bfd/
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002, 2003 Free Software Foundation, Inc.
4
5 Original code by
6 Center for Software Science
7 Department of Computer Science
8 University of Utah
9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
26
27 #include "bfd.h"
28 #include "sysdep.h"
29 #include "libbfd.h"
30 #include "elf-bfd.h"
31 #include "elf/hppa.h"
32 #include "libhppa.h"
33 #include "elf32-hppa.h"
34 #define ARCH_SIZE 32
35 #include "elf32-hppa.h"
36 #include "elf-hppa.h"
37
38 /* In order to gain some understanding of code in this file without
39 knowing all the intricate details of the linker, note the
40 following:
41
42 Functions named elf32_hppa_* are called by external routines, other
43 functions are only called locally. elf32_hppa_* functions appear
44 in this file more or less in the order in which they are called
45 from external routines. eg. elf32_hppa_check_relocs is called
46 early in the link process, elf32_hppa_finish_dynamic_sections is
47 one of the last functions. */
48
49 /* We use two hash tables to hold information for linking PA ELF objects.
50
51 The first is the elf32_hppa_link_hash_table which is derived
52 from the standard ELF linker hash table. We use this as a place to
53 attach other hash tables and static information.
54
55 The second is the stub hash table which is derived from the
56 base BFD hash table. The stub hash table holds the information
57 necessary to build the linker stubs during a link.
58
59 There are a number of different stubs generated by the linker.
60
61 Long branch stub:
62 : ldil LR'X,%r1
63 : be,n RR'X(%sr4,%r1)
64
65 PIC long branch stub:
66 : b,l .+8,%r1
67 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
68 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
69
70 Import stub to call shared library routine from normal object file
71 (single sub-space version)
72 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
73 : ldw RR'lt_ptr+ltoff(%r1),%r21
74 : bv %r0(%r21)
75 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
76
77 Import stub to call shared library routine from shared library
78 (single sub-space version)
79 : addil LR'ltoff,%r19 ; get procedure entry point
80 : ldw RR'ltoff(%r1),%r21
81 : bv %r0(%r21)
82 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
83
84 Import stub to call shared library routine from normal object file
85 (multiple sub-space support)
86 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
87 : ldw RR'lt_ptr+ltoff(%r1),%r21
88 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
89 : ldsid (%r21),%r1
90 : mtsp %r1,%sr0
91 : be 0(%sr0,%r21) ; branch to target
92 : stw %rp,-24(%sp) ; save rp
93
94 Import stub to call shared library routine from shared library
95 (multiple sub-space support)
96 : addil LR'ltoff,%r19 ; get procedure entry point
97 : ldw RR'ltoff(%r1),%r21
98 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
99 : ldsid (%r21),%r1
100 : mtsp %r1,%sr0
101 : be 0(%sr0,%r21) ; branch to target
102 : stw %rp,-24(%sp) ; save rp
103
104 Export stub to return from shared lib routine (multiple sub-space support)
105 One of these is created for each exported procedure in a shared
106 library (and stored in the shared lib). Shared lib routines are
107 called via the first instruction in the export stub so that we can
108 do an inter-space return. Not required for single sub-space.
109 : bl,n X,%rp ; trap the return
110 : nop
111 : ldw -24(%sp),%rp ; restore the original rp
112 : ldsid (%rp),%r1
113 : mtsp %r1,%sr0
114 : be,n 0(%sr0,%rp) ; inter-space return. */
115
116 #define PLT_ENTRY_SIZE 8
117 #define GOT_ENTRY_SIZE 4
118 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
119
120 static const bfd_byte plt_stub[] =
121 {
122 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
123 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
124 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
125 #define PLT_STUB_ENTRY (3*4)
126 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
127 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
128 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
129 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
130 };
131
132 /* Section name for stubs is the associated section name plus this
133 string. */
134 #define STUB_SUFFIX ".stub"
135
136 /* We don't need to copy certain PC- or GP-relative dynamic relocs
137 into a shared object's dynamic section. All the relocs of the
138 limited class we are interested in, are absolute. */
139 #ifndef RELATIVE_DYNRELOCS
140 #define RELATIVE_DYNRELOCS 0
141 #define IS_ABSOLUTE_RELOC(r_type) 1
142 #endif
143
144 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
145 copying dynamic variables from a shared lib into an app's dynbss
146 section, and instead use a dynamic relocation to point into the
147 shared lib. */
148 #define ELIMINATE_COPY_RELOCS 1
149
150 enum elf32_hppa_stub_type {
151 hppa_stub_long_branch,
152 hppa_stub_long_branch_shared,
153 hppa_stub_import,
154 hppa_stub_import_shared,
155 hppa_stub_export,
156 hppa_stub_none
157 };
158
159 struct elf32_hppa_stub_hash_entry {
160
161 /* Base hash table entry structure. */
162 struct bfd_hash_entry root;
163
164 /* The stub section. */
165 asection *stub_sec;
166
167 /* Offset within stub_sec of the beginning of this stub. */
168 bfd_vma stub_offset;
169
170 /* Given the symbol's value and its section we can determine its final
171 value when building the stubs (so the stub knows where to jump. */
172 bfd_vma target_value;
173 asection *target_section;
174
175 enum elf32_hppa_stub_type stub_type;
176
177 /* The symbol table entry, if any, that this was derived from. */
178 struct elf32_hppa_link_hash_entry *h;
179
180 /* Where this stub is being called from, or, in the case of combined
181 stub sections, the first input section in the group. */
182 asection *id_sec;
183 };
184
185 struct elf32_hppa_link_hash_entry {
186
187 struct elf_link_hash_entry elf;
188
189 /* A pointer to the most recently used stub hash entry against this
190 symbol. */
191 struct elf32_hppa_stub_hash_entry *stub_cache;
192
193 /* Used to count relocations for delayed sizing of relocation
194 sections. */
195 struct elf32_hppa_dyn_reloc_entry {
196
197 /* Next relocation in the chain. */
198 struct elf32_hppa_dyn_reloc_entry *next;
199
200 /* The input section of the reloc. */
201 asection *sec;
202
203 /* Number of relocs copied in this section. */
204 bfd_size_type count;
205
206 #if RELATIVE_DYNRELOCS
207 /* Number of relative relocs copied for the input section. */
208 bfd_size_type relative_count;
209 #endif
210 } *dyn_relocs;
211
212 /* Set if this symbol is used by a plabel reloc. */
213 unsigned int plabel:1;
214 };
215
216 struct elf32_hppa_link_hash_table {
217
218 /* The main hash table. */
219 struct elf_link_hash_table elf;
220
221 /* The stub hash table. */
222 struct bfd_hash_table stub_hash_table;
223
224 /* Linker stub bfd. */
225 bfd *stub_bfd;
226
227 /* Linker call-backs. */
228 asection * (*add_stub_section) (const char *, asection *);
229 void (*layout_sections_again) (void);
230
231 /* Array to keep track of which stub sections have been created, and
232 information on stub grouping. */
233 struct map_stub {
234 /* This is the section to which stubs in the group will be
235 attached. */
236 asection *link_sec;
237 /* The stub section. */
238 asection *stub_sec;
239 } *stub_group;
240
241 /* Assorted information used by elf32_hppa_size_stubs. */
242 unsigned int bfd_count;
243 int top_index;
244 asection **input_list;
245 Elf_Internal_Sym **all_local_syms;
246
247 /* Short-cuts to get to dynamic linker sections. */
248 asection *sgot;
249 asection *srelgot;
250 asection *splt;
251 asection *srelplt;
252 asection *sdynbss;
253 asection *srelbss;
254
255 /* Used during a final link to store the base of the text and data
256 segments so that we can perform SEGREL relocations. */
257 bfd_vma text_segment_base;
258 bfd_vma data_segment_base;
259
260 /* Whether we support multiple sub-spaces for shared libs. */
261 unsigned int multi_subspace:1;
262
263 /* Flags set when various size branches are detected. Used to
264 select suitable defaults for the stub group size. */
265 unsigned int has_12bit_branch:1;
266 unsigned int has_17bit_branch:1;
267 unsigned int has_22bit_branch:1;
268
269 /* Set if we need a .plt stub to support lazy dynamic linking. */
270 unsigned int need_plt_stub:1;
271
272 /* Small local sym to section mapping cache. */
273 struct sym_sec_cache sym_sec;
274 };
275
276 /* Various hash macros and functions. */
277 #define hppa_link_hash_table(p) \
278 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
279
280 #define hppa_stub_hash_lookup(table, string, create, copy) \
281 ((struct elf32_hppa_stub_hash_entry *) \
282 bfd_hash_lookup ((table), (string), (create), (copy)))
283
284 /* Assorted hash table functions. */
285
286 /* Initialize an entry in the stub hash table. */
287
288 static struct bfd_hash_entry *
289 stub_hash_newfunc (struct bfd_hash_entry *entry,
290 struct bfd_hash_table *table,
291 const char *string)
292 {
293 /* Allocate the structure if it has not already been allocated by a
294 subclass. */
295 if (entry == NULL)
296 {
297 entry = bfd_hash_allocate (table,
298 sizeof (struct elf32_hppa_stub_hash_entry));
299 if (entry == NULL)
300 return entry;
301 }
302
303 /* Call the allocation method of the superclass. */
304 entry = bfd_hash_newfunc (entry, table, string);
305 if (entry != NULL)
306 {
307 struct elf32_hppa_stub_hash_entry *eh;
308
309 /* Initialize the local fields. */
310 eh = (struct elf32_hppa_stub_hash_entry *) entry;
311 eh->stub_sec = NULL;
312 eh->stub_offset = 0;
313 eh->target_value = 0;
314 eh->target_section = NULL;
315 eh->stub_type = hppa_stub_long_branch;
316 eh->h = NULL;
317 eh->id_sec = NULL;
318 }
319
320 return entry;
321 }
322
323 /* Initialize an entry in the link hash table. */
324
325 static struct bfd_hash_entry *
326 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
327 struct bfd_hash_table *table,
328 const char *string)
329 {
330 /* Allocate the structure if it has not already been allocated by a
331 subclass. */
332 if (entry == NULL)
333 {
334 entry = bfd_hash_allocate (table,
335 sizeof (struct elf32_hppa_link_hash_entry));
336 if (entry == NULL)
337 return entry;
338 }
339
340 /* Call the allocation method of the superclass. */
341 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
342 if (entry != NULL)
343 {
344 struct elf32_hppa_link_hash_entry *eh;
345
346 /* Initialize the local fields. */
347 eh = (struct elf32_hppa_link_hash_entry *) entry;
348 eh->stub_cache = NULL;
349 eh->dyn_relocs = NULL;
350 eh->plabel = 0;
351 }
352
353 return entry;
354 }
355
356 /* Create the derived linker hash table. The PA ELF port uses the derived
357 hash table to keep information specific to the PA ELF linker (without
358 using static variables). */
359
360 static struct bfd_link_hash_table *
361 elf32_hppa_link_hash_table_create (bfd *abfd)
362 {
363 struct elf32_hppa_link_hash_table *ret;
364 bfd_size_type amt = sizeof (*ret);
365
366 ret = bfd_malloc (amt);
367 if (ret == NULL)
368 return NULL;
369
370 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, hppa_link_hash_newfunc))
371 {
372 free (ret);
373 return NULL;
374 }
375
376 /* Init the stub hash table too. */
377 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc))
378 return NULL;
379
380 ret->stub_bfd = NULL;
381 ret->add_stub_section = NULL;
382 ret->layout_sections_again = NULL;
383 ret->stub_group = NULL;
384 ret->sgot = NULL;
385 ret->srelgot = NULL;
386 ret->splt = NULL;
387 ret->srelplt = NULL;
388 ret->sdynbss = NULL;
389 ret->srelbss = NULL;
390 ret->text_segment_base = (bfd_vma) -1;
391 ret->data_segment_base = (bfd_vma) -1;
392 ret->multi_subspace = 0;
393 ret->has_12bit_branch = 0;
394 ret->has_17bit_branch = 0;
395 ret->has_22bit_branch = 0;
396 ret->need_plt_stub = 0;
397 ret->sym_sec.abfd = NULL;
398
399 return &ret->elf.root;
400 }
401
402 /* Free the derived linker hash table. */
403
404 static void
405 elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *hash)
406 {
407 struct elf32_hppa_link_hash_table *ret
408 = (struct elf32_hppa_link_hash_table *) hash;
409
410 bfd_hash_table_free (&ret->stub_hash_table);
411 _bfd_generic_link_hash_table_free (hash);
412 }
413
414 /* Build a name for an entry in the stub hash table. */
415
416 static char *
417 hppa_stub_name (const asection *input_section,
418 const asection *sym_sec,
419 const struct elf32_hppa_link_hash_entry *hash,
420 const Elf_Internal_Rela *rel)
421 {
422 char *stub_name;
423 bfd_size_type len;
424
425 if (hash)
426 {
427 len = 8 + 1 + strlen (hash->elf.root.root.string) + 1 + 8 + 1;
428 stub_name = bfd_malloc (len);
429 if (stub_name != NULL)
430 {
431 sprintf (stub_name, "%08x_%s+%x",
432 input_section->id & 0xffffffff,
433 hash->elf.root.root.string,
434 (int) rel->r_addend & 0xffffffff);
435 }
436 }
437 else
438 {
439 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
440 stub_name = bfd_malloc (len);
441 if (stub_name != NULL)
442 {
443 sprintf (stub_name, "%08x_%x:%x+%x",
444 input_section->id & 0xffffffff,
445 sym_sec->id & 0xffffffff,
446 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
447 (int) rel->r_addend & 0xffffffff);
448 }
449 }
450 return stub_name;
451 }
452
453 /* Look up an entry in the stub hash. Stub entries are cached because
454 creating the stub name takes a bit of time. */
455
456 static struct elf32_hppa_stub_hash_entry *
457 hppa_get_stub_entry (const asection *input_section,
458 const asection *sym_sec,
459 struct elf32_hppa_link_hash_entry *hash,
460 const Elf_Internal_Rela *rel,
461 struct elf32_hppa_link_hash_table *htab)
462 {
463 struct elf32_hppa_stub_hash_entry *stub_entry;
464 const asection *id_sec;
465
466 /* If this input section is part of a group of sections sharing one
467 stub section, then use the id of the first section in the group.
