Include MI command in remotelog.
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 Original code by
7 Center for Software Science
8 Department of Computer Science
9 University of Utah
10 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
11 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
12 TLS support written by Randolph Chung <tausq@debian.org>
13
14 This file is part of BFD, the Binary File Descriptor library.
15
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 3 of the License, or
19 (at your option) any later version.
20
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public License
27 along with this program; if not, write to the Free Software
28 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
29 MA 02110-1301, USA. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "elf-bfd.h"
35 #include "elf/hppa.h"
36 #include "libhppa.h"
37 #include "elf32-hppa.h"
38 #define ARCH_SIZE 32
39 #include "elf32-hppa.h"
40 #include "elf-hppa.h"
41
42 /* In order to gain some understanding of code in this file without
43 knowing all the intricate details of the linker, note the
44 following:
45
46 Functions named elf32_hppa_* are called by external routines, other
47 functions are only called locally. elf32_hppa_* functions appear
48 in this file more or less in the order in which they are called
49 from external routines. eg. elf32_hppa_check_relocs is called
50 early in the link process, elf32_hppa_finish_dynamic_sections is
51 one of the last functions. */
52
53 /* We use two hash tables to hold information for linking PA ELF objects.
54
55 The first is the elf32_hppa_link_hash_table which is derived
56 from the standard ELF linker hash table. We use this as a place to
57 attach other hash tables and static information.
58
59 The second is the stub hash table which is derived from the
60 base BFD hash table. The stub hash table holds the information
61 necessary to build the linker stubs during a link.
62
63 There are a number of different stubs generated by the linker.
64
65 Long branch stub:
66 : ldil LR'X,%r1
67 : be,n RR'X(%sr4,%r1)
68
69 PIC long branch stub:
70 : b,l .+8,%r1
71 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
72 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
73
74 Import stub to call shared library routine from normal object file
75 (single sub-space version)
76 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
77 : ldw RR'lt_ptr+ltoff(%r1),%r21
78 : bv %r0(%r21)
79 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
80
81 Import stub to call shared library routine from shared library
82 (single sub-space version)
83 : addil LR'ltoff,%r19 ; get procedure entry point
84 : ldw RR'ltoff(%r1),%r21
85 : bv %r0(%r21)
86 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
87
88 Import stub to call shared library routine from normal object file
89 (multiple sub-space support)
90 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
91 : ldw RR'lt_ptr+ltoff(%r1),%r21
92 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
93 : ldsid (%r21),%r1
94 : mtsp %r1,%sr0
95 : be 0(%sr0,%r21) ; branch to target
96 : stw %rp,-24(%sp) ; save rp
97
98 Import stub to call shared library routine from shared library
99 (multiple sub-space support)
100 : addil LR'ltoff,%r19 ; get procedure entry point
101 : ldw RR'ltoff(%r1),%r21
102 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
103 : ldsid (%r21),%r1
104 : mtsp %r1,%sr0
105 : be 0(%sr0,%r21) ; branch to target
106 : stw %rp,-24(%sp) ; save rp
107
108 Export stub to return from shared lib routine (multiple sub-space support)
109 One of these is created for each exported procedure in a shared
110 library (and stored in the shared lib). Shared lib routines are
111 called via the first instruction in the export stub so that we can
112 do an inter-space return. Not required for single sub-space.
113 : bl,n X,%rp ; trap the return
114 : nop
115 : ldw -24(%sp),%rp ; restore the original rp
116 : ldsid (%rp),%r1
117 : mtsp %r1,%sr0
118 : be,n 0(%sr0,%rp) ; inter-space return. */
119
120
121 /* Variable names follow a coding style.
122 Please follow this (Apps Hungarian) style:
123
124 Structure/Variable Prefix
125 elf_link_hash_table "etab"
126 elf_link_hash_entry "eh"
127
128 elf32_hppa_link_hash_table "htab"
129 elf32_hppa_link_hash_entry "hh"
130
131 bfd_hash_table "btab"
132 bfd_hash_entry "bh"
133
134 bfd_hash_table containing stubs "bstab"
135 elf32_hppa_stub_hash_entry "hsh"
136
137 elf32_hppa_dyn_reloc_entry "hdh"
138
139 Always remember to use GNU Coding Style. */
140
141 #define PLT_ENTRY_SIZE 8
142 #define GOT_ENTRY_SIZE 4
143 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
144
145 static const bfd_byte plt_stub[] =
146 {
147 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
148 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
149 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
150 #define PLT_STUB_ENTRY (3*4)
151 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
152 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
153 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
154 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
155 };
156
157 /* Section name for stubs is the associated section name plus this
158 string. */
159 #define STUB_SUFFIX ".stub"
160
161 /* We don't need to copy certain PC- or GP-relative dynamic relocs
162 into a shared object's dynamic section. All the relocs of the
163 limited class we are interested in, are absolute. */
164 #ifndef RELATIVE_DYNRELOCS
165 #define RELATIVE_DYNRELOCS 0
166 #define IS_ABSOLUTE_RELOC(r_type) 1
167 #endif
168
169 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
170 copying dynamic variables from a shared lib into an app's dynbss
171 section, and instead use a dynamic relocation to point into the
172 shared lib. */
173 #define ELIMINATE_COPY_RELOCS 1
174
175 enum elf32_hppa_stub_type
176 {
177 hppa_stub_long_branch,
178 hppa_stub_long_branch_shared,
179 hppa_stub_import,
180 hppa_stub_import_shared,
181 hppa_stub_export,
182 hppa_stub_none
183 };
184
185 struct elf32_hppa_stub_hash_entry
186 {
187 /* Base hash table entry structure. */
188 struct bfd_hash_entry bh_root;
189
190 /* The stub section. */
191 asection *stub_sec;
192
193 /* Offset within stub_sec of the beginning of this stub. */
194 bfd_vma stub_offset;
195
196 /* Given the symbol's value and its section we can determine its final
197 value when building the stubs (so the stub knows where to jump. */
198 bfd_vma target_value;
199 asection *target_section;
200
201 enum elf32_hppa_stub_type stub_type;
202
203 /* The symbol table entry, if any, that this was derived from. */
204 struct elf32_hppa_link_hash_entry *hh;
205
206 /* Where this stub is being called from, or, in the case of combined
207 stub sections, the first input section in the group. */
208 asection *id_sec;
209 };
210
211 struct elf32_hppa_link_hash_entry
212 {
213 struct elf_link_hash_entry eh;
214
215 /* A pointer to the most recently used stub hash entry against this
216 symbol. */
217 struct elf32_hppa_stub_hash_entry *hsh_cache;
218
219 /* Used to count relocations for delayed sizing of relocation
220 sections. */
221 struct elf32_hppa_dyn_reloc_entry
222 {
223 /* Next relocation in the chain. */
224 struct elf32_hppa_dyn_reloc_entry *hdh_next;
225
226 /* The input section of the reloc. */
227 asection *sec;
228
229 /* Number of relocs copied in this section. */
230 bfd_size_type count;
231
232 #if RELATIVE_DYNRELOCS
233 /* Number of relative relocs copied for the input section. */
234 bfd_size_type relative_count;
235 #endif
236 } *dyn_relocs;
237
238 enum
239 {
240 GOT_UNKNOWN = 0, GOT_NORMAL = 1, GOT_TLS_GD = 2, GOT_TLS_LDM = 4, GOT_TLS_IE = 8
241 } tls_type;
242
243 /* Set if this symbol is used by a plabel reloc. */
244 unsigned int plabel:1;
245 };
246
247 struct elf32_hppa_link_hash_table
248 {
249 /* The main hash table. */
250 struct elf_link_hash_table etab;
251
252 /* The stub hash table. */
253 struct bfd_hash_table bstab;
254
255 /* Linker stub bfd. */
256 bfd *stub_bfd;
257
258 /* Linker call-backs. */
259 asection * (*add_stub_section) (const char *, asection *);
260 void (*layout_sections_again) (void);
261
262 /* Array to keep track of which stub sections have been created, and
263 information on stub grouping. */
264 struct map_stub
265 {
266 /* This is the section to which stubs in the group will be
267 attached. */
268 asection *link_sec;
269 /* The stub section. */
270 asection *stub_sec;
271 } *stub_group;
272
273 /* Assorted information used by elf32_hppa_size_stubs. */
274 unsigned int bfd_count;
275 int top_index;
276 asection **input_list;
277 Elf_Internal_Sym **all_local_syms;
278
279 /* Short-cuts to get to dynamic linker sections. */
280 asection *sgot;
281 asection *srelgot;
282 asection *splt;
283 asection *srelplt;
284 asection *sdynbss;
285 asection *srelbss;
286
287 /* Used during a final link to store the base of the text and data
288 segments so that we can perform SEGREL relocations. */
289 bfd_vma text_segment_base;
290 bfd_vma data_segment_base;
291
292 /* Whether we support multiple sub-spaces for shared libs. */
293 unsigned int multi_subspace:1;
294
295 /* Flags set when various size branches are detected. Used to
296 select suitable defaults for the stub group size. */
297 unsigned int has_12bit_branch:1;
298 unsigned int has_17bit_branch:1;
299 unsigned int has_22bit_branch:1;
300
301 /* Set if we need a .plt stub to support lazy dynamic linking. */
302 unsigned int need_plt_stub:1;
303
304 /* Small local sym cache. */
305 struct sym_cache sym_cache;
306
307 /* Data for LDM relocations. */
308 union
309 {
310 bfd_signed_vma refcount;
311 bfd_vma offset;
312 } tls_ldm_got;
313 };
314
315 /* Various hash macros and functions. */
316 #define hppa_link_hash_table(p) \
317 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
318
319 #define hppa_elf_hash_entry(ent) \
320 ((struct elf32_hppa_link_hash_entry *)(ent))
321
322 #define hppa_stub_hash_entry(ent) \
323 ((struct elf32_hppa_stub_hash_entry *)(ent))
324
325 #define hppa_stub_hash_lookup(table, string, create, copy) \
326 ((struct elf32_hppa_stub_hash_entry *) \
327 bfd_hash_lookup ((table), (string), (create), (copy)))
328
329 #define hppa_elf_local_got_tls_type(abfd) \
330 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
331
332 #define hh_name(hh) \
333 (hh ? hh->eh.root.root.string : "<undef>")
334
335 #define eh_name(eh) \
336 (eh ? eh->root.root.string : "<undef>")
337
338 /* Override the generic function because we want to mark our BFDs. */
339
340 static bfd_boolean
341 elf32_hppa_mkobject (bfd *abfd)
342 {
343 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
344 HPPA_ELF_TDATA);
345 }
346
347 /* Assorted hash table functions. */
348
349 /* Initialize an entry in the stub hash table. */
350
351 static struct bfd_hash_entry *
352 stub_hash_newfunc (struct bfd_hash_entry *entry,
353 struct bfd_hash_table *table,
354 const char *string)
355 {
356 /* Allocate the structure if it has not already been allocated by a
357 subclass. */
358 if (entry == NULL)
359 {
360 entry = bfd_hash_allocate (table,
361 sizeof (struct elf32_hppa_stub_hash_entry));
362 if (entry == NULL)
363 return entry;
364 }
365
366 /* Call the allocation method of the superclass. */
367 entry = bfd_hash_newfunc (entry, table, string);
368 if (entry != NULL)
369 {
370 struct elf32_hppa_stub_hash_entry *hsh;
371
372 /* Initialize the local fields. */
373 hsh = hppa_stub_hash_entry (entry);
374 hsh->stub_sec = NULL;
375 hsh->stub_offset = 0;
376 hsh->target_value = 0;
377 hsh->target_section = NULL;
378 hsh->stub_type = hppa_stub_long_branch;
379 hsh->hh = NULL;
380 hsh->id_sec = NULL;
381 }
382
383 return entry;
384 }
385
386 /* Initialize an entry in the link hash table. */
387
388 static struct bfd_hash_entry *
389 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
390 struct bfd_hash_table *table,
391 const char *string)
392 {
393 /* Allocate the structure if it has not already been allocated by a
394 subclass. */
395 if (entry == NULL)
396 {
397 entry = bfd_hash_allocate (table,
398 sizeof (struct elf32_hppa_link_hash_entry));
399 if (entry == NULL)
400 return entry;
401 }
402
403 /* Call the allocation method of the superclass. */
404 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
405 if (entry != NULL)
406 {
407 struct elf32_hppa_link_hash_entry *hh;
408
409 /* Initialize the local fields. */
410 hh = hppa_elf_hash_entry (entry);
411 hh->hsh_cache = NULL;
412 hh->dyn_relocs = NULL;
413 hh->plabel = 0;
414 hh->tls_type = GOT_UNKNOWN;
415 }
416
417 return entry;
418 }
419
420 /* Create the derived linker hash table. The PA ELF port uses the derived
421 hash table to keep information specific to the PA ELF linker (without
422 using static variables). */
423
424 static struct bfd_link_hash_table *
425 elf32_hppa_link_hash_table_create (bfd *abfd)
426 {
427 struct elf32_hppa_link_hash_table *htab;
428 bfd_size_type amt = sizeof (*htab);
429
430 htab = bfd_malloc (amt);
431 if (htab == NULL)
432 return NULL;
433
434 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
435 sizeof (struct elf32_hppa_link_hash_entry)))
436 {
437 free (htab);
438 return NULL;
439 }
440
441 /* Init the stub hash table too. */
442 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
443 sizeof (struct elf32_hppa_stub_hash_entry)))
444 return NULL;
445
446 htab->stub_bfd = NULL;
447 htab->add_stub_section = NULL;
448 htab->layout_sections_again = NULL;
449 htab->stub_group = NULL;
450 htab->sgot = NULL;
451 htab->srelgot = NULL;
452 htab->splt = NULL;
453 htab->srelplt = NULL;
454 htab->sdynbss = NULL;
455 htab->srelbss = NULL;
456 htab->text_segment_base = (bfd_vma) -1;
457 htab->data_segment_base = (bfd_vma) -1;
458 htab->multi_subspace = 0;
459 htab->has_12bit_branch = 0;
460 htab->has_17bit_branch = 0;
461 htab->has_22bit_branch = 0;
462 htab->need_plt_stub = 0;
463 htab->sym_cache.abfd = NULL;
464 htab->tls_ldm_got.refcount = 0;
465
466 return &htab->etab.root;
467 }
468
469 /* Free the derived linker hash table. */
470
471 static void
472 elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *btab)
473 {
474 struct elf32_hppa_link_hash_table *htab
475 = (struct elf32_hppa_link_hash_table *) btab;
476
477 bfd_hash_table_free (&htab->bstab);
478 _bfd_generic_link_hash_table_free (btab);
479 }
480
481 /* Build a name for an entry in the stub hash table. */
482
483 static char *
484 hppa_stub_name (const asection *input_section,
485 const asection *sym_sec,
486 const struct elf32_hppa_link_hash_entry *hh,
487 const Elf_Internal_Rela *rela)
488 {
489 char *stub_name;
490 bfd_size_type len;
491
492 if (hh)
493 {
494 len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
495 stub_name = bfd_malloc (len);
496 if (stub_name != NULL)
497 sprintf (stub_name, "%08x_%s+%x",
498 input_section->id & 0xffffffff,
499 hh_name (hh),
500 (int) rela->r_addend & 0xffffffff);
501 }
502 else
503 {
504 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
505 stub_name = bfd_malloc (len);
506 if (stub_name != NULL)
507 sprintf (stub_name, "%08x_%x:%x+%x",
508 input_section->id & 0xffffffff,
509 sym_sec->id & 0xffffffff,
510 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
511 (int) rela->r_addend & 0xffffffff);
512 }
513 return stub_name;
514 }
515
516 /* Look up an entry in the stub hash. Stub entries are cached because
517 creating the stub name takes a bit of time. */
518
519 static struct elf32_hppa_stub_hash_entry *
520 hppa_get_stub_entry (const asection *input_section,
521 const asection *sym_sec,
522 struct elf32_hppa_link_hash_entry *hh,
523 const Elf_Internal_Rela *rela,
524 struct elf32_hppa_link_hash_table *htab)
525 {
526 struct elf32_hppa_stub_hash_entry *hsh_entry;
527 const asection *id_sec;
528
529 /* If this input section is part of a group of sections sharing one
530 stub section, then use the id of the first section in the group.
