dfffbcba60bf0b12de8963cd99f4799056fb8906
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990-2013 Free Software Foundation, Inc.
3
4 Original code by
5 Center for Software Science
6 Department of Computer Science
7 University of Utah
8 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
9 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
10 TLS support written by Randolph Chung <tausq@debian.org>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
28
29 #include "sysdep.h"
30 #include "bfd.h"
31 #include "libbfd.h"
32 #include "elf-bfd.h"
33 #include "elf/hppa.h"
34 #include "libhppa.h"
35 #include "elf32-hppa.h"
36 #define ARCH_SIZE 32
37 #include "elf32-hppa.h"
38 #include "elf-hppa.h"
39
40 /* In order to gain some understanding of code in this file without
41 knowing all the intricate details of the linker, note the
42 following:
43
44 Functions named elf32_hppa_* are called by external routines, other
45 functions are only called locally. elf32_hppa_* functions appear
46 in this file more or less in the order in which they are called
47 from external routines. eg. elf32_hppa_check_relocs is called
48 early in the link process, elf32_hppa_finish_dynamic_sections is
49 one of the last functions. */
50
51 /* We use two hash tables to hold information for linking PA ELF objects.
52
53 The first is the elf32_hppa_link_hash_table which is derived
54 from the standard ELF linker hash table. We use this as a place to
55 attach other hash tables and static information.
56
57 The second is the stub hash table which is derived from the
58 base BFD hash table. The stub hash table holds the information
59 necessary to build the linker stubs during a link.
60
61 There are a number of different stubs generated by the linker.
62
63 Long branch stub:
64 : ldil LR'X,%r1
65 : be,n RR'X(%sr4,%r1)
66
67 PIC long branch stub:
68 : b,l .+8,%r1
69 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
70 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
71
72 Import stub to call shared library routine from normal object file
73 (single sub-space version)
74 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
75 : ldw RR'lt_ptr+ltoff(%r1),%r21
76 : bv %r0(%r21)
77 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
78
79 Import stub to call shared library routine from shared library
80 (single sub-space version)
81 : addil LR'ltoff,%r19 ; get procedure entry point
82 : ldw RR'ltoff(%r1),%r21
83 : bv %r0(%r21)
84 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
85
86 Import stub to call shared library routine from normal object file
87 (multiple sub-space support)
88 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
89 : ldw RR'lt_ptr+ltoff(%r1),%r21
90 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
91 : ldsid (%r21),%r1
92 : mtsp %r1,%sr0
93 : be 0(%sr0,%r21) ; branch to target
94 : stw %rp,-24(%sp) ; save rp
95
96 Import stub to call shared library routine from shared library
97 (multiple sub-space support)
98 : addil LR'ltoff,%r19 ; get procedure entry point
99 : ldw RR'ltoff(%r1),%r21
100 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
101 : ldsid (%r21),%r1
102 : mtsp %r1,%sr0
103 : be 0(%sr0,%r21) ; branch to target
104 : stw %rp,-24(%sp) ; save rp
105
106 Export stub to return from shared lib routine (multiple sub-space support)
107 One of these is created for each exported procedure in a shared
108 library (and stored in the shared lib). Shared lib routines are
109 called via the first instruction in the export stub so that we can
110 do an inter-space return. Not required for single sub-space.
111 : bl,n X,%rp ; trap the return
112 : nop
113 : ldw -24(%sp),%rp ; restore the original rp
114 : ldsid (%rp),%r1
115 : mtsp %r1,%sr0
116 : be,n 0(%sr0,%rp) ; inter-space return. */
117
118
119 /* Variable names follow a coding style.
120 Please follow this (Apps Hungarian) style:
121
122 Structure/Variable Prefix
123 elf_link_hash_table "etab"
124 elf_link_hash_entry "eh"
125
126 elf32_hppa_link_hash_table "htab"
127 elf32_hppa_link_hash_entry "hh"
128
129 bfd_hash_table "btab"
130 bfd_hash_entry "bh"
131
132 bfd_hash_table containing stubs "bstab"
133 elf32_hppa_stub_hash_entry "hsh"
134
135 elf32_hppa_dyn_reloc_entry "hdh"
136
137 Always remember to use GNU Coding Style. */
138
139 #define PLT_ENTRY_SIZE 8
140 #define GOT_ENTRY_SIZE 4
141 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
142
143 static const bfd_byte plt_stub[] =
144 {
145 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
146 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
147 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
148 #define PLT_STUB_ENTRY (3*4)
149 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
150 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
151 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
152 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
153 };
154
155 /* Section name for stubs is the associated section name plus this
156 string. */
157 #define STUB_SUFFIX ".stub"
158
159 /* We don't need to copy certain PC- or GP-relative dynamic relocs
160 into a shared object's dynamic section. All the relocs of the
161 limited class we are interested in, are absolute. */
162 #ifndef RELATIVE_DYNRELOCS
163 #define RELATIVE_DYNRELOCS 0
164 #define IS_ABSOLUTE_RELOC(r_type) 1
165 #endif
166
167 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
168 copying dynamic variables from a shared lib into an app's dynbss
169 section, and instead use a dynamic relocation to point into the
170 shared lib. */
171 #define ELIMINATE_COPY_RELOCS 1
172
173 enum elf32_hppa_stub_type
174 {
175 hppa_stub_long_branch,
176 hppa_stub_long_branch_shared,
177 hppa_stub_import,
178 hppa_stub_import_shared,
179 hppa_stub_export,
180 hppa_stub_none
181 };
182
183 struct elf32_hppa_stub_hash_entry
184 {
185 /* Base hash table entry structure. */
186 struct bfd_hash_entry bh_root;
187
188 /* The stub section. */
189 asection *stub_sec;
190
191 /* Offset within stub_sec of the beginning of this stub. */
192 bfd_vma stub_offset;
193
194 /* Given the symbol's value and its section we can determine its final
195 value when building the stubs (so the stub knows where to jump. */
196 bfd_vma target_value;
197 asection *target_section;
198
199 enum elf32_hppa_stub_type stub_type;
200
201 /* The symbol table entry, if any, that this was derived from. */
202 struct elf32_hppa_link_hash_entry *hh;
203
204 /* Where this stub is being called from, or, in the case of combined
205 stub sections, the first input section in the group. */
206 asection *id_sec;
207 };
208
209 struct elf32_hppa_link_hash_entry
210 {
211 struct elf_link_hash_entry eh;
212
213 /* A pointer to the most recently used stub hash entry against this
214 symbol. */
215 struct elf32_hppa_stub_hash_entry *hsh_cache;
216
217 /* Used to count relocations for delayed sizing of relocation
218 sections. */
219 struct elf32_hppa_dyn_reloc_entry
220 {
221 /* Next relocation in the chain. */
222 struct elf32_hppa_dyn_reloc_entry *hdh_next;
223
224 /* The input section of the reloc. */
225 asection *sec;
226
227 /* Number of relocs copied in this section. */
228 bfd_size_type count;
229
230 #if RELATIVE_DYNRELOCS
231 /* Number of relative relocs copied for the input section. */
232 bfd_size_type relative_count;
233 #endif
234 } *dyn_relocs;
235
236 enum
237 {
238 GOT_UNKNOWN = 0, GOT_NORMAL = 1, GOT_TLS_GD = 2, GOT_TLS_LDM = 4, GOT_TLS_IE = 8
239 } tls_type;
240
241 /* Set if this symbol is used by a plabel reloc. */
242 unsigned int plabel:1;
243 };
244
245 struct elf32_hppa_link_hash_table
246 {
247 /* The main hash table. */
248 struct elf_link_hash_table etab;
249
250 /* The stub hash table. */
251 struct bfd_hash_table bstab;
252
253 /* Linker stub bfd. */
254 bfd *stub_bfd;
255
256 /* Linker call-backs. */
257 asection * (*add_stub_section) (const char *, asection *);
258 void (*layout_sections_again) (void);
259
260 /* Array to keep track of which stub sections have been created, and
261 information on stub grouping. */
262 struct map_stub
263 {
264 /* This is the section to which stubs in the group will be
265 attached. */
266 asection *link_sec;
267 /* The stub section. */
268 asection *stub_sec;
269 } *stub_group;
270
271 /* Assorted information used by elf32_hppa_size_stubs. */
272 unsigned int bfd_count;
273 int top_index;
274 asection **input_list;
275 Elf_Internal_Sym **all_local_syms;
276
277 /* Short-cuts to get to dynamic linker sections. */
278 asection *sgot;
279 asection *srelgot;
280 asection *splt;
281 asection *srelplt;
282 asection *sdynbss;
283 asection *srelbss;
284
285 /* Used during a final link to store the base of the text and data
286 segments so that we can perform SEGREL relocations. */
287 bfd_vma text_segment_base;
288 bfd_vma data_segment_base;
289
290 /* Whether we support multiple sub-spaces for shared libs. */
291 unsigned int multi_subspace:1;
292
293 /* Flags set when various size branches are detected. Used to
294 select suitable defaults for the stub group size. */
295 unsigned int has_12bit_branch:1;
296 unsigned int has_17bit_branch:1;
297 unsigned int has_22bit_branch:1;
298
299 /* Set if we need a .plt stub to support lazy dynamic linking. */
300 unsigned int need_plt_stub:1;
301
302 /* Small local sym cache. */
303 struct sym_cache sym_cache;
304
305 /* Data for LDM relocations. */
306 union
307 {
308 bfd_signed_vma refcount;
309 bfd_vma offset;
310 } tls_ldm_got;
311 };
312
313 /* Various hash macros and functions. */
314 #define hppa_link_hash_table(p) \
315 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
316 == HPPA32_ELF_DATA ? ((struct elf32_hppa_link_hash_table *) ((p)->hash)) : NULL)
317
318 #define hppa_elf_hash_entry(ent) \
319 ((struct elf32_hppa_link_hash_entry *)(ent))
320
321 #define hppa_stub_hash_entry(ent) \
322 ((struct elf32_hppa_stub_hash_entry *)(ent))
323
324 #define hppa_stub_hash_lookup(table, string, create, copy) \
325 ((struct elf32_hppa_stub_hash_entry *) \
326 bfd_hash_lookup ((table), (string), (create), (copy)))
327
328 #define hppa_elf_local_got_tls_type(abfd) \
329 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
330
331 #define hh_name(hh) \
332 (hh ? hh->eh.root.root.string : "<undef>")
333
334 #define eh_name(eh) \
335 (eh ? eh->root.root.string : "<undef>")
336
337 /* Assorted hash table functions. */
338
339 /* Initialize an entry in the stub hash table. */
340
341 static struct bfd_hash_entry *
342 stub_hash_newfunc (struct bfd_hash_entry *entry,
343 struct bfd_hash_table *table,
344 const char *string)
345 {
346 /* Allocate the structure if it has not already been allocated by a
347 subclass. */
348 if (entry == NULL)
349 {
350 entry = bfd_hash_allocate (table,
351 sizeof (struct elf32_hppa_stub_hash_entry));
352 if (entry == NULL)
353 return entry;
354 }
355
356 /* Call the allocation method of the superclass. */
357 entry = bfd_hash_newfunc (entry, table, string);
358 if (entry != NULL)
359 {
360 struct elf32_hppa_stub_hash_entry *hsh;
361
362 /* Initialize the local fields. */
363 hsh = hppa_stub_hash_entry (entry);
364 hsh->stub_sec = NULL;
365 hsh->stub_offset = 0;
366 hsh->target_value = 0;
367 hsh->target_section = NULL;
368 hsh->stub_type = hppa_stub_long_branch;
369 hsh->hh = NULL;
370 hsh->id_sec = NULL;
371 }
372
373 return entry;
374 }
375
376 /* Initialize an entry in the link hash table. */
377
378 static struct bfd_hash_entry *
379 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
380 struct bfd_hash_table *table,
381 const char *string)
382 {
383 /* Allocate the structure if it has not already been allocated by a
384 subclass. */
385 if (entry == NULL)
386 {
387 entry = bfd_hash_allocate (table,
388 sizeof (struct elf32_hppa_link_hash_entry));
389 if (entry == NULL)
390 return entry;
391 }
392
393 /* Call the allocation method of the superclass. */
394 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
395 if (entry != NULL)
396 {
397 struct elf32_hppa_link_hash_entry *hh;
398
399 /* Initialize the local fields. */
400 hh = hppa_elf_hash_entry (entry);
401 hh->hsh_cache = NULL;
402 hh->dyn_relocs = NULL;
403 hh->plabel = 0;
404 hh->tls_type = GOT_UNKNOWN;
405 }
406
407 return entry;
408 }
409
410 /* Create the derived linker hash table. The PA ELF port uses the derived
411 hash table to keep information specific to the PA ELF linker (without
412 using static variables). */
413
414 static struct bfd_link_hash_table *
415 elf32_hppa_link_hash_table_create (bfd *abfd)
416 {
417 struct elf32_hppa_link_hash_table *htab;
418 bfd_size_type amt = sizeof (*htab);
419
420 htab = bfd_zmalloc (amt);
421 if (htab == NULL)
422 return NULL;
423
424 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
425 sizeof (struct elf32_hppa_link_hash_entry),
426 HPPA32_ELF_DATA))
427 {
428 free (htab);
429 return NULL;
430 }
431
432 /* Init the stub hash table too. */
433 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
434 sizeof (struct elf32_hppa_stub_hash_entry)))
435 return NULL;
436
437 htab->text_segment_base = (bfd_vma) -1;
438 htab->data_segment_base = (bfd_vma) -1;
439 return &htab->etab.root;
440 }
441
442 /* Free the derived linker hash table. */
443
444 static void
445 elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *btab)
446 {
447 struct elf32_hppa_link_hash_table *htab
448 = (struct elf32_hppa_link_hash_table *) btab;
449
450 bfd_hash_table_free (&htab->bstab);
451 _bfd_elf_link_hash_table_free (btab);
452 }
453
454 /* Build a name for an entry in the stub hash table. */
455
456 static char *
457 hppa_stub_name (const asection *input_section,
458 const asection *sym_sec,
459 const struct elf32_hppa_link_hash_entry *hh,
460 const Elf_Internal_Rela *rela)
461 {
462 char *stub_name;
463 bfd_size_type len;
464
465 if (hh)
466 {
467 len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
468 stub_name = bfd_malloc (len);
469 if (stub_name != NULL)
470 sprintf (stub_name, "%08x_%s+%x",
471 input_section->id & 0xffffffff,
472 hh_name (hh),
473 (int) rela->r_addend & 0xffffffff);
474 }
475 else
476 {
477 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
478 stub_name = bfd_malloc (len);
479 if (stub_name != NULL)
480 sprintf (stub_name, "%08x_%x:%x+%x",
481 input_section->id & 0xffffffff,
482 sym_sec->id & 0xffffffff,
483 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
484 (int) rela->r_addend & 0xffffffff);
485 }
486 return stub_name;
487 }
488
489 /* Look up an entry in the stub hash. Stub entries are cached because
490 creating the stub name takes a bit of time. */
491
492 static struct elf32_hppa_stub_hash_entry *
493 hppa_get_stub_entry (const asection *input_section,
494 const asection *sym_sec,
495 struct elf32_hppa_link_hash_entry *hh,
496 const Elf_Internal_Rela *rela,
497 struct elf32_hppa_link_hash_table *htab)
498 {
499 struct elf32_hppa_stub_hash_entry *hsh_entry;
500 const asection *id_sec;
501
502 /* If this input section is part of a group of sections sharing one
503 stub section, then use the id of the first section in the group.
