* elf-hppa.h (elf_hppa_reloc_final_type): New function stripped
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002 Free Software Foundation, Inc.
4
5 Original code by
6 Center for Software Science
7 Department of Computer Science
8 University of Utah
9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
26
27 #include "bfd.h"
28 #include "sysdep.h"
29 #include "libbfd.h"
30 #include "elf-bfd.h"
31 #include "elf/hppa.h"
32 #include "libhppa.h"
33 #include "elf32-hppa.h"
34 #define ARCH_SIZE 32
35 #include "elf32-hppa.h"
36 #include "elf-hppa.h"
37
38 /* In order to gain some understanding of code in this file without
39 knowing all the intricate details of the linker, note the
40 following:
41
42 Functions named elf32_hppa_* are called by external routines, other
43 functions are only called locally. elf32_hppa_* functions appear
44 in this file more or less in the order in which they are called
45 from external routines. eg. elf32_hppa_check_relocs is called
46 early in the link process, elf32_hppa_finish_dynamic_sections is
47 one of the last functions. */
48
49 /* We use two hash tables to hold information for linking PA ELF objects.
50
51 The first is the elf32_hppa_link_hash_table which is derived
52 from the standard ELF linker hash table. We use this as a place to
53 attach other hash tables and static information.
54
55 The second is the stub hash table which is derived from the
56 base BFD hash table. The stub hash table holds the information
57 necessary to build the linker stubs during a link.
58
59 There are a number of different stubs generated by the linker.
60
61 Long branch stub:
62 : ldil LR'X,%r1
63 : be,n RR'X(%sr4,%r1)
64
65 PIC long branch stub:
66 : b,l .+8,%r1
67 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
68 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
69
70 Import stub to call shared library routine from normal object file
71 (single sub-space version)
72 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
73 : ldw RR'lt_ptr+ltoff(%r1),%r21
74 : bv %r0(%r21)
75 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
76
77 Import stub to call shared library routine from shared library
78 (single sub-space version)
79 : addil LR'ltoff,%r19 ; get procedure entry point
80 : ldw RR'ltoff(%r1),%r21
81 : bv %r0(%r21)
82 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
83
84 Import stub to call shared library routine from normal object file
85 (multiple sub-space support)
86 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
87 : ldw RR'lt_ptr+ltoff(%r1),%r21
88 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
89 : ldsid (%r21),%r1
90 : mtsp %r1,%sr0
91 : be 0(%sr0,%r21) ; branch to target
92 : stw %rp,-24(%sp) ; save rp
93
94 Import stub to call shared library routine from shared library
95 (multiple sub-space support)
96 : addil LR'ltoff,%r19 ; get procedure entry point
97 : ldw RR'ltoff(%r1),%r21
98 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
99 : ldsid (%r21),%r1
100 : mtsp %r1,%sr0
101 : be 0(%sr0,%r21) ; branch to target
102 : stw %rp,-24(%sp) ; save rp
103
104 Export stub to return from shared lib routine (multiple sub-space support)
105 One of these is created for each exported procedure in a shared
106 library (and stored in the shared lib). Shared lib routines are
107 called via the first instruction in the export stub so that we can
108 do an inter-space return. Not required for single sub-space.
109 : bl,n X,%rp ; trap the return
110 : nop
111 : ldw -24(%sp),%rp ; restore the original rp
112 : ldsid (%rp),%r1
113 : mtsp %r1,%sr0
114 : be,n 0(%sr0,%rp) ; inter-space return */
115
116 #define PLT_ENTRY_SIZE 8
117 #define GOT_ENTRY_SIZE 4
118 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
119
120 static const bfd_byte plt_stub[] =
121 {
122 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
123 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
124 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
125 #define PLT_STUB_ENTRY (3*4)
126 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
127 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
128 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
129 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
130 };
131
132 /* Section name for stubs is the associated section name plus this
133 string. */
134 #define STUB_SUFFIX ".stub"
135
136 /* We don't need to copy certain PC- or GP-relative dynamic relocs
137 into a shared object's dynamic section. All the relocs of the
138 limited class we are interested in, are absolute. */
139 #ifndef RELATIVE_DYNRELOCS
140 #define RELATIVE_DYNRELOCS 0
141 #define IS_ABSOLUTE_RELOC(r_type) 1
142 #endif
143
144 enum elf32_hppa_stub_type {
145 hppa_stub_long_branch,
146 hppa_stub_long_branch_shared,
147 hppa_stub_import,
148 hppa_stub_import_shared,
149 hppa_stub_export,
150 hppa_stub_none
151 };
152
153 struct elf32_hppa_stub_hash_entry {
154
155 /* Base hash table entry structure. */
156 struct bfd_hash_entry root;
157
158 /* The stub section. */
159 asection *stub_sec;
160
161 /* Offset within stub_sec of the beginning of this stub. */
162 bfd_vma stub_offset;
163
164 /* Given the symbol's value and its section we can determine its final
165 value when building the stubs (so the stub knows where to jump. */
166 bfd_vma target_value;
167 asection *target_section;
168
169 enum elf32_hppa_stub_type stub_type;
170
171 /* The symbol table entry, if any, that this was derived from. */
172 struct elf32_hppa_link_hash_entry *h;
173
174 /* Where this stub is being called from, or, in the case of combined
175 stub sections, the first input section in the group. */
176 asection *id_sec;
177 };
178
179 struct elf32_hppa_link_hash_entry {
180
181 struct elf_link_hash_entry elf;
182
183 /* A pointer to the most recently used stub hash entry against this
184 symbol. */
185 struct elf32_hppa_stub_hash_entry *stub_cache;
186
187 /* Used to count relocations for delayed sizing of relocation
188 sections. */
189 struct elf32_hppa_dyn_reloc_entry {
190
191 /* Next relocation in the chain. */
192 struct elf32_hppa_dyn_reloc_entry *next;
193
194 /* The input section of the reloc. */
195 asection *sec;
196
197 /* Number of relocs copied in this section. */
198 bfd_size_type count;
199
200 #if RELATIVE_DYNRELOCS
201 /* Number of relative relocs copied for the input section. */
202 bfd_size_type relative_count;
203 #endif
204 } *dyn_relocs;
205
206 /* Set during a static link if we detect a function is PIC. */
207 unsigned int maybe_pic_call:1;
208
209 /* Set if the only reason we need a .plt entry is for a non-PIC to
210 PIC function call. */
211 unsigned int pic_call:1;
212
213 /* Set if this symbol is used by a plabel reloc. */
214 unsigned int plabel:1;
215 };
216
217 struct elf32_hppa_link_hash_table {
218
219 /* The main hash table. */
220 struct elf_link_hash_table elf;
221
222 /* The stub hash table. */
223 struct bfd_hash_table stub_hash_table;
224
225 /* Linker stub bfd. */
226 bfd *stub_bfd;
227
228 /* Linker call-backs. */
229 asection * (*add_stub_section) PARAMS ((const char *, asection *));
230 void (*layout_sections_again) PARAMS ((void));
231
232 /* Array to keep track of which stub sections have been created, and
233 information on stub grouping. */
234 struct map_stub {
235 /* This is the section to which stubs in the group will be
236 attached. */
237 asection *link_sec;
238 /* The stub section. */
239 asection *stub_sec;
240 } *stub_group;
241
242 /* Short-cuts to get to dynamic linker sections. */
243 asection *sgot;
244 asection *srelgot;
245 asection *splt;
246 asection *srelplt;
247 asection *sdynbss;
248 asection *srelbss;
249
250 /* Used during a final link to store the base of the text and data
251 segments so that we can perform SEGREL relocations. */
252 bfd_vma text_segment_base;
253 bfd_vma data_segment_base;
254
255 /* Whether we support multiple sub-spaces for shared libs. */
256 unsigned int multi_subspace:1;
257
258 /* Flags set when PCREL12F and PCREL17F branches detected. Used to
259 select suitable defaults for the stub group size. */
260 unsigned int has_12bit_branch:1;
261 unsigned int has_17bit_branch:1;
262
263 /* Set if we need a .plt stub to support lazy dynamic linking. */
264 unsigned int need_plt_stub:1;
265
266 /* Small local sym to section mapping cache. */
267 struct sym_sec_cache sym_sec;
268 };
269
270 /* Various hash macros and functions. */
271 #define hppa_link_hash_table(p) \
272 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
273
274 #define hppa_stub_hash_lookup(table, string, create, copy) \
275 ((struct elf32_hppa_stub_hash_entry *) \
276 bfd_hash_lookup ((table), (string), (create), (copy)))
277
278 static struct bfd_hash_entry *stub_hash_newfunc
279 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
280
281 static struct bfd_hash_entry *hppa_link_hash_newfunc
282 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
283
284 static struct bfd_link_hash_table *elf32_hppa_link_hash_table_create
285 PARAMS ((bfd *));
286
287 /* Stub handling functions. */
288 static char *hppa_stub_name
289 PARAMS ((const asection *, const asection *,
290 const struct elf32_hppa_link_hash_entry *,
291 const Elf_Internal_Rela *));
292
293 static struct elf32_hppa_stub_hash_entry *hppa_get_stub_entry
294 PARAMS ((const asection *, const asection *,
295 struct elf32_hppa_link_hash_entry *,
296 const Elf_Internal_Rela *,
297 struct elf32_hppa_link_hash_table *));
298
299 static struct elf32_hppa_stub_hash_entry *hppa_add_stub
300 PARAMS ((const char *, asection *, struct elf32_hppa_link_hash_table *));
301
302 static enum elf32_hppa_stub_type hppa_type_of_stub
303 PARAMS ((asection *, const Elf_Internal_Rela *,
304 struct elf32_hppa_link_hash_entry *, bfd_vma));
305
306 static boolean hppa_build_one_stub
307 PARAMS ((struct bfd_hash_entry *, PTR));
308
309 static boolean hppa_size_one_stub
310 PARAMS ((struct bfd_hash_entry *, PTR));
311
312 /* BFD and elf backend functions. */
313 static boolean elf32_hppa_object_p PARAMS ((bfd *));
314
315 static boolean elf32_hppa_add_symbol_hook
316 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
317 const char **, flagword *, asection **, bfd_vma *));
318
319 static boolean elf32_hppa_create_dynamic_sections
320 PARAMS ((bfd *, struct bfd_link_info *));
321
322 static void elf32_hppa_copy_indirect_symbol
323 PARAMS ((struct elf_link_hash_entry *, struct elf_link_hash_entry *));
324
325 static boolean elf32_hppa_check_relocs
326 PARAMS ((bfd *, struct bfd_link_info *,
327 asection *, const Elf_Internal_Rela *));
328
329 static asection *elf32_hppa_gc_mark_hook
330 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
331 struct elf_link_hash_entry *, Elf_Internal_Sym *));
332
333 static boolean elf32_hppa_gc_sweep_hook
334 PARAMS ((bfd *, struct bfd_link_info *,
335 asection *, const Elf_Internal_Rela *));
336
337 static void elf32_hppa_hide_symbol
338 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *, boolean));
339
340 static boolean elf32_hppa_adjust_dynamic_symbol
341 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
342
343 static boolean mark_PIC_calls
344 PARAMS ((struct elf_link_hash_entry *, PTR));
345
346 static boolean allocate_plt_static
347 PARAMS ((struct elf_link_hash_entry *, PTR));
348
349 static boolean allocate_dynrelocs
350 PARAMS ((struct elf_link_hash_entry *, PTR));
351
352 static boolean readonly_dynrelocs
353 PARAMS ((struct elf_link_hash_entry *, PTR));
354
355 static boolean clobber_millicode_symbols
356 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
357
358 static boolean elf32_hppa_size_dynamic_sections
359 PARAMS ((bfd *, struct bfd_link_info *));
360
361 static boolean elf32_hppa_final_link
362 PARAMS ((bfd *, struct bfd_link_info *));
363
364 static void hppa_record_segment_addr
365 PARAMS ((bfd *, asection *, PTR));
366
367 static bfd_reloc_status_type final_link_relocate
368 PARAMS ((asection *, bfd_byte *, const Elf_Internal_Rela *,
369 bfd_vma, struct elf32_hppa_link_hash_table *, asection *,
370 struct elf32_hppa_link_hash_entry *));
371
372 static boolean elf32_hppa_relocate_section
373 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *,
374 bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
375
376 static int hppa_unwind_entry_compare
377 PARAMS ((const PTR, const PTR));
378
379 static boolean elf32_hppa_finish_dynamic_symbol
380 PARAMS ((bfd *, struct bfd_link_info *,
381 struct elf_link_hash_entry *, Elf_Internal_Sym *));
382
383 static enum elf_reloc_type_class elf32_hppa_reloc_type_class
384 PARAMS ((const Elf_Internal_Rela *));
385
386 static boolean elf32_hppa_finish_dynamic_sections
387 PARAMS ((bfd *, struct bfd_link_info *));
388
389 static void elf32_hppa_post_process_headers
390 PARAMS ((bfd *, struct bfd_link_info *));
391
392 static int elf32_hppa_elf_get_symbol_type
393 PARAMS ((Elf_Internal_Sym *, int));
394
395 /* Assorted hash table functions. */
396
397 /* Initialize an entry in the stub hash table. */
398
399 static struct bfd_hash_entry *
400 stub_hash_newfunc (entry, table, string)
401 struct bfd_hash_entry *entry;
402 struct bfd_hash_table *table;
403 const char *string;
404 {
405 /* Allocate the structure if it has not already been allocated by a
406 subclass. */
407 if (entry == NULL)
408 {
409 entry = bfd_hash_allocate (table,
410 sizeof (struct elf32_hppa_stub_hash_entry));
411 if (entry == NULL)
412 return entry;
413 }
414
415 /* Call the allocation method of the superclass. */
416 entry = bfd_hash_newfunc (entry, table, string);
417 if (entry != NULL)
418 {
419 struct elf32_hppa_stub_hash_entry *eh;
420
421 /* Initialize the local fields. */
422 eh = (struct elf32_hppa_stub_hash_entry *) entry;
423 eh->stub_sec = NULL;
424 eh->stub_offset = 0;
425 eh->target_value = 0;
426 eh->target_section = NULL;
427 eh->stub_type = hppa_stub_long_branch;
428 eh->h = NULL;
429 eh->id_sec = NULL;
430 }
431
432 return entry;
433 }
434
435 /* Initialize an entry in the link hash table. */
436
437 static struct bfd_hash_entry *
438 hppa_link_hash_newfunc (entry, table, string)
439 struct bfd_hash_entry *entry;
440 struct bfd_hash_table *table;
441 const char *string;
442 {
443 /* Allocate the structure if it has not already been allocated by a
444 subclass. */
445 if (entry == NULL)
446 {
447 entry = bfd_hash_allocate (table,
448 sizeof (struct elf32_hppa_link_hash_entry));
449 if (entry == NULL)
450 return entry;
451 }
452
453 /* Call the allocation method of the superclass. */
454 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
455 if (entry != NULL)
456 {
457 struct elf32_hppa_link_hash_entry *eh;
458
459 /* Initialize the local fields. */
460 eh = (struct elf32_hppa_link_hash_entry *) entry;
461 eh->stub_cache = NULL;
462 eh->dyn_relocs = NULL;
463 eh->maybe_pic_call = 0;
464 eh->pic_call = 0;
465 eh->plabel = 0;
466 }
467
468 return entry;
469 }
470
471 /* Create the derived linker hash table. The PA ELF port uses the derived
472 hash table to keep information specific to the PA ELF linker (without
473 using static variables). */
474
475 static struct bfd_link_hash_table *
476 elf32_hppa_link_hash_table_create (abfd)
477 bfd *abfd;
478 {
479 struct elf32_hppa_link_hash_table *ret;
480 bfd_size_type amt = sizeof (*ret);
481
482 ret = (struct elf32_hppa_link_hash_table *) bfd_alloc (abfd, amt);
483 if (ret == NULL)
484 return NULL;
485
486 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, hppa_link_hash_newfunc))
487 {
488 bfd_release (abfd, ret);
489 return NULL;
490 }
491
492 /* Init the stub hash table too. */
493 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc))
494 return NULL;
495
496 ret->stub_bfd = NULL;
497 ret->add_stub_section = NULL;
498 ret->layout_sections_again = NULL;
499 ret->stub_group = NULL;
500 ret->sgot = NULL;
501 ret->srelgot = NULL;
502 ret->splt = NULL;
503 ret->srelplt = NULL;
504 ret->sdynbss = NULL;
505 ret->srelbss = NULL;
506 ret->text_segment_base = (bfd_vma) -1;
507 ret->data_segment_base = (bfd_vma) -1;
508 ret->multi_subspace = 0;
509 ret->has_12bit_branch = 0;
510 ret->has_17bit_branch = 0;
511 ret->need_plt_stub = 0;
512 ret->sym_sec.abfd = NULL;
513
514 return &ret->elf.root;
515 }
516
517 /* Build a name for an entry in the stub hash table. */
518
519 static char *
520 hppa_stub_name (input_section, sym_sec, hash, rel)
521 const asection *input_section;
522 const asection *sym_sec;
523 const struct elf32_hppa_link_hash_entry *hash;
524 const Elf_Internal_Rela *rel;
525 {
526 char *stub_name;
527 bfd_size_type len;
528
529 if (hash)
530 {
531 len = 8 + 1 + strlen (hash->elf.root.root.string) + 1 + 8 + 1;
532 stub_name = bfd_malloc (len);
533 if (stub_name != NULL)
534 {
535 sprintf (stub_name, "%08x_%s+%x",
536 input_section->id & 0xffffffff,
537 hash->elf.root.root.string,
538 (int) rel->r_addend & 0xffffffff);
539 }
540 }
541 else
542 {
543 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
544 stub_name = bfd_malloc (len);
545 if (stub_name != NULL)
546 {
547 sprintf (stub_name, "%08x_%x:%x+%x",
548 input_section->id & 0xffffffff,
549 sym_sec->id & 0xffffffff,
550 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
551 (int) rel->r_addend & 0xffffffff);
552 }
553 }
554 return stub_name;
555 }
556
557 /* Look up an entry in the stub hash. Stub entries are cached because
558 creating the stub name takes a bit of time. */
559
560 static struct elf32_hppa_stub_hash_entry *
561 hppa_get_stub_entry (input_section, sym_sec, hash, rel, htab)
562 const asection *input_section;
563 const asection *sym_sec;
564 struct elf32_hppa_link_hash_entry *hash;
565 const Elf_Internal_Rela *rel;
566 struct elf32_hppa_link_hash_table *htab;
567 {
568 struct elf32_hppa_stub_hash_entry *stub_entry;
569 const asection *id_sec;
570
571 /* If this input section is part of a group of sections sharing one
572 stub section, then use the id of the first section in the group.
