be88d873fc487b71bd90e5ada22dc47e6d886fda
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright (C) 1990-2017 Free Software Foundation, Inc.
3
4 Original code by
5 Center for Software Science
6 Department of Computer Science
7 University of Utah
8 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
9 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
10 TLS support written by Randolph Chung <tausq@debian.org>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
28
29 #include "sysdep.h"
30 #include "bfd.h"
31 #include "libbfd.h"
32 #include "elf-bfd.h"
33 #include "elf/hppa.h"
34 #include "libhppa.h"
35 #include "elf32-hppa.h"
36 #define ARCH_SIZE 32
37 #include "elf32-hppa.h"
38 #include "elf-hppa.h"
39
40 /* In order to gain some understanding of code in this file without
41 knowing all the intricate details of the linker, note the
42 following:
43
44 Functions named elf32_hppa_* are called by external routines, other
45 functions are only called locally. elf32_hppa_* functions appear
46 in this file more or less in the order in which they are called
47 from external routines. eg. elf32_hppa_check_relocs is called
48 early in the link process, elf32_hppa_finish_dynamic_sections is
49 one of the last functions. */
50
51 /* We use two hash tables to hold information for linking PA ELF objects.
52
53 The first is the elf32_hppa_link_hash_table which is derived
54 from the standard ELF linker hash table. We use this as a place to
55 attach other hash tables and static information.
56
57 The second is the stub hash table which is derived from the
58 base BFD hash table. The stub hash table holds the information
59 necessary to build the linker stubs during a link.
60
61 There are a number of different stubs generated by the linker.
62
63 Long branch stub:
64 : ldil LR'X,%r1
65 : be,n RR'X(%sr4,%r1)
66
67 PIC long branch stub:
68 : b,l .+8,%r1
69 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
70 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
71
72 Import stub to call shared library routine from normal object file
73 (single sub-space version)
74 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
75 : ldw RR'lt_ptr+ltoff(%r1),%r21
76 : bv %r0(%r21)
77 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
78
79 Import stub to call shared library routine from shared library
80 (single sub-space version)
81 : addil LR'ltoff,%r19 ; get procedure entry point
82 : ldw RR'ltoff(%r1),%r21
83 : bv %r0(%r21)
84 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
85
86 Import stub to call shared library routine from normal object file
87 (multiple sub-space support)
88 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
89 : ldw RR'lt_ptr+ltoff(%r1),%r21
90 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
91 : ldsid (%r21),%r1
92 : mtsp %r1,%sr0
93 : be 0(%sr0,%r21) ; branch to target
94 : stw %rp,-24(%sp) ; save rp
95
96 Import stub to call shared library routine from shared library
97 (multiple sub-space support)
98 : addil LR'ltoff,%r19 ; get procedure entry point
99 : ldw RR'ltoff(%r1),%r21
100 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
101 : ldsid (%r21),%r1
102 : mtsp %r1,%sr0
103 : be 0(%sr0,%r21) ; branch to target
104 : stw %rp,-24(%sp) ; save rp
105
106 Export stub to return from shared lib routine (multiple sub-space support)
107 One of these is created for each exported procedure in a shared
108 library (and stored in the shared lib). Shared lib routines are
109 called via the first instruction in the export stub so that we can
110 do an inter-space return. Not required for single sub-space.
111 : bl,n X,%rp ; trap the return
112 : nop
113 : ldw -24(%sp),%rp ; restore the original rp
114 : ldsid (%rp),%r1
115 : mtsp %r1,%sr0
116 : be,n 0(%sr0,%rp) ; inter-space return. */
117
118
119 /* Variable names follow a coding style.
120 Please follow this (Apps Hungarian) style:
121
122 Structure/Variable Prefix
123 elf_link_hash_table "etab"
124 elf_link_hash_entry "eh"
125
126 elf32_hppa_link_hash_table "htab"
127 elf32_hppa_link_hash_entry "hh"
128
129 bfd_hash_table "btab"
130 bfd_hash_entry "bh"
131
132 bfd_hash_table containing stubs "bstab"
133 elf32_hppa_stub_hash_entry "hsh"
134
135 elf32_hppa_dyn_reloc_entry "hdh"
136
137 Always remember to use GNU Coding Style. */
138
139 #define PLT_ENTRY_SIZE 8
140 #define GOT_ENTRY_SIZE 4
141 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
142
143 static const bfd_byte plt_stub[] =
144 {
145 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
146 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
147 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
148 #define PLT_STUB_ENTRY (3*4)
149 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
150 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
151 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
152 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
153 };
154
155 /* Section name for stubs is the associated section name plus this
156 string. */
157 #define STUB_SUFFIX ".stub"
158
159 /* We don't need to copy certain PC- or GP-relative dynamic relocs
160 into a shared object's dynamic section. All the relocs of the
161 limited class we are interested in, are absolute. */
162 #ifndef RELATIVE_DYNRELOCS
163 #define RELATIVE_DYNRELOCS 0
164 #define IS_ABSOLUTE_RELOC(r_type) 1
165 #endif
166
167 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
168 copying dynamic variables from a shared lib into an app's dynbss
169 section, and instead use a dynamic relocation to point into the
170 shared lib. */
171 #define ELIMINATE_COPY_RELOCS 1
172
173 enum elf32_hppa_stub_type
174 {
175 hppa_stub_long_branch,
176 hppa_stub_long_branch_shared,
177 hppa_stub_import,
178 hppa_stub_import_shared,
179 hppa_stub_export,
180 hppa_stub_none
181 };
182
183 struct elf32_hppa_stub_hash_entry
184 {
185 /* Base hash table entry structure. */
186 struct bfd_hash_entry bh_root;
187
188 /* The stub section. */
189 asection *stub_sec;
190
191 /* Offset within stub_sec of the beginning of this stub. */
192 bfd_vma stub_offset;
193
194 /* Given the symbol's value and its section we can determine its final
195 value when building the stubs (so the stub knows where to jump. */
196 bfd_vma target_value;
197 asection *target_section;
198
199 enum elf32_hppa_stub_type stub_type;
200
201 /* The symbol table entry, if any, that this was derived from. */
202 struct elf32_hppa_link_hash_entry *hh;
203
204 /* Where this stub is being called from, or, in the case of combined
205 stub sections, the first input section in the group. */
206 asection *id_sec;
207 };
208
209 struct elf32_hppa_link_hash_entry
210 {
211 struct elf_link_hash_entry eh;
212
213 /* A pointer to the most recently used stub hash entry against this
214 symbol. */
215 struct elf32_hppa_stub_hash_entry *hsh_cache;
216
217 /* Used to count relocations for delayed sizing of relocation
218 sections. */
219 struct elf32_hppa_dyn_reloc_entry
220 {
221 /* Next relocation in the chain. */
222 struct elf32_hppa_dyn_reloc_entry *hdh_next;
223
224 /* The input section of the reloc. */
225 asection *sec;
226
227 /* Number of relocs copied in this section. */
228 bfd_size_type count;
229
230 #if RELATIVE_DYNRELOCS
231 /* Number of relative relocs copied for the input section. */
232 bfd_size_type relative_count;
233 #endif
234 } *dyn_relocs;
235
236 enum
237 {
238 GOT_UNKNOWN = 0, GOT_NORMAL = 1, GOT_TLS_GD = 2, GOT_TLS_LDM = 4, GOT_TLS_IE = 8
239 } tls_type;
240
241 /* Set if this symbol is used by a plabel reloc. */
242 unsigned int plabel:1;
243 };
244
245 struct elf32_hppa_link_hash_table
246 {
247 /* The main hash table. */
248 struct elf_link_hash_table etab;
249
250 /* The stub hash table. */
251 struct bfd_hash_table bstab;
252
253 /* Linker stub bfd. */
254 bfd *stub_bfd;
255
256 /* Linker call-backs. */
257 asection * (*add_stub_section) (const char *, asection *);
258 void (*layout_sections_again) (void);
259
260 /* Array to keep track of which stub sections have been created, and
261 information on stub grouping. */
262 struct map_stub
263 {
264 /* This is the section to which stubs in the group will be
265 attached. */
266 asection *link_sec;
267 /* The stub section. */
268 asection *stub_sec;
269 } *stub_group;
270
271 /* Assorted information used by elf32_hppa_size_stubs. */
272 unsigned int bfd_count;
273 unsigned int top_index;
274 asection **input_list;
275 Elf_Internal_Sym **all_local_syms;
276
277 /* Used during a final link to store the base of the text and data
278 segments so that we can perform SEGREL relocations. */
279 bfd_vma text_segment_base;
280 bfd_vma data_segment_base;
281
282 /* Whether we support multiple sub-spaces for shared libs. */
283 unsigned int multi_subspace:1;
284
285 /* Flags set when various size branches are detected. Used to
286 select suitable defaults for the stub group size. */
287 unsigned int has_12bit_branch:1;
288 unsigned int has_17bit_branch:1;
289 unsigned int has_22bit_branch:1;
290
291 /* Set if we need a .plt stub to support lazy dynamic linking. */
292 unsigned int need_plt_stub:1;
293
294 /* Small local sym cache. */
295 struct sym_cache sym_cache;
296
297 /* Data for LDM relocations. */
298 union
299 {
300 bfd_signed_vma refcount;
301 bfd_vma offset;
302 } tls_ldm_got;
303 };
304
305 /* Various hash macros and functions. */
306 #define hppa_link_hash_table(p) \
307 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
308 == HPPA32_ELF_DATA ? ((struct elf32_hppa_link_hash_table *) ((p)->hash)) : NULL)
309
310 #define hppa_elf_hash_entry(ent) \
311 ((struct elf32_hppa_link_hash_entry *)(ent))
312
313 #define hppa_stub_hash_entry(ent) \
314 ((struct elf32_hppa_stub_hash_entry *)(ent))
315
316 #define hppa_stub_hash_lookup(table, string, create, copy) \
317 ((struct elf32_hppa_stub_hash_entry *) \
318 bfd_hash_lookup ((table), (string), (create), (copy)))
319
320 #define hppa_elf_local_got_tls_type(abfd) \
321 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
322
323 #define hh_name(hh) \
324 (hh ? hh->eh.root.root.string : "<undef>")
325
326 #define eh_name(eh) \
327 (eh ? eh->root.root.string : "<undef>")
328
329 /* Assorted hash table functions. */
330
331 /* Initialize an entry in the stub hash table. */
332
333 static struct bfd_hash_entry *
334 stub_hash_newfunc (struct bfd_hash_entry *entry,
335 struct bfd_hash_table *table,
336 const char *string)
337 {
338 /* Allocate the structure if it has not already been allocated by a
339 subclass. */
340 if (entry == NULL)
341 {
342 entry = bfd_hash_allocate (table,
343 sizeof (struct elf32_hppa_stub_hash_entry));
344 if (entry == NULL)
345 return entry;
346 }
347
348 /* Call the allocation method of the superclass. */
349 entry = bfd_hash_newfunc (entry, table, string);
350 if (entry != NULL)
351 {
352 struct elf32_hppa_stub_hash_entry *hsh;
353
354 /* Initialize the local fields. */
355 hsh = hppa_stub_hash_entry (entry);
356 hsh->stub_sec = NULL;
357 hsh->stub_offset = 0;
358 hsh->target_value = 0;
359 hsh->target_section = NULL;
360 hsh->stub_type = hppa_stub_long_branch;
361 hsh->hh = NULL;
362 hsh->id_sec = NULL;
363 }
364
365 return entry;
366 }
367
368 /* Initialize an entry in the link hash table. */
369
370 static struct bfd_hash_entry *
371 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
372 struct bfd_hash_table *table,
373 const char *string)
374 {
375 /* Allocate the structure if it has not already been allocated by a
376 subclass. */
377 if (entry == NULL)
378 {
379 entry = bfd_hash_allocate (table,
380 sizeof (struct elf32_hppa_link_hash_entry));
381 if (entry == NULL)
382 return entry;
383 }
384
385 /* Call the allocation method of the superclass. */
386 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
387 if (entry != NULL)
388 {
389 struct elf32_hppa_link_hash_entry *hh;
390
391 /* Initialize the local fields. */
392 hh = hppa_elf_hash_entry (entry);
393 hh->hsh_cache = NULL;
394 hh->dyn_relocs = NULL;
395 hh->plabel = 0;
396 hh->tls_type = GOT_UNKNOWN;
397 }
398
399 return entry;
400 }
401
402 /* Free the derived linker hash table. */
403
404 static void
405 elf32_hppa_link_hash_table_free (bfd *obfd)
406 {
407 struct elf32_hppa_link_hash_table *htab
408 = (struct elf32_hppa_link_hash_table *) obfd->link.hash;
409
410 bfd_hash_table_free (&htab->bstab);
411 _bfd_elf_link_hash_table_free (obfd);
412 }
413
414 /* Create the derived linker hash table. The PA ELF port uses the derived
415 hash table to keep information specific to the PA ELF linker (without
416 using static variables). */
417
418 static struct bfd_link_hash_table *
419 elf32_hppa_link_hash_table_create (bfd *abfd)
420 {
421 struct elf32_hppa_link_hash_table *htab;
422 bfd_size_type amt = sizeof (*htab);
423
424 htab = bfd_zmalloc (amt);
425 if (htab == NULL)
426 return NULL;
427
428 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
429 sizeof (struct elf32_hppa_link_hash_entry),
430 HPPA32_ELF_DATA))
431 {
432 free (htab);
433 return NULL;
434 }
435
436 /* Init the stub hash table too. */
437 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
438 sizeof (struct elf32_hppa_stub_hash_entry)))
439 {
440 _bfd_elf_link_hash_table_free (abfd);
441 return NULL;
442 }
443 htab->etab.root.hash_table_free = elf32_hppa_link_hash_table_free;
444
445 htab->text_segment_base = (bfd_vma) -1;
446 htab->data_segment_base = (bfd_vma) -1;
447 return &htab->etab.root;
448 }
449
450 /* Initialize the linker stubs BFD so that we can use it for linker
451 created dynamic sections. */
452
453 void
454 elf32_hppa_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
455 {
456 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
457
458 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS32;
459 htab->etab.dynobj = abfd;
460 }
461
462 /* Build a name for an entry in the stub hash table. */
463
464 static char *
465 hppa_stub_name (const asection *input_section,
466 const asection *sym_sec,
467 const struct elf32_hppa_link_hash_entry *hh,
468 const Elf_Internal_Rela *rela)
469 {
470 char *stub_name;
471 bfd_size_type len;
472
473 if (hh)
474 {
475 len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
476 stub_name = bfd_malloc (len);
477 if (stub_name != NULL)
478 sprintf (stub_name, "%08x_%s+%x",
479 input_section->id & 0xffffffff,
480 hh_name (hh),
481 (int) rela->r_addend & 0xffffffff);
482 }
483 else
484 {
485 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
486 stub_name = bfd_malloc (len);
487 if (stub_name != NULL)
488 sprintf (stub_name, "%08x_%x:%x+%x",
489 input_section->id & 0xffffffff,
490 sym_sec->id & 0xffffffff,
491 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
492 (int) rela->r_addend & 0xffffffff);
493 }
494 return stub_name;
495 }
496
497 /* Look up an entry in the stub hash. Stub entries are cached because
498 creating the stub name takes a bit of time. */
499
500 static struct elf32_hppa_stub_hash_entry *
501 hppa_get_stub_entry (const asection *input_section,
502 const asection *sym_sec,
503 struct elf32_hppa_link_hash_entry *hh,
504 const Elf_Internal_Rela *rela,
505 struct elf32_hppa_link_hash_table *htab)
506 {
507 struct elf32_hppa_stub_hash_entry *hsh_entry;
508 const asection *id_sec;
509
510 /* If this input section is part of a group of sections sharing one
511 stub section, then use the id of the first section in the group.