504 Stub names need to include a section id, as there may well be
505 more than one stub used to reach say, printf, and we need to
506 distinguish between them. */
507 id_sec = htab->stub_group[input_section->id].link_sec;
508
509 if (hh != NULL && hh->hsh_cache != NULL
510 && hh->hsh_cache->hh == hh
511 && hh->hsh_cache->id_sec == id_sec)
512 {
513 hsh_entry = hh->hsh_cache;
514 }
515 else
516 {
517 char *stub_name;
518
519 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
520 if (stub_name == NULL)
521 return NULL;
522
523 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
524 stub_name, FALSE, FALSE);
525 if (hh != NULL)
526 hh->hsh_cache = hsh_entry;
527
528 free (stub_name);
529 }
530
531 return hsh_entry;
532 }
533
534 /* Add a new stub entry to the stub hash. Not all fields of the new
535 stub entry are initialised. */
536
537 static struct elf32_hppa_stub_hash_entry *
538 hppa_add_stub (const char *stub_name,
539 asection *section,
540 struct elf32_hppa_link_hash_table *htab)
541 {
542 asection *link_sec;
543 asection *stub_sec;
544 struct elf32_hppa_stub_hash_entry *hsh;
545
546 link_sec = htab->stub_group[section->id].link_sec;
547 stub_sec = htab->stub_group[section->id].stub_sec;
548 if (stub_sec == NULL)
549 {
550 stub_sec = htab->stub_group[link_sec->id].stub_sec;
551 if (stub_sec == NULL)
552 {
553 size_t namelen;
554 bfd_size_type len;
555 char *s_name;
556
557 namelen = strlen (link_sec->name);
558 len = namelen + sizeof (STUB_SUFFIX);
559 s_name = bfd_alloc (htab->stub_bfd, len);
560 if (s_name == NULL)
561 return NULL;
562
563 memcpy (s_name, link_sec->name, namelen);
564 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
565 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
566 if (stub_sec == NULL)
567 return NULL;
568 htab->stub_group[link_sec->id].stub_sec = stub_sec;
569 }
570 htab->stub_group[section->id].stub_sec = stub_sec;
571 }
572
573 /* Enter this entry into the linker stub hash table. */
574 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
575 TRUE, FALSE);
576 if (hsh == NULL)
577 {
578 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
579 section->owner,
580 stub_name);
581 return NULL;
582 }
583
584 hsh->stub_sec = stub_sec;
585 hsh->stub_offset = 0;
586 hsh->id_sec = link_sec;
587 return hsh;
588 }
589
590 /* Determine the type of stub needed, if any, for a call. */
591
592 static enum elf32_hppa_stub_type
593 hppa_type_of_stub (asection *input_sec,
594 const Elf_Internal_Rela *rela,
595 struct elf32_hppa_link_hash_entry *hh,
596 bfd_vma destination,
597 struct bfd_link_info *info)
598 {
599 bfd_vma location;
600 bfd_vma branch_offset;
601 bfd_vma max_branch_offset;
602 unsigned int r_type;
603
604 if (hh != NULL
605 && hh->eh.plt.offset != (bfd_vma) -1
606 && hh->eh.dynindx != -1
607 && !hh->plabel
608 && (info->shared
609 || !hh->eh.def_regular
610 || hh->eh.root.type == bfd_link_hash_defweak))
611 {
612 /* We need an import stub. Decide between hppa_stub_import
613 and hppa_stub_import_shared later. */
614 return hppa_stub_import;
615 }
616
617 /* Determine where the call point is. */
618 location = (input_sec->output_offset
619 + input_sec->output_section->vma
620 + rela->r_offset);
621
622 branch_offset = destination - location - 8;
623 r_type = ELF32_R_TYPE (rela->r_info);
624
625 /* Determine if a long branch stub is needed. parisc branch offsets
626 are relative to the second instruction past the branch, ie. +8
627 bytes on from the branch instruction location. The offset is
628 signed and counts in units of 4 bytes. */
629 if (r_type == (unsigned int) R_PARISC_PCREL17F)
630 max_branch_offset = (1 << (17 - 1)) << 2;
631
632 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
633 max_branch_offset = (1 << (12 - 1)) << 2;
634
635 else /* R_PARISC_PCREL22F. */
636 max_branch_offset = (1 << (22 - 1)) << 2;
637
638 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
639 return hppa_stub_long_branch;
640
641 return hppa_stub_none;
642 }
643
644 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
645 IN_ARG contains the link info pointer. */
646
647 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
648 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
649
650 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
651 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
652 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
653
654 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
655 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
656 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
657 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
658
659 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
660 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
661
662 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
663 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
664 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
665 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
666
667 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
668 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
669 #define NOP 0x08000240 /* nop */
670 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
671 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
672 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
673
674 #ifndef R19_STUBS
675 #define R19_STUBS 1
676 #endif
677
678 #if R19_STUBS
679 #define LDW_R1_DLT LDW_R1_R19
680 #else
681 #define LDW_R1_DLT LDW_R1_DP
682 #endif
683
684 static bfd_boolean
685 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
686 {
687 struct elf32_hppa_stub_hash_entry *hsh;
688 struct bfd_link_info *info;
689 struct elf32_hppa_link_hash_table *htab;
690 asection *stub_sec;
691 bfd *stub_bfd;
692 bfd_byte *loc;
693 bfd_vma sym_value;
694 bfd_vma insn;
695 bfd_vma off;
696 int val;
697 int size;
698
699 /* Massage our args to the form they really have. */
700 hsh = hppa_stub_hash_entry (bh);
701 info = (struct bfd_link_info *)in_arg;
702
703 htab = hppa_link_hash_table (info);
704 if (htab == NULL)
705 return FALSE;
706
707 stub_sec = hsh->stub_sec;
708
709 /* Make a note of the offset within the stubs for this entry. */
710 hsh->stub_offset = stub_sec->size;
711 loc = stub_sec->contents + hsh->stub_offset;
712
713 stub_bfd = stub_sec->owner;
714
715 switch (hsh->stub_type)
716 {
717 case hppa_stub_long_branch:
718 /* Create the long branch. A long branch is formed with "ldil"
719 loading the upper bits of the target address into a register,
720 then branching with "be" which adds in the lower bits.
721 The "be" has its delay slot nullified. */
722 sym_value = (hsh->target_value
723 + hsh->target_section->output_offset
724 + hsh->target_section->output_section->vma);
725
726 val = hppa_field_adjust (sym_value, 0, e_lrsel);
727 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
728 bfd_put_32 (stub_bfd, insn, loc);
729
730 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
731 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
732 bfd_put_32 (stub_bfd, insn, loc + 4);
733
734 size = 8;
735 break;
736
737 case hppa_stub_long_branch_shared:
738 /* Branches are relative. This is where we are going to. */
739 sym_value = (hsh->target_value
740 + hsh->target_section->output_offset
741 + hsh->target_section->output_section->vma);
742
743 /* And this is where we are coming from, more or less. */
744 sym_value -= (hsh->stub_offset
745 + stub_sec->output_offset
746 + stub_sec->output_section->vma);
747
748 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
749 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
750 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
751 bfd_put_32 (stub_bfd, insn, loc + 4);
752
753 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
754 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
755 bfd_put_32 (stub_bfd, insn, loc + 8);
756 size = 12;
757 break;
758
759 case hppa_stub_import:
760 case hppa_stub_import_shared:
761 off = hsh->hh->eh.plt.offset;
762 if (off >= (bfd_vma) -2)
763 abort ();
764
765 off &= ~ (bfd_vma) 1;
766 sym_value = (off
767 + htab->splt->output_offset
768 + htab->splt->output_section->vma
769 - elf_gp (htab->splt->output_section->owner));
770
771 insn = ADDIL_DP;
772 #if R19_STUBS
773 if (hsh->stub_type == hppa_stub_import_shared)
774 insn = ADDIL_R19;
775 #endif
776 val = hppa_field_adjust (sym_value, 0, e_lrsel),
777 insn = hppa_rebuild_insn ((int) insn, val, 21);
778 bfd_put_32 (stub_bfd, insn, loc);
779
780 /* It is critical to use lrsel/rrsel here because we are using
781 two different offsets (+0 and +4) from sym_value. If we use
782 lsel/rsel then with unfortunate sym_values we will round
783 sym_value+4 up to the next 2k block leading to a mis-match
784 between the lsel and rsel value. */
785 val = hppa_field_adjust (sym_value, 0, e_rrsel);
786 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
787 bfd_put_32 (stub_bfd, insn, loc + 4);
788
789 if (htab->multi_subspace)
790 {
791 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
792 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
793 bfd_put_32 (stub_bfd, insn, loc + 8);
794
795 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
796 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
797 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
798 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
799
800 size = 28;
801 }
802 else
803 {
804 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
805 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
806 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
807 bfd_put_32 (stub_bfd, insn, loc + 12);
808
809 size = 16;
810 }
811
812 break;
813
814 case hppa_stub_export:
815 /* Branches are relative. This is where we are going to. */
816 sym_value = (hsh->target_value
817 + hsh->target_section->output_offset
818 + hsh->target_section->output_section->vma);
819
820 /* And this is where we are coming from. */
821 sym_value -= (hsh->stub_offset
822 + stub_sec->output_offset
823 + stub_sec->output_section->vma);
824
825 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
826 && (!htab->has_22bit_branch
827 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
828 {
829 (*_bfd_error_handler)
830 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
831 hsh->target_section->owner,
832 stub_sec,
833 (long) hsh->stub_offset,
834 hsh->bh_root.string);
835 bfd_set_error (bfd_error_bad_value);
836 return FALSE;
837 }
838
839 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
840 if (!htab->has_22bit_branch)
841 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
842 else
843 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
844 bfd_put_32 (stub_bfd, insn, loc);
845
846 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
847 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
848 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
849 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
850 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
851
852 /* Point the function symbol at the stub. */
853 hsh->hh->eh.root.u.def.section = stub_sec;
854 hsh->hh->eh.root.u.def.value = stub_sec->size;
855
856 size = 24;
857 break;
858
859 default:
860 BFD_FAIL ();
861 return FALSE;
862 }
863
864 stub_sec->size += size;
865 return TRUE;
866 }
867
868 #undef LDIL_R1
869 #undef BE_SR4_R1
870 #undef BL_R1
871 #undef ADDIL_R1
872 #undef DEPI_R1
873 #undef LDW_R1_R21
874 #undef LDW_R1_DLT
875 #undef LDW_R1_R19
876 #undef ADDIL_R19
877 #undef LDW_R1_DP
878 #undef LDSID_R21_R1
879 #undef MTSP_R1
880 #undef BE_SR0_R21
881 #undef STW_RP
882 #undef BV_R0_R21
883 #undef BL_RP
884 #undef NOP
885 #undef LDW_RP
886 #undef LDSID_RP_R1
887 #undef BE_SR0_RP
888
889 /* As above, but don't actually build the stub. Just bump offset so
890 we know stub section sizes. */
891
892 static bfd_boolean
893 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
894 {
895 struct elf32_hppa_stub_hash_entry *hsh;
896 struct elf32_hppa_link_hash_table *htab;
897 int size;
898
899 /* Massage our args to the form they really have. */
900 hsh = hppa_stub_hash_entry (bh);
901 htab = in_arg;
902
903 if (hsh->stub_type == hppa_stub_long_branch)
904 size = 8;
905 else if (hsh->stub_type == hppa_stub_long_branch_shared)
906 size = 12;
907 else if (hsh->stub_type == hppa_stub_export)
908 size = 24;
909 else /* hppa_stub_import or hppa_stub_import_shared. */
910 {
911 if (htab->multi_subspace)
912 size = 28;
913 else
914 size = 16;
915 }
916
917 hsh->stub_sec->size += size;
918 return TRUE;
919 }
920
921 /* Return nonzero if ABFD represents an HPPA ELF32 file.
922 Additionally we set the default architecture and machine. */
923
924 static bfd_boolean
925 elf32_hppa_object_p (bfd *abfd)
926 {
927 Elf_Internal_Ehdr * i_ehdrp;
928 unsigned int flags;
929
930 i_ehdrp = elf_elfheader (abfd);
931 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
932 {
933 /* GCC on hppa-linux produces binaries with OSABI=GNU,
934 but the kernel produces corefiles with OSABI=SysV. */
935 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU &&
936 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
937 return FALSE;
938 }
939 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
940 {
941 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
942 but the kernel produces corefiles with OSABI=SysV. */
943 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
944 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
945 return FALSE;
946 }
947 else
948 {
949 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
950 return FALSE;
951 }
952
953 flags = i_ehdrp->e_flags;
954 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
955 {
956 case EFA_PARISC_1_0:
957 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
958 case EFA_PARISC_1_1:
959 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
960 case EFA_PARISC_2_0:
961 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
962 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
963 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
964 }
965 return TRUE;
966 }
967
968 /* Create the .plt and .got sections, and set up our hash table
969 short-cuts to various dynamic sections. */
970
971 static bfd_boolean
972 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
973 {
974 struct elf32_hppa_link_hash_table *htab;
975 struct elf_link_hash_entry *eh;
976
977 /* Don't try to create the .plt and .got twice. */
978 htab = hppa_link_hash_table (info);
979 if (htab == NULL)
980 return FALSE;
981 if (htab->splt != NULL)
982 return TRUE;
983
984 /* Call the generic code to do most of the work. */
985 if (! _bfd_elf_create_dynamic_sections (abfd, info))
986 return FALSE;
987
988 htab->splt = bfd_get_linker_section (abfd, ".plt");
989 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
990
991 htab->sgot = bfd_get_linker_section (abfd, ".got");
992 htab->srelgot = bfd_get_linker_section (abfd, ".rela.got");
993
994 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
995 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
996
997 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
998 application, because __canonicalize_funcptr_for_compare needs it. */
999 eh = elf_hash_table (info)->hgot;
1000 eh->forced_local = 0;
1001 eh->other = STV_DEFAULT;
1002 return bfd_elf_link_record_dynamic_symbol (info, eh);
1003 }
1004
1005 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1006
1007 static void
1008 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1009 struct elf_link_hash_entry *eh_dir,
1010 struct elf_link_hash_entry *eh_ind)
1011 {
1012 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1013
1014 hh_dir = hppa_elf_hash_entry (eh_dir);
1015 hh_ind = hppa_elf_hash_entry (eh_ind);
1016
1017 if (hh_ind->dyn_relocs != NULL)
1018 {
1019 if (hh_dir->dyn_relocs != NULL)
1020 {
1021 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1022 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1023
1024 /* Add reloc counts against the indirect sym to the direct sym
1025 list. Merge any entries against the same section. */
1026 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1027 {
1028 struct elf32_hppa_dyn_reloc_entry *hdh_q;
1029
1030 for (hdh_q = hh_dir->dyn_relocs;
1031 hdh_q != NULL;
1032 hdh_q = hdh_q->hdh_next)
1033 if (hdh_q->sec == hdh_p->sec)
1034 {
1035 #if RELATIVE_DYNRELOCS
1036 hdh_q->relative_count += hdh_p->relative_count;
1037 #endif
1038 hdh_q->count += hdh_p->count;
1039 *hdh_pp = hdh_p->hdh_next;
1040 break;
1041 }
1042 if (hdh_q == NULL)
1043 hdh_pp = &hdh_p->hdh_next;
1044 }
1045 *hdh_pp = hh_dir->dyn_relocs;
1046 }
1047
1048 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1049 hh_ind->dyn_relocs = NULL;
1050 }
1051
1052 if (ELIMINATE_COPY_RELOCS
1053 && eh_ind->root.type != bfd_link_hash_indirect
1054 && eh_dir->dynamic_adjusted)
1055 {
1056 /* If called to transfer flags for a weakdef during processing
1057 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1058 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1059 eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
1060 eh_dir->ref_regular |= eh_ind->ref_regular;
1061 eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
1062 eh_dir->needs_plt |= eh_ind->needs_plt;
1063 }
1064 else
1065 {
1066 if (eh_ind->root.type == bfd_link_hash_indirect
1067 && eh_dir->got.refcount <= 0)
1068 {
1069 hh_dir->tls_type = hh_ind->tls_type;
1070 hh_ind->tls_type = GOT_UNKNOWN;
1071 }
1072
1073 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1074 }
1075 }
1076
1077 static int
1078 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1079 int r_type, int is_local ATTRIBUTE_UNUSED)
1080 {
1081 /* For now we don't support linker optimizations. */
1082 return r_type;
1083 }
1084
1085 /* Return a pointer to the local GOT, PLT and TLS reference counts
1086 for ABFD. Returns NULL if the storage allocation fails. */
1087
1088 static bfd_signed_vma *
1089 hppa32_elf_local_refcounts (bfd *abfd)
1090 {
1091 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1092 bfd_signed_vma *local_refcounts;
1093
1094 local_refcounts = elf_local_got_refcounts (abfd);
1095 if (local_refcounts == NULL)
1096 {
1097 bfd_size_type size;
1098
1099 /* Allocate space for local GOT and PLT reference
1100 counts. Done this way to save polluting elf_obj_tdata
1101 with another target specific pointer. */
1102 size = symtab_hdr->sh_info;
1103 size *= 2 * sizeof (bfd_signed_vma);
1104 /* Add in space to store the local GOT TLS types. */
1105 size += symtab_hdr->sh_info;
1106 local_refcounts = bfd_zalloc (abfd, size);
1107 if (local_refcounts == NULL)
1108 return NULL;
1109 elf_local_got_refcounts (abfd) = local_refcounts;
1110 memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN,
1111 symtab_hdr->sh_info);
1112 }
1113 return local_refcounts;
1114 }
1115
1116
1117 /* Look through the relocs for a section during the first phase, and
1118 calculate needed space in the global offset table, procedure linkage
1119 table, and dynamic reloc sections. At this point we haven't
1120 necessarily read all the input files. */
1121
1122 static bfd_boolean
1123 elf32_hppa_check_relocs (bfd *abfd,
1124 struct bfd_link_info *info,
1125 asection *sec,
1126 const Elf_Internal_Rela *relocs)
1127 {
1128 Elf_Internal_Shdr *symtab_hdr;
1129 struct elf_link_hash_entry **eh_syms;
1130 const Elf_Internal_Rela *rela;
1131 const Elf_Internal_Rela *rela_end;
1132 struct elf32_hppa_link_hash_table *htab;
1133 asection *sreloc;
1134 int tls_type = GOT_UNKNOWN, old_tls_type = GOT_UNKNOWN;
1135
1136 if (info->relocatable)
1137 return TRUE;
1138
1139 htab = hppa_link_hash_table (info);
1140 if (htab == NULL)
1141 return FALSE;
1142 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1143 eh_syms = elf_sym_hashes (abfd);
1144 sreloc = NULL;
1145
1146 rela_end = relocs + sec->reloc_count;
1147 for (rela = relocs; rela < rela_end; rela++)
1148 {
1149 enum {
1150 NEED_GOT = 1,
1151 NEED_PLT = 2,
1152 NEED_DYNREL = 4,
1153 PLT_PLABEL = 8
1154 };
1155
1156 unsigned int r_symndx, r_type;
1157 struct elf32_hppa_link_hash_entry *hh;
1158 int need_entry = 0;
1159
1160 r_symndx = ELF32_R_SYM (rela->r_info);
1161
1162 if (r_symndx < symtab_hdr->sh_info)
1163 hh = NULL;
1164 else
1165 {
1166 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1167 while (hh->eh.root.type == bfd_link_hash_indirect
1168 || hh->eh.root.type == bfd_link_hash_warning)
1169 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1170
1171 /* PR15323, ref flags aren't set for references in the same
1172 object. */
1173 hh->eh.root.non_ir_ref = 1;
1174 }
1175
1176 r_type = ELF32_R_TYPE (rela->r_info);
1177 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1178
1179 switch (r_type)
1180 {
1181 case R_PARISC_DLTIND14F:
1182 case R_PARISC_DLTIND14R:
1183 case R_PARISC_DLTIND21L:
1184 /* This symbol requires a global offset table entry. */
1185 need_entry = NEED_GOT;
1186 break;
1187
1188 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1189 case R_PARISC_PLABEL21L:
1190 case R_PARISC_PLABEL32:
1191 /* If the addend is non-zero, we break badly. */
1192 if (rela->r_addend != 0)
1193 abort ();
1194
1195 /* If we are creating a shared library, then we need to
1196 create a PLT entry for all PLABELs, because PLABELs with
1197 local symbols may be passed via a pointer to another
1198 object. Additionally, output a dynamic relocation
1199 pointing to the PLT entry.
1200
1201 For executables, the original 32-bit ABI allowed two
1202 different styles of PLABELs (function pointers): For
1203 global functions, the PLABEL word points into the .plt
1204 two bytes past a (function address, gp) pair, and for
1205 local functions the PLABEL points directly at the
1206 function. The magic +2 for the first type allows us to
1207 differentiate between the two. As you can imagine, this
1208 is a real pain when it comes to generating code to call
1209 functions indirectly or to compare function pointers.