573 Stub names need to include a section id, as there may well be
574 more than one stub used to reach say, printf, and we need to
575 distinguish between them. */
576 id_sec = htab->stub_group[input_section->id].link_sec;
577
578 if (hash != NULL && hash->stub_cache != NULL
579 && hash->stub_cache->h == hash
580 && hash->stub_cache->id_sec == id_sec)
581 {
582 stub_entry = hash->stub_cache;
583 }
584 else
585 {
586 char *stub_name;
587
588 stub_name = hppa_stub_name (id_sec, sym_sec, hash, rel);
589 if (stub_name == NULL)
590 return NULL;
591
592 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
593 stub_name, false, false);
594 if (hash != NULL)
595 hash->stub_cache = stub_entry;
596
597 free (stub_name);
598 }
599
600 return stub_entry;
601 }
602
603 /* Add a new stub entry to the stub hash. Not all fields of the new
604 stub entry are initialised. */
605
606 static struct elf32_hppa_stub_hash_entry *
607 hppa_add_stub (stub_name, section, htab)
608 const char *stub_name;
609 asection *section;
610 struct elf32_hppa_link_hash_table *htab;
611 {
612 asection *link_sec;
613 asection *stub_sec;
614 struct elf32_hppa_stub_hash_entry *stub_entry;
615
616 link_sec = htab->stub_group[section->id].link_sec;
617 stub_sec = htab->stub_group[section->id].stub_sec;
618 if (stub_sec == NULL)
619 {
620 stub_sec = htab->stub_group[link_sec->id].stub_sec;
621 if (stub_sec == NULL)
622 {
623 bfd_size_type len;
624 char *s_name;
625
626 len = strlen (link_sec->name) + sizeof (STUB_SUFFIX);
627 s_name = bfd_alloc (htab->stub_bfd, len);
628 if (s_name == NULL)
629 return NULL;
630
631 strcpy (s_name, link_sec->name);
632 strcpy (s_name + len - sizeof (STUB_SUFFIX), STUB_SUFFIX);
633 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
634 if (stub_sec == NULL)
635 return NULL;
636 htab->stub_group[link_sec->id].stub_sec = stub_sec;
637 }
638 htab->stub_group[section->id].stub_sec = stub_sec;
639 }
640
641 /* Enter this entry into the linker stub hash table. */
642 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table, stub_name,
643 true, false);
644 if (stub_entry == NULL)
645 {
646 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
647 bfd_archive_filename (section->owner),
648 stub_name);
649 return NULL;
650 }
651
652 stub_entry->stub_sec = stub_sec;
653 stub_entry->stub_offset = 0;
654 stub_entry->id_sec = link_sec;
655 return stub_entry;
656 }
657
658 /* Determine the type of stub needed, if any, for a call. */
659
660 static enum elf32_hppa_stub_type
661 hppa_type_of_stub (input_sec, rel, hash, destination)
662 asection *input_sec;
663 const Elf_Internal_Rela *rel;
664 struct elf32_hppa_link_hash_entry *hash;
665 bfd_vma destination;
666 {
667 bfd_vma location;
668 bfd_vma branch_offset;
669 bfd_vma max_branch_offset;
670 unsigned int r_type;
671
672 if (hash != NULL
673 && (((hash->elf.root.type == bfd_link_hash_defined
674 || hash->elf.root.type == bfd_link_hash_defweak)
675 && hash->elf.root.u.def.section->output_section == NULL)
676 || (hash->elf.root.type == bfd_link_hash_defweak
677 && hash->elf.dynindx != -1
678 && hash->elf.plt.offset != (bfd_vma) -1)
679 || hash->elf.root.type == bfd_link_hash_undefweak
680 || hash->elf.root.type == bfd_link_hash_undefined
681 || (hash->maybe_pic_call && !(input_sec->flags & SEC_HAS_GOT_REF))))
682 {
683 /* If output_section is NULL, then it's a symbol defined in a
684 shared library. We will need an import stub. Decide between
685 hppa_stub_import and hppa_stub_import_shared later. For
686 shared links we need stubs for undefined or weak syms too;
687 They will presumably be resolved by the dynamic linker. */
688 return hppa_stub_import;
689 }
690
691 /* Determine where the call point is. */
692 location = (input_sec->output_offset
693 + input_sec->output_section->vma
694 + rel->r_offset);
695
696 branch_offset = destination - location - 8;
697 r_type = ELF32_R_TYPE (rel->r_info);
698
699 /* Determine if a long branch stub is needed. parisc branch offsets
700 are relative to the second instruction past the branch, ie. +8
701 bytes on from the branch instruction location. The offset is
702 signed and counts in units of 4 bytes. */
703 if (r_type == (unsigned int) R_PARISC_PCREL17F)
704 {
705 max_branch_offset = (1 << (17-1)) << 2;
706 }
707 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
708 {
709 max_branch_offset = (1 << (12-1)) << 2;
710 }
711 else /* R_PARISC_PCREL22F. */
712 {
713 max_branch_offset = (1 << (22-1)) << 2;
714 }
715
716 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
717 return hppa_stub_long_branch;
718
719 return hppa_stub_none;
720 }
721
722 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
723 IN_ARG contains the link info pointer. */
724
725 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
726 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
727
728 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
729 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
730 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
731
732 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
733 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
734 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
735 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
736
737 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
738 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
739
740 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
741 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
742 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
743 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
744
745 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
746 #define NOP 0x08000240 /* nop */
747 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
748 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
749 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
750
751 #ifndef R19_STUBS
752 #define R19_STUBS 1
753 #endif
754
755 #if R19_STUBS
756 #define LDW_R1_DLT LDW_R1_R19
757 #else
758 #define LDW_R1_DLT LDW_R1_DP
759 #endif
760
761 static boolean
762 hppa_build_one_stub (gen_entry, in_arg)
763 struct bfd_hash_entry *gen_entry;
764 PTR in_arg;
765 {
766 struct elf32_hppa_stub_hash_entry *stub_entry;
767 struct bfd_link_info *info;
768 struct elf32_hppa_link_hash_table *htab;
769 asection *stub_sec;
770 bfd *stub_bfd;
771 bfd_byte *loc;
772 bfd_vma sym_value;
773 bfd_vma insn;
774 bfd_vma off;
775 int val;
776 int size;
777
778 /* Massage our args to the form they really have. */
779 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
780 info = (struct bfd_link_info *) in_arg;
781
782 htab = hppa_link_hash_table (info);
783 stub_sec = stub_entry->stub_sec;
784
785 /* Make a note of the offset within the stubs for this entry. */
786 stub_entry->stub_offset = stub_sec->_raw_size;
787 loc = stub_sec->contents + stub_entry->stub_offset;
788
789 stub_bfd = stub_sec->owner;
790
791 switch (stub_entry->stub_type)
792 {
793 case hppa_stub_long_branch:
794 /* Create the long branch. A long branch is formed with "ldil"
795 loading the upper bits of the target address into a register,
796 then branching with "be" which adds in the lower bits.
797 The "be" has its delay slot nullified. */
798 sym_value = (stub_entry->target_value
799 + stub_entry->target_section->output_offset
800 + stub_entry->target_section->output_section->vma);
801
802 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel);
803 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
804 bfd_put_32 (stub_bfd, insn, loc);
805
806 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel) >> 2;
807 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
808 bfd_put_32 (stub_bfd, insn, loc + 4);
809
810 size = 8;
811 break;
812
813 case hppa_stub_long_branch_shared:
814 /* Branches are relative. This is where we are going to. */
815 sym_value = (stub_entry->target_value
816 + stub_entry->target_section->output_offset
817 + stub_entry->target_section->output_section->vma);
818
819 /* And this is where we are coming from, more or less. */
820 sym_value -= (stub_entry->stub_offset
821 + stub_sec->output_offset
822 + stub_sec->output_section->vma);
823
824 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
825 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
826 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
827 bfd_put_32 (stub_bfd, insn, loc + 4);
828
829 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
830 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
831 bfd_put_32 (stub_bfd, insn, loc + 8);
832 size = 12;
833 break;
834
835 case hppa_stub_import:
836 case hppa_stub_import_shared:
837 off = stub_entry->h->elf.plt.offset;
838 if (off >= (bfd_vma) -2)
839 abort ();
840
841 off &= ~ (bfd_vma) 1;
842 sym_value = (off
843 + htab->splt->output_offset
844 + htab->splt->output_section->vma
845 - elf_gp (htab->splt->output_section->owner));
846
847 insn = ADDIL_DP;
848 #if R19_STUBS
849 if (stub_entry->stub_type == hppa_stub_import_shared)
850 insn = ADDIL_R19;
851 #endif
852 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel),
853 insn = hppa_rebuild_insn ((int) insn, val, 21);
854 bfd_put_32 (stub_bfd, insn, loc);
855
856 /* It is critical to use lrsel/rrsel here because we are using
857 two different offsets (+0 and +4) from sym_value. If we use
858 lsel/rsel then with unfortunate sym_values we will round
859 sym_value+4 up to the next 2k block leading to a mis-match
860 between the lsel and rsel value. */
861 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel);
862 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
863 bfd_put_32 (stub_bfd, insn, loc + 4);
864
865 if (htab->multi_subspace)
866 {
867 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
868 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
869 bfd_put_32 (stub_bfd, insn, loc + 8);
870
871 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
872 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
873 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
874 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
875
876 size = 28;
877 }
878 else
879 {
880 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
881 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
882 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
883 bfd_put_32 (stub_bfd, insn, loc + 12);
884
885 size = 16;
886 }
887
888 if (!info->shared
889 && stub_entry->h != NULL
890 && stub_entry->h->pic_call)
891 {
892 /* Build the .plt entry needed to call a PIC function from
893 statically linked code. We don't need any relocs. */
894 bfd *dynobj;
895 struct elf32_hppa_link_hash_entry *eh;
896 bfd_vma value;
897
898 dynobj = htab->elf.dynobj;
899 eh = (struct elf32_hppa_link_hash_entry *) stub_entry->h;
900
901 if (eh->elf.root.type != bfd_link_hash_defined
902 && eh->elf.root.type != bfd_link_hash_defweak)
903 abort ();
904
905 value = (eh->elf.root.u.def.value
906 + eh->elf.root.u.def.section->output_offset
907 + eh->elf.root.u.def.section->output_section->vma);
908
909 /* Fill in the entry in the procedure linkage table.
910
911 The format of a plt entry is
912 <funcaddr>
913 <__gp>. */
914
915 bfd_put_32 (htab->splt->owner, value,
916 htab->splt->contents + off);
917 value = elf_gp (htab->splt->output_section->owner);
918 bfd_put_32 (htab->splt->owner, value,
919 htab->splt->contents + off + 4);
920 }
921 break;
922
923 case hppa_stub_export:
924 /* Branches are relative. This is where we are going to. */
925 sym_value = (stub_entry->target_value
926 + stub_entry->target_section->output_offset
927 + stub_entry->target_section->output_section->vma);
928
929 /* And this is where we are coming from. */
930 sym_value -= (stub_entry->stub_offset
931 + stub_sec->output_offset
932 + stub_sec->output_section->vma);
933
934 if (sym_value - 8 + 0x40000 >= 0x80000)
935 {
936 (*_bfd_error_handler)
937 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
938 bfd_archive_filename (stub_entry->target_section->owner),
939 stub_sec->name,
940 (long) stub_entry->stub_offset,
941 stub_entry->root.string);
942 bfd_set_error (bfd_error_bad_value);
943 return false;
944 }
945
946 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
947 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
948 bfd_put_32 (stub_bfd, insn, loc);
949
950 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
951 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
952 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
953 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
954 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
955
956 /* Point the function symbol at the stub. */
957 stub_entry->h->elf.root.u.def.section = stub_sec;
958 stub_entry->h->elf.root.u.def.value = stub_sec->_raw_size;
959
960 size = 24;
961 break;
962
963 default:
964 BFD_FAIL ();
965 return false;
966 }
967
968 stub_sec->_raw_size += size;
969 return true;
970 }
971
972 #undef LDIL_R1
973 #undef BE_SR4_R1
974 #undef BL_R1
975 #undef ADDIL_R1
976 #undef DEPI_R1
977 #undef ADDIL_DP
978 #undef LDW_R1_R21
979 #undef LDW_R1_DLT
980 #undef LDW_R1_R19
981 #undef ADDIL_R19
982 #undef LDW_R1_DP
983 #undef LDSID_R21_R1
984 #undef MTSP_R1
985 #undef BE_SR0_R21
986 #undef STW_RP
987 #undef BV_R0_R21
988 #undef BL_RP
989 #undef NOP
990 #undef LDW_RP
991 #undef LDSID_RP_R1
992 #undef BE_SR0_RP
993
994 /* As above, but don't actually build the stub. Just bump offset so
995 we know stub section sizes. */
996
997 static boolean
998 hppa_size_one_stub (gen_entry, in_arg)
999 struct bfd_hash_entry *gen_entry;
1000 PTR in_arg;
1001 {
1002 struct elf32_hppa_stub_hash_entry *stub_entry;
1003 struct elf32_hppa_link_hash_table *htab;
1004 int size;
1005
1006 /* Massage our args to the form they really have. */
1007 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
1008 htab = (struct elf32_hppa_link_hash_table *) in_arg;
1009
1010 if (stub_entry->stub_type == hppa_stub_long_branch)
1011 size = 8;
1012 else if (stub_entry->stub_type == hppa_stub_long_branch_shared)
1013 size = 12;
1014 else if (stub_entry->stub_type == hppa_stub_export)
1015 size = 24;
1016 else /* hppa_stub_import or hppa_stub_import_shared. */
1017 {
1018 if (htab->multi_subspace)
1019 size = 28;
1020 else
1021 size = 16;
1022 }
1023
1024 stub_entry->stub_sec->_raw_size += size;
1025 return true;
1026 }
1027
1028 /* Return nonzero if ABFD represents an HPPA ELF32 file.
1029 Additionally we set the default architecture and machine. */
1030
1031 static boolean
1032 elf32_hppa_object_p (abfd)
1033 bfd *abfd;
1034 {
1035 Elf_Internal_Ehdr * i_ehdrp;
1036 unsigned int flags;
1037
1038 i_ehdrp = elf_elfheader (abfd);
1039 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
1040 {
1041 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX)
1042 return false;
1043 }
1044 else
1045 {
1046 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
1047 return false;
1048 }
1049
1050 flags = i_ehdrp->e_flags;
1051 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
1052 {
1053 case EFA_PARISC_1_0:
1054 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
1055 case EFA_PARISC_1_1:
1056 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
1057 case EFA_PARISC_2_0:
1058 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
1059 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
1060 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
1061 }
1062 return true;
1063 }
1064
1065 /* Undo the generic ELF code's subtraction of section->vma from the
1066 value of each external symbol. */
1067
1068 static boolean
1069 elf32_hppa_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1070 bfd *abfd ATTRIBUTE_UNUSED;
1071 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1072 const Elf_Internal_Sym *sym ATTRIBUTE_UNUSED;
1073 const char **namep ATTRIBUTE_UNUSED;
1074 flagword *flagsp ATTRIBUTE_UNUSED;
1075 asection **secp;
1076 bfd_vma *valp;
1077 {
1078 *valp += (*secp)->vma;
1079 return true;
1080 }
1081
1082 /* Create the .plt and .got sections, and set up our hash table
1083 short-cuts to various dynamic sections. */
1084
1085 static boolean
1086 elf32_hppa_create_dynamic_sections (abfd, info)
1087 bfd *abfd;
1088 struct bfd_link_info *info;
1089 {
1090 struct elf32_hppa_link_hash_table *htab;
1091
1092 /* Don't try to create the .plt and .got twice. */
1093 htab = hppa_link_hash_table (info);
1094 if (htab->splt != NULL)
1095 return true;
1096
1097 /* Call the generic code to do most of the work. */
1098 if (! _bfd_elf_create_dynamic_sections (abfd, info))
1099 return false;
1100
1101 htab->splt = bfd_get_section_by_name (abfd, ".plt");
1102 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
1103
1104 htab->sgot = bfd_get_section_by_name (abfd, ".got");
1105 htab->srelgot = bfd_make_section (abfd, ".rela.got");
1106 if (htab->srelgot == NULL
1107 || ! bfd_set_section_flags (abfd, htab->srelgot,
1108 (SEC_ALLOC
1109 | SEC_LOAD
1110 | SEC_HAS_CONTENTS
1111 | SEC_IN_MEMORY
1112 | SEC_LINKER_CREATED
1113 | SEC_READONLY))
1114 || ! bfd_set_section_alignment (abfd, htab->srelgot, 2))
1115 return false;
1116
1117 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
1118 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
1119
1120 return true;
1121 }
1122
1123 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1124
1125 static void
1126 elf32_hppa_copy_indirect_symbol (dir, ind)
1127 struct elf_link_hash_entry *dir, *ind;
1128 {
1129 struct elf32_hppa_link_hash_entry *edir, *eind;
1130
1131 edir = (struct elf32_hppa_link_hash_entry *) dir;
1132 eind = (struct elf32_hppa_link_hash_entry *) ind;
1133
1134 if (eind->dyn_relocs != NULL)
1135 {
1136 if (edir->dyn_relocs != NULL)
1137 {
1138 struct elf32_hppa_dyn_reloc_entry **pp;
1139 struct elf32_hppa_dyn_reloc_entry *p;
1140
1141 if (ind->root.type == bfd_link_hash_indirect)
1142 abort ();
1143
1144 /* Add reloc counts against the weak sym to the strong sym
1145 list. Merge any entries against the same section. */
1146 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
1147 {
1148 struct elf32_hppa_dyn_reloc_entry *q;
1149
1150 for (q = edir->dyn_relocs; q != NULL; q = q->next)
1151 if (q->sec == p->sec)
1152 {
1153 #if RELATIVE_DYNRELOCS
1154 q->relative_count += p->relative_count;
1155 #endif
1156 q->count += p->count;
1157 *pp = p->next;
1158 break;
1159 }
1160 if (q == NULL)
1161 pp = &p->next;
1162 }
1163 *pp = edir->dyn_relocs;
1164 }
1165
1166 edir->dyn_relocs = eind->dyn_relocs;
1167 eind->dyn_relocs = NULL;
1168 }
1169
1170 _bfd_elf_link_hash_copy_indirect (dir, ind);
1171 }
1172
1173 /* Look through the relocs for a section during the first phase, and
1174 calculate needed space in the global offset table, procedure linkage
1175 table, and dynamic reloc sections. At this point we haven't
1176 necessarily read all the input files. */
1177
1178 static boolean
1179 elf32_hppa_check_relocs (abfd, info, sec, relocs)
1180 bfd *abfd;
1181 struct bfd_link_info *info;
1182 asection *sec;
1183 const Elf_Internal_Rela *relocs;
1184 {
1185 Elf_Internal_Shdr *symtab_hdr;
1186 struct elf_link_hash_entry **sym_hashes;
1187 const Elf_Internal_Rela *rel;
1188 const Elf_Internal_Rela *rel_end;
1189 struct elf32_hppa_link_hash_table *htab;
1190 asection *sreloc;
1191 asection *stubreloc;
1192
1193 if (info->relocateable)
1194 return true;
1195
1196 htab = hppa_link_hash_table (info);
1197 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1198 sym_hashes = elf_sym_hashes (abfd);
1199 sreloc = NULL;
1200 stubreloc = NULL;
1201
1202 rel_end = relocs + sec->reloc_count;
1203 for (rel = relocs; rel < rel_end; rel++)
1204 {
1205 enum {
1206 NEED_GOT = 1,
1207 NEED_PLT = 2,
1208 NEED_DYNREL = 4,
1209 PLT_PLABEL = 8
1210 };
1211
1212 unsigned int r_symndx, r_type;
1213 struct elf32_hppa_link_hash_entry *h;
1214 int need_entry;
1215
1216 r_symndx = ELF32_R_SYM (rel->r_info);
1217
1218 if (r_symndx < symtab_hdr->sh_info)
1219 h = NULL;
1220 else
1221 h = ((struct elf32_hppa_link_hash_entry *)
1222 sym_hashes[r_symndx - symtab_hdr->sh_info]);
1223
1224 r_type = ELF32_R_TYPE (rel->r_info);
1225
1226 switch (r_type)
1227 {
1228 case R_PARISC_DLTIND14F:
1229 case R_PARISC_DLTIND14R:
1230 case R_PARISC_DLTIND21L:
1231 /* This symbol requires a global offset table entry. */
1232 need_entry = NEED_GOT;
1233
1234 /* Mark this section as containing PIC code. */
1235 sec->flags |= SEC_HAS_GOT_REF;
1236 break;
1237
1238 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1239 case R_PARISC_PLABEL21L:
1240 case R_PARISC_PLABEL32:
1241 /* If the addend is non-zero, we break badly. */
1242 if (rel->r_addend != 0)
1243 abort ();
1244
1245 /* If we are creating a shared library, then we need to
1246 create a PLT entry for all PLABELs, because PLABELs with
1247 local symbols may be passed via a pointer to another
1248 object. Additionally, output a dynamic relocation
1249 pointing to the PLT entry.
