caff906f201fe62aa16217a54d1bbe4047d434e8
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 Original code by
6 Center for Software Science
7 Department of Computer Science
8 University of Utah
9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
26
27 #include "bfd.h"
28 #include "sysdep.h"
29 #include "libbfd.h"
30 #include "elf-bfd.h"
31 #include "elf/hppa.h"
32 #include "libhppa.h"
33 #include "elf32-hppa.h"
34 #define ARCH_SIZE 32
35 #include "elf-hppa.h"
36 #include "elf32-hppa.h"
37
38 /* In order to gain some understanding of code in this file without
39 knowing all the intricate details of the linker, note the
40 following:
41
42 Functions named elf32_hppa_* are called by external routines, other
43 functions are only called locally. elf32_hppa_* functions appear
44 in this file more or less in the order in which they are called
45 from external routines. eg. elf32_hppa_check_relocs is called
46 early in the link process, elf32_hppa_finish_dynamic_sections is
47 one of the last functions. */
48
49 /* We use two hash tables to hold information for linking PA ELF objects.
50
51 The first is the elf32_hppa_link_hash_table which is derived
52 from the standard ELF linker hash table. We use this as a place to
53 attach other hash tables and static information.
54
55 The second is the stub hash table which is derived from the
56 base BFD hash table. The stub hash table holds the information
57 necessary to build the linker stubs during a link.
58
59 There are a number of different stubs generated by the linker.
60
61 Long branch stub:
62 : ldil LR'X,%r1
63 : be,n RR'X(%sr4,%r1)
64
65 PIC long branch stub:
66 : b,l .+8,%r1
67 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
68 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
69
70 Import stub to call shared library routine from normal object file
71 (single sub-space version)
72 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
73 : ldw RR'lt_ptr+ltoff(%r1),%r21
74 : bv %r0(%r21)
75 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
76
77 Import stub to call shared library routine from shared library
78 (single sub-space version)
79 : addil LR'ltoff,%r19 ; get procedure entry point
80 : ldw RR'ltoff(%r1),%r21
81 : bv %r0(%r21)
82 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
83
84 Import stub to call shared library routine from normal object file
85 (multiple sub-space support)
86 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
87 : ldw RR'lt_ptr+ltoff(%r1),%r21
88 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
89 : ldsid (%r21),%r1
90 : mtsp %r1,%sr0
91 : be 0(%sr0,%r21) ; branch to target
92 : stw %rp,-24(%sp) ; save rp
93
94 Import stub to call shared library routine from shared library
95 (multiple sub-space support)
96 : addil LR'ltoff,%r19 ; get procedure entry point
97 : ldw RR'ltoff(%r1),%r21
98 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
99 : ldsid (%r21),%r1
100 : mtsp %r1,%sr0
101 : be 0(%sr0,%r21) ; branch to target
102 : stw %rp,-24(%sp) ; save rp
103
104 Export stub to return from shared lib routine (multiple sub-space support)
105 One of these is created for each exported procedure in a shared
106 library (and stored in the shared lib). Shared lib routines are
107 called via the first instruction in the export stub so that we can
108 do an inter-space return. Not required for single sub-space.
109 : bl,n X,%rp ; trap the return
110 : nop
111 : ldw -24(%sp),%rp ; restore the original rp
112 : ldsid (%rp),%r1
113 : mtsp %r1,%sr0
114 : be,n 0(%sr0,%rp) ; inter-space return */
115
116 #define PLT_ENTRY_SIZE 8
117 #define PLABEL_PLT_ENTRY_SIZE PLT_ENTRY_SIZE
118 #define GOT_ENTRY_SIZE 4
119 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
120
121 static const bfd_byte plt_stub[] =
122 {
123 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
124 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
125 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
126 #define PLT_STUB_ENTRY (3*4)
127 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
128 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
129 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
130 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
131 };
132
133 /* Section name for stubs is the associated section name plus this
134 string. */
135 #define STUB_SUFFIX ".stub"
136
137 /* Setting the following non-zero makes all long branch stubs
138 generated during a shared link of the PIC variety. This saves on
139 relocs, but costs one extra instruction per stub. */
140 #ifndef LONG_BRANCH_PIC_IN_SHLIB
141 #define LONG_BRANCH_PIC_IN_SHLIB 1
142 #endif
143
144 /* Set this non-zero to use import stubs instead of long branch stubs
145 where a .plt entry exists for the symbol. This is a fairly useless
146 option as import stubs are bigger than PIC long branch stubs. */
147 #ifndef LONG_BRANCH_VIA_PLT
148 #define LONG_BRANCH_VIA_PLT 0
149 #endif
150
151 /* We don't need to copy any PC- or GP-relative dynamic relocs into a
152 shared object's dynamic section. */
153 #ifndef RELATIVE_DYNAMIC_RELOCS
154 #define RELATIVE_DYNAMIC_RELOCS 0
155 #endif
156
157 enum elf32_hppa_stub_type {
158 hppa_stub_long_branch,
159 hppa_stub_long_branch_shared,
160 hppa_stub_import,
161 hppa_stub_import_shared,
162 hppa_stub_export,
163 hppa_stub_none
164 };
165
166 struct elf32_hppa_stub_hash_entry {
167
168 /* Base hash table entry structure. */
169 struct bfd_hash_entry root;
170
171 /* The stub section. */
172 asection *stub_sec;
173
174 #if ! LONG_BRANCH_PIC_IN_SHLIB
175 /* It's associated reloc section. */
176 asection *reloc_sec;
177 #endif
178
179 /* Offset within stub_sec of the beginning of this stub. */
180 bfd_vma stub_offset;
181
182 /* Given the symbol's value and its section we can determine its final
183 value when building the stubs (so the stub knows where to jump. */
184 bfd_vma target_value;
185 asection *target_section;
186
187 enum elf32_hppa_stub_type stub_type;
188
189 /* The symbol table entry, if any, that this was derived from. */
190 struct elf32_hppa_link_hash_entry *h;
191
192 /* Where this stub is being called from, or, in the case of combined
193 stub sections, the first input section in the group. */
194 asection *id_sec;
195 };
196
197 struct elf32_hppa_link_hash_entry {
198
199 struct elf_link_hash_entry elf;
200
201 /* A pointer to the most recently used stub hash entry against this
202 symbol. */
203 struct elf32_hppa_stub_hash_entry *stub_cache;
204
205 #if ! LONG_BRANCH_PIC_IN_SHLIB
206 /* Used to track whether we have allocated space for a long branch
207 stub relocation for this symbol in the given section. */
208 asection *stub_reloc_sec;
209 #endif
210
211 #if ! LONG_BRANCH_PIC_IN_SHLIB || RELATIVE_DYNAMIC_RELOCS
212 /* Used to count relocations for delayed sizing of relocation
213 sections. */
214 struct elf32_hppa_dyn_reloc_entry {
215
216 /* Next relocation in the chain. */
217 struct elf32_hppa_dyn_reloc_entry *next;
218
219 /* The section in dynobj. */
220 asection *section;
221
222 /* Number of relocs copied in this section. */
223 bfd_size_type count;
224 } *reloc_entries;
225 #endif
226
227 /* Set during a static link if we detect a function is PIC. */
228 unsigned int maybe_pic_call:1;
229
230 /* Set if the only reason we need a .plt entry is for a non-PIC to
231 PIC function call. */
232 unsigned int pic_call:1;
233
234 /* Set if this symbol is used by a plabel reloc. */
235 unsigned int plabel:1;
236
237 /* Set if this symbol is an init or fini function and thus should
238 use an absolute reloc. */
239 unsigned int plt_abs:1;
240 };
241
242 struct elf32_hppa_link_hash_table {
243
244 /* The main hash table. */
245 struct elf_link_hash_table root;
246
247 /* The stub hash table. */
248 struct bfd_hash_table stub_hash_table;
249
250 /* Linker stub bfd. */
251 bfd *stub_bfd;
252
253 /* Linker call-backs. */
254 asection * (*add_stub_section) PARAMS ((const char *, asection *));
255 void (*layout_sections_again) PARAMS ((void));
256
257 /* Array to keep track of which stub sections have been created, and
258 information on stub grouping. */
259 struct map_stub {
260 /* This is the section to which stubs in the group will be
261 attached. */
262 asection *link_sec;
263 /* The stub section. */
264 asection *stub_sec;
265 #if ! LONG_BRANCH_PIC_IN_SHLIB
266 /* The stub section's reloc section. */
267 asection *reloc_sec;
268 #endif
269 } *stub_group;
270
271 /* Short-cuts to get to dynamic linker sections. */
272 asection *sgot;
273 asection *srelgot;
274 asection *splt;
275 asection *srelplt;
276 asection *sdynbss;
277 asection *srelbss;
278
279 /* Used during a final link to store the base of the text and data
280 segments so that we can perform SEGREL relocations. */
281 bfd_vma text_segment_base;
282 bfd_vma data_segment_base;
283
284 /* Whether we support multiple sub-spaces for shared libs. */
285 unsigned int multi_subspace:1;
286
287 /* Flags set when PCREL12F and PCREL17F branches detected. Used to
288 select suitable defaults for the stub group size. */
289 unsigned int has_12bit_branch:1;
290 unsigned int has_17bit_branch:1;
291
292 /* Set if we need a .plt stub to support lazy dynamic linking. */
293 unsigned int need_plt_stub:1;
294 };
295
296 /* Various hash macros and functions. */
297 #define hppa_link_hash_table(p) \
298 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
299
300 #define hppa_stub_hash_lookup(table, string, create, copy) \
301 ((struct elf32_hppa_stub_hash_entry *) \
302 bfd_hash_lookup ((table), (string), (create), (copy)))
303
304 static struct bfd_hash_entry *stub_hash_newfunc
305 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
306
307 static struct bfd_hash_entry *hppa_link_hash_newfunc
308 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
309
310 static struct bfd_link_hash_table *elf32_hppa_link_hash_table_create
311 PARAMS ((bfd *));
312
313 /* Stub handling functions. */
314 static char *hppa_stub_name
315 PARAMS ((const asection *, const asection *,
316 const struct elf32_hppa_link_hash_entry *,
317 const Elf_Internal_Rela *));
318
319 static struct elf32_hppa_stub_hash_entry *hppa_get_stub_entry
320 PARAMS ((const asection *, const asection *,
321 struct elf32_hppa_link_hash_entry *,
322 const Elf_Internal_Rela *,
323 struct elf32_hppa_link_hash_table *));
324
325 static struct elf32_hppa_stub_hash_entry *hppa_add_stub
326 PARAMS ((const char *, asection *, struct elf32_hppa_link_hash_table *));
327
328 static enum elf32_hppa_stub_type hppa_type_of_stub
329 PARAMS ((asection *, const Elf_Internal_Rela *,
330 struct elf32_hppa_link_hash_entry *, bfd_vma));
331
332 static boolean hppa_build_one_stub
333 PARAMS ((struct bfd_hash_entry *, PTR));
334
335 static boolean hppa_size_one_stub
336 PARAMS ((struct bfd_hash_entry *, PTR));
337
338 /* BFD and elf backend functions. */
339 static boolean elf32_hppa_object_p PARAMS ((bfd *));
340
341 static boolean elf32_hppa_add_symbol_hook
342 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
343 const char **, flagword *, asection **, bfd_vma *));
344
345 static boolean elf32_hppa_create_dynamic_sections
346 PARAMS ((bfd *, struct bfd_link_info *));
347
348 static boolean elf32_hppa_check_relocs
349 PARAMS ((bfd *, struct bfd_link_info *,
350 asection *, const Elf_Internal_Rela *));
351
352 static asection *elf32_hppa_gc_mark_hook
353 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
354 struct elf_link_hash_entry *, Elf_Internal_Sym *));
355
356 static boolean elf32_hppa_gc_sweep_hook
357 PARAMS ((bfd *, struct bfd_link_info *,
358 asection *, const Elf_Internal_Rela *));
359
360 static void elf32_hppa_hide_symbol
361 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
362
363 static boolean elf32_hppa_adjust_dynamic_symbol
364 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
365
366 static boolean hppa_handle_PIC_calls
367 PARAMS ((struct elf_link_hash_entry *, PTR));
368
369 static boolean allocate_plt_and_got
370 PARAMS ((struct elf_link_hash_entry *, PTR));
371
372 #if ((! LONG_BRANCH_PIC_IN_SHLIB && LONG_BRANCH_VIA_PLT) \
373 || RELATIVE_DYNAMIC_RELOCS)
374 static boolean hppa_discard_copies
375 PARAMS ((struct elf_link_hash_entry *, PTR));
376 #endif
377
378 static boolean clobber_millicode_symbols
379 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
380
381 static boolean elf32_hppa_size_dynamic_sections
382 PARAMS ((bfd *, struct bfd_link_info *));
383
384 static boolean elf32_hppa_final_link
385 PARAMS ((bfd *, struct bfd_link_info *));
386
387 static void hppa_record_segment_addr
388 PARAMS ((bfd *, asection *, PTR));
389
390 static bfd_reloc_status_type final_link_relocate
391 PARAMS ((asection *, bfd_byte *, const Elf_Internal_Rela *,
392 bfd_vma, struct elf32_hppa_link_hash_table *, asection *,
393 struct elf32_hppa_link_hash_entry *));
394
395 static boolean elf32_hppa_relocate_section
396 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *,
397 bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
398
399 static int hppa_unwind_entry_compare
400 PARAMS ((const PTR, const PTR));
401
402 static boolean elf32_hppa_finish_dynamic_symbol
403 PARAMS ((bfd *, struct bfd_link_info *,
404 struct elf_link_hash_entry *, Elf_Internal_Sym *));
405
406 static boolean elf32_hppa_finish_dynamic_sections
407 PARAMS ((bfd *, struct bfd_link_info *));
408
409 static void elf32_hppa_post_process_headers
410 PARAMS ((bfd *, struct bfd_link_info *));
411
412 static int elf32_hppa_elf_get_symbol_type
413 PARAMS ((Elf_Internal_Sym *, int));
414
415 /* Assorted hash table functions. */
416
417 /* Initialize an entry in the stub hash table. */
418
419 static struct bfd_hash_entry *
420 stub_hash_newfunc (entry, table, string)
421 struct bfd_hash_entry *entry;
422 struct bfd_hash_table *table;
423 const char *string;
424 {
425 struct elf32_hppa_stub_hash_entry *ret;
426
427 ret = (struct elf32_hppa_stub_hash_entry *) entry;
428
429 /* Allocate the structure if it has not already been allocated by a
430 subclass. */
431 if (ret == NULL)
432 {
433 ret = ((struct elf32_hppa_stub_hash_entry *)
434 bfd_hash_allocate (table,
435 sizeof (struct elf32_hppa_stub_hash_entry)));
436 if (ret == NULL)
437 return NULL;
438 }
439
440 /* Call the allocation method of the superclass. */
441 ret = ((struct elf32_hppa_stub_hash_entry *)
442 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
443
444 if (ret)
445 {
446 /* Initialize the local fields. */
447 ret->stub_sec = NULL;
448 #if ! LONG_BRANCH_PIC_IN_SHLIB
449 ret->reloc_sec = NULL;
450 #endif
451 ret->stub_offset = 0;
452 ret->target_value = 0;
453 ret->target_section = NULL;
454 ret->stub_type = hppa_stub_long_branch;
455 ret->h = NULL;
456 ret->id_sec = NULL;
457 }
458
459 return (struct bfd_hash_entry *) ret;
460 }
461
462 /* Initialize an entry in the link hash table. */
463
464 static struct bfd_hash_entry *
465 hppa_link_hash_newfunc (entry, table, string)
466 struct bfd_hash_entry *entry;
467 struct bfd_hash_table *table;
468 const char *string;
469 {
470 struct elf32_hppa_link_hash_entry *ret;
471
472 ret = (struct elf32_hppa_link_hash_entry *) entry;
473
474 /* Allocate the structure if it has not already been allocated by a
475 subclass. */
476 if (ret == NULL)
477 {
478 ret = ((struct elf32_hppa_link_hash_entry *)
479 bfd_hash_allocate (table,
480 sizeof (struct elf32_hppa_link_hash_entry)));
481 if (ret == NULL)
482 return NULL;
483 }
484
485 /* Call the allocation method of the superclass. */
486 ret = ((struct elf32_hppa_link_hash_entry *)
487 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
488 table, string));
489
490 if (ret)
491 {
492 /* Initialize the local fields. */
493 #if ! LONG_BRANCH_PIC_IN_SHLIB
494 ret->stub_reloc_sec = NULL;
495 #endif
496 ret->stub_cache = NULL;
497 #if ! LONG_BRANCH_PIC_IN_SHLIB || RELATIVE_DYNAMIC_RELOCS
498 ret->reloc_entries = NULL;
499 #endif
500 ret->maybe_pic_call = 0;
501 ret->pic_call = 0;
502 ret->plabel = 0;
503 ret->plt_abs = 0;
504 }
505
506 return (struct bfd_hash_entry *) ret;
507 }
508
509 /* Create the derived linker hash table. The PA ELF port uses the derived
510 hash table to keep information specific to the PA ELF linker (without
511 using static variables). */
512
513 static struct bfd_link_hash_table *
514 elf32_hppa_link_hash_table_create (abfd)
515 bfd *abfd;
516 {
517 struct elf32_hppa_link_hash_table *ret;
518
519 ret = ((struct elf32_hppa_link_hash_table *) bfd_alloc (abfd, sizeof (*ret)));
520 if (ret == NULL)
521 return NULL;
522
523 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, hppa_link_hash_newfunc))
524 {
525 bfd_release (abfd, ret);
526 return NULL;
527 }
528
529 /* Init the stub hash table too. */
530 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc))
531 return NULL;
532
533 ret->stub_bfd = NULL;
534 ret->add_stub_section = NULL;
535 ret->layout_sections_again = NULL;
536 ret->stub_group = NULL;
537 ret->sgot = NULL;
538 ret->srelgot = NULL;
539 ret->splt = NULL;
540 ret->srelplt = NULL;
541 ret->sdynbss = NULL;
542 ret->srelbss = NULL;
543 ret->text_segment_base = (bfd_vma) -1;
544 ret->data_segment_base = (bfd_vma) -1;
545 ret->multi_subspace = 0;
546 ret->has_12bit_branch = 0;
547 ret->has_17bit_branch = 0;
548 ret->need_plt_stub = 0;
549
550 return &ret->root.root;
551 }
552
553 /* Build a name for an entry in the stub hash table. */
554
555 static char *
556 hppa_stub_name (input_section, sym_sec, hash, rel)
557 const asection *input_section;
558 const asection *sym_sec;
559 const struct elf32_hppa_link_hash_entry *hash;
560 const Elf_Internal_Rela *rel;
561 {
562 char *stub_name;
563 size_t len;
564
565 if (hash)
566 {
567 len = 8 + 1 + strlen (hash->elf.root.root.string) + 1 + 8 + 1;
568 stub_name = bfd_malloc (len);
569 if (stub_name != NULL)
570 {
571 sprintf (stub_name, "%08x_%s+%x",
572 input_section->id & 0xffffffff,
573 hash->elf.root.root.string,
574 (int) rel->r_addend & 0xffffffff);
575 }
576 }
577 else
578 {
579 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
580 stub_name = bfd_malloc (len);
581 if (stub_name != NULL)
582 {
583 sprintf (stub_name, "%08x_%x:%x+%x",
584 input_section->id & 0xffffffff,
585 sym_sec->id & 0xffffffff,
586 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
587 (int) rel->r_addend & 0xffffffff);
588 }
589 }
590 return stub_name;
591 }
592
593 /* Look up an entry in the stub hash. Stub entries are cached because
594 creating the stub name takes a bit of time. */
595
596 static struct elf32_hppa_stub_hash_entry *
597 hppa_get_stub_entry (input_section, sym_sec, hash, rel, hplink)
598 const asection *input_section;
599 const asection *sym_sec;
600 struct elf32_hppa_link_hash_entry *hash;
601 const Elf_Internal_Rela *rel;
602 struct elf32_hppa_link_hash_table *hplink;
603 {
604 struct elf32_hppa_stub_hash_entry *stub_entry;
605 const asection *id_sec;
606
607 /* If this input section is part of a group of sections sharing one
608 stub section, then use the id of the first section in the group.