1210 We avoid the mess by always pointing a PLABEL into the
1211 .plt, even for local functions. */
1212 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1213 break;
1214
1215 case R_PARISC_PCREL12F:
1216 htab->has_12bit_branch = 1;
1217 goto branch_common;
1218
1219 case R_PARISC_PCREL17C:
1220 case R_PARISC_PCREL17F:
1221 htab->has_17bit_branch = 1;
1222 goto branch_common;
1223
1224 case R_PARISC_PCREL22F:
1225 htab->has_22bit_branch = 1;
1226 branch_common:
1227 /* Function calls might need to go through the .plt, and
1228 might require long branch stubs. */
1229 if (hh == NULL)
1230 {
1231 /* We know local syms won't need a .plt entry, and if
1232 they need a long branch stub we can't guarantee that
1233 we can reach the stub. So just flag an error later
1234 if we're doing a shared link and find we need a long
1235 branch stub. */
1236 continue;
1237 }
1238 else
1239 {
1240 /* Global symbols will need a .plt entry if they remain
1241 global, and in most cases won't need a long branch
1242 stub. Unfortunately, we have to cater for the case
1243 where a symbol is forced local by versioning, or due
1244 to symbolic linking, and we lose the .plt entry. */
1245 need_entry = NEED_PLT;
1246 if (hh->eh.type == STT_PARISC_MILLI)
1247 need_entry = 0;
1248 }
1249 break;
1250
1251 case R_PARISC_SEGBASE: /* Used to set segment base. */
1252 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1253 case R_PARISC_PCREL14F: /* PC relative load/store. */
1254 case R_PARISC_PCREL14R:
1255 case R_PARISC_PCREL17R: /* External branches. */
1256 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1257 case R_PARISC_PCREL32:
1258 /* We don't need to propagate the relocation if linking a
1259 shared object since these are section relative. */
1260 continue;
1261
1262 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1263 case R_PARISC_DPREL14R:
1264 case R_PARISC_DPREL21L:
1265 if (info->shared)
1266 {
1267 (*_bfd_error_handler)
1268 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1269 abfd,
1270 elf_hppa_howto_table[r_type].name);
1271 bfd_set_error (bfd_error_bad_value);
1272 return FALSE;
1273 }
1274 /* Fall through. */
1275
1276 case R_PARISC_DIR17F: /* Used for external branches. */
1277 case R_PARISC_DIR17R:
1278 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1279 case R_PARISC_DIR14R:
1280 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1281 case R_PARISC_DIR32: /* .word relocs. */
1282 /* We may want to output a dynamic relocation later. */
1283 need_entry = NEED_DYNREL;
1284 break;
1285
1286 /* This relocation describes the C++ object vtable hierarchy.
1287 Reconstruct it for later use during GC. */
1288 case R_PARISC_GNU_VTINHERIT:
1289 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1290 return FALSE;
1291 continue;
1292
1293 /* This relocation describes which C++ vtable entries are actually
1294 used. Record for later use during GC. */
1295 case R_PARISC_GNU_VTENTRY:
1296 BFD_ASSERT (hh != NULL);
1297 if (hh != NULL
1298 && !bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1299 return FALSE;
1300 continue;
1301
1302 case R_PARISC_TLS_GD21L:
1303 case R_PARISC_TLS_GD14R:
1304 case R_PARISC_TLS_LDM21L:
1305 case R_PARISC_TLS_LDM14R:
1306 need_entry = NEED_GOT;
1307 break;
1308
1309 case R_PARISC_TLS_IE21L:
1310 case R_PARISC_TLS_IE14R:
1311 if (info->shared)
1312 info->flags |= DF_STATIC_TLS;
1313 need_entry = NEED_GOT;
1314 break;
1315
1316 default:
1317 continue;
1318 }
1319
1320 /* Now carry out our orders. */
1321 if (need_entry & NEED_GOT)
1322 {
1323 switch (r_type)
1324 {
1325 default:
1326 tls_type = GOT_NORMAL;
1327 break;
1328 case R_PARISC_TLS_GD21L:
1329 case R_PARISC_TLS_GD14R:
1330 tls_type |= GOT_TLS_GD;
1331 break;
1332 case R_PARISC_TLS_LDM21L:
1333 case R_PARISC_TLS_LDM14R:
1334 tls_type |= GOT_TLS_LDM;
1335 break;
1336 case R_PARISC_TLS_IE21L:
1337 case R_PARISC_TLS_IE14R:
1338 tls_type |= GOT_TLS_IE;
1339 break;
1340 }
1341
1342 /* Allocate space for a GOT entry, as well as a dynamic
1343 relocation for this entry. */
1344 if (htab->sgot == NULL)
1345 {
1346 if (htab->etab.dynobj == NULL)
1347 htab->etab.dynobj = abfd;
1348 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1349 return FALSE;
1350 }
1351
1352 if (r_type == R_PARISC_TLS_LDM21L
1353 || r_type == R_PARISC_TLS_LDM14R)
1354 htab->tls_ldm_got.refcount += 1;
1355 else
1356 {
1357 if (hh != NULL)
1358 {
1359 hh->eh.got.refcount += 1;
1360 old_tls_type = hh->tls_type;
1361 }
1362 else
1363 {
1364 bfd_signed_vma *local_got_refcounts;
1365
1366 /* This is a global offset table entry for a local symbol. */
1367 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1368 if (local_got_refcounts == NULL)
1369 return FALSE;
1370 local_got_refcounts[r_symndx] += 1;
1371
1372 old_tls_type = hppa_elf_local_got_tls_type (abfd) [r_symndx];
1373 }
1374
1375 tls_type |= old_tls_type;
1376
1377 if (old_tls_type != tls_type)
1378 {
1379 if (hh != NULL)
1380 hh->tls_type = tls_type;
1381 else
1382 hppa_elf_local_got_tls_type (abfd) [r_symndx] = tls_type;
1383 }
1384
1385 }
1386 }
1387
1388 if (need_entry & NEED_PLT)
1389 {
1390 /* If we are creating a shared library, and this is a reloc
1391 against a weak symbol or a global symbol in a dynamic
1392 object, then we will be creating an import stub and a
1393 .plt entry for the symbol. Similarly, on a normal link
1394 to symbols defined in a dynamic object we'll need the
1395 import stub and a .plt entry. We don't know yet whether
1396 the symbol is defined or not, so make an entry anyway and
1397 clean up later in adjust_dynamic_symbol. */
1398 if ((sec->flags & SEC_ALLOC) != 0)
1399 {
1400 if (hh != NULL)
1401 {
1402 hh->eh.needs_plt = 1;
1403 hh->eh.plt.refcount += 1;
1404
1405 /* If this .plt entry is for a plabel, mark it so
1406 that adjust_dynamic_symbol will keep the entry
1407 even if it appears to be local. */
1408 if (need_entry & PLT_PLABEL)
1409 hh->plabel = 1;
1410 }
1411 else if (need_entry & PLT_PLABEL)
1412 {
1413 bfd_signed_vma *local_got_refcounts;
1414 bfd_signed_vma *local_plt_refcounts;
1415
1416 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1417 if (local_got_refcounts == NULL)
1418 return FALSE;
1419 local_plt_refcounts = (local_got_refcounts
1420 + symtab_hdr->sh_info);
1421 local_plt_refcounts[r_symndx] += 1;
1422 }
1423 }
1424 }
1425
1426 if (need_entry & NEED_DYNREL)
1427 {
1428 /* Flag this symbol as having a non-got, non-plt reference
1429 so that we generate copy relocs if it turns out to be
1430 dynamic. */
1431 if (hh != NULL && !info->shared)
1432 hh->eh.non_got_ref = 1;
1433
1434 /* If we are creating a shared library then we need to copy
1435 the reloc into the shared library. However, if we are
1436 linking with -Bsymbolic, we need only copy absolute
1437 relocs or relocs against symbols that are not defined in
1438 an object we are including in the link. PC- or DP- or
1439 DLT-relative relocs against any local sym or global sym
1440 with DEF_REGULAR set, can be discarded. At this point we
1441 have not seen all the input files, so it is possible that
1442 DEF_REGULAR is not set now but will be set later (it is
1443 never cleared). We account for that possibility below by
1444 storing information in the dyn_relocs field of the
1445 hash table entry.
1446
1447 A similar situation to the -Bsymbolic case occurs when
1448 creating shared libraries and symbol visibility changes
1449 render the symbol local.
1450
1451 As it turns out, all the relocs we will be creating here
1452 are absolute, so we cannot remove them on -Bsymbolic
1453 links or visibility changes anyway. A STUB_REL reloc
1454 is absolute too, as in that case it is the reloc in the
1455 stub we will be creating, rather than copying the PCREL
1456 reloc in the branch.
1457
1458 If on the other hand, we are creating an executable, we
1459 may need to keep relocations for symbols satisfied by a
1460 dynamic library if we manage to avoid copy relocs for the
1461 symbol. */
1462 if ((info->shared
1463 && (sec->flags & SEC_ALLOC) != 0
1464 && (IS_ABSOLUTE_RELOC (r_type)
1465 || (hh != NULL
1466 && (!info->symbolic
1467 || hh->eh.root.type == bfd_link_hash_defweak
1468 || !hh->eh.def_regular))))
1469 || (ELIMINATE_COPY_RELOCS
1470 && !info->shared
1471 && (sec->flags & SEC_ALLOC) != 0
1472 && hh != NULL
1473 && (hh->eh.root.type == bfd_link_hash_defweak
1474 || !hh->eh.def_regular)))
1475 {
1476 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1477 struct elf32_hppa_dyn_reloc_entry **hdh_head;
1478
1479 /* Create a reloc section in dynobj and make room for
1480 this reloc. */
1481 if (sreloc == NULL)
1482 {
1483 if (htab->etab.dynobj == NULL)
1484 htab->etab.dynobj = abfd;
1485
1486 sreloc = _bfd_elf_make_dynamic_reloc_section
1487 (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
1488
1489 if (sreloc == NULL)
1490 {
1491 bfd_set_error (bfd_error_bad_value);
1492 return FALSE;
1493 }
1494 }
1495
1496 /* If this is a global symbol, we count the number of
1497 relocations we need for this symbol. */
1498 if (hh != NULL)
1499 {
1500 hdh_head = &hh->dyn_relocs;
1501 }
1502 else
1503 {
1504 /* Track dynamic relocs needed for local syms too.
1505 We really need local syms available to do this
1506 easily. Oh well. */
1507 asection *sr;
1508 void *vpp;
1509 Elf_Internal_Sym *isym;
1510
1511 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1512 abfd, r_symndx);
1513 if (isym == NULL)
1514 return FALSE;
1515
1516 sr = bfd_section_from_elf_index (abfd, isym->st_shndx);
1517 if (sr == NULL)
1518 sr = sec;
1519
1520 vpp = &elf_section_data (sr)->local_dynrel;
1521 hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp;
1522 }
1523
1524 hdh_p = *hdh_head;
1525 if (hdh_p == NULL || hdh_p->sec != sec)
1526 {
1527 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1528 if (hdh_p == NULL)
1529 return FALSE;
1530 hdh_p->hdh_next = *hdh_head;
1531 *hdh_head = hdh_p;
1532 hdh_p->sec = sec;
1533 hdh_p->count = 0;
1534 #if RELATIVE_DYNRELOCS
1535 hdh_p->relative_count = 0;
1536 #endif
1537 }
1538
1539 hdh_p->count += 1;
1540 #if RELATIVE_DYNRELOCS
1541 if (!IS_ABSOLUTE_RELOC (rtype))
1542 hdh_p->relative_count += 1;
1543 #endif
1544 }
1545 }
1546 }
1547
1548 return TRUE;
1549 }
1550
1551 /* Return the section that should be marked against garbage collection
1552 for a given relocation. */
1553
1554 static asection *
1555 elf32_hppa_gc_mark_hook (asection *sec,
1556 struct bfd_link_info *info,
1557 Elf_Internal_Rela *rela,
1558 struct elf_link_hash_entry *hh,
1559 Elf_Internal_Sym *sym)
1560 {
1561 if (hh != NULL)
1562 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1563 {
1564 case R_PARISC_GNU_VTINHERIT:
1565 case R_PARISC_GNU_VTENTRY:
1566 return NULL;
1567 }
1568
1569 return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1570 }
1571
1572 /* Update the got and plt entry reference counts for the section being
1573 removed. */
1574
1575 static bfd_boolean
1576 elf32_hppa_gc_sweep_hook (bfd *abfd,
1577 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1578 asection *sec,
1579 const Elf_Internal_Rela *relocs)
1580 {
1581 Elf_Internal_Shdr *symtab_hdr;
1582 struct elf_link_hash_entry **eh_syms;
1583 bfd_signed_vma *local_got_refcounts;
1584 bfd_signed_vma *local_plt_refcounts;
1585 const Elf_Internal_Rela *rela, *relend;
1586 struct elf32_hppa_link_hash_table *htab;
1587
1588 if (info->relocatable)
1589 return TRUE;
1590
1591 htab = hppa_link_hash_table (info);
1592 if (htab == NULL)
1593 return FALSE;
1594
1595 elf_section_data (sec)->local_dynrel = NULL;
1596
1597 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1598 eh_syms = elf_sym_hashes (abfd);
1599 local_got_refcounts = elf_local_got_refcounts (abfd);
1600 local_plt_refcounts = local_got_refcounts;
1601 if (local_plt_refcounts != NULL)
1602 local_plt_refcounts += symtab_hdr->sh_info;
1603
1604 relend = relocs + sec->reloc_count;
1605 for (rela = relocs; rela < relend; rela++)
1606 {
1607 unsigned long r_symndx;
1608 unsigned int r_type;
1609 struct elf_link_hash_entry *eh = NULL;
1610
1611 r_symndx = ELF32_R_SYM (rela->r_info);
1612 if (r_symndx >= symtab_hdr->sh_info)
1613 {
1614 struct elf32_hppa_link_hash_entry *hh;
1615 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1616 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1617
1618 eh = eh_syms[r_symndx - symtab_hdr->sh_info];
1619 while (eh->root.type == bfd_link_hash_indirect
1620 || eh->root.type == bfd_link_hash_warning)
1621 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1622 hh = hppa_elf_hash_entry (eh);
1623
1624 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next)
1625 if (hdh_p->sec == sec)
1626 {
1627 /* Everything must go for SEC. */
1628 *hdh_pp = hdh_p->hdh_next;
1629 break;
1630 }
1631 }
1632
1633 r_type = ELF32_R_TYPE (rela->r_info);
1634 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, eh != NULL);
1635
1636 switch (r_type)
1637 {
1638 case R_PARISC_DLTIND14F:
1639 case R_PARISC_DLTIND14R:
1640 case R_PARISC_DLTIND21L:
1641 case R_PARISC_TLS_GD21L:
1642 case R_PARISC_TLS_GD14R:
1643 case R_PARISC_TLS_IE21L:
1644 case R_PARISC_TLS_IE14R:
1645 if (eh != NULL)
1646 {
1647 if (eh->got.refcount > 0)
1648 eh->got.refcount -= 1;
1649 }
1650 else if (local_got_refcounts != NULL)
1651 {
1652 if (local_got_refcounts[r_symndx] > 0)
1653 local_got_refcounts[r_symndx] -= 1;
1654 }
1655 break;
1656
1657 case R_PARISC_TLS_LDM21L:
1658 case R_PARISC_TLS_LDM14R:
1659 htab->tls_ldm_got.refcount -= 1;
1660 break;
1661
1662 case R_PARISC_PCREL12F:
1663 case R_PARISC_PCREL17C:
1664 case R_PARISC_PCREL17F:
1665 case R_PARISC_PCREL22F:
1666 if (eh != NULL)
1667 {
1668 if (eh->plt.refcount > 0)
1669 eh->plt.refcount -= 1;
1670 }
1671 break;
1672
1673 case R_PARISC_PLABEL14R:
1674 case R_PARISC_PLABEL21L:
1675 case R_PARISC_PLABEL32:
1676 if (eh != NULL)
1677 {
1678 if (eh->plt.refcount > 0)
1679 eh->plt.refcount -= 1;
1680 }
1681 else if (local_plt_refcounts != NULL)
1682 {
1683 if (local_plt_refcounts[r_symndx] > 0)
1684 local_plt_refcounts[r_symndx] -= 1;
1685 }
1686 break;
1687
1688 default:
1689 break;
1690 }
1691 }
1692
1693 return TRUE;
1694 }
1695
1696 /* Support for core dump NOTE sections. */
1697
1698 static bfd_boolean
1699 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1700 {
1701 int offset;
1702 size_t size;
1703
1704 switch (note->descsz)
1705 {
1706 default:
1707 return FALSE;
1708
1709 case 396: /* Linux/hppa */
1710 /* pr_cursig */
1711 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1712
1713 /* pr_pid */
1714 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
1715
1716 /* pr_reg */
1717 offset = 72;
1718 size = 320;
1719
1720 break;
1721 }
1722
1723 /* Make a ".reg/999" section. */
1724 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1725 size, note->descpos + offset);
1726 }
1727
1728 static bfd_boolean
1729 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1730 {
1731 switch (note->descsz)
1732 {
1733 default:
1734 return FALSE;
1735
1736 case 124: /* Linux/hppa elf_prpsinfo. */
1737 elf_tdata (abfd)->core->program
1738 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1739 elf_tdata (abfd)->core->command
1740 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1741 }
1742
1743 /* Note that for some reason, a spurious space is tacked
1744 onto the end of the args in some (at least one anyway)
1745 implementations, so strip it off if it exists. */
1746 {
1747 char *command = elf_tdata (abfd)->core->command;
1748 int n = strlen (command);
1749
1750 if (0 < n && command[n - 1] == ' ')
1751 command[n - 1] = '\0';
1752 }
1753
1754 return TRUE;
1755 }
1756
1757 /* Our own version of hide_symbol, so that we can keep plt entries for
1758 plabels. */
1759
1760 static void
1761 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1762 struct elf_link_hash_entry *eh,
1763 bfd_boolean force_local)
1764 {
1765 if (force_local)
1766 {
1767 eh->forced_local = 1;
1768 if (eh->dynindx != -1)
1769 {
1770 eh->dynindx = -1;
1771 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1772 eh->dynstr_index);
1773 }
1774 }
1775
1776 /* STT_GNU_IFUNC symbol must go through PLT. */
1777 if (! hppa_elf_hash_entry (eh)->plabel
1778 && eh->type != STT_GNU_IFUNC)
1779 {
1780 eh->needs_plt = 0;
1781 eh->plt = elf_hash_table (info)->init_plt_offset;
1782 }
1783 }
1784
1785 /* Adjust a symbol defined by a dynamic object and referenced by a
1786 regular object. The current definition is in some section of the
1787 dynamic object, but we're not including those sections. We have to
1788 change the definition to something the rest of the link can
1789 understand. */
1790
1791 static bfd_boolean
1792 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1793 struct elf_link_hash_entry *eh)
1794 {
1795 struct elf32_hppa_link_hash_table *htab;
1796 asection *sec;
1797
1798 /* If this is a function, put it in the procedure linkage table. We
1799 will fill in the contents of the procedure linkage table later. */
1800 if (eh->type == STT_FUNC
1801 || eh->needs_plt)
1802 {
1803 /* If the symbol is used by a plabel, we must allocate a PLT slot.