468 Stub names need to include a section id, as there may well be
469 more than one stub used to reach say, printf, and we need to
470 distinguish between them. */
471 id_sec = htab->stub_group[input_section->id].link_sec;
472
473 if (hash != NULL && hash->stub_cache != NULL
474 && hash->stub_cache->h == hash
475 && hash->stub_cache->id_sec == id_sec)
476 {
477 stub_entry = hash->stub_cache;
478 }
479 else
480 {
481 char *stub_name;
482
483 stub_name = hppa_stub_name (id_sec, sym_sec, hash, rel);
484 if (stub_name == NULL)
485 return NULL;
486
487 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
488 stub_name, FALSE, FALSE);
489 if (hash != NULL)
490 hash->stub_cache = stub_entry;
491
492 free (stub_name);
493 }
494
495 return stub_entry;
496 }
497
498 /* Add a new stub entry to the stub hash. Not all fields of the new
499 stub entry are initialised. */
500
501 static struct elf32_hppa_stub_hash_entry *
502 hppa_add_stub (const char *stub_name,
503 asection *section,
504 struct elf32_hppa_link_hash_table *htab)
505 {
506 asection *link_sec;
507 asection *stub_sec;
508 struct elf32_hppa_stub_hash_entry *stub_entry;
509
510 link_sec = htab->stub_group[section->id].link_sec;
511 stub_sec = htab->stub_group[section->id].stub_sec;
512 if (stub_sec == NULL)
513 {
514 stub_sec = htab->stub_group[link_sec->id].stub_sec;
515 if (stub_sec == NULL)
516 {
517 size_t namelen;
518 bfd_size_type len;
519 char *s_name;
520
521 namelen = strlen (link_sec->name);
522 len = namelen + sizeof (STUB_SUFFIX);
523 s_name = bfd_alloc (htab->stub_bfd, len);
524 if (s_name == NULL)
525 return NULL;
526
527 memcpy (s_name, link_sec->name, namelen);
528 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
529 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
530 if (stub_sec == NULL)
531 return NULL;
532 htab->stub_group[link_sec->id].stub_sec = stub_sec;
533 }
534 htab->stub_group[section->id].stub_sec = stub_sec;
535 }
536
537 /* Enter this entry into the linker stub hash table. */
538 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table, stub_name,
539 TRUE, FALSE);
540 if (stub_entry == NULL)
541 {
542 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
543 bfd_archive_filename (section->owner),
544 stub_name);
545 return NULL;
546 }
547
548 stub_entry->stub_sec = stub_sec;
549 stub_entry->stub_offset = 0;
550 stub_entry->id_sec = link_sec;
551 return stub_entry;
552 }
553
554 /* Determine the type of stub needed, if any, for a call. */
555
556 static enum elf32_hppa_stub_type
557 hppa_type_of_stub (asection *input_sec,
558 const Elf_Internal_Rela *rel,
559 struct elf32_hppa_link_hash_entry *hash,
560 bfd_vma destination,
561 struct bfd_link_info *info)
562 {
563 bfd_vma location;
564 bfd_vma branch_offset;
565 bfd_vma max_branch_offset;
566 unsigned int r_type;
567
568 if (hash != NULL
569 && hash->elf.plt.offset != (bfd_vma) -1
570 && hash->elf.dynindx != -1
571 && !hash->plabel
572 && (info->shared
573 || !(hash->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
574 || hash->elf.root.type == bfd_link_hash_defweak))
575 {
576 /* We need an import stub. Decide between hppa_stub_import
577 and hppa_stub_import_shared later. */
578 return hppa_stub_import;
579 }
580
581 /* Determine where the call point is. */
582 location = (input_sec->output_offset
583 + input_sec->output_section->vma
584 + rel->r_offset);
585
586 branch_offset = destination - location - 8;
587 r_type = ELF32_R_TYPE (rel->r_info);
588
589 /* Determine if a long branch stub is needed. parisc branch offsets
590 are relative to the second instruction past the branch, ie. +8
591 bytes on from the branch instruction location. The offset is
592 signed and counts in units of 4 bytes. */
593 if (r_type == (unsigned int) R_PARISC_PCREL17F)
594 {
595 max_branch_offset = (1 << (17-1)) << 2;
596 }
597 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
598 {
599 max_branch_offset = (1 << (12-1)) << 2;
600 }
601 else /* R_PARISC_PCREL22F. */
602 {
603 max_branch_offset = (1 << (22-1)) << 2;
604 }
605
606 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
607 return hppa_stub_long_branch;
608
609 return hppa_stub_none;
610 }
611
612 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
613 IN_ARG contains the link info pointer. */
614
615 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
616 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
617
618 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
619 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
620 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
621
622 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
623 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
624 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
625 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
626
627 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
628 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
629
630 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
631 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
632 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
633 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
634
635 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
636 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
637 #define NOP 0x08000240 /* nop */
638 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
639 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
640 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
641
642 #ifndef R19_STUBS
643 #define R19_STUBS 1
644 #endif
645
646 #if R19_STUBS
647 #define LDW_R1_DLT LDW_R1_R19
648 #else
649 #define LDW_R1_DLT LDW_R1_DP
650 #endif
651
652 static bfd_boolean
653 hppa_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
654 {
655 struct elf32_hppa_stub_hash_entry *stub_entry;
656 struct bfd_link_info *info;
657 struct elf32_hppa_link_hash_table *htab;
658 asection *stub_sec;
659 bfd *stub_bfd;
660 bfd_byte *loc;
661 bfd_vma sym_value;
662 bfd_vma insn;
663 bfd_vma off;
664 int val;
665 int size;
666
667 /* Massage our args to the form they really have. */
668 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
669 info = in_arg;
670
671 htab = hppa_link_hash_table (info);
672 stub_sec = stub_entry->stub_sec;
673
674 /* Make a note of the offset within the stubs for this entry. */
675 stub_entry->stub_offset = stub_sec->_raw_size;
676 loc = stub_sec->contents + stub_entry->stub_offset;
677
678 stub_bfd = stub_sec->owner;
679
680 switch (stub_entry->stub_type)
681 {
682 case hppa_stub_long_branch:
683 /* Create the long branch. A long branch is formed with "ldil"
684 loading the upper bits of the target address into a register,
685 then branching with "be" which adds in the lower bits.
686 The "be" has its delay slot nullified. */
687 sym_value = (stub_entry->target_value
688 + stub_entry->target_section->output_offset
689 + stub_entry->target_section->output_section->vma);
690
691 val = hppa_field_adjust (sym_value, 0, e_lrsel);
692 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
693 bfd_put_32 (stub_bfd, insn, loc);
694
695 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
696 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
697 bfd_put_32 (stub_bfd, insn, loc + 4);
698
699 size = 8;
700 break;
701
702 case hppa_stub_long_branch_shared:
703 /* Branches are relative. This is where we are going to. */
704 sym_value = (stub_entry->target_value
705 + stub_entry->target_section->output_offset
706 + stub_entry->target_section->output_section->vma);
707
708 /* And this is where we are coming from, more or less. */
709 sym_value -= (stub_entry->stub_offset
710 + stub_sec->output_offset
711 + stub_sec->output_section->vma);
712
713 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
714 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
715 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
716 bfd_put_32 (stub_bfd, insn, loc + 4);
717
718 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
719 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
720 bfd_put_32 (stub_bfd, insn, loc + 8);
721 size = 12;
722 break;
723
724 case hppa_stub_import:
725 case hppa_stub_import_shared:
726 off = stub_entry->h->elf.plt.offset;
727 if (off >= (bfd_vma) -2)
728 abort ();
729
730 off &= ~ (bfd_vma) 1;
731 sym_value = (off
732 + htab->splt->output_offset
733 + htab->splt->output_section->vma
734 - elf_gp (htab->splt->output_section->owner));
735
736 insn = ADDIL_DP;
737 #if R19_STUBS
738 if (stub_entry->stub_type == hppa_stub_import_shared)
739 insn = ADDIL_R19;
740 #endif
741 val = hppa_field_adjust (sym_value, 0, e_lrsel),
742 insn = hppa_rebuild_insn ((int) insn, val, 21);
743 bfd_put_32 (stub_bfd, insn, loc);
744
745 /* It is critical to use lrsel/rrsel here because we are using
746 two different offsets (+0 and +4) from sym_value. If we use
747 lsel/rsel then with unfortunate sym_values we will round
748 sym_value+4 up to the next 2k block leading to a mis-match
749 between the lsel and rsel value. */
750 val = hppa_field_adjust (sym_value, 0, e_rrsel);
751 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
752 bfd_put_32 (stub_bfd, insn, loc + 4);
753
754 if (htab->multi_subspace)
755 {
756 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
757 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
758 bfd_put_32 (stub_bfd, insn, loc + 8);
759
760 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
761 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
762 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
763 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
764
765 size = 28;
766 }
767 else
768 {
769 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
770 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
771 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
772 bfd_put_32 (stub_bfd, insn, loc + 12);
773
774 size = 16;
775 }
776
777 break;
778
779 case hppa_stub_export:
780 /* Branches are relative. This is where we are going to. */
781 sym_value = (stub_entry->target_value
782 + stub_entry->target_section->output_offset
783 + stub_entry->target_section->output_section->vma);
784
785 /* And this is where we are coming from. */
786 sym_value -= (stub_entry->stub_offset
787 + stub_sec->output_offset
788 + stub_sec->output_section->vma);
789
790 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
791 && (!htab->has_22bit_branch
792 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
793 {
794 (*_bfd_error_handler)
795 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
796 bfd_archive_filename (stub_entry->target_section->owner),
797 stub_sec->name,
798 (long) stub_entry->stub_offset,
799 stub_entry->root.string);
800 bfd_set_error (bfd_error_bad_value);
801 return FALSE;
802 }
803
804 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
805 if (!htab->has_22bit_branch)
806 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
807 else
808 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
809 bfd_put_32 (stub_bfd, insn, loc);
810
811 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
812 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
813 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
814 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
815 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
816
817 /* Point the function symbol at the stub. */
818 stub_entry->h->elf.root.u.def.section = stub_sec;
819 stub_entry->h->elf.root.u.def.value = stub_sec->_raw_size;
820
821 size = 24;
822 break;
823
824 default:
825 BFD_FAIL ();
826 return FALSE;
827 }
828
829 stub_sec->_raw_size += size;
830 return TRUE;
831 }
832
833 #undef LDIL_R1
834 #undef BE_SR4_R1
835 #undef BL_R1
836 #undef ADDIL_R1
837 #undef DEPI_R1
838 #undef LDW_R1_R21
839 #undef LDW_R1_DLT
840 #undef LDW_R1_R19
841 #undef ADDIL_R19
842 #undef LDW_R1_DP
843 #undef LDSID_R21_R1
844 #undef MTSP_R1
845 #undef BE_SR0_R21
846 #undef STW_RP
847 #undef BV_R0_R21
848 #undef BL_RP
849 #undef NOP
850 #undef LDW_RP
851 #undef LDSID_RP_R1
852 #undef BE_SR0_RP
853
854 /* As above, but don't actually build the stub. Just bump offset so
855 we know stub section sizes. */
856
857 static bfd_boolean
858 hppa_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
859 {
860 struct elf32_hppa_stub_hash_entry *stub_entry;
861 struct elf32_hppa_link_hash_table *htab;
862 int size;
863
864 /* Massage our args to the form they really have. */
865 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
866 htab = in_arg;
867
868 if (stub_entry->stub_type == hppa_stub_long_branch)
869 size = 8;
870 else if (stub_entry->stub_type == hppa_stub_long_branch_shared)
871 size = 12;
872 else if (stub_entry->stub_type == hppa_stub_export)
873 size = 24;
874 else /* hppa_stub_import or hppa_stub_import_shared. */
875 {
876 if (htab->multi_subspace)
877 size = 28;
878 else
879 size = 16;
880 }
881
882 stub_entry->stub_sec->_raw_size += size;
883 return TRUE;
884 }
885
886 /* Return nonzero if ABFD represents an HPPA ELF32 file.
887 Additionally we set the default architecture and machine. */
888
889 static bfd_boolean
890 elf32_hppa_object_p (bfd *abfd)
891 {
892 Elf_Internal_Ehdr * i_ehdrp;
893 unsigned int flags;
894
895 i_ehdrp = elf_elfheader (abfd);
896 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
897 {
898 /* GCC on hppa-linux produces binaries with OSABI=Linux,
899 but the kernel produces corefiles with OSABI=SysV. */
900 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX &&
901 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
902 return FALSE;
903 }
904 else
905 {
906 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
907 return FALSE;
908 }
909
910 flags = i_ehdrp->e_flags;
911 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
912 {
913 case EFA_PARISC_1_0:
914 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
915 case EFA_PARISC_1_1:
916 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
917 case EFA_PARISC_2_0:
918 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
919 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
920 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
921 }
922 return TRUE;
923 }
924
925 /* Create the .plt and .got sections, and set up our hash table
926 short-cuts to various dynamic sections. */
927
928 static bfd_boolean
929 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
930 {
931 struct elf32_hppa_link_hash_table *htab;
932
933 /* Don't try to create the .plt and .got twice. */
934 htab = hppa_link_hash_table (info);
935 if (htab->splt != NULL)
936 return TRUE;
937
938 /* Call the generic code to do most of the work. */
939 if (! _bfd_elf_create_dynamic_sections (abfd, info))
940 return FALSE;
941
942 htab->splt = bfd_get_section_by_name (abfd, ".plt");
943 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
944
945 htab->sgot = bfd_get_section_by_name (abfd, ".got");
946 htab->srelgot = bfd_make_section (abfd, ".rela.got");
947 if (htab->srelgot == NULL
948 || ! bfd_set_section_flags (abfd, htab->srelgot,
949 (SEC_ALLOC
950 | SEC_LOAD
951 | SEC_HAS_CONTENTS
952 | SEC_IN_MEMORY
953 | SEC_LINKER_CREATED
954 | SEC_READONLY))
955 || ! bfd_set_section_alignment (abfd, htab->srelgot, 2))
956 return FALSE;
957
958 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
959 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
960
961 return TRUE;
962 }
963
964 /* Copy the extra info we tack onto an elf_link_hash_entry. */
965
966 static void
967 elf32_hppa_copy_indirect_symbol (const struct elf_backend_data *bed,
968 struct elf_link_hash_entry *dir,
969 struct elf_link_hash_entry *ind)
970 {
971 struct elf32_hppa_link_hash_entry *edir, *eind;
972
973 edir = (struct elf32_hppa_link_hash_entry *) dir;
974 eind = (struct elf32_hppa_link_hash_entry *) ind;
975
976 if (eind->dyn_relocs != NULL)
977 {
978 if (edir->dyn_relocs != NULL)
979 {
980 struct elf32_hppa_dyn_reloc_entry **pp;
981 struct elf32_hppa_dyn_reloc_entry *p;
982
983 if (ind->root.type == bfd_link_hash_indirect)
984 abort ();
985
986 /* Add reloc counts against the weak sym to the strong sym
987 list. Merge any entries against the same section. */
988 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
989 {
990 struct elf32_hppa_dyn_reloc_entry *q;
991
992 for (q = edir->dyn_relocs; q != NULL; q = q->next)
993 if (q->sec == p->sec)
994 {
995 #if RELATIVE_DYNRELOCS
996 q->relative_count += p->relative_count;
997 #endif
998 q->count += p->count;
999 *pp = p->next;
1000 break;
1001 }
1002 if (q == NULL)
1003 pp = &p->next;
1004 }
1005 *pp = edir->dyn_relocs;
1006 }
1007
1008 edir->dyn_relocs = eind->dyn_relocs;
1009 eind->dyn_relocs = NULL;
1010 }
1011
1012 if (ELIMINATE_COPY_RELOCS
1013 && ind->root.type != bfd_link_hash_indirect
1014 && (dir->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
1015 /* If called to transfer flags for a weakdef during processing
1016 of elf_adjust_dynamic_symbol, don't copy ELF_LINK_NON_GOT_REF.
1017 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1018 dir->elf_link_hash_flags |=
1019 (ind->elf_link_hash_flags & (ELF_LINK_HASH_REF_DYNAMIC
1020 | ELF_LINK_HASH_REF_REGULAR
1021 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
1022 | ELF_LINK_HASH_NEEDS_PLT));
1023 else
1024 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
1025 }
1026
1027 /* Look through the relocs for a section during the first phase, and
1028 calculate needed space in the global offset table, procedure linkage
1029 table, and dynamic reloc sections. At this point we haven't
1030 necessarily read all the input files. */
1031
1032 static bfd_boolean
1033 elf32_hppa_check_relocs (bfd *abfd,
1034 struct bfd_link_info *info,
1035 asection *sec,
1036 const Elf_Internal_Rela *relocs)
1037 {
1038 Elf_Internal_Shdr *symtab_hdr;
1039 struct elf_link_hash_entry **sym_hashes;
1040 const Elf_Internal_Rela *rel;
1041 const Elf_Internal_Rela *rel_end;
1042 struct elf32_hppa_link_hash_table *htab;
1043 asection *sreloc;
1044 asection *stubreloc;
1045
1046 if (info->relocatable)
1047 return TRUE;
1048
1049 htab = hppa_link_hash_table (info);
1050 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1051 sym_hashes = elf_sym_hashes (abfd);
1052 sreloc = NULL;
1053 stubreloc = NULL;
1054
1055 rel_end = relocs + sec->reloc_count;
1056 for (rel = relocs; rel < rel_end; rel++)
1057 {
1058 enum {
1059 NEED_GOT = 1,
1060 NEED_PLT = 2,
1061 NEED_DYNREL = 4,
1062 PLT_PLABEL = 8
1063 };
1064
1065 unsigned int r_symndx, r_type;
1066 struct elf32_hppa_link_hash_entry *h;
1067 int need_entry;
1068
1069 r_symndx = ELF32_R_SYM (rel->r_info);
1070
1071 if (r_symndx < symtab_hdr->sh_info)
1072 h = NULL;
1073 else
1074 h = ((struct elf32_hppa_link_hash_entry *)
1075 sym_hashes[r_symndx - symtab_hdr->sh_info]);
1076
1077 r_type = ELF32_R_TYPE (rel->r_info);
1078
1079 switch (r_type)
1080 {
1081 case R_PARISC_DLTIND14F:
1082 case R_PARISC_DLTIND14R:
1083 case R_PARISC_DLTIND21L:
1084 /* This symbol requires a global offset table entry. */
1085 need_entry = NEED_GOT;
1086 break;
1087
1088 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1089 case R_PARISC_PLABEL21L:
1090 case R_PARISC_PLABEL32:
1091 /* If the addend is non-zero, we break badly. */
1092 if (rel->r_addend != 0)
1093 abort ();
1094
1095 /* If we are creating a shared library, then we need to
1096 create a PLT entry for all PLABELs, because PLABELs with
1097 local symbols may be passed via a pointer to another
1098 object. Additionally, output a dynamic relocation
1099 pointing to the PLT entry.
1100 For executables, the original 32-bit ABI allowed two
1101 different styles of PLABELs (function pointers): For
1102 global functions, the PLABEL word points into the .plt
1103 two bytes past a (function address, gp) pair, and for
1104 local functions the PLABEL points directly at the
1105 function. The magic +2 for the first type allows us to
1106 differentiate between the two. As you can imagine, this
1107 is a real pain when it comes to generating code to call
1108 functions indirectly or to compare function pointers.
