to another
1143 object. Additionally, output a dynamic relocation
1144 pointing to the PLT entry.
1145
1146 For executables, the original 32-bit ABI allowed two
1147 different styles of PLABELs (function pointers): For
1148 global functions, the PLABEL word points into the .plt
1149 two bytes past a (function address, gp) pair, and for
1150 local functions the PLABEL points directly at the
1151 function. The magic +2 for the first type allows us to
1152 differentiate between the two. As you can imagine, this
1153 is a real pain when it comes to generating code to call
1154 functions indirectly or to compare function pointers.
1155 We avoid the mess by always pointing a PLABEL into the
1156 .plt, even for local functions. */
1157 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1158 break;
1159
1160 case R_PARISC_PCREL12F:
1161 htab->has_12bit_branch = 1;
1162 goto branch_common;
1163
1164 case R_PARISC_PCREL17C:
1165 case R_PARISC_PCREL17F:
1166 htab->has_17bit_branch = 1;
1167 goto branch_common;
1168
1169 case R_PARISC_PCREL22F:
1170 htab->has_22bit_branch = 1;
1171 branch_common:
1172 /* Function calls might need to go through the .plt, and
1173 might require long branch stubs. */
1174 if (hh == NULL)
1175 {
1176 /* We know local syms won't need a .plt entry, and if
1177 they need a long branch stub we can't guarantee that
1178 we can reach the stub. So just flag an error later
1179 if we're doing a shared link and find we need a long
1180 branch stub. */
1181 continue;
1182 }
1183 else
1184 {
1185 /* Global symbols will need a .plt entry if they remain
1186 global, and in most cases won't need a long branch
1187 stub. Unfortunately, we have to cater for the case
1188 where a symbol is forced local by versioning, or due
1189 to symbolic linking, and we lose the .plt entry. */
1190 need_entry = NEED_PLT;
1191 if (hh->eh.type == STT_PARISC_MILLI)
1192 need_entry = 0;
1193 }
1194 break;
1195
1196 case R_PARISC_SEGBASE: /* Used to set segment base. */
1197 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1198 case R_PARISC_PCREL14F: /* PC relative load/store. */
1199 case R_PARISC_PCREL14R:
1200 case R_PARISC_PCREL17R: /* External branches. */
1201 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1202 case R_PARISC_PCREL32:
1203 /* We don't need to propagate the relocation if linking a
1204 shared object since these are section relative. */
1205 continue;
1206
1207 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1208 case R_PARISC_DPREL14R:
1209 case R_PARISC_DPREL21L:
1210 if (info->shared)
1211 {
1212 (*_bfd_error_handler)
1213 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1214 abfd,
1215 elf_hppa_howto_table[r_type].name);
1216 bfd_set_error (bfd_error_bad_value);
1217 return FALSE;
1218 }
1219 /* Fall through. */
1220
1221 case R_PARISC_DIR17F: /* Used for external branches. */
1222 case R_PARISC_DIR17R:
1223 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1224 case R_PARISC_DIR14R:
1225 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1226 case R_PARISC_DIR32: /* .word relocs. */
1227 /* We may want to output a dynamic relocation later. */
1228 need_entry = NEED_DYNREL;
1229 break;
1230
1231 /* This relocation describes the C++ object vtable hierarchy.
1232 Reconstruct it for later use during GC. */
1233 case R_PARISC_GNU_VTINHERIT:
1234 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1235 return FALSE;
1236 continue;
1237
1238 /* This relocation describes which C++ vtable entries are actually
1239 used. Record for later use during GC. */
1240 case R_PARISC_GNU_VTENTRY:
1241 if (!bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1242 return FALSE;
1243 continue;
1244
1245 default:
1246 continue;
1247 }
1248
1249 /* Now carry out our orders. */
1250 if (need_entry & NEED_GOT)
1251 {
1252 /* Allocate space for a GOT entry, as well as a dynamic
1253 relocation for this entry. */
1254 if (htab->sgot == NULL)
1255 {
1256 if (htab->etab.dynobj == NULL)
1257 htab->etab.dynobj = abfd;
1258 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1259 return FALSE;
1260 }
1261
1262 if (hh != NULL)
1263 {
1264 hh->eh.got.refcount += 1;
1265 }
1266 else
1267 {
1268 bfd_signed_vma *local_got_refcounts;
1269 /* This is a global offset table entry for a local symbol. */
1270 local_got_refcounts = elf_local_got_refcounts (abfd);
1271 if (local_got_refcounts == NULL)
1272 {
1273 bfd_size_type size;
1274
1275 /* Allocate space for local got offsets and local
1276 plt offsets. Done this way to save polluting
1277 elf_obj_tdata with another target specific
1278 pointer. */
1279 size = symtab_hdr->sh_info;
1280 size *= 2 * sizeof (bfd_signed_vma);
1281 local_got_refcounts = bfd_zalloc (abfd, size);
1282 if (local_got_refcounts == NULL)
1283 return FALSE;
1284 elf_local_got_refcounts (abfd) = local_got_refcounts;
1285 }
1286 local_got_refcounts[r_symndx] += 1;
1287 }
1288 }
1289
1290 if (need_entry & NEED_PLT)
1291 {
1292 /* If we are creating a shared library, and this is a reloc
1293 against a weak symbol or a global symbol in a dynamic
1294 object, then we will be creating an import stub and a
1295 .plt entry for the symbol. Similarly, on a normal link
1296 to symbols defined in a dynamic object we'll need the
1297 import stub and a .plt entry. We don't know yet whether
1298 the symbol is defined or not, so make an entry anyway and
1299 clean up later in adjust_dynamic_symbol. */
1300 if ((sec->flags & SEC_ALLOC) != 0)
1301 {
1302 if (hh != NULL)
1303 {
1304 hh->eh.needs_plt = 1;
1305 hh->eh.plt.refcount += 1;
1306
1307 /* If this .plt entry is for a plabel, mark it so
1308 that adjust_dynamic_symbol will keep the entry
1309 even if it appears to be local. */
1310 if (need_entry & PLT_PLABEL)
1311 hh->plabel = 1;
1312 }
1313 else if (need_entry & PLT_PLABEL)
1314 {
1315 bfd_signed_vma *local_got_refcounts;
1316 bfd_signed_vma *local_plt_refcounts;
1317
1318 local_got_refcounts = elf_local_got_refcounts (abfd);
1319 if (local_got_refcounts == NULL)
1320 {
1321 bfd_size_type size;
1322
1323 /* Allocate space for local got offsets and local
1324 plt offsets. */
1325 size = symtab_hdr->sh_info;
1326 size *= 2 * sizeof (bfd_signed_vma);
1327 local_got_refcounts = bfd_zalloc (abfd, size);
1328 if (local_got_refcounts == NULL)
1329 return FALSE;
1330 elf_local_got_refcounts (abfd) = local_got_refcounts;
1331 }
1332 local_plt_refcounts = (local_got_refcounts
1333 + symtab_hdr->sh_info);
1334 local_plt_refcounts[r_symndx] += 1;
1335 }
1336 }
1337 }
1338
1339 if (need_entry & NEED_DYNREL)
1340 {
1341 /* Flag this symbol as having a non-got, non-plt reference
1342 so that we generate copy relocs if it turns out to be
1343 dynamic. */
1344 if (hh != NULL && !info->shared)
1345 hh->eh.non_got_ref = 1;
1346
1347 /* If we are creating a shared library then we need to copy
1348 the reloc into the shared library. However, if we are
1349 linking with -Bsymbolic, we need only copy absolute
1350 relocs or relocs against symbols that are not defined in
1351 an object we are including in the link. PC- or DP- or
1352 DLT-relative relocs against any local sym or global sym
1353 with DEF_REGULAR set, can be discarded. At this point we
1354 have not seen all the input files, so it is possible that
1355 DEF_REGULAR is not set now but will be set later (it is
1356 never cleared). We account for that possibility below by
1357 storing information in the dyn_relocs field of the
1358 hash table entry.
1359
1360 A similar situation to the -Bsymbolic case occurs when
1361 creating shared libraries and symbol visibility changes
1362 render the symbol local.
1363
1364 As it turns out, all the relocs we will be creating here
1365 are absolute, so we cannot remove them on -Bsymbolic
1366 links or visibility changes anyway. A STUB_REL reloc
1367 is absolute too, as in that case it is the reloc in the
1368 stub we will be creating, rather than copying the PCREL
1369 reloc in the branch.
1370
1371 If on the other hand, we are creating an executable, we
1372 may need to keep relocations for symbols satisfied by a
1373 dynamic library if we manage to avoid copy relocs for the
1374 symbol. */
1375 if ((info->shared
1376 && (sec->flags & SEC_ALLOC) != 0
1377 && (IS_ABSOLUTE_RELOC (r_type)
1378 || (hh != NULL
1379 && (!info->symbolic
1380 || hh->eh.root.type == bfd_link_hash_defweak
1381 || !hh->eh.def_regular))))
1382 || (ELIMINATE_COPY_RELOCS
1383 && !info->shared
1384 && (sec->flags & SEC_ALLOC) != 0
1385 && hh != NULL
1386 && (hh->eh.root.type == bfd_link_hash_defweak
1387 || !hh->eh.def_regular)))
1388 {
1389 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1390 struct elf32_hppa_dyn_reloc_entry **hdh_head;
1391
1392 /* Create a reloc section in dynobj and make room for
1393 this reloc. */
1394 if (sreloc == NULL)
1395 {
1396 char *name;
1397 bfd *dynobj;
1398
1399 name = (bfd_elf_string_from_elf_section
1400 (abfd,
1401 elf_elfheader (abfd)->e_shstrndx,
1402 elf_section_data (sec)->rel_hdr.sh_name));
1403 if (name == NULL)
1404 {
1405 (*_bfd_error_handler)
1406 (_("Could not find relocation section for %s"),
1407 sec->name);
1408 bfd_set_error (bfd_error_bad_value);
1409 return FALSE;
1410 }
1411
1412 if (htab->etab.dynobj == NULL)
1413 htab->etab.dynobj = abfd;
1414
1415 dynobj = htab->etab.dynobj;
1416 sreloc = bfd_get_section_by_name (dynobj, name);
1417 if (sreloc == NULL)
1418 {
1419 flagword flags;
1420
1421 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1422 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1423 if ((sec->flags & SEC_ALLOC) != 0)
1424 flags |= SEC_ALLOC | SEC_LOAD;
1425 sreloc = bfd_make_section_with_flags (dynobj,
1426 name,
1427 flags);
1428 if (sreloc == NULL
1429 || !bfd_set_section_alignment (dynobj, sreloc, 2))
1430 return FALSE;
1431 }
1432
1433 elf_section_data (sec)->sreloc = sreloc;
1434 }
1435
1436 /* If this is a global symbol, we count the number of
1437 relocations we need for this symbol. */
1438 if (hh != NULL)
1439 {
1440 hdh_head = &hh->dyn_relocs;
1441 }
1442 else
1443 {
1444 /* Track dynamic relocs needed for local syms too.
