* elf32-hppa.c (elf32_hppa_gc_sweep_hook): Simplify dynamic reloc
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002, 2003 Free Software Foundation, Inc.
4
5 Original code by
6 Center for Software Science
7 Department of Computer Science
8 University of Utah
9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
26
27 #include "bfd.h"
28 #include "sysdep.h"
29 #include "libbfd.h"
30 #include "elf-bfd.h"
31 #include "elf/hppa.h"
32 #include "libhppa.h"
33 #include "elf32-hppa.h"
34 #define ARCH_SIZE 32
35 #include "elf32-hppa.h"
36 #include "elf-hppa.h"
37
38 /* In order to gain some understanding of code in this file without
39 knowing all the intricate details of the linker, note the
40 following:
41
42 Functions named elf32_hppa_* are called by external routines, other
43 functions are only called locally. elf32_hppa_* functions appear
44 in this file more or less in the order in which they are called
45 from external routines. eg. elf32_hppa_check_relocs is called
46 early in the link process, elf32_hppa_finish_dynamic_sections is
47 one of the last functions. */
48
49 /* We use two hash tables to hold information for linking PA ELF objects.
50
51 The first is the elf32_hppa_link_hash_table which is derived
52 from the standard ELF linker hash table. We use this as a place to
53 attach other hash tables and static information.
54
55 The second is the stub hash table which is derived from the
56 base BFD hash table. The stub hash table holds the information
57 necessary to build the linker stubs during a link.
58
59 There are a number of different stubs generated by the linker.
60
61 Long branch stub:
62 : ldil LR'X,%r1
63 : be,n RR'X(%sr4,%r1)
64
65 PIC long branch stub:
66 : b,l .+8,%r1
67 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
68 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
69
70 Import stub to call shared library routine from normal object file
71 (single sub-space version)
72 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
73 : ldw RR'lt_ptr+ltoff(%r1),%r21
74 : bv %r0(%r21)
75 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
76
77 Import stub to call shared library routine from shared library
78 (single sub-space version)
79 : addil LR'ltoff,%r19 ; get procedure entry point
80 : ldw RR'ltoff(%r1),%r21
81 : bv %r0(%r21)
82 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
83
84 Import stub to call shared library routine from normal object file
85 (multiple sub-space support)
86 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
87 : ldw RR'lt_ptr+ltoff(%r1),%r21
88 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
89 : ldsid (%r21),%r1
90 : mtsp %r1,%sr0
91 : be 0(%sr0,%r21) ; branch to target
92 : stw %rp,-24(%sp) ; save rp
93
94 Import stub to call shared library routine from shared library
95 (multiple sub-space support)
96 : addil LR'ltoff,%r19 ; get procedure entry point
97 : ldw RR'ltoff(%r1),%r21
98 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
99 : ldsid (%r21),%r1
100 : mtsp %r1,%sr0
101 : be 0(%sr0,%r21) ; branch to target
102 : stw %rp,-24(%sp) ; save rp
103
104 Export stub to return from shared lib routine (multiple sub-space support)
105 One of these is created for each exported procedure in a shared
106 library (and stored in the shared lib). Shared lib routines are
107 called via the first instruction in the export stub so that we can
108 do an inter-space return. Not required for single sub-space.