1109 We avoid the mess by always pointing a PLABEL into the
1110 .plt, even for local functions. */
1111 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1112 break;
1113
1114 case R_PARISC_PCREL12F:
1115 htab->has_12bit_branch = 1;
1116 goto branch_common;
1117
1118 case R_PARISC_PCREL17C:
1119 case R_PARISC_PCREL17F:
1120 htab->has_17bit_branch = 1;
1121 goto branch_common;
1122
1123 case R_PARISC_PCREL22F:
1124 htab->has_22bit_branch = 1;
1125 branch_common:
1126 /* Function calls might need to go through the .plt, and
1127 might require long branch stubs. */
1128 if (h == NULL)
1129 {
1130 /* We know local syms won't need a .plt entry, and if
1131 they need a long branch stub we can't guarantee that
1132 we can reach the stub. So just flag an error later
1133 if we're doing a shared link and find we need a long
1134 branch stub. */
1135 continue;
1136 }
1137 else
1138 {
1139 /* Global symbols will need a .plt entry if they remain
1140 global, and in most cases won't need a long branch
1141 stub. Unfortunately, we have to cater for the case
1142 where a symbol is forced local by versioning, or due
1143 to symbolic linking, and we lose the .plt entry. */
1144 need_entry = NEED_PLT;
1145 if (h->elf.type == STT_PARISC_MILLI)
1146 need_entry = 0;
1147 }
1148 break;
1149
1150 case R_PARISC_SEGBASE: /* Used to set segment base. */
1151 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1152 case R_PARISC_PCREL14F: /* PC relative load/store. */
1153 case R_PARISC_PCREL14R:
1154 case R_PARISC_PCREL17R: /* External branches. */
1155 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1156 case R_PARISC_PCREL32:
1157 /* We don't need to propagate the relocation if linking a
1158 shared object since these are section relative. */
1159 continue;
1160
1161 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1162 case R_PARISC_DPREL14R:
1163 case R_PARISC_DPREL21L:
1164 if (info->shared)
1165 {
1166 (*_bfd_error_handler)
1167 (_("%s: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1168 bfd_archive_filename (abfd),
1169 elf_hppa_howto_table[r_type].name);
1170 bfd_set_error (bfd_error_bad_value);
1171 return FALSE;
1172 }
1173 /* Fall through. */
1174
1175 case R_PARISC_DIR17F: /* Used for external branches. */
1176 case R_PARISC_DIR17R:
1177 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1178 case R_PARISC_DIR14R:
1179 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1180 #if 0
1181 /* Help debug shared library creation. Any of the above
1182 relocs can be used in shared libs, but they may cause
1183 pages to become unshared. */
1184 if (info->shared)
1185 {
1186 (*_bfd_error_handler)
1187 (_("%s: relocation %s should not be used when making a shared object; recompile with -fPIC"),
1188 bfd_archive_filename (abfd),
1189 elf_hppa_howto_table[r_type].name);
1190 }
1191 /* Fall through. */
1192 #endif
1193
1194 case R_PARISC_DIR32: /* .word relocs. */
1195 /* We may want to output a dynamic relocation later. */
1196 need_entry = NEED_DYNREL;
1197 break;
1198
1199 /* This relocation describes the C++ object vtable hierarchy.
1200 Reconstruct it for later use during GC. */
1201 case R_PARISC_GNU_VTINHERIT:
1202 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec,
1203 &h->elf, rel->r_offset))
1204 return FALSE;
1205 continue;
1206
1207 /* This relocation describes which C++ vtable entries are actually
1208 used. Record for later use during GC. */
1209 case R_PARISC_GNU_VTENTRY:
1210 if (!_bfd_elf32_gc_record_vtentry (abfd, sec,
1211 &h->elf, rel->r_addend))
1212 return FALSE;
1213 continue;
1214
1215 default:
1216 continue;
1217 }
1218
1219 /* Now carry out our orders. */
1220 if (need_entry & NEED_GOT)
1221 {
1222 /* Allocate space for a GOT entry, as well as a dynamic
1223 relocation for this entry. */
1224 if (htab->sgot == NULL)
1225 {
1226 if (htab->elf.dynobj == NULL)
1227 htab->elf.dynobj = abfd;
1228 if (!elf32_hppa_create_dynamic_sections (htab->elf.dynobj, info))
1229 return FALSE;
1230 }
1231
1232 if (h != NULL)
1233 {
1234 h->elf.got.refcount += 1;
1235 }
1236 else
1237 {
1238 bfd_signed_vma *local_got_refcounts;
1239
1240 /* This is a global offset table entry for a local symbol. */
1241 local_got_refcounts = elf_local_got_refcounts (abfd);
1242 if (local_got_refcounts == NULL)
1243 {
1244 bfd_size_type size;
1245
1246 /* Allocate space for local got offsets and local
1247 plt offsets. Done this way to save polluting
1248 elf_obj_tdata with another target specific
1249 pointer. */
1250 size = symtab_hdr->sh_info;
1251 size *= 2 * sizeof (bfd_signed_vma);
1252 local_got_refcounts = bfd_zalloc (abfd, size);
1253 if (local_got_refcounts == NULL)
1254 return FALSE;
1255 elf_local_got_refcounts (abfd) = local_got_refcounts;
1256 }
1257 local_got_refcounts[r_symndx] += 1;
1258 }
1259 }
1260
1261 if (need_entry & NEED_PLT)
1262 {
1263 /* If we are creating a shared library, and this is a reloc
1264 against a weak symbol or a global symbol in a dynamic
1265 object, then we will be creating an import stub and a
1266 .plt entry for the symbol. Similarly, on a normal link
1267 to symbols defined in a dynamic object we'll need the
1268 import stub and a .plt entry. We don't know yet whether
1269 the symbol is defined or not, so make an entry anyway and
1270 clean up later in adjust_dynamic_symbol. */
1271 if ((sec->flags & SEC_ALLOC) != 0)
1272 {
1273 if (h != NULL)
1274 {
1275 h->elf.elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1276 h->elf.plt.refcount += 1;
1277
1278 /* If this .plt entry is for a plabel, mark it so
1279 that adjust_dynamic_symbol will keep the entry
1280 even if it appears to be local. */
1281 if (need_entry & PLT_PLABEL)
1282 h->plabel = 1;
1283 }
1284 else if (need_entry & PLT_PLABEL)
1285 {
1286 bfd_signed_vma *local_got_refcounts;
1287 bfd_signed_vma *local_plt_refcounts;
1288
1289 local_got_refcounts = elf_local_got_refcounts (abfd);
1290 if (local_got_refcounts == NULL)
1291 {
1292 bfd_size_type size;
1293
1294 /* Allocate space for local got offsets and local
1295 plt offsets. */
1296 size = symtab_hdr->sh_info;
1297 size *= 2 * sizeof (bfd_signed_vma);
1298 local_got_refcounts = bfd_zalloc (abfd, size);
1299 if (local_got_refcounts == NULL)
1300 return FALSE;
1301 elf_local_got_refcounts (abfd) = local_got_refcounts;
1302 }
1303 local_plt_refcounts = (local_got_refcounts
1304 + symtab_hdr->sh_info);
1305 local_plt_refcounts[r_symndx] += 1;
1306 }
1307 }
1308 }
1309
1310 if (need_entry & NEED_DYNREL)
1311 {
1312 /* Flag this symbol as having a non-got, non-plt reference
1313 so that we generate copy relocs if it turns out to be
1314 dynamic. */
1315 if (h != NULL && !info->shared)
1316 h->elf.elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
1317
1318 /* If we are creating a shared library then we need to copy
1319 the reloc into the shared library. However, if we are
1320 linking with -Bsymbolic, we need only copy absolute
1321 relocs or relocs against symbols that are not defined in
1322 an object we are including in the link. PC- or DP- or
1323 DLT-relative relocs against any local sym or global sym
1324 with DEF_REGULAR set, can be discarded. At this point we
1325 have not seen all the input files, so it is possible that
1326 DEF_REGULAR is not set now but will be set later (it is
1327 never cleared). We account for that possibility below by
1328 storing information in the dyn_relocs field of the
1329 hash table entry.
1330
1331 A similar situation to the -Bsymbolic case occurs when
1332 creating shared libraries and symbol visibility changes
1333 render the symbol local.
1334
1335 As it turns out, all the relocs we will be creating here
1336 are absolute, so we cannot remove them on -Bsymbolic
1337 links or visibility changes anyway. A STUB_REL reloc
1338 is absolute too, as in that case it is the reloc in the
1339 stub we will be creating, rather than copying the PCREL
1340 reloc in the branch.
1341
1342 If on the other hand, we are creating an executable, we
1343 may need to keep relocations for symbols satisfied by a
1344 dynamic library if we manage to avoid copy relocs for the
1345 symbol. */
1346 if ((info->shared
1347 && (sec->flags & SEC_ALLOC) != 0
1348 && (IS_ABSOLUTE_RELOC (r_type)
1349 || (h != NULL
1350 && (!info->symbolic
1351 || h->elf.root.type == bfd_link_hash_defweak
1352 || (h->elf.elf_link_hash_flags
1353 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1354 || (ELIMINATE_COPY_RELOCS
1355 && !info->shared
1356 && (sec->flags & SEC_ALLOC) != 0
1357 && h != NULL
1358 && (h->elf.root.type == bfd_link_hash_defweak
1359 || (h->elf.elf_link_hash_flags
1360 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
1361 {
1362 struct elf32_hppa_dyn_reloc_entry *p;
1363 struct elf32_hppa_dyn_reloc_entry **head;
1364
1365 /* Create a reloc section in dynobj and make room for
1366 this reloc. */
1367 if (sreloc == NULL)
1368 {
1369 char *name;
1370 bfd *dynobj;
1371
1372 name = (bfd_elf_string_from_elf_section
1373 (abfd,
1374 elf_elfheader (abfd)->e_shstrndx,
1375 elf_section_data (sec)->rel_hdr.sh_name));
1376 if (name == NULL)
1377 {
1378 (*_bfd_error_handler)
1379 (_("Could not find relocation section for %s"),
1380 sec->name);
1381 bfd_set_error (bfd_error_bad_value);
1382 return FALSE;
1383 }
1384
1385 if (htab->elf.dynobj == NULL)
1386 htab->elf.dynobj = abfd;
1387
1388 dynobj = htab->elf.dynobj;
1389 sreloc = bfd_get_section_by_name (dynobj, name);
1390 if (sreloc == NULL)
1391 {
1392 flagword flags;
1393
1394 sreloc = bfd_make_section (dynobj, name);
1395 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1396 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1397 if ((sec->flags & SEC_ALLOC) != 0)
1398 flags |= SEC_ALLOC | SEC_LOAD;
1399 if (sreloc == NULL
1400 || !bfd_set_section_flags (dynobj, sreloc, flags)
1401 || !bfd_set_section_alignment (dynobj, sreloc, 2))
1402 return FALSE;
1403 }
1404
1405 elf_section_data (sec)->sreloc = sreloc;
1406 }
1407
1408 /* If this is a global symbol, we count the number of
1409 relocations we need for this symbol. */
1410 if (h != NULL)
1411 {
1412 head = &h->dyn_relocs;
1413 }
1414 else
1415 {
1416 /* Track dynamic relocs needed for local syms too.
1417 We really need local syms available to do this
1418 easily. Oh well. */
1419
1420 asection *s;
1421 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1422 sec, r_symndx);
1423 if (s == NULL)
1424 return FALSE;
1425
1426 head = ((struct elf32_hppa_dyn_reloc_entry **)
1427 &elf_section_data (s)->local_dynrel);
1428 }
1429
1430 p = *head;
1431 if (p == NULL || p->sec != sec)
1432 {
1433 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
1434 if (p == NULL)
1435 return FALSE;
1436 p->next = *head;
1437 *head = p;
1438 p->sec = sec;
1439 p->count = 0;
1440 #if RELATIVE_DYNRELOCS
1441 p->relative_count = 0;
1442 #endif
1443 }
1444
1445 p->count += 1;
1446 #if RELATIVE_DYNRELOCS
1447 if (!IS_ABSOLUTE_RELOC (rtype))
1448 p->relative_count += 1;
1449 #endif
1450 }
1451 }
1452 }
1453
1454 return TRUE;
1455 }
1456
1457 /* Return the section that should be marked against garbage collection
1458 for a given relocation. */
1459
1460 static asection *
1461 elf32_hppa_gc_mark_hook (asection *sec,
1462 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1463 Elf_Internal_Rela *rel,
1464 struct elf_link_hash_entry *h,
1465 Elf_Internal_Sym *sym)
1466 {
1467 if (h != NULL)
1468 {
1469 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1470 {
1471 case R_PARISC_GNU_VTINHERIT:
1472 case R_PARISC_GNU_VTENTRY:
1473 break;
1474
1475 default:
1476 switch (h->root.type)
1477 {
1478 case bfd_link_hash_defined:
1479 case bfd_link_hash_defweak:
1480 return h->root.u.def.section;
1481
1482 case bfd_link_hash_common:
1483 return h->root.u.c.p->section;
1484
1485 default:
1486 break;
1487 }
1488 }
1489 }
1490 else
1491 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1492
1493 return NULL;
1494 }
1495
1496 /* Update the got and plt entry reference counts for the section being
1497 removed. */
1498
1499 static bfd_boolean
1500 elf32_hppa_gc_sweep_hook (bfd *abfd,
1501 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1502 asection *sec,
1503 const Elf_Internal_Rela *relocs)
1504 {
1505 Elf_Internal_Shdr *symtab_hdr;
1506 struct elf_link_hash_entry **sym_hashes;
1507 bfd_signed_vma *local_got_refcounts;
1508 bfd_signed_vma *local_plt_refcounts;
1509 const Elf_Internal_Rela *rel, *relend;
1510
1511 elf_section_data (sec)->local_dynrel = NULL;
1512
1513 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1514 sym_hashes = elf_sym_hashes (abfd);
1515 local_got_refcounts = elf_local_got_refcounts (abfd);
1516 local_plt_refcounts = local_got_refcounts;
1517 if (local_plt_refcounts != NULL)
1518 local_plt_refcounts += symtab_hdr->sh_info;
1519
1520 relend = relocs + sec->reloc_count;
1521 for (rel = relocs; rel < relend; rel++)
1522 {
1523 unsigned long r_symndx;
1524 unsigned int r_type;
1525 struct elf_link_hash_entry *h = NULL;
1526
1527 r_symndx = ELF32_R_SYM (rel->r_info);
1528 if (r_symndx >= symtab_hdr->sh_info)
1529 {
1530 struct elf32_hppa_link_hash_entry *eh;
1531 struct elf32_hppa_dyn_reloc_entry **pp;
1532 struct elf32_hppa_dyn_reloc_entry *p;
1533
1534 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1535 eh = (struct elf32_hppa_link_hash_entry *) h;
1536
1537 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1538 if (p->sec == sec)
1539 {
1540 /* Everything must go for SEC. */
1541 *pp = p->next;
1542 break;
1543 }
1544 }
1545
1546 r_type = ELF32_R_TYPE (rel->r_info);
1547 switch (r_type)
1548 {
1549 case R_PARISC_DLTIND14F:
1550 case R_PARISC_DLTIND14R:
1551 case R_PARISC_DLTIND21L:
1552 if (h != NULL)
1553 {
1554 if (h->got.refcount > 0)
1555 h->got.refcount -= 1;
1556 }
1557 else if (local_got_refcounts != NULL)
1558 {
1559 if (local_got_refcounts[r_symndx] > 0)
1560 local_got_refcounts[r_symndx] -= 1;
1561 }
1562 break;
1563
1564 case R_PARISC_PCREL12F:
1565 case R_PARISC_PCREL17C:
1566 case R_PARISC_PCREL17F:
1567 case R_PARISC_PCREL22F:
1568 if (h != NULL)
1569 {
1570 if (h->plt.refcount > 0)
1571 h->plt.refcount -= 1;
1572 }
1573 break;
1574
1575 case R_PARISC_PLABEL14R:
1576 case R_PARISC_PLABEL21L:
1577 case R_PARISC_PLABEL32:
1578 if (h != NULL)
1579 {
1580 if (h->plt.refcount > 0)
1581 h->plt.refcount -= 1;
1582 }
1583 else if (local_plt_refcounts != NULL)
1584 {
1585 if (local_plt_refcounts[r_symndx] > 0)
1586 local_plt_refcounts[r_symndx] -= 1;
1587 }
1588 break;
1589
1590 default:
1591 break;
1592 }
1593 }
1594
1595 return TRUE;
1596 }
1597
1598 /* Our own version of hide_symbol, so that we can keep plt entries for
1599 plabels. */
1600
1601 static void
1602 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1603 struct elf_link_hash_entry *h,
1604 bfd_boolean force_local)
1605 {
1606 if (force_local)
1607 {
1608 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
1609 if (h->dynindx != -1)
1610 {
1611 h->dynindx = -1;
1612 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1613 h->dynstr_index);
1614 }
1615 }
1616
1617 if (! ((struct elf32_hppa_link_hash_entry *) h)->plabel)
1618 {
1619 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1620 h->plt.offset = (bfd_vma) -1;
1621 }
1622 }
1623
1624 /* This is the condition under which elf32_hppa_finish_dynamic_symbol
1625 will be called from elflink.h. If elflink.h doesn't call our
1626 finish_dynamic_symbol routine, we'll need to do something about
1627 initializing any .plt and .got entries in elf32_hppa_relocate_section. */
1628 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1629 ((DYN) \
1630 && ((INFO)->shared \
1631 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1632 && ((H)->dynindx != -1 \
1633 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1634
1635 /* Adjust a symbol defined by a dynamic object and referenced by a
1636 regular object. The current definition is in some section of the
1637 dynamic object, but we're not including those sections. We have to
1638 change the definition to something the rest of the link can
1639 understand. */
1640
1641 static bfd_boolean
1642 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1643 struct elf_link_hash_entry *h)
1644 {
1645 struct elf32_hppa_link_hash_table *htab;
1646 asection *s;
1647 unsigned int power_of_two;
1648
1649 /* If this is a function, put it in the procedure linkage table. We
1650 will fill in the contents of the procedure linkage table later. */
1651 if (h->type == STT_FUNC
1652 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1653 {
1654 if (h->plt.refcount <= 0
1655 || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1656 && h->root.type != bfd_link_hash_defweak
1657 && ! ((struct elf32_hppa_link_hash_entry *) h)->plabel
1658 && (!info->shared || info->symbolic)))
1659 {
1660 /* The .plt entry is not needed when:
1661 a) Garbage collection has removed all references to the
1662 symbol, or
1663 b) We know for certain the symbol is defined in this
1664 object, and it's not a weak definition, nor is the symbol
1665 used by a plabel relocation. Either this object is the
1666 application or we are doing a shared symbolic link. */
1667
1668 h->plt.offset = (bfd_vma) -1;
1669 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1670 }
1671
1672 return TRUE;
1673 }
1674 else
1675 h->plt.offset = (bfd_vma) -1;
1676
1677 /* If this is a weak symbol, and there is a real definition, the
1678 processor independent code will have arranged for us to see the
1679 real definition first, and we can just use the same value. */
1680 if (h->weakdef != NULL)
1681 {
1682 if (h->weakdef->root.type != bfd_link_hash_defined
1683 && h->weakdef->root.type != bfd_link_hash_defweak)
1684 abort ();
1685 h->root.u.def.section = h->weakdef->root.u.def.section;
1686 h->root.u.def.value = h->weakdef->root.u.def.value;
1687 if (ELIMINATE_COPY_RELOCS)
1688 h->elf_link_hash_flags
1689 = ((h->elf_link_hash_flags & ~ELF_LINK_NON_GOT_REF)
1690 | (h->weakdef->elf_link_hash_flags & ELF_LINK_NON_GOT_REF));
1691 return TRUE;
1692 }
1693
1694 /* This is a reference to a symbol defined by a dynamic object which
1695 is not a function. */
1696
1697 /* If we are creating a shared library, we must presume that the
1698 only references to the symbol are via the global offset table.
