* aout-adobe.c (aout_32_bfd_reloc_name_lookup): Define.
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
4
5 Original code by
6 Center for Software Science
7 Department of Computer Science
8 University of Utah
9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
10 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
11 TLS support written by Randolph Chung <tausq@debian.org>
12
13 This file is part of BFD, the Binary File Descriptor library.
14
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 2 of the License, or
18 (at your option) any later version.
19
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
28
29 #include "bfd.h"
30 #include "sysdep.h"
31 #include "libbfd.h"
32 #include "elf-bfd.h"
33 #include "elf/hppa.h"
34 #include "libhppa.h"
35 #include "elf32-hppa.h"
36 #define ARCH_SIZE 32
37 #include "elf32-hppa.h"
38 #include "elf-hppa.h"
39
40 /* In order to gain some understanding of code in this file without
41 knowing all the intricate details of the linker, note the
42 following:
43
44 Functions named elf32_hppa_* are called by external routines, other
45 functions are only called locally. elf32_hppa_* functions appear
46 in this file more or less in the order in which they are called
47 from external routines. eg. elf32_hppa_check_relocs is called
48 early in the link process, elf32_hppa_finish_dynamic_sections is
49 one of the last functions. */
50
51 /* We use two hash tables to hold information for linking PA ELF objects.
52
53 The first is the elf32_hppa_link_hash_table which is derived
54 from the standard ELF linker hash table. We use this as a place to
55 attach other hash tables and static information.
56
57 The second is the stub hash table which is derived from the
58 base BFD hash table. The stub hash table holds the information
59 necessary to build the linker stubs during a link.
60
61 There are a number of different stubs generated by the linker.
62
63 Long branch stub:
64 : ldil LR'X,%r1
65 : be,n RR'X(%sr4,%r1)
66
67 PIC long branch stub:
68 : b,l .+8,%r1
69 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
70 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
71
72 Import stub to call shared library routine from normal object file
73 (single sub-space version)
74 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
75 : ldw RR'lt_ptr+ltoff(%r1),%r21
76 : bv %r0(%r21)
77 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
78
79 Import stub to call shared library routine from shared library
80 (single sub-space version)
81 : addil LR'ltoff,%r19 ; get procedure entry point
82 : ldw RR'ltoff(%r1),%r21
83 : bv %r0(%r21)
84 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
85
86 Import stub to call shared library routine from normal object file
87 (multiple sub-space support)
88 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
89 : ldw RR'lt_ptr+ltoff(%r1),%r21
90 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
91 : ldsid (%r21),%r1
92 : mtsp %r1,%sr0
93 : be 0(%sr0,%r21) ; branch to target
94 : stw %rp,-24(%sp) ; save rp
95
96 Import stub to call shared library routine from shared library
97 (multiple sub-space support)
98 : addil LR'ltoff,%r19 ; get procedure entry point
99 : ldw RR'ltoff(%r1),%r21
100 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
101 : ldsid (%r21),%r1
102 : mtsp %r1,%sr0
103 : be 0(%sr0,%r21) ; branch to target
104 : stw %rp,-24(%sp) ; save rp
105
106 Export stub to return from shared lib routine (multiple sub-space support)
107 One of these is created for each exported procedure in a shared
108 library (and stored in the shared lib). Shared lib routines are
109 called via the first instruction in the export stub so that we can
110 do an inter-space return. Not required for single sub-space.
111 : bl,n X,%rp ; trap the return
112 : nop
113 : ldw -24(%sp),%rp ; restore the original rp
114 : ldsid (%rp),%r1
115 : mtsp %r1,%sr0
116 : be,n 0(%sr0,%rp) ; inter-space return. */
117
118
119 /* Variable names follow a coding style.
120 Please follow this (Apps Hungarian) style:
121
122 Structure/Variable Prefix
123 elf_link_hash_table "etab"
124 elf_link_hash_entry "eh"
125
126 elf32_hppa_link_hash_table "htab"
127 elf32_hppa_link_hash_entry "hh"
128
129 bfd_hash_table "btab"
130 bfd_hash_entry "bh"
131
132 bfd_hash_table containing stubs "bstab"
133 elf32_hppa_stub_hash_entry "hsh"
134
135 elf32_hppa_dyn_reloc_entry "hdh"
136
137 Always remember to use GNU Coding Style. */
138
139 #define PLT_ENTRY_SIZE 8
140 #define GOT_ENTRY_SIZE 4
141 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
142
143 static const bfd_byte plt_stub[] =
144 {
145 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
146 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
147 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
148 #define PLT_STUB_ENTRY (3*4)
149 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
150 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
151 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
152 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
153 };
154
155 /* Section name for stubs is the associated section name plus this
156 string. */
157 #define STUB_SUFFIX ".stub"
158
159 /* We don't need to copy certain PC- or GP-relative dynamic relocs
160 into a shared object's dynamic section. All the relocs of the
161 limited class we are interested in, are absolute. */
162 #ifndef RELATIVE_DYNRELOCS
163 #define RELATIVE_DYNRELOCS 0
164 #define IS_ABSOLUTE_RELOC(r_type) 1
165 #endif
166
167 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
168 copying dynamic variables from a shared lib into an app's dynbss
169 section, and instead use a dynamic relocation to point into the
170 shared lib. */
171 #define ELIMINATE_COPY_RELOCS 1
172
173 enum elf32_hppa_stub_type
174 {
175 hppa_stub_long_branch,
176 hppa_stub_long_branch_shared,
177 hppa_stub_import,
178 hppa_stub_import_shared,
179 hppa_stub_export,
180 hppa_stub_none
181 };
182
183 struct elf32_hppa_stub_hash_entry
184 {
185 /* Base hash table entry structure. */
186 struct bfd_hash_entry bh_root;
187
188 /* The stub section. */
189 asection *stub_sec;
190
191 /* Offset within stub_sec of the beginning of this stub. */
192 bfd_vma stub_offset;
193
194 /* Given the symbol's value and its section we can determine its final
195 value when building the stubs (so the stub knows where to jump. */
196 bfd_vma target_value;
197 asection *target_section;
198
199 enum elf32_hppa_stub_type stub_type;
200
201 /* The symbol table entry, if any, that this was derived from. */
202 struct elf32_hppa_link_hash_entry *hh;
203
204 /* Where this stub is being called from, or, in the case of combined
205 stub sections, the first input section in the group. */
206 asection *id_sec;
207 };
208
209 struct elf32_hppa_link_hash_entry
210 {
211 struct elf_link_hash_entry eh;
212
213 /* A pointer to the most recently used stub hash entry against this
214 symbol. */
215 struct elf32_hppa_stub_hash_entry *hsh_cache;
216
217 /* Used to count relocations for delayed sizing of relocation
218 sections. */
219 struct elf32_hppa_dyn_reloc_entry
220 {
221 /* Next relocation in the chain. */
222 struct elf32_hppa_dyn_reloc_entry *hdh_next;
223
224 /* The input section of the reloc. */
225 asection *sec;
226
227 /* Number of relocs copied in this section. */
228 bfd_size_type count;
229
230 #if RELATIVE_DYNRELOCS
231 /* Number of relative relocs copied for the input section. */
232 bfd_size_type relative_count;
233 #endif
234 } *dyn_relocs;
235
236 enum
237 {
238 GOT_UNKNOWN = 0, GOT_NORMAL = 1, GOT_TLS_GD = 2, GOT_TLS_LDM = 4, GOT_TLS_IE = 8
239 } tls_type;
240
241 /* Set if this symbol is used by a plabel reloc. */
242 unsigned int plabel:1;
243 };
244
245 struct elf32_hppa_link_hash_table
246 {
247 /* The main hash table. */
248 struct elf_link_hash_table etab;
249
250 /* The stub hash table. */
251 struct bfd_hash_table bstab;
252
253 /* Linker stub bfd. */
254 bfd *stub_bfd;
255
256 /* Linker call-backs. */
257 asection * (*add_stub_section) (const char *, asection *);
258 void (*layout_sections_again) (void);
259
260 /* Array to keep track of which stub sections have been created, and
261 information on stub grouping. */
262 struct map_stub
263 {
264 /* This is the section to which stubs in the group will be
265 attached. */
266 asection *link_sec;
267 /* The stub section. */
268 asection *stub_sec;
269 } *stub_group;
270
271 /* Assorted information used by elf32_hppa_size_stubs. */
272 unsigned int bfd_count;
273 int top_index;
274 asection **input_list;
275 Elf_Internal_Sym **all_local_syms;
276
277 /* Short-cuts to get to dynamic linker sections. */
278 asection *sgot;
279 asection *srelgot;
280 asection *splt;
281 asection *srelplt;
282 asection *sdynbss;
283 asection *srelbss;
284
285 /* Used during a final link to store the base of the text and data
286 segments so that we can perform SEGREL relocations. */
287 bfd_vma text_segment_base;
288 bfd_vma data_segment_base;
289
290 /* Whether we support multiple sub-spaces for shared libs. */
291 unsigned int multi_subspace:1;
292
293 /* Flags set when various size branches are detected. Used to
294 select suitable defaults for the stub group size. */
295 unsigned int has_12bit_branch:1;
296 unsigned int has_17bit_branch:1;
297 unsigned int has_22bit_branch:1;
298
299 /* Set if we need a .plt stub to support lazy dynamic linking. */
300 unsigned int need_plt_stub:1;
301
302 /* Small local sym to section mapping cache. */
303 struct sym_sec_cache sym_sec;
304
305 /* Data for LDM relocations. */
306 union
307 {
308 bfd_signed_vma refcount;
309 bfd_vma offset;
310 } tls_ldm_got;
311 };
312
313 /* Various hash macros and functions. */
314 #define hppa_link_hash_table(p) \
315 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
316
317 #define hppa_elf_hash_entry(ent) \
318 ((struct elf32_hppa_link_hash_entry *)(ent))
319
320 #define hppa_stub_hash_entry(ent) \
321 ((struct elf32_hppa_stub_hash_entry *)(ent))
322
323 #define hppa_stub_hash_lookup(table, string, create, copy) \
324 ((struct elf32_hppa_stub_hash_entry *) \
325 bfd_hash_lookup ((table), (string), (create), (copy)))
326
327 #define hppa_elf_local_got_tls_type(abfd) \
328 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
329
330 #define hh_name(hh) \
331 (hh ? hh->eh.root.root.string : "<undef>")
332
333 #define eh_name(eh) \
334 (eh ? eh->root.root.string : "<undef>")
335
336 /* Assorted hash table functions. */
337
338 /* Initialize an entry in the stub hash table. */
339
340 static struct bfd_hash_entry *
341 stub_hash_newfunc (struct bfd_hash_entry *entry,
342 struct bfd_hash_table *table,
343 const char *string)
344 {
345 /* Allocate the structure if it has not already been allocated by a
346 subclass. */
347 if (entry == NULL)
348 {
349 entry = bfd_hash_allocate (table,
350 sizeof (struct elf32_hppa_stub_hash_entry));
351 if (entry == NULL)
352 return entry;
353 }
354
355 /* Call the allocation method of the superclass. */
356 entry = bfd_hash_newfunc (entry, table, string);
357 if (entry != NULL)
358 {
359 struct elf32_hppa_stub_hash_entry *hsh;
360
361 /* Initialize the local fields. */
362 hsh = hppa_stub_hash_entry (entry);
363 hsh->stub_sec = NULL;
364 hsh->stub_offset = 0;
365 hsh->target_value = 0;
366 hsh->target_section = NULL;
367 hsh->stub_type = hppa_stub_long_branch;
368 hsh->hh = NULL;
369 hsh->id_sec = NULL;
370 }
371
372 return entry;
373 }
374
375 /* Initialize an entry in the link hash table. */
376
377 static struct bfd_hash_entry *
378 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
379 struct bfd_hash_table *table,
380 const char *string)
381 {
382 /* Allocate the structure if it has not already been allocated by a
383 subclass. */
384 if (entry == NULL)
385 {
386 entry = bfd_hash_allocate (table,
387 sizeof (struct elf32_hppa_link_hash_entry));
388 if (entry == NULL)
389 return entry;
390 }
391
392 /* Call the allocation method of the superclass. */
393 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
394 if (entry != NULL)
395 {
396 struct elf32_hppa_link_hash_entry *hh;
397
398 /* Initialize the local fields. */
399 hh = hppa_elf_hash_entry (entry);
400 hh->hsh_cache = NULL;
401 hh->dyn_relocs = NULL;
402 hh->plabel = 0;
403 hh->tls_type = GOT_UNKNOWN;
404 }
405
406 return entry;
407 }
408
409 /* Create the derived linker hash table. The PA ELF port uses the derived
410 hash table to keep information specific to the PA ELF linker (without
411 using static variables). */
412
413 static struct bfd_link_hash_table *
414 elf32_hppa_link_hash_table_create (bfd *abfd)
415 {
416 struct elf32_hppa_link_hash_table *htab;
417 bfd_size_type amt = sizeof (*htab);
418
419 htab = bfd_malloc (amt);
420 if (htab == NULL)
421 return NULL;
422
423 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
424 sizeof (struct elf32_hppa_link_hash_entry)))
425 {
426 free (htab);
427 return NULL;
428 }
429
430 /* Init the stub hash table too. */
431 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
432 sizeof (struct elf32_hppa_stub_hash_entry)))
433 return NULL;
434
435 htab->stub_bfd = NULL;
436 htab->add_stub_section = NULL;
437 htab->layout_sections_again = NULL;
438 htab->stub_group = NULL;
439 htab->sgot = NULL;
440 htab->srelgot = NULL;
441 htab->splt = NULL;
442 htab->srelplt = NULL;
443 htab->sdynbss = NULL;
444 htab->srelbss = NULL;
445 htab->text_segment_base = (bfd_vma) -1;
446 htab->data_segment_base = (bfd_vma) -1;
447 htab->multi_subspace = 0;
448 htab->has_12bit_branch = 0;
449 htab->has_17bit_branch = 0;
450 htab->has_22bit_branch = 0;
451 htab->need_plt_stub = 0;
452 htab->sym_sec.abfd = NULL;
453 htab->tls_ldm_got.refcount = 0;
454
455 return &htab->etab.root;
456 }
457
458 /* Free the derived linker hash table. */
459
460 static void
461 elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *btab)
462 {
463 struct elf32_hppa_link_hash_table *htab
464 = (struct elf32_hppa_link_hash_table *) btab;
465
466 bfd_hash_table_free (&htab->bstab);
467 _bfd_generic_link_hash_table_free (btab);
468 }
469
470 /* Build a name for an entry in the stub hash table. */
471
472 static char *
473 hppa_stub_name (const asection *input_section,
474 const asection *sym_sec,
475 const struct elf32_hppa_link_hash_entry *hh,
476 const Elf_Internal_Rela *rela)
477 {
478 char *stub_name;
479 bfd_size_type len;
480
481 if (hh)
482 {
483 len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
484 stub_name = bfd_malloc (len);
485 if (stub_name != NULL)
486 sprintf (stub_name, "%08x_%s+%x",
487 input_section->id & 0xffffffff,
488 hh_name (hh),
489 (int) rela->r_addend & 0xffffffff);
490 }
491 else
492 {
493 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
494 stub_name = bfd_malloc (len);
495 if (stub_name != NULL)
496 sprintf (stub_name, "%08x_%x:%x+%x",
497 input_section->id & 0xffffffff,
498 sym_sec->id & 0xffffffff,
499 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
500 (int) rela->r_addend & 0xffffffff);
501 }
502 return stub_name;
503 }
504
505 /* Look up an entry in the stub hash. Stub entries are cached because
506 creating the stub name takes a bit of time. */
507
508 static struct elf32_hppa_stub_hash_entry *
509 hppa_get_stub_entry (const asection *input_section,
510 const asection *sym_sec,
511 struct elf32_hppa_link_hash_entry *hh,
512 const Elf_Internal_Rela *rela,
513 struct elf32_hppa_link_hash_table *htab)
514 {
515 struct elf32_hppa_stub_hash_entry *hsh_entry;
516 const asection *id_sec;
517
518 /* If this input section is part of a group of sections sharing one
519 stub section, then use the id of the first section in the group.