109 : bl,n X,%rp ; trap the return
110 : nop
111 : ldw -24(%sp),%rp ; restore the original rp
112 : ldsid (%rp),%r1
113 : mtsp %r1,%sr0
114 : be,n 0(%sr0,%rp) ; inter-space return. */
115
116 #define PLT_ENTRY_SIZE 8
117 #define GOT_ENTRY_SIZE 4
118 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
119
120 static const bfd_byte plt_stub[] =
121 {
122 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
123 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
124 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
125 #define PLT_STUB_ENTRY (3*4)
126 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
127 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
128 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
129 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
130 };
131
132 /* Section name for stubs is the associated section name plus this
133 string. */
134 #define STUB_SUFFIX ".stub"
135
136 /* We don't need to copy certain PC- or GP-relative dynamic relocs
137 into a shared object's dynamic section. All the relocs of the
138 limited class we are interested in, are absolute. */
139 #ifndef RELATIVE_DYNRELOCS
140 #define RELATIVE_DYNRELOCS 0
141 #define IS_ABSOLUTE_RELOC(r_type) 1
142 #endif
143
144 enum elf32_hppa_stub_type {
145 hppa_stub_long_branch,
146 hppa_stub_long_branch_shared,
147 hppa_stub_import,
148 hppa_stub_import_shared,
149 hppa_stub_export,
150 hppa_stub_none
151 };
152
153 struct elf32_hppa_stub_hash_entry {
154
155 /* Base hash table entry structure. */
156 struct bfd_hash_entry root;
157
158 /* The stub section. */
159 asection *stub_sec;
160
161 /* Offset within stub_sec of the beginning of this stub. */
162 bfd_vma stub_offset;
163
164 /* Given the symbol's value and its section we can determine its final
165 value when building the stubs (so the stub knows where to jump. */
166 bfd_vma target_value;
167 asection *target_section;
168
169 enum elf32_hppa_stub_type stub_type;
170
171 /* The symbol table entry, if any, that this was derived from. */
172 struct elf32_hppa_link_hash_entry *h;
173
174 /* Where this stub is being called from, or, in the case of combined
175 stub sections, the first input section in the group. */
176 asection *id_sec;
177 };
178
179 struct elf32_hppa_link_hash_entry {
180
181 struct elf_link_hash_entry elf;
182
183 /* A pointer to the most recently used stub hash entry against this
184 symbol. */
185 struct elf32_hppa_stub_hash_entry *stub_cache;
186
187 /* Used to count relocations for delayed sizing of relocation
188 sections. */
189 struct elf32_hppa_dyn_reloc_entry {
190
191 /* Next relocation in the chain. */
192 struct elf32_hppa_dyn_reloc_entry *next;
193
194 /* The input section of the reloc. */
195 asection *sec;
196
197 /* Number of relocs copied in this section. */
198 bfd_size_type count;
199
200 #if RELATIVE_DYNRELOCS
201 /* Number of relative relocs copied for the input section. */
202 bfd_size_type relative_count;
203 #endif
204 } *dyn_relocs;
205
206 /* Set if the only reason we need a .plt entry is for a non-PIC to
207 PIC function call. */
208 unsigned int pic_call:1;
209
210 /* Set if this symbol is used by a plabel reloc. */
211 unsigned int plabel:1;
212 };
213
214 struct elf32_hppa_link_hash_table {
215
216 /* The main hash table. */
217 struct elf_link_hash_table elf;
218
219 /* The stub hash table. */
220 struct bfd_hash_table stub_hash_table;
221
222 /* Linker stub bfd. */
223 bfd *stub_bfd;
224
225 /* Linker call-backs. */
226 asection * (*add_stub_section) PARAMS ((const char *, asection *));
227 void (*layout_sections_again) PARAMS ((void));
228
229 /* Array to keep track of which stub sections have been created, and
230 information on stub grouping. */
231 struct map_stub {
232 /* This is the section to which stubs in the group will be