1699 For such cases we need not do anything here; the relocations will
1700 be handled correctly by relocate_section. */
1701 if (info->shared)
1702 return TRUE;
1703
1704 /* If there are no references to this symbol that do not use the
1705 GOT, we don't need to generate a copy reloc. */
1706 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1707 return TRUE;
1708
1709 if (ELIMINATE_COPY_RELOCS)
1710 {
1711 struct elf32_hppa_link_hash_entry *eh;
1712 struct elf32_hppa_dyn_reloc_entry *p;
1713
1714 eh = (struct elf32_hppa_link_hash_entry *) h;
1715 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1716 {
1717 s = p->sec->output_section;
1718 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1719 break;
1720 }
1721
1722 /* If we didn't find any dynamic relocs in read-only sections, then
1723 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1724 if (p == NULL)
1725 {
1726 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1727 return TRUE;
1728 }
1729 }
1730
1731 /* We must allocate the symbol in our .dynbss section, which will
1732 become part of the .bss section of the executable. There will be
1733 an entry for this symbol in the .dynsym section. The dynamic
1734 object will contain position independent code, so all references
1735 from the dynamic object to this symbol will go through the global
1736 offset table. The dynamic linker will use the .dynsym entry to
1737 determine the address it must put in the global offset table, so
1738 both the dynamic object and the regular object will refer to the
1739 same memory location for the variable. */
1740
1741 htab = hppa_link_hash_table (info);
1742
1743 /* We must generate a COPY reloc to tell the dynamic linker to
1744 copy the initial value out of the dynamic object and into the
1745 runtime process image. */
1746 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1747 {
1748 htab->srelbss->_raw_size += sizeof (Elf32_External_Rela);
1749 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1750 }
1751
1752 /* We need to figure out the alignment required for this symbol. I
1753 have no idea how other ELF linkers handle this. */
1754
1755 power_of_two = bfd_log2 (h->size);
1756 if (power_of_two > 3)
1757 power_of_two = 3;
1758
1759 /* Apply the required alignment. */
1760 s = htab->sdynbss;
1761 s->_raw_size = BFD_ALIGN (s->_raw_size,
1762 (bfd_size_type) (1 << power_of_two));
1763 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1764 {
1765 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1766 return FALSE;
1767 }
1768
1769 /* Define the symbol as being at this point in the section. */
1770 h->root.u.def.section = s;
1771 h->root.u.def.value = s->_raw_size;
1772
1773 /* Increment the section size to make room for the symbol. */
1774 s->_raw_size += h->size;
1775
1776 return TRUE;
1777 }
1778
1779 /* Allocate space in the .plt for entries that won't have relocations.
1780 ie. plabel entries. */
1781
1782 static bfd_boolean
1783 allocate_plt_static (struct elf_link_hash_entry *h, void *inf)
1784 {
1785 struct bfd_link_info *info;
1786 struct elf32_hppa_link_hash_table *htab;
1787 asection *s;
1788
1789 if (h->root.type == bfd_link_hash_indirect)
1790 return TRUE;
1791
1792 if (h->root.type == bfd_link_hash_warning)
1793 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1794
1795 info = inf;
1796 htab = hppa_link_hash_table (info);
1797 if (htab->elf.dynamic_sections_created
1798 && h->plt.refcount > 0)
1799 {
1800 /* Make sure this symbol is output as a dynamic symbol.
1801 Undefined weak syms won't yet be marked as dynamic. */
1802 if (h->dynindx == -1
1803 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
1804 && h->type != STT_PARISC_MILLI)
1805 {
1806 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1807 return FALSE;
1808 }
1809
1810 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
1811 {
1812 /* Allocate these later. From this point on, h->plabel
1813 means that the plt entry is only used by a plabel.
1814 We'll be using a normal plt entry for this symbol, so
1815 clear the plabel indicator. */
1816 ((struct elf32_hppa_link_hash_entry *) h)->plabel = 0;
1817 }
1818 else if (((struct elf32_hppa_link_hash_entry *) h)->plabel)
1819 {
1820 /* Make an entry in the .plt section for plabel references
1821 that won't have a .plt entry for other reasons. */
1822 s = htab->splt;
1823 h->plt.offset = s->_raw_size;
1824 s->_raw_size += PLT_ENTRY_SIZE;
1825 }
1826 else
1827 {
1828 /* No .plt entry needed. */
1829 h->plt.offset = (bfd_vma) -1;
1830 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1831 }
1832 }
1833 else
1834 {
1835 h->plt.offset = (bfd_vma) -1;
1836 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1837 }
1838
1839 return TRUE;
1840 }
1841
1842 /* Allocate space in .plt, .got and associated reloc sections for
1843 global syms. */
1844
1845 static bfd_boolean
1846 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
1847 {
1848 struct bfd_link_info *info;
1849 struct elf32_hppa_link_hash_table *htab;
1850 asection *s;
1851 struct elf32_hppa_link_hash_entry *eh;
1852 struct elf32_hppa_dyn_reloc_entry *p;
1853
1854 if (h->root.type == bfd_link_hash_indirect)
1855 return TRUE;
1856
1857 if (h->root.type == bfd_link_hash_warning)
1858 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1859
1860 info = inf;
1861 htab = hppa_link_hash_table (info);
1862 if (htab->elf.dynamic_sections_created
1863 && h->plt.offset != (bfd_vma) -1
1864 && !((struct elf32_hppa_link_hash_entry *) h)->plabel)
1865 {
1866 /* Make an entry in the .plt section. */
1867 s = htab->splt;
1868 h->plt.offset = s->_raw_size;
1869 s->_raw_size += PLT_ENTRY_SIZE;
1870
1871 /* We also need to make an entry in the .rela.plt section. */
1872 htab->srelplt->_raw_size += sizeof (Elf32_External_Rela);
1873 htab->need_plt_stub = 1;
1874 }
1875
1876 if (h->got.refcount > 0)
1877 {
1878 /* Make sure this symbol is output as a dynamic symbol.
1879 Undefined weak syms won't yet be marked as dynamic. */
1880 if (h->dynindx == -1
1881 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
1882 && h->type != STT_PARISC_MILLI)
1883 {
1884 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1885 return FALSE;
1886 }
1887
1888 s = htab->sgot;
1889 h->got.offset = s->_raw_size;
1890 s->_raw_size += GOT_ENTRY_SIZE;
1891 if (htab->elf.dynamic_sections_created
1892 && (info->shared
1893 || (h->dynindx != -1
1894 && h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0))
1895 {
1896 htab->srelgot->_raw_size += sizeof (Elf32_External_Rela);
1897 }
1898 }
1899 else
1900 h->got.offset = (bfd_vma) -1;
1901
1902 eh = (struct elf32_hppa_link_hash_entry *) h;
1903 if (eh->dyn_relocs == NULL)
1904 return TRUE;
1905
1906 /* If this is a -Bsymbolic shared link, then we need to discard all
1907 space allocated for dynamic pc-relative relocs against symbols
1908 defined in a regular object. For the normal shared case, discard
1909 space for relocs that have become local due to symbol visibility
1910 changes. */
1911 if (info->shared)
1912 {
1913 #if RELATIVE_DYNRELOCS
1914 if (SYMBOL_CALLS_LOCAL (info, h))
1915 {
1916 struct elf32_hppa_dyn_reloc_entry **pp;
1917
1918 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1919 {
1920 p->count -= p->relative_count;
1921 p->relative_count = 0;
1922 if (p->count == 0)
1923 *pp = p->next;
1924 else
1925 pp = &p->next;
1926 }
1927 }
1928 #endif
1929
1930 /* Also discard relocs on undefined weak syms with non-default
1931 visibility. */
1932 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1933 && h->root.type == bfd_link_hash_undefweak)
1934 eh->dyn_relocs = NULL;
1935 }
1936 else
1937 {
1938 /* For the non-shared case, discard space for relocs against
1939 symbols which turn out to need copy relocs or are not
1940 dynamic. */
1941 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1942 && ((ELIMINATE_COPY_RELOCS
1943 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1944 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1945 || (htab->elf.dynamic_sections_created
1946 && (h->root.type == bfd_link_hash_undefweak
1947 || h->root.type == bfd_link_hash_undefined))))
1948 {
1949 /* Make sure this symbol is output as a dynamic symbol.
1950 Undefined weak syms won't yet be marked as dynamic. */
1951 if (h->dynindx == -1
1952 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
1953 && h->type != STT_PARISC_MILLI)
1954 {
1955 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1956 return FALSE;
1957 }
1958
1959 /* If that succeeded, we know we'll be keeping all the
1960 relocs. */
1961 if (h->dynindx != -1)
1962 goto keep;
1963 }
1964
1965 eh->dyn_relocs = NULL;
1966 return TRUE;
1967
1968 keep: ;
1969 }
1970
1971 /* Finally, allocate space. */
1972 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1973 {
1974 asection *sreloc = elf_section_data (p->sec)->sreloc;
1975 sreloc->_raw_size += p->count * sizeof (Elf32_External_Rela);
1976 }
1977
1978 return TRUE;
1979 }
1980
1981 /* This function is called via elf_link_hash_traverse to force
1982 millicode symbols local so they do not end up as globals in the
1983 dynamic symbol table. We ought to be able to do this in
1984 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
1985 for all dynamic symbols. Arguably, this is a bug in
1986 elf_adjust_dynamic_symbol. */
1987
1988 static bfd_boolean
1989 clobber_millicode_symbols (struct elf_link_hash_entry *h,
1990 struct bfd_link_info *info)
1991 {
1992 if (h->root.type == bfd_link_hash_warning)
1993 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1994
1995 if (h->type == STT_PARISC_MILLI
1996 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1997 {
1998 elf32_hppa_hide_symbol (info, h, TRUE);
1999 }
2000 return TRUE;
2001 }
2002
2003 /* Find any dynamic relocs that apply to read-only sections. */
2004
2005 static bfd_boolean
2006 readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf)
2007 {
2008 struct elf32_hppa_link_hash_entry *eh;
2009 struct elf32_hppa_dyn_reloc_entry *p;
2010
2011 if (h->root.type == bfd_link_hash_warning)
2012 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2013
2014 eh = (struct elf32_hppa_link_hash_entry *) h;
2015 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2016 {
2017 asection *s = p->sec->output_section;
2018
2019 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2020 {
2021 struct bfd_link_info *info = inf;
2022
2023 info->flags |= DF_TEXTREL;
2024
2025 /* Not an error, just cut short the traversal. */
2026 return FALSE;
2027 }
2028 }
2029 return TRUE;
2030 }
2031
2032 /* Set the sizes of the dynamic sections. */
2033
2034 static bfd_boolean
2035 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2036 struct bfd_link_info *info)
2037 {
2038 struct elf32_hppa_link_hash_table *htab;
2039 bfd *dynobj;
2040 bfd *ibfd;
2041 asection *s;
2042 bfd_boolean relocs;
2043
2044 htab = hppa_link_hash_table (info);
2045 dynobj = htab->elf.dynobj;
2046 if (dynobj == NULL)
2047 abort ();
2048
2049 if (htab->elf.dynamic_sections_created)
2050 {
2051 /* Set the contents of the .interp section to the interpreter. */
2052 if (info->executable)
2053 {
2054 s = bfd_get_section_by_name (dynobj, ".interp");
2055 if (s == NULL)
2056 abort ();
2057 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
2058 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2059 }
2060
2061 /* Force millicode symbols local. */
2062 elf_link_hash_traverse (&htab->elf,
2063 clobber_millicode_symbols,
2064 info);
2065 }
2066
2067 /* Set up .got and .plt offsets for local syms, and space for local
2068 dynamic relocs. */
2069 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2070 {
2071 bfd_signed_vma *local_got;
2072 bfd_signed_vma *end_local_got;
2073 bfd_signed_vma *local_plt;
2074 bfd_signed_vma *end_local_plt;
2075 bfd_size_type locsymcount;
2076 Elf_Internal_Shdr *symtab_hdr;
2077 asection *srel;
2078
2079 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2080 continue;
2081
2082 for (s = ibfd->sections; s != NULL; s = s->next)
2083 {
2084 struct elf32_hppa_dyn_reloc_entry *p;
2085
2086 for (p = ((struct elf32_hppa_dyn_reloc_entry *)
2087 elf_section_data (s)->local_dynrel);
2088 p != NULL;
2089 p = p->next)
2090 {
2091 if (!bfd_is_abs_section (p->sec)
2092 && bfd_is_abs_section (p->sec->output_section))
2093 {
2094 /* Input section has been discarded, either because
2095 it is a copy of a linkonce section or due to
2096 linker script /DISCARD/, so we'll be discarding
2097 the relocs too. */
2098 }
2099 else if (p->count != 0)
2100 {
2101 srel = elf_section_data (p->sec)->sreloc;
2102 srel->_raw_size += p->count * sizeof (Elf32_External_Rela);
2103 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
2104 info->flags |= DF_TEXTREL;
2105 }
2106 }
2107 }
2108
2109 local_got = elf_local_got_refcounts (ibfd);
2110 if (!local_got)
2111 continue;
2112
2113 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2114 locsymcount = symtab_hdr->sh_info;
2115 end_local_got = local_got + locsymcount;
2116 s = htab->sgot;
2117 srel = htab->srelgot;
2118 for (; local_got < end_local_got; ++local_got)
2119 {
2120 if (*local_got > 0)
2121 {
2122 *local_got = s->_raw_size;
2123 s->_raw_size += GOT_ENTRY_SIZE;
2124 if (info->shared)
2125 srel->_raw_size += sizeof (Elf32_External_Rela);
2126 }
2127 else
2128 *local_got = (bfd_vma) -1;
2129 }
2130
2131 local_plt = end_local_got;
2132 end_local_plt = local_plt + locsymcount;
2133 if (! htab->elf.dynamic_sections_created)
2134 {
2135 /* Won't be used, but be safe. */
2136 for (; local_plt < end_local_plt; ++local_plt)
2137 *local_plt = (bfd_vma) -1;
2138 }
2139 else
2140 {
2141 s = htab->splt;
2142 srel = htab->srelplt;
2143 for (; local_plt < end_local_plt; ++local_plt)
2144 {
2145 if (*local_plt > 0)
2146 {
2147 *local_plt = s->_raw_size;
2148 s->_raw_size += PLT_ENTRY_SIZE;
2149 if (info->shared)
2150 srel->_raw_size += sizeof (Elf32_External_Rela);
2151 }
2152 else
2153 *local_plt = (bfd_vma) -1;
2154 }
2155 }
2156 }
2157
2158 /* Do all the .plt entries without relocs first. The dynamic linker
2159 uses the last .plt reloc to find the end of the .plt (and hence
2160 the start of the .got) for lazy linking. */
2161 elf_link_hash_traverse (&htab->elf, allocate_plt_static, info);
2162
2163 /* Allocate global sym .plt and .got entries, and space for global
2164 sym dynamic relocs. */