512 Stub names need to include a section id, as there may well be
513 more than one stub used to reach say, printf, and we need to
514 distinguish between them. */
515 id_sec = htab->stub_group[input_section->id].link_sec;
516
517 if (hh != NULL && hh->hsh_cache != NULL
518 && hh->hsh_cache->hh == hh
519 && hh->hsh_cache->id_sec == id_sec)
520 {
521 hsh_entry = hh->hsh_cache;
522 }
523 else
524 {
525 char *stub_name;
526
527 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
528 if (stub_name == NULL)
529 return NULL;
530
531 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
532 stub_name, FALSE, FALSE);
533 if (hh != NULL)
534 hh->hsh_cache = hsh_entry;
535
536 free (stub_name);
537 }
538
539 return hsh_entry;
540 }
541
542 /* Add a new stub entry to the stub hash. Not all fields of the new
543 stub entry are initialised. */
544
545 static struct elf32_hppa_stub_hash_entry *
546 hppa_add_stub (const char *stub_name,
547 asection *section,
548 struct elf32_hppa_link_hash_table *htab)
549 {
550 asection *link_sec;
551 asection *stub_sec;
552 struct elf32_hppa_stub_hash_entry *hsh;
553
554 link_sec = htab->stub_group[section->id].link_sec;
555 stub_sec = htab->stub_group[section->id].stub_sec;
556 if (stub_sec == NULL)
557 {
558 stub_sec = htab->stub_group[link_sec->id].stub_sec;
559 if (stub_sec == NULL)
560 {
561 size_t namelen;
562 bfd_size_type len;
563 char *s_name;
564
565 namelen = strlen (link_sec->name);
566 len = namelen + sizeof (STUB_SUFFIX);
567 s_name = bfd_alloc (htab->stub_bfd, len);
568 if (s_name == NULL)
569 return NULL;
570
571 memcpy (s_name, link_sec->name, namelen);
572 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
573 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
574 if (stub_sec == NULL)
575 return NULL;
576 htab->stub_group[link_sec->id].stub_sec = stub_sec;
577 }
578 htab->stub_group[section->id].stub_sec = stub_sec;
579 }
580
581 /* Enter this entry into the linker stub hash table. */
582 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
583 TRUE, FALSE);
584 if (hsh == NULL)
585 {
586 /* xgettext:c-format */
587 _bfd_error_handler (_("%B: cannot create stub entry %s"),
588 section->owner, stub_name);
589 return NULL;
590 }
591
592 hsh->stub_sec = stub_sec;
593 hsh->stub_offset = 0;
594 hsh->id_sec = link_sec;
595 return hsh;
596 }
597
598 /* Determine the type of stub needed, if any, for a call. */
599
600 static enum elf32_hppa_stub_type
601 hppa_type_of_stub (asection *input_sec,
602 const Elf_Internal_Rela *rela,
603 struct elf32_hppa_link_hash_entry *hh,
604 bfd_vma destination,
605 struct bfd_link_info *info)
606 {
607 bfd_vma location;
608 bfd_vma branch_offset;
609 bfd_vma max_branch_offset;
610 unsigned int r_type;
611
612 if (hh != NULL
613 && hh->eh.plt.offset != (bfd_vma) -1
614 && hh->eh.dynindx != -1
615 && !hh->plabel
616 && (bfd_link_pic (info)
617 || !hh->eh.def_regular
618 || hh->eh.root.type == bfd_link_hash_defweak))
619 {
620 /* We need an import stub. Decide between hppa_stub_import
621 and hppa_stub_import_shared later. */
622 return hppa_stub_import;
623 }
624
625 /* Determine where the call point is. */
626 location = (input_sec->output_offset
627 + input_sec->output_section->vma
628 + rela->r_offset);
629
630 branch_offset = destination - location - 8;
631 r_type = ELF32_R_TYPE (rela->r_info);
632
633 /* Determine if a long branch stub is needed. parisc branch offsets
634 are relative to the second instruction past the branch, ie. +8
635 bytes on from the branch instruction location. The offset is
636 signed and counts in units of 4 bytes. */
637 if (r_type == (unsigned int) R_PARISC_PCREL17F)
638 max_branch_offset = (1 << (17 - 1)) << 2;
639
640 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
641 max_branch_offset = (1 << (12 - 1)) << 2;
642
643 else /* R_PARISC_PCREL22F. */
644 max_branch_offset = (1 << (22 - 1)) << 2;
645
646 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
647 return hppa_stub_long_branch;
648
649 return hppa_stub_none;
650 }
651
652 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
653 IN_ARG contains the link info pointer. */
654
655 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
656 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
657
658 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
659 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
660 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
661
662 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
663 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
664 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
665 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
666
667 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
668 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
669
670 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
671 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
672 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
673 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
674
675 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
676 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
677 #define NOP 0x08000240 /* nop */
678 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
679 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
680 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
681
682 #ifndef R19_STUBS
683 #define R19_STUBS 1
684 #endif
685
686 #if R19_STUBS
687 #define LDW_R1_DLT LDW_R1_R19
688 #else
689 #define LDW_R1_DLT LDW_R1_DP
690 #endif
691
692 static bfd_boolean
693 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
694 {
695 struct elf32_hppa_stub_hash_entry *hsh;
696 struct bfd_link_info *info;
697 struct elf32_hppa_link_hash_table *htab;
698 asection *stub_sec;
699 bfd *stub_bfd;
700 bfd_byte *loc;
701 bfd_vma sym_value;
702 bfd_vma insn;
703 bfd_vma off;
704 int val;
705 int size;
706
707 /* Massage our args to the form they really have. */
708 hsh = hppa_stub_hash_entry (bh);
709 info = (struct bfd_link_info *)in_arg;
710
711 htab = hppa_link_hash_table (info);
712 if (htab == NULL)
713 return FALSE;
714
715 stub_sec = hsh->stub_sec;
716
717 /* Make a note of the offset within the stubs for this entry. */
718 hsh->stub_offset = stub_sec->size;
719 loc = stub_sec->contents + hsh->stub_offset;
720
721 stub_bfd = stub_sec->owner;
722
723 switch (hsh->stub_type)
724 {
725 case hppa_stub_long_branch:
726 /* Create the long branch. A long branch is formed with "ldil"
727 loading the upper bits of the target address into a register,
728 then branching with "be" which adds in the lower bits.
729 The "be" has its delay slot nullified. */
730 sym_value = (hsh->target_value
731 + hsh->target_section->output_offset
732 + hsh->target_section->output_section->vma);
733
734 val = hppa_field_adjust (sym_value, 0, e_lrsel);
735 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
736 bfd_put_32 (stub_bfd, insn, loc);
737
738 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
739 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
740 bfd_put_32 (stub_bfd, insn, loc + 4);
741
742 size = 8;
743 break;
744
745 case hppa_stub_long_branch_shared:
746 /* Branches are relative. This is where we are going to. */
747 sym_value = (hsh->target_value
748 + hsh->target_section->output_offset
749 + hsh->target_section->output_section->vma);
750
751 /* And this is where we are coming from, more or less. */
752 sym_value -= (hsh->stub_offset
753 + stub_sec->output_offset
754 + stub_sec->output_section->vma);
755
756 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
757 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
758 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
759 bfd_put_32 (stub_bfd, insn, loc + 4);
760
761 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
762 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
763 bfd_put_32 (stub_bfd, insn, loc + 8);
764 size = 12;
765 break;
766
767 case hppa_stub_import:
768 case hppa_stub_import_shared:
769 off = hsh->hh->eh.plt.offset;
770 if (off >= (bfd_vma) -2)
771 abort ();
772
773 off &= ~ (bfd_vma) 1;
774 sym_value = (off
775 + htab->etab.splt->output_offset
776 + htab->etab.splt->output_section->vma
777 - elf_gp (htab->etab.splt->output_section->owner));
778
779 insn = ADDIL_DP;
780 #if R19_STUBS
781 if (hsh->stub_type == hppa_stub_import_shared)
782 insn = ADDIL_R19;
783 #endif
784 val = hppa_field_adjust (sym_value, 0, e_lrsel),
785 insn = hppa_rebuild_insn ((int) insn, val, 21);
786 bfd_put_32 (stub_bfd, insn, loc);
787
788 /* It is critical to use lrsel/rrsel here because we are using
789 two different offsets (+0 and +4) from sym_value. If we use
790 lsel/rsel then with unfortunate sym_values we will round
791 sym_value+4 up to the next 2k block leading to a mis-match
792 between the lsel and rsel value. */
793 val = hppa_field_adjust (sym_value, 0, e_rrsel);
794 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
795 bfd_put_32 (stub_bfd, insn, loc + 4);
796
797 if (htab->multi_subspace)
798 {
799 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
800 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
801 bfd_put_32 (stub_bfd, insn, loc + 8);
802
803 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
804 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
805 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
806 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
807
808 size = 28;
809 }
810 else
811 {
812 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
813 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
814 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
815 bfd_put_32 (stub_bfd, insn, loc + 12);
816
817 size = 16;
818 }
819
820 break;
821
822 case hppa_stub_export:
823 /* Branches are relative. This is where we are going to. */
824 sym_value = (hsh->target_value
825 + hsh->target_section->output_offset
826 + hsh->target_section->output_section->vma);
827
828 /* And this is where we are coming from. */
829 sym_value -= (hsh->stub_offset
830 + stub_sec->output_offset
831 + stub_sec->output_section->vma);
832
833 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
834 && (!htab->has_22bit_branch
835 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
836 {
837 _bfd_error_handler
838 /* xgettext:c-format */
839 (_("%B(%A+%#Lx): cannot reach %s, recompile with -ffunction-sections"),
840 hsh->target_section->owner,
841 stub_sec,
842 hsh->stub_offset,
843 hsh->bh_root.string);
844 bfd_set_error (bfd_error_bad_value);
845 return FALSE;
846 }
847
848 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
849 if (!htab->has_22bit_branch)
850 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
851 else
852 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
853 bfd_put_32 (stub_bfd, insn, loc);
854
855 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
856 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
857 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
858 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
859 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
860
861 /* Point the function symbol at the stub. */
862 hsh->hh->eh.root.u.def.section = stub_sec;
863 hsh->hh->eh.root.u.def.value = stub_sec->size;
864
865 size = 24;
866 break;
867
868 default:
869 BFD_FAIL ();
870 return FALSE;
871 }
872
873 stub_sec->size += size;
874 return TRUE;
875 }
876
877 #undef LDIL_R1
878 #undef BE_SR4_R1
879 #undef BL_R1
880 #undef ADDIL_R1
881 #undef DEPI_R1
882 #undef LDW_R1_R21
883 #undef LDW_R1_DLT
884 #undef LDW_R1_R19
885 #undef ADDIL_R19
886 #undef LDW_R1_DP
887 #undef LDSID_R21_R1
888 #undef MTSP_R1
889 #undef BE_SR0_R21
890 #undef STW_RP
891 #undef BV_R0_R21
892 #undef BL_RP
893 #undef NOP
894 #undef LDW_RP
895 #undef LDSID_RP_R1
896 #undef BE_SR0_RP
897
898 /* As above, but don't actually build the stub. Just bump offset so
899 we know stub section sizes. */
900
901 static bfd_boolean
902 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
903 {
904 struct elf32_hppa_stub_hash_entry *hsh;
905 struct elf32_hppa_link_hash_table *htab;
906 int size;
907
908 /* Massage our args to the form they really have. */
909 hsh = hppa_stub_hash_entry (bh);
910 htab = in_arg;
911
912 if (hsh->stub_type == hppa_stub_long_branch)
913 size = 8;
914 else if (hsh->stub_type == hppa_stub_long_branch_shared)
915 size = 12;
916 else if (hsh->stub_type == hppa_stub_export)
917 size = 24;
918 else /* hppa_stub_import or hppa_stub_import_shared. */
919 {
920 if (htab->multi_subspace)
921 size = 28;
922 else
923 size = 16;
924 }
925
926 hsh->stub_sec->size += size;
927 return TRUE;
928 }
929
930 /* Return nonzero if ABFD represents an HPPA ELF32 file.
931 Additionally we set the default architecture and machine. */
932
933 static bfd_boolean
934 elf32_hppa_object_p (bfd *abfd)
935 {
936 Elf_Internal_Ehdr * i_ehdrp;
937 unsigned int flags;
938
939 i_ehdrp = elf_elfheader (abfd);
940 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
941 {
942 /* GCC on hppa-linux produces binaries with OSABI=GNU,
943 but the kernel produces corefiles with OSABI=SysV. */
944 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU &&
945 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
946 return FALSE;
947 }
948 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
949 {
950 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
951 but the kernel produces corefiles with OSABI=SysV. */
952 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
953 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
954 return FALSE;
955 }
956 else
957 {
958 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
959 return FALSE;
960 }
961
962 flags = i_ehdrp->e_flags;
963 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
964 {
965 case EFA_PARISC_1_0:
966 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
967 case EFA_PARISC_1_1:
968 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
969 case EFA_PARISC_2_0:
970 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
971 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
972 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
973 }
974 return TRUE;
975 }
976
977 /* Create the .plt and .got sections, and set up our hash table
978 short-cuts to various dynamic sections. */
979
980 static bfd_boolean
981 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
982 {
983 struct elf32_hppa_link_hash_table *htab;
984 struct elf_link_hash_entry *eh;
985
986 /* Don't try to create the .plt and .got twice. */
987 htab = hppa_link_hash_table (info);
988 if (htab == NULL)
989 return FALSE;
990 if (htab->etab.splt != NULL)
991 return TRUE;
992
993 /* Call the generic code to do most of the work. */
994 if (! _bfd_elf_create_dynamic_sections (abfd, info))
995 return FALSE;
996
997 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
998 application, because __canonicalize_funcptr_for_compare needs it. */
999 eh = elf_hash_table (info)->hgot;
1000 eh->forced_local = 0;
1001 eh->other = STV_DEFAULT;
1002 return bfd_elf_link_record_dynamic_symbol (info, eh);
1003 }
1004
1005 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1006
1007 static void
1008 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1009 struct elf_link_hash_entry *eh_dir,
1010 struct elf_link_hash_entry *eh_ind)
1011 {
1012 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1013
1014 hh_dir = hppa_elf_hash_entry (eh_dir);
1015 hh_ind = hppa_elf_hash_entry (eh_ind);
1016
1017 if (hh_ind->dyn_relocs != NULL)
1018 {
1019 if (hh_dir->dyn_relocs != NULL)
1020 {
1021 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1022 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1023
1024 /* Add reloc counts against the indirect sym to the direct sym
1025 list. Merge any entries against the same section. */
1026 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1027 {
1028 struct elf32_hppa_dyn_reloc_entry *hdh_q;
1029
1030 for (hdh_q = hh_dir->dyn_relocs;
1031 hdh_q != NULL;
1032 hdh_q = hdh_q->hdh_next)
1033 if (hdh_q->sec == hdh_p->sec)
1034 {
1035 #if RELATIVE_DYNRELOCS
1036 hdh_q->relative_count += hdh_p->relative_count;
1037 #endif
1038 hdh_q->count += hdh_p->count;
1039 *hdh_pp = hdh_p->hdh_next;
1040 break;
1041 }
1042 if (hdh_q == NULL)
1043 hdh_pp = &hdh_p->hdh_next;
1044 }
1045 *hdh_pp = hh_dir->dyn_relocs;
1046 }
1047
1048 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1049 hh_ind->dyn_relocs = NULL;
1050 }
1051
1052 if (ELIMINATE_COPY_RELOCS
1053 && eh_ind->root.type != bfd_link_hash_indirect
1054 && eh_dir->dynamic_adjusted)
1055 {
1056 /* If called to transfer flags for a weakdef during processing
1057 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1058 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1059 if (eh_dir->versioned != versioned_hidden)
1060 eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
1061 eh_dir->ref_regular |= eh_ind->ref_regular;
1062 eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
1063 eh_dir->needs_plt |= eh_ind->needs_plt;
1064 }
1065 else
1066 {
1067 if (eh_ind->root.type == bfd_link_hash_indirect)
1068 {
1069 hh_dir->plabel |= hh_ind->plabel;
1070 hh_dir->tls_type |= hh_ind->tls_type;
1071 hh_ind->tls_type = GOT_UNKNOWN;
1072 }
1073
1074 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1075 }
1076 }
1077
1078 static int
1079 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1080 int r_type, int is_local ATTRIBUTE_UNUSED)
1081 {
1082 /* For now we don't support linker optimizations. */
1083 return r_type;
1084 }
1085
1086 /* Return a pointer to the local GOT, PLT and TLS reference counts
1087 for ABFD. Returns NULL if the storage allocation fails. */
1088
1089 static bfd_signed_vma *
1090 hppa32_elf_local_refcounts (bfd *abfd)
1091 {
1092 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1093 bfd_signed_vma *local_refcounts;
1094
1095 local_refcounts = elf_local_got_refcounts (abfd);
1096 if (local_refcounts == NULL)
1097 {
1098 bfd_size_type size;
1099
1100 /* Allocate space for local GOT and PLT reference
1101 counts. Done this way to save polluting elf_obj_tdata
1102 with another target specific pointer. */
1103 size = symtab_hdr->sh_info;
1104 size *= 2 * sizeof (bfd_signed_vma);
1105 /* Add in space to store the local GOT TLS types. */
1106 size += symtab_hdr->sh_info;
1107 local_refcounts = bfd_zalloc (abfd, size);
1108 if (local_refcounts == NULL)
1109 return NULL;
1110 elf_local_got_refcounts (abfd) = local_refcounts;
1111 memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN,
1112 symtab_hdr->sh_info);
1113 }
1114 return local_refcounts;
1115 }
1116
1117
1118 /* Look through the relocs for a section during the first phase, and
1119 calculate needed space in the global offset table, procedure linkage
1120 table, and dynamic reloc sections. At this point we haven't
1121 necessarily read all the input files. */
1122
1123 static bfd_boolean
1124 elf32_hppa_check_relocs (bfd *abfd,
1125 struct bfd_link_info *info,
1126 asection *sec,
1127 const Elf_Internal_Rela *relocs)
1128 {
1129 Elf_Internal_Shdr *symtab_hdr;
1130 struct elf_link_hash_entry **eh_syms;
1131 const Elf_Internal_Rela *rela;
1132 const Elf_Internal_Rela *rela_end;
1133 struct elf32_hppa_link_hash_table *htab;
1134 asection *sreloc;
1135 int tls_type = GOT_UNKNOWN, old_tls_type = GOT_UNKNOWN;
1136
1137 if (bfd_link_relocatable (info))
1138 return TRUE;
1139
1140 htab = hppa_link_hash_table (info);
1141 if (htab == NULL)
1142 return FALSE;
1143 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1144 eh_syms = elf_sym_hashes (abfd);
1145 sreloc = NULL;
1146
1147 rela_end = relocs + sec->reloc_count;
1148 for (rela = relocs; rela < rela_end; rela++)
1149 {
1150 enum {
1151 NEED_GOT = 1,
1152 NEED_PLT = 2,
1153 NEED_DYNREL = 4,
1154 PLT_PLABEL = 8
1155 };
1156
1157 unsigned int r_symndx, r_type;
1158 struct elf32_hppa_link_hash_entry *hh;
1159 int need_entry = 0;
1160
1161 r_symndx = ELF32_R_SYM (rela->r_info);
1162
1163 if (r_symndx < symtab_hdr->sh_info)
1164 hh = NULL;
1165 else
1166 {
1167 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1168 while (hh->eh.root.type == bfd_link_hash_indirect
1169 || hh->eh.root.type == bfd_link_hash_warning)
1170 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1171
1172 /* PR15323, ref flags aren't set for references in the same
1173 object. */
1174 hh->eh.root.non_ir_ref_regular = 1;
1175 }
1176
1177 r_type = ELF32_R_TYPE (rela->r_info);
1178 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1179
1180 switch (r_type)
1181 {
1182 case R_PARISC_DLTIND14F:
1183 case R_PARISC_DLTIND14R:
1184 case R_PARISC_DLTIND21L:
1185 /* This symbol requires a global offset table entry. */
1186 need_entry = NEED_GOT;
1187 break;
1188
1189 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1190 case R_PARISC_PLABEL21L:
1191 case R_PARISC_PLABEL32:
1192 /* If the addend is non-zero, we break badly. */
1193 if (rela->r_addend != 0)
1194 abort ();
1195
1196 /* If we are creating a shared library, then we need to
1197 create a PLT entry for all PLABELs, because PLABELs with
1198 local symbols may be passed via a pointer to another
1199 object. Additionally, output a dynamic relocation
1200 pointing to the PLT entry.