233 attached. */
234 asection *link_sec;
235 /* The stub section. */
236 asection *stub_sec;
237 } *stub_group;
238
239 /* Assorted information used by elf32_hppa_size_stubs. */
240 unsigned int bfd_count;
241 int top_index;
242 asection **input_list;
243 Elf_Internal_Sym **all_local_syms;
244
245 /* Short-cuts to get to dynamic linker sections. */
246 asection *sgot;
247 asection *srelgot;
248 asection *splt;
249 asection *srelplt;
250 asection *sdynbss;
251 asection *srelbss;
252
253 /* Used during a final link to store the base of the text and data
254 segments so that we can perform SEGREL relocations. */
255 bfd_vma text_segment_base;
256 bfd_vma data_segment_base;
257
258 /* Whether we support multiple sub-spaces for shared libs. */
259 unsigned int multi_subspace:1;
260
261 /* Flags set when various size branches are detected. Used to
262 select suitable defaults for the stub group size. */
263 unsigned int has_12bit_branch:1;
264 unsigned int has_17bit_branch:1;
265 unsigned int has_22bit_branch:1;
266
267 /* Set if we need a .plt stub to support lazy dynamic linking. */
268 unsigned int need_plt_stub:1;
269
270 /* Small local sym to section mapping cache. */
271 struct sym_sec_cache sym_sec;
272 };
273
274 /* Various hash macros and functions. */
275 #define hppa_link_hash_table(p) \
276 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
277
278 #define hppa_stub_hash_lookup(table, string, create, copy) \
279 ((struct elf32_hppa_stub_hash_entry *) \
280 bfd_hash_lookup ((table), (string), (create), (copy)))
281
282 static struct bfd_hash_entry *stub_hash_newfunc
283 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
284
285 static struct bfd_hash_entry *hppa_link_hash_newfunc
286 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
287
288 static struct bfd_link_hash_table *elf32_hppa_link_hash_table_create
289 PARAMS ((bfd *));
290
291 static void elf32_hppa_link_hash_table_free
292 PARAMS ((struct bfd_link_hash_table *));
293
294 /* Stub handling functions. */
295 static char *hppa_stub_name
296 PARAMS ((const asection *, const asection *,
297 const struct elf32_hppa_link_hash_entry *,
298 const Elf_Internal_Rela *));
299
300 static struct elf32_hppa_stub_hash_entry *hppa_get_stub_entry
301 PARAMS ((const asection *, const asection *,
302 struct elf32_hppa_link_hash_entry *,
303 const Elf_Internal_Rela *,
304 struct elf32_hppa_link_hash_table *));
305
306 static struct elf32_hppa_stub_hash_entry *hppa_add_stub
307 PARAMS ((const char *, asection *, struct elf32_hppa_link_hash_table *));
308
309 static enum elf32_hppa_stub_type hppa_type_of_stub
310 PARAMS ((asection *, const Elf_Internal_Rela *,
311 struct elf32_hppa_link_hash_entry *, bfd_vma));
312
313 static bfd_boolean hppa_build_one_stub
314 PARAMS ((struct bfd_hash_entry *, PTR));
315
316 static bfd_boolean hppa_size_one_stub
317 PARAMS ((struct bfd_hash_entry *, PTR));
318
319 /* BFD and elf backend functions. */
320 static bfd_boolean elf32_hppa_object_p PARAMS ((bfd *));
321
322 static bfd_boolean elf32_hppa_add_symbol_hook
323 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
324 const char **, flagword *, asection **, bfd_vma *));
325
326 static bfd_boolean elf32_hppa_create_dynamic_sections
327 PARAMS ((bfd *, struct bfd_link_info *));
328
329 static void elf32_hppa_copy_indirect_symbol
330 PARAMS ((struct elf_backend_data *, struct elf_link_hash_entry *,
331 struct elf_link_hash_entry *));
332
333 static bfd_boolean elf32_hppa_check_relocs
334 PARAMS ((bfd *, struct bfd_link_info *,
335 asection *, const Elf_Internal_Rela *));
336
337 static asection *elf32_hppa_gc_mark_hook
338 PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
339 struct elf_link_hash_entry *, Elf_Internal_Sym *));
340
341 static bfd_boolean elf32_hppa_gc_sweep_hook
