acc96afe078b738083ebe1eb5b6c4e945640c6b7
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright (C) 1990-2017 Free Software Foundation, Inc.
3
4 Original code by
5 Center for Software Science
6 Department of Computer Science
7 University of Utah
8 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
9 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
10 TLS support written by Randolph Chung <tausq@debian.org>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
28
29 #include "sysdep.h"
30 #include "bfd.h"
31 #include "libbfd.h"
32 #include "elf-bfd.h"
33 #include "elf/hppa.h"
34 #include "libhppa.h"
35 #include "elf32-hppa.h"
36 #define ARCH_SIZE 32
37 #include "elf32-hppa.h"
38 #include "elf-hppa.h"
39
40 /* In order to gain some understanding of code in this file without
41 knowing all the intricate details of the linker, note the
42 following:
43
44 Functions named elf32_hppa_* are called by external routines, other
45 functions are only called locally. elf32_hppa_* functions appear
46 in this file more or less in the order in which they are called
47 from external routines. eg. elf32_hppa_check_relocs is called
48 early in the link process, elf32_hppa_finish_dynamic_sections is
49 one of the last functions. */
50
51 /* We use two hash tables to hold information for linking PA ELF objects.
52
53 The first is the elf32_hppa_link_hash_table which is derived
54 from the standard ELF linker hash table. We use this as a place to
55 attach other hash tables and static information.
56
57 The second is the stub hash table which is derived from the
58 base BFD hash table. The stub hash table holds the information
59 necessary to build the linker stubs during a link.
60
61 There are a number of different stubs generated by the linker.
62
63 Long branch stub:
64 : ldil LR'X,%r1
65 : be,n RR'X(%sr4,%r1)
66
67 PIC long branch stub:
68 : b,l .+8,%r1
69 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
70 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
71
72 Import stub to call shared library routine from normal object file
73 (single sub-space version)
74 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
75 : ldw RR'lt_ptr+ltoff(%r1),%r21
76 : bv %r0(%r21)
77 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
78
79 Import stub to call shared library routine from shared library
80 (single sub-space version)
81 : addil LR'ltoff,%r19 ; get procedure entry point
82 : ldw RR'ltoff(%r1),%r21
83 : bv %r0(%r21)
84 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
85
86 Import stub to call shared library routine from normal object file
87 (multiple sub-space support)
88 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
89 : ldw RR'lt_ptr+ltoff(%r1),%r21
90 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
91 : ldsid (%r21),%r1
92 : mtsp %r1,%sr0
93 : be 0(%sr0,%r21) ; branch to target
94 : stw %rp,-24(%sp) ; save rp
95
96 Import stub to call shared library routine from shared library
97 (multiple sub-space support)
98 : addil LR'ltoff,%r19 ; get procedure entry point
99 : ldw RR'ltoff(%r1),%r21
100 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
101 : ldsid (%r21),%r1
102 : mtsp %r1,%sr0
103 : be 0(%sr0,%r21) ; branch to target
104 : stw %rp,-24(%sp) ; save rp
105
106 Export stub to return from shared lib routine (multiple sub-space support)
107 One of these is created for each exported procedure in a shared
108 library (and stored in the shared lib). Shared lib routines are
109 called via the first instruction in the export stub so that we can
110 do an inter-space return. Not required for single sub-space.
111 : bl,n X,%rp ; trap the return
112 : nop
113 : ldw -24(%sp),%rp ; restore the original rp
114 : ldsid (%rp),%r1
115 : mtsp %r1,%sr0
116 : be,n 0(%sr0,%rp) ; inter-space return. */
117
118
119 /* Variable names follow a coding style.
120 Please follow this (Apps Hungarian) style:
121
122 Structure/Variable Prefix
123 elf_link_hash_table "etab"
124 elf_link_hash_entry "eh"
125
126 elf32_hppa_link_hash_table "htab"
127 elf32_hppa_link_hash_entry "hh"
128
129 bfd_hash_table "btab"
130 bfd_hash_entry "bh"
131
132 bfd_hash_table containing stubs "bstab"
133 elf32_hppa_stub_hash_entry "hsh"
134
135 elf32_hppa_dyn_reloc_entry "hdh"
136
137 Always remember to use GNU Coding Style. */
138
139 #define PLT_ENTRY_SIZE 8
140 #define GOT_ENTRY_SIZE 4
141 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
142
143 static const bfd_byte plt_stub[] =
144 {
145 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
146 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
147 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
148 #define PLT_STUB_ENTRY (3*4)
149 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
150 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
151 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
152 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
153 };
154
155 /* Section name for stubs is the associated section name plus this
156 string. */
157 #define STUB_SUFFIX ".stub"
158
159 /* We don't need to copy certain PC- or GP-relative dynamic relocs
160 into a shared object's dynamic section. All the relocs of the
161 limited class we are interested in, are absolute. */
162 #ifndef RELATIVE_DYNRELOCS
163 #define RELATIVE_DYNRELOCS 0
164 #define IS_ABSOLUTE_RELOC(r_type) 1
165 #endif
166
167 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
168 copying dynamic variables from a shared lib into an app's dynbss
169 section, and instead use a dynamic relocation to point into the
170 shared lib. */
171 #define ELIMINATE_COPY_RELOCS 1
172
173 enum elf32_hppa_stub_type
174 {
175 hppa_stub_long_branch,
176 hppa_stub_long_branch_shared,
177 hppa_stub_import,
178 hppa_stub_import_shared,
179 hppa_stub_export,
180 hppa_stub_none
181 };
182
183 struct elf32_hppa_stub_hash_entry
184 {
185 /* Base hash table entry structure. */
186 struct bfd_hash_entry bh_root;
187
188 /* The stub section. */
189 asection *stub_sec;
190
191 /* Offset within stub_sec of the beginning of this stub. */
192 bfd_vma stub_offset;
193
194 /* Given the symbol's value and its section we can determine its final
195 value when building the stubs (so the stub knows where to jump. */
196 bfd_vma target_value;
197 asection *target_section;
198
199 enum elf32_hppa_stub_type stub_type;
200
201 /* The symbol table entry, if any, that this was derived from. */
202 struct elf32_hppa_link_hash_entry *hh;
203
204 /* Where this stub is being called from, or, in the case of combined
205 stub sections, the first input section in the group. */
206 asection *id_sec;
207 };
208
209 struct elf32_hppa_link_hash_entry
210 {
211 struct elf_link_hash_entry eh;
212
213 /* A pointer to the most recently used stub hash entry against this
214 symbol. */
215 struct elf32_hppa_stub_hash_entry *hsh_cache;
216
217 /* Used to count relocations for delayed sizing of relocation
218 sections. */
219 struct elf32_hppa_dyn_reloc_entry
220 {
221 /* Next relocation in the chain. */
222 struct elf32_hppa_dyn_reloc_entry *hdh_next;
223
224 /* The input section of the reloc. */
225 asection *sec;
226
227 /* Number of relocs copied in this section. */
228 bfd_size_type count;
229
230 #if RELATIVE_DYNRELOCS
231 /* Number of relative relocs copied for the input section. */
232 bfd_size_type relative_count;
233 #endif
234 } *dyn_relocs;
235
236 enum
237 {
238 GOT_UNKNOWN = 0, GOT_NORMAL = 1, GOT_TLS_GD = 2, GOT_TLS_LDM = 4, GOT_TLS_IE = 8
239 } tls_type;
240
241 /* Set if this symbol is used by a plabel reloc. */
242 unsigned int plabel:1;
243 };
244
245 struct elf32_hppa_link_hash_table
246 {
247 /* The main hash table. */
248 struct elf_link_hash_table etab;
249
250 /* The stub hash table. */
251 struct bfd_hash_table bstab;
252
253 /* Linker stub bfd. */
254 bfd *stub_bfd;
255
256 /* Linker call-backs. */
257 asection * (*add_stub_section) (const char *, asection *);
258 void (*layout_sections_again) (void);
259
260 /* Array to keep track of which stub sections have been created, and
261 information on stub grouping. */
262 struct map_stub
263 {
264 /* This is the section to which stubs in the group will be
265 attached. */
266 asection *link_sec;
267 /* The stub section. */
268 asection *stub_sec;
269 } *stub_group;
270
271 /* Assorted information used by elf32_hppa_size_stubs. */
272 unsigned int bfd_count;
273 unsigned int top_index;
274 asection **input_list;
275 Elf_Internal_Sym **all_local_syms;
276
277 /* Used during a final link to store the base of the text and data
278 segments so that we can perform SEGREL relocations. */
279 bfd_vma text_segment_base;
280 bfd_vma data_segment_base;
281
282 /* Whether we support multiple sub-spaces for shared libs. */
283 unsigned int multi_subspace:1;
284
285 /* Flags set when various size branches are detected. Used to
286 select suitable defaults for the stub group size. */
287 unsigned int has_12bit_branch:1;
288 unsigned int has_17bit_branch:1;
289 unsigned int has_22bit_branch:1;
290
291 /* Set if we need a .plt stub to support lazy dynamic linking. */
292 unsigned int need_plt_stub:1;
293
294 /* Small local sym cache. */
295 struct sym_cache sym_cache;
296
297 /* Data for LDM relocations. */
298 union
299 {
300 bfd_signed_vma refcount;
301 bfd_vma offset;
302 } tls_ldm_got;
303 };
304
305 /* Various hash macros and functions. */
306 #define hppa_link_hash_table(p) \
307 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
308 == HPPA32_ELF_DATA ? ((struct elf32_hppa_link_hash_table *) ((p)->hash)) : NULL)
309
310 #define hppa_elf_hash_entry(ent) \
311 ((struct elf32_hppa_link_hash_entry *)(ent))
312
313 #define hppa_stub_hash_entry(ent) \
314 ((struct elf32_hppa_stub_hash_entry *)(ent))
315
316 #define hppa_stub_hash_lookup(table, string, create, copy) \
317 ((struct elf32_hppa_stub_hash_entry *) \
318 bfd_hash_lookup ((table), (string), (create), (copy)))
319
320 #define hppa_elf_local_got_tls_type(abfd) \
321 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
322
323 #define hh_name(hh) \
324 (hh ? hh->eh.root.root.string : "<undef>")
325
326 #define eh_name(eh) \
327 (eh ? eh->root.root.string : "<undef>")
328
329 /* Assorted hash table functions. */
330
331 /* Initialize an entry in the stub hash table. */
332
333 static struct bfd_hash_entry *
334 stub_hash_newfunc (struct bfd_hash_entry *entry,
335 struct bfd_hash_table *table,
336 const char *string)
337 {
338 /* Allocate the structure if it has not already been allocated by a
339 subclass. */
340 if (entry == NULL)
341 {
342 entry = bfd_hash_allocate (table,
343 sizeof (struct elf32_hppa_stub_hash_entry));
344 if (entry == NULL)
345 return entry;
346 }
347
348 /* Call the allocation method of the superclass. */
349 entry = bfd_hash_newfunc (entry, table, string);
350 if (entry != NULL)
351 {
352 struct elf32_hppa_stub_hash_entry *hsh;
353
354 /* Initialize the local fields. */
355 hsh = hppa_stub_hash_entry (entry);
356 hsh->stub_sec = NULL;
357 hsh->stub_offset = 0;
358 hsh->target_value = 0;
359 hsh->target_section = NULL;
360 hsh->stub_type = hppa_stub_long_branch;
361 hsh->hh = NULL;
362 hsh->id_sec = NULL;
363 }
364
365 return entry;
366 }
367
368 /* Initialize an entry in the link hash table. */
369
370 static struct bfd_hash_entry *
371 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
372 struct bfd_hash_table *table,
373 const char *string)
374 {
375 /* Allocate the structure if it has not already been allocated by a
376 subclass. */
377 if (entry == NULL)
378 {
379 entry = bfd_hash_allocate (table,
380 sizeof (struct elf32_hppa_link_hash_entry));
381 if (entry == NULL)
382 return entry;
383 }
384
385 /* Call the allocation method of the superclass. */
386 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
387 if (entry != NULL)
388 {
389 struct elf32_hppa_link_hash_entry *hh;
390
391 /* Initialize the local fields. */
392 hh = hppa_elf_hash_entry (entry);
393 hh->hsh_cache = NULL;
394 hh->dyn_relocs = NULL;
395 hh->plabel = 0;
396 hh->tls_type = GOT_UNKNOWN;
397 }
398
399 return entry;
400 }
401
402 /* Free the derived linker hash table. */
403
404 static void
405 elf32_hppa_link_hash_table_free (bfd *obfd)
406 {
407 struct elf32_hppa_link_hash_table *htab
408 = (struct elf32_hppa_link_hash_table *) obfd->link.hash;
409
410 bfd_hash_table_free (&htab->bstab);
411 _bfd_elf_link_hash_table_free (obfd);
412 }
413
414 /* Create the derived linker hash table. The PA ELF port uses the derived
415 hash table to keep information specific to the PA ELF linker (without
416 using static variables). */
417
418 static struct bfd_link_hash_table *
419 elf32_hppa_link_hash_table_create (bfd *abfd)
420 {
421 struct elf32_hppa_link_hash_table *htab;
422 bfd_size_type amt = sizeof (*htab);
423
424 htab = bfd_zmalloc (amt);
425 if (htab == NULL)
426 return NULL;
427
428 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
429 sizeof (struct elf32_hppa_link_hash_entry),
430 HPPA32_ELF_DATA))
431 {
432 free (htab);
433 return NULL;
434 }
435
436 /* Init the stub hash table too. */
437 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
438 sizeof (struct elf32_hppa_stub_hash_entry)))
439 {
440 _bfd_elf_link_hash_table_free (abfd);
441 return NULL;
442 }
443 htab->etab.root.hash_table_free = elf32_hppa_link_hash_table_free;
444
445 htab->text_segment_base = (bfd_vma) -1;
446 htab->data_segment_base = (bfd_vma) -1;
447 return &htab->etab.root;
448 }
449
450 /* Initialize the linker stubs BFD so that we can use it for linker
451 created dynamic sections. */
452
453 void
454 elf32_hppa_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
455 {
456 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
457
458 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS32;
459 htab->etab.dynobj = abfd;
460 }
461
462 /* Build a name for an entry in the stub hash table. */
463
464 static char *
465 hppa_stub_name (const asection *input_section,
466 const asection *sym_sec,
467 const struct elf32_hppa_link_hash_entry *hh,
468 const Elf_Internal_Rela *rela)
469 {
470 char *stub_name;
471 bfd_size_type len;
472
473 if (hh)
474 {
475 len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
476 stub_name = bfd_malloc (len);
477 if (stub_name != NULL)
478 sprintf (stub_name, "%08x_%s+%x",
479 input_section->id & 0xffffffff,
480 hh_name (hh),
481 (int) rela->r_addend & 0xffffffff);
482 }
483 else
484 {
485 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
486 stub_name = bfd_malloc (len);
487 if (stub_name != NULL)
488 sprintf (stub_name, "%08x_%x:%x+%x",
489 input_section->id & 0xffffffff,
490 sym_sec->id & 0xffffffff,
491 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
492 (int) rela->r_addend & 0xffffffff);
493 }
494 return stub_name;
495 }
496
497 /* Look up an entry in the stub hash. Stub entries are cached because
498 creating the stub name takes a bit of time. */
499
500 static struct elf32_hppa_stub_hash_entry *
501 hppa_get_stub_entry (const asection *input_section,
502 const asection *sym_sec,
503 struct elf32_hppa_link_hash_entry *hh,
504 const Elf_Internal_Rela *rela,
505 struct elf32_hppa_link_hash_table *htab)
506 {
507 struct elf32_hppa_stub_hash_entry *hsh_entry;
508 const asection *id_sec;
509
510 /* If this input section is part of a group of sections sharing one
511 stub section, then use the id of the first section in the group.
