f63ff3f86232b35d551360ae9306fcfa27dacf2b
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright (C) 1990-2017 Free Software Foundation, Inc.
3
4 Original code by
5 Center for Software Science
6 Department of Computer Science
7 University of Utah
8 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
9 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
10 TLS support written by Randolph Chung <tausq@debian.org>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
28
29 #include "sysdep.h"
30 #include "bfd.h"
31 #include "libbfd.h"
32 #include "elf-bfd.h"
33 #include "elf/hppa.h"
34 #include "libhppa.h"
35 #include "elf32-hppa.h"
36 #define ARCH_SIZE 32
37 #include "elf32-hppa.h"
38 #include "elf-hppa.h"
39
40 /* In order to gain some understanding of code in this file without
41 knowing all the intricate details of the linker, note the
42 following:
43
44 Functions named elf32_hppa_* are called by external routines, other
45 functions are only called locally. elf32_hppa_* functions appear
46 in this file more or less in the order in which they are called
47 from external routines. eg. elf32_hppa_check_relocs is called
48 early in the link process, elf32_hppa_finish_dynamic_sections is
49 one of the last functions. */
50
51 /* We use two hash tables to hold information for linking PA ELF objects.
52
53 The first is the elf32_hppa_link_hash_table which is derived
54 from the standard ELF linker hash table. We use this as a place to
55 attach other hash tables and static information.
56
57 The second is the stub hash table which is derived from the
58 base BFD hash table. The stub hash table holds the information
59 necessary to build the linker stubs during a link.
60
61 There are a number of different stubs generated by the linker.
62
63 Long branch stub:
64 : ldil LR'X,%r1
65 : be,n RR'X(%sr4,%r1)
66
67 PIC long branch stub:
68 : b,l .+8,%r1
69 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
70 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
71
72 Import stub to call shared library routine from normal object file
73 (single sub-space version)
74 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
75 : ldw RR'lt_ptr+ltoff(%r1),%r21
76 : bv %r0(%r21)
77 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
78
79 Import stub to call shared library routine from shared library
80 (single sub-space version)
81 : addil LR'ltoff,%r19 ; get procedure entry point
82 : ldw RR'ltoff(%r1),%r21
83 : bv %r0(%r21)
84 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
85
86 Import stub to call shared library routine from normal object file
87 (multiple sub-space support)
88 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
89 : ldw RR'lt_ptr+ltoff(%r1),%r21
90 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
91 : ldsid (%r21),%r1
92 : mtsp %r1,%sr0
93 : be 0(%sr0,%r21) ; branch to target
94 : stw %rp,-24(%sp) ; save rp
95
96 Import stub to call shared library routine from shared library
97 (multiple sub-space support)
98 : addil LR'ltoff,%r19 ; get procedure entry point
99 : ldw RR'ltoff(%r1),%r21
100 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
101 : ldsid (%r21),%r1
102 : mtsp %r1,%sr0
103 : be 0(%sr0,%r21) ; branch to target
104 : stw %rp,-24(%sp) ; save rp
105
106 Export stub to return from shared lib routine (multiple sub-space support)
107 One of these is created for each exported procedure in a shared
108 library (and stored in the shared lib). Shared lib routines are
109 called via the first instruction in the export stub so that we can
110 do an inter-space return. Not required for single sub-space.
111 : bl,n X,%rp ; trap the return
112 : nop
113 : ldw -24(%sp),%rp ; restore the original rp
114 : ldsid (%rp),%r1
115 : mtsp %r1,%sr0
116 : be,n 0(%sr0,%rp) ; inter-space return. */
117
118
119 /* Variable names follow a coding style.
120 Please follow this (Apps Hungarian) style:
121
122 Structure/Variable Prefix
123 elf_link_hash_table "etab"
124 elf_link_hash_entry "eh"
125
126 elf32_hppa_link_hash_table "htab"
127 elf32_hppa_link_hash_entry "hh"
128
129 bfd_hash_table "btab"
130 bfd_hash_entry "bh"
131
132 bfd_hash_table containing stubs "bstab"
133 elf32_hppa_stub_hash_entry "hsh"
134
135 elf32_hppa_dyn_reloc_entry "hdh"
136
137 Always remember to use GNU Coding Style. */
138
139 #define PLT_ENTRY_SIZE 8
140 #define GOT_ENTRY_SIZE 4
141 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
142
143 static const bfd_byte plt_stub[] =
144 {
145 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
146 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
147 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
148 #define PLT_STUB_ENTRY (3*4)
149 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
150 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
151 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
152 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
153 };
154
155 /* Section name for stubs is the associated section name plus this
156 string. */
157 #define STUB_SUFFIX ".stub"
158
159 /* We don't need to copy certain PC- or GP-relative dynamic relocs
160 into a shared object's dynamic section. All the relocs of the
161 limited class we are interested in, are absolute. */
162 #ifndef RELATIVE_DYNRELOCS
163 #define RELATIVE_DYNRELOCS 0
164 #define IS_ABSOLUTE_RELOC(r_type) 1
165 #endif
166
167 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
168 copying dynamic variables from a shared lib into an app's dynbss
169 section, and instead use a dynamic relocation to point into the
170 shared lib. */
171 #define ELIMINATE_COPY_RELOCS 1
172
173 enum elf32_hppa_stub_type
174 {
175 hppa_stub_long_branch,
176 hppa_stub_long_branch_shared,
177 hppa_stub_import,
178 hppa_stub_import_shared,
179 hppa_stub_export,
180 hppa_stub_none
181 };
182
183 struct elf32_hppa_stub_hash_entry
184 {
185 /* Base hash table entry structure. */
186 struct bfd_hash_entry bh_root;
187
188 /* The stub section. */
189 asection *stub_sec;
190
191 /* Offset within stub_sec of the beginning of this stub. */
192 bfd_vma stub_offset;
193
194 /* Given the symbol's value and its section we can determine its final
195 value when building the stubs (so the stub knows where to jump. */
196 bfd_vma target_value;
197 asection *target_section;
198
199 enum elf32_hppa_stub_type stub_type;
200
201 /* The symbol table entry, if any, that this was derived from. */
202 struct elf32_hppa_link_hash_entry *hh;
203
204 /* Where this stub is being called from, or, in the case of combined
205 stub sections, the first input section in the group. */
206 asection *id_sec;
207 };
208
209 struct elf32_hppa_link_hash_entry
210 {
211 struct elf_link_hash_entry eh;
212
213 /* A pointer to the most recently used stub hash entry against this
214 symbol. */
215 struct elf32_hppa_stub_hash_entry *hsh_cache;
216
217 /* Used to count relocations for delayed sizing of relocation
218 sections. */
219 struct elf32_hppa_dyn_reloc_entry
220 {
221 /* Next relocation in the chain. */
222 struct elf32_hppa_dyn_reloc_entry *hdh_next;
223
224 /* The input section of the reloc. */
225 asection *sec;
226
227 /* Number of relocs copied in this section. */
228 bfd_size_type count;
229
230 #if RELATIVE_DYNRELOCS
231 /* Number of relative relocs copied for the input section. */
232 bfd_size_type relative_count;
233 #endif
234 } *dyn_relocs;
235
236 enum
237 {
238 GOT_UNKNOWN = 0, GOT_NORMAL = 1, GOT_TLS_GD = 2, GOT_TLS_LDM = 4, GOT_TLS_IE = 8
239 } tls_type;
240
241 /* Set if this symbol is used by a plabel reloc. */
242 unsigned int plabel:1;
243 };
244
245 struct elf32_hppa_link_hash_table
246 {
247 /* The main hash table. */
248 struct elf_link_hash_table etab;
249
250 /* The stub hash table. */
251 struct bfd_hash_table bstab;
252
253 /* Linker stub bfd. */
254 bfd *stub_bfd;
255
256 /* Linker call-backs. */
257 asection * (*add_stub_section) (const char *, asection *);
258 void (*layout_sections_again) (void);
259
260 /* Array to keep track of which stub sections have been created, and
261 information on stub grouping. */
262 struct map_stub
263 {
264 /* This is the section to which stubs in the group will be
265 attached. */
266 asection *link_sec;
267 /* The stub section. */
268 asection *stub_sec;
269 } *stub_group;
270
271 /* Assorted information used by elf32_hppa_size_stubs. */
272 unsigned int bfd_count;
273 unsigned int top_index;
274 asection **input_list;
275 Elf_Internal_Sym **all_local_syms;
276
277 /* Used during a final link to store the base of the text and data
278 segments so that we can perform SEGREL relocations. */
279 bfd_vma text_segment_base;
280 bfd_vma data_segment_base;
281
282 /* Whether we support multiple sub-spaces for shared libs. */
283 unsigned int multi_subspace:1;
284
285 /* Flags set when various size branches are detected. Used to
286 select suitable defaults for the stub group size. */
287 unsigned int has_12bit_branch:1;
288 unsigned int has_17bit_branch:1;
289 unsigned int has_22bit_branch:1;
290
291 /* Set if we need a .plt stub to support lazy dynamic linking. */
292 unsigned int need_plt_stub:1;
293
294 /* Small local sym cache. */
295 struct sym_cache sym_cache;
296
297 /* Data for LDM relocations. */
298 union
299 {
300 bfd_signed_vma refcount;
301 bfd_vma offset;
302 } tls_ldm_got;
303 };
304
305 /* Various hash macros and functions. */
306 #define hppa_link_hash_table(p) \
307 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
308 == HPPA32_ELF_DATA ? ((struct elf32_hppa_link_hash_table *) ((p)->hash)) : NULL)
309
310 #define hppa_elf_hash_entry(ent) \
311 ((struct elf32_hppa_link_hash_entry *)(ent))
312
313 #define hppa_stub_hash_entry(ent) \
314 ((struct elf32_hppa_stub_hash_entry *)(ent))
315
316 #define hppa_stub_hash_lookup(table, string, create, copy) \
317 ((struct elf32_hppa_stub_hash_entry *) \
318 bfd_hash_lookup ((table), (string), (create), (copy)))
319
320 #define hppa_elf_local_got_tls_type(abfd) \
321 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
322
323 #define hh_name(hh) \
324 (hh ? hh->eh.root.root.string : "<undef>")
325
326 #define eh_name(eh) \
327 (eh ? eh->root.root.string : "<undef>")
328
329 /* Assorted hash table functions. */
330
331 /* Initialize an entry in the stub hash table. */
332
333 static struct bfd_hash_entry *
334 stub_hash_newfunc (struct bfd_hash_entry *entry,
335 struct bfd_hash_table *table,
336 const char *string)
337 {
338 /* Allocate the structure if it has not already been allocated by a
339 subclass. */
340 if (entry == NULL)
341 {
342 entry = bfd_hash_allocate (table,
343 sizeof (struct elf32_hppa_stub_hash_entry));
344 if (entry == NULL)
345 return entry;
346 }
347
348 /* Call the allocation method of the superclass. */
349 entry = bfd_hash_newfunc (entry, table, string);
350 if (entry != NULL)
351 {
352 struct elf32_hppa_stub_hash_entry *hsh;
353
354 /* Initialize the local fields. */
355 hsh = hppa_stub_hash_entry (entry);
356 hsh->stub_sec = NULL;
357 hsh->stub_offset = 0;
358 hsh->target_value = 0;
359 hsh->target_section = NULL;
360 hsh->stub_type = hppa_stub_long_branch;
361 hsh->hh = NULL;
362 hsh->id_sec = NULL;
363 }
364
365 return entry;
366 }
367
368 /* Initialize an entry in the link hash table. */
369
370 static struct bfd_hash_entry *
371 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
372 struct bfd_hash_table *table,
373 const char *string)
374 {
375 /* Allocate the structure if it has not already been allocated by a
376 subclass. */
377 if (entry == NULL)
378 {
379 entry = bfd_hash_allocate (table,
380 sizeof (struct elf32_hppa_link_hash_entry));
381 if (entry == NULL)
382 return entry;
383 }
384
385 /* Call the allocation method of the superclass. */
386 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
387 if (entry != NULL)
388 {
389 struct elf32_hppa_link_hash_entry *hh;
390
391 /* Initialize the local fields. */
392 hh = hppa_elf_hash_entry (entry);
393 hh->hsh_cache = NULL;
394 hh->dyn_relocs = NULL;
395 hh->plabel = 0;
396 hh->tls_type = GOT_UNKNOWN;
397 }
398
399 return entry;
400 }
401
402 /* Free the derived linker hash table. */
403
404 static void
405 elf32_hppa_link_hash_table_free (bfd *obfd)
406 {
407 struct elf32_hppa_link_hash_table *htab
408 = (struct elf32_hppa_link_hash_table *) obfd->link.hash;
409
410 bfd_hash_table_free (&htab->bstab);
411 _bfd_elf_link_hash_table_free (obfd);
412 }
413
414 /* Create the derived linker hash table. The PA ELF port uses the derived
415 hash table to keep information specific to the PA ELF linker (without
416 using static variables). */
417
418 static struct bfd_link_hash_table *
419 elf32_hppa_link_hash_table_create (bfd *abfd)
420 {
421 struct elf32_hppa_link_hash_table *htab;
422 bfd_size_type amt = sizeof (*htab);
423
424 htab = bfd_zmalloc (amt);
425 if (htab == NULL)
426 return NULL;
427
428 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
429 sizeof (struct elf32_hppa_link_hash_entry),
430 HPPA32_ELF_DATA))
431 {
432 free (htab);
433 return NULL;
434 }
435
436 /* Init the stub hash table too. */
437 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
438 sizeof (struct elf32_hppa_stub_hash_entry)))
439 {
440 _bfd_elf_link_hash_table_free (abfd);
441 return NULL;
442 }
443 htab->etab.root.hash_table_free = elf32_hppa_link_hash_table_free;
444
445 htab->text_segment_base = (bfd_vma) -1;
446 htab->data_segment_base = (bfd_vma) -1;
447 return &htab->etab.root;
448 }
449
450 /* Initialize the linker stubs BFD so that we can use it for linker
451 created dynamic sections. */
452
453 void
454 elf32_hppa_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
455 {
456 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
457
458 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS32;
459 htab->etab.dynobj = abfd;
460 }
461
462 /* Build a name for an entry in the stub hash table. */
463
464 static char *
465 hppa_stub_name (const asection *input_section,
466 const asection *sym_sec,
467 const struct elf32_hppa_link_hash_entry *hh,
468 const Elf_Internal_Rela *rela)
469 {
470 char *stub_name;
471 bfd_size_type len;
472
473 if (hh)
474 {
475 len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
476 stub_name = bfd_malloc (len);
477 if (stub_name != NULL)
478 sprintf (stub_name, "%08x_%s+%x",
479 input_section->id & 0xffffffff,
480 hh_name (hh),
481 (int) rela->r_addend & 0xffffffff);
482 }
483 else
484 {
485 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
486 stub_name = bfd_malloc (len);
487 if (stub_name != NULL)
488 sprintf (stub_name, "%08x_%x:%x+%x",
489 input_section->id & 0xffffffff,
490 sym_sec->id & 0xffffffff,
491 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
492 (int) rela->r_addend & 0xffffffff);
493 }
494 return stub_name;
495 }
496
497 /* Look up an entry in the stub hash. Stub entries are cached because
498 creating the stub name takes a bit of time. */
499
500 static struct elf32_hppa_stub_hash_entry *
501 hppa_get_stub_entry (const asection *input_section,
502 const asection *sym_sec,
503 struct elf32_hppa_link_hash_entry *hh,
504 const Elf_Internal_Rela *rela,
505 struct elf32_hppa_link_hash_table *htab)
506 {
507 struct elf32_hppa_stub_hash_entry *hsh_entry;
508 const asection *id_sec;
509
510 /* If this input section is part of a group of sections sharing one
511 stub section, then use the id of the first section in the group.