342 PARAMS ((bfd *, struct bfd_link_info *,
343 asection *, const Elf_Internal_Rela *));
344
345 static void elf32_hppa_hide_symbol
346 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *, bfd_boolean));
347
348 static bfd_boolean elf32_hppa_adjust_dynamic_symbol
349 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
350
351 static bfd_boolean mark_PIC_calls
352 PARAMS ((struct elf_link_hash_entry *, PTR));
353
354 static bfd_boolean allocate_plt_static
355 PARAMS ((struct elf_link_hash_entry *, PTR));
356
357 static bfd_boolean allocate_dynrelocs
358 PARAMS ((struct elf_link_hash_entry *, PTR));
359
360 static bfd_boolean readonly_dynrelocs
361 PARAMS ((struct elf_link_hash_entry *, PTR));
362
363 static bfd_boolean clobber_millicode_symbols
364 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
365
366 static bfd_boolean elf32_hppa_size_dynamic_sections
367 PARAMS ((bfd *, struct bfd_link_info *));
368
369 static void group_sections
370 PARAMS ((struct elf32_hppa_link_hash_table *, bfd_size_type, bfd_boolean));
371
372 static int get_local_syms
373 PARAMS ((bfd *, bfd *, struct bfd_link_info *));
374
375 static bfd_boolean elf32_hppa_final_link
376 PARAMS ((bfd *, struct bfd_link_info *));
377
378 static void hppa_record_segment_addr
379 PARAMS ((bfd *, asection *, PTR));
380
381 static bfd_reloc_status_type final_link_relocate
382 PARAMS ((asection *, bfd_byte *, const Elf_Internal_Rela *,
383 bfd_vma, struct elf32_hppa_link_hash_table *, asection *,
384 struct elf32_hppa_link_hash_entry *));
385
386 static bfd_boolean elf32_hppa_relocate_section
387 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *,
388 bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
389
390 static bfd_boolean elf32_hppa_finish_dynamic_symbol
391 PARAMS ((bfd *, struct bfd_link_info *,
392 struct elf_link_hash_entry *, Elf_Internal_Sym *));
393
394 static enum elf_reloc_type_class elf32_hppa_reloc_type_class
395 PARAMS ((const Elf_Internal_Rela *));
396
397 static bfd_boolean elf32_hppa_finish_dynamic_sections
398 PARAMS ((bfd *, struct bfd_link_info *));
399
400 static void elf32_hppa_post_process_headers
401 PARAMS ((bfd *, struct bfd_link_info *));
402
403 static int elf32_hppa_elf_get_symbol_type
404 PARAMS ((Elf_Internal_Sym *, int));
405
406 /* Assorted hash table functions. */
407
408 /* Initialize an entry in the stub hash table. */
409
410 static struct bfd_hash_entry *
411 stub_hash_newfunc (entry, table, string)
412 struct bfd_hash_entry *entry;
413 struct bfd_hash_table *table;
414 const char *string;
415 {
416 /* Allocate the structure if it has not already been allocated by a
417 subclass. */
418 if (entry == NULL)
419 {
420 entry = bfd_hash_allocate (table,
421 sizeof (struct elf32_hppa_stub_hash_entry));
422 if (entry == NULL)
423 return entry;
424 }
425
426 /* Call the allocation method of the superclass. */
427 entry = bfd_hash_newfunc (entry, table, string);
428 if (entry != NULL)
429 {
430 struct elf32_hppa_stub_hash_entry *eh;
431
432 /* Initialize the local fields. */
433 eh = (struct elf32_hppa_stub_hash_entry *) entry;
434 eh->stub_sec = NULL;
435 eh->stub_offset = 0;
436 eh->target_value = 0;
437 eh->target_section = NULL;
438 eh->stub_type = hppa_stub_long_branch;
439 eh->h = NULL;
440 eh->id_sec = NULL;
441 }
442
443 return entry;
444 }
445
446 /* Initialize an entry in the link hash table. */
447
448 static struct bfd_hash_entry *
449 hppa_link_hash_newfunc (entry, table, string)
450 struct bfd_hash_entry *entry;
451 struct bfd_hash_table *table;
452 const char *string;
453 {
454 /* Allocate the structure if it has not already been allocated by a
455 subclass. */
456 if (entry == NULL)
457 {
458 entry = bfd_hash_allocate (table,
459 sizeof (struct elf32_hppa_link_hash_entry));
460 if (entry == NULL)
461 return entry;