1201
1202 For executables, the original 32-bit ABI allowed two
1203 different styles of PLABELs (function pointers): For
1204 global functions, the PLABEL word points into the .plt
1205 two bytes past a (function address, gp) pair, and for
1206 local functions the PLABEL points directly at the
1207 function. The magic +2 for the first type allows us to
1208 differentiate between the two. As you can imagine, this
1209 is a real pain when it comes to generating code to call
1210 functions indirectly or to compare function pointers.
1211 We avoid the mess by always pointing a PLABEL into the
1212 .plt, even for local functions. */
1213 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1214 break;
1215
1216 case R_PARISC_PCREL12F:
1217 htab->has_12bit_branch = 1;
1218 goto branch_common;
1219
1220 case R_PARISC_PCREL17C:
1221 case R_PARISC_PCREL17F:
1222 htab->has_17bit_branch = 1;
1223 goto branch_common;
1224
1225 case R_PARISC_PCREL22F:
1226 htab->has_22bit_branch = 1;
1227 branch_common:
1228 /* Function calls might need to go through the .plt, and
1229 might require long branch stubs. */
1230 if (hh == NULL)
1231 {
1232 /* We know local syms won't need a .plt entry, and if
1233 they need a long branch stub we can't guarantee that
1234 we can reach the stub. So just flag an error later
1235 if we're doing a shared link and find we need a long
1236 branch stub. */
1237 continue;
1238 }
1239 else
1240 {
1241 /* Global symbols will need a .plt entry if they remain
1242 global, and in most cases won't need a long branch
1243 stub. Unfortunately, we have to cater for the case
1244 where a symbol is forced local by versioning, or due
1245 to symbolic linking, and we lose the .plt entry. */
1246 need_entry = NEED_PLT;
1247 if (hh->eh.type == STT_PARISC_MILLI)
1248 need_entry = 0;
1249 }
1250 break;
1251
1252 case R_PARISC_SEGBASE: /* Used to set segment base. */
1253 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1254 case R_PARISC_PCREL14F: /* PC relative load/store. */
1255 case R_PARISC_PCREL14R:
1256 case R_PARISC_PCREL17R: /* External branches. */
1257 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1258 case R_PARISC_PCREL32:
1259 /* We don't need to propagate the relocation if linking a
1260 shared object since these are section relative. */
1261 continue;
1262
1263 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1264 case R_PARISC_DPREL14R:
1265 case R_PARISC_DPREL21L:
1266 if (bfd_link_pic (info))
1267 {
1268 _bfd_error_handler
1269 /* xgettext:c-format */
1270 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1271 abfd,
1272 elf_hppa_howto_table[r_type].name);
1273 bfd_set_error (bfd_error_bad_value);
1274 return FALSE;
1275 }
1276 /* Fall through. */
1277
1278 case R_PARISC_DIR17F: /* Used for external branches. */
1279 case R_PARISC_DIR17R:
1280 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1281 case R_PARISC_DIR14R:
1282 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1283 case R_PARISC_DIR32: /* .word relocs. */
1284 /* We may want to output a dynamic relocation later. */
1285 need_entry = NEED_DYNREL;
1286 break;
1287
1288 /* This relocation describes the C++ object vtable hierarchy.
1289 Reconstruct it for later use during GC. */
1290 case R_PARISC_GNU_VTINHERIT:
1291 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1292 return FALSE;
1293 continue;
1294
1295 /* This relocation describes which C++ vtable entries are actually
1296 used. Record for later use during GC. */
1297 case R_PARISC_GNU_VTENTRY:
1298 BFD_ASSERT (hh != NULL);
1299 if (hh != NULL
1300 && !bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1301 return FALSE;
1302 continue;
1303
1304 case R_PARISC_TLS_GD21L:
1305 case R_PARISC_TLS_GD14R:
1306 case R_PARISC_TLS_LDM21L:
1307 case R_PARISC_TLS_LDM14R:
1308 need_entry = NEED_GOT;
1309 break;
1310
1311 case R_PARISC_TLS_IE21L:
1312 case R_PARISC_TLS_IE14R:
1313 if (bfd_link_pic (info))
1314 info->flags |= DF_STATIC_TLS;
1315 need_entry = NEED_GOT;
1316 break;
1317
1318 default:
1319 continue;
1320 }
1321
1322 /* Now carry out our orders. */
1323 if (need_entry & NEED_GOT)
1324 {
1325 switch (r_type)
1326 {
1327 default:
1328 tls_type = GOT_NORMAL;
1329 break;
1330 case R_PARISC_TLS_GD21L:
1331 case R_PARISC_TLS_GD14R:
1332 tls_type |= GOT_TLS_GD;
1333 break;
1334 case R_PARISC_TLS_LDM21L:
1335 case R_PARISC_TLS_LDM14R:
1336 tls_type |= GOT_TLS_LDM;
1337 break;
1338 case R_PARISC_TLS_IE21L:
1339 case R_PARISC_TLS_IE14R:
1340 tls_type |= GOT_TLS_IE;
1341 break;
1342 }
1343
1344 /* Allocate space for a GOT entry, as well as a dynamic
1345 relocation for this entry. */
1346 if (htab->etab.sgot == NULL)
1347 {
1348 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1349 return FALSE;
1350 }
1351
1352 if (r_type == R_PARISC_TLS_LDM21L
1353 || r_type == R_PARISC_TLS_LDM14R)
1354 htab->tls_ldm_got.refcount += 1;
1355 else
1356 {
1357 if (hh != NULL)
1358 {
1359 hh->eh.got.refcount += 1;
1360 old_tls_type = hh->tls_type;
1361 }
1362 else
1363 {
1364 bfd_signed_vma *local_got_refcounts;
1365
1366 /* This is a global offset table entry for a local symbol. */
1367 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1368 if (local_got_refcounts == NULL)
1369 return FALSE;
1370 local_got_refcounts[r_symndx] += 1;
1371
1372 old_tls_type = hppa_elf_local_got_tls_type (abfd) [r_symndx];
1373 }
1374
1375 tls_type |= old_tls_type;
1376
1377 if (old_tls_type != tls_type)
1378 {
1379 if (hh != NULL)
1380 hh->tls_type = tls_type;
1381 else
1382 hppa_elf_local_got_tls_type (abfd) [r_symndx] = tls_type;
1383 }
1384
1385 }
1386 }
1387
1388 if (need_entry & NEED_PLT)
1389 {
1390 /* If we are creating a shared library, and this is a reloc
1391 against a weak symbol or a global symbol in a dynamic
1392 object, then we will be creating an import stub and a
1393 .plt entry for the symbol. Similarly, on a normal link
1394 to symbols defined in a dynamic object we'll need the
1395 import stub and a .plt entry. We don't know yet whether
1396 the symbol is defined or not, so make an entry anyway and
1397 clean up later in adjust_dynamic_symbol. */
1398 if ((sec->flags & SEC_ALLOC) != 0)
1399 {
1400 if (hh != NULL)
1401 {
1402 hh->eh.needs_plt = 1;
1403 hh->eh.plt.refcount += 1;
1404
1405 /* If this .plt entry is for a plabel, mark it so
1406 that adjust_dynamic_symbol will keep the entry
1407 even if it appears to be local. */
1408 if (need_entry & PLT_PLABEL)
1409 hh->plabel = 1;
1410 }
1411 else if (need_entry & PLT_PLABEL)
1412 {
1413 bfd_signed_vma *local_got_refcounts;
1414 bfd_signed_vma *local_plt_refcounts;
1415
1416 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1417 if (local_got_refcounts == NULL)
1418 return FALSE;
1419 local_plt_refcounts = (local_got_refcounts
1420 + symtab_hdr->sh_info);
1421 local_plt_refcounts[r_symndx] += 1;
1422 }
1423 }
1424 }
1425
1426 if ((need_entry & NEED_DYNREL) != 0
1427 && (sec->flags & SEC_ALLOC) != 0)
1428 {
1429 /* Flag this symbol as having a non-got, non-plt reference
1430 so that we generate copy relocs if it turns out to be
1431 dynamic. */
1432 if (hh != NULL && !bfd_link_pic (info))
1433 hh->eh.non_got_ref = 1;
1434
1435 /* If we are creating a shared library then we need to copy
1436 the reloc into the shared library. However, if we are
1437 linking with -Bsymbolic, we need only copy absolute
1438 relocs or relocs against symbols that are not defined in
1439 an object we are including in the link. PC- or DP- or
1440 DLT-relative relocs against any local sym or global sym
1441 with DEF_REGULAR set, can be discarded. At this point we
1442 have not seen all the input files, so it is possible that
1443 DEF_REGULAR is not set now but will be set later (it is
1444 never cleared). We account for that possibility below by
1445 storing information in the dyn_relocs field of the
1446 hash table entry.
1447
1448 A similar situation to the -Bsymbolic case occurs when
1449 creating shared libraries and symbol visibility changes
1450 render the symbol local.
1451
1452 As it turns out, all the relocs we will be creating here
1453 are absolute, so we cannot remove them on -Bsymbolic
1454 links or visibility changes anyway. A STUB_REL reloc
1455 is absolute too, as in that case it is the reloc in the
1456 stub we will be creating, rather than copying the PCREL
1457 reloc in the branch.
1458
1459 If on the other hand, we are creating an executable, we
1460 may need to keep relocations for symbols satisfied by a
1461 dynamic library if we manage to avoid copy relocs for the
1462 symbol. */
1463 if ((bfd_link_pic (info)
1464 && (IS_ABSOLUTE_RELOC (r_type)
1465 || (hh != NULL
1466 && (!SYMBOLIC_BIND (info, &hh->eh)
1467 || hh->eh.root.type == bfd_link_hash_defweak
1468 || !hh->eh.def_regular))))
1469 || (ELIMINATE_COPY_RELOCS
1470 && !bfd_link_pic (info)
1471 && hh != NULL
1472 && (hh->eh.root.type == bfd_link_hash_defweak
1473 || !hh->eh.def_regular)))
1474 {
1475 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1476 struct elf32_hppa_dyn_reloc_entry **hdh_head;
1477
1478 /* Create a reloc section in dynobj and make room for
1479 this reloc. */
1480 if (sreloc == NULL)
1481 {
1482 sreloc = _bfd_elf_make_dynamic_reloc_section
1483 (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
1484
1485 if (sreloc == NULL)
1486 {
1487 bfd_set_error (bfd_error_bad_value);
1488 return FALSE;
1489 }
1490 }
1491
1492 /* If this is a global symbol, we count the number of
1493 relocations we need for this symbol. */
1494 if (hh != NULL)
1495 {
1496 hdh_head = &hh->dyn_relocs;
1497 }
1498 else
1499 {
1500 /* Track dynamic relocs needed for local syms too.
1501 We really need local syms available to do this
1502 easily. Oh well. */
1503 asection *sr;
1504 void *vpp;
1505 Elf_Internal_Sym *isym;
1506
1507 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1508 abfd, r_symndx);
1509 if (isym == NULL)
1510 return FALSE;
1511
1512 sr = bfd_section_from_elf_index (abfd, isym->st_shndx);
1513 if (sr == NULL)
1514 sr = sec;
1515
1516 vpp = &elf_section_data (sr)->local_dynrel;
1517 hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp;
1518 }
1519
1520 hdh_p = *hdh_head;
1521 if (hdh_p == NULL || hdh_p->sec != sec)
1522 {
1523 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1524 if (hdh_p == NULL)
1525 return FALSE;
1526 hdh_p->hdh_next = *hdh_head;
1527 *hdh_head = hdh_p;
1528 hdh_p->sec = sec;
1529 hdh_p->count = 0;
1530 #if RELATIVE_DYNRELOCS
1531 hdh_p->relative_count = 0;
1532 #endif
1533 }
1534
1535 hdh_p->count += 1;
1536 #if RELATIVE_DYNRELOCS
1537 if (!IS_ABSOLUTE_RELOC (rtype))
1538 hdh_p->relative_count += 1;
1539 #endif
1540 }
1541 }
1542 }
1543
1544 return TRUE;
1545 }
1546
1547 /* Return the section that should be marked against garbage collection
1548 for a given relocation. */
1549
1550 static asection *
1551 elf32_hppa_gc_mark_hook (asection *sec,
1552 struct bfd_link_info *info,
1553 Elf_Internal_Rela *rela,
1554 struct elf_link_hash_entry *hh,
1555 Elf_Internal_Sym *sym)
1556 {
1557 if (hh != NULL)
1558 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1559 {
1560 case R_PARISC_GNU_VTINHERIT:
1561 case R_PARISC_GNU_VTENTRY:
1562 return NULL;
1563 }
1564
1565 return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1566 }
1567
1568 /* Support for core dump NOTE sections. */
1569
1570 static bfd_boolean
1571 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1572 {
1573 int offset;
1574 size_t size;
1575
1576 switch (note->descsz)
1577 {
1578 default:
1579 return FALSE;
1580
1581 case 396: /* Linux/hppa */
1582 /* pr_cursig */
1583 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1584
1585 /* pr_pid */
1586 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
1587
1588 /* pr_reg */
1589 offset = 72;
1590 size = 320;
1591
1592 break;
1593 }
1594
1595 /* Make a ".reg/999" section. */
1596 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1597 size, note->descpos + offset);
1598 }
1599
1600 static bfd_boolean
1601 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1602 {
1603 switch (note->descsz)
1604 {
1605 default:
1606 return FALSE;
1607
1608 case 124: /* Linux/hppa elf_prpsinfo. */
1609 elf_tdata (abfd)->core->program
1610 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1611 elf_tdata (abfd)->core->command
1612 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1613 }
1614
1615 /* Note that for some reason, a spurious space is tacked
1616 onto the end of the args in some (at least one anyway)
1617 implementations, so strip it off if it exists. */
1618 {
1619 char *command = elf_tdata (abfd)->core->command;
1620 int n = strlen (command);
1621
1622 if (0 < n && command[n - 1] == ' ')
1623 command[n - 1] = '\0';
1624 }
1625
1626 return TRUE;
1627 }
1628
1629 /* Our own version of hide_symbol, so that we can keep plt entries for
1630 plabels. */
1631
1632 static void
1633 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1634 struct elf_link_hash_entry *eh,
1635 bfd_boolean force_local)
1636 {
1637 if (force_local)
1638 {
1639 eh->forced_local = 1;
1640 if (eh->dynindx != -1)
1641 {
1642 eh->dynindx = -1;
1643 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1644 eh->dynstr_index);
1645 }
1646
1647 /* PR 16082: Remove version information from hidden symbol. */
1648 eh->verinfo.verdef = NULL;
1649 eh->verinfo.vertree = NULL;
1650 }
1651
1652 /* STT_GNU_IFUNC symbol must go through PLT. */
1653 if (! hppa_elf_hash_entry (eh)->plabel
1654 && eh->type != STT_GNU_IFUNC)
1655 {
1656 eh->needs_plt = 0;
1657 eh->plt = elf_hash_table (info)->init_plt_offset;
1658 }
1659 }
1660
1661 /* Adjust a symbol defined by a dynamic object and referenced by a
1662 regular object. The current definition is in some section of the
1663 dynamic object, but we're not including those sections. We have to
1664 change the definition to something the rest of the link can
1665 understand. */
1666
1667 static bfd_boolean
1668 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1669 struct elf_link_hash_entry *eh)
1670 {
1671 struct elf32_hppa_link_hash_table *htab;
1672 asection *sec, *srel;
1673
1674 /* If this is a function, put it in the procedure linkage table. We
1675 will fill in the contents of the procedure linkage table later. */
1676 if (eh->type == STT_FUNC
1677 || eh->needs_plt)
1678 {
1679 /* If the symbol is used by a plabel, we must allocate a PLT slot.
1680 The refcounts are not reliable when it has been hidden since
1681 hide_symbol can be called before the plabel flag is set. */
1682 if (hppa_elf_hash_entry (eh)->plabel)
1683 eh->plt.refcount = 1;
1684
1685 else if (eh->plt.refcount <= 0
1686 || SYMBOL_CALLS_LOCAL (info, eh)
1687 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
1688 {
1689 /* The .plt entry is not needed when:
1690 a) Garbage collection has removed all references to the
1691 symbol, or
1692 b) We know for certain the symbol is defined in this
1693 object, and it's not a weak definition, nor is the symbol
1694 used by a plabel relocation. Either this object is the
1695 application or we are doing a shared symbolic link. */
1696
1697 eh->plt.offset = (bfd_vma) -1;
1698 eh->needs_plt = 0;
1699 }
1700
1701 return TRUE;
1702 }
1703 else
1704 eh->plt.offset = (bfd_vma) -1;
1705
1706 /* If this is a weak symbol, and there is a real definition, the
1707 processor independent code will have arranged for us to see the
1708 real definition first, and we can just use the same value. */
1709 if (eh->u.weakdef != NULL)
1710 {
1711 if (eh->u.weakdef->root.type != bfd_link_hash_defined
1712 && eh->u.weakdef->root.type != bfd_link_hash_defweak)
1713 abort ();
1714 eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1715 eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1716 if (ELIMINATE_COPY_RELOCS)
1717 eh->non_got_ref = eh->u.weakdef->non_got_ref;
1718 return TRUE;
1719 }
1720
1721 /* This is a reference to a symbol defined by a dynamic object which
1722 is not a function. */
1723
1724 /* If we are creating a shared library, we must presume that the
1725 only references to the symbol are via the global offset table.