512 Stub names need to include a section id, as there may well be
513 more than one stub used to reach say, printf, and we need to
514 distinguish between them. */
515 id_sec = htab->stub_group[input_section->id].link_sec;
516
517 if (hh != NULL && hh->hsh_cache != NULL
518 && hh->hsh_cache->hh == hh
519 && hh->hsh_cache->id_sec == id_sec)
520 {
521 hsh_entry = hh->hsh_cache;
522 }
523 else
524 {
525 char *stub_name;
526
527 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
528 if (stub_name == NULL)
529 return NULL;
530
531 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
532 stub_name, FALSE, FALSE);
533 if (hh != NULL)
534 hh->hsh_cache = hsh_entry;
535
536 free (stub_name);
537 }
538
539 return hsh_entry;
540 }
541
542 /* Add a new stub entry to the stub hash. Not all fields of the new
543 stub entry are initialised. */
544
545 static struct elf32_hppa_stub_hash_entry *
546 hppa_add_stub (const char *stub_name,
547 asection *section,
548 struct elf32_hppa_link_hash_table *htab)
549 {
550 asection *link_sec;
551 asection *stub_sec;
552 struct elf32_hppa_stub_hash_entry *hsh;
553
554 link_sec = htab->stub_group[section->id].link_sec;
555 stub_sec = htab->stub_group[section->id].stub_sec;
556 if (stub_sec == NULL)
557 {
558 stub_sec = htab->stub_group[link_sec->id].stub_sec;
559 if (stub_sec == NULL)
560 {
561 size_t namelen;
562 bfd_size_type len;
563 char *s_name;
564
565 namelen = strlen (link_sec->name);
566 len = namelen + sizeof (STUB_SUFFIX);
567 s_name = bfd_alloc (htab->stub_bfd, len);
568 if (s_name == NULL)
569 return NULL;
570
571 memcpy (s_name, link_sec->name, namelen);
572 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
573 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
574 if (stub_sec == NULL)
575 return NULL;
576 htab->stub_group[link_sec->id].stub_sec = stub_sec;
577 }
578 htab->stub_group[section->id].stub_sec = stub_sec;
579 }
580
581 /* Enter this entry into the linker stub hash table. */
582 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
583 TRUE, FALSE);
584 if (hsh == NULL)
585 {
586 /* xgettext:c-format */
587 _bfd_error_handler (_("%B: cannot create stub entry %s"),
588 section->owner, stub_name);
589 return NULL;
590 }
591
592 hsh->stub_sec = stub_sec;
593 hsh->stub_offset = 0;
594 hsh->id_sec = link_sec;
595 return hsh;
596 }
597
598 /* Determine the type of stub needed, if any, for a call. */
599
600 static enum elf32_hppa_stub_type
601 hppa_type_of_stub (asection *input_sec,
602 const Elf_Internal_Rela *rela,
603 struct elf32_hppa_link_hash_entry *hh,
604 bfd_vma destination,
605 struct bfd_link_info *info)
606 {
607 bfd_vma location;
608 bfd_vma branch_offset;
609 bfd_vma max_branch_offset;
610 unsigned int r_type;
611
612 if (hh != NULL
613 && hh->eh.plt.offset != (bfd_vma) -1
614 && hh->eh.dynindx != -1
615 && !hh->plabel
616 && (bfd_link_pic (info)
617 || !hh->eh.def_regular
618 || hh->eh.root.type == bfd_link_hash_defweak))
619 {
620 /* We need an import stub. Decide between hppa_stub_import
621 and hppa_stub_import_shared later. */
622 return hppa_stub_import;
623 }
624
625 /* Determine where the call point is. */
626 location = (input_sec->output_offset
627 + input_sec->output_section->vma
628 + rela->r_offset);
629
630 branch_offset = destination - location - 8;
631 r_type = ELF32_R_TYPE (rela->r_info);
632
633 /* Determine if a long branch stub is needed. parisc branch offsets
634 are relative to the second instruction past the branch, ie. +8
635 bytes on from the branch instruction location. The offset is
636 signed and counts in units of 4 bytes. */
637 if (r_type == (unsigned int) R_PARISC_PCREL17F)
638 max_branch_offset = (1 << (17 - 1)) << 2;
639
640 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
641 max_branch_offset = (1 << (12 - 1)) << 2;
642
643 else /* R_PARISC_PCREL22F. */
644 max_branch_offset = (1 << (22 - 1)) << 2;
645
646 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
647 return hppa_stub_long_branch;
648
649 return hppa_stub_none;
650 }
651
652 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
653 IN_ARG contains the link info pointer. */
654
655 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
656 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
657
658 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
659 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
660 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
661
662 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
663 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
664 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
665 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
666
667 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
668 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
669
670 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
671 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
672 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
673 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
674
675 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
676 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
677 #define NOP 0x08000240 /* nop */
678 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
679 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
680 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
681
682 #ifndef R19_STUBS
683 #define R19_STUBS 1
684 #endif
685
686 #if R19_STUBS
687 #define LDW_R1_DLT LDW_R1_R19
688 #else
689 #define LDW_R1_DLT LDW_R1_DP
690 #endif
691
692 static bfd_boolean
693 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
694 {
695 struct elf32_hppa_stub_hash_entry *hsh;
696 struct bfd_link_info *info;
697 struct elf32_hppa_link_hash_table *htab;
698 asection *stub_sec;
699 bfd *stub_bfd;
700 bfd_byte *loc;
701 bfd_vma sym_value;
702 bfd_vma insn;
703 bfd_vma off;
704 int val;
705 int size;
706
707 /* Massage our args to the form they really have. */
708 hsh = hppa_stub_hash_entry (bh);
709 info = (struct bfd_link_info *)in_arg;
710
711 htab = hppa_link_hash_table (info);
712 if (htab == NULL)
713 return FALSE;
714
715 stub_sec = hsh->stub_sec;
716
717 /* Make a note of the offset within the stubs for this entry. */
718 hsh->stub_offset = stub_sec->size;
719 loc = stub_sec->contents + hsh->stub_offset;
720
721 stub_bfd = stub_sec->owner;
722
723 switch (hsh->stub_type)
724 {
725 case hppa_stub_long_branch:
726 /* Create the long branch. A long branch is formed with "ldil"
727 loading the upper bits of the target address into a register,
728 then branching with "be" which adds in the lower bits.
729 The "be" has its delay slot nullified. */
730 sym_value = (hsh->target_value
731 + hsh->target_section->output_offset
732 + hsh->target_section->output_section->vma);
733
734 val = hppa_field_adjust (sym_value, 0, e_lrsel);
735 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
736 bfd_put_32 (stub_bfd, insn, loc);
737
738 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
739 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
740 bfd_put_32 (stub_bfd, insn, loc + 4);
741
742 size = 8;
743 break;
744
745 case hppa_stub_long_branch_shared:
746 /* Branches are relative. This is where we are going to. */
747 sym_value = (hsh->target_value
748 + hsh->target_section->output_offset
749 + hsh->target_section->output_section->vma);
750
751 /* And this is where we are coming from, more or less. */
752 sym_value -= (hsh->stub_offset
753 + stub_sec->output_offset
754 + stub_sec->output_section->vma);
755
756 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
757 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
758 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
759 bfd_put_32 (stub_bfd, insn, loc + 4);
760
761 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
762 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
763 bfd_put_32 (stub_bfd, insn, loc + 8);
764 size = 12;
765 break;
766
767 case hppa_stub_import:
768 case hppa_stub_import_shared:
769 off = hsh->hh->eh.plt.offset;
770 if (off >= (bfd_vma) -2)
771 abort ();
772
773 off &= ~ (bfd_vma) 1;
774 sym_value = (off
775 + htab->etab.splt->output_offset
776 + htab->etab.splt->output_section->vma
777 - elf_gp (htab->etab.splt->output_section->owner));
778
779 insn = ADDIL_DP;
780 #if R19_STUBS
781 if (hsh->stub_type == hppa_stub_import_shared)
782 insn = ADDIL_R19;
783 #endif
784 val = hppa_field_adjust (sym_value, 0, e_lrsel),
785 insn = hppa_rebuild_insn ((int) insn, val, 21);
786 bfd_put_32 (stub_bfd, insn, loc);
787
788 /* It is critical to use lrsel/rrsel here because we are using
789 two different offsets (+0 and +4) from sym_value. If we use
790 lsel/rsel then with unfortunate sym_values we will round
791 sym_value+4 up to the next 2k block leading to a mis-match
792 between the lsel and rsel value. */
793 val = hppa_field_adjust (sym_value, 0, e_rrsel);
794 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
795 bfd_put_32 (stub_bfd, insn, loc + 4);
796
797 if (htab->multi_subspace)
798 {
799 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
800 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
801 bfd_put_32 (stub_bfd, insn, loc + 8);
802
803 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
804 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
805 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
806 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
807
808 size = 28;
809 }
810 else
811 {
812 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
813 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
814 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
815 bfd_put_32 (stub_bfd, insn, loc + 12);
816
817 size = 16;
818 }
819
820 break;
821
822 case hppa_stub_export:
823 /* Branches are relative. This is where we are going to. */
824 sym_value = (hsh->target_value
825 + hsh->target_section->output_offset
826 + hsh->target_section->output_section->vma);
827
828 /* And this is where we are coming from. */
829 sym_value -= (hsh->stub_offset
830 + stub_sec->output_offset
831 + stub_sec->output_section->vma);
832
833 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
834 && (!htab->has_22bit_branch
835 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
836 {
837 _bfd_error_handler
838 /* xgettext:c-format */
839 (_("%B(%A+%#Lx): cannot reach %s, recompile with -ffunction-sections"),
840 hsh->target_section->owner,
841 stub_sec,
842 hsh->stub_offset,
843 hsh->bh_root.string);
844 bfd_set_error (bfd_error_bad_value);
845 return FALSE;
846 }
847
848 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
849 if (!htab->has_22bit_branch)
850 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
851 else
852 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
853 bfd_put_32 (stub_bfd, insn, loc);
854
855 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
856 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
857 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
858 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
859 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
860
861 /* Point the function symbol at the stub. */
862 hsh->hh->eh.root.u.def.section = stub_sec;
863 hsh->hh->eh.root.u.def.value = stub_sec->size;
864
865 size = 24;
866 break;
867
868 default:
869 BFD_FAIL ();
870 return FALSE;
871 }
872
873 stub_sec->size += size;
874 return TRUE;
875 }
876
877 #undef LDIL_R1
878 #undef BE_SR4_R1
879 #undef BL_R1
880 #undef ADDIL_R1
881 #undef DEPI_R1
882 #undef LDW_R1_R21
883 #undef LDW_R1_DLT
884 #undef LDW_R1_R19
885 #undef ADDIL_R19
886 #undef LDW_R1_DP
887 #undef LDSID_R21_R1
888 #undef MTSP_R1
889 #undef BE_SR0_R21
890 #undef STW_RP
891 #undef BV_R0_R21
892 #undef BL_RP
893 #undef NOP
894 #undef LDW_RP
895 #undef LDSID_RP_R1
896 #undef BE_SR0_RP
897
898 /* As above, but don't actually build the stub. Just bump offset so
899 we know stub section sizes. */
900
901 static bfd_boolean
902 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
903 {
904 struct elf32_hppa_stub_hash_entry *hsh;
905 struct elf32_hppa_link_hash_table *htab;
906 int size;
907
908 /* Massage our args to the form they really have. */
909 hsh = hppa_stub_hash_entry (bh);
910 htab = in_arg;
911
912 if (hsh->stub_type == hppa_stub_long_branch)
913 size = 8;
914 else if (hsh->stub_type == hppa_stub_long_branch_shared)
915 size = 12;
916 else if (hsh->stub_type == hppa_stub_export)
917 size = 24;
918 else /* hppa_stub_import or hppa_stub_import_shared. */
919 {
920 if (htab->multi_subspace)
921 size = 28;
922 else
923 size = 16;
924 }
925
926 hsh->stub_sec->size += size;
927 return TRUE;
928 }
929
930 /* Return nonzero if ABFD represents an HPPA ELF32 file.
931 Additionally we set the default architecture and machine. */
932
933 static bfd_boolean
934 elf32_hppa_object_p (bfd *abfd)
935 {
936 Elf_Internal_Ehdr * i_ehdrp;
937 unsigned int flags;
938
939 i_ehdrp = elf_elfheader (abfd);
940 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
941 {
942 /* GCC on hppa-linux produces binaries with OSABI=GNU,
943 but the kernel produces corefiles with OSABI=SysV. */
944 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU &&
945 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
946 return FALSE;
947 }
948 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
949 {
950 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
951 but the kernel produces corefiles with OSABI=SysV. */
952 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
953 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
954 return FALSE;
955 }
956 else
957 {
958 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
959 return FALSE;
960 }
961
962 flags = i_ehdrp->e_flags;
963 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
964 {
965 case EFA_PARISC_1_0:
966 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
967 case EFA_PARISC_1_1:
968 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
969 case EFA_PARISC_2_0:
970 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
971 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
972 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
973 }
974 return TRUE;
975 }
976
977 /* Create the .plt and .got sections, and set up our hash table
978 short-cuts to various dynamic sections. */
979
980 static bfd_boolean
981 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
982 {
983 struct elf32_hppa_link_hash_table *htab;
984 struct elf_link_hash_entry *eh;
985
986 /* Don't try to create the .plt and .got twice. */
987 htab = hppa_link_hash_table (info);
988 if (htab == NULL)
989 return FALSE;
990 if (htab->etab.splt != NULL)
991 return TRUE;
992
993 /* Call the generic code to do most of the work. */
994 if (! _bfd_elf_create_dynamic_sections (abfd, info))
995 return FALSE;
996
997 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
998 application, because __canonicalize_funcptr_for_compare needs it. */
999 eh = elf_hash_table (info)->hgot;
1000 eh->forced_local = 0;
1001 eh->other = STV_DEFAULT;
1002 return bfd_elf_link_record_dynamic_symbol (info, eh);
1003 }
1004
1005 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1006
1007 static void
1008 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1009 struct elf_link_hash_entry *eh_dir,
1010 struct elf_link_hash_entry *eh_ind)
1011 {
1012 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1013
1014 hh_dir = hppa_elf_hash_entry (eh_dir);
1015 hh_ind = hppa_elf_hash_entry (eh_ind);
1016
1017 if (hh_ind->dyn_relocs != NULL)
1018 {
1019 if (hh_dir->dyn_relocs != NULL)
1020 {
1021 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1022 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1023
1024 /* Add reloc counts against the indirect sym to the direct sym
1025 list. Merge any entries against the same section. */
1026 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1027 {
1028 struct elf32_hppa_dyn_reloc_entry *hdh_q;
1029
1030 for (hdh_q = hh_dir->dyn_relocs;
1031 hdh_q != NULL;
1032 hdh_q = hdh_q->hdh_next)
1033 if (hdh_q->sec == hdh_p->sec)
1034 {
1035 #if RELATIVE_DYNRELOCS
1036 hdh_q->relative_count += hdh_p->relative_count;
1037 #endif
1038 hdh_q->count += hdh_p->count;
1039 *hdh_pp = hdh_p->hdh_next;
1040 break;
1041 }
1042 if (hdh_q == NULL)
1043 hdh_pp = &hdh_p->hdh_next;
1044 }
1045 *hdh_pp = hh_dir->dyn_relocs;
1046 }
1047
1048 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1049 hh_ind->dyn_relocs = NULL;
1050 }
1051
1052 if (ELIMINATE_COPY_RELOCS
1053 && eh_ind->root.type != bfd_link_hash_indirect
1054 && eh_dir->dynamic_adjusted)
1055 {
1056 /* If called to transfer flags for a weakdef during processing
1057 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1058 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1059 if (eh_dir->versioned != versioned_hidden)
1060 eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
1061 eh_dir->ref_regular |= eh_ind->ref_regular;
1062 eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
1063 eh_dir->needs_plt |= eh_ind->needs_plt;
1064 }
1065 else
1066 {
1067 if (eh_ind->root.type == bfd_link_hash_indirect)
1068 {
1069 hh_dir->plabel |= hh_ind->plabel;
1070 hh_dir->tls_type |= hh_ind->tls_type;
1071 hh_ind->tls_type = GOT_UNKNOWN;
1072 }
1073
1074 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1075 }
1076 }
1077
1078 static int
1079 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1080 int r_type, int is_local ATTRIBUTE_UNUSED)
1081 {
1082 /* For now we don't support linker optimizations. */
1083 return r_type;
1084 }
1085
1086 /* Return a pointer to the local GOT, PLT and TLS reference counts
1087 for ABFD. Returns NULL if the storage allocation fails. */
1088
1089 static bfd_signed_vma *
1090 hppa32_elf_local_refcounts (bfd *abfd)
1091 {
1092 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1093 bfd_signed_vma *local_refcounts;
1094
1095 local_refcounts = elf_local_got_refcounts (abfd);
1096 if (local_refcounts == NULL)
1097 {
1098 bfd_size_type size;
1099
1100 /* Allocate space for local GOT and PLT reference
1101 counts. Done this way to save polluting elf_obj_tdata
1102 with another target specific pointer. */
1103 size = symtab_hdr->sh_info;
1104 size *= 2 * sizeof (bfd_signed_vma);
1105 /* Add in space to store the local GOT TLS types. */
1106 size += symtab_hdr->sh_info;
1107 local_refcounts = bfd_zalloc (abfd, size);
1108 if (local_refcounts == NULL)
1109 return NULL;
1110 elf_local_got_refcounts (abfd) = local_refcounts;
1111 memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN,
1112 symtab_hdr->sh_info);
1113 }
1114 return local_refcounts;
1115 }
1116
1117
1118 /* Look through the relocs for a section during the first phase, and
1119 calculate needed space in the global offset table, procedure linkage
1120 table, and dynamic reloc sections. At this point we haven't
1121 necessarily read all the input files. */
1122
1123 static bfd_boolean
1124 elf32_hppa_check_relocs (bfd *abfd,
1125 struct bfd_link_info *info,
1126 asection *sec,
1127 const Elf_Internal_Rela *relocs)
1128 {
1129 Elf_Internal_Shdr *symtab_hdr;
1130 struct elf_link_hash_entry **eh_syms;
1131 const Elf_Internal_Rela *rela;
1132 const Elf_Internal_Rela *rela_end;
1133 struct elf32_hppa_link_hash_table *htab;
1134 asection *sreloc;
1135 int tls_type = GOT_UNKNOWN, old_tls_type = GOT_UNKNOWN;
1136
1137 if (bfd_link_relocatable (info))
1138 return TRUE;
1139
1140 htab = hppa_link_hash_table (info);
1141 if (htab == NULL)
1142 return FALSE;
1143 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1144 eh_syms = elf_sym_hashes (abfd);
1145 sreloc = NULL;
1146
1147 rela_end = relocs + sec->reloc_count;
1148 for (rela = relocs; rela < rela_end; rela++)
1149 {
1150 enum {
1151 NEED_GOT = 1,
1152 NEED_PLT = 2,
1153 NEED_DYNREL = 4,
1154 PLT_PLABEL = 8
1155 };
1156
1157 unsigned int r_symndx, r_type;
1158 struct elf32_hppa_link_hash_entry *hh;
1159 int need_entry = 0;
1160
1161 r_symndx = ELF32_R_SYM (rela->r_info);
1162
1163 if (r_symndx < symtab_hdr->sh_info)
1164 hh = NULL;
1165 else
1166 {
1167 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1168 while (hh->eh.root.type == bfd_link_hash_indirect
1169 || hh->eh.root.type == bfd_link_hash_warning)
1170 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1171
1172 /* PR15323, ref flags aren't set for references in the same
1173 object. */
1174 hh->eh.root.non_ir_ref_regular = 1;
1175 }
1176
1177 r_type = ELF32_R_TYPE (rela->r_info);
1178 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1179
1180 switch (r_type)
1181 {
1182 case R_PARISC_DLTIND14F:
1183 case R_PARISC_DLTIND14R:
1184 case R_PARISC_DLTIND21L:
1185 /* This symbol requires a global offset table entry. */
1186 need_entry = NEED_GOT;
1187 break;
1188
1189 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1190 case R_PARISC_PLABEL21L:
1191 case R_PARISC_PLABEL32:
1192 /* If the addend is non-zero, we break badly. */
1193 if (rela->r_addend != 0)
1194 abort ();
1195
1196 /* If we are creating a shared library, then we need to
1197 create a PLT entry for all PLABELs, because PLABELs with
1198 local symbols may be passed via a pointer to another
1199 object. Additionally, output a dynamic relocation
1200 pointing to the PLT entry.
1201
1202 For executables, the original 32-bit ABI allowed two
1203 different styles of PLABELs (function pointers): For
1204 global functions, the PLABEL word points into the .plt
1205 two bytes past a (function address, gp) pair, and for
1206 local functions the PLABEL points directly at the
1207 function. The magic +2 for the first type allows us to
1208 differentiate between the two. As you can imagine, this
1209 is a real pain when it comes to generating code to call
1210 functions indirectly or to compare function pointers.