1804 The refcounts are not reliable when it has been hidden since
1805 hide_symbol can be called before the plabel flag is set. */
1806 if (hppa_elf_hash_entry (eh)->plabel
1807 && eh->plt.refcount <= 0)
1808 eh->plt.refcount = 1;
1809
1810 if (eh->plt.refcount <= 0
1811 || (eh->def_regular
1812 && eh->root.type != bfd_link_hash_defweak
1813 && ! hppa_elf_hash_entry (eh)->plabel
1814 && (!info->shared || info->symbolic)))
1815 {
1816 /* The .plt entry is not needed when:
1817 a) Garbage collection has removed all references to the
1818 symbol, or
1819 b) We know for certain the symbol is defined in this
1820 object, and it's not a weak definition, nor is the symbol
1821 used by a plabel relocation. Either this object is the
1822 application or we are doing a shared symbolic link. */
1823
1824 eh->plt.offset = (bfd_vma) -1;
1825 eh->needs_plt = 0;
1826 }
1827
1828 return TRUE;
1829 }
1830 else
1831 eh->plt.offset = (bfd_vma) -1;
1832
1833 /* If this is a weak symbol, and there is a real definition, the
1834 processor independent code will have arranged for us to see the
1835 real definition first, and we can just use the same value. */
1836 if (eh->u.weakdef != NULL)
1837 {
1838 if (eh->u.weakdef->root.type != bfd_link_hash_defined
1839 && eh->u.weakdef->root.type != bfd_link_hash_defweak)
1840 abort ();
1841 eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1842 eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1843 if (ELIMINATE_COPY_RELOCS)
1844 eh->non_got_ref = eh->u.weakdef->non_got_ref;
1845 return TRUE;
1846 }
1847
1848 /* This is a reference to a symbol defined by a dynamic object which
1849 is not a function. */
1850
1851 /* If we are creating a shared library, we must presume that the
1852 only references to the symbol are via the global offset table.
1853 For such cases we need not do anything here; the relocations will
1854 be handled correctly by relocate_section. */
1855 if (info->shared)
1856 return TRUE;
1857
1858 /* If there are no references to this symbol that do not use the
1859 GOT, we don't need to generate a copy reloc. */
1860 if (!eh->non_got_ref)
1861 return TRUE;
1862
1863 if (ELIMINATE_COPY_RELOCS)
1864 {
1865 struct elf32_hppa_link_hash_entry *hh;
1866 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1867
1868 hh = hppa_elf_hash_entry (eh);
1869 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
1870 {
1871 sec = hdh_p->sec->output_section;
1872 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1873 break;
1874 }
1875
1876 /* If we didn't find any dynamic relocs in read-only sections, then
1877 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1878 if (hdh_p == NULL)
1879 {
1880 eh->non_got_ref = 0;
1881 return TRUE;
1882 }
1883 }
1884
1885 /* We must allocate the symbol in our .dynbss section, which will
1886 become part of the .bss section of the executable. There will be
1887 an entry for this symbol in the .dynsym section. The dynamic
1888 object will contain position independent code, so all references
1889 from the dynamic object to this symbol will go through the global
1890 offset table. The dynamic linker will use the .dynsym entry to
1891 determine the address it must put in the global offset table, so
1892 both the dynamic object and the regular object will refer to the
1893 same memory location for the variable. */
1894
1895 htab = hppa_link_hash_table (info);
1896 if (htab == NULL)
1897 return FALSE;
1898
1899 /* We must generate a COPY reloc to tell the dynamic linker to
1900 copy the initial value out of the dynamic object and into the
1901 runtime process image. */
1902 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0 && eh->size != 0)
1903 {
1904 htab->srelbss->size += sizeof (Elf32_External_Rela);
1905 eh->needs_copy = 1;
1906 }
1907
1908 sec = htab->sdynbss;
1909
1910 return _bfd_elf_adjust_dynamic_copy (eh, sec);
1911 }
1912
1913 /* Allocate space in the .plt for entries that won't have relocations.
1914 ie. plabel entries. */
1915
1916 static bfd_boolean
1917 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1918 {
1919 struct bfd_link_info *info;
1920 struct elf32_hppa_link_hash_table *htab;
1921 struct elf32_hppa_link_hash_entry *hh;
1922 asection *sec;
1923
1924 if (eh->root.type == bfd_link_hash_indirect)
1925 return TRUE;
1926
1927 info = (struct bfd_link_info *) inf;
1928 hh = hppa_elf_hash_entry (eh);
1929 htab = hppa_link_hash_table (info);
1930 if (htab == NULL)
1931 return FALSE;
1932
1933 if (htab->etab.dynamic_sections_created
1934 && eh->plt.refcount > 0)
1935 {
1936 /* Make sure this symbol is output as a dynamic symbol.
1937 Undefined weak syms won't yet be marked as dynamic. */
1938 if (eh->dynindx == -1
1939 && !eh->forced_local
1940 && eh->type != STT_PARISC_MILLI)
1941 {
1942 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
1943 return FALSE;
1944 }
1945
1946 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, eh))
1947 {
1948 /* Allocate these later. From this point on, h->plabel
1949 means that the plt entry is only used by a plabel.
1950 We'll be using a normal plt entry for this symbol, so
1951 clear the plabel indicator. */
1952
1953 hh->plabel = 0;
1954 }
1955 else if (hh->plabel)
1956 {
1957 /* Make an entry in the .plt section for plabel references
1958 that won't have a .plt entry for other reasons. */
1959 sec = htab->splt;
1960 eh->plt.offset = sec->size;
1961 sec->size += PLT_ENTRY_SIZE;
1962 }
1963 else
1964 {
1965 /* No .plt entry needed. */
1966 eh->plt.offset = (bfd_vma) -1;
1967 eh->needs_plt = 0;
1968 }
1969 }
1970 else
1971 {
1972 eh->plt.offset = (bfd_vma) -1;
1973 eh->needs_plt = 0;
1974 }
1975
1976 return TRUE;
1977 }
1978
1979 /* Allocate space in .plt, .got and associated reloc sections for
1980 global syms. */
1981
1982 static bfd_boolean
1983 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
1984 {
1985 struct bfd_link_info *info;
1986 struct elf32_hppa_link_hash_table *htab;
1987 asection *sec;
1988 struct elf32_hppa_link_hash_entry *hh;
1989 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1990
1991 if (eh->root.type == bfd_link_hash_indirect)
1992 return TRUE;
1993
1994 info = inf;
1995 htab = hppa_link_hash_table (info);
1996 if (htab == NULL)
1997 return FALSE;
1998
1999 hh = hppa_elf_hash_entry (eh);
2000
2001 if (htab->etab.dynamic_sections_created
2002 && eh->plt.offset != (bfd_vma) -1
2003 && !hh->plabel
2004 && eh->plt.refcount > 0)
2005 {
2006 /* Make an entry in the .plt section. */
2007 sec = htab->splt;
2008 eh->plt.offset = sec->size;
2009 sec->size += PLT_ENTRY_SIZE;
2010
2011 /* We also need to make an entry in the .rela.plt section. */
2012 htab->srelplt->size += sizeof (Elf32_External_Rela);
2013 htab->need_plt_stub = 1;
2014 }
2015
2016 if (eh->got.refcount > 0)
2017 {
2018 /* Make sure this symbol is output as a dynamic symbol.
2019 Undefined weak syms won't yet be marked as dynamic. */
2020 if (eh->dynindx == -1
2021 && !eh->forced_local
2022 && eh->type != STT_PARISC_MILLI)
2023 {
2024 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2025 return FALSE;
2026 }
2027
2028 sec = htab->sgot;
2029 eh->got.offset = sec->size;
2030 sec->size += GOT_ENTRY_SIZE;
2031 /* R_PARISC_TLS_GD* needs two GOT entries */
2032 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2033 sec->size += GOT_ENTRY_SIZE * 2;
2034 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2035 sec->size += GOT_ENTRY_SIZE;
2036 if (htab->etab.dynamic_sections_created
2037 && (info->shared
2038 || (eh->dynindx != -1
2039 && !eh->forced_local)))
2040 {
2041 htab->srelgot->size += sizeof (Elf32_External_Rela);
2042 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2043 htab->srelgot->size += 2 * sizeof (Elf32_External_Rela);
2044 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2045 htab->srelgot->size += sizeof (Elf32_External_Rela);
2046 }
2047 }
2048 else
2049 eh->got.offset = (bfd_vma) -1;
2050
2051 if (hh->dyn_relocs == NULL)
2052 return TRUE;
2053
2054 /* If this is a -Bsymbolic shared link, then we need to discard all
2055 space allocated for dynamic pc-relative relocs against symbols
2056 defined in a regular object. For the normal shared case, discard
2057 space for relocs that have become local due to symbol visibility
2058 changes. */
2059 if (info->shared)
2060 {
2061 #if RELATIVE_DYNRELOCS
2062 if (SYMBOL_CALLS_LOCAL (info, eh))
2063 {
2064 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
2065
2066 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2067 {
2068 hdh_p->count -= hdh_p->relative_count;
2069 hdh_p->relative_count = 0;
2070 if (hdh_p->count == 0)
2071 *hdh_pp = hdh_p->hdh_next;
2072 else
2073 hdh_pp = &hdh_p->hdh_next;
2074 }
2075 }
2076 #endif
2077
2078 /* Also discard relocs on undefined weak syms with non-default
2079 visibility. */
2080 if (hh->dyn_relocs != NULL
2081 && eh->root.type == bfd_link_hash_undefweak)
2082 {
2083 if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
2084 hh->dyn_relocs = NULL;
2085
2086 /* Make sure undefined weak symbols are output as a dynamic
2087 symbol in PIEs. */
2088 else if (eh->dynindx == -1
2089 && !eh->forced_local)
2090 {
2091 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2092 return FALSE;
2093 }
2094 }
2095 }
2096 else
2097 {
2098 /* For the non-shared case, discard space for relocs against
2099 symbols which turn out to need copy relocs or are not
2100 dynamic. */
2101
2102 if (!eh->non_got_ref
2103 && ((ELIMINATE_COPY_RELOCS
2104 && eh->def_dynamic
2105 && !eh->def_regular)
2106 || (htab->etab.dynamic_sections_created
2107 && (eh->root.type == bfd_link_hash_undefweak
2108 || eh->root.type == bfd_link_hash_undefined))))
2109 {
2110 /* Make sure this symbol is output as a dynamic symbol.
2111 Undefined weak syms won't yet be marked as dynamic. */
2112 if (eh->dynindx == -1
2113 && !eh->forced_local
2114 && eh->type != STT_PARISC_MILLI)
2115 {
2116 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2117 return FALSE;
2118 }
2119
2120 /* If that succeeded, we know we'll be keeping all the
2121 relocs. */
2122 if (eh->dynindx != -1)
2123 goto keep;
2124 }
2125
2126 hh->dyn_relocs = NULL;
2127 return TRUE;
2128
2129 keep: ;
2130 }
2131
2132 /* Finally, allocate space. */
2133 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2134 {
2135 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2136 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2137 }
2138
2139 return TRUE;
2140 }
2141
2142 /* This function is called via elf_link_hash_traverse to force
2143 millicode symbols local so they do not end up as globals in the
2144 dynamic symbol table. We ought to be able to do this in
2145 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2146 for all dynamic symbols. Arguably, this is a bug in
2147 elf_adjust_dynamic_symbol. */
2148
2149 static bfd_boolean
2150 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2151 struct bfd_link_info *info)
2152 {
2153 if (eh->type == STT_PARISC_MILLI
2154 && !eh->forced_local)
2155 {
2156 elf32_hppa_hide_symbol (info, eh, TRUE);
2157 }
2158 return TRUE;
2159 }
2160
2161 /* Find any dynamic relocs that apply to read-only sections. */
2162
2163 static bfd_boolean
2164 readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2165 {
2166 struct elf32_hppa_link_hash_entry *hh;
2167 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2168
2169 hh = hppa_elf_hash_entry (eh);
2170 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2171 {
2172 asection *sec = hdh_p->sec->output_section;
2173
2174 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
2175 {
2176 struct bfd_link_info *info = inf;
2177
2178 info->flags |= DF_TEXTREL;
2179
2180 /* Not an error, just cut short the traversal. */
2181 return FALSE;
2182 }
2183 }
2184 return TRUE;
2185 }
2186
2187 /* Set the sizes of the dynamic sections. */
2188
2189 static bfd_boolean
2190 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2191 struct bfd_link_info *info)
2192 {
2193 struct elf32_hppa_link_hash_table *htab;
2194 bfd *dynobj;
2195 bfd *ibfd;
2196 asection *sec;
2197 bfd_boolean relocs;
2198
2199 htab = hppa_link_hash_table (info);
2200 if (htab == NULL)
2201 return FALSE;
2202
2203 dynobj = htab->etab.dynobj;
2204 if (dynobj == NULL)
2205 abort ();
2206
2207 if (htab->etab.dynamic_sections_created)
2208 {
2209 /* Set the contents of the .interp section to the interpreter. */
2210 if (info->executable)
2211 {
2212 sec = bfd_get_linker_section (dynobj, ".interp");
2213 if (sec == NULL)
2214 abort ();
2215 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2216 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2217 }
2218
2219 /* Force millicode symbols local. */
2220 elf_link_hash_traverse (&htab->etab,
2221 clobber_millicode_symbols,
2222 info);
2223 }
2224
2225 /* Set up .got and .plt offsets for local syms, and space for local
2226 dynamic relocs. */
2227 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2228 {
2229 bfd_signed_vma *local_got;
2230 bfd_signed_vma *end_local_got;
2231 bfd_signed_vma *local_plt;
2232 bfd_signed_vma *end_local_plt;
2233 bfd_size_type locsymcount;
2234 Elf_Internal_Shdr *symtab_hdr;
2235 asection *srel;
2236 char *local_tls_type;
2237
2238 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2239 continue;
2240
2241 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2242 {
2243 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2244
2245 for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
2246 elf_section_data (sec)->local_dynrel);
2247 hdh_p != NULL;
2248 hdh_p = hdh_p->hdh_next)
2249 {
2250 if (!bfd_is_abs_section (hdh_p->sec)
2251 && bfd_is_abs_section (hdh_p->sec->output_section))
2252 {
2253 /* Input section has been discarded, either because
2254 it is a copy of a linkonce section or due to
2255 linker script /DISCARD/, so we'll be discarding
2256 the relocs too. */
2257 }
2258 else if (hdh_p->count != 0)
2259 {
2260 srel = elf_section_data (hdh_p->sec)->sreloc;
2261 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2262 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2263 info->flags |= DF_TEXTREL;
2264 }
2265 }
2266 }
2267
2268 local_got = elf_local_got_refcounts (ibfd);
2269 if (!local_got)
2270 continue;
2271
2272 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2273 locsymcount = symtab_hdr->sh_info;
2274 end_local_got = local_got + locsymcount;
2275 local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2276 sec = htab->sgot;
2277 srel = htab->srelgot;
2278 for (; local_got < end_local_got; ++local_got)
2279 {
2280 if (*local_got > 0)
2281 {
2282 *local_got = sec->size;
2283 sec->size += GOT_ENTRY_SIZE;
2284 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2285 sec->size += 2 * GOT_ENTRY_SIZE;
2286 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2287 sec->size += GOT_ENTRY_SIZE;
2288 if (info->shared)
2289 {
2290 srel->size += sizeof (Elf32_External_Rela);
2291 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2292 srel->size += 2 * sizeof (Elf32_External_Rela);
2293 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2294 srel->size += sizeof (Elf32_External_Rela);
2295 }
2296 }
2297 else
2298 *local_got = (bfd_vma) -1;
2299
2300 ++local_tls_type;
2301 }
2302
2303 local_plt = end_local_got;
2304 end_local_plt = local_plt + locsymcount;
2305 if (! htab->etab.dynamic_sections_created)
2306 {
2307 /* Won't be used, but be safe. */