1445 We really need local syms available to do this
1446 easily. Oh well. */
1447
1448 asection *sr;
1449 sr = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1450 sec, r_symndx);
1451 if (sr == NULL)
1452 return FALSE;
1453
1454 hdh_head = ((struct elf32_hppa_dyn_reloc_entry **)
1455 &elf_section_data (sr)->local_dynrel);
1456 }
1457
1458 hdh_p = *hdh_head;
1459 if (hdh_p == NULL || hdh_p->sec != sec)
1460 {
1461 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1462 if (hdh_p == NULL)
1463 return FALSE;
1464 hdh_p->hdh_next = *hdh_head;
1465 *hdh_head = hdh_p;
1466 hdh_p->sec = sec;
1467 hdh_p->count = 0;
1468 #if RELATIVE_DYNRELOCS
1469 hdh_p->relative_count = 0;
1470 #endif
1471 }
1472
1473 hdh_p->count += 1;
1474 #if RELATIVE_DYNRELOCS
1475 if (!IS_ABSOLUTE_RELOC (rtype))
1476 hdh_p->relative_count += 1;
1477 #endif
1478 }
1479 }
1480 }
1481
1482 return TRUE;
1483 }
1484
1485 /* Return the section that should be marked against garbage collection
1486 for a given relocation. */
1487
1488 static asection *
1489 elf32_hppa_gc_mark_hook (asection *sec,
1490 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1491 Elf_Internal_Rela *rela,
1492 struct elf_link_hash_entry *hh,
1493 Elf_Internal_Sym *sym)
1494 {
1495 if (hh != NULL)
1496 {
1497 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1498 {
1499 case R_PARISC_GNU_VTINHERIT:
1500 case R_PARISC_GNU_VTENTRY:
1501 break;
1502
1503 default:
1504 switch (hh->root.type)
1505 {
1506 case bfd_link_hash_defined:
1507 case bfd_link_hash_defweak:
1508 return hh->root.u.def.section;
1509
1510 case bfd_link_hash_common:
1511 return hh->root.u.c.p->section;
1512
1513 default:
1514 break;
1515 }
1516 }
1517 }
1518 else
1519 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1520
1521 return NULL;
1522 }
1523
1524 /* Update the got and plt entry reference counts for the section being
1525 removed. */
1526
1527 static bfd_boolean
1528 elf32_hppa_gc_sweep_hook (bfd *abfd,
1529 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1530 asection *sec,
1531 const Elf_Internal_Rela *relocs)
1532 {
1533 Elf_Internal_Shdr *symtab_hdr;
1534 struct elf_link_hash_entry **eh_syms;
1535 bfd_signed_vma *local_got_refcounts;
1536 bfd_signed_vma *local_plt_refcounts;
1537 const Elf_Internal_Rela *rela, *relend;
1538
1539 elf_section_data (sec)->local_dynrel = NULL;
1540
1541 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1542 eh_syms = elf_sym_hashes (abfd);
1543 local_got_refcounts = elf_local_got_refcounts (abfd);
1544 local_plt_refcounts = local_got_refcounts;
1545 if (local_plt_refcounts != NULL)
1546 local_plt_refcounts += symtab_hdr->sh_info;
1547
1548 relend = relocs + sec->reloc_count;
1549 for (rela = relocs; rela < relend; rela++)
1550 {
1551 unsigned long r_symndx;
1552 unsigned int r_type;
1553 struct elf_link_hash_entry *eh = NULL;
1554
1555 r_symndx = ELF32_R_SYM (rela->r_info);
1556 if (r_symndx >= symtab_hdr->sh_info)
1557 {
1558 struct elf32_hppa_link_hash_entry *hh;
1559 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1560 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1561
1562 eh = eh_syms[r_symndx - symtab_hdr->sh_info];
1563 while (eh->root.type == bfd_link_hash_indirect
1564 || eh->root.type == bfd_link_hash_warning)
1565 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1566 hh = hppa_elf_hash_entry (eh);
1567
1568 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next)
1569 if (hdh_p->sec == sec)
1570 {
1571 /* Everything must go for SEC. */
1572 *hdh_pp = hdh_p->hdh_next;
1573 break;
1574 }
1575 }
1576
1577 r_type = ELF32_R_TYPE (rela->r_info);
1578 switch (r_type)
1579 {
1580 case R_PARISC_DLTIND14F:
1581 case R_PARISC_DLTIND14R:
1582 case R_PARISC_DLTIND21L:
1583 if (eh != NULL)
1584 {
1585 if (eh->got.refcount > 0)
1586 eh->got.refcount -= 1;
1587 }
1588 else if (local_got_refcounts != NULL)
1589 {
1590 if (local_got_refcounts[r_symndx] > 0)
1591 local_got_refcounts[r_symndx] -= 1;
1592 }
1593 break;
1594
1595 case R_PARISC_PCREL12F:
1596 case R_PARISC_PCREL17C:
1597 case R_PARISC_PCREL17F:
1598 case R_PARISC_PCREL22F:
1599 if (eh != NULL)
1600 {
1601 if (eh->plt.refcount > 0)
1602 eh->plt.refcount -= 1;
1603 }
1604 break;
1605
1606 case R_PARISC_PLABEL14R:
1607 case R_PARISC_PLABEL21L:
1608 case R_PARISC_PLABEL32:
1609 if (eh != NULL)
1610 {
1611 if (eh->plt.refcount > 0)
1612 eh->plt.refcount -= 1;
1613 }
1614 else if (local_plt_refcounts != NULL)
1615 {
1616 if (local_plt_refcounts[r_symndx] > 0)
1617 local_plt_refcounts[r_symndx] -= 1;
1618 }
1619 break;
1620
1621 default:
1622 break;
1623 }
1624 }
1625
1626 return TRUE;
1627 }
1628
1629 /* Support for core dump NOTE sections. */
1630
1631 static bfd_boolean
1632 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1633 {
1634 int offset;
1635 size_t size;
1636
1637 switch (note->descsz)
1638 {
1639 default:
1640 return FALSE;
1641
1642 case 396: /* Linux/hppa */
1643 /* pr_cursig */
1644 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1645
1646 /* pr_pid */
1647 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1648
1649 /* pr_reg */
1650 offset = 72;
1651 size = 320;
1652
1653 break;
1654 }
1655
1656 /* Make a ".reg/999" section. */
1657 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1658 size, note->descpos + offset);
1659 }
1660
1661 static bfd_boolean
1662 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1663 {
1664 switch (note->descsz)
1665 {
1666 default:
1667 return FALSE;
1668
1669 case 124: /* Linux/hppa elf_prpsinfo. */
1670 elf_tdata (abfd)->core_program
1671 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1672 elf_tdata (abfd)->core_command
1673 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1674 }
1675
1676 /* Note that for some reason, a spurious space is tacked
1677 onto the end of the args in some (at least one anyway)
1678 implementations, so strip it off if it exists. */
1679 {
1680 char *command = elf_tdata (abfd)->core_command;
1681 int n = strlen (command);
1682
1683 if (0 < n && command[n - 1] == ' ')
1684 command[n - 1] = '\0';
1685 }
1686
1687 return TRUE;
1688 }
1689
1690 /* Our own version of hide_symbol, so that we can keep plt entries for
1691 plabels. */
1692
1693 static void
1694 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1695 struct elf_link_hash_entry *eh,
1696 bfd_boolean force_local)
1697 {
1698 if (force_local)
1699 {
1700 eh->forced_local = 1;
1701 if (eh->dynindx != -1)
1702 {
1703 eh->dynindx = -1;
1704 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1705 eh->dynstr_index);
1706 }
1707 }
1708
1709 if (! hppa_elf_hash_entry(eh)->plabel)
1710 {
1711 eh->needs_plt = 0;
1712 eh->plt = elf_hash_table (info)->init_plt_refcount;
1713 }
1714 }
1715
1716 /* Adjust a symbol defined by a dynamic object and referenced by a
1717 regular object. The current definition is in some section of the
1718 dynamic object, but we're not including those sections. We have to
1719 change the definition to something the rest of the link can
1720 understand. */
1721
1722 static bfd_boolean
1723 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1724 struct elf_link_hash_entry *eh)
1725 {
1726 struct elf32_hppa_link_hash_table *htab;
1727 asection *sec;
1728 unsigned int power_of_two;
1729
1730 /* If this is a function, put it in the procedure linkage table. We
1731 will fill in the contents of the procedure linkage table later. */
1732 if (eh->type == STT_FUNC
1733 || eh->needs_plt)
1734 {
1735 if (eh->plt.refcount <= 0
1736 || (eh->def_regular
1737 && eh->root.type != bfd_link_hash_defweak
1738 && ! hppa_elf_hash_entry (eh)->plabel
1739 && (!info->shared || info->symbolic)))
1740 {
1741 /* The .plt entry is not needed when:
1742 a) Garbage collection has removed all references to the
1743 symbol, or
1744 b) We know for certain the symbol is defined in this
1745 object, and it's not a weak definition, nor is the symbol
1746 used by a plabel relocation. Either this object is the
1747 application or we are doing a shared symbolic link. */
1748
1749 eh->plt.offset = (bfd_vma) -1;
1750 eh->needs_plt = 0;
1751 }
1752
1753 return TRUE;
1754 }
1755 else
1756 eh->plt.offset = (bfd_vma) -1;
1757
1758 /* If this is a weak symbol, and there is a real definition, the
1759 processor independent code will have arranged for us to see the
1760 real definition first, and we can just use the same value. */
1761 if (eh->u.weakdef != NULL)
1762 {
1763 if (eh->u.weakdef->root.type != bfd_link_hash_defined
1764 && eh->u.weakdef->root.type != bfd_link_hash_defweak)
1765 abort ();
1766 eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1767 eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1768 if (ELIMINATE_COPY_RELOCS)
1769 eh->non_got_ref = eh->u.weakdef->non_got_ref;
1770 return TRUE;
1771 }
1772
1773 /* This is a reference to a symbol defined by a dynamic object which
1774 is not a function. */
1775
1776 /* If we are creating a shared library, we must presume that the
1777 only references to the symbol are via the global offset table.
1778 For such cases we need not do anything here; the relocations will
1779 be handled correctly by relocate_section. */
1780 if (info->shared)
1781 return TRUE;
1782
1783 /* If there are no references to this symbol that do not use the
1784 GOT, we don't need to generate a copy reloc. */
1785 if (!eh->non_got_ref)
1786 return TRUE;
1787
1788 if (ELIMINATE_COPY_RELOCS)
1789 {
1790 struct elf32_hppa_link_hash_entry *hh;
1791 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1792
1793 hh = hppa_elf_hash_entry (eh);
1794 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
1795 {
1796 sec = hdh_p->sec->output_section;
1797 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1798 break;
1799 }
1800
1801 /* If we didn't find any dynamic relocs in read-only sections, then
1802 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1803 if (hdh_p == NULL)
1804 {
1805 eh->non_got_ref = 0;
1806 return TRUE;
1807 }
1808 }
1809
1810 /* We must allocate the symbol in our .dynbss section, which will
1811 become part of the .bss section of the executable. There will be
1812 an entry for this symbol in the .dynsym section. The dynamic
1813 object will contain position independent code, so all references
1814 from the dynamic object to this symbol will go through the global
1815 offset table. The dynamic linker will use the .dynsym entry to
1816 determine the address it must put in the global offset table, so
1817 both the dynamic object and the regular object will refer to the
1818 same memory location for the variable. */
1819
1820 htab = hppa_link_hash_table (info);
1821
1822 /* We must generate a COPY reloc to tell the dynamic linker to
1823 copy the initial value out of the dynamic object and into the
1824 runtime process image. */
1825 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0)
1826 {
1827 htab->srelbss->size += sizeof (Elf32_External_Rela);
1828 eh->needs_copy = 1;
1829 }
1830
1831 /* We need to figure out the alignment required for this symbol. I
1832 have no idea how other ELF linkers handle this. */
1833
1834 power_of_two = bfd_log2 (eh->size);
1835 if (power_of_two > 3)
1836 power_of_two = 3;
1837
1838 /* Apply the required alignment. */
1839 sec = htab->sdynbss;
1840 sec->size = BFD_ALIGN (sec->size, (bfd_size_type) (1 << power_of_two));
1841 if (power_of_two > bfd_get_section_alignment (htab->etab.dynobj, sec))
1842 {
1843 if (! bfd_set_section_alignment (htab->etab.dynobj, sec, power_of_two))
1844 return FALSE;
1845 }
1846
1847 /* Define the symbol as being at this point in the section. */
1848 eh->root.u.def.section = sec;
1849 eh->root.u.def.value = sec->size;
1850
1851 /* Increment the section size to make room for the symbol. */
1852 sec->size += eh->size;
1853
1854 return TRUE;
1855 }
1856
1857 /* Allocate space in the .plt for entries that won't have relocations.
1858 ie. plabel entries. */
1859
1860 static bfd_boolean
1861 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1862 {
1863 struct bfd_link_info *info;
1864 struct elf32_hppa_link_hash_table *htab;
1865 struct elf32_hppa_link_hash_entry *hh;
1866 asection *sec;
1867
1868 if (eh->root.type == bfd_link_hash_indirect)
1869 return TRUE;
1870
1871 if (eh->root.type == bfd_link_hash_warning)
1872 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1873
1874 info = (struct bfd_link_info *) inf;
1875 hh = hppa_elf_hash_entry(eh);
1876 htab = hppa_link_hash_table (info);
1877 if (htab->etab.dynamic_sections_created
1878 && eh->plt.refcount > 0)
1879 {
1880 /* Make sure this symbol is output as a dynamic symbol.
1881 Undefined weak syms won't yet be marked as dynamic. */
1882 if (eh->dynindx == -1
1883 && !eh->forced_local
1884 && eh->type != STT_PARISC_MILLI)
1885 {
1886 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
1887 return FALSE;
1888 }
1889
1890 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, eh))
1891 {
1892 /* Allocate these later. From this point on, h->plabel
1893 means that the plt entry is only used by a plabel.