512 Stub names need to include a section id, as there may well be
513 more than one stub used to reach say, printf, and we need to
514 distinguish between them. */
515 id_sec = htab->stub_group[input_section->id].link_sec;
516
517 if (hh != NULL && hh->hsh_cache != NULL
518 && hh->hsh_cache->hh == hh
519 && hh->hsh_cache->id_sec == id_sec)
520 {
521 hsh_entry = hh->hsh_cache;
522 }
523 else
524 {
525 char *stub_name;
526
527 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
528 if (stub_name == NULL)
529 return NULL;
530
531 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
532 stub_name, FALSE, FALSE);
533 if (hh != NULL)
534 hh->hsh_cache = hsh_entry;
535
536 free (stub_name);
537 }
538
539 return hsh_entry;
540 }
541
542 /* Add a new stub entry to the stub hash. Not all fields of the new
543 stub entry are initialised. */
544
545 static struct elf32_hppa_stub_hash_entry *
546 hppa_add_stub (const char *stub_name,
547 asection *section,
548 struct elf32_hppa_link_hash_table *htab)
549 {
550 asection *link_sec;
551 asection *stub_sec;
552 struct elf32_hppa_stub_hash_entry *hsh;
553
554 link_sec = htab->stub_group[section->id].link_sec;
555 stub_sec = htab->stub_group[section->id].stub_sec;
556 if (stub_sec == NULL)
557 {
558 stub_sec = htab->stub_group[link_sec->id].stub_sec;
559 if (stub_sec == NULL)
560 {
561 size_t namelen;
562 bfd_size_type len;
563 char *s_name;
564
565 namelen = strlen (link_sec->name);
566 len = namelen + sizeof (STUB_SUFFIX);
567 s_name = bfd_alloc (htab->stub_bfd, len);
568 if (s_name == NULL)
569 return NULL;
570
571 memcpy (s_name, link_sec->name, namelen);
572 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
573 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
574 if (stub_sec == NULL)
575 return NULL;
576 htab->stub_group[link_sec->id].stub_sec = stub_sec;
577 }
578 htab->stub_group[section->id].stub_sec = stub_sec;
579 }
580
581 /* Enter this entry into the linker stub hash table. */
582 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
583 TRUE, FALSE);
584 if (hsh == NULL)
585 {
586 /* xgettext:c-format */
587 _bfd_error_handler (_("%B: cannot create stub entry %s"),
588 section->owner, stub_name);
589 return NULL;
590 }
591
592 hsh->stub_sec = stub_sec;
593 hsh->stub_offset = 0;
594 hsh->id_sec = link_sec;
595 return hsh;
596 }
597
598 /* Determine the type of stub needed, if any, for a call. */
599
600 static enum elf32_hppa_stub_type
601 hppa_type_of_stub (asection *input_sec,
602 const Elf_Internal_Rela *rela,
603 struct elf32_hppa_link_hash_entry *hh,
604 bfd_vma destination,
605 struct bfd_link_info *info)
606 {
607 bfd_vma location;
608 bfd_vma branch_offset;
609 bfd_vma max_branch_offset;
610 unsigned int r_type;
611
612 if (hh != NULL
613 && hh->eh.plt.offset != (bfd_vma) -1
614 && hh->eh.dynindx != -1
615 && !hh->plabel
616 && (bfd_link_pic (info)
617 || !hh->eh.def_regular
618 || hh->eh.root.type == bfd_link_hash_defweak))
619 {
620 /* We need an import stub. Decide between hppa_stub_import
621 and hppa_stub_import_shared later. */
622 return hppa_stub_import;
623 }
624
625 /* Determine where the call point is. */
626 location = (input_sec->output_offset
627 + input_sec->output_section->vma
628 + rela->r_offset);
629
630 branch_offset = destination - location - 8;
631 r_type = ELF32_R_TYPE (rela->r_info);
632
633 /* Determine if a long branch stub is needed. parisc branch offsets
634 are relative to the second instruction past the branch, ie. +8
635 bytes on from the branch instruction location. The offset is
636 signed and counts in units of 4 bytes. */
637 if (r_type == (unsigned int) R_PARISC_PCREL17F)
638 max_branch_offset = (1 << (17 - 1)) << 2;
639
640 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
641 max_branch_offset = (1 << (12 - 1)) << 2;
642
643 else /* R_PARISC_PCREL22F. */
644 max_branch_offset = (1 << (22 - 1)) << 2;
645
646 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
647 return hppa_stub_long_branch;
648
649 return hppa_stub_none;
650 }
651
652 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
653 IN_ARG contains the link info pointer. */
654
655 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
656 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
657
658 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
659 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
660 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
661
662 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
663 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
664 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
665 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
666
667 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
668 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
669
670 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
671 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
672 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
673 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
674
675 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
676 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
677 #define NOP 0x08000240 /* nop */
678 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
679 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
680 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
681
682 #ifndef R19_STUBS
683 #define R19_STUBS 1
684 #endif
685
686 #if R19_STUBS
687 #define LDW_R1_DLT LDW_R1_R19
688 #else
689 #define LDW_R1_DLT LDW_R1_DP
690 #endif
691
692 static bfd_boolean
693 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
694 {
695 struct elf32_hppa_stub_hash_entry *hsh;
696 struct bfd_link_info *info;
697 struct elf32_hppa_link_hash_table *htab;
698 asection *stub_sec;
699 bfd *stub_bfd;
700 bfd_byte *loc;
701 bfd_vma sym_value;
702 bfd_vma insn;
703 bfd_vma off;
704 int val;
705 int size;
706
707 /* Massage our args to the form they really have. */
708 hsh = hppa_stub_hash_entry (bh);
709 info = (struct bfd_link_info *)in_arg;
710
711 htab = hppa_link_hash_table (info);
712 if (htab == NULL)
713 return FALSE;
714
715 stub_sec = hsh->stub_sec;
716
717 /* Make a note of the offset within the stubs for this entry. */
718 hsh->stub_offset = stub_sec->size;
719 loc = stub_sec->contents + hsh->stub_offset;
720
721 stub_bfd = stub_sec->owner;
722
723 switch (hsh->stub_type)
724 {
725 case hppa_stub_long_branch:
726 /* Create the long branch. A long branch is formed with "ldil"
727 loading the upper bits of the target address into a register,
728 then branching with "be" which adds in the lower bits.
729 The "be" has its delay slot nullified. */
730 sym_value = (hsh->target_value
731 + hsh->target_section->output_offset
732 + hsh->target_section->output_section->vma);
733
734 val = hppa_field_adjust (sym_value, 0, e_lrsel);
735 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
736 bfd_put_32 (stub_bfd, insn, loc);
737
738 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
739 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
740 bfd_put_32 (stub_bfd, insn, loc + 4);
741
742 size = 8;
743 break;
744
745 case hppa_stub_long_branch_shared:
746 /* Branches are relative. This is where we are going to. */
747 sym_value = (hsh->target_value
748 + hsh->target_section->output_offset
749 + hsh->target_section->output_section->vma);
750
751 /* And this is where we are coming from, more or less. */
752 sym_value -= (hsh->stub_offset
753 + stub_sec->output_offset
754 + stub_sec->output_section->vma);
755
756 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
757 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
758 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
759 bfd_put_32 (stub_bfd, insn, loc + 4);
760
761 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
762 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
763 bfd_put_32 (stub_bfd, insn, loc + 8);
764 size = 12;
765 break;
766
767 case hppa_stub_import:
768 case hppa_stub_import_shared:
769 off = hsh->hh->eh.plt.offset;
770 if (off >= (bfd_vma) -2)
771 abort ();
772
773 off &= ~ (bfd_vma) 1;
774 sym_value = (off
775 + htab->etab.splt->output_offset
776 + htab->etab.splt->output_section->vma
777 - elf_gp (htab->etab.splt->output_section->owner));
778
779 insn = ADDIL_DP;
780 #if R19_STUBS
781 if (hsh->stub_type == hppa_stub_import_shared)
782 insn = ADDIL_R19;
783 #endif
784 val = hppa_field_adjust (sym_value, 0, e_lrsel),
785 insn = hppa_rebuild_insn ((int) insn, val, 21);
786 bfd_put_32 (stub_bfd, insn, loc);
787
788 /* It is critical to use lrsel/rrsel here because we are using
789 two different offsets (+0 and +4) from sym_value. If we use
790 lsel/rsel then with unfortunate sym_values we will round
791 sym_value+4 up to the next 2k block leading to a mis-match
792 between the lsel and rsel value. */
793 val = hppa_field_adjust (sym_value, 0, e_rrsel);
794 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
795 bfd_put_32 (stub_bfd, insn, loc + 4);
796
797 if (htab->multi_subspace)
798 {
799 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
800 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
801 bfd_put_32 (stub_bfd, insn, loc + 8);
802
803 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
804 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
805 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
806 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
807
808 size = 28;
809 }
810 else
811 {
812 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
813 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
814 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
815 bfd_put_32 (stub_bfd, insn, loc + 12);
816
817 size = 16;
818 }
819
820 break;
821
822 case hppa_stub_export:
823 /* Branches are relative. This is where we are going to. */
824 sym_value = (hsh->target_value
825 + hsh->target_section->output_offset
826 + hsh->target_section->output_section->vma);
827
828 /* And this is where we are coming from. */
829 sym_value -= (hsh->stub_offset
830 + stub_sec->output_offset
831 + stub_sec->output_section->vma);
832
833 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
834 && (!htab->has_22bit_branch
835 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
836 {
837 _bfd_error_handler
838 /* xgettext:c-format */
839 (_("%B(%A+%#Lx): cannot reach %s, recompile with -ffunction-sections"),
840 hsh->target_section->owner,
841 stub_sec,
842 hsh->stub_offset,
843 hsh->bh_root.string);
844 bfd_set_error (bfd_error_bad_value);
845 return FALSE;
846 }
847
848 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
849 if (!htab->has_22bit_branch)
850 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
851 else
852 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
853 bfd_put_32 (stub_bfd, insn, loc);
854
855 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
856 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
857 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
858 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
859 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
860
861 /* Point the function symbol at the stub. */
862 hsh->hh->eh.root.u.def.section = stub_sec;
863 hsh->hh->eh.root.u.def.value = stub_sec->size;
864
865 size = 24;
866 break;
867
868 default:
869 BFD_FAIL ();
870 return FALSE;
871 }
872
873 stub_sec->size += size;
874 return TRUE;
875 }
876
877 #undef LDIL_R1
878 #undef BE_SR4_R1
879 #undef BL_R1
880 #undef ADDIL_R1
881 #undef DEPI_R1
882 #undef LDW_R1_R21
883 #undef LDW_R1_DLT
884 #undef LDW_R1_R19
885 #undef ADDIL_R19
886 #undef LDW_R1_DP
887 #undef LDSID_R21_R1
888 #undef MTSP_R1
889 #undef BE_SR0_R21
890 #undef STW_RP
891 #undef BV_R0_R21
892 #undef BL_RP
893 #undef NOP
894 #undef LDW_RP
895 #undef LDSID_RP_R1
896 #undef BE_SR0_RP
897
898 /* As above, but don't actually build the stub. Just bump offset so
899 we know stub section sizes. */
900
901 static bfd_boolean
902 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
903 {
904 struct elf32_hppa_stub_hash_entry *hsh;
905 struct elf32_hppa_link_hash_table *htab;
906 int size;
907
908 /* Massage our args to the form they really have. */
909 hsh = hppa_stub_hash_entry (bh);
910 htab = in_arg;
911
912 if (hsh->stub_type == hppa_stub_long_branch)
913 size = 8;
914 else if (hsh->stub_type == hppa_stub_long_branch_shared)
915 size = 12;
916 else if (hsh->stub_type == hppa_stub_export)
917 size = 24;
918 else /* hppa_stub_import or hppa_stub_import_shared. */
919 {
920 if (htab->multi_subspace)
921 size = 28;
922 else
923 size = 16;
924 }
925
926 hsh->stub_sec->size += size;
927 return TRUE;
928 }
929
930 /* Return nonzero if ABFD represents an HPPA ELF32 file.
931 Additionally we set the default architecture and machine. */
932
933 static bfd_boolean
934 elf32_hppa_object_p (bfd *abfd)
935 {
936 Elf_Internal_Ehdr * i_ehdrp;
937 unsigned int flags;
938
939 i_ehdrp = elf_elfheader (abfd);
940 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
941 {
942 /* GCC on hppa-linux produces binaries with OSABI=GNU,
943 but the kernel produces corefiles with OSABI=SysV. */
944 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU &&
945 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
946 return FALSE;
947 }
948 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
949 {
950 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
951 but the kernel produces corefiles with OSABI=SysV. */
952 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
953 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
954 return FALSE;
955 }
956 else
957 {
958 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
959 return FALSE;
960 }
961
962 flags = i_ehdrp->e_flags;
963 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
964 {
965 case EFA_PARISC_1_0:
966 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
967 case EFA_PARISC_1_1:
968 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
969 case EFA_PARISC_2_0:
970 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
971 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
972 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
973 }
974 return TRUE;
975 }
976
977 /* Create the .plt and .got sections, and set up our hash table
978 short-cuts to various dynamic sections. */
979
980 static bfd_boolean
981 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
982 {
983 struct elf32_hppa_link_hash_table *htab;
984 struct elf_link_hash_entry *eh;
985
986 /* Don't try to create the .plt and .got twice. */
987 htab = hppa_link_hash_table (info);
988 if (htab == NULL)
989 return FALSE;
990 if (htab->etab.splt != NULL)
991 return TRUE;
992
993 /* Call the generic code to do most of the work. */
994 if (! _bfd_elf_create_dynamic_sections (abfd, info))
995 return FALSE;
996
997 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
998 application, because __canonicalize_funcptr_for_compare needs it. */
999 eh = elf_hash_table (info)->hgot;
1000 eh->forced_local = 0;
1001 eh->other = STV_DEFAULT;
1002 return bfd_elf_link_record_dynamic_symbol (info, eh);
1003 }
1004
1005 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1006
1007 static void
1008 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1009 struct elf_link_hash_entry *eh_dir,
1010 struct elf_link_hash_entry *eh_ind)
1011 {
1012 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1013
1014 hh_dir = hppa_elf_hash_entry (eh_dir);
1015 hh_ind = hppa_elf_hash_entry (eh_ind);
1016
1017 if (hh_ind->dyn_relocs != NULL)
1018 {
1019 if (hh_dir->dyn_relocs != NULL)
1020 {
1021 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1022 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1023
1024 /* Add reloc counts against the indirect sym to the direct sym
1025 list. Merge any entries against the same section. */
1026 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1027 {
1028 struct elf32_hppa_dyn_reloc_entry *hdh_q;
1029
1030 for (hdh_q = hh_dir->dyn_relocs;
1031 hdh_q != NULL;
1032 hdh_q = hdh_q->hdh_next)
1033 if (hdh_q->sec == hdh_p->sec)
1034 {
1035 #if RELATIVE_DYNRELOCS
1036 hdh_q->relative_count += hdh_p->relative_count;
1037 #endif
1038 hdh_q->count += hdh_p->count;
1039 *hdh_pp = hdh_p->hdh_next;
1040 break;
1041 }
1042 if (hdh_q == NULL)
1043 hdh_pp = &hdh_p->hdh_next;
1044 }
1045 *hdh_pp = hh_dir->dyn_relocs;
1046 }
1047
1048 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1049 hh_ind->dyn_relocs = NULL;
1050 }
1051
1052 if (ELIMINATE_COPY_RELOCS
1053 && eh_ind->root.type != bfd_link_hash_indirect
1054 && eh_dir->dynamic_adjusted)
1055 {
1056 /* If called to transfer flags for a weakdef during processing
1057 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1058 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1059 if (eh_dir->versioned != versioned_hidden)
1060 eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
1061 eh_dir->ref_regular |= eh_ind->ref_regular;
1062 eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
1063 eh_dir->needs_plt |= eh_ind->needs_plt;
1064 }
1065 else
1066 {
1067 if (eh_ind->root.type == bfd_link_hash_indirect)
1068 {
1069 hh_dir->plabel |= hh_ind->plabel;
1070 hh_dir->tls_type |= hh_ind->tls_type;
1071 hh_ind->tls_type = GOT_UNKNOWN;
1072 }
1073
1074 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1075 }
1076 }
1077
1078 static int
1079 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1080 int r_type, int is_local ATTRIBUTE_UNUSED)
1081 {
1082 /* For now we don't support linker optimizations. */
1083 return r_type;
1084 }
1085
1086 /* Return a pointer to the local GOT, PLT and TLS reference counts
1087 for ABFD. Returns NULL if the storage allocation fails. */
1088
1089 static bfd_signed_vma *
1090 hppa32_elf_local_refcounts (bfd *abfd)
1091 {
1092 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1093 bfd_signed_vma *local_refcounts;
1094
1095 local_refcounts = elf_local_got_refcounts (abfd);
1096 if (local_refcounts == NULL)
1097 {
1098 bfd_size_type size;
1099
1100 /* Allocate space for local GOT and PLT reference
1101 counts. Done this way to save polluting elf_obj_tdata
1102 with another target specific pointer. */
1103 size = symtab_hdr->sh_info;
1104 size *= 2 * sizeof (bfd_signed_vma);
1105 /* Add in space to store the local GOT TLS types. */
1106 size += symtab_hdr->sh_info;
1107 local_refcounts = bfd_zalloc (abfd, size);
1108 if (local_refcounts == NULL)
1109 return NULL;
1110 elf_local_got_refcounts (abfd) = local_refcounts;
1111 memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN,
1112 symtab_hdr->sh_info);
1113 }
1114 return local_refcounts;
1115 }
1116
1117
1118 /* Look through the relocs for a section during the first phase, and
1119 calculate needed space in the global offset table, procedure linkage
1120 table, and dynamic reloc sections. At this point we haven't
1121 necessarily read all the input files. */
1122
1123 static bfd_boolean
1124 elf32_hppa_check_relocs (bfd *abfd,
1125 struct bfd_link_info *info,
1126 asection *sec,
1127 const Elf_Internal_Rela *relocs)
1128 {
1129 Elf_Internal_Shdr *symtab_hdr;
1130 struct elf_link_hash_entry **eh_syms;
1131 const Elf_Internal_Rela *rela;
1132 const Elf_Internal_Rela *rela_end;
1133 struct elf32_hppa_link_hash_table *htab;
1134 asection *sreloc;
1135 int tls_type = GOT_UNKNOWN, old_tls_type = GOT_UNKNOWN;
1136
1137 if (bfd_link_relocatable (info))
1138 return TRUE;
1139
1140 htab = hppa_link_hash_table (info);
1141 if (htab == NULL)
1142 return FALSE;
1143 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1144 eh_syms = elf_sym_hashes (abfd);
1145 sreloc = NULL;
1146
1147 rela_end = relocs + sec->reloc_count;
1148 for (rela = relocs; rela < rela_end; rela++)
1149 {
1150 enum {
1151 NEED_GOT = 1,
1152 NEED_PLT = 2,
1153 NEED_DYNREL = 4,
1154 PLT_PLABEL = 8
1155 };
1156
1157 unsigned int r_symndx, r_type;
1158 struct elf32_hppa_link_hash_entry *hh;
1159 int need_entry = 0;
1160
1161 r_symndx = ELF32_R_SYM (rela->r_info);
1162
1163 if (r_symndx < symtab_hdr->sh_info)
1164 hh = NULL;
1165 else
1166 {
1167 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1168 while (hh->eh.root.type == bfd_link_hash_indirect
1169 || hh->eh.root.type == bfd_link_hash_warning)
1170 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1171
1172 /* PR15323, ref flags aren't set for references in the same
1173 object. */
1174 hh->eh.root.non_ir_ref_regular = 1;
1175 }
1176
1177 r_type = ELF32_R_TYPE (rela->r_info);
1178 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1179
1180 switch (r_type)
1181 {
1182 case R_PARISC_DLTIND14F:
1183 case R_PARISC_DLTIND14R:
1184 case R_PARISC_DLTIND21L:
1185 /* This symbol requires a global offset table entry. */
1186 need_entry = NEED_GOT;
1187 break;
1188
1189 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1190 case R_PARISC_PLABEL21L:
1191 case R_PARISC_PLABEL32:
1192 /* If the addend is non-zero, we break badly. */
1193 if (rela->r_addend != 0)
1194 abort ();
1195
1196 /* If we are creating a shared library, then we need to
1197 create a PLT entry for all PLABELs, because PLABELs with
1198 local symbols may be passed via a pointer to another
1199 object. Additionally, output a dynamic relocation
1200 pointing to the PLT entry.
1201
1202 For executables, the original 32-bit ABI allowed two
1203 different styles of PLABELs (function pointers): For
1204 global functions, the PLABEL word points into the .plt
1205 two bytes past a (function address, gp) pair, and for
1206 local functions the PLABEL points directly at the
1207 function. The magic +2 for the first type allows us to
1208 differentiate between the two. As you can imagine, this
1209 is a real pain when it comes to generating code to call
1210 functions indirectly or to compare function pointers.