2308 for (; local_plt < end_local_plt; ++local_plt)
2309 *local_plt = (bfd_vma) -1;
2310 }
2311 else
2312 {
2313 sec = htab->splt;
2314 srel = htab->srelplt;
2315 for (; local_plt < end_local_plt; ++local_plt)
2316 {
2317 if (*local_plt > 0)
2318 {
2319 *local_plt = sec->size;
2320 sec->size += PLT_ENTRY_SIZE;
2321 if (info->shared)
2322 srel->size += sizeof (Elf32_External_Rela);
2323 }
2324 else
2325 *local_plt = (bfd_vma) -1;
2326 }
2327 }
2328 }
2329
2330 if (htab->tls_ldm_got.refcount > 0)
2331 {
2332 /* Allocate 2 got entries and 1 dynamic reloc for
2333 R_PARISC_TLS_DTPMOD32 relocs. */
2334 htab->tls_ldm_got.offset = htab->sgot->size;
2335 htab->sgot->size += (GOT_ENTRY_SIZE * 2);
2336 htab->srelgot->size += sizeof (Elf32_External_Rela);
2337 }
2338 else
2339 htab->tls_ldm_got.offset = -1;
2340
2341 /* Do all the .plt entries without relocs first. The dynamic linker
2342 uses the last .plt reloc to find the end of the .plt (and hence
2343 the start of the .got) for lazy linking. */
2344 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2345
2346 /* Allocate global sym .plt and .got entries, and space for global
2347 sym dynamic relocs. */
2348 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2349
2350 /* The check_relocs and adjust_dynamic_symbol entry points have
2351 determined the sizes of the various dynamic sections. Allocate
2352 memory for them. */
2353 relocs = FALSE;
2354 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2355 {
2356 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2357 continue;
2358
2359 if (sec == htab->splt)
2360 {
2361 if (htab->need_plt_stub)
2362 {
2363 /* Make space for the plt stub at the end of the .plt
2364 section. We want this stub right at the end, up
2365 against the .got section. */
2366 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2367 int pltalign = bfd_section_alignment (dynobj, sec);
2368 bfd_size_type mask;
2369
2370 if (gotalign > pltalign)
2371 (void) bfd_set_section_alignment (dynobj, sec, gotalign);
2372 mask = ((bfd_size_type) 1 << gotalign) - 1;
2373 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2374 }
2375 }
2376 else if (sec == htab->sgot
2377 || sec == htab->sdynbss)
2378 ;
2379 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
2380 {
2381 if (sec->size != 0)
2382 {
2383 /* Remember whether there are any reloc sections other
2384 than .rela.plt. */
2385 if (sec != htab->srelplt)
2386 relocs = TRUE;
2387
2388 /* We use the reloc_count field as a counter if we need
2389 to copy relocs into the output file. */
2390 sec->reloc_count = 0;
2391 }
2392 }
2393 else
2394 {
2395 /* It's not one of our sections, so don't allocate space. */
2396 continue;
2397 }
2398
2399 if (sec->size == 0)
2400 {
2401 /* If we don't need this section, strip it from the
2402 output file. This is mostly to handle .rela.bss and
2403 .rela.plt. We must create both sections in
2404 create_dynamic_sections, because they must be created
2405 before the linker maps input sections to output
2406 sections. The linker does that before
2407 adjust_dynamic_symbol is called, and it is that
2408 function which decides whether anything needs to go
2409 into these sections. */
2410 sec->flags |= SEC_EXCLUDE;
2411 continue;
2412 }
2413
2414 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2415 continue;
2416
2417 /* Allocate memory for the section contents. Zero it, because
2418 we may not fill in all the reloc sections. */
2419 sec->contents = bfd_zalloc (dynobj, sec->size);
2420 if (sec->contents == NULL)
2421 return FALSE;
2422 }
2423
2424 if (htab->etab.dynamic_sections_created)
2425 {
2426 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2427 actually has nothing to do with the PLT, it is how we
2428 communicate the LTP value of a load module to the dynamic
2429 linker. */
2430 #define add_dynamic_entry(TAG, VAL) \
2431 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2432
2433 if (!add_dynamic_entry (DT_PLTGOT, 0))
2434 return FALSE;
2435
2436 /* Add some entries to the .dynamic section. We fill in the
2437 values later, in elf32_hppa_finish_dynamic_sections, but we
2438 must add the entries now so that we get the correct size for
2439 the .dynamic section. The DT_DEBUG entry is filled in by the
2440 dynamic linker and used by the debugger. */
2441 if (info->executable)
2442 {
2443 if (!add_dynamic_entry (DT_DEBUG, 0))
2444 return FALSE;
2445 }
2446
2447 if (htab->srelplt->size != 0)
2448 {
2449 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2450 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2451 || !add_dynamic_entry (DT_JMPREL, 0))
2452 return FALSE;
2453 }
2454
2455 if (relocs)
2456 {
2457 if (!add_dynamic_entry (DT_RELA, 0)
2458 || !add_dynamic_entry (DT_RELASZ, 0)
2459 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2460 return FALSE;
2461
2462 /* If any dynamic relocs apply to a read-only section,
2463 then we need a DT_TEXTREL entry. */
2464 if ((info->flags & DF_TEXTREL) == 0)
2465 elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info);
2466
2467 if ((info->flags & DF_TEXTREL) != 0)
2468 {
2469 if (!add_dynamic_entry (DT_TEXTREL, 0))
2470 return FALSE;
2471 }
2472 }
2473 }
2474 #undef add_dynamic_entry
2475
2476 return TRUE;
2477 }
2478
2479 /* External entry points for sizing and building linker stubs. */
2480
2481 /* Set up various things so that we can make a list of input sections
2482 for each output section included in the link. Returns -1 on error,
2483 0 when no stubs will be needed, and 1 on success. */
2484
2485 int
2486 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2487 {
2488 bfd *input_bfd;
2489 unsigned int bfd_count;
2490 int top_id, top_index;
2491 asection *section;
2492 asection **input_list, **list;
2493 bfd_size_type amt;
2494 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2495
2496 if (htab == NULL)
2497 return -1;
2498
2499 /* Count the number of input BFDs and find the top input section id. */
2500 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2501 input_bfd != NULL;
2502 input_bfd = input_bfd->link_next)
2503 {
2504 bfd_count += 1;
2505 for (section = input_bfd->sections;
2506 section != NULL;
2507 section = section->next)
2508 {
2509 if (top_id < section->id)
2510 top_id = section->id;
2511 }
2512 }
2513 htab->bfd_count = bfd_count;
2514
2515 amt = sizeof (struct map_stub) * (top_id + 1);
2516 htab->stub_group = bfd_zmalloc (amt);
2517 if (htab->stub_group == NULL)
2518 return -1;
2519
2520 /* We can't use output_bfd->section_count here to find the top output
2521 section index as some sections may have been removed, and
2522 strip_excluded_output_sections doesn't renumber the indices. */
2523 for (section = output_bfd->sections, top_index = 0;
2524 section != NULL;
2525 section = section->next)
2526 {
2527 if (top_index < section->index)
2528 top_index = section->index;
2529 }
2530
2531 htab->top_index = top_index;
2532 amt = sizeof (asection *) * (top_index + 1);
2533 input_list = bfd_malloc (amt);
2534 htab->input_list = input_list;
2535 if (input_list == NULL)
2536 return -1;
2537
2538 /* For sections we aren't interested in, mark their entries with a
2539 value we can check later. */
2540 list = input_list + top_index;
2541 do
2542 *list = bfd_abs_section_ptr;
2543 while (list-- != input_list);
2544
2545 for (section = output_bfd->sections;
2546 section != NULL;
2547 section = section->next)
2548 {
2549 if ((section->flags & SEC_CODE) != 0)
2550 input_list[section->index] = NULL;
2551 }
2552
2553 return 1;
2554 }
2555
2556 /* The linker repeatedly calls this function for each input section,
2557 in the order that input sections are linked into output sections.
2558 Build lists of input sections to determine groupings between which
2559 we may insert linker stubs. */
2560
2561 void
2562 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2563 {
2564 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2565
2566 if (htab == NULL)
2567 return;
2568
2569 if (isec->output_section->index <= htab->top_index)
2570 {
2571 asection **list = htab->input_list + isec->output_section->index;
2572 if (*list != bfd_abs_section_ptr)
2573 {
2574 /* Steal the link_sec pointer for our list. */
2575 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2576 /* This happens to make the list in reverse order,
2577 which is what we want. */
2578 PREV_SEC (isec) = *list;
2579 *list = isec;
2580 }
2581 }
2582 }
2583
2584 /* See whether we can group stub sections together. Grouping stub
2585 sections may result in fewer stubs. More importantly, we need to
2586 put all .init* and .fini* stubs at the beginning of the .init or
2587 .fini output sections respectively, because glibc splits the
2588 _init and _fini functions into multiple parts. Putting a stub in
2589 the middle of a function is not a good idea. */
2590
2591 static void
2592 group_sections (struct elf32_hppa_link_hash_table *htab,
2593 bfd_size_type stub_group_size,
2594 bfd_boolean stubs_always_before_branch)
2595 {
2596 asection **list = htab->input_list + htab->top_index;
2597 do
2598 {
2599 asection *tail = *list;
2600 if (tail == bfd_abs_section_ptr)
2601 continue;
2602 while (tail != NULL)
2603 {
2604 asection *curr;
2605 asection *prev;
2606 bfd_size_type total;
2607 bfd_boolean big_sec;
2608
2609 curr = tail;
2610 total = tail->size;
2611 big_sec = total >= stub_group_size;
2612
2613 while ((prev = PREV_SEC (curr)) != NULL
2614 && ((total += curr->output_offset - prev->output_offset)
2615 < stub_group_size))
2616 curr = prev;
2617
2618 /* OK, the size from the start of CURR to the end is less
2619 than 240000 bytes and thus can be handled by one stub
2620 section. (or the tail section is itself larger than
2621 240000 bytes, in which case we may be toast.)
2622 We should really be keeping track of the total size of
2623 stubs added here, as stubs contribute to the final output
2624 section size. That's a little tricky, and this way will
2625 only break if stubs added total more than 22144 bytes, or
2626 2768 long branch stubs. It seems unlikely for more than
2627 2768 different functions to be called, especially from
2628 code only 240000 bytes long. This limit used to be
2629 250000, but c++ code tends to generate lots of little
2630 functions, and sometimes violated the assumption. */
2631 do
2632 {
2633 prev = PREV_SEC (tail);
2634 /* Set up this stub group. */
2635 htab->stub_group[tail->id].link_sec = curr;
2636 }
2637 while (tail != curr && (tail = prev) != NULL);
2638
2639 /* But wait, there's more! Input sections up to 240000
2640 bytes before the stub section can be handled by it too.
2641 Don't do this if we have a really large section after the
2642 stubs, as adding more stubs increases the chance that
2643 branches may not reach into the stub section. */
2644 if (!stubs_always_before_branch && !big_sec)
2645 {
2646 total = 0;
2647 while (prev != NULL
2648 && ((total += tail->output_offset - prev->output_offset)
2649 < stub_group_size))
2650 {
2651 tail = prev;
2652 prev = PREV_SEC (tail);
2653 htab->stub_group[tail->id].link_sec = curr;
2654 }
2655 }
2656 tail = prev;
2657 }
2658 }
2659 while (list-- != htab->input_list);
2660 free (htab->input_list);
2661 #undef PREV_SEC
2662 }
2663
2664 /* Read in all local syms for all input bfds, and create hash entries
2665 for export stubs if we are building a multi-subspace shared lib.
2666 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2667
2668 static int
2669 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2670 {
2671 unsigned int bfd_indx;
2672 Elf_Internal_Sym *local_syms, **all_local_syms;
2673 int stub_changed = 0;
2674 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2675
2676 if (htab == NULL)
2677 return -1;
2678
2679 /* We want to read in symbol extension records only once. To do this
2680 we need to read in the local symbols in parallel and save them for
2681 later use; so hold pointers to the local symbols in an array. */
2682 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2683 all_local_syms = bfd_zmalloc (amt);
2684 htab->all_local_syms = all_local_syms;
2685 if (all_local_syms == NULL)
2686 return -1;
2687
2688 /* Walk over all the input BFDs, swapping in local symbols.
2689 If we are creating a shared library, create hash entries for the
2690 export stubs. */
2691 for (bfd_indx = 0;
2692 input_bfd != NULL;
2693 input_bfd = input_bfd->link_next, bfd_indx++)
2694 {
2695 Elf_Internal_Shdr *symtab_hdr;
2696
2697 /* We'll need the symbol table in a second. */
2698 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2699 if (symtab_hdr->sh_info == 0)
2700 continue;
2701
2702 /* We need an array of the local symbols attached to the input bfd. */
2703 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2704 if (local_syms == NULL)
2705 {
2706 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2707 symtab_hdr->sh_info, 0,
2708 NULL, NULL, NULL);
2709 /* Cache them for elf_link_input_bfd. */
2710 symtab_hdr->contents = (unsigned char *) local_syms;
2711 }
2712 if (local_syms == NULL)
2713 return -1;
2714
2715 all_local_syms[bfd_indx] = local_syms;
2716
2717 if (info->shared && htab->multi_subspace)
2718 {
2719 struct elf_link_hash_entry **eh_syms;
2720 struct elf_link_hash_entry **eh_symend;
2721 unsigned int symcount;
2722
2723 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2724 - symtab_hdr->sh_info);
2725 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2726 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2727
2728 /* Look through the global syms for functions; We need to
2729 build export stubs for all globally visible functions. */
2730 for (; eh_syms < eh_symend; eh_syms++)
2731 {
2732 struct elf32_hppa_link_hash_entry *hh;
2733
2734 hh = hppa_elf_hash_entry (*eh_syms);
2735
2736 while (hh->eh.root.type == bfd_link_hash_indirect
2737 || hh->eh.root.type == bfd_link_hash_warning)
2738 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2739
2740 /* At this point in the link, undefined syms have been
2741 resolved, so we need to check that the symbol was
2742 defined in this BFD. */
2743 if ((hh->eh.root.type == bfd_link_hash_defined
2744 || hh->eh.root.type == bfd_link_hash_defweak)
2745 && hh->eh.type == STT_FUNC
2746 && hh->eh.root.u.def.section->output_section != NULL
2747 && (hh->eh.root.u.def.section->output_section->owner
2748 == output_bfd)
2749 && hh->eh.root.u.def.section->owner == input_bfd
2750 && hh->eh.def_regular
2751 && !hh->eh.forced_local
2752 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2753 {
2754 asection *sec;
2755 const char *stub_name;
2756 struct elf32_hppa_stub_hash_entry *hsh;
2757
2758 sec = hh->eh.root.u.def.section;
2759 stub_name = hh_name (hh);
2760 hsh = hppa_stub_hash_lookup (&htab->bstab,
2761 stub_name,
2762 FALSE, FALSE);
2763 if (hsh == NULL)
2764 {
2765 hsh = hppa_add_stub (stub_name, sec, htab);
2766 if (!hsh)
2767 return -1;
2768
2769 hsh->target_value = hh->eh.root.u.def.value;
2770 hsh->target_section = hh->eh.root.u.def.section;
2771 hsh->stub_type = hppa_stub_export;
2772 hsh->hh = hh;
2773 stub_changed = 1;
2774 }
2775 else
2776 {
2777 (*_bfd_error_handler) (_("%B: duplicate export stub %s"),
2778 input_bfd,
2779 stub_name);
2780 }
2781 }
2782 }
2783 }
2784 }
2785
2786 return stub_changed;
2787 }
2788
2789 /* Determine and set the size of the stub section for a final link.