462 }
463
464 /* Call the allocation method of the superclass. */
465 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
466 if (entry != NULL)
467 {
468 struct elf32_hppa_link_hash_entry *eh;
469
470 /* Initialize the local fields. */
471 eh = (struct elf32_hppa_link_hash_entry *) entry;
472 eh->stub_cache = NULL;
473 eh->dyn_relocs = NULL;
474 eh->pic_call = 0;
475 eh->plabel = 0;
476 }
477
478 return entry;
479 }
480
481 /* Create the derived linker hash table. The PA ELF port uses the derived
482 hash table to keep information specific to the PA ELF linker (without
483 using static variables). */
484
485 static struct bfd_link_hash_table *
486 elf32_hppa_link_hash_table_create (abfd)
487 bfd *abfd;
488 {
489 struct elf32_hppa_link_hash_table *ret;
490 bfd_size_type amt = sizeof (*ret);
491
492 ret = (struct elf32_hppa_link_hash_table *) bfd_malloc (amt);
493 if (ret == NULL)
494 return NULL;
495
496 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, hppa_link_hash_newfunc))
497 {
498 free (ret);
499 return NULL;
500 }
501
502 /* Init the stub hash table too. */
503 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc))
504 return NULL;
505
506 ret->stub_bfd = NULL;
507 ret->add_stub_section = NULL;
508 ret->layout_sections_again = NULL;
509 ret->stub_group = NULL;
510 ret->sgot = NULL;
511 ret->srelgot = NULL;
512 ret->splt = NULL;
513 ret->srelplt = NULL;
514 ret->sdynbss = NULL;
515 ret->srelbss = NULL;
516 ret->text_segment_base = (bfd_vma) -1;
517 ret->data_segment_base = (bfd_vma) -1;
518 ret->multi_subspace = 0;
519 ret->has_12bit_branch = 0;
520 ret->has_17bit_branch = 0;
521 ret->has_22bit_branch = 0;
522 ret->need_plt_stub = 0;
523 ret->sym_sec.abfd = NULL;
524
525 return &ret->elf.root;
526 }
527
528 /* Free the derived linker hash table. */
529
530 static void
531 elf32_hppa_link_hash_table_free (hash)
532 struct bfd_link_hash_table *hash;
533 {
534 struct elf32_hppa_link_hash_table *ret
535 = (struct elf32_hppa_link_hash_table *) hash;
536
537 bfd_hash_table_free (&ret->stub_hash_table);
538 _bfd_generic_link_hash_table_free (hash);
539 }
540
541 /* Build a name for an entry in the stub hash table. */
542
543 static char *
544 hppa_stub_name (input_section, sym_sec, hash, rel)
545 const asection *input_section;
546 const asection *sym_sec;
547 const struct elf32_hppa_link_hash_entry *hash;
548 const Elf_Internal_Rela *rel;
549 {
550 char *stub_name;
551 bfd_size_type len;
552
553 if (hash)
554 {
555 len = 8 + 1 + strlen (hash->elf.root.root.string) + 1 + 8 + 1;
556 stub_name = bfd_malloc (len);
557 if (stub_name != NULL)
558 {
559 sprintf (stub_name, "%08x_%s+%x",
560 input_section->id & 0xffffffff,
561 hash->elf.root.root.string,
562 (int) rel->r_addend & 0xffffffff);
563 }
564 }
565 else
566 {
567 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
568 stub_name = bfd_malloc (len);
569 if (stub_name != NULL)
570 {
571 sprintf (stub_name, "%08x_%x:%x+%x",
572 input_section->id & 0xffffffff,
573 sym_sec->id & 0xffffffff,
574 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
575 (int) rel->r_addend & 0xffffffff);
576 }
577 }
578 return stub_name;
579 }
580
581 /* Look up an entry in the stub hash. Stub entries are cached because
582 creating the stub name takes a bit of time. */
583
584 static struct elf32_hppa_stub_hash_entry *
585 hppa_get_stub_entry (input_section, sym_sec, hash, rel, htab)
586 const asection *input_section;
587 const asection *sym_sec;
588 struct elf32_hppa_link_hash_entry *hash;
589 const Elf_Internal_Rela *rel;
590 struct elf32_hppa_link_hash_table *htab;
591 {
592 struct elf32_hppa_stub_hash_entry *stub_entry;
593 const asection *id_sec;
594
595 /* If this input section is part of a group of sections sharing one
596 stub section, then use the id of the first section in the group.