520 Stub names need to include a section id, as there may well be
521 more than one stub used to reach say, printf, and we need to
522 distinguish between them. */
523 id_sec = htab->stub_group[input_section->id].link_sec;
524
525 if (hh != NULL && hh->hsh_cache != NULL
526 && hh->hsh_cache->hh == hh
527 && hh->hsh_cache->id_sec == id_sec)
528 {
529 hsh_entry = hh->hsh_cache;
530 }
531 else
532 {
533 char *stub_name;
534
535 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
536 if (stub_name == NULL)
537 return NULL;
538
539 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
540 stub_name, FALSE, FALSE);
541 if (hh != NULL)
542 hh->hsh_cache = hsh_entry;
543
544 free (stub_name);
545 }
546
547 return hsh_entry;
548 }
549
550 /* Add a new stub entry to the stub hash. Not all fields of the new
551 stub entry are initialised. */
552
553 static struct elf32_hppa_stub_hash_entry *
554 hppa_add_stub (const char *stub_name,
555 asection *section,
556 struct elf32_hppa_link_hash_table *htab)
557 {
558 asection *link_sec;
559 asection *stub_sec;
560 struct elf32_hppa_stub_hash_entry *hsh;
561
562 link_sec = htab->stub_group[section->id].link_sec;
563 stub_sec = htab->stub_group[section->id].stub_sec;
564 if (stub_sec == NULL)
565 {
566 stub_sec = htab->stub_group[link_sec->id].stub_sec;
567 if (stub_sec == NULL)
568 {
569 size_t namelen;
570 bfd_size_type len;
571 char *s_name;
572
573 namelen = strlen (link_sec->name);
574 len = namelen + sizeof (STUB_SUFFIX);
575 s_name = bfd_alloc (htab->stub_bfd, len);
576 if (s_name == NULL)
577 return NULL;
578
579 memcpy (s_name, link_sec->name, namelen);
580 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
581 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
582 if (stub_sec == NULL)
583 return NULL;
584 htab->stub_group[link_sec->id].stub_sec = stub_sec;
585 }
586 htab->stub_group[section->id].stub_sec = stub_sec;
587 }
588
589 /* Enter this entry into the linker stub hash table. */
590 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
591 TRUE, FALSE);
592 if (hsh == NULL)
593 {
594 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
595 section->owner,
596 stub_name);
597 return NULL;
598 }
599
600 hsh->stub_sec = stub_sec;
601 hsh->stub_offset = 0;
602 hsh->id_sec = link_sec;
603 return hsh;
604 }
605
606 /* Determine the type of stub needed, if any, for a call. */
607
608 static enum elf32_hppa_stub_type
609 hppa_type_of_stub (asection *input_sec,
610 const Elf_Internal_Rela *rela,
611 struct elf32_hppa_link_hash_entry *hh,
612 bfd_vma destination,
613 struct bfd_link_info *info)
614 {
615 bfd_vma location;
616 bfd_vma branch_offset;
617 bfd_vma max_branch_offset;
618 unsigned int r_type;
619
620 if (hh != NULL
621 && hh->eh.plt.offset != (bfd_vma) -1
622 && hh->eh.dynindx != -1
623 && !hh->plabel
624 && (info->shared
625 || !hh->eh.def_regular
626 || hh->eh.root.type == bfd_link_hash_defweak))
627 {
628 /* We need an import stub. Decide between hppa_stub_import
629 and hppa_stub_import_shared later. */
630 return hppa_stub_import;
631 }
632
633 /* Determine where the call point is. */
634 location = (input_sec->output_offset
635 + input_sec->output_section->vma
636 + rela->r_offset);
637
638 branch_offset = destination - location - 8;
639 r_type = ELF32_R_TYPE (rela->r_info);
640
641 /* Determine if a long branch stub is needed. parisc branch offsets
642 are relative to the second instruction past the branch, ie. +8
643 bytes on from the branch instruction location. The offset is
644 signed and counts in units of 4 bytes. */
645 if (r_type == (unsigned int) R_PARISC_PCREL17F)
646 max_branch_offset = (1 << (17 - 1)) << 2;
647
648 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
649 max_branch_offset = (1 << (12 - 1)) << 2;
650
651 else /* R_PARISC_PCREL22F. */
652 max_branch_offset = (1 << (22 - 1)) << 2;
653
654 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
655 return hppa_stub_long_branch;
656
657 return hppa_stub_none;
658 }
659
660 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
661 IN_ARG contains the link info pointer. */
662
663 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
664 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
665
666 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
667 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
668 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
669
670 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
671 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
672 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
673 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
674
675 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
676 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
677
678 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
679 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
680 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
681 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
682
683 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
684 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
685 #define NOP 0x08000240 /* nop */
686 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
687 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
688 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
689
690 #ifndef R19_STUBS
691 #define R19_STUBS 1
692 #endif
693
694 #if R19_STUBS
695 #define LDW_R1_DLT LDW_R1_R19
696 #else
697 #define LDW_R1_DLT LDW_R1_DP
698 #endif
699
700 static bfd_boolean
701 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
702 {
703 struct elf32_hppa_stub_hash_entry *hsh;
704 struct bfd_link_info *info;
705 struct elf32_hppa_link_hash_table *htab;
706 asection *stub_sec;
707 bfd *stub_bfd;
708 bfd_byte *loc;
709 bfd_vma sym_value;
710 bfd_vma insn;
711 bfd_vma off;
712 int val;
713 int size;
714
715 /* Massage our args to the form they really have. */
716 hsh = hppa_stub_hash_entry (bh);
717 info = (struct bfd_link_info *)in_arg;
718
719 htab = hppa_link_hash_table (info);
720 stub_sec = hsh->stub_sec;
721
722 /* Make a note of the offset within the stubs for this entry. */
723 hsh->stub_offset = stub_sec->size;
724 loc = stub_sec->contents + hsh->stub_offset;
725
726 stub_bfd = stub_sec->owner;
727
728 switch (hsh->stub_type)
729 {
730 case hppa_stub_long_branch:
731 /* Create the long branch. A long branch is formed with "ldil"
732 loading the upper bits of the target address into a register,
733 then branching with "be" which adds in the lower bits.
734 The "be" has its delay slot nullified. */
735 sym_value = (hsh->target_value
736 + hsh->target_section->output_offset
737 + hsh->target_section->output_section->vma);
738
739 val = hppa_field_adjust (sym_value, 0, e_lrsel);
740 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
741 bfd_put_32 (stub_bfd, insn, loc);
742
743 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
744 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
745 bfd_put_32 (stub_bfd, insn, loc + 4);
746
747 size = 8;
748 break;
749
750 case hppa_stub_long_branch_shared:
751 /* Branches are relative. This is where we are going to. */
752 sym_value = (hsh->target_value
753 + hsh->target_section->output_offset
754 + hsh->target_section->output_section->vma);
755
756 /* And this is where we are coming from, more or less. */
757 sym_value -= (hsh->stub_offset
758 + stub_sec->output_offset
759 + stub_sec->output_section->vma);
760
761 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
762 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
763 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
764 bfd_put_32 (stub_bfd, insn, loc + 4);
765
766 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
767 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
768 bfd_put_32 (stub_bfd, insn, loc + 8);
769 size = 12;
770 break;
771
772 case hppa_stub_import:
773 case hppa_stub_import_shared:
774 off = hsh->hh->eh.plt.offset;
775 if (off >= (bfd_vma) -2)
776 abort ();
777
778 off &= ~ (bfd_vma) 1;
779 sym_value = (off
780 + htab->splt->output_offset
781 + htab->splt->output_section->vma
782 - elf_gp (htab->splt->output_section->owner));
783
784 insn = ADDIL_DP;
785 #if R19_STUBS
786 if (hsh->stub_type == hppa_stub_import_shared)
787 insn = ADDIL_R19;
788 #endif
789 val = hppa_field_adjust (sym_value, 0, e_lrsel),
790 insn = hppa_rebuild_insn ((int) insn, val, 21);
791 bfd_put_32 (stub_bfd, insn, loc);
792
793 /* It is critical to use lrsel/rrsel here because we are using
794 two different offsets (+0 and +4) from sym_value. If we use
795 lsel/rsel then with unfortunate sym_values we will round
796 sym_value+4 up to the next 2k block leading to a mis-match
797 between the lsel and rsel value. */
798 val = hppa_field_adjust (sym_value, 0, e_rrsel);
799 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
800 bfd_put_32 (stub_bfd, insn, loc + 4);
801
802 if (htab->multi_subspace)
803 {
804 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
805 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
806 bfd_put_32 (stub_bfd, insn, loc + 8);
807
808 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
809 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
810 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
811 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
812
813 size = 28;
814 }
815 else
816 {
817 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
818 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
819 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
820 bfd_put_32 (stub_bfd, insn, loc + 12);
821
822 size = 16;
823 }
824
825 break;
826
827 case hppa_stub_export:
828 /* Branches are relative. This is where we are going to. */
829 sym_value = (hsh->target_value
830 + hsh->target_section->output_offset
831 + hsh->target_section->output_section->vma);
832
833 /* And this is where we are coming from. */
834 sym_value -= (hsh->stub_offset
835 + stub_sec->output_offset
836 + stub_sec->output_section->vma);
837
838 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
839 && (!htab->has_22bit_branch
840 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
841 {
842 (*_bfd_error_handler)
843 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
844 hsh->target_section->owner,
845 stub_sec,
846 (long) hsh->stub_offset,
847 hsh->bh_root.string);
848 bfd_set_error (bfd_error_bad_value);
849 return FALSE;
850 }
851
852 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
853 if (!htab->has_22bit_branch)
854 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
855 else
856 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
857 bfd_put_32 (stub_bfd, insn, loc);
858
859 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
860 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
861 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
862 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
863 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
864
865 /* Point the function symbol at the stub. */
866 hsh->hh->eh.root.u.def.section = stub_sec;
867 hsh->hh->eh.root.u.def.value = stub_sec->size;
868
869 size = 24;
870 break;
871
872 default:
873 BFD_FAIL ();
874 return FALSE;
875 }
876
877 stub_sec->size += size;
878 return TRUE;
879 }
880
881 #undef LDIL_R1
882 #undef BE_SR4_R1
883 #undef BL_R1
884 #undef ADDIL_R1
885 #undef DEPI_R1
886 #undef LDW_R1_R21
887 #undef LDW_R1_DLT
888 #undef LDW_R1_R19
889 #undef ADDIL_R19
890 #undef LDW_R1_DP
891 #undef LDSID_R21_R1
892 #undef MTSP_R1
893 #undef BE_SR0_R21
894 #undef STW_RP
895 #undef BV_R0_R21
896 #undef BL_RP
897 #undef NOP
898 #undef LDW_RP
899 #undef LDSID_RP_R1
900 #undef BE_SR0_RP
901
902 /* As above, but don't actually build the stub. Just bump offset so
903 we know stub section sizes. */
904
905 static bfd_boolean
906 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
907 {
908 struct elf32_hppa_stub_hash_entry *hsh;
909 struct elf32_hppa_link_hash_table *htab;
910 int size;
911
912 /* Massage our args to the form they really have. */
913 hsh = hppa_stub_hash_entry (bh);
914 htab = in_arg;
915
916 if (hsh->stub_type == hppa_stub_long_branch)
917 size = 8;
918 else if (hsh->stub_type == hppa_stub_long_branch_shared)
919 size = 12;
920 else if (hsh->stub_type == hppa_stub_export)
921 size = 24;
922 else /* hppa_stub_import or hppa_stub_import_shared. */
923 {
924 if (htab->multi_subspace)
925 size = 28;
926 else
927 size = 16;
928 }
929
930 hsh->stub_sec->size += size;
931 return TRUE;
932 }
933
934 /* Return nonzero if ABFD represents an HPPA ELF32 file.
935 Additionally we set the default architecture and machine. */
936
937 static bfd_boolean
938 elf32_hppa_object_p (bfd *abfd)
939 {
940 Elf_Internal_Ehdr * i_ehdrp;
941 unsigned int flags;
942
943 i_ehdrp = elf_elfheader (abfd);
944 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
945 {
946 /* GCC on hppa-linux produces binaries with OSABI=Linux,
947 but the kernel produces corefiles with OSABI=SysV. */
948 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX &&
949 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
950 return FALSE;
951 }
952 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
953 {
954 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
955 but the kernel produces corefiles with OSABI=SysV. */
956 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
957 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
958 return FALSE;
959 }
960 else
961 {
962 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
963 return FALSE;
964 }
965
966 flags = i_ehdrp->e_flags;
967 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
968 {
969 case EFA_PARISC_1_0:
970 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
971 case EFA_PARISC_1_1:
972 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
973 case EFA_PARISC_2_0:
974 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
975 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
976 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
977 }
978 return TRUE;
979 }
980
981 /* Create the .plt and .got sections, and set up our hash table
982 short-cuts to various dynamic sections. */
983
984 static bfd_boolean
985 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
986 {
987 struct elf32_hppa_link_hash_table *htab;
988 struct elf_link_hash_entry *eh;
989
990 /* Don't try to create the .plt and .got twice. */
991 htab = hppa_link_hash_table (info);
992 if (htab->splt != NULL)
993 return TRUE;
994
995 /* Call the generic code to do most of the work. */
996 if (! _bfd_elf_create_dynamic_sections (abfd, info))
997 return FALSE;
998
999 htab->splt = bfd_get_section_by_name (abfd, ".plt");
1000 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
1001
1002 htab->sgot = bfd_get_section_by_name (abfd, ".got");
1003 htab->srelgot = bfd_make_section_with_flags (abfd, ".rela.got",
1004 (SEC_ALLOC
1005 | SEC_LOAD
1006 | SEC_HAS_CONTENTS
1007 | SEC_IN_MEMORY
1008 | SEC_LINKER_CREATED
1009 | SEC_READONLY));
1010 if (htab->srelgot == NULL
1011 || ! bfd_set_section_alignment (abfd, htab->srelgot, 2))
1012 return FALSE;
1013
1014 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
1015 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
1016
1017 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
1018 application, because __canonicalize_funcptr_for_compare needs it. */
1019 eh = elf_hash_table (info)->hgot;
1020 eh->forced_local = 0;
1021 eh->other = STV_DEFAULT;
1022 return bfd_elf_link_record_dynamic_symbol (info, eh);
1023 }
1024
1025 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1026
1027 static void
1028 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1029 struct elf_link_hash_entry *eh_dir,
1030 struct elf_link_hash_entry *eh_ind)
1031 {
1032 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1033
1034 hh_dir = hppa_elf_hash_entry (eh_dir);
1035 hh_ind = hppa_elf_hash_entry (eh_ind);
1036
1037 if (hh_ind->dyn_relocs != NULL)
1038 {
1039 if (hh_dir->dyn_relocs != NULL)
1040 {
1041 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1042 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1043
1044 /* Add reloc counts against the indirect sym to the direct sym
1045 list. Merge any entries against the same section. */
1046 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1047 {
1048 struct elf32_hppa_dyn_reloc_entry *hdh_q;
1049
1050 for (hdh_q = hh_dir->dyn_relocs;
1051 hdh_q != NULL;
1052 hdh_q = hdh_q->hdh_next)
1053 if (hdh_q->sec == hdh_p->sec)
1054 {
1055 #if RELATIVE_DYNRELOCS
1056 hdh_q->relative_count += hdh_p->relative_count;
1057 #endif
1058 hdh_q->count += hdh_p->count;
1059 *hdh_pp = hdh_p->hdh_next;
1060 break;
1061 }
1062 if (hdh_q == NULL)
1063 hdh_pp = &hdh_p->hdh_next;
1064 }
1065 *hdh_pp = hh_dir->dyn_relocs;
1066 }
1067
1068 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1069 hh_ind->dyn_relocs = NULL;
1070 }
1071
1072 if (ELIMINATE_COPY_RELOCS
1073 && eh_ind->root.type != bfd_link_hash_indirect
1074 && eh_dir->dynamic_adjusted)
1075 {
1076 /* If called to transfer flags for a weakdef during processing
1077 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1078 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1079 eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
1080 eh_dir->ref_regular |= eh_ind->ref_regular;
1081 eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
1082 eh_dir->needs_plt |= eh_ind->needs_plt;
1083 }
1084 else
1085 {
1086 if (eh_ind->root.type == bfd_link_hash_indirect
1087 && eh_dir->got.refcount <= 0)
1088 {
1089 hh_dir->tls_type = hh_ind->tls_type;
1090 hh_ind->tls_type = GOT_UNKNOWN;
1091 }
1092
1093 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1094 }
1095 }
1096
1097 static int
1098 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1099 int r_type, int is_local ATTRIBUTE_UNUSED)
1100 {
1101 /* For now we don't support linker optimizations. */
1102 return r_type;
1103 }
1104
1105 /* Look through the relocs for a section during the first phase, and
1106 calculate needed space in the global offset table, procedure linkage
1107 table, and dynamic reloc sections. At this point we haven't
1108 necessarily read all the input files. */
1109
1110 static bfd_boolean
1111 elf32_hppa_check_relocs (bfd *abfd,
1112 struct bfd_link_info *info,
1113 asection *sec,
1114 const Elf_Internal_Rela *relocs)
1115 {
1116 Elf_Internal_Shdr *symtab_hdr;
1117 struct elf_link_hash_entry **eh_syms;
1118 const Elf_Internal_Rela *rela;
1119 const Elf_Internal_Rela *rela_end;
1120 struct elf32_hppa_link_hash_table *htab;
1121 asection *sreloc;
1122 asection *stubreloc;
1123 int tls_type = GOT_UNKNOWN, old_tls_type = GOT_UNKNOWN;
1124
1125 if (info->relocatable)
1126 return TRUE;
1127
1128 htab = hppa_link_hash_table (info);
1129 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1130 eh_syms = elf_sym_hashes (abfd);
1131 sreloc = NULL;
1132 stubreloc = NULL;
1133
1134 rela_end = relocs + sec->reloc_count;
1135 for (rela = relocs; rela < rela_end; rela++)
1136 {
1137 enum {
1138 NEED_GOT = 1,
1139 NEED_PLT = 2,
1140 NEED_DYNREL = 4,
1141 PLT_PLABEL = 8
1142 };
1143
1144 unsigned int r_symndx, r_type;
1145 struct elf32_hppa_link_hash_entry *hh;
1146 int need_entry = 0;
1147
1148 r_symndx = ELF32_R_SYM (rela->r_info);
1149
1150 if (r_symndx < symtab_hdr->sh_info)
1151 hh = NULL;
1152 else
1153 {
1154 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1155 while (hh->eh.root.type == bfd_link_hash_indirect
1156 || hh->eh.root.type == bfd_link_hash_warning)
1157 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1158 }
1159
1160 r_type = ELF32_R_TYPE (rela->r_info);
1161 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1162
1163 switch (r_type)
1164 {
1165 case R_PARISC_DLTIND14F:
1166 case R_PARISC_DLTIND14R:
1167 case R_PARISC_DLTIND21L:
1168 /* This symbol requires a global offset table entry. */
1169 need_entry = NEED_GOT;
1170 break;
1171
1172 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1173 case R_PARISC_PLABEL21L:
1174 case R_PARISC_PLABEL32:
1175 /* If the addend is non-zero, we break badly. */
1176 if (rela->r_addend != 0)
1177 abort ();
1178
1179 /* If we are creating a shared library, then we need to
1180 create a PLT entry for all PLABELs, because PLABELs with
1181 local symbols may be passed via a pointer to another
1182 object. Additionally, output a dynamic relocation
1183 pointing to the PLT entry.
1184
1185 For executables, the original 32-bit ABI allowed two
1186 different styles of PLABELs (function pointers): For
1187 global functions, the PLABEL word points into the .plt
1188 two bytes past a (function address, gp) pair, and for
1189 local functions the PLABEL points directly at the
1190 function. The magic +2 for the first type allows us to
1191 differentiate between the two. As you can imagine, this
1192 is a real pain when it comes to generating code to call
1193 functions indirectly or to compare function pointers.