609 Stub names need to include a section id, as there may well be
610 more than one stub used to reach say, printf, and we need to
611 distinguish between them. */
612 id_sec = hplink->stub_group[input_section->id].link_sec;
613
614 if (hash != NULL && hash->stub_cache != NULL
615 && hash->stub_cache->h == hash
616 && hash->stub_cache->id_sec == id_sec)
617 {
618 stub_entry = hash->stub_cache;
619 }
620 else
621 {
622 char *stub_name;
623
624 stub_name = hppa_stub_name (id_sec, sym_sec, hash, rel);
625 if (stub_name == NULL)
626 return NULL;
627
628 stub_entry = hppa_stub_hash_lookup (&hplink->stub_hash_table,
629 stub_name, false, false);
630 if (stub_entry == NULL)
631 {
632 if (hash == NULL || hash->elf.root.type != bfd_link_hash_undefweak)
633 (*_bfd_error_handler) (_("%s(%s+0x%lx): cannot find stub entry %s"),
634 bfd_get_filename (input_section->owner),
635 input_section->name,
636 (long) rel->r_offset,
637 stub_name);
638 }
639 else
640 {
641 if (hash != NULL)
642 hash->stub_cache = stub_entry;
643 }
644
645 free (stub_name);
646 }
647
648 return stub_entry;
649 }
650
651 /* Add a new stub entry to the stub hash. Not all fields of the new
652 stub entry are initialised. */
653
654 static struct elf32_hppa_stub_hash_entry *
655 hppa_add_stub (stub_name, section, hplink)
656 const char *stub_name;
657 asection *section;
658 struct elf32_hppa_link_hash_table *hplink;
659 {
660 asection *link_sec;
661 asection *stub_sec;
662 struct elf32_hppa_stub_hash_entry *stub_entry;
663
664 link_sec = hplink->stub_group[section->id].link_sec;
665 stub_sec = hplink->stub_group[section->id].stub_sec;
666 if (stub_sec == NULL)
667 {
668 stub_sec = hplink->stub_group[link_sec->id].stub_sec;
669 if (stub_sec == NULL)
670 {
671 size_t len;
672 char *s_name;
673
674 len = strlen (link_sec->name) + sizeof (STUB_SUFFIX);
675 s_name = bfd_alloc (hplink->stub_bfd, len);
676 if (s_name == NULL)
677 return NULL;
678
679 strcpy (s_name, link_sec->name);
680 strcpy (s_name + len - sizeof (STUB_SUFFIX), STUB_SUFFIX);
681 stub_sec = (*hplink->add_stub_section) (s_name, link_sec);
682 if (stub_sec == NULL)
683 return NULL;
684 hplink->stub_group[link_sec->id].stub_sec = stub_sec;
685 }
686 hplink->stub_group[section->id].stub_sec = stub_sec;
687 }
688
689 /* Enter this entry into the linker stub hash table. */
690 stub_entry = hppa_stub_hash_lookup (&hplink->stub_hash_table, stub_name,
691 true, false);
692 if (stub_entry == NULL)
693 {
694 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
695 bfd_get_filename (section->owner),
696 stub_name);
697 return NULL;
698 }
699
700 stub_entry->stub_sec = stub_sec;
701 #if ! LONG_BRANCH_PIC_IN_SHLIB
702 stub_entry->reloc_sec = hplink->stub_group[section->id].reloc_sec;
703 #endif
704 stub_entry->stub_offset = 0;
705 stub_entry->id_sec = link_sec;
706 return stub_entry;
707 }
708
709 /* Determine the type of stub needed, if any, for a call. */
710
711 static enum elf32_hppa_stub_type
712 hppa_type_of_stub (input_sec, rel, hash, destination)
713 asection *input_sec;
714 const Elf_Internal_Rela *rel;
715 struct elf32_hppa_link_hash_entry *hash;
716 bfd_vma destination;
717 {
718 bfd_vma location;
719 bfd_vma branch_offset;
720 bfd_vma max_branch_offset;
721 unsigned int r_type;
722
723 if (hash != NULL
724 && (((hash->elf.root.type == bfd_link_hash_defined
725 || hash->elf.root.type == bfd_link_hash_defweak)
726 && hash->elf.root.u.def.section->output_section == NULL)
727 || (hash->elf.root.type == bfd_link_hash_defweak
728 && hash->elf.dynindx != -1
729 && hash->elf.plt.offset != (bfd_vma) -1)
730 || hash->elf.root.type == bfd_link_hash_undefweak
731 || hash->elf.root.type == bfd_link_hash_undefined
732 || (hash->maybe_pic_call && !(input_sec->flags & SEC_HAS_GOT_REF))))
733 {
734 /* If output_section is NULL, then it's a symbol defined in a
735 shared library. We will need an import stub. Decide between
736 hppa_stub_import and hppa_stub_import_shared later. For
737 shared links we need stubs for undefined or weak syms too;
738 They will presumably be resolved by the dynamic linker. */
739 return hppa_stub_import;
740 }
741
742 /* Determine where the call point is. */
743 location = (input_sec->output_offset
744 + input_sec->output_section->vma
745 + rel->r_offset);
746
747 branch_offset = destination - location - 8;
748 r_type = ELF32_R_TYPE (rel->r_info);
749
750 /* Determine if a long branch stub is needed. parisc branch offsets
751 are relative to the second instruction past the branch, ie. +8
752 bytes on from the branch instruction location. The offset is
753 signed and counts in units of 4 bytes. */
754 if (r_type == (unsigned int) R_PARISC_PCREL17F)
755 {
756 max_branch_offset = (1 << (17-1)) << 2;
757 }
758 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
759 {
760 max_branch_offset = (1 << (12-1)) << 2;
761 }
762 else /* R_PARISC_PCREL22F. */
763 {
764 max_branch_offset = (1 << (22-1)) << 2;
765 }
766
767 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
768 {
769 #if LONG_BRANCH_VIA_PLT
770 if (hash != NULL
771 && hash->elf.dynindx != -1
772 && hash->elf.plt.offset != (bfd_vma) -1
773 && hash->elf.type != STT_PARISC_MILLI)
774 {
775 /* If we are doing a shared link and find we need a long
776 branch stub, then go via the .plt if possible. */
777 return hppa_stub_import;
778 }
779 else
780 #endif
781 return hppa_stub_long_branch;
782 }
783 return hppa_stub_none;
784 }
785
786 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
787 IN_ARG contains the link info pointer. */
788
789 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
790 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
791
792 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
793 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
794 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
795
796 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
797 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
798 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
799 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
800
801 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
802 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
803
804 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
805 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
806 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
807 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
808
809 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
810 #define NOP 0x08000240 /* nop */
811 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
812 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
813 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
814
815 #ifndef R19_STUBS
816 #define R19_STUBS 1
817 #endif
818
819 #if R19_STUBS
820 #define LDW_R1_DLT LDW_R1_R19
821 #else
822 #define LDW_R1_DLT LDW_R1_DP
823 #endif
824
825 static boolean
826 hppa_build_one_stub (gen_entry, in_arg)
827 struct bfd_hash_entry *gen_entry;
828 PTR in_arg;
829 {
830 struct elf32_hppa_stub_hash_entry *stub_entry;
831 struct bfd_link_info *info;
832 struct elf32_hppa_link_hash_table *hplink;
833 asection *stub_sec;
834 bfd *stub_bfd;
835 bfd_byte *loc;
836 bfd_vma sym_value;
837 bfd_vma insn;
838 bfd_vma off;
839 int val;
840 int size;
841
842 /* Massage our args to the form they really have. */
843 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
844 info = (struct bfd_link_info *) in_arg;
845
846 hplink = hppa_link_hash_table (info);
847 stub_sec = stub_entry->stub_sec;
848
849 /* Make a note of the offset within the stubs for this entry. */
850 stub_entry->stub_offset = stub_sec->_raw_size;
851 loc = stub_sec->contents + stub_entry->stub_offset;
852
853 stub_bfd = stub_sec->owner;
854
855 switch (stub_entry->stub_type)
856 {
857 case hppa_stub_long_branch:
858 /* Create the long branch. A long branch is formed with "ldil"
859 loading the upper bits of the target address into a register,
860 then branching with "be" which adds in the lower bits.
861 The "be" has its delay slot nullified. */
862 sym_value = (stub_entry->target_value
863 + stub_entry->target_section->output_offset
864 + stub_entry->target_section->output_section->vma);
865
866 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel);
867 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
868 bfd_put_32 (stub_bfd, insn, loc);
869
870 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel) >> 2;
871 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
872 bfd_put_32 (stub_bfd, insn, loc + 4);
873
874 #if ! LONG_BRANCH_PIC_IN_SHLIB
875 if (info->shared)
876 {
877 /* Output a dynamic relocation for this stub. We only
878 output one PCREL21L reloc per stub, trusting that the
879 dynamic linker will also fix the implied PCREL17R for the
880 second instruction. PCREL21L dynamic relocs had better
881 never be emitted for some other purpose... */
882 asection *srel;
883 Elf_Internal_Rela outrel;
884
885 if (stub_entry->h == NULL)
886 {
887 (*_bfd_error_handler)
888 (_("%s(%s+0x%lx): cannot relocate %s, recompile with -ffunction-sections"),
889 bfd_get_filename (stub_entry->target_section->owner),
890 stub_sec->name,
891 (long) stub_entry->stub_offset,
892 stub_entry->root.string);
893 bfd_set_error (bfd_error_bad_value);
894 return false;
895 }
896
897 srel = stub_entry->reloc_sec;
898 if (srel == NULL)
899 {
900 (*_bfd_error_handler)
901 (_("Could not find relocation section for %s"),
902 stub_sec->name);
903 bfd_set_error (bfd_error_bad_value);
904 return false;
905 }
906
907 outrel.r_offset = (stub_entry->stub_offset
908 + stub_sec->output_offset
909 + stub_sec->output_section->vma);
910 outrel.r_info = ELF32_R_INFO (0, R_PARISC_PCREL21L);
911 outrel.r_addend = sym_value;
912 bfd_elf32_swap_reloca_out (stub_sec->output_section->owner,
913 &outrel,
914 ((Elf32_External_Rela *)
915 srel->contents + srel->reloc_count));
916 ++srel->reloc_count;
917 }
918 #endif
919 size = 8;
920 break;
921
922 case hppa_stub_long_branch_shared:
923 /* Branches are relative. This is where we are going to. */
924 sym_value = (stub_entry->target_value
925 + stub_entry->target_section->output_offset
926 + stub_entry->target_section->output_section->vma);
927
928 /* And this is where we are coming from, more or less. */
929 sym_value -= (stub_entry->stub_offset
930 + stub_sec->output_offset
931 + stub_sec->output_section->vma);
932
933 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
934 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
935 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
936 bfd_put_32 (stub_bfd, insn, loc + 4);
937
938 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
939 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
940 bfd_put_32 (stub_bfd, insn, loc + 8);
941 size = 12;
942 break;
943
944 case hppa_stub_import:
945 case hppa_stub_import_shared:
946 off = stub_entry->h->elf.plt.offset;
947 if (off >= (bfd_vma) -2)
948 abort ();
949
950 off &= ~ (bfd_vma) 1;
951 sym_value = (off
952 + hplink->splt->output_offset
953 + hplink->splt->output_section->vma
954 - elf_gp (hplink->splt->output_section->owner));
955
956 insn = ADDIL_DP;
957 #if R19_STUBS
958 if (stub_entry->stub_type == hppa_stub_import_shared)
959 insn = ADDIL_R19;
960 #endif
961 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel),
962 insn = hppa_rebuild_insn ((int) insn, val, 21);
963 bfd_put_32 (stub_bfd, insn, loc);
964
965 /* It is critical to use lrsel/rrsel here because we are using
966 two different offsets (+0 and +4) from sym_value. If we use
967 lsel/rsel then with unfortunate sym_values we will round
968 sym_value+4 up to the next 2k block leading to a mis-match
969 between the lsel and rsel value. */
970 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel);
971 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
972 bfd_put_32 (stub_bfd, insn, loc + 4);
973
974 if (hplink->multi_subspace)
975 {
976 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
977 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
978 bfd_put_32 (stub_bfd, insn, loc + 8);
979
980 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
981 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
982 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
983 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
984
985 size = 28;
986 }
987 else
988 {
989 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
990 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
991 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
992 bfd_put_32 (stub_bfd, insn, loc + 12);
993
994 size = 16;
995 }
996
997 if (!info->shared
998 && stub_entry->h != NULL
999 && stub_entry->h->pic_call)
1000 {
1001 /* Build the .plt entry needed to call a PIC function from
1002 statically linked code. We don't need any relocs. */
1003 bfd *dynobj;
1004 struct elf32_hppa_link_hash_entry *eh;
1005 bfd_vma value;
1006
1007 dynobj = hplink->root.dynobj;
1008 eh = (struct elf32_hppa_link_hash_entry *) stub_entry->h;
1009
1010 if (eh->elf.root.type != bfd_link_hash_defined
1011 && eh->elf.root.type != bfd_link_hash_defweak)
1012 abort ();
1013
1014 value = (eh->elf.root.u.def.value
1015 + eh->elf.root.u.def.section->output_offset
1016 + eh->elf.root.u.def.section->output_section->vma);
1017
1018 /* Fill in the entry in the procedure linkage table.
1019
1020 The format of a plt entry is
1021 <funcaddr>
1022 <__gp>. */
1023
1024 bfd_put_32 (hplink->splt->owner, value,
1025 hplink->splt->contents + off);
1026 value = elf_gp (hplink->splt->output_section->owner);
1027 bfd_put_32 (hplink->splt->owner, value,
1028 hplink->splt->contents + off + 4);
1029 }
1030 break;
1031
1032 case hppa_stub_export:
1033 /* Branches are relative. This is where we are going to. */
1034 sym_value = (stub_entry->target_value
1035 + stub_entry->target_section->output_offset
1036 + stub_entry->target_section->output_section->vma);
1037
1038 /* And this is where we are coming from. */
1039 sym_value -= (stub_entry->stub_offset
1040 + stub_sec->output_offset
1041 + stub_sec->output_section->vma);
1042
1043 if (sym_value - 8 + 0x40000 >= 0x80000)
1044 {
1045 (*_bfd_error_handler)
1046 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
1047 bfd_get_filename (stub_entry->target_section->owner),
1048 stub_sec->name,
1049 (long) stub_entry->stub_offset,
1050 stub_entry->root.string);
1051 bfd_set_error (bfd_error_bad_value);
1052 return false;
1053 }
1054
1055 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
1056 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
1057 bfd_put_32 (stub_bfd, insn, loc);
1058
1059 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
1060 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
1061 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
1062 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
1063 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
1064
1065 /* Point the function symbol at the stub. */
1066 stub_entry->h->elf.root.u.def.section = stub_sec;
1067 stub_entry->h->elf.root.u.def.value = stub_sec->_raw_size;
1068
1069 size = 24;
1070 break;
1071
1072 default:
1073 BFD_FAIL ();
1074 return false;
1075 }
1076
1077 stub_sec->_raw_size += size;
1078 return true;
1079 }
1080
1081 #undef LDIL_R1
1082 #undef BE_SR4_R1
1083 #undef BL_R1
1084 #undef ADDIL_R1
1085 #undef DEPI_R1
1086 #undef ADDIL_DP
1087 #undef LDW_R1_R21
1088 #undef LDW_R1_DLT
1089 #undef LDW_R1_R19
1090 #undef ADDIL_R19
1091 #undef LDW_R1_DP
1092 #undef LDSID_R21_R1
1093 #undef MTSP_R1
1094 #undef BE_SR0_R21
1095 #undef STW_RP
1096 #undef BV_R0_R21
1097 #undef BL_RP
1098 #undef NOP
1099 #undef LDW_RP
1100 #undef LDSID_RP_R1
1101 #undef BE_SR0_RP
1102
1103 /* As above, but don't actually build the stub. Just bump offset so
1104 we know stub section sizes. */
1105
1106 static boolean
1107 hppa_size_one_stub (gen_entry, in_arg)
1108 struct bfd_hash_entry *gen_entry;
1109 PTR in_arg;
1110 {
1111 struct elf32_hppa_stub_hash_entry *stub_entry;
1112 struct elf32_hppa_link_hash_table *hplink;
1113 int size;
1114
1115 /* Massage our args to the form they really have. */
1116 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
1117 hplink = (struct elf32_hppa_link_hash_table *) in_arg;
1118
1119 if (stub_entry->stub_type == hppa_stub_long_branch)
1120 {
1121 #if ! LONG_BRANCH_PIC_IN_SHLIB
1122 if (stub_entry->reloc_sec != NULL)
1123 stub_entry->reloc_sec->_raw_size += sizeof (Elf32_External_Rela);
1124 #endif
1125 size = 8;
1126 }
1127 else if (stub_entry->stub_type == hppa_stub_long_branch_shared)
1128 size = 12;
1129 else if (stub_entry->stub_type == hppa_stub_export)
1130 size = 24;
1131 else /* hppa_stub_import or hppa_stub_import_shared. */
1132 {
1133 if (hplink->multi_subspace)
1134 size = 28;
1135 else
1136 size = 16;
1137 }
1138
1139 stub_entry->stub_sec->_raw_size += size;
1140 return true;
1141 }
1142
1143 /* Return nonzero if ABFD represents an HPPA ELF32 file.