1894 We'll be using a normal plt entry for this symbol, so
1895 clear the plabel indicator. */
1896
1897 hh->plabel = 0;
1898 }
1899 else if (hh->plabel)
1900 {
1901 /* Make an entry in the .plt section for plabel references
1902 that won't have a .plt entry for other reasons. */
1903 sec = htab->splt;
1904 eh->plt.offset = sec->size;
1905 sec->size += PLT_ENTRY_SIZE;
1906 }
1907 else
1908 {
1909 /* No .plt entry needed. */
1910 eh->plt.offset = (bfd_vma) -1;
1911 eh->needs_plt = 0;
1912 }
1913 }
1914 else
1915 {
1916 eh->plt.offset = (bfd_vma) -1;
1917 eh->needs_plt = 0;
1918 }
1919
1920 return TRUE;
1921 }
1922
1923 /* Allocate space in .plt, .got and associated reloc sections for
1924 global syms. */
1925
1926 static bfd_boolean
1927 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
1928 {
1929 struct bfd_link_info *info;
1930 struct elf32_hppa_link_hash_table *htab;
1931 asection *sec;
1932 struct elf32_hppa_link_hash_entry *hh;
1933 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1934
1935 if (eh->root.type == bfd_link_hash_indirect)
1936 return TRUE;
1937
1938 if (eh->root.type == bfd_link_hash_warning)
1939 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1940
1941 info = inf;
1942 htab = hppa_link_hash_table (info);
1943 hh = hppa_elf_hash_entry (eh);
1944
1945 if (htab->etab.dynamic_sections_created
1946 && eh->plt.offset != (bfd_vma) -1
1947 && !hh->plabel
1948 && eh->plt.refcount > 0)
1949 {
1950 /* Make an entry in the .plt section. */
1951 sec = htab->splt;
1952 eh->plt.offset = sec->size;
1953 sec->size += PLT_ENTRY_SIZE;
1954
1955 /* We also need to make an entry in the .rela.plt section. */
1956 htab->srelplt->size += sizeof (Elf32_External_Rela);
1957 htab->need_plt_stub = 1;
1958 }
1959
1960 if (eh->got.refcount > 0)
1961 {
1962 /* Make sure this symbol is output as a dynamic symbol.
1963 Undefined weak syms won't yet be marked as dynamic. */
1964 if (eh->dynindx == -1
1965 && !eh->forced_local
1966 && eh->type != STT_PARISC_MILLI)
1967 {
1968 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
1969 return FALSE;
1970 }
1971
1972 sec = htab->sgot;
1973 eh->got.offset = sec->size;
1974 sec->size += GOT_ENTRY_SIZE;
1975 if (htab->etab.dynamic_sections_created
1976 && (info->shared
1977 || (eh->dynindx != -1
1978 && !eh->forced_local)))
1979 {
1980 htab->srelgot->size += sizeof (Elf32_External_Rela);
1981 }
1982 }
1983 else
1984 eh->got.offset = (bfd_vma) -1;
1985
1986 if (hh->dyn_relocs == NULL)
1987 return TRUE;
1988
1989 /* If this is a -Bsymbolic shared link, then we need to discard all
1990 space allocated for dynamic pc-relative relocs against symbols
1991 defined in a regular object. For the normal shared case, discard
1992 space for relocs that have become local due to symbol visibility
1993 changes. */
1994 if (info->shared)
1995 {
1996 #if RELATIVE_DYNRELOCS
1997 if (SYMBOL_CALLS_LOCAL (info, eh))
1998 {
1999 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
2000
2001 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2002 {
2003 hdh_p->count -= hdh_p->relative_count;
2004 hdh_p->relative_count = 0;
2005 if (hdh_p->count == 0)
2006 *hdh_pp = hdh_p->hdh_next;
2007 else
2008 hdh_pp = &hdh_p->hdh_next;
2009 }
2010 }
2011 #endif
2012
2013 /* Also discard relocs on undefined weak syms with non-default
2014 visibility. */
2015 if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT
2016 && eh->root.type == bfd_link_hash_undefweak)
2017 hh->dyn_relocs = NULL;
2018 }
2019 else
2020 {
2021 /* For the non-shared case, discard space for relocs against
2022 symbols which turn out to need copy relocs or are not
2023 dynamic. */
2024
2025 if (!eh->non_got_ref
2026 && ((ELIMINATE_COPY_RELOCS
2027 && eh->def_dynamic
2028 && !eh->def_regular)
2029 || (htab->etab.dynamic_sections_created
2030 && (eh->root.type == bfd_link_hash_undefweak
2031 || eh->root.type == bfd_link_hash_undefined))))
2032 {
2033 /* Make sure this symbol is output as a dynamic symbol.
2034 Undefined weak syms won't yet be marked as dynamic. */
2035 if (eh->dynindx == -1
2036 && !eh->forced_local
2037 && eh->type != STT_PARISC_MILLI)
2038 {
2039 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2040 return FALSE;
2041 }
2042
2043 /* If that succeeded, we know we'll be keeping all the
2044 relocs. */
2045 if (eh->dynindx != -1)
2046 goto keep;
2047 }
2048
2049 hh->dyn_relocs = NULL;
2050 return TRUE;
2051
2052 keep: ;
2053 }
2054
2055 /* Finally, allocate space. */
2056 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2057 {
2058 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2059 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2060 }
2061
2062 return TRUE;
2063 }
2064
2065 /* This function is called via elf_link_hash_traverse to force
2066 millicode symbols local so they do not end up as globals in the
2067 dynamic symbol table. We ought to be able to do this in
2068 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2069 for all dynamic symbols. Arguably, this is a bug in
2070 elf_adjust_dynamic_symbol. */
2071
2072 static bfd_boolean
2073 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2074 struct bfd_link_info *info)
2075 {
2076 if (eh->root.type == bfd_link_hash_warning)
2077 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2078
2079 if (eh->type == STT_PARISC_MILLI
2080 && !eh->forced_local)
2081 {
2082 elf32_hppa_hide_symbol (info, eh, TRUE);
2083 }
2084 return TRUE;
2085 }
2086
2087 /* Find any dynamic relocs that apply to read-only sections. */
2088
2089 static bfd_boolean
2090 readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2091 {
2092 struct elf32_hppa_link_hash_entry *hh;
2093 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2094
2095 if (eh->root.type == bfd_link_hash_warning)
2096 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2097
2098 hh = hppa_elf_hash_entry (eh);
2099 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2100 {
2101 asection *sec = hdh_p->sec->output_section;
2102
2103 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
2104 {
2105 struct bfd_link_info *info = inf;
2106
2107 info->flags |= DF_TEXTREL;
2108
2109 /* Not an error, just cut short the traversal. */
2110 return FALSE;
2111 }
2112 }
2113 return TRUE;
2114 }
2115
2116 /* Set the sizes of the dynamic sections. */
2117
2118 static bfd_boolean
2119 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2120 struct bfd_link_info *info)
2121 {
2122 struct elf32_hppa_link_hash_table *htab;
2123 bfd *dynobj;
2124 bfd *ibfd;
2125 asection *sec;
2126 bfd_boolean relocs;
2127
2128 htab = hppa_link_hash_table (info);
2129 dynobj = htab->etab.dynobj;
2130 if (dynobj == NULL)
2131 abort ();
2132
2133 if (htab->etab.dynamic_sections_created)
2134 {
2135 /* Set the contents of the .interp section to the interpreter. */
2136 if (info->executable)
2137 {
2138 sec = bfd_get_section_by_name (dynobj, ".interp");
2139 if (sec == NULL)
2140 abort ();
2141 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2142 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2143 }
2144
2145 /* Force millicode symbols local. */
2146 elf_link_hash_traverse (&htab->etab,
2147 clobber_millicode_symbols,
2148 info);
2149 }
2150
2151 /* Set up .got and .plt offsets for local syms, and space for local
2152 dynamic relocs. */
2153 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2154 {
2155 bfd_signed_vma *local_got;
2156 bfd_signed_vma *end_local_got;
2157 bfd_signed_vma *local_plt;
2158 bfd_signed_vma *end_local_plt;
2159 bfd_size_type locsymcount;
2160 Elf_Internal_Shdr *symtab_hdr;
2161 asection *srel;
2162
2163 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2164 continue;
2165
2166 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2167 {
2168 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2169
2170 for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
2171 elf_section_data (sec)->local_dynrel);
2172 hdh_p != NULL;
2173 hdh_p = hdh_p->hdh_next)
2174 {
2175 if (!bfd_is_abs_section (hdh_p->sec)
2176 && bfd_is_abs_section (hdh_p->sec->output_section))
2177 {
2178 /* Input section has been discarded, either because
2179 it is a copy of a linkonce section or due to
2180 linker script /DISCARD/, so we'll be discarding
2181 the relocs too. */
2182 }
2183 else if (hdh_p->count != 0)
2184 {
2185 srel = elf_section_data (hdh_p->sec)->sreloc;
2186 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2187 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2188 info->flags |= DF_TEXTREL;
2189 }
2190 }
2191 }
2192
2193 local_got = elf_local_got_refcounts (ibfd);
2194 if (!local_got)
2195 continue;
2196
2197 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2198 locsymcount = symtab_hdr->sh_info;
2199 end_local_got = local_got + locsymcount;
2200 sec = htab->sgot;
2201 srel = htab->srelgot;
2202 for (; local_got < end_local_got; ++local_got)
2203 {
2204 if (*local_got > 0)
2205 {
2206 *local_got = sec->size;
2207 sec->size += GOT_ENTRY_SIZE;
2208 if (info->shared)
2209 srel->size += sizeof (Elf32_External_Rela);
2210 }
2211 else
2212 *local_got = (bfd_vma) -1;
2213 }
2214
2215 local_plt = end_local_got;
2216 end_local_plt = local_plt + locsymcount;
2217 if (! htab->etab.dynamic_sections_created)
2218 {
2219 /* Won't be used, but be safe. */
2220 for (; local_plt < end_local_plt; ++local_plt)
2221 *local_plt = (bfd_vma) -1;
2222 }
2223 else
2224 {
2225 sec = htab->splt;
2226 srel = htab->srelplt;
2227 for (; local_plt < end_local_plt; ++local_plt)
2228 {
2229 if (*local_plt > 0)
2230 {
2231 *local_plt = sec->size;
2232 sec->size += PLT_ENTRY_SIZE;
2233 if (info->shared)
2234 srel->size += sizeof (Elf32_External_Rela);
2235 }
2236 else
2237 *local_plt = (bfd_vma) -1;
2238 }
2239 }
2240 }
2241
2242 /* Do all the .plt entries without relocs first. The dynamic linker
2243 uses the last .plt reloc to find the end of the .plt (and hence
2244 the start of the .got) for lazy linking. */
2245 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2246
2247 /* Allocate global sym .plt and .got entries, and space for global
2248 sym dynamic relocs. */
2249 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2250
2251 /* The check_relocs and adjust_dynamic_symbol entry points have
2252 determined the sizes of the various dynamic sections. Allocate
2253 memory for them. */
2254 relocs = FALSE;
2255 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2256 {
2257 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2258 continue;
2259
2260 if (sec == htab->splt)
2261 {
2262 if (htab->need_plt_stub)
2263 {
2264 /* Make space for the plt stub at the end of the .plt
2265 section. We want this stub right at the end, up
2266 against the .got section. */
2267 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2268 int pltalign = bfd_section_alignment (dynobj, sec);
2269 bfd_size_type mask;
2270
2271 if (gotalign > pltalign)
2272 bfd_set_section_alignment (dynobj, sec, gotalign);
2273 mask = ((bfd_size_type) 1 << gotalign) - 1;
2274 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2275 }
2276 }
2277 else if (sec == htab->sgot)
2278 ;
2279 else if (strncmp (bfd_get_section_name (dynobj, sec), ".rela", 5) == 0)
2280 {
2281 if (sec->size != 0)
2282 {
2283 /* Remember whether there are any reloc sections other
2284 than .rela.plt. */
2285 if (sec != htab->srelplt)
2286 relocs = TRUE;
2287
2288 /* We use the reloc_count field as a counter if we need
2289 to copy relocs into the output file. */
2290 sec->reloc_count = 0;
2291 }
2292 }
2293 else
2294 {
2295 /* It's not one of our sections, so don't allocate space. */
2296 continue;
2297 }
2298
2299 if (sec->size == 0)
2300 {
2301 /* If we don't need this section, strip it from the
2302 output file. This is mostly to handle .rela.bss and
2303 .rela.plt. We must create both sections in
2304 create_dynamic_sections, because they must be created
2305 before the linker maps input sections to output
2306 sections. The linker does that before
2307 adjust_dynamic_symbol is called, and it is that
2308 function which decides whether anything needs to go