1194 We avoid the mess by always pointing a PLABEL into the
1195 .plt, even for local functions. */
1196 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1197 break;
1198
1199 case R_PARISC_PCREL12F:
1200 htab->has_12bit_branch = 1;
1201 goto branch_common;
1202
1203 case R_PARISC_PCREL17C:
1204 case R_PARISC_PCREL17F:
1205 htab->has_17bit_branch = 1;
1206 goto branch_common;
1207
1208 case R_PARISC_PCREL22F:
1209 htab->has_22bit_branch = 1;
1210 branch_common:
1211 /* Function calls might need to go through the .plt, and
1212 might require long branch stubs. */
1213 if (hh == NULL)
1214 {
1215 /* We know local syms won't need a .plt entry, and if
1216 they need a long branch stub we can't guarantee that
1217 we can reach the stub. So just flag an error later
1218 if we're doing a shared link and find we need a long
1219 branch stub. */
1220 continue;
1221 }
1222 else
1223 {
1224 /* Global symbols will need a .plt entry if they remain
1225 global, and in most cases won't need a long branch
1226 stub. Unfortunately, we have to cater for the case
1227 where a symbol is forced local by versioning, or due
1228 to symbolic linking, and we lose the .plt entry. */
1229 need_entry = NEED_PLT;
1230 if (hh->eh.type == STT_PARISC_MILLI)
1231 need_entry = 0;
1232 }
1233 break;
1234
1235 case R_PARISC_SEGBASE: /* Used to set segment base. */
1236 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1237 case R_PARISC_PCREL14F: /* PC relative load/store. */
1238 case R_PARISC_PCREL14R:
1239 case R_PARISC_PCREL17R: /* External branches. */
1240 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1241 case R_PARISC_PCREL32:
1242 /* We don't need to propagate the relocation if linking a
1243 shared object since these are section relative. */
1244 continue;
1245
1246 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1247 case R_PARISC_DPREL14R:
1248 case R_PARISC_DPREL21L:
1249 if (info->shared)
1250 {
1251 (*_bfd_error_handler)
1252 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1253 abfd,
1254 elf_hppa_howto_table[r_type].name);
1255 bfd_set_error (bfd_error_bad_value);
1256 return FALSE;
1257 }
1258 /* Fall through. */
1259
1260 case R_PARISC_DIR17F: /* Used for external branches. */
1261 case R_PARISC_DIR17R:
1262 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1263 case R_PARISC_DIR14R:
1264 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1265 case R_PARISC_DIR32: /* .word relocs. */
1266 /* We may want to output a dynamic relocation later. */
1267 need_entry = NEED_DYNREL;
1268 break;
1269
1270 /* This relocation describes the C++ object vtable hierarchy.
1271 Reconstruct it for later use during GC. */
1272 case R_PARISC_GNU_VTINHERIT:
1273 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1274 return FALSE;
1275 continue;
1276
1277 /* This relocation describes which C++ vtable entries are actually
1278 used. Record for later use during GC. */
1279 case R_PARISC_GNU_VTENTRY:
1280 if (!bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1281 return FALSE;
1282 continue;
1283
1284 case R_PARISC_TLS_GD21L:
1285 case R_PARISC_TLS_GD14R:
1286 case R_PARISC_TLS_LDM21L:
1287 case R_PARISC_TLS_LDM14R:
1288 need_entry = NEED_GOT;
1289 break;
1290
1291 case R_PARISC_TLS_IE21L:
1292 case R_PARISC_TLS_IE14R:
1293 if (info->shared)
1294 info->flags |= DF_STATIC_TLS;
1295 need_entry = NEED_GOT;
1296 break;
1297
1298 default:
1299 continue;
1300 }
1301
1302 /* Now carry out our orders. */
1303 if (need_entry & NEED_GOT)
1304 {
1305 switch (r_type)
1306 {
1307 default:
1308 tls_type = GOT_NORMAL;
1309 break;
1310 case R_PARISC_TLS_GD21L:
1311 case R_PARISC_TLS_GD14R:
1312 tls_type |= GOT_TLS_GD;
1313 break;
1314 case R_PARISC_TLS_LDM21L:
1315 case R_PARISC_TLS_LDM14R:
1316 tls_type |= GOT_TLS_LDM;
1317 break;
1318 case R_PARISC_TLS_IE21L:
1319 case R_PARISC_TLS_IE14R:
1320 tls_type |= GOT_TLS_IE;
1321 break;
1322 }
1323
1324 /* Allocate space for a GOT entry, as well as a dynamic
1325 relocation for this entry. */
1326 if (htab->sgot == NULL)
1327 {
1328 if (htab->etab.dynobj == NULL)
1329 htab->etab.dynobj = abfd;
1330 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1331 return FALSE;
1332 }
1333
1334 if (r_type == R_PARISC_TLS_LDM21L
1335 || r_type == R_PARISC_TLS_LDM14R)
1336 hppa_link_hash_table (info)->tls_ldm_got.refcount += 1;
1337 else
1338 {
1339 if (hh != NULL)
1340 {
1341 hh->eh.got.refcount += 1;
1342 old_tls_type = hh->tls_type;
1343 }
1344 else
1345 {
1346 bfd_signed_vma *local_got_refcounts;
1347
1348 /* This is a global offset table entry for a local symbol. */
1349 local_got_refcounts = elf_local_got_refcounts (abfd);
1350 if (local_got_refcounts == NULL)
1351 {
1352 bfd_size_type size;
1353
1354 /* Allocate space for local got offsets and local
1355 plt offsets. Done this way to save polluting
1356 elf_obj_tdata with another target specific
1357 pointer. */
1358 size = symtab_hdr->sh_info;
1359 size *= 2 * sizeof (bfd_signed_vma);
1360 /* Add in space to store the local GOT TLS types. */
1361 size += symtab_hdr->sh_info;
1362 local_got_refcounts = bfd_zalloc (abfd, size);
1363 if (local_got_refcounts == NULL)
1364 return FALSE;
1365 elf_local_got_refcounts (abfd) = local_got_refcounts;
1366 memset (hppa_elf_local_got_tls_type (abfd),
1367 GOT_UNKNOWN, symtab_hdr->sh_info);
1368 }
1369 local_got_refcounts[r_symndx] += 1;
1370
1371 old_tls_type = hppa_elf_local_got_tls_type (abfd) [r_symndx];
1372 }
1373
1374 tls_type |= old_tls_type;
1375
1376 if (old_tls_type != tls_type)
1377 {
1378 if (hh != NULL)
1379 hh->tls_type = tls_type;
1380 else
1381 hppa_elf_local_got_tls_type (abfd) [r_symndx] = tls_type;
1382 }
1383
1384 }
1385 }
1386
1387 if (need_entry & NEED_PLT)
1388 {
1389 /* If we are creating a shared library, and this is a reloc
1390 against a weak symbol or a global symbol in a dynamic
1391 object, then we will be creating an import stub and a
1392 .plt entry for the symbol. Similarly, on a normal link
1393 to symbols defined in a dynamic object we'll need the
1394 import stub and a .plt entry. We don't know yet whether
1395 the symbol is defined or not, so make an entry anyway and
1396 clean up later in adjust_dynamic_symbol. */
1397 if ((sec->flags & SEC_ALLOC) != 0)
1398 {
1399 if (hh != NULL)
1400 {
1401 hh->eh.needs_plt = 1;
1402 hh->eh.plt.refcount += 1;
1403
1404 /* If this .plt entry is for a plabel, mark it so
1405 that adjust_dynamic_symbol will keep the entry
1406 even if it appears to be local. */
1407 if (need_entry & PLT_PLABEL)
1408 hh->plabel = 1;
1409 }
1410 else if (need_entry & PLT_PLABEL)
1411 {
1412 bfd_signed_vma *local_got_refcounts;
1413 bfd_signed_vma *local_plt_refcounts;
1414
1415 local_got_refcounts = elf_local_got_refcounts (abfd);
1416 if (local_got_refcounts == NULL)
1417 {
1418 bfd_size_type size;
1419
1420 /* Allocate space for local got offsets and local
1421 plt offsets. */
1422 size = symtab_hdr->sh_info;
1423 size *= 2 * sizeof (bfd_signed_vma);
1424 /* Add in space to store the local GOT TLS types. */
1425 size += symtab_hdr->sh_info;
1426 local_got_refcounts = bfd_zalloc (abfd, size);
1427 if (local_got_refcounts == NULL)
1428 return FALSE;
1429 elf_local_got_refcounts (abfd) = local_got_refcounts;
1430 }
1431 local_plt_refcounts = (local_got_refcounts
1432 + symtab_hdr->sh_info);
1433 local_plt_refcounts[r_symndx] += 1;
1434 }
1435 }
1436 }
1437
1438 if (need_entry & NEED_DYNREL)
1439 {
1440 /* Flag this symbol as having a non-got, non-plt reference
1441 so that we generate copy relocs if it turns out to be
1442 dynamic. */
1443 if (hh != NULL && !info->shared)
1444 hh->eh.non_got_ref = 1;
1445
1446 /* If we are creating a shared library then we need to copy
1447 the reloc into the shared library. However, if we are
1448 linking with -Bsymbolic, we need only copy absolute
1449 relocs or relocs against symbols that are not defined in
1450 an object we are including in the link. PC- or DP- or
1451 DLT-relative relocs against any local sym or global sym
1452 with DEF_REGULAR set, can be discarded. At this point we
1453 have not seen all the input files, so it is possible that
1454 DEF_REGULAR is not set now but will be set later (it is
1455 never cleared). We account for that possibility below by
1456 storing information in the dyn_relocs field of the
1457 hash table entry.
1458
1459 A similar situation to the -Bsymbolic case occurs when
1460 creating shared libraries and symbol visibility changes
1461 render the symbol local.
1462
1463 As it turns out, all the relocs we will be creating here
1464 are absolute, so we cannot remove them on -Bsymbolic
1465 links or visibility changes anyway. A STUB_REL reloc
1466 is absolute too, as in that case it is the reloc in the
1467 stub we will be creating, rather than copying the PCREL
1468 reloc in the branch.
1469
1470 If on the other hand, we are creating an executable, we
1471 may need to keep relocations for symbols satisfied by a
1472 dynamic library if we manage to avoid copy relocs for the
1473 symbol. */
1474 if ((info->shared
1475 && (sec->flags & SEC_ALLOC) != 0
1476 && (IS_ABSOLUTE_RELOC (r_type)
1477 || (hh != NULL
1478 && (!info->symbolic
1479 || hh->eh.root.type == bfd_link_hash_defweak
1480 || !hh->eh.def_regular))))
1481 || (ELIMINATE_COPY_RELOCS
1482 && !info->shared
1483 && (sec->flags & SEC_ALLOC) != 0
1484 && hh != NULL
1485 && (hh->eh.root.type == bfd_link_hash_defweak
1486 || !hh->eh.def_regular)))
1487 {
1488 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1489 struct elf32_hppa_dyn_reloc_entry **hdh_head;
1490
1491 /* Create a reloc section in dynobj and make room for
1492 this reloc. */
1493 if (sreloc == NULL)
1494 {
1495 char *name;
1496 bfd *dynobj;
1497
1498 name = (bfd_elf_string_from_elf_section
1499 (abfd,
1500 elf_elfheader (abfd)->e_shstrndx,
1501 elf_section_data (sec)->rel_hdr.sh_name));
1502 if (name == NULL)
1503 {
1504 (*_bfd_error_handler)
1505 (_("Could not find relocation section for %s"),
1506 sec->name);
1507 bfd_set_error (bfd_error_bad_value);
1508 return FALSE;
1509 }
1510
1511 if (htab->etab.dynobj == NULL)
1512 htab->etab.dynobj = abfd;
1513
1514 dynobj = htab->etab.dynobj;
1515 sreloc = bfd_get_section_by_name (dynobj, name);
1516 if (sreloc == NULL)
1517 {
1518 flagword flags;
1519
1520 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1521 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1522 if ((sec->flags & SEC_ALLOC) != 0)
1523 flags |= SEC_ALLOC | SEC_LOAD;
1524 sreloc = bfd_make_section_with_flags (dynobj,
1525 name,
1526 flags);
1527 if (sreloc == NULL
1528 || !bfd_set_section_alignment (dynobj, sreloc, 2))
1529 return FALSE;
1530 }
1531
1532 elf_section_data (sec)->sreloc = sreloc;
1533 }
1534
1535 /* If this is a global symbol, we count the number of
1536 relocations we need for this symbol. */
1537 if (hh != NULL)
1538 {
1539 hdh_head = &hh->dyn_relocs;
1540 }
1541 else
1542 {
1543 /* Track dynamic relocs needed for local syms too.
1544 We really need local syms available to do this
1545 easily. Oh well. */
1546
1547 asection *sr;
1548 void *vpp;
1549
1550 sr = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1551 sec, r_symndx);
1552 if (sr == NULL)
1553 return FALSE;
1554
1555 vpp = &elf_section_data (sr)->local_dynrel;
1556 hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp;
1557 }
1558
1559 hdh_p = *hdh_head;
1560 if (hdh_p == NULL || hdh_p->sec != sec)
1561 {
1562 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1563 if (hdh_p == NULL)
1564 return FALSE;
1565 hdh_p->hdh_next = *hdh_head;
1566 *hdh_head = hdh_p;
1567 hdh_p->sec = sec;
1568 hdh_p->count = 0;
1569 #if RELATIVE_DYNRELOCS
1570 hdh_p->relative_count = 0;
1571 #endif
1572 }
1573
1574 hdh_p->count += 1;
1575 #if RELATIVE_DYNRELOCS
1576 if (!IS_ABSOLUTE_RELOC (rtype))
1577 hdh_p->relative_count += 1;
1578 #endif
1579 }
1580 }
1581 }
1582
1583 return TRUE;
1584 }
1585
1586 /* Return the section that should be marked against garbage collection
1587 for a given relocation. */
1588
1589 static asection *
1590 elf32_hppa_gc_mark_hook (asection *sec,
1591 struct bfd_link_info *info,
1592 Elf_Internal_Rela *rela,
1593 struct elf_link_hash_entry *hh,
1594 Elf_Internal_Sym *sym)
1595 {
1596 if (hh != NULL)
1597 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1598 {
1599 case R_PARISC_GNU_VTINHERIT:
1600 case R_PARISC_GNU_VTENTRY:
1601 return NULL;
1602 }
1603
1604 return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1605 }
1606
1607 /* Update the got and plt entry reference counts for the section being
1608 removed. */
1609
1610 static bfd_boolean
1611 elf32_hppa_gc_sweep_hook (bfd *abfd,
1612 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1613 asection *sec,
1614 const Elf_Internal_Rela *relocs)
1615 {
1616 Elf_Internal_Shdr *symtab_hdr;
1617 struct elf_link_hash_entry **eh_syms;
1618 bfd_signed_vma *local_got_refcounts;
1619 bfd_signed_vma *local_plt_refcounts;
1620 const Elf_Internal_Rela *rela, *relend;
1621
1622 elf_section_data (sec)->local_dynrel = NULL;
1623
1624 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1625 eh_syms = elf_sym_hashes (abfd);
1626 local_got_refcounts = elf_local_got_refcounts (abfd);
1627 local_plt_refcounts = local_got_refcounts;
1628 if (local_plt_refcounts != NULL)
1629 local_plt_refcounts += symtab_hdr->sh_info;
1630
1631 relend = relocs + sec->reloc_count;
1632 for (rela = relocs; rela < relend; rela++)
1633 {
1634 unsigned long r_symndx;
1635 unsigned int r_type;
1636 struct elf_link_hash_entry *eh = NULL;
1637
1638 r_symndx = ELF32_R_SYM (rela->r_info);
1639 if (r_symndx >= symtab_hdr->sh_info)
1640 {
1641 struct elf32_hppa_link_hash_entry *hh;
1642 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1643 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1644
1645 eh = eh_syms[r_symndx - symtab_hdr->sh_info];
1646 while (eh->root.type == bfd_link_hash_indirect
1647 || eh->root.type == bfd_link_hash_warning)
1648 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1649 hh = hppa_elf_hash_entry (eh);
1650
1651 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next)
1652 if (hdh_p->sec == sec)
1653 {
1654 /* Everything must go for SEC. */
1655 *hdh_pp = hdh_p->hdh_next;
1656 break;
1657 }
1658 }
1659
1660 r_type = ELF32_R_TYPE (rela->r_info);
1661 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, eh != NULL);
1662
1663 switch (r_type)
1664 {
1665 case R_PARISC_DLTIND14F:
1666 case R_PARISC_DLTIND14R:
1667 case R_PARISC_DLTIND21L:
1668 case R_PARISC_TLS_GD21L:
1669 case R_PARISC_TLS_GD14R:
1670 case R_PARISC_TLS_IE21L:
1671 case R_PARISC_TLS_IE14R:
1672 if (eh != NULL)
1673 {
1674 if (eh->got.refcount > 0)
1675 eh->got.refcount -= 1;
1676 }
1677 else if (local_got_refcounts != NULL)
1678 {
1679 if (local_got_refcounts[r_symndx] > 0)
1680 local_got_refcounts[r_symndx] -= 1;
1681 }
1682 break;
1683
1684 case R_PARISC_TLS_LDM21L:
1685 case R_PARISC_TLS_LDM14R:
1686 hppa_link_hash_table (info)->tls_ldm_got.refcount -= 1;
1687 break;
1688
1689 case R_PARISC_PCREL12F:
1690 case R_PARISC_PCREL17C:
1691 case R_PARISC_PCREL17F:
1692 case R_PARISC_PCREL22F:
1693 if (eh != NULL)
1694 {
1695 if (eh->plt.refcount > 0)
1696 eh->plt.refcount -= 1;
1697 }
1698 break;
1699
1700 case R_PARISC_PLABEL14R:
1701 case R_PARISC_PLABEL21L:
1702 case R_PARISC_PLABEL32:
1703 if (eh != NULL)
1704 {
1705 if (eh->plt.refcount > 0)
1706 eh->plt.refcount -= 1;
1707 }
1708 else if (local_plt_refcounts != NULL)
1709 {
1710 if (local_plt_refcounts[r_symndx] > 0)
1711 local_plt_refcounts[r_symndx] -= 1;
1712 }
1713 break;
1714
1715 default:
1716 break;
1717 }
1718 }
1719
1720 return TRUE;
1721 }
1722
1723 /* Support for core dump NOTE sections. */
1724
1725 static bfd_boolean
1726 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1727 {
1728 int offset;
1729 size_t size;
1730
1731 switch (note->descsz)
1732 {
1733 default:
1734 return FALSE;
1735
1736 case 396: /* Linux/hppa */
1737 /* pr_cursig */
1738 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1739
1740 /* pr_pid */
1741 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1742
1743 /* pr_reg */
1744 offset = 72;
1745 size = 320;
1746
1747 break;
1748 }
1749
1750 /* Make a ".reg/999" section. */
1751 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1752 size, note->descpos + offset);
1753 }
1754
1755 static bfd_boolean
1756 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1757 {
1758 switch (note->descsz)
1759 {
1760 default:
1761 return FALSE;
1762
1763 case 124: /* Linux/hppa elf_prpsinfo. */
1764 elf_tdata (abfd)->core_program
1765 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1766 elf_tdata (abfd)->core_command
1767 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1768 }
1769
1770 /* Note that for some reason, a spurious space is tacked
1771 onto the end of the args in some (at least one anyway)
1772 implementations, so strip it off if it exists. */
1773 {
1774 char *command = elf_tdata (abfd)->core_command;
1775 int n = strlen (command);
1776
1777 if (0 < n && command[n - 1] == ' ')
1778 command[n - 1] = '\0';
1779 }
1780
1781 return TRUE;
1782 }
1783
1784 /* Our own version of hide_symbol, so that we can keep plt entries for
1785 plabels. */
1786
1787 static void
1788 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1789 struct elf_link_hash_entry *eh,
1790 bfd_boolean force_local)
1791 {
1792 if (force_local)
1793 {
1794 eh->forced_local = 1;
1795 if (eh->dynindx != -1)
1796 {
1797 eh->dynindx = -1;
1798 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1799 eh->dynstr_index);
1800 }
1801 }
1802
1803 if (! hppa_elf_hash_entry (eh)->plabel)
1804 {
1805 eh->needs_plt = 0;
1806 eh->plt = elf_hash_table (info)->init_plt_refcount;
1807 }
1808 }
1809
1810 /* Adjust a symbol defined by a dynamic object and referenced by a
1811 regular object. The current definition is in some section of the
1812 dynamic object, but we're not including those sections. We have to
1813 change the definition to something the rest of the link can
1814 understand. */
1815
1816 static bfd_boolean
1817 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1818 struct elf_link_hash_entry *eh)
1819 {
1820 struct elf32_hppa_link_hash_table *htab;
1821 asection *sec;
1822 unsigned int power_of_two;
1823
1824 /* If this is a function, put it in the procedure linkage table. We
1825 will fill in the contents of the procedure linkage table later. */
1826 if (eh->type == STT_FUNC
1827 || eh->needs_plt)
1828 {
1829 if (eh->plt.refcount <= 0
1830 || (eh->def_regular
1831 && eh->root.type != bfd_link_hash_defweak
1832 && ! hppa_elf_hash_entry (eh)->plabel
1833 && (!info->shared || info->symbolic)))
1834 {
1835 /* The .plt entry is not needed when:
1836 a) Garbage collection has removed all references to the
1837 symbol, or
1838 b) We know for certain the symbol is defined in this
1839 object, and it's not a weak definition, nor is the symbol
1840 used by a plabel relocation. Either this object is the
1841 application or we are doing a shared symbolic link. */
1842
1843 eh->plt.offset = (bfd_vma) -1;
1844 eh->needs_plt = 0;
1845 }
1846
1847 return TRUE;
1848 }
1849 else
1850 eh->plt.offset = (bfd_vma) -1;
1851
1852 /* If this is a weak symbol, and there is a real definition, the
1853 processor independent code will have arranged for us to see the
1854 real definition first, and we can just use the same value. */
1855 if (eh->u.weakdef != NULL)
1856 {
1857 if (eh->u.weakdef->root.type != bfd_link_hash_defined
1858 && eh->u.weakdef->root.type != bfd_link_hash_defweak)
1859 abort ();
1860 eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1861 eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1862 if (ELIMINATE_COPY_RELOCS)
1863 eh->non_got_ref = eh->u.weakdef->non_got_ref;
1864 return TRUE;
1865 }
1866
1867 /* This is a reference to a symbol defined by a dynamic object which
1868 is not a function. */
1869
1870 /* If we are creating a shared library, we must presume that the
1871 only references to the symbol are via the global offset table.