1144 Additionally we set the default architecture and machine. */
1145
1146 static boolean
1147 elf32_hppa_object_p (abfd)
1148 bfd *abfd;
1149 {
1150 Elf_Internal_Ehdr * i_ehdrp;
1151 unsigned int flags;
1152
1153 i_ehdrp = elf_elfheader (abfd);
1154 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
1155 {
1156 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX)
1157 return false;
1158 }
1159 else
1160 {
1161 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
1162 return false;
1163 }
1164
1165 flags = i_ehdrp->e_flags;
1166 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
1167 {
1168 case EFA_PARISC_1_0:
1169 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
1170 case EFA_PARISC_1_1:
1171 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
1172 case EFA_PARISC_2_0:
1173 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
1174 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
1175 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
1176 }
1177 return true;
1178 }
1179
1180 /* Undo the generic ELF code's subtraction of section->vma from the
1181 value of each external symbol. */
1182
1183 static boolean
1184 elf32_hppa_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1185 bfd *abfd ATTRIBUTE_UNUSED;
1186 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1187 const Elf_Internal_Sym *sym ATTRIBUTE_UNUSED;
1188 const char **namep ATTRIBUTE_UNUSED;
1189 flagword *flagsp ATTRIBUTE_UNUSED;
1190 asection **secp;
1191 bfd_vma *valp;
1192 {
1193 *valp += (*secp)->vma;
1194 return true;
1195 }
1196
1197 /* Create the .plt and .got sections, and set up our hash table
1198 short-cuts to various dynamic sections. */
1199
1200 static boolean
1201 elf32_hppa_create_dynamic_sections (abfd, info)
1202 bfd *abfd;
1203 struct bfd_link_info *info;
1204 {
1205 struct elf32_hppa_link_hash_table *hplink;
1206
1207 /* Don't try to create the .plt and .got twice. */
1208 hplink = hppa_link_hash_table (info);
1209 if (hplink->splt != NULL)
1210 return true;
1211
1212 /* Call the generic code to do most of the work. */
1213 if (! _bfd_elf_create_dynamic_sections (abfd, info))
1214 return false;
1215
1216 hplink->splt = bfd_get_section_by_name (abfd, ".plt");
1217 hplink->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
1218
1219 hplink->sgot = bfd_get_section_by_name (abfd, ".got");
1220 hplink->srelgot = bfd_make_section (abfd, ".rela.got");
1221 if (hplink->srelgot == NULL
1222 || ! bfd_set_section_flags (abfd, hplink->srelgot,
1223 (SEC_ALLOC
1224 | SEC_LOAD
1225 | SEC_HAS_CONTENTS
1226 | SEC_IN_MEMORY
1227 | SEC_LINKER_CREATED
1228 | SEC_READONLY))
1229 || ! bfd_set_section_alignment (abfd, hplink->srelgot, 2))
1230 return false;
1231
1232 hplink->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
1233 hplink->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
1234
1235 return true;
1236 }
1237
1238 /* Look through the relocs for a section during the first phase, and
1239 allocate space in the global offset table or procedure linkage
1240 table. At this point we haven't necessarily read all the input
1241 files. */
1242
1243 static boolean
1244 elf32_hppa_check_relocs (abfd, info, sec, relocs)
1245 bfd *abfd;
1246 struct bfd_link_info *info;
1247 asection *sec;
1248 const Elf_Internal_Rela *relocs;
1249 {
1250 bfd *dynobj;
1251 Elf_Internal_Shdr *symtab_hdr;
1252 struct elf_link_hash_entry **sym_hashes;
1253 bfd_signed_vma *local_got_refcounts;
1254 const Elf_Internal_Rela *rel;
1255 const Elf_Internal_Rela *rel_end;
1256 struct elf32_hppa_link_hash_table *hplink;
1257 asection *sreloc;
1258 asection *stubreloc;
1259
1260 if (info->relocateable)
1261 return true;
1262
1263 hplink = hppa_link_hash_table (info);
1264 dynobj = hplink->root.dynobj;
1265 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1266 sym_hashes = elf_sym_hashes (abfd);
1267 local_got_refcounts = elf_local_got_refcounts (abfd);
1268 sreloc = NULL;
1269 stubreloc = NULL;
1270
1271 rel_end = relocs + sec->reloc_count;
1272 for (rel = relocs; rel < rel_end; rel++)
1273 {
1274 enum {
1275 NEED_GOT = 1,
1276 NEED_PLT = 2,
1277 NEED_DYNREL = 4,
1278 #if LONG_BRANCH_PIC_IN_SHLIB
1279 NEED_STUBREL = 0, /* We won't be needing them in this case. */
1280 #else
1281 NEED_STUBREL = 8,
1282 #endif
1283 PLT_PLABEL = 16
1284 };
1285
1286 unsigned int r_symndx, r_type;
1287 struct elf32_hppa_link_hash_entry *h;
1288 int need_entry;
1289
1290 r_symndx = ELF32_R_SYM (rel->r_info);
1291
1292 if (r_symndx < symtab_hdr->sh_info)
1293 h = NULL;
1294 else
1295 h = ((struct elf32_hppa_link_hash_entry *)
1296 sym_hashes[r_symndx - symtab_hdr->sh_info]);
1297
1298 r_type = ELF32_R_TYPE (rel->r_info);
1299
1300 switch (r_type)
1301 {
1302 case R_PARISC_DLTIND14F:
1303 case R_PARISC_DLTIND14R:
1304 case R_PARISC_DLTIND21L:
1305 /* This symbol requires a global offset table entry. */
1306 need_entry = NEED_GOT;
1307
1308 /* Mark this section as containing PIC code. */
1309 sec->flags |= SEC_HAS_GOT_REF;
1310 break;
1311
1312 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1313 case R_PARISC_PLABEL21L:
1314 case R_PARISC_PLABEL32:
1315 /* If the addend is non-zero, we break badly. */
1316 if (rel->r_addend != 0)
1317 abort ();
1318
1319 /* If we are creating a shared library, then we need to
1320 create a PLT entry for all PLABELs, because PLABELs with
1321 local symbols may be passed via a pointer to another
1322 object. Additionally, output a dynamic relocation
1323 pointing to the PLT entry.
1324 For executables, the original 32-bit ABI allowed two
1325 different styles of PLABELs (function pointers): For
1326 global functions, the PLABEL word points into the .plt
1327 two bytes past a (function address, gp) pair, and for
1328 local functions the PLABEL points directly at the
1329 function. The magic +2 for the first type allows us to
1330 differentiate between the two. As you can imagine, this
1331 is a real pain when it comes to generating code to call
1332 functions indirectly or to compare function pointers.
1333 We avoid the mess by always pointing a PLABEL into the
1334 .plt, even for local functions. */
1335 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1336 break;
1337
1338 case R_PARISC_PCREL12F:
1339 hplink->has_12bit_branch = 1;
1340 /* Fall thru. */
1341 case R_PARISC_PCREL17C:
1342 case R_PARISC_PCREL17F:
1343 hplink->has_17bit_branch = 1;
1344 /* Fall thru. */
1345 case R_PARISC_PCREL22F:
1346 /* Function calls might need to go through the .plt, and
1347 might require long branch stubs. */
1348 if (h == NULL)
1349 {
1350 /* We know local syms won't need a .plt entry, and if
1351 they need a long branch stub we can't guarantee that
1352 we can reach the stub. So just flag an error later
1353 if we're doing a shared link and find we need a long
1354 branch stub. */
1355 continue;
1356 }
1357 else
1358 {
1359 /* Global symbols will need a .plt entry if they remain
1360 global, and in most cases won't need a long branch
1361 stub. Unfortunately, we have to cater for the case
1362 where a symbol is forced local by versioning, or due
1363 to symbolic linking, and we lose the .plt entry. */
1364 need_entry = NEED_PLT | NEED_STUBREL;
1365 if (h->elf.type == STT_PARISC_MILLI)
1366 need_entry = NEED_STUBREL;
1367 }
1368 break;
1369
1370 case R_PARISC_SEGBASE: /* Used to set segment base. */
1371 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1372 case R_PARISC_PCREL14F: /* PC relative load/store. */
1373 case R_PARISC_PCREL14R:
1374 case R_PARISC_PCREL17R: /* External branches. */
1375 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1376 /* We don't need to propagate the relocation if linking a
1377 shared object since these are section relative. */
1378 continue;
1379
1380 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1381 case R_PARISC_DPREL14R:
1382 case R_PARISC_DPREL21L:
1383 if (info->shared)
1384 {
1385 (*_bfd_error_handler)
1386 (_("%s: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1387 bfd_get_filename (abfd),
1388 elf_hppa_howto_table[r_type].name);
1389 bfd_set_error (bfd_error_bad_value);
1390 return false;
1391 }
1392 /* Fall through. */
1393
1394 case R_PARISC_DIR17F: /* Used for external branches. */
1395 case R_PARISC_DIR17R:
1396 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1397 case R_PARISC_DIR14R:
1398 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1399 #if 1
1400 /* Help debug shared library creation. Any of the above
1401 relocs can be used in shared libs, but they may cause
1402 pages to become unshared. */
1403 if (info->shared)
1404 {
1405 (*_bfd_error_handler)
1406 (_("%s: relocation %s should not be used when making a shared object; recompile with -fPIC"),
1407 bfd_get_filename (abfd),
1408 elf_hppa_howto_table[r_type].name);
1409 }
1410 /* Fall through. */
1411 #endif
1412
1413 case R_PARISC_DIR32: /* .word relocs. */
1414 /* We may want to output a dynamic relocation later. */
1415 need_entry = NEED_DYNREL;
1416 break;
1417
1418 /* This relocation describes the C++ object vtable hierarchy.
1419 Reconstruct it for later use during GC. */
1420 case R_PARISC_GNU_VTINHERIT:
1421 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec,
1422 &h->elf, rel->r_offset))
1423 return false;
1424 continue;
1425
1426 /* This relocation describes which C++ vtable entries are actually
1427 used. Record for later use during GC. */
1428 case R_PARISC_GNU_VTENTRY:
1429 if (!_bfd_elf32_gc_record_vtentry (abfd, sec,
1430 &h->elf, rel->r_addend))
1431 return false;
1432 continue;
1433
1434 default:
1435 continue;
1436 }
1437
1438 /* Now carry out our orders. */
1439 if (need_entry & NEED_GOT)
1440 {
1441 /* Allocate space for a GOT entry, as well as a dynamic
1442 relocation for this entry. */
1443 if (dynobj == NULL)
1444 hplink->root.dynobj = dynobj = abfd;
1445
1446 if (hplink->sgot == NULL)
1447 {
1448 if (! elf32_hppa_create_dynamic_sections (dynobj, info))
1449 return false;
1450 }
1451
1452 if (h != NULL)
1453 {
1454 if (h->elf.got.refcount == -1)
1455 {
1456 h->elf.got.refcount = 1;
1457
1458 /* Make sure this symbol is output as a dynamic symbol. */
1459 if (h->elf.dynindx == -1)
1460 {
1461 if (! bfd_elf32_link_record_dynamic_symbol (info,
1462 &h->elf))
1463 return false;
1464 }
1465 }
1466 else
1467 h->elf.got.refcount += 1;
1468 }
1469 else
1470 {
1471 /* This is a global offset table entry for a local symbol. */
1472 if (local_got_refcounts == NULL)
1473 {
1474 size_t size;
1475
1476 /* Allocate space for local got offsets and local
1477 plt offsets. Done this way to save polluting
1478 elf_obj_tdata with another target specific
1479 pointer. */
1480 size = symtab_hdr->sh_info * 2 * sizeof (bfd_signed_vma);
1481 local_got_refcounts = ((bfd_signed_vma *)
1482 bfd_alloc (abfd, size));
1483 if (local_got_refcounts == NULL)
1484 return false;
1485 elf_local_got_refcounts (abfd) = local_got_refcounts;
1486 memset (local_got_refcounts, -1, size);
1487 }
1488 if (local_got_refcounts[r_symndx] == -1)
1489 local_got_refcounts[r_symndx] = 1;
1490 else
1491 local_got_refcounts[r_symndx] += 1;
1492 }
1493 }
1494
1495 if (need_entry & NEED_PLT)
1496 {
1497 /* If we are creating a shared library, and this is a reloc
1498 against a weak symbol or a global symbol in a dynamic
1499 object, then we will be creating an import stub and a
1500 .plt entry for the symbol. Similarly, on a normal link
1501 to symbols defined in a dynamic object we'll need the
1502 import stub and a .plt entry. We don't know yet whether
1503 the symbol is defined or not, so make an entry anyway and
1504 clean up later in adjust_dynamic_symbol. */
1505 if ((sec->flags & SEC_ALLOC) != 0)
1506 {
1507 if (h != NULL)
1508 {
1509 if (h->elf.plt.refcount == -1)
1510 {
1511 h->elf.plt.refcount = 1;
1512 h->elf.elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1513 }
1514 else
1515 h->elf.plt.refcount += 1;
1516
1517 /* If this .plt entry is for a plabel, mark it so
1518 that adjust_dynamic_symbol will keep the entry
1519 even if it appears to be local. */
1520 if (need_entry & PLT_PLABEL)
1521 h->plabel = 1;
1522 }
1523 else if (need_entry & PLT_PLABEL)
1524 {
1525 int indx;
1526
1527 if (local_got_refcounts == NULL)
1528 {
1529 size_t size;
1530
1531 /* Allocate space for local got offsets and local
1532 plt offsets. */
1533 size = symtab_hdr->sh_info * 2 * sizeof (bfd_signed_vma);
1534 local_got_refcounts = ((bfd_signed_vma *)
1535 bfd_alloc (abfd, size));
1536 if (local_got_refcounts == NULL)
1537 return false;
1538 elf_local_got_refcounts (abfd) = local_got_refcounts;
1539 memset (local_got_refcounts, -1, size);
1540 }
1541 indx = r_symndx + symtab_hdr->sh_info;
1542 if (local_got_refcounts[indx] == -1)
1543 local_got_refcounts[indx] = 1;
1544 else
1545 local_got_refcounts[indx] += 1;
1546 }
1547 }
1548 }
1549
1550 if (need_entry & (NEED_DYNREL | NEED_STUBREL))
1551 {
1552 /* Flag this symbol as having a non-got, non-plt reference
1553 so that we generate copy relocs if it turns out to be
1554 dynamic. */
1555 if (h != NULL)
1556 h->elf.elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
1557
1558 /* If we are creating a shared library then we need to copy
1559 the reloc into the shared library. However, if we are
1560 linking with -Bsymbolic, we need only copy absolute
1561 relocs or relocs against symbols that are not defined in
1562 an object we are including in the link. PC- or DP- or
1563 DLT-relative relocs against any local sym or global sym
1564 with DEF_REGULAR set, can be discarded. At this point we
1565 have not seen all the input files, so it is possible that
1566 DEF_REGULAR is not set now but will be set later (it is
1567 never cleared). We account for that possibility below by
1568 storing information in the reloc_entries field of the
1569 hash table entry.
1570
1571 A similar situation to the -Bsymbolic case occurs when
1572 creating shared libraries and symbol visibility changes
1573 render the symbol local.