531 Stub names need to include a section id, as there may well be
532 more than one stub used to reach say, printf, and we need to
533 distinguish between them. */
534 id_sec = htab->stub_group[input_section->id].link_sec;
535
536 if (hh != NULL && hh->hsh_cache != NULL
537 && hh->hsh_cache->hh == hh
538 && hh->hsh_cache->id_sec == id_sec)
539 {
540 hsh_entry = hh->hsh_cache;
541 }
542 else
543 {
544 char *stub_name;
545
546 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
547 if (stub_name == NULL)
548 return NULL;
549
550 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
551 stub_name, FALSE, FALSE);
552 if (hh != NULL)
553 hh->hsh_cache = hsh_entry;
554
555 free (stub_name);
556 }
557
558 return hsh_entry;
559 }
560
561 /* Add a new stub entry to the stub hash. Not all fields of the new
562 stub entry are initialised. */
563
564 static struct elf32_hppa_stub_hash_entry *
565 hppa_add_stub (const char *stub_name,
566 asection *section,
567 struct elf32_hppa_link_hash_table *htab)
568 {
569 asection *link_sec;
570 asection *stub_sec;
571 struct elf32_hppa_stub_hash_entry *hsh;
572
573 link_sec = htab->stub_group[section->id].link_sec;
574 stub_sec = htab->stub_group[section->id].stub_sec;
575 if (stub_sec == NULL)
576 {
577 stub_sec = htab->stub_group[link_sec->id].stub_sec;
578 if (stub_sec == NULL)
579 {
580 size_t namelen;
581 bfd_size_type len;
582 char *s_name;
583
584 namelen = strlen (link_sec->name);
585 len = namelen + sizeof (STUB_SUFFIX);
586 s_name = bfd_alloc (htab->stub_bfd, len);
587 if (s_name == NULL)
588 return NULL;
589
590 memcpy (s_name, link_sec->name, namelen);
591 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
592 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
593 if (stub_sec == NULL)
594 return NULL;
595 htab->stub_group[link_sec->id].stub_sec = stub_sec;
596 }
597 htab->stub_group[section->id].stub_sec = stub_sec;
598 }
599
600 /* Enter this entry into the linker stub hash table. */
601 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
602 TRUE, FALSE);
603 if (hsh == NULL)
604 {
605 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
606 section->owner,
607 stub_name);
608 return NULL;
609 }
610
611 hsh->stub_sec = stub_sec;
612 hsh->stub_offset = 0;
613 hsh->id_sec = link_sec;
614 return hsh;
615 }
616
617 /* Determine the type of stub needed, if any, for a call. */
618
619 static enum elf32_hppa_stub_type
620 hppa_type_of_stub (asection *input_sec,
621 const Elf_Internal_Rela *rela,
622 struct elf32_hppa_link_hash_entry *hh,
623 bfd_vma destination,
624 struct bfd_link_info *info)
625 {
626 bfd_vma location;
627 bfd_vma branch_offset;
628 bfd_vma max_branch_offset;
629 unsigned int r_type;
630
631 if (hh != NULL
632 && hh->eh.plt.offset != (bfd_vma) -1
633 && hh->eh.dynindx != -1
634 && !hh->plabel
635 && (info->shared
636 || !hh->eh.def_regular
637 || hh->eh.root.type == bfd_link_hash_defweak))
638 {
639 /* We need an import stub. Decide between hppa_stub_import
640 and hppa_stub_import_shared later. */
641 return hppa_stub_import;
642 }
643
644 /* Determine where the call point is. */
645 location = (input_sec->output_offset
646 + input_sec->output_section->vma
647 + rela->r_offset);
648
649 branch_offset = destination - location - 8;
650 r_type = ELF32_R_TYPE (rela->r_info);
651
652 /* Determine if a long branch stub is needed. parisc branch offsets
653 are relative to the second instruction past the branch, ie. +8
654 bytes on from the branch instruction location. The offset is
655 signed and counts in units of 4 bytes. */
656 if (r_type == (unsigned int) R_PARISC_PCREL17F)
657 max_branch_offset = (1 << (17 - 1)) << 2;
658
659 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
660 max_branch_offset = (1 << (12 - 1)) << 2;
661
662 else /* R_PARISC_PCREL22F. */
663 max_branch_offset = (1 << (22 - 1)) << 2;
664
665 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
666 return hppa_stub_long_branch;
667
668 return hppa_stub_none;
669 }
670
671 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
672 IN_ARG contains the link info pointer. */
673
674 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
675 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
676
677 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
678 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
679 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
680
681 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
682 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
683 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
684 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
685
686 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
687 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
688
689 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
690 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
691 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
692 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
693
694 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
695 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
696 #define NOP 0x08000240 /* nop */
697 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
698 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
699 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
700
701 #ifndef R19_STUBS
702 #define R19_STUBS 1
703 #endif
704
705 #if R19_STUBS
706 #define LDW_R1_DLT LDW_R1_R19
707 #else
708 #define LDW_R1_DLT LDW_R1_DP
709 #endif
710
711 static bfd_boolean
712 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
713 {
714 struct elf32_hppa_stub_hash_entry *hsh;
715 struct bfd_link_info *info;
716 struct elf32_hppa_link_hash_table *htab;
717 asection *stub_sec;
718 bfd *stub_bfd;
719 bfd_byte *loc;
720 bfd_vma sym_value;
721 bfd_vma insn;
722 bfd_vma off;
723 int val;
724 int size;
725
726 /* Massage our args to the form they really have. */
727 hsh = hppa_stub_hash_entry (bh);
728 info = (struct bfd_link_info *)in_arg;
729
730 htab = hppa_link_hash_table (info);
731 stub_sec = hsh->stub_sec;
732
733 /* Make a note of the offset within the stubs for this entry. */
734 hsh->stub_offset = stub_sec->size;
735 loc = stub_sec->contents + hsh->stub_offset;
736
737 stub_bfd = stub_sec->owner;
738
739 switch (hsh->stub_type)
740 {
741 case hppa_stub_long_branch:
742 /* Create the long branch. A long branch is formed with "ldil"
743 loading the upper bits of the target address into a register,
744 then branching with "be" which adds in the lower bits.
745 The "be" has its delay slot nullified. */
746 sym_value = (hsh->target_value
747 + hsh->target_section->output_offset
748 + hsh->target_section->output_section->vma);
749
750 val = hppa_field_adjust (sym_value, 0, e_lrsel);
751 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
752 bfd_put_32 (stub_bfd, insn, loc);
753
754 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
755 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
756 bfd_put_32 (stub_bfd, insn, loc + 4);
757
758 size = 8;
759 break;
760
761 case hppa_stub_long_branch_shared:
762 /* Branches are relative. This is where we are going to. */
763 sym_value = (hsh->target_value
764 + hsh->target_section->output_offset
765 + hsh->target_section->output_section->vma);
766
767 /* And this is where we are coming from, more or less. */
768 sym_value -= (hsh->stub_offset
769 + stub_sec->output_offset
770 + stub_sec->output_section->vma);
771
772 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
773 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
774 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
775 bfd_put_32 (stub_bfd, insn, loc + 4);
776
777 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
778 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
779 bfd_put_32 (stub_bfd, insn, loc + 8);
780 size = 12;
781 break;
782
783 case hppa_stub_import:
784 case hppa_stub_import_shared:
785 off = hsh->hh->eh.plt.offset;
786 if (off >= (bfd_vma) -2)
787 abort ();
788
789 off &= ~ (bfd_vma) 1;
790 sym_value = (off
791 + htab->splt->output_offset
792 + htab->splt->output_section->vma
793 - elf_gp (htab->splt->output_section->owner));
794
795 insn = ADDIL_DP;
796 #if R19_STUBS
797 if (hsh->stub_type == hppa_stub_import_shared)
798 insn = ADDIL_R19;
799 #endif
800 val = hppa_field_adjust (sym_value, 0, e_lrsel),
801 insn = hppa_rebuild_insn ((int) insn, val, 21);
802 bfd_put_32 (stub_bfd, insn, loc);
803
804 /* It is critical to use lrsel/rrsel here because we are using
805 two different offsets (+0 and +4) from sym_value. If we use
806 lsel/rsel then with unfortunate sym_values we will round
807 sym_value+4 up to the next 2k block leading to a mis-match
808 between the lsel and rsel value. */
809 val = hppa_field_adjust (sym_value, 0, e_rrsel);
810 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
811 bfd_put_32 (stub_bfd, insn, loc + 4);
812
813 if (htab->multi_subspace)
814 {
815 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
816 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
817 bfd_put_32 (stub_bfd, insn, loc + 8);
818
819 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
820 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
821 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
822 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
823
824 size = 28;
825 }
826 else
827 {
828 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
829 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
830 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
831 bfd_put_32 (stub_bfd, insn, loc + 12);
832
833 size = 16;
834 }
835
836 break;
837
838 case hppa_stub_export:
839 /* Branches are relative. This is where we are going to. */
840 sym_value = (hsh->target_value
841 + hsh->target_section->output_offset
842 + hsh->target_section->output_section->vma);
843
844 /* And this is where we are coming from. */
845 sym_value -= (hsh->stub_offset
846 + stub_sec->output_offset
847 + stub_sec->output_section->vma);
848
849 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
850 && (!htab->has_22bit_branch
851 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
852 {
853 (*_bfd_error_handler)
854 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
855 hsh->target_section->owner,
856 stub_sec,
857 (long) hsh->stub_offset,
858 hsh->bh_root.string);
859 bfd_set_error (bfd_error_bad_value);
860 return FALSE;
861 }
862
863 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
864 if (!htab->has_22bit_branch)
865 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
866 else
867 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
868 bfd_put_32 (stub_bfd, insn, loc);
869
870 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
871 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
872 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
873 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
874 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
875
876 /* Point the function symbol at the stub. */
877 hsh->hh->eh.root.u.def.section = stub_sec;
878 hsh->hh->eh.root.u.def.value = stub_sec->size;
879
880 size = 24;
881 break;
882
883 default:
884 BFD_FAIL ();
885 return FALSE;
886 }
887
888 stub_sec->size += size;
889 return TRUE;
890 }
891
892 #undef LDIL_R1
893 #undef BE_SR4_R1
894 #undef BL_R1
895 #undef ADDIL_R1
896 #undef DEPI_R1
897 #undef LDW_R1_R21
898 #undef LDW_R1_DLT
899 #undef LDW_R1_R19
900 #undef ADDIL_R19
901 #undef LDW_R1_DP
902 #undef LDSID_R21_R1
903 #undef MTSP_R1
904 #undef BE_SR0_R21
905 #undef STW_RP
906 #undef BV_R0_R21
907 #undef BL_RP
908 #undef NOP
909 #undef LDW_RP
910 #undef LDSID_RP_R1
911 #undef BE_SR0_RP
912
913 /* As above, but don't actually build the stub. Just bump offset so
914 we know stub section sizes. */
915
916 static bfd_boolean
917 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
918 {
919 struct elf32_hppa_stub_hash_entry *hsh;
920 struct elf32_hppa_link_hash_table *htab;
921 int size;
922
923 /* Massage our args to the form they really have. */
924 hsh = hppa_stub_hash_entry (bh);
925 htab = in_arg;
926
927 if (hsh->stub_type == hppa_stub_long_branch)
928 size = 8;
929 else if (hsh->stub_type == hppa_stub_long_branch_shared)
930 size = 12;
931 else if (hsh->stub_type == hppa_stub_export)
932 size = 24;
933 else /* hppa_stub_import or hppa_stub_import_shared. */
934 {
935 if (htab->multi_subspace)
936 size = 28;
937 else
938 size = 16;
939 }
940
941 hsh->stub_sec->size += size;
942 return TRUE;
943 }
944
945 /* Return nonzero if ABFD represents an HPPA ELF32 file.
946 Additionally we set the default architecture and machine. */
947
948 static bfd_boolean
949 elf32_hppa_object_p (bfd *abfd)
950 {
951 Elf_Internal_Ehdr * i_ehdrp;
952 unsigned int flags;
953
954 i_ehdrp = elf_elfheader (abfd);
955 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
956 {
957 /* GCC on hppa-linux produces binaries with OSABI=Linux,
958 but the kernel produces corefiles with OSABI=SysV. */
959 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX &&
960 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
961 return FALSE;
962 }
963 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
964 {
965 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
966 but the kernel produces corefiles with OSABI=SysV. */
967 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
968 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
969 return FALSE;
970 }
971 else
972 {
973 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
974 return FALSE;
975 }
976
977 flags = i_ehdrp->e_flags;
978 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
979 {
980 case EFA_PARISC_1_0:
981 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
982 case EFA_PARISC_1_1:
983 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
984 case EFA_PARISC_2_0:
985 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
986 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
987 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
988 }
989 return TRUE;
990 }
991
992 /* Create the .plt and .got sections, and set up our hash table
993 short-cuts to various dynamic sections. */
994
995 static bfd_boolean
996 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
997 {
998 struct elf32_hppa_link_hash_table *htab;
999 struct elf_link_hash_entry *eh;
1000
1001 /* Don't try to create the .plt and .got twice. */
1002 htab = hppa_link_hash_table (info);
1003 if (htab->splt != NULL)
1004 return TRUE;
1005
1006 /* Call the generic code to do most of the work. */
1007 if (! _bfd_elf_create_dynamic_sections (abfd, info))
1008 return FALSE;
1009
1010 htab->splt = bfd_get_section_by_name (abfd, ".plt");
1011 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
1012
1013 htab->sgot = bfd_get_section_by_name (abfd, ".got");
1014 htab->srelgot = bfd_get_section_by_name (abfd, ".rela.got");
1015
1016 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
1017 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
1018
1019 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
1020 application, because __canonicalize_funcptr_for_compare needs it. */
1021 eh = elf_hash_table (info)->hgot;
1022 eh->forced_local = 0;
1023 eh->other = STV_DEFAULT;
1024 return bfd_elf_link_record_dynamic_symbol (info, eh);
1025 }
1026
1027 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1028
1029 static void
1030 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1031 struct elf_link_hash_entry *eh_dir,
1032 struct elf_link_hash_entry *eh_ind)
1033 {
1034 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1035
1036 hh_dir = hppa_elf_hash_entry (eh_dir);
1037 hh_ind = hppa_elf_hash_entry (eh_ind);
1038
1039 if (hh_ind->dyn_relocs != NULL)
1040 {
1041 if (hh_dir->dyn_relocs != NULL)
1042 {
1043 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1044 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1045
1046 /* Add reloc counts against the indirect sym to the direct sym
1047 list. Merge any entries against the same section. */
1048 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1049 {
1050 struct elf32_hppa_dyn_reloc_entry *hdh_q;
1051
1052 for (hdh_q = hh_dir->dyn_relocs;
1053 hdh_q != NULL;
1054 hdh_q = hdh_q->hdh_next)
1055 if (hdh_q->sec == hdh_p->sec)
1056 {
1057 #if RELATIVE_DYNRELOCS
1058 hdh_q->relative_count += hdh_p->relative_count;
1059 #endif
1060 hdh_q->count += hdh_p->count;
1061 *hdh_pp = hdh_p->hdh_next;
1062 break;
1063 }
1064 if (hdh_q == NULL)
1065 hdh_pp = &hdh_p->hdh_next;
1066 }
1067 *hdh_pp = hh_dir->dyn_relocs;
1068 }
1069
1070 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1071 hh_ind->dyn_relocs = NULL;
1072 }
1073
1074 if (ELIMINATE_COPY_RELOCS
1075 && eh_ind->root.type != bfd_link_hash_indirect
1076 && eh_dir->dynamic_adjusted)
1077 {
1078 /* If called to transfer flags for a weakdef during processing
1079 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1080 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1081 eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
1082 eh_dir->ref_regular |= eh_ind->ref_regular;
1083 eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
1084 eh_dir->needs_plt |= eh_ind->needs_plt;
1085 }
1086 else
1087 {
1088 if (eh_ind->root.type == bfd_link_hash_indirect
1089 && eh_dir->got.refcount <= 0)
1090 {
1091 hh_dir->tls_type = hh_ind->tls_type;
1092 hh_ind->tls_type = GOT_UNKNOWN;
1093 }
1094
1095 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1096 }
1097 }
1098
1099 static int
1100 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1101 int r_type, int is_local ATTRIBUTE_UNUSED)
1102 {
1103 /* For now we don't support linker optimizations. */
1104 return r_type;
1105 }
1106
1107 /* Return a pointer to the local GOT, PLT and TLS reference counts
1108 for ABFD. Returns NULL if the storage allocation fails. */
1109
1110 static bfd_signed_vma *
1111 hppa32_elf_local_refcounts (bfd *abfd)
1112 {
1113 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1114 bfd_signed_vma *local_refcounts;
1115
1116 local_refcounts = elf_local_got_refcounts (abfd);
1117 if (local_refcounts == NULL)
1118 {
1119 bfd_size_type size;
1120
1121 /* Allocate space for local GOT and PLT reference
1122 counts. Done this way to save polluting elf_obj_tdata
1123 with another target specific pointer. */
1124 size = symtab_hdr->sh_info;
1125 size *= 2 * sizeof (bfd_signed_vma);
1126 /* Add in space to store the local GOT TLS types. */
1127 size += symtab_hdr->sh_info;
1128 local_refcounts = bfd_zalloc (abfd, size);
1129 if (local_refcounts == NULL)
1130 return NULL;
1131 elf_local_got_refcounts (abfd) = local_refcounts;
1132 memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN,
1133 symtab_hdr->sh_info);
1134 }
1135 return local_refcounts;
1136 }
1137
1138
1139 /* Look through the relocs for a section during the first phase, and
1140 calculate needed space in the global offset table, procedure linkage
1141 table, and dynamic reloc sections. At this point we haven't
1142 necessarily read all the input files. */
1143
1144 static bfd_boolean
1145 elf32_hppa_check_relocs (bfd *abfd,
1146 struct bfd_link_info *info,
1147 asection *sec,
1148 const Elf_Internal_Rela *relocs)
1149 {
1150 Elf_Internal_Shdr *symtab_hdr;
1151 struct elf_link_hash_entry **eh_syms;
1152 const Elf_Internal_Rela *rela;
1153 const Elf_Internal_Rela *rela_end;
1154 struct elf32_hppa_link_hash_table *htab;
1155 asection *sreloc;
1156 asection *stubreloc;
1157 int tls_type = GOT_UNKNOWN, old_tls_type = GOT_UNKNOWN;
1158
1159 if (info->relocatable)
1160 return TRUE;
1161
1162 htab = hppa_link_hash_table (info);
1163 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1164 eh_syms = elf_sym_hashes (abfd);
1165 sreloc = NULL;
1166 stubreloc = NULL;
1167
1168 rela_end = relocs + sec->reloc_count;
1169 for (rela = relocs; rela < rela_end; rela++)
1170 {
1171 enum {
1172 NEED_GOT = 1,
1173 NEED_PLT = 2,
1174 NEED_DYNREL = 4,
1175 PLT_PLABEL = 8
1176 };
1177
1178 unsigned int r_symndx, r_type;
1179 struct elf32_hppa_link_hash_entry *hh;
1180 int need_entry = 0;
1181
1182 r_symndx = ELF32_R_SYM (rela->r_info);
1183
1184 if (r_symndx < symtab_hdr->sh_info)
1185 hh = NULL;
1186 else
1187 {
1188 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1189 while (hh->eh.root.type == bfd_link_hash_indirect
1190 || hh->eh.root.type == bfd_link_hash_warning)
1191 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1192 }
1193
1194 r_type = ELF32_R_TYPE (rela->r_info);
1195 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1196
1197 switch (r_type)
1198 {
1199 case R_PARISC_DLTIND14F:
1200 case R_PARISC_DLTIND14R:
1201 case R_PARISC_DLTIND21L:
1202 /* This symbol requires a global offset table entry. */
1203 need_entry = NEED_GOT;
1204 break;
1205
1206 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1207 case R_PARISC_PLABEL21L:
1208 case R_PARISC_PLABEL32:
1209 /* If the addend is non-zero, we break badly. */
1210 if (rela->r_addend != 0)
1211 abort ();
1212
1213 /* If we are creating a shared library, then we need to
1214 create a PLT entry for all PLABELs, because PLABELs with
1215 local symbols may be passed via a pointer to another
1216 object. Additionally, output a dynamic relocation
1217 pointing to the PLT entry.