2309 into these sections. */
2310 sec->flags |= SEC_EXCLUDE;
2311 continue;
2312 }
2313
2314 /* Allocate memory for the section contents. Zero it, because
2315 we may not fill in all the reloc sections. */
2316 sec->contents = bfd_zalloc (dynobj, sec->size);
2317 if (sec->contents == NULL && sec->size != 0)
2318 return FALSE;
2319 }
2320
2321 if (htab->etab.dynamic_sections_created)
2322 {
2323 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2324 actually has nothing to do with the PLT, it is how we
2325 communicate the LTP value of a load module to the dynamic
2326 linker. */
2327 #define add_dynamic_entry(TAG, VAL) \
2328 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2329
2330 if (!add_dynamic_entry (DT_PLTGOT, 0))
2331 return FALSE;
2332
2333 /* Add some entries to the .dynamic section. We fill in the
2334 values later, in elf32_hppa_finish_dynamic_sections, but we
2335 must add the entries now so that we get the correct size for
2336 the .dynamic section. The DT_DEBUG entry is filled in by the
2337 dynamic linker and used by the debugger. */
2338 if (!info->shared)
2339 {
2340 if (!add_dynamic_entry (DT_DEBUG, 0))
2341 return FALSE;
2342 }
2343
2344 if (htab->srelplt->size != 0)
2345 {
2346 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2347 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2348 || !add_dynamic_entry (DT_JMPREL, 0))
2349 return FALSE;
2350 }
2351
2352 if (relocs)
2353 {
2354 if (!add_dynamic_entry (DT_RELA, 0)
2355 || !add_dynamic_entry (DT_RELASZ, 0)
2356 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2357 return FALSE;
2358
2359 /* If any dynamic relocs apply to a read-only section,
2360 then we need a DT_TEXTREL entry. */
2361 if ((info->flags & DF_TEXTREL) == 0)
2362 elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info);
2363
2364 if ((info->flags & DF_TEXTREL) != 0)
2365 {
2366 if (!add_dynamic_entry (DT_TEXTREL, 0))
2367 return FALSE;
2368 }
2369 }
2370 }
2371 #undef add_dynamic_entry
2372
2373 return TRUE;
2374 }
2375
2376 /* External entry points for sizing and building linker stubs. */
2377
2378 /* Set up various things so that we can make a list of input sections
2379 for each output section included in the link. Returns -1 on error,
2380 0 when no stubs will be needed, and 1 on success. */
2381
2382 int
2383 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2384 {
2385 bfd *input_bfd;
2386 unsigned int bfd_count;
2387 int top_id, top_index;
2388 asection *section;
2389 asection **input_list, **list;
2390 bfd_size_type amt;
2391 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2392
2393 /* Count the number of input BFDs and find the top input section id. */
2394 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2395 input_bfd != NULL;
2396 input_bfd = input_bfd->link_next)
2397 {
2398 bfd_count += 1;
2399 for (section = input_bfd->sections;
2400 section != NULL;
2401 section = section->next)
2402 {
2403 if (top_id < section->id)
2404 top_id = section->id;
2405 }
2406 }
2407 htab->bfd_count = bfd_count;
2408
2409 amt = sizeof (struct map_stub) * (top_id + 1);
2410 htab->stub_group = bfd_zmalloc (amt);
2411 if (htab->stub_group == NULL)
2412 return -1;
2413
2414 /* We can't use output_bfd->section_count here to find the top output
2415 section index as some sections may have been removed, and
2416 strip_excluded_output_sections doesn't renumber the indices. */
2417 for (section = output_bfd->sections, top_index = 0;
2418 section != NULL;
2419 section = section->next)
2420 {
2421 if (top_index < section->index)
2422 top_index = section->index;
2423 }
2424
2425 htab->top_index = top_index;
2426 amt = sizeof (asection *) * (top_index + 1);
2427 input_list = bfd_malloc (amt);
2428 htab->input_list = input_list;
2429 if (input_list == NULL)
2430 return -1;
2431
2432 /* For sections we aren't interested in, mark their entries with a
2433 value we can check later. */
2434 list = input_list + top_index;
2435 do
2436 *list = bfd_abs_section_ptr;
2437 while (list-- != input_list);
2438
2439 for (section = output_bfd->sections;
2440 section != NULL;
2441 section = section->next)
2442 {
2443 if ((section->flags & SEC_CODE) != 0)
2444 input_list[section->index] = NULL;
2445 }
2446
2447 return 1;
2448 }
2449
2450 /* The linker repeatedly calls this function for each input section,
2451 in the order that input sections are linked into output sections.
2452 Build lists of input sections to determine groupings between which
2453 we may insert linker stubs. */
2454
2455 void
2456 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2457 {
2458 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2459
2460 if (isec->output_section->index <= htab->top_index)
2461 {
2462 asection **list = htab->input_list + isec->output_section->index;
2463 if (*list != bfd_abs_section_ptr)
2464 {
2465 /* Steal the link_sec pointer for our list. */
2466 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2467 /* This happens to make the list in reverse order,
2468 which is what we want. */
2469 PREV_SEC (isec) = *list;
2470 *list = isec;
2471 }
2472 }
2473 }
2474
2475 /* See whether we can group stub sections together. Grouping stub
2476 sections may result in fewer stubs. More importantly, we need to
2477 put all .init* and .fini* stubs at the beginning of the .init or
2478 .fini output sections respectively, because glibc splits the
2479 _init and _fini functions into multiple parts. Putting a stub in
2480 the middle of a function is not a good idea. */
2481
2482 static void
2483 group_sections (struct elf32_hppa_link_hash_table *htab,
2484 bfd_size_type stub_group_size,
2485 bfd_boolean stubs_always_before_branch)
2486 {
2487 asection **list = htab->input_list + htab->top_index;
2488 do
2489 {
2490 asection *tail = *list;
2491 if (tail == bfd_abs_section_ptr)
2492 continue;
2493 while (tail != NULL)
2494 {
2495 asection *curr;
2496 asection *prev;
2497 bfd_size_type total;
2498 bfd_boolean big_sec;
2499
2500 curr = tail;
2501 total = tail->size;
2502 big_sec = total >= stub_group_size;
2503
2504 while ((prev = PREV_SEC (curr)) != NULL
2505 && ((total += curr->output_offset - prev->output_offset)
2506 < stub_group_size))
2507 curr = prev;
2508
2509 /* OK, the size from the start of CURR to the end is less
2510 than 240000 bytes and thus can be handled by one stub
2511 section. (or the tail section is itself larger than
2512 240000 bytes, in which case we may be toast.)
2513 We should really be keeping track of the total size of
2514 stubs added here, as stubs contribute to the final output
2515 section size. That's a little tricky, and this way will
2516 only break if stubs added total more than 22144 bytes, or
2517 2768 long branch stubs. It seems unlikely for more than
2518 2768 different functions to be called, especially from
2519 code only 240000 bytes long. This limit used to be
2520 250000, but c++ code tends to generate lots of little
2521 functions, and sometimes violated the assumption. */
2522 do
2523 {
2524 prev = PREV_SEC (tail);
2525 /* Set up this stub group. */
2526 htab->stub_group[tail->id].link_sec = curr;
2527 }
2528 while (tail != curr && (tail = prev) != NULL);
2529
2530 /* But wait, there's more! Input sections up to 240000
2531 bytes before the stub section can be handled by it too.
2532 Don't do this if we have a really large section after the
2533 stubs, as adding more stubs increases the chance that
2534 branches may not reach into the stub section. */
2535 if (!stubs_always_before_branch && !big_sec)
2536 {
2537 total = 0;
2538 while (prev != NULL
2539 && ((total += tail->output_offset - prev->output_offset)
2540 < stub_group_size))
2541 {
2542 tail = prev;
2543 prev = PREV_SEC (tail);
2544 htab->stub_group[tail->id].link_sec = curr;
2545 }
2546 }
2547 tail = prev;
2548 }
2549 }
2550 while (list-- != htab->input_list);
2551 free (htab->input_list);
2552 #undef PREV_SEC
2553 }
2554
2555 /* Read in all local syms for all input bfds, and create hash entries
2556 for export stubs if we are building a multi-subspace shared lib.
2557 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2558
2559 static int
2560 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2561 {
2562 unsigned int bfd_indx;
2563 Elf_Internal_Sym *local_syms, **all_local_syms;
2564 int stub_changed = 0;
2565 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2566
2567 /* We want to read in symbol extension records only once. To do this
2568 we need to read in the local symbols in parallel and save them for
2569 later use; so hold pointers to the local symbols in an array. */
2570 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2571 all_local_syms = bfd_zmalloc (amt);
2572 htab->all_local_syms = all_local_syms;
2573 if (all_local_syms == NULL)
2574 return -1;
2575
2576 /* Walk over all the input BFDs, swapping in local symbols.
2577 If we are creating a shared library, create hash entries for the
2578 export stubs. */
2579 for (bfd_indx = 0;
2580 input_bfd != NULL;
2581 input_bfd = input_bfd->link_next, bfd_indx++)
2582 {
2583 Elf_Internal_Shdr *symtab_hdr;
2584
2585 /* We'll need the symbol table in a second. */
2586 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2587 if (symtab_hdr->sh_info == 0)
2588 continue;
2589
2590 /* We need an array of the local symbols attached to the input bfd. */
2591 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2592 if (local_syms == NULL)
2593 {
2594 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2595 symtab_hdr->sh_info, 0,
2596 NULL, NULL, NULL);
2597 /* Cache them for elf_link_input_bfd. */
2598 symtab_hdr->contents = (unsigned char *) local_syms;
2599 }
2600 if (local_syms == NULL)
2601 return -1;
2602
2603 all_local_syms[bfd_indx] = local_syms;
2604
2605 if (info->shared && htab->multi_subspace)
2606 {
2607 struct elf_link_hash_entry **eh_syms;
2608 struct elf_link_hash_entry **eh_symend;
2609 unsigned int symcount;
2610
2611 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2612 - symtab_hdr->sh_info);
2613 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2614 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2615
2616 /* Look through the global syms for functions; We need to
2617 build export stubs for all globally visible functions. */
2618 for (; eh_syms < eh_symend; eh_syms++)
2619 {
2620 struct elf32_hppa_link_hash_entry *hh;
2621
2622 hh = hppa_elf_hash_entry (*eh_syms);
2623
2624 while (hh->eh.root.type == bfd_link_hash_indirect
2625 || hh->eh.root.type == bfd_link_hash_warning)
2626 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2627
2628 /* At this point in the link, undefined syms have been
2629 resolved, so we need to check that the symbol was
2630 defined in this BFD. */
2631 if ((hh->eh.root.type == bfd_link_hash_defined
2632 || hh->eh.root.type == bfd_link_hash_defweak)
2633 && hh->eh.type == STT_FUNC
2634 && hh->eh.root.u.def.section->output_section != NULL
2635 && (hh->eh.root.u.def.section->output_section->owner
2636 == output_bfd)
2637 && hh->eh.root.u.def.section->owner == input_bfd
2638 && hh->eh.def_regular
2639 && !hh->eh.forced_local
2640 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2641 {
2642 asection *sec;
2643 const char *stub_name;
2644 struct elf32_hppa_stub_hash_entry *hsh;
2645
2646 sec = hh->eh.root.u.def.section;
2647 stub_name = hh->eh.root.root.string;
2648 hsh = hppa_stub_hash_lookup (&htab->bstab,
2649 stub_name,
2650 FALSE, FALSE);
2651 if (hsh == NULL)
2652 {
2653 hsh = hppa_add_stub (stub_name, sec, htab);
2654 if (!hsh)
2655 return -1;
2656
2657 hsh->target_value = hh->eh.root.u.def.value;
2658 hsh->target_section = hh->eh.root.u.def.section;
2659 hsh->stub_type = hppa_stub_export;
2660 hsh->hh = hh;
2661 stub_changed = 1;
2662 }
2663 else
2664 {
2665 (*_bfd_error_handler) (_("%B: duplicate export stub %s"),
2666 input_bfd,
2667 stub_name);
2668 }
2669 }
2670 }
2671 }
2672 }
2673
2674 return stub_changed;
2675 }
2676
2677 /* Determine and set the size of the stub section for a final link.