1250 For executables, the original 32-bit ABI allowed two
1251 different styles of PLABELs (function pointers): For
1252 global functions, the PLABEL word points into the .plt
1253 two bytes past a (function address, gp) pair, and for
1254 local functions the PLABEL points directly at the
1255 function. The magic +2 for the first type allows us to
1256 differentiate between the two. As you can imagine, this
1257 is a real pain when it comes to generating code to call
1258 functions indirectly or to compare function pointers.
1259 We avoid the mess by always pointing a PLABEL into the
1260 .plt, even for local functions. */
1261 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1262 break;
1263
1264 case R_PARISC_PCREL12F:
1265 htab->has_12bit_branch = 1;
1266 /* Fall thru. */
1267 case R_PARISC_PCREL17C:
1268 case R_PARISC_PCREL17F:
1269 htab->has_17bit_branch = 1;
1270 /* Fall thru. */
1271 case R_PARISC_PCREL22F:
1272 /* Function calls might need to go through the .plt, and
1273 might require long branch stubs. */
1274 if (h == NULL)
1275 {
1276 /* We know local syms won't need a .plt entry, and if
1277 they need a long branch stub we can't guarantee that
1278 we can reach the stub. So just flag an error later
1279 if we're doing a shared link and find we need a long
1280 branch stub. */
1281 continue;
1282 }
1283 else
1284 {
1285 /* Global symbols will need a .plt entry if they remain
1286 global, and in most cases won't need a long branch
1287 stub. Unfortunately, we have to cater for the case
1288 where a symbol is forced local by versioning, or due
1289 to symbolic linking, and we lose the .plt entry. */
1290 need_entry = NEED_PLT;
1291 if (h->elf.type == STT_PARISC_MILLI)
1292 need_entry = 0;
1293 }
1294 break;
1295
1296 case R_PARISC_SEGBASE: /* Used to set segment base. */
1297 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1298 case R_PARISC_PCREL14F: /* PC relative load/store. */
1299 case R_PARISC_PCREL14R:
1300 case R_PARISC_PCREL17R: /* External branches. */
1301 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1302 /* We don't need to propagate the relocation if linking a
1303 shared object since these are section relative. */
1304 continue;
1305
1306 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1307 case R_PARISC_DPREL14R:
1308 case R_PARISC_DPREL21L:
1309 if (info->shared)
1310 {
1311 (*_bfd_error_handler)
1312 (_("%s: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1313 bfd_archive_filename (abfd),
1314 elf_hppa_howto_table[r_type].name);
1315 bfd_set_error (bfd_error_bad_value);
1316 return false;
1317 }
1318 /* Fall through. */
1319
1320 case R_PARISC_DIR17F: /* Used for external branches. */
1321 case R_PARISC_DIR17R:
1322 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1323 case R_PARISC_DIR14R:
1324 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1325 #if 1
1326 /* Help debug shared library creation. Any of the above
1327 relocs can be used in shared libs, but they may cause
1328 pages to become unshared. */
1329 if (info->shared)
1330 {
1331 (*_bfd_error_handler)
1332 (_("%s: relocation %s should not be used when making a shared object; recompile with -fPIC"),
1333 bfd_archive_filename (abfd),
1334 elf_hppa_howto_table[r_type].name);
1335 }
1336 /* Fall through. */
1337 #endif
1338
1339 case R_PARISC_DIR32: /* .word relocs. */
1340 /* We may want to output a dynamic relocation later. */
1341 need_entry = NEED_DYNREL;
1342 break;
1343
1344 /* This relocation describes the C++ object vtable hierarchy.
1345 Reconstruct it for later use during GC. */
1346 case R_PARISC_GNU_VTINHERIT:
1347 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec,
1348 &h->elf, rel->r_offset))
1349 return false;
1350 continue;
1351
1352 /* This relocation describes which C++ vtable entries are actually
1353 used. Record for later use during GC. */
1354 case R_PARISC_GNU_VTENTRY:
1355 if (!_bfd_elf32_gc_record_vtentry (abfd, sec,
1356 &h->elf, rel->r_addend))
1357 return false;
1358 continue;
1359
1360 default:
1361 continue;
1362 }
1363
1364 /* Now carry out our orders. */
1365 if (need_entry & NEED_GOT)
1366 {
1367 /* Allocate space for a GOT entry, as well as a dynamic
1368 relocation for this entry. */
1369 if (htab->sgot == NULL)
1370 {
1371 if (htab->elf.dynobj == NULL)
1372 htab->elf.dynobj = abfd;
1373 if (!elf32_hppa_create_dynamic_sections (htab->elf.dynobj, info))
1374 return false;
1375 }
1376
1377 if (h != NULL)
1378 {
1379 h->elf.got.refcount += 1;
1380 }
1381 else
1382 {
1383 bfd_signed_vma *local_got_refcounts;
1384
1385 /* This is a global offset table entry for a local symbol. */
1386 local_got_refcounts = elf_local_got_refcounts (abfd);
1387 if (local_got_refcounts == NULL)
1388 {
1389 bfd_size_type size;
1390
1391 /* Allocate space for local got offsets and local
1392 plt offsets. Done this way to save polluting
1393 elf_obj_tdata with another target specific
1394 pointer. */
1395 size = symtab_hdr->sh_info;
1396 size *= 2 * sizeof (bfd_signed_vma);
1397 local_got_refcounts = ((bfd_signed_vma *)
1398 bfd_zalloc (abfd, size));
1399 if (local_got_refcounts == NULL)
1400 return false;
1401 elf_local_got_refcounts (abfd) = local_got_refcounts;
1402 }
1403 local_got_refcounts[r_symndx] += 1;
1404 }
1405 }
1406
1407 if (need_entry & NEED_PLT)
1408 {
1409 /* If we are creating a shared library, and this is a reloc
1410 against a weak symbol or a global symbol in a dynamic
1411 object, then we will be creating an import stub and a
1412 .plt entry for the symbol. Similarly, on a normal link
1413 to symbols defined in a dynamic object we'll need the
1414 import stub and a .plt entry. We don't know yet whether
1415 the symbol is defined or not, so make an entry anyway and
1416 clean up later in adjust_dynamic_symbol. */
1417 if ((sec->flags & SEC_ALLOC) != 0)
1418 {
1419 if (h != NULL)
1420 {
1421 h->elf.elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1422 h->elf.plt.refcount += 1;
1423
1424 /* If this .plt entry is for a plabel, mark it so
1425 that adjust_dynamic_symbol will keep the entry
1426 even if it appears to be local. */
1427 if (need_entry & PLT_PLABEL)
1428 h->plabel = 1;
1429 }
1430 else if (need_entry & PLT_PLABEL)
1431 {
1432 bfd_signed_vma *local_got_refcounts;
1433 bfd_signed_vma *local_plt_refcounts;
1434
1435 local_got_refcounts = elf_local_got_refcounts (abfd);
1436 if (local_got_refcounts == NULL)
1437 {
1438 bfd_size_type size;
1439
1440 /* Allocate space for local got offsets and local
1441 plt offsets. */
1442 size = symtab_hdr->sh_info;
1443 size *= 2 * sizeof (bfd_signed_vma);
1444 local_got_refcounts = ((bfd_signed_vma *)
1445 bfd_zalloc (abfd, size));
1446 if (local_got_refcounts == NULL)
1447 return false;
1448 elf_local_got_refcounts (abfd) = local_got_refcounts;
1449 }
1450 local_plt_refcounts = (local_got_refcounts
1451 + symtab_hdr->sh_info);
1452 local_plt_refcounts[r_symndx] += 1;
1453 }
1454 }
1455 }
1456
1457 if (need_entry & NEED_DYNREL)
1458 {
1459 /* Flag this symbol as having a non-got, non-plt reference
1460 so that we generate copy relocs if it turns out to be
1461 dynamic. */
1462 if (h != NULL && !info->shared)
1463 h->elf.elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
1464
1465 /* If we are creating a shared library then we need to copy
1466 the reloc into the shared library. However, if we are
1467 linking with -Bsymbolic, we need only copy absolute
1468 relocs or relocs against symbols that are not defined in
1469 an object we are including in the link. PC- or DP- or
1470 DLT-relative relocs against any local sym or global sym
1471 with DEF_REGULAR set, can be discarded. At this point we
1472 have not seen all the input files, so it is possible that
1473 DEF_REGULAR is not set now but will be set later (it is
1474 never cleared). We account for that possibility below by
1475 storing information in the dyn_relocs field of the
1476 hash table entry.
1477
1478 A similar situation to the -Bsymbolic case occurs when
1479 creating shared libraries and symbol visibility changes
1480 render the symbol local.
1481
1482 As it turns out, all the relocs we will be creating here
1483 are absolute, so we cannot remove them on -Bsymbolic
1484 links or visibility changes anyway. A STUB_REL reloc
1485 is absolute too, as in that case it is the reloc in the
1486 stub we will be creating, rather than copying the PCREL
1487 reloc in the branch.
1488
1489 If on the other hand, we are creating an executable, we
1490 may need to keep relocations for symbols satisfied by a
1491 dynamic library if we manage to avoid copy relocs for the
1492 symbol. */
1493 if ((info->shared
1494 && (sec->flags & SEC_ALLOC) != 0
1495 && (IS_ABSOLUTE_RELOC (r_type)
1496 || (h != NULL
1497 && (!info->symbolic
1498 || h->elf.root.type == bfd_link_hash_defweak
1499 || (h->elf.elf_link_hash_flags
1500 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1501 || (!info->shared
1502 && (sec->flags & SEC_ALLOC) != 0
1503 && h != NULL
1504 && (h->elf.root.type == bfd_link_hash_defweak
1505 || (h->elf.elf_link_hash_flags
1506 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
1507 {
1508 struct elf32_hppa_dyn_reloc_entry *p;
1509 struct elf32_hppa_dyn_reloc_entry **head;
1510
1511 /* Create a reloc section in dynobj and make room for
1512 this reloc. */
1513 if (sreloc == NULL)
1514 {
1515 char *name;
1516 bfd *dynobj;
1517
1518 name = (bfd_elf_string_from_elf_section
1519 (abfd,
1520 elf_elfheader (abfd)->e_shstrndx,
1521 elf_section_data (sec)->rel_hdr.sh_name));
1522 if (name == NULL)
1523 {
1524 (*_bfd_error_handler)
1525 (_("Could not find relocation section for %s"),
1526 sec->name);
1527 bfd_set_error (bfd_error_bad_value);
1528 return false;
1529 }
1530
1531 if (htab->elf.dynobj == NULL)
1532 htab->elf.dynobj = abfd;
1533
1534 dynobj = htab->elf.dynobj;
1535 sreloc = bfd_get_section_by_name (dynobj, name);
1536 if (sreloc == NULL)
1537 {
1538 flagword flags;
1539
1540 sreloc = bfd_make_section (dynobj, name);
1541 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1542 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1543 if ((sec->flags & SEC_ALLOC) != 0)
1544 flags |= SEC_ALLOC | SEC_LOAD;
1545 if (sreloc == NULL
1546 || !bfd_set_section_flags (dynobj, sreloc, flags)
1547 || !bfd_set_section_alignment (dynobj, sreloc, 2))
1548 return false;
1549 }
1550
1551 elf_section_data (sec)->sreloc = sreloc;
1552 }
1553
1554 /* If this is a global symbol, we count the number of
1555 relocations we need for this symbol. */
1556 if (h != NULL)
1557 {
1558 head = &h->dyn_relocs;
1559 }
1560 else
1561 {
1562 /* Track dynamic relocs needed for local syms too.