1211 We avoid the mess by always pointing a PLABEL into the
1212 .plt, even for local functions. */
1213 need_entry = PLT_PLABEL | NEED_PLT;
1214 if (bfd_link_pic (info))
1215 need_entry |= NEED_DYNREL;
1216 break;
1217
1218 case R_PARISC_PCREL12F:
1219 htab->has_12bit_branch = 1;
1220 goto branch_common;
1221
1222 case R_PARISC_PCREL17C:
1223 case R_PARISC_PCREL17F:
1224 htab->has_17bit_branch = 1;
1225 goto branch_common;
1226
1227 case R_PARISC_PCREL22F:
1228 htab->has_22bit_branch = 1;
1229 branch_common:
1230 /* Function calls might need to go through the .plt, and
1231 might require long branch stubs. */
1232 if (hh == NULL)
1233 {
1234 /* We know local syms won't need a .plt entry, and if
1235 they need a long branch stub we can't guarantee that
1236 we can reach the stub. So just flag an error later
1237 if we're doing a shared link and find we need a long
1238 branch stub. */
1239 continue;
1240 }
1241 else
1242 {
1243 /* Global symbols will need a .plt entry if they remain
1244 global, and in most cases won't need a long branch
1245 stub. Unfortunately, we have to cater for the case
1246 where a symbol is forced local by versioning, or due
1247 to symbolic linking, and we lose the .plt entry. */
1248 need_entry = NEED_PLT;
1249 if (hh->eh.type == STT_PARISC_MILLI)
1250 need_entry = 0;
1251 }
1252 break;
1253
1254 case R_PARISC_SEGBASE: /* Used to set segment base. */
1255 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1256 case R_PARISC_PCREL14F: /* PC relative load/store. */
1257 case R_PARISC_PCREL14R:
1258 case R_PARISC_PCREL17R: /* External branches. */
1259 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1260 case R_PARISC_PCREL32:
1261 /* We don't need to propagate the relocation if linking a
1262 shared object since these are section relative. */
1263 continue;
1264
1265 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1266 case R_PARISC_DPREL14R:
1267 case R_PARISC_DPREL21L:
1268 if (bfd_link_pic (info))
1269 {
1270 _bfd_error_handler
1271 /* xgettext:c-format */
1272 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1273 abfd,
1274 elf_hppa_howto_table[r_type].name);
1275 bfd_set_error (bfd_error_bad_value);
1276 return FALSE;
1277 }
1278 /* Fall through. */
1279
1280 case R_PARISC_DIR17F: /* Used for external branches. */
1281 case R_PARISC_DIR17R:
1282 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1283 case R_PARISC_DIR14R:
1284 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1285 case R_PARISC_DIR32: /* .word relocs. */
1286 /* We may want to output a dynamic relocation later. */
1287 need_entry = NEED_DYNREL;
1288 break;
1289
1290 /* This relocation describes the C++ object vtable hierarchy.
1291 Reconstruct it for later use during GC. */
1292 case R_PARISC_GNU_VTINHERIT:
1293 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1294 return FALSE;
1295 continue;
1296
1297 /* This relocation describes which C++ vtable entries are actually
1298 used. Record for later use during GC. */
1299 case R_PARISC_GNU_VTENTRY:
1300 BFD_ASSERT (hh != NULL);
1301 if (hh != NULL
1302 && !bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1303 return FALSE;
1304 continue;
1305
1306 case R_PARISC_TLS_GD21L:
1307 case R_PARISC_TLS_GD14R:
1308 case R_PARISC_TLS_LDM21L:
1309 case R_PARISC_TLS_LDM14R:
1310 need_entry = NEED_GOT;
1311 break;
1312
1313 case R_PARISC_TLS_IE21L:
1314 case R_PARISC_TLS_IE14R:
1315 if (bfd_link_pic (info))
1316 info->flags |= DF_STATIC_TLS;
1317 need_entry = NEED_GOT;
1318 break;
1319
1320 default:
1321 continue;
1322 }
1323
1324 /* Now carry out our orders. */
1325 if (need_entry & NEED_GOT)
1326 {
1327 switch (r_type)
1328 {
1329 default:
1330 tls_type = GOT_NORMAL;
1331 break;
1332 case R_PARISC_TLS_GD21L:
1333 case R_PARISC_TLS_GD14R:
1334 tls_type |= GOT_TLS_GD;
1335 break;
1336 case R_PARISC_TLS_LDM21L:
1337 case R_PARISC_TLS_LDM14R:
1338 tls_type |= GOT_TLS_LDM;
1339 break;
1340 case R_PARISC_TLS_IE21L:
1341 case R_PARISC_TLS_IE14R:
1342 tls_type |= GOT_TLS_IE;
1343 break;
1344 }
1345
1346 /* Allocate space for a GOT entry, as well as a dynamic
1347 relocation for this entry. */
1348 if (htab->etab.sgot == NULL)
1349 {
1350 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1351 return FALSE;
1352 }
1353
1354 if (r_type == R_PARISC_TLS_LDM21L
1355 || r_type == R_PARISC_TLS_LDM14R)
1356 htab->tls_ldm_got.refcount += 1;
1357 else
1358 {
1359 if (hh != NULL)
1360 {
1361 hh->eh.got.refcount += 1;
1362 old_tls_type = hh->tls_type;
1363 }
1364 else
1365 {
1366 bfd_signed_vma *local_got_refcounts;
1367
1368 /* This is a global offset table entry for a local symbol. */
1369 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1370 if (local_got_refcounts == NULL)
1371 return FALSE;
1372 local_got_refcounts[r_symndx] += 1;
1373
1374 old_tls_type = hppa_elf_local_got_tls_type (abfd) [r_symndx];
1375 }
1376
1377 tls_type |= old_tls_type;
1378
1379 if (old_tls_type != tls_type)
1380 {
1381 if (hh != NULL)
1382 hh->tls_type = tls_type;
1383 else
1384 hppa_elf_local_got_tls_type (abfd) [r_symndx] = tls_type;
1385 }
1386
1387 }
1388 }
1389
1390 if (need_entry & NEED_PLT)
1391 {
1392 /* If we are creating a shared library, and this is a reloc
1393 against a weak symbol or a global symbol in a dynamic
1394 object, then we will be creating an import stub and a
1395 .plt entry for the symbol. Similarly, on a normal link
1396 to symbols defined in a dynamic object we'll need the
1397 import stub and a .plt entry. We don't know yet whether
1398 the symbol is defined or not, so make an entry anyway and
1399 clean up later in adjust_dynamic_symbol. */
1400 if ((sec->flags & SEC_ALLOC) != 0)
1401 {
1402 if (hh != NULL)
1403 {
1404 hh->eh.needs_plt = 1;
1405 hh->eh.plt.refcount += 1;
1406
1407 /* If this .plt entry is for a plabel, mark it so
1408 that adjust_dynamic_symbol will keep the entry
1409 even if it appears to be local. */
1410 if (need_entry & PLT_PLABEL)
1411 hh->plabel = 1;
1412 }
1413 else if (need_entry & PLT_PLABEL)
1414 {
1415 bfd_signed_vma *local_got_refcounts;
1416 bfd_signed_vma *local_plt_refcounts;
1417
1418 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1419 if (local_got_refcounts == NULL)
1420 return FALSE;
1421 local_plt_refcounts = (local_got_refcounts
1422 + symtab_hdr->sh_info);
1423 local_plt_refcounts[r_symndx] += 1;
1424 }
1425 }
1426 }
1427
1428 if ((need_entry & NEED_DYNREL) != 0
1429 && (sec->flags & SEC_ALLOC) != 0)
1430 {
1431 /* Flag this symbol as having a non-got, non-plt reference
1432 so that we generate copy relocs if it turns out to be
1433 dynamic. */
1434 if (hh != NULL && !bfd_link_pic (info))
1435 hh->eh.non_got_ref = 1;
1436
1437 /* If we are creating a shared library then we need to copy
1438 the reloc into the shared library. However, if we are
1439 linking with -Bsymbolic, we need only copy absolute
1440 relocs or relocs against symbols that are not defined in
1441 an object we are including in the link. PC- or DP- or
1442 DLT-relative relocs against any local sym or global sym
1443 with DEF_REGULAR set, can be discarded. At this point we
1444 have not seen all the input files, so it is possible that
1445 DEF_REGULAR is not set now but will be set later (it is
1446 never cleared). We account for that possibility below by
1447 storing information in the dyn_relocs field of the
1448 hash table entry.
1449
1450 A similar situation to the -Bsymbolic case occurs when
1451 creating shared libraries and symbol visibility changes
1452 render the symbol local.
1453
1454 As it turns out, all the relocs we will be creating here
1455 are absolute, so we cannot remove them on -Bsymbolic
1456 links or visibility changes anyway. A STUB_REL reloc
1457 is absolute too, as in that case it is the reloc in the
1458 stub we will be creating, rather than copying the PCREL
1459 reloc in the branch.
1460
1461 If on the other hand, we are creating an executable, we
1462 may need to keep relocations for symbols satisfied by a
1463 dynamic library if we manage to avoid copy relocs for the
1464 symbol. */
1465 if ((bfd_link_pic (info)
1466 && (IS_ABSOLUTE_RELOC (r_type)
1467 || (hh != NULL
1468 && (!SYMBOLIC_BIND (info, &hh->eh)
1469 || hh->eh.root.type == bfd_link_hash_defweak
1470 || !hh->eh.def_regular))))
1471 || (ELIMINATE_COPY_RELOCS
1472 && !bfd_link_pic (info)
1473 && hh != NULL
1474 && (hh->eh.root.type == bfd_link_hash_defweak
1475 || !hh->eh.def_regular)))
1476 {
1477 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1478 struct elf32_hppa_dyn_reloc_entry **hdh_head;
1479
1480 /* Create a reloc section in dynobj and make room for
1481 this reloc. */
1482 if (sreloc == NULL)
1483 {
1484 sreloc = _bfd_elf_make_dynamic_reloc_section
1485 (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
1486
1487 if (sreloc == NULL)
1488 {
1489 bfd_set_error (bfd_error_bad_value);
1490 return FALSE;
1491 }
1492 }
1493
1494 /* If this is a global symbol, we count the number of
1495 relocations we need for this symbol. */
1496 if (hh != NULL)
1497 {
1498 hdh_head = &hh->dyn_relocs;
1499 }
1500 else
1501 {
1502 /* Track dynamic relocs needed for local syms too.
1503 We really need local syms available to do this
1504 easily. Oh well. */
1505 asection *sr;
1506 void *vpp;
1507 Elf_Internal_Sym *isym;
1508
1509 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1510 abfd, r_symndx);
1511 if (isym == NULL)
1512 return FALSE;
1513
1514 sr = bfd_section_from_elf_index (abfd, isym->st_shndx);
1515 if (sr == NULL)
1516 sr = sec;
1517
1518 vpp = &elf_section_data (sr)->local_dynrel;
1519 hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp;
1520 }
1521
1522 hdh_p = *hdh_head;
1523 if (hdh_p == NULL || hdh_p->sec != sec)
1524 {
1525 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1526 if (hdh_p == NULL)
1527 return FALSE;
1528 hdh_p->hdh_next = *hdh_head;
1529 *hdh_head = hdh_p;
1530 hdh_p->sec = sec;
1531 hdh_p->count = 0;
1532 #if RELATIVE_DYNRELOCS
1533 hdh_p->relative_count = 0;
1534 #endif
1535 }
1536
1537 hdh_p->count += 1;
1538 #if RELATIVE_DYNRELOCS
1539 if (!IS_ABSOLUTE_RELOC (rtype))
1540 hdh_p->relative_count += 1;
1541 #endif
1542 }
1543 }
1544 }
1545
1546 return TRUE;
1547 }
1548
1549 /* Return the section that should be marked against garbage collection
1550 for a given relocation. */
1551
1552 static asection *
1553 elf32_hppa_gc_mark_hook (asection *sec,
1554 struct bfd_link_info *info,
1555 Elf_Internal_Rela *rela,
1556 struct elf_link_hash_entry *hh,
1557 Elf_Internal_Sym *sym)
1558 {
1559 if (hh != NULL)
1560 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1561 {
1562 case R_PARISC_GNU_VTINHERIT:
1563 case R_PARISC_GNU_VTENTRY:
1564 return NULL;
1565 }
1566
1567 return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1568 }
1569
1570 /* Support for core dump NOTE sections. */
1571
1572 static bfd_boolean
1573 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1574 {
1575 int offset;
1576 size_t size;
1577
1578 switch (note->descsz)
1579 {
1580 default:
1581 return FALSE;
1582
1583 case 396: /* Linux/hppa */
1584 /* pr_cursig */
1585 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1586
1587 /* pr_pid */
1588 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
1589
1590 /* pr_reg */
1591 offset = 72;
1592 size = 320;
1593
1594 break;
1595 }
1596
1597 /* Make a ".reg/999" section. */
1598 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1599 size, note->descpos + offset);
1600 }
1601
1602 static bfd_boolean
1603 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1604 {
1605 switch (note->descsz)
1606 {
1607 default:
1608 return FALSE;
1609
1610 case 124: /* Linux/hppa elf_prpsinfo. */
1611 elf_tdata (abfd)->core->program
1612 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1613 elf_tdata (abfd)->core->command
1614 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1615 }
1616
1617 /* Note that for some reason, a spurious space is tacked
1618 onto the end of the args in some (at least one anyway)
1619 implementations, so strip it off if it exists. */
1620 {
1621 char *command = elf_tdata (abfd)->core->command;
1622 int n = strlen (command);
1623
1624 if (0 < n && command[n - 1] == ' ')
1625 command[n - 1] = '\0';
1626 }
1627
1628 return TRUE;
1629 }
1630
1631 /* Our own version of hide_symbol, so that we can keep plt entries for
1632 plabels. */
1633
1634 static void
1635 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1636 struct elf_link_hash_entry *eh,
1637 bfd_boolean force_local)
1638 {
1639 if (force_local)
1640 {
1641 eh->forced_local = 1;
1642 if (eh->dynindx != -1)
1643 {
1644 eh->dynindx = -1;
1645 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1646 eh->dynstr_index);
1647 }
1648
1649 /* PR 16082: Remove version information from hidden symbol. */
1650 eh->verinfo.verdef = NULL;
1651 eh->verinfo.vertree = NULL;
1652 }
1653
1654 /* STT_GNU_IFUNC symbol must go through PLT. */
1655 if (! hppa_elf_hash_entry (eh)->plabel
1656 && eh->type != STT_GNU_IFUNC)
1657 {
1658 eh->needs_plt = 0;
1659 eh->plt = elf_hash_table (info)->init_plt_offset;
1660 }
1661 }
1662
1663 /* Find any dynamic relocs that apply to read-only sections. */
1664
1665 static asection *
1666 readonly_dynrelocs (struct elf_link_hash_entry *eh)
1667 {
1668 struct elf32_hppa_link_hash_entry *hh;
1669 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1670
1671 hh = hppa_elf_hash_entry (eh);
1672 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
1673 {
1674 asection *sec = hdh_p->sec->output_section;
1675
1676 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1677 return hdh_p->sec;
1678 }
1679 return NULL;
1680 }
1681
1682 /* Adjust a symbol defined by a dynamic object and referenced by a
1683 regular object. The current definition is in some section of the
1684 dynamic object, but we're not including those sections. We have to
1685 change the definition to something the rest of the link can
1686 understand. */
1687
1688 static bfd_boolean
1689 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1690 struct elf_link_hash_entry *eh)
1691 {
1692 struct elf32_hppa_link_hash_table *htab;
1693 asection *sec, *srel;
1694
1695 /* If this is a function, put it in the procedure linkage table. We
1696 will fill in the contents of the procedure linkage table later. */
1697 if (eh->type == STT_FUNC
1698 || eh->needs_plt)
1699 {
1700 /* After adjust_dynamic_symbol, non_got_ref set in the non-pic
1701 case means that dyn_relocs for this symbol should be
1702 discarded; We either want the symbol to remain undefined, or
1703 we have a local definition of some sort. The "local
1704 definition" for non-function symbols may be due to creating a
1705 local definition in .dynbss.
1706 Unlike other targets, elf32-hppa.c does not define a function
1707 symbol in a non-pic executable on PLT stub code, so we don't
1708 have a local definition in that case. dyn_relocs therefore
1709 should not be discarded for function symbols, generally.
1710 However we should discard dyn_relocs if we've decided that an
1711 undefined function symbol is local, for example due to
1712 non-default visibility, or UNDEFWEAK_NO_DYNAMIC_RELOC is
1713 true for an undefined weak symbol. */
1714 bfd_boolean local = (SYMBOL_CALLS_LOCAL (info, eh)
1715 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh));
1716 /* Prior to adjust_dynamic_symbol, non_got_ref set means that
1717 check_relocs set up some dyn_relocs for this symbol.
1718 The !non_got_ref term here is saying that if we didn't have
1719 any dyn_relocs set up by check_relocs, then we don't want
1720 relocate_section looking for them.
1721 FIXME: Get rid of the inversion, so non_got_ref set after
1722 dyn_relocs means we do have dyn_relocs. */
1723 eh->non_got_ref = local || !eh->non_got_ref;
1724
1725 /* If the symbol is used by a plabel, we must allocate a PLT slot.
1726 The refcounts are not reliable when it has been hidden since
1727 hide_symbol can be called before the plabel flag is set. */
1728 if (hppa_elf_hash_entry (eh)->plabel)
1729 eh->plt.refcount = 1;
1730
1731 /* Note that unlike some other backends, the refcount is not
1732 incremented for a non-call (and non-plabel) function reference. */
1733 else if (eh->plt.refcount <= 0
1734 || local)
1735 {
1736 /* The .plt entry is not needed when:
1737 a) Garbage collection has removed all references to the
1738 symbol, or
1739 b) We know for certain the symbol is defined in this
1740 object, and it's not a weak definition, nor is the symbol
1741 used by a plabel relocation. Either this object is the
1742 application or we are doing a shared symbolic link. */
1743 eh->plt.offset = (bfd_vma) -1;
1744 eh->needs_plt = 0;
1745 }
1746
1747 /* Function symbols can't have copy relocs. */
1748 return TRUE;
1749 }
1750 else
1751 eh->plt.offset = (bfd_vma) -1;
1752
1753 /* If this is a weak symbol, and there is a real definition, the
1754 processor independent code will have arranged for us to see the
1755 real definition first, and we can just use the same value. */
1756 if (eh->u.weakdef != NULL)
1757 {
1758 if (eh->u.weakdef->root.type != bfd_link_hash_defined
1759 && eh->u.weakdef->root.type != bfd_link_hash_defweak)
1760 abort ();
1761 eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1762 eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1763 if (ELIMINATE_COPY_RELOCS)
1764 eh->non_got_ref = eh->u.weakdef->non_got_ref;
1765 return TRUE;
1766 }
1767
1768 /* This is a reference to a symbol defined by a dynamic object which
1769 is not a function. */
1770
1771 /* If we are creating a shared library, we must presume that the
1772 only references to the symbol are via the global offset table.