1218
1219 For executables, the original 32-bit ABI allowed two
1220 different styles of PLABELs (function pointers): For
1221 global functions, the PLABEL word points into the .plt
1222 two bytes past a (function address, gp) pair, and for
1223 local functions the PLABEL points directly at the
1224 function. The magic +2 for the first type allows us to
1225 differentiate between the two. As you can imagine, this
1226 is a real pain when it comes to generating code to call
1227 functions indirectly or to compare function pointers.
1228 We avoid the mess by always pointing a PLABEL into the
1229 .plt, even for local functions. */
1230 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1231 break;
1232
1233 case R_PARISC_PCREL12F:
1234 htab->has_12bit_branch = 1;
1235 goto branch_common;
1236
1237 case R_PARISC_PCREL17C:
1238 case R_PARISC_PCREL17F:
1239 htab->has_17bit_branch = 1;
1240 goto branch_common;
1241
1242 case R_PARISC_PCREL22F:
1243 htab->has_22bit_branch = 1;
1244 branch_common:
1245 /* Function calls might need to go through the .plt, and
1246 might require long branch stubs. */
1247 if (hh == NULL)
1248 {
1249 /* We know local syms won't need a .plt entry, and if
1250 they need a long branch stub we can't guarantee that
1251 we can reach the stub. So just flag an error later
1252 if we're doing a shared link and find we need a long
1253 branch stub. */
1254 continue;
1255 }
1256 else
1257 {
1258 /* Global symbols will need a .plt entry if they remain
1259 global, and in most cases won't need a long branch
1260 stub. Unfortunately, we have to cater for the case
1261 where a symbol is forced local by versioning, or due
1262 to symbolic linking, and we lose the .plt entry. */
1263 need_entry = NEED_PLT;
1264 if (hh->eh.type == STT_PARISC_MILLI)
1265 need_entry = 0;
1266 }
1267 break;
1268
1269 case R_PARISC_SEGBASE: /* Used to set segment base. */
1270 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1271 case R_PARISC_PCREL14F: /* PC relative load/store. */
1272 case R_PARISC_PCREL14R:
1273 case R_PARISC_PCREL17R: /* External branches. */
1274 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1275 case R_PARISC_PCREL32:
1276 /* We don't need to propagate the relocation if linking a
1277 shared object since these are section relative. */
1278 continue;
1279
1280 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1281 case R_PARISC_DPREL14R:
1282 case R_PARISC_DPREL21L:
1283 if (info->shared)
1284 {
1285 (*_bfd_error_handler)
1286 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1287 abfd,
1288 elf_hppa_howto_table[r_type].name);
1289 bfd_set_error (bfd_error_bad_value);
1290 return FALSE;
1291 }
1292 /* Fall through. */
1293
1294 case R_PARISC_DIR17F: /* Used for external branches. */
1295 case R_PARISC_DIR17R:
1296 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1297 case R_PARISC_DIR14R:
1298 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1299 case R_PARISC_DIR32: /* .word relocs. */
1300 /* We may want to output a dynamic relocation later. */
1301 need_entry = NEED_DYNREL;
1302 break;
1303
1304 /* This relocation describes the C++ object vtable hierarchy.
1305 Reconstruct it for later use during GC. */
1306 case R_PARISC_GNU_VTINHERIT:
1307 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1308 return FALSE;
1309 continue;
1310
1311 /* This relocation describes which C++ vtable entries are actually
1312 used. Record for later use during GC. */
1313 case R_PARISC_GNU_VTENTRY:
1314 BFD_ASSERT (hh != NULL);
1315 if (hh != NULL
1316 && !bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1317 return FALSE;
1318 continue;
1319
1320 case R_PARISC_TLS_GD21L:
1321 case R_PARISC_TLS_GD14R:
1322 case R_PARISC_TLS_LDM21L:
1323 case R_PARISC_TLS_LDM14R:
1324 need_entry = NEED_GOT;
1325 break;
1326
1327 case R_PARISC_TLS_IE21L:
1328 case R_PARISC_TLS_IE14R:
1329 if (info->shared)
1330 info->flags |= DF_STATIC_TLS;
1331 need_entry = NEED_GOT;
1332 break;
1333
1334 default:
1335 continue;
1336 }
1337
1338 /* Now carry out our orders. */
1339 if (need_entry & NEED_GOT)
1340 {
1341 switch (r_type)
1342 {
1343 default:
1344 tls_type = GOT_NORMAL;
1345 break;
1346 case R_PARISC_TLS_GD21L:
1347 case R_PARISC_TLS_GD14R:
1348 tls_type |= GOT_TLS_GD;
1349 break;
1350 case R_PARISC_TLS_LDM21L:
1351 case R_PARISC_TLS_LDM14R:
1352 tls_type |= GOT_TLS_LDM;
1353 break;
1354 case R_PARISC_TLS_IE21L:
1355 case R_PARISC_TLS_IE14R:
1356 tls_type |= GOT_TLS_IE;
1357 break;
1358 }
1359
1360 /* Allocate space for a GOT entry, as well as a dynamic
1361 relocation for this entry. */
1362 if (htab->sgot == NULL)
1363 {
1364 if (htab->etab.dynobj == NULL)
1365 htab->etab.dynobj = abfd;
1366 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1367 return FALSE;
1368 }
1369
1370 if (r_type == R_PARISC_TLS_LDM21L
1371 || r_type == R_PARISC_TLS_LDM14R)
1372 hppa_link_hash_table (info)->tls_ldm_got.refcount += 1;
1373 else
1374 {
1375 if (hh != NULL)
1376 {
1377 hh->eh.got.refcount += 1;
1378 old_tls_type = hh->tls_type;
1379 }
1380 else
1381 {
1382 bfd_signed_vma *local_got_refcounts;
1383
1384 /* This is a global offset table entry for a local symbol. */
1385 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1386 if (local_got_refcounts == NULL)
1387 return FALSE;
1388 local_got_refcounts[r_symndx] += 1;
1389
1390 old_tls_type = hppa_elf_local_got_tls_type (abfd) [r_symndx];
1391 }
1392
1393 tls_type |= old_tls_type;
1394
1395 if (old_tls_type != tls_type)
1396 {
1397 if (hh != NULL)
1398 hh->tls_type = tls_type;
1399 else
1400 hppa_elf_local_got_tls_type (abfd) [r_symndx] = tls_type;
1401 }
1402
1403 }
1404 }
1405
1406 if (need_entry & NEED_PLT)
1407 {
1408 /* If we are creating a shared library, and this is a reloc
1409 against a weak symbol or a global symbol in a dynamic
1410 object, then we will be creating an import stub and a
1411 .plt entry for the symbol. Similarly, on a normal link
1412 to symbols defined in a dynamic object we'll need the
1413 import stub and a .plt entry. We don't know yet whether
1414 the symbol is defined or not, so make an entry anyway and
1415 clean up later in adjust_dynamic_symbol. */
1416 if ((sec->flags & SEC_ALLOC) != 0)
1417 {
1418 if (hh != NULL)
1419 {
1420 hh->eh.needs_plt = 1;
1421 hh->eh.plt.refcount += 1;
1422
1423 /* If this .plt entry is for a plabel, mark it so
1424 that adjust_dynamic_symbol will keep the entry
1425 even if it appears to be local. */
1426 if (need_entry & PLT_PLABEL)
1427 hh->plabel = 1;
1428 }
1429 else if (need_entry & PLT_PLABEL)
1430 {
1431 bfd_signed_vma *local_got_refcounts;
1432 bfd_signed_vma *local_plt_refcounts;
1433
1434 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1435 if (local_got_refcounts == NULL)
1436 return FALSE;
1437 local_plt_refcounts = (local_got_refcounts
1438 + symtab_hdr->sh_info);
1439 local_plt_refcounts[r_symndx] += 1;
1440 }
1441 }
1442 }
1443
1444 if (need_entry & NEED_DYNREL)
1445 {
1446 /* Flag this symbol as having a non-got, non-plt reference
1447 so that we generate copy relocs if it turns out to be
1448 dynamic. */
1449 if (hh != NULL && !info->shared)
1450 hh->eh.non_got_ref = 1;
1451
1452 /* If we are creating a shared library then we need to copy
1453 the reloc into the shared library. However, if we are
1454 linking with -Bsymbolic, we need only copy absolute
1455 relocs or relocs against symbols that are not defined in
1456 an object we are including in the link. PC- or DP- or
1457 DLT-relative relocs against any local sym or global sym
1458 with DEF_REGULAR set, can be discarded. At this point we
1459 have not seen all the input files, so it is possible that
1460 DEF_REGULAR is not set now but will be set later (it is
1461 never cleared). We account for that possibility below by
1462 storing information in the dyn_relocs field of the
1463 hash table entry.
1464
1465 A similar situation to the -Bsymbolic case occurs when
1466 creating shared libraries and symbol visibility changes
1467 render the symbol local.
1468
1469 As it turns out, all the relocs we will be creating here
1470 are absolute, so we cannot remove them on -Bsymbolic
1471 links or visibility changes anyway. A STUB_REL reloc
1472 is absolute too, as in that case it is the reloc in the
1473 stub we will be creating, rather than copying the PCREL
1474 reloc in the branch.
1475
1476 If on the other hand, we are creating an executable, we
1477 may need to keep relocations for symbols satisfied by a
1478 dynamic library if we manage to avoid copy relocs for the
1479 symbol. */
1480 if ((info->shared
1481 && (sec->flags & SEC_ALLOC) != 0
1482 && (IS_ABSOLUTE_RELOC (r_type)
1483 || (hh != NULL
1484 && (!info->symbolic
1485 || hh->eh.root.type == bfd_link_hash_defweak
1486 || !hh->eh.def_regular))))
1487 || (ELIMINATE_COPY_RELOCS
1488 && !info->shared
1489 && (sec->flags & SEC_ALLOC) != 0
1490 && hh != NULL
1491 && (hh->eh.root.type == bfd_link_hash_defweak
1492 || !hh->eh.def_regular)))
1493 {
1494 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1495 struct elf32_hppa_dyn_reloc_entry **hdh_head;
1496
1497 /* Create a reloc section in dynobj and make room for
1498 this reloc. */
1499 if (sreloc == NULL)
1500 {
1501 if (htab->etab.dynobj == NULL)
1502 htab->etab.dynobj = abfd;
1503
1504 sreloc = _bfd_elf_make_dynamic_reloc_section
1505 (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
1506
1507 if (sreloc == NULL)
1508 {
1509 bfd_set_error (bfd_error_bad_value);
1510 return FALSE;
1511 }
1512 }
1513
1514 /* If this is a global symbol, we count the number of
1515 relocations we need for this symbol. */
1516 if (hh != NULL)
1517 {
1518 hdh_head = &hh->dyn_relocs;
1519 }
1520 else
1521 {
1522 /* Track dynamic relocs needed for local syms too.
1523 We really need local syms available to do this
1524 easily. Oh well. */
1525 asection *sr;
1526 void *vpp;
1527 Elf_Internal_Sym *isym;
1528
1529 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1530 abfd, r_symndx);
1531 if (isym == NULL)
1532 return FALSE;
1533
1534 sr = bfd_section_from_elf_index (abfd, isym->st_shndx);
1535 if (sr == NULL)
1536 sr = sec;
1537
1538 vpp = &elf_section_data (sr)->local_dynrel;
1539 hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp;
1540 }
1541
1542 hdh_p = *hdh_head;
1543 if (hdh_p == NULL || hdh_p->sec != sec)
1544 {
1545 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1546 if (hdh_p == NULL)
1547 return FALSE;
1548 hdh_p->hdh_next = *hdh_head;
1549 *hdh_head = hdh_p;
1550 hdh_p->sec = sec;
1551 hdh_p->count = 0;
1552 #if RELATIVE_DYNRELOCS
1553 hdh_p->relative_count = 0;
1554 #endif
1555 }
1556
1557 hdh_p->count += 1;
1558 #if RELATIVE_DYNRELOCS
1559 if (!IS_ABSOLUTE_RELOC (rtype))
1560 hdh_p->relative_count += 1;
1561 #endif
1562 }
1563 }
1564 }
1565
1566 return TRUE;
1567 }
1568
1569 /* Return the section that should be marked against garbage collection
1570 for a given relocation. */
1571
1572 static asection *
1573 elf32_hppa_gc_mark_hook (asection *sec,
1574 struct bfd_link_info *info,
1575 Elf_Internal_Rela *rela,
1576 struct elf_link_hash_entry *hh,
1577 Elf_Internal_Sym *sym)
1578 {
1579 if (hh != NULL)
1580 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1581 {
1582 case R_PARISC_GNU_VTINHERIT:
1583 case R_PARISC_GNU_VTENTRY:
1584 return NULL;
1585 }
1586
1587 return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1588 }
1589
1590 /* Update the got and plt entry reference counts for the section being
1591 removed. */
1592
1593 static bfd_boolean
1594 elf32_hppa_gc_sweep_hook (bfd *abfd,
1595 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1596 asection *sec,
1597 const Elf_Internal_Rela *relocs)
1598 {
1599 Elf_Internal_Shdr *symtab_hdr;
1600 struct elf_link_hash_entry **eh_syms;
1601 bfd_signed_vma *local_got_refcounts;
1602 bfd_signed_vma *local_plt_refcounts;
1603 const Elf_Internal_Rela *rela, *relend;
1604
1605 if (info->relocatable)
1606 return TRUE;
1607
1608 elf_section_data (sec)->local_dynrel = NULL;
1609
1610 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1611 eh_syms = elf_sym_hashes (abfd);
1612 local_got_refcounts = elf_local_got_refcounts (abfd);
1613 local_plt_refcounts = local_got_refcounts;
1614 if (local_plt_refcounts != NULL)
1615 local_plt_refcounts += symtab_hdr->sh_info;
1616
1617 relend = relocs + sec->reloc_count;
1618 for (rela = relocs; rela < relend; rela++)
1619 {
1620 unsigned long r_symndx;
1621 unsigned int r_type;
1622 struct elf_link_hash_entry *eh = NULL;
1623
1624 r_symndx = ELF32_R_SYM (rela->r_info);
1625 if (r_symndx >= symtab_hdr->sh_info)
1626 {
1627 struct elf32_hppa_link_hash_entry *hh;
1628 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1629 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1630
1631 eh = eh_syms[r_symndx - symtab_hdr->sh_info];
1632 while (eh->root.type == bfd_link_hash_indirect
1633 || eh->root.type == bfd_link_hash_warning)
1634 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1635 hh = hppa_elf_hash_entry (eh);
1636
1637 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next)
1638 if (hdh_p->sec == sec)
1639 {
1640 /* Everything must go for SEC. */
1641 *hdh_pp = hdh_p->hdh_next;
1642 break;
1643 }
1644 }
1645
1646 r_type = ELF32_R_TYPE (rela->r_info);
1647 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, eh != NULL);
1648
1649 switch (r_type)
1650 {
1651 case R_PARISC_DLTIND14F:
1652 case R_PARISC_DLTIND14R:
1653 case R_PARISC_DLTIND21L:
1654 case R_PARISC_TLS_GD21L:
1655 case R_PARISC_TLS_GD14R:
1656 case R_PARISC_TLS_IE21L:
1657 case R_PARISC_TLS_IE14R:
1658 if (eh != NULL)
1659 {
1660 if (eh->got.refcount > 0)
1661 eh->got.refcount -= 1;
1662 }
1663 else if (local_got_refcounts != NULL)
1664 {
1665 if (local_got_refcounts[r_symndx] > 0)
1666 local_got_refcounts[r_symndx] -= 1;
1667 }
1668 break;
1669
1670 case R_PARISC_TLS_LDM21L:
1671 case R_PARISC_TLS_LDM14R:
1672 hppa_link_hash_table (info)->tls_ldm_got.refcount -= 1;
1673 break;
1674
1675 case R_PARISC_PCREL12F:
1676 case R_PARISC_PCREL17C:
1677 case R_PARISC_PCREL17F:
1678 case R_PARISC_PCREL22F:
1679 if (eh != NULL)
1680 {
1681 if (eh->plt.refcount > 0)
1682 eh->plt.refcount -= 1;
1683 }
1684 break;
1685
1686 case R_PARISC_PLABEL14R:
1687 case R_PARISC_PLABEL21L:
1688 case R_PARISC_PLABEL32:
1689 if (eh != NULL)
1690 {
1691 if (eh->plt.refcount > 0)
1692 eh->plt.refcount -= 1;
1693 }
1694 else if (local_plt_refcounts != NULL)
1695 {
1696 if (local_plt_refcounts[r_symndx] > 0)
1697 local_plt_refcounts[r_symndx] -= 1;
1698 }
1699 break;
1700
1701 default:
1702 break;
1703 }
1704 }
1705
1706 return TRUE;
1707 }
1708
1709 /* Support for core dump NOTE sections. */
1710
1711 static bfd_boolean
1712 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1713 {
1714 int offset;
1715 size_t size;
1716
1717 switch (note->descsz)
1718 {
1719 default:
1720 return FALSE;
1721
1722 case 396: /* Linux/hppa */
1723 /* pr_cursig */
1724 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1725
1726 /* pr_pid */
1727 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1728
1729 /* pr_reg */
1730 offset = 72;
1731 size = 320;
1732
1733 break;
1734 }
1735
1736 /* Make a ".reg/999" section. */
1737 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1738 size, note->descpos + offset);
1739 }
1740
1741 static bfd_boolean
1742 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1743 {
1744 switch (note->descsz)
1745 {
1746 default:
1747 return FALSE;
1748
1749 case 124: /* Linux/hppa elf_prpsinfo. */
1750 elf_tdata (abfd)->core_program
1751 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1752 elf_tdata (abfd)->core_command
1753 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1754 }
1755
1756 /* Note that for some reason, a spurious space is tacked
1757 onto the end of the args in some (at least one anyway)
1758 implementations, so strip it off if it exists. */
1759 {
1760 char *command = elf_tdata (abfd)->core_command;
1761 int n = strlen (command);
1762
1763 if (0 < n && command[n - 1] == ' ')
1764 command[n - 1] = '\0';
1765 }
1766
1767 return TRUE;
1768 }
1769
1770 /* Our own version of hide_symbol, so that we can keep plt entries for
1771 plabels. */
1772
1773 static void
1774 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1775 struct elf_link_hash_entry *eh,
1776 bfd_boolean force_local)
1777 {
1778 if (force_local)
1779 {
1780 eh->forced_local = 1;
1781 if (eh->dynindx != -1)
1782 {
1783 eh->dynindx = -1;
1784 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1785 eh->dynstr_index);
1786 }
1787 }
1788
1789 if (! hppa_elf_hash_entry (eh)->plabel)
1790 {
1791 eh->needs_plt = 0;
1792 eh->plt = elf_hash_table (info)->init_plt_refcount;
1793 }
1794 }
1795
1796 /* Adjust a symbol defined by a dynamic object and referenced by a
1797 regular object. The current definition is in some section of the
1798 dynamic object, but we're not including those sections. We have to
1799 change the definition to something the rest of the link can
1800 understand. */
1801
1802 static bfd_boolean
1803 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1804 struct elf_link_hash_entry *eh)
1805 {
1806 struct elf32_hppa_link_hash_table *htab;
1807 asection *sec;
1808
1809 /* If this is a function, put it in the procedure linkage table. We
1810 will fill in the contents of the procedure linkage table later. */
1811 if (eh->type == STT_FUNC
1812 || eh->needs_plt)
1813 {
1814 if (eh->plt.refcount <= 0
1815 || (eh->def_regular
1816 && eh->root.type != bfd_link_hash_defweak
1817 && ! hppa_elf_hash_entry (eh)->plabel
1818 && (!info->shared || info->symbolic)))
1819 {
1820 /* The .plt entry is not needed when:
1821 a) Garbage collection has removed all references to the
1822 symbol, or
1823 b) We know for certain the symbol is defined in this
1824 object, and it's not a weak definition, nor is the symbol
1825 used by a plabel relocation. Either this object is the
1826 application or we are doing a shared symbolic link. */
1827
1828 eh->plt.offset = (bfd_vma) -1;
1829 eh->needs_plt = 0;
1830 }
1831
1832 return TRUE;
1833 }
1834 else
1835 eh->plt.offset = (bfd_vma) -1;
1836
1837 /* If this is a weak symbol, and there is a real definition, the
1838 processor independent code will have arranged for us to see the
1839 real definition first, and we can just use the same value. */
1840 if (eh->u.weakdef != NULL)
1841 {
1842 if (eh->u.weakdef->root.type != bfd_link_hash_defined
1843 && eh->u.weakdef->root.type != bfd_link_hash_defweak)
1844 abort ();
1845 eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1846 eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1847 if (ELIMINATE_COPY_RELOCS)
1848 eh->non_got_ref = eh->u.weakdef->non_got_ref;
1849 return TRUE;
1850 }
1851
1852 /* This is a reference to a symbol defined by a dynamic object which
1853 is not a function. */
1854
1855 /* If we are creating a shared library, we must presume that the
1856 only references to the symbol are via the global offset table.