1563 We really need local syms available to do this
1564 easily. Oh well. */
1565
1566 asection *s;
1567 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1568 sec, r_symndx);
1569 if (s == NULL)
1570 return false;
1571
1572 head = ((struct elf32_hppa_dyn_reloc_entry **)
1573 &elf_section_data (s)->local_dynrel);
1574 }
1575
1576 p = *head;
1577 if (p == NULL || p->sec != sec)
1578 {
1579 p = ((struct elf32_hppa_dyn_reloc_entry *)
1580 bfd_alloc (htab->elf.dynobj,
1581 (bfd_size_type) sizeof *p));
1582 if (p == NULL)
1583 return false;
1584 p->next = *head;
1585 *head = p;
1586 p->sec = sec;
1587 p->count = 0;
1588 #if RELATIVE_DYNRELOCS
1589 p->relative_count = 0;
1590 #endif
1591 }
1592
1593 p->count += 1;
1594 #if RELATIVE_DYNRELOCS
1595 if (!IS_ABSOLUTE_RELOC (rtype))
1596 p->relative_count += 1;
1597 #endif
1598 }
1599 }
1600 }
1601
1602 return true;
1603 }
1604
1605 /* Return the section that should be marked against garbage collection
1606 for a given relocation. */
1607
1608 static asection *
1609 elf32_hppa_gc_mark_hook (abfd, info, rel, h, sym)
1610 bfd *abfd;
1611 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1612 Elf_Internal_Rela *rel;
1613 struct elf_link_hash_entry *h;
1614 Elf_Internal_Sym *sym;
1615 {
1616 if (h != NULL)
1617 {
1618 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1619 {
1620 case R_PARISC_GNU_VTINHERIT:
1621 case R_PARISC_GNU_VTENTRY:
1622 break;
1623
1624 default:
1625 switch (h->root.type)
1626 {
1627 case bfd_link_hash_defined:
1628 case bfd_link_hash_defweak:
1629 return h->root.u.def.section;
1630
1631 case bfd_link_hash_common:
1632 return h->root.u.c.p->section;
1633
1634 default:
1635 break;
1636 }
1637 }
1638 }
1639 else
1640 {
1641 return bfd_section_from_elf_index (abfd, sym->st_shndx);
1642 }
1643
1644 return NULL;
1645 }
1646
1647 /* Update the got and plt entry reference counts for the section being
1648 removed. */
1649
1650 static boolean
1651 elf32_hppa_gc_sweep_hook (abfd, info, sec, relocs)
1652 bfd *abfd;
1653 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1654 asection *sec;
1655 const Elf_Internal_Rela *relocs;
1656 {
1657 Elf_Internal_Shdr *symtab_hdr;
1658 struct elf_link_hash_entry **sym_hashes;
1659 bfd_signed_vma *local_got_refcounts;
1660 bfd_signed_vma *local_plt_refcounts;
1661 const Elf_Internal_Rela *rel, *relend;
1662 unsigned long r_symndx;
1663 struct elf_link_hash_entry *h;
1664 struct elf32_hppa_link_hash_table *htab;
1665 bfd *dynobj;
1666
1667 elf_section_data (sec)->local_dynrel = NULL;
1668
1669 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1670 sym_hashes = elf_sym_hashes (abfd);
1671 local_got_refcounts = elf_local_got_refcounts (abfd);
1672 local_plt_refcounts = local_got_refcounts;
1673 if (local_plt_refcounts != NULL)
1674 local_plt_refcounts += symtab_hdr->sh_info;
1675 htab = hppa_link_hash_table (info);
1676 dynobj = htab->elf.dynobj;
1677 if (dynobj == NULL)
1678 return true;
1679
1680 relend = relocs + sec->reloc_count;
1681 for (rel = relocs; rel < relend; rel++)
1682 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1683 {
1684 case R_PARISC_DLTIND14F:
1685 case R_PARISC_DLTIND14R:
1686 case R_PARISC_DLTIND21L:
1687 r_symndx = ELF32_R_SYM (rel->r_info);
1688 if (r_symndx >= symtab_hdr->sh_info)
1689 {
1690 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1691 if (h->got.refcount > 0)
1692 h->got.refcount -= 1;
1693 }
1694 else if (local_got_refcounts != NULL)
1695 {
1696 if (local_got_refcounts[r_symndx] > 0)
1697 local_got_refcounts[r_symndx] -= 1;
1698 }
1699 break;
1700
1701 case R_PARISC_PCREL12F:
1702 case R_PARISC_PCREL17C:
1703 case R_PARISC_PCREL17F:
1704 case R_PARISC_PCREL22F:
1705 r_symndx = ELF32_R_SYM (rel->r_info);
1706 if (r_symndx >= symtab_hdr->sh_info)
1707 {
1708 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1709 if (h->plt.refcount > 0)
1710 h->plt.refcount -= 1;
1711 }
1712 break;
1713
1714 case R_PARISC_PLABEL14R:
1715 case R_PARISC_PLABEL21L:
1716 case R_PARISC_PLABEL32:
1717 r_symndx = ELF32_R_SYM (rel->r_info);
1718 if (r_symndx >= symtab_hdr->sh_info)
1719 {
1720 struct elf32_hppa_link_hash_entry *eh;
1721 struct elf32_hppa_dyn_reloc_entry **pp;
1722 struct elf32_hppa_dyn_reloc_entry *p;
1723
1724 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1725
1726 if (h->plt.refcount > 0)
1727 h->plt.refcount -= 1;
1728
1729 eh = (struct elf32_hppa_link_hash_entry *) h;
1730
1731 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1732 if (p->sec == sec)
1733 {
1734 #if RELATIVE_DYNRELOCS
1735 if (!IS_ABSOLUTE_RELOC (rtype))
1736 p->relative_count -= 1;
1737 #endif
1738 p->count -= 1;
1739 if (p->count == 0)
1740 *pp = p->next;
1741 break;
1742 }
1743 }
1744 else if (local_plt_refcounts != NULL)
1745 {
1746 if (local_plt_refcounts[r_symndx] > 0)
1747 local_plt_refcounts[r_symndx] -= 1;
1748 }
1749 break;
1750
1751 case R_PARISC_DIR32:
1752 r_symndx = ELF32_R_SYM (rel->r_info);
1753 if (r_symndx >= symtab_hdr->sh_info)
1754 {
1755 struct elf32_hppa_link_hash_entry *eh;
1756 struct elf32_hppa_dyn_reloc_entry **pp;
1757 struct elf32_hppa_dyn_reloc_entry *p;
1758
1759 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1760
1761 eh = (struct elf32_hppa_link_hash_entry *) h;
1762
1763 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1764 if (p->sec == sec)
1765 {
1766 #if RELATIVE_DYNRELOCS
1767 if (!IS_ABSOLUTE_RELOC (R_PARISC_DIR32))
1768 p->relative_count -= 1;
1769 #endif
1770 p->count -= 1;
1771 if (p->count == 0)
1772 *pp = p->next;
1773 break;
1774 }
1775 }
1776 break;
1777
1778 default:
1779 break;
1780 }
1781
1782 return true;
1783 }
1784
1785 /* Our own version of hide_symbol, so that we can keep plt entries for
1786 plabels. */
1787
1788 static void
1789 elf32_hppa_hide_symbol (info, h, force_local)
1790 struct bfd_link_info *info;
1791 struct elf_link_hash_entry *h;
1792 boolean force_local;
1793 {
1794 if (force_local)
1795 {
1796 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
1797 if (h->dynindx != -1)
1798 {
1799 h->dynindx = -1;
1800 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1801 h->dynstr_index);
1802 }
1803 }
1804
1805 if (! ((struct elf32_hppa_link_hash_entry *) h)->plabel)
1806 {
1807 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1808 h->plt.offset = (bfd_vma) -1;
1809 }
1810 }
1811
1812 /* This is the condition under which elf32_hppa_finish_dynamic_symbol
1813 will be called from elflink.h. If elflink.h doesn't call our
1814 finish_dynamic_symbol routine, we'll need to do something about
1815 initializing any .plt and .got entries in elf32_hppa_relocate_section. */
1816 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1817 ((DYN) \
1818 && ((INFO)->shared \
1819 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1820 && ((H)->dynindx != -1 \
1821 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1822
1823 /* Adjust a symbol defined by a dynamic object and referenced by a
1824 regular object. The current definition is in some section of the
1825 dynamic object, but we're not including those sections. We have to
1826 change the definition to something the rest of the link can
1827 understand. */
1828
1829 static boolean
1830 elf32_hppa_adjust_dynamic_symbol (info, h)
1831 struct bfd_link_info *info;
1832 struct elf_link_hash_entry *h;
1833 {
1834 struct elf32_hppa_link_hash_table *htab;
1835 struct elf32_hppa_link_hash_entry *eh;
1836 struct elf32_hppa_dyn_reloc_entry *p;
1837 asection *s;
1838 unsigned int power_of_two;
1839
1840 /* If this is a function, put it in the procedure linkage table. We
1841 will fill in the contents of the procedure linkage table later,
1842 when we know the address of the .got section. */
1843 if (h->type == STT_FUNC
1844 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1845 {
1846 if (!info->shared
1847 && h->plt.refcount > 0
1848 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1849 && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0)
1850 {
1851 ((struct elf32_hppa_link_hash_entry *) h)->maybe_pic_call = 1;
1852 }
1853
1854 if (h->plt.refcount <= 0
1855 || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1856 && h->root.type != bfd_link_hash_defweak
1857 && ! ((struct elf32_hppa_link_hash_entry *) h)->plabel
1858 && (!info->shared || info->symbolic)))
1859 {
1860 /* The .plt entry is not needed when:
1861 a) Garbage collection has removed all references to the
1862 symbol, or
1863 b) We know for certain the symbol is defined in this
1864 object, and it's not a weak definition, nor is the symbol
1865 used by a plabel relocation. Either this object is the
1866 application or we are doing a shared symbolic link. */
1867
1868 /* As a special sop to the hppa ABI, we keep a .plt entry
1869 for functions in sections containing PIC code. */
1870 if (((struct elf32_hppa_link_hash_entry *) h)->maybe_pic_call)
1871 ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
1872 else
1873 {
1874 h->plt.offset = (bfd_vma) -1;
1875 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1876 }
1877 }
1878
1879 return true;
1880 }
1881 else
1882 h->plt.offset = (bfd_vma) -1;
1883
1884 /* If this is a weak symbol, and there is a real definition, the
1885 processor independent code will have arranged for us to see the
1886 real definition first, and we can just use the same value. */
1887 if (h->weakdef != NULL)
1888 {
1889 if (h->weakdef->root.type != bfd_link_hash_defined
1890 && h->weakdef->root.type != bfd_link_hash_defweak)
1891 abort ();
1892 h->root.u.def.section = h->weakdef->root.u.def.section;
1893 h->root.u.def.value = h->weakdef->root.u.def.value;
1894 return true;
1895 }
1896
1897 /* This is a reference to a symbol defined by a dynamic object which
1898 is not a function. */
1899
1900 /* If we are creating a shared library, we must presume that the
1901 only references to the symbol are via the global offset table.
1902 For such cases we need not do anything here; the relocations will
1903 be handled correctly by relocate_section. */
1904 if (info->shared)
1905 return true;
1906
1907 /* If there are no references to this symbol that do not use the
1908 GOT, we don't need to generate a copy reloc. */
1909 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1910 return true;
1911
1912 eh = (struct elf32_hppa_link_hash_entry *) h;
1913 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1914 {
1915 s = p->sec->output_section;
1916 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1917 break;
1918 }
1919
1920 /* If we didn't find any dynamic relocs in read-only sections, then
1921 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1922 if (p == NULL)
1923 {
1924 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1925 return true;
1926 }
1927
1928 /* We must allocate the symbol in our .dynbss section, which will
1929 become part of the .bss section of the executable. There will be
1930 an entry for this symbol in the .dynsym section. The dynamic
1931 object will contain position independent code, so all references
1932 from the dynamic object to this symbol will go through the global
1933 offset table. The dynamic linker will use the .dynsym entry to
1934 determine the address it must put in the global offset table, so
1935 both the dynamic object and the regular object will refer to the
1936 same memory location for the variable. */
1937
1938 htab = hppa_link_hash_table (info);
1939
1940 /* We must generate a COPY reloc to tell the dynamic linker to
1941 copy the initial value out of the dynamic object and into the
1942 runtime process image. */
1943 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1944 {
1945 htab->srelbss->_raw_size += sizeof (Elf32_External_Rela);
1946 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1947 }
1948
1949 /* We need to figure out the alignment required for this symbol. I
1950 have no idea how other ELF linkers handle this. */
1951
1952 power_of_two = bfd_log2 (h->size);
1953 if (power_of_two > 3)
1954 power_of_two = 3;
1955
1956 /* Apply the required alignment. */
1957 s = htab->sdynbss;
1958 s->_raw_size = BFD_ALIGN (s->_raw_size,
1959 (bfd_size_type) (1 << power_of_two));
1960 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1961 {
1962 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1963 return false;
1964 }
1965
1966 /* Define the symbol as being at this point in the section. */
1967 h->root.u.def.section = s;
1968 h->root.u.def.value = s->_raw_size;
1969
1970 /* Increment the section size to make room for the symbol. */
1971 s->_raw_size += h->size;
1972
1973 return true;
1974 }
1975
1976 /* Called via elf_link_hash_traverse to create .plt entries for an
1977 application that uses statically linked PIC functions. Similar to
1978 the first part of elf32_hppa_adjust_dynamic_symbol. */
1979
1980 static boolean
1981 mark_PIC_calls (h, inf)
1982 struct elf_link_hash_entry *h;
1983 PTR inf ATTRIBUTE_UNUSED;
1984 {
1985 if (! (h->plt.refcount > 0
1986 && (h->root.type == bfd_link_hash_defined
1987 || h->root.type == bfd_link_hash_defweak)
1988 && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0))
1989 {
1990 h->plt.offset = (bfd_vma) -1;
1991 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1992 return true;
1993 }
1994
1995 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1996 ((struct elf32_hppa_link_hash_entry *) h)->maybe_pic_call = 1;
1997 ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
1998
1999 return true;
2000 }
2001
2002 /* Allocate space in the .plt for entries that won't have relocations.
2003 ie. pic_call and plabel entries. */
2004
2005 static boolean
2006 allocate_plt_static (h, inf)
2007 struct elf_link_hash_entry *h;
2008 PTR inf;
2009 {
2010 struct bfd_link_info *info;
2011 struct elf32_hppa_link_hash_table *htab;
2012 asection *s;
2013
2014 if (h->root.type == bfd_link_hash_indirect
2015 || h->root.type == bfd_link_hash_warning)
2016 return true;
2017
2018 info = (struct bfd_link_info *) inf;
2019 htab = hppa_link_hash_table (info);
2020 if (((struct elf32_hppa_link_hash_entry *) h)->pic_call)
2021 {
2022 /* Make an entry in the .plt section for non-pic code that is
2023 calling pic code. */
2024 s = htab->splt;
2025 h->plt.offset = s->_raw_size;
2026 s->_raw_size += PLT_ENTRY_SIZE;
2027 }
2028 else if (htab->elf.dynamic_sections_created
2029 && h->plt.refcount > 0)
2030 {
2031 /* Make sure this symbol is output as a dynamic symbol.
2032 Undefined weak syms won't yet be marked as dynamic. */
2033 if (h->dynindx == -1
2034 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
2035 && h->type != STT_PARISC_MILLI)
2036 {
2037 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2038 return false;
2039 }
2040
2041 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
2042 {
2043 /* Allocate these later. */
2044 }
2045 else if (((struct elf32_hppa_link_hash_entry *) h)->plabel)
2046 {
2047 /* Make an entry in the .plt section for plabel references
2048 that won't have a .plt entry for other reasons. */
2049 s = htab->splt;
2050 h->plt.offset = s->_raw_size;
2051 s->_raw_size += PLT_ENTRY_SIZE;
2052 }
2053 else
2054 {
2055 /* No .plt entry needed. */
2056 h->plt.offset = (bfd_vma) -1;
2057 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2058 }
2059 }
2060 else
2061 {
2062 h->plt.offset = (bfd_vma) -1;
2063 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2064 }
2065
2066 return true;
2067 }
2068
2069 /* Allocate space in .plt, .got and associated reloc sections for
2070 global syms. */
2071
2072 static boolean
2073 allocate_dynrelocs (h, inf)
2074 struct elf_link_hash_entry *h;
2075 PTR inf;
2076 {
2077 struct bfd_link_info *info;
2078 struct elf32_hppa_link_hash_table *htab;
2079 asection *s;
2080 struct elf32_hppa_link_hash_entry *eh;
2081 struct elf32_hppa_dyn_reloc_entry *p;
2082
2083 if (h->root.type == bfd_link_hash_indirect
2084 || h->root.type == bfd_link_hash_warning)
2085 return true;
2086
2087 info = (struct bfd_link_info *) inf;
2088 htab = hppa_link_hash_table (info);
2089 if (htab->elf.dynamic_sections_created
2090 && h->plt.offset != (bfd_vma) -1
2091 && !((struct elf32_hppa_link_hash_entry *) h)->pic_call
2092 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
2093 {
2094 /* Make an entry in the .plt section. */
2095 s = htab->splt;
2096 h->plt.offset = s->_raw_size;
2097 s->_raw_size += PLT_ENTRY_SIZE;
2098
2099 /* We also need to make an entry in the .rela.plt section. */
2100 htab->srelplt->_raw_size += sizeof (Elf32_External_Rela);
2101 htab->need_plt_stub = 1;
2102 }
2103
2104 if (h->got.refcount > 0)
2105 {
2106 /* Make sure this symbol is output as a dynamic symbol.
2107 Undefined weak syms won't yet be marked as dynamic. */
2108 if (h->dynindx == -1
2109 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
2110 && h->type != STT_PARISC_MILLI)
2111 {
2112 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2113 return false;
2114 }
2115
2116 s = htab->sgot;
2117 h->got.offset = s->_raw_size;
2118 s->_raw_size += GOT_ENTRY_SIZE;
2119 if (htab->elf.dynamic_sections_created
2120 && (info->shared
2121 || (h->dynindx != -1
2122 && h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0))
2123 {
2124 htab->srelgot->_raw_size += sizeof (Elf32_External_Rela);
2125 }
2126 }
2127 else
2128 h->got.offset = (bfd_vma) -1;
2129
2130 eh = (struct elf32_hppa_link_hash_entry *) h;
2131 if (eh->dyn_relocs == NULL)
2132 return true;
2133
2134 /* If this is a -Bsymbolic shared link, then we need to discard all
2135 space allocated for dynamic pc-relative relocs against symbols
2136 defined in a regular object. For the normal shared case, discard
2137 space for relocs that have become local due to symbol visibility
2138 changes. */
2139 if (info->shared)
2140 {
2141 #if RELATIVE_DYNRELOCS
2142 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
2143 && ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
2144 || info->symbolic))
2145 {
2146 struct elf32_hppa_dyn_reloc_entry **pp;
2147
2148 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2149 {
2150 p->count -= p->relative_count;
2151 p->relative_count = 0;
2152 if (p->count == 0)
2153 *pp = p->next;
2154 else
2155 pp = &p->next;
2156 }
2157 }
2158 #endif
2159 }
2160 else
2161 {
2162 /* For the non-shared case, discard space for relocs against
2163 symbols which turn out to need copy relocs or are not
2164 dynamic. */
2165 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
2166 && (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2167 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2168 || (htab->elf.dynamic_sections_created
2169 && (h->root.type == bfd_link_hash_undefweak
2170 || h->root.type == bfd_link_hash_undefined))))
2171 {
2172 /* Make sure this symbol is output as a dynamic symbol.
2173 Undefined weak syms won't yet be marked as dynamic. */
2174 if (h->dynindx == -1
2175 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
2176 && h->type != STT_PARISC_MILLI)
2177 {
2178 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2179 return false;
2180 }
2181
2182 /* If that succeeded, we know we'll be keeping all the
2183 relocs. */
2184 if (h->dynindx != -1)
2185 goto keep;
2186 }
2187
2188 eh->dyn_relocs = NULL;
2189 return true;
2190
2191 keep: ;
2192 }
2193
2194 /* Finally, allocate space. */
2195 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2196 {
2197 asection *sreloc = elf_section_data (p->sec)->sreloc;
2198 sreloc->_raw_size += p->count * sizeof (Elf32_External_Rela);
2199 }
2200
2201 return true;
2202 }
2203
2204 /* This function is called via elf_link_hash_traverse to force
2205 millicode symbols local so they do not end up as globals in the
2206 dynamic symbol table. We ought to be able to do this in
2207 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2208 for all dynamic symbols. Arguably, this is a bug in
2209 elf_adjust_dynamic_symbol. */
2210
2211 static boolean
2212 clobber_millicode_symbols (h, info)
2213 struct elf_link_hash_entry *h;
2214 struct bfd_link_info *info;
2215 {
2216 if (h->type == STT_PARISC_MILLI
2217 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
2218 {
2219 elf32_hppa_hide_symbol (info, h, true);
2220
2221 /* ?!? We only want to remove these from the dynamic symbol table.