1574
1575 As it turns out, all the relocs we will be creating here
1576 are absolute, so we cannot remove them on -Bsymbolic
1577 links or visibility changes anyway. A STUB_REL reloc
1578 is absolute too, as in that case it is the reloc in the
1579 stub we will be creating, rather than copying the PCREL
1580 reloc in the branch. */
1581 if ((sec->flags & SEC_ALLOC) != 0
1582 && info->shared
1583 #if RELATIVE_DYNAMIC_RELOCS
1584 && (!info->symbolic
1585 || is_absolute_reloc (r_type)
1586 || (h != NULL
1587 && ((h->elf.elf_link_hash_flags
1588 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
1589 #endif
1590 )
1591 {
1592 boolean doit;
1593 asection *srel;
1594
1595 srel = sreloc;
1596 if ((need_entry & NEED_STUBREL))
1597 srel = stubreloc;
1598
1599 /* Create a reloc section in dynobj and make room for
1600 this reloc. */
1601 if (srel == NULL)
1602 {
1603 char *name;
1604
1605 if (dynobj == NULL)
1606 hplink->root.dynobj = dynobj = abfd;
1607
1608 name = bfd_elf_string_from_elf_section
1609 (abfd,
1610 elf_elfheader (abfd)->e_shstrndx,
1611 elf_section_data (sec)->rel_hdr.sh_name);
1612 if (name == NULL)
1613 {
1614 (*_bfd_error_handler)
1615 (_("Could not find relocation section for %s"),
1616 sec->name);
1617 bfd_set_error (bfd_error_bad_value);
1618 return false;
1619 }
1620
1621 if ((need_entry & NEED_STUBREL))
1622 {
1623 size_t len = strlen (name) + sizeof (STUB_SUFFIX);
1624 char *newname = bfd_malloc (len);
1625
1626 if (newname == NULL)
1627 return false;
1628 strcpy (newname, name);
1629 strcpy (newname + len - sizeof (STUB_SUFFIX),
1630 STUB_SUFFIX);
1631 name = newname;
1632 }
1633
1634 srel = bfd_get_section_by_name (dynobj, name);
1635 if (srel == NULL)
1636 {
1637 flagword flags;
1638
1639 srel = bfd_make_section (dynobj, name);
1640 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1641 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1642 if ((sec->flags & SEC_ALLOC) != 0)
1643 flags |= SEC_ALLOC | SEC_LOAD;
1644 if (srel == NULL
1645 || !bfd_set_section_flags (dynobj, srel, flags)
1646 || !bfd_set_section_alignment (dynobj, srel, 2))
1647 return false;
1648 }
1649 else if ((need_entry & NEED_STUBREL))
1650 free (name);
1651
1652 if ((need_entry & NEED_STUBREL))
1653 stubreloc = srel;
1654 else
1655 sreloc = srel;
1656 }
1657
1658 #if ! LONG_BRANCH_PIC_IN_SHLIB
1659 /* If this is a function call, we only need one dynamic
1660 reloc for the stub as all calls to a particular
1661 function will go through the same stub. Actually, a
1662 long branch stub needs two relocations, but we count
1663 on some intelligence on the part of the dynamic
1664 linker. */
1665 if ((need_entry & NEED_STUBREL))
1666 {
1667 doit = h->stub_reloc_sec != stubreloc;
1668 h->stub_reloc_sec = stubreloc;
1669 }
1670 else
1671 #endif
1672 doit = 1;
1673
1674 if (doit)
1675 {
1676 srel->_raw_size += sizeof (Elf32_External_Rela);
1677
1678 #if ! LONG_BRANCH_PIC_IN_SHLIB || RELATIVE_DYNAMIC_RELOCS
1679 /* Keep track of relocations we have entered for
1680 this global symbol, so that we can discard them
1681 later if necessary. */
1682 if (h != NULL
1683 && (0
1684 #if RELATIVE_DYNAMIC_RELOCS
1685 || ! is_absolute_reloc (rtype)
1686 #endif
1687 || (need_entry & NEED_STUBREL)))
1688 {
1689 struct elf32_hppa_dyn_reloc_entry *p;
1690
1691 for (p = h->reloc_entries; p != NULL; p = p->next)
1692 if (p->section == srel)
1693 break;
1694
1695 if (p == NULL)
1696 {
1697 p = ((struct elf32_hppa_dyn_reloc_entry *)
1698 bfd_alloc (dynobj, sizeof *p));
1699 if (p == NULL)
1700 return false;
1701 p->next = h->reloc_entries;
1702 h->reloc_entries = p;
1703 p->section = srel;
1704 p->count = 0;
1705 }
1706
1707 /* NEED_STUBREL and NEED_DYNREL are never both
1708 set. Leave the count at zero for the
1709 NEED_STUBREL case as we only ever have one
1710 stub reloc per section per symbol, and this
1711 simplifies code in hppa_discard_copies. */
1712 if (! (need_entry & NEED_STUBREL))
1713 ++p->count;
1714 }
1715 #endif
1716 }
1717 }
1718 }
1719 }
1720
1721 return true;
1722 }
1723
1724 /* Return the section that should be marked against garbage collection
1725 for a given relocation. */
1726
1727 static asection *
1728 elf32_hppa_gc_mark_hook (abfd, info, rel, h, sym)
1729 bfd *abfd;
1730 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1731 Elf_Internal_Rela *rel;
1732 struct elf_link_hash_entry *h;
1733 Elf_Internal_Sym *sym;
1734 {
1735 if (h != NULL)
1736 {
1737 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1738 {
1739 case R_PARISC_GNU_VTINHERIT:
1740 case R_PARISC_GNU_VTENTRY:
1741 break;
1742
1743 default:
1744 switch (h->root.type)
1745 {
1746 case bfd_link_hash_defined:
1747 case bfd_link_hash_defweak:
1748 return h->root.u.def.section;
1749
1750 case bfd_link_hash_common:
1751 return h->root.u.c.p->section;
1752
1753 default:
1754 break;
1755 }
1756 }
1757 }
1758 else
1759 {
1760 if (!(elf_bad_symtab (abfd)
1761 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
1762 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
1763 && sym->st_shndx != SHN_COMMON))
1764 {
1765 return bfd_section_from_elf_index (abfd, sym->st_shndx);
1766 }
1767 }
1768
1769 return NULL;
1770 }
1771
1772 /* Update the got and plt entry reference counts for the section being
1773 removed. */
1774
1775 static boolean
1776 elf32_hppa_gc_sweep_hook (abfd, info, sec, relocs)
1777 bfd *abfd;
1778 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1779 asection *sec;
1780 const Elf_Internal_Rela *relocs;
1781 {
1782 Elf_Internal_Shdr *symtab_hdr;
1783 struct elf_link_hash_entry **sym_hashes;
1784 bfd_signed_vma *local_got_refcounts;
1785 bfd_signed_vma *local_plt_refcounts;
1786 const Elf_Internal_Rela *rel, *relend;
1787 unsigned long r_symndx;
1788 struct elf_link_hash_entry *h;
1789 struct elf32_hppa_link_hash_table *hplink;
1790 bfd *dynobj;
1791
1792 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1793 sym_hashes = elf_sym_hashes (abfd);
1794 local_got_refcounts = elf_local_got_refcounts (abfd);
1795 local_plt_refcounts = local_got_refcounts;
1796 if (local_plt_refcounts != NULL)
1797 local_plt_refcounts += symtab_hdr->sh_info;
1798 hplink = hppa_link_hash_table (info);
1799 dynobj = hplink->root.dynobj;
1800 if (dynobj == NULL)
1801 return true;
1802
1803 relend = relocs + sec->reloc_count;
1804 for (rel = relocs; rel < relend; rel++)
1805 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1806 {
1807 case R_PARISC_DLTIND14F:
1808 case R_PARISC_DLTIND14R:
1809 case R_PARISC_DLTIND21L:
1810 r_symndx = ELF32_R_SYM (rel->r_info);
1811 if (r_symndx >= symtab_hdr->sh_info)
1812 {
1813 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1814 if (h->got.refcount > 0)
1815 h->got.refcount -= 1;
1816 }
1817 else if (local_got_refcounts != NULL)
1818 {
1819 if (local_got_refcounts[r_symndx] > 0)
1820 local_got_refcounts[r_symndx] -= 1;
1821 }
1822 break;
1823
1824 case R_PARISC_PCREL12F:
1825 case R_PARISC_PCREL17C:
1826 case R_PARISC_PCREL17F:
1827 case R_PARISC_PCREL22F:
1828 r_symndx = ELF32_R_SYM (rel->r_info);
1829 if (r_symndx >= symtab_hdr->sh_info)
1830 {
1831 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1832 if (h->plt.refcount > 0)
1833 h->plt.refcount -= 1;
1834 }
1835 break;
1836
1837 case R_PARISC_PLABEL14R:
1838 case R_PARISC_PLABEL21L:
1839 case R_PARISC_PLABEL32:
1840 r_symndx = ELF32_R_SYM (rel->r_info);
1841 if (r_symndx >= symtab_hdr->sh_info)
1842 {
1843 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1844 if (h->plt.refcount > 0)
1845 h->plt.refcount -= 1;
1846 }
1847 else if (local_plt_refcounts != NULL)
1848 {
1849 if (local_plt_refcounts[r_symndx] > 0)
1850 local_plt_refcounts[r_symndx] -= 1;
1851 }
1852 break;
1853
1854 default:
1855 break;
1856 }
1857
1858 return true;
1859 }
1860
1861 /* Our own version of hide_symbol, so that we can keep plt entries for
1862 plabels. */
1863
1864 static void
1865 elf32_hppa_hide_symbol (info, h)
1866 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1867 struct elf_link_hash_entry *h;
1868 {
1869 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
1870 h->dynindx = -1;
1871 if (! ((struct elf32_hppa_link_hash_entry *) h)->plabel)
1872 {
1873 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1874 h->plt.offset = (bfd_vma) -1;
1875 }
1876 }
1877
1878 /* This is the condition under which elf32_hppa_finish_dynamic_symbol
1879 will be called from elflink.h. If elflink.h doesn't call our
1880 finish_dynamic_symbol routine, we'll need to do something about
1881 initializing any .plt and .got entries in elf32_hppa_relocate_section. */
1882 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1883 ((DYN) \
1884 && ((INFO)->shared \
1885 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1886 && ((H)->dynindx != -1 \
1887 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1888
1889 /* Adjust a symbol defined by a dynamic object and referenced by a
1890 regular object. The current definition is in some section of the
1891 dynamic object, but we're not including those sections. We have to
1892 change the definition to something the rest of the link can
1893 understand. */
1894
1895 static boolean
1896 elf32_hppa_adjust_dynamic_symbol (info, h)
1897 struct bfd_link_info *info;
1898 struct elf_link_hash_entry *h;
1899 {
1900 bfd *dynobj;
1901 struct elf32_hppa_link_hash_table *hplink;
1902 asection *s;
1903
1904 hplink = hppa_link_hash_table (info);
1905 dynobj = hplink->root.dynobj;
1906
1907 /* If this is a function, put it in the procedure linkage table. We
1908 will fill in the contents of the procedure linkage table later,
1909 when we know the address of the .got section. */
1910 if (h->type == STT_FUNC
1911 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1912 {
1913 if (!info->shared
1914 && h->plt.refcount > 0
1915 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1916 && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0)
1917 {
1918 ((struct elf32_hppa_link_hash_entry *) h)->maybe_pic_call = 1;
1919 }
1920
1921 if (h->plt.refcount <= 0
1922 || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1923 && h->root.type != bfd_link_hash_defweak
1924 && ! ((struct elf32_hppa_link_hash_entry *) h)->plabel
1925 && (!info->shared || info->symbolic)))
1926 {
1927 /* The .plt entry is not needed when:
1928 a) Garbage collection has removed all references to the
1929 symbol, or
1930 b) We know for certain the symbol is defined in this
1931 object, and it's not a weak definition, nor is the symbol
1932 used by a plabel relocation. Either this object is the
1933 application or we are doing a shared symbolic link. */
1934
1935 /* As a special sop to the hppa ABI, we keep a .plt entry
1936 for functions in sections containing PIC code. */
1937 if (((struct elf32_hppa_link_hash_entry *) h)->maybe_pic_call)
1938 ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
1939 else
1940 {
1941 h->plt.offset = (bfd_vma) -1;
1942 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1943 return true;
1944 }
1945 }
1946
1947 if (! ((struct elf32_hppa_link_hash_entry *) h)->pic_call)
1948 {
1949 /* Make sure this symbol is output as a dynamic symbol. */
1950 if (h->dynindx == -1
1951 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1952 {
1953 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1954 return false;
1955 }
1956 }
1957
1958 return true;
1959 }
1960
1961 /* If this is a weak symbol, and there is a real definition, the
1962 processor independent code will have arranged for us to see the
1963 real definition first, and we can just use the same value. */
1964 if (h->weakdef != NULL)
1965 {
1966 if (h->weakdef->root.type != bfd_link_hash_defined
1967 && h->weakdef->root.type != bfd_link_hash_defweak)
1968 abort ();
1969 h->root.u.def.section = h->weakdef->root.u.def.section;
1970 h->root.u.def.value = h->weakdef->root.u.def.value;
1971 return true;
1972 }
1973
1974 /* This is a reference to a symbol defined by a dynamic object which
1975 is not a function. */
1976
1977 /* If we are creating a shared library, we must presume that the
1978 only references to the symbol are via the global offset table.
1979 For such cases we need not do anything here; the relocations will
1980 be handled correctly by relocate_section. */
1981 if (info->shared)
1982 return true;
1983
1984 /* If there are no references to this symbol that do not use the
1985 GOT, we don't need to generate a copy reloc. */
1986 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1987 return true;
1988
1989 /* We must allocate the symbol in our .dynbss section, which will
1990 become part of the .bss section of the executable. There will be
1991 an entry for this symbol in the .dynsym section. The dynamic
1992 object will contain position independent code, so all references
1993 from the dynamic object to this symbol will go through the global
1994 offset table. The dynamic linker will use the .dynsym entry to
1995 determine the address it must put in the global offset table, so
1996 both the dynamic object and the regular object will refer to the
1997 same memory location for the variable. */
1998
1999 s = hplink->sdynbss;
2000
2001 /* We must generate a COPY reloc to tell the dynamic linker to
2002 copy the initial value out of the dynamic object and into the
2003 runtime process image. We need to remember the offset into the
2004 .rela.bss section we are going to use. */
2005 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
2006 {
2007 asection *srel;
2008
2009 srel = hplink->srelbss;
2010 srel->_raw_size += sizeof (Elf32_External_Rela);
2011 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
2012 }
2013
2014 {
2015 /* We need to figure out the alignment required for this symbol. I
2016 have no idea how other ELF linkers handle this. */
2017 unsigned int power_of_two;
2018
2019 power_of_two = bfd_log2 (h->size);
2020 if (power_of_two > 3)
2021 power_of_two = 3;
2022
2023 /* Apply the required alignment. */
2024 s->_raw_size = BFD_ALIGN (s->_raw_size,
2025 (bfd_size_type) (1 << power_of_two));
2026 if (power_of_two > bfd_get_section_alignment (dynobj, s))
2027 {
2028 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
2029 return false;
2030 }
2031 }
2032 /* Define the symbol as being at this point in the section. */
2033 h->root.u.def.section = s;
2034 h->root.u.def.value = s->_raw_size;
2035
2036 /* Increment the section size to make room for the symbol. */
2037 s->_raw_size += h->size;
2038
2039 return true;
2040 }
2041
2042 /* Called via elf_link_hash_traverse to create .plt entries for an
2043 application that uses statically linked PIC functions. Similar to
2044 the first part of elf32_hppa_adjust_dynamic_symbol. */
2045
2046 static boolean
2047 hppa_handle_PIC_calls (h, inf)
2048 struct elf_link_hash_entry *h;
2049 PTR inf ATTRIBUTE_UNUSED;
2050 {
2051 if (! (h->plt.refcount > 0
2052 && (h->root.type == bfd_link_hash_defined
2053 || h->root.type == bfd_link_hash_defweak)
2054 && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0))
2055 {
2056 h->plt.offset = (bfd_vma) -1;
2057 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2058 return true;
2059 }
2060
2061 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
2062 ((struct elf32_hppa_link_hash_entry *) h)->maybe_pic_call = 1;
2063 ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
2064
2065 return true;
2066 }
2067
2068 /* Allocate space in .plt, .got and associated reloc sections for
2069 global syms. */
2070
2071 static boolean
2072 allocate_plt_and_got (h, inf)
2073 struct elf_link_hash_entry *h;
2074 PTR inf;
2075 {
2076 struct bfd_link_info *info;
2077 struct elf32_hppa_link_hash_table *hplink;
2078 asection *s;
2079
2080 if (h->root.type == bfd_link_hash_indirect
2081 || h->root.type == bfd_link_hash_warning)
2082 return true;
2083
2084 info = (struct bfd_link_info *) inf;
2085 hplink = hppa_link_hash_table (info);
2086 if ((hplink->root.dynamic_sections_created
2087 && h->plt.refcount > 0)
2088 || ((struct elf32_hppa_link_hash_entry *) h)->pic_call)
2089 {
2090 /* Make an entry in the .plt section. */
2091 s = hplink->splt;
2092 h->plt.offset = s->_raw_size;
2093 if (PLABEL_PLT_ENTRY_SIZE != PLT_ENTRY_SIZE
2094 && ((struct elf32_hppa_link_hash_entry *) h)->plabel
2095 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
2096 {
2097 /* Add some extra space for the dynamic linker to use. */
2098 s->_raw_size += PLABEL_PLT_ENTRY_SIZE;
2099 }
2100 else
2101 s->_raw_size += PLT_ENTRY_SIZE;
2102
2103 if (! ((struct elf32_hppa_link_hash_entry *) h)->pic_call
2104 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
2105 {
2106 /* We also need to make an entry in the .rela.plt section. */
2107 hplink->srelplt->_raw_size += sizeof (Elf32_External_Rela);
2108 hplink->need_plt_stub = 1;
2109 }
2110 }
2111 else
2112 {
2113 h->plt.offset = (bfd_vma) -1;
2114 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2115 }
2116
2117 if (h->got.refcount > 0)
2118 {
2119 boolean dyn;
2120
2121 s = hplink->sgot;
2122 h->got.offset = s->_raw_size;
2123 s->_raw_size += GOT_ENTRY_SIZE;
2124 dyn = hplink->root.dynamic_sections_created;
2125 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h))
2126 hplink->srelgot->_raw_size += sizeof (Elf32_External_Rela);
2127 }
2128 else
2129 h->got.offset = (bfd_vma) -1;
2130
2131 return true;
2132 }
2133
2134 #if ((! LONG_BRANCH_PIC_IN_SHLIB && LONG_BRANCH_VIA_PLT) \
2135 || RELATIVE_DYNAMIC_RELOCS)
2136 /* This function is called via elf_link_hash_traverse to discard space
2137 we allocated for relocs that it turned out we didn't need. */
2138
2139 static boolean
2140 hppa_discard_copies (h, inf)
2141 struct elf_link_hash_entry *h;
2142 PTR inf;
2143 {
2144 struct elf32_hppa_dyn_reloc_entry *s;
2145 struct elf32_hppa_link_hash_entry *eh;
2146 struct bfd_link_info *info;
2147
2148 eh = (struct elf32_hppa_link_hash_entry *) h;
2149 info = (struct bfd_link_info *) inf;
2150
2151 #if ! LONG_BRANCH_PIC_IN_SHLIB && LONG_BRANCH_VIA_PLT
2152 /* Handle the stub reloc case. If we have a plt entry for the
2153 function, we won't be needing long branch stubs. s->count will
2154 only be zero for stub relocs, which provides a handy way of
2155 flagging these relocs, and means we need do nothing special for
2156 the forced local and symbolic link case. */
2157 if (eh->stub_reloc_sec != NULL
2158 && eh->elf.plt.offset != (bfd_vma) -1)
2159 {
2160 for (s = eh->reloc_entries; s != NULL; s = s->next)
2161 if (s->count == 0)
2162 s->section->_raw_size -= sizeof (Elf32_External_Rela);
2163 }
2164 #endif
2165
2166 #if RELATIVE_DYNAMIC_RELOCS
2167 /* If a symbol has been forced local or we have found a regular
2168 definition for the symbolic link case, then we won't be needing
2169 any relocs. */
2170 if (eh->elf.dynindx == -1
2171 || ((eh->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
2172 && !is_absolute_reloc (r_type)
2173 && info->symbolic))
2174 {
2175 for (s = eh->reloc_entries; s != NULL; s = s->next)
2176 s->section->_raw_size -= s->count * sizeof (Elf32_External_Rela);
2177 }
2178 #endif
2179
2180 return true;
2181 }
2182 #endif
2183
2184 /* This function is called via elf_link_hash_traverse to force
2185 millicode symbols local so they do not end up as globals in the
2186 dynamic symbol table. We ought to be able to do this in
2187 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2188 for all dynamic symbols. Arguably, this is a bug in
2189 elf_adjust_dynamic_symbol. */
2190
2191 static boolean
2192 clobber_millicode_symbols (h, info)
2193 struct elf_link_hash_entry *h;
2194 struct bfd_link_info *info;
2195 {
2196 /* We only want to remove these from the dynamic symbol table.