1857 For such cases we need not do anything here; the relocations will
1858 be handled correctly by relocate_section. */
1859 if (info->shared)
1860 return TRUE;
1861
1862 /* If there are no references to this symbol that do not use the
1863 GOT, we don't need to generate a copy reloc. */
1864 if (!eh->non_got_ref)
1865 return TRUE;
1866
1867 if (ELIMINATE_COPY_RELOCS)
1868 {
1869 struct elf32_hppa_link_hash_entry *hh;
1870 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1871
1872 hh = hppa_elf_hash_entry (eh);
1873 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
1874 {
1875 sec = hdh_p->sec->output_section;
1876 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1877 break;
1878 }
1879
1880 /* If we didn't find any dynamic relocs in read-only sections, then
1881 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1882 if (hdh_p == NULL)
1883 {
1884 eh->non_got_ref = 0;
1885 return TRUE;
1886 }
1887 }
1888
1889 if (eh->size == 0)
1890 {
1891 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
1892 eh->root.root.string);
1893 return TRUE;
1894 }
1895
1896 /* We must allocate the symbol in our .dynbss section, which will
1897 become part of the .bss section of the executable. There will be
1898 an entry for this symbol in the .dynsym section. The dynamic
1899 object will contain position independent code, so all references
1900 from the dynamic object to this symbol will go through the global
1901 offset table. The dynamic linker will use the .dynsym entry to
1902 determine the address it must put in the global offset table, so
1903 both the dynamic object and the regular object will refer to the
1904 same memory location for the variable. */
1905
1906 htab = hppa_link_hash_table (info);
1907
1908 /* We must generate a COPY reloc to tell the dynamic linker to
1909 copy the initial value out of the dynamic object and into the
1910 runtime process image. */
1911 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0)
1912 {
1913 htab->srelbss->size += sizeof (Elf32_External_Rela);
1914 eh->needs_copy = 1;
1915 }
1916
1917 sec = htab->sdynbss;
1918
1919 return _bfd_elf_adjust_dynamic_copy (eh, sec);
1920 }
1921
1922 /* Allocate space in the .plt for entries that won't have relocations.
1923 ie. plabel entries. */
1924
1925 static bfd_boolean
1926 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1927 {
1928 struct bfd_link_info *info;
1929 struct elf32_hppa_link_hash_table *htab;
1930 struct elf32_hppa_link_hash_entry *hh;
1931 asection *sec;
1932
1933 if (eh->root.type == bfd_link_hash_indirect)
1934 return TRUE;
1935
1936 if (eh->root.type == bfd_link_hash_warning)
1937 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1938
1939 info = (struct bfd_link_info *) inf;
1940 hh = hppa_elf_hash_entry (eh);
1941 htab = hppa_link_hash_table (info);
1942 if (htab->etab.dynamic_sections_created
1943 && eh->plt.refcount > 0)
1944 {
1945 /* Make sure this symbol is output as a dynamic symbol.
1946 Undefined weak syms won't yet be marked as dynamic. */
1947 if (eh->dynindx == -1
1948 && !eh->forced_local
1949 && eh->type != STT_PARISC_MILLI)
1950 {
1951 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
1952 return FALSE;
1953 }
1954
1955 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, eh))
1956 {
1957 /* Allocate these later. From this point on, h->plabel
1958 means that the plt entry is only used by a plabel.
1959 We'll be using a normal plt entry for this symbol, so
1960 clear the plabel indicator. */
1961
1962 hh->plabel = 0;
1963 }
1964 else if (hh->plabel)
1965 {
1966 /* Make an entry in the .plt section for plabel references
1967 that won't have a .plt entry for other reasons. */
1968 sec = htab->splt;
1969 eh->plt.offset = sec->size;
1970 sec->size += PLT_ENTRY_SIZE;
1971 }
1972 else
1973 {
1974 /* No .plt entry needed. */
1975 eh->plt.offset = (bfd_vma) -1;
1976 eh->needs_plt = 0;
1977 }
1978 }
1979 else
1980 {
1981 eh->plt.offset = (bfd_vma) -1;
1982 eh->needs_plt = 0;
1983 }
1984
1985 return TRUE;
1986 }
1987
1988 /* Allocate space in .plt, .got and associated reloc sections for
1989 global syms. */
1990
1991 static bfd_boolean
1992 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
1993 {
1994 struct bfd_link_info *info;
1995 struct elf32_hppa_link_hash_table *htab;
1996 asection *sec;
1997 struct elf32_hppa_link_hash_entry *hh;
1998 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1999
2000 if (eh->root.type == bfd_link_hash_indirect)
2001 return TRUE;
2002
2003 if (eh->root.type == bfd_link_hash_warning)
2004 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2005
2006 info = inf;
2007 htab = hppa_link_hash_table (info);
2008 hh = hppa_elf_hash_entry (eh);
2009
2010 if (htab->etab.dynamic_sections_created
2011 && eh->plt.offset != (bfd_vma) -1
2012 && !hh->plabel
2013 && eh->plt.refcount > 0)
2014 {
2015 /* Make an entry in the .plt section. */
2016 sec = htab->splt;
2017 eh->plt.offset = sec->size;
2018 sec->size += PLT_ENTRY_SIZE;
2019
2020 /* We also need to make an entry in the .rela.plt section. */
2021 htab->srelplt->size += sizeof (Elf32_External_Rela);
2022 htab->need_plt_stub = 1;
2023 }
2024
2025 if (eh->got.refcount > 0)
2026 {
2027 /* Make sure this symbol is output as a dynamic symbol.
2028 Undefined weak syms won't yet be marked as dynamic. */
2029 if (eh->dynindx == -1
2030 && !eh->forced_local
2031 && eh->type != STT_PARISC_MILLI)
2032 {
2033 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2034 return FALSE;
2035 }
2036
2037 sec = htab->sgot;
2038 eh->got.offset = sec->size;
2039 sec->size += GOT_ENTRY_SIZE;
2040 /* R_PARISC_TLS_GD* needs two GOT entries */
2041 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2042 sec->size += GOT_ENTRY_SIZE * 2;
2043 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2044 sec->size += GOT_ENTRY_SIZE;
2045 if (htab->etab.dynamic_sections_created
2046 && (info->shared
2047 || (eh->dynindx != -1
2048 && !eh->forced_local)))
2049 {
2050 htab->srelgot->size += sizeof (Elf32_External_Rela);
2051 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2052 htab->srelgot->size += 2 * sizeof (Elf32_External_Rela);
2053 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2054 htab->srelgot->size += sizeof (Elf32_External_Rela);
2055 }
2056 }
2057 else
2058 eh->got.offset = (bfd_vma) -1;
2059
2060 if (hh->dyn_relocs == NULL)
2061 return TRUE;
2062
2063 /* If this is a -Bsymbolic shared link, then we need to discard all
2064 space allocated for dynamic pc-relative relocs against symbols
2065 defined in a regular object. For the normal shared case, discard
2066 space for relocs that have become local due to symbol visibility
2067 changes. */
2068 if (info->shared)
2069 {
2070 #if RELATIVE_DYNRELOCS
2071 if (SYMBOL_CALLS_LOCAL (info, eh))
2072 {
2073 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
2074
2075 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2076 {
2077 hdh_p->count -= hdh_p->relative_count;
2078 hdh_p->relative_count = 0;
2079 if (hdh_p->count == 0)
2080 *hdh_pp = hdh_p->hdh_next;
2081 else
2082 hdh_pp = &hdh_p->hdh_next;
2083 }
2084 }
2085 #endif
2086
2087 /* Also discard relocs on undefined weak syms with non-default
2088 visibility. */
2089 if (hh->dyn_relocs != NULL
2090 && eh->root.type == bfd_link_hash_undefweak)
2091 {
2092 if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
2093 hh->dyn_relocs = NULL;
2094
2095 /* Make sure undefined weak symbols are output as a dynamic
2096 symbol in PIEs. */
2097 else if (eh->dynindx == -1
2098 && !eh->forced_local)
2099 {
2100 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2101 return FALSE;
2102 }
2103 }
2104 }
2105 else
2106 {
2107 /* For the non-shared case, discard space for relocs against
2108 symbols which turn out to need copy relocs or are not
2109 dynamic. */
2110
2111 if (!eh->non_got_ref
2112 && ((ELIMINATE_COPY_RELOCS
2113 && eh->def_dynamic
2114 && !eh->def_regular)
2115 || (htab->etab.dynamic_sections_created
2116 && (eh->root.type == bfd_link_hash_undefweak
2117 || eh->root.type == bfd_link_hash_undefined))))
2118 {
2119 /* Make sure this symbol is output as a dynamic symbol.
2120 Undefined weak syms won't yet be marked as dynamic. */
2121 if (eh->dynindx == -1
2122 && !eh->forced_local
2123 && eh->type != STT_PARISC_MILLI)
2124 {
2125 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2126 return FALSE;
2127 }
2128
2129 /* If that succeeded, we know we'll be keeping all the
2130 relocs. */
2131 if (eh->dynindx != -1)
2132 goto keep;
2133 }
2134
2135 hh->dyn_relocs = NULL;
2136 return TRUE;
2137
2138 keep: ;
2139 }
2140
2141 /* Finally, allocate space. */
2142 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2143 {
2144 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2145 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2146 }
2147
2148 return TRUE;
2149 }
2150
2151 /* This function is called via elf_link_hash_traverse to force
2152 millicode symbols local so they do not end up as globals in the
2153 dynamic symbol table. We ought to be able to do this in
2154 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2155 for all dynamic symbols. Arguably, this is a bug in
2156 elf_adjust_dynamic_symbol. */
2157
2158 static bfd_boolean
2159 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2160 struct bfd_link_info *info)
2161 {
2162 if (eh->root.type == bfd_link_hash_warning)
2163 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2164
2165 if (eh->type == STT_PARISC_MILLI
2166 && !eh->forced_local)
2167 {
2168 elf32_hppa_hide_symbol (info, eh, TRUE);
2169 }
2170 return TRUE;
2171 }
2172
2173 /* Find any dynamic relocs that apply to read-only sections. */
2174
2175 static bfd_boolean
2176 readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2177 {
2178 struct elf32_hppa_link_hash_entry *hh;
2179 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2180
2181 if (eh->root.type == bfd_link_hash_warning)
2182 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2183
2184 hh = hppa_elf_hash_entry (eh);
2185 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2186 {
2187 asection *sec = hdh_p->sec->output_section;
2188
2189 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
2190 {
2191 struct bfd_link_info *info = inf;
2192
2193 info->flags |= DF_TEXTREL;
2194
2195 /* Not an error, just cut short the traversal. */
2196 return FALSE;
2197 }
2198 }
2199 return TRUE;
2200 }
2201
2202 /* Set the sizes of the dynamic sections. */
2203
2204 static bfd_boolean
2205 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2206 struct bfd_link_info *info)
2207 {
2208 struct elf32_hppa_link_hash_table *htab;
2209 bfd *dynobj;
2210 bfd *ibfd;
2211 asection *sec;
2212 bfd_boolean relocs;
2213
2214 htab = hppa_link_hash_table (info);
2215 dynobj = htab->etab.dynobj;
2216 if (dynobj == NULL)
2217 abort ();
2218
2219 if (htab->etab.dynamic_sections_created)
2220 {
2221 /* Set the contents of the .interp section to the interpreter. */
2222 if (info->executable)
2223 {
2224 sec = bfd_get_section_by_name (dynobj, ".interp");
2225 if (sec == NULL)
2226 abort ();
2227 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2228 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2229 }
2230
2231 /* Force millicode symbols local. */
2232 elf_link_hash_traverse (&htab->etab,
2233 clobber_millicode_symbols,
2234 info);
2235 }
2236
2237 /* Set up .got and .plt offsets for local syms, and space for local
2238 dynamic relocs. */
2239 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2240 {
2241 bfd_signed_vma *local_got;
2242 bfd_signed_vma *end_local_got;
2243 bfd_signed_vma *local_plt;
2244 bfd_signed_vma *end_local_plt;
2245 bfd_size_type locsymcount;
2246 Elf_Internal_Shdr *symtab_hdr;
2247 asection *srel;
2248 char *local_tls_type;
2249
2250 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2251 continue;
2252
2253 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2254 {
2255 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2256
2257 for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
2258 elf_section_data (sec)->local_dynrel);
2259 hdh_p != NULL;
2260 hdh_p = hdh_p->hdh_next)
2261 {
2262 if (!bfd_is_abs_section (hdh_p->sec)
2263 && bfd_is_abs_section (hdh_p->sec->output_section))
2264 {
2265 /* Input section has been discarded, either because
2266 it is a copy of a linkonce section or due to
2267 linker script /DISCARD/, so we'll be discarding
2268 the relocs too. */
2269 }
2270 else if (hdh_p->count != 0)
2271 {
2272 srel = elf_section_data (hdh_p->sec)->sreloc;
2273 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2274 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2275 info->flags |= DF_TEXTREL;
2276 }
2277 }
2278 }
2279
2280 local_got = elf_local_got_refcounts (ibfd);
2281 if (!local_got)
2282 continue;
2283
2284 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2285 locsymcount = symtab_hdr->sh_info;
2286 end_local_got = local_got + locsymcount;
2287 local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2288 sec = htab->sgot;
2289 srel = htab->srelgot;
2290 for (; local_got < end_local_got; ++local_got)
2291 {
2292 if (*local_got > 0)
2293 {
2294 *local_got = sec->size;
2295 sec->size += GOT_ENTRY_SIZE;
2296 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2297 sec->size += 2 * GOT_ENTRY_SIZE;
2298 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2299 sec->size += GOT_ENTRY_SIZE;
2300 if (info->shared)
2301 {
2302 srel->size += sizeof (Elf32_External_Rela);
2303 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2304 srel->size += 2 * sizeof (Elf32_External_Rela);
2305 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2306 srel->size += sizeof (Elf32_External_Rela);
2307 }
2308 }
2309 else
2310 *local_got = (bfd_vma) -1;
2311
2312 ++local_tls_type;
2313 }
2314
2315 local_plt = end_local_got;
2316 end_local_plt = local_plt + locsymcount;
2317 if (! htab->etab.dynamic_sections_created)
2318 {
2319 /* Won't be used, but be safe. */
2320 for (; local_plt < end_local_plt; ++local_plt)
2321 *local_plt = (bfd_vma) -1;
2322 }
2323 else
2324 {
2325 sec = htab->splt;
2326 srel = htab->srelplt;
2327 for (; local_plt < end_local_plt; ++local_plt)
2328 {
2329 if (*local_plt > 0)
2330 {
2331 *local_plt = sec->size;
2332 sec->size += PLT_ENTRY_SIZE;
2333 if (info->shared)
2334 srel->size += sizeof (Elf32_External_Rela);
2335 }
2336 else
2337 *local_plt = (bfd_vma) -1;
2338 }
2339 }
2340 }
2341
2342 if (htab->tls_ldm_got.refcount > 0)
2343 {
2344 /* Allocate 2 got entries and 1 dynamic reloc for
2345 R_PARISC_TLS_DTPMOD32 relocs. */
2346 htab->tls_ldm_got.offset = htab->sgot->size;