1726 For such cases we need not do anything here; the relocations will
1727 be handled correctly by relocate_section. */
1728 if (bfd_link_pic (info))
1729 return TRUE;
1730
1731 /* If there are no references to this symbol that do not use the
1732 GOT, we don't need to generate a copy reloc. */
1733 if (!eh->non_got_ref)
1734 return TRUE;
1735
1736 if (ELIMINATE_COPY_RELOCS)
1737 {
1738 struct elf32_hppa_link_hash_entry *hh;
1739 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1740
1741 hh = hppa_elf_hash_entry (eh);
1742 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
1743 {
1744 sec = hdh_p->sec->output_section;
1745 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1746 break;
1747 }
1748
1749 /* If we didn't find any dynamic relocs in read-only sections, then
1750 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1751 if (hdh_p == NULL)
1752 {
1753 eh->non_got_ref = 0;
1754 return TRUE;
1755 }
1756 }
1757
1758 /* We must allocate the symbol in our .dynbss section, which will
1759 become part of the .bss section of the executable. There will be
1760 an entry for this symbol in the .dynsym section. The dynamic
1761 object will contain position independent code, so all references
1762 from the dynamic object to this symbol will go through the global
1763 offset table. The dynamic linker will use the .dynsym entry to
1764 determine the address it must put in the global offset table, so
1765 both the dynamic object and the regular object will refer to the
1766 same memory location for the variable. */
1767
1768 htab = hppa_link_hash_table (info);
1769 if (htab == NULL)
1770 return FALSE;
1771
1772 /* We must generate a COPY reloc to tell the dynamic linker to
1773 copy the initial value out of the dynamic object and into the
1774 runtime process image. */
1775 if ((eh->root.u.def.section->flags & SEC_READONLY) != 0)
1776 {
1777 sec = htab->etab.sdynrelro;
1778 srel = htab->etab.sreldynrelro;
1779 }
1780 else
1781 {
1782 sec = htab->etab.sdynbss;
1783 srel = htab->etab.srelbss;
1784 }
1785 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0 && eh->size != 0)
1786 {
1787 srel->size += sizeof (Elf32_External_Rela);
1788 eh->needs_copy = 1;
1789 }
1790
1791 return _bfd_elf_adjust_dynamic_copy (info, eh, sec);
1792 }
1793
1794 /* If EH is undefined, make it dynamic if that makes sense. */
1795
1796 static bfd_boolean
1797 ensure_undef_dynamic (struct bfd_link_info *info,
1798 struct elf_link_hash_entry *eh)
1799 {
1800 struct elf_link_hash_table *htab = elf_hash_table (info);
1801
1802 if (htab->dynamic_sections_created
1803 && (eh->root.type == bfd_link_hash_undefweak
1804 || eh->root.type == bfd_link_hash_undefined)
1805 && eh->dynindx == -1
1806 && !eh->forced_local
1807 && eh->type != STT_PARISC_MILLI
1808 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh)
1809 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT)
1810 return bfd_elf_link_record_dynamic_symbol (info, eh);
1811 return TRUE;
1812 }
1813
1814 /* Allocate space in the .plt for entries that won't have relocations.
1815 ie. plabel entries. */
1816
1817 static bfd_boolean
1818 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1819 {
1820 struct bfd_link_info *info;
1821 struct elf32_hppa_link_hash_table *htab;
1822 struct elf32_hppa_link_hash_entry *hh;
1823 asection *sec;
1824
1825 if (eh->root.type == bfd_link_hash_indirect)
1826 return TRUE;
1827
1828 info = (struct bfd_link_info *) inf;
1829 hh = hppa_elf_hash_entry (eh);
1830 htab = hppa_link_hash_table (info);
1831 if (htab == NULL)
1832 return FALSE;
1833
1834 if (htab->etab.dynamic_sections_created
1835 && eh->plt.refcount > 0)
1836 {
1837 if (!ensure_undef_dynamic (info, eh))
1838 return FALSE;
1839
1840 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), eh))
1841 {
1842 /* Allocate these later. From this point on, h->plabel
1843 means that the plt entry is only used by a plabel.
1844 We'll be using a normal plt entry for this symbol, so
1845 clear the plabel indicator. */
1846
1847 hh->plabel = 0;
1848 }
1849 else if (hh->plabel)
1850 {
1851 /* Make an entry in the .plt section for plabel references
1852 that won't have a .plt entry for other reasons. */
1853 sec = htab->etab.splt;
1854 eh->plt.offset = sec->size;
1855 sec->size += PLT_ENTRY_SIZE;
1856 if (bfd_link_pic (info))
1857 htab->etab.srelplt->size += sizeof (Elf32_External_Rela);
1858 }
1859 else
1860 {
1861 /* No .plt entry needed. */
1862 eh->plt.offset = (bfd_vma) -1;
1863 eh->needs_plt = 0;
1864 }
1865 }
1866 else
1867 {
1868 eh->plt.offset = (bfd_vma) -1;
1869 eh->needs_plt = 0;
1870 }
1871
1872 return TRUE;
1873 }
1874
1875 /* Allocate space in .plt, .got and associated reloc sections for
1876 global syms. */
1877
1878 static bfd_boolean
1879 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
1880 {
1881 struct bfd_link_info *info;
1882 struct elf32_hppa_link_hash_table *htab;
1883 asection *sec;
1884 struct elf32_hppa_link_hash_entry *hh;
1885 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1886
1887 if (eh->root.type == bfd_link_hash_indirect)
1888 return TRUE;
1889
1890 info = inf;
1891 htab = hppa_link_hash_table (info);
1892 if (htab == NULL)
1893 return FALSE;
1894
1895 hh = hppa_elf_hash_entry (eh);
1896
1897 if (htab->etab.dynamic_sections_created
1898 && eh->plt.offset != (bfd_vma) -1
1899 && !hh->plabel
1900 && eh->plt.refcount > 0)
1901 {
1902 /* Make an entry in the .plt section. */
1903 sec = htab->etab.splt;
1904 eh->plt.offset = sec->size;
1905 sec->size += PLT_ENTRY_SIZE;
1906
1907 /* We also need to make an entry in the .rela.plt section. */
1908 htab->etab.srelplt->size += sizeof (Elf32_External_Rela);
1909 htab->need_plt_stub = 1;
1910 }
1911
1912 if (eh->got.refcount > 0)
1913 {
1914 if (!ensure_undef_dynamic (info, eh))
1915 return FALSE;
1916
1917 sec = htab->etab.sgot;
1918 eh->got.offset = sec->size;
1919 sec->size += GOT_ENTRY_SIZE;
1920 /* R_PARISC_TLS_GD* needs two GOT entries */
1921 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
1922 sec->size += GOT_ENTRY_SIZE * 2;
1923 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
1924 sec->size += GOT_ENTRY_SIZE;
1925 if (htab->etab.dynamic_sections_created
1926 && (bfd_link_pic (info)
1927 || (eh->dynindx != -1
1928 && !SYMBOL_REFERENCES_LOCAL (info, eh)))
1929 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
1930 {
1931 htab->etab.srelgot->size += sizeof (Elf32_External_Rela);
1932 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
1933 htab->etab.srelgot->size += 2 * sizeof (Elf32_External_Rela);
1934 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
1935 htab->etab.srelgot->size += sizeof (Elf32_External_Rela);
1936 }
1937 }
1938 else
1939 eh->got.offset = (bfd_vma) -1;
1940
1941 /* If no dynamic sections we can't have dynamic relocs. */
1942 if (!htab->etab.dynamic_sections_created)
1943 hh->dyn_relocs = NULL;
1944
1945 if (hh->dyn_relocs == NULL)
1946 return TRUE;
1947
1948 /* If this is a -Bsymbolic shared link, then we need to discard all
1949 space allocated for dynamic pc-relative relocs against symbols
1950 defined in a regular object. For the normal shared case, discard
1951 space for relocs that have become local due to symbol visibility
1952 changes. */
1953 if (bfd_link_pic (info))
1954 {
1955 /* Discard relocs on undefined syms with non-default visibility. */
1956 if ((eh->root.type == bfd_link_hash_undefined
1957 && ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
1958 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
1959 hh->dyn_relocs = NULL;
1960
1961 #if RELATIVE_DYNRELOCS
1962 else if (SYMBOL_CALLS_LOCAL (info, eh))
1963 {
1964 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1965
1966 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1967 {
1968 hdh_p->count -= hdh_p->relative_count;
1969 hdh_p->relative_count = 0;
1970 if (hdh_p->count == 0)
1971 *hdh_pp = hdh_p->hdh_next;
1972 else
1973 hdh_pp = &hdh_p->hdh_next;
1974 }
1975 }
1976 #endif
1977
1978 if (hh->dyn_relocs != NULL)
1979 {
1980 if (!ensure_undef_dynamic (info, eh))
1981 return FALSE;
1982 }
1983 }
1984 else if (ELIMINATE_COPY_RELOCS)
1985 {
1986 /* For the non-shared case, discard space for relocs against
1987 symbols which turn out to need copy relocs or are not
1988 dynamic. */
1989
1990 if (!eh->non_got_ref
1991 && !eh->def_regular)
1992 {
1993 if (!ensure_undef_dynamic (info, eh))
1994 return FALSE;
1995
1996 if (eh->dynindx == -1)
1997 hh->dyn_relocs = NULL;
1998 }
1999 else
2000 hh->dyn_relocs = NULL;
2001 }
2002
2003 /* Finally, allocate space. */
2004 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2005 {
2006 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2007 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2008 }
2009
2010 return TRUE;
2011 }
2012
2013 /* This function is called via elf_link_hash_traverse to force
2014 millicode symbols local so they do not end up as globals in the
2015 dynamic symbol table. We ought to be able to do this in
2016 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2017 for all dynamic symbols. Arguably, this is a bug in
2018 elf_adjust_dynamic_symbol. */
2019
2020 static bfd_boolean
2021 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2022 struct bfd_link_info *info)
2023 {
2024 if (eh->type == STT_PARISC_MILLI
2025 && !eh->forced_local)
2026 {
2027 elf32_hppa_hide_symbol (info, eh, TRUE);
2028 }
2029 return TRUE;
2030 }
2031
2032 /* Find any dynamic relocs that apply to read-only sections. */
2033
2034 static bfd_boolean
2035 readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2036 {
2037 struct elf32_hppa_link_hash_entry *hh;
2038 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2039
2040 hh = hppa_elf_hash_entry (eh);
2041 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2042 {
2043 asection *sec = hdh_p->sec->output_section;
2044
2045 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
2046 {
2047 struct bfd_link_info *info = inf;
2048
2049 info->flags |= DF_TEXTREL;
2050
2051 /* Not an error, just cut short the traversal. */
2052 return FALSE;
2053 }
2054 }
2055 return TRUE;
2056 }
2057
2058 /* Set the sizes of the dynamic sections. */
2059
2060 static bfd_boolean
2061 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2062 struct bfd_link_info *info)
2063 {
2064 struct elf32_hppa_link_hash_table *htab;
2065 bfd *dynobj;
2066 bfd *ibfd;
2067 asection *sec;
2068 bfd_boolean relocs;
2069
2070 htab = hppa_link_hash_table (info);
2071 if (htab == NULL)
2072 return FALSE;
2073
2074 dynobj = htab->etab.dynobj;
2075 if (dynobj == NULL)
2076 abort ();
2077
2078 if (htab->etab.dynamic_sections_created)
2079 {
2080 /* Set the contents of the .interp section to the interpreter. */
2081 if (bfd_link_executable (info) && !info->nointerp)
2082 {
2083 sec = bfd_get_linker_section (dynobj, ".interp");
2084 if (sec == NULL)
2085 abort ();
2086 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2087 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2088 }
2089
2090 /* Force millicode symbols local. */
2091 elf_link_hash_traverse (&htab->etab,
2092 clobber_millicode_symbols,
2093 info);
2094 }
2095
2096 /* Set up .got and .plt offsets for local syms, and space for local
2097 dynamic relocs. */
2098 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
2099 {
2100 bfd_signed_vma *local_got;
2101 bfd_signed_vma *end_local_got;
2102 bfd_signed_vma *local_plt;
2103 bfd_signed_vma *end_local_plt;
2104 bfd_size_type locsymcount;
2105 Elf_Internal_Shdr *symtab_hdr;
2106 asection *srel;
2107 char *local_tls_type;
2108
2109 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2110 continue;
2111
2112 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2113 {
2114 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2115
2116 for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
2117 elf_section_data (sec)->local_dynrel);
2118 hdh_p != NULL;
2119 hdh_p = hdh_p->hdh_next)
2120 {
2121 if (!bfd_is_abs_section (hdh_p->sec)
2122 && bfd_is_abs_section (hdh_p->sec->output_section))
2123 {
2124 /* Input section has been discarded, either because
2125 it is a copy of a linkonce section or due to
2126 linker script /DISCARD/, so we'll be discarding
2127 the relocs too. */
2128 }
2129 else if (hdh_p->count != 0)
2130 {
2131 srel = elf_section_data (hdh_p->sec)->sreloc;
2132 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2133 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2134 info->flags |= DF_TEXTREL;
2135 }
2136 }
2137 }
2138
2139 local_got = elf_local_got_refcounts (ibfd);
2140 if (!local_got)
2141 continue;
2142
2143 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2144 locsymcount = symtab_hdr->sh_info;
2145 end_local_got = local_got + locsymcount;
2146 local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2147 sec = htab->etab.sgot;
2148 srel = htab->etab.srelgot;
2149 for (; local_got < end_local_got; ++local_got)
2150 {
2151 if (*local_got > 0)
2152 {
2153 *local_got = sec->size;
2154 sec->size += GOT_ENTRY_SIZE;
2155 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2156 sec->size += 2 * GOT_ENTRY_SIZE;
2157 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2158 sec->size += GOT_ENTRY_SIZE;
2159 if (bfd_link_pic (info))
2160 {
2161 srel->size += sizeof (Elf32_External_Rela);
2162 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2163 srel->size += 2 * sizeof (Elf32_External_Rela);
2164 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2165 srel->size += sizeof (Elf32_External_Rela);
2166 }
2167 }
2168 else
2169 *local_got = (bfd_vma) -1;
2170
2171 ++local_tls_type;
2172 }
2173
2174 local_plt = end_local_got;
2175 end_local_plt = local_plt + locsymcount;
2176 if (! htab->etab.dynamic_sections_created)
2177 {
2178 /* Won't be used, but be safe. */
2179 for (; local_plt < end_local_plt; ++local_plt)
2180 *local_plt = (bfd_vma) -1;
2181 }
2182 else
2183 {
2184 sec = htab->etab.splt;
2185 srel = htab->etab.srelplt;
2186 for (; local_plt < end_local_plt; ++local_plt)
2187 {
2188 if (*local_plt > 0)
2189 {
2190 *local_plt = sec->size;
2191 sec->size += PLT_ENTRY_SIZE;
2192 if (bfd_link_pic (info))
2193 srel->size += sizeof (Elf32_External_Rela);
2194 }
2195 else
2196 *local_plt = (bfd_vma) -1;
2197 }
2198 }
2199 }
2200
2201 if (htab->tls_ldm_got.refcount > 0)
2202 {
2203 /* Allocate 2 got entries and 1 dynamic reloc for
2204 R_PARISC_TLS_DTPMOD32 relocs. */
2205 htab->tls_ldm_got.offset = htab->etab.sgot->size;
2206 htab->etab.sgot->size += (GOT_ENTRY_SIZE * 2);
2207 htab->etab.srelgot->size += sizeof (Elf32_External_Rela);
2208 }
2209 else
2210 htab->tls_ldm_got.offset = -1;
2211
2212 /* Do all the .plt entries without relocs first. The dynamic linker
2213 uses the last .plt reloc to find the end of the .plt (and hence
2214 the start of the .got) for lazy linking. */
2215 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2216
2217 /* Allocate global sym .plt and .got entries, and space for global
2218 sym dynamic relocs. */
2219 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2220
2221 /* The check_relocs and adjust_dynamic_symbol entry points have
2222 determined the sizes of the various dynamic sections. Allocate
2223 memory for them. */
2224 relocs = FALSE;
2225 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2226 {
2227 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2228 continue;
2229
2230 if (sec == htab->etab.splt)
2231 {
2232 if (htab->need_plt_stub)
2233 {
2234 /* Make space for the plt stub at the end of the .plt
2235 section. We want this stub right at the end, up
2236 against the .got section. */
2237 int gotalign = bfd_section_alignment (dynobj, htab->etab.sgot);
2238 int pltalign = bfd_section_alignment (dynobj, sec);
2239 bfd_size_type mask;
2240
2241 if (gotalign > pltalign)
2242 (void) bfd_set_section_alignment (dynobj, sec, gotalign);
2243 mask = ((bfd_size_type) 1 << gotalign) - 1;
2244 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2245 }
2246 }
2247 else if (sec == htab->etab.sgot
2248 || sec == htab->etab.sdynbss
2249 || sec == htab->etab.sdynrelro)
2250 ;
2251 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
2252 {
2253 if (sec->size != 0)
2254 {
2255 /* Remember whether there are any reloc sections other
2256 than .rela.plt. */
2257 if (sec != htab->etab.srelplt)
2258 relocs = TRUE;
2259
2260 /* We use the reloc_count field as a counter if we need
2261 to copy relocs into the output file. */
2262 sec->reloc_count = 0;
2263 }
2264 }
2265 else
2266 {
2267 /* It's not one of our sections, so don't allocate space. */
2268 continue;
2269 }
2270
2271 if (sec->size == 0)
2272 {
2273 /* If we don't need this section, strip it from the
2274 output file. This is mostly to handle .rela.bss and
2275 .rela.plt. We must create both sections in
2276 create_dynamic_sections, because they must be created
2277 before the linker maps input sections to output
2278 sections. The linker does that before
2279 adjust_dynamic_symbol is called, and it is that
2280 function which decides whether anything needs to go
2281 into these sections. */
2282 sec->flags |= SEC_EXCLUDE;
2283 continue;
2284 }
2285
2286 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2287 continue;
2288
2289 /* Allocate memory for the section contents. Zero it, because
2290 we may not fill in all the reloc sections. */
2291 sec->contents = bfd_zalloc (dynobj, sec->size);
2292 if (sec->contents == NULL)
2293 return FALSE;
2294 }
2295
2296 if (htab->etab.dynamic_sections_created)
2297 {
2298 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2299 actually has nothing to do with the PLT, it is how we
2300 communicate the LTP value of a load module to the dynamic
2301 linker. */
2302 #define add_dynamic_entry(TAG, VAL) \
2303 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2304
2305 if (!add_dynamic_entry (DT_PLTGOT, 0))
2306 return FALSE;
2307
2308 /* Add some entries to the .dynamic section. We fill in the
2309 values later, in elf32_hppa_finish_dynamic_sections, but we
2310 must add the entries now so that we get the correct size for
2311 the .dynamic section. The DT_DEBUG entry is filled in by the
2312 dynamic linker and used by the debugger. */
2313 if (bfd_link_executable (info))
2314 {
2315 if (!add_dynamic_entry (DT_DEBUG, 0))
2316 return FALSE;
2317 }
2318
2319 if (htab->etab.srelplt->size != 0)
2320 {
2321 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2322 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2323 || !add_dynamic_entry (DT_JMPREL, 0))
2324 return FALSE;
2325 }
2326
2327 if (relocs)
2328 {
2329 if (!add_dynamic_entry (DT_RELA, 0)
2330 || !add_dynamic_entry (DT_RELASZ, 0)
2331 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2332 return FALSE;
2333
2334 /* If any dynamic relocs apply to a read-only section,
2335 then we need a DT_TEXTREL entry. */
2336 if ((info->flags & DF_TEXTREL) == 0)
2337 elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info);
2338
2339 if ((info->flags & DF_TEXTREL) != 0)
2340 {
2341 if (!add_dynamic_entry (DT_TEXTREL, 0))
2342 return FALSE;
2343 }
2344 }
2345 }
2346 #undef add_dynamic_entry
2347
2348 return TRUE;
2349 }
2350
2351 /* External entry points for sizing and building linker stubs. */
2352
2353 /* Set up various things so that we can make a list of input sections
2354 for each output section included in the link. Returns -1 on error,
2355 0 when no stubs will be needed, and 1 on success. */
2356
2357 int
2358 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2359 {
2360 bfd *input_bfd;
2361 unsigned int bfd_count;
2362 unsigned int top_id, top_index;
2363 asection *section;
2364 asection **input_list, **list;
2365 bfd_size_type amt;
2366 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2367
2368 if (htab == NULL)
2369 return -1;
2370
2371 /* Count the number of input BFDs and find the top input section id. */
2372 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2373 input_bfd != NULL;
2374 input_bfd = input_bfd->link.next)
2375 {
2376 bfd_count += 1;
2377 for (section = input_bfd->sections;
2378 section != NULL;
2379 section = section->next)
2380 {
2381 if (top_id < section->id)
2382 top_id = section->id;
2383 }
2384 }
2385 htab->bfd_count = bfd_count;
2386
2387 amt = sizeof (struct map_stub) * (top_id + 1);
2388 htab->stub_group = bfd_zmalloc (amt);
2389 if (htab->stub_group == NULL)
2390 return -1;
2391
2392 /* We can't use output_bfd->section_count here to find the top output
2393 section index as some sections may have been removed, and
2394 strip_excluded_output_sections doesn't renumber the indices. */
2395 for (section = output_bfd->sections, top_index = 0;
2396 section != NULL;
2397 section = section->next)
2398 {
2399 if (top_index < section->index)
2400 top_index = section->index;
2401 }
2402
2403 htab->top_index = top_index;
2404 amt = sizeof (asection *) * (top_index + 1);
2405 input_list = bfd_malloc (amt);
2406 htab->input_list = input_list;
2407 if (input_list == NULL)
2408 return -1;
2409
2410 /* For sections we aren't interested in, mark their entries with a
2411 value we can check later. */
2412 list = input_list + top_index;
2413 do
2414 *list = bfd_abs_section_ptr;
2415 while (list-- != input_list);
2416
2417 for (section = output_bfd->sections;
2418 section != NULL;
2419 section = section->next)
2420 {
2421 if ((section->flags & SEC_CODE) != 0)
2422 input_list[section->index] = NULL;
2423 }
2424
2425 return 1;
2426 }
2427
2428 /* The linker repeatedly calls this function for each input section,
2429 in the order that input sections are linked into output sections.