2790
2791 The basic idea here is to examine all the relocations looking for
2792 PC-relative calls to a target that is unreachable with a "bl"
2793 instruction. */
2794
2795 bfd_boolean
2796 elf32_hppa_size_stubs
2797 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2798 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2799 asection * (*add_stub_section) (const char *, asection *),
2800 void (*layout_sections_again) (void))
2801 {
2802 bfd_size_type stub_group_size;
2803 bfd_boolean stubs_always_before_branch;
2804 bfd_boolean stub_changed;
2805 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2806
2807 if (htab == NULL)
2808 return FALSE;
2809
2810 /* Stash our params away. */
2811 htab->stub_bfd = stub_bfd;
2812 htab->multi_subspace = multi_subspace;
2813 htab->add_stub_section = add_stub_section;
2814 htab->layout_sections_again = layout_sections_again;
2815 stubs_always_before_branch = group_size < 0;
2816 if (group_size < 0)
2817 stub_group_size = -group_size;
2818 else
2819 stub_group_size = group_size;
2820 if (stub_group_size == 1)
2821 {
2822 /* Default values. */
2823 if (stubs_always_before_branch)
2824 {
2825 stub_group_size = 7680000;
2826 if (htab->has_17bit_branch || htab->multi_subspace)
2827 stub_group_size = 240000;
2828 if (htab->has_12bit_branch)
2829 stub_group_size = 7500;
2830 }
2831 else
2832 {
2833 stub_group_size = 6971392;
2834 if (htab->has_17bit_branch || htab->multi_subspace)
2835 stub_group_size = 217856;
2836 if (htab->has_12bit_branch)
2837 stub_group_size = 6808;
2838 }
2839 }
2840
2841 group_sections (htab, stub_group_size, stubs_always_before_branch);
2842
2843 switch (get_local_syms (output_bfd, info->input_bfds, info))
2844 {
2845 default:
2846 if (htab->all_local_syms)
2847 goto error_ret_free_local;
2848 return FALSE;
2849
2850 case 0:
2851 stub_changed = FALSE;
2852 break;
2853
2854 case 1:
2855 stub_changed = TRUE;
2856 break;
2857 }
2858
2859 while (1)
2860 {
2861 bfd *input_bfd;
2862 unsigned int bfd_indx;
2863 asection *stub_sec;
2864
2865 for (input_bfd = info->input_bfds, bfd_indx = 0;
2866 input_bfd != NULL;
2867 input_bfd = input_bfd->link_next, bfd_indx++)
2868 {
2869 Elf_Internal_Shdr *symtab_hdr;
2870 asection *section;
2871 Elf_Internal_Sym *local_syms;
2872
2873 /* We'll need the symbol table in a second. */
2874 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2875 if (symtab_hdr->sh_info == 0)
2876 continue;
2877
2878 local_syms = htab->all_local_syms[bfd_indx];
2879
2880 /* Walk over each section attached to the input bfd. */
2881 for (section = input_bfd->sections;
2882 section != NULL;
2883 section = section->next)
2884 {
2885 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2886
2887 /* If there aren't any relocs, then there's nothing more
2888 to do. */
2889 if ((section->flags & SEC_RELOC) == 0
2890 || section->reloc_count == 0)
2891 continue;
2892
2893 /* If this section is a link-once section that will be
2894 discarded, then don't create any stubs. */
2895 if (section->output_section == NULL
2896 || section->output_section->owner != output_bfd)
2897 continue;
2898
2899 /* Get the relocs. */
2900 internal_relocs
2901 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2902 info->keep_memory);
2903 if (internal_relocs == NULL)
2904 goto error_ret_free_local;
2905
2906 /* Now examine each relocation. */
2907 irela = internal_relocs;
2908 irelaend = irela + section->reloc_count;
2909 for (; irela < irelaend; irela++)
2910 {
2911 unsigned int r_type, r_indx;
2912 enum elf32_hppa_stub_type stub_type;
2913 struct elf32_hppa_stub_hash_entry *hsh;
2914 asection *sym_sec;
2915 bfd_vma sym_value;
2916 bfd_vma destination;
2917 struct elf32_hppa_link_hash_entry *hh;
2918 char *stub_name;
2919 const asection *id_sec;
2920
2921 r_type = ELF32_R_TYPE (irela->r_info);
2922 r_indx = ELF32_R_SYM (irela->r_info);
2923
2924 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2925 {
2926 bfd_set_error (bfd_error_bad_value);
2927 error_ret_free_internal:
2928 if (elf_section_data (section)->relocs == NULL)
2929 free (internal_relocs);
2930 goto error_ret_free_local;
2931 }
2932
2933 /* Only look for stubs on call instructions. */
2934 if (r_type != (unsigned int) R_PARISC_PCREL12F
2935 && r_type != (unsigned int) R_PARISC_PCREL17F
2936 && r_type != (unsigned int) R_PARISC_PCREL22F)
2937 continue;
2938
2939 /* Now determine the call target, its name, value,
2940 section. */
2941 sym_sec = NULL;
2942 sym_value = 0;
2943 destination = 0;
2944 hh = NULL;
2945 if (r_indx < symtab_hdr->sh_info)
2946 {
2947 /* It's a local symbol. */
2948 Elf_Internal_Sym *sym;
2949 Elf_Internal_Shdr *hdr;
2950 unsigned int shndx;
2951
2952 sym = local_syms + r_indx;
2953 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2954 sym_value = sym->st_value;
2955 shndx = sym->st_shndx;
2956 if (shndx < elf_numsections (input_bfd))
2957 {
2958 hdr = elf_elfsections (input_bfd)[shndx];
2959 sym_sec = hdr->bfd_section;
2960 destination = (sym_value + irela->r_addend
2961 + sym_sec->output_offset
2962 + sym_sec->output_section->vma);
2963 }
2964 }
2965 else
2966 {
2967 /* It's an external symbol. */
2968 int e_indx;
2969
2970 e_indx = r_indx - symtab_hdr->sh_info;
2971 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2972
2973 while (hh->eh.root.type == bfd_link_hash_indirect
2974 || hh->eh.root.type == bfd_link_hash_warning)
2975 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2976
2977 if (hh->eh.root.type == bfd_link_hash_defined
2978 || hh->eh.root.type == bfd_link_hash_defweak)
2979 {
2980 sym_sec = hh->eh.root.u.def.section;
2981 sym_value = hh->eh.root.u.def.value;
2982 if (sym_sec->output_section != NULL)
2983 destination = (sym_value + irela->r_addend
2984 + sym_sec->output_offset
2985 + sym_sec->output_section->vma);
2986 }
2987 else if (hh->eh.root.type == bfd_link_hash_undefweak)
2988 {
2989 if (! info->shared)
2990 continue;
2991 }
2992 else if (hh->eh.root.type == bfd_link_hash_undefined)
2993 {
2994 if (! (info->unresolved_syms_in_objects == RM_IGNORE
2995 && (ELF_ST_VISIBILITY (hh->eh.other)
2996 == STV_DEFAULT)
2997 && hh->eh.type != STT_PARISC_MILLI))
2998 continue;
2999 }
3000 else
3001 {
3002 bfd_set_error (bfd_error_bad_value);
3003 goto error_ret_free_internal;
3004 }
3005 }
3006
3007 /* Determine what (if any) linker stub is needed. */
3008 stub_type = hppa_type_of_stub (section, irela, hh,
3009 destination, info);
3010 if (stub_type == hppa_stub_none)
3011 continue;
3012
3013 /* Support for grouping stub sections. */
3014 id_sec = htab->stub_group[section->id].link_sec;
3015
3016 /* Get the name of this stub. */
3017 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
3018 if (!stub_name)
3019 goto error_ret_free_internal;
3020
3021 hsh = hppa_stub_hash_lookup (&htab->bstab,
3022 stub_name,
3023 FALSE, FALSE);
3024 if (hsh != NULL)
3025 {
3026 /* The proper stub has already been created. */
3027 free (stub_name);
3028 continue;
3029 }
3030
3031 hsh = hppa_add_stub (stub_name, section, htab);
3032 if (hsh == NULL)
3033 {
3034 free (stub_name);
3035 goto error_ret_free_internal;
3036 }
3037
3038 hsh->target_value = sym_value;
3039 hsh->target_section = sym_sec;
3040 hsh->stub_type = stub_type;
3041 if (info->shared)
3042 {
3043 if (stub_type == hppa_stub_import)
3044 hsh->stub_type = hppa_stub_import_shared;
3045 else if (stub_type == hppa_stub_long_branch)
3046 hsh->stub_type = hppa_stub_long_branch_shared;
3047 }
3048 hsh->hh = hh;
3049 stub_changed = TRUE;
3050 }
3051
3052 /* We're done with the internal relocs, free them. */
3053 if (elf_section_data (section)->relocs == NULL)
3054 free (internal_relocs);
3055 }
3056 }
3057
3058 if (!stub_changed)
3059 break;
3060
3061 /* OK, we've added some stubs. Find out the new size of the
3062 stub sections. */
3063 for (stub_sec = htab->stub_bfd->sections;
3064 stub_sec != NULL;
3065 stub_sec = stub_sec->next)
3066 stub_sec->size = 0;
3067
3068 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
3069
3070 /* Ask the linker to do its stuff. */
3071 (*htab->layout_sections_again) ();
3072 stub_changed = FALSE;
3073 }
3074
3075 free (htab->all_local_syms);
3076 return TRUE;
3077
3078 error_ret_free_local:
3079 free (htab->all_local_syms);
3080 return FALSE;
3081 }
3082
3083 /* For a final link, this function is called after we have sized the
3084 stubs to provide a value for __gp. */
3085
3086 bfd_boolean
3087 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
3088 {
3089 struct bfd_link_hash_entry *h;
3090 asection *sec = NULL;
3091 bfd_vma gp_val = 0;
3092 struct elf32_hppa_link_hash_table *htab;
3093
3094 htab = hppa_link_hash_table (info);
3095 if (htab == NULL)
3096 return FALSE;
3097
3098 h = bfd_link_hash_lookup (&htab->etab.root, "$global$", FALSE, FALSE, FALSE);
3099
3100 if (h != NULL
3101 && (h->type == bfd_link_hash_defined
3102 || h->type == bfd_link_hash_defweak))
3103 {
3104 gp_val = h->u.def.value;
3105 sec = h->u.def.section;
3106 }
3107 else
3108 {
3109 asection *splt = bfd_get_section_by_name (abfd, ".plt");
3110 asection *sgot = bfd_get_section_by_name (abfd, ".got");
3111
3112 /* Choose to point our LTP at, in this order, one of .plt, .got,
3113 or .data, if these sections exist. In the case of choosing
3114 .plt try to make the LTP ideal for addressing anywhere in the
3115 .plt or .got with a 14 bit signed offset. Typically, the end
3116 of the .plt is the start of the .got, so choose .plt + 0x2000
3117 if either the .plt or .got is larger than 0x2000. If both
3118 the .plt and .got are smaller than 0x2000, choose the end of
3119 the .plt section. */
3120 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3121 ? NULL : splt;
3122 if (sec != NULL)
3123 {
3124 gp_val = sec->size;
3125 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3126 {
3127 gp_val = 0x2000;
3128 }
3129 }
3130 else
3131 {
3132 sec = sgot;
3133 if (sec != NULL)
3134 {
3135 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3136 {
3137 /* We know we don't have a .plt. If .got is large,
3138 offset our LTP. */
3139 if (sec->size > 0x2000)
3140 gp_val = 0x2000;
3141 }
3142 }
3143 else
3144 {
3145 /* No .plt or .got. Who cares what the LTP is? */
3146 sec = bfd_get_section_by_name (abfd, ".data");
3147 }
3148 }
3149
3150 if (h != NULL)
3151 {
3152 h->type = bfd_link_hash_defined;
3153 h->u.def.value = gp_val;
3154 if (sec != NULL)
3155 h->u.def.section = sec;
3156 else
3157 h->u.def.section = bfd_abs_section_ptr;
3158 }
3159 }
3160
3161 if (sec != NULL && sec->output_section != NULL)
3162 gp_val += sec->output_section->vma + sec->output_offset;
3163
3164 elf_gp (abfd) = gp_val;
3165 return TRUE;
3166 }
3167
3168 /* Build all the stubs associated with the current output file. The
3169 stubs are kept in a hash table attached to the main linker hash
3170 table. We also set up the .plt entries for statically linked PIC
3171 functions here. This function is called via hppaelf_finish in the
3172 linker. */
3173
3174 bfd_boolean
3175 elf32_hppa_build_stubs (struct bfd_link_info *info)
3176 {
3177 asection *stub_sec;
3178 struct bfd_hash_table *table;
3179 struct elf32_hppa_link_hash_table *htab;
3180
3181 htab = hppa_link_hash_table (info);
3182 if (htab == NULL)
3183 return FALSE;
3184
3185 for (stub_sec = htab->stub_bfd->sections;
3186 stub_sec != NULL;
3187 stub_sec = stub_sec->next)
3188 {
3189 bfd_size_type size;
3190
3191 /* Allocate memory to hold the linker stubs. */
3192 size = stub_sec->size;
3193 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3194 if (stub_sec->contents == NULL && size != 0)
3195 return FALSE;
3196 stub_sec->size = 0;
3197 }
3198
3199 /* Build the stubs as directed by the stub hash table. */
3200 table = &htab->bstab;
3201 bfd_hash_traverse (table, hppa_build_one_stub, info);
3202
3203 return TRUE;
3204 }
3205
3206 /* Return the base vma address which should be subtracted from the real
3207 address when resolving a dtpoff relocation.
3208 This is PT_TLS segment p_vaddr. */
3209
3210 static bfd_vma
3211 dtpoff_base (struct bfd_link_info *info)
3212 {
3213 /* If tls_sec is NULL, we should have signalled an error already. */
3214 if (elf_hash_table (info)->tls_sec == NULL)
3215 return 0;
3216 return elf_hash_table (info)->tls_sec->vma;
3217 }
3218
3219 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3220
3221 static bfd_vma
3222 tpoff (struct bfd_link_info *info, bfd_vma address)
3223 {
3224 struct elf_link_hash_table *htab = elf_hash_table (info);
3225
3226 /* If tls_sec is NULL, we should have signalled an error already. */
3227 if (htab->tls_sec == NULL)
3228 return 0;
3229 /* hppa TLS ABI is variant I and static TLS block start just after
3230 tcbhead structure which has 2 pointer fields. */
3231 return (address - htab->tls_sec->vma
3232 + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3233 }
3234
3235 /* Perform a final link. */
3236
3237 static bfd_boolean
3238 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3239 {
3240 /* Invoke the regular ELF linker to do all the work. */
3241 if (!bfd_elf_final_link (abfd, info))
3242 return FALSE;
3243
3244 /* If we're producing a final executable, sort the contents of the
3245 unwind section. */
3246 if (info->relocatable)
3247 return TRUE;
3248
3249 return elf_hppa_sort_unwind (abfd);
3250 }
3251
3252 /* Record the lowest address for the data and text segments. */
3253
3254 static void
3255 hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
3256 {
3257 struct elf32_hppa_link_hash_table *htab;
3258
3259 htab = (struct elf32_hppa_link_hash_table*) data;
3260 if (htab == NULL)
3261 return;
3262
3263 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3264 {
3265 bfd_vma value;
3266 Elf_Internal_Phdr *p;
3267
3268 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
3269 BFD_ASSERT (p != NULL);
3270 value = p->p_vaddr;
3271
3272 if ((section->flags & SEC_READONLY) != 0)
3273 {
3274 if (value < htab->text_segment_base)
3275 htab->text_segment_base = value;
3276 }
3277 else
3278 {
3279 if (value < htab->data_segment_base)
3280 htab->data_segment_base = value;
3281 }
3282 }
3283 }
3284
3285 /* Perform a relocation as part of a final link. */
3286
3287 static bfd_reloc_status_type
3288 final_link_relocate (asection *input_section,
3289 bfd_byte *contents,
3290 const Elf_Internal_Rela *rela,
3291 bfd_vma value,
3292 struct elf32_hppa_link_hash_table *htab,
3293 asection *sym_sec,
3294 struct elf32_hppa_link_hash_entry *hh,
3295 struct bfd_link_info *info)
3296 {
3297 int insn;
3298 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3299 unsigned int orig_r_type = r_type;
3300 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3301 int r_format = howto->bitsize;
3302 enum hppa_reloc_field_selector_type_alt r_field;
3303 bfd *input_bfd = input_section->owner;
3304 bfd_vma offset = rela->r_offset;
3305 bfd_vma max_branch_offset = 0;
3306 bfd_byte *hit_data = contents + offset;
3307 bfd_signed_vma addend = rela->r_addend;
3308 bfd_vma location;
3309 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3310 int val;
3311
3312 if (r_type == R_PARISC_NONE)
3313 return bfd_reloc_ok;
3314
3315 insn = bfd_get_32 (input_bfd, hit_data);
3316
3317 /* Find out where we are and where we're going. */
3318 location = (offset +
3319 input_section->output_offset +
3320 input_section->output_section->vma);
3321
3322 /* If we are not building a shared library, convert DLTIND relocs to
3323 DPREL relocs. */
3324 if (!info->shared)
3325 {
3326 switch (r_type)
3327 {
3328 case R_PARISC_DLTIND21L:
3329 case R_PARISC_TLS_GD21L:
3330 case R_PARISC_TLS_LDM21L:
3331 case R_PARISC_TLS_IE21L:
3332 r_type = R_PARISC_DPREL21L;
3333 break;
3334
3335 case R_PARISC_DLTIND14R:
3336 case R_PARISC_TLS_GD14R:
3337 case R_PARISC_TLS_LDM14R:
3338 case R_PARISC_TLS_IE14R:
3339 r_type = R_PARISC_DPREL14R;
3340 break;
3341
3342 case R_PARISC_DLTIND14F:
3343 r_type = R_PARISC_DPREL14F;
3344 break;
3345 }
3346 }
3347
3348 switch (r_type)
3349 {
3350 case R_PARISC_PCREL12F:
3351 case R_PARISC_PCREL17F:
3352 case R_PARISC_PCREL22F:
3353 /* If this call should go via the plt, find the import stub in
3354 the stub hash. */
3355 if (sym_sec == NULL
3356 || sym_sec->output_section == NULL
3357 || (hh != NULL
3358 && hh->eh.plt.offset != (bfd_vma) -1
3359 && hh->eh.dynindx != -1
3360 && !hh->plabel
3361 && (info->shared
3362 || !hh->eh.def_regular
3363 || hh->eh.root.type == bfd_link_hash_defweak)))
3364 {
3365 hsh = hppa_get_stub_entry (input_section, sym_sec,
3366 hh, rela, htab);
3367 if (hsh != NULL)
3368 {
3369 value = (hsh->stub_offset
3370 + hsh->stub_sec->output_offset
3371 + hsh->stub_sec->output_section->vma);
3372 addend = 0;
3373 }
3374 else if (sym_sec == NULL && hh != NULL
3375 && hh->eh.root.type == bfd_link_hash_undefweak)
3376 {
3377 /* It's OK if undefined weak. Calls to undefined weak
3378 symbols behave as if the "called" function
3379 immediately returns. We can thus call to a weak
3380 function without first checking whether the function
3381 is defined. */
3382 value = location;
3383 addend = 8;
3384 }
3385 else
3386 return bfd_reloc_undefined;
3387 }
3388 /* Fall thru. */
3389
3390 case R_PARISC_PCREL21L:
3391 case R_PARISC_PCREL17C:
3392 case R_PARISC_PCREL17R:
3393 case R_PARISC_PCREL14R:
3394 case R_PARISC_PCREL14F:
3395 case R_PARISC_PCREL32:
3396 /* Make it a pc relative offset. */
3397 value -= location;
3398 addend -= 8;
3399 break;
3400
3401 case R_PARISC_DPREL21L:
3402 case R_PARISC_DPREL14R:
3403 case R_PARISC_DPREL14F:
3404 /* Convert instructions that use the linkage table pointer (r19) to
3405 instructions that use the global data pointer (dp). This is the
3406 most efficient way of using PIC code in an incomplete executable,
3407 but the user must follow the standard runtime conventions for
3408 accessing data for this to work. */
3409 if (orig_r_type != r_type)
3410 {
3411 if (r_type == R_PARISC_DPREL21L)
3412 {
3413 /* GCC sometimes uses a register other than r19 for the
3414 operation, so we must convert any addil instruction
3415 that uses this relocation. */
3416 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3417 insn = ADDIL_DP;
3418 else
3419 /* We must have a ldil instruction. It's too hard to find
3420 and convert the associated add instruction, so issue an
3421 error. */
3422 (*_bfd_error_handler)
3423 (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3424 input_bfd,
3425 input_section,
3426 (long) offset,
3427 howto->name,
3428 insn);
3429 }
3430 else if (r_type == R_PARISC_DPREL14F)
3431 {
3432 /* This must be a format 1 load/store. Change the base
3433 register to dp. */
3434 insn = (insn & 0xfc1ffff) | (27 << 21);
3435 }
3436 }
3437
3438 /* For all the DP relative relocations, we need to examine the symbol's
3439 section. If it has no section or if it's a code section, then
3440 "data pointer relative" makes no sense. In that case we don't
3441 adjust the "value", and for 21 bit addil instructions, we change the
3442 source addend register from %dp to %r0. This situation commonly
3443 arises for undefined weak symbols and when a variable's "constness"
3444 is declared differently from the way the variable is defined. For
3445 instance: "extern int foo" with foo defined as "const int foo". */
3446 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3447 {
3448 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3449 == (((int) OP_ADDIL << 26) | (27 << 21)))
3450 {
3451 insn &= ~ (0x1f << 21);
3452 }
3453 /* Now try to make things easy for the dynamic linker. */
3454
3455 break;
3456 }
3457 /* Fall thru. */
3458
3459 case R_PARISC_DLTIND21L:
3460 case R_PARISC_DLTIND14R:
3461 case R_PARISC_DLTIND14F:
3462 case R_PARISC_TLS_GD21L:
3463 case R_PARISC_TLS_LDM21L:
3464 case R_PARISC_TLS_IE21L:
3465 case R_PARISC_TLS_GD14R:
3466 case R_PARISC_TLS_LDM14R:
3467 case R_PARISC_TLS_IE14R:
3468 value -= elf_gp (input_section->output_section->owner);
3469 break;
3470
3471 case R_PARISC_SEGREL32:
3472 if ((sym_sec->flags & SEC_CODE) != 0)
3473 value -= htab->text_segment_base;
3474 else
3475 value -= htab->data_segment_base;
3476 break;
3477
3478 default:
3479 break;
3480 }
3481
3482 switch (r_type)
3483 {
3484 case R_PARISC_DIR32:
3485 case R_PARISC_DIR14F:
3486 case R_PARISC_DIR17F:
3487 case R_PARISC_PCREL17C:
3488 case R_PARISC_PCREL14F:
3489 case R_PARISC_PCREL32:
3490 case R_PARISC_DPREL14F:
3491 case R_PARISC_PLABEL32:
3492 case R_PARISC_DLTIND14F:
3493 case R_PARISC_SEGBASE:
3494 case R_PARISC_SEGREL32:
3495 case R_PARISC_TLS_DTPMOD32:
3496 case R_PARISC_TLS_DTPOFF32:
3497 case R_PARISC_TLS_TPREL32:
3498 r_field = e_fsel;
3499 break;
3500
3501 case R_PARISC_DLTIND21L:
3502 case R_PARISC_PCREL21L:
3503 case R_PARISC_PLABEL21L:
3504 r_field = e_lsel;
3505 break;
3506
3507 case R_PARISC_DIR21L:
3508 case R_PARISC_DPREL21L:
3509 case R_PARISC_TLS_GD21L:
3510 case R_PARISC_TLS_LDM21L:
3511 case R_PARISC_TLS_LDO21L:
3512 case R_PARISC_TLS_IE21L:
3513 case R_PARISC_TLS_LE21L:
3514 r_field = e_lrsel;
3515 break;
3516
3517 case R_PARISC_PCREL17R:
3518 case R_PARISC_PCREL14R:
3519 case R_PARISC_PLABEL14R:
3520 case R_PARISC_DLTIND14R:
3521 r_field = e_rsel;
3522 break;
3523
3524 case R_PARISC_DIR17R:
3525 case R_PARISC_DIR14R:
3526 case R_PARISC_DPREL14R:
3527 case R_PARISC_TLS_GD14R:
3528 case R_PARISC_TLS_LDM14R:
3529 case R_PARISC_TLS_LDO14R:
3530 case R_PARISC_TLS_IE14R:
3531 case R_PARISC_TLS_LE14R:
3532 r_field = e_rrsel;
3533 break;
3534
3535 case R_PARISC_PCREL12F:
3536 case R_PARISC_PCREL17F:
3537 case R_PARISC_PCREL22F:
3538 r_field = e_fsel;
3539
3540 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3541 {
3542 max_branch_offset = (1 << (17-1)) << 2;
3543 }
3544 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3545 {
3546 max_branch_offset = (1 << (12-1)) << 2;
3547 }
3548 else
3549 {
3550 max_branch_offset = (1 << (22-1)) << 2;
3551 }
3552
3553 /* sym_sec is NULL on undefined weak syms or when shared on
3554 undefined syms. We've already checked for a stub for the
3555 shared undefined case. */
3556 if (sym_sec == NULL)
3557 break;
3558
3559 /* If the branch is out of reach, then redirect the
3560 call to the local stub for this function. */
3561 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3562 {
3563 hsh = hppa_get_stub_entry (input_section, sym_sec,
3564 hh, rela, htab);
3565 if (hsh == NULL)
3566 return bfd_reloc_undefined;
3567
3568 /* Munge up the value and addend so that we call the stub
3569 rather than the procedure directly. */
3570 value = (hsh->stub_offset
3571 + hsh->stub_sec->output_offset
3572 + hsh->stub_sec->output_section->vma
3573 - location);
3574 addend = -8;
3575 }
3576 break;
3577
3578 /* Something we don't know how to handle. */
3579 default:
3580 return bfd_reloc_notsupported;
3581 }
3582
3583 /* Make sure we can reach the stub. */
3584 if (max_branch_offset != 0
3585 && value + addend + max_branch_offset >= 2*max_branch_offset)
3586 {
3587 (*_bfd_error_handler)
3588 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3589 input_bfd,
3590 input_section,
3591 (long) offset,
3592 hsh->bh_root.string);
3593 bfd_set_error (bfd_error_bad_value);
3594 return bfd_reloc_notsupported;
3595 }
3596
3597 val = hppa_field_adjust (value, addend, r_field);
3598
3599 switch (r_type)
3600 {
3601 case R_PARISC_PCREL12F:
3602 case R_PARISC_PCREL17C:
3603 case R_PARISC_PCREL17F:
3604 case R_PARISC_PCREL17R:
3605 case R_PARISC_PCREL22F:
3606 case R_PARISC_DIR17F:
3607 case R_PARISC_DIR17R:
3608 /* This is a branch. Divide the offset by four.