2347 htab->sgot->size += (GOT_ENTRY_SIZE * 2);
2348 htab->srelgot->size += sizeof (Elf32_External_Rela);
2349 }
2350 else
2351 htab->tls_ldm_got.offset = -1;
2352
2353 /* Do all the .plt entries without relocs first. The dynamic linker
2354 uses the last .plt reloc to find the end of the .plt (and hence
2355 the start of the .got) for lazy linking. */
2356 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2357
2358 /* Allocate global sym .plt and .got entries, and space for global
2359 sym dynamic relocs. */
2360 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2361
2362 /* The check_relocs and adjust_dynamic_symbol entry points have
2363 determined the sizes of the various dynamic sections. Allocate
2364 memory for them. */
2365 relocs = FALSE;
2366 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2367 {
2368 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2369 continue;
2370
2371 if (sec == htab->splt)
2372 {
2373 if (htab->need_plt_stub)
2374 {
2375 /* Make space for the plt stub at the end of the .plt
2376 section. We want this stub right at the end, up
2377 against the .got section. */
2378 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2379 int pltalign = bfd_section_alignment (dynobj, sec);
2380 bfd_size_type mask;
2381
2382 if (gotalign > pltalign)
2383 bfd_set_section_alignment (dynobj, sec, gotalign);
2384 mask = ((bfd_size_type) 1 << gotalign) - 1;
2385 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2386 }
2387 }
2388 else if (sec == htab->sgot
2389 || sec == htab->sdynbss)
2390 ;
2391 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
2392 {
2393 if (sec->size != 0)
2394 {
2395 /* Remember whether there are any reloc sections other
2396 than .rela.plt. */
2397 if (sec != htab->srelplt)
2398 relocs = TRUE;
2399
2400 /* We use the reloc_count field as a counter if we need
2401 to copy relocs into the output file. */
2402 sec->reloc_count = 0;
2403 }
2404 }
2405 else
2406 {
2407 /* It's not one of our sections, so don't allocate space. */
2408 continue;
2409 }
2410
2411 if (sec->size == 0)
2412 {
2413 /* If we don't need this section, strip it from the
2414 output file. This is mostly to handle .rela.bss and
2415 .rela.plt. We must create both sections in
2416 create_dynamic_sections, because they must be created
2417 before the linker maps input sections to output
2418 sections. The linker does that before
2419 adjust_dynamic_symbol is called, and it is that
2420 function which decides whether anything needs to go
2421 into these sections. */
2422 sec->flags |= SEC_EXCLUDE;
2423 continue;
2424 }
2425
2426 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2427 continue;
2428
2429 /* Allocate memory for the section contents. Zero it, because
2430 we may not fill in all the reloc sections. */
2431 sec->contents = bfd_zalloc (dynobj, sec->size);
2432 if (sec->contents == NULL)
2433 return FALSE;
2434 }
2435
2436 if (htab->etab.dynamic_sections_created)
2437 {
2438 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2439 actually has nothing to do with the PLT, it is how we
2440 communicate the LTP value of a load module to the dynamic
2441 linker. */
2442 #define add_dynamic_entry(TAG, VAL) \
2443 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2444
2445 if (!add_dynamic_entry (DT_PLTGOT, 0))
2446 return FALSE;
2447
2448 /* Add some entries to the .dynamic section. We fill in the
2449 values later, in elf32_hppa_finish_dynamic_sections, but we
2450 must add the entries now so that we get the correct size for
2451 the .dynamic section. The DT_DEBUG entry is filled in by the
2452 dynamic linker and used by the debugger. */
2453 if (info->executable)
2454 {
2455 if (!add_dynamic_entry (DT_DEBUG, 0))
2456 return FALSE;
2457 }
2458
2459 if (htab->srelplt->size != 0)
2460 {
2461 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2462 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2463 || !add_dynamic_entry (DT_JMPREL, 0))
2464 return FALSE;
2465 }
2466
2467 if (relocs)
2468 {
2469 if (!add_dynamic_entry (DT_RELA, 0)
2470 || !add_dynamic_entry (DT_RELASZ, 0)
2471 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2472 return FALSE;
2473
2474 /* If any dynamic relocs apply to a read-only section,
2475 then we need a DT_TEXTREL entry. */
2476 if ((info->flags & DF_TEXTREL) == 0)
2477 elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info);
2478
2479 if ((info->flags & DF_TEXTREL) != 0)
2480 {
2481 if (!add_dynamic_entry (DT_TEXTREL, 0))
2482 return FALSE;
2483 }
2484 }
2485 }
2486 #undef add_dynamic_entry
2487
2488 return TRUE;
2489 }
2490
2491 /* External entry points for sizing and building linker stubs. */
2492
2493 /* Set up various things so that we can make a list of input sections
2494 for each output section included in the link. Returns -1 on error,
2495 0 when no stubs will be needed, and 1 on success. */
2496
2497 int
2498 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2499 {
2500 bfd *input_bfd;
2501 unsigned int bfd_count;
2502 int top_id, top_index;
2503 asection *section;
2504 asection **input_list, **list;
2505 bfd_size_type amt;
2506 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2507
2508 /* Count the number of input BFDs and find the top input section id. */
2509 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2510 input_bfd != NULL;
2511 input_bfd = input_bfd->link_next)
2512 {
2513 bfd_count += 1;
2514 for (section = input_bfd->sections;
2515 section != NULL;
2516 section = section->next)
2517 {
2518 if (top_id < section->id)
2519 top_id = section->id;
2520 }
2521 }
2522 htab->bfd_count = bfd_count;
2523
2524 amt = sizeof (struct map_stub) * (top_id + 1);
2525 htab->stub_group = bfd_zmalloc (amt);
2526 if (htab->stub_group == NULL)
2527 return -1;
2528
2529 /* We can't use output_bfd->section_count here to find the top output
2530 section index as some sections may have been removed, and
2531 strip_excluded_output_sections doesn't renumber the indices. */
2532 for (section = output_bfd->sections, top_index = 0;
2533 section != NULL;
2534 section = section->next)
2535 {
2536 if (top_index < section->index)
2537 top_index = section->index;
2538 }
2539
2540 htab->top_index = top_index;
2541 amt = sizeof (asection *) * (top_index + 1);
2542 input_list = bfd_malloc (amt);
2543 htab->input_list = input_list;
2544 if (input_list == NULL)
2545 return -1;
2546
2547 /* For sections we aren't interested in, mark their entries with a
2548 value we can check later. */
2549 list = input_list + top_index;
2550 do
2551 *list = bfd_abs_section_ptr;
2552 while (list-- != input_list);
2553
2554 for (section = output_bfd->sections;
2555 section != NULL;
2556 section = section->next)
2557 {
2558 if ((section->flags & SEC_CODE) != 0)
2559 input_list[section->index] = NULL;
2560 }
2561
2562 return 1;
2563 }
2564
2565 /* The linker repeatedly calls this function for each input section,
2566 in the order that input sections are linked into output sections.
2567 Build lists of input sections to determine groupings between which
2568 we may insert linker stubs. */
2569
2570 void
2571 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2572 {
2573 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2574
2575 if (isec->output_section->index <= htab->top_index)
2576 {
2577 asection **list = htab->input_list + isec->output_section->index;
2578 if (*list != bfd_abs_section_ptr)
2579 {
2580 /* Steal the link_sec pointer for our list. */
2581 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2582 /* This happens to make the list in reverse order,
2583 which is what we want. */
2584 PREV_SEC (isec) = *list;
2585 *list = isec;
2586 }
2587 }
2588 }
2589
2590 /* See whether we can group stub sections together. Grouping stub
2591 sections may result in fewer stubs. More importantly, we need to
2592 put all .init* and .fini* stubs at the beginning of the .init or
2593 .fini output sections respectively, because glibc splits the
2594 _init and _fini functions into multiple parts. Putting a stub in
2595 the middle of a function is not a good idea. */
2596
2597 static void
2598 group_sections (struct elf32_hppa_link_hash_table *htab,
2599 bfd_size_type stub_group_size,
2600 bfd_boolean stubs_always_before_branch)
2601 {
2602 asection **list = htab->input_list + htab->top_index;
2603 do
2604 {
2605 asection *tail = *list;
2606 if (tail == bfd_abs_section_ptr)
2607 continue;
2608 while (tail != NULL)
2609 {
2610 asection *curr;
2611 asection *prev;
2612 bfd_size_type total;
2613 bfd_boolean big_sec;
2614
2615 curr = tail;
2616 total = tail->size;
2617 big_sec = total >= stub_group_size;
2618
2619 while ((prev = PREV_SEC (curr)) != NULL
2620 && ((total += curr->output_offset - prev->output_offset)
2621 < stub_group_size))
2622 curr = prev;
2623
2624 /* OK, the size from the start of CURR to the end is less
2625 than 240000 bytes and thus can be handled by one stub
2626 section. (or the tail section is itself larger than
2627 240000 bytes, in which case we may be toast.)
2628 We should really be keeping track of the total size of
2629 stubs added here, as stubs contribute to the final output
2630 section size. That's a little tricky, and this way will
2631 only break if stubs added total more than 22144 bytes, or
2632 2768 long branch stubs. It seems unlikely for more than
2633 2768 different functions to be called, especially from
2634 code only 240000 bytes long. This limit used to be
2635 250000, but c++ code tends to generate lots of little
2636 functions, and sometimes violated the assumption. */
2637 do
2638 {
2639 prev = PREV_SEC (tail);
2640 /* Set up this stub group. */
2641 htab->stub_group[tail->id].link_sec = curr;
2642 }
2643 while (tail != curr && (tail = prev) != NULL);
2644
2645 /* But wait, there's more! Input sections up to 240000
2646 bytes before the stub section can be handled by it too.
2647 Don't do this if we have a really large section after the
2648 stubs, as adding more stubs increases the chance that
2649 branches may not reach into the stub section. */
2650 if (!stubs_always_before_branch && !big_sec)
2651 {
2652 total = 0;
2653 while (prev != NULL
2654 && ((total += tail->output_offset - prev->output_offset)
2655 < stub_group_size))
2656 {
2657 tail = prev;
2658 prev = PREV_SEC (tail);
2659 htab->stub_group[tail->id].link_sec = curr;
2660 }
2661 }
2662 tail = prev;
2663 }
2664 }
2665 while (list-- != htab->input_list);
2666 free (htab->input_list);
2667 #undef PREV_SEC
2668 }
2669
2670 /* Read in all local syms for all input bfds, and create hash entries
2671 for export stubs if we are building a multi-subspace shared lib.
2672 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2673
2674 static int
2675 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2676 {
2677 unsigned int bfd_indx;
2678 Elf_Internal_Sym *local_syms, **all_local_syms;
2679 int stub_changed = 0;
2680 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2681
2682 /* We want to read in symbol extension records only once. To do this
2683 we need to read in the local symbols in parallel and save them for
2684 later use; so hold pointers to the local symbols in an array. */
2685 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2686 all_local_syms = bfd_zmalloc (amt);
2687 htab->all_local_syms = all_local_syms;
2688 if (all_local_syms == NULL)
2689 return -1;
2690
2691 /* Walk over all the input BFDs, swapping in local symbols.
2692 If we are creating a shared library, create hash entries for the
2693 export stubs. */
2694 for (bfd_indx = 0;
2695 input_bfd != NULL;
2696 input_bfd = input_bfd->link_next, bfd_indx++)
2697 {
2698 Elf_Internal_Shdr *symtab_hdr;
2699
2700 /* We'll need the symbol table in a second. */
2701 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2702 if (symtab_hdr->sh_info == 0)
2703 continue;
2704
2705 /* We need an array of the local symbols attached to the input bfd. */
2706 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2707 if (local_syms == NULL)
2708 {
2709 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2710 symtab_hdr->sh_info, 0,
2711 NULL, NULL, NULL);
2712 /* Cache them for elf_link_input_bfd. */
2713 symtab_hdr->contents = (unsigned char *) local_syms;
2714 }
2715 if (local_syms == NULL)
2716 return -1;
2717
2718 all_local_syms[bfd_indx] = local_syms;
2719
2720 if (info->shared && htab->multi_subspace)
2721 {
2722 struct elf_link_hash_entry **eh_syms;
2723 struct elf_link_hash_entry **eh_symend;
2724 unsigned int symcount;
2725
2726 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2727 - symtab_hdr->sh_info);
2728 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2729 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2730
2731 /* Look through the global syms for functions; We need to
2732 build export stubs for all globally visible functions. */
2733 for (; eh_syms < eh_symend; eh_syms++)
2734 {
2735 struct elf32_hppa_link_hash_entry *hh;
2736
2737 hh = hppa_elf_hash_entry (*eh_syms);
2738
2739 while (hh->eh.root.type == bfd_link_hash_indirect
2740 || hh->eh.root.type == bfd_link_hash_warning)
2741 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2742
2743 /* At this point in the link, undefined syms have been
2744 resolved, so we need to check that the symbol was
2745 defined in this BFD. */
2746 if ((hh->eh.root.type == bfd_link_hash_defined
2747 || hh->eh.root.type == bfd_link_hash_defweak)
2748 && hh->eh.type == STT_FUNC
2749 && hh->eh.root.u.def.section->output_section != NULL
2750 && (hh->eh.root.u.def.section->output_section->owner
2751 == output_bfd)
2752 && hh->eh.root.u.def.section->owner == input_bfd
2753 && hh->eh.def_regular
2754 && !hh->eh.forced_local
2755 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2756 {
2757 asection *sec;
2758 const char *stub_name;
2759 struct elf32_hppa_stub_hash_entry *hsh;
2760
2761 sec = hh->eh.root.u.def.section;
2762 stub_name = hh_name (hh);
2763 hsh = hppa_stub_hash_lookup (&htab->bstab,
2764 stub_name,
2765 FALSE, FALSE);
2766 if (hsh == NULL)
2767 {
2768 hsh = hppa_add_stub (stub_name, sec, htab);
2769 if (!hsh)
2770 return -1;
2771
2772 hsh->target_value = hh->eh.root.u.def.value;
2773 hsh->target_section = hh->eh.root.u.def.section;
2774 hsh->stub_type = hppa_stub_export;
2775 hsh->hh = hh;
2776 stub_changed = 1;
2777 }
2778 else
2779 {
2780 (*_bfd_error_handler) (_("%B: duplicate export stub %s"),
2781 input_bfd,
2782 stub_name);
2783 }
2784 }
2785 }
2786 }
2787 }
2788
2789 return stub_changed;
2790 }
2791
2792 /* Determine and set the size of the stub section for a final link.