1773 For such cases we need not do anything here; the relocations will
1774 be handled correctly by relocate_section. */
1775 if (bfd_link_pic (info))
1776 return TRUE;
1777
1778 /* If there are no references to this symbol that do not use the
1779 GOT, we don't need to generate a copy reloc. */
1780 if (!eh->non_got_ref)
1781 {
1782 eh->non_got_ref = 1;
1783 return TRUE;
1784 }
1785
1786 /* If -z nocopyreloc was given, we won't generate them either. */
1787 if (info->nocopyreloc)
1788 {
1789 eh->non_got_ref = 0;
1790 return TRUE;
1791 }
1792
1793 if (ELIMINATE_COPY_RELOCS
1794 && !readonly_dynrelocs (eh))
1795 {
1796 /* If we didn't find any dynamic relocs in read-only sections, then
1797 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1798 eh->non_got_ref = 0;
1799 return TRUE;
1800 }
1801
1802 /* We must allocate the symbol in our .dynbss section, which will
1803 become part of the .bss section of the executable. There will be
1804 an entry for this symbol in the .dynsym section. The dynamic
1805 object will contain position independent code, so all references
1806 from the dynamic object to this symbol will go through the global
1807 offset table. The dynamic linker will use the .dynsym entry to
1808 determine the address it must put in the global offset table, so
1809 both the dynamic object and the regular object will refer to the
1810 same memory location for the variable. */
1811
1812 htab = hppa_link_hash_table (info);
1813 if (htab == NULL)
1814 return FALSE;
1815
1816 /* We must generate a COPY reloc to tell the dynamic linker to
1817 copy the initial value out of the dynamic object and into the
1818 runtime process image. */
1819 if ((eh->root.u.def.section->flags & SEC_READONLY) != 0)
1820 {
1821 sec = htab->etab.sdynrelro;
1822 srel = htab->etab.sreldynrelro;
1823 }
1824 else
1825 {
1826 sec = htab->etab.sdynbss;
1827 srel = htab->etab.srelbss;
1828 }
1829 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0 && eh->size != 0)
1830 {
1831 srel->size += sizeof (Elf32_External_Rela);
1832 eh->needs_copy = 1;
1833 }
1834
1835 return _bfd_elf_adjust_dynamic_copy (info, eh, sec);
1836 }
1837
1838 /* If EH is undefined, make it dynamic if that makes sense. */
1839
1840 static bfd_boolean
1841 ensure_undef_dynamic (struct bfd_link_info *info,
1842 struct elf_link_hash_entry *eh)
1843 {
1844 struct elf_link_hash_table *htab = elf_hash_table (info);
1845
1846 if (htab->dynamic_sections_created
1847 && (eh->root.type == bfd_link_hash_undefweak
1848 || eh->root.type == bfd_link_hash_undefined)
1849 && eh->dynindx == -1
1850 && !eh->forced_local
1851 && eh->type != STT_PARISC_MILLI
1852 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh)
1853 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT)
1854 return bfd_elf_link_record_dynamic_symbol (info, eh);
1855 return TRUE;
1856 }
1857
1858 /* Allocate space in the .plt for entries that won't have relocations.
1859 ie. plabel entries. */
1860
1861 static bfd_boolean
1862 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1863 {
1864 struct bfd_link_info *info;
1865 struct elf32_hppa_link_hash_table *htab;
1866 struct elf32_hppa_link_hash_entry *hh;
1867 asection *sec;
1868
1869 if (eh->root.type == bfd_link_hash_indirect)
1870 return TRUE;
1871
1872 info = (struct bfd_link_info *) inf;
1873 hh = hppa_elf_hash_entry (eh);
1874 htab = hppa_link_hash_table (info);
1875 if (htab == NULL)
1876 return FALSE;
1877
1878 if (htab->etab.dynamic_sections_created
1879 && eh->plt.refcount > 0)
1880 {
1881 if (!ensure_undef_dynamic (info, eh))
1882 return FALSE;
1883
1884 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), eh))
1885 {
1886 /* Allocate these later. From this point on, h->plabel
1887 means that the plt entry is only used by a plabel.
1888 We'll be using a normal plt entry for this symbol, so
1889 clear the plabel indicator. */
1890
1891 hh->plabel = 0;
1892 }
1893 else if (hh->plabel)
1894 {
1895 /* Make an entry in the .plt section for plabel references
1896 that won't have a .plt entry for other reasons. */
1897 sec = htab->etab.splt;
1898 eh->plt.offset = sec->size;
1899 sec->size += PLT_ENTRY_SIZE;
1900 if (bfd_link_pic (info))
1901 htab->etab.srelplt->size += sizeof (Elf32_External_Rela);
1902 }
1903 else
1904 {
1905 /* No .plt entry needed. */
1906 eh->plt.offset = (bfd_vma) -1;
1907 eh->needs_plt = 0;
1908 }
1909 }
1910 else
1911 {
1912 eh->plt.offset = (bfd_vma) -1;
1913 eh->needs_plt = 0;
1914 }
1915
1916 return TRUE;
1917 }
1918
1919 /* Allocate space in .plt, .got and associated reloc sections for
1920 global syms. */
1921
1922 static bfd_boolean
1923 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
1924 {
1925 struct bfd_link_info *info;
1926 struct elf32_hppa_link_hash_table *htab;
1927 asection *sec;
1928 struct elf32_hppa_link_hash_entry *hh;
1929 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1930
1931 if (eh->root.type == bfd_link_hash_indirect)
1932 return TRUE;
1933
1934 info = inf;
1935 htab = hppa_link_hash_table (info);
1936 if (htab == NULL)
1937 return FALSE;
1938
1939 hh = hppa_elf_hash_entry (eh);
1940
1941 if (htab->etab.dynamic_sections_created
1942 && eh->plt.offset != (bfd_vma) -1
1943 && !hh->plabel
1944 && eh->plt.refcount > 0)
1945 {
1946 /* Make an entry in the .plt section. */
1947 sec = htab->etab.splt;
1948 eh->plt.offset = sec->size;
1949 sec->size += PLT_ENTRY_SIZE;
1950
1951 /* We also need to make an entry in the .rela.plt section. */
1952 htab->etab.srelplt->size += sizeof (Elf32_External_Rela);
1953 htab->need_plt_stub = 1;
1954 }
1955
1956 if (eh->got.refcount > 0)
1957 {
1958 if (!ensure_undef_dynamic (info, eh))
1959 return FALSE;
1960
1961 sec = htab->etab.sgot;
1962 eh->got.offset = sec->size;
1963 sec->size += GOT_ENTRY_SIZE;
1964 /* R_PARISC_TLS_GD* needs two GOT entries */
1965 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
1966 sec->size += GOT_ENTRY_SIZE * 2;
1967 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
1968 sec->size += GOT_ENTRY_SIZE;
1969 if (htab->etab.dynamic_sections_created
1970 && (bfd_link_pic (info)
1971 || (eh->dynindx != -1
1972 && !SYMBOL_REFERENCES_LOCAL (info, eh)))
1973 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
1974 {
1975 htab->etab.srelgot->size += sizeof (Elf32_External_Rela);
1976 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
1977 htab->etab.srelgot->size += 2 * sizeof (Elf32_External_Rela);
1978 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
1979 htab->etab.srelgot->size += sizeof (Elf32_External_Rela);
1980 }
1981 }
1982 else
1983 eh->got.offset = (bfd_vma) -1;
1984
1985 /* If no dynamic sections we can't have dynamic relocs. */
1986 if (!htab->etab.dynamic_sections_created)
1987 hh->dyn_relocs = NULL;
1988
1989 if (hh->dyn_relocs == NULL)
1990 return TRUE;
1991
1992 /* If this is a -Bsymbolic shared link, then we need to discard all
1993 space allocated for dynamic pc-relative relocs against symbols
1994 defined in a regular object. For the normal shared case, discard
1995 space for relocs that have become local due to symbol visibility
1996 changes. */
1997 if (bfd_link_pic (info))
1998 {
1999 /* Discard relocs on undefined syms with non-default visibility. */
2000 if ((eh->root.type == bfd_link_hash_undefined
2001 && ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
2002 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
2003 hh->dyn_relocs = NULL;
2004
2005 #if RELATIVE_DYNRELOCS
2006 else if (SYMBOL_CALLS_LOCAL (info, eh))
2007 {
2008 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
2009
2010 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2011 {
2012 hdh_p->count -= hdh_p->relative_count;
2013 hdh_p->relative_count = 0;
2014 if (hdh_p->count == 0)
2015 *hdh_pp = hdh_p->hdh_next;
2016 else
2017 hdh_pp = &hdh_p->hdh_next;
2018 }
2019 }
2020 #endif
2021
2022 if (hh->dyn_relocs != NULL)
2023 {
2024 if (!ensure_undef_dynamic (info, eh))
2025 return FALSE;
2026 }
2027 }
2028 else if (ELIMINATE_COPY_RELOCS)
2029 {
2030 /* For the non-shared case, discard space for relocs against
2031 symbols which turn out to need copy relocs or are not
2032 dynamic. */
2033
2034 if (!eh->non_got_ref
2035 && !eh->def_regular)
2036 {
2037 if (!ensure_undef_dynamic (info, eh))
2038 return FALSE;
2039
2040 if (eh->dynindx == -1)
2041 hh->dyn_relocs = NULL;
2042 }
2043 else
2044 hh->dyn_relocs = NULL;
2045 }
2046
2047 /* Finally, allocate space. */
2048 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2049 {
2050 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2051 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2052 }
2053
2054 return TRUE;
2055 }
2056
2057 /* This function is called via elf_link_hash_traverse to force
2058 millicode symbols local so they do not end up as globals in the
2059 dynamic symbol table. We ought to be able to do this in
2060 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2061 for all dynamic symbols. Arguably, this is a bug in
2062 elf_adjust_dynamic_symbol. */
2063
2064 static bfd_boolean
2065 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2066 struct bfd_link_info *info)
2067 {
2068 if (eh->type == STT_PARISC_MILLI
2069 && !eh->forced_local)
2070 {
2071 elf32_hppa_hide_symbol (info, eh, TRUE);
2072 }
2073 return TRUE;
2074 }
2075
2076 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
2077 read-only sections. */
2078
2079 static bfd_boolean
2080 maybe_set_textrel (struct elf_link_hash_entry *eh, void *inf)
2081 {
2082 asection *sec;
2083
2084 if (eh->root.type == bfd_link_hash_indirect)
2085 return TRUE;
2086
2087 sec = readonly_dynrelocs (eh);
2088 if (sec != NULL)
2089 {
2090 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2091
2092 info->flags |= DF_TEXTREL;
2093 info->callbacks->minfo
2094 (_("%B: dynamic relocation in read-only section `%A'\n"),
2095 sec->owner, sec);
2096
2097 /* Not an error, just cut short the traversal. */
2098 return FALSE;
2099 }
2100 return TRUE;
2101 }
2102
2103 /* Set the sizes of the dynamic sections. */
2104
2105 static bfd_boolean
2106 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2107 struct bfd_link_info *info)
2108 {
2109 struct elf32_hppa_link_hash_table *htab;
2110 bfd *dynobj;
2111 bfd *ibfd;
2112 asection *sec;
2113 bfd_boolean relocs;
2114
2115 htab = hppa_link_hash_table (info);
2116 if (htab == NULL)
2117 return FALSE;
2118
2119 dynobj = htab->etab.dynobj;
2120 if (dynobj == NULL)
2121 abort ();
2122
2123 if (htab->etab.dynamic_sections_created)
2124 {
2125 /* Set the contents of the .interp section to the interpreter. */
2126 if (bfd_link_executable (info) && !info->nointerp)
2127 {
2128 sec = bfd_get_linker_section (dynobj, ".interp");
2129 if (sec == NULL)
2130 abort ();
2131 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2132 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2133 }
2134
2135 /* Force millicode symbols local. */
2136 elf_link_hash_traverse (&htab->etab,
2137 clobber_millicode_symbols,
2138 info);
2139 }
2140
2141 /* Set up .got and .plt offsets for local syms, and space for local
2142 dynamic relocs. */
2143 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
2144 {
2145 bfd_signed_vma *local_got;
2146 bfd_signed_vma *end_local_got;
2147 bfd_signed_vma *local_plt;
2148 bfd_signed_vma *end_local_plt;
2149 bfd_size_type locsymcount;
2150 Elf_Internal_Shdr *symtab_hdr;
2151 asection *srel;
2152 char *local_tls_type;
2153
2154 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2155 continue;
2156
2157 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2158 {
2159 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2160
2161 for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
2162 elf_section_data (sec)->local_dynrel);
2163 hdh_p != NULL;
2164 hdh_p = hdh_p->hdh_next)
2165 {
2166 if (!bfd_is_abs_section (hdh_p->sec)
2167 && bfd_is_abs_section (hdh_p->sec->output_section))
2168 {
2169 /* Input section has been discarded, either because
2170 it is a copy of a linkonce section or due to
2171 linker script /DISCARD/, so we'll be discarding
2172 the relocs too. */
2173 }
2174 else if (hdh_p->count != 0)
2175 {
2176 srel = elf_section_data (hdh_p->sec)->sreloc;
2177 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2178 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2179 info->flags |= DF_TEXTREL;
2180 }
2181 }
2182 }
2183
2184 local_got = elf_local_got_refcounts (ibfd);
2185 if (!local_got)
2186 continue;
2187
2188 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2189 locsymcount = symtab_hdr->sh_info;
2190 end_local_got = local_got + locsymcount;
2191 local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2192 sec = htab->etab.sgot;
2193 srel = htab->etab.srelgot;
2194 for (; local_got < end_local_got; ++local_got)
2195 {
2196 if (*local_got > 0)
2197 {
2198 *local_got = sec->size;
2199 sec->size += GOT_ENTRY_SIZE;
2200 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2201 sec->size += 2 * GOT_ENTRY_SIZE;
2202 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2203 sec->size += GOT_ENTRY_SIZE;
2204 if (bfd_link_pic (info))
2205 {
2206 srel->size += sizeof (Elf32_External_Rela);
2207 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2208 srel->size += 2 * sizeof (Elf32_External_Rela);
2209 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2210 srel->size += sizeof (Elf32_External_Rela);
2211 }
2212 }
2213 else
2214 *local_got = (bfd_vma) -1;
2215
2216 ++local_tls_type;
2217 }
2218
2219 local_plt = end_local_got;
2220 end_local_plt = local_plt + locsymcount;
2221 if (! htab->etab.dynamic_sections_created)
2222 {
2223 /* Won't be used, but be safe. */
2224 for (; local_plt < end_local_plt; ++local_plt)
2225 *local_plt = (bfd_vma) -1;
2226 }
2227 else
2228 {
2229 sec = htab->etab.splt;
2230 srel = htab->etab.srelplt;
2231 for (; local_plt < end_local_plt; ++local_plt)
2232 {
2233 if (*local_plt > 0)
2234 {
2235 *local_plt = sec->size;
2236 sec->size += PLT_ENTRY_SIZE;
2237 if (bfd_link_pic (info))
2238 srel->size += sizeof (Elf32_External_Rela);
2239 }
2240 else
2241 *local_plt = (bfd_vma) -1;
2242 }
2243 }
2244 }
2245
2246 if (htab->tls_ldm_got.refcount > 0)
2247 {
2248 /* Allocate 2 got entries and 1 dynamic reloc for
2249 R_PARISC_TLS_DTPMOD32 relocs. */
2250 htab->tls_ldm_got.offset = htab->etab.sgot->size;
2251 htab->etab.sgot->size += (GOT_ENTRY_SIZE * 2);
2252 htab->etab.srelgot->size += sizeof (Elf32_External_Rela);
2253 }
2254 else
2255 htab->tls_ldm_got.offset = -1;
2256
2257 /* Do all the .plt entries without relocs first. The dynamic linker
2258 uses the last .plt reloc to find the end of the .plt (and hence
2259 the start of the .got) for lazy linking. */
2260 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2261
2262 /* Allocate global sym .plt and .got entries, and space for global
2263 sym dynamic relocs. */
2264 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2265
2266 /* The check_relocs and adjust_dynamic_symbol entry points have
2267 determined the sizes of the various dynamic sections. Allocate
2268 memory for them. */
2269 relocs = FALSE;
2270 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2271 {
2272 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2273 continue;
2274
2275 if (sec == htab->etab.splt)
2276 {
2277 if (htab->need_plt_stub)
2278 {
2279 /* Make space for the plt stub at the end of the .plt
2280 section. We want this stub right at the end, up
2281 against the .got section. */
2282 int gotalign = bfd_section_alignment (dynobj, htab->etab.sgot);
2283 int pltalign = bfd_section_alignment (dynobj, sec);
2284 bfd_size_type mask;
2285
2286 if (gotalign > pltalign)
2287 (void) bfd_set_section_alignment (dynobj, sec, gotalign);
2288 mask = ((bfd_size_type) 1 << gotalign) - 1;
2289 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2290 }
2291 }
2292 else if (sec == htab->etab.sgot
2293 || sec == htab->etab.sdynbss
2294 || sec == htab->etab.sdynrelro)
2295 ;
2296 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
2297 {
2298 if (sec->size != 0)
2299 {
2300 /* Remember whether there are any reloc sections other
2301 than .rela.plt. */
2302 if (sec != htab->etab.srelplt)
2303 relocs = TRUE;
2304
2305 /* We use the reloc_count field as a counter if we need
2306 to copy relocs into the output file. */
2307 sec->reloc_count = 0;
2308 }
2309 }
2310 else
2311 {
2312 /* It's not one of our sections, so don't allocate space. */
2313 continue;
2314 }
2315
2316 if (sec->size == 0)
2317 {
2318 /* If we don't need this section, strip it from the
2319 output file. This is mostly to handle .rela.bss and
2320 .rela.plt. We must create both sections in
2321 create_dynamic_sections, because they must be created
2322 before the linker maps input sections to output
2323 sections. The linker does that before
2324 adjust_dynamic_symbol is called, and it is that
2325 function which decides whether anything needs to go
2326 into these sections. */
2327 sec->flags |= SEC_EXCLUDE;
2328 continue;
2329 }
2330
2331 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2332 continue;
2333
2334 /* Allocate memory for the section contents. Zero it, because
2335 we may not fill in all the reloc sections. */
2336 sec->contents = bfd_zalloc (dynobj, sec->size);
2337 if (sec->contents == NULL)
2338 return FALSE;
2339 }
2340
2341 if (htab->etab.dynamic_sections_created)
2342 {
2343 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2344 actually has nothing to do with the PLT, it is how we
2345 communicate the LTP value of a load module to the dynamic
2346 linker. */
2347 #define add_dynamic_entry(TAG, VAL) \
2348 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2349
2350 if (!add_dynamic_entry (DT_PLTGOT, 0))
2351 return FALSE;
2352
2353 /* Add some entries to the .dynamic section. We fill in the
2354 values later, in elf32_hppa_finish_dynamic_sections, but we
2355 must add the entries now so that we get the correct size for
2356 the .dynamic section. The DT_DEBUG entry is filled in by the
2357 dynamic linker and used by the debugger. */
2358 if (bfd_link_executable (info))
2359 {
2360 if (!add_dynamic_entry (DT_DEBUG, 0))
2361 return FALSE;
2362 }
2363
2364 if (htab->etab.srelplt->size != 0)
2365 {
2366 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2367 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2368 || !add_dynamic_entry (DT_JMPREL, 0))
2369 return FALSE;
2370 }
2371
2372 if (relocs)
2373 {
2374 if (!add_dynamic_entry (DT_RELA, 0)
2375 || !add_dynamic_entry (DT_RELASZ, 0)
2376 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2377 return FALSE;
2378
2379 /* If any dynamic relocs apply to a read-only section,
2380 then we need a DT_TEXTREL entry. */
2381 if ((info->flags & DF_TEXTREL) == 0)
2382 elf_link_hash_traverse (&htab->etab, maybe_set_textrel, info);
2383
2384 if ((info->flags & DF_TEXTREL) != 0)
2385 {
2386 if (!add_dynamic_entry (DT_TEXTREL, 0))
2387 return FALSE;
2388 }
2389 }
2390 }
2391 #undef add_dynamic_entry
2392
2393 return TRUE;
2394 }
2395
2396 /* External entry points for sizing and building linker stubs. */
2397
2398 /* Set up various things so that we can make a list of input sections
2399 for each output section included in the link. Returns -1 on error,
2400 0 when no stubs will be needed, and 1 on success. */
2401
2402 int
2403 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2404 {
2405 bfd *input_bfd;
2406 unsigned int bfd_count;
2407 unsigned int top_id, top_index;
2408 asection *section;
2409 asection **input_list, **list;
2410 bfd_size_type amt;
2411 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2412
2413 if (htab == NULL)
2414 return -1;
2415
2416 /* Count the number of input BFDs and find the top input section id. */
2417 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2418 input_bfd != NULL;
2419 input_bfd = input_bfd->link.next)
2420 {
2421 bfd_count += 1;
2422 for (section = input_bfd->sections;
2423 section != NULL;
2424 section = section->next)
2425 {
2426 if (top_id < section->id)
2427 top_id = section->id;
2428 }
2429 }
2430 htab->bfd_count = bfd_count;
2431
2432 amt = sizeof (struct map_stub) * (top_id + 1);
2433 htab->stub_group = bfd_zmalloc (amt);
2434 if (htab->stub_group == NULL)
2435 return -1;
2436
2437 /* We can't use output_bfd->section_count here to find the top output
2438 section index as some sections may have been removed, and
2439 strip_excluded_output_sections doesn't renumber the indices. */
2440 for (section = output_bfd->sections, top_index = 0;
2441 section != NULL;
2442 section = section->next)
2443 {
2444 if (top_index < section->index)
2445 top_index = section->index;
2446 }
2447
2448 htab->top_index = top_index;
2449 amt = sizeof (asection *) * (top_index + 1);
2450 input_list = bfd_malloc (amt);
2451 htab->input_list = input_list;
2452 if (input_list == NULL)
2453 return -1;
2454
2455 /* For sections we aren't interested in, mark their entries with a
2456 value we can check later. */
2457 list = input_list + top_index;
2458 do
2459 *list = bfd_abs_section_ptr;
2460 while (list-- != input_list);
2461
2462 for (section = output_bfd->sections;
2463 section != NULL;
2464 section = section->next)
2465 {
2466 if ((section->flags & SEC_CODE) != 0)
2467 input_list[section->index] = NULL;
2468 }
2469
2470 return 1;
2471 }
2472
2473 /* The linker repeatedly calls this function for each input section,
2474 in the order that input sections are linked into output sections.