2222 Therefore we do not leave ELF_LINK_FORCED_LOCAL set. */
2223 h->elf_link_hash_flags &= ~ELF_LINK_FORCED_LOCAL;
2224 }
2225 return true;
2226 }
2227
2228 /* Find any dynamic relocs that apply to read-only sections. */
2229
2230 static boolean
2231 readonly_dynrelocs (h, inf)
2232 struct elf_link_hash_entry *h;
2233 PTR inf;
2234 {
2235 struct elf32_hppa_link_hash_entry *eh;
2236 struct elf32_hppa_dyn_reloc_entry *p;
2237
2238 eh = (struct elf32_hppa_link_hash_entry *) h;
2239 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2240 {
2241 asection *s = p->sec->output_section;
2242
2243 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2244 {
2245 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2246
2247 info->flags |= DF_TEXTREL;
2248
2249 /* Not an error, just cut short the traversal. */
2250 return false;
2251 }
2252 }
2253 return true;
2254 }
2255
2256 /* Set the sizes of the dynamic sections. */
2257
2258 static boolean
2259 elf32_hppa_size_dynamic_sections (output_bfd, info)
2260 bfd *output_bfd ATTRIBUTE_UNUSED;
2261 struct bfd_link_info *info;
2262 {
2263 struct elf32_hppa_link_hash_table *htab;
2264 bfd *dynobj;
2265 bfd *ibfd;
2266 asection *s;
2267 boolean relocs;
2268
2269 htab = hppa_link_hash_table (info);
2270 dynobj = htab->elf.dynobj;
2271 if (dynobj == NULL)
2272 abort ();
2273
2274 if (htab->elf.dynamic_sections_created)
2275 {
2276 /* Set the contents of the .interp section to the interpreter. */
2277 if (! info->shared)
2278 {
2279 s = bfd_get_section_by_name (dynobj, ".interp");
2280 if (s == NULL)
2281 abort ();
2282 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
2283 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2284 }
2285
2286 /* Force millicode symbols local. */
2287 elf_link_hash_traverse (&htab->elf,
2288 clobber_millicode_symbols,
2289 info);
2290 }
2291 else
2292 {
2293 /* Run through the function symbols, looking for any that are
2294 PIC, and mark them as needing .plt entries so that %r19 will
2295 be set up. */
2296 if (! info->shared)
2297 elf_link_hash_traverse (&htab->elf, mark_PIC_calls, (PTR) info);
2298 }
2299
2300 /* Set up .got and .plt offsets for local syms, and space for local
2301 dynamic relocs. */
2302 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2303 {
2304 bfd_signed_vma *local_got;
2305 bfd_signed_vma *end_local_got;
2306 bfd_signed_vma *local_plt;
2307 bfd_signed_vma *end_local_plt;
2308 bfd_size_type locsymcount;
2309 Elf_Internal_Shdr *symtab_hdr;
2310 asection *srel;
2311
2312 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2313 continue;
2314
2315 for (s = ibfd->sections; s != NULL; s = s->next)
2316 {
2317 struct elf32_hppa_dyn_reloc_entry *p;
2318
2319 for (p = ((struct elf32_hppa_dyn_reloc_entry *)
2320 elf_section_data (s)->local_dynrel);
2321 p != NULL;
2322 p = p->next)
2323 {
2324 if (!bfd_is_abs_section (p->sec)
2325 && bfd_is_abs_section (p->sec->output_section))
2326 {
2327 /* Input section has been discarded, either because
2328 it is a copy of a linkonce section or due to
2329 linker script /DISCARD/, so we'll be discarding
2330 the relocs too. */
2331 }
2332 else if (p->count != 0)
2333 {
2334 srel = elf_section_data (p->sec)->sreloc;
2335 srel->_raw_size += p->count * sizeof (Elf32_External_Rela);
2336 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
2337 info->flags |= DF_TEXTREL;
2338 }
2339 }
2340 }
2341
2342 local_got = elf_local_got_refcounts (ibfd);
2343 if (!local_got)
2344 continue;
2345
2346 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2347 locsymcount = symtab_hdr->sh_info;
2348 end_local_got = local_got + locsymcount;
2349 s = htab->sgot;
2350 srel = htab->srelgot;
2351 for (; local_got < end_local_got; ++local_got)
2352 {
2353 if (*local_got > 0)
2354 {
2355 *local_got = s->_raw_size;
2356 s->_raw_size += GOT_ENTRY_SIZE;
2357 if (info->shared)
2358 srel->_raw_size += sizeof (Elf32_External_Rela);
2359 }
2360 else
2361 *local_got = (bfd_vma) -1;
2362 }
2363
2364 local_plt = end_local_got;
2365 end_local_plt = local_plt + locsymcount;
2366 if (! htab->elf.dynamic_sections_created)
2367 {
2368 /* Won't be used, but be safe. */
2369 for (; local_plt < end_local_plt; ++local_plt)
2370 *local_plt = (bfd_vma) -1;
2371 }
2372 else
2373 {
2374 s = htab->splt;
2375 srel = htab->srelplt;
2376 for (; local_plt < end_local_plt; ++local_plt)
2377 {
2378 if (*local_plt > 0)
2379 {
2380 *local_plt = s->_raw_size;
2381 s->_raw_size += PLT_ENTRY_SIZE;
2382 if (info->shared)
2383 srel->_raw_size += sizeof (Elf32_External_Rela);
2384 }
2385 else
2386 *local_plt = (bfd_vma) -1;
2387 }
2388 }
2389 }
2390
2391 /* Do all the .plt entries without relocs first. The dynamic linker
2392 uses the last .plt reloc to find the end of the .plt (and hence
2393 the start of the .got) for lazy linking. */
2394 elf_link_hash_traverse (&htab->elf, allocate_plt_static, (PTR) info);
2395
2396 /* Allocate global sym .plt and .got entries, and space for global
2397 sym dynamic relocs. */
2398 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
2399
2400 /* The check_relocs and adjust_dynamic_symbol entry points have
2401 determined the sizes of the various dynamic sections. Allocate
2402 memory for them. */
2403 relocs = false;
2404 for (s = dynobj->sections; s != NULL; s = s->next)
2405 {
2406 if ((s->flags & SEC_LINKER_CREATED) == 0)
2407 continue;
2408
2409 if (s == htab->splt)
2410 {
2411 if (htab->need_plt_stub)
2412 {
2413 /* Make space for the plt stub at the end of the .plt
2414 section. We want this stub right at the end, up
2415 against the .got section. */
2416 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2417 int pltalign = bfd_section_alignment (dynobj, s);
2418 bfd_size_type mask;
2419
2420 if (gotalign > pltalign)
2421 bfd_set_section_alignment (dynobj, s, gotalign);
2422 mask = ((bfd_size_type) 1 << gotalign) - 1;
2423 s->_raw_size = (s->_raw_size + sizeof (plt_stub) + mask) & ~mask;
2424 }
2425 }
2426 else if (s == htab->sgot)
2427 ;
2428 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
2429 {
2430 if (s->_raw_size != 0)
2431 {
2432 /* Remember whether there are any reloc sections other
2433 than .rela.plt. */
2434 if (s != htab->srelplt)
2435 relocs = true;
2436
2437 /* We use the reloc_count field as a counter if we need
2438 to copy relocs into the output file. */
2439 s->reloc_count = 0;
2440 }
2441 }
2442 else
2443 {
2444 /* It's not one of our sections, so don't allocate space. */
2445 continue;
2446 }
2447
2448 if (s->_raw_size == 0)
2449 {
2450 /* If we don't need this section, strip it from the
2451 output file. This is mostly to handle .rela.bss and
2452 .rela.plt. We must create both sections in
2453 create_dynamic_sections, because they must be created
2454 before the linker maps input sections to output
2455 sections. The linker does that before
2456 adjust_dynamic_symbol is called, and it is that
2457 function which decides whether anything needs to go
2458 into these sections. */
2459 _bfd_strip_section_from_output (info, s);
2460 continue;
2461 }
2462
2463 /* Allocate memory for the section contents. Zero it, because
2464 we may not fill in all the reloc sections. */
2465 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
2466 if (s->contents == NULL && s->_raw_size != 0)
2467 return false;
2468 }
2469
2470 if (htab->elf.dynamic_sections_created)
2471 {
2472 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2473 actually has nothing to do with the PLT, it is how we
2474 communicate the LTP value of a load module to the dynamic
2475 linker. */
2476 #define add_dynamic_entry(TAG, VAL) \
2477 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
2478
2479 if (!add_dynamic_entry (DT_PLTGOT, 0))
2480 return false;
2481
2482 /* Add some entries to the .dynamic section. We fill in the
2483 values later, in elf32_hppa_finish_dynamic_sections, but we
2484 must add the entries now so that we get the correct size for
2485 the .dynamic section. The DT_DEBUG entry is filled in by the
2486 dynamic linker and used by the debugger. */
2487 if (!info->shared)
2488 {
2489 if (!add_dynamic_entry (DT_DEBUG, 0))
2490 return false;
2491 }
2492
2493 if (htab->srelplt->_raw_size != 0)
2494 {
2495 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2496 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2497 || !add_dynamic_entry (DT_JMPREL, 0))
2498 return false;
2499 }
2500
2501 if (relocs)
2502 {
2503 if (!add_dynamic_entry (DT_RELA, 0)
2504 || !add_dynamic_entry (DT_RELASZ, 0)
2505 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2506 return false;
2507
2508 /* If any dynamic relocs apply to a read-only section,
2509 then we need a DT_TEXTREL entry. */
2510 if ((info->flags & DF_TEXTREL) == 0)
2511 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs,
2512 (PTR) info);
2513
2514 if ((info->flags & DF_TEXTREL) != 0)
2515 {
2516 if (!add_dynamic_entry (DT_TEXTREL, 0))
2517 return false;
2518 }
2519 }
2520 }
2521 #undef add_dynamic_entry
2522
2523 return true;
2524 }
2525
2526 /* External entry points for sizing and building linker stubs. */
2527
2528 /* Determine and set the size of the stub section for a final link.
2529
2530 The basic idea here is to examine all the relocations looking for
2531 PC-relative calls to a target that is unreachable with a "bl"
2532 instruction. */
2533
2534 boolean
2535 elf32_hppa_size_stubs (output_bfd, stub_bfd, info, multi_subspace, group_size,
2536 add_stub_section, layout_sections_again)
2537 bfd *output_bfd;
2538 bfd *stub_bfd;
2539 struct bfd_link_info *info;
2540 boolean multi_subspace;
2541 bfd_signed_vma group_size;
2542 asection * (*add_stub_section) PARAMS ((const char *, asection *));
2543 void (*layout_sections_again) PARAMS ((void));
2544 {
2545 bfd *input_bfd;
2546 asection *section;
2547 asection **input_list, **list;
2548 Elf_Internal_Sym *local_syms, **all_local_syms;
2549 unsigned int bfd_indx, bfd_count;
2550 int top_id, top_index;
2551 struct elf32_hppa_link_hash_table *htab;
2552 bfd_size_type stub_group_size;
2553 boolean stubs_always_before_branch;
2554 boolean stub_changed = 0;
2555 boolean ret = 0;
2556 bfd_size_type amt;
2557
2558 htab = hppa_link_hash_table (info);
2559
2560 /* Stash our params away. */
2561 htab->stub_bfd = stub_bfd;
2562 htab->multi_subspace = multi_subspace;
2563 htab->add_stub_section = add_stub_section;
2564 htab->layout_sections_again = layout_sections_again;
2565 stubs_always_before_branch = group_size < 0;
2566 if (group_size < 0)
2567 stub_group_size = -group_size;
2568 else
2569 stub_group_size = group_size;
2570 if (stub_group_size == 1)
2571 {
2572 /* Default values. */
2573 stub_group_size = 7680000;
2574 if (htab->has_17bit_branch || htab->multi_subspace)
2575 stub_group_size = 240000;
2576 if (htab->has_12bit_branch)
2577 stub_group_size = 7500;
2578 }
2579
2580 /* Count the number of input BFDs and find the top input section id. */
2581 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2582 input_bfd != NULL;
2583 input_bfd = input_bfd->link_next)
2584 {
2585 bfd_count += 1;
2586 for (section = input_bfd->sections;
2587 section != NULL;
2588 section = section->next)
2589 {
2590 if (top_id < section->id)
2591 top_id = section->id;
2592 }
2593 }
2594
2595 amt = sizeof (struct map_stub) * (top_id + 1);
2596 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
2597 if (htab->stub_group == NULL)
2598 return false;
2599
2600 /* Make a list of input sections for each output section included in
2601 the link.
2602
2603 We can't use output_bfd->section_count here to find the top output
2604 section index as some sections may have been removed, and
2605 _bfd_strip_section_from_output doesn't renumber the indices. */
2606 for (section = output_bfd->sections, top_index = 0;
2607 section != NULL;
2608 section = section->next)
2609 {
2610 if (top_index < section->index)
2611 top_index = section->index;
2612 }
2613
2614 amt = sizeof (asection *) * (top_index + 1);
2615 input_list = (asection **) bfd_malloc (amt);
2616 if (input_list == NULL)
2617 return false;
2618
2619 /* For sections we aren't interested in, mark their entries with a
2620 value we can check later. */
2621 list = input_list + top_index;
2622 do
2623 *list = bfd_abs_section_ptr;
2624 while (list-- != input_list);
2625
2626 for (section = output_bfd->sections;
2627 section != NULL;
2628 section = section->next)
2629 {
2630 if ((section->flags & SEC_CODE) != 0)
2631 input_list[section->index] = NULL;
2632 }
2633
2634 /* Now actually build the lists. */
2635 for (input_bfd = info->input_bfds;
2636 input_bfd != NULL;
2637 input_bfd = input_bfd->link_next)
2638 {
2639 for (section = input_bfd->sections;
2640 section != NULL;
2641 section = section->next)
2642 {
2643 if (section->output_section != NULL
2644 && section->output_section->owner == output_bfd
2645 && section->output_section->index <= top_index)
2646 {
2647 list = input_list + section->output_section->index;
2648 if (*list != bfd_abs_section_ptr)
2649 {
2650 /* Steal the link_sec pointer for our list. */
2651 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2652 /* This happens to make the list in reverse order,
2653 which is what we want. */
2654 PREV_SEC (section) = *list;
2655 *list = section;
2656 }
2657 }
2658 }
2659 }
2660
2661 /* See whether we can group stub sections together. Grouping stub
2662 sections may result in fewer stubs. More importantly, we need to
2663 put all .init* and .fini* stubs at the beginning of the .init or
2664 .fini output sections respectively, because glibc splits the
2665 _init and _fini functions into multiple parts. Putting a stub in
2666 the middle of a function is not a good idea. */
2667 list = input_list + top_index;
2668 do
2669 {
2670 asection *tail = *list;
2671 if (tail == bfd_abs_section_ptr)
2672 continue;
2673 while (tail != NULL)
2674 {
2675 asection *curr;
2676 asection *prev;
2677 bfd_size_type total;
2678
2679 curr = tail;
2680 if (tail->_cooked_size)
2681 total = tail->_cooked_size;
2682 else
2683 total = tail->_raw_size;
2684 while ((prev = PREV_SEC (curr)) != NULL
2685 && ((total += curr->output_offset - prev->output_offset)
2686 < stub_group_size))
2687 curr = prev;
2688
2689 /* OK, the size from the start of CURR to the end is less
2690 than 240000 bytes and thus can be handled by one stub
2691 section. (or the tail section is itself larger than
2692 240000 bytes, in which case we may be toast.)
2693 We should really be keeping track of the total size of
2694 stubs added here, as stubs contribute to the final output
2695 section size. That's a little tricky, and this way will
2696 only break if stubs added total more than 22144 bytes, or
2697 2768 long branch stubs. It seems unlikely for more than
2698 2768 different functions to be called, especially from
2699 code only 240000 bytes long. This limit used to be
2700 250000, but c++ code tends to generate lots of little
2701 functions, and sometimes violated the assumption. */
2702 do
2703 {
2704 prev = PREV_SEC (tail);
2705 /* Set up this stub group. */
2706 htab->stub_group[tail->id].link_sec = curr;
2707 }
2708 while (tail != curr && (tail = prev) != NULL);
2709
2710 /* But wait, there's more! Input sections up to 240000
2711 bytes before the stub section can be handled by it too. */
2712 if (!stubs_always_before_branch)
2713 {
2714 total = 0;
2715 while (prev != NULL
2716 && ((total += tail->output_offset - prev->output_offset)
2717 < stub_group_size))
2718 {
2719 tail = prev;
2720 prev = PREV_SEC (tail);
2721 htab->stub_group[tail->id].link_sec = curr;
2722 }
2723 }
2724 tail = prev;
2725 }
2726 }
2727 while (list-- != input_list);
2728 free (input_list);
2729 #undef PREV_SEC
2730
2731 /* We want to read in symbol extension records only once. To do this
2732 we need to read in the local symbols in parallel and save them for
2733 later use; so hold pointers to the local symbols in an array. */
2734 amt = sizeof (Elf_Internal_Sym *) * bfd_count;
2735 all_local_syms = (Elf_Internal_Sym **) bfd_zmalloc (amt);
2736 if (all_local_syms == NULL)
2737 return false;
2738
2739 /* Walk over all the input BFDs, swapping in local symbols.
2740 If we are creating a shared library, create hash entries for the
2741 export stubs. */
2742 for (input_bfd = info->input_bfds, bfd_indx = 0;
2743 input_bfd != NULL;
2744 input_bfd = input_bfd->link_next, bfd_indx++)
2745 {
2746 Elf_Internal_Shdr *symtab_hdr;
2747 Elf_Internal_Shdr *shndx_hdr;
2748 Elf_Internal_Sym *isym;
2749 Elf32_External_Sym *ext_syms, *esym, *end_sy;
2750 Elf_External_Sym_Shndx *shndx_buf, *shndx;
2751 bfd_size_type sec_size;
2752
2753 /* We'll need the symbol table in a second. */
2754 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2755 if (symtab_hdr->sh_info == 0)
2756 continue;
2757
2758 /* We need an array of the local symbols attached to the input bfd.