1872 For such cases we need not do anything here; the relocations will
1873 be handled correctly by relocate_section. */
1874 if (info->shared)
1875 return TRUE;
1876
1877 /* If there are no references to this symbol that do not use the
1878 GOT, we don't need to generate a copy reloc. */
1879 if (!eh->non_got_ref)
1880 return TRUE;
1881
1882 if (ELIMINATE_COPY_RELOCS)
1883 {
1884 struct elf32_hppa_link_hash_entry *hh;
1885 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1886
1887 hh = hppa_elf_hash_entry (eh);
1888 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
1889 {
1890 sec = hdh_p->sec->output_section;
1891 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1892 break;
1893 }
1894
1895 /* If we didn't find any dynamic relocs in read-only sections, then
1896 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1897 if (hdh_p == NULL)
1898 {
1899 eh->non_got_ref = 0;
1900 return TRUE;
1901 }
1902 }
1903
1904 if (eh->size == 0)
1905 {
1906 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
1907 eh->root.root.string);
1908 return TRUE;
1909 }
1910
1911 /* We must allocate the symbol in our .dynbss section, which will
1912 become part of the .bss section of the executable. There will be
1913 an entry for this symbol in the .dynsym section. The dynamic
1914 object will contain position independent code, so all references
1915 from the dynamic object to this symbol will go through the global
1916 offset table. The dynamic linker will use the .dynsym entry to
1917 determine the address it must put in the global offset table, so
1918 both the dynamic object and the regular object will refer to the
1919 same memory location for the variable. */
1920
1921 htab = hppa_link_hash_table (info);
1922
1923 /* We must generate a COPY reloc to tell the dynamic linker to
1924 copy the initial value out of the dynamic object and into the
1925 runtime process image. */
1926 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0)
1927 {
1928 htab->srelbss->size += sizeof (Elf32_External_Rela);
1929 eh->needs_copy = 1;
1930 }
1931
1932 /* We need to figure out the alignment required for this symbol. I
1933 have no idea how other ELF linkers handle this. */
1934
1935 power_of_two = bfd_log2 (eh->size);
1936 if (power_of_two > 3)
1937 power_of_two = 3;
1938
1939 /* Apply the required alignment. */
1940 sec = htab->sdynbss;
1941 sec->size = BFD_ALIGN (sec->size, (bfd_size_type) (1 << power_of_two));
1942 if (power_of_two > bfd_get_section_alignment (htab->etab.dynobj, sec))
1943 {
1944 if (! bfd_set_section_alignment (htab->etab.dynobj, sec, power_of_two))
1945 return FALSE;
1946 }
1947
1948 /* Define the symbol as being at this point in the section. */
1949 eh->root.u.def.section = sec;
1950 eh->root.u.def.value = sec->size;
1951
1952 /* Increment the section size to make room for the symbol. */
1953 sec->size += eh->size;
1954
1955 return TRUE;
1956 }
1957
1958 /* Allocate space in the .plt for entries that won't have relocations.
1959 ie. plabel entries. */
1960
1961 static bfd_boolean
1962 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1963 {
1964 struct bfd_link_info *info;
1965 struct elf32_hppa_link_hash_table *htab;
1966 struct elf32_hppa_link_hash_entry *hh;
1967 asection *sec;
1968
1969 if (eh->root.type == bfd_link_hash_indirect)
1970 return TRUE;
1971
1972 if (eh->root.type == bfd_link_hash_warning)
1973 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1974
1975 info = (struct bfd_link_info *) inf;
1976 hh = hppa_elf_hash_entry (eh);
1977 htab = hppa_link_hash_table (info);
1978 if (htab->etab.dynamic_sections_created
1979 && eh->plt.refcount > 0)
1980 {
1981 /* Make sure this symbol is output as a dynamic symbol.
1982 Undefined weak syms won't yet be marked as dynamic. */
1983 if (eh->dynindx == -1
1984 && !eh->forced_local
1985 && eh->type != STT_PARISC_MILLI)
1986 {
1987 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
1988 return FALSE;
1989 }
1990
1991 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, eh))
1992 {
1993 /* Allocate these later. From this point on, h->plabel
1994 means that the plt entry is only used by a plabel.
1995 We'll be using a normal plt entry for this symbol, so
1996 clear the plabel indicator. */
1997
1998 hh->plabel = 0;
1999 }
2000 else if (hh->plabel)
2001 {
2002 /* Make an entry in the .plt section for plabel references
2003 that won't have a .plt entry for other reasons. */
2004 sec = htab->splt;
2005 eh->plt.offset = sec->size;
2006 sec->size += PLT_ENTRY_SIZE;
2007 }
2008 else
2009 {
2010 /* No .plt entry needed. */
2011 eh->plt.offset = (bfd_vma) -1;
2012 eh->needs_plt = 0;
2013 }
2014 }
2015 else
2016 {
2017 eh->plt.offset = (bfd_vma) -1;
2018 eh->needs_plt = 0;
2019 }
2020
2021 return TRUE;
2022 }
2023
2024 /* Allocate space in .plt, .got and associated reloc sections for
2025 global syms. */
2026
2027 static bfd_boolean
2028 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2029 {
2030 struct bfd_link_info *info;
2031 struct elf32_hppa_link_hash_table *htab;
2032 asection *sec;
2033 struct elf32_hppa_link_hash_entry *hh;
2034 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2035
2036 if (eh->root.type == bfd_link_hash_indirect)
2037 return TRUE;
2038
2039 if (eh->root.type == bfd_link_hash_warning)
2040 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2041
2042 info = inf;
2043 htab = hppa_link_hash_table (info);
2044 hh = hppa_elf_hash_entry (eh);
2045
2046 if (htab->etab.dynamic_sections_created
2047 && eh->plt.offset != (bfd_vma) -1
2048 && !hh->plabel
2049 && eh->plt.refcount > 0)
2050 {
2051 /* Make an entry in the .plt section. */
2052 sec = htab->splt;
2053 eh->plt.offset = sec->size;
2054 sec->size += PLT_ENTRY_SIZE;
2055
2056 /* We also need to make an entry in the .rela.plt section. */
2057 htab->srelplt->size += sizeof (Elf32_External_Rela);
2058 htab->need_plt_stub = 1;
2059 }
2060
2061 if (eh->got.refcount > 0)
2062 {
2063 /* Make sure this symbol is output as a dynamic symbol.
2064 Undefined weak syms won't yet be marked as dynamic. */
2065 if (eh->dynindx == -1
2066 && !eh->forced_local
2067 && eh->type != STT_PARISC_MILLI)
2068 {
2069 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2070 return FALSE;
2071 }
2072
2073 sec = htab->sgot;
2074 eh->got.offset = sec->size;
2075 sec->size += GOT_ENTRY_SIZE;
2076 /* R_PARISC_TLS_GD* needs two GOT entries */
2077 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2078 sec->size += GOT_ENTRY_SIZE * 2;
2079 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2080 sec->size += GOT_ENTRY_SIZE;
2081 if (htab->etab.dynamic_sections_created
2082 && (info->shared
2083 || (eh->dynindx != -1
2084 && !eh->forced_local)))
2085 {
2086 htab->srelgot->size += sizeof (Elf32_External_Rela);
2087 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2088 htab->srelgot->size += 2 * sizeof (Elf32_External_Rela);
2089 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2090 htab->srelgot->size += sizeof (Elf32_External_Rela);
2091 }
2092 }
2093 else
2094 eh->got.offset = (bfd_vma) -1;
2095
2096 if (hh->dyn_relocs == NULL)
2097 return TRUE;
2098
2099 /* If this is a -Bsymbolic shared link, then we need to discard all
2100 space allocated for dynamic pc-relative relocs against symbols
2101 defined in a regular object. For the normal shared case, discard
2102 space for relocs that have become local due to symbol visibility
2103 changes. */
2104 if (info->shared)
2105 {
2106 #if RELATIVE_DYNRELOCS
2107 if (SYMBOL_CALLS_LOCAL (info, eh))
2108 {
2109 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
2110
2111 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2112 {
2113 hdh_p->count -= hdh_p->relative_count;
2114 hdh_p->relative_count = 0;
2115 if (hdh_p->count == 0)
2116 *hdh_pp = hdh_p->hdh_next;
2117 else
2118 hdh_pp = &hdh_p->hdh_next;
2119 }
2120 }
2121 #endif
2122
2123 /* Also discard relocs on undefined weak syms with non-default
2124 visibility. */
2125 if (hh->dyn_relocs != NULL
2126 && eh->root.type == bfd_link_hash_undefweak)
2127 {
2128 if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
2129 hh->dyn_relocs = NULL;
2130
2131 /* Make sure undefined weak symbols are output as a dynamic
2132 symbol in PIEs. */
2133 else if (eh->dynindx == -1
2134 && !eh->forced_local)
2135 {
2136 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2137 return FALSE;
2138 }
2139 }
2140 }
2141 else
2142 {
2143 /* For the non-shared case, discard space for relocs against
2144 symbols which turn out to need copy relocs or are not
2145 dynamic. */
2146
2147 if (!eh->non_got_ref
2148 && ((ELIMINATE_COPY_RELOCS
2149 && eh->def_dynamic
2150 && !eh->def_regular)
2151 || (htab->etab.dynamic_sections_created
2152 && (eh->root.type == bfd_link_hash_undefweak
2153 || eh->root.type == bfd_link_hash_undefined))))
2154 {
2155 /* Make sure this symbol is output as a dynamic symbol.
2156 Undefined weak syms won't yet be marked as dynamic. */
2157 if (eh->dynindx == -1
2158 && !eh->forced_local
2159 && eh->type != STT_PARISC_MILLI)
2160 {
2161 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2162 return FALSE;
2163 }
2164
2165 /* If that succeeded, we know we'll be keeping all the
2166 relocs. */
2167 if (eh->dynindx != -1)
2168 goto keep;
2169 }
2170
2171 hh->dyn_relocs = NULL;
2172 return TRUE;
2173
2174 keep: ;
2175 }
2176
2177 /* Finally, allocate space. */
2178 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2179 {
2180 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2181 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2182 }
2183
2184 return TRUE;
2185 }
2186
2187 /* This function is called via elf_link_hash_traverse to force
2188 millicode symbols local so they do not end up as globals in the
2189 dynamic symbol table. We ought to be able to do this in
2190 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2191 for all dynamic symbols. Arguably, this is a bug in
2192 elf_adjust_dynamic_symbol. */
2193
2194 static bfd_boolean
2195 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2196 struct bfd_link_info *info)
2197 {
2198 if (eh->root.type == bfd_link_hash_warning)
2199 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2200
2201 if (eh->type == STT_PARISC_MILLI
2202 && !eh->forced_local)
2203 {
2204 elf32_hppa_hide_symbol (info, eh, TRUE);
2205 }
2206 return TRUE;
2207 }
2208
2209 /* Find any dynamic relocs that apply to read-only sections. */
2210
2211 static bfd_boolean
2212 readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2213 {
2214 struct elf32_hppa_link_hash_entry *hh;
2215 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2216
2217 if (eh->root.type == bfd_link_hash_warning)
2218 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2219
2220 hh = hppa_elf_hash_entry (eh);
2221 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2222 {
2223 asection *sec = hdh_p->sec->output_section;
2224
2225 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
2226 {
2227 struct bfd_link_info *info = inf;
2228
2229 info->flags |= DF_TEXTREL;
2230
2231 /* Not an error, just cut short the traversal. */
2232 return FALSE;
2233 }
2234 }
2235 return TRUE;
2236 }
2237
2238 /* Set the sizes of the dynamic sections. */
2239
2240 static bfd_boolean
2241 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2242 struct bfd_link_info *info)
2243 {
2244 struct elf32_hppa_link_hash_table *htab;
2245 bfd *dynobj;
2246 bfd *ibfd;
2247 asection *sec;
2248 bfd_boolean relocs;
2249
2250 htab = hppa_link_hash_table (info);
2251 dynobj = htab->etab.dynobj;
2252 if (dynobj == NULL)
2253 abort ();
2254
2255 if (htab->etab.dynamic_sections_created)
2256 {
2257 /* Set the contents of the .interp section to the interpreter. */
2258 if (info->executable)
2259 {
2260 sec = bfd_get_section_by_name (dynobj, ".interp");
2261 if (sec == NULL)
2262 abort ();
2263 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2264 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2265 }
2266
2267 /* Force millicode symbols local. */
2268 elf_link_hash_traverse (&htab->etab,
2269 clobber_millicode_symbols,
2270 info);
2271 }
2272
2273 /* Set up .got and .plt offsets for local syms, and space for local
2274 dynamic relocs. */
2275 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2276 {
2277 bfd_signed_vma *local_got;
2278 bfd_signed_vma *end_local_got;
2279 bfd_signed_vma *local_plt;
2280 bfd_signed_vma *end_local_plt;
2281 bfd_size_type locsymcount;
2282 Elf_Internal_Shdr *symtab_hdr;
2283 asection *srel;
2284 char *local_tls_type;
2285
2286 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2287 continue;
2288
2289 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2290 {
2291 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2292
2293 for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
2294 elf_section_data (sec)->local_dynrel);
2295 hdh_p != NULL;
2296 hdh_p = hdh_p->hdh_next)
2297 {
2298 if (!bfd_is_abs_section (hdh_p->sec)
2299 && bfd_is_abs_section (hdh_p->sec->output_section))
2300 {
2301 /* Input section has been discarded, either because
2302 it is a copy of a linkonce section or due to
2303 linker script /DISCARD/, so we'll be discarding
2304 the relocs too. */
2305 }
2306 else if (hdh_p->count != 0)
2307 {
2308 srel = elf_section_data (hdh_p->sec)->sreloc;
2309 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2310 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2311 info->flags |= DF_TEXTREL;
2312 }
2313 }
2314 }
2315
2316 local_got = elf_local_got_refcounts (ibfd);
2317 if (!local_got)
2318 continue;
2319
2320 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2321 locsymcount = symtab_hdr->sh_info;
2322 end_local_got = local_got + locsymcount;
2323 local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2324 sec = htab->sgot;
2325 srel = htab->srelgot;
2326 for (; local_got < end_local_got; ++local_got)
2327 {
2328 if (*local_got > 0)
2329 {
2330 *local_got = sec->size;
2331 sec->size += GOT_ENTRY_SIZE;
2332 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2333 sec->size += 2 * GOT_ENTRY_SIZE;
2334 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2335 sec->size += GOT_ENTRY_SIZE;
2336 if (info->shared)
2337 {
2338 srel->size += sizeof (Elf32_External_Rela);
2339 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2340 srel->size += 2 * sizeof (Elf32_External_Rela);
2341 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2342 srel->size += sizeof (Elf32_External_Rela);
2343 }
2344 }
2345 else
2346 *local_got = (bfd_vma) -1;
2347
2348 ++local_tls_type;
2349 }
2350
2351 local_plt = end_local_got;
2352 end_local_plt = local_plt + locsymcount;
2353 if (! htab->etab.dynamic_sections_created)
2354 {
2355 /* Won't be used, but be safe. */
2356 for (; local_plt < end_local_plt; ++local_plt)
2357 *local_plt = (bfd_vma) -1;
2358 }
2359 else
2360 {
2361 sec = htab->splt;
2362 srel = htab->srelplt;
2363 for (; local_plt < end_local_plt; ++local_plt)
2364 {
2365 if (*local_plt > 0)
2366 {