1211 We avoid the mess by always pointing a PLABEL into the
1212 .plt, even for local functions. */
1213 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1214 break;
1215
1216 case R_PARISC_PCREL12F:
1217 htab->has_12bit_branch = 1;
1218 goto branch_common;
1219
1220 case R_PARISC_PCREL17C:
1221 case R_PARISC_PCREL17F:
1222 htab->has_17bit_branch = 1;
1223 goto branch_common;
1224
1225 case R_PARISC_PCREL22F:
1226 htab->has_22bit_branch = 1;
1227 branch_common:
1228 /* Function calls might need to go through the .plt, and
1229 might require long branch stubs. */
1230 if (hh == NULL)
1231 {
1232 /* We know local syms won't need a .plt entry, and if
1233 they need a long branch stub we can't guarantee that
1234 we can reach the stub. So just flag an error later
1235 if we're doing a shared link and find we need a long
1236 branch stub. */
1237 continue;
1238 }
1239 else
1240 {
1241 /* Global symbols will need a .plt entry if they remain
1242 global, and in most cases won't need a long branch
1243 stub. Unfortunately, we have to cater for the case
1244 where a symbol is forced local by versioning, or due
1245 to symbolic linking, and we lose the .plt entry. */
1246 need_entry = NEED_PLT;
1247 if (hh->eh.type == STT_PARISC_MILLI)
1248 need_entry = 0;
1249 }
1250 break;
1251
1252 case R_PARISC_SEGBASE: /* Used to set segment base. */
1253 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1254 case R_PARISC_PCREL14F: /* PC relative load/store. */
1255 case R_PARISC_PCREL14R:
1256 case R_PARISC_PCREL17R: /* External branches. */
1257 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1258 case R_PARISC_PCREL32:
1259 /* We don't need to propagate the relocation if linking a
1260 shared object since these are section relative. */
1261 continue;
1262
1263 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1264 case R_PARISC_DPREL14R:
1265 case R_PARISC_DPREL21L:
1266 if (bfd_link_pic (info))
1267 {
1268 _bfd_error_handler
1269 /* xgettext:c-format */
1270 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1271 abfd,
1272 elf_hppa_howto_table[r_type].name);
1273 bfd_set_error (bfd_error_bad_value);
1274 return FALSE;
1275 }
1276 /* Fall through. */
1277
1278 case R_PARISC_DIR17F: /* Used for external branches. */
1279 case R_PARISC_DIR17R:
1280 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1281 case R_PARISC_DIR14R:
1282 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1283 case R_PARISC_DIR32: /* .word relocs. */
1284 /* We may want to output a dynamic relocation later. */
1285 need_entry = NEED_DYNREL;
1286 break;
1287
1288 /* This relocation describes the C++ object vtable hierarchy.
1289 Reconstruct it for later use during GC. */
1290 case R_PARISC_GNU_VTINHERIT:
1291 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1292 return FALSE;
1293 continue;
1294
1295 /* This relocation describes which C++ vtable entries are actually
1296 used. Record for later use during GC. */
1297 case R_PARISC_GNU_VTENTRY:
1298 BFD_ASSERT (hh != NULL);
1299 if (hh != NULL
1300 && !bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1301 return FALSE;
1302 continue;
1303
1304 case R_PARISC_TLS_GD21L:
1305 case R_PARISC_TLS_GD14R:
1306 case R_PARISC_TLS_LDM21L:
1307 case R_PARISC_TLS_LDM14R:
1308 need_entry = NEED_GOT;
1309 break;
1310
1311 case R_PARISC_TLS_IE21L:
1312 case R_PARISC_TLS_IE14R:
1313 if (bfd_link_pic (info))
1314 info->flags |= DF_STATIC_TLS;
1315 need_entry = NEED_GOT;
1316 break;
1317
1318 default:
1319 continue;
1320 }
1321
1322 /* Now carry out our orders. */
1323 if (need_entry & NEED_GOT)
1324 {
1325 switch (r_type)
1326 {
1327 default:
1328 tls_type = GOT_NORMAL;
1329 break;
1330 case R_PARISC_TLS_GD21L:
1331 case R_PARISC_TLS_GD14R:
1332 tls_type |= GOT_TLS_GD;
1333 break;
1334 case R_PARISC_TLS_LDM21L:
1335 case R_PARISC_TLS_LDM14R:
1336 tls_type |= GOT_TLS_LDM;
1337 break;
1338 case R_PARISC_TLS_IE21L:
1339 case R_PARISC_TLS_IE14R:
1340 tls_type |= GOT_TLS_IE;
1341 break;
1342 }
1343
1344 /* Allocate space for a GOT entry, as well as a dynamic
1345 relocation for this entry. */
1346 if (htab->etab.sgot == NULL)
1347 {
1348 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1349 return FALSE;
1350 }
1351
1352 if (r_type == R_PARISC_TLS_LDM21L
1353 || r_type == R_PARISC_TLS_LDM14R)
1354 htab->tls_ldm_got.refcount += 1;
1355 else
1356 {
1357 if (hh != NULL)
1358 {
1359 hh->eh.got.refcount += 1;
1360 old_tls_type = hh->tls_type;
1361 }
1362 else
1363 {
1364 bfd_signed_vma *local_got_refcounts;
1365
1366 /* This is a global offset table entry for a local symbol. */
1367 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1368 if (local_got_refcounts == NULL)
1369 return FALSE;
1370 local_got_refcounts[r_symndx] += 1;
1371
1372 old_tls_type = hppa_elf_local_got_tls_type (abfd) [r_symndx];
1373 }
1374
1375 tls_type |= old_tls_type;
1376
1377 if (old_tls_type != tls_type)
1378 {
1379 if (hh != NULL)
1380 hh->tls_type = tls_type;
1381 else
1382 hppa_elf_local_got_tls_type (abfd) [r_symndx] = tls_type;
1383 }
1384
1385 }
1386 }
1387
1388 if (need_entry & NEED_PLT)
1389 {
1390 /* If we are creating a shared library, and this is a reloc
1391 against a weak symbol or a global symbol in a dynamic
1392 object, then we will be creating an import stub and a
1393 .plt entry for the symbol. Similarly, on a normal link
1394 to symbols defined in a dynamic object we'll need the
1395 import stub and a .plt entry. We don't know yet whether
1396 the symbol is defined or not, so make an entry anyway and
1397 clean up later in adjust_dynamic_symbol. */
1398 if ((sec->flags & SEC_ALLOC) != 0)
1399 {
1400 if (hh != NULL)
1401 {
1402 hh->eh.needs_plt = 1;
1403 hh->eh.plt.refcount += 1;
1404
1405 /* If this .plt entry is for a plabel, mark it so
1406 that adjust_dynamic_symbol will keep the entry
1407 even if it appears to be local. */
1408 if (need_entry & PLT_PLABEL)
1409 hh->plabel = 1;
1410 }
1411 else if (need_entry & PLT_PLABEL)
1412 {
1413 bfd_signed_vma *local_got_refcounts;
1414 bfd_signed_vma *local_plt_refcounts;
1415
1416 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1417 if (local_got_refcounts == NULL)
1418 return FALSE;
1419 local_plt_refcounts = (local_got_refcounts
1420 + symtab_hdr->sh_info);
1421 local_plt_refcounts[r_symndx] += 1;
1422 }
1423 }
1424 }
1425
1426 if (need_entry & NEED_DYNREL)
1427 {
1428 /* Flag this symbol as having a non-got, non-plt reference
1429 so that we generate copy relocs if it turns out to be
1430 dynamic. */
1431 if (hh != NULL && !bfd_link_pic (info))
1432 hh->eh.non_got_ref = 1;
1433
1434 /* If we are creating a shared library then we need to copy
1435 the reloc into the shared library. However, if we are
1436 linking with -Bsymbolic, we need only copy absolute
1437 relocs or relocs against symbols that are not defined in
1438 an object we are including in the link. PC- or DP- or
1439 DLT-relative relocs against any local sym or global sym
1440 with DEF_REGULAR set, can be discarded. At this point we
1441 have not seen all the input files, so it is possible that
1442 DEF_REGULAR is not set now but will be set later (it is
1443 never cleared). We account for that possibility below by
1444 storing information in the dyn_relocs field of the
1445 hash table entry.
1446
1447 A similar situation to the -Bsymbolic case occurs when
1448 creating shared libraries and symbol visibility changes
1449 render the symbol local.
1450
1451 As it turns out, all the relocs we will be creating here
1452 are absolute, so we cannot remove them on -Bsymbolic
1453 links or visibility changes anyway. A STUB_REL reloc
1454 is absolute too, as in that case it is the reloc in the
1455 stub we will be creating, rather than copying the PCREL
1456 reloc in the branch.
1457
1458 If on the other hand, we are creating an executable, we
1459 may need to keep relocations for symbols satisfied by a
1460 dynamic library if we manage to avoid copy relocs for the
1461 symbol. */
1462 if ((bfd_link_pic (info)
1463 && (sec->flags & SEC_ALLOC) != 0
1464 && (IS_ABSOLUTE_RELOC (r_type)
1465 || (hh != NULL
1466 && (!SYMBOLIC_BIND (info, &hh->eh)
1467 || hh->eh.root.type == bfd_link_hash_defweak
1468 || !hh->eh.def_regular))))
1469 || (ELIMINATE_COPY_RELOCS
1470 && !bfd_link_pic (info)
1471 && (sec->flags & SEC_ALLOC) != 0
1472 && hh != NULL
1473 && (hh->eh.root.type == bfd_link_hash_defweak
1474 || !hh->eh.def_regular)))
1475 {
1476 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1477 struct elf32_hppa_dyn_reloc_entry **hdh_head;
1478
1479 /* Create a reloc section in dynobj and make room for
1480 this reloc. */
1481 if (sreloc == NULL)
1482 {
1483 sreloc = _bfd_elf_make_dynamic_reloc_section
1484 (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
1485
1486 if (sreloc == NULL)
1487 {
1488 bfd_set_error (bfd_error_bad_value);
1489 return FALSE;
1490 }
1491 }
1492
1493 /* If this is a global symbol, we count the number of
1494 relocations we need for this symbol. */
1495 if (hh != NULL)
1496 {
1497 hdh_head = &hh->dyn_relocs;
1498 }
1499 else
1500 {
1501 /* Track dynamic relocs needed for local syms too.
1502 We really need local syms available to do this
1503 easily. Oh well. */
1504 asection *sr;
1505 void *vpp;
1506 Elf_Internal_Sym *isym;
1507
1508 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1509 abfd, r_symndx);
1510 if (isym == NULL)
1511 return FALSE;
1512
1513 sr = bfd_section_from_elf_index (abfd, isym->st_shndx);
1514 if (sr == NULL)
1515 sr = sec;
1516
1517 vpp = &elf_section_data (sr)->local_dynrel;
1518 hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp;
1519 }
1520
1521 hdh_p = *hdh_head;
1522 if (hdh_p == NULL || hdh_p->sec != sec)
1523 {
1524 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1525 if (hdh_p == NULL)
1526 return FALSE;
1527 hdh_p->hdh_next = *hdh_head;
1528 *hdh_head = hdh_p;
1529 hdh_p->sec = sec;
1530 hdh_p->count = 0;
1531 #if RELATIVE_DYNRELOCS
1532 hdh_p->relative_count = 0;
1533 #endif
1534 }
1535
1536 hdh_p->count += 1;
1537 #if RELATIVE_DYNRELOCS
1538 if (!IS_ABSOLUTE_RELOC (rtype))
1539 hdh_p->relative_count += 1;
1540 #endif
1541 }
1542 }
1543 }
1544
1545 return TRUE;
1546 }
1547
1548 /* Return the section that should be marked against garbage collection
1549 for a given relocation. */
1550
1551 static asection *
1552 elf32_hppa_gc_mark_hook (asection *sec,
1553 struct bfd_link_info *info,
1554 Elf_Internal_Rela *rela,
1555 struct elf_link_hash_entry *hh,
1556 Elf_Internal_Sym *sym)
1557 {
1558 if (hh != NULL)
1559 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1560 {
1561 case R_PARISC_GNU_VTINHERIT:
1562 case R_PARISC_GNU_VTENTRY:
1563 return NULL;
1564 }
1565
1566 return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1567 }
1568
1569 /* Update the got and plt entry reference counts for the section being
1570 removed. */
1571
1572 static bfd_boolean
1573 elf32_hppa_gc_sweep_hook (bfd *abfd,
1574 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1575 asection *sec,
1576 const Elf_Internal_Rela *relocs)
1577 {
1578 Elf_Internal_Shdr *symtab_hdr;
1579 struct elf_link_hash_entry **eh_syms;
1580 bfd_signed_vma *local_got_refcounts;
1581 bfd_signed_vma *local_plt_refcounts;
1582 const Elf_Internal_Rela *rela, *relend;
1583 struct elf32_hppa_link_hash_table *htab;
1584
1585 if (bfd_link_relocatable (info))
1586 return TRUE;
1587
1588 htab = hppa_link_hash_table (info);
1589 if (htab == NULL)
1590 return FALSE;
1591
1592 elf_section_data (sec)->local_dynrel = NULL;
1593
1594 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1595 eh_syms = elf_sym_hashes (abfd);
1596 local_got_refcounts = elf_local_got_refcounts (abfd);
1597 local_plt_refcounts = local_got_refcounts;
1598 if (local_plt_refcounts != NULL)
1599 local_plt_refcounts += symtab_hdr->sh_info;
1600
1601 relend = relocs + sec->reloc_count;
1602 for (rela = relocs; rela < relend; rela++)
1603 {
1604 unsigned long r_symndx;
1605 unsigned int r_type;
1606 struct elf_link_hash_entry *eh = NULL;
1607
1608 r_symndx = ELF32_R_SYM (rela->r_info);
1609 if (r_symndx >= symtab_hdr->sh_info)
1610 {
1611 struct elf32_hppa_link_hash_entry *hh;
1612 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1613 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1614
1615 eh = eh_syms[r_symndx - symtab_hdr->sh_info];
1616 while (eh->root.type == bfd_link_hash_indirect
1617 || eh->root.type == bfd_link_hash_warning)
1618 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1619 hh = hppa_elf_hash_entry (eh);
1620
1621 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next)
1622 if (hdh_p->sec == sec)
1623 {
1624 /* Everything must go for SEC. */
1625 *hdh_pp = hdh_p->hdh_next;
1626 break;
1627 }
1628 }
1629
1630 r_type = ELF32_R_TYPE (rela->r_info);
1631 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, eh != NULL);
1632
1633 switch (r_type)
1634 {
1635 case R_PARISC_DLTIND14F:
1636 case R_PARISC_DLTIND14R:
1637 case R_PARISC_DLTIND21L:
1638 case R_PARISC_TLS_GD21L:
1639 case R_PARISC_TLS_GD14R:
1640 case R_PARISC_TLS_IE21L:
1641 case R_PARISC_TLS_IE14R:
1642 if (eh != NULL)
1643 {
1644 if (eh->got.refcount > 0)
1645 eh->got.refcount -= 1;
1646 }
1647 else if (local_got_refcounts != NULL)
1648 {
1649 if (local_got_refcounts[r_symndx] > 0)
1650 local_got_refcounts[r_symndx] -= 1;
1651 }
1652 break;
1653
1654 case R_PARISC_TLS_LDM21L:
1655 case R_PARISC_TLS_LDM14R:
1656 htab->tls_ldm_got.refcount -= 1;
1657 break;
1658
1659 case R_PARISC_PCREL12F:
1660 case R_PARISC_PCREL17C:
1661 case R_PARISC_PCREL17F:
1662 case R_PARISC_PCREL22F:
1663 if (eh != NULL)
1664 {
1665 if (eh->plt.refcount > 0)
1666 eh->plt.refcount -= 1;
1667 }
1668 break;
1669
1670 case R_PARISC_PLABEL14R:
1671 case R_PARISC_PLABEL21L:
1672 case R_PARISC_PLABEL32:
1673 if (eh != NULL)
1674 {
1675 if (eh->plt.refcount > 0)
1676 eh->plt.refcount -= 1;
1677 }
1678 else if (local_plt_refcounts != NULL)
1679 {
1680 if (local_plt_refcounts[r_symndx] > 0)
1681 local_plt_refcounts[r_symndx] -= 1;
1682 }
1683 break;
1684
1685 default:
1686 break;
1687 }
1688 }
1689
1690 return TRUE;
1691 }
1692
1693 /* Support for core dump NOTE sections. */
1694
1695 static bfd_boolean
1696 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1697 {
1698 int offset;
1699 size_t size;
1700
1701 switch (note->descsz)
1702 {
1703 default:
1704 return FALSE;
1705
1706 case 396: /* Linux/hppa */
1707 /* pr_cursig */
1708 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1709
1710 /* pr_pid */
1711 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
1712
1713 /* pr_reg */
1714 offset = 72;
1715 size = 320;
1716
1717 break;
1718 }
1719
1720 /* Make a ".reg/999" section. */
1721 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1722 size, note->descpos + offset);
1723 }
1724
1725 static bfd_boolean
1726 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1727 {
1728 switch (note->descsz)
1729 {
1730 default:
1731 return FALSE;
1732
1733 case 124: /* Linux/hppa elf_prpsinfo. */
1734 elf_tdata (abfd)->core->program
1735 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1736 elf_tdata (abfd)->core->command
1737 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1738 }
1739
1740 /* Note that for some reason, a spurious space is tacked
1741 onto the end of the args in some (at least one anyway)
1742 implementations, so strip it off if it exists. */
1743 {
1744 char *command = elf_tdata (abfd)->core->command;
1745 int n = strlen (command);
1746
1747 if (0 < n && command[n - 1] == ' ')
1748 command[n - 1] = '\0';
1749 }
1750
1751 return TRUE;
1752 }
1753
1754 /* Our own version of hide_symbol, so that we can keep plt entries for
1755 plabels. */
1756
1757 static void
1758 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1759 struct elf_link_hash_entry *eh,
1760 bfd_boolean force_local)
1761 {
1762 if (force_local)
1763 {
1764 eh->forced_local = 1;
1765 if (eh->dynindx != -1)
1766 {
1767 eh->dynindx = -1;
1768 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1769 eh->dynstr_index);
1770 }
1771
1772 /* PR 16082: Remove version information from hidden symbol. */
1773 eh->verinfo.verdef = NULL;
1774 eh->verinfo.vertree = NULL;
1775 }
1776
1777 /* STT_GNU_IFUNC symbol must go through PLT. */
1778 if (! hppa_elf_hash_entry (eh)->plabel
1779 && eh->type != STT_GNU_IFUNC)
1780 {
1781 eh->needs_plt = 0;
1782 eh->plt = elf_hash_table (info)->init_plt_offset;
1783 }
1784 }
1785
1786 /* Adjust a symbol defined by a dynamic object and referenced by a
1787 regular object. The current definition is in some section of the
1788 dynamic object, but we're not including those sections. We have to
1789 change the definition to something the rest of the link can
1790 understand. */
1791
1792 static bfd_boolean
1793 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1794 struct elf_link_hash_entry *eh)
1795 {
1796 struct elf32_hppa_link_hash_table *htab;
1797 asection *sec, *srel;
1798
1799 /* If this is a function, put it in the procedure linkage table. We
1800 will fill in the contents of the procedure linkage table later. */
1801 if (eh->type == STT_FUNC
1802 || eh->needs_plt)
1803 {
1804 /* If the symbol is used by a plabel, we must allocate a PLT slot.