3609 Note that we need to decide whether it's a branch or
3610 otherwise by inspecting the reloc. Inspecting insn won't
3611 work as insn might be from a .word directive. */
3612 val >>= 2;
3613 break;
3614
3615 default:
3616 break;
3617 }
3618
3619 insn = hppa_rebuild_insn (insn, val, r_format);
3620
3621 /* Update the instruction word. */
3622 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3623 return bfd_reloc_ok;
3624 }
3625
3626 /* Relocate an HPPA ELF section. */
3627
3628 static bfd_boolean
3629 elf32_hppa_relocate_section (bfd *output_bfd,
3630 struct bfd_link_info *info,
3631 bfd *input_bfd,
3632 asection *input_section,
3633 bfd_byte *contents,
3634 Elf_Internal_Rela *relocs,
3635 Elf_Internal_Sym *local_syms,
3636 asection **local_sections)
3637 {
3638 bfd_vma *local_got_offsets;
3639 struct elf32_hppa_link_hash_table *htab;
3640 Elf_Internal_Shdr *symtab_hdr;
3641 Elf_Internal_Rela *rela;
3642 Elf_Internal_Rela *relend;
3643
3644 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3645
3646 htab = hppa_link_hash_table (info);
3647 if (htab == NULL)
3648 return FALSE;
3649
3650 local_got_offsets = elf_local_got_offsets (input_bfd);
3651
3652 rela = relocs;
3653 relend = relocs + input_section->reloc_count;
3654 for (; rela < relend; rela++)
3655 {
3656 unsigned int r_type;
3657 reloc_howto_type *howto;
3658 unsigned int r_symndx;
3659 struct elf32_hppa_link_hash_entry *hh;
3660 Elf_Internal_Sym *sym;
3661 asection *sym_sec;
3662 bfd_vma relocation;
3663 bfd_reloc_status_type rstatus;
3664 const char *sym_name;
3665 bfd_boolean plabel;
3666 bfd_boolean warned_undef;
3667
3668 r_type = ELF32_R_TYPE (rela->r_info);
3669 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3670 {
3671 bfd_set_error (bfd_error_bad_value);
3672 return FALSE;
3673 }
3674 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3675 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3676 continue;
3677
3678 r_symndx = ELF32_R_SYM (rela->r_info);
3679 hh = NULL;
3680 sym = NULL;
3681 sym_sec = NULL;
3682 warned_undef = FALSE;
3683 if (r_symndx < symtab_hdr->sh_info)
3684 {
3685 /* This is a local symbol, h defaults to NULL. */
3686 sym = local_syms + r_symndx;
3687 sym_sec = local_sections[r_symndx];
3688 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3689 }
3690 else
3691 {
3692 struct elf_link_hash_entry *eh;
3693 bfd_boolean unresolved_reloc;
3694 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3695
3696 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3697 r_symndx, symtab_hdr, sym_hashes,
3698 eh, sym_sec, relocation,
3699 unresolved_reloc, warned_undef);
3700
3701 if (!info->relocatable
3702 && relocation == 0
3703 && eh->root.type != bfd_link_hash_defined
3704 && eh->root.type != bfd_link_hash_defweak
3705 && eh->root.type != bfd_link_hash_undefweak)
3706 {
3707 if (info->unresolved_syms_in_objects == RM_IGNORE
3708 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3709 && eh->type == STT_PARISC_MILLI)
3710 {
3711 if (! info->callbacks->undefined_symbol
3712 (info, eh_name (eh), input_bfd,
3713 input_section, rela->r_offset, FALSE))
3714 return FALSE;
3715 warned_undef = TRUE;
3716 }
3717 }
3718 hh = hppa_elf_hash_entry (eh);
3719 }
3720
3721 if (sym_sec != NULL && discarded_section (sym_sec))
3722 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3723 rela, 1, relend,
3724 elf_hppa_howto_table + r_type, 0,
3725 contents);
3726
3727 if (info->relocatable)
3728 continue;
3729
3730 /* Do any required modifications to the relocation value, and
3731 determine what types of dynamic info we need to output, if
3732 any. */
3733 plabel = 0;
3734 switch (r_type)
3735 {
3736 case R_PARISC_DLTIND14F:
3737 case R_PARISC_DLTIND14R:
3738 case R_PARISC_DLTIND21L:
3739 {
3740 bfd_vma off;
3741 bfd_boolean do_got = 0;
3742
3743 /* Relocation is to the entry for this symbol in the
3744 global offset table. */
3745 if (hh != NULL)
3746 {
3747 bfd_boolean dyn;
3748
3749 off = hh->eh.got.offset;
3750 dyn = htab->etab.dynamic_sections_created;
3751 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
3752 &hh->eh))
3753 {
3754 /* If we aren't going to call finish_dynamic_symbol,
3755 then we need to handle initialisation of the .got
3756 entry and create needed relocs here. Since the
3757 offset must always be a multiple of 4, we use the
3758 least significant bit to record whether we have
3759 initialised it already. */
3760 if ((off & 1) != 0)
3761 off &= ~1;
3762 else
3763 {
3764 hh->eh.got.offset |= 1;
3765 do_got = 1;
3766 }
3767 }
3768 }
3769 else
3770 {
3771 /* Local symbol case. */
3772 if (local_got_offsets == NULL)
3773 abort ();
3774
3775 off = local_got_offsets[r_symndx];
3776
3777 /* The offset must always be a multiple of 4. We use
3778 the least significant bit to record whether we have
3779 already generated the necessary reloc. */
3780 if ((off & 1) != 0)
3781 off &= ~1;
3782 else
3783 {
3784 local_got_offsets[r_symndx] |= 1;
3785 do_got = 1;
3786 }
3787 }
3788
3789 if (do_got)
3790 {
3791 if (info->shared)
3792 {
3793 /* Output a dynamic relocation for this GOT entry.
3794 In this case it is relative to the base of the
3795 object because the symbol index is zero. */
3796 Elf_Internal_Rela outrel;
3797 bfd_byte *loc;
3798 asection *sec = htab->srelgot;
3799
3800 outrel.r_offset = (off
3801 + htab->sgot->output_offset
3802 + htab->sgot->output_section->vma);
3803 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3804 outrel.r_addend = relocation;
3805 loc = sec->contents;
3806 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3807 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3808 }
3809 else
3810 bfd_put_32 (output_bfd, relocation,
3811 htab->sgot->contents + off);
3812 }
3813
3814 if (off >= (bfd_vma) -2)
3815 abort ();
3816
3817 /* Add the base of the GOT to the relocation value. */
3818 relocation = (off
3819 + htab->sgot->output_offset
3820 + htab->sgot->output_section->vma);
3821 }
3822 break;
3823
3824 case R_PARISC_SEGREL32:
3825 /* If this is the first SEGREL relocation, then initialize
3826 the segment base values. */
3827 if (htab->text_segment_base == (bfd_vma) -1)
3828 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3829 break;
3830
3831 case R_PARISC_PLABEL14R:
3832 case R_PARISC_PLABEL21L:
3833 case R_PARISC_PLABEL32:
3834 if (htab->etab.dynamic_sections_created)
3835 {
3836 bfd_vma off;
3837 bfd_boolean do_plt = 0;
3838 /* If we have a global symbol with a PLT slot, then
3839 redirect this relocation to it. */
3840 if (hh != NULL)
3841 {
3842 off = hh->eh.plt.offset;
3843 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared,
3844 &hh->eh))
3845 {
3846 /* In a non-shared link, adjust_dynamic_symbols
3847 isn't called for symbols forced local. We
3848 need to write out the plt entry here. */
3849 if ((off & 1) != 0)
3850 off &= ~1;
3851 else
3852 {
3853 hh->eh.plt.offset |= 1;
3854 do_plt = 1;
3855 }
3856 }
3857 }
3858 else
3859 {
3860 bfd_vma *local_plt_offsets;
3861
3862 if (local_got_offsets == NULL)
3863 abort ();
3864
3865 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3866 off = local_plt_offsets[r_symndx];
3867
3868 /* As for the local .got entry case, we use the last
3869 bit to record whether we've already initialised
3870 this local .plt entry. */
3871 if ((off & 1) != 0)
3872 off &= ~1;
3873 else
3874 {
3875 local_plt_offsets[r_symndx] |= 1;
3876 do_plt = 1;
3877 }
3878 }
3879
3880 if (do_plt)
3881 {
3882 if (info->shared)
3883 {
3884 /* Output a dynamic IPLT relocation for this
3885 PLT entry. */
3886 Elf_Internal_Rela outrel;
3887 bfd_byte *loc;
3888 asection *s = htab->srelplt;
3889
3890 outrel.r_offset = (off
3891 + htab->splt->output_offset
3892 + htab->splt->output_section->vma);
3893 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3894 outrel.r_addend = relocation;
3895 loc = s->contents;
3896 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3897 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3898 }
3899 else
3900 {
3901 bfd_put_32 (output_bfd,
3902 relocation,
3903 htab->splt->contents + off);
3904 bfd_put_32 (output_bfd,
3905 elf_gp (htab->splt->output_section->owner),
3906 htab->splt->contents + off + 4);
3907 }
3908 }
3909
3910 if (off >= (bfd_vma) -2)
3911 abort ();
3912
3913 /* PLABELs contain function pointers. Relocation is to
3914 the entry for the function in the .plt. The magic +2
3915 offset signals to $$dyncall that the function pointer
3916 is in the .plt and thus has a gp pointer too.
3917 Exception: Undefined PLABELs should have a value of
3918 zero. */
3919 if (hh == NULL
3920 || (hh->eh.root.type != bfd_link_hash_undefweak
3921 && hh->eh.root.type != bfd_link_hash_undefined))
3922 {
3923 relocation = (off
3924 + htab->splt->output_offset
3925 + htab->splt->output_section->vma
3926 + 2);
3927 }
3928 plabel = 1;
3929 }
3930 /* Fall through and possibly emit a dynamic relocation. */
3931
3932 case R_PARISC_DIR17F:
3933 case R_PARISC_DIR17R:
3934 case R_PARISC_DIR14F:
3935 case R_PARISC_DIR14R:
3936 case R_PARISC_DIR21L:
3937 case R_PARISC_DPREL14F:
3938 case R_PARISC_DPREL14R:
3939 case R_PARISC_DPREL21L:
3940 case R_PARISC_DIR32:
3941 if ((input_section->flags & SEC_ALLOC) == 0)
3942 break;
3943
3944 /* The reloc types handled here and this conditional
3945 expression must match the code in ..check_relocs and
3946 allocate_dynrelocs. ie. We need exactly the same condition
3947 as in ..check_relocs, with some extra conditions (dynindx
3948 test in this case) to cater for relocs removed by
3949 allocate_dynrelocs. If you squint, the non-shared test
3950 here does indeed match the one in ..check_relocs, the
3951 difference being that here we test DEF_DYNAMIC as well as
3952 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3953 which is why we can't use just that test here.