2165 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
2166
2167 /* The check_relocs and adjust_dynamic_symbol entry points have
2168 determined the sizes of the various dynamic sections. Allocate
2169 memory for them. */
2170 relocs = FALSE;
2171 for (s = dynobj->sections; s != NULL; s = s->next)
2172 {
2173 if ((s->flags & SEC_LINKER_CREATED) == 0)
2174 continue;
2175
2176 if (s == htab->splt)
2177 {
2178 if (htab->need_plt_stub)
2179 {
2180 /* Make space for the plt stub at the end of the .plt
2181 section. We want this stub right at the end, up
2182 against the .got section. */
2183 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2184 int pltalign = bfd_section_alignment (dynobj, s);
2185 bfd_size_type mask;
2186
2187 if (gotalign > pltalign)
2188 bfd_set_section_alignment (dynobj, s, gotalign);
2189 mask = ((bfd_size_type) 1 << gotalign) - 1;
2190 s->_raw_size = (s->_raw_size + sizeof (plt_stub) + mask) & ~mask;
2191 }
2192 }
2193 else if (s == htab->sgot)
2194 ;
2195 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
2196 {
2197 if (s->_raw_size != 0)
2198 {
2199 /* Remember whether there are any reloc sections other
2200 than .rela.plt. */
2201 if (s != htab->srelplt)
2202 relocs = TRUE;
2203
2204 /* We use the reloc_count field as a counter if we need
2205 to copy relocs into the output file. */
2206 s->reloc_count = 0;
2207 }
2208 }
2209 else
2210 {
2211 /* It's not one of our sections, so don't allocate space. */
2212 continue;
2213 }
2214
2215 if (s->_raw_size == 0)
2216 {
2217 /* If we don't need this section, strip it from the
2218 output file. This is mostly to handle .rela.bss and
2219 .rela.plt. We must create both sections in
2220 create_dynamic_sections, because they must be created
2221 before the linker maps input sections to output
2222 sections. The linker does that before
2223 adjust_dynamic_symbol is called, and it is that
2224 function which decides whether anything needs to go
2225 into these sections. */
2226 _bfd_strip_section_from_output (info, s);
2227 continue;
2228 }
2229
2230 /* Allocate memory for the section contents. Zero it, because
2231 we may not fill in all the reloc sections. */
2232 s->contents = bfd_zalloc (dynobj, s->_raw_size);
2233 if (s->contents == NULL && s->_raw_size != 0)
2234 return FALSE;
2235 }
2236
2237 if (htab->elf.dynamic_sections_created)
2238 {
2239 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2240 actually has nothing to do with the PLT, it is how we
2241 communicate the LTP value of a load module to the dynamic
2242 linker. */
2243 #define add_dynamic_entry(TAG, VAL) \
2244 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
2245
2246 if (!add_dynamic_entry (DT_PLTGOT, 0))
2247 return FALSE;
2248
2249 /* Add some entries to the .dynamic section. We fill in the
2250 values later, in elf32_hppa_finish_dynamic_sections, but we
2251 must add the entries now so that we get the correct size for
2252 the .dynamic section. The DT_DEBUG entry is filled in by the
2253 dynamic linker and used by the debugger. */
2254 if (!info->shared)
2255 {
2256 if (!add_dynamic_entry (DT_DEBUG, 0))
2257 return FALSE;
2258 }
2259
2260 if (htab->srelplt->_raw_size != 0)
2261 {
2262 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2263 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2264 || !add_dynamic_entry (DT_JMPREL, 0))
2265 return FALSE;
2266 }
2267
2268 if (relocs)
2269 {
2270 if (!add_dynamic_entry (DT_RELA, 0)
2271 || !add_dynamic_entry (DT_RELASZ, 0)
2272 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2273 return FALSE;
2274
2275 /* If any dynamic relocs apply to a read-only section,
2276 then we need a DT_TEXTREL entry. */
2277 if ((info->flags & DF_TEXTREL) == 0)
2278 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, info);
2279
2280 if ((info->flags & DF_TEXTREL) != 0)
2281 {
2282 if (!add_dynamic_entry (DT_TEXTREL, 0))
2283 return FALSE;
2284 }
2285 }
2286 }
2287 #undef add_dynamic_entry
2288
2289 return TRUE;
2290 }
2291
2292 /* External entry points for sizing and building linker stubs. */
2293
2294 /* Set up various things so that we can make a list of input sections
2295 for each output section included in the link. Returns -1 on error,
2296 0 when no stubs will be needed, and 1 on success. */
2297
2298 int
2299 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2300 {
2301 bfd *input_bfd;
2302 unsigned int bfd_count;
2303 int top_id, top_index;
2304 asection *section;
2305 asection **input_list, **list;
2306 bfd_size_type amt;
2307 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2308
2309 /* Count the number of input BFDs and find the top input section id. */
2310 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2311 input_bfd != NULL;
2312 input_bfd = input_bfd->link_next)
2313 {
2314 bfd_count += 1;
2315 for (section = input_bfd->sections;
2316 section != NULL;
2317 section = section->next)
2318 {
2319 if (top_id < section->id)
2320 top_id = section->id;
2321 }
2322 }
2323 htab->bfd_count = bfd_count;
2324
2325 amt = sizeof (struct map_stub) * (top_id + 1);
2326 htab->stub_group = bfd_zmalloc (amt);
2327 if (htab->stub_group == NULL)
2328 return -1;
2329
2330 /* We can't use output_bfd->section_count here to find the top output
2331 section index as some sections may have been removed, and
2332 _bfd_strip_section_from_output doesn't renumber the indices. */
2333 for (section = output_bfd->sections, top_index = 0;
2334 section != NULL;
2335 section = section->next)
2336 {
2337 if (top_index < section->index)
2338 top_index = section->index;
2339 }
2340
2341 htab->top_index = top_index;
2342 amt = sizeof (asection *) * (top_index + 1);
2343 input_list = bfd_malloc (amt);
2344 htab->input_list = input_list;
2345 if (input_list == NULL)
2346 return -1;
2347
2348 /* For sections we aren't interested in, mark their entries with a
2349 value we can check later. */
2350 list = input_list + top_index;
2351 do
2352 *list = bfd_abs_section_ptr;
2353 while (list-- != input_list);
2354
2355 for (section = output_bfd->sections;
2356 section != NULL;
2357 section = section->next)
2358 {
2359 if ((section->flags & SEC_CODE) != 0)
2360 input_list[section->index] = NULL;
2361 }
2362
2363 return 1;
2364 }
2365
2366 /* The linker repeatedly calls this function for each input section,
2367 in the order that input sections are linked into output sections.
2368 Build lists of input sections to determine groupings between which
2369 we may insert linker stubs. */
2370
2371 void
2372 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2373 {
2374 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2375
2376 if (isec->output_section->index <= htab->top_index)
2377 {
2378 asection **list = htab->input_list + isec->output_section->index;
2379 if (*list != bfd_abs_section_ptr)
2380 {
2381 /* Steal the link_sec pointer for our list. */
2382 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2383 /* This happens to make the list in reverse order,
2384 which is what we want. */
2385 PREV_SEC (isec) = *list;
2386 *list = isec;
2387 }
2388 }
2389 }
2390
2391 /* See whether we can group stub sections together. Grouping stub
2392 sections may result in fewer stubs. More importantly, we need to
2393 put all .init* and .fini* stubs at the beginning of the .init or
2394 .fini output sections respectively, because glibc splits the
2395 _init and _fini functions into multiple parts. Putting a stub in
2396 the middle of a function is not a good idea. */
2397
2398 static void
2399 group_sections (struct elf32_hppa_link_hash_table *htab,
2400 bfd_size_type stub_group_size,
2401 bfd_boolean stubs_always_before_branch)
2402 {
2403 asection **list = htab->input_list + htab->top_index;
2404 do
2405 {
2406 asection *tail = *list;
2407 if (tail == bfd_abs_section_ptr)
2408 continue;
2409 while (tail != NULL)
2410 {
2411 asection *curr;
2412 asection *prev;
2413 bfd_size_type total;
2414 bfd_boolean big_sec;
2415
2416 curr = tail;
2417 if (tail->_cooked_size)
2418 total = tail->_cooked_size;
2419 else
2420 total = tail->_raw_size;
2421 big_sec = total >= stub_group_size;
2422
2423 while ((prev = PREV_SEC (curr)) != NULL
2424 && ((total += curr->output_offset - prev->output_offset)
2425 < stub_group_size))
2426 curr = prev;
2427
2428 /* OK, the size from the start of CURR to the end is less
2429 than 240000 bytes and thus can be handled by one stub
2430 section. (or the tail section is itself larger than
2431 240000 bytes, in which case we may be toast.)
2432 We should really be keeping track of the total size of
2433 stubs added here, as stubs contribute to the final output
2434 section size. That's a little tricky, and this way will
2435 only break if stubs added total more than 22144 bytes, or
2436 2768 long branch stubs. It seems unlikely for more than
2437 2768 different functions to be called, especially from
2438 code only 240000 bytes long. This limit used to be
2439 250000, but c++ code tends to generate lots of little
2440 functions, and sometimes violated the assumption. */
2441 do
2442 {
2443 prev = PREV_SEC (tail);
2444 /* Set up this stub group. */
2445 htab->stub_group[tail->id].link_sec = curr;
2446 }
2447 while (tail != curr && (tail = prev) != NULL);
2448
2449 /* But wait, there's more! Input sections up to 240000
2450 bytes before the stub section can be handled by it too.
2451 Don't do this if we have a really large section after the
2452 stubs, as adding more stubs increases the chance that
2453 branches may not reach into the stub section. */
2454 if (!stubs_always_before_branch && !big_sec)
2455 {
2456 total = 0;
2457 while (prev != NULL
2458 && ((total += tail->output_offset - prev->output_offset)
2459 < stub_group_size))
2460 {
2461 tail = prev;
2462 prev = PREV_SEC (tail);
2463 htab->stub_group[tail->id].link_sec = curr;
2464 }
2465 }
2466 tail = prev;
2467 }
2468 }
2469 while (list-- != htab->input_list);
2470 free (htab->input_list);
2471 #undef PREV_SEC
2472 }
2473
2474 /* Read in all local syms for all input bfds, and create hash entries
2475 for export stubs if we are building a multi-subspace shared lib.
2476 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2477
2478 static int
2479 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2480 {
2481 unsigned int bfd_indx;
2482 Elf_Internal_Sym *local_syms, **all_local_syms;
2483 int stub_changed = 0;
2484 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2485
2486 /* We want to read in symbol extension records only once. To do this
2487 we need to read in the local symbols in parallel and save them for
2488 later use; so hold pointers to the local symbols in an array. */
2489 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2490 all_local_syms = bfd_zmalloc (amt);
2491 htab->all_local_syms = all_local_syms;
2492 if (all_local_syms == NULL)
2493 return -1;
2494
2495 /* Walk over all the input BFDs, swapping in local symbols.
2496 If we are creating a shared library, create hash entries for the
2497 export stubs. */
2498 for (bfd_indx = 0;
2499 input_bfd != NULL;
2500 input_bfd = input_bfd->link_next, bfd_indx++)
2501 {
2502 Elf_Internal_Shdr *symtab_hdr;
2503
2504 /* We'll need the symbol table in a second. */
2505 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2506 if (symtab_hdr->sh_info == 0)
2507 continue;
2508
2509 /* We need an array of the local symbols attached to the input bfd. */
2510 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2511 if (local_syms == NULL)
2512 {
2513 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2514 symtab_hdr->sh_info, 0,
2515 NULL, NULL, NULL);
2516 /* Cache them for elf_link_input_bfd. */
2517 symtab_hdr->contents = (unsigned char *) local_syms;
2518 }
2519 if (local_syms == NULL)
2520 return -1;
2521
2522 all_local_syms[bfd_indx] = local_syms;
2523
2524 if (info->shared && htab->multi_subspace)
2525 {
2526 struct elf_link_hash_entry **sym_hashes;
2527 struct elf_link_hash_entry **end_hashes;
2528 unsigned int symcount;
2529
2530 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2531 - symtab_hdr->sh_info);
2532 sym_hashes = elf_sym_hashes (input_bfd);
2533 end_hashes = sym_hashes + symcount;
2534
2535 /* Look through the global syms for functions; We need to
2536 build export stubs for all globally visible functions. */
2537 for (; sym_hashes < end_hashes; sym_hashes++)
2538 {
2539 struct elf32_hppa_link_hash_entry *hash;
2540
2541 hash = (struct elf32_hppa_link_hash_entry *) *sym_hashes;
2542
2543 while (hash->elf.root.type == bfd_link_hash_indirect
2544 || hash->elf.root.type == bfd_link_hash_warning)
2545 hash = ((struct elf32_hppa_link_hash_entry *)
2546 hash->elf.root.u.i.link);
2547
2548 /* At this point in the link, undefined syms have been
2549 resolved, so we need to check that the symbol was
2550 defined in this BFD. */
2551 if ((hash->elf.root.type == bfd_link_hash_defined
2552 || hash->elf.root.type == bfd_link_hash_defweak)
2553 && hash->elf.type == STT_FUNC
2554 && hash->elf.root.u.def.section->output_section != NULL
2555 && (hash->elf.root.u.def.section->output_section->owner
2556 == output_bfd)
2557 && hash->elf.root.u.def.section->owner == input_bfd
2558 && (hash->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
2559 && !(hash->elf.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)
2560 && ELF_ST_VISIBILITY (hash->elf.other) == STV_DEFAULT)
2561 {
2562 asection *sec;
2563 const char *stub_name;
2564 struct elf32_hppa_stub_hash_entry *stub_entry;
2565
2566 sec = hash->elf.root.u.def.section;
2567 stub_name = hash->elf.root.root.string;
2568 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
2569 stub_name,
2570 FALSE, FALSE);
2571 if (stub_entry == NULL)
2572 {
2573 stub_entry = hppa_add_stub (stub_name, sec, htab);
2574 if (!stub_entry)
2575 return -1;
2576
2577 stub_entry->target_value = hash->elf.root.u.def.value;
2578 stub_entry->target_section = hash->elf.root.u.def.section;
2579 stub_entry->stub_type = hppa_stub_export;
2580 stub_entry->h = hash;
2581 stub_changed = 1;
2582 }
2583 else
2584 {
2585 (*_bfd_error_handler) (_("%s: duplicate export stub %s"),
2586 bfd_archive_filename (input_bfd),
2587 stub_name);
2588 }
2589 }
2590 }
2591 }
2592 }
2593
2594 return stub_changed;
2595 }
2596
2597 /* Determine and set the size of the stub section for a final link.