1805 The refcounts are not reliable when it has been hidden since
1806 hide_symbol can be called before the plabel flag is set. */
1807 if (hppa_elf_hash_entry (eh)->plabel
1808 && eh->plt.refcount <= 0)
1809 eh->plt.refcount = 1;
1810
1811 if (eh->plt.refcount <= 0
1812 || (eh->def_regular
1813 && eh->root.type != bfd_link_hash_defweak
1814 && ! hppa_elf_hash_entry (eh)->plabel
1815 && (!bfd_link_pic (info) || SYMBOLIC_BIND (info, eh))))
1816 {
1817 /* The .plt entry is not needed when:
1818 a) Garbage collection has removed all references to the
1819 symbol, or
1820 b) We know for certain the symbol is defined in this
1821 object, and it's not a weak definition, nor is the symbol
1822 used by a plabel relocation. Either this object is the
1823 application or we are doing a shared symbolic link. */
1824
1825 eh->plt.offset = (bfd_vma) -1;
1826 eh->needs_plt = 0;
1827 }
1828
1829 return TRUE;
1830 }
1831 else
1832 eh->plt.offset = (bfd_vma) -1;
1833
1834 /* If this is a weak symbol, and there is a real definition, the
1835 processor independent code will have arranged for us to see the
1836 real definition first, and we can just use the same value. */
1837 if (eh->u.weakdef != NULL)
1838 {
1839 if (eh->u.weakdef->root.type != bfd_link_hash_defined
1840 && eh->u.weakdef->root.type != bfd_link_hash_defweak)
1841 abort ();
1842 eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1843 eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1844 if (ELIMINATE_COPY_RELOCS)
1845 eh->non_got_ref = eh->u.weakdef->non_got_ref;
1846 return TRUE;
1847 }
1848
1849 /* This is a reference to a symbol defined by a dynamic object which
1850 is not a function. */
1851
1852 /* If we are creating a shared library, we must presume that the
1853 only references to the symbol are via the global offset table.
1854 For such cases we need not do anything here; the relocations will
1855 be handled correctly by relocate_section. */
1856 if (bfd_link_pic (info))
1857 return TRUE;
1858
1859 /* If there are no references to this symbol that do not use the
1860 GOT, we don't need to generate a copy reloc. */
1861 if (!eh->non_got_ref)
1862 return TRUE;
1863
1864 if (ELIMINATE_COPY_RELOCS)
1865 {
1866 struct elf32_hppa_link_hash_entry *hh;
1867 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1868
1869 hh = hppa_elf_hash_entry (eh);
1870 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
1871 {
1872 sec = hdh_p->sec->output_section;
1873 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1874 break;
1875 }
1876
1877 /* If we didn't find any dynamic relocs in read-only sections, then
1878 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1879 if (hdh_p == NULL)
1880 {
1881 eh->non_got_ref = 0;
1882 return TRUE;
1883 }
1884 }
1885
1886 /* We must allocate the symbol in our .dynbss section, which will
1887 become part of the .bss section of the executable. There will be
1888 an entry for this symbol in the .dynsym section. The dynamic
1889 object will contain position independent code, so all references
1890 from the dynamic object to this symbol will go through the global
1891 offset table. The dynamic linker will use the .dynsym entry to
1892 determine the address it must put in the global offset table, so
1893 both the dynamic object and the regular object will refer to the
1894 same memory location for the variable. */
1895
1896 htab = hppa_link_hash_table (info);
1897 if (htab == NULL)
1898 return FALSE;
1899
1900 /* We must generate a COPY reloc to tell the dynamic linker to
1901 copy the initial value out of the dynamic object and into the
1902 runtime process image. */
1903 if ((eh->root.u.def.section->flags & SEC_READONLY) != 0)
1904 {
1905 sec = htab->etab.sdynrelro;
1906 srel = htab->etab.sreldynrelro;
1907 }
1908 else
1909 {
1910 sec = htab->etab.sdynbss;
1911 srel = htab->etab.srelbss;
1912 }
1913 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0 && eh->size != 0)
1914 {
1915 srel->size += sizeof (Elf32_External_Rela);
1916 eh->needs_copy = 1;
1917 }
1918
1919 return _bfd_elf_adjust_dynamic_copy (info, eh, sec);
1920 }
1921
1922 /* Make an undefined weak symbol dynamic. */
1923
1924 static bfd_boolean
1925 ensure_undef_weak_dynamic (struct bfd_link_info *info,
1926 struct elf_link_hash_entry *eh)
1927 {
1928 if (eh->dynindx == -1
1929 && !eh->forced_local
1930 && eh->type != STT_PARISC_MILLI
1931 && eh->root.type == bfd_link_hash_undefweak
1932 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT)
1933 return bfd_elf_link_record_dynamic_symbol (info, eh);
1934 return TRUE;
1935 }
1936
1937 /* Allocate space in the .plt for entries that won't have relocations.
1938 ie. plabel entries. */
1939
1940 static bfd_boolean
1941 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1942 {
1943 struct bfd_link_info *info;
1944 struct elf32_hppa_link_hash_table *htab;
1945 struct elf32_hppa_link_hash_entry *hh;
1946 asection *sec;
1947
1948 if (eh->root.type == bfd_link_hash_indirect)
1949 return TRUE;
1950
1951 info = (struct bfd_link_info *) inf;
1952 hh = hppa_elf_hash_entry (eh);
1953 htab = hppa_link_hash_table (info);
1954 if (htab == NULL)
1955 return FALSE;
1956
1957 if (htab->etab.dynamic_sections_created
1958 && eh->plt.refcount > 0)
1959 {
1960 if (!ensure_undef_weak_dynamic (info, eh))
1961 return FALSE;
1962
1963 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), eh))
1964 {
1965 /* Allocate these later. From this point on, h->plabel
1966 means that the plt entry is only used by a plabel.
1967 We'll be using a normal plt entry for this symbol, so
1968 clear the plabel indicator. */
1969
1970 hh->plabel = 0;
1971 }
1972 else if (hh->plabel)
1973 {
1974 /* Make an entry in the .plt section for plabel references
1975 that won't have a .plt entry for other reasons. */
1976 sec = htab->etab.splt;
1977 eh->plt.offset = sec->size;
1978 sec->size += PLT_ENTRY_SIZE;
1979 if (bfd_link_pic (info))
1980 htab->etab.srelplt->size += sizeof (Elf32_External_Rela);
1981 }
1982 else
1983 {
1984 /* No .plt entry needed. */
1985 eh->plt.offset = (bfd_vma) -1;
1986 eh->needs_plt = 0;
1987 }
1988 }
1989 else
1990 {
1991 eh->plt.offset = (bfd_vma) -1;
1992 eh->needs_plt = 0;
1993 }
1994
1995 return TRUE;
1996 }
1997
1998 /* Allocate space in .plt, .got and associated reloc sections for
1999 global syms. */
2000
2001 static bfd_boolean
2002 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2003 {
2004 struct bfd_link_info *info;
2005 struct elf32_hppa_link_hash_table *htab;
2006 asection *sec;
2007 struct elf32_hppa_link_hash_entry *hh;
2008 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2009
2010 if (eh->root.type == bfd_link_hash_indirect)
2011 return TRUE;
2012
2013 info = inf;
2014 htab = hppa_link_hash_table (info);
2015 if (htab == NULL)
2016 return FALSE;
2017
2018 hh = hppa_elf_hash_entry (eh);
2019
2020 if (htab->etab.dynamic_sections_created
2021 && eh->plt.offset != (bfd_vma) -1
2022 && !hh->plabel
2023 && eh->plt.refcount > 0)
2024 {
2025 /* Make an entry in the .plt section. */
2026 sec = htab->etab.splt;
2027 eh->plt.offset = sec->size;
2028 sec->size += PLT_ENTRY_SIZE;
2029
2030 /* We also need to make an entry in the .rela.plt section. */
2031 htab->etab.srelplt->size += sizeof (Elf32_External_Rela);
2032 htab->need_plt_stub = 1;
2033 }
2034
2035 if (eh->got.refcount > 0)
2036 {
2037 if (!ensure_undef_weak_dynamic (info, eh))
2038 return FALSE;
2039
2040 sec = htab->etab.sgot;
2041 eh->got.offset = sec->size;
2042 sec->size += GOT_ENTRY_SIZE;
2043 /* R_PARISC_TLS_GD* needs two GOT entries */
2044 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2045 sec->size += GOT_ENTRY_SIZE * 2;
2046 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2047 sec->size += GOT_ENTRY_SIZE;
2048 if (htab->etab.dynamic_sections_created
2049 && (bfd_link_pic (info)
2050 || (eh->dynindx != -1
2051 && !eh->forced_local)))
2052 {
2053 htab->etab.srelgot->size += sizeof (Elf32_External_Rela);
2054 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2055 htab->etab.srelgot->size += 2 * sizeof (Elf32_External_Rela);
2056 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2057 htab->etab.srelgot->size += sizeof (Elf32_External_Rela);
2058 }
2059 }
2060 else
2061 eh->got.offset = (bfd_vma) -1;
2062
2063 if (hh->dyn_relocs == NULL)
2064 return TRUE;
2065
2066 /* If this is a -Bsymbolic shared link, then we need to discard all
2067 space allocated for dynamic pc-relative relocs against symbols
2068 defined in a regular object. For the normal shared case, discard
2069 space for relocs that have become local due to symbol visibility
2070 changes. */
2071 if (bfd_link_pic (info))
2072 {
2073 #if RELATIVE_DYNRELOCS
2074 if (SYMBOL_CALLS_LOCAL (info, eh))
2075 {
2076 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
2077
2078 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2079 {
2080 hdh_p->count -= hdh_p->relative_count;
2081 hdh_p->relative_count = 0;
2082 if (hdh_p->count == 0)
2083 *hdh_pp = hdh_p->hdh_next;
2084 else
2085 hdh_pp = &hdh_p->hdh_next;
2086 }
2087 }
2088 #endif
2089
2090 /* Also discard relocs on undefined weak syms with non-default
2091 visibility. */
2092 if (hh->dyn_relocs != NULL
2093 && eh->root.type == bfd_link_hash_undefweak)
2094 {
2095 if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
2096 hh->dyn_relocs = NULL;
2097
2098 else if (!ensure_undef_weak_dynamic (info, eh))
2099 return FALSE;
2100 }
2101 }
2102 else
2103 {
2104 /* For the non-shared case, discard space for relocs against
2105 symbols which turn out to need copy relocs or are not
2106 dynamic. */
2107
2108 if (!eh->non_got_ref
2109 && ((ELIMINATE_COPY_RELOCS
2110 && eh->def_dynamic
2111 && !eh->def_regular)
2112 || (htab->etab.dynamic_sections_created
2113 && (eh->root.type == bfd_link_hash_undefweak
2114 || eh->root.type == bfd_link_hash_undefined))))
2115 {
2116 if (!ensure_undef_weak_dynamic (info, eh))
2117 return FALSE;
2118
2119 /* If that succeeded, we know we'll be keeping all the
2120 relocs. */
2121 if (eh->dynindx != -1)
2122 goto keep;
2123 }
2124
2125 hh->dyn_relocs = NULL;
2126 return TRUE;
2127
2128 keep: ;
2129 }
2130
2131 /* Finally, allocate space. */
2132 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2133 {
2134 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2135 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2136 }
2137
2138 return TRUE;
2139 }
2140
2141 /* This function is called via elf_link_hash_traverse to force
2142 millicode symbols local so they do not end up as globals in the
2143 dynamic symbol table. We ought to be able to do this in
2144 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2145 for all dynamic symbols. Arguably, this is a bug in
2146 elf_adjust_dynamic_symbol. */
2147
2148 static bfd_boolean
2149 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2150 struct bfd_link_info *info)
2151 {
2152 if (eh->type == STT_PARISC_MILLI
2153 && !eh->forced_local)
2154 {
2155 elf32_hppa_hide_symbol (info, eh, TRUE);
2156 }
2157 return TRUE;
2158 }
2159
2160 /* Find any dynamic relocs that apply to read-only sections. */
2161
2162 static bfd_boolean
2163 readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2164 {
2165 struct elf32_hppa_link_hash_entry *hh;
2166 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2167
2168 hh = hppa_elf_hash_entry (eh);
2169 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2170 {
2171 asection *sec = hdh_p->sec->output_section;
2172
2173 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
2174 {
2175 struct bfd_link_info *info = inf;
2176
2177 info->flags |= DF_TEXTREL;
2178
2179 /* Not an error, just cut short the traversal. */
2180 return FALSE;
2181 }
2182 }
2183 return TRUE;
2184 }
2185
2186 /* Set the sizes of the dynamic sections. */
2187
2188 static bfd_boolean
2189 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2190 struct bfd_link_info *info)
2191 {
2192 struct elf32_hppa_link_hash_table *htab;
2193 bfd *dynobj;
2194 bfd *ibfd;
2195 asection *sec;
2196 bfd_boolean relocs;
2197
2198 htab = hppa_link_hash_table (info);
2199 if (htab == NULL)
2200 return FALSE;
2201
2202 dynobj = htab->etab.dynobj;
2203 if (dynobj == NULL)
2204 abort ();
2205
2206 if (htab->etab.dynamic_sections_created)
2207 {
2208 /* Set the contents of the .interp section to the interpreter. */
2209 if (bfd_link_executable (info) && !info->nointerp)
2210 {
2211 sec = bfd_get_linker_section (dynobj, ".interp");
2212 if (sec == NULL)
2213 abort ();
2214 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2215 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2216 }
2217
2218 /* Force millicode symbols local. */
2219 elf_link_hash_traverse (&htab->etab,
2220 clobber_millicode_symbols,
2221 info);
2222 }
2223
2224 /* Set up .got and .plt offsets for local syms, and space for local
2225 dynamic relocs. */
2226 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
2227 {
2228 bfd_signed_vma *local_got;
2229 bfd_signed_vma *end_local_got;
2230 bfd_signed_vma *local_plt;
2231 bfd_signed_vma *end_local_plt;
2232 bfd_size_type locsymcount;
2233 Elf_Internal_Shdr *symtab_hdr;
2234 asection *srel;
2235 char *local_tls_type;
2236
2237 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2238 continue;
2239
2240 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2241 {
2242 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2243
2244 for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
2245 elf_section_data (sec)->local_dynrel);
2246 hdh_p != NULL;
2247 hdh_p = hdh_p->hdh_next)
2248 {
2249 if (!bfd_is_abs_section (hdh_p->sec)
2250 && bfd_is_abs_section (hdh_p->sec->output_section))
2251 {
2252 /* Input section has been discarded, either because
2253 it is a copy of a linkonce section or due to
2254 linker script /DISCARD/, so we'll be discarding
2255 the relocs too. */
2256 }
2257 else if (hdh_p->count != 0)
2258 {
2259 srel = elf_section_data (hdh_p->sec)->sreloc;
2260 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2261 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2262 info->flags |= DF_TEXTREL;
2263 }
2264 }
2265 }
2266
2267 local_got = elf_local_got_refcounts (ibfd);
2268 if (!local_got)
2269 continue;
2270
2271 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2272 locsymcount = symtab_hdr->sh_info;
2273 end_local_got = local_got + locsymcount;
2274 local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2275 sec = htab->etab.sgot;
2276 srel = htab->etab.srelgot;
2277 for (; local_got < end_local_got; ++local_got)
2278 {
2279 if (*local_got > 0)
2280 {
2281 *local_got = sec->size;
2282 sec->size += GOT_ENTRY_SIZE;
2283 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2284 sec->size += 2 * GOT_ENTRY_SIZE;
2285 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2286 sec->size += GOT_ENTRY_SIZE;
2287 if (bfd_link_pic (info))
2288 {
2289 srel->size += sizeof (Elf32_External_Rela);
2290 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2291 srel->size += 2 * sizeof (Elf32_External_Rela);
2292 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2293 srel->size += sizeof (Elf32_External_Rela);
2294 }
2295 }
2296 else
2297 *local_got = (bfd_vma) -1;
2298
2299 ++local_tls_type;
2300 }
2301
2302 local_plt = end_local_got;
2303 end_local_plt = local_plt + locsymcount;
2304 if (! htab->etab.dynamic_sections_created)
2305 {
2306 /* Won't be used, but be safe. */
2307 for (; local_plt < end_local_plt; ++local_plt)
2308 *local_plt = (bfd_vma) -1;
2309 }
2310 else
2311 {
2312 sec = htab->etab.splt;
2313 srel = htab->etab.srelplt;
2314 for (; local_plt < end_local_plt; ++local_plt)
2315 {
2316 if (*local_plt > 0)
2317 {
2318 *local_plt = sec->size;
2319 sec->size += PLT_ENTRY_SIZE;
2320 if (bfd_link_pic (info))
2321 srel->size += sizeof (Elf32_External_Rela);
2322 }
2323 else
2324 *local_plt = (bfd_vma) -1;
2325 }
2326 }
2327 }
2328
2329 if (htab->tls_ldm_got.refcount > 0)
2330 {
2331 /* Allocate 2 got entries and 1 dynamic reloc for
2332 R_PARISC_TLS_DTPMOD32 relocs. */
2333 htab->tls_ldm_got.offset = htab->etab.sgot->size;
2334 htab->etab.sgot->size += (GOT_ENTRY_SIZE * 2);
2335 htab->etab.srelgot->size += sizeof (Elf32_External_Rela);
2336 }
2337 else
2338 htab->tls_ldm_got.offset = -1;
2339
2340 /* Do all the .plt entries without relocs first. The dynamic linker
2341 uses the last .plt reloc to find the end of the .plt (and hence
2342 the start of the .got) for lazy linking. */
2343 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2344
2345 /* Allocate global sym .plt and .got entries, and space for global
2346 sym dynamic relocs. */
2347 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2348
2349 /* The check_relocs and adjust_dynamic_symbol entry points have
2350 determined the sizes of the various dynamic sections. Allocate
2351 memory for them. */
2352 relocs = FALSE;
2353 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2354 {
2355 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2356 continue;
2357
2358 if (sec == htab->etab.splt)
2359 {
2360 if (htab->need_plt_stub)
2361 {
2362 /* Make space for the plt stub at the end of the .plt
2363 section. We want this stub right at the end, up
2364 against the .got section. */
2365 int gotalign = bfd_section_alignment (dynobj, htab->etab.sgot);
2366 int pltalign = bfd_section_alignment (dynobj, sec);
2367 bfd_size_type mask;
2368
2369 if (gotalign > pltalign)
2370 (void) bfd_set_section_alignment (dynobj, sec, gotalign);
2371 mask = ((bfd_size_type) 1 << gotalign) - 1;
2372 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2373 }
2374 }
2375 else if (sec == htab->etab.sgot
2376 || sec == htab->etab.sdynbss
2377 || sec == htab->etab.sdynrelro)
2378 ;
2379 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
2380 {
2381 if (sec->size != 0)
2382 {
2383 /* Remember whether there are any reloc sections other
2384 than .rela.plt. */
2385 if (sec != htab->etab.srelplt)
2386 relocs = TRUE;
2387
2388 /* We use the reloc_count field as a counter if we need
2389 to copy relocs into the output file. */
2390 sec->reloc_count = 0;
2391 }
2392 }
2393 else
2394 {
2395 /* It's not one of our sections, so don't allocate space. */
2396 continue;
2397 }
2398
2399 if (sec->size == 0)
2400 {
2401 /* If we don't need this section, strip it from the
2402 output file. This is mostly to handle .rela.bss and
2403 .rela.plt. We must create both sections in
2404 create_dynamic_sections, because they must be created
2405 before the linker maps input sections to output
2406 sections. The linker does that before
2407 adjust_dynamic_symbol is called, and it is that
2408 function which decides whether anything needs to go
2409 into these sections. */
2410 sec->flags |= SEC_EXCLUDE;
2411 continue;
2412 }
2413
2414 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2415 continue;
2416
2417 /* Allocate memory for the section contents. Zero it, because
2418 we may not fill in all the reloc sections. */
2419 sec->contents = bfd_zalloc (dynobj, sec->size);
2420 if (sec->contents == NULL)
2421 return FALSE;
2422 }
2423
2424 if (htab->etab.dynamic_sections_created)
2425 {
2426 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2427 actually has nothing to do with the PLT, it is how we
2428 communicate the LTP value of a load module to the dynamic
2429 linker. */
2430 #define add_dynamic_entry(TAG, VAL) \
2431 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2432
2433 if (!add_dynamic_entry (DT_PLTGOT, 0))
2434 return FALSE;
2435
2436 /* Add some entries to the .dynamic section. We fill in the
2437 values later, in elf32_hppa_finish_dynamic_sections, but we
2438 must add the entries now so that we get the correct size for
2439 the .dynamic section. The DT_DEBUG entry is filled in by the
2440 dynamic linker and used by the debugger. */
2441 if (bfd_link_executable (info))
2442 {
2443 if (!add_dynamic_entry (DT_DEBUG, 0))
2444 return FALSE;
2445 }
2446
2447 if (htab->etab.srelplt->size != 0)
2448 {
2449 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2450 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2451 || !add_dynamic_entry (DT_JMPREL, 0))
2452 return FALSE;
2453 }
2454
2455 if (relocs)
2456 {
2457 if (!add_dynamic_entry (DT_RELA, 0)
2458 || !add_dynamic_entry (DT_RELASZ, 0)
2459 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2460 return FALSE;
2461
2462 /* If any dynamic relocs apply to a read-only section,
2463 then we need a DT_TEXTREL entry. */
2464 if ((info->flags & DF_TEXTREL) == 0)
2465 elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info);
2466
2467 if ((info->flags & DF_TEXTREL) != 0)
2468 {
2469 if (!add_dynamic_entry (DT_TEXTREL, 0))
2470 return FALSE;
2471 }
2472 }
2473 }
2474 #undef add_dynamic_entry
2475
2476 return TRUE;
2477 }
2478
2479 /* External entry points for sizing and building linker stubs. */
2480
2481 /* Set up various things so that we can make a list of input sections
2482 for each output section included in the link. Returns -1 on error,
2483 0 when no stubs will be needed, and 1 on success. */
2484
2485 int
2486 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2487 {
2488 bfd *input_bfd;
2489 unsigned int bfd_count;
2490 unsigned int top_id, top_index;
2491 asection *section;
2492 asection **input_list, **list;
2493 bfd_size_type amt;
2494 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2495
2496 if (htab == NULL)
2497 return -1;
2498
2499 /* Count the number of input BFDs and find the top input section id. */
2500 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2501 input_bfd != NULL;
2502 input_bfd = input_bfd->link.next)
2503 {
2504 bfd_count += 1;
2505 for (section = input_bfd->sections;
2506 section != NULL;
2507 section = section->next)
2508 {
2509 if (top_id < section->id)
2510 top_id = section->id;
2511 }
2512 }
2513 htab->bfd_count = bfd_count;
2514
2515 amt = sizeof (struct map_stub) * (top_id + 1);
2516 htab->stub_group = bfd_zmalloc (amt);
2517 if (htab->stub_group == NULL)
2518 return -1;
2519
2520 /* We can't use output_bfd->section_count here to find the top output
2521 section index as some sections may have been removed, and
2522 strip_excluded_output_sections doesn't renumber the indices. */
2523 for (section = output_bfd->sections, top_index = 0;
2524 section != NULL;
2525 section = section->next)
2526 {
2527 if (top_index < section->index)
2528 top_index = section->index;
2529 }
2530
2531 htab->top_index = top_index;
2532 amt = sizeof (asection *) * (top_index + 1);
2533 input_list = bfd_malloc (amt);
2534 htab->input_list = input_list;
2535 if (input_list == NULL)
2536 return -1;
2537
2538 /* For sections we aren't interested in, mark their entries with a
2539 value we can check later. */
2540 list = input_list + top_index;
2541 do
2542 *list = bfd_abs_section_ptr;
2543 while (list-- != input_list);
2544
2545 for (section = output_bfd->sections;
2546 section != NULL;
2547 section = section->next)
2548 {
2549 if ((section->flags & SEC_CODE) != 0)
2550 input_list[section->index] = NULL;
2551 }
2552
2553 return 1;
2554 }
2555
2556 /* The linker repeatedly calls this function for each input section,
2557 in the order that input sections are linked into output sections.