597 Stub names need to include a section id, as there may well be
598 more than one stub used to reach say, printf, and we need to
599 distinguish between them. */
600 id_sec = htab->stub_group[input_section->id].link_sec;
601
602 if (hash != NULL && hash->stub_cache != NULL
603 && hash->stub_cache->h == hash
604 && hash->stub_cache->id_sec == id_sec)
605 {
606 stub_entry = hash->stub_cache;
607 }
608 else
609 {
610 char *stub_name;
611
612 stub_name = hppa_stub_name (id_sec, sym_sec, hash, rel);
613 if (stub_name == NULL)
614 return NULL;
615
616 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
617 stub_name, FALSE, FALSE);
618 if (hash != NULL)
619 hash->stub_cache = stub_entry;
620
621 free (stub_name);
622 }
623
624 return stub_entry;
625 }
626
627 /* Add a new stub entry to the stub hash. Not all fields of the new
628 stub entry are initialised. */
629
630 static struct elf32_hppa_stub_hash_entry *
631 hppa_add_stub (stub_name, section, htab)
632 const char *stub_name;
633 asection *section;
634 struct elf32_hppa_link_hash_table *htab;
635 {
636 asection *link_sec;
637 asection *stub_sec;
638 struct elf32_hppa_stub_hash_entry *stub_entry;
639
640 link_sec = htab->stub_group[section->id].link_sec;
641 stub_sec = htab->stub_group[section->id].stub_sec;
642 if (stub_sec == NULL)
643 {
644 stub_sec = htab->stub_group[link_sec->id].stub_sec;
645 if (stub_sec == NULL)
646 {
647 size_t namelen;
648 bfd_size_type len;
649 char *s_name;
650
651 namelen = strlen (link_sec->name);
652 len = namelen + sizeof (STUB_SUFFIX);
653 s_name = bfd_alloc (htab->stub_bfd, len);
654 if (s_name == NULL)
655 return NULL;
656
657 memcpy (s_name, link_sec->name, namelen);
658 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
659 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
660 if (stub_sec == NULL)
661 return NULL;
662 htab->stub_group[link_sec->id].stub_sec = stub_sec;
663 }
664 htab->stub_group[section->id].stub_sec = stub_sec;
665 }
666
667 /* Enter this entry into the linker stub hash table. */
668 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table, stub_name,
669 TRUE, FALSE);
670 if (stub_entry == NULL)
671 {
672 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
673 bfd_archive_filename (section->owner),
674 stub_name);
675 return NULL;
676 }
677
678 stub_entry->stub_sec = stub_sec;
679 stub_entry->stub_offset = 0;
680 stub_entry->id_sec = link_sec;
681 return stub_entry;
682 }
683
684 /* Determine the type of stub needed, if any, for a call. */
685
686 static enum elf32_hppa_stub_type
687 hppa_type_of_stub (input_sec, rel, hash, destination)
688 asection *input_sec;
689 const Elf_Internal_Rela *rel;
690 struct elf32_hppa_link_hash_entry *hash;
691 bfd_vma destination;
692 {
693 bfd_vma location;
694 bfd_vma branch_offset;
695 bfd_vma max_branch_offset;
696 unsigned int r_type;
697
698 if (hash != NULL
699 && hash->elf.plt.offset != (bfd_vma) -1
700 && (hash->elf.dynindx != -1 || hash->pic_call)
701 && !hash->plabel)
702 {
703 /* We need an import stub. Decide between hppa_stub_import
704 and hppa_stub_import_shared later. */
705 return hppa_stub_import;
706 }
707
708 /* Determine where the call point is. */
709 location = (input_sec->output_offset
710 + input_sec->output_section->vma
711 + rel->r_offset);
712
713 branch_offset = destination - location - 8;
714 r_type = ELF32_R_TYPE (rel->r_info);
715
716 /* Determine if a long branch stub is needed. parisc branch offsets
717 are relative to the second instruction past the branch, ie. +8
718 bytes on from the branch instruction location. The offset is
719 signed and counts in units of 4 bytes. */
720 if (r_type == (unsigned int) R_PARISC_PCREL17F)
721 {
722 max_branch_offset = (1 << (17-1)) << 2;
723 }
724 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
725 {
726 max_branch_offset = (1 << (12-1)) << 2;
727 }
728 else /* R_PARISC_PCREL22F. */