2793
2794 The basic idea here is to examine all the relocations looking for
2795 PC-relative calls to a target that is unreachable with a "bl"
2796 instruction. */
2797
2798 bfd_boolean
2799 elf32_hppa_size_stubs
2800 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2801 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2802 asection * (*add_stub_section) (const char *, asection *),
2803 void (*layout_sections_again) (void))
2804 {
2805 bfd_size_type stub_group_size;
2806 bfd_boolean stubs_always_before_branch;
2807 bfd_boolean stub_changed;
2808 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2809
2810 /* Stash our params away. */
2811 htab->stub_bfd = stub_bfd;
2812 htab->multi_subspace = multi_subspace;
2813 htab->add_stub_section = add_stub_section;
2814 htab->layout_sections_again = layout_sections_again;
2815 stubs_always_before_branch = group_size < 0;
2816 if (group_size < 0)
2817 stub_group_size = -group_size;
2818 else
2819 stub_group_size = group_size;
2820 if (stub_group_size == 1)
2821 {
2822 /* Default values. */
2823 if (stubs_always_before_branch)
2824 {
2825 stub_group_size = 7680000;
2826 if (htab->has_17bit_branch || htab->multi_subspace)
2827 stub_group_size = 240000;
2828 if (htab->has_12bit_branch)
2829 stub_group_size = 7500;
2830 }
2831 else
2832 {
2833 stub_group_size = 6971392;
2834 if (htab->has_17bit_branch || htab->multi_subspace)
2835 stub_group_size = 217856;
2836 if (htab->has_12bit_branch)
2837 stub_group_size = 6808;
2838 }
2839 }
2840
2841 group_sections (htab, stub_group_size, stubs_always_before_branch);
2842
2843 switch (get_local_syms (output_bfd, info->input_bfds, info))
2844 {
2845 default:
2846 if (htab->all_local_syms)
2847 goto error_ret_free_local;
2848 return FALSE;
2849
2850 case 0:
2851 stub_changed = FALSE;
2852 break;
2853
2854 case 1:
2855 stub_changed = TRUE;
2856 break;
2857 }
2858
2859 while (1)
2860 {
2861 bfd *input_bfd;
2862 unsigned int bfd_indx;
2863 asection *stub_sec;
2864
2865 for (input_bfd = info->input_bfds, bfd_indx = 0;
2866 input_bfd != NULL;
2867 input_bfd = input_bfd->link_next, bfd_indx++)
2868 {
2869 Elf_Internal_Shdr *symtab_hdr;
2870 asection *section;
2871 Elf_Internal_Sym *local_syms;
2872
2873 /* We'll need the symbol table in a second. */
2874 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2875 if (symtab_hdr->sh_info == 0)
2876 continue;
2877
2878 local_syms = htab->all_local_syms[bfd_indx];
2879
2880 /* Walk over each section attached to the input bfd. */
2881 for (section = input_bfd->sections;
2882 section != NULL;
2883 section = section->next)
2884 {
2885 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2886
2887 /* If there aren't any relocs, then there's nothing more
2888 to do. */
2889 if ((section->flags & SEC_RELOC) == 0
2890 || section->reloc_count == 0)
2891 continue;
2892
2893 /* If this section is a link-once section that will be
2894 discarded, then don't create any stubs. */
2895 if (section->output_section == NULL
2896 || section->output_section->owner != output_bfd)
2897 continue;
2898
2899 /* Get the relocs. */
2900 internal_relocs
2901 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2902 info->keep_memory);
2903 if (internal_relocs == NULL)
2904 goto error_ret_free_local;
2905
2906 /* Now examine each relocation. */
2907 irela = internal_relocs;
2908 irelaend = irela + section->reloc_count;
2909 for (; irela < irelaend; irela++)
2910 {
2911 unsigned int r_type, r_indx;
2912 enum elf32_hppa_stub_type stub_type;
2913 struct elf32_hppa_stub_hash_entry *hsh;
2914 asection *sym_sec;
2915 bfd_vma sym_value;
2916 bfd_vma destination;
2917 struct elf32_hppa_link_hash_entry *hh;
2918 char *stub_name;
2919 const asection *id_sec;
2920
2921 r_type = ELF32_R_TYPE (irela->r_info);
2922 r_indx = ELF32_R_SYM (irela->r_info);
2923
2924 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2925 {
2926 bfd_set_error (bfd_error_bad_value);
2927 error_ret_free_internal:
2928 if (elf_section_data (section)->relocs == NULL)
2929 free (internal_relocs);
2930 goto error_ret_free_local;
2931 }
2932
2933 /* Only look for stubs on call instructions. */
2934 if (r_type != (unsigned int) R_PARISC_PCREL12F
2935 && r_type != (unsigned int) R_PARISC_PCREL17F
2936 && r_type != (unsigned int) R_PARISC_PCREL22F)
2937 continue;
2938
2939 /* Now determine the call target, its name, value,
2940 section. */
2941 sym_sec = NULL;
2942 sym_value = 0;
2943 destination = 0;
2944 hh = NULL;
2945 if (r_indx < symtab_hdr->sh_info)
2946 {
2947 /* It's a local symbol. */
2948 Elf_Internal_Sym *sym;
2949 Elf_Internal_Shdr *hdr;
2950 unsigned int shndx;
2951
2952 sym = local_syms + r_indx;
2953 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2954 sym_value = sym->st_value;
2955 shndx = sym->st_shndx;
2956 if (shndx < elf_numsections (input_bfd))
2957 {
2958 hdr = elf_elfsections (input_bfd)[shndx];
2959 sym_sec = hdr->bfd_section;
2960 destination = (sym_value + irela->r_addend
2961 + sym_sec->output_offset
2962 + sym_sec->output_section->vma);
2963 }
2964 }
2965 else
2966 {
2967 /* It's an external symbol. */
2968 int e_indx;
2969
2970 e_indx = r_indx - symtab_hdr->sh_info;
2971 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2972
2973 while (hh->eh.root.type == bfd_link_hash_indirect
2974 || hh->eh.root.type == bfd_link_hash_warning)
2975 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2976
2977 if (hh->eh.root.type == bfd_link_hash_defined
2978 || hh->eh.root.type == bfd_link_hash_defweak)
2979 {
2980 sym_sec = hh->eh.root.u.def.section;
2981 sym_value = hh->eh.root.u.def.value;
2982 if (sym_sec->output_section != NULL)
2983 destination = (sym_value + irela->r_addend
2984 + sym_sec->output_offset
2985 + sym_sec->output_section->vma);
2986 }
2987 else if (hh->eh.root.type == bfd_link_hash_undefweak)
2988 {
2989 if (! info->shared)
2990 continue;
2991 }
2992 else if (hh->eh.root.type == bfd_link_hash_undefined)
2993 {
2994 if (! (info->unresolved_syms_in_objects == RM_IGNORE
2995 && (ELF_ST_VISIBILITY (hh->eh.other)
2996 == STV_DEFAULT)
2997 && hh->eh.type != STT_PARISC_MILLI))
2998 continue;
2999 }
3000 else
3001 {
3002 bfd_set_error (bfd_error_bad_value);
3003 goto error_ret_free_internal;
3004 }
3005 }
3006
3007 /* Determine what (if any) linker stub is needed. */
3008 stub_type = hppa_type_of_stub (section, irela, hh,
3009 destination, info);
3010 if (stub_type == hppa_stub_none)
3011 continue;
3012
3013 /* Support for grouping stub sections. */
3014 id_sec = htab->stub_group[section->id].link_sec;
3015
3016 /* Get the name of this stub. */
3017 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
3018 if (!stub_name)
3019 goto error_ret_free_internal;
3020
3021 hsh = hppa_stub_hash_lookup (&htab->bstab,
3022 stub_name,
3023 FALSE, FALSE);
3024 if (hsh != NULL)
3025 {
3026 /* The proper stub has already been created. */
3027 free (stub_name);
3028 continue;
3029 }
3030
3031 hsh = hppa_add_stub (stub_name, section, htab);
3032 if (hsh == NULL)
3033 {
3034 free (stub_name);
3035 goto error_ret_free_internal;
3036 }
3037
3038 hsh->target_value = sym_value;
3039 hsh->target_section = sym_sec;
3040 hsh->stub_type = stub_type;
3041 if (info->shared)
3042 {
3043 if (stub_type == hppa_stub_import)
3044 hsh->stub_type = hppa_stub_import_shared;
3045 else if (stub_type == hppa_stub_long_branch)
3046 hsh->stub_type = hppa_stub_long_branch_shared;
3047 }
3048 hsh->hh = hh;
3049 stub_changed = TRUE;
3050 }
3051
3052 /* We're done with the internal relocs, free them. */
3053 if (elf_section_data (section)->relocs == NULL)
3054 free (internal_relocs);
3055 }
3056 }
3057
3058 if (!stub_changed)
3059 break;
3060
3061 /* OK, we've added some stubs. Find out the new size of the
3062 stub sections. */
3063 for (stub_sec = htab->stub_bfd->sections;
3064 stub_sec != NULL;
3065 stub_sec = stub_sec->next)
3066 stub_sec->size = 0;
3067
3068 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
3069
3070 /* Ask the linker to do its stuff. */
3071 (*htab->layout_sections_again) ();
3072 stub_changed = FALSE;
3073 }
3074
3075 free (htab->all_local_syms);
3076 return TRUE;
3077
3078 error_ret_free_local:
3079 free (htab->all_local_syms);
3080 return FALSE;
3081 }
3082
3083 /* For a final link, this function is called after we have sized the
3084 stubs to provide a value for __gp. */
3085
3086 bfd_boolean
3087 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
3088 {
3089 struct bfd_link_hash_entry *h;
3090 asection *sec = NULL;
3091 bfd_vma gp_val = 0;
3092 struct elf32_hppa_link_hash_table *htab;
3093
3094 htab = hppa_link_hash_table (info);
3095 h = bfd_link_hash_lookup (&htab->etab.root, "$global$", FALSE, FALSE, FALSE);
3096
3097 if (h != NULL
3098 && (h->type == bfd_link_hash_defined
3099 || h->type == bfd_link_hash_defweak))
3100 {
3101 gp_val = h->u.def.value;
3102 sec = h->u.def.section;
3103 }
3104 else
3105 {
3106 asection *splt = bfd_get_section_by_name (abfd, ".plt");
3107 asection *sgot = bfd_get_section_by_name (abfd, ".got");
3108
3109 /* Choose to point our LTP at, in this order, one of .plt, .got,
3110 or .data, if these sections exist. In the case of choosing
3111 .plt try to make the LTP ideal for addressing anywhere in the
3112 .plt or .got with a 14 bit signed offset. Typically, the end
3113 of the .plt is the start of the .got, so choose .plt + 0x2000
3114 if either the .plt or .got is larger than 0x2000. If both
3115 the .plt and .got are smaller than 0x2000, choose the end of
3116 the .plt section. */
3117 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3118 ? NULL : splt;
3119 if (sec != NULL)
3120 {
3121 gp_val = sec->size;
3122 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3123 {
3124 gp_val = 0x2000;
3125 }
3126 }
3127 else
3128 {
3129 sec = sgot;
3130 if (sec != NULL)
3131 {
3132 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3133 {
3134 /* We know we don't have a .plt. If .got is large,
3135 offset our LTP. */
3136 if (sec->size > 0x2000)
3137 gp_val = 0x2000;
3138 }
3139 }
3140 else
3141 {
3142 /* No .plt or .got. Who cares what the LTP is? */
3143 sec = bfd_get_section_by_name (abfd, ".data");
3144 }
3145 }
3146
3147 if (h != NULL)
3148 {
3149 h->type = bfd_link_hash_defined;
3150 h->u.def.value = gp_val;
3151 if (sec != NULL)
3152 h->u.def.section = sec;
3153 else
3154 h->u.def.section = bfd_abs_section_ptr;
3155 }
3156 }
3157
3158 if (sec != NULL && sec->output_section != NULL)
3159 gp_val += sec->output_section->vma + sec->output_offset;
3160
3161 elf_gp (abfd) = gp_val;
3162 return TRUE;
3163 }
3164
3165 /* Build all the stubs associated with the current output file. The
3166 stubs are kept in a hash table attached to the main linker hash
3167 table. We also set up the .plt entries for statically linked PIC
3168 functions here. This function is called via hppaelf_finish in the
3169 linker. */
3170
3171 bfd_boolean
3172 elf32_hppa_build_stubs (struct bfd_link_info *info)
3173 {
3174 asection *stub_sec;
3175 struct bfd_hash_table *table;
3176 struct elf32_hppa_link_hash_table *htab;
3177
3178 htab = hppa_link_hash_table (info);
3179
3180 for (stub_sec = htab->stub_bfd->sections;
3181 stub_sec != NULL;
3182 stub_sec = stub_sec->next)
3183 {
3184 bfd_size_type size;
3185
3186 /* Allocate memory to hold the linker stubs. */
3187 size = stub_sec->size;
3188 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3189 if (stub_sec->contents == NULL && size != 0)
3190 return FALSE;
3191 stub_sec->size = 0;
3192 }
3193
3194 /* Build the stubs as directed by the stub hash table. */
3195 table = &htab->bstab;
3196 bfd_hash_traverse (table, hppa_build_one_stub, info);
3197
3198 return TRUE;
3199 }
3200
3201 /* Return the base vma address which should be subtracted from the real
3202 address when resolving a dtpoff relocation.
3203 This is PT_TLS segment p_vaddr. */
3204
3205 static bfd_vma
3206 dtpoff_base (struct bfd_link_info *info)
3207 {
3208 /* If tls_sec is NULL, we should have signalled an error already. */
3209 if (elf_hash_table (info)->tls_sec == NULL)
3210 return 0;
3211 return elf_hash_table (info)->tls_sec->vma;
3212 }
3213
3214 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3215
3216 static bfd_vma
3217 tpoff (struct bfd_link_info *info, bfd_vma address)
3218 {
3219 struct elf_link_hash_table *htab = elf_hash_table (info);
3220
3221 /* If tls_sec is NULL, we should have signalled an error already. */
3222 if (htab->tls_sec == NULL)
3223 return 0;
3224 /* hppa TLS ABI is variant I and static TLS block start just after
3225 tcbhead structure which has 2 pointer fields. */
3226 return (address - htab->tls_sec->vma
3227 + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3228 }
3229
3230 /* Perform a final link. */
3231
3232 static bfd_boolean
3233 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3234 {
3235 /* Invoke the regular ELF linker to do all the work. */
3236 if (!bfd_elf_final_link (abfd, info))
3237 return FALSE;
3238
3239 /* If we're producing a final executable, sort the contents of the
3240 unwind section. */
3241 if (info->relocatable)
3242 return TRUE;
3243
3244 return elf_hppa_sort_unwind (abfd);
3245 }
3246
3247 /* Record the lowest address for the data and text segments. */
3248
3249 static void
3250 hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
3251 {
3252 struct elf32_hppa_link_hash_table *htab;
3253
3254 htab = (struct elf32_hppa_link_hash_table*) data;
3255
3256 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3257 {
3258 bfd_vma value;
3259 Elf_Internal_Phdr *p;
3260
3261 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
3262 BFD_ASSERT (p != NULL);
3263 value = p->p_vaddr;
3264
3265 if ((section->flags & SEC_READONLY) != 0)
3266 {
3267 if (value < htab->text_segment_base)
3268 htab->text_segment_base = value;
3269 }
3270 else
3271 {
3272 if (value < htab->data_segment_base)
3273 htab->data_segment_base = value;
3274 }
3275 }
3276 }
3277
3278 /* Perform a relocation as part of a final link. */
3279
3280 static bfd_reloc_status_type
3281 final_link_relocate (asection *input_section,
3282 bfd_byte *contents,
3283 const Elf_Internal_Rela *rela,
3284 bfd_vma value,
3285 struct elf32_hppa_link_hash_table *htab,
3286 asection *sym_sec,
3287 struct elf32_hppa_link_hash_entry *hh,
3288 struct bfd_link_info *info)
3289 {
3290 int insn;
3291 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3292 unsigned int orig_r_type = r_type;
3293 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3294 int r_format = howto->bitsize;
3295 enum hppa_reloc_field_selector_type_alt r_field;
3296 bfd *input_bfd = input_section->owner;
3297 bfd_vma offset = rela->r_offset;
3298 bfd_vma max_branch_offset = 0;
3299 bfd_byte *hit_data = contents + offset;
3300 bfd_signed_vma addend = rela->r_addend;
3301 bfd_vma location;
3302 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3303 int val;
3304
3305 if (r_type == R_PARISC_NONE)
3306 return bfd_reloc_ok;
3307
3308 insn = bfd_get_32 (input_bfd, hit_data);
3309
3310 /* Find out where we are and where we're going. */
3311 location = (offset +
3312 input_section->output_offset +
3313 input_section->output_section->vma);
3314
3315 /* If we are not building a shared library, convert DLTIND relocs to
3316 DPREL relocs. */
3317 if (!info->shared)
3318 {
3319 switch (r_type)
3320 {
3321 case R_PARISC_DLTIND21L:
3322 r_type = R_PARISC_DPREL21L;
3323 break;
3324
3325 case R_PARISC_DLTIND14R:
3326 r_type = R_PARISC_DPREL14R;
3327 break;
3328
3329 case R_PARISC_DLTIND14F:
3330 r_type = R_PARISC_DPREL14F;
3331 break;
3332 }
3333 }
3334
3335 switch (r_type)
3336 {
3337 case R_PARISC_PCREL12F:
3338 case R_PARISC_PCREL17F:
3339 case R_PARISC_PCREL22F:
3340 /* If this call should go via the plt, find the import stub in
3341 the stub hash. */
3342 if (sym_sec == NULL
3343 || sym_sec->output_section == NULL
3344 || (hh != NULL
3345 && hh->eh.plt.offset != (bfd_vma) -1
3346 && hh->eh.dynindx != -1
3347 && !hh->plabel
3348 && (info->shared
3349 || !hh->eh.def_regular
3350 || hh->eh.root.type == bfd_link_hash_defweak)))
3351 {
3352 hsh = hppa_get_stub_entry (input_section, sym_sec,
3353 hh, rela, htab);
3354 if (hsh != NULL)
3355 {
3356 value = (hsh->stub_offset
3357 + hsh->stub_sec->output_offset
3358 + hsh->stub_sec->output_section->vma);
3359 addend = 0;
3360 }
3361 else if (sym_sec == NULL && hh != NULL
3362 && hh->eh.root.type == bfd_link_hash_undefweak)
3363 {
3364 /* It's OK if undefined weak. Calls to undefined weak
3365 symbols behave as if the "called" function
3366 immediately returns. We can thus call to a weak
3367 function without first checking whether the function
3368 is defined. */
3369 value = location;
3370 addend = 8;
3371 }
3372 else
3373 return bfd_reloc_undefined;
3374 }
3375 /* Fall thru. */
3376
3377 case R_PARISC_PCREL21L:
3378 case R_PARISC_PCREL17C:
3379 case R_PARISC_PCREL17R:
3380 case R_PARISC_PCREL14R:
3381 case R_PARISC_PCREL14F:
3382 case R_PARISC_PCREL32:
3383 /* Make it a pc relative offset. */
3384 value -= location;
3385 addend -= 8;
3386 break;
3387
3388 case R_PARISC_DPREL21L:
3389 case R_PARISC_DPREL14R:
3390 case R_PARISC_DPREL14F:
3391 case R_PARISC_TLS_GD21L:
3392 case R_PARISC_TLS_LDM21L:
3393 case R_PARISC_TLS_IE21L:
3394 /* Convert instructions that use the linkage table pointer (r19) to
3395 instructions that use the global data pointer (dp). This is the
3396 most efficient way of using PIC code in an incomplete executable,
3397 but the user must follow the standard runtime conventions for
3398 accessing data for this to work. */
3399 if (orig_r_type == R_PARISC_DLTIND21L
3400 || (!info->shared
3401 && (r_type == R_PARISC_TLS_GD21L
3402 || r_type == R_PARISC_TLS_LDM21L
3403 || r_type == R_PARISC_TLS_IE21L)))
3404 {
3405 /* Convert addil instructions if the original reloc was a
3406 DLTIND21L. GCC sometimes uses a register other than r19 for
3407 the operation, so we must convert any addil instruction
3408 that uses this relocation. */
3409 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3410 insn = ADDIL_DP;
3411 else
3412 /* We must have a ldil instruction. It's too hard to find
3413 and convert the associated add instruction, so issue an
3414 error. */
3415 (*_bfd_error_handler)
3416 (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3417 input_bfd,
3418 input_section,
3419 (long) offset,
3420 howto->name,
3421 insn);
3422 }
3423 else if (orig_r_type == R_PARISC_DLTIND14F)
3424 {
3425 /* This must be a format 1 load/store. Change the base
3426 register to dp. */
3427 insn = (insn & 0xfc1ffff) | (27 << 21);
3428 }
3429
3430 /* For all the DP relative relocations, we need to examine the symbol's
3431 section. If it has no section or if it's a code section, then
3432 "data pointer relative" makes no sense. In that case we don't
3433 adjust the "value", and for 21 bit addil instructions, we change the
3434 source addend register from %dp to %r0. This situation commonly
3435 arises for undefined weak symbols and when a variable's "constness"
3436 is declared differently from the way the variable is defined. For
3437 instance: "extern int foo" with foo defined as "const int foo". */
3438 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3439 {
3440 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3441 == (((int) OP_ADDIL << 26) | (27 << 21)))
3442 {
3443 insn &= ~ (0x1f << 21);
3444 }
3445 /* Now try to make things easy for the dynamic linker. */
3446
3447 break;
3448 }
3449 /* Fall thru. */
3450
3451 case R_PARISC_DLTIND21L:
3452 case R_PARISC_DLTIND14R:
3453 case R_PARISC_DLTIND14F:
3454 case R_PARISC_TLS_GD14R:
3455 case R_PARISC_TLS_LDM14R:
3456 case R_PARISC_TLS_IE14R:
3457 value -= elf_gp (input_section->output_section->owner);
3458 break;
3459
3460 case R_PARISC_SEGREL32:
3461 if ((sym_sec->flags & SEC_CODE) != 0)
3462 value -= htab->text_segment_base;
3463 else
3464 value -= htab->data_segment_base;
3465 break;
3466
3467 default:
3468 break;
3469 }
3470
3471 switch (r_type)
3472 {
3473 case R_PARISC_DIR32:
3474 case R_PARISC_DIR14F:
3475 case R_PARISC_DIR17F:
3476 case R_PARISC_PCREL17C:
3477 case R_PARISC_PCREL14F:
3478 case R_PARISC_PCREL32:
3479 case R_PARISC_DPREL14F:
3480 case R_PARISC_PLABEL32:
3481 case R_PARISC_DLTIND14F:
3482 case R_PARISC_SEGBASE:
3483 case R_PARISC_SEGREL32:
3484 case R_PARISC_TLS_DTPMOD32:
3485 case R_PARISC_TLS_DTPOFF32:
3486 case R_PARISC_TLS_TPREL32:
3487 r_field = e_fsel;
3488 break;
3489
3490 case R_PARISC_DLTIND21L:
3491 case R_PARISC_PCREL21L:
3492 case R_PARISC_PLABEL21L:
3493 r_field = e_lsel;
3494 break;
3495
3496 case R_PARISC_DIR21L:
3497 case R_PARISC_DPREL21L:
3498 case R_PARISC_TLS_GD21L:
3499 case R_PARISC_TLS_LDM21L:
3500 case R_PARISC_TLS_LDO21L:
3501 case R_PARISC_TLS_IE21L:
3502 case R_PARISC_TLS_LE21L:
3503 r_field = e_lrsel;
3504 break;
3505
3506 case R_PARISC_PCREL17R:
3507 case R_PARISC_PCREL14R:
3508 case R_PARISC_PLABEL14R:
3509 case R_PARISC_DLTIND14R:
3510 r_field = e_rsel;
3511 break;
3512
3513 case R_PARISC_DIR17R:
3514 case R_PARISC_DIR14R:
3515 case R_PARISC_DPREL14R:
3516 case R_PARISC_TLS_GD14R:
3517 case R_PARISC_TLS_LDM14R:
3518 case R_PARISC_TLS_LDO14R:
3519 case R_PARISC_TLS_IE14R:
3520 case R_PARISC_TLS_LE14R:
3521 r_field = e_rrsel;
3522 break;
3523
3524 case R_PARISC_PCREL12F:
3525 case R_PARISC_PCREL17F:
3526 case R_PARISC_PCREL22F:
3527 r_field = e_fsel;
3528
3529 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3530 {
3531 max_branch_offset = (1 << (17-1)) << 2;
3532 }
3533 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3534 {
3535 max_branch_offset = (1 << (12-1)) << 2;
3536 }
3537 else
3538 {
3539 max_branch_offset = (1 << (22-1)) << 2;
3540 }
3541
3542 /* sym_sec is NULL on undefined weak syms or when shared on
3543 undefined syms. We've already checked for a stub for the
3544 shared undefined case. */
3545 if (sym_sec == NULL)
3546 break;
3547
3548 /* If the branch is out of reach, then redirect the
3549 call to the local stub for this function. */
3550 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3551 {
3552 hsh = hppa_get_stub_entry (input_section, sym_sec,
3553 hh, rela, htab);
3554 if (hsh == NULL)
3555 return bfd_reloc_undefined;
3556
3557 /* Munge up the value and addend so that we call the stub
3558 rather than the procedure directly. */
3559 value = (hsh->stub_offset
3560 + hsh->stub_sec->output_offset
3561 + hsh->stub_sec->output_section->vma
3562 - location);
3563 addend = -8;
3564 }
3565 break;
3566
3567 /* Something we don't know how to handle. */
3568 default:
3569 return bfd_reloc_notsupported;
3570 }
3571
3572 /* Make sure we can reach the stub. */
3573 if (max_branch_offset != 0
3574 && value + addend + max_branch_offset >= 2*max_branch_offset)
3575 {
3576 (*_bfd_error_handler)
3577 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3578 input_bfd,
3579 input_section,
3580 (long) offset,
3581 hsh->bh_root.string);
3582 bfd_set_error (bfd_error_bad_value);
3583 return bfd_reloc_notsupported;
3584 }
3585
3586 val = hppa_field_adjust (value, addend, r_field);
3587
3588 switch (r_type)
3589 {
3590 case R_PARISC_PCREL12F:
3591 case R_PARISC_PCREL17C:
3592 case R_PARISC_PCREL17F:
3593 case R_PARISC_PCREL17R:
3594 case R_PARISC_PCREL22F:
3595 case R_PARISC_DIR17F:
3596 case R_PARISC_DIR17R:
3597 /* This is a branch. Divide the offset by four.