2558 Build lists of input sections to determine groupings between which
2559 we may insert linker stubs. */
2560
2561 void
2562 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2563 {
2564 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2565
2566 if (htab == NULL)
2567 return;
2568
2569 if (isec->output_section->index <= htab->top_index)
2570 {
2571 asection **list = htab->input_list + isec->output_section->index;
2572 if (*list != bfd_abs_section_ptr)
2573 {
2574 /* Steal the link_sec pointer for our list. */
2575 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2576 /* This happens to make the list in reverse order,
2577 which is what we want. */
2578 PREV_SEC (isec) = *list;
2579 *list = isec;
2580 }
2581 }
2582 }
2583
2584 /* See whether we can group stub sections together. Grouping stub
2585 sections may result in fewer stubs. More importantly, we need to
2586 put all .init* and .fini* stubs at the beginning of the .init or
2587 .fini output sections respectively, because glibc splits the
2588 _init and _fini functions into multiple parts. Putting a stub in
2589 the middle of a function is not a good idea. */
2590
2591 static void
2592 group_sections (struct elf32_hppa_link_hash_table *htab,
2593 bfd_size_type stub_group_size,
2594 bfd_boolean stubs_always_before_branch)
2595 {
2596 asection **list = htab->input_list + htab->top_index;
2597 do
2598 {
2599 asection *tail = *list;
2600 if (tail == bfd_abs_section_ptr)
2601 continue;
2602 while (tail != NULL)
2603 {
2604 asection *curr;
2605 asection *prev;
2606 bfd_size_type total;
2607 bfd_boolean big_sec;
2608
2609 curr = tail;
2610 total = tail->size;
2611 big_sec = total >= stub_group_size;
2612
2613 while ((prev = PREV_SEC (curr)) != NULL
2614 && ((total += curr->output_offset - prev->output_offset)
2615 < stub_group_size))
2616 curr = prev;
2617
2618 /* OK, the size from the start of CURR to the end is less
2619 than 240000 bytes and thus can be handled by one stub
2620 section. (or the tail section is itself larger than
2621 240000 bytes, in which case we may be toast.)
2622 We should really be keeping track of the total size of
2623 stubs added here, as stubs contribute to the final output
2624 section size. That's a little tricky, and this way will
2625 only break if stubs added total more than 22144 bytes, or
2626 2768 long branch stubs. It seems unlikely for more than
2627 2768 different functions to be called, especially from
2628 code only 240000 bytes long. This limit used to be
2629 250000, but c++ code tends to generate lots of little
2630 functions, and sometimes violated the assumption. */
2631 do
2632 {
2633 prev = PREV_SEC (tail);
2634 /* Set up this stub group. */
2635 htab->stub_group[tail->id].link_sec = curr;
2636 }
2637 while (tail != curr && (tail = prev) != NULL);
2638
2639 /* But wait, there's more! Input sections up to 240000
2640 bytes before the stub section can be handled by it too.
2641 Don't do this if we have a really large section after the
2642 stubs, as adding more stubs increases the chance that
2643 branches may not reach into the stub section. */
2644 if (!stubs_always_before_branch && !big_sec)
2645 {
2646 total = 0;
2647 while (prev != NULL
2648 && ((total += tail->output_offset - prev->output_offset)
2649 < stub_group_size))
2650 {
2651 tail = prev;
2652 prev = PREV_SEC (tail);
2653 htab->stub_group[tail->id].link_sec = curr;
2654 }
2655 }
2656 tail = prev;
2657 }
2658 }
2659 while (list-- != htab->input_list);
2660 free (htab->input_list);
2661 #undef PREV_SEC
2662 }
2663
2664 /* Read in all local syms for all input bfds, and create hash entries
2665 for export stubs if we are building a multi-subspace shared lib.
2666 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2667
2668 static int
2669 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2670 {
2671 unsigned int bfd_indx;
2672 Elf_Internal_Sym *local_syms, **all_local_syms;
2673 int stub_changed = 0;
2674 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2675
2676 if (htab == NULL)
2677 return -1;
2678
2679 /* We want to read in symbol extension records only once. To do this
2680 we need to read in the local symbols in parallel and save them for
2681 later use; so hold pointers to the local symbols in an array. */
2682 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2683 all_local_syms = bfd_zmalloc (amt);
2684 htab->all_local_syms = all_local_syms;
2685 if (all_local_syms == NULL)
2686 return -1;
2687
2688 /* Walk over all the input BFDs, swapping in local symbols.
2689 If we are creating a shared library, create hash entries for the
2690 export stubs. */
2691 for (bfd_indx = 0;
2692 input_bfd != NULL;
2693 input_bfd = input_bfd->link.next, bfd_indx++)
2694 {
2695 Elf_Internal_Shdr *symtab_hdr;
2696
2697 /* We'll need the symbol table in a second. */
2698 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2699 if (symtab_hdr->sh_info == 0)
2700 continue;
2701
2702 /* We need an array of the local symbols attached to the input bfd. */
2703 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2704 if (local_syms == NULL)
2705 {
2706 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2707 symtab_hdr->sh_info, 0,
2708 NULL, NULL, NULL);
2709 /* Cache them for elf_link_input_bfd. */
2710 symtab_hdr->contents = (unsigned char *) local_syms;
2711 }
2712 if (local_syms == NULL)
2713 return -1;
2714
2715 all_local_syms[bfd_indx] = local_syms;
2716
2717 if (bfd_link_pic (info) && htab->multi_subspace)
2718 {
2719 struct elf_link_hash_entry **eh_syms;
2720 struct elf_link_hash_entry **eh_symend;
2721 unsigned int symcount;
2722
2723 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2724 - symtab_hdr->sh_info);
2725 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2726 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2727
2728 /* Look through the global syms for functions; We need to
2729 build export stubs for all globally visible functions. */
2730 for (; eh_syms < eh_symend; eh_syms++)
2731 {
2732 struct elf32_hppa_link_hash_entry *hh;
2733
2734 hh = hppa_elf_hash_entry (*eh_syms);
2735
2736 while (hh->eh.root.type == bfd_link_hash_indirect
2737 || hh->eh.root.type == bfd_link_hash_warning)
2738 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2739
2740 /* At this point in the link, undefined syms have been
2741 resolved, so we need to check that the symbol was
2742 defined in this BFD. */
2743 if ((hh->eh.root.type == bfd_link_hash_defined
2744 || hh->eh.root.type == bfd_link_hash_defweak)
2745 && hh->eh.type == STT_FUNC
2746 && hh->eh.root.u.def.section->output_section != NULL
2747 && (hh->eh.root.u.def.section->output_section->owner
2748 == output_bfd)
2749 && hh->eh.root.u.def.section->owner == input_bfd
2750 && hh->eh.def_regular
2751 && !hh->eh.forced_local
2752 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2753 {
2754 asection *sec;
2755 const char *stub_name;
2756 struct elf32_hppa_stub_hash_entry *hsh;
2757
2758 sec = hh->eh.root.u.def.section;
2759 stub_name = hh_name (hh);
2760 hsh = hppa_stub_hash_lookup (&htab->bstab,
2761 stub_name,
2762 FALSE, FALSE);
2763 if (hsh == NULL)
2764 {
2765 hsh = hppa_add_stub (stub_name, sec, htab);
2766 if (!hsh)
2767 return -1;
2768
2769 hsh->target_value = hh->eh.root.u.def.value;
2770 hsh->target_section = hh->eh.root.u.def.section;
2771 hsh->stub_type = hppa_stub_export;
2772 hsh->hh = hh;
2773 stub_changed = 1;
2774 }
2775 else
2776 {
2777 /* xgettext:c-format */
2778 _bfd_error_handler (_("%B: duplicate export stub %s"),
2779 input_bfd, stub_name);
2780 }
2781 }
2782 }
2783 }
2784 }
2785
2786 return stub_changed;
2787 }
2788
2789 /* Determine and set the size of the stub section for a final link.