2759 Unfortunately, we're going to have to read & swap them in. */
2760 sec_size = symtab_hdr->sh_info;
2761 sec_size *= sizeof (Elf_Internal_Sym);
2762 local_syms = (Elf_Internal_Sym *) bfd_malloc (sec_size);
2763 if (local_syms == NULL)
2764 goto error_ret_free_local;
2765
2766 all_local_syms[bfd_indx] = local_syms;
2767 sec_size = symtab_hdr->sh_info;
2768 sec_size *= sizeof (Elf32_External_Sym);
2769 ext_syms = (Elf32_External_Sym *) bfd_malloc (sec_size);
2770 if (ext_syms == NULL)
2771 goto error_ret_free_local;
2772
2773 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
2774 || bfd_bread ((PTR) ext_syms, sec_size, input_bfd) != sec_size)
2775 {
2776 error_ret_free_ext_syms:
2777 free (ext_syms);
2778 goto error_ret_free_local;
2779 }
2780
2781 shndx_buf = NULL;
2782 shndx_hdr = &elf_tdata (input_bfd)->symtab_shndx_hdr;
2783 if (shndx_hdr->sh_size != 0)
2784 {
2785 sec_size = symtab_hdr->sh_info;
2786 sec_size *= sizeof (Elf_External_Sym_Shndx);
2787 shndx_buf = (Elf_External_Sym_Shndx *) bfd_malloc (sec_size);
2788 if (shndx_buf == NULL)
2789 goto error_ret_free_ext_syms;
2790
2791 if (bfd_seek (input_bfd, shndx_hdr->sh_offset, SEEK_SET) != 0
2792 || bfd_bread ((PTR) shndx_buf, sec_size, input_bfd) != sec_size)
2793 {
2794 free (shndx_buf);
2795 goto error_ret_free_ext_syms;
2796 }
2797 }
2798
2799 /* Swap the local symbols in. */
2800 for (esym = ext_syms, end_sy = esym + symtab_hdr->sh_info,
2801 isym = local_syms, shndx = shndx_buf;
2802 esym < end_sy;
2803 esym++, isym++, shndx = (shndx ? shndx + 1 : NULL))
2804 bfd_elf32_swap_symbol_in (input_bfd, esym, shndx, isym);
2805
2806 /* Now we can free the external symbols. */
2807 free (shndx_buf);
2808 free (ext_syms);
2809
2810 if (info->shared && htab->multi_subspace)
2811 {
2812 struct elf_link_hash_entry **sym_hashes;
2813 struct elf_link_hash_entry **end_hashes;
2814 unsigned int symcount;
2815
2816 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2817 - symtab_hdr->sh_info);
2818 sym_hashes = elf_sym_hashes (input_bfd);
2819 end_hashes = sym_hashes + symcount;
2820
2821 /* Look through the global syms for functions; We need to
2822 build export stubs for all globally visible functions. */
2823 for (; sym_hashes < end_hashes; sym_hashes++)
2824 {
2825 struct elf32_hppa_link_hash_entry *hash;
2826
2827 hash = (struct elf32_hppa_link_hash_entry *) *sym_hashes;
2828
2829 while (hash->elf.root.type == bfd_link_hash_indirect
2830 || hash->elf.root.type == bfd_link_hash_warning)
2831 hash = ((struct elf32_hppa_link_hash_entry *)
2832 hash->elf.root.u.i.link);
2833
2834 /* At this point in the link, undefined syms have been
2835 resolved, so we need to check that the symbol was
2836 defined in this BFD. */
2837 if ((hash->elf.root.type == bfd_link_hash_defined
2838 || hash->elf.root.type == bfd_link_hash_defweak)
2839 && hash->elf.type == STT_FUNC
2840 && hash->elf.root.u.def.section->output_section != NULL
2841 && (hash->elf.root.u.def.section->output_section->owner
2842 == output_bfd)
2843 && hash->elf.root.u.def.section->owner == input_bfd
2844 && (hash->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
2845 && !(hash->elf.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)
2846 && ELF_ST_VISIBILITY (hash->elf.other) == STV_DEFAULT)
2847 {
2848 asection *sec;
2849 const char *stub_name;
2850 struct elf32_hppa_stub_hash_entry *stub_entry;
2851
2852 sec = hash->elf.root.u.def.section;
2853 stub_name = hash->elf.root.root.string;
2854 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
2855 stub_name,
2856 false, false);
2857 if (stub_entry == NULL)
2858 {
2859 stub_entry = hppa_add_stub (stub_name, sec, htab);
2860 if (!stub_entry)
2861 goto error_ret_free_local;
2862
2863 stub_entry->target_value = hash->elf.root.u.def.value;
2864 stub_entry->target_section = hash->elf.root.u.def.section;
2865 stub_entry->stub_type = hppa_stub_export;
2866 stub_entry->h = hash;
2867 stub_changed = 1;
2868 }
2869 else
2870 {
2871 (*_bfd_error_handler) (_("%s: duplicate export stub %s"),
2872 bfd_archive_filename (input_bfd),
2873 stub_name);
2874 }
2875 }
2876 }
2877 }
2878 }
2879
2880 while (1)
2881 {
2882 asection *stub_sec;
2883
2884 for (input_bfd = info->input_bfds, bfd_indx = 0;
2885 input_bfd != NULL;
2886 input_bfd = input_bfd->link_next, bfd_indx++)
2887 {
2888 Elf_Internal_Shdr *symtab_hdr;
2889
2890 /* We'll need the symbol table in a second. */
2891 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2892 if (symtab_hdr->sh_info == 0)
2893 continue;
2894
2895 local_syms = all_local_syms[bfd_indx];
2896
2897 /* Walk over each section attached to the input bfd. */
2898 for (section = input_bfd->sections;
2899 section != NULL;
2900 section = section->next)
2901 {
2902 Elf_Internal_Shdr *input_rel_hdr;
2903 Elf32_External_Rela *external_relocs, *erelaend, *erela;
2904 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2905
2906 /* If there aren't any relocs, then there's nothing more
2907 to do. */
2908 if ((section->flags & SEC_RELOC) == 0
2909 || section->reloc_count == 0)
2910 continue;
2911
2912 /* If this section is a link-once section that will be
2913 discarded, then don't create any stubs. */
2914 if (section->output_section == NULL
2915 || section->output_section->owner != output_bfd)
2916 continue;
2917
2918 /* Allocate space for the external relocations. */
2919 amt = section->reloc_count;
2920 amt *= sizeof (Elf32_External_Rela);
2921 external_relocs = (Elf32_External_Rela *) bfd_malloc (amt);
2922 if (external_relocs == NULL)
2923 {
2924 goto error_ret_free_local;
2925 }
2926
2927 /* Likewise for the internal relocations. */
2928 amt = section->reloc_count;
2929 amt *= sizeof (Elf_Internal_Rela);
2930 internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
2931 if (internal_relocs == NULL)
2932 {
2933 free (external_relocs);
2934 goto error_ret_free_local;
2935 }
2936
2937 /* Read in the external relocs. */
2938 input_rel_hdr = &elf_section_data (section)->rel_hdr;
2939 if (bfd_seek (input_bfd, input_rel_hdr->sh_offset, SEEK_SET) != 0
2940 || bfd_bread ((PTR) external_relocs,
2941 input_rel_hdr->sh_size,
2942 input_bfd) != input_rel_hdr->sh_size)
2943 {
2944 free (external_relocs);
2945 error_ret_free_internal:
2946 free (internal_relocs);
2947 goto error_ret_free_local;
2948 }
2949
2950 /* Swap in the relocs. */
2951 erela = external_relocs;
2952 erelaend = erela + section->reloc_count;
2953 irela = internal_relocs;
2954 for (; erela < erelaend; erela++, irela++)
2955 bfd_elf32_swap_reloca_in (input_bfd, erela, irela);
2956
2957 /* We're done with the external relocs, free them. */
2958 free (external_relocs);
2959
2960 /* Now examine each relocation. */
2961 irela = internal_relocs;
2962 irelaend = irela + section->reloc_count;
2963 for (; irela < irelaend; irela++)
2964 {
2965 unsigned int r_type, r_indx;
2966 enum elf32_hppa_stub_type stub_type;
2967 struct elf32_hppa_stub_hash_entry *stub_entry;
2968 asection *sym_sec;
2969 bfd_vma sym_value;
2970 bfd_vma destination;
2971 struct elf32_hppa_link_hash_entry *hash;
2972 char *stub_name;
2973 const asection *id_sec;
2974
2975 r_type = ELF32_R_TYPE (irela->r_info);
2976 r_indx = ELF32_R_SYM (irela->r_info);
2977
2978 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2979 {
2980 bfd_set_error (bfd_error_bad_value);
2981 goto error_ret_free_internal;
2982 }
2983
2984 /* Only look for stubs on call instructions. */
2985 if (r_type != (unsigned int) R_PARISC_PCREL12F
2986 && r_type != (unsigned int) R_PARISC_PCREL17F
2987 && r_type != (unsigned int) R_PARISC_PCREL22F)
2988 continue;
2989
2990 /* Now determine the call target, its name, value,
2991 section. */
2992 sym_sec = NULL;
2993 sym_value = 0;
2994 destination = 0;
2995 hash = NULL;
2996 if (r_indx < symtab_hdr->sh_info)
2997 {
2998 /* It's a local symbol. */
2999 Elf_Internal_Sym *sym;
3000 Elf_Internal_Shdr *hdr;
3001
3002 sym = local_syms + r_indx;
3003 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
3004 sym_sec = hdr->bfd_section;
3005 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
3006 sym_value = sym->st_value;
3007 destination = (sym_value + irela->r_addend
3008 + sym_sec->output_offset
3009 + sym_sec->output_section->vma);
3010 }
3011 else
3012 {
3013 /* It's an external symbol. */
3014 int e_indx;
3015
3016 e_indx = r_indx - symtab_hdr->sh_info;
3017 hash = ((struct elf32_hppa_link_hash_entry *)
3018 elf_sym_hashes (input_bfd)[e_indx]);
3019
3020 while (hash->elf.root.type == bfd_link_hash_indirect
3021 || hash->elf.root.type == bfd_link_hash_warning)
3022 hash = ((struct elf32_hppa_link_hash_entry *)
3023 hash->elf.root.u.i.link);
3024
3025 if (hash->elf.root.type == bfd_link_hash_defined
3026 || hash->elf.root.type == bfd_link_hash_defweak)
3027 {
3028 sym_sec = hash->elf.root.u.def.section;
3029 sym_value = hash->elf.root.u.def.value;
3030 if (sym_sec->output_section != NULL)
3031 destination = (sym_value + irela->r_addend
3032 + sym_sec->output_offset
3033 + sym_sec->output_section->vma);
3034 }
3035 else if (hash->elf.root.type == bfd_link_hash_undefweak)
3036 {
3037 if (! info->shared)
3038 continue;
3039 }
3040 else if (hash->elf.root.type == bfd_link_hash_undefined)
3041 {
3042 if (! (info->shared
3043 && !info->no_undefined
3044 && (ELF_ST_VISIBILITY (hash->elf.other)
3045 == STV_DEFAULT)
3046 && hash->elf.type != STT_PARISC_MILLI))
3047 continue;
3048 }
3049 else
3050 {
3051 bfd_set_error (bfd_error_bad_value);
3052 goto error_ret_free_internal;
3053 }
3054 }
3055
3056 /* Determine what (if any) linker stub is needed. */
3057 stub_type = hppa_type_of_stub (section, irela, hash,
3058 destination);
3059 if (stub_type == hppa_stub_none)
3060 continue;
3061
3062 /* Support for grouping stub sections. */
3063 id_sec = htab->stub_group[section->id].link_sec;
3064
3065 /* Get the name of this stub. */
3066 stub_name = hppa_stub_name (id_sec, sym_sec, hash, irela);
3067 if (!stub_name)
3068 goto error_ret_free_internal;
3069
3070 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
3071 stub_name,
3072 false, false);
3073 if (stub_entry != NULL)
3074 {
3075 /* The proper stub has already been created. */
3076 free (stub_name);
3077 continue;
3078 }
3079
3080 stub_entry = hppa_add_stub (stub_name, section, htab);
3081 if (stub_entry == NULL)
3082 {
3083 free (stub_name);
3084 goto error_ret_free_local;
3085 }
3086
3087 stub_entry->target_value = sym_value;
3088 stub_entry->target_section = sym_sec;
3089 stub_entry->stub_type = stub_type;
3090 if (info->shared)
3091 {
3092 if (stub_type == hppa_stub_import)
3093 stub_entry->stub_type = hppa_stub_import_shared;
3094 else if (stub_type == hppa_stub_long_branch)
3095 stub_entry->stub_type = hppa_stub_long_branch_shared;
3096 }
3097 stub_entry->h = hash;
3098 stub_changed = 1;
3099 }
3100
3101 /* We're done with the internal relocs, free them. */
3102 free (internal_relocs);
3103 }
3104 }
3105
3106 if (!stub_changed)
3107 break;
3108
3109 /* OK, we've added some stubs. Find out the new size of the
3110 stub sections. */
3111 for (stub_sec = htab->stub_bfd->sections;
3112 stub_sec != NULL;
3113 stub_sec = stub_sec->next)
3114 {
3115 stub_sec->_raw_size = 0;
3116 stub_sec->_cooked_size = 0;
3117 }
3118
3119 bfd_hash_traverse (&htab->stub_hash_table, hppa_size_one_stub, htab);
3120
3121 /* Ask the linker to do its stuff. */
3122 (*htab->layout_sections_again) ();
3123 stub_changed = 0;
3124 }
3125
3126 ret = 1;
3127
3128 error_ret_free_local:
3129 while (bfd_count-- > 0)
3130 if (all_local_syms[bfd_count])
3131 free (all_local_syms[bfd_count]);
3132 free (all_local_syms);
3133
3134 return ret;
3135 }
3136
3137 /* For a final link, this function is called after we have sized the
3138 stubs to provide a value for __gp. */
3139
3140 boolean
3141 elf32_hppa_set_gp (abfd, info)
3142 bfd *abfd;
3143 struct bfd_link_info *info;
3144 {
3145 struct elf32_hppa_link_hash_table *htab;
3146 struct elf_link_hash_entry *h;
3147 asection *sec;
3148 bfd_vma gp_val;
3149
3150 htab = hppa_link_hash_table (info);
3151 h = elf_link_hash_lookup (&htab->elf, "$global$", false, false, false);
3152
3153 if (h != NULL
3154 && (h->root.type == bfd_link_hash_defined
3155 || h->root.type == bfd_link_hash_defweak))
3156 {
3157 gp_val = h->root.u.def.value;
3158 sec = h->root.u.def.section;
3159 }
3160 else
3161 {
3162 /* Choose to point our LTP at, in this order, one of .plt, .got,
3163 or .data, if these sections exist. In the case of choosing
3164 .plt try to make the LTP ideal for addressing anywhere in the
3165 .plt or .got with a 14 bit signed offset. Typically, the end
3166 of the .plt is the start of the .got, so choose .plt + 0x2000
3167 if either the .plt or .got is larger than 0x2000. If both
3168 the .plt and .got are smaller than 0x2000, choose the end of
3169 the .plt section. */
3170
3171 sec = htab->splt;
3172 if (sec != NULL)
3173 {
3174 gp_val = sec->_raw_size;
3175 if (gp_val > 0x2000
3176 || (htab->sgot && htab->sgot->_raw_size > 0x2000))
3177 {
3178 gp_val = 0x2000;
3179 }
3180 }
3181 else
3182 {
3183 gp_val = 0;
3184 sec = htab->sgot;
3185 if (sec != NULL)
3186 {
3187 /* We know we don't have a .plt. If .got is large,
3188 offset our LTP. */
3189 if (sec->_raw_size > 0x2000)
3190 gp_val = 0x2000;
3191 }
3192 else
3193 {
3194 /* No .plt or .got. Who cares what the LTP is? */
3195 sec = bfd_get_section_by_name (abfd, ".data");
3196 }
3197 }
3198
3199 if (h != NULL)
3200 {
3201 h->root.type = bfd_link_hash_defined;
3202 h->root.u.def.value = gp_val;
3203 if (sec != NULL)
3204 h->root.u.def.section = sec;
3205 else
3206 h->root.u.def.section = bfd_abs_section_ptr;
3207 }
3208 }
3209
3210 if (sec != NULL && sec->output_section != NULL)
3211 gp_val += sec->output_section->vma + sec->output_offset;
3212
3213 elf_gp (abfd) = gp_val;
3214 return true;
3215 }
3216
3217 /* Build all the stubs associated with the current output file. The
3218 stubs are kept in a hash table attached to the main linker hash
3219 table. We also set up the .plt entries for statically linked PIC
3220 functions here. This function is called via hppaelf_finish in the
3221 linker. */
3222
3223 boolean
3224 elf32_hppa_build_stubs (info)
3225 struct bfd_link_info *info;
3226 {
3227 asection *stub_sec;
3228 struct bfd_hash_table *table;
3229 struct elf32_hppa_link_hash_table *htab;
3230
3231 htab = hppa_link_hash_table (info);
3232
3233 for (stub_sec = htab->stub_bfd->sections;
3234 stub_sec != NULL;
3235 stub_sec = stub_sec->next)
3236 {
3237 bfd_size_type size;
3238
3239 /* Allocate memory to hold the linker stubs. */
3240 size = stub_sec->_raw_size;
3241 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
3242 if (stub_sec->contents == NULL && size != 0)
3243 return false;
3244 stub_sec->_raw_size = 0;
3245 }
3246
3247 /* Build the stubs as directed by the stub hash table. */
3248 table = &htab->stub_hash_table;
3249 bfd_hash_traverse (table, hppa_build_one_stub, info);
3250
3251 return true;
3252 }
3253
3254 /* Perform a final link. */
3255
3256 static boolean
3257 elf32_hppa_final_link (abfd, info)
3258 bfd *abfd;
3259 struct bfd_link_info *info;
3260 {
3261 asection *s;
3262
3263 /* Invoke the regular ELF linker to do all the work. */
3264 if (!bfd_elf32_bfd_final_link (abfd, info))
3265 return false;
3266
3267 /* If we're producing a final executable, sort the contents of the
3268 unwind section. Magic section names, but this is much safer than
3269 having elf32_hppa_relocate_section remember where SEGREL32 relocs
3270 occurred. Consider what happens if someone inept creates a
3271 linker script that puts unwind information in .text. */
3272 s = bfd_get_section_by_name (abfd, ".PARISC.unwind");
3273 if (s != NULL)
3274 {
3275 bfd_size_type size;
3276 char *contents;
3277
3278 size = s->_raw_size;
3279 contents = bfd_malloc (size);
3280 if (contents == NULL)
3281 return false;
3282
3283 if (! bfd_get_section_contents (abfd, s, contents, (file_ptr) 0, size))
3284 return false;
3285
3286 qsort (contents, (size_t) (size / 16), 16, hppa_unwind_entry_compare);
3287
3288 if (! bfd_set_section_contents (abfd, s, contents, (file_ptr) 0, size))
3289 return false;
3290 }
3291 return true;
3292 }
3293
3294 /* Record the lowest address for the data and text segments. */
3295
3296 static void
3297 hppa_record_segment_addr (abfd, section, data)
3298 bfd *abfd ATTRIBUTE_UNUSED;
3299 asection *section;
3300 PTR data;
3301 {
3302 struct elf32_hppa_link_hash_table *htab;
3303
3304 htab = (struct elf32_hppa_link_hash_table *) data;
3305
3306 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3307 {
3308 bfd_vma value = section->vma - section->filepos;
3309
3310 if ((section->flags & SEC_READONLY) != 0)
3311 {
3312 if (value < htab->text_segment_base)
3313 htab->text_segment_base = value;
3314 }
3315 else
3316 {
3317 if (value < htab->data_segment_base)
3318 htab->data_segment_base = value;
3319 }
3320 }
3321 }
3322
3323 /* Perform a relocation as part of a final link. */
3324
3325 static bfd_reloc_status_type
3326 final_link_relocate (input_section, contents, rel, value, htab, sym_sec, h)
3327 asection *input_section;
3328 bfd_byte *contents;
3329 const Elf_Internal_Rela *rel;
3330 bfd_vma value;
3331 struct elf32_hppa_link_hash_table *htab;
3332 asection *sym_sec;
3333 struct elf32_hppa_link_hash_entry *h;
3334 {
3335 int insn;
3336 unsigned int r_type = ELF32_R_TYPE (rel->r_info);
3337 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3338 int r_format = howto->bitsize;
3339 enum hppa_reloc_field_selector_type_alt r_field;
3340 bfd *input_bfd = input_section->owner;
3341 bfd_vma offset = rel->r_offset;
3342 bfd_vma max_branch_offset = 0;