2475 Build lists of input sections to determine groupings between which
2476 we may insert linker stubs. */
2477
2478 void
2479 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2480 {
2481 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2482
2483 if (htab == NULL)
2484 return;
2485
2486 if (isec->output_section->index <= htab->top_index)
2487 {
2488 asection **list = htab->input_list + isec->output_section->index;
2489 if (*list != bfd_abs_section_ptr)
2490 {
2491 /* Steal the link_sec pointer for our list. */
2492 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2493 /* This happens to make the list in reverse order,
2494 which is what we want. */
2495 PREV_SEC (isec) = *list;
2496 *list = isec;
2497 }
2498 }
2499 }
2500
2501 /* See whether we can group stub sections together. Grouping stub
2502 sections may result in fewer stubs. More importantly, we need to
2503 put all .init* and .fini* stubs at the beginning of the .init or
2504 .fini output sections respectively, because glibc splits the
2505 _init and _fini functions into multiple parts. Putting a stub in
2506 the middle of a function is not a good idea. */
2507
2508 static void
2509 group_sections (struct elf32_hppa_link_hash_table *htab,
2510 bfd_size_type stub_group_size,
2511 bfd_boolean stubs_always_before_branch)
2512 {
2513 asection **list = htab->input_list + htab->top_index;
2514 do
2515 {
2516 asection *tail = *list;
2517 if (tail == bfd_abs_section_ptr)
2518 continue;
2519 while (tail != NULL)
2520 {
2521 asection *curr;
2522 asection *prev;
2523 bfd_size_type total;
2524 bfd_boolean big_sec;
2525
2526 curr = tail;
2527 total = tail->size;
2528 big_sec = total >= stub_group_size;
2529
2530 while ((prev = PREV_SEC (curr)) != NULL
2531 && ((total += curr->output_offset - prev->output_offset)
2532 < stub_group_size))
2533 curr = prev;
2534
2535 /* OK, the size from the start of CURR to the end is less
2536 than 240000 bytes and thus can be handled by one stub
2537 section. (or the tail section is itself larger than
2538 240000 bytes, in which case we may be toast.)
2539 We should really be keeping track of the total size of
2540 stubs added here, as stubs contribute to the final output
2541 section size. That's a little tricky, and this way will
2542 only break if stubs added total more than 22144 bytes, or
2543 2768 long branch stubs. It seems unlikely for more than
2544 2768 different functions to be called, especially from
2545 code only 240000 bytes long. This limit used to be
2546 250000, but c++ code tends to generate lots of little
2547 functions, and sometimes violated the assumption. */
2548 do
2549 {
2550 prev = PREV_SEC (tail);
2551 /* Set up this stub group. */
2552 htab->stub_group[tail->id].link_sec = curr;
2553 }
2554 while (tail != curr && (tail = prev) != NULL);
2555
2556 /* But wait, there's more! Input sections up to 240000
2557 bytes before the stub section can be handled by it too.
2558 Don't do this if we have a really large section after the
2559 stubs, as adding more stubs increases the chance that
2560 branches may not reach into the stub section. */
2561 if (!stubs_always_before_branch && !big_sec)
2562 {
2563 total = 0;
2564 while (prev != NULL
2565 && ((total += tail->output_offset - prev->output_offset)
2566 < stub_group_size))
2567 {
2568 tail = prev;
2569 prev = PREV_SEC (tail);
2570 htab->stub_group[tail->id].link_sec = curr;
2571 }
2572 }
2573 tail = prev;
2574 }
2575 }
2576 while (list-- != htab->input_list);
2577 free (htab->input_list);
2578 #undef PREV_SEC
2579 }
2580
2581 /* Read in all local syms for all input bfds, and create hash entries
2582 for export stubs if we are building a multi-subspace shared lib.
2583 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2584
2585 static int
2586 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2587 {
2588 unsigned int bfd_indx;
2589 Elf_Internal_Sym *local_syms, **all_local_syms;
2590 int stub_changed = 0;
2591 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2592
2593 if (htab == NULL)
2594 return -1;
2595
2596 /* We want to read in symbol extension records only once. To do this
2597 we need to read in the local symbols in parallel and save them for
2598 later use; so hold pointers to the local symbols in an array. */
2599 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2600 all_local_syms = bfd_zmalloc (amt);
2601 htab->all_local_syms = all_local_syms;
2602 if (all_local_syms == NULL)
2603 return -1;
2604
2605 /* Walk over all the input BFDs, swapping in local symbols.
2606 If we are creating a shared library, create hash entries for the
2607 export stubs. */
2608 for (bfd_indx = 0;
2609 input_bfd != NULL;
2610 input_bfd = input_bfd->link.next, bfd_indx++)
2611 {
2612 Elf_Internal_Shdr *symtab_hdr;
2613
2614 /* We'll need the symbol table in a second. */
2615 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2616 if (symtab_hdr->sh_info == 0)
2617 continue;
2618
2619 /* We need an array of the local symbols attached to the input bfd. */
2620 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2621 if (local_syms == NULL)
2622 {
2623 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2624 symtab_hdr->sh_info, 0,
2625 NULL, NULL, NULL);
2626 /* Cache them for elf_link_input_bfd. */
2627 symtab_hdr->contents = (unsigned char *) local_syms;
2628 }
2629 if (local_syms == NULL)
2630 return -1;
2631
2632 all_local_syms[bfd_indx] = local_syms;
2633
2634 if (bfd_link_pic (info) && htab->multi_subspace)
2635 {
2636 struct elf_link_hash_entry **eh_syms;
2637 struct elf_link_hash_entry **eh_symend;
2638 unsigned int symcount;
2639
2640 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2641 - symtab_hdr->sh_info);
2642 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2643 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2644
2645 /* Look through the global syms for functions; We need to
2646 build export stubs for all globally visible functions. */
2647 for (; eh_syms < eh_symend; eh_syms++)
2648 {
2649 struct elf32_hppa_link_hash_entry *hh;
2650
2651 hh = hppa_elf_hash_entry (*eh_syms);
2652
2653 while (hh->eh.root.type == bfd_link_hash_indirect
2654 || hh->eh.root.type == bfd_link_hash_warning)
2655 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2656
2657 /* At this point in the link, undefined syms have been
2658 resolved, so we need to check that the symbol was
2659 defined in this BFD. */
2660 if ((hh->eh.root.type == bfd_link_hash_defined
2661 || hh->eh.root.type == bfd_link_hash_defweak)
2662 && hh->eh.type == STT_FUNC
2663 && hh->eh.root.u.def.section->output_section != NULL
2664 && (hh->eh.root.u.def.section->output_section->owner
2665 == output_bfd)
2666 && hh->eh.root.u.def.section->owner == input_bfd
2667 && hh->eh.def_regular
2668 && !hh->eh.forced_local
2669 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2670 {
2671 asection *sec;
2672 const char *stub_name;
2673 struct elf32_hppa_stub_hash_entry *hsh;
2674
2675 sec = hh->eh.root.u.def.section;
2676 stub_name = hh_name (hh);
2677 hsh = hppa_stub_hash_lookup (&htab->bstab,
2678 stub_name,
2679 FALSE, FALSE);
2680 if (hsh == NULL)
2681 {
2682 hsh = hppa_add_stub (stub_name, sec, htab);
2683 if (!hsh)
2684 return -1;
2685
2686 hsh->target_value = hh->eh.root.u.def.value;
2687 hsh->target_section = hh->eh.root.u.def.section;
2688 hsh->stub_type = hppa_stub_export;
2689 hsh->hh = hh;
2690 stub_changed = 1;
2691 }
2692 else
2693 {
2694 /* xgettext:c-format */
2695 _bfd_error_handler (_("%B: duplicate export stub %s"),
2696 input_bfd, stub_name);
2697 }
2698 }
2699 }
2700 }
2701 }
2702
2703 return stub_changed;
2704 }
2705
2706 /* Determine and set the size of the stub section for a final link.
2707
2708 The basic idea here is to examine all the relocations looking for
2709 PC-relative calls to a target that is unreachable with a "bl"
2710 instruction. */
2711
2712 bfd_boolean
2713 elf32_hppa_size_stubs
2714 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2715 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2716 asection * (*add_stub_section) (const char *, asection *),
2717 void (*layout_sections_again) (void))
2718 {
2719 bfd_size_type stub_group_size;
2720 bfd_boolean stubs_always_before_branch;
2721 bfd_boolean stub_changed;
2722 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2723
2724 if (htab == NULL)
2725 return FALSE;
2726
2727 /* Stash our params away. */
2728 htab->stub_bfd = stub_bfd;
2729 htab->multi_subspace = multi_subspace;
2730 htab->add_stub_section = add_stub_section;
2731 htab->layout_sections_again = layout_sections_again;
2732 stubs_always_before_branch = group_size < 0;
2733 if (group_size < 0)
2734 stub_group_size = -group_size;
2735 else
2736 stub_group_size = group_size;
2737 if (stub_group_size == 1)
2738 {
2739 /* Default values. */
2740 if (stubs_always_before_branch)
2741 {
2742 stub_group_size = 7680000;
2743 if (htab->has_17bit_branch || htab->multi_subspace)
2744 stub_group_size = 240000;
2745 if (htab->has_12bit_branch)
2746 stub_group_size = 7500;
2747 }
2748 else
2749 {
2750 stub_group_size = 6971392;
2751 if (htab->has_17bit_branch || htab->multi_subspace)
2752 stub_group_size = 217856;
2753 if (htab->has_12bit_branch)
2754 stub_group_size = 6808;
2755 }
2756 }
2757
2758 group_sections (htab, stub_group_size, stubs_always_before_branch);
2759
2760 switch (get_local_syms (output_bfd, info->input_bfds, info))
2761 {
2762 default:
2763 if (htab->all_local_syms)
2764 goto error_ret_free_local;
2765 return FALSE;
2766
2767 case 0:
2768 stub_changed = FALSE;
2769 break;
2770
2771 case 1:
2772 stub_changed = TRUE;
2773 break;
2774 }
2775
2776 while (1)
2777 {
2778 bfd *input_bfd;
2779 unsigned int bfd_indx;
2780 asection *stub_sec;
2781
2782 for (input_bfd = info->input_bfds, bfd_indx = 0;
2783 input_bfd != NULL;
2784 input_bfd = input_bfd->link.next, bfd_indx++)
2785 {
2786 Elf_Internal_Shdr *symtab_hdr;
2787 asection *section;
2788 Elf_Internal_Sym *local_syms;
2789
2790 /* We'll need the symbol table in a second. */
2791 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2792 if (symtab_hdr->sh_info == 0)
2793 continue;
2794
2795 local_syms = htab->all_local_syms[bfd_indx];
2796
2797 /* Walk over each section attached to the input bfd. */
2798 for (section = input_bfd->sections;
2799 section != NULL;
2800 section = section->next)
2801 {
2802 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2803
2804 /* If there aren't any relocs, then there's nothing more
2805 to do. */
2806 if ((section->flags & SEC_RELOC) == 0
2807 || section->reloc_count == 0)
2808 continue;
2809
2810 /* If this section is a link-once section that will be
2811 discarded, then don't create any stubs. */
2812 if (section->output_section == NULL
2813 || section->output_section->owner != output_bfd)
2814 continue;
2815
2816 /* Get the relocs. */
2817 internal_relocs
2818 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2819 info->keep_memory);
2820 if (internal_relocs == NULL)
2821 goto error_ret_free_local;
2822
2823 /* Now examine each relocation. */
2824 irela = internal_relocs;
2825 irelaend = irela + section->reloc_count;
2826 for (; irela < irelaend; irela++)
2827 {
2828 unsigned int r_type, r_indx;
2829 enum elf32_hppa_stub_type stub_type;
2830 struct elf32_hppa_stub_hash_entry *hsh;
2831 asection *sym_sec;
2832 bfd_vma sym_value;
2833 bfd_vma destination;
2834 struct elf32_hppa_link_hash_entry *hh;
2835 char *stub_name;
2836 const asection *id_sec;
2837
2838 r_type = ELF32_R_TYPE (irela->r_info);
2839 r_indx = ELF32_R_SYM (irela->r_info);
2840
2841 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2842 {
2843 bfd_set_error (bfd_error_bad_value);
2844 error_ret_free_internal:
2845 if (elf_section_data (section)->relocs == NULL)
2846 free (internal_relocs);
2847 goto error_ret_free_local;
2848 }
2849
2850 /* Only look for stubs on call instructions. */
2851 if (r_type != (unsigned int) R_PARISC_PCREL12F
2852 && r_type != (unsigned int) R_PARISC_PCREL17F
2853 && r_type != (unsigned int) R_PARISC_PCREL22F)
2854 continue;
2855
2856 /* Now determine the call target, its name, value,
2857 section. */
2858 sym_sec = NULL;
2859 sym_value = 0;
2860 destination = 0;
2861 hh = NULL;
2862 if (r_indx < symtab_hdr->sh_info)
2863 {
2864 /* It's a local symbol. */
2865 Elf_Internal_Sym *sym;
2866 Elf_Internal_Shdr *hdr;
2867 unsigned int shndx;
2868
2869 sym = local_syms + r_indx;
2870 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2871 sym_value = sym->st_value;
2872 shndx = sym->st_shndx;
2873 if (shndx < elf_numsections (input_bfd))
2874 {
2875 hdr = elf_elfsections (input_bfd)[shndx];
2876 sym_sec = hdr->bfd_section;
2877 destination = (sym_value + irela->r_addend
2878 + sym_sec->output_offset
2879 + sym_sec->output_section->vma);
2880 }
2881 }
2882 else
2883 {
2884 /* It's an external symbol. */
2885 int e_indx;
2886
2887 e_indx = r_indx - symtab_hdr->sh_info;
2888 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2889
2890 while (hh->eh.root.type == bfd_link_hash_indirect
2891 || hh->eh.root.type == bfd_link_hash_warning)
2892 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2893
2894 if (hh->eh.root.type == bfd_link_hash_defined
2895 || hh->eh.root.type == bfd_link_hash_defweak)
2896 {
2897 sym_sec = hh->eh.root.u.def.section;
2898 sym_value = hh->eh.root.u.def.value;
2899 if (sym_sec->output_section != NULL)
2900 destination = (sym_value + irela->r_addend
2901 + sym_sec->output_offset
2902 + sym_sec->output_section->vma);
2903 }
2904 else if (hh->eh.root.type == bfd_link_hash_undefweak)
2905 {
2906 if (! bfd_link_pic (info))
2907 continue;
2908 }
2909 else if (hh->eh.root.type == bfd_link_hash_undefined)
2910 {
2911 if (! (info->unresolved_syms_in_objects == RM_IGNORE
2912 && (ELF_ST_VISIBILITY (hh->eh.other)
2913 == STV_DEFAULT)
2914 && hh->eh.type != STT_PARISC_MILLI))
2915 continue;
2916 }
2917 else
2918 {
2919 bfd_set_error (bfd_error_bad_value);
2920 goto error_ret_free_internal;
2921 }
2922 }
2923
2924 /* Determine what (if any) linker stub is needed. */
2925 stub_type = hppa_type_of_stub (section, irela, hh,
2926 destination, info);
2927 if (stub_type == hppa_stub_none)
2928 continue;
2929
2930 /* Support for grouping stub sections. */
2931 id_sec = htab->stub_group[section->id].link_sec;
2932
2933 /* Get the name of this stub. */
2934 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
2935 if (!stub_name)
2936 goto error_ret_free_internal;
2937
2938 hsh = hppa_stub_hash_lookup (&htab->bstab,
2939 stub_name,
2940 FALSE, FALSE);
2941 if (hsh != NULL)
2942 {
2943 /* The proper stub has already been created. */
2944 free (stub_name);
2945 continue;
2946 }
2947
2948 hsh = hppa_add_stub (stub_name, section, htab);
2949 if (hsh == NULL)
2950 {
2951 free (stub_name);
2952 goto error_ret_free_internal;
2953 }
2954
2955 hsh->target_value = sym_value;
2956 hsh->target_section = sym_sec;
2957 hsh->stub_type = stub_type;
2958 if (bfd_link_pic (info))
2959 {
2960 if (stub_type == hppa_stub_import)
2961 hsh->stub_type = hppa_stub_import_shared;
2962 else if (stub_type == hppa_stub_long_branch)
2963 hsh->stub_type = hppa_stub_long_branch_shared;
2964 }
2965 hsh->hh = hh;
2966 stub_changed = TRUE;
2967 }
2968
2969 /* We're done with the internal relocs, free them. */
2970 if (elf_section_data (section)->relocs == NULL)
2971 free (internal_relocs);
2972 }
2973 }
2974
2975 if (!stub_changed)
2976 break;
2977
2978 /* OK, we've added some stubs. Find out the new size of the
2979 stub sections. */
2980 for (stub_sec = htab->stub_bfd->sections;
2981 stub_sec != NULL;
2982 stub_sec = stub_sec->next)
2983 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
2984 stub_sec->size = 0;
2985
2986 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
2987
2988 /* Ask the linker to do its stuff. */