2790
2791 The basic idea here is to examine all the relocations looking for
2792 PC-relative calls to a target that is unreachable with a "bl"
2793 instruction. */
2794
2795 bfd_boolean
2796 elf32_hppa_size_stubs
2797 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2798 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2799 asection * (*add_stub_section) (const char *, asection *),
2800 void (*layout_sections_again) (void))
2801 {
2802 bfd_size_type stub_group_size;
2803 bfd_boolean stubs_always_before_branch;
2804 bfd_boolean stub_changed;
2805 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2806
2807 if (htab == NULL)
2808 return FALSE;
2809
2810 /* Stash our params away. */
2811 htab->stub_bfd = stub_bfd;
2812 htab->multi_subspace = multi_subspace;
2813 htab->add_stub_section = add_stub_section;
2814 htab->layout_sections_again = layout_sections_again;
2815 stubs_always_before_branch = group_size < 0;
2816 if (group_size < 0)
2817 stub_group_size = -group_size;
2818 else
2819 stub_group_size = group_size;
2820 if (stub_group_size == 1)
2821 {
2822 /* Default values. */
2823 if (stubs_always_before_branch)
2824 {
2825 stub_group_size = 7680000;
2826 if (htab->has_17bit_branch || htab->multi_subspace)
2827 stub_group_size = 240000;
2828 if (htab->has_12bit_branch)
2829 stub_group_size = 7500;
2830 }
2831 else
2832 {
2833 stub_group_size = 6971392;
2834 if (htab->has_17bit_branch || htab->multi_subspace)
2835 stub_group_size = 217856;
2836 if (htab->has_12bit_branch)
2837 stub_group_size = 6808;
2838 }
2839 }
2840
2841 group_sections (htab, stub_group_size, stubs_always_before_branch);
2842
2843 switch (get_local_syms (output_bfd, info->input_bfds, info))
2844 {
2845 default:
2846 if (htab->all_local_syms)
2847 goto error_ret_free_local;
2848 return FALSE;
2849
2850 case 0:
2851 stub_changed = FALSE;
2852 break;
2853
2854 case 1:
2855 stub_changed = TRUE;
2856 break;
2857 }
2858
2859 while (1)
2860 {
2861 bfd *input_bfd;
2862 unsigned int bfd_indx;
2863 asection *stub_sec;
2864
2865 for (input_bfd = info->input_bfds, bfd_indx = 0;
2866 input_bfd != NULL;
2867 input_bfd = input_bfd->link.next, bfd_indx++)
2868 {
2869 Elf_Internal_Shdr *symtab_hdr;
2870 asection *section;
2871 Elf_Internal_Sym *local_syms;
2872
2873 /* We'll need the symbol table in a second. */
2874 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2875 if (symtab_hdr->sh_info == 0)
2876 continue;
2877
2878 local_syms = htab->all_local_syms[bfd_indx];
2879
2880 /* Walk over each section attached to the input bfd. */
2881 for (section = input_bfd->sections;
2882 section != NULL;
2883 section = section->next)
2884 {
2885 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2886
2887 /* If there aren't any relocs, then there's nothing more
2888 to do. */
2889 if ((section->flags & SEC_RELOC) == 0
2890 || section->reloc_count == 0)
2891 continue;
2892
2893 /* If this section is a link-once section that will be
2894 discarded, then don't create any stubs. */
2895 if (section->output_section == NULL
2896 || section->output_section->owner != output_bfd)
2897 continue;
2898
2899 /* Get the relocs. */
2900 internal_relocs
2901 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2902 info->keep_memory);
2903 if (internal_relocs == NULL)
2904 goto error_ret_free_local;
2905
2906 /* Now examine each relocation. */
2907 irela = internal_relocs;
2908 irelaend = irela + section->reloc_count;
2909 for (; irela < irelaend; irela++)
2910 {
2911 unsigned int r_type, r_indx;
2912 enum elf32_hppa_stub_type stub_type;
2913 struct elf32_hppa_stub_hash_entry *hsh;
2914 asection *sym_sec;
2915 bfd_vma sym_value;
2916 bfd_vma destination;
2917 struct elf32_hppa_link_hash_entry *hh;
2918 char *stub_name;
2919 const asection *id_sec;
2920
2921 r_type = ELF32_R_TYPE (irela->r_info);
2922 r_indx = ELF32_R_SYM (irela->r_info);
2923
2924 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2925 {
2926 bfd_set_error (bfd_error_bad_value);
2927 error_ret_free_internal:
2928 if (elf_section_data (section)->relocs == NULL)
2929 free (internal_relocs);
2930 goto error_ret_free_local;
2931 }
2932
2933 /* Only look for stubs on call instructions. */
2934 if (r_type != (unsigned int) R_PARISC_PCREL12F
2935 && r_type != (unsigned int) R_PARISC_PCREL17F
2936 && r_type != (unsigned int) R_PARISC_PCREL22F)
2937 continue;
2938
2939 /* Now determine the call target, its name, value,
2940 section. */
2941 sym_sec = NULL;
2942 sym_value = 0;
2943 destination = 0;
2944 hh = NULL;
2945 if (r_indx < symtab_hdr->sh_info)
2946 {
2947 /* It's a local symbol. */
2948 Elf_Internal_Sym *sym;
2949 Elf_Internal_Shdr *hdr;
2950 unsigned int shndx;
2951
2952 sym = local_syms + r_indx;
2953 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2954 sym_value = sym->st_value;
2955 shndx = sym->st_shndx;
2956 if (shndx < elf_numsections (input_bfd))
2957 {
2958 hdr = elf_elfsections (input_bfd)[shndx];
2959 sym_sec = hdr->bfd_section;
2960 destination = (sym_value + irela->r_addend
2961 + sym_sec->output_offset
2962 + sym_sec->output_section->vma);
2963 }
2964 }
2965 else
2966 {
2967 /* It's an external symbol. */
2968 int e_indx;
2969
2970 e_indx = r_indx - symtab_hdr->sh_info;
2971 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2972
2973 while (hh->eh.root.type == bfd_link_hash_indirect
2974 || hh->eh.root.type == bfd_link_hash_warning)
2975 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2976
2977 if (hh->eh.root.type == bfd_link_hash_defined
2978 || hh->eh.root.type == bfd_link_hash_defweak)
2979 {
2980 sym_sec = hh->eh.root.u.def.section;
2981 sym_value = hh->eh.root.u.def.value;
2982 if (sym_sec->output_section != NULL)
2983 destination = (sym_value + irela->r_addend
2984 + sym_sec->output_offset
2985 + sym_sec->output_section->vma);
2986 }
2987 else if (hh->eh.root.type == bfd_link_hash_undefweak)
2988 {
2989 if (! bfd_link_pic (info))
2990 continue;
2991 }
2992 else if (hh->eh.root.type == bfd_link_hash_undefined)
2993 {
2994 if (! (info->unresolved_syms_in_objects == RM_IGNORE
2995 && (ELF_ST_VISIBILITY (hh->eh.other)
2996 == STV_DEFAULT)
2997 && hh->eh.type != STT_PARISC_MILLI))
2998 continue;
2999 }
3000 else
3001 {
3002 bfd_set_error (bfd_error_bad_value);
3003 goto error_ret_free_internal;
3004 }
3005 }
3006
3007 /* Determine what (if any) linker stub is needed. */
3008 stub_type = hppa_type_of_stub (section, irela, hh,
3009 destination, info);
3010 if (stub_type == hppa_stub_none)
3011 continue;
3012
3013 /* Support for grouping stub sections. */
3014 id_sec = htab->stub_group[section->id].link_sec;
3015
3016 /* Get the name of this stub. */
3017 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
3018 if (!stub_name)
3019 goto error_ret_free_internal;
3020
3021 hsh = hppa_stub_hash_lookup (&htab->bstab,
3022 stub_name,
3023 FALSE, FALSE);
3024 if (hsh != NULL)
3025 {
3026 /* The proper stub has already been created. */
3027 free (stub_name);
3028 continue;
3029 }
3030
3031 hsh = hppa_add_stub (stub_name, section, htab);
3032 if (hsh == NULL)
3033 {
3034 free (stub_name);
3035 goto error_ret_free_internal;
3036 }
3037
3038 hsh->target_value = sym_value;
3039 hsh->target_section = sym_sec;
3040 hsh->stub_type = stub_type;
3041 if (bfd_link_pic (info))
3042 {
3043 if (stub_type == hppa_stub_import)
3044 hsh->stub_type = hppa_stub_import_shared;
3045 else if (stub_type == hppa_stub_long_branch)
3046 hsh->stub_type = hppa_stub_long_branch_shared;
3047 }
3048 hsh->hh = hh;
3049 stub_changed = TRUE;
3050 }
3051
3052 /* We're done with the internal relocs, free them. */
3053 if (elf_section_data (section)->relocs == NULL)
3054 free (internal_relocs);
3055 }
3056 }
3057
3058 if (!stub_changed)
3059 break;
3060
3061 /* OK, we've added some stubs. Find out the new size of the
3062 stub sections. */
3063 for (stub_sec = htab->stub_bfd->sections;
3064 stub_sec != NULL;
3065 stub_sec = stub_sec->next)
3066 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
3067 stub_sec->size = 0;
3068
3069 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
3070
3071 /* Ask the linker to do its stuff. */
3072 (*htab->layout_sections_again) ();
3073 stub_changed = FALSE;
3074 }
3075
3076 free (htab->all_local_syms);
3077 return TRUE;
3078
3079 error_ret_free_local:
3080 free (htab->all_local_syms);
3081 return FALSE;
3082 }
3083
3084 /* For a final link, this function is called after we have sized the
3085 stubs to provide a value for __gp. */
3086
3087 bfd_boolean
3088 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
3089 {
3090 struct bfd_link_hash_entry *h;
3091 asection *sec = NULL;
3092 bfd_vma gp_val = 0;
3093
3094 h = bfd_link_hash_lookup (info->hash, "$global$", FALSE, FALSE, FALSE);
3095
3096 if (h != NULL
3097 && (h->type == bfd_link_hash_defined
3098 || h->type == bfd_link_hash_defweak))
3099 {
3100 gp_val = h->u.def.value;
3101 sec = h->u.def.section;
3102 }
3103 else
3104 {
3105 asection *splt = bfd_get_section_by_name (abfd, ".plt");
3106 asection *sgot = bfd_get_section_by_name (abfd, ".got");
3107
3108 /* Choose to point our LTP at, in this order, one of .plt, .got,
3109 or .data, if these sections exist. In the case of choosing
3110 .plt try to make the LTP ideal for addressing anywhere in the
3111 .plt or .got with a 14 bit signed offset. Typically, the end
3112 of the .plt is the start of the .got, so choose .plt + 0x2000
3113 if either the .plt or .got is larger than 0x2000. If both
3114 the .plt and .got are smaller than 0x2000, choose the end of
3115 the .plt section. */
3116 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3117 ? NULL : splt;
3118 if (sec != NULL)
3119 {
3120 gp_val = sec->size;
3121 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3122 {
3123 gp_val = 0x2000;
3124 }
3125 }
3126 else
3127 {
3128 sec = sgot;
3129 if (sec != NULL)
3130 {
3131 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3132 {
3133 /* We know we don't have a .plt. If .got is large,
3134 offset our LTP. */
3135 if (sec->size > 0x2000)
3136 gp_val = 0x2000;
3137 }
3138 }
3139 else
3140 {
3141 /* No .plt or .got. Who cares what the LTP is? */
3142 sec = bfd_get_section_by_name (abfd, ".data");
3143 }
3144 }
3145
3146 if (h != NULL)
3147 {
3148 h->type = bfd_link_hash_defined;
3149 h->u.def.value = gp_val;
3150 if (sec != NULL)
3151 h->u.def.section = sec;
3152 else
3153 h->u.def.section = bfd_abs_section_ptr;
3154 }
3155 }
3156
3157 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
3158 {
3159 if (sec != NULL && sec->output_section != NULL)
3160 gp_val += sec->output_section->vma + sec->output_offset;
3161
3162 elf_gp (abfd) = gp_val;
3163 }
3164 return TRUE;
3165 }
3166
3167 /* Build all the stubs associated with the current output file. The
3168 stubs are kept in a hash table attached to the main linker hash
3169 table. We also set up the .plt entries for statically linked PIC
3170 functions here. This function is called via hppaelf_finish in the
3171 linker. */
3172
3173 bfd_boolean
3174 elf32_hppa_build_stubs (struct bfd_link_info *info)
3175 {
3176 asection *stub_sec;
3177 struct bfd_hash_table *table;
3178 struct elf32_hppa_link_hash_table *htab;
3179
3180 htab = hppa_link_hash_table (info);
3181 if (htab == NULL)
3182 return FALSE;
3183
3184 for (stub_sec = htab->stub_bfd->sections;
3185 stub_sec != NULL;
3186 stub_sec = stub_sec->next)
3187 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
3188 && stub_sec->size != 0)
3189 {
3190 /* Allocate memory to hold the linker stubs. */
3191 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
3192 if (stub_sec->contents == NULL)
3193 return FALSE;
3194 stub_sec->size = 0;
3195 }
3196
3197 /* Build the stubs as directed by the stub hash table. */
3198 table = &htab->bstab;
3199 bfd_hash_traverse (table, hppa_build_one_stub, info);
3200
3201 return TRUE;
3202 }
3203
3204 /* Return the base vma address which should be subtracted from the real
3205 address when resolving a dtpoff relocation.
3206 This is PT_TLS segment p_vaddr. */
3207
3208 static bfd_vma
3209 dtpoff_base (struct bfd_link_info *info)
3210 {
3211 /* If tls_sec is NULL, we should have signalled an error already. */
3212 if (elf_hash_table (info)->tls_sec == NULL)
3213 return 0;
3214 return elf_hash_table (info)->tls_sec->vma;
3215 }
3216
3217 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3218
3219 static bfd_vma
3220 tpoff (struct bfd_link_info *info, bfd_vma address)
3221 {
3222 struct elf_link_hash_table *htab = elf_hash_table (info);
3223
3224 /* If tls_sec is NULL, we should have signalled an error already. */
3225 if (htab->tls_sec == NULL)
3226 return 0;
3227 /* hppa TLS ABI is variant I and static TLS block start just after
3228 tcbhead structure which has 2 pointer fields. */
3229 return (address - htab->tls_sec->vma
3230 + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3231 }
3232
3233 /* Perform a final link. */
3234
3235 static bfd_boolean
3236 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3237 {
3238 struct stat buf;
3239
3240 /* Invoke the regular ELF linker to do all the work. */
3241 if (!bfd_elf_final_link (abfd, info))
3242 return FALSE;
3243
3244 /* If we're producing a final executable, sort the contents of the
3245 unwind section. */
3246 if (bfd_link_relocatable (info))
3247 return TRUE;
3248
3249 /* Do not attempt to sort non-regular files. This is here
3250 especially for configure scripts and kernel builds which run
3251 tests with "ld [...] -o /dev/null". */
3252 if (stat (abfd->filename, &buf) != 0
3253 || !S_ISREG(buf.st_mode))
3254 return TRUE;
3255
3256 return elf_hppa_sort_unwind (abfd);
3257 }
3258
3259 /* Record the lowest address for the data and text segments. */
3260
3261 static void
3262 hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
3263 {
3264 struct elf32_hppa_link_hash_table *htab;
3265
3266 htab = (struct elf32_hppa_link_hash_table*) data;
3267 if (htab == NULL)
3268 return;
3269
3270 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3271 {
3272 bfd_vma value;
3273 Elf_Internal_Phdr *p;
3274
3275 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
3276 BFD_ASSERT (p != NULL);
3277 value = p->p_vaddr;
3278
3279 if ((section->flags & SEC_READONLY) != 0)
3280 {
3281 if (value < htab->text_segment_base)
3282 htab->text_segment_base = value;
3283 }
3284 else
3285 {
3286 if (value < htab->data_segment_base)
3287 htab->data_segment_base = value;
3288 }
3289 }
3290 }
3291
3292 /* Perform a relocation as part of a final link. */
3293
3294 static bfd_reloc_status_type
3295 final_link_relocate (asection *input_section,
3296 bfd_byte *contents,
3297 const Elf_Internal_Rela *rela,
3298 bfd_vma value,
3299 struct elf32_hppa_link_hash_table *htab,
3300 asection *sym_sec,
3301 struct elf32_hppa_link_hash_entry *hh,
3302 struct bfd_link_info *info)
3303 {
3304 int insn;
3305 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3306 unsigned int orig_r_type = r_type;
3307 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3308 int r_format = howto->bitsize;
3309 enum hppa_reloc_field_selector_type_alt r_field;
3310 bfd *input_bfd = input_section->owner;
3311 bfd_vma offset = rela->r_offset;
3312 bfd_vma max_branch_offset = 0;
3313 bfd_byte *hit_data = contents + offset;
3314 bfd_signed_vma addend = rela->r_addend;
3315 bfd_vma location;
3316 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3317 int val;
3318
3319 if (r_type == R_PARISC_NONE)
3320 return bfd_reloc_ok;
3321
3322 insn = bfd_get_32 (input_bfd, hit_data);
3323
3324 /* Find out where we are and where we're going. */
3325 location = (offset +
3326 input_section->output_offset +
3327 input_section->output_section->vma);
3328
3329 /* If we are not building a shared library, convert DLTIND relocs to
3330 DPREL relocs. */
3331 if (!bfd_link_pic (info))
3332 {
3333 switch (r_type)
3334 {
3335 case R_PARISC_DLTIND21L:
3336 case R_PARISC_TLS_GD21L:
3337 case R_PARISC_TLS_LDM21L:
3338 case R_PARISC_TLS_IE21L:
3339 r_type = R_PARISC_DPREL21L;
3340 break;
3341
3342 case R_PARISC_DLTIND14R:
3343 case R_PARISC_TLS_GD14R:
3344 case R_PARISC_TLS_LDM14R:
3345 case R_PARISC_TLS_IE14R:
3346 r_type = R_PARISC_DPREL14R;
3347 break;
3348
3349 case R_PARISC_DLTIND14F:
3350 r_type = R_PARISC_DPREL14F;
3351 break;
3352 }
3353 }
3354
3355 switch (r_type)
3356 {
3357 case R_PARISC_PCREL12F:
3358 case R_PARISC_PCREL17F:
3359 case R_PARISC_PCREL22F:
3360 /* If this call should go via the plt, find the import stub in
3361 the stub hash. */
3362 if (sym_sec == NULL
3363 || sym_sec->output_section == NULL
3364 || (hh != NULL
3365 && hh->eh.plt.offset != (bfd_vma) -1
3366 && hh->eh.dynindx != -1
3367 && !hh->plabel
3368 && (bfd_link_pic (info)
3369 || !hh->eh.def_regular
3370 || hh->eh.root.type == bfd_link_hash_defweak)))
3371 {
3372 hsh = hppa_get_stub_entry (input_section, sym_sec,
3373 hh, rela, htab);
3374 if (hsh != NULL)
3375 {
3376 value = (hsh->stub_offset
3377 + hsh->stub_sec->output_offset
3378 + hsh->stub_sec->output_section->vma);
3379 addend = 0;
3380 }
3381 else if (sym_sec == NULL && hh != NULL
3382 && hh->eh.root.type == bfd_link_hash_undefweak)
3383 {
3384 /* It's OK if undefined weak. Calls to undefined weak
3385 symbols behave as if the "called" function
3386 immediately returns. We can thus call to a weak
3387 function without first checking whether the function
3388 is defined. */
3389 value = location;
3390 addend = 8;
3391 }
3392 else
3393 return bfd_reloc_undefined;
3394 }
3395 /* Fall thru. */
3396
3397 case R_PARISC_PCREL21L:
3398 case R_PARISC_PCREL17C:
3399 case R_PARISC_PCREL17R:
3400 case R_PARISC_PCREL14R:
3401 case R_PARISC_PCREL14F:
3402 case R_PARISC_PCREL32:
3403 /* Make it a pc relative offset. */
3404 value -= location;
3405 addend -= 8;
3406 break;
3407
3408 case R_PARISC_DPREL21L:
3409 case R_PARISC_DPREL14R:
3410 case R_PARISC_DPREL14F:
3411 /* Convert instructions that use the linkage table pointer (r19) to
3412 instructions that use the global data pointer (dp). This is the
3413 most efficient way of using PIC code in an incomplete executable,
3414 but the user must follow the standard runtime conventions for
3415 accessing data for this to work. */
3416 if (orig_r_type != r_type)
3417 {
3418 if (r_type == R_PARISC_DPREL21L)
3419 {
3420 /* GCC sometimes uses a register other than r19 for the
3421 operation, so we must convert any addil instruction
3422 that uses this relocation. */
3423 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3424 insn = ADDIL_DP;
3425 else
3426 /* We must have a ldil instruction. It's too hard to find
3427 and convert the associated add instruction, so issue an
3428 error. */
3429 _bfd_error_handler
3430 /* xgettext:c-format */
3431 (_("%B(%A+%#Lx): %s fixup for insn %#x is not supported in a non-shared link"),
3432 input_bfd,
3433 input_section,
3434 offset,
3435 howto->name,
3436 insn);
3437 }
3438 else if (r_type == R_PARISC_DPREL14F)
3439 {
3440 /* This must be a format 1 load/store. Change the base
3441 register to dp. */
3442 insn = (insn & 0xfc1ffff) | (27 << 21);
3443 }
3444 }
3445
3446 /* For all the DP relative relocations, we need to examine the symbol's
3447 section. If it has no section or if it's a code section, then
3448 "data pointer relative" makes no sense. In that case we don't
3449 adjust the "value", and for 21 bit addil instructions, we change the
3450 source addend register from %dp to %r0. This situation commonly
3451 arises for undefined weak symbols and when a variable's "constness"
3452 is declared differently from the way the variable is defined. For
3453 instance: "extern int foo" with foo defined as "const int foo". */
3454 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3455 {
3456 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3457 == (((int) OP_ADDIL << 26) | (27 << 21)))
3458 {
3459 insn &= ~ (0x1f << 21);
3460 }
3461 /* Now try to make things easy for the dynamic linker. */
3462
3463 break;
3464 }
3465 /* Fall thru. */
3466
3467 case R_PARISC_DLTIND21L:
3468 case R_PARISC_DLTIND14R:
3469 case R_PARISC_DLTIND14F:
3470 case R_PARISC_TLS_GD21L:
3471 case R_PARISC_TLS_LDM21L:
3472 case R_PARISC_TLS_IE21L:
3473 case R_PARISC_TLS_GD14R:
3474 case R_PARISC_TLS_LDM14R:
3475 case R_PARISC_TLS_IE14R:
3476 value -= elf_gp (input_section->output_section->owner);
3477 break;
3478
3479 case R_PARISC_SEGREL32:
3480 if ((sym_sec->flags & SEC_CODE) != 0)
3481 value -= htab->text_segment_base;
3482 else
3483 value -= htab->data_segment_base;
3484 break;
3485
3486 default:
3487 break;
3488 }
3489
3490 switch (r_type)
3491 {
3492 case R_PARISC_DIR32:
3493 case R_PARISC_DIR14F:
3494 case R_PARISC_DIR17F:
3495 case R_PARISC_PCREL17C:
3496 case R_PARISC_PCREL14F:
3497 case R_PARISC_PCREL32:
3498 case R_PARISC_DPREL14F:
3499 case R_PARISC_PLABEL32:
3500 case R_PARISC_DLTIND14F:
3501 case R_PARISC_SEGBASE:
3502 case R_PARISC_SEGREL32:
3503 case R_PARISC_TLS_DTPMOD32:
3504 case R_PARISC_TLS_DTPOFF32:
3505 case R_PARISC_TLS_TPREL32:
3506 r_field = e_fsel;
3507 break;
3508
3509 case R_PARISC_DLTIND21L:
3510 case R_PARISC_PCREL21L:
3511 case R_PARISC_PLABEL21L:
3512 r_field = e_lsel;
3513 break;
3514
3515 case R_PARISC_DIR21L:
3516 case R_PARISC_DPREL21L:
3517 case R_PARISC_TLS_GD21L:
3518 case R_PARISC_TLS_LDM21L:
3519 case R_PARISC_TLS_LDO21L:
3520 case R_PARISC_TLS_IE21L:
3521 case R_PARISC_TLS_LE21L:
3522 r_field = e_lrsel;
3523 break;
3524
3525 case R_PARISC_PCREL17R:
3526 case R_PARISC_PCREL14R:
3527 case R_PARISC_PLABEL14R:
3528 case R_PARISC_DLTIND14R:
3529 r_field = e_rsel;
3530 break;
3531
3532 case R_PARISC_DIR17R:
3533 case R_PARISC_DIR14R:
3534 case R_PARISC_DPREL14R:
3535 case R_PARISC_TLS_GD14R:
3536 case R_PARISC_TLS_LDM14R:
3537 case R_PARISC_TLS_LDO14R:
3538 case R_PARISC_TLS_IE14R:
3539 case R_PARISC_TLS_LE14R:
3540 r_field = e_rrsel;
3541 break;
3542
3543 case R_PARISC_PCREL12F:
3544 case R_PARISC_PCREL17F:
3545 case R_PARISC_PCREL22F:
3546 r_field = e_fsel;
3547
3548 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3549 {
3550 max_branch_offset = (1 << (17-1)) << 2;
3551 }
3552 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3553 {
3554 max_branch_offset = (1 << (12-1)) << 2;
3555 }
3556 else
3557 {
3558 max_branch_offset = (1 << (22-1)) << 2;
3559 }
3560
3561 /* sym_sec is NULL on undefined weak syms or when shared on
3562 undefined syms. We've already checked for a stub for the
3563 shared undefined case. */
3564 if (sym_sec == NULL)
3565 break;
3566
3567 /* If the branch is out of reach, then redirect the
3568 call to the local stub for this function. */
3569 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3570 {
3571 hsh = hppa_get_stub_entry (input_section, sym_sec,
3572 hh, rela, htab);
3573 if (hsh == NULL)
3574 return bfd_reloc_undefined;
3575
3576 /* Munge up the value and addend so that we call the stub
3577 rather than the procedure directly. */
3578 value = (hsh->stub_offset
3579 + hsh->stub_sec->output_offset
3580 + hsh->stub_sec->output_section->vma
3581 - location);
3582 addend = -8;
3583 }
3584 break;
3585
3586 /* Something we don't know how to handle. */
3587 default:
3588 return bfd_reloc_notsupported;
3589 }
3590
3591 /* Make sure we can reach the stub. */
3592 if (max_branch_offset != 0
3593 && value + addend + max_branch_offset >= 2*max_branch_offset)
3594 {
3595 _bfd_error_handler
3596 /* xgettext:c-format */
3597 (_("%B(%A+%#Lx): cannot reach %s, recompile with -ffunction-sections"),
3598 input_bfd,
3599 input_section,
3600 offset,
3601 hsh->bh_root.string);
3602 bfd_set_error (bfd_error_bad_value);
3603 return bfd_reloc_notsupported;
3604 }
3605
3606 val = hppa_field_adjust (value, addend, r_field);
3607
3608 switch (r_type)
3609 {
3610 case R_PARISC_PCREL12F:
3611 case R_PARISC_PCREL17C:
3612 case R_PARISC_PCREL17F:
3613 case R_PARISC_PCREL17R:
3614 case R_PARISC_PCREL22F:
3615 case R_PARISC_DIR17F:
3616 case R_PARISC_DIR17R:
3617 /* This is a branch. Divide the offset by four.