2678
2679 The basic idea here is to examine all the relocations looking for
2680 PC-relative calls to a target that is unreachable with a "bl"
2681 instruction. */
2682
2683 bfd_boolean
2684 elf32_hppa_size_stubs
2685 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2686 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2687 asection * (*add_stub_section) (const char *, asection *),
2688 void (*layout_sections_again) (void))
2689 {
2690 bfd_size_type stub_group_size;
2691 bfd_boolean stubs_always_before_branch;
2692 bfd_boolean stub_changed;
2693 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2694
2695 /* Stash our params away. */
2696 htab->stub_bfd = stub_bfd;
2697 htab->multi_subspace = multi_subspace;
2698 htab->add_stub_section = add_stub_section;
2699 htab->layout_sections_again = layout_sections_again;
2700 stubs_always_before_branch = group_size < 0;
2701 if (group_size < 0)
2702 stub_group_size = -group_size;
2703 else
2704 stub_group_size = group_size;
2705 if (stub_group_size == 1)
2706 {
2707 /* Default values. */
2708 if (stubs_always_before_branch)
2709 {
2710 stub_group_size = 7680000;
2711 if (htab->has_17bit_branch || htab->multi_subspace)
2712 stub_group_size = 240000;
2713 if (htab->has_12bit_branch)
2714 stub_group_size = 7500;
2715 }
2716 else
2717 {
2718 stub_group_size = 6971392;
2719 if (htab->has_17bit_branch || htab->multi_subspace)
2720 stub_group_size = 217856;
2721 if (htab->has_12bit_branch)
2722 stub_group_size = 6808;
2723 }
2724 }
2725
2726 group_sections (htab, stub_group_size, stubs_always_before_branch);
2727
2728 switch (get_local_syms (output_bfd, info->input_bfds, info))
2729 {
2730 default:
2731 if (htab->all_local_syms)
2732 goto error_ret_free_local;
2733 return FALSE;
2734
2735 case 0:
2736 stub_changed = FALSE;
2737 break;
2738
2739 case 1:
2740 stub_changed = TRUE;
2741 break;
2742 }
2743
2744 while (1)
2745 {
2746 bfd *input_bfd;
2747 unsigned int bfd_indx;
2748 asection *stub_sec;
2749
2750 for (input_bfd = info->input_bfds, bfd_indx = 0;
2751 input_bfd != NULL;
2752 input_bfd = input_bfd->link_next, bfd_indx++)
2753 {
2754 Elf_Internal_Shdr *symtab_hdr;
2755 asection *section;
2756 Elf_Internal_Sym *local_syms;
2757
2758 /* We'll need the symbol table in a second. */
2759 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2760 if (symtab_hdr->sh_info == 0)
2761 continue;
2762
2763 local_syms = htab->all_local_syms[bfd_indx];
2764
2765 /* Walk over each section attached to the input bfd. */
2766 for (section = input_bfd->sections;
2767 section != NULL;
2768 section = section->next)
2769 {
2770 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2771
2772 /* If there aren't any relocs, then there's nothing more
2773 to do. */
2774 if ((section->flags & SEC_RELOC) == 0
2775 || section->reloc_count == 0)
2776 continue;
2777
2778 /* If this section is a link-once section that will be
2779 discarded, then don't create any stubs. */
2780 if (section->output_section == NULL
2781 || section->output_section->owner != output_bfd)
2782 continue;
2783
2784 /* Get the relocs. */
2785 internal_relocs
2786 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2787 info->keep_memory);
2788 if (internal_relocs == NULL)
2789 goto error_ret_free_local;
2790
2791 /* Now examine each relocation. */
2792 irela = internal_relocs;
2793 irelaend = irela + section->reloc_count;
2794 for (; irela < irelaend; irela++)
2795 {
2796 unsigned int r_type, r_indx;
2797 enum elf32_hppa_stub_type stub_type;
2798 struct elf32_hppa_stub_hash_entry *hsh;
2799 asection *sym_sec;
2800 bfd_vma sym_value;
2801 bfd_vma destination;
2802 struct elf32_hppa_link_hash_entry *hh;
2803 char *stub_name;
2804 const asection *id_sec;
2805
2806 r_type = ELF32_R_TYPE (irela->r_info);
2807 r_indx = ELF32_R_SYM (irela->r_info);
2808
2809 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2810 {
2811 bfd_set_error (bfd_error_bad_value);
2812 error_ret_free_internal:
2813 if (elf_section_data (section)->relocs == NULL)
2814 free (internal_relocs);
2815 goto error_ret_free_local;
2816 }
2817
2818 /* Only look for stubs on call instructions. */
2819 if (r_type != (unsigned int) R_PARISC_PCREL12F
2820 && r_type != (unsigned int) R_PARISC_PCREL17F
2821 && r_type != (unsigned int) R_PARISC_PCREL22F)
2822 continue;
2823
2824 /* Now determine the call target, its name, value,
2825 section. */
2826 sym_sec = NULL;
2827 sym_value = 0;
2828 destination = 0;
2829 hh = NULL;
2830 if (r_indx < symtab_hdr->sh_info)
2831 {
2832 /* It's a local symbol. */
2833 Elf_Internal_Sym *sym;
2834 Elf_Internal_Shdr *hdr;
2835
2836 sym = local_syms + r_indx;
2837 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2838 sym_sec = hdr->bfd_section;
2839 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2840 sym_value = sym->st_value;
2841 destination = (sym_value + irela->r_addend
2842 + sym_sec->output_offset
2843 + sym_sec->output_section->vma);
2844 }
2845 else
2846 {
2847 /* It's an external symbol. */
2848 int e_indx;
2849
2850 e_indx = r_indx - symtab_hdr->sh_info;
2851 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2852
2853 while (hh->eh.root.type == bfd_link_hash_indirect
2854 || hh->eh.root.type == bfd_link_hash_warning)
2855 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2856
2857 if (hh->eh.root.type == bfd_link_hash_defined
2858 || hh->eh.root.type == bfd_link_hash_defweak)
2859 {
2860 sym_sec = hh->eh.root.u.def.section;
2861 sym_value = hh->eh.root.u.def.value;
2862 if (sym_sec->output_section != NULL)
2863 destination = (sym_value + irela->r_addend
2864 + sym_sec->output_offset
2865 + sym_sec->output_section->vma);
2866 }
2867 else if (hh->eh.root.type == bfd_link_hash_undefweak)
2868 {
2869 if (! info->shared)
2870 continue;
2871 }
2872 else if (hh->eh.root.type == bfd_link_hash_undefined)
2873 {
2874 if (! (info->unresolved_syms_in_objects == RM_IGNORE
2875 && (ELF_ST_VISIBILITY (hh->eh.other)
2876 == STV_DEFAULT)
2877 && hh->eh.type != STT_PARISC_MILLI))
2878 continue;
2879 }
2880 else
2881 {
2882 bfd_set_error (bfd_error_bad_value);
2883 goto error_ret_free_internal;
2884 }
2885 }
2886
2887 /* Determine what (if any) linker stub is needed. */
2888 stub_type = hppa_type_of_stub (section, irela, hh,
2889 destination, info);
2890 if (stub_type == hppa_stub_none)
2891 continue;
2892
2893 /* Support for grouping stub sections. */
2894 id_sec = htab->stub_group[section->id].link_sec;
2895
2896 /* Get the name of this stub. */
2897 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
2898 if (!stub_name)
2899 goto error_ret_free_internal;
2900
2901 hsh = hppa_stub_hash_lookup (&htab->bstab,
2902 stub_name,
2903 FALSE, FALSE);
2904 if (hsh != NULL)
2905 {
2906 /* The proper stub has already been created. */
2907 free (stub_name);
2908 continue;
2909 }
2910
2911 hsh = hppa_add_stub (stub_name, section, htab);
2912 if (hsh == NULL)
2913 {
2914 free (stub_name);
2915 goto error_ret_free_internal;
2916 }
2917
2918 hsh->target_value = sym_value;
2919 hsh->target_section = sym_sec;
2920 hsh->stub_type = stub_type;
2921 if (info->shared)
2922 {
2923 if (stub_type == hppa_stub_import)
2924 hsh->stub_type = hppa_stub_import_shared;
2925 else if (stub_type == hppa_stub_long_branch)
2926 hsh->stub_type = hppa_stub_long_branch_shared;
2927 }
2928 hsh->hh = hh;
2929 stub_changed = TRUE;
2930 }
2931
2932 /* We're done with the internal relocs, free them. */
2933 if (elf_section_data (section)->relocs == NULL)
2934 free (internal_relocs);
2935 }
2936 }
2937
2938 if (!stub_changed)
2939 break;
2940
2941 /* OK, we've added some stubs. Find out the new size of the
2942 stub sections. */
2943 for (stub_sec = htab->stub_bfd->sections;
2944 stub_sec != NULL;
2945 stub_sec = stub_sec->next)
2946 stub_sec->size = 0;
2947
2948 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
2949
2950 /* Ask the linker to do its stuff. */
2951 (*htab->layout_sections_again) ();
2952 stub_changed = FALSE;
2953 }
2954
2955 free (htab->all_local_syms);
2956 return TRUE;
2957
2958 error_ret_free_local:
2959 free (htab->all_local_syms);
2960 return FALSE;
2961 }
2962
2963 /* For a final link, this function is called after we have sized the
2964 stubs to provide a value for __gp. */
2965
2966 bfd_boolean
2967 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
2968 {
2969 struct bfd_link_hash_entry *h;
2970 asection *sec = NULL;
2971 bfd_vma gp_val = 0;
2972 struct elf32_hppa_link_hash_table *htab;
2973
2974 htab = hppa_link_hash_table (info);
2975 h = bfd_link_hash_lookup (&htab->etab.root, "$global$", FALSE, FALSE, FALSE);
2976
2977 if (h != NULL
2978 && (h->type == bfd_link_hash_defined
2979 || h->type == bfd_link_hash_defweak))
2980 {
2981 gp_val = h->u.def.value;
2982 sec = h->u.def.section;
2983 }
2984 else
2985 {
2986 asection *splt = bfd_get_section_by_name (abfd, ".plt");
2987 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2988
2989 /* Choose to point our LTP at, in this order, one of .plt, .got,
2990 or .data, if these sections exist. In the case of choosing
2991 .plt try to make the LTP ideal for addressing anywhere in the
2992 .plt or .got with a 14 bit signed offset. Typically, the end
2993 of the .plt is the start of the .got, so choose .plt + 0x2000
2994 if either the .plt or .got is larger than 0x2000. If both
2995 the .plt and .got are smaller than 0x2000, choose the end of
2996 the .plt section. */
2997 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
2998 ? NULL : splt;
2999 if (sec != NULL)
3000 {
3001 gp_val = sec->size;
3002 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3003 {
3004 gp_val = 0x2000;
3005 }
3006 }
3007 else
3008 {
3009 sec = sgot;
3010 if (sec != NULL)
3011 {
3012 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3013 {
3014 /* We know we don't have a .plt. If .got is large,
3015 offset our LTP. */
3016 if (sec->size > 0x2000)
3017 gp_val = 0x2000;
3018 }
3019 }
3020 else
3021 {
3022 /* No .plt or .got. Who cares what the LTP is? */
3023 sec = bfd_get_section_by_name (abfd, ".data");
3024 }
3025 }
3026
3027 if (h != NULL)
3028 {
3029 h->type = bfd_link_hash_defined;
3030 h->u.def.value = gp_val;
3031 if (sec != NULL)
3032 h->u.def.section = sec;
3033 else
3034 h->u.def.section = bfd_abs_section_ptr;
3035 }
3036 }
3037
3038 if (sec != NULL && sec->output_section != NULL)
3039 gp_val += sec->output_section->vma + sec->output_offset;
3040
3041 elf_gp (abfd) = gp_val;
3042 return TRUE;
3043 }
3044
3045 /* Build all the stubs associated with the current output file. The
3046 stubs are kept in a hash table attached to the main linker hash
3047 table. We also set up the .plt entries for statically linked PIC