2430 Build lists of input sections to determine groupings between which
2431 we may insert linker stubs. */
2432
2433 void
2434 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2435 {
2436 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2437
2438 if (htab == NULL)
2439 return;
2440
2441 if (isec->output_section->index <= htab->top_index)
2442 {
2443 asection **list = htab->input_list + isec->output_section->index;
2444 if (*list != bfd_abs_section_ptr)
2445 {
2446 /* Steal the link_sec pointer for our list. */
2447 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2448 /* This happens to make the list in reverse order,
2449 which is what we want. */
2450 PREV_SEC (isec) = *list;
2451 *list = isec;
2452 }
2453 }
2454 }
2455
2456 /* See whether we can group stub sections together. Grouping stub
2457 sections may result in fewer stubs. More importantly, we need to
2458 put all .init* and .fini* stubs at the beginning of the .init or
2459 .fini output sections respectively, because glibc splits the
2460 _init and _fini functions into multiple parts. Putting a stub in
2461 the middle of a function is not a good idea. */
2462
2463 static void
2464 group_sections (struct elf32_hppa_link_hash_table *htab,
2465 bfd_size_type stub_group_size,
2466 bfd_boolean stubs_always_before_branch)
2467 {
2468 asection **list = htab->input_list + htab->top_index;
2469 do
2470 {
2471 asection *tail = *list;
2472 if (tail == bfd_abs_section_ptr)
2473 continue;
2474 while (tail != NULL)
2475 {
2476 asection *curr;
2477 asection *prev;
2478 bfd_size_type total;
2479 bfd_boolean big_sec;
2480
2481 curr = tail;
2482 total = tail->size;
2483 big_sec = total >= stub_group_size;
2484
2485 while ((prev = PREV_SEC (curr)) != NULL
2486 && ((total += curr->output_offset - prev->output_offset)
2487 < stub_group_size))
2488 curr = prev;
2489
2490 /* OK, the size from the start of CURR to the end is less
2491 than 240000 bytes and thus can be handled by one stub
2492 section. (or the tail section is itself larger than
2493 240000 bytes, in which case we may be toast.)
2494 We should really be keeping track of the total size of
2495 stubs added here, as stubs contribute to the final output
2496 section size. That's a little tricky, and this way will
2497 only break if stubs added total more than 22144 bytes, or
2498 2768 long branch stubs. It seems unlikely for more than
2499 2768 different functions to be called, especially from
2500 code only 240000 bytes long. This limit used to be
2501 250000, but c++ code tends to generate lots of little
2502 functions, and sometimes violated the assumption. */
2503 do
2504 {
2505 prev = PREV_SEC (tail);
2506 /* Set up this stub group. */
2507 htab->stub_group[tail->id].link_sec = curr;
2508 }
2509 while (tail != curr && (tail = prev) != NULL);
2510
2511 /* But wait, there's more! Input sections up to 240000
2512 bytes before the stub section can be handled by it too.
2513 Don't do this if we have a really large section after the
2514 stubs, as adding more stubs increases the chance that
2515 branches may not reach into the stub section. */
2516 if (!stubs_always_before_branch && !big_sec)
2517 {
2518 total = 0;
2519 while (prev != NULL
2520 && ((total += tail->output_offset - prev->output_offset)
2521 < stub_group_size))
2522 {
2523 tail = prev;
2524 prev = PREV_SEC (tail);
2525 htab->stub_group[tail->id].link_sec = curr;
2526 }
2527 }
2528 tail = prev;
2529 }
2530 }
2531 while (list-- != htab->input_list);
2532 free (htab->input_list);
2533 #undef PREV_SEC
2534 }
2535
2536 /* Read in all local syms for all input bfds, and create hash entries
2537 for export stubs if we are building a multi-subspace shared lib.
2538 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2539
2540 static int
2541 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2542 {
2543 unsigned int bfd_indx;
2544 Elf_Internal_Sym *local_syms, **all_local_syms;
2545 int stub_changed = 0;
2546 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2547
2548 if (htab == NULL)
2549 return -1;
2550
2551 /* We want to read in symbol extension records only once. To do this
2552 we need to read in the local symbols in parallel and save them for
2553 later use; so hold pointers to the local symbols in an array. */
2554 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2555 all_local_syms = bfd_zmalloc (amt);
2556 htab->all_local_syms = all_local_syms;
2557 if (all_local_syms == NULL)
2558 return -1;
2559
2560 /* Walk over all the input BFDs, swapping in local symbols.
2561 If we are creating a shared library, create hash entries for the
2562 export stubs. */
2563 for (bfd_indx = 0;
2564 input_bfd != NULL;
2565 input_bfd = input_bfd->link.next, bfd_indx++)
2566 {
2567 Elf_Internal_Shdr *symtab_hdr;
2568
2569 /* We'll need the symbol table in a second. */
2570 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2571 if (symtab_hdr->sh_info == 0)
2572 continue;
2573
2574 /* We need an array of the local symbols attached to the input bfd. */
2575 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2576 if (local_syms == NULL)
2577 {
2578 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2579 symtab_hdr->sh_info, 0,
2580 NULL, NULL, NULL);
2581 /* Cache them for elf_link_input_bfd. */
2582 symtab_hdr->contents = (unsigned char *) local_syms;
2583 }
2584 if (local_syms == NULL)
2585 return -1;
2586
2587 all_local_syms[bfd_indx] = local_syms;
2588
2589 if (bfd_link_pic (info) && htab->multi_subspace)
2590 {
2591 struct elf_link_hash_entry **eh_syms;
2592 struct elf_link_hash_entry **eh_symend;
2593 unsigned int symcount;
2594
2595 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2596 - symtab_hdr->sh_info);
2597 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2598 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2599
2600 /* Look through the global syms for functions; We need to
2601 build export stubs for all globally visible functions. */
2602 for (; eh_syms < eh_symend; eh_syms++)
2603 {
2604 struct elf32_hppa_link_hash_entry *hh;
2605
2606 hh = hppa_elf_hash_entry (*eh_syms);
2607
2608 while (hh->eh.root.type == bfd_link_hash_indirect
2609 || hh->eh.root.type == bfd_link_hash_warning)
2610 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2611
2612 /* At this point in the link, undefined syms have been
2613 resolved, so we need to check that the symbol was
2614 defined in this BFD. */
2615 if ((hh->eh.root.type == bfd_link_hash_defined
2616 || hh->eh.root.type == bfd_link_hash_defweak)
2617 && hh->eh.type == STT_FUNC
2618 && hh->eh.root.u.def.section->output_section != NULL
2619 && (hh->eh.root.u.def.section->output_section->owner
2620 == output_bfd)
2621 && hh->eh.root.u.def.section->owner == input_bfd
2622 && hh->eh.def_regular
2623 && !hh->eh.forced_local
2624 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2625 {
2626 asection *sec;
2627 const char *stub_name;
2628 struct elf32_hppa_stub_hash_entry *hsh;
2629
2630 sec = hh->eh.root.u.def.section;
2631 stub_name = hh_name (hh);
2632 hsh = hppa_stub_hash_lookup (&htab->bstab,
2633 stub_name,
2634 FALSE, FALSE);
2635 if (hsh == NULL)
2636 {
2637 hsh = hppa_add_stub (stub_name, sec, htab);
2638 if (!hsh)
2639 return -1;
2640
2641 hsh->target_value = hh->eh.root.u.def.value;
2642 hsh->target_section = hh->eh.root.u.def.section;
2643 hsh->stub_type = hppa_stub_export;
2644 hsh->hh = hh;
2645 stub_changed = 1;
2646 }
2647 else
2648 {
2649 /* xgettext:c-format */
2650 _bfd_error_handler (_("%B: duplicate export stub %s"),
2651 input_bfd, stub_name);
2652 }
2653 }
2654 }
2655 }
2656 }
2657
2658 return stub_changed;
2659 }
2660
2661 /* Determine and set the size of the stub section for a final link.
2662
2663 The basic idea here is to examine all the relocations looking for
2664 PC-relative calls to a target that is unreachable with a "bl"
2665 instruction. */
2666
2667 bfd_boolean
2668 elf32_hppa_size_stubs
2669 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2670 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2671 asection * (*add_stub_section) (const char *, asection *),
2672 void (*layout_sections_again) (void))
2673 {
2674 bfd_size_type stub_group_size;
2675 bfd_boolean stubs_always_before_branch;
2676 bfd_boolean stub_changed;
2677 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2678
2679 if (htab == NULL)
2680 return FALSE;
2681
2682 /* Stash our params away. */
2683 htab->stub_bfd = stub_bfd;
2684 htab->multi_subspace = multi_subspace;
2685 htab->add_stub_section = add_stub_section;
2686 htab->layout_sections_again = layout_sections_again;
2687 stubs_always_before_branch = group_size < 0;
2688 if (group_size < 0)
2689 stub_group_size = -group_size;
2690 else
2691 stub_group_size = group_size;
2692 if (stub_group_size == 1)
2693 {
2694 /* Default values. */
2695 if (stubs_always_before_branch)
2696 {
2697 stub_group_size = 7680000;
2698 if (htab->has_17bit_branch || htab->multi_subspace)
2699 stub_group_size = 240000;
2700 if (htab->has_12bit_branch)
2701 stub_group_size = 7500;
2702 }
2703 else
2704 {
2705 stub_group_size = 6971392;
2706 if (htab->has_17bit_branch || htab->multi_subspace)
2707 stub_group_size = 217856;
2708 if (htab->has_12bit_branch)
2709 stub_group_size = 6808;
2710 }
2711 }
2712
2713 group_sections (htab, stub_group_size, stubs_always_before_branch);
2714
2715 switch (get_local_syms (output_bfd, info->input_bfds, info))
2716 {
2717 default:
2718 if (htab->all_local_syms)
2719 goto error_ret_free_local;
2720 return FALSE;
2721
2722 case 0:
2723 stub_changed = FALSE;
2724 break;
2725
2726 case 1:
2727 stub_changed = TRUE;
2728 break;
2729 }
2730
2731 while (1)
2732 {
2733 bfd *input_bfd;
2734 unsigned int bfd_indx;
2735 asection *stub_sec;
2736
2737 for (input_bfd = info->input_bfds, bfd_indx = 0;
2738 input_bfd != NULL;
2739 input_bfd = input_bfd->link.next, bfd_indx++)
2740 {
2741 Elf_Internal_Shdr *symtab_hdr;
2742 asection *section;
2743 Elf_Internal_Sym *local_syms;
2744
2745 /* We'll need the symbol table in a second. */
2746 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2747 if (symtab_hdr->sh_info == 0)
2748 continue;
2749
2750 local_syms = htab->all_local_syms[bfd_indx];
2751
2752 /* Walk over each section attached to the input bfd. */
2753 for (section = input_bfd->sections;
2754 section != NULL;
2755 section = section->next)
2756 {
2757 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2758
2759 /* If there aren't any relocs, then there's nothing more
2760 to do. */
2761 if ((section->flags & SEC_RELOC) == 0
2762 || section->reloc_count == 0)
2763 continue;
2764
2765 /* If this section is a link-once section that will be
2766 discarded, then don't create any stubs. */
2767 if (section->output_section == NULL
2768 || section->output_section->owner != output_bfd)
2769 continue;
2770
2771 /* Get the relocs. */
2772 internal_relocs
2773 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2774 info->keep_memory);
2775 if (internal_relocs == NULL)
2776 goto error_ret_free_local;
2777
2778 /* Now examine each relocation. */
2779 irela = internal_relocs;
2780 irelaend = irela + section->reloc_count;
2781 for (; irela < irelaend; irela++)
2782 {
2783 unsigned int r_type, r_indx;
2784 enum elf32_hppa_stub_type stub_type;
2785 struct elf32_hppa_stub_hash_entry *hsh;
2786 asection *sym_sec;
2787 bfd_vma sym_value;
2788 bfd_vma destination;
2789 struct elf32_hppa_link_hash_entry *hh;
2790 char *stub_name;
2791 const asection *id_sec;
2792
2793 r_type = ELF32_R_TYPE (irela->r_info);
2794 r_indx = ELF32_R_SYM (irela->r_info);
2795
2796 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2797 {
2798 bfd_set_error (bfd_error_bad_value);
2799 error_ret_free_internal:
2800 if (elf_section_data (section)->relocs == NULL)
2801 free (internal_relocs);
2802 goto error_ret_free_local;
2803 }
2804
2805 /* Only look for stubs on call instructions. */
2806 if (r_type != (unsigned int) R_PARISC_PCREL12F
2807 && r_type != (unsigned int) R_PARISC_PCREL17F
2808 && r_type != (unsigned int) R_PARISC_PCREL22F)
2809 continue;
2810
2811 /* Now determine the call target, its name, value,
2812 section. */
2813 sym_sec = NULL;
2814 sym_value = 0;
2815 destination = 0;
2816 hh = NULL;
2817 if (r_indx < symtab_hdr->sh_info)
2818 {
2819 /* It's a local symbol. */
2820 Elf_Internal_Sym *sym;
2821 Elf_Internal_Shdr *hdr;
2822 unsigned int shndx;
2823
2824 sym = local_syms + r_indx;
2825 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2826 sym_value = sym->st_value;
2827 shndx = sym->st_shndx;
2828 if (shndx < elf_numsections (input_bfd))
2829 {
2830 hdr = elf_elfsections (input_bfd)[shndx];
2831 sym_sec = hdr->bfd_section;
2832 destination = (sym_value + irela->r_addend
2833 + sym_sec->output_offset
2834 + sym_sec->output_section->vma);
2835 }
2836 }
2837 else
2838 {
2839 /* It's an external symbol. */
2840 int e_indx;
2841
2842 e_indx = r_indx - symtab_hdr->sh_info;
2843 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2844
2845 while (hh->eh.root.type == bfd_link_hash_indirect
2846 || hh->eh.root.type == bfd_link_hash_warning)
2847 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2848
2849 if (hh->eh.root.type == bfd_link_hash_defined
2850 || hh->eh.root.type == bfd_link_hash_defweak)
2851 {
2852 sym_sec = hh->eh.root.u.def.section;
2853 sym_value = hh->eh.root.u.def.value;
2854 if (sym_sec->output_section != NULL)
2855 destination = (sym_value + irela->r_addend
2856 + sym_sec->output_offset
2857 + sym_sec->output_section->vma);
2858 }
2859 else if (hh->eh.root.type == bfd_link_hash_undefweak)
2860 {
2861 if (! bfd_link_pic (info))
2862 continue;
2863 }
2864 else if (hh->eh.root.type == bfd_link_hash_undefined)
2865 {
2866 if (! (info->unresolved_syms_in_objects == RM_IGNORE
2867 && (ELF_ST_VISIBILITY (hh->eh.other)
2868 == STV_DEFAULT)
2869 && hh->eh.type != STT_PARISC_MILLI))
2870 continue;
2871 }
2872 else
2873 {
2874 bfd_set_error (bfd_error_bad_value);
2875 goto error_ret_free_internal;
2876 }
2877 }
2878
2879 /* Determine what (if any) linker stub is needed. */
2880 stub_type = hppa_type_of_stub (section, irela, hh,
2881 destination, info);
2882 if (stub_type == hppa_stub_none)
2883 continue;
2884
2885 /* Support for grouping stub sections. */
2886 id_sec = htab->stub_group[section->id].link_sec;
2887
2888 /* Get the name of this stub. */
2889 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
2890 if (!stub_name)
2891 goto error_ret_free_internal;
2892
2893 hsh = hppa_stub_hash_lookup (&htab->bstab,
2894 stub_name,
2895 FALSE, FALSE);
2896 if (hsh != NULL)
2897 {
2898 /* The proper stub has already been created. */
2899 free (stub_name);
2900 continue;
2901 }
2902
2903 hsh = hppa_add_stub (stub_name, section, htab);
2904 if (hsh == NULL)
2905 {
2906 free (stub_name);
2907 goto error_ret_free_internal;
2908 }
2909
2910 hsh->target_value = sym_value;
2911 hsh->target_section = sym_sec;
2912 hsh->stub_type = stub_type;
2913 if (bfd_link_pic (info))
2914 {
2915 if (stub_type == hppa_stub_import)
2916 hsh->stub_type = hppa_stub_import_shared;
2917 else if (stub_type == hppa_stub_long_branch)
2918 hsh->stub_type = hppa_stub_long_branch_shared;
2919 }
2920 hsh->hh = hh;
2921 stub_changed = TRUE;
2922 }
2923
2924 /* We're done with the internal relocs, free them. */
2925 if (elf_section_data (section)->relocs == NULL)
2926 free (internal_relocs);
2927 }
2928 }
2929
2930 if (!stub_changed)
2931 break;
2932
2933 /* OK, we've added some stubs. Find out the new size of the
2934 stub sections. */
2935 for (stub_sec = htab->stub_bfd->sections;
2936 stub_sec != NULL;
2937 stub_sec = stub_sec->next)
2938 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
2939 stub_sec->size = 0;
2940
2941 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
2942
2943 /* Ask the linker to do its stuff. */