2197 Therefore we do not leave ELF_LINK_FORCED_LOCAL set. */
2198 if (h->type == STT_PARISC_MILLI)
2199 {
2200 unsigned short oldflags = h->elf_link_hash_flags;
2201 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
2202 elf32_hppa_hide_symbol (info, h);
2203 h->elf_link_hash_flags &= ~ELF_LINK_FORCED_LOCAL;
2204 h->elf_link_hash_flags |= oldflags & ELF_LINK_FORCED_LOCAL;
2205 }
2206 return true;
2207 }
2208
2209 /* Set the sizes of the dynamic sections. */
2210
2211 static boolean
2212 elf32_hppa_size_dynamic_sections (output_bfd, info)
2213 bfd *output_bfd;
2214 struct bfd_link_info *info;
2215 {
2216 struct elf32_hppa_link_hash_table *hplink;
2217 bfd *dynobj;
2218 asection *s;
2219 boolean relocs;
2220 boolean reltext;
2221
2222 hplink = hppa_link_hash_table (info);
2223 dynobj = hplink->root.dynobj;
2224 if (dynobj == NULL)
2225 abort ();
2226
2227 if (hplink->root.dynamic_sections_created)
2228 {
2229 bfd *i;
2230
2231 /* Set the contents of the .interp section to the interpreter. */
2232 if (! info->shared)
2233 {
2234 s = bfd_get_section_by_name (dynobj, ".interp");
2235 if (s == NULL)
2236 abort ();
2237 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
2238 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2239 }
2240
2241 /* Force millicode symbols local. */
2242 elf_link_hash_traverse (&hplink->root,
2243 clobber_millicode_symbols,
2244 info);
2245
2246 /* Set up .got and .plt offsets for local syms. */
2247 for (i = info->input_bfds; i; i = i->link_next)
2248 {
2249 bfd_signed_vma *local_got;
2250 bfd_signed_vma *end_local_got;
2251 bfd_signed_vma *local_plt;
2252 bfd_signed_vma *end_local_plt;
2253 bfd_size_type locsymcount;
2254 Elf_Internal_Shdr *symtab_hdr;
2255 asection *srel;
2256
2257 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
2258 continue;
2259
2260 local_got = elf_local_got_refcounts (i);
2261 if (!local_got)
2262 continue;
2263
2264 symtab_hdr = &elf_tdata (i)->symtab_hdr;
2265 locsymcount = symtab_hdr->sh_info;
2266 end_local_got = local_got + locsymcount;
2267 s = hplink->sgot;
2268 srel = hplink->srelgot;
2269 for (; local_got < end_local_got; ++local_got)
2270 {
2271 if (*local_got > 0)
2272 {
2273 *local_got = s->_raw_size;
2274 s->_raw_size += GOT_ENTRY_SIZE;
2275 if (info->shared)
2276 srel->_raw_size += sizeof (Elf32_External_Rela);
2277 }
2278 else
2279 *local_got = (bfd_vma) -1;
2280 }
2281
2282 local_plt = end_local_got;
2283 end_local_plt = local_plt + locsymcount;
2284 s = hplink->splt;
2285 srel = hplink->srelplt;
2286 for (; local_plt < end_local_plt; ++local_plt)
2287 {
2288 if (*local_plt > 0)
2289 {
2290 *local_plt = s->_raw_size;
2291 s->_raw_size += PLT_ENTRY_SIZE;
2292 if (info->shared)
2293 srel->_raw_size += sizeof (Elf32_External_Rela);
2294 }
2295 else
2296 *local_plt = (bfd_vma) -1;
2297 }
2298 }
2299 }
2300 else
2301 {
2302 /* Run through the function symbols, looking for any that are
2303 PIC, and allocate space for the necessary .plt entries so
2304 that %r19 will be set up. */
2305 if (! info->shared)
2306 elf_link_hash_traverse (&hplink->root,
2307 hppa_handle_PIC_calls,
2308 info);
2309 }
2310
2311 /* Allocate global sym .plt and .got entries. */
2312 elf_link_hash_traverse (&hplink->root,
2313 allocate_plt_and_got,
2314 info);
2315
2316 #if ((! LONG_BRANCH_PIC_IN_SHLIB && LONG_BRANCH_VIA_PLT) \
2317 || RELATIVE_DYNAMIC_RELOCS)
2318 /* If this is a -Bsymbolic shared link, then we need to discard all
2319 relocs against symbols defined in a regular object. We also need
2320 to lose relocs we've allocated for long branch stubs if we know
2321 we won't be generating a stub. */
2322 if (info->shared)
2323 elf_link_hash_traverse (&hplink->root,
2324 hppa_discard_copies,
2325 info);
2326 #endif
2327
2328 /* The check_relocs and adjust_dynamic_symbol entry points have
2329 determined the sizes of the various dynamic sections. Allocate
2330 memory for them. */
2331 relocs = false;
2332 reltext = false;
2333 for (s = dynobj->sections; s != NULL; s = s->next)
2334 {
2335 const char *name;
2336
2337 if ((s->flags & SEC_LINKER_CREATED) == 0)
2338 continue;
2339
2340 /* It's OK to base decisions on the section name, because none
2341 of the dynobj section names depend upon the input files. */
2342 name = bfd_get_section_name (dynobj, s);
2343
2344 if (strncmp (name, ".rela", 5) == 0)
2345 {
2346 if (s->_raw_size != 0)
2347 {
2348 asection *target;
2349 const char *outname;
2350
2351 /* Remember whether there are any reloc sections other
2352 than .rela.plt. */
2353 if (strcmp (name+5, ".plt") != 0)
2354 relocs = true;
2355
2356 /* If this relocation section applies to a read only
2357 section, then we probably need a DT_TEXTREL entry. */
2358 outname = bfd_get_section_name (output_bfd,
2359 s->output_section);
2360 target = bfd_get_section_by_name (output_bfd, outname + 5);
2361 if (target != NULL
2362 && (target->flags & SEC_READONLY) != 0
2363 && (target->flags & SEC_ALLOC) != 0)
2364 reltext = true;
2365
2366 /* We use the reloc_count field as a counter if we need
2367 to copy relocs into the output file. */
2368 s->reloc_count = 0;
2369 }
2370 }
2371 else if (strcmp (name, ".plt") == 0)
2372 {
2373 if (hplink->need_plt_stub)
2374 {
2375 /* Make space for the plt stub at the end of the .plt
2376 section. We want this stub right at the end, up
2377 against the .got section. */
2378 int gotalign = bfd_section_alignment (dynobj, hplink->sgot);
2379 int pltalign = bfd_section_alignment (dynobj, s);
2380 bfd_size_type mask;
2381
2382 if (gotalign > pltalign)
2383 bfd_set_section_alignment (dynobj, s, gotalign);
2384 mask = ((bfd_size_type) 1 << gotalign) - 1;
2385 s->_raw_size = (s->_raw_size + sizeof (plt_stub) + mask) & ~mask;
2386 }
2387 }
2388 else if (strcmp (name, ".got") == 0)
2389 ;
2390 else
2391 {
2392 /* It's not one of our sections, so don't allocate space. */
2393 continue;
2394 }
2395
2396 if (s->_raw_size == 0)
2397 {
2398 /* If we don't need this section, strip it from the
2399 output file. This is mostly to handle .rela.bss and
2400 .rela.plt. We must create both sections in
2401 create_dynamic_sections, because they must be created
2402 before the linker maps input sections to output
2403 sections. The linker does that before
2404 adjust_dynamic_symbol is called, and it is that
2405 function which decides whether anything needs to go
2406 into these sections. */
2407 _bfd_strip_section_from_output (info, s);
2408 continue;
2409 }
2410
2411 /* Allocate memory for the section contents. Zero it, because
2412 we may not fill in all the reloc sections. */
2413 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
2414 if (s->contents == NULL && s->_raw_size != 0)
2415 return false;
2416 }
2417
2418 if (hplink->root.dynamic_sections_created)
2419 {
2420 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2421 actually has nothing to do with the PLT, it is how we
2422 communicate the LTP value of a load module to the dynamic
2423 linker. */
2424 if (! bfd_elf32_add_dynamic_entry (info, DT_PLTGOT, 0))
2425 return false;
2426
2427 /* Add some entries to the .dynamic section. We fill in the
2428 values later, in elf32_hppa_finish_dynamic_sections, but we
2429 must add the entries now so that we get the correct size for
2430 the .dynamic section. The DT_DEBUG entry is filled in by the
2431 dynamic linker and used by the debugger. */
2432 if (! info->shared)
2433 {
2434 if (! bfd_elf32_add_dynamic_entry (info, DT_DEBUG, 0))
2435 return false;
2436 }
2437
2438 if (hplink->srelplt->_raw_size != 0)
2439 {
2440 if (! bfd_elf32_add_dynamic_entry (info, DT_PLTRELSZ, 0)
2441 || ! bfd_elf32_add_dynamic_entry (info, DT_PLTREL, DT_RELA)
2442 || ! bfd_elf32_add_dynamic_entry (info, DT_JMPREL, 0))
2443 return false;
2444 }
2445
2446 if (relocs)
2447 {
2448 if (! bfd_elf32_add_dynamic_entry (info, DT_RELA, 0)
2449 || ! bfd_elf32_add_dynamic_entry (info, DT_RELASZ, 0)
2450 || ! bfd_elf32_add_dynamic_entry (info, DT_RELAENT,
2451 sizeof (Elf32_External_Rela)))
2452 return false;
2453 }
2454
2455 if (reltext)
2456 {
2457 if (! bfd_elf32_add_dynamic_entry (info, DT_TEXTREL, 0))
2458 return false;
2459 info->flags |= DF_TEXTREL;
2460 }
2461 }
2462
2463 return true;
2464 }
2465
2466 /* External entry points for sizing and building linker stubs. */
2467
2468 /* Determine and set the size of the stub section for a final link.
2469
2470 The basic idea here is to examine all the relocations looking for
2471 PC-relative calls to a target that is unreachable with a "bl"
2472 instruction. */
2473
2474 boolean
2475 elf32_hppa_size_stubs (output_bfd, stub_bfd, info, multi_subspace, group_size,
2476 add_stub_section, layout_sections_again)
2477 bfd *output_bfd;
2478 bfd *stub_bfd;
2479 struct bfd_link_info *info;
2480 boolean multi_subspace;
2481 bfd_signed_vma group_size;
2482 asection * (*add_stub_section) PARAMS ((const char *, asection *));
2483 void (*layout_sections_again) PARAMS ((void));
2484 {
2485 bfd *input_bfd;
2486 asection *section;
2487 asection **input_list, **list;
2488 Elf_Internal_Sym *local_syms, **all_local_syms;
2489 unsigned int bfd_indx, bfd_count;
2490 int top_id, top_index;
2491 struct elf32_hppa_link_hash_table *hplink;
2492 bfd_size_type stub_group_size;
2493 boolean stubs_always_before_branch;
2494 boolean stub_changed = 0;
2495 boolean ret = 0;
2496
2497 hplink = hppa_link_hash_table (info);
2498
2499 /* Stash our params away. */
2500 hplink->stub_bfd = stub_bfd;
2501 hplink->multi_subspace = multi_subspace;
2502 hplink->add_stub_section = add_stub_section;
2503 hplink->layout_sections_again = layout_sections_again;
2504 stubs_always_before_branch = group_size < 0;
2505 if (group_size < 0)
2506 stub_group_size = -group_size;
2507 else
2508 stub_group_size = group_size;
2509 if (stub_group_size == 1)
2510 {
2511 /* Default values. */
2512 stub_group_size = 8000000;
2513 if (hplink->has_17bit_branch || hplink->multi_subspace)
2514 stub_group_size = 250000;
2515 if (hplink->has_12bit_branch)
2516 stub_group_size = 7812;
2517 }
2518
2519 /* Count the number of input BFDs and find the top input section id. */
2520 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2521 input_bfd != NULL;
2522 input_bfd = input_bfd->link_next)
2523 {
2524 bfd_count += 1;
2525 for (section = input_bfd->sections;
2526 section != NULL;
2527 section = section->next)
2528 {
2529 if (top_id < section->id)
2530 top_id = section->id;
2531 }
2532 }
2533
2534 hplink->stub_group
2535 = (struct map_stub *) bfd_zmalloc (sizeof (struct map_stub) * (top_id + 1));
2536 if (hplink->stub_group == NULL)
2537 return false;
2538
2539 /* Make a list of input sections for each output section included in
2540 the link.
2541
2542 We can't use output_bfd->section_count here to find the top output
2543 section index as some sections may have been removed, and
2544 _bfd_strip_section_from_output doesn't renumber the indices. */
2545 for (section = output_bfd->sections, top_index = 0;
2546 section != NULL;
2547 section = section->next)
2548 {
2549 if (top_index < section->index)
2550 top_index = section->index;
2551 }
2552
2553 input_list
2554 = (asection **) bfd_malloc (sizeof (asection *) * (top_index + 1));
2555 if (input_list == NULL)
2556 return false;
2557
2558 /* For sections we aren't interested in, mark their entries with a
2559 value we can check later. */
2560 list = input_list + top_index;
2561 do
2562 *list = bfd_abs_section_ptr;
2563 while (list-- != input_list);
2564
2565 for (section = output_bfd->sections;
2566 section != NULL;
2567 section = section->next)
2568 {
2569 if ((section->flags & SEC_CODE) != 0)
2570 input_list[section->index] = NULL;
2571 }
2572
2573 /* Now actually build the lists. */
2574 for (input_bfd = info->input_bfds;
2575 input_bfd != NULL;
2576 input_bfd = input_bfd->link_next)
2577 {
2578 for (section = input_bfd->sections;
2579 section != NULL;
2580 section = section->next)
2581 {
2582 if (section->output_section != NULL
2583 && section->output_section->owner == output_bfd
2584 && section->output_section->index <= top_index)
2585 {
2586 list = input_list + section->output_section->index;
2587 if (*list != bfd_abs_section_ptr)
2588 {
2589 /* Steal the link_sec pointer for our list. */
2590 #define PREV_SEC(sec) (hplink->stub_group[(sec)->id].link_sec)
2591 /* This happens to make the list in reverse order,
2592 which is what we want. */
2593 PREV_SEC (section) = *list;
2594 *list = section;
2595 }
2596 }
2597 }
2598 }
2599
2600 /* See whether we can group stub sections together. Grouping stub
2601 sections may result in fewer stubs. More importantly, we need to
2602 put all .init* and .fini* stubs at the beginning of the .init or
2603 .fini output sections respectively, because glibc splits the
2604 _init and _fini functions into multiple parts. Putting a stub in
2605 the middle of a function is not a good idea. */
2606 list = input_list + top_index;
2607 do
2608 {
2609 asection *tail = *list;
2610 if (tail == bfd_abs_section_ptr)
2611 continue;
2612 while (tail != NULL)
2613 {
2614 asection *curr;
2615 asection *prev;
2616 bfd_size_type total;
2617
2618 curr = tail;
2619 if (tail->_cooked_size)
2620 total = tail->_cooked_size;
2621 else
2622 total = tail->_raw_size;
2623 while ((prev = PREV_SEC (curr)) != NULL
2624 && ((total += curr->output_offset - prev->output_offset)
2625 < stub_group_size))
2626 curr = prev;
2627
2628 /* OK, the size from the start of CURR to the end is less
2629 than 250000 bytes and thus can be handled by one stub
2630 section. (or the tail section is itself larger than
2631 250000 bytes, in which case we may be toast.)
2632 We should really be keeping track of the total size of
2633 stubs added here, as stubs contribute to the final output
2634 section size. That's a little tricky, and this way will
2635 only break if stubs added total more than 12144 bytes, or
2636 1518 long branch stubs. It seems unlikely for more than
2637 1518 different functions to be called, especially from
2638 code only 250000 bytes long. */
2639 do
2640 {
2641 prev = PREV_SEC (tail);
2642 /* Set up this stub group. */
2643 hplink->stub_group[tail->id].link_sec = curr;
2644 }
2645 while (tail != curr && (tail = prev) != NULL);
2646
2647 /* But wait, there's more! Input sections up to 250000
2648 bytes before the stub section can be handled by it too. */
2649 if (!stubs_always_before_branch)
2650 {
2651 total = 0;
2652 while (prev != NULL
2653 && ((total += tail->output_offset - prev->output_offset)
2654 < stub_group_size))
2655 {
2656 tail = prev;
2657 prev = PREV_SEC (tail);
2658 hplink->stub_group[tail->id].link_sec = curr;
2659 }
2660 }
2661 tail = prev;
2662 }
2663 }
2664 while (list-- != input_list);
2665 free (input_list);
2666 #undef PREV_SEC
2667
2668 /* We want to read in symbol extension records only once. To do this
2669 we need to read in the local symbols in parallel and save them for
2670 later use; so hold pointers to the local symbols in an array. */
2671 all_local_syms
2672 = (Elf_Internal_Sym **) bfd_zmalloc (sizeof (Elf_Internal_Sym *)
2673 * bfd_count);
2674 if (all_local_syms == NULL)
2675 return false;
2676
2677 /* Walk over all the input BFDs, swapping in local symbols.
2678 If we are creating a shared library, create hash entries for the
2679 export stubs. */
2680 for (input_bfd = info->input_bfds, bfd_indx = 0;
2681 input_bfd != NULL;
2682 input_bfd = input_bfd->link_next, bfd_indx++)
2683 {
2684 Elf_Internal_Shdr *symtab_hdr;
2685 Elf_Internal_Sym *isym;
2686 Elf32_External_Sym *ext_syms, *esym, *end_sy;
2687
2688 /* We'll need the symbol table in a second. */
2689 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2690 if (symtab_hdr->sh_info == 0)
2691 continue;
2692
2693 /* We need an array of the local symbols attached to the input bfd.