3048 functions here. This function is called via hppaelf_finish in the
3049 linker. */
3050
3051 bfd_boolean
3052 elf32_hppa_build_stubs (struct bfd_link_info *info)
3053 {
3054 asection *stub_sec;
3055 struct bfd_hash_table *table;
3056 struct elf32_hppa_link_hash_table *htab;
3057
3058 htab = hppa_link_hash_table (info);
3059
3060 for (stub_sec = htab->stub_bfd->sections;
3061 stub_sec != NULL;
3062 stub_sec = stub_sec->next)
3063 {
3064 bfd_size_type size;
3065
3066 /* Allocate memory to hold the linker stubs. */
3067 size = stub_sec->size;
3068 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3069 if (stub_sec->contents == NULL && size != 0)
3070 return FALSE;
3071 stub_sec->size = 0;
3072 }
3073
3074 /* Build the stubs as directed by the stub hash table. */
3075 table = &htab->bstab;
3076 bfd_hash_traverse (table, hppa_build_one_stub, info);
3077
3078 return TRUE;
3079 }
3080
3081 /* Perform a final link. */
3082
3083 static bfd_boolean
3084 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3085 {
3086 /* Invoke the regular ELF linker to do all the work. */
3087 if (!bfd_elf_final_link (abfd, info))
3088 return FALSE;
3089
3090 /* If we're producing a final executable, sort the contents of the
3091 unwind section. */
3092 return elf_hppa_sort_unwind (abfd);
3093 }
3094
3095 /* Record the lowest address for the data and text segments. */
3096
3097 static void
3098 hppa_record_segment_addr (bfd *abfd ATTRIBUTE_UNUSED,
3099 asection *section,
3100 void *data)
3101 {
3102 struct elf32_hppa_link_hash_table *htab;
3103
3104 htab = (struct elf32_hppa_link_hash_table*) data;
3105
3106 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3107 {
3108 bfd_vma value = section->vma - section->filepos;
3109
3110 if ((section->flags & SEC_READONLY) != 0)
3111 {
3112 if (value < htab->text_segment_base)
3113 htab->text_segment_base = value;
3114 }
3115 else
3116 {
3117 if (value < htab->data_segment_base)
3118 htab->data_segment_base = value;
3119 }
3120 }
3121 }
3122
3123 /* Perform a relocation as part of a final link. */
3124
3125 static bfd_reloc_status_type
3126 final_link_relocate (asection *input_section,
3127 bfd_byte *contents,
3128 const Elf_Internal_Rela *rela,
3129 bfd_vma value,
3130 struct elf32_hppa_link_hash_table *htab,
3131 asection *sym_sec,
3132 struct elf32_hppa_link_hash_entry *hh,
3133 struct bfd_link_info *info)
3134 {
3135 int insn;
3136 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3137 unsigned int orig_r_type = r_type;
3138 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3139 int r_format = howto->bitsize;
3140 enum hppa_reloc_field_selector_type_alt r_field;
3141 bfd *input_bfd = input_section->owner;
3142 bfd_vma offset = rela->r_offset;
3143 bfd_vma max_branch_offset = 0;
3144 bfd_byte *hit_data = contents + offset;
3145 bfd_signed_vma addend = rela->r_addend;
3146 bfd_vma location;
3147 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3148 int val;
3149
3150 if (r_type == R_PARISC_NONE)
3151 return bfd_reloc_ok;
3152
3153 insn = bfd_get_32 (input_bfd, hit_data);
3154
3155 /* Find out where we are and where we're going. */
3156 location = (offset +
3157 input_section->output_offset +
3158 input_section->output_section->vma);
3159
3160 /* If we are not building a shared library, convert DLTIND relocs to
3161 DPREL relocs. */
3162 if (!info->shared)
3163 {
3164 switch (r_type)
3165 {
3166 case R_PARISC_DLTIND21L:
3167 r_type = R_PARISC_DPREL21L;
3168 break;
3169
3170 case R_PARISC_DLTIND14R:
3171 r_type = R_PARISC_DPREL14R;
3172 break;
3173
3174 case R_PARISC_DLTIND14F:
3175 r_type = R_PARISC_DPREL14F;
3176 break;
3177 }
3178 }
3179
3180 switch (r_type)
3181 {
3182 case R_PARISC_PCREL12F:
3183 case R_PARISC_PCREL17F:
3184 case R_PARISC_PCREL22F:
3185 /* If this call should go via the plt, find the import stub in
3186 the stub hash. */
3187 if (sym_sec == NULL
3188 || sym_sec->output_section == NULL
3189 || (hh != NULL
3190 && hh->eh.plt.offset != (bfd_vma) -1
3191 && hh->eh.dynindx != -1
3192 && !hh->plabel
3193 && (info->shared
3194 || !hh->eh.def_regular
3195 || hh->eh.root.type == bfd_link_hash_defweak)))
3196 {
3197 hsh = hppa_get_stub_entry (input_section, sym_sec,
3198 hh, rela, htab);
3199 if (hsh != NULL)
3200 {
3201 value = (hsh->stub_offset
3202 + hsh->stub_sec->output_offset
3203 + hsh->stub_sec->output_section->vma);
3204 addend = 0;
3205 }
3206 else if (sym_sec == NULL && hh != NULL
3207 && hh->eh.root.type == bfd_link_hash_undefweak)
3208 {
3209 /* It's OK if undefined weak. Calls to undefined weak
3210 symbols behave as if the "called" function
3211 immediately returns. We can thus call to a weak
3212 function without first checking whether the function
3213 is defined. */
3214 value = location;
3215 addend = 8;
3216 }
3217 else
3218 return bfd_reloc_undefined;
3219 }
3220 /* Fall thru. */
3221
3222 case R_PARISC_PCREL21L:
3223 case R_PARISC_PCREL17C:
3224 case R_PARISC_PCREL17R:
3225 case R_PARISC_PCREL14R:
3226 case R_PARISC_PCREL14F:
3227 case R_PARISC_PCREL32:
3228 /* Make it a pc relative offset. */
3229 value -= location;
3230 addend -= 8;
3231 break;
3232
3233 case R_PARISC_DPREL21L:
3234 case R_PARISC_DPREL14R:
3235 case R_PARISC_DPREL14F:
3236 /* Convert instructions that use the linkage table pointer (r19) to
3237 instructions that use the global data pointer (dp). This is the
3238 most efficient way of using PIC code in an incomplete executable,
3239 but the user must follow the standard runtime conventions for
3240 accessing data for this to work. */
3241 if (orig_r_type == R_PARISC_DLTIND21L)
3242 {
3243 /* Convert addil instructions if the original reloc was a
3244 DLTIND21L. GCC sometimes uses a register other than r19 for
3245 the operation, so we must convert any addil instruction
3246 that uses this relocation. */
3247 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3248 insn = ADDIL_DP;
3249 else
3250 /* We must have a ldil instruction. It's too hard to find
3251 and convert the associated add instruction, so issue an
3252 error. */
3253 (*_bfd_error_handler)
3254 (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3255 input_bfd,
3256 input_section,
3257 offset,
3258 howto->name,
3259 insn);
3260 }
3261 else if (orig_r_type == R_PARISC_DLTIND14F)
3262 {
3263 /* This must be a format 1 load/store. Change the base
3264 register to dp. */
3265 insn = (insn & 0xfc1ffff) | (27 << 21);
3266 }
3267
3268 /* For all the DP relative relocations, we need to examine the symbol's
3269 section. If it has no section or if it's a code section, then
3270 "data pointer relative" makes no sense. In that case we don't
3271 adjust the "value", and for 21 bit addil instructions, we change the
3272 source addend register from %dp to %r0. This situation commonly
3273 arises for undefined weak symbols and when a variable's "constness"
3274 is declared differently from the way the variable is defined. For
3275 instance: "extern int foo" with foo defined as "const int foo". */
3276 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3277 {
3278 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3279 == (((int) OP_ADDIL << 26) | (27 << 21)))
3280 {
3281 insn &= ~ (0x1f << 21);
3282 }
3283 /* Now try to make things easy for the dynamic linker. */
3284
3285 break;
3286 }
3287 /* Fall thru. */
3288
3289 case R_PARISC_DLTIND21L:
3290 case R_PARISC_DLTIND14R:
3291 case R_PARISC_DLTIND14F:
3292 value -= elf_gp (input_section->output_section->owner);
3293 break;
3294
3295 case R_PARISC_SEGREL32:
3296 if ((sym_sec->flags & SEC_CODE) != 0)
3297 value -= htab->text_segment_base;
3298 else
3299 value -= htab->data_segment_base;
3300 break;
3301
3302 default:
3303 break;
3304 }
3305
3306 switch (r_type)
3307 {
3308 case R_PARISC_DIR32:
3309 case R_PARISC_DIR14F:
3310 case R_PARISC_DIR17F:
3311 case R_PARISC_PCREL17C:
3312 case R_PARISC_PCREL14F:
3313 case R_PARISC_PCREL32:
3314 case R_PARISC_DPREL14F:
3315 case R_PARISC_PLABEL32:
3316 case R_PARISC_DLTIND14F:
3317 case R_PARISC_SEGBASE:
3318 case R_PARISC_SEGREL32:
3319 r_field = e_fsel;
3320 break;
3321
3322 case R_PARISC_DLTIND21L:
3323 case R_PARISC_PCREL21L:
3324 case R_PARISC_PLABEL21L:
3325 r_field = e_lsel;
3326 break;
3327
3328 case R_PARISC_DIR21L:
3329 case R_PARISC_DPREL21L:
3330 r_field = e_lrsel;
3331 break;
3332
3333 case R_PARISC_PCREL17R:
3334 case R_PARISC_PCREL14R:
3335 case R_PARISC_PLABEL14R:
3336 case R_PARISC_DLTIND14R:
3337 r_field = e_rsel;
3338 break;
3339
3340 case R_PARISC_DIR17R:
3341 case R_PARISC_DIR14R:
3342 case R_PARISC_DPREL14R:
3343 r_field = e_rrsel;
3344 break;
3345
3346 case R_PARISC_PCREL12F:
3347 case R_PARISC_PCREL17F:
3348 case R_PARISC_PCREL22F:
3349 r_field = e_fsel;
3350
3351 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3352 {
3353 max_branch_offset = (1 << (17-1)) << 2;
3354 }
3355 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3356 {
3357 max_branch_offset = (1 << (12-1)) << 2;
3358 }
3359 else
3360 {
3361 max_branch_offset = (1 << (22-1)) << 2;
3362 }
3363
3364 /* sym_sec is NULL on undefined weak syms or when shared on
3365 undefined syms. We've already checked for a stub for the
3366 shared undefined case. */
3367 if (sym_sec == NULL)
3368 break;
3369
3370 /* If the branch is out of reach, then redirect the
3371 call to the local stub for this function. */
3372 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3373 {
3374 hsh = hppa_get_stub_entry (input_section, sym_sec,
3375 hh, rela, htab);
3376 if (hsh == NULL)
3377 return bfd_reloc_undefined;
3378
3379 /* Munge up the value and addend so that we call the stub
3380 rather than the procedure directly. */
3381 value = (hsh->stub_offset
3382 + hsh->stub_sec->output_offset
3383 + hsh->stub_sec->output_section->vma
3384 - location);
3385 addend = -8;
3386 }
3387 break;
3388
3389 /* Something we don't know how to handle. */
3390 default:
3391 return bfd_reloc_notsupported;
3392 }
3393
3394 /* Make sure we can reach the stub. */
3395 if (max_branch_offset != 0
3396 && value + addend + max_branch_offset >= 2*max_branch_offset)
3397 {
3398 (*_bfd_error_handler)
3399 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3400 input_bfd,
3401 input_section,
3402 offset,
3403 hsh->bh_root.string);
3404 bfd_set_error (bfd_error_bad_value);
3405 return bfd_reloc_notsupported;
3406 }
3407
3408 val = hppa_field_adjust (value, addend, r_field);
3409
3410 switch (r_type)
3411 {
3412 case R_PARISC_PCREL12F:
3413 case R_PARISC_PCREL17C:
3414 case R_PARISC_PCREL17F:
3415 case R_PARISC_PCREL17R:
3416 case R_PARISC_PCREL22F:
3417 case R_PARISC_DIR17F:
3418 case R_PARISC_DIR17R:
3419 /* This is a branch. Divide the offset by four.