3618 Note that we need to decide whether it's a branch or
3619 otherwise by inspecting the reloc. Inspecting insn won't
3620 work as insn might be from a .word directive. */
3621 val >>= 2;
3622 break;
3623
3624 default:
3625 break;
3626 }
3627
3628 insn = hppa_rebuild_insn (insn, val, r_format);
3629
3630 /* Update the instruction word. */
3631 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3632 return bfd_reloc_ok;
3633 }
3634
3635 /* Relocate an HPPA ELF section. */
3636
3637 static bfd_boolean
3638 elf32_hppa_relocate_section (bfd *output_bfd,
3639 struct bfd_link_info *info,
3640 bfd *input_bfd,
3641 asection *input_section,
3642 bfd_byte *contents,
3643 Elf_Internal_Rela *relocs,
3644 Elf_Internal_Sym *local_syms,
3645 asection **local_sections)
3646 {
3647 bfd_vma *local_got_offsets;
3648 struct elf32_hppa_link_hash_table *htab;
3649 Elf_Internal_Shdr *symtab_hdr;
3650 Elf_Internal_Rela *rela;
3651 Elf_Internal_Rela *relend;
3652
3653 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3654
3655 htab = hppa_link_hash_table (info);
3656 if (htab == NULL)
3657 return FALSE;
3658
3659 local_got_offsets = elf_local_got_offsets (input_bfd);
3660
3661 rela = relocs;
3662 relend = relocs + input_section->reloc_count;
3663 for (; rela < relend; rela++)
3664 {
3665 unsigned int r_type;
3666 reloc_howto_type *howto;
3667 unsigned int r_symndx;
3668 struct elf32_hppa_link_hash_entry *hh;
3669 Elf_Internal_Sym *sym;
3670 asection *sym_sec;
3671 bfd_vma relocation;
3672 bfd_reloc_status_type rstatus;
3673 const char *sym_name;
3674 bfd_boolean plabel;
3675 bfd_boolean warned_undef;
3676
3677 r_type = ELF32_R_TYPE (rela->r_info);
3678 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3679 {
3680 bfd_set_error (bfd_error_bad_value);
3681 return FALSE;
3682 }
3683 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3684 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3685 continue;
3686
3687 r_symndx = ELF32_R_SYM (rela->r_info);
3688 hh = NULL;
3689 sym = NULL;
3690 sym_sec = NULL;
3691 warned_undef = FALSE;
3692 if (r_symndx < symtab_hdr->sh_info)
3693 {
3694 /* This is a local symbol, h defaults to NULL. */
3695 sym = local_syms + r_symndx;
3696 sym_sec = local_sections[r_symndx];
3697 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3698 }
3699 else
3700 {
3701 struct elf_link_hash_entry *eh;
3702 bfd_boolean unresolved_reloc, ignored;
3703 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3704
3705 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3706 r_symndx, symtab_hdr, sym_hashes,
3707 eh, sym_sec, relocation,
3708 unresolved_reloc, warned_undef,
3709 ignored);
3710
3711 if (!bfd_link_relocatable (info)
3712 && relocation == 0
3713 && eh->root.type != bfd_link_hash_defined
3714 && eh->root.type != bfd_link_hash_defweak
3715 && eh->root.type != bfd_link_hash_undefweak)
3716 {
3717 if (info->unresolved_syms_in_objects == RM_IGNORE
3718 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3719 && eh->type == STT_PARISC_MILLI)
3720 {
3721 (*info->callbacks->undefined_symbol)
3722 (info, eh_name (eh), input_bfd,
3723 input_section, rela->r_offset, FALSE);
3724 warned_undef = TRUE;
3725 }
3726 }
3727 hh = hppa_elf_hash_entry (eh);
3728 }
3729
3730 if (sym_sec != NULL && discarded_section (sym_sec))
3731 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3732 rela, 1, relend,
3733 elf_hppa_howto_table + r_type, 0,
3734 contents);
3735
3736 if (bfd_link_relocatable (info))
3737 continue;
3738
3739 /* Do any required modifications to the relocation value, and
3740 determine what types of dynamic info we need to output, if
3741 any. */
3742 plabel = 0;
3743 switch (r_type)
3744 {
3745 case R_PARISC_DLTIND14F:
3746 case R_PARISC_DLTIND14R:
3747 case R_PARISC_DLTIND21L:
3748 {
3749 bfd_vma off;
3750 bfd_boolean do_got = 0;
3751
3752 /* Relocation is to the entry for this symbol in the
3753 global offset table. */
3754 if (hh != NULL)
3755 {
3756 bfd_boolean dyn;
3757
3758 off = hh->eh.got.offset;
3759 dyn = htab->etab.dynamic_sections_created;
3760 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
3761 bfd_link_pic (info),
3762 &hh->eh))
3763 {
3764 /* If we aren't going to call finish_dynamic_symbol,
3765 then we need to handle initialisation of the .got
3766 entry and create needed relocs here. Since the
3767 offset must always be a multiple of 4, we use the
3768 least significant bit to record whether we have
3769 initialised it already. */
3770 if ((off & 1) != 0)
3771 off &= ~1;
3772 else
3773 {
3774 hh->eh.got.offset |= 1;
3775 do_got = 1;
3776 }
3777 }
3778 }
3779 else
3780 {
3781 /* Local symbol case. */
3782 if (local_got_offsets == NULL)
3783 abort ();
3784
3785 off = local_got_offsets[r_symndx];
3786
3787 /* The offset must always be a multiple of 4. We use
3788 the least significant bit to record whether we have
3789 already generated the necessary reloc. */
3790 if ((off & 1) != 0)
3791 off &= ~1;
3792 else
3793 {
3794 local_got_offsets[r_symndx] |= 1;
3795 do_got = 1;
3796 }
3797 }
3798
3799 if (do_got)
3800 {
3801 if (bfd_link_pic (info))
3802 {
3803 /* Output a dynamic relocation for this GOT entry.
3804 In this case it is relative to the base of the
3805 object because the symbol index is zero. */
3806 Elf_Internal_Rela outrel;
3807 bfd_byte *loc;
3808 asection *sec = htab->etab.srelgot;
3809
3810 outrel.r_offset = (off
3811 + htab->etab.sgot->output_offset
3812 + htab->etab.sgot->output_section->vma);
3813 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3814 outrel.r_addend = relocation;
3815 loc = sec->contents;
3816 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3817 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3818 }
3819 else
3820 bfd_put_32 (output_bfd, relocation,
3821 htab->etab.sgot->contents + off);
3822 }
3823
3824 if (off >= (bfd_vma) -2)
3825 abort ();
3826
3827 /* Add the base of the GOT to the relocation value. */
3828 relocation = (off
3829 + htab->etab.sgot->output_offset
3830 + htab->etab.sgot->output_section->vma);
3831 }
3832 break;
3833
3834 case R_PARISC_SEGREL32:
3835 /* If this is the first SEGREL relocation, then initialize
3836 the segment base values. */
3837 if (htab->text_segment_base == (bfd_vma) -1)
3838 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3839 break;
3840
3841 case R_PARISC_PLABEL14R:
3842 case R_PARISC_PLABEL21L:
3843 case R_PARISC_PLABEL32:
3844 if (htab->etab.dynamic_sections_created)
3845 {
3846 bfd_vma off;
3847 bfd_boolean do_plt = 0;
3848 /* If we have a global symbol with a PLT slot, then
3849 redirect this relocation to it. */
3850 if (hh != NULL)
3851 {
3852 off = hh->eh.plt.offset;
3853 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1,
3854 bfd_link_pic (info),
3855 &hh->eh))
3856 {
3857 /* In a non-shared link, adjust_dynamic_symbols
3858 isn't called for symbols forced local. We
3859 need to write out the plt entry here. */
3860 if ((off & 1) != 0)
3861 off &= ~1;
3862 else
3863 {
3864 hh->eh.plt.offset |= 1;
3865 do_plt = 1;
3866 }
3867 }
3868 }
3869 else
3870 {
3871 bfd_vma *local_plt_offsets;
3872
3873 if (local_got_offsets == NULL)
3874 abort ();
3875
3876 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3877 off = local_plt_offsets[r_symndx];
3878
3879 /* As for the local .got entry case, we use the last
3880 bit to record whether we've already initialised
3881 this local .plt entry. */
3882 if ((off & 1) != 0)
3883 off &= ~1;
3884 else
3885 {
3886 local_plt_offsets[r_symndx] |= 1;
3887 do_plt = 1;
3888 }
3889 }
3890
3891 if (do_plt)
3892 {
3893 if (bfd_link_pic (info))
3894 {
3895 /* Output a dynamic IPLT relocation for this
3896 PLT entry. */
3897 Elf_Internal_Rela outrel;
3898 bfd_byte *loc;
3899 asection *s = htab->etab.srelplt;
3900
3901 outrel.r_offset = (off
3902 + htab->etab.splt->output_offset
3903 + htab->etab.splt->output_section->vma);
3904 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3905 outrel.r_addend = relocation;
3906 loc = s->contents;
3907 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3908 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3909 }
3910 else
3911 {
3912 bfd_put_32 (output_bfd,
3913 relocation,
3914 htab->etab.splt->contents + off);
3915 bfd_put_32 (output_bfd,
3916 elf_gp (htab->etab.splt->output_section->owner),
3917 htab->etab.splt->contents + off + 4);
3918 }
3919 }
3920
3921 if (off >= (bfd_vma) -2)
3922 abort ();
3923
3924 /* PLABELs contain function pointers. Relocation is to
3925 the entry for the function in the .plt. The magic +2
3926 offset signals to $$dyncall that the function pointer
3927 is in the .plt and thus has a gp pointer too.
3928 Exception: Undefined PLABELs should have a value of
3929 zero. */
3930 if (hh == NULL
3931 || (hh->eh.root.type != bfd_link_hash_undefweak
3932 && hh->eh.root.type != bfd_link_hash_undefined))
3933 {
3934 relocation = (off
3935 + htab->etab.splt->output_offset
3936 + htab->etab.splt->output_section->vma
3937 + 2);
3938 }
3939 plabel = 1;
3940 }
3941 /* Fall through. */
3942
3943 case R_PARISC_DIR17F:
3944 case R_PARISC_DIR17R:
3945 case R_PARISC_DIR14F:
3946 case R_PARISC_DIR14R:
3947 case R_PARISC_DIR21L:
3948 case R_PARISC_DPREL14F:
3949 case R_PARISC_DPREL14R:
3950 case R_PARISC_DPREL21L:
3951 case R_PARISC_DIR32:
3952 if ((input_section->flags & SEC_ALLOC) == 0)
3953 break;
3954
3955 /* The reloc types handled here and this conditional
3956 expression must match the code in ..check_relocs and
3957 allocate_dynrelocs. ie. We need exactly the same condition
3958 as in ..check_relocs, with some extra conditions (dynindx
3959 test in this case) to cater for relocs removed by
3960 allocate_dynrelocs. If you squint, the non-shared test
3961 here does indeed match the one in ..check_relocs, the
3962 difference being that here we test DEF_DYNAMIC as well as
3963 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3964 which is why we can't use just that test here.