2989 (*htab->layout_sections_again) ();
2990 stub_changed = FALSE;
2991 }
2992
2993 free (htab->all_local_syms);
2994 return TRUE;
2995
2996 error_ret_free_local:
2997 free (htab->all_local_syms);
2998 return FALSE;
2999 }
3000
3001 /* For a final link, this function is called after we have sized the
3002 stubs to provide a value for __gp. */
3003
3004 bfd_boolean
3005 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
3006 {
3007 struct bfd_link_hash_entry *h;
3008 asection *sec = NULL;
3009 bfd_vma gp_val = 0;
3010
3011 h = bfd_link_hash_lookup (info->hash, "$global$", FALSE, FALSE, FALSE);
3012
3013 if (h != NULL
3014 && (h->type == bfd_link_hash_defined
3015 || h->type == bfd_link_hash_defweak))
3016 {
3017 gp_val = h->u.def.value;
3018 sec = h->u.def.section;
3019 }
3020 else
3021 {
3022 asection *splt = bfd_get_section_by_name (abfd, ".plt");
3023 asection *sgot = bfd_get_section_by_name (abfd, ".got");
3024
3025 /* Choose to point our LTP at, in this order, one of .plt, .got,
3026 or .data, if these sections exist. In the case of choosing
3027 .plt try to make the LTP ideal for addressing anywhere in the
3028 .plt or .got with a 14 bit signed offset. Typically, the end
3029 of the .plt is the start of the .got, so choose .plt + 0x2000
3030 if either the .plt or .got is larger than 0x2000. If both
3031 the .plt and .got are smaller than 0x2000, choose the end of
3032 the .plt section. */
3033 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3034 ? NULL : splt;
3035 if (sec != NULL)
3036 {
3037 gp_val = sec->size;
3038 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3039 {
3040 gp_val = 0x2000;
3041 }
3042 }
3043 else
3044 {
3045 sec = sgot;
3046 if (sec != NULL)
3047 {
3048 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3049 {
3050 /* We know we don't have a .plt. If .got is large,
3051 offset our LTP. */
3052 if (sec->size > 0x2000)
3053 gp_val = 0x2000;
3054 }
3055 }
3056 else
3057 {
3058 /* No .plt or .got. Who cares what the LTP is? */
3059 sec = bfd_get_section_by_name (abfd, ".data");
3060 }
3061 }
3062
3063 if (h != NULL)
3064 {
3065 h->type = bfd_link_hash_defined;
3066 h->u.def.value = gp_val;
3067 if (sec != NULL)
3068 h->u.def.section = sec;
3069 else
3070 h->u.def.section = bfd_abs_section_ptr;
3071 }
3072 }
3073
3074 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
3075 {
3076 if (sec != NULL && sec->output_section != NULL)
3077 gp_val += sec->output_section->vma + sec->output_offset;
3078
3079 elf_gp (abfd) = gp_val;
3080 }
3081 return TRUE;
3082 }
3083
3084 /* Build all the stubs associated with the current output file. The
3085 stubs are kept in a hash table attached to the main linker hash
3086 table. We also set up the .plt entries for statically linked PIC
3087 functions here. This function is called via hppaelf_finish in the
3088 linker. */
3089
3090 bfd_boolean
3091 elf32_hppa_build_stubs (struct bfd_link_info *info)
3092 {
3093 asection *stub_sec;
3094 struct bfd_hash_table *table;
3095 struct elf32_hppa_link_hash_table *htab;
3096
3097 htab = hppa_link_hash_table (info);
3098 if (htab == NULL)
3099 return FALSE;
3100
3101 for (stub_sec = htab->stub_bfd->sections;
3102 stub_sec != NULL;
3103 stub_sec = stub_sec->next)
3104 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
3105 && stub_sec->size != 0)
3106 {
3107 /* Allocate memory to hold the linker stubs. */
3108 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
3109 if (stub_sec->contents == NULL)
3110 return FALSE;
3111 stub_sec->size = 0;
3112 }
3113
3114 /* Build the stubs as directed by the stub hash table. */
3115 table = &htab->bstab;
3116 bfd_hash_traverse (table, hppa_build_one_stub, info);
3117
3118 return TRUE;
3119 }
3120
3121 /* Return the base vma address which should be subtracted from the real
3122 address when resolving a dtpoff relocation.
3123 This is PT_TLS segment p_vaddr. */
3124
3125 static bfd_vma
3126 dtpoff_base (struct bfd_link_info *info)
3127 {
3128 /* If tls_sec is NULL, we should have signalled an error already. */
3129 if (elf_hash_table (info)->tls_sec == NULL)
3130 return 0;
3131 return elf_hash_table (info)->tls_sec->vma;
3132 }
3133
3134 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3135
3136 static bfd_vma
3137 tpoff (struct bfd_link_info *info, bfd_vma address)
3138 {
3139 struct elf_link_hash_table *htab = elf_hash_table (info);
3140
3141 /* If tls_sec is NULL, we should have signalled an error already. */
3142 if (htab->tls_sec == NULL)
3143 return 0;
3144 /* hppa TLS ABI is variant I and static TLS block start just after
3145 tcbhead structure which has 2 pointer fields. */
3146 return (address - htab->tls_sec->vma
3147 + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3148 }
3149
3150 /* Perform a final link. */
3151
3152 static bfd_boolean
3153 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3154 {
3155 struct stat buf;
3156
3157 /* Invoke the regular ELF linker to do all the work. */
3158 if (!bfd_elf_final_link (abfd, info))
3159 return FALSE;
3160
3161 /* If we're producing a final executable, sort the contents of the
3162 unwind section. */
3163 if (bfd_link_relocatable (info))
3164 return TRUE;
3165
3166 /* Do not attempt to sort non-regular files. This is here
3167 especially for configure scripts and kernel builds which run
3168 tests with "ld [...] -o /dev/null". */
3169 if (stat (abfd->filename, &buf) != 0
3170 || !S_ISREG(buf.st_mode))
3171 return TRUE;
3172
3173 return elf_hppa_sort_unwind (abfd);
3174 }
3175
3176 /* Record the lowest address for the data and text segments. */
3177
3178 static void
3179 hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
3180 {
3181 struct elf32_hppa_link_hash_table *htab;
3182
3183 htab = (struct elf32_hppa_link_hash_table*) data;
3184 if (htab == NULL)
3185 return;
3186
3187 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3188 {
3189 bfd_vma value;
3190 Elf_Internal_Phdr *p;
3191
3192 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
3193 BFD_ASSERT (p != NULL);
3194 value = p->p_vaddr;
3195
3196 if ((section->flags & SEC_READONLY) != 0)
3197 {
3198 if (value < htab->text_segment_base)
3199 htab->text_segment_base = value;
3200 }
3201 else
3202 {
3203 if (value < htab->data_segment_base)
3204 htab->data_segment_base = value;
3205 }
3206 }
3207 }
3208
3209 /* Perform a relocation as part of a final link. */
3210
3211 static bfd_reloc_status_type
3212 final_link_relocate (asection *input_section,
3213 bfd_byte *contents,
3214 const Elf_Internal_Rela *rela,
3215 bfd_vma value,
3216 struct elf32_hppa_link_hash_table *htab,
3217 asection *sym_sec,
3218 struct elf32_hppa_link_hash_entry *hh,
3219 struct bfd_link_info *info)
3220 {
3221 int insn;
3222 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3223 unsigned int orig_r_type = r_type;
3224 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3225 int r_format = howto->bitsize;
3226 enum hppa_reloc_field_selector_type_alt r_field;
3227 bfd *input_bfd = input_section->owner;
3228 bfd_vma offset = rela->r_offset;
3229 bfd_vma max_branch_offset = 0;
3230 bfd_byte *hit_data = contents + offset;
3231 bfd_signed_vma addend = rela->r_addend;
3232 bfd_vma location;
3233 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3234 int val;
3235
3236 if (r_type == R_PARISC_NONE)
3237 return bfd_reloc_ok;
3238
3239 insn = bfd_get_32 (input_bfd, hit_data);
3240
3241 /* Find out where we are and where we're going. */
3242 location = (offset +
3243 input_section->output_offset +
3244 input_section->output_section->vma);
3245
3246 /* If we are not building a shared library, convert DLTIND relocs to
3247 DPREL relocs. */
3248 if (!bfd_link_pic (info))
3249 {
3250 switch (r_type)
3251 {
3252 case R_PARISC_DLTIND21L:
3253 case R_PARISC_TLS_GD21L:
3254 case R_PARISC_TLS_LDM21L:
3255 case R_PARISC_TLS_IE21L:
3256 r_type = R_PARISC_DPREL21L;
3257 break;
3258
3259 case R_PARISC_DLTIND14R:
3260 case R_PARISC_TLS_GD14R:
3261 case R_PARISC_TLS_LDM14R:
3262 case R_PARISC_TLS_IE14R:
3263 r_type = R_PARISC_DPREL14R;
3264 break;
3265
3266 case R_PARISC_DLTIND14F:
3267 r_type = R_PARISC_DPREL14F;
3268 break;
3269 }
3270 }
3271
3272 switch (r_type)
3273 {
3274 case R_PARISC_PCREL12F:
3275 case R_PARISC_PCREL17F:
3276 case R_PARISC_PCREL22F:
3277 /* If this call should go via the plt, find the import stub in
3278 the stub hash. */
3279 if (sym_sec == NULL
3280 || sym_sec->output_section == NULL
3281 || (hh != NULL
3282 && hh->eh.plt.offset != (bfd_vma) -1
3283 && hh->eh.dynindx != -1
3284 && !hh->plabel
3285 && (bfd_link_pic (info)
3286 || !hh->eh.def_regular
3287 || hh->eh.root.type == bfd_link_hash_defweak)))
3288 {
3289 hsh = hppa_get_stub_entry (input_section, sym_sec,
3290 hh, rela, htab);
3291 if (hsh != NULL)
3292 {
3293 value = (hsh->stub_offset
3294 + hsh->stub_sec->output_offset
3295 + hsh->stub_sec->output_section->vma);
3296 addend = 0;
3297 }
3298 else if (sym_sec == NULL && hh != NULL
3299 && hh->eh.root.type == bfd_link_hash_undefweak)
3300 {
3301 /* It's OK if undefined weak. Calls to undefined weak
3302 symbols behave as if the "called" function
3303 immediately returns. We can thus call to a weak
3304 function without first checking whether the function
3305 is defined. */
3306 value = location;
3307 addend = 8;
3308 }
3309 else
3310 return bfd_reloc_undefined;
3311 }
3312 /* Fall thru. */
3313
3314 case R_PARISC_PCREL21L:
3315 case R_PARISC_PCREL17C:
3316 case R_PARISC_PCREL17R:
3317 case R_PARISC_PCREL14R:
3318 case R_PARISC_PCREL14F:
3319 case R_PARISC_PCREL32:
3320 /* Make it a pc relative offset. */
3321 value -= location;
3322 addend -= 8;
3323 break;
3324
3325 case R_PARISC_DPREL21L:
3326 case R_PARISC_DPREL14R:
3327 case R_PARISC_DPREL14F:
3328 /* Convert instructions that use the linkage table pointer (r19) to
3329 instructions that use the global data pointer (dp). This is the
3330 most efficient way of using PIC code in an incomplete executable,
3331 but the user must follow the standard runtime conventions for
3332 accessing data for this to work. */
3333 if (orig_r_type != r_type)
3334 {
3335 if (r_type == R_PARISC_DPREL21L)
3336 {
3337 /* GCC sometimes uses a register other than r19 for the
3338 operation, so we must convert any addil instruction
3339 that uses this relocation. */
3340 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3341 insn = ADDIL_DP;
3342 else
3343 /* We must have a ldil instruction. It's too hard to find
3344 and convert the associated add instruction, so issue an
3345 error. */
3346 _bfd_error_handler
3347 /* xgettext:c-format */
3348 (_("%B(%A+%#Lx): %s fixup for insn %#x is not supported in a non-shared link"),
3349 input_bfd,
3350 input_section,
3351 offset,
3352 howto->name,
3353 insn);
3354 }
3355 else if (r_type == R_PARISC_DPREL14F)
3356 {
3357 /* This must be a format 1 load/store. Change the base
3358 register to dp. */
3359 insn = (insn & 0xfc1ffff) | (27 << 21);
3360 }
3361 }
3362
3363 /* For all the DP relative relocations, we need to examine the symbol's
3364 section. If it has no section or if it's a code section, then
3365 "data pointer relative" makes no sense. In that case we don't
3366 adjust the "value", and for 21 bit addil instructions, we change the
3367 source addend register from %dp to %r0. This situation commonly
3368 arises for undefined weak symbols and when a variable's "constness"
3369 is declared differently from the way the variable is defined. For
3370 instance: "extern int foo" with foo defined as "const int foo". */
3371 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3372 {
3373 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3374 == (((int) OP_ADDIL << 26) | (27 << 21)))
3375 {
3376 insn &= ~ (0x1f << 21);
3377 }
3378 /* Now try to make things easy for the dynamic linker. */
3379
3380 break;
3381 }
3382 /* Fall thru. */
3383
3384 case R_PARISC_DLTIND21L:
3385 case R_PARISC_DLTIND14R:
3386 case R_PARISC_DLTIND14F:
3387 case R_PARISC_TLS_GD21L:
3388 case R_PARISC_TLS_LDM21L:
3389 case R_PARISC_TLS_IE21L:
3390 case R_PARISC_TLS_GD14R:
3391 case R_PARISC_TLS_LDM14R:
3392 case R_PARISC_TLS_IE14R:
3393 value -= elf_gp (input_section->output_section->owner);
3394 break;
3395
3396 case R_PARISC_SEGREL32:
3397 if ((sym_sec->flags & SEC_CODE) != 0)
3398 value -= htab->text_segment_base;
3399 else
3400 value -= htab->data_segment_base;
3401 break;
3402
3403 default:
3404 break;
3405 }
3406
3407 switch (r_type)
3408 {
3409 case R_PARISC_DIR32:
3410 case R_PARISC_DIR14F:
3411 case R_PARISC_DIR17F:
3412 case R_PARISC_PCREL17C:
3413 case R_PARISC_PCREL14F:
3414 case R_PARISC_PCREL32:
3415 case R_PARISC_DPREL14F:
3416 case R_PARISC_PLABEL32:
3417 case R_PARISC_DLTIND14F:
3418 case R_PARISC_SEGBASE:
3419 case R_PARISC_SEGREL32:
3420 case R_PARISC_TLS_DTPMOD32:
3421 case R_PARISC_TLS_DTPOFF32:
3422 case R_PARISC_TLS_TPREL32:
3423 r_field = e_fsel;
3424 break;
3425
3426 case R_PARISC_DLTIND21L:
3427 case R_PARISC_PCREL21L:
3428 case R_PARISC_PLABEL21L:
3429 r_field = e_lsel;
3430 break;
3431
3432 case R_PARISC_DIR21L:
3433 case R_PARISC_DPREL21L:
3434 case R_PARISC_TLS_GD21L:
3435 case R_PARISC_TLS_LDM21L:
3436 case R_PARISC_TLS_LDO21L:
3437 case R_PARISC_TLS_IE21L:
3438 case R_PARISC_TLS_LE21L:
3439 r_field = e_lrsel;
3440 break;
3441
3442 case R_PARISC_PCREL17R:
3443 case R_PARISC_PCREL14R:
3444 case R_PARISC_PLABEL14R:
3445 case R_PARISC_DLTIND14R:
3446 r_field = e_rsel;
3447 break;
3448
3449 case R_PARISC_DIR17R:
3450 case R_PARISC_DIR14R:
3451 case R_PARISC_DPREL14R:
3452 case R_PARISC_TLS_GD14R:
3453 case R_PARISC_TLS_LDM14R:
3454 case R_PARISC_TLS_LDO14R:
3455 case R_PARISC_TLS_IE14R:
3456 case R_PARISC_TLS_LE14R:
3457 r_field = e_rrsel;
3458 break;
3459
3460 case R_PARISC_PCREL12F:
3461 case R_PARISC_PCREL17F:
3462 case R_PARISC_PCREL22F:
3463 r_field = e_fsel;
3464
3465 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3466 {
3467 max_branch_offset = (1 << (17-1)) << 2;
3468 }
3469 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3470 {
3471 max_branch_offset = (1 << (12-1)) << 2;
3472 }
3473 else
3474 {
3475 max_branch_offset = (1 << (22-1)) << 2;
3476 }
3477
3478 /* sym_sec is NULL on undefined weak syms or when shared on
3479 undefined syms. We've already checked for a stub for the
3480 shared undefined case. */
3481 if (sym_sec == NULL)
3482 break;
3483
3484 /* If the branch is out of reach, then redirect the
3485 call to the local stub for this function. */
3486 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3487 {
3488 hsh = hppa_get_stub_entry (input_section, sym_sec,
3489 hh, rela, htab);
3490 if (hsh == NULL)
3491 return bfd_reloc_undefined;
3492
3493 /* Munge up the value and addend so that we call the stub
3494 rather than the procedure directly. */
3495 value = (hsh->stub_offset
3496 + hsh->stub_sec->output_offset
3497 + hsh->stub_sec->output_section->vma
3498 - location);
3499 addend = -8;
3500 }
3501 break;
3502
3503 /* Something we don't know how to handle. */
3504 default:
3505 return bfd_reloc_notsupported;
3506 }
3507
3508 /* Make sure we can reach the stub. */
3509 if (max_branch_offset != 0
3510 && value + addend + max_branch_offset >= 2*max_branch_offset)
3511 {
3512 _bfd_error_handler
3513 /* xgettext:c-format */
3514 (_("%B(%A+%#Lx): cannot reach %s, recompile with -ffunction-sections"),
3515 input_bfd,
3516 input_section,
3517 offset,
3518 hsh->bh_root.string);
3519 bfd_set_error (bfd_error_bad_value);
3520 return bfd_reloc_notsupported;
3521 }
3522
3523 val = hppa_field_adjust (value, addend, r_field);
3524
3525 switch (r_type)
3526 {
3527 case R_PARISC_PCREL12F:
3528 case R_PARISC_PCREL17C:
3529 case R_PARISC_PCREL17F:
3530 case R_PARISC_PCREL17R:
3531 case R_PARISC_PCREL22F:
3532 case R_PARISC_DIR17F:
3533 case R_PARISC_DIR17R:
3534 /* This is a branch. Divide the offset by four.