3420 Note that we need to decide whether it's a branch or
3421 otherwise by inspecting the reloc. Inspecting insn won't
3422 work as insn might be from a .word directive. */
3423 val >>= 2;
3424 break;
3425
3426 default:
3427 break;
3428 }
3429
3430 insn = hppa_rebuild_insn (insn, val, r_format);
3431
3432 /* Update the instruction word. */
3433 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3434 return bfd_reloc_ok;
3435 }
3436
3437 /* Relocate an HPPA ELF section. */
3438
3439 static bfd_boolean
3440 elf32_hppa_relocate_section (bfd *output_bfd,
3441 struct bfd_link_info *info,
3442 bfd *input_bfd,
3443 asection *input_section,
3444 bfd_byte *contents,
3445 Elf_Internal_Rela *relocs,
3446 Elf_Internal_Sym *local_syms,
3447 asection **local_sections)
3448 {
3449 bfd_vma *local_got_offsets;
3450 struct elf32_hppa_link_hash_table *htab;
3451 Elf_Internal_Shdr *symtab_hdr;
3452 Elf_Internal_Rela *rela;
3453 Elf_Internal_Rela *relend;
3454
3455 if (info->relocatable)
3456 return TRUE;
3457
3458 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3459
3460 htab = hppa_link_hash_table (info);
3461 local_got_offsets = elf_local_got_offsets (input_bfd);
3462
3463 rela = relocs;
3464 relend = relocs + input_section->reloc_count;
3465 for (; rela < relend; rela++)
3466 {
3467 unsigned int r_type;
3468 reloc_howto_type *howto;
3469 unsigned int r_symndx;
3470 struct elf32_hppa_link_hash_entry *hh;
3471 Elf_Internal_Sym *sym;
3472 asection *sym_sec;
3473 bfd_vma relocation;
3474 bfd_reloc_status_type rstatus;
3475 const char *sym_name;
3476 bfd_boolean plabel;
3477 bfd_boolean warned_undef;
3478
3479 r_type = ELF32_R_TYPE (rela->r_info);
3480 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3481 {
3482 bfd_set_error (bfd_error_bad_value);
3483 return FALSE;
3484 }
3485 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3486 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3487 continue;
3488
3489 /* This is a final link. */
3490 r_symndx = ELF32_R_SYM (rela->r_info);
3491 hh = NULL;
3492 sym = NULL;
3493 sym_sec = NULL;
3494 warned_undef = FALSE;
3495 if (r_symndx < symtab_hdr->sh_info)
3496 {
3497 /* This is a local symbol, h defaults to NULL. */
3498 sym = local_syms + r_symndx;
3499 sym_sec = local_sections[r_symndx];
3500 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3501 }
3502 else
3503 {
3504 struct elf_link_hash_entry *eh;
3505 bfd_boolean unresolved_reloc;
3506 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3507
3508 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3509 r_symndx, symtab_hdr, sym_hashes,
3510 eh, sym_sec, relocation,
3511 unresolved_reloc, warned_undef);
3512
3513 if (relocation == 0
3514 && eh->root.type != bfd_link_hash_defined
3515 && eh->root.type != bfd_link_hash_defweak
3516 && eh->root.type != bfd_link_hash_undefweak)
3517 {
3518 if (info->unresolved_syms_in_objects == RM_IGNORE
3519 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3520 && eh->type == STT_PARISC_MILLI)
3521 {
3522 if (! info->callbacks->undefined_symbol
3523 (info, eh->root.root.string, input_bfd,
3524 input_section, rela->r_offset, FALSE))
3525 return FALSE;
3526 warned_undef = TRUE;
3527 }
3528 }
3529 hh = hppa_elf_hash_entry (eh);
3530 }
3531
3532 /* Do any required modifications to the relocation value, and
3533 determine what types of dynamic info we need to output, if
3534 any. */
3535 plabel = 0;
3536 switch (r_type)
3537 {
3538 case R_PARISC_DLTIND14F:
3539 case R_PARISC_DLTIND14R:
3540 case R_PARISC_DLTIND21L:
3541 {
3542 bfd_vma off;
3543 bfd_boolean do_got = 0;
3544
3545 /* Relocation is to the entry for this symbol in the
3546 global offset table. */
3547 if (hh != NULL)
3548 {
3549 bfd_boolean dyn;
3550
3551 off = hh->eh.got.offset;
3552 dyn = htab->etab.dynamic_sections_created;
3553 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
3554 &hh->eh))
3555 {
3556 /* If we aren't going to call finish_dynamic_symbol,
3557 then we need to handle initialisation of the .got
3558 entry and create needed relocs here. Since the
3559 offset must always be a multiple of 4, we use the
3560 least significant bit to record whether we have
3561 initialised it already. */
3562 if ((off & 1) != 0)
3563 off &= ~1;
3564 else
3565 {
3566 hh->eh.got.offset |= 1;
3567 do_got = 1;
3568 }
3569 }
3570 }
3571 else
3572 {
3573 /* Local symbol case. */
3574 if (local_got_offsets == NULL)
3575 abort ();
3576
3577 off = local_got_offsets[r_symndx];
3578
3579 /* The offset must always be a multiple of 4. We use
3580 the least significant bit to record whether we have
3581 already generated the necessary reloc. */
3582 if ((off & 1) != 0)
3583 off &= ~1;
3584 else
3585 {
3586 local_got_offsets[r_symndx] |= 1;
3587 do_got = 1;
3588 }
3589 }
3590
3591 if (do_got)
3592 {
3593 if (info->shared)
3594 {
3595 /* Output a dynamic relocation for this GOT entry.
3596 In this case it is relative to the base of the
3597 object because the symbol index is zero. */
3598 Elf_Internal_Rela outrel;
3599 bfd_byte *loc;
3600 asection *sec = htab->srelgot;
3601
3602 outrel.r_offset = (off
3603 + htab->sgot->output_offset
3604 + htab->sgot->output_section->vma);
3605 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3606 outrel.r_addend = relocation;
3607 loc = sec->contents;
3608 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3609 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3610 }
3611 else
3612 bfd_put_32 (output_bfd, relocation,
3613 htab->sgot->contents + off);
3614 }
3615
3616 if (off >= (bfd_vma) -2)
3617 abort ();
3618
3619 /* Add the base of the GOT to the relocation value. */
3620 relocation = (off
3621 + htab->sgot->output_offset
3622 + htab->sgot->output_section->vma);
3623 }
3624 break;
3625
3626 case R_PARISC_SEGREL32:
3627 /* If this is the first SEGREL relocation, then initialize
3628 the segment base values. */
3629 if (htab->text_segment_base == (bfd_vma) -1)
3630 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3631 break;
3632
3633 case R_PARISC_PLABEL14R:
3634 case R_PARISC_PLABEL21L:
3635 case R_PARISC_PLABEL32:
3636 if (htab->etab.dynamic_sections_created)
3637 {
3638 bfd_vma off;
3639 bfd_boolean do_plt = 0;
3640 /* If we have a global symbol with a PLT slot, then
3641 redirect this relocation to it. */
3642 if (hh != NULL)
3643 {
3644 off = hh->eh.plt.offset;
3645 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared,
3646 &hh->eh))
3647 {
3648 /* In a non-shared link, adjust_dynamic_symbols
3649 isn't called for symbols forced local. We
3650 need to write out the plt entry here. */
3651 if ((off & 1) != 0)
3652 off &= ~1;
3653 else
3654 {
3655 hh->eh.plt.offset |= 1;
3656 do_plt = 1;
3657 }
3658 }
3659 }
3660 else
3661 {
3662 bfd_vma *local_plt_offsets;
3663
3664 if (local_got_offsets == NULL)
3665 abort ();
3666
3667 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3668 off = local_plt_offsets[r_symndx];
3669
3670 /* As for the local .got entry case, we use the last
3671 bit to record whether we've already initialised
3672 this local .plt entry. */
3673 if ((off & 1) != 0)
3674 off &= ~1;
3675 else
3676 {
3677 local_plt_offsets[r_symndx] |= 1;
3678 do_plt = 1;
3679 }
3680 }
3681
3682 if (do_plt)
3683 {
3684 if (info->shared)
3685 {
3686 /* Output a dynamic IPLT relocation for this
3687 PLT entry. */
3688 Elf_Internal_Rela outrel;
3689 bfd_byte *loc;
3690 asection *s = htab->srelplt;
3691
3692 outrel.r_offset = (off
3693 + htab->splt->output_offset
3694 + htab->splt->output_section->vma);
3695 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3696 outrel.r_addend = relocation;
3697 loc = s->contents;
3698 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3699 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3700 }
3701 else
3702 {
3703 bfd_put_32 (output_bfd,
3704 relocation,
3705 htab->splt->contents + off);
3706 bfd_put_32 (output_bfd,
3707 elf_gp (htab->splt->output_section->owner),
3708 htab->splt->contents + off + 4);
3709 }
3710 }
3711
3712 if (off >= (bfd_vma) -2)
3713 abort ();
3714
3715 /* PLABELs contain function pointers. Relocation is to
3716 the entry for the function in the .plt. The magic +2
3717 offset signals to $$dyncall that the function pointer
3718 is in the .plt and thus has a gp pointer too.
3719 Exception: Undefined PLABELs should have a value of
3720 zero. */
3721 if (hh == NULL
3722 || (hh->eh.root.type != bfd_link_hash_undefweak
3723 && hh->eh.root.type != bfd_link_hash_undefined))
3724 {
3725 relocation = (off
3726 + htab->splt->output_offset
3727 + htab->splt->output_section->vma
3728 + 2);
3729 }
3730 plabel = 1;
3731 }
3732 /* Fall through and possibly emit a dynamic relocation. */
3733
3734 case R_PARISC_DIR17F:
3735 case R_PARISC_DIR17R:
3736 case R_PARISC_DIR14F:
3737 case R_PARISC_DIR14R:
3738 case R_PARISC_DIR21L:
3739 case R_PARISC_DPREL14F:
3740 case R_PARISC_DPREL14R:
3741 case R_PARISC_DPREL21L:
3742 case R_PARISC_DIR32:
3743 /* r_symndx will be zero only for relocs against symbols
3744 from removed linkonce sections, or sections discarded by
3745 a linker script. */
3746 if (r_symndx == 0
3747 || (input_section->flags & SEC_ALLOC) == 0)
3748 break;
3749
3750 /* The reloc types handled here and this conditional
3751 expression must match the code in ..check_relocs and
3752 allocate_dynrelocs. ie. We need exactly the same condition
3753 as in ..check_relocs, with some extra conditions (dynindx
3754 test in this case) to cater for relocs removed by
3755 allocate_dynrelocs. If you squint, the non-shared test
3756 here does indeed match the one in ..check_relocs, the
3757 difference being that here we test DEF_DYNAMIC as well as
3758 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3759 which is why we can't use just that test here.
3760 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3761 there all files have not been loaded. */
3762 if ((info->shared
3763 && (hh == NULL
3764 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
3765 || hh->eh.root.type != bfd_link_hash_undefweak)
3766 && (IS_ABSOLUTE_RELOC (r_type)
3767 || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
3768 || (!info->shared
3769 && hh != NULL
3770 && hh->eh.dynindx != -1
3771 && !hh->eh.non_got_ref
3772 && ((ELIMINATE_COPY_RELOCS
3773 && hh->eh.def_dynamic
3774 && !hh->eh.def_regular)
3775 || hh->eh.root.type == bfd_link_hash_undefweak
3776 || hh->eh.root.type == bfd_link_hash_undefined)))
3777 {
3778 Elf_Internal_Rela outrel;
3779 bfd_boolean skip;
3780 asection *sreloc;
3781 bfd_byte *loc;
3782
3783 /* When generating a shared object, these relocations
3784 are copied into the output file to be resolved at run
3785 time. */
3786
3787 outrel.r_addend = rela->r_addend;
3788 outrel.r_offset =
3789 _bfd_elf_section_offset (output_bfd, info, input_section,
3790 rela->r_offset);
3791 skip = (outrel.r_offset == (bfd_vma) -1
3792 || outrel.r_offset == (bfd_vma) -2);
3793 outrel.r_offset += (input_section->output_offset
3794 + input_section->output_section->vma);
3795
3796 if (skip)
3797 {
3798 memset (&outrel, 0, sizeof (outrel));
3799 }
3800 else if (hh != NULL
3801 && hh->eh.dynindx != -1
3802 && (plabel
3803 || !IS_ABSOLUTE_RELOC (r_type)
3804 || !info->shared
3805 || !info->symbolic
3806 || !hh->eh.def_regular))
3807 {
3808 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
3809 }
3810 else /* It's a local symbol, or one marked to become local. */
3811 {
3812 int indx = 0;
3813
3814 /* Add the absolute offset of the symbol. */
3815 outrel.r_addend += relocation;
3816
3817 /* Global plabels need to be processed by the
3818 dynamic linker so that functions have at most one
3819 fptr. For this reason, we need to differentiate
3820 between global and local plabels, which we do by
3821 providing the function symbol for a global plabel
3822 reloc, and no symbol for local plabels. */
3823 if (! plabel
3824 && sym_sec != NULL
3825 && sym_sec->output_section != NULL
3826 && ! bfd_is_abs_section (sym_sec))
3827 {
3828 /* Skip this relocation if the output section has
3829 been discarded. */
3830 if (bfd_is_abs_section (sym_sec->output_section))
3831 break;
3832
3833 indx = elf_section_data (sym_sec->output_section)->dynindx;
3834 /* We are turning this relocation into one
3835 against a section symbol, so subtract out the
3836 output section's address but not the offset
3837 of the input section in the output section. */
3838 outrel.r_addend -= sym_sec->output_section->vma;
3839 }
3840
3841 outrel.r_info = ELF32_R_INFO (indx, r_type);
3842 }
3843 sreloc = elf_section_data (input_section)->sreloc;
3844 if (sreloc == NULL)
3845 abort ();
3846
3847 loc = sreloc->contents;
3848 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3849 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3850 }
3851 break;
3852
3853 default:
3854 break;
3855 }
3856
3857 rstatus = final_link_relocate (input_section, contents, rela, relocation,
3858 htab, sym_sec, hh, info);
3859
3860 if (rstatus == bfd_reloc_ok)
3861 continue;
3862
3863 if (hh != NULL)
3864 sym_name = hh->eh.root.root.string;
3865 else
3866 {
3867 sym_name = bfd_elf_string_from_elf_section (input_bfd,
3868 symtab_hdr->sh_link,
3869 sym->st_name);
3870 if (sym_name == NULL)
3871 return FALSE;
3872 if (*sym_name == '\0')
3873 sym_name = bfd_section_name (input_bfd, sym_sec);
3874 }
3875
3876 howto = elf_hppa_howto_table + r_type;
3877
3878 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
3879 {
3880 if (rstatus == bfd_reloc_notsupported || !warned_undef)
3881 {
3882 (*_bfd_error_handler)
3883 (_("%B(%A+0x%lx): cannot handle %s for %s"),
3884 input_bfd,
3885 input_section,
3886 (long) rela->r_offset,
3887 howto->name,
3888 sym_name);
3889 bfd_set_error (bfd_error_bad_value);
3890 return FALSE;
3891 }
3892 }
3893 else
3894 {
3895 if (!((*info->callbacks->reloc_overflow)
3896 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
3897 (bfd_vma) 0, input_bfd, input_section, rela->r_offset)))
3898 return FALSE;
3899 }
3900 }
3901
3902 return TRUE;
3903 }
3904
3905 /* Finish up dynamic symbol handling. We set the contents of various
3906 dynamic sections here. */
3907
3908 static bfd_boolean
3909 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
3910 struct bfd_link_info *info,
3911 struct elf_link_hash_entry *eh,
3912 Elf_Internal_Sym *sym)
3913 {
3914 struct elf32_hppa_link_hash_table *htab;
3915 Elf_Internal_Rela rela;
3916 bfd_byte *loc;
3917
3918 htab = hppa_link_hash_table (info);
3919
3920 if (eh->plt.offset != (bfd_vma) -1)
3921 {
3922 bfd_vma value;
3923
3924 if (eh->plt.offset & 1)
3925 abort ();
3926
3927 /* This symbol has an entry in the procedure linkage table. Set
3928 it up.