2367 *local_plt = sec->size;
2368 sec->size += PLT_ENTRY_SIZE;
2369 if (info->shared)
2370 srel->size += sizeof (Elf32_External_Rela);
2371 }
2372 else
2373 *local_plt = (bfd_vma) -1;
2374 }
2375 }
2376 }
2377
2378 if (htab->tls_ldm_got.refcount > 0)
2379 {
2380 /* Allocate 2 got entries and 1 dynamic reloc for
2381 R_PARISC_TLS_DTPMOD32 relocs. */
2382 htab->tls_ldm_got.offset = htab->sgot->size;
2383 htab->sgot->size += (GOT_ENTRY_SIZE * 2);
2384 htab->srelgot->size += sizeof (Elf32_External_Rela);
2385 }
2386 else
2387 htab->tls_ldm_got.offset = -1;
2388
2389 /* Do all the .plt entries without relocs first. The dynamic linker
2390 uses the last .plt reloc to find the end of the .plt (and hence
2391 the start of the .got) for lazy linking. */
2392 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2393
2394 /* Allocate global sym .plt and .got entries, and space for global
2395 sym dynamic relocs. */
2396 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2397
2398 /* The check_relocs and adjust_dynamic_symbol entry points have
2399 determined the sizes of the various dynamic sections. Allocate
2400 memory for them. */
2401 relocs = FALSE;
2402 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2403 {
2404 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2405 continue;
2406
2407 if (sec == htab->splt)
2408 {
2409 if (htab->need_plt_stub)
2410 {
2411 /* Make space for the plt stub at the end of the .plt
2412 section. We want this stub right at the end, up
2413 against the .got section. */
2414 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2415 int pltalign = bfd_section_alignment (dynobj, sec);
2416 bfd_size_type mask;
2417
2418 if (gotalign > pltalign)
2419 bfd_set_section_alignment (dynobj, sec, gotalign);
2420 mask = ((bfd_size_type) 1 << gotalign) - 1;
2421 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2422 }
2423 }
2424 else if (sec == htab->sgot
2425 || sec == htab->sdynbss)
2426 ;
2427 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
2428 {
2429 if (sec->size != 0)
2430 {
2431 /* Remember whether there are any reloc sections other
2432 than .rela.plt. */
2433 if (sec != htab->srelplt)
2434 relocs = TRUE;
2435
2436 /* We use the reloc_count field as a counter if we need
2437 to copy relocs into the output file. */
2438 sec->reloc_count = 0;
2439 }
2440 }
2441 else
2442 {
2443 /* It's not one of our sections, so don't allocate space. */
2444 continue;
2445 }
2446
2447 if (sec->size == 0)
2448 {
2449 /* If we don't need this section, strip it from the
2450 output file. This is mostly to handle .rela.bss and
2451 .rela.plt. We must create both sections in
2452 create_dynamic_sections, because they must be created
2453 before the linker maps input sections to output
2454 sections. The linker does that before
2455 adjust_dynamic_symbol is called, and it is that
2456 function which decides whether anything needs to go
2457 into these sections. */
2458 sec->flags |= SEC_EXCLUDE;
2459 continue;
2460 }
2461
2462 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2463 continue;
2464
2465 /* Allocate memory for the section contents. Zero it, because
2466 we may not fill in all the reloc sections. */
2467 sec->contents = bfd_zalloc (dynobj, sec->size);
2468 if (sec->contents == NULL)
2469 return FALSE;
2470 }
2471
2472 if (htab->etab.dynamic_sections_created)
2473 {
2474 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2475 actually has nothing to do with the PLT, it is how we
2476 communicate the LTP value of a load module to the dynamic
2477 linker. */
2478 #define add_dynamic_entry(TAG, VAL) \
2479 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2480
2481 if (!add_dynamic_entry (DT_PLTGOT, 0))
2482 return FALSE;
2483
2484 /* Add some entries to the .dynamic section. We fill in the
2485 values later, in elf32_hppa_finish_dynamic_sections, but we
2486 must add the entries now so that we get the correct size for
2487 the .dynamic section. The DT_DEBUG entry is filled in by the
2488 dynamic linker and used by the debugger. */
2489 if (info->executable)
2490 {
2491 if (!add_dynamic_entry (DT_DEBUG, 0))
2492 return FALSE;
2493 }
2494
2495 if (htab->srelplt->size != 0)
2496 {
2497 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2498 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2499 || !add_dynamic_entry (DT_JMPREL, 0))
2500 return FALSE;
2501 }
2502
2503 if (relocs)
2504 {
2505 if (!add_dynamic_entry (DT_RELA, 0)
2506 || !add_dynamic_entry (DT_RELASZ, 0)
2507 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2508 return FALSE;
2509
2510 /* If any dynamic relocs apply to a read-only section,
2511 then we need a DT_TEXTREL entry. */
2512 if ((info->flags & DF_TEXTREL) == 0)
2513 elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info);
2514
2515 if ((info->flags & DF_TEXTREL) != 0)
2516 {
2517 if (!add_dynamic_entry (DT_TEXTREL, 0))
2518 return FALSE;
2519 }
2520 }
2521 }
2522 #undef add_dynamic_entry
2523
2524 return TRUE;
2525 }
2526
2527 /* External entry points for sizing and building linker stubs. */
2528
2529 /* Set up various things so that we can make a list of input sections
2530 for each output section included in the link. Returns -1 on error,
2531 0 when no stubs will be needed, and 1 on success. */
2532
2533 int
2534 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2535 {
2536 bfd *input_bfd;
2537 unsigned int bfd_count;
2538 int top_id, top_index;
2539 asection *section;
2540 asection **input_list, **list;
2541 bfd_size_type amt;
2542 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2543
2544 /* Count the number of input BFDs and find the top input section id. */
2545 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2546 input_bfd != NULL;
2547 input_bfd = input_bfd->link_next)
2548 {
2549 bfd_count += 1;
2550 for (section = input_bfd->sections;
2551 section != NULL;
2552 section = section->next)
2553 {
2554 if (top_id < section->id)
2555 top_id = section->id;
2556 }
2557 }
2558 htab->bfd_count = bfd_count;
2559
2560 amt = sizeof (struct map_stub) * (top_id + 1);
2561 htab->stub_group = bfd_zmalloc (amt);
2562 if (htab->stub_group == NULL)
2563 return -1;
2564
2565 /* We can't use output_bfd->section_count here to find the top output
2566 section index as some sections may have been removed, and
2567 strip_excluded_output_sections doesn't renumber the indices. */
2568 for (section = output_bfd->sections, top_index = 0;
2569 section != NULL;
2570 section = section->next)
2571 {
2572 if (top_index < section->index)
2573 top_index = section->index;
2574 }
2575
2576 htab->top_index = top_index;
2577 amt = sizeof (asection *) * (top_index + 1);
2578 input_list = bfd_malloc (amt);
2579 htab->input_list = input_list;
2580 if (input_list == NULL)
2581 return -1;
2582
2583 /* For sections we aren't interested in, mark their entries with a
2584 value we can check later. */
2585 list = input_list + top_index;
2586 do
2587 *list = bfd_abs_section_ptr;
2588 while (list-- != input_list);
2589
2590 for (section = output_bfd->sections;
2591 section != NULL;
2592 section = section->next)
2593 {
2594 if ((section->flags & SEC_CODE) != 0)
2595 input_list[section->index] = NULL;
2596 }
2597
2598 return 1;
2599 }
2600
2601 /* The linker repeatedly calls this function for each input section,
2602 in the order that input sections are linked into output sections.
2603 Build lists of input sections to determine groupings between which
2604 we may insert linker stubs. */
2605
2606 void
2607 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2608 {
2609 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2610
2611 if (isec->output_section->index <= htab->top_index)
2612 {
2613 asection **list = htab->input_list + isec->output_section->index;
2614 if (*list != bfd_abs_section_ptr)
2615 {
2616 /* Steal the link_sec pointer for our list. */
2617 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2618 /* This happens to make the list in reverse order,
2619 which is what we want. */
2620 PREV_SEC (isec) = *list;
2621 *list = isec;
2622 }
2623 }
2624 }
2625
2626 /* See whether we can group stub sections together. Grouping stub
2627 sections may result in fewer stubs. More importantly, we need to
2628 put all .init* and .fini* stubs at the beginning of the .init or
2629 .fini output sections respectively, because glibc splits the
2630 _init and _fini functions into multiple parts. Putting a stub in
2631 the middle of a function is not a good idea. */
2632
2633 static void
2634 group_sections (struct elf32_hppa_link_hash_table *htab,
2635 bfd_size_type stub_group_size,
2636 bfd_boolean stubs_always_before_branch)
2637 {
2638 asection **list = htab->input_list + htab->top_index;
2639 do
2640 {
2641 asection *tail = *list;
2642 if (tail == bfd_abs_section_ptr)
2643 continue;
2644 while (tail != NULL)
2645 {
2646 asection *curr;
2647 asection *prev;
2648 bfd_size_type total;
2649 bfd_boolean big_sec;
2650
2651 curr = tail;
2652 total = tail->size;
2653 big_sec = total >= stub_group_size;
2654
2655 while ((prev = PREV_SEC (curr)) != NULL
2656 && ((total += curr->output_offset - prev->output_offset)
2657 < stub_group_size))
2658 curr = prev;
2659
2660 /* OK, the size from the start of CURR to the end is less
2661 than 240000 bytes and thus can be handled by one stub
2662 section. (or the tail section is itself larger than
2663 240000 bytes, in which case we may be toast.)
2664 We should really be keeping track of the total size of
2665 stubs added here, as stubs contribute to the final output
2666 section size. That's a little tricky, and this way will
2667 only break if stubs added total more than 22144 bytes, or
2668 2768 long branch stubs. It seems unlikely for more than
2669 2768 different functions to be called, especially from
2670 code only 240000 bytes long. This limit used to be
2671 250000, but c++ code tends to generate lots of little
2672 functions, and sometimes violated the assumption. */
2673 do
2674 {
2675 prev = PREV_SEC (tail);
2676 /* Set up this stub group. */
2677 htab->stub_group[tail->id].link_sec = curr;
2678 }
2679 while (tail != curr && (tail = prev) != NULL);
2680
2681 /* But wait, there's more! Input sections up to 240000
2682 bytes before the stub section can be handled by it too.
2683 Don't do this if we have a really large section after the
2684 stubs, as adding more stubs increases the chance that
2685 branches may not reach into the stub section. */
2686 if (!stubs_always_before_branch && !big_sec)
2687 {
2688 total = 0;
2689 while (prev != NULL
2690 && ((total += tail->output_offset - prev->output_offset)
2691 < stub_group_size))
2692 {
2693 tail = prev;
2694 prev = PREV_SEC (tail);
2695 htab->stub_group[tail->id].link_sec = curr;
2696 }
2697 }
2698 tail = prev;
2699 }
2700 }
2701 while (list-- != htab->input_list);
2702 free (htab->input_list);
2703 #undef PREV_SEC
2704 }
2705
2706 /* Read in all local syms for all input bfds, and create hash entries
2707 for export stubs if we are building a multi-subspace shared lib.
2708 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2709
2710 static int
2711 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2712 {
2713 unsigned int bfd_indx;
2714 Elf_Internal_Sym *local_syms, **all_local_syms;
2715 int stub_changed = 0;
2716 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2717
2718 /* We want to read in symbol extension records only once. To do this
2719 we need to read in the local symbols in parallel and save them for
2720 later use; so hold pointers to the local symbols in an array. */
2721 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2722 all_local_syms = bfd_zmalloc (amt);
2723 htab->all_local_syms = all_local_syms;
2724 if (all_local_syms == NULL)
2725 return -1;
2726
2727 /* Walk over all the input BFDs, swapping in local symbols.
2728 If we are creating a shared library, create hash entries for the
2729 export stubs. */
2730 for (bfd_indx = 0;
2731 input_bfd != NULL;
2732 input_bfd = input_bfd->link_next, bfd_indx++)
2733 {
2734 Elf_Internal_Shdr *symtab_hdr;
2735
2736 /* We'll need the symbol table in a second. */
2737 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2738 if (symtab_hdr->sh_info == 0)
2739 continue;
2740
2741 /* We need an array of the local symbols attached to the input bfd. */
2742 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2743 if (local_syms == NULL)
2744 {
2745 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2746 symtab_hdr->sh_info, 0,
2747 NULL, NULL, NULL);
2748 /* Cache them for elf_link_input_bfd. */
2749 symtab_hdr->contents = (unsigned char *) local_syms;
2750 }
2751 if (local_syms == NULL)
2752 return -1;
2753
2754 all_local_syms[bfd_indx] = local_syms;
2755
2756 if (info->shared && htab->multi_subspace)
2757 {
2758 struct elf_link_hash_entry **eh_syms;
2759 struct elf_link_hash_entry **eh_symend;
2760 unsigned int symcount;
2761
2762 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2763 - symtab_hdr->sh_info);
2764 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2765 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2766
2767 /* Look through the global syms for functions; We need to
2768 build export stubs for all globally visible functions. */
2769 for (; eh_syms < eh_symend; eh_syms++)
2770 {
2771 struct elf32_hppa_link_hash_entry *hh;
2772
2773 hh = hppa_elf_hash_entry (*eh_syms);
2774
2775 while (hh->eh.root.type == bfd_link_hash_indirect
2776 || hh->eh.root.type == bfd_link_hash_warning)
2777 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2778
2779 /* At this point in the link, undefined syms have been
2780 resolved, so we need to check that the symbol was
2781 defined in this BFD. */
2782 if ((hh->eh.root.type == bfd_link_hash_defined
2783 || hh->eh.root.type == bfd_link_hash_defweak)
2784 && hh->eh.type == STT_FUNC
2785 && hh->eh.root.u.def.section->output_section != NULL
2786 && (hh->eh.root.u.def.section->output_section->owner
2787 == output_bfd)
2788 && hh->eh.root.u.def.section->owner == input_bfd
2789 && hh->eh.def_regular
2790 && !hh->eh.forced_local
2791 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2792 {
2793 asection *sec;
2794 const char *stub_name;
2795 struct elf32_hppa_stub_hash_entry *hsh;
2796
2797 sec = hh->eh.root.u.def.section;
2798 stub_name = hh_name (hh);
2799 hsh = hppa_stub_hash_lookup (&htab->bstab,
2800 stub_name,
2801 FALSE, FALSE);
2802 if (hsh == NULL)
2803 {
2804 hsh = hppa_add_stub (stub_name, sec, htab);
2805 if (!hsh)
2806 return -1;
2807
2808 hsh->target_value = hh->eh.root.u.def.value;
2809 hsh->target_section = hh->eh.root.u.def.section;
2810 hsh->stub_type = hppa_stub_export;
2811 hsh->hh = hh;
2812 stub_changed = 1;
2813 }
2814 else
2815 {
2816 (*_bfd_error_handler) (_("%B: duplicate export stub %s"),
2817 input_bfd,
2818 stub_name);
2819 }
2820 }
2821 }
2822 }
2823 }
2824
2825 return stub_changed;
2826 }
2827
2828 /* Determine and set the size of the stub section for a final link.