3598 Note that we need to decide whether it's a branch or
3599 otherwise by inspecting the reloc. Inspecting insn won't
3600 work as insn might be from a .word directive. */
3601 val >>= 2;
3602 break;
3603
3604 default:
3605 break;
3606 }
3607
3608 insn = hppa_rebuild_insn (insn, val, r_format);
3609
3610 /* Update the instruction word. */
3611 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3612 return bfd_reloc_ok;
3613 }
3614
3615 /* Relocate an HPPA ELF section. */
3616
3617 static bfd_boolean
3618 elf32_hppa_relocate_section (bfd *output_bfd,
3619 struct bfd_link_info *info,
3620 bfd *input_bfd,
3621 asection *input_section,
3622 bfd_byte *contents,
3623 Elf_Internal_Rela *relocs,
3624 Elf_Internal_Sym *local_syms,
3625 asection **local_sections)
3626 {
3627 bfd_vma *local_got_offsets;
3628 struct elf32_hppa_link_hash_table *htab;
3629 Elf_Internal_Shdr *symtab_hdr;
3630 Elf_Internal_Rela *rela;
3631 Elf_Internal_Rela *relend;
3632
3633 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3634
3635 htab = hppa_link_hash_table (info);
3636 local_got_offsets = elf_local_got_offsets (input_bfd);
3637
3638 rela = relocs;
3639 relend = relocs + input_section->reloc_count;
3640 for (; rela < relend; rela++)
3641 {
3642 unsigned int r_type;
3643 reloc_howto_type *howto;
3644 unsigned int r_symndx;
3645 struct elf32_hppa_link_hash_entry *hh;
3646 Elf_Internal_Sym *sym;
3647 asection *sym_sec;
3648 bfd_vma relocation;
3649 bfd_reloc_status_type rstatus;
3650 const char *sym_name;
3651 bfd_boolean plabel;
3652 bfd_boolean warned_undef;
3653
3654 r_type = ELF32_R_TYPE (rela->r_info);
3655 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3656 {
3657 bfd_set_error (bfd_error_bad_value);
3658 return FALSE;
3659 }
3660 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3661 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3662 continue;
3663
3664 r_symndx = ELF32_R_SYM (rela->r_info);
3665 hh = NULL;
3666 sym = NULL;
3667 sym_sec = NULL;
3668 warned_undef = FALSE;
3669 if (r_symndx < symtab_hdr->sh_info)
3670 {
3671 /* This is a local symbol, h defaults to NULL. */
3672 sym = local_syms + r_symndx;
3673 sym_sec = local_sections[r_symndx];
3674 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3675 }
3676 else
3677 {
3678 struct elf_link_hash_entry *eh;
3679 bfd_boolean unresolved_reloc;
3680 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3681
3682 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3683 r_symndx, symtab_hdr, sym_hashes,
3684 eh, sym_sec, relocation,
3685 unresolved_reloc, warned_undef);
3686
3687 if (!info->relocatable
3688 && relocation == 0
3689 && eh->root.type != bfd_link_hash_defined
3690 && eh->root.type != bfd_link_hash_defweak
3691 && eh->root.type != bfd_link_hash_undefweak)
3692 {
3693 if (info->unresolved_syms_in_objects == RM_IGNORE
3694 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3695 && eh->type == STT_PARISC_MILLI)
3696 {
3697 if (! info->callbacks->undefined_symbol
3698 (info, eh_name (eh), input_bfd,
3699 input_section, rela->r_offset, FALSE))
3700 return FALSE;
3701 warned_undef = TRUE;
3702 }
3703 }
3704 hh = hppa_elf_hash_entry (eh);
3705 }
3706
3707 if (sym_sec != NULL && elf_discarded_section (sym_sec))
3708 {
3709 /* For relocs against symbols from removed linkonce
3710 sections, or sections discarded by a linker script,
3711 we just want the section contents zeroed. Avoid any
3712 special processing. */
3713 _bfd_clear_contents (elf_hppa_howto_table + r_type, input_bfd,
3714 contents + rela->r_offset);
3715 rela->r_info = 0;
3716 rela->r_addend = 0;
3717 continue;
3718 }
3719
3720 if (info->relocatable)
3721 continue;
3722
3723 /* Do any required modifications to the relocation value, and
3724 determine what types of dynamic info we need to output, if
3725 any. */
3726 plabel = 0;
3727 switch (r_type)
3728 {
3729 case R_PARISC_DLTIND14F:
3730 case R_PARISC_DLTIND14R:
3731 case R_PARISC_DLTIND21L:
3732 {
3733 bfd_vma off;
3734 bfd_boolean do_got = 0;
3735
3736 /* Relocation is to the entry for this symbol in the
3737 global offset table. */
3738 if (hh != NULL)
3739 {
3740 bfd_boolean dyn;
3741
3742 off = hh->eh.got.offset;
3743 dyn = htab->etab.dynamic_sections_created;
3744 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
3745 &hh->eh))
3746 {
3747 /* If we aren't going to call finish_dynamic_symbol,
3748 then we need to handle initialisation of the .got
3749 entry and create needed relocs here. Since the
3750 offset must always be a multiple of 4, we use the
3751 least significant bit to record whether we have
3752 initialised it already. */
3753 if ((off & 1) != 0)
3754 off &= ~1;
3755 else
3756 {
3757 hh->eh.got.offset |= 1;
3758 do_got = 1;
3759 }
3760 }
3761 }
3762 else
3763 {
3764 /* Local symbol case. */
3765 if (local_got_offsets == NULL)
3766 abort ();
3767
3768 off = local_got_offsets[r_symndx];
3769
3770 /* The offset must always be a multiple of 4. We use
3771 the least significant bit to record whether we have
3772 already generated the necessary reloc. */
3773 if ((off & 1) != 0)
3774 off &= ~1;
3775 else
3776 {
3777 local_got_offsets[r_symndx] |= 1;
3778 do_got = 1;
3779 }
3780 }
3781
3782 if (do_got)
3783 {
3784 if (info->shared)
3785 {
3786 /* Output a dynamic relocation for this GOT entry.
3787 In this case it is relative to the base of the
3788 object because the symbol index is zero. */
3789 Elf_Internal_Rela outrel;
3790 bfd_byte *loc;
3791 asection *sec = htab->srelgot;
3792
3793 outrel.r_offset = (off
3794 + htab->sgot->output_offset
3795 + htab->sgot->output_section->vma);
3796 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3797 outrel.r_addend = relocation;
3798 loc = sec->contents;
3799 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3800 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3801 }
3802 else
3803 bfd_put_32 (output_bfd, relocation,
3804 htab->sgot->contents + off);
3805 }
3806
3807 if (off >= (bfd_vma) -2)
3808 abort ();
3809
3810 /* Add the base of the GOT to the relocation value. */
3811 relocation = (off
3812 + htab->sgot->output_offset
3813 + htab->sgot->output_section->vma);
3814 }
3815 break;
3816
3817 case R_PARISC_SEGREL32:
3818 /* If this is the first SEGREL relocation, then initialize
3819 the segment base values. */
3820 if (htab->text_segment_base == (bfd_vma) -1)
3821 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3822 break;
3823
3824 case R_PARISC_PLABEL14R:
3825 case R_PARISC_PLABEL21L:
3826 case R_PARISC_PLABEL32:
3827 if (htab->etab.dynamic_sections_created)
3828 {
3829 bfd_vma off;
3830 bfd_boolean do_plt = 0;
3831 /* If we have a global symbol with a PLT slot, then
3832 redirect this relocation to it. */
3833 if (hh != NULL)
3834 {
3835 off = hh->eh.plt.offset;
3836 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared,
3837 &hh->eh))
3838 {
3839 /* In a non-shared link, adjust_dynamic_symbols
3840 isn't called for symbols forced local. We
3841 need to write out the plt entry here. */
3842 if ((off & 1) != 0)
3843 off &= ~1;
3844 else
3845 {
3846 hh->eh.plt.offset |= 1;
3847 do_plt = 1;
3848 }
3849 }
3850 }
3851 else
3852 {
3853 bfd_vma *local_plt_offsets;
3854
3855 if (local_got_offsets == NULL)
3856 abort ();
3857
3858 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3859 off = local_plt_offsets[r_symndx];
3860
3861 /* As for the local .got entry case, we use the last
3862 bit to record whether we've already initialised
3863 this local .plt entry. */
3864 if ((off & 1) != 0)
3865 off &= ~1;
3866 else
3867 {
3868 local_plt_offsets[r_symndx] |= 1;
3869 do_plt = 1;
3870 }
3871 }
3872
3873 if (do_plt)
3874 {
3875 if (info->shared)
3876 {
3877 /* Output a dynamic IPLT relocation for this
3878 PLT entry. */
3879 Elf_Internal_Rela outrel;
3880 bfd_byte *loc;
3881 asection *s = htab->srelplt;
3882
3883 outrel.r_offset = (off
3884 + htab->splt->output_offset
3885 + htab->splt->output_section->vma);
3886 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3887 outrel.r_addend = relocation;
3888 loc = s->contents;
3889 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3890 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3891 }
3892 else
3893 {
3894 bfd_put_32 (output_bfd,
3895 relocation,
3896 htab->splt->contents + off);
3897 bfd_put_32 (output_bfd,
3898 elf_gp (htab->splt->output_section->owner),
3899 htab->splt->contents + off + 4);
3900 }
3901 }
3902
3903 if (off >= (bfd_vma) -2)
3904 abort ();
3905
3906 /* PLABELs contain function pointers. Relocation is to
3907 the entry for the function in the .plt. The magic +2
3908 offset signals to $$dyncall that the function pointer
3909 is in the .plt and thus has a gp pointer too.
3910 Exception: Undefined PLABELs should have a value of
3911 zero. */
3912 if (hh == NULL
3913 || (hh->eh.root.type != bfd_link_hash_undefweak
3914 && hh->eh.root.type != bfd_link_hash_undefined))
3915 {
3916 relocation = (off
3917 + htab->splt->output_offset
3918 + htab->splt->output_section->vma
3919 + 2);
3920 }
3921 plabel = 1;
3922 }
3923 /* Fall through and possibly emit a dynamic relocation. */
3924
3925 case R_PARISC_DIR17F:
3926 case R_PARISC_DIR17R:
3927 case R_PARISC_DIR14F:
3928 case R_PARISC_DIR14R:
3929 case R_PARISC_DIR21L:
3930 case R_PARISC_DPREL14F:
3931 case R_PARISC_DPREL14R:
3932 case R_PARISC_DPREL21L:
3933 case R_PARISC_DIR32:
3934 if ((input_section->flags & SEC_ALLOC) == 0)
3935 break;
3936
3937 /* The reloc types handled here and this conditional
3938 expression must match the code in ..check_relocs and
3939 allocate_dynrelocs. ie. We need exactly the same condition
3940 as in ..check_relocs, with some extra conditions (dynindx
3941 test in this case) to cater for relocs removed by
3942 allocate_dynrelocs. If you squint, the non-shared test
3943 here does indeed match the one in ..check_relocs, the
3944 difference being that here we test DEF_DYNAMIC as well as
3945 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3946 which is why we can't use just that test here.