2944 (*htab->layout_sections_again) ();
2945 stub_changed = FALSE;
2946 }
2947
2948 free (htab->all_local_syms);
2949 return TRUE;
2950
2951 error_ret_free_local:
2952 free (htab->all_local_syms);
2953 return FALSE;
2954 }
2955
2956 /* For a final link, this function is called after we have sized the
2957 stubs to provide a value for __gp. */
2958
2959 bfd_boolean
2960 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
2961 {
2962 struct bfd_link_hash_entry *h;
2963 asection *sec = NULL;
2964 bfd_vma gp_val = 0;
2965
2966 h = bfd_link_hash_lookup (info->hash, "$global$", FALSE, FALSE, FALSE);
2967
2968 if (h != NULL
2969 && (h->type == bfd_link_hash_defined
2970 || h->type == bfd_link_hash_defweak))
2971 {
2972 gp_val = h->u.def.value;
2973 sec = h->u.def.section;
2974 }
2975 else
2976 {
2977 asection *splt = bfd_get_section_by_name (abfd, ".plt");
2978 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2979
2980 /* Choose to point our LTP at, in this order, one of .plt, .got,
2981 or .data, if these sections exist. In the case of choosing
2982 .plt try to make the LTP ideal for addressing anywhere in the
2983 .plt or .got with a 14 bit signed offset. Typically, the end
2984 of the .plt is the start of the .got, so choose .plt + 0x2000
2985 if either the .plt or .got is larger than 0x2000. If both
2986 the .plt and .got are smaller than 0x2000, choose the end of
2987 the .plt section. */
2988 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
2989 ? NULL : splt;
2990 if (sec != NULL)
2991 {
2992 gp_val = sec->size;
2993 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
2994 {
2995 gp_val = 0x2000;
2996 }
2997 }
2998 else
2999 {
3000 sec = sgot;
3001 if (sec != NULL)
3002 {
3003 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3004 {
3005 /* We know we don't have a .plt. If .got is large,
3006 offset our LTP. */
3007 if (sec->size > 0x2000)
3008 gp_val = 0x2000;
3009 }
3010 }
3011 else
3012 {
3013 /* No .plt or .got. Who cares what the LTP is? */
3014 sec = bfd_get_section_by_name (abfd, ".data");
3015 }
3016 }
3017
3018 if (h != NULL)
3019 {
3020 h->type = bfd_link_hash_defined;
3021 h->u.def.value = gp_val;
3022 if (sec != NULL)
3023 h->u.def.section = sec;
3024 else
3025 h->u.def.section = bfd_abs_section_ptr;
3026 }
3027 }
3028
3029 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
3030 {
3031 if (sec != NULL && sec->output_section != NULL)
3032 gp_val += sec->output_section->vma + sec->output_offset;
3033
3034 elf_gp (abfd) = gp_val;
3035 }
3036 return TRUE;
3037 }
3038
3039 /* Build all the stubs associated with the current output file. The
3040 stubs are kept in a hash table attached to the main linker hash
3041 table. We also set up the .plt entries for statically linked PIC
3042 functions here. This function is called via hppaelf_finish in the
3043 linker. */
3044
3045 bfd_boolean
3046 elf32_hppa_build_stubs (struct bfd_link_info *info)
3047 {
3048 asection *stub_sec;
3049 struct bfd_hash_table *table;
3050 struct elf32_hppa_link_hash_table *htab;
3051
3052 htab = hppa_link_hash_table (info);
3053 if (htab == NULL)
3054 return FALSE;
3055
3056 for (stub_sec = htab->stub_bfd->sections;
3057 stub_sec != NULL;
3058 stub_sec = stub_sec->next)
3059 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
3060 && stub_sec->size != 0)
3061 {
3062 /* Allocate memory to hold the linker stubs. */
3063 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
3064 if (stub_sec->contents == NULL)
3065 return FALSE;
3066 stub_sec->size = 0;
3067 }
3068
3069 /* Build the stubs as directed by the stub hash table. */
3070 table = &htab->bstab;
3071 bfd_hash_traverse (table, hppa_build_one_stub, info);
3072
3073 return TRUE;
3074 }
3075
3076 /* Return the base vma address which should be subtracted from the real
3077 address when resolving a dtpoff relocation.
3078 This is PT_TLS segment p_vaddr. */
3079
3080 static bfd_vma
3081 dtpoff_base (struct bfd_link_info *info)
3082 {
3083 /* If tls_sec is NULL, we should have signalled an error already. */
3084 if (elf_hash_table (info)->tls_sec == NULL)
3085 return 0;
3086 return elf_hash_table (info)->tls_sec->vma;
3087 }
3088
3089 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3090
3091 static bfd_vma
3092 tpoff (struct bfd_link_info *info, bfd_vma address)
3093 {
3094 struct elf_link_hash_table *htab = elf_hash_table (info);
3095
3096 /* If tls_sec is NULL, we should have signalled an error already. */
3097 if (htab->tls_sec == NULL)
3098 return 0;
3099 /* hppa TLS ABI is variant I and static TLS block start just after
3100 tcbhead structure which has 2 pointer fields. */
3101 return (address - htab->tls_sec->vma
3102 + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3103 }
3104
3105 /* Perform a final link. */
3106
3107 static bfd_boolean
3108 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3109 {
3110 struct stat buf;
3111
3112 /* Invoke the regular ELF linker to do all the work. */
3113 if (!bfd_elf_final_link (abfd, info))
3114 return FALSE;
3115
3116 /* If we're producing a final executable, sort the contents of the
3117 unwind section. */
3118 if (bfd_link_relocatable (info))
3119 return TRUE;
3120
3121 /* Do not attempt to sort non-regular files. This is here
3122 especially for configure scripts and kernel builds which run
3123 tests with "ld [...] -o /dev/null". */
3124 if (stat (abfd->filename, &buf) != 0
3125 || !S_ISREG(buf.st_mode))
3126 return TRUE;
3127
3128 return elf_hppa_sort_unwind (abfd);
3129 }
3130
3131 /* Record the lowest address for the data and text segments. */
3132
3133 static void
3134 hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
3135 {
3136 struct elf32_hppa_link_hash_table *htab;
3137
3138 htab = (struct elf32_hppa_link_hash_table*) data;
3139 if (htab == NULL)
3140 return;
3141
3142 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3143 {
3144 bfd_vma value;
3145 Elf_Internal_Phdr *p;
3146
3147 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
3148 BFD_ASSERT (p != NULL);
3149 value = p->p_vaddr;
3150
3151 if ((section->flags & SEC_READONLY) != 0)
3152 {
3153 if (value < htab->text_segment_base)
3154 htab->text_segment_base = value;
3155 }
3156 else
3157 {
3158 if (value < htab->data_segment_base)
3159 htab->data_segment_base = value;
3160 }
3161 }
3162 }
3163
3164 /* Perform a relocation as part of a final link. */
3165
3166 static bfd_reloc_status_type
3167 final_link_relocate (asection *input_section,
3168 bfd_byte *contents,
3169 const Elf_Internal_Rela *rela,
3170 bfd_vma value,
3171 struct elf32_hppa_link_hash_table *htab,
3172 asection *sym_sec,
3173 struct elf32_hppa_link_hash_entry *hh,
3174 struct bfd_link_info *info)
3175 {
3176 int insn;
3177 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3178 unsigned int orig_r_type = r_type;
3179 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3180 int r_format = howto->bitsize;
3181 enum hppa_reloc_field_selector_type_alt r_field;
3182 bfd *input_bfd = input_section->owner;
3183 bfd_vma offset = rela->r_offset;
3184 bfd_vma max_branch_offset = 0;
3185 bfd_byte *hit_data = contents + offset;
3186 bfd_signed_vma addend = rela->r_addend;
3187 bfd_vma location;
3188 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3189 int val;
3190
3191 if (r_type == R_PARISC_NONE)
3192 return bfd_reloc_ok;
3193
3194 insn = bfd_get_32 (input_bfd, hit_data);
3195
3196 /* Find out where we are and where we're going. */
3197 location = (offset +
3198 input_section->output_offset +
3199 input_section->output_section->vma);
3200
3201 /* If we are not building a shared library, convert DLTIND relocs to
3202 DPREL relocs. */
3203 if (!bfd_link_pic (info))
3204 {
3205 switch (r_type)
3206 {
3207 case R_PARISC_DLTIND21L:
3208 case R_PARISC_TLS_GD21L:
3209 case R_PARISC_TLS_LDM21L:
3210 case R_PARISC_TLS_IE21L:
3211 r_type = R_PARISC_DPREL21L;
3212 break;
3213
3214 case R_PARISC_DLTIND14R:
3215 case R_PARISC_TLS_GD14R:
3216 case R_PARISC_TLS_LDM14R:
3217 case R_PARISC_TLS_IE14R:
3218 r_type = R_PARISC_DPREL14R;
3219 break;
3220
3221 case R_PARISC_DLTIND14F:
3222 r_type = R_PARISC_DPREL14F;
3223 break;
3224 }
3225 }
3226
3227 switch (r_type)
3228 {
3229 case R_PARISC_PCREL12F:
3230 case R_PARISC_PCREL17F:
3231 case R_PARISC_PCREL22F:
3232 /* If this call should go via the plt, find the import stub in
3233 the stub hash. */
3234 if (sym_sec == NULL
3235 || sym_sec->output_section == NULL
3236 || (hh != NULL
3237 && hh->eh.plt.offset != (bfd_vma) -1
3238 && hh->eh.dynindx != -1
3239 && !hh->plabel
3240 && (bfd_link_pic (info)
3241 || !hh->eh.def_regular
3242 || hh->eh.root.type == bfd_link_hash_defweak)))
3243 {
3244 hsh = hppa_get_stub_entry (input_section, sym_sec,
3245 hh, rela, htab);
3246 if (hsh != NULL)
3247 {
3248 value = (hsh->stub_offset
3249 + hsh->stub_sec->output_offset
3250 + hsh->stub_sec->output_section->vma);
3251 addend = 0;
3252 }
3253 else if (sym_sec == NULL && hh != NULL
3254 && hh->eh.root.type == bfd_link_hash_undefweak)
3255 {
3256 /* It's OK if undefined weak. Calls to undefined weak
3257 symbols behave as if the "called" function
3258 immediately returns. We can thus call to a weak
3259 function without first checking whether the function
3260 is defined. */
3261 value = location;
3262 addend = 8;
3263 }
3264 else
3265 return bfd_reloc_undefined;
3266 }
3267 /* Fall thru. */
3268
3269 case R_PARISC_PCREL21L:
3270 case R_PARISC_PCREL17C:
3271 case R_PARISC_PCREL17R:
3272 case R_PARISC_PCREL14R:
3273 case R_PARISC_PCREL14F:
3274 case R_PARISC_PCREL32:
3275 /* Make it a pc relative offset. */
3276 value -= location;
3277 addend -= 8;
3278 break;
3279
3280 case R_PARISC_DPREL21L:
3281 case R_PARISC_DPREL14R:
3282 case R_PARISC_DPREL14F:
3283 /* Convert instructions that use the linkage table pointer (r19) to
3284 instructions that use the global data pointer (dp). This is the
3285 most efficient way of using PIC code in an incomplete executable,
3286 but the user must follow the standard runtime conventions for
3287 accessing data for this to work. */
3288 if (orig_r_type != r_type)
3289 {
3290 if (r_type == R_PARISC_DPREL21L)
3291 {
3292 /* GCC sometimes uses a register other than r19 for the
3293 operation, so we must convert any addil instruction
3294 that uses this relocation. */
3295 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3296 insn = ADDIL_DP;
3297 else
3298 /* We must have a ldil instruction. It's too hard to find
3299 and convert the associated add instruction, so issue an
3300 error. */
3301 _bfd_error_handler
3302 /* xgettext:c-format */
3303 (_("%B(%A+%#Lx): %s fixup for insn %#x is not supported in a non-shared link"),
3304 input_bfd,
3305 input_section,
3306 offset,
3307 howto->name,
3308 insn);
3309 }
3310 else if (r_type == R_PARISC_DPREL14F)
3311 {
3312 /* This must be a format 1 load/store. Change the base
3313 register to dp. */
3314 insn = (insn & 0xfc1ffff) | (27 << 21);
3315 }
3316 }
3317
3318 /* For all the DP relative relocations, we need to examine the symbol's
3319 section. If it has no section or if it's a code section, then
3320 "data pointer relative" makes no sense. In that case we don't
3321 adjust the "value", and for 21 bit addil instructions, we change the
3322 source addend register from %dp to %r0. This situation commonly
3323 arises for undefined weak symbols and when a variable's "constness"
3324 is declared differently from the way the variable is defined. For
3325 instance: "extern int foo" with foo defined as "const int foo". */
3326 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3327 {
3328 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3329 == (((int) OP_ADDIL << 26) | (27 << 21)))
3330 {
3331 insn &= ~ (0x1f << 21);
3332 }
3333 /* Now try to make things easy for the dynamic linker. */
3334
3335 break;
3336 }
3337 /* Fall thru. */
3338
3339 case R_PARISC_DLTIND21L:
3340 case R_PARISC_DLTIND14R:
3341 case R_PARISC_DLTIND14F:
3342 case R_PARISC_TLS_GD21L:
3343 case R_PARISC_TLS_LDM21L:
3344 case R_PARISC_TLS_IE21L:
3345 case R_PARISC_TLS_GD14R:
3346 case R_PARISC_TLS_LDM14R:
3347 case R_PARISC_TLS_IE14R:
3348 value -= elf_gp (input_section->output_section->owner);
3349 break;
3350
3351 case R_PARISC_SEGREL32:
3352 if ((sym_sec->flags & SEC_CODE) != 0)
3353 value -= htab->text_segment_base;
3354 else
3355 value -= htab->data_segment_base;
3356 break;
3357
3358 default:
3359 break;
3360 }
3361
3362 switch (r_type)
3363 {
3364 case R_PARISC_DIR32:
3365 case R_PARISC_DIR14F:
3366 case R_PARISC_DIR17F:
3367 case R_PARISC_PCREL17C:
3368 case R_PARISC_PCREL14F:
3369 case R_PARISC_PCREL32:
3370 case R_PARISC_DPREL14F:
3371 case R_PARISC_PLABEL32:
3372 case R_PARISC_DLTIND14F:
3373 case R_PARISC_SEGBASE:
3374 case R_PARISC_SEGREL32:
3375 case R_PARISC_TLS_DTPMOD32:
3376 case R_PARISC_TLS_DTPOFF32:
3377 case R_PARISC_TLS_TPREL32:
3378 r_field = e_fsel;
3379 break;
3380
3381 case R_PARISC_DLTIND21L:
3382 case R_PARISC_PCREL21L:
3383 case R_PARISC_PLABEL21L:
3384 r_field = e_lsel;
3385 break;
3386
3387 case R_PARISC_DIR21L:
3388 case R_PARISC_DPREL21L:
3389 case R_PARISC_TLS_GD21L:
3390 case R_PARISC_TLS_LDM21L:
3391 case R_PARISC_TLS_LDO21L:
3392 case R_PARISC_TLS_IE21L:
3393 case R_PARISC_TLS_LE21L:
3394 r_field = e_lrsel;
3395 break;
3396
3397 case R_PARISC_PCREL17R:
3398 case R_PARISC_PCREL14R:
3399 case R_PARISC_PLABEL14R:
3400 case R_PARISC_DLTIND14R:
3401 r_field = e_rsel;
3402 break;
3403
3404 case R_PARISC_DIR17R:
3405 case R_PARISC_DIR14R:
3406 case R_PARISC_DPREL14R:
3407 case R_PARISC_TLS_GD14R:
3408 case R_PARISC_TLS_LDM14R:
3409 case R_PARISC_TLS_LDO14R:
3410 case R_PARISC_TLS_IE14R:
3411 case R_PARISC_TLS_LE14R:
3412 r_field = e_rrsel;
3413 break;
3414
3415 case R_PARISC_PCREL12F:
3416 case R_PARISC_PCREL17F:
3417 case R_PARISC_PCREL22F:
3418 r_field = e_fsel;
3419
3420 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3421 {
3422 max_branch_offset = (1 << (17-1)) << 2;
3423 }
3424 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3425 {
3426 max_branch_offset = (1 << (12-1)) << 2;
3427 }
3428 else
3429 {
3430 max_branch_offset = (1 << (22-1)) << 2;
3431 }
3432
3433 /* sym_sec is NULL on undefined weak syms or when shared on
3434 undefined syms. We've already checked for a stub for the
3435 shared undefined case. */
3436 if (sym_sec == NULL)
3437 break;
3438
3439 /* If the branch is out of reach, then redirect the
3440 call to the local stub for this function. */
3441 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3442 {
3443 hsh = hppa_get_stub_entry (input_section, sym_sec,
3444 hh, rela, htab);
3445 if (hsh == NULL)
3446 return bfd_reloc_undefined;
3447
3448 /* Munge up the value and addend so that we call the stub
3449 rather than the procedure directly. */
3450 value = (hsh->stub_offset
3451 + hsh->stub_sec->output_offset
3452 + hsh->stub_sec->output_section->vma
3453 - location);
3454 addend = -8;
3455 }
3456 break;
3457
3458 /* Something we don't know how to handle. */
3459 default:
3460 return bfd_reloc_notsupported;
3461 }
3462
3463 /* Make sure we can reach the stub. */
3464 if (max_branch_offset != 0
3465 && value + addend + max_branch_offset >= 2*max_branch_offset)
3466 {
3467 _bfd_error_handler
3468 /* xgettext:c-format */
3469 (_("%B(%A+%#Lx): cannot reach %s, recompile with -ffunction-sections"),
3470 input_bfd,
3471 input_section,
3472 offset,
3473 hsh->bh_root.string);
3474 bfd_set_error (bfd_error_bad_value);
3475 return bfd_reloc_notsupported;
3476 }
3477
3478 val = hppa_field_adjust (value, addend, r_field);
3479
3480 switch (r_type)
3481 {
3482 case R_PARISC_PCREL12F:
3483 case R_PARISC_PCREL17C:
3484 case R_PARISC_PCREL17F:
3485 case R_PARISC_PCREL17R:
3486 case R_PARISC_PCREL22F:
3487 case R_PARISC_DIR17F:
3488 case R_PARISC_DIR17R:
3489 /* This is a branch. Divide the offset by four.