2829
2830 The basic idea here is to examine all the relocations looking for
2831 PC-relative calls to a target that is unreachable with a "bl"
2832 instruction. */
2833
2834 bfd_boolean
2835 elf32_hppa_size_stubs
2836 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2837 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2838 asection * (*add_stub_section) (const char *, asection *),
2839 void (*layout_sections_again) (void))
2840 {
2841 bfd_size_type stub_group_size;
2842 bfd_boolean stubs_always_before_branch;
2843 bfd_boolean stub_changed;
2844 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2845
2846 /* Stash our params away. */
2847 htab->stub_bfd = stub_bfd;
2848 htab->multi_subspace = multi_subspace;
2849 htab->add_stub_section = add_stub_section;
2850 htab->layout_sections_again = layout_sections_again;
2851 stubs_always_before_branch = group_size < 0;
2852 if (group_size < 0)
2853 stub_group_size = -group_size;
2854 else
2855 stub_group_size = group_size;
2856 if (stub_group_size == 1)
2857 {
2858 /* Default values. */
2859 if (stubs_always_before_branch)
2860 {
2861 stub_group_size = 7680000;
2862 if (htab->has_17bit_branch || htab->multi_subspace)
2863 stub_group_size = 240000;
2864 if (htab->has_12bit_branch)
2865 stub_group_size = 7500;
2866 }
2867 else
2868 {
2869 stub_group_size = 6971392;
2870 if (htab->has_17bit_branch || htab->multi_subspace)
2871 stub_group_size = 217856;
2872 if (htab->has_12bit_branch)
2873 stub_group_size = 6808;
2874 }
2875 }
2876
2877 group_sections (htab, stub_group_size, stubs_always_before_branch);
2878
2879 switch (get_local_syms (output_bfd, info->input_bfds, info))
2880 {
2881 default:
2882 if (htab->all_local_syms)
2883 goto error_ret_free_local;
2884 return FALSE;
2885
2886 case 0:
2887 stub_changed = FALSE;
2888 break;
2889
2890 case 1:
2891 stub_changed = TRUE;
2892 break;
2893 }
2894
2895 while (1)
2896 {
2897 bfd *input_bfd;
2898 unsigned int bfd_indx;
2899 asection *stub_sec;
2900
2901 for (input_bfd = info->input_bfds, bfd_indx = 0;
2902 input_bfd != NULL;
2903 input_bfd = input_bfd->link_next, bfd_indx++)
2904 {
2905 Elf_Internal_Shdr *symtab_hdr;
2906 asection *section;
2907 Elf_Internal_Sym *local_syms;
2908
2909 /* We'll need the symbol table in a second. */
2910 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2911 if (symtab_hdr->sh_info == 0)
2912 continue;
2913
2914 local_syms = htab->all_local_syms[bfd_indx];
2915
2916 /* Walk over each section attached to the input bfd. */
2917 for (section = input_bfd->sections;
2918 section != NULL;
2919 section = section->next)
2920 {
2921 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2922
2923 /* If there aren't any relocs, then there's nothing more
2924 to do. */
2925 if ((section->flags & SEC_RELOC) == 0
2926 || section->reloc_count == 0)
2927 continue;
2928
2929 /* If this section is a link-once section that will be
2930 discarded, then don't create any stubs. */
2931 if (section->output_section == NULL
2932 || section->output_section->owner != output_bfd)
2933 continue;
2934
2935 /* Get the relocs. */
2936 internal_relocs
2937 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2938 info->keep_memory);
2939 if (internal_relocs == NULL)
2940 goto error_ret_free_local;
2941
2942 /* Now examine each relocation. */
2943 irela = internal_relocs;
2944 irelaend = irela + section->reloc_count;
2945 for (; irela < irelaend; irela++)
2946 {
2947 unsigned int r_type, r_indx;
2948 enum elf32_hppa_stub_type stub_type;
2949 struct elf32_hppa_stub_hash_entry *hsh;
2950 asection *sym_sec;
2951 bfd_vma sym_value;
2952 bfd_vma destination;
2953 struct elf32_hppa_link_hash_entry *hh;
2954 char *stub_name;
2955 const asection *id_sec;
2956
2957 r_type = ELF32_R_TYPE (irela->r_info);
2958 r_indx = ELF32_R_SYM (irela->r_info);
2959
2960 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2961 {
2962 bfd_set_error (bfd_error_bad_value);
2963 error_ret_free_internal:
2964 if (elf_section_data (section)->relocs == NULL)
2965 free (internal_relocs);
2966 goto error_ret_free_local;
2967 }
2968
2969 /* Only look for stubs on call instructions. */
2970 if (r_type != (unsigned int) R_PARISC_PCREL12F
2971 && r_type != (unsigned int) R_PARISC_PCREL17F
2972 && r_type != (unsigned int) R_PARISC_PCREL22F)
2973 continue;
2974
2975 /* Now determine the call target, its name, value,
2976 section. */
2977 sym_sec = NULL;
2978 sym_value = 0;
2979 destination = 0;
2980 hh = NULL;
2981 if (r_indx < symtab_hdr->sh_info)
2982 {
2983 /* It's a local symbol. */
2984 Elf_Internal_Sym *sym;
2985 Elf_Internal_Shdr *hdr;
2986
2987 sym = local_syms + r_indx;
2988 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2989 sym_sec = hdr->bfd_section;
2990 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2991 sym_value = sym->st_value;
2992 destination = (sym_value + irela->r_addend
2993 + sym_sec->output_offset
2994 + sym_sec->output_section->vma);
2995 }
2996 else
2997 {
2998 /* It's an external symbol. */
2999 int e_indx;
3000
3001 e_indx = r_indx - symtab_hdr->sh_info;
3002 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
3003
3004 while (hh->eh.root.type == bfd_link_hash_indirect
3005 || hh->eh.root.type == bfd_link_hash_warning)
3006 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
3007
3008 if (hh->eh.root.type == bfd_link_hash_defined
3009 || hh->eh.root.type == bfd_link_hash_defweak)
3010 {
3011 sym_sec = hh->eh.root.u.def.section;
3012 sym_value = hh->eh.root.u.def.value;
3013 if (sym_sec->output_section != NULL)
3014 destination = (sym_value + irela->r_addend
3015 + sym_sec->output_offset
3016 + sym_sec->output_section->vma);
3017 }
3018 else if (hh->eh.root.type == bfd_link_hash_undefweak)
3019 {
3020 if (! info->shared)
3021 continue;
3022 }
3023 else if (hh->eh.root.type == bfd_link_hash_undefined)
3024 {
3025 if (! (info->unresolved_syms_in_objects == RM_IGNORE
3026 && (ELF_ST_VISIBILITY (hh->eh.other)
3027 == STV_DEFAULT)
3028 && hh->eh.type != STT_PARISC_MILLI))
3029 continue;
3030 }
3031 else
3032 {
3033 bfd_set_error (bfd_error_bad_value);
3034 goto error_ret_free_internal;
3035 }
3036 }
3037
3038 /* Determine what (if any) linker stub is needed. */
3039 stub_type = hppa_type_of_stub (section, irela, hh,
3040 destination, info);
3041 if (stub_type == hppa_stub_none)
3042 continue;
3043
3044 /* Support for grouping stub sections. */
3045 id_sec = htab->stub_group[section->id].link_sec;
3046
3047 /* Get the name of this stub. */
3048 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
3049 if (!stub_name)
3050 goto error_ret_free_internal;
3051
3052 hsh = hppa_stub_hash_lookup (&htab->bstab,
3053 stub_name,
3054 FALSE, FALSE);
3055 if (hsh != NULL)
3056 {
3057 /* The proper stub has already been created. */
3058 free (stub_name);
3059 continue;
3060 }
3061
3062 hsh = hppa_add_stub (stub_name, section, htab);
3063 if (hsh == NULL)
3064 {
3065 free (stub_name);
3066 goto error_ret_free_internal;
3067 }
3068
3069 hsh->target_value = sym_value;
3070 hsh->target_section = sym_sec;
3071 hsh->stub_type = stub_type;
3072 if (info->shared)
3073 {
3074 if (stub_type == hppa_stub_import)
3075 hsh->stub_type = hppa_stub_import_shared;
3076 else if (stub_type == hppa_stub_long_branch)
3077 hsh->stub_type = hppa_stub_long_branch_shared;
3078 }
3079 hsh->hh = hh;
3080 stub_changed = TRUE;
3081 }
3082
3083 /* We're done with the internal relocs, free them. */
3084 if (elf_section_data (section)->relocs == NULL)
3085 free (internal_relocs);
3086 }
3087 }
3088
3089 if (!stub_changed)
3090 break;
3091
3092 /* OK, we've added some stubs. Find out the new size of the
3093 stub sections. */
3094 for (stub_sec = htab->stub_bfd->sections;
3095 stub_sec != NULL;
3096 stub_sec = stub_sec->next)
3097 stub_sec->size = 0;
3098
3099 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
3100
3101 /* Ask the linker to do its stuff. */
3102 (*htab->layout_sections_again) ();
3103 stub_changed = FALSE;
3104 }
3105
3106 free (htab->all_local_syms);
3107 return TRUE;
3108
3109 error_ret_free_local:
3110 free (htab->all_local_syms);
3111 return FALSE;
3112 }
3113
3114 /* For a final link, this function is called after we have sized the
3115 stubs to provide a value for __gp. */
3116
3117 bfd_boolean
3118 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
3119 {
3120 struct bfd_link_hash_entry *h;
3121 asection *sec = NULL;
3122 bfd_vma gp_val = 0;
3123 struct elf32_hppa_link_hash_table *htab;
3124
3125 htab = hppa_link_hash_table (info);
3126 h = bfd_link_hash_lookup (&htab->etab.root, "$global$", FALSE, FALSE, FALSE);
3127
3128 if (h != NULL
3129 && (h->type == bfd_link_hash_defined
3130 || h->type == bfd_link_hash_defweak))
3131 {
3132 gp_val = h->u.def.value;
3133 sec = h->u.def.section;
3134 }
3135 else
3136 {
3137 asection *splt = bfd_get_section_by_name (abfd, ".plt");
3138 asection *sgot = bfd_get_section_by_name (abfd, ".got");
3139
3140 /* Choose to point our LTP at, in this order, one of .plt, .got,
3141 or .data, if these sections exist. In the case of choosing
3142 .plt try to make the LTP ideal for addressing anywhere in the
3143 .plt or .got with a 14 bit signed offset. Typically, the end
3144 of the .plt is the start of the .got, so choose .plt + 0x2000
3145 if either the .plt or .got is larger than 0x2000. If both
3146 the .plt and .got are smaller than 0x2000, choose the end of
3147 the .plt section. */
3148 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3149 ? NULL : splt;
3150 if (sec != NULL)
3151 {
3152 gp_val = sec->size;
3153 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3154 {
3155 gp_val = 0x2000;
3156 }
3157 }
3158 else
3159 {
3160 sec = sgot;
3161 if (sec != NULL)
3162 {
3163 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3164 {
3165 /* We know we don't have a .plt. If .got is large,
3166 offset our LTP. */
3167 if (sec->size > 0x2000)
3168 gp_val = 0x2000;
3169 }
3170 }
3171 else
3172 {
3173 /* No .plt or .got. Who cares what the LTP is? */
3174 sec = bfd_get_section_by_name (abfd, ".data");
3175 }
3176 }
3177
3178 if (h != NULL)
3179 {
3180 h->type = bfd_link_hash_defined;
3181 h->u.def.value = gp_val;
3182 if (sec != NULL)
3183 h->u.def.section = sec;
3184 else
3185 h->u.def.section = bfd_abs_section_ptr;
3186 }
3187 }
3188
3189 if (sec != NULL && sec->output_section != NULL)
3190 gp_val += sec->output_section->vma + sec->output_offset;
3191
3192 elf_gp (abfd) = gp_val;
3193 return TRUE;
3194 }
3195
3196 /* Build all the stubs associated with the current output file. The
3197 stubs are kept in a hash table attached to the main linker hash
3198 table. We also set up the .plt entries for statically linked PIC
3199 functions here. This function is called via hppaelf_finish in the
3200 linker. */
3201
3202 bfd_boolean
3203 elf32_hppa_build_stubs (struct bfd_link_info *info)
3204 {
3205 asection *stub_sec;
3206 struct bfd_hash_table *table;
3207 struct elf32_hppa_link_hash_table *htab;
3208
3209 htab = hppa_link_hash_table (info);
3210
3211 for (stub_sec = htab->stub_bfd->sections;
3212 stub_sec != NULL;
3213 stub_sec = stub_sec->next)
3214 {
3215 bfd_size_type size;
3216
3217 /* Allocate memory to hold the linker stubs. */
3218 size = stub_sec->size;
3219 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3220 if (stub_sec->contents == NULL && size != 0)
3221 return FALSE;
3222 stub_sec->size = 0;
3223 }
3224
3225 /* Build the stubs as directed by the stub hash table. */
3226 table = &htab->bstab;
3227 bfd_hash_traverse (table, hppa_build_one_stub, info);
3228
3229 return TRUE;
3230 }
3231
3232 /* Return the base vma address which should be subtracted from the real
3233 address when resolving a dtpoff relocation.
3234 This is PT_TLS segment p_vaddr. */
3235
3236 static bfd_vma
3237 dtpoff_base (struct bfd_link_info *info)
3238 {
3239 /* If tls_sec is NULL, we should have signalled an error already. */
3240 if (elf_hash_table (info)->tls_sec == NULL)
3241 return 0;
3242 return elf_hash_table (info)->tls_sec->vma;
3243 }
3244
3245 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3246
3247 static bfd_vma
3248 tpoff (struct bfd_link_info *info, bfd_vma address)
3249 {
3250 struct elf_link_hash_table *htab = elf_hash_table (info);
3251
3252 /* If tls_sec is NULL, we should have signalled an error already. */
3253 if (htab->tls_sec == NULL)
3254 return 0;
3255 /* hppa TLS ABI is variant I and static TLS block start just after
3256 tcbhead structure which has 2 pointer fields. */
3257 return (address - htab->tls_sec->vma
3258 + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3259 }
3260
3261 /* Perform a final link. */
3262
3263 static bfd_boolean
3264 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3265 {
3266 /* Invoke the regular ELF linker to do all the work. */
3267 if (!bfd_elf_final_link (abfd, info))
3268 return FALSE;
3269
3270 /* If we're producing a final executable, sort the contents of the
3271 unwind section. */
3272 return elf_hppa_sort_unwind (abfd);
3273 }
3274
3275 /* Record the lowest address for the data and text segments. */
3276
3277 static void
3278 hppa_record_segment_addr (bfd *abfd ATTRIBUTE_UNUSED,
3279 asection *section,
3280 void *data)
3281 {
3282 struct elf32_hppa_link_hash_table *htab;
3283
3284 htab = (struct elf32_hppa_link_hash_table*) data;
3285
3286 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3287 {
3288 bfd_vma value = section->vma - section->filepos;
3289
3290 if ((section->flags & SEC_READONLY) != 0)
3291 {
3292 if (value < htab->text_segment_base)
3293 htab->text_segment_base = value;
3294 }
3295 else
3296 {
3297 if (value < htab->data_segment_base)
3298 htab->data_segment_base = value;
3299 }
3300 }
3301 }
3302
3303 /* Perform a relocation as part of a final link. */
3304
3305 static bfd_reloc_status_type
3306 final_link_relocate (asection *input_section,
3307 bfd_byte *contents,
3308 const Elf_Internal_Rela *rela,
3309 bfd_vma value,
3310 struct elf32_hppa_link_hash_table *htab,
3311 asection *sym_sec,
3312 struct elf32_hppa_link_hash_entry *hh,
3313 struct bfd_link_info *info)
3314 {
3315 int insn;
3316 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3317 unsigned int orig_r_type = r_type;
3318 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3319 int r_format = howto->bitsize;
3320 enum hppa_reloc_field_selector_type_alt r_field;
3321 bfd *input_bfd = input_section->owner;
3322 bfd_vma offset = rela->r_offset;
3323 bfd_vma max_branch_offset = 0;
3324 bfd_byte *hit_data = contents + offset;
3325 bfd_signed_vma addend = rela->r_addend;
3326 bfd_vma location;
3327 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3328 int val;
3329
3330 if (r_type == R_PARISC_NONE)
3331 return bfd_reloc_ok;
3332
3333 insn = bfd_get_32 (input_bfd, hit_data);
3334
3335 /* Find out where we are and where we're going. */
3336 location = (offset +
3337 input_section->output_offset +
3338 input_section->output_section->vma);
3339
3340 /* If we are not building a shared library, convert DLTIND relocs to
3341 DPREL relocs. */
3342 if (!info->shared)
3343 {
3344 switch (r_type)
3345 {
3346 case R_PARISC_DLTIND21L:
3347 r_type = R_PARISC_DPREL21L;
3348 break;
3349
3350 case R_PARISC_DLTIND14R:
3351 r_type = R_PARISC_DPREL14R;
3352 break;
3353
3354 case R_PARISC_DLTIND14F:
3355 r_type = R_PARISC_DPREL14F;
3356 break;
3357 }
3358 }
3359
3360 switch (r_type)
3361 {
3362 case R_PARISC_PCREL12F:
3363 case R_PARISC_PCREL17F:
3364 case R_PARISC_PCREL22F:
3365 /* If this call should go via the plt, find the import stub in
3366 the stub hash. */
3367 if (sym_sec == NULL
3368 || sym_sec->output_section == NULL
3369 || (hh != NULL
3370 && hh->eh.plt.offset != (bfd_vma) -1
3371 && hh->eh.dynindx != -1
3372 && !hh->plabel
3373 && (info->shared
3374 || !hh->eh.def_regular
3375 || hh->eh.root.type == bfd_link_hash_defweak)))
3376 {
3377 hsh = hppa_get_stub_entry (input_section, sym_sec,
3378 hh, rela, htab);
3379 if (hsh != NULL)
3380 {
3381 value = (hsh->stub_offset
3382 + hsh->stub_sec->output_offset
3383 + hsh->stub_sec->output_section->vma);
3384 addend = 0;
3385 }
3386 else if (sym_sec == NULL && hh != NULL
3387 && hh->eh.root.type == bfd_link_hash_undefweak)
3388 {
3389 /* It's OK if undefined weak. Calls to undefined weak
3390 symbols behave as if the "called" function
3391 immediately returns. We can thus call to a weak
3392 function without first checking whether the function
3393 is defined. */
3394 value = location;
3395 addend = 8;
3396 }
3397 else
3398 return bfd_reloc_undefined;
3399 }
3400 /* Fall thru. */
3401
3402 case R_PARISC_PCREL21L:
3403 case R_PARISC_PCREL17C:
3404 case R_PARISC_PCREL17R:
3405 case R_PARISC_PCREL14R:
3406 case R_PARISC_PCREL14F:
3407 case R_PARISC_PCREL32:
3408 /* Make it a pc relative offset. */
3409 value -= location;
3410 addend -= 8;
3411 break;
3412
3413 case R_PARISC_DPREL21L:
3414 case R_PARISC_DPREL14R:
3415 case R_PARISC_DPREL14F:
3416 /* Convert instructions that use the linkage table pointer (r19) to
3417 instructions that use the global data pointer (dp). This is the
3418 most efficient way of using PIC code in an incomplete executable,
3419 but the user must follow the standard runtime conventions for
3420 accessing data for this to work. */
3421 if (orig_r_type == R_PARISC_DLTIND21L)
3422 {
3423 /* Convert addil instructions if the original reloc was a
3424 DLTIND21L. GCC sometimes uses a register other than r19 for
3425 the operation, so we must convert any addil instruction
3426 that uses this relocation. */
3427 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3428 insn = ADDIL_DP;
3429 else
3430 /* We must have a ldil instruction. It's too hard to find
3431 and convert the associated add instruction, so issue an
3432 error. */
3433 (*_bfd_error_handler)
3434 (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3435 input_bfd,
3436 input_section,
3437 offset,
3438 howto->name,
3439 insn);
3440 }
3441 else if (orig_r_type == R_PARISC_DLTIND14F)
3442 {
3443 /* This must be a format 1 load/store. Change the base
3444 register to dp. */
3445 insn = (insn & 0xfc1ffff) | (27 << 21);
3446 }
3447
3448 /* For all the DP relative relocations, we need to examine the symbol's
3449 section. If it has no section or if it's a code section, then
3450 "data pointer relative" makes no sense. In that case we don't
3451 adjust the "value", and for 21 bit addil instructions, we change the
3452 source addend register from %dp to %r0. This situation commonly
3453 arises for undefined weak symbols and when a variable's "constness"
3454 is declared differently from the way the variable is defined. For
3455 instance: "extern int foo" with foo defined as "const int foo". */
3456 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3457 {
3458 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3459 == (((int) OP_ADDIL << 26) | (27 << 21)))
3460 {
3461 insn &= ~ (0x1f << 21);
3462 }
3463 /* Now try to make things easy for the dynamic linker. */
3464
3465 break;
3466 }
3467 /* Fall thru. */
3468
3469 case R_PARISC_DLTIND21L:
3470 case R_PARISC_DLTIND14R:
3471 case R_PARISC_DLTIND14F:
3472 case R_PARISC_TLS_GD21L:
3473 case R_PARISC_TLS_GD14R:
3474 case R_PARISC_TLS_LDM21L:
3475 case R_PARISC_TLS_LDM14R:
3476 case R_PARISC_TLS_IE21L:
3477 case R_PARISC_TLS_IE14R:
3478 value -= elf_gp (input_section->output_section->owner);
3479 break;
3480
3481 case R_PARISC_SEGREL32:
3482 if ((sym_sec->flags & SEC_CODE) != 0)
3483 value -= htab->text_segment_base;
3484 else
3485 value -= htab->data_segment_base;
3486 break;
3487
3488 default:
3489 break;
3490 }
3491
3492 switch (r_type)
3493 {
3494 case R_PARISC_DIR32:
3495 case R_PARISC_DIR14F:
3496 case R_PARISC_DIR17F:
3497 case R_PARISC_PCREL17C:
3498 case R_PARISC_PCREL14F:
3499 case R_PARISC_PCREL32:
3500 case R_PARISC_DPREL14F:
3501 case R_PARISC_PLABEL32:
3502 case R_PARISC_DLTIND14F:
3503 case R_PARISC_SEGBASE:
3504 case R_PARISC_SEGREL32:
3505 case R_PARISC_TLS_DTPMOD32:
3506 case R_PARISC_TLS_DTPOFF32:
3507 case R_PARISC_TLS_TPREL32:
3508 r_field = e_fsel;
3509 break;
3510
3511 case R_PARISC_DLTIND21L:
3512 case R_PARISC_PCREL21L:
3513 case R_PARISC_PLABEL21L:
3514 r_field = e_lsel;
3515 break;
3516
3517 case R_PARISC_DIR21L:
3518 case R_PARISC_DPREL21L:
3519 case R_PARISC_TLS_GD21L:
3520 case R_PARISC_TLS_LDM21L:
3521 case R_PARISC_TLS_LDO21L:
3522 case R_PARISC_TLS_IE21L:
3523 case R_PARISC_TLS_LE21L:
3524 r_field = e_lrsel;
3525 break;
3526
3527 case R_PARISC_PCREL17R:
3528 case R_PARISC_PCREL14R:
3529 case R_PARISC_PLABEL14R:
3530 case R_PARISC_DLTIND14R:
3531 r_field = e_rsel;
3532 break;
3533
3534 case R_PARISC_DIR17R:
3535 case R_PARISC_DIR14R:
3536 case R_PARISC_DPREL14R:
3537 case R_PARISC_TLS_GD14R:
3538 case R_PARISC_TLS_LDM14R:
3539 case R_PARISC_TLS_LDO14R:
3540 case R_PARISC_TLS_IE14R:
3541 case R_PARISC_TLS_LE14R:
3542 r_field = e_rrsel;
3543 break;
3544
3545 case R_PARISC_PCREL12F:
3546 case R_PARISC_PCREL17F:
3547 case R_PARISC_PCREL22F:
3548 r_field = e_fsel;
3549
3550 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3551 {
3552 max_branch_offset = (1 << (17-1)) << 2;
3553 }
3554 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3555 {
3556 max_branch_offset = (1 << (12-1)) << 2;
3557 }
3558 else
3559 {
3560 max_branch_offset = (1 << (22-1)) << 2;
3561 }
3562
3563 /* sym_sec is NULL on undefined weak syms or when shared on
3564 undefined syms. We've already checked for a stub for the
3565 shared undefined case. */
3566 if (sym_sec == NULL)
3567 break;
3568
3569 /* If the branch is out of reach, then redirect the
3570 call to the local stub for this function. */
3571 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3572 {
3573 hsh = hppa_get_stub_entry (input_section, sym_sec,
3574 hh, rela, htab);
3575 if (hsh == NULL)
3576 return bfd_reloc_undefined;
3577
3578 /* Munge up the value and addend so that we call the stub
3579 rather than the procedure directly. */
3580 value = (hsh->stub_offset
3581 + hsh->stub_sec->output_offset
3582 + hsh->stub_sec->output_section->vma
3583 - location);
3584 addend = -8;
3585 }
3586 break;
3587
3588 /* Something we don't know how to handle. */
3589 default:
3590 return bfd_reloc_notsupported;
3591 }
3592
3593 /* Make sure we can reach the stub. */
3594 if (max_branch_offset != 0
3595 && value + addend + max_branch_offset >= 2*max_branch_offset)
3596 {
3597 (*_bfd_error_handler)
3598 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3599 input_bfd,
3600 input_section,
3601 offset,
3602 hsh->bh_root.string);
3603 bfd_set_error (bfd_error_bad_value);
3604 return bfd_reloc_notsupported;
3605 }
3606
3607 val = hppa_field_adjust (value, addend, r_field);
3608
3609 switch (r_type)
3610 {
3611 case R_PARISC_PCREL12F:
3612 case R_PARISC_PCREL17C:
3613 case R_PARISC_PCREL17F:
3614 case R_PARISC_PCREL17R:
3615 case R_PARISC_PCREL22F:
3616 case R_PARISC_DIR17F:
3617 case R_PARISC_DIR17R:
3618 /* This is a branch. Divide the offset by four.