2694 Unfortunately, we're going to have to read & swap them in. */
2695 local_syms = (Elf_Internal_Sym *)
2696 bfd_malloc (symtab_hdr->sh_info * sizeof (Elf_Internal_Sym));
2697 if (local_syms == NULL)
2698 {
2699 goto error_ret_free_local;
2700 }
2701 all_local_syms[bfd_indx] = local_syms;
2702 ext_syms = (Elf32_External_Sym *)
2703 bfd_malloc (symtab_hdr->sh_info * sizeof (Elf32_External_Sym));
2704 if (ext_syms == NULL)
2705 {
2706 goto error_ret_free_local;
2707 }
2708
2709 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
2710 || (bfd_read (ext_syms, 1,
2711 (symtab_hdr->sh_info * sizeof (Elf32_External_Sym)),
2712 input_bfd)
2713 != (symtab_hdr->sh_info * sizeof (Elf32_External_Sym))))
2714 {
2715 free (ext_syms);
2716 goto error_ret_free_local;
2717 }
2718
2719 /* Swap the local symbols in. */
2720 isym = local_syms;
2721 esym = ext_syms;
2722 for (end_sy = esym + symtab_hdr->sh_info; esym < end_sy; esym++, isym++)
2723 bfd_elf32_swap_symbol_in (input_bfd, esym, isym);
2724
2725 /* Now we can free the external symbols. */
2726 free (ext_syms);
2727
2728 #if ! LONG_BRANCH_PIC_IN_SHLIB
2729 /* If this is a shared link, find all the stub reloc sections. */
2730 if (info->shared)
2731 for (section = input_bfd->sections;
2732 section != NULL;
2733 section = section->next)
2734 {
2735 char *name;
2736 asection *reloc_sec;
2737
2738 name = bfd_malloc (strlen (section->name)
2739 + sizeof STUB_SUFFIX
2740 + 5);
2741 if (name == NULL)
2742 return false;
2743 sprintf (name, ".rela%s%s", section->name, STUB_SUFFIX);
2744 reloc_sec = bfd_get_section_by_name (hplink->root.dynobj, name);
2745 hplink->stub_group[section->id].reloc_sec = reloc_sec;
2746 free (name);
2747 }
2748 #endif
2749
2750 if (info->shared && hplink->multi_subspace)
2751 {
2752 struct elf_link_hash_entry **sym_hashes;
2753 struct elf_link_hash_entry **end_hashes;
2754 unsigned int symcount;
2755
2756 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2757 - symtab_hdr->sh_info);
2758 sym_hashes = elf_sym_hashes (input_bfd);
2759 end_hashes = sym_hashes + symcount;
2760
2761 /* Look through the global syms for functions; We need to
2762 build export stubs for all globally visible functions. */
2763 for (; sym_hashes < end_hashes; sym_hashes++)
2764 {
2765 struct elf32_hppa_link_hash_entry *hash;
2766
2767 hash = (struct elf32_hppa_link_hash_entry *) *sym_hashes;
2768
2769 while (hash->elf.root.type == bfd_link_hash_indirect
2770 || hash->elf.root.type == bfd_link_hash_warning)
2771 hash = ((struct elf32_hppa_link_hash_entry *)
2772 hash->elf.root.u.i.link);
2773
2774 /* At this point in the link, undefined syms have been
2775 resolved, so we need to check that the symbol was
2776 defined in this BFD. */
2777 if ((hash->elf.root.type == bfd_link_hash_defined
2778 || hash->elf.root.type == bfd_link_hash_defweak)
2779 && hash->elf.type == STT_FUNC
2780 && hash->elf.root.u.def.section->output_section != NULL
2781 && (hash->elf.root.u.def.section->output_section->owner
2782 == output_bfd)
2783 && hash->elf.root.u.def.section->owner == input_bfd
2784 && (hash->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
2785 && !(hash->elf.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)
2786 && ELF_ST_VISIBILITY (hash->elf.other) == STV_DEFAULT)
2787 {
2788 asection *sec;
2789 const char *stub_name;
2790 struct elf32_hppa_stub_hash_entry *stub_entry;
2791
2792 sec = hash->elf.root.u.def.section;
2793 stub_name = hash->elf.root.root.string;
2794 stub_entry = hppa_stub_hash_lookup (&hplink->stub_hash_table,
2795 stub_name,
2796 false, false);
2797 if (stub_entry == NULL)
2798 {
2799 stub_entry = hppa_add_stub (stub_name, sec, hplink);
2800 if (!stub_entry)
2801 goto error_ret_free_local;
2802
2803 stub_entry->target_value = hash->elf.root.u.def.value;
2804 stub_entry->target_section = hash->elf.root.u.def.section;
2805 stub_entry->stub_type = hppa_stub_export;
2806 stub_entry->h = hash;
2807 stub_changed = 1;
2808 }
2809 else
2810 {
2811 (*_bfd_error_handler) (_("%s: duplicate export stub %s"),
2812 bfd_get_filename (input_bfd),
2813 stub_name);
2814 }
2815 }
2816 }
2817 }
2818 }
2819
2820 while (1)
2821 {
2822 asection *stub_sec;
2823
2824 for (input_bfd = info->input_bfds, bfd_indx = 0;
2825 input_bfd != NULL;
2826 input_bfd = input_bfd->link_next, bfd_indx++)
2827 {
2828 Elf_Internal_Shdr *symtab_hdr;
2829
2830 /* We'll need the symbol table in a second. */
2831 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2832 if (symtab_hdr->sh_info == 0)
2833 continue;
2834
2835 local_syms = all_local_syms[bfd_indx];
2836
2837 /* Walk over each section attached to the input bfd. */
2838 for (section = input_bfd->sections;
2839 section != NULL;
2840 section = section->next)
2841 {
2842 Elf_Internal_Shdr *input_rel_hdr;
2843 Elf32_External_Rela *external_relocs, *erelaend, *erela;
2844 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2845
2846 /* If there aren't any relocs, then there's nothing more
2847 to do. */
2848 if ((section->flags & SEC_RELOC) == 0
2849 || section->reloc_count == 0)
2850 continue;
2851
2852 /* If this section is a link-once section that will be
2853 discarded, then don't create any stubs. */
2854 if (section->output_section == NULL
2855 || section->output_section->owner != output_bfd)
2856 continue;
2857
2858 /* Allocate space for the external relocations. */
2859 external_relocs
2860 = ((Elf32_External_Rela *)
2861 bfd_malloc (section->reloc_count
2862 * sizeof (Elf32_External_Rela)));
2863 if (external_relocs == NULL)
2864 {
2865 goto error_ret_free_local;
2866 }
2867
2868 /* Likewise for the internal relocations. */
2869 internal_relocs = ((Elf_Internal_Rela *)
2870 bfd_malloc (section->reloc_count
2871 * sizeof (Elf_Internal_Rela)));
2872 if (internal_relocs == NULL)
2873 {
2874 free (external_relocs);
2875 goto error_ret_free_local;
2876 }
2877
2878 /* Read in the external relocs. */
2879 input_rel_hdr = &elf_section_data (section)->rel_hdr;
2880 if (bfd_seek (input_bfd, input_rel_hdr->sh_offset, SEEK_SET) != 0
2881 || bfd_read (external_relocs, 1,
2882 input_rel_hdr->sh_size,
2883 input_bfd) != input_rel_hdr->sh_size)
2884 {
2885 free (external_relocs);
2886 error_ret_free_internal:
2887 free (internal_relocs);
2888 goto error_ret_free_local;
2889 }
2890
2891 /* Swap in the relocs. */
2892 erela = external_relocs;
2893 erelaend = erela + section->reloc_count;
2894 irela = internal_relocs;
2895 for (; erela < erelaend; erela++, irela++)
2896 bfd_elf32_swap_reloca_in (input_bfd, erela, irela);
2897
2898 /* We're done with the external relocs, free them. */
2899 free (external_relocs);
2900
2901 /* Now examine each relocation. */
2902 irela = internal_relocs;
2903 irelaend = irela + section->reloc_count;
2904 for (; irela < irelaend; irela++)
2905 {
2906 unsigned int r_type, r_indx;
2907 enum elf32_hppa_stub_type stub_type;
2908 struct elf32_hppa_stub_hash_entry *stub_entry;
2909 asection *sym_sec;
2910 bfd_vma sym_value;
2911 bfd_vma destination;
2912 struct elf32_hppa_link_hash_entry *hash;
2913 char *stub_name;
2914 const asection *id_sec;
2915
2916 r_type = ELF32_R_TYPE (irela->r_info);
2917 r_indx = ELF32_R_SYM (irela->r_info);
2918
2919 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2920 {
2921 bfd_set_error (bfd_error_bad_value);
2922 goto error_ret_free_internal;
2923 }
2924
2925 /* Only look for stubs on call instructions. */
2926 if (r_type != (unsigned int) R_PARISC_PCREL12F
2927 && r_type != (unsigned int) R_PARISC_PCREL17F
2928 && r_type != (unsigned int) R_PARISC_PCREL22F)
2929 continue;
2930
2931 /* Now determine the call target, its name, value,
2932 section. */
2933 sym_sec = NULL;
2934 sym_value = 0;
2935 destination = 0;
2936 hash = NULL;
2937 if (r_indx < symtab_hdr->sh_info)
2938 {
2939 /* It's a local symbol. */
2940 Elf_Internal_Sym *sym;
2941 Elf_Internal_Shdr *hdr;
2942
2943 sym = local_syms + r_indx;
2944 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2945 sym_sec = hdr->bfd_section;
2946 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2947 sym_value = sym->st_value;
2948 destination = (sym_value + irela->r_addend
2949 + sym_sec->output_offset
2950 + sym_sec->output_section->vma);
2951 }
2952 else
2953 {
2954 /* It's an external symbol. */
2955 int e_indx;
2956
2957 e_indx = r_indx - symtab_hdr->sh_info;
2958 hash = ((struct elf32_hppa_link_hash_entry *)
2959 elf_sym_hashes (input_bfd)[e_indx]);
2960
2961 while (hash->elf.root.type == bfd_link_hash_indirect
2962 || hash->elf.root.type == bfd_link_hash_warning)
2963 hash = ((struct elf32_hppa_link_hash_entry *)
2964 hash->elf.root.u.i.link);
2965
2966 if (hash->elf.root.type == bfd_link_hash_defined
2967 || hash->elf.root.type == bfd_link_hash_defweak)
2968 {
2969 sym_sec = hash->elf.root.u.def.section;
2970 sym_value = hash->elf.root.u.def.value;
2971 if (sym_sec->output_section != NULL)
2972 destination = (sym_value + irela->r_addend
2973 + sym_sec->output_offset
2974 + sym_sec->output_section->vma);
2975 }
2976 else if (hash->elf.root.type == bfd_link_hash_undefweak)
2977 {
2978 if (! info->shared)
2979 continue;
2980 }
2981 else if (hash->elf.root.type == bfd_link_hash_undefined)
2982 {
2983 if (! (info->shared
2984 && !info->no_undefined
2985 && (ELF_ST_VISIBILITY (hash->elf.other)
2986 == STV_DEFAULT)))
2987 continue;
2988 }
2989 else
2990 {
2991 bfd_set_error (bfd_error_bad_value);
2992 goto error_ret_free_internal;
2993 }
2994 }
2995
2996 /* Determine what (if any) linker stub is needed. */
2997 stub_type = hppa_type_of_stub (section, irela, hash,
2998 destination);
2999 if (stub_type == hppa_stub_none)
3000 continue;
3001
3002 /* Support for grouping stub sections. */
3003 id_sec = hplink->stub_group[section->id].link_sec;
3004
3005 /* Get the name of this stub. */
3006 stub_name = hppa_stub_name (id_sec, sym_sec, hash, irela);
3007 if (!stub_name)
3008 goto error_ret_free_internal;
3009
3010 stub_entry = hppa_stub_hash_lookup (&hplink->stub_hash_table,
3011 stub_name,
3012 false, false);
3013 if (stub_entry != NULL)
3014 {
3015 /* The proper stub has already been created. */
3016 free (stub_name);
3017 continue;
3018 }
3019
3020 stub_entry = hppa_add_stub (stub_name, section, hplink);
3021 if (stub_entry == NULL)
3022 {
3023 free (stub_name);
3024 goto error_ret_free_local;
3025 }
3026
3027 stub_entry->target_value = sym_value;
3028 stub_entry->target_section = sym_sec;
3029 stub_entry->stub_type = stub_type;
3030 if (info->shared)
3031 {
3032 if (stub_type == hppa_stub_import)
3033 stub_entry->stub_type = hppa_stub_import_shared;
3034 else if (stub_type == hppa_stub_long_branch
3035 && (LONG_BRANCH_PIC_IN_SHLIB || hash == NULL))
3036 stub_entry->stub_type = hppa_stub_long_branch_shared;
3037 }
3038 stub_entry->h = hash;
3039 stub_changed = 1;
3040 }
3041
3042 /* We're done with the internal relocs, free them. */
3043 free (internal_relocs);
3044 }
3045 }
3046
3047 if (!stub_changed)
3048 break;
3049
3050 /* OK, we've added some stubs. Find out the new size of the
3051 stub sections. */
3052 for (stub_sec = hplink->stub_bfd->sections;
3053 stub_sec != NULL;
3054 stub_sec = stub_sec->next)
3055 {
3056 stub_sec->_raw_size = 0;
3057 stub_sec->_cooked_size = 0;
3058 }
3059 #if ! LONG_BRANCH_PIC_IN_SHLIB
3060 {
3061 int i;
3062
3063 for (i = top_id; i >= 0; --i)
3064 {
3065 /* This will probably hit the same section many times.. */
3066 stub_sec = hplink->stub_group[i].reloc_sec;
3067 if (stub_sec != NULL)
3068 {
3069 stub_sec->_raw_size = 0;
3070 stub_sec->_cooked_size = 0;
3071 }
3072 }
3073 }
3074 #endif
3075
3076 bfd_hash_traverse (&hplink->stub_hash_table,
3077 hppa_size_one_stub,
3078 hplink);
3079
3080 /* Ask the linker to do its stuff. */
3081 (*hplink->layout_sections_again) ();
3082 stub_changed = 0;
3083 }
3084
3085 ret = 1;
3086
3087 error_ret_free_local:
3088 while (bfd_count-- > 0)
3089 if (all_local_syms[bfd_count])
3090 free (all_local_syms[bfd_count]);
3091 free (all_local_syms);
3092
3093 return ret;
3094 }
3095
3096 /* For a final link, this function is called after we have sized the
3097 stubs to provide a value for __gp. */
3098
3099 boolean
3100 elf32_hppa_set_gp (abfd, info)
3101 bfd *abfd;
3102 struct bfd_link_info *info;
3103 {
3104 struct elf32_hppa_link_hash_table *hplink;
3105 struct elf_link_hash_entry *h;
3106 asection *sec;
3107 bfd_vma gp_val;
3108
3109 hplink = hppa_link_hash_table (info);
3110 h = elf_link_hash_lookup (&hplink->root, "$global$",
3111 false, false, false);
3112
3113 if (h != NULL
3114 && (h->root.type == bfd_link_hash_defined
3115 || h->root.type == bfd_link_hash_defweak))
3116 {
3117 gp_val = h->root.u.def.value;
3118 sec = h->root.u.def.section;
3119 }
3120 else
3121 {
3122 /* Choose to point our LTP at, in this order, one of .plt, .got,
3123 or .data, if these sections exist. In the case of choosing
3124 .plt try to make the LTP ideal for addressing anywhere in the
3125 .plt or .got with a 14 bit signed offset. Typically, the end
3126 of the .plt is the start of the .got, so choose .plt + 0x2000
3127 if either the .plt or .got is larger than 0x2000. If both
3128 the .plt and .got are smaller than 0x2000, choose the end of
3129 the .plt section. */
3130
3131 sec = hplink->splt;
3132 if (sec != NULL)
3133 {
3134 gp_val = sec->_raw_size;
3135 if (gp_val > 0x2000
3136 || (hplink->sgot && hplink->sgot->_raw_size > 0x2000))
3137 {
3138 gp_val = 0x2000;
3139 }
3140 }
3141 else
3142 {
3143 gp_val = 0;
3144 sec = hplink->sgot;
3145 if (sec != NULL)
3146 {
3147 /* We know we don't have a .plt. If .got is large,
3148 offset our LTP. */
3149 if (sec->_raw_size > 0x2000)
3150 gp_val = 0x2000;
3151 }
3152 else
3153 {
3154 /* No .plt or .got. Who cares what the LTP is? */
3155 sec = bfd_get_section_by_name (abfd, ".data");
3156 }
3157 }
3158
3159 if (h != NULL)
3160 {
3161 h->root.type = bfd_link_hash_defined;
3162 h->root.u.def.value = gp_val;
3163 if (sec != NULL)
3164 h->root.u.def.section = sec;
3165 else
3166 h->root.u.def.section = bfd_abs_section_ptr;
3167 }
3168 }
3169
3170 if (sec != NULL && sec->output_section != NULL)
3171 gp_val += sec->output_section->vma + sec->output_offset;
3172
3173 elf_gp (abfd) = gp_val;
3174 return true;
3175 }
3176
3177 /* Build all the stubs associated with the current output file. The
3178 stubs are kept in a hash table attached to the main linker hash
3179 table. We also set up the .plt entries for statically linked PIC
3180 functions here. This function is called via hppaelf_finish in the
3181 linker. */
3182
3183 boolean
3184 elf32_hppa_build_stubs (info)
3185 struct bfd_link_info *info;
3186 {
3187 asection *stub_sec;
3188 struct bfd_hash_table *table;
3189 struct elf32_hppa_link_hash_table *hplink;
3190
3191 hplink = hppa_link_hash_table (info);
3192
3193 for (stub_sec = hplink->stub_bfd->sections;
3194 stub_sec != NULL;
3195 stub_sec = stub_sec->next)
3196 {
3197 size_t size;
3198
3199 /* Allocate memory to hold the linker stubs. */
3200 size = stub_sec->_raw_size;
3201 stub_sec->contents = (unsigned char *) bfd_zalloc (hplink->stub_bfd,
3202 size);
3203 if (stub_sec->contents == NULL && size != 0)
3204 return false;
3205 stub_sec->_raw_size = 0;
3206 }
3207
3208 /* Build the stubs as directed by the stub hash table. */
3209 table = &hplink->stub_hash_table;
3210 bfd_hash_traverse (table, hppa_build_one_stub, info);
3211
3212 return true;
3213 }
3214
3215 /* Perform a final link. */
3216
3217 static boolean
3218 elf32_hppa_final_link (abfd, info)
3219 bfd *abfd;
3220 struct bfd_link_info *info;
3221 {
3222 asection *s;
3223
3224 /* Invoke the regular ELF linker to do all the work. */
3225 if (!bfd_elf32_bfd_final_link (abfd, info))
3226 return false;
3227
3228 /* If we're producing a final executable, sort the contents of the
3229 unwind section. Magic section names, but this is much safer than
3230 having elf32_hppa_relocate_section remember where SEGREL32 relocs
3231 occurred. Consider what happens if someone inept creates a
3232 linker script that puts unwind information in .text. */
3233 s = bfd_get_section_by_name (abfd, ".PARISC.unwind");
3234 if (s != NULL)
3235 {
3236 bfd_size_type size;
3237 char *contents;
3238
3239 size = s->_raw_size;
3240 contents = bfd_malloc (size);
3241 if (contents == NULL)
3242 return false;
3243
3244 if (! bfd_get_section_contents (abfd, s, contents, (file_ptr) 0, size))
3245 return false;
3246
3247 qsort (contents, size / 16, 16, hppa_unwind_entry_compare);
3248
3249 if (! bfd_set_section_contents (abfd, s, contents, (file_ptr) 0, size))
3250 return false;
3251 }
3252 return true;
3253 }
3254
3255 /* Record the lowest address for the data and text segments. */
3256
3257 static void
3258 hppa_record_segment_addr (abfd, section, data)
3259 bfd *abfd ATTRIBUTE_UNUSED;
3260 asection *section;
3261 PTR data;
3262 {
3263 struct elf32_hppa_link_hash_table *hplink;
3264
3265 hplink = (struct elf32_hppa_link_hash_table *) data;
3266
3267 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3268 {
3269 bfd_vma value = section->vma - section->filepos;
3270
3271 if ((section->flags & SEC_READONLY) != 0)
3272 {
3273 if (value < hplink->text_segment_base)
3274 hplink->text_segment_base = value;
3275 }
3276 else
3277 {
3278 if (value < hplink->data_segment_base)
3279 hplink->data_segment_base = value;
3280 }