3343 bfd_byte *hit_data = contents + offset;
3344 bfd_signed_vma addend = rel->r_addend;
3345 bfd_vma location;
3346 struct elf32_hppa_stub_hash_entry *stub_entry = NULL;
3347 int val;
3348
3349 if (r_type == R_PARISC_NONE)
3350 return bfd_reloc_ok;
3351
3352 insn = bfd_get_32 (input_bfd, hit_data);
3353
3354 /* Find out where we are and where we're going. */
3355 location = (offset +
3356 input_section->output_offset +
3357 input_section->output_section->vma);
3358
3359 switch (r_type)
3360 {
3361 case R_PARISC_PCREL12F:
3362 case R_PARISC_PCREL17F:
3363 case R_PARISC_PCREL22F:
3364 /* If this is a call to a function defined in another dynamic
3365 library, or if it is a call to a PIC function in the same
3366 object, or if this is a shared link and it is a call to a
3367 weak symbol which may or may not be in the same object, then
3368 find the import stub in the stub hash. */
3369 if (sym_sec == NULL
3370 || sym_sec->output_section == NULL
3371 || (h != NULL
3372 && ((h->maybe_pic_call
3373 && !(input_section->flags & SEC_HAS_GOT_REF))
3374 || (h->elf.root.type == bfd_link_hash_defweak
3375 && h->elf.dynindx != -1
3376 && h->elf.plt.offset != (bfd_vma) -1))))
3377 {
3378 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3379 h, rel, htab);
3380 if (stub_entry != NULL)
3381 {
3382 value = (stub_entry->stub_offset
3383 + stub_entry->stub_sec->output_offset
3384 + stub_entry->stub_sec->output_section->vma);
3385 addend = 0;
3386 }
3387 else if (sym_sec == NULL && h != NULL
3388 && h->elf.root.type == bfd_link_hash_undefweak)
3389 {
3390 /* It's OK if undefined weak. Calls to undefined weak
3391 symbols behave as if the "called" function
3392 immediately returns. We can thus call to a weak
3393 function without first checking whether the function
3394 is defined. */
3395 value = location;
3396 addend = 8;
3397 }
3398 else
3399 return bfd_reloc_undefined;
3400 }
3401 /* Fall thru. */
3402
3403 case R_PARISC_PCREL21L:
3404 case R_PARISC_PCREL17C:
3405 case R_PARISC_PCREL17R:
3406 case R_PARISC_PCREL14R:
3407 case R_PARISC_PCREL14F:
3408 /* Make it a pc relative offset. */
3409 value -= location;
3410 addend -= 8;
3411 break;
3412
3413 case R_PARISC_DPREL21L:
3414 case R_PARISC_DPREL14R:
3415 case R_PARISC_DPREL14F:
3416 /* For all the DP relative relocations, we need to examine the symbol's
3417 section. If it's a code section, then "data pointer relative" makes
3418 no sense. In that case we don't adjust the "value", and for 21 bit
3419 addil instructions, we change the source addend register from %dp to
3420 %r0. This situation commonly arises when a variable's "constness"
3421 is declared differently from the way the variable is defined. For
3422 instance: "extern int foo" with foo defined as "const int foo". */
3423 if (sym_sec == NULL)
3424 break;
3425 if ((sym_sec->flags & SEC_CODE) != 0)
3426 {
3427 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3428 == (((int) OP_ADDIL << 26) | (27 << 21)))
3429 {
3430 insn &= ~ (0x1f << 21);
3431 #if 1 /* debug them. */
3432 (*_bfd_error_handler)
3433 (_("%s(%s+0x%lx): fixing %s"),
3434 bfd_archive_filename (input_bfd),
3435 input_section->name,
3436 (long) rel->r_offset,
3437 howto->name);
3438 #endif
3439 }
3440 /* Now try to make things easy for the dynamic linker. */
3441
3442 break;
3443 }
3444 /* Fall thru. */
3445
3446 case R_PARISC_DLTIND21L:
3447 case R_PARISC_DLTIND14R:
3448 case R_PARISC_DLTIND14F:
3449 value -= elf_gp (input_section->output_section->owner);
3450 break;
3451
3452 case R_PARISC_SEGREL32:
3453 if ((sym_sec->flags & SEC_CODE) != 0)
3454 value -= htab->text_segment_base;
3455 else
3456 value -= htab->data_segment_base;
3457 break;
3458
3459 default:
3460 break;
3461 }
3462
3463 switch (r_type)
3464 {
3465 case R_PARISC_DIR32:
3466 case R_PARISC_DIR14F:
3467 case R_PARISC_DIR17F:
3468 case R_PARISC_PCREL17C:
3469 case R_PARISC_PCREL14F:
3470 case R_PARISC_DPREL14F:
3471 case R_PARISC_PLABEL32:
3472 case R_PARISC_DLTIND14F:
3473 case R_PARISC_SEGBASE:
3474 case R_PARISC_SEGREL32:
3475 r_field = e_fsel;
3476 break;
3477
3478 case R_PARISC_DIR21L:
3479 case R_PARISC_PCREL21L:
3480 case R_PARISC_DPREL21L:
3481 case R_PARISC_PLABEL21L:
3482 case R_PARISC_DLTIND21L:
3483 r_field = e_lrsel;
3484 break;
3485
3486 case R_PARISC_DIR17R:
3487 case R_PARISC_PCREL17R:
3488 case R_PARISC_DIR14R:
3489 case R_PARISC_PCREL14R:
3490 case R_PARISC_DPREL14R:
3491 case R_PARISC_PLABEL14R:
3492 case R_PARISC_DLTIND14R:
3493 r_field = e_rrsel;
3494 break;
3495
3496 case R_PARISC_PCREL12F:
3497 case R_PARISC_PCREL17F:
3498 case R_PARISC_PCREL22F:
3499 r_field = e_fsel;
3500
3501 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3502 {
3503 max_branch_offset = (1 << (17-1)) << 2;
3504 }
3505 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3506 {
3507 max_branch_offset = (1 << (12-1)) << 2;
3508 }
3509 else
3510 {
3511 max_branch_offset = (1 << (22-1)) << 2;
3512 }
3513
3514 /* sym_sec is NULL on undefined weak syms or when shared on
3515 undefined syms. We've already checked for a stub for the
3516 shared undefined case. */
3517 if (sym_sec == NULL)
3518 break;
3519
3520 /* If the branch is out of reach, then redirect the
3521 call to the local stub for this function. */
3522 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3523 {
3524 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3525 h, rel, htab);
3526 if (stub_entry == NULL)
3527 return bfd_reloc_undefined;
3528
3529 /* Munge up the value and addend so that we call the stub
3530 rather than the procedure directly. */
3531 value = (stub_entry->stub_offset
3532 + stub_entry->stub_sec->output_offset
3533 + stub_entry->stub_sec->output_section->vma
3534 - location);
3535 addend = -8;
3536 }
3537 break;
3538
3539 /* Something we don't know how to handle. */
3540 default:
3541 return bfd_reloc_notsupported;
3542 }
3543
3544 /* Make sure we can reach the stub. */
3545 if (max_branch_offset != 0
3546 && value + addend + max_branch_offset >= 2*max_branch_offset)
3547 {
3548 (*_bfd_error_handler)
3549 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3550 bfd_archive_filename (input_bfd),
3551 input_section->name,
3552 (long) rel->r_offset,
3553 stub_entry->root.string);
3554 bfd_set_error (bfd_error_bad_value);
3555 return bfd_reloc_notsupported;
3556 }
3557
3558 val = hppa_field_adjust (value, addend, r_field);
3559
3560 switch (r_type)
3561 {
3562 case R_PARISC_PCREL12F:
3563 case R_PARISC_PCREL17C:
3564 case R_PARISC_PCREL17F:
3565 case R_PARISC_PCREL17R:
3566 case R_PARISC_PCREL22F:
3567 case R_PARISC_DIR17F:
3568 case R_PARISC_DIR17R:
3569 /* This is a branch. Divide the offset by four.
3570 Note that we need to decide whether it's a branch or
3571 otherwise by inspecting the reloc. Inspecting insn won't
3572 work as insn might be from a .word directive. */
3573 val >>= 2;
3574 break;
3575
3576 default:
3577 break;
3578 }
3579
3580 insn = hppa_rebuild_insn (insn, val, r_format);
3581
3582 /* Update the instruction word. */
3583 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3584 return bfd_reloc_ok;
3585 }
3586
3587 /* Relocate an HPPA ELF section. */
3588
3589 static boolean
3590 elf32_hppa_relocate_section (output_bfd, info, input_bfd, input_section,
3591 contents, relocs, local_syms, local_sections)
3592 bfd *output_bfd;
3593 struct bfd_link_info *info;
3594 bfd *input_bfd;
3595 asection *input_section;
3596 bfd_byte *contents;
3597 Elf_Internal_Rela *relocs;
3598 Elf_Internal_Sym *local_syms;
3599 asection **local_sections;
3600 {
3601 bfd_vma *local_got_offsets;
3602 struct elf32_hppa_link_hash_table *htab;
3603 Elf_Internal_Shdr *symtab_hdr;
3604 Elf_Internal_Rela *rel;
3605 Elf_Internal_Rela *relend;
3606
3607 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3608
3609 htab = hppa_link_hash_table (info);
3610 local_got_offsets = elf_local_got_offsets (input_bfd);
3611
3612 rel = relocs;
3613 relend = relocs + input_section->reloc_count;
3614 for (; rel < relend; rel++)
3615 {
3616 unsigned int r_type;
3617 reloc_howto_type *howto;
3618 unsigned int r_symndx;
3619 struct elf32_hppa_link_hash_entry *h;
3620 Elf_Internal_Sym *sym;
3621 asection *sym_sec;
3622 bfd_vma relocation;
3623 bfd_reloc_status_type r;
3624 const char *sym_name;
3625 boolean plabel;
3626 boolean warned_undef;
3627
3628 r_type = ELF32_R_TYPE (rel->r_info);
3629 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3630 {
3631 bfd_set_error (bfd_error_bad_value);
3632 return false;
3633 }
3634 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3635 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3636 continue;
3637
3638 r_symndx = ELF32_R_SYM (rel->r_info);
3639
3640 if (info->relocateable)
3641 {
3642 /* This is a relocatable link. We don't have to change
3643 anything, unless the reloc is against a section symbol,
3644 in which case we have to adjust according to where the
3645 section symbol winds up in the output section. */
3646 if (r_symndx < symtab_hdr->sh_info)
3647 {
3648 sym = local_syms + r_symndx;
3649 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3650 {
3651 sym_sec = local_sections[r_symndx];
3652 rel->r_addend += sym_sec->output_offset;
3653 }
3654 }
3655 continue;
3656 }
3657
3658 /* This is a final link. */
3659 h = NULL;
3660 sym = NULL;
3661 sym_sec = NULL;
3662 warned_undef = false;
3663 if (r_symndx < symtab_hdr->sh_info)
3664 {
3665 /* This is a local symbol, h defaults to NULL. */
3666 sym = local_syms + r_symndx;
3667 sym_sec = local_sections[r_symndx];
3668 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sym_sec, rel);
3669 }
3670 else
3671 {
3672 int indx;
3673
3674 /* It's a global; Find its entry in the link hash. */
3675 indx = r_symndx - symtab_hdr->sh_info;
3676 h = ((struct elf32_hppa_link_hash_entry *)
3677 elf_sym_hashes (input_bfd)[indx]);
3678 while (h->elf.root.type == bfd_link_hash_indirect
3679 || h->elf.root.type == bfd_link_hash_warning)
3680 h = (struct elf32_hppa_link_hash_entry *) h->elf.root.u.i.link;
3681
3682 relocation = 0;
3683 if (h->elf.root.type == bfd_link_hash_defined
3684 || h->elf.root.type == bfd_link_hash_defweak)
3685 {
3686 sym_sec = h->elf.root.u.def.section;
3687 /* If sym_sec->output_section is NULL, then it's a
3688 symbol defined in a shared library. */
3689 if (sym_sec->output_section != NULL)
3690 relocation = (h->elf.root.u.def.value
3691 + sym_sec->output_offset
3692 + sym_sec->output_section->vma);
3693 }
3694 else if (h->elf.root.type == bfd_link_hash_undefweak)
3695 ;
3696 else if (info->shared && !info->no_undefined
3697 && ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
3698 && h->elf.type != STT_PARISC_MILLI)
3699 {
3700 if (info->symbolic && !info->allow_shlib_undefined)
3701 {
3702 if (!((*info->callbacks->undefined_symbol)
3703 (info, h->elf.root.root.string, input_bfd,
3704 input_section, rel->r_offset, false)))
3705 return false;
3706 warned_undef = true;
3707 }
3708 }
3709 else
3710 {
3711 if (!((*info->callbacks->undefined_symbol)
3712 (info, h->elf.root.root.string, input_bfd,
3713 input_section, rel->r_offset, true)))
3714 return false;
3715 warned_undef = true;
3716 }
3717 }
3718
3719 /* Do any required modifications to the relocation value, and
3720 determine what types of dynamic info we need to output, if
3721 any. */
3722 plabel = 0;
3723 switch (r_type)
3724 {
3725 case R_PARISC_DLTIND14F:
3726 case R_PARISC_DLTIND14R:
3727 case R_PARISC_DLTIND21L:
3728 {
3729 bfd_vma off;
3730 boolean do_got = 0;
3731
3732 /* Relocation is to the entry for this symbol in the
3733 global offset table. */
3734 if (h != NULL)
3735 {
3736 boolean dyn;
3737
3738 off = h->elf.got.offset;
3739 dyn = htab->elf.dynamic_sections_created;
3740 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, &h->elf))
3741 {
3742 /* If we aren't going to call finish_dynamic_symbol,
3743 then we need to handle initialisation of the .got
3744 entry and create needed relocs here. Since the
3745 offset must always be a multiple of 4, we use the
3746 least significant bit to record whether we have
3747 initialised it already. */
3748 if ((off & 1) != 0)
3749 off &= ~1;
3750 else
3751 {
3752 h->elf.got.offset |= 1;
3753 do_got = 1;
3754 }
3755 }
3756 }
3757 else
3758 {
3759 /* Local symbol case. */
3760 if (local_got_offsets == NULL)
3761 abort ();
3762
3763 off = local_got_offsets[r_symndx];
3764
3765 /* The offset must always be a multiple of 4. We use
3766 the least significant bit to record whether we have
3767 already generated the necessary reloc. */
3768 if ((off & 1) != 0)
3769 off &= ~1;
3770 else
3771 {
3772 local_got_offsets[r_symndx] |= 1;
3773 do_got = 1;
3774 }
3775 }
3776
3777 if (do_got)
3778 {
3779 if (info->shared)
3780 {
3781 /* Output a dynamic relocation for this GOT entry.
3782 In this case it is relative to the base of the
3783 object because the symbol index is zero. */
3784 Elf_Internal_Rela outrel;
3785 asection *srelgot = htab->srelgot;
3786 Elf32_External_Rela *loc;
3787
3788 outrel.r_offset = (off
3789 + htab->sgot->output_offset
3790 + htab->sgot->output_section->vma);
3791 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3792 outrel.r_addend = relocation;
3793 loc = (Elf32_External_Rela *) srelgot->contents;
3794 loc += srelgot->reloc_count++;
3795 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3796 }
3797 else
3798 bfd_put_32 (output_bfd, relocation,
3799 htab->sgot->contents + off);
3800 }
3801
3802 if (off >= (bfd_vma) -2)
3803 abort ();
3804
3805 /* Add the base of the GOT to the relocation value. */
3806 relocation = (off
3807 + htab->sgot->output_offset
3808 + htab->sgot->output_section->vma);
3809 }
3810 break;
3811
3812 case R_PARISC_SEGREL32:
3813 /* If this is the first SEGREL relocation, then initialize
3814 the segment base values. */
3815 if (htab->text_segment_base == (bfd_vma) -1)
3816 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3817 break;
3818
3819 case R_PARISC_PLABEL14R:
3820 case R_PARISC_PLABEL21L:
3821 case R_PARISC_PLABEL32:
3822 if (htab->elf.dynamic_sections_created)
3823 {
3824 bfd_vma off;
3825 boolean do_plt = 0;
3826
3827 /* If we have a global symbol with a PLT slot, then
3828 redirect this relocation to it. */
3829 if (h != NULL)
3830 {
3831 off = h->elf.plt.offset;
3832 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, &h->elf))
3833 {
3834 /* In a non-shared link, adjust_dynamic_symbols
3835 isn't called for symbols forced local. We
3836 need to write out the plt entry here. */
3837 if ((off & 1) != 0)
3838 off &= ~1;
3839 else
3840 {
3841 h->elf.plt.offset |= 1;
3842 do_plt = 1;
3843 }
3844 }
3845 }
3846 else
3847 {
3848 bfd_vma *local_plt_offsets;
3849
3850 if (local_got_offsets == NULL)
3851 abort ();
3852
3853 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3854 off = local_plt_offsets[r_symndx];
3855
3856 /* As for the local .got entry case, we use the last
3857 bit to record whether we've already initialised
3858 this local .plt entry. */
3859 if ((off & 1) != 0)
3860 off &= ~1;
3861 else
3862 {
3863 local_plt_offsets[r_symndx] |= 1;
3864 do_plt = 1;
3865 }
3866 }
3867
3868 if (do_plt)
3869 {
3870 if (info->shared)
3871 {
3872 /* Output a dynamic IPLT relocation for this
3873 PLT entry. */
3874 Elf_Internal_Rela outrel;
3875 asection *srelplt = htab->srelplt;
3876 Elf32_External_Rela *loc;
3877
3878 outrel.r_offset = (off
3879 + htab->splt->output_offset
3880 + htab->splt->output_section->vma);
3881 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3882 outrel.r_addend = relocation;
3883 loc = (Elf32_External_Rela *) srelplt->contents;
3884 loc += srelplt->reloc_count++;
3885 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3886 }
3887 else
3888 {
3889 bfd_put_32 (output_bfd,
3890 relocation,
3891 htab->splt->contents + off);
3892 bfd_put_32 (output_bfd,
3893 elf_gp (htab->splt->output_section->owner),
3894 htab->splt->contents + off + 4);
3895 }
3896 }
3897
3898 if (off >= (bfd_vma) -2)
3899 abort ();
3900
3901 /* PLABELs contain function pointers. Relocation is to
3902 the entry for the function in the .plt. The magic +2
3903 offset signals to $$dyncall that the function pointer
3904 is in the .plt and thus has a gp pointer too.
3905 Exception: Undefined PLABELs should have a value of
3906 zero. */
3907 if (h == NULL
3908 || (h->elf.root.type != bfd_link_hash_undefweak
3909 && h->elf.root.type != bfd_link_hash_undefined))
3910 {
3911 relocation = (off
3912 + htab->splt->output_offset
3913 + htab->splt->output_section->vma
3914 + 2);
3915 }
3916 plabel = 1;
3917 }
3918 /* Fall through and possibly emit a dynamic relocation. */
3919
3920 case R_PARISC_DIR17F:
3921 case R_PARISC_DIR17R:
3922 case R_PARISC_DIR14F:
3923 case R_PARISC_DIR14R:
3924 case R_PARISC_DIR21L:
3925 case R_PARISC_DPREL14F:
3926 case R_PARISC_DPREL14R:
3927 case R_PARISC_DPREL21L:
3928 case R_PARISC_DIR32:
3929 /* r_symndx will be zero only for relocs against symbols
3930 from removed linkonce sections, or sections discarded by
3931 a linker script. */
3932 if (r_symndx == 0
3933 || (input_section->flags & SEC_ALLOC) == 0)
3934 break;
3935
3936 /* The reloc types handled here and this conditional
3937 expression must match the code in ..check_relocs and
3938 allocate_dynrelocs. ie. We need exactly the same condition
3939 as in ..check_relocs, with some extra conditions (dynindx
3940 test in this case) to cater for relocs removed by
3941 allocate_dynrelocs. If you squint, the non-shared test
3942 here does indeed match the one in ..check_relocs, the
3943 difference being that here we test DEF_DYNAMIC as well as
3944 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3945 which is why we can't use just that test here.