3619 Note that we need to decide whether it's a branch or
3620 otherwise by inspecting the reloc. Inspecting insn won't
3621 work as insn might be from a .word directive. */
3622 val >>= 2;
3623 break;
3624
3625 default:
3626 break;
3627 }
3628
3629 insn = hppa_rebuild_insn (insn, val, r_format);
3630
3631 /* Update the instruction word. */
3632 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3633 return bfd_reloc_ok;
3634 }
3635
3636 /* Relocate an HPPA ELF section. */
3637
3638 static bfd_boolean
3639 elf32_hppa_relocate_section (bfd *output_bfd,
3640 struct bfd_link_info *info,
3641 bfd *input_bfd,
3642 asection *input_section,
3643 bfd_byte *contents,
3644 Elf_Internal_Rela *relocs,
3645 Elf_Internal_Sym *local_syms,
3646 asection **local_sections)
3647 {
3648 bfd_vma *local_got_offsets;
3649 struct elf32_hppa_link_hash_table *htab;
3650 Elf_Internal_Shdr *symtab_hdr;
3651 Elf_Internal_Rela *rela;
3652 Elf_Internal_Rela *relend;
3653
3654 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3655
3656 htab = hppa_link_hash_table (info);
3657 local_got_offsets = elf_local_got_offsets (input_bfd);
3658
3659 rela = relocs;
3660 relend = relocs + input_section->reloc_count;
3661 for (; rela < relend; rela++)
3662 {
3663 unsigned int r_type;
3664 reloc_howto_type *howto;
3665 unsigned int r_symndx;
3666 struct elf32_hppa_link_hash_entry *hh;
3667 Elf_Internal_Sym *sym;
3668 asection *sym_sec;
3669 bfd_vma relocation;
3670 bfd_reloc_status_type rstatus;
3671 const char *sym_name;
3672 bfd_boolean plabel;
3673 bfd_boolean warned_undef;
3674
3675 r_type = ELF32_R_TYPE (rela->r_info);
3676 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3677 {
3678 bfd_set_error (bfd_error_bad_value);
3679 return FALSE;
3680 }
3681 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3682 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3683 continue;
3684
3685 r_symndx = ELF32_R_SYM (rela->r_info);
3686 hh = NULL;
3687 sym = NULL;
3688 sym_sec = NULL;
3689 warned_undef = FALSE;
3690 if (r_symndx < symtab_hdr->sh_info)
3691 {
3692 /* This is a local symbol, h defaults to NULL. */
3693 sym = local_syms + r_symndx;
3694 sym_sec = local_sections[r_symndx];
3695 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3696 }
3697 else
3698 {
3699 struct elf_link_hash_entry *eh;
3700 bfd_boolean unresolved_reloc;
3701 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3702
3703 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3704 r_symndx, symtab_hdr, sym_hashes,
3705 eh, sym_sec, relocation,
3706 unresolved_reloc, warned_undef);
3707
3708 if (!info->relocatable
3709 && relocation == 0
3710 && eh->root.type != bfd_link_hash_defined
3711 && eh->root.type != bfd_link_hash_defweak
3712 && eh->root.type != bfd_link_hash_undefweak)
3713 {
3714 if (info->unresolved_syms_in_objects == RM_IGNORE
3715 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3716 && eh->type == STT_PARISC_MILLI)
3717 {
3718 if (! info->callbacks->undefined_symbol
3719 (info, eh_name (eh), input_bfd,
3720 input_section, rela->r_offset, FALSE))
3721 return FALSE;
3722 warned_undef = TRUE;
3723 }
3724 }
3725 hh = hppa_elf_hash_entry (eh);
3726 }
3727
3728 if (sym_sec != NULL && elf_discarded_section (sym_sec))
3729 {
3730 /* For relocs against symbols from removed linkonce
3731 sections, or sections discarded by a linker script,
3732 we just want the section contents zeroed. Avoid any
3733 special processing. */
3734 _bfd_clear_contents (elf_hppa_howto_table + r_type, input_bfd,
3735 contents + rela->r_offset);
3736 rela->r_info = 0;
3737 rela->r_addend = 0;
3738 continue;
3739 }
3740
3741 if (info->relocatable)
3742 continue;
3743
3744 /* Do any required modifications to the relocation value, and
3745 determine what types of dynamic info we need to output, if
3746 any. */
3747 plabel = 0;
3748 switch (r_type)
3749 {
3750 case R_PARISC_DLTIND14F:
3751 case R_PARISC_DLTIND14R:
3752 case R_PARISC_DLTIND21L:
3753 {
3754 bfd_vma off;
3755 bfd_boolean do_got = 0;
3756
3757 /* Relocation is to the entry for this symbol in the
3758 global offset table. */
3759 if (hh != NULL)
3760 {
3761 bfd_boolean dyn;
3762
3763 off = hh->eh.got.offset;
3764 dyn = htab->etab.dynamic_sections_created;
3765 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
3766 &hh->eh))
3767 {
3768 /* If we aren't going to call finish_dynamic_symbol,
3769 then we need to handle initialisation of the .got
3770 entry and create needed relocs here. Since the
3771 offset must always be a multiple of 4, we use the
3772 least significant bit to record whether we have
3773 initialised it already. */
3774 if ((off & 1) != 0)
3775 off &= ~1;
3776 else
3777 {
3778 hh->eh.got.offset |= 1;
3779 do_got = 1;
3780 }
3781 }
3782 }
3783 else
3784 {
3785 /* Local symbol case. */
3786 if (local_got_offsets == NULL)
3787 abort ();
3788
3789 off = local_got_offsets[r_symndx];
3790
3791 /* The offset must always be a multiple of 4. We use
3792 the least significant bit to record whether we have
3793 already generated the necessary reloc. */
3794 if ((off & 1) != 0)
3795 off &= ~1;
3796 else
3797 {
3798 local_got_offsets[r_symndx] |= 1;
3799 do_got = 1;
3800 }
3801 }
3802
3803 if (do_got)
3804 {
3805 if (info->shared)
3806 {
3807 /* Output a dynamic relocation for this GOT entry.
3808 In this case it is relative to the base of the
3809 object because the symbol index is zero. */
3810 Elf_Internal_Rela outrel;
3811 bfd_byte *loc;
3812 asection *sec = htab->srelgot;
3813
3814 outrel.r_offset = (off
3815 + htab->sgot->output_offset
3816 + htab->sgot->output_section->vma);
3817 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3818 outrel.r_addend = relocation;
3819 loc = sec->contents;
3820 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3821 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3822 }
3823 else
3824 bfd_put_32 (output_bfd, relocation,
3825 htab->sgot->contents + off);
3826 }
3827
3828 if (off >= (bfd_vma) -2)
3829 abort ();
3830
3831 /* Add the base of the GOT to the relocation value. */
3832 relocation = (off
3833 + htab->sgot->output_offset
3834 + htab->sgot->output_section->vma);
3835 }
3836 break;
3837
3838 case R_PARISC_SEGREL32:
3839 /* If this is the first SEGREL relocation, then initialize
3840 the segment base values. */
3841 if (htab->text_segment_base == (bfd_vma) -1)
3842 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3843 break;
3844
3845 case R_PARISC_PLABEL14R:
3846 case R_PARISC_PLABEL21L:
3847 case R_PARISC_PLABEL32:
3848 if (htab->etab.dynamic_sections_created)
3849 {
3850 bfd_vma off;
3851 bfd_boolean do_plt = 0;
3852 /* If we have a global symbol with a PLT slot, then
3853 redirect this relocation to it. */
3854 if (hh != NULL)
3855 {
3856 off = hh->eh.plt.offset;
3857 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared,
3858 &hh->eh))
3859 {
3860 /* In a non-shared link, adjust_dynamic_symbols
3861 isn't called for symbols forced local. We
3862 need to write out the plt entry here. */
3863 if ((off & 1) != 0)
3864 off &= ~1;
3865 else
3866 {
3867 hh->eh.plt.offset |= 1;
3868 do_plt = 1;
3869 }
3870 }
3871 }
3872 else
3873 {
3874 bfd_vma *local_plt_offsets;
3875
3876 if (local_got_offsets == NULL)
3877 abort ();
3878
3879 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3880 off = local_plt_offsets[r_symndx];
3881
3882 /* As for the local .got entry case, we use the last
3883 bit to record whether we've already initialised
3884 this local .plt entry. */
3885 if ((off & 1) != 0)
3886 off &= ~1;
3887 else
3888 {
3889 local_plt_offsets[r_symndx] |= 1;
3890 do_plt = 1;
3891 }
3892 }
3893
3894 if (do_plt)
3895 {
3896 if (info->shared)
3897 {
3898 /* Output a dynamic IPLT relocation for this
3899 PLT entry. */
3900 Elf_Internal_Rela outrel;
3901 bfd_byte *loc;
3902 asection *s = htab->srelplt;
3903
3904 outrel.r_offset = (off
3905 + htab->splt->output_offset
3906 + htab->splt->output_section->vma);
3907 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3908 outrel.r_addend = relocation;
3909 loc = s->contents;
3910 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3911 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3912 }
3913 else
3914 {
3915 bfd_put_32 (output_bfd,
3916 relocation,
3917 htab->splt->contents + off);
3918 bfd_put_32 (output_bfd,
3919 elf_gp (htab->splt->output_section->owner),
3920 htab->splt->contents + off + 4);
3921 }
3922 }
3923
3924 if (off >= (bfd_vma) -2)
3925 abort ();
3926
3927 /* PLABELs contain function pointers. Relocation is to
3928 the entry for the function in the .plt. The magic +2
3929 offset signals to $$dyncall that the function pointer
3930 is in the .plt and thus has a gp pointer too.
3931 Exception: Undefined PLABELs should have a value of
3932 zero. */
3933 if (hh == NULL
3934 || (hh->eh.root.type != bfd_link_hash_undefweak
3935 && hh->eh.root.type != bfd_link_hash_undefined))
3936 {
3937 relocation = (off
3938 + htab->splt->output_offset
3939 + htab->splt->output_section->vma
3940 + 2);
3941 }
3942 plabel = 1;
3943 }
3944 /* Fall through and possibly emit a dynamic relocation. */
3945
3946 case R_PARISC_DIR17F:
3947 case R_PARISC_DIR17R:
3948 case R_PARISC_DIR14F:
3949 case R_PARISC_DIR14R:
3950 case R_PARISC_DIR21L:
3951 case R_PARISC_DPREL14F:
3952 case R_PARISC_DPREL14R:
3953 case R_PARISC_DPREL21L:
3954 case R_PARISC_DIR32:
3955 if ((input_section->flags & SEC_ALLOC) == 0)
3956 break;
3957
3958 /* The reloc types handled here and this conditional
3959 expression must match the code in ..check_relocs and
3960 allocate_dynrelocs. ie. We need exactly the same condition
3961 as in ..check_relocs, with some extra conditions (dynindx
3962 test in this case) to cater for relocs removed by
3963 allocate_dynrelocs. If you squint, the non-shared test
3964 here does indeed match the one in ..check_relocs, the
3965 difference being that here we test DEF_DYNAMIC as well as
3966 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3967 which is why we can't use just that test here.