3281 }
3282 }
3283
3284 /* Perform a relocation as part of a final link. */
3285
3286 static bfd_reloc_status_type
3287 final_link_relocate (input_section, contents, rel, value, hplink, sym_sec, h)
3288 asection *input_section;
3289 bfd_byte *contents;
3290 const Elf_Internal_Rela *rel;
3291 bfd_vma value;
3292 struct elf32_hppa_link_hash_table *hplink;
3293 asection *sym_sec;
3294 struct elf32_hppa_link_hash_entry *h;
3295 {
3296 int insn;
3297 unsigned int r_type = ELF32_R_TYPE (rel->r_info);
3298 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3299 int r_format = howto->bitsize;
3300 enum hppa_reloc_field_selector_type_alt r_field;
3301 bfd *input_bfd = input_section->owner;
3302 bfd_vma offset = rel->r_offset;
3303 bfd_vma max_branch_offset = 0;
3304 bfd_byte *hit_data = contents + offset;
3305 bfd_signed_vma addend = rel->r_addend;
3306 bfd_vma location;
3307 struct elf32_hppa_stub_hash_entry *stub_entry = NULL;
3308 int val;
3309
3310 if (r_type == R_PARISC_NONE)
3311 return bfd_reloc_ok;
3312
3313 insn = bfd_get_32 (input_bfd, hit_data);
3314
3315 /* Find out where we are and where we're going. */
3316 location = (offset +
3317 input_section->output_offset +
3318 input_section->output_section->vma);
3319
3320 switch (r_type)
3321 {
3322 case R_PARISC_PCREL12F:
3323 case R_PARISC_PCREL17F:
3324 case R_PARISC_PCREL22F:
3325 /* If this is a call to a function defined in another dynamic
3326 library, or if it is a call to a PIC function in the same
3327 object, or if this is a shared link and it is a call to a
3328 weak symbol which may or may not be in the same object, then
3329 find the import stub in the stub hash. */
3330 if (sym_sec == NULL
3331 || sym_sec->output_section == NULL
3332 || (h != NULL
3333 && ((h->maybe_pic_call
3334 && !(input_section->flags & SEC_HAS_GOT_REF))
3335 || (h->elf.root.type == bfd_link_hash_defweak
3336 && h->elf.dynindx != -1
3337 && h->elf.plt.offset != (bfd_vma) -1))))
3338 {
3339 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3340 h, rel, hplink);
3341 if (stub_entry != NULL)
3342 {
3343 value = (stub_entry->stub_offset
3344 + stub_entry->stub_sec->output_offset
3345 + stub_entry->stub_sec->output_section->vma);
3346 addend = 0;
3347 }
3348 else if (sym_sec == NULL && h != NULL
3349 && h->elf.root.type == bfd_link_hash_undefweak)
3350 {
3351 /* It's OK if undefined weak. Calls to undefined weak
3352 symbols behave as if the "called" function
3353 immediately returns. We can thus call to a weak
3354 function without first checking whether the function
3355 is defined. */
3356 value = location;
3357 addend = 8;
3358 }
3359 else
3360 return bfd_reloc_notsupported;
3361 }
3362 /* Fall thru. */
3363
3364 case R_PARISC_PCREL21L:
3365 case R_PARISC_PCREL17C:
3366 case R_PARISC_PCREL17R:
3367 case R_PARISC_PCREL14R:
3368 case R_PARISC_PCREL14F:
3369 /* Make it a pc relative offset. */
3370 value -= location;
3371 addend -= 8;
3372 break;
3373
3374 case R_PARISC_DPREL21L:
3375 case R_PARISC_DPREL14R:
3376 case R_PARISC_DPREL14F:
3377 /* For all the DP relative relocations, we need to examine the symbol's
3378 section. If it's a code section, then "data pointer relative" makes
3379 no sense. In that case we don't adjust the "value", and for 21 bit
3380 addil instructions, we change the source addend register from %dp to
3381 %r0. This situation commonly arises when a variable's "constness"
3382 is declared differently from the way the variable is defined. For
3383 instance: "extern int foo" with foo defined as "const int foo". */
3384 if (sym_sec == NULL)
3385 break;
3386 if ((sym_sec->flags & SEC_CODE) != 0)
3387 {
3388 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3389 == (((int) OP_ADDIL << 26) | (27 << 21)))
3390 {
3391 insn &= ~ (0x1f << 21);
3392 #if 1 /* debug them. */
3393 (*_bfd_error_handler)
3394 (_("%s(%s+0x%lx): fixing %s"),
3395 bfd_get_filename (input_bfd),
3396 input_section->name,
3397 (long) rel->r_offset,
3398 howto->name);
3399 #endif
3400 }
3401 /* Now try to make things easy for the dynamic linker. */
3402
3403 break;
3404 }
3405 /* Fall thru. */
3406
3407 case R_PARISC_DLTIND21L:
3408 case R_PARISC_DLTIND14R:
3409 case R_PARISC_DLTIND14F:
3410 value -= elf_gp (input_section->output_section->owner);
3411 break;
3412
3413 case R_PARISC_SEGREL32:
3414 if ((sym_sec->flags & SEC_CODE) != 0)
3415 value -= hplink->text_segment_base;
3416 else
3417 value -= hplink->data_segment_base;
3418 break;
3419
3420 default:
3421 break;
3422 }
3423
3424 switch (r_type)
3425 {
3426 case R_PARISC_DIR32:
3427 case R_PARISC_DIR14F:
3428 case R_PARISC_DIR17F:
3429 case R_PARISC_PCREL17C:
3430 case R_PARISC_PCREL14F:
3431 case R_PARISC_DPREL14F:
3432 case R_PARISC_PLABEL32:
3433 case R_PARISC_DLTIND14F:
3434 case R_PARISC_SEGBASE:
3435 case R_PARISC_SEGREL32:
3436 r_field = e_fsel;
3437 break;
3438
3439 case R_PARISC_DIR21L:
3440 case R_PARISC_PCREL21L:
3441 case R_PARISC_DPREL21L:
3442 case R_PARISC_PLABEL21L:
3443 case R_PARISC_DLTIND21L:
3444 r_field = e_lrsel;
3445 break;
3446
3447 case R_PARISC_DIR17R:
3448 case R_PARISC_PCREL17R:
3449 case R_PARISC_DIR14R:
3450 case R_PARISC_PCREL14R:
3451 case R_PARISC_DPREL14R:
3452 case R_PARISC_PLABEL14R:
3453 case R_PARISC_DLTIND14R:
3454 r_field = e_rrsel;
3455 break;
3456
3457 case R_PARISC_PCREL12F:
3458 case R_PARISC_PCREL17F:
3459 case R_PARISC_PCREL22F:
3460 r_field = e_fsel;
3461
3462 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3463 {
3464 max_branch_offset = (1 << (17-1)) << 2;
3465 }
3466 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3467 {
3468 max_branch_offset = (1 << (12-1)) << 2;
3469 }
3470 else
3471 {
3472 max_branch_offset = (1 << (22-1)) << 2;
3473 }
3474
3475 /* sym_sec is NULL on undefined weak syms or when shared on
3476 undefined syms. We've already checked for a stub for the
3477 shared undefined case. */
3478 if (sym_sec == NULL)
3479 break;
3480
3481 /* If the branch is out of reach, then redirect the
3482 call to the local stub for this function. */
3483 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3484 {
3485 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3486 h, rel, hplink);
3487 if (stub_entry == NULL)
3488 return bfd_reloc_notsupported;
3489
3490 /* Munge up the value and addend so that we call the stub
3491 rather than the procedure directly. */
3492 value = (stub_entry->stub_offset
3493 + stub_entry->stub_sec->output_offset
3494 + stub_entry->stub_sec->output_section->vma
3495 - location);
3496 addend = -8;
3497 }
3498 break;
3499
3500 /* Something we don't know how to handle. */
3501 default:
3502 return bfd_reloc_notsupported;
3503 }
3504
3505 /* Make sure we can reach the stub. */
3506 if (max_branch_offset != 0
3507 && value + addend + max_branch_offset >= 2*max_branch_offset)
3508 {
3509 (*_bfd_error_handler)
3510 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3511 bfd_get_filename (input_bfd),
3512 input_section->name,
3513 (long) rel->r_offset,
3514 stub_entry->root.string);
3515 return bfd_reloc_notsupported;
3516 }
3517
3518 val = hppa_field_adjust (value, addend, r_field);
3519
3520 switch (r_type)
3521 {
3522 case R_PARISC_PCREL12F:
3523 case R_PARISC_PCREL17C:
3524 case R_PARISC_PCREL17F:
3525 case R_PARISC_PCREL17R:
3526 case R_PARISC_PCREL22F:
3527 case R_PARISC_DIR17F:
3528 case R_PARISC_DIR17R:
3529 /* This is a branch. Divide the offset by four.
3530 Note that we need to decide whether it's a branch or
3531 otherwise by inspecting the reloc. Inspecting insn won't
3532 work as insn might be from a .word directive. */
3533 val >>= 2;
3534 break;
3535
3536 default:
3537 break;
3538 }
3539
3540 insn = hppa_rebuild_insn (insn, val, r_format);
3541
3542 /* Update the instruction word. */
3543 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3544 return bfd_reloc_ok;
3545 }
3546
3547 /* Relocate an HPPA ELF section. */
3548
3549 static boolean
3550 elf32_hppa_relocate_section (output_bfd, info, input_bfd, input_section,
3551 contents, relocs, local_syms, local_sections)
3552 bfd *output_bfd;
3553 struct bfd_link_info *info;
3554 bfd *input_bfd;
3555 asection *input_section;
3556 bfd_byte *contents;
3557 Elf_Internal_Rela *relocs;
3558 Elf_Internal_Sym *local_syms;
3559 asection **local_sections;
3560 {
3561 bfd *dynobj;
3562 bfd_vma *local_got_offsets;
3563 struct elf32_hppa_link_hash_table *hplink;
3564 Elf_Internal_Shdr *symtab_hdr;
3565 Elf_Internal_Rela *rel;
3566 Elf_Internal_Rela *relend;
3567 asection *sreloc;
3568
3569 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3570
3571 hplink = hppa_link_hash_table (info);
3572 dynobj = hplink->root.dynobj;
3573 local_got_offsets = elf_local_got_offsets (input_bfd);
3574 sreloc = NULL;
3575
3576 rel = relocs;
3577 relend = relocs + input_section->reloc_count;
3578 for (; rel < relend; rel++)
3579 {
3580 unsigned int r_type;
3581 reloc_howto_type *howto;
3582 unsigned int r_symndx;
3583 struct elf32_hppa_link_hash_entry *h;
3584 Elf_Internal_Sym *sym;
3585 asection *sym_sec;
3586 bfd_vma relocation;
3587 bfd_reloc_status_type r;
3588 const char *sym_name;
3589 boolean plabel;
3590
3591 r_type = ELF32_R_TYPE (rel->r_info);
3592 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3593 {
3594 bfd_set_error (bfd_error_bad_value);
3595 return false;
3596 }
3597 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3598 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3599 continue;
3600
3601 r_symndx = ELF32_R_SYM (rel->r_info);
3602
3603 if (info->relocateable)
3604 {
3605 /* This is a relocateable link. We don't have to change
3606 anything, unless the reloc is against a section symbol,
3607 in which case we have to adjust according to where the
3608 section symbol winds up in the output section. */
3609 if (r_symndx < symtab_hdr->sh_info)
3610 {
3611 sym = local_syms + r_symndx;
3612 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3613 {
3614 sym_sec = local_sections[r_symndx];
3615 rel->r_addend += sym_sec->output_offset;
3616 }
3617 }
3618 continue;
3619 }
3620
3621 /* This is a final link. */
3622 h = NULL;
3623 sym = NULL;
3624 sym_sec = NULL;
3625 if (r_symndx < symtab_hdr->sh_info)
3626 {
3627 /* This is a local symbol, h defaults to NULL. */
3628 sym = local_syms + r_symndx;
3629 sym_sec = local_sections[r_symndx];
3630 relocation = ((ELF_ST_TYPE (sym->st_info) == STT_SECTION
3631 ? 0 : sym->st_value)
3632 + sym_sec->output_offset
3633 + sym_sec->output_section->vma);
3634 }
3635 else
3636 {
3637 int indx;
3638
3639 /* It's a global; Find its entry in the link hash. */
3640 indx = r_symndx - symtab_hdr->sh_info;
3641 h = ((struct elf32_hppa_link_hash_entry *)
3642 elf_sym_hashes (input_bfd)[indx]);
3643 while (h->elf.root.type == bfd_link_hash_indirect
3644 || h->elf.root.type == bfd_link_hash_warning)
3645 h = (struct elf32_hppa_link_hash_entry *) h->elf.root.u.i.link;
3646
3647 relocation = 0;
3648 if (h->elf.root.type == bfd_link_hash_defined
3649 || h->elf.root.type == bfd_link_hash_defweak)
3650 {
3651 sym_sec = h->elf.root.u.def.section;
3652 /* If sym_sec->output_section is NULL, then it's a
3653 symbol defined in a shared library. */
3654 if (sym_sec->output_section != NULL)
3655 relocation = (h->elf.root.u.def.value
3656 + sym_sec->output_offset
3657 + sym_sec->output_section->vma);
3658 }
3659 else if (h->elf.root.type == bfd_link_hash_undefweak)
3660 ;
3661 else if (info->shared && !info->no_undefined
3662 && ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
3663 && h->elf.type != STT_PARISC_MILLI)
3664 {
3665 if (info->symbolic)
3666 if (!((*info->callbacks->undefined_symbol)
3667 (info, h->elf.root.root.string, input_bfd,
3668 input_section, rel->r_offset, false)))
3669 return false;
3670 }
3671 else
3672 {
3673 if (!((*info->callbacks->undefined_symbol)
3674 (info, h->elf.root.root.string, input_bfd,
3675 input_section, rel->r_offset, true)))
3676 return false;
3677 }
3678 }
3679
3680 /* Do any required modifications to the relocation value, and
3681 determine what types of dynamic info we need to output, if
3682 any. */
3683 plabel = 0;
3684 switch (r_type)
3685 {
3686 case R_PARISC_DLTIND14F:
3687 case R_PARISC_DLTIND14R:
3688 case R_PARISC_DLTIND21L:
3689 /* Relocation is to the entry for this symbol in the global
3690 offset table. */
3691 if (h != NULL)
3692 {
3693 bfd_vma off;
3694 boolean dyn;
3695
3696 off = h->elf.got.offset;
3697 if (off == (bfd_vma) -1)
3698 abort ();
3699
3700 dyn = hplink->root.dynamic_sections_created;
3701 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, &h->elf))
3702 {
3703 /* This is actually a static link, or it is a
3704 -Bsymbolic link and the symbol is defined
3705 locally, or the symbol was forced to be local
3706 because of a version file. We must initialize
3707 this entry in the global offset table. Since the
3708 offset must always be a multiple of 4, we use the
3709 least significant bit to record whether we have
3710 initialized it already.
3711
3712 When doing a dynamic link, we create a .rela.got
3713 relocation entry to initialize the value. This
3714 is done in the finish_dynamic_symbol routine. */
3715 if ((off & 1) != 0)
3716 off &= ~1;
3717 else
3718 {
3719 bfd_put_32 (output_bfd, relocation,
3720 hplink->sgot->contents + off);
3721 h->elf.got.offset |= 1;
3722 }
3723 }
3724
3725 relocation = off;
3726 }
3727 else
3728 {
3729 /* Local symbol case. */
3730 bfd_vma off;
3731
3732 if (local_got_offsets == NULL
3733 || (off = local_got_offsets[r_symndx]) == (bfd_vma) -1)
3734 abort ();
3735
3736 /* The offset must always be a multiple of 4. We use
3737 the least significant bit to record whether we have
3738 already generated the necessary reloc. */
3739 if ((off & 1) != 0)
3740 off &= ~1;
3741 else
3742 {
3743 bfd_put_32 (output_bfd, relocation,
3744 hplink->sgot->contents + off);
3745
3746 if (info->shared)
3747 {
3748 /* Output a dynamic relocation for this GOT
3749 entry. In this case it is relative to the
3750 base of the object because the symbol index
3751 is zero. */
3752 Elf_Internal_Rela outrel;
3753 asection *srelgot = hplink->srelgot;
3754
3755 outrel.r_offset = (off
3756 + hplink->sgot->output_offset
3757 + hplink->sgot->output_section->vma);
3758 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3759 outrel.r_addend = relocation;
3760 bfd_elf32_swap_reloca_out (output_bfd, &outrel,
3761 ((Elf32_External_Rela *)
3762 srelgot->contents
3763 + srelgot->reloc_count));
3764 ++srelgot->reloc_count;
3765 }
3766
3767 local_got_offsets[r_symndx] |= 1;
3768 }
3769
3770 relocation = off;
3771 }
3772
3773 /* Add the base of the GOT to the relocation value. */
3774 relocation += (hplink->sgot->output_offset
3775 + hplink->sgot->output_section->vma);
3776 break;
3777
3778 case R_PARISC_SEGREL32:
3779 /* If this is the first SEGREL relocation, then initialize
3780 the segment base values. */
3781 if (hplink->text_segment_base == (bfd_vma) -1)
3782 bfd_map_over_sections (output_bfd,
3783 hppa_record_segment_addr,
3784 hplink);
3785 break;
3786
3787 case R_PARISC_PLABEL14R:
3788 case R_PARISC_PLABEL21L:
3789 case R_PARISC_PLABEL32:
3790 if (hplink->root.dynamic_sections_created)
3791 {
3792 bfd_vma off;
3793
3794 /* If we have a global symbol with a PLT slot, then
3795 redirect this relocation to it. */
3796 if (h != NULL)
3797 {
3798 off = h->elf.plt.offset;
3799 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, &h->elf))
3800 {
3801 /* In a non-shared link, adjust_dynamic_symbols
3802 isn't called for symbols forced local. We
3803 need to write out the plt entry here. */
3804 if ((off & 1) != 0)
3805 off &= ~1;
3806 else
3807 {
3808 bfd_put_32 (output_bfd,
3809 relocation,
3810 hplink->splt->contents + off);
3811 bfd_put_32 (output_bfd,
3812 elf_gp (hplink->splt->output_section->owner),
3813 hplink->splt->contents + off + 4);
3814 h->elf.plt.offset |= 1;
3815 }
3816 }
3817 }
3818 else
3819 {
3820 int indx;
3821
3822 indx = r_symndx + symtab_hdr->sh_info;
3823 off = local_got_offsets[indx];
3824
3825 /* As for the local .got entry case, we use the last
3826 bit to record whether we've already initialised
3827 this local .plt entry. */
3828 if ((off & 1) != 0)
3829 off &= ~1;
3830 else
3831 {
3832 bfd_put_32 (output_bfd,
3833 relocation,
3834 hplink->splt->contents + off);
3835 bfd_put_32 (output_bfd,
3836 elf_gp (hplink->splt->output_section->owner),
3837 hplink->splt->contents + off + 4);
3838
3839 if (info->shared)
3840 {
3841 /* Output a dynamic IPLT relocation for this
3842 PLT entry. */
3843 Elf_Internal_Rela outrel;
3844 asection *srelplt = hplink->srelplt;
3845
3846 outrel.r_offset = (off
3847 + hplink->splt->output_offset
3848 + hplink->splt->output_section->vma);
3849 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3850 outrel.r_addend = relocation;
3851 bfd_elf32_swap_reloca_out (output_bfd, &outrel,
3852 ((Elf32_External_Rela *)
3853 srelplt->contents
3854 + srelplt->reloc_count));
3855 ++srelplt->reloc_count;
3856 }
3857
3858 local_got_offsets[indx] |= 1;
3859 }
3860 }
3861
3862 if (off >= (bfd_vma) -2 || (off & 1) != 0)
3863 abort ();
3864
3865 /* PLABELs contain function pointers. Relocation is to
3866 the entry for the function in the .plt. The magic +2
3867 offset signals to $$dyncall that the function pointer
3868 is in the .plt and thus has a gp pointer too.