3535 Note that we need to decide whether it's a branch or
3536 otherwise by inspecting the reloc. Inspecting insn won't
3537 work as insn might be from a .word directive. */
3538 val >>= 2;
3539 break;
3540
3541 default:
3542 break;
3543 }
3544
3545 insn = hppa_rebuild_insn (insn, val, r_format);
3546
3547 /* Update the instruction word. */
3548 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3549 return bfd_reloc_ok;
3550 }
3551
3552 /* Relocate an HPPA ELF section. */
3553
3554 static bfd_boolean
3555 elf32_hppa_relocate_section (bfd *output_bfd,
3556 struct bfd_link_info *info,
3557 bfd *input_bfd,
3558 asection *input_section,
3559 bfd_byte *contents,
3560 Elf_Internal_Rela *relocs,
3561 Elf_Internal_Sym *local_syms,
3562 asection **local_sections)
3563 {
3564 bfd_vma *local_got_offsets;
3565 struct elf32_hppa_link_hash_table *htab;
3566 Elf_Internal_Shdr *symtab_hdr;
3567 Elf_Internal_Rela *rela;
3568 Elf_Internal_Rela *relend;
3569
3570 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3571
3572 htab = hppa_link_hash_table (info);
3573 if (htab == NULL)
3574 return FALSE;
3575
3576 local_got_offsets = elf_local_got_offsets (input_bfd);
3577
3578 rela = relocs;
3579 relend = relocs + input_section->reloc_count;
3580 for (; rela < relend; rela++)
3581 {
3582 unsigned int r_type;
3583 reloc_howto_type *howto;
3584 unsigned int r_symndx;
3585 struct elf32_hppa_link_hash_entry *hh;
3586 Elf_Internal_Sym *sym;
3587 asection *sym_sec;
3588 bfd_vma relocation;
3589 bfd_reloc_status_type rstatus;
3590 const char *sym_name;
3591 bfd_boolean plabel;
3592 bfd_boolean warned_undef;
3593
3594 r_type = ELF32_R_TYPE (rela->r_info);
3595 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3596 {
3597 bfd_set_error (bfd_error_bad_value);
3598 return FALSE;
3599 }
3600 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3601 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3602 continue;
3603
3604 r_symndx = ELF32_R_SYM (rela->r_info);
3605 hh = NULL;
3606 sym = NULL;
3607 sym_sec = NULL;
3608 warned_undef = FALSE;
3609 if (r_symndx < symtab_hdr->sh_info)
3610 {
3611 /* This is a local symbol, h defaults to NULL. */
3612 sym = local_syms + r_symndx;
3613 sym_sec = local_sections[r_symndx];
3614 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3615 }
3616 else
3617 {
3618 struct elf_link_hash_entry *eh;
3619 bfd_boolean unresolved_reloc, ignored;
3620 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3621
3622 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3623 r_symndx, symtab_hdr, sym_hashes,
3624 eh, sym_sec, relocation,
3625 unresolved_reloc, warned_undef,
3626 ignored);
3627
3628 if (!bfd_link_relocatable (info)
3629 && relocation == 0
3630 && eh->root.type != bfd_link_hash_defined
3631 && eh->root.type != bfd_link_hash_defweak
3632 && eh->root.type != bfd_link_hash_undefweak)
3633 {
3634 if (info->unresolved_syms_in_objects == RM_IGNORE
3635 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3636 && eh->type == STT_PARISC_MILLI)
3637 {
3638 (*info->callbacks->undefined_symbol)
3639 (info, eh_name (eh), input_bfd,
3640 input_section, rela->r_offset, FALSE);
3641 warned_undef = TRUE;
3642 }
3643 }
3644 hh = hppa_elf_hash_entry (eh);
3645 }
3646
3647 if (sym_sec != NULL && discarded_section (sym_sec))
3648 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3649 rela, 1, relend,
3650 elf_hppa_howto_table + r_type, 0,
3651 contents);
3652
3653 if (bfd_link_relocatable (info))
3654 continue;
3655
3656 /* Do any required modifications to the relocation value, and
3657 determine what types of dynamic info we need to output, if
3658 any. */
3659 plabel = 0;
3660 switch (r_type)
3661 {
3662 case R_PARISC_DLTIND14F:
3663 case R_PARISC_DLTIND14R:
3664 case R_PARISC_DLTIND21L:
3665 {
3666 bfd_vma off;
3667 bfd_boolean do_got = FALSE;
3668 bfd_boolean reloc = bfd_link_pic (info);
3669
3670 /* Relocation is to the entry for this symbol in the
3671 global offset table. */
3672 if (hh != NULL)
3673 {
3674 bfd_boolean dyn;
3675
3676 off = hh->eh.got.offset;
3677 dyn = htab->etab.dynamic_sections_created;
3678 reloc = (!UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh)
3679 && (reloc
3680 || (hh->eh.dynindx != -1
3681 && !SYMBOL_REFERENCES_LOCAL (info, &hh->eh))));
3682 if (!reloc
3683 || !WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
3684 bfd_link_pic (info),
3685 &hh->eh))
3686 {
3687 /* If we aren't going to call finish_dynamic_symbol,
3688 then we need to handle initialisation of the .got
3689 entry and create needed relocs here. Since the
3690 offset must always be a multiple of 4, we use the
3691 least significant bit to record whether we have
3692 initialised it already. */
3693 if ((off & 1) != 0)
3694 off &= ~1;
3695 else
3696 {
3697 hh->eh.got.offset |= 1;
3698 do_got = TRUE;
3699 }
3700 }
3701 }
3702 else
3703 {
3704 /* Local symbol case. */
3705 if (local_got_offsets == NULL)
3706 abort ();
3707
3708 off = local_got_offsets[r_symndx];
3709
3710 /* The offset must always be a multiple of 4. We use
3711 the least significant bit to record whether we have
3712 already generated the necessary reloc. */
3713 if ((off & 1) != 0)
3714 off &= ~1;
3715 else
3716 {
3717 local_got_offsets[r_symndx] |= 1;
3718 do_got = TRUE;
3719 }
3720 }
3721
3722 if (do_got)
3723 {
3724 if (reloc)
3725 {
3726 /* Output a dynamic relocation for this GOT entry.
3727 In this case it is relative to the base of the
3728 object because the symbol index is zero. */
3729 Elf_Internal_Rela outrel;
3730 bfd_byte *loc;
3731 asection *sec = htab->etab.srelgot;
3732
3733 outrel.r_offset = (off
3734 + htab->etab.sgot->output_offset
3735 + htab->etab.sgot->output_section->vma);
3736 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3737 outrel.r_addend = relocation;
3738 loc = sec->contents;
3739 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3740 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3741 }
3742 else
3743 bfd_put_32 (output_bfd, relocation,
3744 htab->etab.sgot->contents + off);
3745 }
3746
3747 if (off >= (bfd_vma) -2)
3748 abort ();
3749
3750 /* Add the base of the GOT to the relocation value. */
3751 relocation = (off
3752 + htab->etab.sgot->output_offset
3753 + htab->etab.sgot->output_section->vma);
3754 }
3755 break;
3756
3757 case R_PARISC_SEGREL32:
3758 /* If this is the first SEGREL relocation, then initialize
3759 the segment base values. */
3760 if (htab->text_segment_base == (bfd_vma) -1)
3761 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3762 break;
3763
3764 case R_PARISC_PLABEL14R:
3765 case R_PARISC_PLABEL21L:
3766 case R_PARISC_PLABEL32:
3767 if (htab->etab.dynamic_sections_created)
3768 {
3769 bfd_vma off;
3770 bfd_boolean do_plt = 0;
3771 /* If we have a global symbol with a PLT slot, then
3772 redirect this relocation to it. */
3773 if (hh != NULL)
3774 {
3775 off = hh->eh.plt.offset;
3776 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1,
3777 bfd_link_pic (info),
3778 &hh->eh))
3779 {
3780 /* In a non-shared link, adjust_dynamic_symbols
3781 isn't called for symbols forced local. We
3782 need to write out the plt entry here. */
3783 if ((off & 1) != 0)
3784 off &= ~1;
3785 else
3786 {
3787 hh->eh.plt.offset |= 1;
3788 do_plt = 1;
3789 }
3790 }
3791 }
3792 else
3793 {
3794 bfd_vma *local_plt_offsets;
3795
3796 if (local_got_offsets == NULL)
3797 abort ();
3798
3799 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3800 off = local_plt_offsets[r_symndx];
3801
3802 /* As for the local .got entry case, we use the last
3803 bit to record whether we've already initialised
3804 this local .plt entry. */
3805 if ((off & 1) != 0)
3806 off &= ~1;
3807 else
3808 {
3809 local_plt_offsets[r_symndx] |= 1;
3810 do_plt = 1;
3811 }
3812 }
3813
3814 if (do_plt)
3815 {
3816 if (bfd_link_pic (info))
3817 {
3818 /* Output a dynamic IPLT relocation for this
3819 PLT entry. */
3820 Elf_Internal_Rela outrel;
3821 bfd_byte *loc;
3822 asection *s = htab->etab.srelplt;
3823
3824 outrel.r_offset = (off
3825 + htab->etab.splt->output_offset
3826 + htab->etab.splt->output_section->vma);
3827 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3828 outrel.r_addend = relocation;
3829 loc = s->contents;
3830 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3831 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3832 }
3833 else
3834 {
3835 bfd_put_32 (output_bfd,
3836 relocation,
3837 htab->etab.splt->contents + off);
3838 bfd_put_32 (output_bfd,
3839 elf_gp (htab->etab.splt->output_section->owner),
3840 htab->etab.splt->contents + off + 4);
3841 }
3842 }
3843
3844 if (off >= (bfd_vma) -2)
3845 abort ();
3846
3847 /* PLABELs contain function pointers. Relocation is to
3848 the entry for the function in the .plt. The magic +2
3849 offset signals to $$dyncall that the function pointer
3850 is in the .plt and thus has a gp pointer too.
3851 Exception: Undefined PLABELs should have a value of
3852 zero. */
3853 if (hh == NULL
3854 || (hh->eh.root.type != bfd_link_hash_undefweak
3855 && hh->eh.root.type != bfd_link_hash_undefined))
3856 {
3857 relocation = (off
3858 + htab->etab.splt->output_offset
3859 + htab->etab.splt->output_section->vma
3860 + 2);
3861 }
3862 plabel = 1;
3863 }
3864 /* Fall through. */
3865
3866 case R_PARISC_DIR17F:
3867 case R_PARISC_DIR17R:
3868 case R_PARISC_DIR14F:
3869 case R_PARISC_DIR14R:
3870 case R_PARISC_DIR21L:
3871 case R_PARISC_DPREL14F:
3872 case R_PARISC_DPREL14R:
3873 case R_PARISC_DPREL21L:
3874 case R_PARISC_DIR32:
3875 if ((input_section->flags & SEC_ALLOC) == 0)
3876 break;
3877
3878 /* The reloc types handled here and this conditional
3879 expression must match the code in ..check_relocs and
3880 allocate_dynrelocs. ie. We need exactly the same condition
3881 as in ..check_relocs, with some extra conditions (dynindx
3882 test in this case) to cater for relocs removed by
3883 allocate_dynrelocs. */
3884 if ((bfd_link_pic (info)
3885 && !(hh != NULL
3886 && ((hh->eh.root.type == bfd_link_hash_undefined
3887 && ELF_ST_VISIBILITY (hh->eh.other) != STV_DEFAULT)
3888 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh)))
3889 && (IS_ABSOLUTE_RELOC (r_type)
3890 || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
3891 || (ELIMINATE_COPY_RELOCS
3892 && !bfd_link_pic (info)
3893 && hh != NULL
3894 && hh->eh.dynindx != -1
3895 && !hh->eh.non_got_ref
3896 && !hh->eh.def_regular))
3897 {
3898 Elf_Internal_Rela outrel;
3899 bfd_boolean skip;
3900 asection *sreloc;
3901 bfd_byte *loc;
3902
3903 /* When generating a shared object, these relocations
3904 are copied into the output file to be resolved at run
3905 time. */
3906
3907 outrel.r_addend = rela->r_addend;
3908 outrel.r_offset =
3909 _bfd_elf_section_offset (output_bfd, info, input_section,
3910 rela->r_offset);
3911 skip = (outrel.r_offset == (bfd_vma) -1
3912 || outrel.r_offset == (bfd_vma) -2);
3913 outrel.r_offset += (input_section->output_offset
3914 + input_section->output_section->vma);
3915
3916 if (skip)
3917 {
3918 memset (&outrel, 0, sizeof (outrel));
3919 }
3920 else if (hh != NULL
3921 && hh->eh.dynindx != -1
3922 && (plabel
3923 || !IS_ABSOLUTE_RELOC (r_type)
3924 || !bfd_link_pic (info)
3925 || !SYMBOLIC_BIND (info, &hh->eh)
3926 || !hh->eh.def_regular))
3927 {
3928 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
3929 }
3930 else /* It's a local symbol, or one marked to become local. */
3931 {
3932 int indx = 0;
3933
3934 /* Add the absolute offset of the symbol. */
3935 outrel.r_addend += relocation;
3936
3937 /* Global plabels need to be processed by the
3938 dynamic linker so that functions have at most one
3939 fptr. For this reason, we need to differentiate
3940 between global and local plabels, which we do by
3941 providing the function symbol for a global plabel
3942 reloc, and no symbol for local plabels. */
3943 if (! plabel
3944 && sym_sec != NULL
3945 && sym_sec->output_section != NULL
3946 && ! bfd_is_abs_section (sym_sec))
3947 {
3948 asection *osec;
3949
3950 osec = sym_sec->output_section;
3951 indx = elf_section_data (osec)->dynindx;
3952 if (indx == 0)
3953 {
3954 osec = htab->etab.text_index_section;
3955 indx = elf_section_data (osec)->dynindx;
3956 }
3957 BFD_ASSERT (indx != 0);
3958
3959 /* We are turning this relocation into one
3960 against a section symbol, so subtract out the
3961 output section's address but not the offset
3962 of the input section in the output section. */
3963 outrel.r_addend -= osec->vma;
3964 }
3965
3966 outrel.r_info = ELF32_R_INFO (indx, r_type);
3967 }
3968 sreloc = elf_section_data (input_section)->sreloc;
3969 if (sreloc == NULL)
3970 abort ();
3971
3972 loc = sreloc->contents;
3973 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3974 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3975 }
3976 break;
3977
3978 case R_PARISC_TLS_LDM21L:
3979 case R_PARISC_TLS_LDM14R:
3980 {
3981 bfd_vma off;
3982
3983 off = htab->tls_ldm_got.offset;
3984 if (off & 1)
3985 off &= ~1;
3986 else
3987 {
3988 Elf_Internal_Rela outrel;
3989 bfd_byte *loc;
3990
3991 outrel.r_offset = (off
3992 + htab->etab.sgot->output_section->vma
3993 + htab->etab.sgot->output_offset);
3994 outrel.r_addend = 0;
3995 outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
3996 loc = htab->etab.srelgot->contents;
3997 loc += htab->etab.srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
3998
3999 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4000 htab->tls_ldm_got.offset |= 1;
4001 }
4002
4003 /* Add the base of the GOT to the relocation value. */
4004 relocation = (off
4005 + htab->etab.sgot->output_offset
4006 + htab->etab.sgot->output_section->vma);
4007
4008 break;
4009 }
4010
4011 case R_PARISC_TLS_LDO21L:
4012 case R_PARISC_TLS_LDO14R:
4013 relocation -= dtpoff_base (info);
4014 break;
4015
4016 case R_PARISC_TLS_GD21L:
4017 case R_PARISC_TLS_GD14R:
4018 case R_PARISC_TLS_IE21L:
4019 case R_PARISC_TLS_IE14R:
4020 {
4021 bfd_vma off;
4022 int indx;
4023 char tls_type;
4024
4025 indx = 0;
4026 if (hh != NULL)
4027 {
4028 bfd_boolean dyn;
4029 dyn = htab->etab.dynamic_sections_created;
4030
4031 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
4032 bfd_link_pic (info),
4033 &hh->eh)
4034 && (!bfd_link_pic (info)
4035 || !SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4036 {
4037 indx = hh->eh.dynindx;
4038 }
4039 off = hh->eh.got.offset;
4040 tls_type = hh->tls_type;
4041 }
4042 else
4043 {
4044 off = local_got_offsets[r_symndx];
4045 tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4046 }
4047
4048 if (tls_type == GOT_UNKNOWN)
4049 abort ();
4050
4051 if ((off & 1) != 0)
4052 off &= ~1;
4053 else
4054 {
4055 bfd_boolean need_relocs = FALSE;
4056 Elf_Internal_Rela outrel;
4057 bfd_byte *loc = NULL;
4058 int cur_off = off;
4059
4060 /* The GOT entries have not been initialized yet. Do it
4061 now, and emit any relocations. If both an IE GOT and a
4062 GD GOT are necessary, we emit the GD first. */
4063
4064 if ((bfd_link_pic (info) || indx != 0)
4065 && (hh == NULL
4066 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
4067 || hh->eh.root.type != bfd_link_hash_undefweak))
4068 {
4069 need_relocs = TRUE;
4070 loc = htab->etab.srelgot->contents;
4071 /* FIXME (CAO): Should this be reloc_count++ ? */
4072 loc += htab->etab.srelgot->reloc_count * sizeof (Elf32_External_Rela);
4073 }
4074
4075 if (tls_type & GOT_TLS_GD)
4076 {
4077 if (need_relocs)
4078 {
4079 outrel.r_offset = (cur_off
4080 + htab->etab.sgot->output_section->vma
4081 + htab->etab.sgot->output_offset);
4082 outrel.r_info = ELF32_R_INFO (indx,R_PARISC_TLS_DTPMOD32);
4083 outrel.r_addend = 0;
4084 bfd_put_32 (output_bfd, 0, htab->etab.sgot->contents + cur_off);
4085 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4086 htab->etab.srelgot->reloc_count++;