3954 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3955 there all files have not been loaded. */
3956 if ((info->shared
3957 && (hh == NULL
3958 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
3959 || hh->eh.root.type != bfd_link_hash_undefweak)
3960 && (IS_ABSOLUTE_RELOC (r_type)
3961 || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
3962 || (!info->shared
3963 && hh != NULL
3964 && hh->eh.dynindx != -1
3965 && !hh->eh.non_got_ref
3966 && ((ELIMINATE_COPY_RELOCS
3967 && hh->eh.def_dynamic
3968 && !hh->eh.def_regular)
3969 || hh->eh.root.type == bfd_link_hash_undefweak
3970 || hh->eh.root.type == bfd_link_hash_undefined)))
3971 {
3972 Elf_Internal_Rela outrel;
3973 bfd_boolean skip;
3974 asection *sreloc;
3975 bfd_byte *loc;
3976
3977 /* When generating a shared object, these relocations
3978 are copied into the output file to be resolved at run
3979 time. */
3980
3981 outrel.r_addend = rela->r_addend;
3982 outrel.r_offset =
3983 _bfd_elf_section_offset (output_bfd, info, input_section,
3984 rela->r_offset);
3985 skip = (outrel.r_offset == (bfd_vma) -1
3986 || outrel.r_offset == (bfd_vma) -2);
3987 outrel.r_offset += (input_section->output_offset
3988 + input_section->output_section->vma);
3989
3990 if (skip)
3991 {
3992 memset (&outrel, 0, sizeof (outrel));
3993 }
3994 else if (hh != NULL
3995 && hh->eh.dynindx != -1
3996 && (plabel
3997 || !IS_ABSOLUTE_RELOC (r_type)
3998 || !info->shared
3999 || !info->symbolic
4000 || !hh->eh.def_regular))
4001 {
4002 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
4003 }
4004 else /* It's a local symbol, or one marked to become local. */
4005 {
4006 int indx = 0;
4007
4008 /* Add the absolute offset of the symbol. */
4009 outrel.r_addend += relocation;
4010
4011 /* Global plabels need to be processed by the
4012 dynamic linker so that functions have at most one
4013 fptr. For this reason, we need to differentiate
4014 between global and local plabels, which we do by
4015 providing the function symbol for a global plabel
4016 reloc, and no symbol for local plabels. */
4017 if (! plabel
4018 && sym_sec != NULL
4019 && sym_sec->output_section != NULL
4020 && ! bfd_is_abs_section (sym_sec))
4021 {
4022 asection *osec;
4023
4024 osec = sym_sec->output_section;
4025 indx = elf_section_data (osec)->dynindx;
4026 if (indx == 0)
4027 {
4028 osec = htab->etab.text_index_section;
4029 indx = elf_section_data (osec)->dynindx;
4030 }
4031 BFD_ASSERT (indx != 0);
4032
4033 /* We are turning this relocation into one
4034 against a section symbol, so subtract out the
4035 output section's address but not the offset
4036 of the input section in the output section. */
4037 outrel.r_addend -= osec->vma;
4038 }
4039
4040 outrel.r_info = ELF32_R_INFO (indx, r_type);
4041 }
4042 sreloc = elf_section_data (input_section)->sreloc;
4043 if (sreloc == NULL)
4044 abort ();
4045
4046 loc = sreloc->contents;
4047 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
4048 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4049 }
4050 break;
4051
4052 case R_PARISC_TLS_LDM21L:
4053 case R_PARISC_TLS_LDM14R:
4054 {
4055 bfd_vma off;
4056
4057 off = htab->tls_ldm_got.offset;
4058 if (off & 1)
4059 off &= ~1;
4060 else
4061 {
4062 Elf_Internal_Rela outrel;
4063 bfd_byte *loc;
4064
4065 outrel.r_offset = (off
4066 + htab->sgot->output_section->vma
4067 + htab->sgot->output_offset);
4068 outrel.r_addend = 0;
4069 outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
4070 loc = htab->srelgot->contents;
4071 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4072
4073 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4074 htab->tls_ldm_got.offset |= 1;
4075 }
4076
4077 /* Add the base of the GOT to the relocation value. */
4078 relocation = (off
4079 + htab->sgot->output_offset
4080 + htab->sgot->output_section->vma);
4081
4082 break;
4083 }
4084
4085 case R_PARISC_TLS_LDO21L:
4086 case R_PARISC_TLS_LDO14R:
4087 relocation -= dtpoff_base (info);
4088 break;
4089
4090 case R_PARISC_TLS_GD21L:
4091 case R_PARISC_TLS_GD14R:
4092 case R_PARISC_TLS_IE21L:
4093 case R_PARISC_TLS_IE14R:
4094 {
4095 bfd_vma off;
4096 int indx;
4097 char tls_type;
4098
4099 indx = 0;
4100 if (hh != NULL)
4101 {
4102 bfd_boolean dyn;
4103 dyn = htab->etab.dynamic_sections_created;
4104
4105 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &hh->eh)
4106 && (!info->shared
4107 || !SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4108 {
4109 indx = hh->eh.dynindx;
4110 }
4111 off = hh->eh.got.offset;
4112 tls_type = hh->tls_type;
4113 }
4114 else
4115 {
4116 off = local_got_offsets[r_symndx];
4117 tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4118 }
4119
4120 if (tls_type == GOT_UNKNOWN)
4121 abort ();
4122
4123 if ((off & 1) != 0)
4124 off &= ~1;
4125 else
4126 {
4127 bfd_boolean need_relocs = FALSE;
4128 Elf_Internal_Rela outrel;
4129 bfd_byte *loc = NULL;
4130 int cur_off = off;
4131
4132 /* The GOT entries have not been initialized yet. Do it
4133 now, and emit any relocations. If both an IE GOT and a
4134 GD GOT are necessary, we emit the GD first. */
4135
4136 if ((info->shared || indx != 0)
4137 && (hh == NULL
4138 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
4139 || hh->eh.root.type != bfd_link_hash_undefweak))
4140 {
4141 need_relocs = TRUE;
4142 loc = htab->srelgot->contents;
4143 /* FIXME (CAO): Should this be reloc_count++ ? */
4144 loc += htab->srelgot->reloc_count * sizeof (Elf32_External_Rela);
4145 }
4146
4147 if (tls_type & GOT_TLS_GD)
4148 {
4149 if (need_relocs)
4150 {
4151 outrel.r_offset = (cur_off
4152 + htab->sgot->output_section->vma
4153 + htab->sgot->output_offset);
4154 outrel.r_info = ELF32_R_INFO (indx,R_PARISC_TLS_DTPMOD32);
4155 outrel.r_addend = 0;
4156 bfd_put_32 (output_bfd, 0, htab->sgot->contents + cur_off);
4157 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4158 htab->srelgot->reloc_count++;
4159 loc += sizeof (Elf32_External_Rela);
4160
4161 if (indx == 0)
4162 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4163 htab->sgot->contents + cur_off + 4);
4164 else
4165 {
4166 bfd_put_32 (output_bfd, 0,
4167 htab->sgot->contents + cur_off + 4);
4168 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4169 outrel.r_offset += 4;
4170 bfd_elf32_swap_reloca_out (output_bfd, &outrel,loc);
4171 htab->srelgot->reloc_count++;
4172 loc += sizeof (Elf32_External_Rela);
4173 }
4174 }
4175 else
4176 {
4177 /* If we are not emitting relocations for a
4178 general dynamic reference, then we must be in a
4179 static link or an executable link with the
4180 symbol binding locally. Mark it as belonging
4181 to module 1, the executable. */
4182 bfd_put_32 (output_bfd, 1,
4183 htab->sgot->contents + cur_off);
4184 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4185 htab->sgot->contents + cur_off + 4);
4186 }
4187
4188
4189 cur_off += 8;
4190 }
4191
4192 if (tls_type & GOT_TLS_IE)
4193 {
4194 if (need_relocs)
4195 {
4196 outrel.r_offset = (cur_off
4197 + htab->sgot->output_section->vma
4198 + htab->sgot->output_offset);
4199 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_TPREL32);
4200
4201 if (indx == 0)
4202 outrel.r_addend = relocation - dtpoff_base (info);
4203 else
4204 outrel.r_addend = 0;
4205
4206 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4207 htab->srelgot->reloc_count++;
4208 loc += sizeof (Elf32_External_Rela);
4209 }
4210 else
4211 bfd_put_32 (output_bfd, tpoff (info, relocation),
4212 htab->sgot->contents + cur_off);
4213
4214 cur_off += 4;
4215 }
4216
4217 if (hh != NULL)
4218 hh->eh.got.offset |= 1;
4219 else
4220 local_got_offsets[r_symndx] |= 1;
4221 }
4222
4223 if ((tls_type & GOT_TLS_GD)
4224 && r_type != R_PARISC_TLS_GD21L
4225 && r_type != R_PARISC_TLS_GD14R)
4226 off += 2 * GOT_ENTRY_SIZE;
4227
4228 /* Add the base of the GOT to the relocation value. */
4229 relocation = (off
4230 + htab->sgot->output_offset
4231 + htab->sgot->output_section->vma);
4232
4233 break;
4234 }
4235
4236 case R_PARISC_TLS_LE21L:
4237 case R_PARISC_TLS_LE14R:
4238 {
4239 relocation = tpoff (info, relocation);
4240 break;
4241 }
4242 break;
4243
4244 default:
4245 break;
4246 }
4247
4248 rstatus = final_link_relocate (input_section, contents, rela, relocation,
4249 htab, sym_sec, hh, info);
4250
4251 if (rstatus == bfd_reloc_ok)
4252 continue;
4253
4254 if (hh != NULL)
4255 sym_name = hh_name (hh);
4256 else
4257 {
4258 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4259 symtab_hdr->sh_link,
4260 sym->st_name);
4261 if (sym_name == NULL)
4262 return FALSE;
4263 if (*sym_name == '\0')
4264 sym_name = bfd_section_name (input_bfd, sym_sec);
4265 }
4266
4267 howto = elf_hppa_howto_table + r_type;
4268
4269 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4270 {
4271 if (rstatus == bfd_reloc_notsupported || !warned_undef)
4272 {
4273 (*_bfd_error_handler)
4274 (_("%B(%A+0x%lx): cannot handle %s for %s"),
4275 input_bfd,
4276 input_section,
4277 (long) rela->r_offset,
4278 howto->name,
4279 sym_name);
4280 bfd_set_error (bfd_error_bad_value);
4281 return FALSE;
4282 }
4283 }
4284 else
4285 {
4286 if (!((*info->callbacks->reloc_overflow)
4287 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4288 (bfd_vma) 0, input_bfd, input_section, rela->r_offset)))
4289 return FALSE;
4290 }
4291 }
4292
4293 return TRUE;
4294 }
4295
4296 /* Finish up dynamic symbol handling. We set the contents of various
4297 dynamic sections here. */
4298
4299 static bfd_boolean
4300 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4301 struct bfd_link_info *info,
4302 struct elf_link_hash_entry *eh,
4303 Elf_Internal_Sym *sym)
4304 {
4305 struct elf32_hppa_link_hash_table *htab;
4306 Elf_Internal_Rela rela;
4307 bfd_byte *loc;
4308
4309 htab = hppa_link_hash_table (info);
4310 if (htab == NULL)
4311 return FALSE;
4312
4313 if (eh->plt.offset != (bfd_vma) -1)
4314 {
4315 bfd_vma value;
4316
4317 if (eh->plt.offset & 1)
4318 abort ();
4319
4320 /* This symbol has an entry in the procedure linkage table. Set
4321 it up.
4322
4323 The format of a plt entry is
4324 <funcaddr>
4325 <__gp>
4326 */
4327 value = 0;
4328 if (eh->root.type == bfd_link_hash_defined
4329 || eh->root.type == bfd_link_hash_defweak)
4330 {
4331 value = eh->root.u.def.value;
4332 if (eh->root.u.def.section->output_section != NULL)
4333 value += (eh->root.u.def.section->output_offset
4334 + eh->root.u.def.section->output_section->vma);
4335 }
4336
4337 /* Create a dynamic IPLT relocation for this entry. */
4338 rela.r_offset = (eh->plt.offset
4339 + htab->splt->output_offset
4340 + htab->splt->output_section->vma);
4341 if (eh->dynindx != -1)
4342 {
4343 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4344 rela.r_addend = 0;
4345 }
4346 else
4347 {
4348 /* This symbol has been marked to become local, and is
4349 used by a plabel so must be kept in the .plt. */
4350 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4351 rela.r_addend = value;
4352 }
4353
4354 loc = htab->srelplt->contents;
4355 loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4356 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rela, loc);
4357
4358 if (!eh->def_regular)
4359 {
4360 /* Mark the symbol as undefined, rather than as defined in
4361 the .plt section. Leave the value alone. */
4362 sym->st_shndx = SHN_UNDEF;
4363 }
4364 }
4365
4366 if (eh->got.offset != (bfd_vma) -1
4367 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_GD) == 0
4368 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_IE) == 0)
4369 {
4370 /* This symbol has an entry in the global offset table. Set it
4371 up. */
4372
4373 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4374 + htab->sgot->output_offset
4375 + htab->sgot->output_section->vma);
4376
4377 /* If this is a -Bsymbolic link and the symbol is defined
4378 locally or was forced to be local because of a version file,
4379 we just want to emit a RELATIVE reloc. The entry in the
4380 global offset table will already have been initialized in the
4381 relocate_section function. */
4382 if (info->shared
4383 && (info->symbolic || eh->dynindx == -1)
4384 && eh->def_regular)
4385 {
4386 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4387 rela.r_addend = (eh->root.u.def.value
4388 + eh->root.u.def.section->output_offset
4389 + eh->root.u.def.section->output_section->vma);
4390 }
4391 else
4392 {
4393 if ((eh->got.offset & 1) != 0)
4394 abort ();
4395
4396 bfd_put_32 (output_bfd, 0, htab->sgot->contents + (eh->got.offset & ~1));
4397 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4398 rela.r_addend = 0;
4399 }
4400
4401 loc = htab->srelgot->contents;
4402 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4403 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4404 }
4405
4406 if (eh->needs_copy)
4407 {
4408 asection *sec;
4409
4410 /* This symbol needs a copy reloc. Set it up. */
4411
4412 if (! (eh->dynindx != -1
4413 && (eh->root.type == bfd_link_hash_defined
4414 || eh->root.type == bfd_link_hash_defweak)))
4415 abort ();
4416
4417 sec = htab->srelbss;
4418
4419 rela.r_offset = (eh->root.u.def.value
4420 + eh->root.u.def.section->output_offset
4421 + eh->root.u.def.section->output_section->vma);
4422 rela.r_addend = 0;
4423 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4424 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4425 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4426 }
4427
4428 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4429 if (eh == htab->etab.hdynamic || eh == htab->etab.hgot)
4430 {
4431 sym->st_shndx = SHN_ABS;
4432 }
4433
4434 return TRUE;
4435 }
4436
4437 /* Used to decide how to sort relocs in an optimal manner for the
4438 dynamic linker, before writing them out. */
4439
4440 static enum elf_reloc_type_class
4441 elf32_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4442 const asection *rel_sec ATTRIBUTE_UNUSED,
4443 const Elf_Internal_Rela *rela)
4444 {
4445 /* Handle TLS relocs first; we don't want them to be marked
4446 relative by the "if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)"
4447 check below. */
4448 switch ((int) ELF32_R_TYPE (rela->r_info))
4449 {
4450 case R_PARISC_TLS_DTPMOD32:
4451 case R_PARISC_TLS_DTPOFF32:
4452 case R_PARISC_TLS_TPREL32:
4453 return reloc_class_normal;
4454 }
4455
4456 if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)
4457 return reloc_class_relative;
4458
4459 switch ((int) ELF32_R_TYPE (rela->r_info))
4460 {
4461 case R_PARISC_IPLT:
4462 return reloc_class_plt;
4463 case R_PARISC_COPY:
4464 return reloc_class_copy;
4465 default:
4466 return reloc_class_normal;
4467 }
4468 }
4469
4470 /* Finish up the dynamic sections. */
4471
4472 static bfd_boolean
4473 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4474 struct bfd_link_info *info)
4475 {
4476 bfd *dynobj;
4477 struct elf32_hppa_link_hash_table *htab;
4478 asection *sdyn;
4479 asection * sgot;
4480
4481 htab = hppa_link_hash_table (info);
4482 if (htab == NULL)
4483 return FALSE;
4484
4485 dynobj = htab->etab.dynobj;
4486
4487 sgot = htab->sgot;
4488 /* A broken linker script might have discarded the dynamic sections.
4489 Catch this here so that we do not seg-fault later on. */
4490 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
4491 return FALSE;
4492
4493 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4494
4495 if (htab->etab.dynamic_sections_created)
4496 {
4497 Elf32_External_Dyn *dyncon, *dynconend;
4498
4499 if (sdyn == NULL)
4500 abort ();
4501
4502 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4503 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4504 for (; dyncon < dynconend; dyncon++)
4505 {
4506 Elf_Internal_Dyn dyn;
4507 asection *s;
4508
4509 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4510
4511 switch (dyn.d_tag)
4512 {
4513 default:
4514 continue;
4515
4516 case DT_PLTGOT:
4517 /* Use PLTGOT to set the GOT register. */
4518 dyn.d_un.d_ptr = elf_gp (output_bfd);
4519 break;
4520
4521 case DT_JMPREL:
4522 s = htab->srelplt;
4523 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4524 break;
4525
4526 case DT_PLTRELSZ:
4527 s = htab->srelplt;
4528 dyn.d_un.d_val = s->size;
4529 break;
4530
4531 case DT_RELASZ:
4532 /* Don't count procedure linkage table relocs in the
4533 overall reloc count. */
4534 s = htab->srelplt;
4535 if (s == NULL)
4536 continue;
4537 dyn.d_un.d_val -= s->size;
4538 break;
4539
4540 case DT_RELA:
4541 /* We may not be using the standard ELF linker script.
4542 If .rela.plt is the first .rela section, we adjust
4543 DT_RELA to not include it. */
4544 s = htab->srelplt;
4545 if (s == NULL)
4546 continue;
4547 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4548 continue;
4549 dyn.d_un.d_ptr += s->size;
4550 break;
4551 }
4552
4553 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4554 }
4555 }
4556
4557 if (sgot != NULL && sgot->size != 0)
4558 {
4559 /* Fill in the first entry in the global offset table.
4560 We use it to point to our dynamic section, if we have one. */
4561 bfd_put_32 (output_bfd,
4562 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4563 sgot->contents);
4564
4565 /* The second entry is reserved for use by the dynamic linker. */
4566 memset (sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4567
4568 /* Set .got entry size. */
4569 elf_section_data (sgot->output_section)
4570 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4571 }
4572
4573 if (htab->splt != NULL && htab->splt->size != 0)
4574 {
4575 /* Set plt entry size. */
4576 elf_section_data (htab->splt->output_section)
4577 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4578
4579 if (htab->need_plt_stub)
4580 {
4581 /* Set up the .plt stub. */
4582 memcpy (htab->splt->contents
4583 + htab->splt->size - sizeof (plt_stub),
4584 plt_stub, sizeof (plt_stub));
4585
4586 if ((htab->splt->output_offset
4587 + htab->splt->output_section->vma
4588 + htab->splt->size)
4589 != (sgot->output_offset
4590 + sgot->output_section->vma))
4591 {
4592 (*_bfd_error_handler)
4593 (_(".got section not immediately after .plt section"));
4594 return FALSE;
4595 }
4596 }
4597 }
4598
4599 return TRUE;
4600 }
4601
4602 /* Called when writing out an object file to decide the type of a
4603 symbol. */
4604 static int
4605 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4606 {
4607 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4608 return STT_PARISC_MILLI;
4609 else
4610 return type;
4611 }
4612
4613 /* Misc BFD support code. */
4614 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4615 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4616 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4617 #define elf_info_to_howto elf_hppa_info_to_howto
4618 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4619
4620 /* Stuff for the BFD linker. */
4621 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4622 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4623 #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
4624 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4625 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4626 #define elf_backend_check_relocs elf32_hppa_check_relocs
4627 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4628 #define elf_backend_fake_sections elf_hppa_fake_sections
4629 #define elf_backend_relocate_section elf32_hppa_relocate_section
4630 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4631 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4632 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4633 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4634 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4635 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4636 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4637 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4638 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4639 #define elf_backend_object_p elf32_hppa_object_p
4640 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4641 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4642 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4643 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4644 #define elf_backend_action_discarded elf_hppa_action_discarded
4645
4646 #define elf_backend_can_gc_sections 1
4647 #define elf_backend_can_refcount 1
4648 #define elf_backend_plt_alignment 2
4649 #define elf_backend_want_got_plt 0
4650 #define elf_backend_plt_readonly 0
4651 #define elf_backend_want_plt_sym 0
4652 #define elf_backend_got_header_size 8
4653 #define elf_backend_rela_normal 1
4654
4655 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4656 #define TARGET_BIG_NAME "elf32-hppa"
4657 #define ELF_ARCH bfd_arch_hppa
4658 #define ELF_TARGET_ID HPPA32_ELF_DATA
4659 #define ELF_MACHINE_CODE EM_PARISC
4660 #define ELF_MAXPAGESIZE 0x1000
4661 #define ELF_OSABI ELFOSABI_HPUX
4662 #define elf32_bed elf32_hppa_hpux_bed
4663
4664 #include "elf32-target.h"
4665
4666 #undef TARGET_BIG_SYM
4667 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4668 #undef TARGET_BIG_NAME
4669 #define TARGET_BIG_NAME "elf32-hppa-linux"
4670 #undef ELF_OSABI
4671 #define ELF_OSABI ELFOSABI_GNU
4672 #undef elf32_bed
4673 #define elf32_bed elf32_hppa_linux_bed
4674
4675 #include "elf32-target.h"
4676
4677 #undef TARGET_BIG_SYM
4678 #define TARGET_BIG_SYM bfd_elf32_hppa_nbsd_vec
4679 #undef TARGET_BIG_NAME
4680 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4681 #undef ELF_OSABI
4682 #define ELF_OSABI ELFOSABI_NETBSD
4683 #undef elf32_bed
4684 #define elf32_bed elf32_hppa_netbsd_bed
4685
4686 #include "elf32-target.h"
This page took 0.126593 seconds and 4 git commands to generate.