3490 Note that we need to decide whether it's a branch or
3491 otherwise by inspecting the reloc. Inspecting insn won't
3492 work as insn might be from a .word directive. */
3493 val >>= 2;
3494 break;
3495
3496 default:
3497 break;
3498 }
3499
3500 insn = hppa_rebuild_insn (insn, val, r_format);
3501
3502 /* Update the instruction word. */
3503 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3504 return bfd_reloc_ok;
3505 }
3506
3507 /* Relocate an HPPA ELF section. */
3508
3509 static bfd_boolean
3510 elf32_hppa_relocate_section (bfd *output_bfd,
3511 struct bfd_link_info *info,
3512 bfd *input_bfd,
3513 asection *input_section,
3514 bfd_byte *contents,
3515 Elf_Internal_Rela *relocs,
3516 Elf_Internal_Sym *local_syms,
3517 asection **local_sections)
3518 {
3519 bfd_vma *local_got_offsets;
3520 struct elf32_hppa_link_hash_table *htab;
3521 Elf_Internal_Shdr *symtab_hdr;
3522 Elf_Internal_Rela *rela;
3523 Elf_Internal_Rela *relend;
3524
3525 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3526
3527 htab = hppa_link_hash_table (info);
3528 if (htab == NULL)
3529 return FALSE;
3530
3531 local_got_offsets = elf_local_got_offsets (input_bfd);
3532
3533 rela = relocs;
3534 relend = relocs + input_section->reloc_count;
3535 for (; rela < relend; rela++)
3536 {
3537 unsigned int r_type;
3538 reloc_howto_type *howto;
3539 unsigned int r_symndx;
3540 struct elf32_hppa_link_hash_entry *hh;
3541 Elf_Internal_Sym *sym;
3542 asection *sym_sec;
3543 bfd_vma relocation;
3544 bfd_reloc_status_type rstatus;
3545 const char *sym_name;
3546 bfd_boolean plabel;
3547 bfd_boolean warned_undef;
3548
3549 r_type = ELF32_R_TYPE (rela->r_info);
3550 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3551 {
3552 bfd_set_error (bfd_error_bad_value);
3553 return FALSE;
3554 }
3555 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3556 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3557 continue;
3558
3559 r_symndx = ELF32_R_SYM (rela->r_info);
3560 hh = NULL;
3561 sym = NULL;
3562 sym_sec = NULL;
3563 warned_undef = FALSE;
3564 if (r_symndx < symtab_hdr->sh_info)
3565 {
3566 /* This is a local symbol, h defaults to NULL. */
3567 sym = local_syms + r_symndx;
3568 sym_sec = local_sections[r_symndx];
3569 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3570 }
3571 else
3572 {
3573 struct elf_link_hash_entry *eh;
3574 bfd_boolean unresolved_reloc, ignored;
3575 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3576
3577 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3578 r_symndx, symtab_hdr, sym_hashes,
3579 eh, sym_sec, relocation,
3580 unresolved_reloc, warned_undef,
3581 ignored);
3582
3583 if (!bfd_link_relocatable (info)
3584 && relocation == 0
3585 && eh->root.type != bfd_link_hash_defined
3586 && eh->root.type != bfd_link_hash_defweak
3587 && eh->root.type != bfd_link_hash_undefweak)
3588 {
3589 if (info->unresolved_syms_in_objects == RM_IGNORE
3590 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3591 && eh->type == STT_PARISC_MILLI)
3592 {
3593 (*info->callbacks->undefined_symbol)
3594 (info, eh_name (eh), input_bfd,
3595 input_section, rela->r_offset, FALSE);
3596 warned_undef = TRUE;
3597 }
3598 }
3599 hh = hppa_elf_hash_entry (eh);
3600 }
3601
3602 if (sym_sec != NULL && discarded_section (sym_sec))
3603 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3604 rela, 1, relend,
3605 elf_hppa_howto_table + r_type, 0,
3606 contents);
3607
3608 if (bfd_link_relocatable (info))
3609 continue;
3610
3611 /* Do any required modifications to the relocation value, and
3612 determine what types of dynamic info we need to output, if
3613 any. */
3614 plabel = 0;
3615 switch (r_type)
3616 {
3617 case R_PARISC_DLTIND14F:
3618 case R_PARISC_DLTIND14R:
3619 case R_PARISC_DLTIND21L:
3620 {
3621 bfd_vma off;
3622 bfd_boolean do_got = FALSE;
3623 bfd_boolean reloc = bfd_link_pic (info);
3624
3625 /* Relocation is to the entry for this symbol in the
3626 global offset table. */
3627 if (hh != NULL)
3628 {
3629 bfd_boolean dyn;
3630
3631 off = hh->eh.got.offset;
3632 dyn = htab->etab.dynamic_sections_created;
3633 reloc = (!UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh)
3634 && (reloc
3635 || (hh->eh.dynindx != -1
3636 && !SYMBOL_REFERENCES_LOCAL (info, &hh->eh))));
3637 if (!reloc
3638 || !WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
3639 bfd_link_pic (info),
3640 &hh->eh))
3641 {
3642 /* If we aren't going to call finish_dynamic_symbol,
3643 then we need to handle initialisation of the .got
3644 entry and create needed relocs here. Since the
3645 offset must always be a multiple of 4, we use the
3646 least significant bit to record whether we have
3647 initialised it already. */
3648 if ((off & 1) != 0)
3649 off &= ~1;
3650 else
3651 {
3652 hh->eh.got.offset |= 1;
3653 do_got = TRUE;
3654 }
3655 }
3656 }
3657 else
3658 {
3659 /* Local symbol case. */
3660 if (local_got_offsets == NULL)
3661 abort ();
3662
3663 off = local_got_offsets[r_symndx];
3664
3665 /* The offset must always be a multiple of 4. We use
3666 the least significant bit to record whether we have
3667 already generated the necessary reloc. */
3668 if ((off & 1) != 0)
3669 off &= ~1;
3670 else
3671 {
3672 local_got_offsets[r_symndx] |= 1;
3673 do_got = TRUE;
3674 }
3675 }
3676
3677 if (do_got)
3678 {
3679 if (reloc)
3680 {
3681 /* Output a dynamic relocation for this GOT entry.
3682 In this case it is relative to the base of the
3683 object because the symbol index is zero. */
3684 Elf_Internal_Rela outrel;
3685 bfd_byte *loc;
3686 asection *sec = htab->etab.srelgot;
3687
3688 outrel.r_offset = (off
3689 + htab->etab.sgot->output_offset
3690 + htab->etab.sgot->output_section->vma);
3691 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3692 outrel.r_addend = relocation;
3693 loc = sec->contents;
3694 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3695 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3696 }
3697 else
3698 bfd_put_32 (output_bfd, relocation,
3699 htab->etab.sgot->contents + off);
3700 }
3701
3702 if (off >= (bfd_vma) -2)
3703 abort ();
3704
3705 /* Add the base of the GOT to the relocation value. */
3706 relocation = (off
3707 + htab->etab.sgot->output_offset
3708 + htab->etab.sgot->output_section->vma);
3709 }
3710 break;
3711
3712 case R_PARISC_SEGREL32:
3713 /* If this is the first SEGREL relocation, then initialize
3714 the segment base values. */
3715 if (htab->text_segment_base == (bfd_vma) -1)
3716 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3717 break;
3718
3719 case R_PARISC_PLABEL14R:
3720 case R_PARISC_PLABEL21L:
3721 case R_PARISC_PLABEL32:
3722 if (htab->etab.dynamic_sections_created)
3723 {
3724 bfd_vma off;
3725 bfd_boolean do_plt = 0;
3726 /* If we have a global symbol with a PLT slot, then
3727 redirect this relocation to it. */
3728 if (hh != NULL)
3729 {
3730 off = hh->eh.plt.offset;
3731 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1,
3732 bfd_link_pic (info),
3733 &hh->eh))
3734 {
3735 /* In a non-shared link, adjust_dynamic_symbols
3736 isn't called for symbols forced local. We
3737 need to write out the plt entry here. */
3738 if ((off & 1) != 0)
3739 off &= ~1;
3740 else
3741 {
3742 hh->eh.plt.offset |= 1;
3743 do_plt = 1;
3744 }
3745 }
3746 }
3747 else
3748 {
3749 bfd_vma *local_plt_offsets;
3750
3751 if (local_got_offsets == NULL)
3752 abort ();
3753
3754 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3755 off = local_plt_offsets[r_symndx];
3756
3757 /* As for the local .got entry case, we use the last
3758 bit to record whether we've already initialised
3759 this local .plt entry. */
3760 if ((off & 1) != 0)
3761 off &= ~1;
3762 else
3763 {
3764 local_plt_offsets[r_symndx] |= 1;
3765 do_plt = 1;
3766 }
3767 }
3768
3769 if (do_plt)
3770 {
3771 if (bfd_link_pic (info))
3772 {
3773 /* Output a dynamic IPLT relocation for this
3774 PLT entry. */
3775 Elf_Internal_Rela outrel;
3776 bfd_byte *loc;
3777 asection *s = htab->etab.srelplt;
3778
3779 outrel.r_offset = (off
3780 + htab->etab.splt->output_offset
3781 + htab->etab.splt->output_section->vma);
3782 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3783 outrel.r_addend = relocation;
3784 loc = s->contents;
3785 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3786 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3787 }
3788 else
3789 {
3790 bfd_put_32 (output_bfd,
3791 relocation,
3792 htab->etab.splt->contents + off);
3793 bfd_put_32 (output_bfd,
3794 elf_gp (htab->etab.splt->output_section->owner),
3795 htab->etab.splt->contents + off + 4);
3796 }
3797 }
3798
3799 if (off >= (bfd_vma) -2)
3800 abort ();
3801
3802 /* PLABELs contain function pointers. Relocation is to
3803 the entry for the function in the .plt. The magic +2
3804 offset signals to $$dyncall that the function pointer
3805 is in the .plt and thus has a gp pointer too.
3806 Exception: Undefined PLABELs should have a value of
3807 zero. */
3808 if (hh == NULL
3809 || (hh->eh.root.type != bfd_link_hash_undefweak
3810 && hh->eh.root.type != bfd_link_hash_undefined))
3811 {
3812 relocation = (off
3813 + htab->etab.splt->output_offset
3814 + htab->etab.splt->output_section->vma
3815 + 2);
3816 }
3817 plabel = 1;
3818 }
3819 /* Fall through. */
3820
3821 case R_PARISC_DIR17F:
3822 case R_PARISC_DIR17R:
3823 case R_PARISC_DIR14F:
3824 case R_PARISC_DIR14R:
3825 case R_PARISC_DIR21L:
3826 case R_PARISC_DPREL14F:
3827 case R_PARISC_DPREL14R:
3828 case R_PARISC_DPREL21L:
3829 case R_PARISC_DIR32:
3830 if ((input_section->flags & SEC_ALLOC) == 0)
3831 break;
3832
3833 /* The reloc types handled here and this conditional
3834 expression must match the code in ..check_relocs and
3835 allocate_dynrelocs. ie. We need exactly the same condition
3836 as in ..check_relocs, with some extra conditions (dynindx
3837 test in this case) to cater for relocs removed by
3838 allocate_dynrelocs. */
3839 if ((bfd_link_pic (info)
3840 && !(hh != NULL
3841 && ((hh->eh.root.type == bfd_link_hash_undefined
3842 && ELF_ST_VISIBILITY (hh->eh.other) != STV_DEFAULT)
3843 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh)))
3844 && (IS_ABSOLUTE_RELOC (r_type)
3845 || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
3846 || (ELIMINATE_COPY_RELOCS
3847 && !bfd_link_pic (info)
3848 && hh != NULL
3849 && hh->eh.dynindx != -1
3850 && !hh->eh.non_got_ref
3851 && !hh->eh.def_regular))
3852 {
3853 Elf_Internal_Rela outrel;
3854 bfd_boolean skip;
3855 asection *sreloc;
3856 bfd_byte *loc;
3857
3858 /* When generating a shared object, these relocations
3859 are copied into the output file to be resolved at run
3860 time. */
3861
3862 outrel.r_addend = rela->r_addend;
3863 outrel.r_offset =
3864 _bfd_elf_section_offset (output_bfd, info, input_section,
3865 rela->r_offset);
3866 skip = (outrel.r_offset == (bfd_vma) -1
3867 || outrel.r_offset == (bfd_vma) -2);
3868 outrel.r_offset += (input_section->output_offset
3869 + input_section->output_section->vma);
3870
3871 if (skip)
3872 {
3873 memset (&outrel, 0, sizeof (outrel));
3874 }
3875 else if (hh != NULL
3876 && hh->eh.dynindx != -1
3877 && (plabel
3878 || !IS_ABSOLUTE_RELOC (r_type)
3879 || !bfd_link_pic (info)
3880 || !SYMBOLIC_BIND (info, &hh->eh)
3881 || !hh->eh.def_regular))
3882 {
3883 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
3884 }
3885 else /* It's a local symbol, or one marked to become local. */
3886 {
3887 int indx = 0;
3888
3889 /* Add the absolute offset of the symbol. */
3890 outrel.r_addend += relocation;
3891
3892 /* Global plabels need to be processed by the
3893 dynamic linker so that functions have at most one
3894 fptr. For this reason, we need to differentiate
3895 between global and local plabels, which we do by
3896 providing the function symbol for a global plabel
3897 reloc, and no symbol for local plabels. */
3898 if (! plabel
3899 && sym_sec != NULL
3900 && sym_sec->output_section != NULL
3901 && ! bfd_is_abs_section (sym_sec))
3902 {
3903 asection *osec;
3904
3905 osec = sym_sec->output_section;
3906 indx = elf_section_data (osec)->dynindx;
3907 if (indx == 0)
3908 {
3909 osec = htab->etab.text_index_section;
3910 indx = elf_section_data (osec)->dynindx;
3911 }
3912 BFD_ASSERT (indx != 0);
3913
3914 /* We are turning this relocation into one
3915 against a section symbol, so subtract out the
3916 output section's address but not the offset
3917 of the input section in the output section. */
3918 outrel.r_addend -= osec->vma;
3919 }
3920
3921 outrel.r_info = ELF32_R_INFO (indx, r_type);
3922 }
3923 sreloc = elf_section_data (input_section)->sreloc;
3924 if (sreloc == NULL)
3925 abort ();
3926
3927 loc = sreloc->contents;
3928 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3929 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3930 }
3931 break;
3932
3933 case R_PARISC_TLS_LDM21L:
3934 case R_PARISC_TLS_LDM14R:
3935 {
3936 bfd_vma off;
3937
3938 off = htab->tls_ldm_got.offset;
3939 if (off & 1)
3940 off &= ~1;
3941 else
3942 {
3943 Elf_Internal_Rela outrel;
3944 bfd_byte *loc;
3945
3946 outrel.r_offset = (off
3947 + htab->etab.sgot->output_section->vma
3948 + htab->etab.sgot->output_offset);
3949 outrel.r_addend = 0;
3950 outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
3951 loc = htab->etab.srelgot->contents;
3952 loc += htab->etab.srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
3953
3954 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3955 htab->tls_ldm_got.offset |= 1;
3956 }
3957
3958 /* Add the base of the GOT to the relocation value. */
3959 relocation = (off
3960 + htab->etab.sgot->output_offset
3961 + htab->etab.sgot->output_section->vma);
3962
3963 break;
3964 }
3965
3966 case R_PARISC_TLS_LDO21L:
3967 case R_PARISC_TLS_LDO14R:
3968 relocation -= dtpoff_base (info);
3969 break;
3970
3971 case R_PARISC_TLS_GD21L:
3972 case R_PARISC_TLS_GD14R:
3973 case R_PARISC_TLS_IE21L:
3974 case R_PARISC_TLS_IE14R:
3975 {
3976 bfd_vma off;
3977 int indx;
3978 char tls_type;
3979
3980 indx = 0;
3981 if (hh != NULL)
3982 {
3983 bfd_boolean dyn;
3984 dyn = htab->etab.dynamic_sections_created;
3985
3986 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
3987 bfd_link_pic (info),
3988 &hh->eh)
3989 && (!bfd_link_pic (info)
3990 || !SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
3991 {
3992 indx = hh->eh.dynindx;
3993 }
3994 off = hh->eh.got.offset;
3995 tls_type = hh->tls_type;
3996 }
3997 else
3998 {
3999 off = local_got_offsets[r_symndx];
4000 tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4001 }
4002
4003 if (tls_type == GOT_UNKNOWN)
4004 abort ();
4005
4006 if ((off & 1) != 0)
4007 off &= ~1;
4008 else
4009 {
4010 bfd_boolean need_relocs = FALSE;
4011 Elf_Internal_Rela outrel;
4012 bfd_byte *loc = NULL;
4013 int cur_off = off;
4014
4015 /* The GOT entries have not been initialized yet. Do it
4016 now, and emit any relocations. If both an IE GOT and a
4017 GD GOT are necessary, we emit the GD first. */
4018
4019 if ((bfd_link_pic (info) || indx != 0)
4020 && (hh == NULL
4021 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
4022 || hh->eh.root.type != bfd_link_hash_undefweak))
4023 {
4024 need_relocs = TRUE;
4025 loc = htab->etab.srelgot->contents;
4026 /* FIXME (CAO): Should this be reloc_count++ ? */
4027 loc += htab->etab.srelgot->reloc_count * sizeof (Elf32_External_Rela);
4028 }
4029
4030 if (tls_type & GOT_TLS_GD)
4031 {
4032 if (need_relocs)
4033 {
4034 outrel.r_offset = (cur_off
4035 + htab->etab.sgot->output_section->vma
4036 + htab->etab.sgot->output_offset);
4037 outrel.r_info = ELF32_R_INFO (indx,R_PARISC_TLS_DTPMOD32);
4038 outrel.r_addend = 0;
4039 bfd_put_32 (output_bfd, 0, htab->etab.sgot->contents + cur_off);
4040 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4041 htab->etab.srelgot->reloc_count++;