3869 Exception: Undefined PLABELs should have a value of
3870 zero. */
3871 if (h == NULL
3872 || (h->elf.root.type != bfd_link_hash_undefweak
3873 && h->elf.root.type != bfd_link_hash_undefined))
3874 {
3875 relocation = (off
3876 + hplink->splt->output_offset
3877 + hplink->splt->output_section->vma
3878 + 2);
3879 }
3880 plabel = 1;
3881 }
3882 /* Fall through and possibly emit a dynamic relocation. */
3883
3884 case R_PARISC_DIR17F:
3885 case R_PARISC_DIR17R:
3886 case R_PARISC_DIR14F:
3887 case R_PARISC_DIR14R:
3888 case R_PARISC_DIR21L:
3889 case R_PARISC_DPREL14F:
3890 case R_PARISC_DPREL14R:
3891 case R_PARISC_DPREL21L:
3892 case R_PARISC_DIR32:
3893 /* The reloc types handled here and this conditional
3894 expression must match the code in check_relocs and
3895 hppa_discard_copies. ie. We need exactly the same
3896 condition as in check_relocs, with some extra conditions
3897 (dynindx test in this case) to cater for relocs removed
3898 by hppa_discard_copies. */
3899 if ((input_section->flags & SEC_ALLOC) != 0
3900 && info->shared
3901 #if RELATIVE_DYNAMIC_RELOCS
3902 && (is_absolute_reloc (r_type)
3903 || ((!info->symbolic
3904 || (h != NULL
3905 && ((h->elf.elf_link_hash_flags
3906 & ELF_LINK_HASH_DEF_REGULAR) == 0
3907 || h->elf.root.type == bfd_link_hash_defweak)))
3908 && (h == NULL || h->elf.dynindx != -1)))
3909 #endif
3910 )
3911 {
3912 Elf_Internal_Rela outrel;
3913 boolean skip;
3914
3915 /* When generating a shared object, these relocations
3916 are copied into the output file to be resolved at run
3917 time. */
3918
3919 if (sreloc == NULL)
3920 {
3921 const char *name;
3922
3923 name = (bfd_elf_string_from_elf_section
3924 (input_bfd,
3925 elf_elfheader (input_bfd)->e_shstrndx,
3926 elf_section_data (input_section)->rel_hdr.sh_name));
3927 if (name == NULL)
3928 return false;
3929 sreloc = bfd_get_section_by_name (dynobj, name);
3930 if (sreloc == NULL)
3931 abort ();
3932 }
3933
3934 outrel.r_offset = rel->r_offset;
3935 outrel.r_addend = rel->r_addend;
3936 skip = false;
3937 if (elf_section_data (input_section)->stab_info != NULL)
3938 {
3939 bfd_vma off;
3940
3941 off = (_bfd_stab_section_offset
3942 (output_bfd, &hplink->root.stab_info,
3943 input_section,
3944 &elf_section_data (input_section)->stab_info,
3945 rel->r_offset));
3946 if (off == (bfd_vma) -1)
3947 skip = true;
3948 outrel.r_offset = off;
3949 }
3950
3951 outrel.r_offset += (input_section->output_offset
3952 + input_section->output_section->vma);
3953
3954 if (skip)
3955 {
3956 memset (&outrel, 0, sizeof (outrel));
3957 }
3958 else if (h != NULL
3959 && h->elf.dynindx != -1
3960 && (plabel
3961 || !info->symbolic
3962 || (h->elf.elf_link_hash_flags
3963 & ELF_LINK_HASH_DEF_REGULAR) == 0))
3964 {
3965 outrel.r_info = ELF32_R_INFO (h->elf.dynindx, r_type);
3966 }
3967 else /* It's a local symbol, or one marked to become local. */
3968 {
3969 int indx = 0;
3970
3971 /* Add the absolute offset of the symbol. */
3972 outrel.r_addend += relocation;
3973
3974 /* Global plabels need to be processed by the
3975 dynamic linker so that functions have at most one
3976 fptr. For this reason, we need to differentiate
3977 between global and local plabels, which we do by
3978 providing the function symbol for a global plabel
3979 reloc, and no symbol for local plabels. */
3980 if (! plabel
3981 && sym_sec != NULL
3982 && sym_sec->output_section != NULL
3983 && ! bfd_is_abs_section (sym_sec))
3984 {
3985 indx = elf_section_data (sym_sec->output_section)->dynindx;
3986 /* We are turning this relocation into one
3987 against a section symbol, so subtract out the
3988 output section's address but not the offset
3989 of the input section in the output section. */
3990 outrel.r_addend -= sym_sec->output_section->vma;
3991 }
3992
3993 outrel.r_info = ELF32_R_INFO (indx, r_type);
3994 }
3995
3996 bfd_elf32_swap_reloca_out (output_bfd, &outrel,
3997 ((Elf32_External_Rela *)
3998 sreloc->contents
3999 + sreloc->reloc_count));
4000 ++sreloc->reloc_count;
4001 }
4002 break;
4003
4004 default:
4005 break;
4006 }
4007
4008 r = final_link_relocate (input_section, contents, rel, relocation,
4009 hplink, sym_sec, h);
4010
4011 if (r == bfd_reloc_ok)
4012 continue;
4013
4014 if (h != NULL)
4015 sym_name = h->elf.root.root.string;
4016 else
4017 {
4018 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4019 symtab_hdr->sh_link,
4020 sym->st_name);
4021 if (sym_name == NULL)
4022 return false;
4023 if (*sym_name == '\0')
4024 sym_name = bfd_section_name (input_bfd, sym_sec);
4025 }
4026
4027 howto = elf_hppa_howto_table + r_type;
4028
4029 if (r == bfd_reloc_undefined || r == bfd_reloc_notsupported)
4030 {
4031 (*_bfd_error_handler)
4032 (_("%s(%s+0x%lx): cannot handle %s for %s"),
4033 bfd_get_filename (input_bfd),
4034 input_section->name,
4035 (long) rel->r_offset,
4036 howto->name,
4037 sym_name);
4038 }
4039 else
4040 {
4041 if (!((*info->callbacks->reloc_overflow)
4042 (info, sym_name, howto->name, (bfd_vma) 0,
4043 input_bfd, input_section, rel->r_offset)))
4044 return false;
4045 }
4046 }
4047
4048 return true;
4049 }
4050
4051 /* Comparison function for qsort to sort unwind section during a
4052 final link. */
4053
4054 static int
4055 hppa_unwind_entry_compare (a, b)
4056 const PTR a;
4057 const PTR b;
4058 {
4059 const bfd_byte *ap, *bp;
4060 unsigned long av, bv;
4061
4062 ap = (const bfd_byte *) a;
4063 av = (unsigned long) ap[0] << 24;
4064 av |= (unsigned long) ap[1] << 16;
4065 av |= (unsigned long) ap[2] << 8;
4066 av |= (unsigned long) ap[3];
4067
4068 bp = (const bfd_byte *) b;
4069 bv = (unsigned long) bp[0] << 24;
4070 bv |= (unsigned long) bp[1] << 16;
4071 bv |= (unsigned long) bp[2] << 8;
4072 bv |= (unsigned long) bp[3];
4073
4074 return av < bv ? -1 : av > bv ? 1 : 0;
4075 }
4076
4077 /* Finish up dynamic symbol handling. We set the contents of various
4078 dynamic sections here. */
4079
4080 static boolean
4081 elf32_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
4082 bfd *output_bfd;
4083 struct bfd_link_info *info;
4084 struct elf_link_hash_entry *h;
4085 Elf_Internal_Sym *sym;
4086 {
4087 struct elf32_hppa_link_hash_table *hplink;
4088 bfd *dynobj;
4089
4090 hplink = hppa_link_hash_table (info);
4091 dynobj = hplink->root.dynobj;
4092
4093 if (h->plt.offset != (bfd_vma) -1)
4094 {
4095 bfd_vma value;
4096
4097 if (h->plt.offset & 1)
4098 abort ();
4099
4100 /* This symbol has an entry in the procedure linkage table. Set
4101 it up.
4102
4103 The format of a plt entry is
4104 <funcaddr>
4105 <__gp>
4106 */
4107 value = 0;
4108 if (h->root.type == bfd_link_hash_defined
4109 || h->root.type == bfd_link_hash_defweak)
4110 {
4111 value = h->root.u.def.value;
4112 if (h->root.u.def.section->output_section != NULL)
4113 value += (h->root.u.def.section->output_offset
4114 + h->root.u.def.section->output_section->vma);
4115 }
4116
4117 if (! ((struct elf32_hppa_link_hash_entry *) h)->pic_call)
4118 {
4119 Elf_Internal_Rela rel;
4120
4121 /* Create a dynamic IPLT relocation for this entry. */
4122 rel.r_offset = (h->plt.offset
4123 + hplink->splt->output_offset
4124 + hplink->splt->output_section->vma);
4125 if (! ((struct elf32_hppa_link_hash_entry *) h)->plt_abs
4126 && h->dynindx != -1)
4127 {
4128 /* To support lazy linking, the function pointer is
4129 initialised to point to a special stub stored at the
4130 end of the .plt. This is not done for plt entries
4131 with a base-relative dynamic relocation. */
4132 value = (hplink->splt->output_offset
4133 + hplink->splt->output_section->vma
4134 + hplink->splt->_raw_size
4135 - sizeof (plt_stub)
4136 + PLT_STUB_ENTRY);
4137 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_IPLT);
4138 rel.r_addend = 0;
4139 }
4140 else
4141 {
4142 /* This symbol has been marked to become local, and is
4143 used by a plabel so must be kept in the .plt. */
4144 rel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4145 rel.r_addend = value;
4146 }
4147
4148 bfd_elf32_swap_reloca_out (hplink->splt->output_section->owner,
4149 &rel,
4150 ((Elf32_External_Rela *)
4151 hplink->srelplt->contents
4152 + hplink->srelplt->reloc_count));
4153 hplink->srelplt->reloc_count++;
4154 }
4155
4156 bfd_put_32 (hplink->splt->owner,
4157 value,
4158 hplink->splt->contents + h->plt.offset);
4159 bfd_put_32 (hplink->splt->owner,
4160 elf_gp (hplink->splt->output_section->owner),
4161 hplink->splt->contents + h->plt.offset + 4);
4162 if (PLABEL_PLT_ENTRY_SIZE != PLT_ENTRY_SIZE
4163 && ((struct elf32_hppa_link_hash_entry *) h)->plabel
4164 && h->dynindx != -1)
4165 {
4166 memset (hplink->splt->contents + h->plt.offset + 8,
4167 0, PLABEL_PLT_ENTRY_SIZE - PLT_ENTRY_SIZE);
4168 }
4169
4170 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
4171 {
4172 /* Mark the symbol as undefined, rather than as defined in
4173 the .plt section. Leave the value alone. */
4174 sym->st_shndx = SHN_UNDEF;
4175 }
4176 }
4177
4178 if (h->got.offset != (bfd_vma) -1)
4179 {
4180 Elf_Internal_Rela rel;
4181
4182 /* This symbol has an entry in the global offset table. Set it
4183 up. */
4184
4185 rel.r_offset = ((h->got.offset &~ (bfd_vma) 1)
4186 + hplink->sgot->output_offset
4187 + hplink->sgot->output_section->vma);
4188
4189 /* If this is a -Bsymbolic link and the symbol is defined
4190 locally or was forced to be local because of a version file,
4191 we just want to emit a RELATIVE reloc. The entry in the
4192 global offset table will already have been initialized in the
4193 relocate_section function. */
4194 if (info->shared
4195 && (info->symbolic || h->dynindx == -1)
4196 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
4197 {
4198 rel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4199 rel.r_addend = (h->root.u.def.value
4200 + h->root.u.def.section->output_offset
4201 + h->root.u.def.section->output_section->vma);
4202 }
4203 else
4204 {
4205 if ((h->got.offset & 1) != 0)
4206 abort ();
4207 bfd_put_32 (output_bfd, (bfd_vma) 0,
4208 hplink->sgot->contents + h->got.offset);
4209 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_DIR32);
4210 rel.r_addend = 0;
4211 }
4212
4213 bfd_elf32_swap_reloca_out (output_bfd, &rel,
4214 ((Elf32_External_Rela *)
4215 hplink->srelgot->contents
4216 + hplink->srelgot->reloc_count));
4217 ++hplink->srelgot->reloc_count;
4218 }
4219
4220 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
4221 {
4222 asection *s;
4223 Elf_Internal_Rela rel;
4224
4225 /* This symbol needs a copy reloc. Set it up. */
4226
4227 if (! (h->dynindx != -1
4228 && (h->root.type == bfd_link_hash_defined
4229 || h->root.type == bfd_link_hash_defweak)))
4230 abort ();
4231
4232 s = hplink->srelbss;
4233
4234 rel.r_offset = (h->root.u.def.value
4235 + h->root.u.def.section->output_offset
4236 + h->root.u.def.section->output_section->vma);
4237 rel.r_addend = 0;
4238 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_COPY);
4239 bfd_elf32_swap_reloca_out (output_bfd, &rel,
4240 ((Elf32_External_Rela *) s->contents
4241 + s->reloc_count));
4242 ++s->reloc_count;
4243 }
4244
4245 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4246 if (h->root.root.string[0] == '_'
4247 && (strcmp (h->root.root.string, "_DYNAMIC") == 0
4248 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0))
4249 {
4250 sym->st_shndx = SHN_ABS;
4251 }
4252
4253 return true;
4254 }
4255
4256 /* Finish up the dynamic sections. */
4257
4258 static boolean
4259 elf32_hppa_finish_dynamic_sections (output_bfd, info)
4260 bfd *output_bfd;
4261 struct bfd_link_info *info;
4262 {
4263 bfd *dynobj;
4264 struct elf32_hppa_link_hash_table *hplink;
4265 asection *sdyn;
4266
4267 hplink = hppa_link_hash_table (info);
4268 dynobj = hplink->root.dynobj;
4269
4270 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4271
4272 if (hplink->root.dynamic_sections_created)
4273 {
4274 Elf32_External_Dyn *dyncon, *dynconend;
4275
4276 if (sdyn == NULL)
4277 abort ();
4278
4279 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4280 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
4281 for (; dyncon < dynconend; dyncon++)
4282 {
4283 Elf_Internal_Dyn dyn;
4284 asection *s;
4285
4286 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4287
4288 switch (dyn.d_tag)
4289 {
4290 default:
4291 break;
4292
4293 case DT_PLTGOT:
4294 /* Use PLTGOT to set the GOT register. */
4295 dyn.d_un.d_ptr = elf_gp (output_bfd);
4296 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4297 break;
4298
4299 case DT_JMPREL:
4300 s = hplink->srelplt;
4301 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4302 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4303 break;
4304
4305 case DT_PLTRELSZ:
4306 s = hplink->srelplt;
4307 if (s->_cooked_size != 0)
4308 dyn.d_un.d_val = s->_cooked_size;
4309 else
4310 dyn.d_un.d_val = s->_raw_size;
4311 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4312 break;
4313 }
4314 }
4315 }
4316
4317 if (hplink->sgot->_raw_size != 0)
4318 {
4319 /* Fill in the first entry in the global offset table.
4320 We use it to point to our dynamic section, if we have one. */
4321 bfd_put_32 (output_bfd,
4322 (sdyn != NULL
4323 ? sdyn->output_section->vma + sdyn->output_offset
4324 : (bfd_vma) 0),
4325 hplink->sgot->contents);
4326
4327 /* The second entry is reserved for use by the dynamic linker. */
4328 memset (hplink->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4329
4330 /* Set .got entry size. */
4331 elf_section_data (hplink->sgot->output_section)
4332 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4333 }
4334
4335 if (hplink->splt->_raw_size != 0)
4336 {
4337 /* Set plt entry size. */
4338 elf_section_data (hplink->splt->output_section)
4339 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4340
4341 if (hplink->need_plt_stub)
4342 {
4343 /* Set up the .plt stub. */
4344 memcpy (hplink->splt->contents
4345 + hplink->splt->_raw_size - sizeof (plt_stub),
4346 plt_stub, sizeof (plt_stub));
4347
4348 if ((hplink->splt->output_offset
4349 + hplink->splt->output_section->vma
4350 + hplink->splt->_raw_size)
4351 != (hplink->sgot->output_offset
4352 + hplink->sgot->output_section->vma))
4353 {
4354 (*_bfd_error_handler)
4355 (_(".got section not immediately after .plt section"));
4356 return false;
4357 }
4358 }
4359 }
4360
4361 return true;
4362 }
4363
4364 /* Tweak the OSABI field of the elf header. */
4365
4366 static void
4367 elf32_hppa_post_process_headers (abfd, link_info)
4368 bfd *abfd;
4369 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
4370 {
4371 Elf_Internal_Ehdr * i_ehdrp;
4372
4373 i_ehdrp = elf_elfheader (abfd);
4374
4375 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
4376 {
4377 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
4378 }
4379 else
4380 {
4381 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
4382 }
4383 }
4384
4385 /* Called when writing out an object file to decide the type of a
4386 symbol. */
4387 static int
4388 elf32_hppa_elf_get_symbol_type (elf_sym, type)
4389 Elf_Internal_Sym *elf_sym;
4390 int type;
4391 {
4392 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4393 return STT_PARISC_MILLI;
4394 else
4395 return type;
4396 }
4397
4398 /* Misc BFD support code. */
4399 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4400 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4401 #define elf_info_to_howto elf_hppa_info_to_howto
4402 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4403
4404 /* Stuff for the BFD linker. */
4405 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4406 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4407 #define elf_backend_add_symbol_hook elf32_hppa_add_symbol_hook
4408 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4409 #define elf_backend_check_relocs elf32_hppa_check_relocs
4410 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4411 #define elf_backend_fake_sections elf_hppa_fake_sections
4412 #define elf_backend_relocate_section elf32_hppa_relocate_section
4413 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4414 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4415 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4416 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4417 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4418 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4419 #define elf_backend_object_p elf32_hppa_object_p
4420 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4421 #define elf_backend_post_process_headers elf32_hppa_post_process_headers
4422 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4423
4424 #define elf_backend_can_gc_sections 1
4425 #define elf_backend_plt_alignment 2
4426 #define elf_backend_want_got_plt 0
4427 #define elf_backend_plt_readonly 0
4428 #define elf_backend_want_plt_sym 0
4429 #define elf_backend_got_header_size 8
4430
4431 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4432 #define TARGET_BIG_NAME "elf32-hppa"
4433 #define ELF_ARCH bfd_arch_hppa
4434 #define ELF_MACHINE_CODE EM_PARISC
4435 #define ELF_MAXPAGESIZE 0x1000
4436
4437 #include "elf32-target.h"
4438
4439 #undef TARGET_BIG_SYM
4440 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4441 #undef TARGET_BIG_NAME
4442 #define TARGET_BIG_NAME "elf32-hppa-linux"
4443
4444 #define INCLUDED_TARGET_FILE 1
4445 #include "elf32-target.h"
This page took 0.125392 seconds and 4 git commands to generate.