3965 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3966 there all files have not been loaded. */
3967 if ((bfd_link_pic (info)
3968 && (hh == NULL
3969 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
3970 || hh->eh.root.type != bfd_link_hash_undefweak)
3971 && (IS_ABSOLUTE_RELOC (r_type)
3972 || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
3973 || (!bfd_link_pic (info)
3974 && hh != NULL
3975 && hh->eh.dynindx != -1
3976 && !hh->eh.non_got_ref
3977 && ((ELIMINATE_COPY_RELOCS
3978 && hh->eh.def_dynamic
3979 && !hh->eh.def_regular)
3980 || hh->eh.root.type == bfd_link_hash_undefweak
3981 || hh->eh.root.type == bfd_link_hash_undefined)))
3982 {
3983 Elf_Internal_Rela outrel;
3984 bfd_boolean skip;
3985 asection *sreloc;
3986 bfd_byte *loc;
3987
3988 /* When generating a shared object, these relocations
3989 are copied into the output file to be resolved at run
3990 time. */
3991
3992 outrel.r_addend = rela->r_addend;
3993 outrel.r_offset =
3994 _bfd_elf_section_offset (output_bfd, info, input_section,
3995 rela->r_offset);
3996 skip = (outrel.r_offset == (bfd_vma) -1
3997 || outrel.r_offset == (bfd_vma) -2);
3998 outrel.r_offset += (input_section->output_offset
3999 + input_section->output_section->vma);
4000
4001 if (skip)
4002 {
4003 memset (&outrel, 0, sizeof (outrel));
4004 }
4005 else if (hh != NULL
4006 && hh->eh.dynindx != -1
4007 && (plabel
4008 || !IS_ABSOLUTE_RELOC (r_type)
4009 || !bfd_link_pic (info)
4010 || !SYMBOLIC_BIND (info, &hh->eh)
4011 || !hh->eh.def_regular))
4012 {
4013 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
4014 }
4015 else /* It's a local symbol, or one marked to become local. */
4016 {
4017 int indx = 0;
4018
4019 /* Add the absolute offset of the symbol. */
4020 outrel.r_addend += relocation;
4021
4022 /* Global plabels need to be processed by the
4023 dynamic linker so that functions have at most one
4024 fptr. For this reason, we need to differentiate
4025 between global and local plabels, which we do by
4026 providing the function symbol for a global plabel
4027 reloc, and no symbol for local plabels. */
4028 if (! plabel
4029 && sym_sec != NULL
4030 && sym_sec->output_section != NULL
4031 && ! bfd_is_abs_section (sym_sec))
4032 {
4033 asection *osec;
4034
4035 osec = sym_sec->output_section;
4036 indx = elf_section_data (osec)->dynindx;
4037 if (indx == 0)
4038 {
4039 osec = htab->etab.text_index_section;
4040 indx = elf_section_data (osec)->dynindx;
4041 }
4042 BFD_ASSERT (indx != 0);
4043
4044 /* We are turning this relocation into one
4045 against a section symbol, so subtract out the
4046 output section's address but not the offset
4047 of the input section in the output section. */
4048 outrel.r_addend -= osec->vma;
4049 }
4050
4051 outrel.r_info = ELF32_R_INFO (indx, r_type);
4052 }
4053 sreloc = elf_section_data (input_section)->sreloc;
4054 if (sreloc == NULL)
4055 abort ();
4056
4057 loc = sreloc->contents;
4058 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
4059 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4060 }
4061 break;
4062
4063 case R_PARISC_TLS_LDM21L:
4064 case R_PARISC_TLS_LDM14R:
4065 {
4066 bfd_vma off;
4067
4068 off = htab->tls_ldm_got.offset;
4069 if (off & 1)
4070 off &= ~1;
4071 else
4072 {
4073 Elf_Internal_Rela outrel;
4074 bfd_byte *loc;
4075
4076 outrel.r_offset = (off
4077 + htab->etab.sgot->output_section->vma
4078 + htab->etab.sgot->output_offset);
4079 outrel.r_addend = 0;
4080 outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
4081 loc = htab->etab.srelgot->contents;
4082 loc += htab->etab.srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4083
4084 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4085 htab->tls_ldm_got.offset |= 1;
4086 }
4087
4088 /* Add the base of the GOT to the relocation value. */
4089 relocation = (off
4090 + htab->etab.sgot->output_offset
4091 + htab->etab.sgot->output_section->vma);
4092
4093 break;
4094 }
4095
4096 case R_PARISC_TLS_LDO21L:
4097 case R_PARISC_TLS_LDO14R:
4098 relocation -= dtpoff_base (info);
4099 break;
4100
4101 case R_PARISC_TLS_GD21L:
4102 case R_PARISC_TLS_GD14R:
4103 case R_PARISC_TLS_IE21L:
4104 case R_PARISC_TLS_IE14R:
4105 {
4106 bfd_vma off;
4107 int indx;
4108 char tls_type;
4109
4110 indx = 0;
4111 if (hh != NULL)
4112 {
4113 bfd_boolean dyn;
4114 dyn = htab->etab.dynamic_sections_created;
4115
4116 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
4117 bfd_link_pic (info),
4118 &hh->eh)
4119 && (!bfd_link_pic (info)
4120 || !SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4121 {
4122 indx = hh->eh.dynindx;
4123 }
4124 off = hh->eh.got.offset;
4125 tls_type = hh->tls_type;
4126 }
4127 else
4128 {
4129 off = local_got_offsets[r_symndx];
4130 tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4131 }
4132
4133 if (tls_type == GOT_UNKNOWN)
4134 abort ();
4135
4136 if ((off & 1) != 0)
4137 off &= ~1;
4138 else
4139 {
4140 bfd_boolean need_relocs = FALSE;
4141 Elf_Internal_Rela outrel;
4142 bfd_byte *loc = NULL;
4143 int cur_off = off;
4144
4145 /* The GOT entries have not been initialized yet. Do it
4146 now, and emit any relocations. If both an IE GOT and a
4147 GD GOT are necessary, we emit the GD first. */
4148
4149 if ((bfd_link_pic (info) || indx != 0)
4150 && (hh == NULL
4151 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
4152 || hh->eh.root.type != bfd_link_hash_undefweak))
4153 {
4154 need_relocs = TRUE;
4155 loc = htab->etab.srelgot->contents;
4156 /* FIXME (CAO): Should this be reloc_count++ ? */
4157 loc += htab->etab.srelgot->reloc_count * sizeof (Elf32_External_Rela);
4158 }
4159
4160 if (tls_type & GOT_TLS_GD)
4161 {
4162 if (need_relocs)
4163 {
4164 outrel.r_offset = (cur_off
4165 + htab->etab.sgot->output_section->vma
4166 + htab->etab.sgot->output_offset);
4167 outrel.r_info = ELF32_R_INFO (indx,R_PARISC_TLS_DTPMOD32);
4168 outrel.r_addend = 0;
4169 bfd_put_32 (output_bfd, 0, htab->etab.sgot->contents + cur_off);
4170 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4171 htab->etab.srelgot->reloc_count++;
4172 loc += sizeof (Elf32_External_Rela);
4173
4174 if (indx == 0)
4175 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4176 htab->etab.sgot->contents + cur_off + 4);
4177 else
4178 {
4179 bfd_put_32 (output_bfd, 0,
4180 htab->etab.sgot->contents + cur_off + 4);
4181 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4182 outrel.r_offset += 4;
4183 bfd_elf32_swap_reloca_out (output_bfd, &outrel,loc);
4184 htab->etab.srelgot->reloc_count++;
4185 loc += sizeof (Elf32_External_Rela);
4186 }
4187 }
4188 else
4189 {
4190 /* If we are not emitting relocations for a
4191 general dynamic reference, then we must be in a
4192 static link or an executable link with the
4193 symbol binding locally. Mark it as belonging
4194 to module 1, the executable. */
4195 bfd_put_32 (output_bfd, 1,
4196 htab->etab.sgot->contents + cur_off);
4197 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4198 htab->etab.sgot->contents + cur_off + 4);
4199 }
4200
4201
4202 cur_off += 8;
4203 }
4204
4205 if (tls_type & GOT_TLS_IE)
4206 {
4207 if (need_relocs)
4208 {
4209 outrel.r_offset = (cur_off
4210 + htab->etab.sgot->output_section->vma
4211 + htab->etab.sgot->output_offset);
4212 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_TPREL32);
4213
4214 if (indx == 0)
4215 outrel.r_addend = relocation - dtpoff_base (info);
4216 else
4217 outrel.r_addend = 0;
4218
4219 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4220 htab->etab.srelgot->reloc_count++;
4221 loc += sizeof (Elf32_External_Rela);
4222 }
4223 else
4224 bfd_put_32 (output_bfd, tpoff (info, relocation),
4225 htab->etab.sgot->contents + cur_off);
4226
4227 cur_off += 4;
4228 }
4229
4230 if (hh != NULL)
4231 hh->eh.got.offset |= 1;
4232 else
4233 local_got_offsets[r_symndx] |= 1;
4234 }
4235
4236 if ((tls_type & GOT_TLS_GD)
4237 && r_type != R_PARISC_TLS_GD21L
4238 && r_type != R_PARISC_TLS_GD14R)
4239 off += 2 * GOT_ENTRY_SIZE;
4240
4241 /* Add the base of the GOT to the relocation value. */
4242 relocation = (off
4243 + htab->etab.sgot->output_offset
4244 + htab->etab.sgot->output_section->vma);
4245
4246 break;
4247 }
4248
4249 case R_PARISC_TLS_LE21L:
4250 case R_PARISC_TLS_LE14R:
4251 {
4252 relocation = tpoff (info, relocation);
4253 break;
4254 }
4255 break;
4256
4257 default:
4258 break;
4259 }
4260
4261 rstatus = final_link_relocate (input_section, contents, rela, relocation,
4262 htab, sym_sec, hh, info);
4263
4264 if (rstatus == bfd_reloc_ok)
4265 continue;
4266
4267 if (hh != NULL)
4268 sym_name = hh_name (hh);
4269 else
4270 {
4271 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4272 symtab_hdr->sh_link,
4273 sym->st_name);
4274 if (sym_name == NULL)
4275 return FALSE;
4276 if (*sym_name == '\0')
4277 sym_name = bfd_section_name (input_bfd, sym_sec);
4278 }
4279
4280 howto = elf_hppa_howto_table + r_type;
4281
4282 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4283 {
4284 if (rstatus == bfd_reloc_notsupported || !warned_undef)
4285 {
4286 _bfd_error_handler
4287 /* xgettext:c-format */
4288 (_("%B(%A+%#Lx): cannot handle %s for %s"),
4289 input_bfd,
4290 input_section,
4291 rela->r_offset,
4292 howto->name,
4293 sym_name);
4294 bfd_set_error (bfd_error_bad_value);
4295 return FALSE;
4296 }
4297 }
4298 else
4299 (*info->callbacks->reloc_overflow)
4300 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4301 (bfd_vma) 0, input_bfd, input_section, rela->r_offset);
4302 }
4303
4304 return TRUE;
4305 }
4306
4307 /* Finish up dynamic symbol handling. We set the contents of various
4308 dynamic sections here. */
4309
4310 static bfd_boolean
4311 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4312 struct bfd_link_info *info,
4313 struct elf_link_hash_entry *eh,
4314 Elf_Internal_Sym *sym)
4315 {
4316 struct elf32_hppa_link_hash_table *htab;
4317 Elf_Internal_Rela rela;
4318 bfd_byte *loc;
4319
4320 htab = hppa_link_hash_table (info);
4321 if (htab == NULL)
4322 return FALSE;
4323
4324 if (eh->plt.offset != (bfd_vma) -1)
4325 {
4326 bfd_vma value;
4327
4328 if (eh->plt.offset & 1)
4329 abort ();
4330
4331 /* This symbol has an entry in the procedure linkage table. Set
4332 it up.
4333
4334 The format of a plt entry is
4335 <funcaddr>
4336 <__gp>
4337 */
4338 value = 0;
4339 if (eh->root.type == bfd_link_hash_defined
4340 || eh->root.type == bfd_link_hash_defweak)
4341 {
4342 value = eh->root.u.def.value;
4343 if (eh->root.u.def.section->output_section != NULL)
4344 value += (eh->root.u.def.section->output_offset
4345 + eh->root.u.def.section->output_section->vma);
4346 }
4347
4348 /* Create a dynamic IPLT relocation for this entry. */
4349 rela.r_offset = (eh->plt.offset
4350 + htab->etab.splt->output_offset
4351 + htab->etab.splt->output_section->vma);
4352 if (eh->dynindx != -1)
4353 {
4354 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4355 rela.r_addend = 0;
4356 }
4357 else
4358 {
4359 /* This symbol has been marked to become local, and is
4360 used by a plabel so must be kept in the .plt. */
4361 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4362 rela.r_addend = value;
4363 }
4364
4365 loc = htab->etab.srelplt->contents;
4366 loc += htab->etab.srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4367 bfd_elf32_swap_reloca_out (htab->etab.splt->output_section->owner, &rela, loc);
4368
4369 if (!eh->def_regular)
4370 {
4371 /* Mark the symbol as undefined, rather than as defined in
4372 the .plt section. Leave the value alone. */
4373 sym->st_shndx = SHN_UNDEF;
4374 }
4375 }
4376
4377 if (eh->got.offset != (bfd_vma) -1
4378 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_GD) == 0
4379 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_IE) == 0)
4380 {
4381 /* This symbol has an entry in the global offset table. Set it
4382 up. */
4383
4384 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4385 + htab->etab.sgot->output_offset
4386 + htab->etab.sgot->output_section->vma);
4387
4388 /* If this is a -Bsymbolic link and the symbol is defined
4389 locally or was forced to be local because of a version file,
4390 we just want to emit a RELATIVE reloc. The entry in the
4391 global offset table will already have been initialized in the
4392 relocate_section function. */
4393 if (bfd_link_pic (info)
4394 && (SYMBOLIC_BIND (info, eh) || eh->dynindx == -1)
4395 && eh->def_regular)
4396 {
4397 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4398 rela.r_addend = (eh->root.u.def.value
4399 + eh->root.u.def.section->output_offset
4400 + eh->root.u.def.section->output_section->vma);
4401 }
4402 else
4403 {
4404 if ((eh->got.offset & 1) != 0)
4405 abort ();
4406
4407 bfd_put_32 (output_bfd, 0, htab->etab.sgot->contents + (eh->got.offset & ~1));
4408 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4409 rela.r_addend = 0;
4410 }
4411
4412 loc = htab->etab.srelgot->contents;
4413 loc += htab->etab.srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4414 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4415 }
4416
4417 if (eh->needs_copy)
4418 {
4419 asection *sec;
4420
4421 /* This symbol needs a copy reloc. Set it up. */
4422
4423 if (! (eh->dynindx != -1
4424 && (eh->root.type == bfd_link_hash_defined
4425 || eh->root.type == bfd_link_hash_defweak)))
4426 abort ();
4427
4428 rela.r_offset = (eh->root.u.def.value
4429 + eh->root.u.def.section->output_offset
4430 + eh->root.u.def.section->output_section->vma);
4431 rela.r_addend = 0;
4432 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4433 if (eh->root.u.def.section == htab->etab.sdynrelro)
4434 sec = htab->etab.sreldynrelro;
4435 else
4436 sec = htab->etab.srelbss;
4437 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4438 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4439 }
4440
4441 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4442 if (eh == htab->etab.hdynamic || eh == htab->etab.hgot)
4443 {
4444 sym->st_shndx = SHN_ABS;
4445 }
4446
4447 return TRUE;
4448 }
4449
4450 /* Used to decide how to sort relocs in an optimal manner for the
4451 dynamic linker, before writing them out. */
4452
4453 static enum elf_reloc_type_class
4454 elf32_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4455 const asection *rel_sec ATTRIBUTE_UNUSED,
4456 const Elf_Internal_Rela *rela)
4457 {
4458 /* Handle TLS relocs first; we don't want them to be marked
4459 relative by the "if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)"
4460 check below. */
4461 switch ((int) ELF32_R_TYPE (rela->r_info))
4462 {
4463 case R_PARISC_TLS_DTPMOD32:
4464 case R_PARISC_TLS_DTPOFF32:
4465 case R_PARISC_TLS_TPREL32:
4466 return reloc_class_normal;
4467 }
4468
4469 if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)
4470 return reloc_class_relative;
4471
4472 switch ((int) ELF32_R_TYPE (rela->r_info))
4473 {
4474 case R_PARISC_IPLT:
4475 return reloc_class_plt;
4476 case R_PARISC_COPY:
4477 return reloc_class_copy;
4478 default:
4479 return reloc_class_normal;
4480 }
4481 }
4482
4483 /* Finish up the dynamic sections. */
4484
4485 static bfd_boolean
4486 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4487 struct bfd_link_info *info)
4488 {
4489 bfd *dynobj;
4490 struct elf32_hppa_link_hash_table *htab;
4491 asection *sdyn;
4492 asection * sgot;
4493
4494 htab = hppa_link_hash_table (info);
4495 if (htab == NULL)
4496 return FALSE;
4497
4498 dynobj = htab->etab.dynobj;
4499
4500 sgot = htab->etab.sgot;
4501 /* A broken linker script might have discarded the dynamic sections.
4502 Catch this here so that we do not seg-fault later on. */
4503 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
4504 return FALSE;
4505
4506 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4507
4508 if (htab->etab.dynamic_sections_created)
4509 {
4510 Elf32_External_Dyn *dyncon, *dynconend;
4511
4512 if (sdyn == NULL)
4513 abort ();
4514
4515 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4516 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4517 for (; dyncon < dynconend; dyncon++)
4518 {
4519 Elf_Internal_Dyn dyn;
4520 asection *s;
4521
4522 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4523
4524 switch (dyn.d_tag)
4525 {
4526 default:
4527 continue;
4528
4529 case DT_PLTGOT:
4530 /* Use PLTGOT to set the GOT register. */
4531 dyn.d_un.d_ptr = elf_gp (output_bfd);
4532 break;
4533
4534 case DT_JMPREL:
4535 s = htab->etab.srelplt;
4536 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4537 break;
4538
4539 case DT_PLTRELSZ:
4540 s = htab->etab.srelplt;
4541 dyn.d_un.d_val = s->size;
4542 break;
4543 }
4544
4545 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4546 }
4547 }
4548
4549 if (sgot != NULL && sgot->size != 0)
4550 {
4551 /* Fill in the first entry in the global offset table.
4552 We use it to point to our dynamic section, if we have one. */
4553 bfd_put_32 (output_bfd,
4554 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4555 sgot->contents);
4556
4557 /* The second entry is reserved for use by the dynamic linker. */
4558 memset (sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4559
4560 /* Set .got entry size. */
4561 elf_section_data (sgot->output_section)
4562 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4563 }
4564
4565 if (htab->etab.splt != NULL && htab->etab.splt->size != 0)
4566 {
4567 /* Set plt entry size to 0 instead of PLT_ENTRY_SIZE, since we add the
4568 plt stubs and as such the section does not hold a table of fixed-size
4569 entries. */
4570 elf_section_data (htab->etab.splt->output_section)->this_hdr.sh_entsize = 0;
4571
4572 if (htab->need_plt_stub)
4573 {
4574 /* Set up the .plt stub. */
4575 memcpy (htab->etab.splt->contents
4576 + htab->etab.splt->size - sizeof (plt_stub),
4577 plt_stub, sizeof (plt_stub));
4578
4579 if ((htab->etab.splt->output_offset
4580 + htab->etab.splt->output_section->vma
4581 + htab->etab.splt->size)
4582 != (sgot->output_offset
4583 + sgot->output_section->vma))
4584 {
4585 _bfd_error_handler
4586 (_(".got section not immediately after .plt section"));
4587 return FALSE;
4588 }
4589 }
4590 }
4591
4592 return TRUE;
4593 }
4594
4595 /* Called when writing out an object file to decide the type of a
4596 symbol. */
4597 static int
4598 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4599 {
4600 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4601 return STT_PARISC_MILLI;
4602 else
4603 return type;
4604 }
4605
4606 /* Misc BFD support code. */
4607 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4608 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4609 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4610 #define elf_info_to_howto elf_hppa_info_to_howto
4611 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4612
4613 /* Stuff for the BFD linker. */
4614 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4615 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4616 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4617 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4618 #define elf_backend_check_relocs elf32_hppa_check_relocs
4619 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4620 #define elf_backend_fake_sections elf_hppa_fake_sections
4621 #define elf_backend_relocate_section elf32_hppa_relocate_section
4622 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4623 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4624 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4625 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4626 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4627 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4628 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4629 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4630 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4631 #define elf_backend_object_p elf32_hppa_object_p
4632 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4633 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4634 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4635 #define elf_backend_action_discarded elf_hppa_action_discarded
4636
4637 #define elf_backend_can_gc_sections 1
4638 #define elf_backend_can_refcount 1
4639 #define elf_backend_plt_alignment 2
4640 #define elf_backend_want_got_plt 0
4641 #define elf_backend_plt_readonly 0
4642 #define elf_backend_want_plt_sym 0
4643 #define elf_backend_got_header_size 8
4644 #define elf_backend_want_dynrelro 1
4645 #define elf_backend_rela_normal 1
4646 #define elf_backend_dtrel_excludes_plt 1
4647 #define elf_backend_no_page_alias 1
4648
4649 #define TARGET_BIG_SYM hppa_elf32_vec
4650 #define TARGET_BIG_NAME "elf32-hppa"
4651 #define ELF_ARCH bfd_arch_hppa
4652 #define ELF_TARGET_ID HPPA32_ELF_DATA
4653 #define ELF_MACHINE_CODE EM_PARISC
4654 #define ELF_MAXPAGESIZE 0x1000
4655 #define ELF_OSABI ELFOSABI_HPUX
4656 #define elf32_bed elf32_hppa_hpux_bed
4657
4658 #include "elf32-target.h"
4659
4660 #undef TARGET_BIG_SYM
4661 #define TARGET_BIG_SYM hppa_elf32_linux_vec
4662 #undef TARGET_BIG_NAME
4663 #define TARGET_BIG_NAME "elf32-hppa-linux"
4664 #undef ELF_OSABI
4665 #define ELF_OSABI ELFOSABI_GNU
4666 #undef elf32_bed
4667 #define elf32_bed elf32_hppa_linux_bed
4668
4669 #include "elf32-target.h"
4670
4671 #undef TARGET_BIG_SYM
4672 #define TARGET_BIG_SYM hppa_elf32_nbsd_vec
4673 #undef TARGET_BIG_NAME
4674 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4675 #undef ELF_OSABI
4676 #define ELF_OSABI ELFOSABI_NETBSD
4677 #undef elf32_bed
4678 #define elf32_bed elf32_hppa_netbsd_bed
4679
4680 #include "elf32-target.h"
This page took 0.124967 seconds and 4 git commands to generate.