4087 loc += sizeof (Elf32_External_Rela);
4088
4089 if (indx == 0)
4090 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4091 htab->etab.sgot->contents + cur_off + 4);
4092 else
4093 {
4094 bfd_put_32 (output_bfd, 0,
4095 htab->etab.sgot->contents + cur_off + 4);
4096 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4097 outrel.r_offset += 4;
4098 bfd_elf32_swap_reloca_out (output_bfd, &outrel,loc);
4099 htab->etab.srelgot->reloc_count++;
4100 loc += sizeof (Elf32_External_Rela);
4101 }
4102 }
4103 else
4104 {
4105 /* If we are not emitting relocations for a
4106 general dynamic reference, then we must be in a
4107 static link or an executable link with the
4108 symbol binding locally. Mark it as belonging
4109 to module 1, the executable. */
4110 bfd_put_32 (output_bfd, 1,
4111 htab->etab.sgot->contents + cur_off);
4112 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4113 htab->etab.sgot->contents + cur_off + 4);
4114 }
4115
4116
4117 cur_off += 8;
4118 }
4119
4120 if (tls_type & GOT_TLS_IE)
4121 {
4122 if (need_relocs)
4123 {
4124 outrel.r_offset = (cur_off
4125 + htab->etab.sgot->output_section->vma
4126 + htab->etab.sgot->output_offset);
4127 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_TPREL32);
4128
4129 if (indx == 0)
4130 outrel.r_addend = relocation - dtpoff_base (info);
4131 else
4132 outrel.r_addend = 0;
4133
4134 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4135 htab->etab.srelgot->reloc_count++;
4136 loc += sizeof (Elf32_External_Rela);
4137 }
4138 else
4139 bfd_put_32 (output_bfd, tpoff (info, relocation),
4140 htab->etab.sgot->contents + cur_off);
4141
4142 cur_off += 4;
4143 }
4144
4145 if (hh != NULL)
4146 hh->eh.got.offset |= 1;
4147 else
4148 local_got_offsets[r_symndx] |= 1;
4149 }
4150
4151 if ((tls_type & GOT_TLS_GD)
4152 && r_type != R_PARISC_TLS_GD21L
4153 && r_type != R_PARISC_TLS_GD14R)
4154 off += 2 * GOT_ENTRY_SIZE;
4155
4156 /* Add the base of the GOT to the relocation value. */
4157 relocation = (off
4158 + htab->etab.sgot->output_offset
4159 + htab->etab.sgot->output_section->vma);
4160
4161 break;
4162 }
4163
4164 case R_PARISC_TLS_LE21L:
4165 case R_PARISC_TLS_LE14R:
4166 {
4167 relocation = tpoff (info, relocation);
4168 break;
4169 }
4170 break;
4171
4172 default:
4173 break;
4174 }
4175
4176 rstatus = final_link_relocate (input_section, contents, rela, relocation,
4177 htab, sym_sec, hh, info);
4178
4179 if (rstatus == bfd_reloc_ok)
4180 continue;
4181
4182 if (hh != NULL)
4183 sym_name = hh_name (hh);
4184 else
4185 {
4186 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4187 symtab_hdr->sh_link,
4188 sym->st_name);
4189 if (sym_name == NULL)
4190 return FALSE;
4191 if (*sym_name == '\0')
4192 sym_name = bfd_section_name (input_bfd, sym_sec);
4193 }
4194
4195 howto = elf_hppa_howto_table + r_type;
4196
4197 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4198 {
4199 if (rstatus == bfd_reloc_notsupported || !warned_undef)
4200 {
4201 _bfd_error_handler
4202 /* xgettext:c-format */
4203 (_("%B(%A+%#Lx): cannot handle %s for %s"),
4204 input_bfd,
4205 input_section,
4206 rela->r_offset,
4207 howto->name,
4208 sym_name);
4209 bfd_set_error (bfd_error_bad_value);
4210 return FALSE;
4211 }
4212 }
4213 else
4214 (*info->callbacks->reloc_overflow)
4215 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4216 (bfd_vma) 0, input_bfd, input_section, rela->r_offset);
4217 }
4218
4219 return TRUE;
4220 }
4221
4222 /* Finish up dynamic symbol handling. We set the contents of various
4223 dynamic sections here. */
4224
4225 static bfd_boolean
4226 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4227 struct bfd_link_info *info,
4228 struct elf_link_hash_entry *eh,
4229 Elf_Internal_Sym *sym)
4230 {
4231 struct elf32_hppa_link_hash_table *htab;
4232 Elf_Internal_Rela rela;
4233 bfd_byte *loc;
4234
4235 htab = hppa_link_hash_table (info);
4236 if (htab == NULL)
4237 return FALSE;
4238
4239 if (eh->plt.offset != (bfd_vma) -1)
4240 {
4241 bfd_vma value;
4242
4243 if (eh->plt.offset & 1)
4244 abort ();
4245
4246 /* This symbol has an entry in the procedure linkage table. Set
4247 it up.
4248
4249 The format of a plt entry is
4250 <funcaddr>
4251 <__gp>
4252 */
4253 value = 0;
4254 if (eh->root.type == bfd_link_hash_defined
4255 || eh->root.type == bfd_link_hash_defweak)
4256 {
4257 value = eh->root.u.def.value;
4258 if (eh->root.u.def.section->output_section != NULL)
4259 value += (eh->root.u.def.section->output_offset
4260 + eh->root.u.def.section->output_section->vma);
4261 }
4262
4263 /* Create a dynamic IPLT relocation for this entry. */
4264 rela.r_offset = (eh->plt.offset
4265 + htab->etab.splt->output_offset
4266 + htab->etab.splt->output_section->vma);
4267 if (eh->dynindx != -1)
4268 {
4269 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4270 rela.r_addend = 0;
4271 }
4272 else
4273 {
4274 /* This symbol has been marked to become local, and is
4275 used by a plabel so must be kept in the .plt. */
4276 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4277 rela.r_addend = value;
4278 }
4279
4280 loc = htab->etab.srelplt->contents;
4281 loc += htab->etab.srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4282 bfd_elf32_swap_reloca_out (htab->etab.splt->output_section->owner, &rela, loc);
4283
4284 if (!eh->def_regular)
4285 {
4286 /* Mark the symbol as undefined, rather than as defined in
4287 the .plt section. Leave the value alone. */
4288 sym->st_shndx = SHN_UNDEF;
4289 }
4290 }
4291
4292 if (eh->got.offset != (bfd_vma) -1
4293 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_GD) == 0
4294 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_IE) == 0
4295 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
4296 {
4297 bfd_boolean is_dyn = (eh->dynindx != -1
4298 && !SYMBOL_REFERENCES_LOCAL (info, eh));
4299
4300 if (is_dyn || bfd_link_pic (info))
4301 {
4302 /* This symbol has an entry in the global offset table. Set
4303 it up. */
4304
4305 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4306 + htab->etab.sgot->output_offset
4307 + htab->etab.sgot->output_section->vma);
4308
4309 /* If this is a -Bsymbolic link and the symbol is defined
4310 locally or was forced to be local because of a version
4311 file, we just want to emit a RELATIVE reloc. The entry
4312 in the global offset table will already have been
4313 initialized in the relocate_section function. */
4314 if (!is_dyn)
4315 {
4316 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4317 rela.r_addend = (eh->root.u.def.value
4318 + eh->root.u.def.section->output_offset
4319 + eh->root.u.def.section->output_section->vma);
4320 }
4321 else
4322 {
4323 if ((eh->got.offset & 1) != 0)
4324 abort ();
4325
4326 bfd_put_32 (output_bfd, 0,
4327 htab->etab.sgot->contents + (eh->got.offset & ~1));
4328 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4329 rela.r_addend = 0;
4330 }
4331
4332 loc = htab->etab.srelgot->contents;
4333 loc += (htab->etab.srelgot->reloc_count++
4334 * sizeof (Elf32_External_Rela));
4335 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4336 }
4337 }
4338
4339 if (eh->needs_copy)
4340 {
4341 asection *sec;
4342
4343 /* This symbol needs a copy reloc. Set it up. */
4344
4345 if (! (eh->dynindx != -1
4346 && (eh->root.type == bfd_link_hash_defined
4347 || eh->root.type == bfd_link_hash_defweak)))
4348 abort ();
4349
4350 rela.r_offset = (eh->root.u.def.value
4351 + eh->root.u.def.section->output_offset
4352 + eh->root.u.def.section->output_section->vma);
4353 rela.r_addend = 0;
4354 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4355 if (eh->root.u.def.section == htab->etab.sdynrelro)
4356 sec = htab->etab.sreldynrelro;
4357 else
4358 sec = htab->etab.srelbss;
4359 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4360 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4361 }
4362
4363 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4364 if (eh == htab->etab.hdynamic || eh == htab->etab.hgot)
4365 {
4366 sym->st_shndx = SHN_ABS;
4367 }
4368
4369 return TRUE;
4370 }
4371
4372 /* Used to decide how to sort relocs in an optimal manner for the
4373 dynamic linker, before writing them out. */
4374
4375 static enum elf_reloc_type_class
4376 elf32_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4377 const asection *rel_sec ATTRIBUTE_UNUSED,
4378 const Elf_Internal_Rela *rela)
4379 {
4380 /* Handle TLS relocs first; we don't want them to be marked
4381 relative by the "if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)"
4382 check below. */
4383 switch ((int) ELF32_R_TYPE (rela->r_info))
4384 {
4385 case R_PARISC_TLS_DTPMOD32:
4386 case R_PARISC_TLS_DTPOFF32:
4387 case R_PARISC_TLS_TPREL32:
4388 return reloc_class_normal;
4389 }
4390
4391 if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)
4392 return reloc_class_relative;
4393
4394 switch ((int) ELF32_R_TYPE (rela->r_info))
4395 {
4396 case R_PARISC_IPLT:
4397 return reloc_class_plt;
4398 case R_PARISC_COPY:
4399 return reloc_class_copy;
4400 default:
4401 return reloc_class_normal;
4402 }
4403 }
4404
4405 /* Finish up the dynamic sections. */
4406
4407 static bfd_boolean
4408 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4409 struct bfd_link_info *info)
4410 {
4411 bfd *dynobj;
4412 struct elf32_hppa_link_hash_table *htab;
4413 asection *sdyn;
4414 asection * sgot;
4415
4416 htab = hppa_link_hash_table (info);
4417 if (htab == NULL)
4418 return FALSE;
4419
4420 dynobj = htab->etab.dynobj;
4421
4422 sgot = htab->etab.sgot;
4423 /* A broken linker script might have discarded the dynamic sections.
4424 Catch this here so that we do not seg-fault later on. */
4425 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
4426 return FALSE;
4427
4428 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4429
4430 if (htab->etab.dynamic_sections_created)
4431 {
4432 Elf32_External_Dyn *dyncon, *dynconend;
4433
4434 if (sdyn == NULL)
4435 abort ();
4436
4437 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4438 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4439 for (; dyncon < dynconend; dyncon++)
4440 {
4441 Elf_Internal_Dyn dyn;
4442 asection *s;
4443
4444 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4445
4446 switch (dyn.d_tag)
4447 {
4448 default:
4449 continue;
4450
4451 case DT_PLTGOT:
4452 /* Use PLTGOT to set the GOT register. */
4453 dyn.d_un.d_ptr = elf_gp (output_bfd);
4454 break;
4455
4456 case DT_JMPREL:
4457 s = htab->etab.srelplt;
4458 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4459 break;
4460
4461 case DT_PLTRELSZ:
4462 s = htab->etab.srelplt;
4463 dyn.d_un.d_val = s->size;
4464 break;
4465 }
4466
4467 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4468 }
4469 }
4470
4471 if (sgot != NULL && sgot->size != 0)
4472 {
4473 /* Fill in the first entry in the global offset table.
4474 We use it to point to our dynamic section, if we have one. */
4475 bfd_put_32 (output_bfd,
4476 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4477 sgot->contents);
4478
4479 /* The second entry is reserved for use by the dynamic linker. */
4480 memset (sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4481
4482 /* Set .got entry size. */
4483 elf_section_data (sgot->output_section)
4484 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4485 }
4486
4487 if (htab->etab.splt != NULL && htab->etab.splt->size != 0)
4488 {
4489 /* Set plt entry size to 0 instead of PLT_ENTRY_SIZE, since we add the
4490 plt stubs and as such the section does not hold a table of fixed-size
4491 entries. */
4492 elf_section_data (htab->etab.splt->output_section)->this_hdr.sh_entsize = 0;
4493
4494 if (htab->need_plt_stub)
4495 {
4496 /* Set up the .plt stub. */
4497 memcpy (htab->etab.splt->contents
4498 + htab->etab.splt->size - sizeof (plt_stub),
4499 plt_stub, sizeof (plt_stub));
4500
4501 if ((htab->etab.splt->output_offset
4502 + htab->etab.splt->output_section->vma
4503 + htab->etab.splt->size)
4504 != (sgot->output_offset
4505 + sgot->output_section->vma))
4506 {
4507 _bfd_error_handler
4508 (_(".got section not immediately after .plt section"));
4509 return FALSE;
4510 }
4511 }
4512 }
4513
4514 return TRUE;
4515 }
4516
4517 /* Called when writing out an object file to decide the type of a
4518 symbol. */
4519 static int
4520 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4521 {
4522 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4523 return STT_PARISC_MILLI;
4524 else
4525 return type;
4526 }
4527
4528 /* Misc BFD support code. */
4529 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4530 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4531 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4532 #define elf_info_to_howto elf_hppa_info_to_howto
4533 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4534
4535 /* Stuff for the BFD linker. */
4536 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4537 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4538 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4539 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4540 #define elf_backend_check_relocs elf32_hppa_check_relocs
4541 #define elf_backend_relocs_compatible _bfd_elf_relocs_compatible
4542 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4543 #define elf_backend_fake_sections elf_hppa_fake_sections
4544 #define elf_backend_relocate_section elf32_hppa_relocate_section
4545 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4546 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4547 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4548 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4549 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4550 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4551 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4552 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4553 #define elf_backend_object_p elf32_hppa_object_p
4554 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4555 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4556 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4557 #define elf_backend_action_discarded elf_hppa_action_discarded
4558
4559 #define elf_backend_can_gc_sections 1
4560 #define elf_backend_can_refcount 1
4561 #define elf_backend_plt_alignment 2
4562 #define elf_backend_want_got_plt 0
4563 #define elf_backend_plt_readonly 0
4564 #define elf_backend_want_plt_sym 0
4565 #define elf_backend_got_header_size 8
4566 #define elf_backend_want_dynrelro 1
4567 #define elf_backend_rela_normal 1
4568 #define elf_backend_dtrel_excludes_plt 1
4569 #define elf_backend_no_page_alias 1
4570
4571 #define TARGET_BIG_SYM hppa_elf32_vec
4572 #define TARGET_BIG_NAME "elf32-hppa"
4573 #define ELF_ARCH bfd_arch_hppa
4574 #define ELF_TARGET_ID HPPA32_ELF_DATA
4575 #define ELF_MACHINE_CODE EM_PARISC
4576 #define ELF_MAXPAGESIZE 0x1000
4577 #define ELF_OSABI ELFOSABI_HPUX
4578 #define elf32_bed elf32_hppa_hpux_bed
4579
4580 #include "elf32-target.h"
4581
4582 #undef TARGET_BIG_SYM
4583 #define TARGET_BIG_SYM hppa_elf32_linux_vec
4584 #undef TARGET_BIG_NAME
4585 #define TARGET_BIG_NAME "elf32-hppa-linux"
4586 #undef ELF_OSABI
4587 #define ELF_OSABI ELFOSABI_GNU
4588 #undef elf32_bed
4589 #define elf32_bed elf32_hppa_linux_bed
4590
4591 #include "elf32-target.h"
4592
4593 #undef TARGET_BIG_SYM
4594 #define TARGET_BIG_SYM hppa_elf32_nbsd_vec
4595 #undef TARGET_BIG_NAME
4596 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4597 #undef ELF_OSABI
4598 #define ELF_OSABI ELFOSABI_NETBSD
4599 #undef elf32_bed
4600 #define elf32_bed elf32_hppa_netbsd_bed
4601
4602 #include "elf32-target.h"
This page took 0.127788 seconds and 4 git commands to generate.