2598
2599 The basic idea here is to examine all the relocations looking for
2600 PC-relative calls to a target that is unreachable with a "bl"
2601 instruction. */
2602
2603 bfd_boolean
2604 elf32_hppa_size_stubs
2605 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2606 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2607 asection * (*add_stub_section) (const char *, asection *),
2608 void (*layout_sections_again) (void))
2609 {
2610 bfd_size_type stub_group_size;
2611 bfd_boolean stubs_always_before_branch;
2612 bfd_boolean stub_changed;
2613 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2614
2615 /* Stash our params away. */
2616 htab->stub_bfd = stub_bfd;
2617 htab->multi_subspace = multi_subspace;
2618 htab->add_stub_section = add_stub_section;
2619 htab->layout_sections_again = layout_sections_again;
2620 stubs_always_before_branch = group_size < 0;
2621 if (group_size < 0)
2622 stub_group_size = -group_size;
2623 else
2624 stub_group_size = group_size;
2625 if (stub_group_size == 1)
2626 {
2627 /* Default values. */
2628 if (stubs_always_before_branch)
2629 {
2630 stub_group_size = 7680000;
2631 if (htab->has_17bit_branch || htab->multi_subspace)
2632 stub_group_size = 240000;
2633 if (htab->has_12bit_branch)
2634 stub_group_size = 7500;
2635 }
2636 else
2637 {
2638 stub_group_size = 6971392;
2639 if (htab->has_17bit_branch || htab->multi_subspace)
2640 stub_group_size = 217856;
2641 if (htab->has_12bit_branch)
2642 stub_group_size = 6808;
2643 }
2644 }
2645
2646 group_sections (htab, stub_group_size, stubs_always_before_branch);
2647
2648 switch (get_local_syms (output_bfd, info->input_bfds, info))
2649 {
2650 default:
2651 if (htab->all_local_syms)
2652 goto error_ret_free_local;
2653 return FALSE;
2654
2655 case 0:
2656 stub_changed = FALSE;
2657 break;
2658
2659 case 1:
2660 stub_changed = TRUE;
2661 break;
2662 }
2663
2664 while (1)
2665 {
2666 bfd *input_bfd;
2667 unsigned int bfd_indx;
2668 asection *stub_sec;
2669
2670 for (input_bfd = info->input_bfds, bfd_indx = 0;
2671 input_bfd != NULL;
2672 input_bfd = input_bfd->link_next, bfd_indx++)
2673 {
2674 Elf_Internal_Shdr *symtab_hdr;
2675 asection *section;
2676 Elf_Internal_Sym *local_syms;
2677
2678 /* We'll need the symbol table in a second. */
2679 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2680 if (symtab_hdr->sh_info == 0)
2681 continue;
2682
2683 local_syms = htab->all_local_syms[bfd_indx];
2684
2685 /* Walk over each section attached to the input bfd. */
2686 for (section = input_bfd->sections;
2687 section != NULL;
2688 section = section->next)
2689 {
2690 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2691
2692 /* If there aren't any relocs, then there's nothing more
2693 to do. */
2694 if ((section->flags & SEC_RELOC) == 0
2695 || section->reloc_count == 0)
2696 continue;
2697
2698 /* If this section is a link-once section that will be
2699 discarded, then don't create any stubs. */
2700 if (section->output_section == NULL
2701 || section->output_section->owner != output_bfd)
2702 continue;
2703
2704 /* Get the relocs. */
2705 internal_relocs
2706 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2707 info->keep_memory);
2708 if (internal_relocs == NULL)
2709 goto error_ret_free_local;
2710
2711 /* Now examine each relocation. */
2712 irela = internal_relocs;
2713 irelaend = irela + section->reloc_count;
2714 for (; irela < irelaend; irela++)
2715 {
2716 unsigned int r_type, r_indx;
2717 enum elf32_hppa_stub_type stub_type;
2718 struct elf32_hppa_stub_hash_entry *stub_entry;
2719 asection *sym_sec;
2720 bfd_vma sym_value;
2721 bfd_vma destination;
2722 struct elf32_hppa_link_hash_entry *hash;
2723 char *stub_name;
2724 const asection *id_sec;
2725
2726 r_type = ELF32_R_TYPE (irela->r_info);
2727 r_indx = ELF32_R_SYM (irela->r_info);
2728
2729 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2730 {
2731 bfd_set_error (bfd_error_bad_value);
2732 error_ret_free_internal:
2733 if (elf_section_data (section)->relocs == NULL)
2734 free (internal_relocs);
2735 goto error_ret_free_local;
2736 }
2737
2738 /* Only look for stubs on call instructions. */
2739 if (r_type != (unsigned int) R_PARISC_PCREL12F
2740 && r_type != (unsigned int) R_PARISC_PCREL17F
2741 && r_type != (unsigned int) R_PARISC_PCREL22F)
2742 continue;
2743
2744 /* Now determine the call target, its name, value,
2745 section. */
2746 sym_sec = NULL;
2747 sym_value = 0;
2748 destination = 0;
2749 hash = NULL;
2750 if (r_indx < symtab_hdr->sh_info)
2751 {
2752 /* It's a local symbol. */
2753 Elf_Internal_Sym *sym;
2754 Elf_Internal_Shdr *hdr;
2755
2756 sym = local_syms + r_indx;
2757 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2758 sym_sec = hdr->bfd_section;
2759 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2760 sym_value = sym->st_value;
2761 destination = (sym_value + irela->r_addend
2762 + sym_sec->output_offset
2763 + sym_sec->output_section->vma);
2764 }
2765 else
2766 {
2767 /* It's an external symbol. */
2768 int e_indx;
2769
2770 e_indx = r_indx - symtab_hdr->sh_info;
2771 hash = ((struct elf32_hppa_link_hash_entry *)
2772 elf_sym_hashes (input_bfd)[e_indx]);
2773
2774 while (hash->elf.root.type == bfd_link_hash_indirect
2775 || hash->elf.root.type == bfd_link_hash_warning)
2776 hash = ((struct elf32_hppa_link_hash_entry *)
2777 hash->elf.root.u.i.link);
2778
2779 if (hash->elf.root.type == bfd_link_hash_defined
2780 || hash->elf.root.type == bfd_link_hash_defweak)
2781 {
2782 sym_sec = hash->elf.root.u.def.section;
2783 sym_value = hash->elf.root.u.def.value;
2784 if (sym_sec->output_section != NULL)
2785 destination = (sym_value + irela->r_addend
2786 + sym_sec->output_offset
2787 + sym_sec->output_section->vma);
2788 }
2789 else if (hash->elf.root.type == bfd_link_hash_undefweak)
2790 {
2791 if (! info->shared)
2792 continue;
2793 }
2794 else if (hash->elf.root.type == bfd_link_hash_undefined)
2795 {
2796 if (! (info->unresolved_syms_in_objects == RM_IGNORE
2797 && (ELF_ST_VISIBILITY (hash->elf.other)
2798 == STV_DEFAULT)
2799 && hash->elf.type != STT_PARISC_MILLI))
2800 continue;
2801 }
2802 else
2803 {
2804 bfd_set_error (bfd_error_bad_value);
2805 goto error_ret_free_internal;
2806 }
2807 }
2808
2809 /* Determine what (if any) linker stub is needed. */
2810 stub_type = hppa_type_of_stub (section, irela, hash,
2811 destination, info);
2812 if (stub_type == hppa_stub_none)
2813 continue;
2814
2815 /* Support for grouping stub sections. */
2816 id_sec = htab->stub_group[section->id].link_sec;
2817
2818 /* Get the name of this stub. */
2819 stub_name = hppa_stub_name (id_sec, sym_sec, hash, irela);
2820 if (!stub_name)
2821 goto error_ret_free_internal;
2822
2823 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
2824 stub_name,
2825 FALSE, FALSE);
2826 if (stub_entry != NULL)
2827 {
2828 /* The proper stub has already been created. */
2829 free (stub_name);
2830 continue;
2831 }
2832
2833 stub_entry = hppa_add_stub (stub_name, section, htab);
2834 if (stub_entry == NULL)
2835 {
2836 free (stub_name);
2837 goto error_ret_free_internal;
2838 }
2839
2840 stub_entry->target_value = sym_value;
2841 stub_entry->target_section = sym_sec;
2842 stub_entry->stub_type = stub_type;
2843 if (info->shared)
2844 {
2845 if (stub_type == hppa_stub_import)
2846 stub_entry->stub_type = hppa_stub_import_shared;
2847 else if (stub_type == hppa_stub_long_branch)
2848 stub_entry->stub_type = hppa_stub_long_branch_shared;
2849 }
2850 stub_entry->h = hash;
2851 stub_changed = TRUE;
2852 }
2853
2854 /* We're done with the internal relocs, free them. */
2855 if (elf_section_data (section)->relocs == NULL)
2856 free (internal_relocs);
2857 }
2858 }
2859
2860 if (!stub_changed)
2861 break;
2862
2863 /* OK, we've added some stubs. Find out the new size of the
2864 stub sections. */
2865 for (stub_sec = htab->stub_bfd->sections;
2866 stub_sec != NULL;
2867 stub_sec = stub_sec->next)
2868 {
2869 stub_sec->_raw_size = 0;
2870 stub_sec->_cooked_size = 0;
2871 }
2872
2873 bfd_hash_traverse (&htab->stub_hash_table, hppa_size_one_stub, htab);
2874
2875 /* Ask the linker to do its stuff. */
2876 (*htab->layout_sections_again) ();
2877 stub_changed = FALSE;
2878 }
2879
2880 free (htab->all_local_syms);
2881 return TRUE;
2882
2883 error_ret_free_local:
2884 free (htab->all_local_syms);
2885 return FALSE;
2886 }
2887
2888 /* For a final link, this function is called after we have sized the
2889 stubs to provide a value for __gp. */
2890
2891 bfd_boolean
2892 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
2893 {
2894 struct bfd_link_hash_entry *h;
2895 asection *sec = NULL;
2896 bfd_vma gp_val = 0;
2897 struct elf32_hppa_link_hash_table *htab;
2898
2899 htab = hppa_link_hash_table (info);
2900 h = bfd_link_hash_lookup (&htab->elf.root, "$global$", FALSE, FALSE, FALSE);
2901
2902 if (h != NULL
2903 && (h->type == bfd_link_hash_defined
2904 || h->type == bfd_link_hash_defweak))
2905 {
2906 gp_val = h->u.def.value;
2907 sec = h->u.def.section;
2908 }
2909 else
2910 {
2911 asection *splt = bfd_get_section_by_name (abfd, ".plt");
2912 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2913
2914 /* Choose to point our LTP at, in this order, one of .plt, .got,
2915 or .data, if these sections exist. In the case of choosing
2916 .plt try to make the LTP ideal for addressing anywhere in the
2917 .plt or .got with a 14 bit signed offset. Typically, the end
2918 of the .plt is the start of the .got, so choose .plt + 0x2000
2919 if either the .plt or .got is larger than 0x2000. If both
2920 the .plt and .got are smaller than 0x2000, choose the end of
2921 the .plt section. */
2922 sec = splt;
2923 if (sec != NULL)
2924 {
2925 gp_val = sec->_raw_size;
2926 if (gp_val > 0x2000 || (sgot && sgot->_raw_size > 0x2000))
2927 {
2928 gp_val = 0x2000;
2929 }
2930 }
2931 else
2932 {
2933 sec = sgot;
2934 if (sec != NULL)
2935 {
2936 /* We know we don't have a .plt. If .got is large,
2937 offset our LTP. */
2938 if (sec->_raw_size > 0x2000)
2939 gp_val = 0x2000;
2940 }
2941 else
2942 {
2943 /* No .plt or .got. Who cares what the LTP is? */
2944 sec = bfd_get_section_by_name (abfd, ".data");
2945 }
2946 }
2947
2948 if (h != NULL)
2949 {
2950 h->type = bfd_link_hash_defined;
2951 h->u.def.value = gp_val;
2952 if (sec != NULL)
2953 h->u.def.section = sec;
2954 else
2955 h->u.def.section = bfd_abs_section_ptr;
2956 }
2957 }
2958
2959 if (sec != NULL && sec->output_section != NULL)
2960 gp_val += sec->output_section->vma + sec->output_offset;
2961
2962 elf_gp (abfd) = gp_val;
2963 return TRUE;
2964 }
2965
2966 /* Build all the stubs associated with the current output file. The
2967 stubs are kept in a hash table attached to the main linker hash
2968 table. We also set up the .plt entries for statically linked PIC
2969 functions here. This function is called via hppaelf_finish in the
2970 linker. */
2971
2972 bfd_boolean
2973 elf32_hppa_build_stubs (struct bfd_link_info *info)
2974 {
2975 asection *stub_sec;
2976 struct bfd_hash_table *table;
2977 struct elf32_hppa_link_hash_table *htab;
2978
2979 htab = hppa_link_hash_table (info);
2980
2981 for (stub_sec = htab->stub_bfd->sections;
2982 stub_sec != NULL;
2983 stub_sec = stub_sec->next)
2984 {
2985 bfd_size_type size;
2986
2987 /* Allocate memory to hold the linker stubs. */
2988 size = stub_sec->_raw_size;
2989 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
2990 if (stub_sec->contents == NULL && size != 0)
2991 return FALSE;
2992 stub_sec->_raw_size = 0;
2993 }
2994
2995 /* Build the stubs as directed by the stub hash table. */
2996 table = &htab->stub_hash_table;
2997 bfd_hash_traverse (table, hppa_build_one_stub, info);
2998
2999 return TRUE;
3000 }
3001
3002 /* Perform a final link. */
3003
3004 static bfd_boolean
3005 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3006 {
3007 /* Invoke the regular ELF linker to do all the work. */
3008 if (!bfd_elf32_bfd_final_link (abfd, info))
3009 return FALSE;
3010
3011 /* If we're producing a final executable, sort the contents of the
3012 unwind section. */
3013 return elf_hppa_sort_unwind (abfd);
3014 }
3015
3016 /* Record the lowest address for the data and text segments. */
3017
3018 static void
3019 hppa_record_segment_addr (bfd *abfd ATTRIBUTE_UNUSED,
3020 asection *section,
3021 void *data)
3022 {
3023 struct elf32_hppa_link_hash_table *htab;
3024
3025 htab = (struct elf32_hppa_link_hash_table *) data;
3026
3027 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3028 {
3029 bfd_vma value = section->vma - section->filepos;
3030
3031 if ((section->flags & SEC_READONLY) != 0)
3032 {
3033 if (value < htab->text_segment_base)
3034 htab->text_segment_base = value;
3035 }
3036 else
3037 {
3038 if (value < htab->data_segment_base)
3039 htab->data_segment_base = value;
3040 }
3041 }
3042 }
3043
3044 /* Perform a relocation as part of a final link. */
3045
3046 static bfd_reloc_status_type
3047 final_link_relocate (asection *input_section,
3048 bfd_byte *contents,
3049 const Elf_Internal_Rela *rel,
3050 bfd_vma value,
3051 struct elf32_hppa_link_hash_table *htab,
3052 asection *sym_sec,
3053 struct elf32_hppa_link_hash_entry *h,
3054 struct bfd_link_info *info)
3055 {
3056 int insn;
3057 unsigned int r_type = ELF32_R_TYPE (rel->r_info);
3058 unsigned int orig_r_type = r_type;
3059 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3060 int r_format = howto->bitsize;
3061 enum hppa_reloc_field_selector_type_alt r_field;
3062 bfd *input_bfd = input_section->owner;
3063 bfd_vma offset = rel->r_offset;
3064 bfd_vma max_branch_offset = 0;
3065 bfd_byte *hit_data = contents + offset;
3066 bfd_signed_vma addend = rel->r_addend;
3067 bfd_vma location;
3068 struct elf32_hppa_stub_hash_entry *stub_entry = NULL;
3069 int val;
3070
3071 if (r_type == R_PARISC_NONE)
3072 return bfd_reloc_ok;
3073
3074 insn = bfd_get_32 (input_bfd, hit_data);
3075
3076 /* Find out where we are and where we're going. */
3077 location = (offset +
3078 input_section->output_offset +
3079 input_section->output_section->vma);
3080
3081 /* If we are not building a shared library, convert DLTIND relocs to
3082 DPREL relocs. */
3083 if (!info->shared)
3084 {
3085 switch (r_type)
3086 {
3087 case R_PARISC_DLTIND21L:
3088 r_type = R_PARISC_DPREL21L;
3089 break;
3090
3091 case R_PARISC_DLTIND14R:
3092 r_type = R_PARISC_DPREL14R;
3093 break;
3094
3095 case R_PARISC_DLTIND14F:
3096 r_type = R_PARISC_DPREL14F;
3097 break;
3098 }
3099 }
3100
3101 switch (r_type)
3102 {
3103 case R_PARISC_PCREL12F:
3104 case R_PARISC_PCREL17F:
3105 case R_PARISC_PCREL22F:
3106 /* If this call should go via the plt, find the import stub in
3107 the stub hash. */
3108 if (sym_sec == NULL
3109 || sym_sec->output_section == NULL
3110 || (h != NULL
3111 && h->elf.plt.offset != (bfd_vma) -1
3112 && h->elf.dynindx != -1
3113 && !h->plabel
3114 && (info->shared
3115 || !(h->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
3116 || h->elf.root.type == bfd_link_hash_defweak)))
3117 {
3118 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3119 h, rel, htab);
3120 if (stub_entry != NULL)
3121 {
3122 value = (stub_entry->stub_offset
3123 + stub_entry->stub_sec->output_offset
3124 + stub_entry->stub_sec->output_section->vma);
3125 addend = 0;
3126 }
3127 else if (sym_sec == NULL && h != NULL
3128 && h->elf.root.type == bfd_link_hash_undefweak)
3129 {
3130 /* It's OK if undefined weak. Calls to undefined weak
3131 symbols behave as if the "called" function
3132 immediately returns. We can thus call to a weak
3133 function without first checking whether the function
3134 is defined. */
3135 value = location;
3136 addend = 8;
3137 }
3138 else
3139 return bfd_reloc_undefined;
3140 }
3141 /* Fall thru. */
3142
3143 case R_PARISC_PCREL21L:
3144 case R_PARISC_PCREL17C:
3145 case R_PARISC_PCREL17R:
3146 case R_PARISC_PCREL14R:
3147 case R_PARISC_PCREL14F:
3148 case R_PARISC_PCREL32:
3149 /* Make it a pc relative offset. */
3150 value -= location;
3151 addend -= 8;
3152 break;
3153
3154 case R_PARISC_DPREL21L:
3155 case R_PARISC_DPREL14R:
3156 case R_PARISC_DPREL14F:
3157 /* Convert instructions that use the linkage table pointer (r19) to
3158 instructions that use the global data pointer (dp). This is the
3159 most efficient way of using PIC code in an incomplete executable,
3160 but the user must follow the standard runtime conventions for
3161 accessing data for this to work. */
3162 if (orig_r_type == R_PARISC_DLTIND21L)
3163 {
3164 /* Convert addil instructions if the original reloc was a
3165 DLTIND21L. GCC sometimes uses a register other than r19 for
3166 the operation, so we must convert any addil instruction
3167 that uses this relocation. */
3168 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3169 insn = ADDIL_DP;
3170 else
3171 /* We must have a ldil instruction. It's too hard to find
3172 and convert the associated add instruction, so issue an
3173 error. */
3174 (*_bfd_error_handler)
3175 (_("%s(%s+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3176 bfd_archive_filename (input_bfd),
3177 input_section->name,
3178 (long) rel->r_offset,
3179 howto->name,
3180 insn);
3181 }
3182 else if (orig_r_type == R_PARISC_DLTIND14F)
3183 {
3184 /* This must be a format 1 load/store. Change the base
3185 register to dp. */
3186 insn = (insn & 0xfc1ffff) | (27 << 21);
3187 }
3188
3189 /* For all the DP relative relocations, we need to examine the symbol's
3190 section. If it has no section or if it's a code section, then
3191 "data pointer relative" makes no sense. In that case we don't
3192 adjust the "value", and for 21 bit addil instructions, we change the
3193 source addend register from %dp to %r0. This situation commonly
3194 arises for undefined weak symbols and when a variable's "constness"
3195 is declared differently from the way the variable is defined. For
3196 instance: "extern int foo" with foo defined as "const int foo". */
3197 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3198 {
3199 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3200 == (((int) OP_ADDIL << 26) | (27 << 21)))
3201 {
3202 insn &= ~ (0x1f << 21);
3203 #if 0 /* debug them. */
3204 (*_bfd_error_handler)
3205 (_("%s(%s+0x%lx): fixing %s"),
3206 bfd_archive_filename (input_bfd),
3207 input_section->name,
3208 (long) rel->r_offset,
3209 howto->name);
3210 #endif
3211 }
3212 /* Now try to make things easy for the dynamic linker. */
3213
3214 break;
3215 }
3216 /* Fall thru. */
3217
3218 case R_PARISC_DLTIND21L:
3219 case R_PARISC_DLTIND14R:
3220 case R_PARISC_DLTIND14F:
3221 value -= elf_gp (input_section->output_section->owner);
3222 break;
3223
3224 case R_PARISC_SEGREL32:
3225 if ((sym_sec->flags & SEC_CODE) != 0)
3226 value -= htab->text_segment_base;
3227 else
3228 value -= htab->data_segment_base;
3229 break;
3230
3231 default:
3232 break;
3233 }
3234
3235 switch (r_type)
3236 {
3237 case R_PARISC_DIR32:
3238 case R_PARISC_DIR14F:
3239 case R_PARISC_DIR17F:
3240 case R_PARISC_PCREL17C:
3241 case R_PARISC_PCREL14F:
3242 case R_PARISC_PCREL32:
3243 case R_PARISC_DPREL14F:
3244 case R_PARISC_PLABEL32:
3245 case R_PARISC_DLTIND14F:
3246 case R_PARISC_SEGBASE:
3247 case R_PARISC_SEGREL32:
3248 r_field = e_fsel;
3249 break;
3250
3251 case R_PARISC_DLTIND21L:
3252 case R_PARISC_PCREL21L:
3253 case R_PARISC_PLABEL21L:
3254 r_field = e_lsel;
3255 break;
3256
3257 case R_PARISC_DIR21L:
3258 case R_PARISC_DPREL21L:
3259 r_field = e_lrsel;
3260 break;
3261
3262 case R_PARISC_PCREL17R:
3263 case R_PARISC_PCREL14R:
3264 case R_PARISC_PLABEL14R:
3265 case R_PARISC_DLTIND14R:
3266 r_field = e_rsel;
3267 break;
3268
3269 case R_PARISC_DIR17R:
3270 case R_PARISC_DIR14R:
3271 case R_PARISC_DPREL14R:
3272 r_field = e_rrsel;
3273 break;
3274
3275 case R_PARISC_PCREL12F:
3276 case R_PARISC_PCREL17F:
3277 case R_PARISC_PCREL22F:
3278 r_field = e_fsel;
3279
3280 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3281 {
3282 max_branch_offset = (1 << (17-1)) << 2;
3283 }
3284 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3285 {
3286 max_branch_offset = (1 << (12-1)) << 2;
3287 }
3288 else
3289 {
3290 max_branch_offset = (1 << (22-1)) << 2;
3291 }
3292
3293 /* sym_sec is NULL on undefined weak syms or when shared on
3294 undefined syms. We've already checked for a stub for the
3295 shared undefined case. */
3296 if (sym_sec == NULL)
3297 break;
3298
3299 /* If the branch is out of reach, then redirect the
3300 call to the local stub for this function. */
3301 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3302 {
3303 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3304 h, rel, htab);
3305 if (stub_entry == NULL)
3306 return bfd_reloc_undefined;
3307
3308 /* Munge up the value and addend so that we call the stub
3309 rather than the procedure directly. */
3310 value = (stub_entry->stub_offset
3311 + stub_entry->stub_sec->output_offset
3312 + stub_entry->stub_sec->output_section->vma
3313 - location);
3314 addend = -8;
3315 }
3316 break;
3317
3318 /* Something we don't know how to handle. */
3319 default:
3320 return bfd_reloc_notsupported;
3321 }
3322
3323 /* Make sure we can reach the stub. */
3324 if (max_branch_offset != 0
3325 && value + addend + max_branch_offset >= 2*max_branch_offset)
3326 {
3327 (*_bfd_error_handler)
3328 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3329 bfd_archive_filename (input_bfd),
3330 input_section->name,
3331 (long) rel->r_offset,
3332 stub_entry->root.string);
3333 bfd_set_error (bfd_error_bad_value);
3334 return bfd_reloc_notsupported;
3335 }
3336
3337 val = hppa_field_adjust (value, addend, r_field);
3338
3339 switch (r_type)
3340 {
3341 case R_PARISC_PCREL12F:
3342 case R_PARISC_PCREL17C:
3343 case R_PARISC_PCREL17F:
3344 case R_PARISC_PCREL17R:
3345 case R_PARISC_PCREL22F:
3346 case R_PARISC_DIR17F:
3347 case R_PARISC_DIR17R:
3348 /* This is a branch. Divide the offset by four.
3349 Note that we need to decide whether it's a branch or
3350 otherwise by inspecting the reloc. Inspecting insn won't
3351 work as insn might be from a .word directive. */
3352 val >>= 2;
3353 break;
3354
3355 default:
3356 break;
3357 }
3358
3359 insn = hppa_rebuild_insn (insn, val, r_format);
3360
3361 /* Update the instruction word. */
3362 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3363 return bfd_reloc_ok;
3364 }
3365
3366 /* Relocate an HPPA ELF section. */
3367
3368 static bfd_boolean
3369 elf32_hppa_relocate_section (bfd *output_bfd,
3370 struct bfd_link_info *info,
3371 bfd *input_bfd,
3372 asection *input_section,
3373 bfd_byte *contents,
3374 Elf_Internal_Rela *relocs,
3375 Elf_Internal_Sym *local_syms,
3376 asection **local_sections)
3377 {
3378 bfd_vma *local_got_offsets;
3379 struct elf32_hppa_link_hash_table *htab;
3380 Elf_Internal_Shdr *symtab_hdr;
3381 Elf_Internal_Rela *rel;
3382 Elf_Internal_Rela *relend;
3383
3384 if (info->relocatable)
3385 return TRUE;
3386
3387 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3388
3389 htab = hppa_link_hash_table (info);
3390 local_got_offsets = elf_local_got_offsets (input_bfd);
3391
3392 rel = relocs;
3393 relend = relocs + input_section->reloc_count;
3394 for (; rel < relend; rel++)
3395 {
3396 unsigned int r_type;
3397 reloc_howto_type *howto;
3398 unsigned int r_symndx;
3399 struct elf32_hppa_link_hash_entry *h;
3400 Elf_Internal_Sym *sym;
3401 asection *sym_sec;
3402 bfd_vma relocation;
3403 bfd_reloc_status_type r;
3404 const char *sym_name;
3405 bfd_boolean plabel;
3406 bfd_boolean warned_undef;
3407
3408 r_type = ELF32_R_TYPE (rel->r_info);
3409 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3410 {
3411 bfd_set_error (bfd_error_bad_value);
3412 return FALSE;
3413 }
3414 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3415 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3416 continue;
3417
3418 /* This is a final link. */
3419 r_symndx = ELF32_R_SYM (rel->r_info);
3420 h = NULL;
3421 sym = NULL;
3422 sym_sec = NULL;
3423 warned_undef = FALSE;
3424 if (r_symndx < symtab_hdr->sh_info)
3425 {
3426 /* This is a local symbol, h defaults to NULL. */
3427 sym = local_syms + r_symndx;
3428 sym_sec = local_sections[r_symndx];
3429 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rel);
3430 }
3431 else
3432 {
3433 struct elf_link_hash_entry *hh;
3434 bfd_boolean unresolved_reloc;
3435
3436 RELOC_FOR_GLOBAL_SYMBOL (hh, elf_sym_hashes (input_bfd), r_symndx, symtab_hdr,
3437 relocation, sym_sec, unresolved_reloc, info,
3438 warned_undef);
3439
3440 if (relocation == 0
3441 && hh->root.type != bfd_link_hash_defined
3442 && hh->root.type != bfd_link_hash_defweak
3443 && hh->root.type != bfd_link_hash_undefweak)
3444 {
3445 if (info->unresolved_syms_in_objects == RM_IGNORE
3446 && ELF_ST_VISIBILITY (hh->other) == STV_DEFAULT
3447 && hh->type == STT_PARISC_MILLI)
3448 {
3449 if (! info->callbacks->undefined_symbol
3450 (info, hh->root.root.string, input_bfd,
3451 input_section, rel->r_offset, FALSE))
3452 return FALSE;
3453 warned_undef = TRUE;
3454 }
3455 }
3456 h = (struct elf32_hppa_link_hash_entry *) hh;
3457 }
3458
3459 /* Do any required modifications to the relocation value, and
3460 determine what types of dynamic info we need to output, if
3461 any. */
3462 plabel = 0;
3463 switch (r_type)
3464 {
3465 case R_PARISC_DLTIND14F:
3466 case R_PARISC_DLTIND14R:
3467 case R_PARISC_DLTIND21L:
3468 {
3469 bfd_vma off;
3470 bfd_boolean do_got = 0;
3471
3472 /* Relocation is to the entry for this symbol in the
3473 global offset table. */
3474 if (h != NULL)
3475 {
3476 bfd_boolean dyn;
3477
3478 off = h->elf.got.offset;
3479 dyn = htab->elf.dynamic_sections_created;
3480 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, &h->elf))
3481 {
3482 /* If we aren't going to call finish_dynamic_symbol,
3483 then we need to handle initialisation of the .got
3484 entry and create needed relocs here. Since the
3485 offset must always be a multiple of 4, we use the
3486 least significant bit to record whether we have
3487 initialised it already. */
3488 if ((off & 1) != 0)
3489 off &= ~1;
3490 else
3491 {
3492 h->elf.got.offset |= 1;
3493 do_got = 1;
3494 }
3495 }
3496 }
3497 else
3498 {
3499 /* Local symbol case. */
3500 if (local_got_offsets == NULL)
3501 abort ();
3502
3503 off = local_got_offsets[r_symndx];
3504
3505 /* The offset must always be a multiple of 4. We use
3506 the least significant bit to record whether we have
3507 already generated the necessary reloc. */
3508 if ((off & 1) != 0)
3509 off &= ~1;
3510 else
3511 {
3512 local_got_offsets[r_symndx] |= 1;
3513 do_got = 1;
3514 }
3515 }
3516
3517 if (do_got)
3518 {
3519 if (info->shared)
3520 {
3521 /* Output a dynamic relocation for this GOT entry.
3522 In this case it is relative to the base of the
3523 object because the symbol index is zero. */
3524 Elf_Internal_Rela outrel;
3525 bfd_byte *loc;
3526 asection *s = htab->srelgot;
3527
3528 outrel.r_offset = (off
3529 + htab->sgot->output_offset
3530 + htab->sgot->output_section->vma);
3531 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3532 outrel.r_addend = relocation;
3533 loc = s->contents;
3534 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3535 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3536 }
3537 else
3538 bfd_put_32 (output_bfd, relocation,
3539 htab->sgot->contents + off);
3540 }
3541
3542 if (off >= (bfd_vma) -2)
3543 abort ();
3544
3545 /* Add the base of the GOT to the relocation value. */
3546 relocation = (off
3547 + htab->sgot->output_offset
3548 + htab->sgot->output_section->vma);
3549 }
3550 break;
3551
3552 case R_PARISC_SEGREL32:
3553 /* If this is the first SEGREL relocation, then initialize
3554 the segment base values. */
3555 if (htab->text_segment_base == (bfd_vma) -1)
3556 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3557 break;
3558
3559 case R_PARISC_PLABEL14R:
3560 case R_PARISC_PLABEL21L:
3561 case R_PARISC_PLABEL32:
3562 if (htab->elf.dynamic_sections_created)
3563 {
3564 bfd_vma off;
3565 bfd_boolean do_plt = 0;
3566
3567 /* If we have a global symbol with a PLT slot, then
3568 redirect this relocation to it. */
3569 if (h != NULL)
3570 {
3571 off = h->elf.plt.offset;
3572 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, &h->elf))
3573 {
3574 /* In a non-shared link, adjust_dynamic_symbols
3575 isn't called for symbols forced local. We
3576 need to write out the plt entry here. */
3577 if ((off & 1) != 0)
3578 off &= ~1;
3579 else
3580 {
3581 h->elf.plt.offset |= 1;
3582 do_plt = 1;
3583 }
3584 }
3585 }
3586 else
3587 {
3588 bfd_vma *local_plt_offsets;
3589
3590 if (local_got_offsets == NULL)
3591 abort ();
3592
3593 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3594 off = local_plt_offsets[r_symndx];
3595
3596 /* As for the local .got entry case, we use the last
3597 bit to record whether we've already initialised
3598 this local .plt entry. */
3599 if ((off & 1) != 0)
3600 off &= ~1;
3601 else
3602 {
3603 local_plt_offsets[r_symndx] |= 1;
3604 do_plt = 1;
3605 }
3606 }
3607
3608 if (do_plt)
3609 {
3610 if (info->shared)
3611 {
3612 /* Output a dynamic IPLT relocation for this
3613 PLT entry. */
3614 Elf_Internal_Rela outrel;
3615 bfd_byte *loc;
3616 asection *s = htab->srelplt;
3617
3618 outrel.r_offset = (off
3619 + htab->splt->output_offset
3620 + htab->splt->output_section->vma);
3621 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3622 outrel.r_addend = relocation;
3623 loc = s->contents;
3624 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3625 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3626 }
3627 else
3628 {
3629 bfd_put_32 (output_bfd,
3630 relocation,
3631 htab->splt->contents + off);
3632 bfd_put_32 (output_bfd,
3633 elf_gp (htab->splt->output_section->owner),
3634 htab->splt->contents + off + 4);
3635 }
3636 }
3637
3638 if (off >= (bfd_vma) -2)
3639 abort ();
3640
3641 /* PLABELs contain function pointers. Relocation is to
3642 the entry for the function in the .plt. The magic +2
3643 offset signals to $$dyncall that the function pointer
3644 is in the .plt and thus has a gp pointer too.
3645 Exception: Undefined PLABELs should have a value of
3646 zero. */
3647 if (h == NULL
3648 || (h->elf.root.type != bfd_link_hash_undefweak
3649 && h->elf.root.type != bfd_link_hash_undefined))
3650 {
3651 relocation = (off
3652 + htab->splt->output_offset
3653 + htab->splt->output_section->vma
3654 + 2);
3655 }
3656 plabel = 1;
3657 }
3658 /* Fall through and possibly emit a dynamic relocation. */
3659
3660 case R_PARISC_DIR17F:
3661 case R_PARISC_DIR17R:
3662 case R_PARISC_DIR14F:
3663 case R_PARISC_DIR14R:
3664 case R_PARISC_DIR21L:
3665 case R_PARISC_DPREL14F:
3666 case R_PARISC_DPREL14R:
3667 case R_PARISC_DPREL21L:
3668 case R_PARISC_DIR32:
3669 /* r_symndx will be zero only for relocs against symbols
3670 from removed linkonce sections, or sections discarded by
3671 a linker script. */
3672 if (r_symndx == 0
3673 || (input_section->flags & SEC_ALLOC) == 0)
3674 break;
3675
3676 /* The reloc types handled here and this conditional
3677 expression must match the code in ..check_relocs and
3678 allocate_dynrelocs. ie. We need exactly the same condition
3679 as in ..check_relocs, with some extra conditions (dynindx
3680 test in this case) to cater for relocs removed by
3681 allocate_dynrelocs. If you squint, the non-shared test
3682 here does indeed match the one in ..check_relocs, the
3683 difference being that here we test DEF_DYNAMIC as well as
3684 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3685 which is why we can't use just that test here.