3947 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3948 there all files have not been loaded. */
3949 if ((info->shared
3950 && (hh == NULL
3951 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
3952 || hh->eh.root.type != bfd_link_hash_undefweak)
3953 && (IS_ABSOLUTE_RELOC (r_type)
3954 || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
3955 || (!info->shared
3956 && hh != NULL
3957 && hh->eh.dynindx != -1
3958 && !hh->eh.non_got_ref
3959 && ((ELIMINATE_COPY_RELOCS
3960 && hh->eh.def_dynamic
3961 && !hh->eh.def_regular)
3962 || hh->eh.root.type == bfd_link_hash_undefweak
3963 || hh->eh.root.type == bfd_link_hash_undefined)))
3964 {
3965 Elf_Internal_Rela outrel;
3966 bfd_boolean skip;
3967 asection *sreloc;
3968 bfd_byte *loc;
3969
3970 /* When generating a shared object, these relocations
3971 are copied into the output file to be resolved at run
3972 time. */
3973
3974 outrel.r_addend = rela->r_addend;
3975 outrel.r_offset =
3976 _bfd_elf_section_offset (output_bfd, info, input_section,
3977 rela->r_offset);
3978 skip = (outrel.r_offset == (bfd_vma) -1
3979 || outrel.r_offset == (bfd_vma) -2);
3980 outrel.r_offset += (input_section->output_offset
3981 + input_section->output_section->vma);
3982
3983 if (skip)
3984 {
3985 memset (&outrel, 0, sizeof (outrel));
3986 }
3987 else if (hh != NULL
3988 && hh->eh.dynindx != -1
3989 && (plabel
3990 || !IS_ABSOLUTE_RELOC (r_type)
3991 || !info->shared
3992 || !info->symbolic
3993 || !hh->eh.def_regular))
3994 {
3995 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
3996 }
3997 else /* It's a local symbol, or one marked to become local. */
3998 {
3999 int indx = 0;
4000
4001 /* Add the absolute offset of the symbol. */
4002 outrel.r_addend += relocation;
4003
4004 /* Global plabels need to be processed by the
4005 dynamic linker so that functions have at most one
4006 fptr. For this reason, we need to differentiate
4007 between global and local plabels, which we do by
4008 providing the function symbol for a global plabel
4009 reloc, and no symbol for local plabels. */
4010 if (! plabel
4011 && sym_sec != NULL
4012 && sym_sec->output_section != NULL
4013 && ! bfd_is_abs_section (sym_sec))
4014 {
4015 asection *osec;
4016
4017 osec = sym_sec->output_section;
4018 indx = elf_section_data (osec)->dynindx;
4019 if (indx == 0)
4020 {
4021 osec = htab->etab.text_index_section;
4022 indx = elf_section_data (osec)->dynindx;
4023 }
4024 BFD_ASSERT (indx != 0);
4025
4026 /* We are turning this relocation into one
4027 against a section symbol, so subtract out the
4028 output section's address but not the offset
4029 of the input section in the output section. */
4030 outrel.r_addend -= osec->vma;
4031 }
4032
4033 outrel.r_info = ELF32_R_INFO (indx, r_type);
4034 }
4035 sreloc = elf_section_data (input_section)->sreloc;
4036 if (sreloc == NULL)
4037 abort ();
4038
4039 loc = sreloc->contents;
4040 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
4041 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4042 }
4043 break;
4044
4045 case R_PARISC_TLS_LDM21L:
4046 case R_PARISC_TLS_LDM14R:
4047 {
4048 bfd_vma off;
4049
4050 off = htab->tls_ldm_got.offset;
4051 if (off & 1)
4052 off &= ~1;
4053 else
4054 {
4055 Elf_Internal_Rela outrel;
4056 bfd_byte *loc;
4057
4058 outrel.r_offset = (off
4059 + htab->sgot->output_section->vma
4060 + htab->sgot->output_offset);
4061 outrel.r_addend = 0;
4062 outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
4063 loc = htab->srelgot->contents;
4064 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4065
4066 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4067 htab->tls_ldm_got.offset |= 1;
4068 }
4069
4070 /* Add the base of the GOT to the relocation value. */
4071 relocation = (off
4072 + htab->sgot->output_offset
4073 + htab->sgot->output_section->vma);
4074
4075 break;
4076 }
4077
4078 case R_PARISC_TLS_LDO21L:
4079 case R_PARISC_TLS_LDO14R:
4080 relocation -= dtpoff_base (info);
4081 break;
4082
4083 case R_PARISC_TLS_GD21L:
4084 case R_PARISC_TLS_GD14R:
4085 case R_PARISC_TLS_IE21L:
4086 case R_PARISC_TLS_IE14R:
4087 {
4088 bfd_vma off;
4089 int indx;
4090 char tls_type;
4091
4092 indx = 0;
4093 if (hh != NULL)
4094 {
4095 bfd_boolean dyn;
4096 dyn = htab->etab.dynamic_sections_created;
4097
4098 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &hh->eh)
4099 && (!info->shared
4100 || !SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4101 {
4102 indx = hh->eh.dynindx;
4103 }
4104 off = hh->eh.got.offset;
4105 tls_type = hh->tls_type;
4106 }
4107 else
4108 {
4109 off = local_got_offsets[r_symndx];
4110 tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4111 }
4112
4113 if (tls_type == GOT_UNKNOWN)
4114 abort ();
4115
4116 if ((off & 1) != 0)
4117 off &= ~1;
4118 else
4119 {
4120 bfd_boolean need_relocs = FALSE;
4121 Elf_Internal_Rela outrel;
4122 bfd_byte *loc = NULL;
4123 int cur_off = off;
4124
4125 /* The GOT entries have not been initialized yet. Do it
4126 now, and emit any relocations. If both an IE GOT and a
4127 GD GOT are necessary, we emit the GD first. */
4128
4129 if ((info->shared || indx != 0)
4130 && (hh == NULL
4131 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
4132 || hh->eh.root.type != bfd_link_hash_undefweak))
4133 {
4134 need_relocs = TRUE;
4135 loc = htab->srelgot->contents;
4136 /* FIXME (CAO): Should this be reloc_count++ ? */
4137 loc += htab->srelgot->reloc_count * sizeof (Elf32_External_Rela);
4138 }
4139
4140 if (tls_type & GOT_TLS_GD)
4141 {
4142 if (need_relocs)
4143 {
4144 outrel.r_offset = (cur_off
4145 + htab->sgot->output_section->vma
4146 + htab->sgot->output_offset);
4147 outrel.r_info = ELF32_R_INFO (indx,R_PARISC_TLS_DTPMOD32);
4148 outrel.r_addend = 0;
4149 bfd_put_32 (output_bfd, 0, htab->sgot->contents + cur_off);
4150 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4151 htab->srelgot->reloc_count++;
4152 loc += sizeof (Elf32_External_Rela);
4153
4154 if (indx == 0)
4155 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4156 htab->sgot->contents + cur_off + 4);
4157 else
4158 {
4159 bfd_put_32 (output_bfd, 0,
4160 htab->sgot->contents + cur_off + 4);
4161 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4162 outrel.r_offset += 4;
4163 bfd_elf32_swap_reloca_out (output_bfd, &outrel,loc);
4164 htab->srelgot->reloc_count++;
4165 loc += sizeof (Elf32_External_Rela);
4166 }
4167 }
4168 else
4169 {
4170 /* If we are not emitting relocations for a
4171 general dynamic reference, then we must be in a
4172 static link or an executable link with the
4173 symbol binding locally. Mark it as belonging
4174 to module 1, the executable. */
4175 bfd_put_32 (output_bfd, 1,
4176 htab->sgot->contents + cur_off);
4177 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4178 htab->sgot->contents + cur_off + 4);
4179 }
4180
4181
4182 cur_off += 8;
4183 }
4184
4185 if (tls_type & GOT_TLS_IE)
4186 {
4187 if (need_relocs)
4188 {
4189 outrel.r_offset = (cur_off
4190 + htab->sgot->output_section->vma
4191 + htab->sgot->output_offset);
4192 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_TPREL32);
4193
4194 if (indx == 0)
4195 outrel.r_addend = relocation - dtpoff_base (info);
4196 else
4197 outrel.r_addend = 0;
4198
4199 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4200 htab->srelgot->reloc_count++;
4201 loc += sizeof (Elf32_External_Rela);
4202 }
4203 else
4204 bfd_put_32 (output_bfd, tpoff (info, relocation),
4205 htab->sgot->contents + cur_off);
4206
4207 cur_off += 4;
4208 }
4209
4210 if (hh != NULL)
4211 hh->eh.got.offset |= 1;
4212 else
4213 local_got_offsets[r_symndx] |= 1;
4214 }
4215
4216 if ((tls_type & GOT_TLS_GD)
4217 && r_type != R_PARISC_TLS_GD21L
4218 && r_type != R_PARISC_TLS_GD14R)
4219 off += 2 * GOT_ENTRY_SIZE;
4220
4221 /* Add the base of the GOT to the relocation value. */
4222 relocation = (off
4223 + htab->sgot->output_offset
4224 + htab->sgot->output_section->vma);
4225
4226 break;
4227 }
4228
4229 case R_PARISC_TLS_LE21L:
4230 case R_PARISC_TLS_LE14R:
4231 {
4232 relocation = tpoff (info, relocation);
4233 break;
4234 }
4235 break;
4236
4237 default:
4238 break;
4239 }
4240
4241 rstatus = final_link_relocate (input_section, contents, rela, relocation,
4242 htab, sym_sec, hh, info);
4243
4244 if (rstatus == bfd_reloc_ok)
4245 continue;
4246
4247 if (hh != NULL)
4248 sym_name = hh_name (hh);
4249 else
4250 {
4251 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4252 symtab_hdr->sh_link,
4253 sym->st_name);
4254 if (sym_name == NULL)
4255 return FALSE;
4256 if (*sym_name == '\0')
4257 sym_name = bfd_section_name (input_bfd, sym_sec);
4258 }
4259
4260 howto = elf_hppa_howto_table + r_type;
4261
4262 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4263 {
4264 if (rstatus == bfd_reloc_notsupported || !warned_undef)
4265 {
4266 (*_bfd_error_handler)
4267 (_("%B(%A+0x%lx): cannot handle %s for %s"),
4268 input_bfd,
4269 input_section,
4270 (long) rela->r_offset,
4271 howto->name,
4272 sym_name);
4273 bfd_set_error (bfd_error_bad_value);
4274 return FALSE;
4275 }
4276 }
4277 else
4278 {
4279 if (!((*info->callbacks->reloc_overflow)
4280 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4281 (bfd_vma) 0, input_bfd, input_section, rela->r_offset)))
4282 return FALSE;
4283 }
4284 }
4285
4286 return TRUE;
4287 }
4288
4289 /* Finish up dynamic symbol handling. We set the contents of various
4290 dynamic sections here. */
4291
4292 static bfd_boolean
4293 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4294 struct bfd_link_info *info,
4295 struct elf_link_hash_entry *eh,
4296 Elf_Internal_Sym *sym)
4297 {
4298 struct elf32_hppa_link_hash_table *htab;
4299 Elf_Internal_Rela rela;
4300 bfd_byte *loc;
4301
4302 htab = hppa_link_hash_table (info);
4303
4304 if (eh->plt.offset != (bfd_vma) -1)
4305 {
4306 bfd_vma value;
4307
4308 if (eh->plt.offset & 1)
4309 abort ();
4310
4311 /* This symbol has an entry in the procedure linkage table. Set
4312 it up.
4313
4314 The format of a plt entry is
4315 <funcaddr>
4316 <__gp>
4317 */
4318 value = 0;
4319 if (eh->root.type == bfd_link_hash_defined
4320 || eh->root.type == bfd_link_hash_defweak)
4321 {
4322 value = eh->root.u.def.value;
4323 if (eh->root.u.def.section->output_section != NULL)
4324 value += (eh->root.u.def.section->output_offset
4325 + eh->root.u.def.section->output_section->vma);
4326 }
4327
4328 /* Create a dynamic IPLT relocation for this entry. */
4329 rela.r_offset = (eh->plt.offset
4330 + htab->splt->output_offset
4331 + htab->splt->output_section->vma);
4332 if (eh->dynindx != -1)
4333 {
4334 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4335 rela.r_addend = 0;
4336 }
4337 else
4338 {
4339 /* This symbol has been marked to become local, and is
4340 used by a plabel so must be kept in the .plt. */
4341 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4342 rela.r_addend = value;
4343 }
4344
4345 loc = htab->srelplt->contents;
4346 loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4347 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rela, loc);
4348
4349 if (!eh->def_regular)
4350 {
4351 /* Mark the symbol as undefined, rather than as defined in
4352 the .plt section. Leave the value alone. */
4353 sym->st_shndx = SHN_UNDEF;
4354 }
4355 }
4356
4357 if (eh->got.offset != (bfd_vma) -1
4358 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_GD) == 0
4359 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_IE) == 0)
4360 {
4361 /* This symbol has an entry in the global offset table. Set it
4362 up. */
4363
4364 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4365 + htab->sgot->output_offset
4366 + htab->sgot->output_section->vma);
4367
4368 /* If this is a -Bsymbolic link and the symbol is defined
4369 locally or was forced to be local because of a version file,
4370 we just want to emit a RELATIVE reloc. The entry in the
4371 global offset table will already have been initialized in the
4372 relocate_section function. */
4373 if (info->shared
4374 && (info->symbolic || eh->dynindx == -1)
4375 && eh->def_regular)
4376 {
4377 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4378 rela.r_addend = (eh->root.u.def.value
4379 + eh->root.u.def.section->output_offset
4380 + eh->root.u.def.section->output_section->vma);
4381 }
4382 else
4383 {
4384 if ((eh->got.offset & 1) != 0)
4385 abort ();
4386
4387 bfd_put_32 (output_bfd, 0, htab->sgot->contents + (eh->got.offset & ~1));
4388 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4389 rela.r_addend = 0;
4390 }
4391
4392 loc = htab->srelgot->contents;
4393 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4394 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4395 }
4396
4397 if (eh->needs_copy)
4398 {
4399 asection *sec;
4400
4401 /* This symbol needs a copy reloc. Set it up. */
4402
4403 if (! (eh->dynindx != -1
4404 && (eh->root.type == bfd_link_hash_defined
4405 || eh->root.type == bfd_link_hash_defweak)))
4406 abort ();
4407
4408 sec = htab->srelbss;
4409
4410 rela.r_offset = (eh->root.u.def.value
4411 + eh->root.u.def.section->output_offset
4412 + eh->root.u.def.section->output_section->vma);
4413 rela.r_addend = 0;
4414 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4415 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4416 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4417 }
4418
4419 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4420 if (eh_name (eh)[0] == '_'
4421 && (strcmp (eh_name (eh), "_DYNAMIC") == 0
4422 || eh == htab->etab.hgot))
4423 {
4424 sym->st_shndx = SHN_ABS;
4425 }
4426
4427 return TRUE;
4428 }
4429
4430 /* Used to decide how to sort relocs in an optimal manner for the
4431 dynamic linker, before writing them out. */
4432
4433 static enum elf_reloc_type_class
4434 elf32_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
4435 {
4436 /* Handle TLS relocs first; we don't want them to be marked
4437 relative by the "if (ELF32_R_SYM (rela->r_info) == 0)"
4438 check below. */
4439 switch ((int) ELF32_R_TYPE (rela->r_info))
4440 {
4441 case R_PARISC_TLS_DTPMOD32:
4442 case R_PARISC_TLS_DTPOFF32:
4443 case R_PARISC_TLS_TPREL32:
4444 return reloc_class_normal;
4445 }
4446
4447 if (ELF32_R_SYM (rela->r_info) == 0)
4448 return reloc_class_relative;
4449
4450 switch ((int) ELF32_R_TYPE (rela->r_info))
4451 {
4452 case R_PARISC_IPLT:
4453 return reloc_class_plt;
4454 case R_PARISC_COPY:
4455 return reloc_class_copy;
4456 default:
4457 return reloc_class_normal;
4458 }
4459 }
4460
4461 /* Finish up the dynamic sections. */
4462
4463 static bfd_boolean
4464 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4465 struct bfd_link_info *info)
4466 {
4467 bfd *dynobj;
4468 struct elf32_hppa_link_hash_table *htab;
4469 asection *sdyn;
4470
4471 htab = hppa_link_hash_table (info);
4472 dynobj = htab->etab.dynobj;
4473
4474 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4475
4476 if (htab->etab.dynamic_sections_created)
4477 {
4478 Elf32_External_Dyn *dyncon, *dynconend;
4479
4480 if (sdyn == NULL)
4481 abort ();
4482
4483 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4484 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4485 for (; dyncon < dynconend; dyncon++)
4486 {
4487 Elf_Internal_Dyn dyn;
4488 asection *s;
4489
4490 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4491
4492 switch (dyn.d_tag)
4493 {
4494 default:
4495 continue;
4496
4497 case DT_PLTGOT:
4498 /* Use PLTGOT to set the GOT register. */
4499 dyn.d_un.d_ptr = elf_gp (output_bfd);
4500 break;
4501
4502 case DT_JMPREL:
4503 s = htab->srelplt;
4504 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4505 break;
4506
4507 case DT_PLTRELSZ:
4508 s = htab->srelplt;
4509 dyn.d_un.d_val = s->size;
4510 break;
4511
4512 case DT_RELASZ:
4513 /* Don't count procedure linkage table relocs in the
4514 overall reloc count. */
4515 s = htab->srelplt;
4516 if (s == NULL)
4517 continue;
4518 dyn.d_un.d_val -= s->size;
4519 break;
4520
4521 case DT_RELA:
4522 /* We may not be using the standard ELF linker script.
4523 If .rela.plt is the first .rela section, we adjust
4524 DT_RELA to not include it. */
4525 s = htab->srelplt;
4526 if (s == NULL)
4527 continue;
4528 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4529 continue;
4530 dyn.d_un.d_ptr += s->size;
4531 break;
4532 }
4533
4534 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4535 }
4536 }
4537
4538 if (htab->sgot != NULL && htab->sgot->size != 0)
4539 {
4540 /* Fill in the first entry in the global offset table.
4541 We use it to point to our dynamic section, if we have one. */
4542 bfd_put_32 (output_bfd,
4543 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4544 htab->sgot->contents);
4545
4546 /* The second entry is reserved for use by the dynamic linker. */
4547 memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4548
4549 /* Set .got entry size. */
4550 elf_section_data (htab->sgot->output_section)
4551 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4552 }
4553
4554 if (htab->splt != NULL && htab->splt->size != 0)
4555 {
4556 /* Set plt entry size. */
4557 elf_section_data (htab->splt->output_section)
4558 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4559
4560 if (htab->need_plt_stub)
4561 {
4562 /* Set up the .plt stub. */
4563 memcpy (htab->splt->contents
4564 + htab->splt->size - sizeof (plt_stub),
4565 plt_stub, sizeof (plt_stub));
4566
4567 if ((htab->splt->output_offset
4568 + htab->splt->output_section->vma
4569 + htab->splt->size)
4570 != (htab->sgot->output_offset
4571 + htab->sgot->output_section->vma))
4572 {
4573 (*_bfd_error_handler)
4574 (_(".got section not immediately after .plt section"));
4575 return FALSE;
4576 }
4577 }
4578 }
4579
4580 return TRUE;
4581 }
4582
4583 /* Called when writing out an object file to decide the type of a
4584 symbol. */
4585 static int
4586 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4587 {
4588 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4589 return STT_PARISC_MILLI;
4590 else
4591 return type;
4592 }
4593
4594 /* Misc BFD support code. */
4595 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4596 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4597 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4598 #define elf_info_to_howto elf_hppa_info_to_howto
4599 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4600
4601 /* Stuff for the BFD linker. */
4602 #define bfd_elf32_mkobject elf32_hppa_mkobject
4603 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4604 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4605 #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
4606 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4607 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4608 #define elf_backend_check_relocs elf32_hppa_check_relocs
4609 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4610 #define elf_backend_fake_sections elf_hppa_fake_sections
4611 #define elf_backend_relocate_section elf32_hppa_relocate_section
4612 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4613 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4614 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4615 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4616 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4617 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4618 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4619 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4620 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4621 #define elf_backend_object_p elf32_hppa_object_p
4622 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4623 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4624 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4625 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4626 #define elf_backend_action_discarded elf_hppa_action_discarded
4627
4628 #define elf_backend_can_gc_sections 1
4629 #define elf_backend_can_refcount 1
4630 #define elf_backend_plt_alignment 2
4631 #define elf_backend_want_got_plt 0
4632 #define elf_backend_plt_readonly 0
4633 #define elf_backend_want_plt_sym 0
4634 #define elf_backend_got_header_size 8
4635 #define elf_backend_rela_normal 1
4636
4637 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4638 #define TARGET_BIG_NAME "elf32-hppa"
4639 #define ELF_ARCH bfd_arch_hppa
4640 #define ELF_MACHINE_CODE EM_PARISC
4641 #define ELF_MAXPAGESIZE 0x1000
4642 #define ELF_OSABI ELFOSABI_HPUX
4643 #define elf32_bed elf32_hppa_hpux_bed
4644
4645 #include "elf32-target.h"
4646
4647 #undef TARGET_BIG_SYM
4648 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4649 #undef TARGET_BIG_NAME
4650 #define TARGET_BIG_NAME "elf32-hppa-linux"
4651 #undef ELF_OSABI
4652 #define ELF_OSABI ELFOSABI_LINUX
4653 #undef elf32_bed
4654 #define elf32_bed elf32_hppa_linux_bed
4655
4656 #include "elf32-target.h"
4657
4658 #undef TARGET_BIG_SYM
4659 #define TARGET_BIG_SYM bfd_elf32_hppa_nbsd_vec
4660 #undef TARGET_BIG_NAME
4661 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4662 #undef ELF_OSABI
4663 #define ELF_OSABI ELFOSABI_NETBSD
4664 #undef elf32_bed
4665 #define elf32_bed elf32_hppa_netbsd_bed
4666
4667 #include "elf32-target.h"
This page took 0.173869 seconds and 5 git commands to generate.