4042 loc += sizeof (Elf32_External_Rela);
4043
4044 if (indx == 0)
4045 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4046 htab->etab.sgot->contents + cur_off + 4);
4047 else
4048 {
4049 bfd_put_32 (output_bfd, 0,
4050 htab->etab.sgot->contents + cur_off + 4);
4051 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4052 outrel.r_offset += 4;
4053 bfd_elf32_swap_reloca_out (output_bfd, &outrel,loc);
4054 htab->etab.srelgot->reloc_count++;
4055 loc += sizeof (Elf32_External_Rela);
4056 }
4057 }
4058 else
4059 {
4060 /* If we are not emitting relocations for a
4061 general dynamic reference, then we must be in a
4062 static link or an executable link with the
4063 symbol binding locally. Mark it as belonging
4064 to module 1, the executable. */
4065 bfd_put_32 (output_bfd, 1,
4066 htab->etab.sgot->contents + cur_off);
4067 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4068 htab->etab.sgot->contents + cur_off + 4);
4069 }
4070
4071
4072 cur_off += 8;
4073 }
4074
4075 if (tls_type & GOT_TLS_IE)
4076 {
4077 if (need_relocs)
4078 {
4079 outrel.r_offset = (cur_off
4080 + htab->etab.sgot->output_section->vma
4081 + htab->etab.sgot->output_offset);
4082 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_TPREL32);
4083
4084 if (indx == 0)
4085 outrel.r_addend = relocation - dtpoff_base (info);
4086 else
4087 outrel.r_addend = 0;
4088
4089 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4090 htab->etab.srelgot->reloc_count++;
4091 loc += sizeof (Elf32_External_Rela);
4092 }
4093 else
4094 bfd_put_32 (output_bfd, tpoff (info, relocation),
4095 htab->etab.sgot->contents + cur_off);
4096
4097 cur_off += 4;
4098 }
4099
4100 if (hh != NULL)
4101 hh->eh.got.offset |= 1;
4102 else
4103 local_got_offsets[r_symndx] |= 1;
4104 }
4105
4106 if ((tls_type & GOT_TLS_GD)
4107 && r_type != R_PARISC_TLS_GD21L
4108 && r_type != R_PARISC_TLS_GD14R)
4109 off += 2 * GOT_ENTRY_SIZE;
4110
4111 /* Add the base of the GOT to the relocation value. */
4112 relocation = (off
4113 + htab->etab.sgot->output_offset
4114 + htab->etab.sgot->output_section->vma);
4115
4116 break;
4117 }
4118
4119 case R_PARISC_TLS_LE21L:
4120 case R_PARISC_TLS_LE14R:
4121 {
4122 relocation = tpoff (info, relocation);
4123 break;
4124 }
4125 break;
4126
4127 default:
4128 break;
4129 }
4130
4131 rstatus = final_link_relocate (input_section, contents, rela, relocation,
4132 htab, sym_sec, hh, info);
4133
4134 if (rstatus == bfd_reloc_ok)
4135 continue;
4136
4137 if (hh != NULL)
4138 sym_name = hh_name (hh);
4139 else
4140 {
4141 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4142 symtab_hdr->sh_link,
4143 sym->st_name);
4144 if (sym_name == NULL)
4145 return FALSE;
4146 if (*sym_name == '\0')
4147 sym_name = bfd_section_name (input_bfd, sym_sec);
4148 }
4149
4150 howto = elf_hppa_howto_table + r_type;
4151
4152 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4153 {
4154 if (rstatus == bfd_reloc_notsupported || !warned_undef)
4155 {
4156 _bfd_error_handler
4157 /* xgettext:c-format */
4158 (_("%B(%A+%#Lx): cannot handle %s for %s"),
4159 input_bfd,
4160 input_section,
4161 rela->r_offset,
4162 howto->name,
4163 sym_name);
4164 bfd_set_error (bfd_error_bad_value);
4165 return FALSE;
4166 }
4167 }
4168 else
4169 (*info->callbacks->reloc_overflow)
4170 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4171 (bfd_vma) 0, input_bfd, input_section, rela->r_offset);
4172 }
4173
4174 return TRUE;
4175 }
4176
4177 /* Finish up dynamic symbol handling. We set the contents of various
4178 dynamic sections here. */
4179
4180 static bfd_boolean
4181 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4182 struct bfd_link_info *info,
4183 struct elf_link_hash_entry *eh,
4184 Elf_Internal_Sym *sym)
4185 {
4186 struct elf32_hppa_link_hash_table *htab;
4187 Elf_Internal_Rela rela;
4188 bfd_byte *loc;
4189
4190 htab = hppa_link_hash_table (info);
4191 if (htab == NULL)
4192 return FALSE;
4193
4194 if (eh->plt.offset != (bfd_vma) -1)
4195 {
4196 bfd_vma value;
4197
4198 if (eh->plt.offset & 1)
4199 abort ();
4200
4201 /* This symbol has an entry in the procedure linkage table. Set
4202 it up.
4203
4204 The format of a plt entry is
4205 <funcaddr>
4206 <__gp>
4207 */
4208 value = 0;
4209 if (eh->root.type == bfd_link_hash_defined
4210 || eh->root.type == bfd_link_hash_defweak)
4211 {
4212 value = eh->root.u.def.value;
4213 if (eh->root.u.def.section->output_section != NULL)
4214 value += (eh->root.u.def.section->output_offset
4215 + eh->root.u.def.section->output_section->vma);
4216 }
4217
4218 /* Create a dynamic IPLT relocation for this entry. */
4219 rela.r_offset = (eh->plt.offset
4220 + htab->etab.splt->output_offset
4221 + htab->etab.splt->output_section->vma);
4222 if (eh->dynindx != -1)
4223 {
4224 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4225 rela.r_addend = 0;
4226 }
4227 else
4228 {
4229 /* This symbol has been marked to become local, and is
4230 used by a plabel so must be kept in the .plt. */
4231 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4232 rela.r_addend = value;
4233 }
4234
4235 loc = htab->etab.srelplt->contents;
4236 loc += htab->etab.srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4237 bfd_elf32_swap_reloca_out (htab->etab.splt->output_section->owner, &rela, loc);
4238
4239 if (!eh->def_regular)
4240 {
4241 /* Mark the symbol as undefined, rather than as defined in
4242 the .plt section. Leave the value alone. */
4243 sym->st_shndx = SHN_UNDEF;
4244 }
4245 }
4246
4247 if (eh->got.offset != (bfd_vma) -1
4248 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_GD) == 0
4249 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_IE) == 0
4250 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
4251 {
4252 bfd_boolean is_dyn = (eh->dynindx != -1
4253 && !SYMBOL_REFERENCES_LOCAL (info, eh));
4254
4255 if (is_dyn || bfd_link_pic (info))
4256 {
4257 /* This symbol has an entry in the global offset table. Set
4258 it up. */
4259
4260 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4261 + htab->etab.sgot->output_offset
4262 + htab->etab.sgot->output_section->vma);
4263
4264 /* If this is a -Bsymbolic link and the symbol is defined
4265 locally or was forced to be local because of a version
4266 file, we just want to emit a RELATIVE reloc. The entry
4267 in the global offset table will already have been
4268 initialized in the relocate_section function. */
4269 if (!is_dyn)
4270 {
4271 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4272 rela.r_addend = (eh->root.u.def.value
4273 + eh->root.u.def.section->output_offset
4274 + eh->root.u.def.section->output_section->vma);
4275 }
4276 else
4277 {
4278 if ((eh->got.offset & 1) != 0)
4279 abort ();
4280
4281 bfd_put_32 (output_bfd, 0,
4282 htab->etab.sgot->contents + (eh->got.offset & ~1));
4283 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4284 rela.r_addend = 0;
4285 }
4286
4287 loc = htab->etab.srelgot->contents;
4288 loc += (htab->etab.srelgot->reloc_count++
4289 * sizeof (Elf32_External_Rela));
4290 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4291 }
4292 }
4293
4294 if (eh->needs_copy)
4295 {
4296 asection *sec;
4297
4298 /* This symbol needs a copy reloc. Set it up. */
4299
4300 if (! (eh->dynindx != -1
4301 && (eh->root.type == bfd_link_hash_defined
4302 || eh->root.type == bfd_link_hash_defweak)))
4303 abort ();
4304
4305 rela.r_offset = (eh->root.u.def.value
4306 + eh->root.u.def.section->output_offset
4307 + eh->root.u.def.section->output_section->vma);
4308 rela.r_addend = 0;
4309 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4310 if (eh->root.u.def.section == htab->etab.sdynrelro)
4311 sec = htab->etab.sreldynrelro;
4312 else
4313 sec = htab->etab.srelbss;
4314 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4315 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4316 }
4317
4318 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4319 if (eh == htab->etab.hdynamic || eh == htab->etab.hgot)
4320 {
4321 sym->st_shndx = SHN_ABS;
4322 }
4323
4324 return TRUE;
4325 }
4326
4327 /* Used to decide how to sort relocs in an optimal manner for the
4328 dynamic linker, before writing them out. */
4329
4330 static enum elf_reloc_type_class
4331 elf32_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4332 const asection *rel_sec ATTRIBUTE_UNUSED,
4333 const Elf_Internal_Rela *rela)
4334 {
4335 /* Handle TLS relocs first; we don't want them to be marked
4336 relative by the "if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)"
4337 check below. */
4338 switch ((int) ELF32_R_TYPE (rela->r_info))
4339 {
4340 case R_PARISC_TLS_DTPMOD32:
4341 case R_PARISC_TLS_DTPOFF32:
4342 case R_PARISC_TLS_TPREL32:
4343 return reloc_class_normal;
4344 }
4345
4346 if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)
4347 return reloc_class_relative;
4348
4349 switch ((int) ELF32_R_TYPE (rela->r_info))
4350 {
4351 case R_PARISC_IPLT:
4352 return reloc_class_plt;
4353 case R_PARISC_COPY:
4354 return reloc_class_copy;
4355 default:
4356 return reloc_class_normal;
4357 }
4358 }
4359
4360 /* Finish up the dynamic sections. */
4361
4362 static bfd_boolean
4363 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4364 struct bfd_link_info *info)
4365 {
4366 bfd *dynobj;
4367 struct elf32_hppa_link_hash_table *htab;
4368 asection *sdyn;
4369 asection * sgot;
4370
4371 htab = hppa_link_hash_table (info);
4372 if (htab == NULL)
4373 return FALSE;
4374
4375 dynobj = htab->etab.dynobj;
4376
4377 sgot = htab->etab.sgot;
4378 /* A broken linker script might have discarded the dynamic sections.
4379 Catch this here so that we do not seg-fault later on. */
4380 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
4381 return FALSE;
4382
4383 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4384
4385 if (htab->etab.dynamic_sections_created)
4386 {
4387 Elf32_External_Dyn *dyncon, *dynconend;
4388
4389 if (sdyn == NULL)
4390 abort ();
4391
4392 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4393 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4394 for (; dyncon < dynconend; dyncon++)
4395 {
4396 Elf_Internal_Dyn dyn;
4397 asection *s;
4398
4399 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4400
4401 switch (dyn.d_tag)
4402 {
4403 default:
4404 continue;
4405
4406 case DT_PLTGOT:
4407 /* Use PLTGOT to set the GOT register. */
4408 dyn.d_un.d_ptr = elf_gp (output_bfd);
4409 break;
4410
4411 case DT_JMPREL:
4412 s = htab->etab.srelplt;
4413 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4414 break;
4415
4416 case DT_PLTRELSZ:
4417 s = htab->etab.srelplt;
4418 dyn.d_un.d_val = s->size;
4419 break;
4420 }
4421
4422 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4423 }
4424 }
4425
4426 if (sgot != NULL && sgot->size != 0)
4427 {
4428 /* Fill in the first entry in the global offset table.
4429 We use it to point to our dynamic section, if we have one. */
4430 bfd_put_32 (output_bfd,
4431 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4432 sgot->contents);
4433
4434 /* The second entry is reserved for use by the dynamic linker. */
4435 memset (sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4436
4437 /* Set .got entry size. */
4438 elf_section_data (sgot->output_section)
4439 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4440 }
4441
4442 if (htab->etab.splt != NULL && htab->etab.splt->size != 0)
4443 {
4444 /* Set plt entry size to 0 instead of PLT_ENTRY_SIZE, since we add the
4445 plt stubs and as such the section does not hold a table of fixed-size
4446 entries. */
4447 elf_section_data (htab->etab.splt->output_section)->this_hdr.sh_entsize = 0;
4448
4449 if (htab->need_plt_stub)
4450 {
4451 /* Set up the .plt stub. */
4452 memcpy (htab->etab.splt->contents
4453 + htab->etab.splt->size - sizeof (plt_stub),
4454 plt_stub, sizeof (plt_stub));
4455
4456 if ((htab->etab.splt->output_offset
4457 + htab->etab.splt->output_section->vma
4458 + htab->etab.splt->size)
4459 != (sgot->output_offset
4460 + sgot->output_section->vma))
4461 {
4462 _bfd_error_handler
4463 (_(".got section not immediately after .plt section"));
4464 return FALSE;
4465 }
4466 }
4467 }
4468
4469 return TRUE;
4470 }
4471
4472 /* Called when writing out an object file to decide the type of a
4473 symbol. */
4474 static int
4475 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4476 {
4477 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4478 return STT_PARISC_MILLI;
4479 else
4480 return type;
4481 }
4482
4483 /* Misc BFD support code. */
4484 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4485 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4486 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4487 #define elf_info_to_howto elf_hppa_info_to_howto
4488 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4489
4490 /* Stuff for the BFD linker. */
4491 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4492 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4493 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4494 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4495 #define elf_backend_check_relocs elf32_hppa_check_relocs
4496 #define elf_backend_relocs_compatible _bfd_elf_relocs_compatible
4497 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4498 #define elf_backend_fake_sections elf_hppa_fake_sections
4499 #define elf_backend_relocate_section elf32_hppa_relocate_section
4500 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4501 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4502 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4503 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4504 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4505 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4506 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4507 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4508 #define elf_backend_object_p elf32_hppa_object_p
4509 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4510 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4511 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4512 #define elf_backend_action_discarded elf_hppa_action_discarded
4513
4514 #define elf_backend_can_gc_sections 1
4515 #define elf_backend_can_refcount 1
4516 #define elf_backend_plt_alignment 2
4517 #define elf_backend_want_got_plt 0
4518 #define elf_backend_plt_readonly 0
4519 #define elf_backend_want_plt_sym 0
4520 #define elf_backend_got_header_size 8
4521 #define elf_backend_want_dynrelro 1
4522 #define elf_backend_rela_normal 1
4523 #define elf_backend_dtrel_excludes_plt 1
4524 #define elf_backend_no_page_alias 1
4525
4526 #define TARGET_BIG_SYM hppa_elf32_vec
4527 #define TARGET_BIG_NAME "elf32-hppa"
4528 #define ELF_ARCH bfd_arch_hppa
4529 #define ELF_TARGET_ID HPPA32_ELF_DATA
4530 #define ELF_MACHINE_CODE EM_PARISC
4531 #define ELF_MAXPAGESIZE 0x1000
4532 #define ELF_OSABI ELFOSABI_HPUX
4533 #define elf32_bed elf32_hppa_hpux_bed
4534
4535 #include "elf32-target.h"
4536
4537 #undef TARGET_BIG_SYM
4538 #define TARGET_BIG_SYM hppa_elf32_linux_vec
4539 #undef TARGET_BIG_NAME
4540 #define TARGET_BIG_NAME "elf32-hppa-linux"
4541 #undef ELF_OSABI
4542 #define ELF_OSABI ELFOSABI_GNU
4543 #undef elf32_bed
4544 #define elf32_bed elf32_hppa_linux_bed
4545
4546 #include "elf32-target.h"
4547
4548 #undef TARGET_BIG_SYM
4549 #define TARGET_BIG_SYM hppa_elf32_nbsd_vec
4550 #undef TARGET_BIG_NAME
4551 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4552 #undef ELF_OSABI
4553 #define ELF_OSABI ELFOSABI_NETBSD
4554 #undef elf32_bed
4555 #define elf32_bed elf32_hppa_netbsd_bed
4556
4557 #include "elf32-target.h"
This page took 0.118442 seconds and 3 git commands to generate.