3946 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3947 there all files have not been loaded. */
3948 if ((info->shared
3949 && (IS_ABSOLUTE_RELOC (r_type)
3950 || (h != NULL
3951 && h->elf.dynindx != -1
3952 && (!info->symbolic
3953 || (h->elf.elf_link_hash_flags
3954 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
3955 || (!info->shared
3956 && h != NULL
3957 && h->elf.dynindx != -1
3958 && (h->elf.elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
3959 && (((h->elf.elf_link_hash_flags
3960 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3961 && (h->elf.elf_link_hash_flags
3962 & ELF_LINK_HASH_DEF_REGULAR) == 0)
3963 || h->elf.root.type == bfd_link_hash_undefweak
3964 || h->elf.root.type == bfd_link_hash_undefined)))
3965 {
3966 Elf_Internal_Rela outrel;
3967 boolean skip;
3968 asection *sreloc;
3969 Elf32_External_Rela *loc;
3970
3971 /* When generating a shared object, these relocations
3972 are copied into the output file to be resolved at run
3973 time. */
3974
3975 outrel.r_addend = rel->r_addend;
3976 outrel.r_offset =
3977 _bfd_elf_section_offset (output_bfd, info, input_section,
3978 rel->r_offset);
3979 skip = (outrel.r_offset == (bfd_vma) -1);
3980 outrel.r_offset += (input_section->output_offset
3981 + input_section->output_section->vma);
3982
3983 if (skip)
3984 {
3985 memset (&outrel, 0, sizeof (outrel));
3986 }
3987 else if (h != NULL
3988 && h->elf.dynindx != -1
3989 && (plabel
3990 || !IS_ABSOLUTE_RELOC (r_type)
3991 || !info->shared
3992 || !info->symbolic
3993 || (h->elf.elf_link_hash_flags
3994 & ELF_LINK_HASH_DEF_REGULAR) == 0))
3995 {
3996 outrel.r_info = ELF32_R_INFO (h->elf.dynindx, r_type);
3997 }
3998 else /* It's a local symbol, or one marked to become local. */
3999 {
4000 int indx = 0;
4001
4002 /* Add the absolute offset of the symbol. */
4003 outrel.r_addend += relocation;
4004
4005 /* Global plabels need to be processed by the
4006 dynamic linker so that functions have at most one
4007 fptr. For this reason, we need to differentiate
4008 between global and local plabels, which we do by
4009 providing the function symbol for a global plabel
4010 reloc, and no symbol for local plabels. */
4011 if (! plabel
4012 && sym_sec != NULL
4013 && sym_sec->output_section != NULL
4014 && ! bfd_is_abs_section (sym_sec))
4015 {
4016 indx = elf_section_data (sym_sec->output_section)->dynindx;
4017 /* We are turning this relocation into one
4018 against a section symbol, so subtract out the
4019 output section's address but not the offset
4020 of the input section in the output section. */
4021 outrel.r_addend -= sym_sec->output_section->vma;
4022 }
4023
4024 outrel.r_info = ELF32_R_INFO (indx, r_type);
4025 }
4026 #if 0
4027 /* EH info can cause unaligned DIR32 relocs.
4028 Tweak the reloc type for the dynamic linker. */
4029 if (r_type == R_PARISC_DIR32 && (outrel.r_offset & 3) != 0)
4030 outrel.r_info = ELF32_R_INFO (ELF32_R_SYM (outrel.r_info),
4031 R_PARISC_DIR32U);
4032 #endif
4033 sreloc = elf_section_data (input_section)->sreloc;
4034 if (sreloc == NULL)
4035 abort ();
4036
4037 loc = (Elf32_External_Rela *) sreloc->contents;
4038 loc += sreloc->reloc_count++;
4039 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4040 }
4041 break;
4042
4043 default:
4044 break;
4045 }
4046
4047 r = final_link_relocate (input_section, contents, rel, relocation,
4048 htab, sym_sec, h);
4049
4050 if (r == bfd_reloc_ok)
4051 continue;
4052
4053 if (h != NULL)
4054 sym_name = h->elf.root.root.string;
4055 else
4056 {
4057 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4058 symtab_hdr->sh_link,
4059 sym->st_name);
4060 if (sym_name == NULL)
4061 return false;
4062 if (*sym_name == '\0')
4063 sym_name = bfd_section_name (input_bfd, sym_sec);
4064 }
4065
4066 howto = elf_hppa_howto_table + r_type;
4067
4068 if (r == bfd_reloc_undefined || r == bfd_reloc_notsupported)
4069 {
4070 if (r == bfd_reloc_notsupported || !warned_undef)
4071 {
4072 (*_bfd_error_handler)
4073 (_("%s(%s+0x%lx): cannot handle %s for %s"),
4074 bfd_archive_filename (input_bfd),
4075 input_section->name,
4076 (long) rel->r_offset,
4077 howto->name,
4078 sym_name);
4079 bfd_set_error (bfd_error_bad_value);
4080 return false;
4081 }
4082 }
4083 else
4084 {
4085 if (!((*info->callbacks->reloc_overflow)
4086 (info, sym_name, howto->name, (bfd_vma) 0,
4087 input_bfd, input_section, rel->r_offset)))
4088 return false;
4089 }
4090 }
4091
4092 return true;
4093 }
4094
4095 /* Comparison function for qsort to sort unwind section during a
4096 final link. */
4097
4098 static int
4099 hppa_unwind_entry_compare (a, b)
4100 const PTR a;
4101 const PTR b;
4102 {
4103 const bfd_byte *ap, *bp;
4104 unsigned long av, bv;
4105
4106 ap = (const bfd_byte *) a;
4107 av = (unsigned long) ap[0] << 24;
4108 av |= (unsigned long) ap[1] << 16;
4109 av |= (unsigned long) ap[2] << 8;
4110 av |= (unsigned long) ap[3];
4111
4112 bp = (const bfd_byte *) b;
4113 bv = (unsigned long) bp[0] << 24;
4114 bv |= (unsigned long) bp[1] << 16;
4115 bv |= (unsigned long) bp[2] << 8;
4116 bv |= (unsigned long) bp[3];
4117
4118 return av < bv ? -1 : av > bv ? 1 : 0;
4119 }
4120
4121 /* Finish up dynamic symbol handling. We set the contents of various
4122 dynamic sections here. */
4123
4124 static boolean
4125 elf32_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
4126 bfd *output_bfd;
4127 struct bfd_link_info *info;
4128 struct elf_link_hash_entry *h;
4129 Elf_Internal_Sym *sym;
4130 {
4131 struct elf32_hppa_link_hash_table *htab;
4132
4133 htab = hppa_link_hash_table (info);
4134
4135 if (h->plt.offset != (bfd_vma) -1)
4136 {
4137 bfd_vma value;
4138
4139 if (h->plt.offset & 1)
4140 abort ();
4141
4142 /* This symbol has an entry in the procedure linkage table. Set
4143 it up.
4144
4145 The format of a plt entry is
4146 <funcaddr>
4147 <__gp>
4148 */
4149 value = 0;
4150 if (h->root.type == bfd_link_hash_defined
4151 || h->root.type == bfd_link_hash_defweak)
4152 {
4153 value = h->root.u.def.value;
4154 if (h->root.u.def.section->output_section != NULL)
4155 value += (h->root.u.def.section->output_offset
4156 + h->root.u.def.section->output_section->vma);
4157 }
4158
4159 if (! ((struct elf32_hppa_link_hash_entry *) h)->pic_call)
4160 {
4161 Elf_Internal_Rela rel;
4162 Elf32_External_Rela *loc;
4163
4164 /* Create a dynamic IPLT relocation for this entry. */
4165 rel.r_offset = (h->plt.offset
4166 + htab->splt->output_offset
4167 + htab->splt->output_section->vma);
4168 if (h->dynindx != -1)
4169 {
4170 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_IPLT);
4171 rel.r_addend = 0;
4172 }
4173 else
4174 {
4175 /* This symbol has been marked to become local, and is
4176 used by a plabel so must be kept in the .plt. */
4177 rel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4178 rel.r_addend = value;
4179 }
4180
4181 loc = (Elf32_External_Rela *) htab->srelplt->contents;
4182 loc += htab->srelplt->reloc_count++;
4183 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner,
4184 &rel, loc);
4185 }
4186 else
4187 {
4188 bfd_put_32 (htab->splt->owner,
4189 value,
4190 htab->splt->contents + h->plt.offset);
4191 bfd_put_32 (htab->splt->owner,
4192 elf_gp (htab->splt->output_section->owner),
4193 htab->splt->contents + h->plt.offset + 4);
4194 }
4195
4196 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
4197 {
4198 /* Mark the symbol as undefined, rather than as defined in
4199 the .plt section. Leave the value alone. */
4200 sym->st_shndx = SHN_UNDEF;
4201 }
4202 }
4203
4204 if (h->got.offset != (bfd_vma) -1)
4205 {
4206 Elf_Internal_Rela rel;
4207 Elf32_External_Rela *loc;
4208
4209 /* This symbol has an entry in the global offset table. Set it
4210 up. */
4211
4212 rel.r_offset = ((h->got.offset &~ (bfd_vma) 1)
4213 + htab->sgot->output_offset
4214 + htab->sgot->output_section->vma);
4215
4216 /* If this is a -Bsymbolic link and the symbol is defined
4217 locally or was forced to be local because of a version file,
4218 we just want to emit a RELATIVE reloc. The entry in the
4219 global offset table will already have been initialized in the
4220 relocate_section function. */
4221 if (info->shared
4222 && (info->symbolic || h->dynindx == -1)
4223 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
4224 {
4225 rel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4226 rel.r_addend = (h->root.u.def.value
4227 + h->root.u.def.section->output_offset
4228 + h->root.u.def.section->output_section->vma);
4229 }
4230 else
4231 {
4232 if ((h->got.offset & 1) != 0)
4233 abort ();
4234 bfd_put_32 (output_bfd, (bfd_vma) 0,
4235 htab->sgot->contents + h->got.offset);
4236 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_DIR32);
4237 rel.r_addend = 0;
4238 }
4239
4240 loc = (Elf32_External_Rela *) htab->srelgot->contents;
4241 loc += htab->srelgot->reloc_count++;
4242 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
4243 }
4244
4245 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
4246 {
4247 asection *s;
4248 Elf_Internal_Rela rel;
4249 Elf32_External_Rela *loc;
4250
4251 /* This symbol needs a copy reloc. Set it up. */
4252
4253 if (! (h->dynindx != -1
4254 && (h->root.type == bfd_link_hash_defined
4255 || h->root.type == bfd_link_hash_defweak)))
4256 abort ();
4257
4258 s = htab->srelbss;
4259
4260 rel.r_offset = (h->root.u.def.value
4261 + h->root.u.def.section->output_offset
4262 + h->root.u.def.section->output_section->vma);
4263 rel.r_addend = 0;
4264 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_COPY);
4265 loc = (Elf32_External_Rela *) s->contents + s->reloc_count++;
4266 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
4267 }
4268
4269 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4270 if (h->root.root.string[0] == '_'
4271 && (strcmp (h->root.root.string, "_DYNAMIC") == 0
4272 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0))
4273 {
4274 sym->st_shndx = SHN_ABS;
4275 }
4276
4277 return true;
4278 }
4279
4280 /* Used to decide how to sort relocs in an optimal manner for the
4281 dynamic linker, before writing them out. */
4282
4283 static enum elf_reloc_type_class
4284 elf32_hppa_reloc_type_class (rela)
4285 const Elf_Internal_Rela *rela;
4286 {
4287 if (ELF32_R_SYM (rela->r_info) == 0)
4288 return reloc_class_relative;
4289
4290 switch ((int) ELF32_R_TYPE (rela->r_info))
4291 {
4292 case R_PARISC_IPLT:
4293 return reloc_class_plt;
4294 case R_PARISC_COPY:
4295 return reloc_class_copy;
4296 default:
4297 return reloc_class_normal;
4298 }
4299 }
4300
4301 /* Finish up the dynamic sections. */
4302
4303 static boolean
4304 elf32_hppa_finish_dynamic_sections (output_bfd, info)
4305 bfd *output_bfd;
4306 struct bfd_link_info *info;
4307 {
4308 bfd *dynobj;
4309 struct elf32_hppa_link_hash_table *htab;
4310 asection *sdyn;
4311
4312 htab = hppa_link_hash_table (info);
4313 dynobj = htab->elf.dynobj;
4314
4315 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4316
4317 if (htab->elf.dynamic_sections_created)
4318 {
4319 Elf32_External_Dyn *dyncon, *dynconend;
4320
4321 if (sdyn == NULL)
4322 abort ();
4323
4324 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4325 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
4326 for (; dyncon < dynconend; dyncon++)
4327 {
4328 Elf_Internal_Dyn dyn;
4329 asection *s;
4330
4331 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4332
4333 switch (dyn.d_tag)
4334 {
4335 default:
4336 continue;
4337
4338 case DT_PLTGOT:
4339 /* Use PLTGOT to set the GOT register. */
4340 dyn.d_un.d_ptr = elf_gp (output_bfd);
4341 break;
4342
4343 case DT_JMPREL:
4344 s = htab->srelplt;
4345 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4346 break;
4347
4348 case DT_PLTRELSZ:
4349 s = htab->srelplt;
4350 if (s->_cooked_size != 0)
4351 dyn.d_un.d_val = s->_cooked_size;
4352 else
4353 dyn.d_un.d_val = s->_raw_size;
4354 break;
4355
4356 case DT_RELASZ:
4357 /* Don't count procedure linkage table relocs in the
4358 overall reloc count. */
4359 if (htab->srelplt != NULL)
4360 {
4361 s = htab->srelplt->output_section;
4362 if (s->_cooked_size != 0)
4363 dyn.d_un.d_val -= s->_cooked_size;
4364 else
4365 dyn.d_un.d_val -= s->_raw_size;
4366 }
4367 break;
4368 }
4369
4370 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4371 }
4372 }
4373
4374 if (htab->sgot != NULL && htab->sgot->_raw_size != 0)
4375 {
4376 /* Fill in the first entry in the global offset table.
4377 We use it to point to our dynamic section, if we have one. */
4378 bfd_put_32 (output_bfd,
4379 (sdyn != NULL
4380 ? sdyn->output_section->vma + sdyn->output_offset
4381 : (bfd_vma) 0),
4382 htab->sgot->contents);
4383
4384 /* The second entry is reserved for use by the dynamic linker. */
4385 memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4386
4387 /* Set .got entry size. */
4388 elf_section_data (htab->sgot->output_section)
4389 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4390 }
4391
4392 if (htab->splt != NULL && htab->splt->_raw_size != 0)
4393 {
4394 /* Set plt entry size. */
4395 elf_section_data (htab->splt->output_section)
4396 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4397
4398 if (htab->need_plt_stub)
4399 {
4400 /* Set up the .plt stub. */
4401 memcpy (htab->splt->contents
4402 + htab->splt->_raw_size - sizeof (plt_stub),
4403 plt_stub, sizeof (plt_stub));
4404
4405 if ((htab->splt->output_offset
4406 + htab->splt->output_section->vma
4407 + htab->splt->_raw_size)
4408 != (htab->sgot->output_offset
4409 + htab->sgot->output_section->vma))
4410 {
4411 (*_bfd_error_handler)
4412 (_(".got section not immediately after .plt section"));
4413 return false;
4414 }
4415 }
4416 }
4417
4418 return true;
4419 }
4420
4421 /* Tweak the OSABI field of the elf header. */
4422
4423 static void
4424 elf32_hppa_post_process_headers (abfd, link_info)
4425 bfd *abfd;
4426 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
4427 {
4428 Elf_Internal_Ehdr * i_ehdrp;
4429
4430 i_ehdrp = elf_elfheader (abfd);
4431
4432 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
4433 {
4434 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
4435 }
4436 else
4437 {
4438 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
4439 }
4440 }
4441
4442 /* Called when writing out an object file to decide the type of a
4443 symbol. */
4444 static int
4445 elf32_hppa_elf_get_symbol_type (elf_sym, type)
4446 Elf_Internal_Sym *elf_sym;
4447 int type;
4448 {
4449 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4450 return STT_PARISC_MILLI;
4451 else
4452 return type;
4453 }
4454
4455 /* Misc BFD support code. */
4456 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4457 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4458 #define elf_info_to_howto elf_hppa_info_to_howto
4459 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4460
4461 /* Stuff for the BFD linker. */
4462 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4463 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4464 #define elf_backend_add_symbol_hook elf32_hppa_add_symbol_hook
4465 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4466 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4467 #define elf_backend_check_relocs elf32_hppa_check_relocs
4468 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4469 #define elf_backend_fake_sections elf_hppa_fake_sections
4470 #define elf_backend_relocate_section elf32_hppa_relocate_section
4471 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4472 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4473 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4474 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4475 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4476 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4477 #define elf_backend_object_p elf32_hppa_object_p
4478 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4479 #define elf_backend_post_process_headers elf32_hppa_post_process_headers
4480 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4481 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4482
4483 #define elf_backend_can_gc_sections 1
4484 #define elf_backend_can_refcount 1
4485 #define elf_backend_plt_alignment 2
4486 #define elf_backend_want_got_plt 0
4487 #define elf_backend_plt_readonly 0
4488 #define elf_backend_want_plt_sym 0
4489 #define elf_backend_got_header_size 8
4490
4491 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4492 #define TARGET_BIG_NAME "elf32-hppa"
4493 #define ELF_ARCH bfd_arch_hppa
4494 #define ELF_MACHINE_CODE EM_PARISC
4495 #define ELF_MAXPAGESIZE 0x1000
4496
4497 #include "elf32-target.h"
4498
4499 #undef TARGET_BIG_SYM
4500 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4501 #undef TARGET_BIG_NAME
4502 #define TARGET_BIG_NAME "elf32-hppa-linux"
4503
4504 #define INCLUDED_TARGET_FILE 1
4505 #include "elf32-target.h"
This page took 0.372597 seconds and 4 git commands to generate.