3686 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3687 there all files have not been loaded. */
3688 if ((info->shared
3689 && (h == NULL
3690 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
3691 || h->elf.root.type != bfd_link_hash_undefweak)
3692 && (IS_ABSOLUTE_RELOC (r_type)
3693 || !SYMBOL_CALLS_LOCAL (info, &h->elf)))
3694 || (!info->shared
3695 && h != NULL
3696 && h->elf.dynindx != -1
3697 && (h->elf.elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
3698 && ((ELIMINATE_COPY_RELOCS
3699 && (h->elf.elf_link_hash_flags
3700 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3701 && (h->elf.elf_link_hash_flags
3702 & ELF_LINK_HASH_DEF_REGULAR) == 0)
3703 || h->elf.root.type == bfd_link_hash_undefweak
3704 || h->elf.root.type == bfd_link_hash_undefined)))
3705 {
3706 Elf_Internal_Rela outrel;
3707 bfd_boolean skip;
3708 asection *sreloc;
3709 bfd_byte *loc;
3710
3711 /* When generating a shared object, these relocations
3712 are copied into the output file to be resolved at run
3713 time. */
3714
3715 outrel.r_addend = rel->r_addend;
3716 outrel.r_offset =
3717 _bfd_elf_section_offset (output_bfd, info, input_section,
3718 rel->r_offset);
3719 skip = (outrel.r_offset == (bfd_vma) -1
3720 || outrel.r_offset == (bfd_vma) -2);
3721 outrel.r_offset += (input_section->output_offset
3722 + input_section->output_section->vma);
3723
3724 if (skip)
3725 {
3726 memset (&outrel, 0, sizeof (outrel));
3727 }
3728 else if (h != NULL
3729 && h->elf.dynindx != -1
3730 && (plabel
3731 || !IS_ABSOLUTE_RELOC (r_type)
3732 || !info->shared
3733 || !info->symbolic
3734 || (h->elf.elf_link_hash_flags
3735 & ELF_LINK_HASH_DEF_REGULAR) == 0))
3736 {
3737 outrel.r_info = ELF32_R_INFO (h->elf.dynindx, r_type);
3738 }
3739 else /* It's a local symbol, or one marked to become local. */
3740 {
3741 int indx = 0;
3742
3743 /* Add the absolute offset of the symbol. */
3744 outrel.r_addend += relocation;
3745
3746 /* Global plabels need to be processed by the
3747 dynamic linker so that functions have at most one
3748 fptr. For this reason, we need to differentiate
3749 between global and local plabels, which we do by
3750 providing the function symbol for a global plabel
3751 reloc, and no symbol for local plabels. */
3752 if (! plabel
3753 && sym_sec != NULL
3754 && sym_sec->output_section != NULL
3755 && ! bfd_is_abs_section (sym_sec))
3756 {
3757 /* Skip this relocation if the output section has
3758 been discarded. */
3759 if (bfd_is_abs_section (sym_sec->output_section))
3760 break;
3761
3762 indx = elf_section_data (sym_sec->output_section)->dynindx;
3763 /* We are turning this relocation into one
3764 against a section symbol, so subtract out the
3765 output section's address but not the offset
3766 of the input section in the output section. */
3767 outrel.r_addend -= sym_sec->output_section->vma;
3768 }
3769
3770 outrel.r_info = ELF32_R_INFO (indx, r_type);
3771 }
3772 #if 0
3773 /* EH info can cause unaligned DIR32 relocs.
3774 Tweak the reloc type for the dynamic linker. */
3775 if (r_type == R_PARISC_DIR32 && (outrel.r_offset & 3) != 0)
3776 outrel.r_info = ELF32_R_INFO (ELF32_R_SYM (outrel.r_info),
3777 R_PARISC_DIR32U);
3778 #endif
3779 sreloc = elf_section_data (input_section)->sreloc;
3780 if (sreloc == NULL)
3781 abort ();
3782
3783 loc = sreloc->contents;
3784 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3785 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3786 }
3787 break;
3788
3789 default:
3790 break;
3791 }
3792
3793 r = final_link_relocate (input_section, contents, rel, relocation,
3794 htab, sym_sec, h, info);
3795
3796 if (r == bfd_reloc_ok)
3797 continue;
3798
3799 if (h != NULL)
3800 sym_name = h->elf.root.root.string;
3801 else
3802 {
3803 sym_name = bfd_elf_string_from_elf_section (input_bfd,
3804 symtab_hdr->sh_link,
3805 sym->st_name);
3806 if (sym_name == NULL)
3807 return FALSE;
3808 if (*sym_name == '\0')
3809 sym_name = bfd_section_name (input_bfd, sym_sec);
3810 }
3811
3812 howto = elf_hppa_howto_table + r_type;
3813
3814 if (r == bfd_reloc_undefined || r == bfd_reloc_notsupported)
3815 {
3816 if (r == bfd_reloc_notsupported || !warned_undef)
3817 {
3818 (*_bfd_error_handler)
3819 (_("%s(%s+0x%lx): cannot handle %s for %s"),
3820 bfd_archive_filename (input_bfd),
3821 input_section->name,
3822 (long) rel->r_offset,
3823 howto->name,
3824 sym_name);
3825 bfd_set_error (bfd_error_bad_value);
3826 return FALSE;
3827 }
3828 }
3829 else
3830 {
3831 if (!((*info->callbacks->reloc_overflow)
3832 (info, sym_name, howto->name, 0, input_bfd, input_section,
3833 rel->r_offset)))
3834 return FALSE;
3835 }
3836 }
3837
3838 return TRUE;
3839 }
3840
3841 /* Finish up dynamic symbol handling. We set the contents of various
3842 dynamic sections here. */
3843
3844 static bfd_boolean
3845 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
3846 struct bfd_link_info *info,
3847 struct elf_link_hash_entry *h,
3848 Elf_Internal_Sym *sym)
3849 {
3850 struct elf32_hppa_link_hash_table *htab;
3851 Elf_Internal_Rela rel;
3852 bfd_byte *loc;
3853
3854 htab = hppa_link_hash_table (info);
3855
3856 if (h->plt.offset != (bfd_vma) -1)
3857 {
3858 bfd_vma value;
3859
3860 if (h->plt.offset & 1)
3861 abort ();
3862
3863 /* This symbol has an entry in the procedure linkage table. Set
3864 it up.
3865
3866 The format of a plt entry is
3867 <funcaddr>
3868 <__gp>
3869 */
3870 value = 0;
3871 if (h->root.type == bfd_link_hash_defined
3872 || h->root.type == bfd_link_hash_defweak)
3873 {
3874 value = h->root.u.def.value;
3875 if (h->root.u.def.section->output_section != NULL)
3876 value += (h->root.u.def.section->output_offset
3877 + h->root.u.def.section->output_section->vma);
3878 }
3879
3880 /* Create a dynamic IPLT relocation for this entry. */
3881 rel.r_offset = (h->plt.offset
3882 + htab->splt->output_offset
3883 + htab->splt->output_section->vma);
3884 if (h->dynindx != -1)
3885 {
3886 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_IPLT);
3887 rel.r_addend = 0;
3888 }
3889 else
3890 {
3891 /* This symbol has been marked to become local, and is
3892 used by a plabel so must be kept in the .plt. */
3893 rel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3894 rel.r_addend = value;
3895 }
3896
3897 loc = htab->srelplt->contents;
3898 loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
3899 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rel, loc);
3900
3901 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3902 {
3903 /* Mark the symbol as undefined, rather than as defined in
3904 the .plt section. Leave the value alone. */
3905 sym->st_shndx = SHN_UNDEF;
3906 }
3907 }
3908
3909 if (h->got.offset != (bfd_vma) -1)
3910 {
3911 /* This symbol has an entry in the global offset table. Set it
3912 up. */
3913
3914 rel.r_offset = ((h->got.offset &~ (bfd_vma) 1)
3915 + htab->sgot->output_offset
3916 + htab->sgot->output_section->vma);
3917
3918 /* If this is a -Bsymbolic link and the symbol is defined
3919 locally or was forced to be local because of a version file,
3920 we just want to emit a RELATIVE reloc. The entry in the
3921 global offset table will already have been initialized in the
3922 relocate_section function. */
3923 if (info->shared
3924 && (info->symbolic || h->dynindx == -1)
3925 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
3926 {
3927 rel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3928 rel.r_addend = (h->root.u.def.value
3929 + h->root.u.def.section->output_offset
3930 + h->root.u.def.section->output_section->vma);
3931 }
3932 else
3933 {
3934 if ((h->got.offset & 1) != 0)
3935 abort ();
3936 bfd_put_32 (output_bfd, 0, htab->sgot->contents + h->got.offset);
3937 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_DIR32);
3938 rel.r_addend = 0;
3939 }
3940
3941 loc = htab->srelgot->contents;
3942 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
3943 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
3944 }
3945
3946 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
3947 {
3948 asection *s;
3949
3950 /* This symbol needs a copy reloc. Set it up. */
3951
3952 if (! (h->dynindx != -1
3953 && (h->root.type == bfd_link_hash_defined
3954 || h->root.type == bfd_link_hash_defweak)))
3955 abort ();
3956
3957 s = htab->srelbss;
3958
3959 rel.r_offset = (h->root.u.def.value
3960 + h->root.u.def.section->output_offset
3961 + h->root.u.def.section->output_section->vma);
3962 rel.r_addend = 0;
3963 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_COPY);
3964 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
3965 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
3966 }
3967
3968 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3969 if (h->root.root.string[0] == '_'
3970 && (strcmp (h->root.root.string, "_DYNAMIC") == 0
3971 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0))
3972 {
3973 sym->st_shndx = SHN_ABS;
3974 }
3975
3976 return TRUE;
3977 }
3978
3979 /* Used to decide how to sort relocs in an optimal manner for the
3980 dynamic linker, before writing them out. */
3981
3982 static enum elf_reloc_type_class
3983 elf32_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
3984 {
3985 if (ELF32_R_SYM (rela->r_info) == 0)
3986 return reloc_class_relative;
3987
3988 switch ((int) ELF32_R_TYPE (rela->r_info))
3989 {
3990 case R_PARISC_IPLT:
3991 return reloc_class_plt;
3992 case R_PARISC_COPY:
3993 return reloc_class_copy;
3994 default:
3995 return reloc_class_normal;
3996 }
3997 }
3998
3999 /* Finish up the dynamic sections. */
4000
4001 static bfd_boolean
4002 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4003 struct bfd_link_info *info)
4004 {
4005 bfd *dynobj;
4006 struct elf32_hppa_link_hash_table *htab;
4007 asection *sdyn;
4008
4009 htab = hppa_link_hash_table (info);
4010 dynobj = htab->elf.dynobj;
4011
4012 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4013
4014 if (htab->elf.dynamic_sections_created)
4015 {
4016 Elf32_External_Dyn *dyncon, *dynconend;
4017
4018 if (sdyn == NULL)
4019 abort ();
4020
4021 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4022 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
4023 for (; dyncon < dynconend; dyncon++)
4024 {
4025 Elf_Internal_Dyn dyn;
4026 asection *s;
4027
4028 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4029
4030 switch (dyn.d_tag)
4031 {
4032 default:
4033 continue;
4034
4035 case DT_PLTGOT:
4036 /* Use PLTGOT to set the GOT register. */
4037 dyn.d_un.d_ptr = elf_gp (output_bfd);
4038 break;
4039
4040 case DT_JMPREL:
4041 s = htab->srelplt;
4042 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4043 break;
4044
4045 case DT_PLTRELSZ:
4046 s = htab->srelplt;
4047 dyn.d_un.d_val = s->_raw_size;
4048 break;
4049
4050 case DT_RELASZ:
4051 /* Don't count procedure linkage table relocs in the
4052 overall reloc count. */
4053 s = htab->srelplt;
4054 if (s == NULL)
4055 continue;
4056 dyn.d_un.d_val -= s->_raw_size;
4057 break;
4058
4059 case DT_RELA:
4060 /* We may not be using the standard ELF linker script.
4061 If .rela.plt is the first .rela section, we adjust
4062 DT_RELA to not include it. */
4063 s = htab->srelplt;
4064 if (s == NULL)
4065 continue;
4066 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4067 continue;
4068 dyn.d_un.d_ptr += s->_raw_size;
4069 break;
4070 }
4071
4072 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4073 }
4074 }
4075
4076 if (htab->sgot != NULL && htab->sgot->_raw_size != 0)
4077 {
4078 /* Fill in the first entry in the global offset table.
4079 We use it to point to our dynamic section, if we have one. */
4080 bfd_put_32 (output_bfd,
4081 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4082 htab->sgot->contents);
4083
4084 /* The second entry is reserved for use by the dynamic linker. */
4085 memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4086
4087 /* Set .got entry size. */
4088 elf_section_data (htab->sgot->output_section)
4089 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4090 }
4091
4092 if (htab->splt != NULL && htab->splt->_raw_size != 0)
4093 {
4094 /* Set plt entry size. */
4095 elf_section_data (htab->splt->output_section)
4096 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4097
4098 if (htab->need_plt_stub)
4099 {
4100 /* Set up the .plt stub. */
4101 memcpy (htab->splt->contents
4102 + htab->splt->_raw_size - sizeof (plt_stub),
4103 plt_stub, sizeof (plt_stub));
4104
4105 if ((htab->splt->output_offset
4106 + htab->splt->output_section->vma
4107 + htab->splt->_raw_size)
4108 != (htab->sgot->output_offset
4109 + htab->sgot->output_section->vma))
4110 {
4111 (*_bfd_error_handler)
4112 (_(".got section not immediately after .plt section"));
4113 return FALSE;
4114 }
4115 }
4116 }
4117
4118 return TRUE;
4119 }
4120
4121 /* Tweak the OSABI field of the elf header. */
4122
4123 static void
4124 elf32_hppa_post_process_headers (bfd *abfd,
4125 struct bfd_link_info *info ATTRIBUTE_UNUSED)
4126 {
4127 Elf_Internal_Ehdr * i_ehdrp;
4128
4129 i_ehdrp = elf_elfheader (abfd);
4130
4131 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
4132 {
4133 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
4134 }
4135 else
4136 {
4137 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
4138 }
4139 }
4140
4141 /* Called when writing out an object file to decide the type of a
4142 symbol. */
4143 static int
4144 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4145 {
4146 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4147 return STT_PARISC_MILLI;
4148 else
4149 return type;
4150 }
4151
4152 /* Misc BFD support code. */
4153 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4154 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4155 #define elf_info_to_howto elf_hppa_info_to_howto
4156 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4157
4158 /* Stuff for the BFD linker. */
4159 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4160 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4161 #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
4162 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4163 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4164 #define elf_backend_check_relocs elf32_hppa_check_relocs
4165 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4166 #define elf_backend_fake_sections elf_hppa_fake_sections
4167 #define elf_backend_relocate_section elf32_hppa_relocate_section
4168 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4169 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4170 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4171 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4172 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4173 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4174 #define elf_backend_object_p elf32_hppa_object_p
4175 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4176 #define elf_backend_post_process_headers elf32_hppa_post_process_headers
4177 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4178 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4179
4180 #define elf_backend_can_gc_sections 1
4181 #define elf_backend_can_refcount 1
4182 #define elf_backend_plt_alignment 2
4183 #define elf_backend_want_got_plt 0
4184 #define elf_backend_plt_readonly 0
4185 #define elf_backend_want_plt_sym 0
4186 #define elf_backend_got_header_size 8
4187 #define elf_backend_rela_normal 1
4188
4189 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4190 #define TARGET_BIG_NAME "elf32-hppa"
4191 #define ELF_ARCH bfd_arch_hppa
4192 #define ELF_MACHINE_CODE EM_PARISC
4193 #define ELF_MAXPAGESIZE 0x1000
4194
4195 #include "elf32-target.h"
4196
4197 #undef TARGET_BIG_SYM
4198 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4199 #undef TARGET_BIG_NAME
4200 #define TARGET_BIG_NAME "elf32-hppa-linux"
4201
4202 #define INCLUDED_TARGET_FILE 1
4203 #include "elf32-target.h"
This page took 0.203903 seconds and 4 git commands to generate.