3929
3930 The format of a plt entry is
3931 <funcaddr>
3932 <__gp>
3933 */
3934 value = 0;
3935 if (eh->root.type == bfd_link_hash_defined
3936 || eh->root.type == bfd_link_hash_defweak)
3937 {
3938 value = eh->root.u.def.value;
3939 if (eh->root.u.def.section->output_section != NULL)
3940 value += (eh->root.u.def.section->output_offset
3941 + eh->root.u.def.section->output_section->vma);
3942 }
3943
3944 /* Create a dynamic IPLT relocation for this entry. */
3945 rela.r_offset = (eh->plt.offset
3946 + htab->splt->output_offset
3947 + htab->splt->output_section->vma);
3948 if (eh->dynindx != -1)
3949 {
3950 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
3951 rela.r_addend = 0;
3952 }
3953 else
3954 {
3955 /* This symbol has been marked to become local, and is
3956 used by a plabel so must be kept in the .plt. */
3957 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3958 rela.r_addend = value;
3959 }
3960
3961 loc = htab->srelplt->contents;
3962 loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
3963 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rela, loc);
3964
3965 if (!eh->def_regular)
3966 {
3967 /* Mark the symbol as undefined, rather than as defined in
3968 the .plt section. Leave the value alone. */
3969 sym->st_shndx = SHN_UNDEF;
3970 }
3971 }
3972
3973 if (eh->got.offset != (bfd_vma) -1)
3974 {
3975 /* This symbol has an entry in the global offset table. Set it
3976 up. */
3977
3978 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
3979 + htab->sgot->output_offset
3980 + htab->sgot->output_section->vma);
3981
3982 /* If this is a -Bsymbolic link and the symbol is defined
3983 locally or was forced to be local because of a version file,
3984 we just want to emit a RELATIVE reloc. The entry in the
3985 global offset table will already have been initialized in the
3986 relocate_section function. */
3987 if (info->shared
3988 && (info->symbolic || eh->dynindx == -1)
3989 && eh->def_regular)
3990 {
3991 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3992 rela.r_addend = (eh->root.u.def.value
3993 + eh->root.u.def.section->output_offset
3994 + eh->root.u.def.section->output_section->vma);
3995 }
3996 else
3997 {
3998 if ((eh->got.offset & 1) != 0)
3999 abort ();
4000
4001 bfd_put_32 (output_bfd, 0, htab->sgot->contents + (eh->got.offset & ~1));
4002 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4003 rela.r_addend = 0;
4004 }
4005
4006 loc = htab->srelgot->contents;
4007 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4008 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4009 }
4010
4011 if (eh->needs_copy)
4012 {
4013 asection *sec;
4014
4015 /* This symbol needs a copy reloc. Set it up. */
4016
4017 if (! (eh->dynindx != -1
4018 && (eh->root.type == bfd_link_hash_defined
4019 || eh->root.type == bfd_link_hash_defweak)))
4020 abort ();
4021
4022 sec = htab->srelbss;
4023
4024 rela.r_offset = (eh->root.u.def.value
4025 + eh->root.u.def.section->output_offset
4026 + eh->root.u.def.section->output_section->vma);
4027 rela.r_addend = 0;
4028 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4029 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4030 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4031 }
4032
4033 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4034 if (eh->root.root.string[0] == '_'
4035 && (strcmp (eh->root.root.string, "_DYNAMIC") == 0
4036 || strcmp (eh->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0))
4037 {
4038 sym->st_shndx = SHN_ABS;
4039 }
4040
4041 return TRUE;
4042 }
4043
4044 /* Used to decide how to sort relocs in an optimal manner for the
4045 dynamic linker, before writing them out. */
4046
4047 static enum elf_reloc_type_class
4048 elf32_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
4049 {
4050 if (ELF32_R_SYM (rela->r_info) == 0)
4051 return reloc_class_relative;
4052
4053 switch ((int) ELF32_R_TYPE (rela->r_info))
4054 {
4055 case R_PARISC_IPLT:
4056 return reloc_class_plt;
4057 case R_PARISC_COPY:
4058 return reloc_class_copy;
4059 default:
4060 return reloc_class_normal;
4061 }
4062 }
4063
4064 /* Finish up the dynamic sections. */
4065
4066 static bfd_boolean
4067 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4068 struct bfd_link_info *info)
4069 {
4070 bfd *dynobj;
4071 struct elf32_hppa_link_hash_table *htab;
4072 asection *sdyn;
4073
4074 htab = hppa_link_hash_table (info);
4075 dynobj = htab->etab.dynobj;
4076
4077 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4078
4079 if (htab->etab.dynamic_sections_created)
4080 {
4081 Elf32_External_Dyn *dyncon, *dynconend;
4082
4083 if (sdyn == NULL)
4084 abort ();
4085
4086 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4087 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4088 for (; dyncon < dynconend; dyncon++)
4089 {
4090 Elf_Internal_Dyn dyn;
4091 asection *s;
4092
4093 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4094
4095 switch (dyn.d_tag)
4096 {
4097 default:
4098 continue;
4099
4100 case DT_PLTGOT:
4101 /* Use PLTGOT to set the GOT register. */
4102 dyn.d_un.d_ptr = elf_gp (output_bfd);
4103 break;
4104
4105 case DT_JMPREL:
4106 s = htab->srelplt;
4107 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4108 break;
4109
4110 case DT_PLTRELSZ:
4111 s = htab->srelplt;
4112 dyn.d_un.d_val = s->size;
4113 break;
4114
4115 case DT_RELASZ:
4116 /* Don't count procedure linkage table relocs in the
4117 overall reloc count. */
4118 s = htab->srelplt;
4119 if (s == NULL)
4120 continue;
4121 dyn.d_un.d_val -= s->size;
4122 break;
4123
4124 case DT_RELA:
4125 /* We may not be using the standard ELF linker script.
4126 If .rela.plt is the first .rela section, we adjust
4127 DT_RELA to not include it. */
4128 s = htab->srelplt;
4129 if (s == NULL)
4130 continue;
4131 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4132 continue;
4133 dyn.d_un.d_ptr += s->size;
4134 break;
4135 }
4136
4137 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4138 }
4139 }
4140
4141 if (htab->sgot != NULL && htab->sgot->size != 0)
4142 {
4143 /* Fill in the first entry in the global offset table.
4144 We use it to point to our dynamic section, if we have one. */
4145 bfd_put_32 (output_bfd,
4146 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4147 htab->sgot->contents);
4148
4149 /* The second entry is reserved for use by the dynamic linker. */
4150 memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4151
4152 /* Set .got entry size. */
4153 elf_section_data (htab->sgot->output_section)
4154 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4155 }
4156
4157 if (htab->splt != NULL && htab->splt->size != 0)
4158 {
4159 /* Set plt entry size. */
4160 elf_section_data (htab->splt->output_section)
4161 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4162
4163 if (htab->need_plt_stub)
4164 {
4165 /* Set up the .plt stub. */
4166 memcpy (htab->splt->contents
4167 + htab->splt->size - sizeof (plt_stub),
4168 plt_stub, sizeof (plt_stub));
4169
4170 if ((htab->splt->output_offset
4171 + htab->splt->output_section->vma
4172 + htab->splt->size)
4173 != (htab->sgot->output_offset
4174 + htab->sgot->output_section->vma))
4175 {
4176 (*_bfd_error_handler)
4177 (_(".got section not immediately after .plt section"));
4178 return FALSE;
4179 }
4180 }
4181 }
4182
4183 return TRUE;
4184 }
4185
4186 /* Tweak the OSABI field of the elf header. */
4187
4188 static void
4189 elf32_hppa_post_process_headers (bfd *abfd,
4190 struct bfd_link_info *info ATTRIBUTE_UNUSED)
4191 {
4192 Elf_Internal_Ehdr * i_ehdrp;
4193
4194 i_ehdrp = elf_elfheader (abfd);
4195
4196 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
4197 {
4198 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
4199 }
4200 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
4201 {
4202 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_NETBSD;
4203 }
4204 else
4205 {
4206 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
4207 }
4208 }
4209
4210 /* Called when writing out an object file to decide the type of a
4211 symbol. */
4212 static int
4213 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4214 {
4215 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4216 return STT_PARISC_MILLI;
4217 else
4218 return type;
4219 }
4220
4221 /* Misc BFD support code. */
4222 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4223 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4224 #define elf_info_to_howto elf_hppa_info_to_howto
4225 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4226
4227 /* Stuff for the BFD linker. */
4228 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4229 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4230 #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
4231 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4232 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4233 #define elf_backend_check_relocs elf32_hppa_check_relocs
4234 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4235 #define elf_backend_fake_sections elf_hppa_fake_sections
4236 #define elf_backend_relocate_section elf32_hppa_relocate_section
4237 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4238 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4239 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4240 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4241 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4242 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4243 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4244 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4245 #define elf_backend_object_p elf32_hppa_object_p
4246 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4247 #define elf_backend_post_process_headers elf32_hppa_post_process_headers
4248 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4249 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4250
4251 #define elf_backend_can_gc_sections 1
4252 #define elf_backend_can_refcount 1
4253 #define elf_backend_plt_alignment 2
4254 #define elf_backend_want_got_plt 0
4255 #define elf_backend_plt_readonly 0
4256 #define elf_backend_want_plt_sym 0
4257 #define elf_backend_got_header_size 8
4258 #define elf_backend_rela_normal 1
4259
4260 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4261 #define TARGET_BIG_NAME "elf32-hppa"
4262 #define ELF_ARCH bfd_arch_hppa
4263 #define ELF_MACHINE_CODE EM_PARISC
4264 #define ELF_MAXPAGESIZE 0x1000
4265
4266 #include "elf32-target.h"
4267
4268 #undef TARGET_BIG_SYM
4269 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4270 #undef TARGET_BIG_NAME
4271 #define TARGET_BIG_NAME "elf32-hppa-linux"
4272
4273 #define INCLUDED_TARGET_FILE 1
4274 #include "elf32-target.h"
4275
4276 #undef TARGET_BIG_SYM
4277 #define TARGET_BIG_SYM bfd_elf32_hppa_nbsd_vec
4278 #undef TARGET_BIG_NAME
4279 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4280
4281 #include "elf32-target.h"
This page took 0.117276 seconds and 4 git commands to generate.