3968 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3969 there all files have not been loaded. */
3970 if ((info->shared
3971 && (hh == NULL
3972 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
3973 || hh->eh.root.type != bfd_link_hash_undefweak)
3974 && (IS_ABSOLUTE_RELOC (r_type)
3975 || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
3976 || (!info->shared
3977 && hh != NULL
3978 && hh->eh.dynindx != -1
3979 && !hh->eh.non_got_ref
3980 && ((ELIMINATE_COPY_RELOCS
3981 && hh->eh.def_dynamic
3982 && !hh->eh.def_regular)
3983 || hh->eh.root.type == bfd_link_hash_undefweak
3984 || hh->eh.root.type == bfd_link_hash_undefined)))
3985 {
3986 Elf_Internal_Rela outrel;
3987 bfd_boolean skip;
3988 asection *sreloc;
3989 bfd_byte *loc;
3990
3991 /* When generating a shared object, these relocations
3992 are copied into the output file to be resolved at run
3993 time. */
3994
3995 outrel.r_addend = rela->r_addend;
3996 outrel.r_offset =
3997 _bfd_elf_section_offset (output_bfd, info, input_section,
3998 rela->r_offset);
3999 skip = (outrel.r_offset == (bfd_vma) -1
4000 || outrel.r_offset == (bfd_vma) -2);
4001 outrel.r_offset += (input_section->output_offset
4002 + input_section->output_section->vma);
4003
4004 if (skip)
4005 {
4006 memset (&outrel, 0, sizeof (outrel));
4007 }
4008 else if (hh != NULL
4009 && hh->eh.dynindx != -1
4010 && (plabel
4011 || !IS_ABSOLUTE_RELOC (r_type)
4012 || !info->shared
4013 || !info->symbolic
4014 || !hh->eh.def_regular))
4015 {
4016 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
4017 }
4018 else /* It's a local symbol, or one marked to become local. */
4019 {
4020 int indx = 0;
4021
4022 /* Add the absolute offset of the symbol. */
4023 outrel.r_addend += relocation;
4024
4025 /* Global plabels need to be processed by the
4026 dynamic linker so that functions have at most one
4027 fptr. For this reason, we need to differentiate
4028 between global and local plabels, which we do by
4029 providing the function symbol for a global plabel
4030 reloc, and no symbol for local plabels. */
4031 if (! plabel
4032 && sym_sec != NULL
4033 && sym_sec->output_section != NULL
4034 && ! bfd_is_abs_section (sym_sec))
4035 {
4036 asection *osec;
4037
4038 osec = sym_sec->output_section;
4039 indx = elf_section_data (osec)->dynindx;
4040 if (indx == 0)
4041 {
4042 osec = htab->etab.text_index_section;
4043 indx = elf_section_data (osec)->dynindx;
4044 }
4045 BFD_ASSERT (indx != 0);
4046
4047 /* We are turning this relocation into one
4048 against a section symbol, so subtract out the
4049 output section's address but not the offset
4050 of the input section in the output section. */
4051 outrel.r_addend -= osec->vma;
4052 }
4053
4054 outrel.r_info = ELF32_R_INFO (indx, r_type);
4055 }
4056 sreloc = elf_section_data (input_section)->sreloc;
4057 if (sreloc == NULL)
4058 abort ();
4059
4060 loc = sreloc->contents;
4061 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
4062 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4063 }
4064 break;
4065
4066 case R_PARISC_TLS_LDM21L:
4067 case R_PARISC_TLS_LDM14R:
4068 {
4069 bfd_vma off;
4070
4071 off = htab->tls_ldm_got.offset;
4072 if (off & 1)
4073 off &= ~1;
4074 else
4075 {
4076 Elf_Internal_Rela outrel;
4077 bfd_byte *loc;
4078
4079 outrel.r_offset = (off
4080 + htab->sgot->output_section->vma
4081 + htab->sgot->output_offset);
4082 outrel.r_addend = 0;
4083 outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
4084 loc = htab->srelgot->contents;
4085 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4086
4087 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4088 htab->tls_ldm_got.offset |= 1;
4089 }
4090
4091 /* Add the base of the GOT to the relocation value. */
4092 relocation = (off
4093 + htab->sgot->output_offset
4094 + htab->sgot->output_section->vma);
4095
4096 break;
4097 }
4098
4099 case R_PARISC_TLS_LDO21L:
4100 case R_PARISC_TLS_LDO14R:
4101 relocation -= dtpoff_base (info);
4102 break;
4103
4104 case R_PARISC_TLS_GD21L:
4105 case R_PARISC_TLS_GD14R:
4106 case R_PARISC_TLS_IE21L:
4107 case R_PARISC_TLS_IE14R:
4108 {
4109 bfd_vma off;
4110 int indx;
4111 char tls_type;
4112
4113 indx = 0;
4114 if (hh != NULL)
4115 {
4116 bfd_boolean dyn;
4117 dyn = htab->etab.dynamic_sections_created;
4118
4119 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &hh->eh)
4120 && (!info->shared
4121 || !SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4122 {
4123 indx = hh->eh.dynindx;
4124 }
4125 off = hh->eh.got.offset;
4126 tls_type = hh->tls_type;
4127 }
4128 else
4129 {
4130 off = local_got_offsets[r_symndx];
4131 tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4132 }
4133
4134 if (tls_type == GOT_UNKNOWN)
4135 abort ();
4136
4137 if ((off & 1) != 0)
4138 off &= ~1;
4139 else
4140 {
4141 bfd_boolean need_relocs = FALSE;
4142 Elf_Internal_Rela outrel;
4143 bfd_byte *loc = NULL;
4144 int cur_off = off;
4145
4146 /* The GOT entries have not been initialized yet. Do it
4147 now, and emit any relocations. If both an IE GOT and a
4148 GD GOT are necessary, we emit the GD first. */
4149
4150 if ((info->shared || indx != 0)
4151 && (hh == NULL
4152 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
4153 || hh->eh.root.type != bfd_link_hash_undefweak))
4154 {
4155 need_relocs = TRUE;
4156 loc = htab->srelgot->contents;
4157 /* FIXME (CAO): Should this be reloc_count++ ? */
4158 loc += htab->srelgot->reloc_count * sizeof (Elf32_External_Rela);
4159 }
4160
4161 if (tls_type & GOT_TLS_GD)
4162 {
4163 if (need_relocs)
4164 {
4165 outrel.r_offset = (cur_off
4166 + htab->sgot->output_section->vma
4167 + htab->sgot->output_offset);
4168 outrel.r_info = ELF32_R_INFO (indx,R_PARISC_TLS_DTPMOD32);
4169 outrel.r_addend = 0;
4170 bfd_put_32 (output_bfd, 0, htab->sgot->contents + cur_off);
4171 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4172 htab->srelgot->reloc_count++;
4173 loc += sizeof (Elf32_External_Rela);
4174
4175 if (indx == 0)
4176 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4177 htab->sgot->contents + cur_off + 4);
4178 else
4179 {
4180 bfd_put_32 (output_bfd, 0,
4181 htab->sgot->contents + cur_off + 4);
4182 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4183 outrel.r_offset += 4;
4184 bfd_elf32_swap_reloca_out (output_bfd, &outrel,loc);
4185 htab->srelgot->reloc_count++;
4186 loc += sizeof (Elf32_External_Rela);
4187 }
4188 }
4189 else
4190 {
4191 /* If we are not emitting relocations for a
4192 general dynamic reference, then we must be in a
4193 static link or an executable link with the
4194 symbol binding locally. Mark it as belonging
4195 to module 1, the executable. */
4196 bfd_put_32 (output_bfd, 1,
4197 htab->sgot->contents + cur_off);
4198 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4199 htab->sgot->contents + cur_off + 4);
4200 }
4201
4202
4203 cur_off += 8;
4204 }
4205
4206 if (tls_type & GOT_TLS_IE)
4207 {
4208 if (need_relocs)
4209 {
4210 outrel.r_offset = (cur_off
4211 + htab->sgot->output_section->vma
4212 + htab->sgot->output_offset);
4213 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_TPREL32);
4214
4215 if (indx == 0)
4216 outrel.r_addend = relocation - dtpoff_base (info);
4217 else
4218 outrel.r_addend = 0;
4219
4220 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4221 htab->srelgot->reloc_count++;
4222 loc += sizeof (Elf32_External_Rela);
4223 }
4224 else
4225 bfd_put_32 (output_bfd, tpoff (info, relocation),
4226 htab->sgot->contents + cur_off);
4227
4228 cur_off += 4;
4229 }
4230
4231 if (hh != NULL)
4232 hh->eh.got.offset |= 1;
4233 else
4234 local_got_offsets[r_symndx] |= 1;
4235 }
4236
4237 if ((tls_type & GOT_TLS_GD)
4238 && r_type != R_PARISC_TLS_GD21L
4239 && r_type != R_PARISC_TLS_GD14R)
4240 off += 2 * GOT_ENTRY_SIZE;
4241
4242 /* Add the base of the GOT to the relocation value. */
4243 relocation = (off
4244 + htab->sgot->output_offset
4245 + htab->sgot->output_section->vma);
4246
4247 break;
4248 }
4249
4250 case R_PARISC_TLS_LE21L:
4251 case R_PARISC_TLS_LE14R:
4252 {
4253 relocation = tpoff (info, relocation);
4254 break;
4255 }
4256 break;
4257
4258 default:
4259 break;
4260 }
4261
4262 rstatus = final_link_relocate (input_section, contents, rela, relocation,
4263 htab, sym_sec, hh, info);
4264
4265 if (rstatus == bfd_reloc_ok)
4266 continue;
4267
4268 if (hh != NULL)
4269 sym_name = hh_name (hh);
4270 else
4271 {
4272 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4273 symtab_hdr->sh_link,
4274 sym->st_name);
4275 if (sym_name == NULL)
4276 return FALSE;
4277 if (*sym_name == '\0')
4278 sym_name = bfd_section_name (input_bfd, sym_sec);
4279 }
4280
4281 howto = elf_hppa_howto_table + r_type;
4282
4283 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4284 {
4285 if (rstatus == bfd_reloc_notsupported || !warned_undef)
4286 {
4287 (*_bfd_error_handler)
4288 (_("%B(%A+0x%lx): cannot handle %s for %s"),
4289 input_bfd,
4290 input_section,
4291 (long) rela->r_offset,
4292 howto->name,
4293 sym_name);
4294 bfd_set_error (bfd_error_bad_value);
4295 return FALSE;
4296 }
4297 }
4298 else
4299 {
4300 if (!((*info->callbacks->reloc_overflow)
4301 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4302 (bfd_vma) 0, input_bfd, input_section, rela->r_offset)))
4303 return FALSE;
4304 }
4305 }
4306
4307 return TRUE;
4308 }
4309
4310 /* Finish up dynamic symbol handling. We set the contents of various
4311 dynamic sections here. */
4312
4313 static bfd_boolean
4314 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4315 struct bfd_link_info *info,
4316 struct elf_link_hash_entry *eh,
4317 Elf_Internal_Sym *sym)
4318 {
4319 struct elf32_hppa_link_hash_table *htab;
4320 Elf_Internal_Rela rela;
4321 bfd_byte *loc;
4322
4323 htab = hppa_link_hash_table (info);
4324
4325 if (eh->plt.offset != (bfd_vma) -1)
4326 {
4327 bfd_vma value;
4328
4329 if (eh->plt.offset & 1)
4330 abort ();
4331
4332 /* This symbol has an entry in the procedure linkage table. Set
4333 it up.
4334
4335 The format of a plt entry is
4336 <funcaddr>
4337 <__gp>
4338 */
4339 value = 0;
4340 if (eh->root.type == bfd_link_hash_defined
4341 || eh->root.type == bfd_link_hash_defweak)
4342 {
4343 value = eh->root.u.def.value;
4344 if (eh->root.u.def.section->output_section != NULL)
4345 value += (eh->root.u.def.section->output_offset
4346 + eh->root.u.def.section->output_section->vma);
4347 }
4348
4349 /* Create a dynamic IPLT relocation for this entry. */
4350 rela.r_offset = (eh->plt.offset
4351 + htab->splt->output_offset
4352 + htab->splt->output_section->vma);
4353 if (eh->dynindx != -1)
4354 {
4355 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4356 rela.r_addend = 0;
4357 }
4358 else
4359 {
4360 /* This symbol has been marked to become local, and is
4361 used by a plabel so must be kept in the .plt. */
4362 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4363 rela.r_addend = value;
4364 }
4365
4366 loc = htab->srelplt->contents;
4367 loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4368 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rela, loc);
4369
4370 if (!eh->def_regular)
4371 {
4372 /* Mark the symbol as undefined, rather than as defined in
4373 the .plt section. Leave the value alone. */
4374 sym->st_shndx = SHN_UNDEF;
4375 }
4376 }
4377
4378 if (eh->got.offset != (bfd_vma) -1
4379 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_GD) == 0
4380 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_IE) == 0)
4381 {
4382 /* This symbol has an entry in the global offset table. Set it
4383 up. */
4384
4385 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4386 + htab->sgot->output_offset
4387 + htab->sgot->output_section->vma);
4388
4389 /* If this is a -Bsymbolic link and the symbol is defined
4390 locally or was forced to be local because of a version file,
4391 we just want to emit a RELATIVE reloc. The entry in the
4392 global offset table will already have been initialized in the
4393 relocate_section function. */
4394 if (info->shared
4395 && (info->symbolic || eh->dynindx == -1)
4396 && eh->def_regular)
4397 {
4398 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4399 rela.r_addend = (eh->root.u.def.value
4400 + eh->root.u.def.section->output_offset
4401 + eh->root.u.def.section->output_section->vma);
4402 }
4403 else
4404 {
4405 if ((eh->got.offset & 1) != 0)
4406 abort ();
4407
4408 bfd_put_32 (output_bfd, 0, htab->sgot->contents + (eh->got.offset & ~1));
4409 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4410 rela.r_addend = 0;
4411 }
4412
4413 loc = htab->srelgot->contents;
4414 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4415 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4416 }
4417
4418 if (eh->needs_copy)
4419 {
4420 asection *sec;
4421
4422 /* This symbol needs a copy reloc. Set it up. */
4423
4424 if (! (eh->dynindx != -1
4425 && (eh->root.type == bfd_link_hash_defined
4426 || eh->root.type == bfd_link_hash_defweak)))
4427 abort ();
4428
4429 sec = htab->srelbss;
4430
4431 rela.r_offset = (eh->root.u.def.value
4432 + eh->root.u.def.section->output_offset
4433 + eh->root.u.def.section->output_section->vma);
4434 rela.r_addend = 0;
4435 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4436 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4437 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4438 }
4439
4440 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4441 if (eh_name (eh)[0] == '_'
4442 && (strcmp (eh_name (eh), "_DYNAMIC") == 0
4443 || eh == htab->etab.hgot))
4444 {
4445 sym->st_shndx = SHN_ABS;
4446 }
4447
4448 return TRUE;
4449 }
4450
4451 /* Used to decide how to sort relocs in an optimal manner for the
4452 dynamic linker, before writing them out. */
4453
4454 static enum elf_reloc_type_class
4455 elf32_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
4456 {
4457 /* Handle TLS relocs first; we don't want them to be marked
4458 relative by the "if (ELF32_R_SYM (rela->r_info) == 0)"
4459 check below. */
4460 switch ((int) ELF32_R_TYPE (rela->r_info))
4461 {
4462 case R_PARISC_TLS_DTPMOD32:
4463 case R_PARISC_TLS_DTPOFF32:
4464 case R_PARISC_TLS_TPREL32:
4465 return reloc_class_normal;
4466 }
4467
4468 if (ELF32_R_SYM (rela->r_info) == 0)
4469 return reloc_class_relative;
4470
4471 switch ((int) ELF32_R_TYPE (rela->r_info))
4472 {
4473 case R_PARISC_IPLT:
4474 return reloc_class_plt;
4475 case R_PARISC_COPY:
4476 return reloc_class_copy;
4477 default:
4478 return reloc_class_normal;
4479 }
4480 }
4481
4482 /* Finish up the dynamic sections. */
4483
4484 static bfd_boolean
4485 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4486 struct bfd_link_info *info)
4487 {
4488 bfd *dynobj;
4489 struct elf32_hppa_link_hash_table *htab;
4490 asection *sdyn;
4491
4492 htab = hppa_link_hash_table (info);
4493 dynobj = htab->etab.dynobj;
4494
4495 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4496
4497 if (htab->etab.dynamic_sections_created)
4498 {
4499 Elf32_External_Dyn *dyncon, *dynconend;
4500
4501 if (sdyn == NULL)
4502 abort ();
4503
4504 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4505 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4506 for (; dyncon < dynconend; dyncon++)
4507 {
4508 Elf_Internal_Dyn dyn;
4509 asection *s;
4510
4511 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4512
4513 switch (dyn.d_tag)
4514 {
4515 default:
4516 continue;
4517
4518 case DT_PLTGOT:
4519 /* Use PLTGOT to set the GOT register. */
4520 dyn.d_un.d_ptr = elf_gp (output_bfd);
4521 break;
4522
4523 case DT_JMPREL:
4524 s = htab->srelplt;
4525 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4526 break;
4527
4528 case DT_PLTRELSZ:
4529 s = htab->srelplt;
4530 dyn.d_un.d_val = s->size;
4531 break;
4532
4533 case DT_RELASZ:
4534 /* Don't count procedure linkage table relocs in the
4535 overall reloc count. */
4536 s = htab->srelplt;
4537 if (s == NULL)
4538 continue;
4539 dyn.d_un.d_val -= s->size;
4540 break;
4541
4542 case DT_RELA:
4543 /* We may not be using the standard ELF linker script.
4544 If .rela.plt is the first .rela section, we adjust
4545 DT_RELA to not include it. */
4546 s = htab->srelplt;
4547 if (s == NULL)
4548 continue;
4549 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4550 continue;
4551 dyn.d_un.d_ptr += s->size;
4552 break;
4553 }
4554
4555 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4556 }
4557 }
4558
4559 if (htab->sgot != NULL && htab->sgot->size != 0)
4560 {
4561 /* Fill in the first entry in the global offset table.
4562 We use it to point to our dynamic section, if we have one. */
4563 bfd_put_32 (output_bfd,
4564 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4565 htab->sgot->contents);
4566
4567 /* The second entry is reserved for use by the dynamic linker. */
4568 memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4569
4570 /* Set .got entry size. */
4571 elf_section_data (htab->sgot->output_section)
4572 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4573 }
4574
4575 if (htab->splt != NULL && htab->splt->size != 0)
4576 {
4577 /* Set plt entry size. */
4578 elf_section_data (htab->splt->output_section)
4579 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4580
4581 if (htab->need_plt_stub)
4582 {
4583 /* Set up the .plt stub. */
4584 memcpy (htab->splt->contents
4585 + htab->splt->size - sizeof (plt_stub),
4586 plt_stub, sizeof (plt_stub));
4587
4588 if ((htab->splt->output_offset
4589 + htab->splt->output_section->vma
4590 + htab->splt->size)
4591 != (htab->sgot->output_offset
4592 + htab->sgot->output_section->vma))
4593 {
4594 (*_bfd_error_handler)
4595 (_(".got section not immediately after .plt section"));
4596 return FALSE;
4597 }
4598 }
4599 }
4600
4601 return TRUE;
4602 }
4603
4604 /* Called when writing out an object file to decide the type of a
4605 symbol. */
4606 static int
4607 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4608 {
4609 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4610 return STT_PARISC_MILLI;
4611 else
4612 return type;
4613 }
4614
4615 /* Misc BFD support code. */
4616 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4617 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4618 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4619 #define elf_info_to_howto elf_hppa_info_to_howto
4620 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4621
4622 /* Stuff for the BFD linker. */
4623 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4624 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4625 #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
4626 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4627 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4628 #define elf_backend_check_relocs elf32_hppa_check_relocs
4629 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4630 #define elf_backend_fake_sections elf_hppa_fake_sections
4631 #define elf_backend_relocate_section elf32_hppa_relocate_section
4632 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4633 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4634 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4635 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4636 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4637 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4638 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4639 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4640 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4641 #define elf_backend_object_p elf32_hppa_object_p
4642 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4643 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4644 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4645 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4646 #define elf_backend_action_discarded elf_hppa_action_discarded
4647
4648 #define elf_backend_can_gc_sections 1
4649 #define elf_backend_can_refcount 1
4650 #define elf_backend_plt_alignment 2
4651 #define elf_backend_want_got_plt 0
4652 #define elf_backend_plt_readonly 0
4653 #define elf_backend_want_plt_sym 0
4654 #define elf_backend_got_header_size 8
4655 #define elf_backend_rela_normal 1
4656
4657 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4658 #define TARGET_BIG_NAME "elf32-hppa"
4659 #define ELF_ARCH bfd_arch_hppa
4660 #define ELF_MACHINE_CODE EM_PARISC
4661 #define ELF_MAXPAGESIZE 0x1000
4662 #define ELF_OSABI ELFOSABI_HPUX
4663 #define elf32_bed elf32_hppa_hpux_bed
4664
4665 #include "elf32-target.h"
4666
4667 #undef TARGET_BIG_SYM
4668 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4669 #undef TARGET_BIG_NAME
4670 #define TARGET_BIG_NAME "elf32-hppa-linux"
4671 #undef ELF_OSABI
4672 #define ELF_OSABI ELFOSABI_LINUX
4673 #undef elf32_bed
4674 #define elf32_bed elf32_hppa_linux_bed
4675
4676 #include "elf32-target.h"
4677
4678 #undef TARGET_BIG_SYM
4679 #define TARGET_BIG_SYM bfd_elf32_hppa_nbsd_vec
4680 #undef TARGET_BIG_NAME
4681 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4682 #undef ELF_OSABI
4683 #define ELF_OSABI ELFOSABI_NETBSD
4684 #undef elf32_bed
4685 #define elf32_bed elf32_hppa_netbsd_bed
4686
4687 #include "elf32-target.h"
This page took 0.124402 seconds and 5 git commands to generate.