729 {
730 max_branch_offset = (1 << (22-1)) << 2;
731 }
732
733 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
734 return hppa_stub_long_branch;
735
736 return hppa_stub_none;
737 }
738
739 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
740 IN_ARG contains the link info pointer. */
741
742 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
743 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
744
745 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
746 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
747 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
748
749 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
750 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
751 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
752 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
753
754 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
755 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
756
757 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
758 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
759 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
760 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
761
762 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
763 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
764 #define NOP 0x08000240 /* nop */
765 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
766 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
767 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
768
769 #ifndef R19_STUBS
770 #define R19_STUBS 1
771 #endif
772
773 #if R19_STUBS
774 #define LDW_R1_DLT LDW_R1_R19
775 #else
776 #define LDW_R1_DLT LDW_R1_DP
777 #endif
778
779 static bfd_boolean
780 hppa_build_one_stub (gen_entry, in_arg)
781 struct bfd_hash_entry *gen_entry;
782 PTR in_arg;
783 {
784 struct elf32_hppa_stub_hash_entry *stub_entry;
785 struct bfd_link_info *info;
786 struct elf32_hppa_link_hash_table *htab;
787 asection *stub_sec;
788 bfd *stub_bfd;
789 bfd_byte *loc;
790 bfd_vma sym_value;
791 bfd_vma insn;
792 bfd_vma off;
793 int val;
794 int size;
795
796 /* Massage our args to the form they really have. */
797 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
798 info = (struct bfd_link_info *) in_arg;
799
800 htab = hppa_link_hash_table (info);
801 stub_sec = stub_entry->stub_sec;
802
803 /* Make a note of the offset within the stubs for this entry. */
804 stub_entry->stub_offset = stub_sec->_raw_size;
805 loc = stub_sec->contents + stub_entry->stub_offset;
806
807 stub_bfd = stub_sec->owner;
808
809 switch (stub_entry->stub_type)
810 {
811 case hppa_stub_long_branch:
812 /* Create the long branch. A long branch is formed with "ldil"
813 loading the upper bits of the target address into a register,
814 then branching with "be" which adds in the lower bits.
815 The "be" has its delay slot nullified. */
816 sym_value = (stub_entry->target_value
817 + stub_entry->target_section->output_offset
818 + stub_entry->target_section->output_section->vma);
819
820 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel);
821 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
822 bfd_put_32 (stub_bfd, insn, loc);
823
824 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel) >> 2;
825 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
826 bfd_put_32 (stub_bfd, insn, loc + 4);
827
828 size = 8;
829 break;
830
831 case hppa_stub_long_branch_shared:
832 /* Branches are relative. This is where we are going to. */
833 sym_value = (stub_entry->target_value
834 + stub_entry->target_section->output_offset
835 + stub_entry->target_section->output_section->vma);
836
837 /* And this is where we are coming from, more or less. */
838 sym_value -= (stub_entry->stub_offset
839 + stub_sec->output_offset
840 + stub_sec->output_section->vma);
841
842 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
843 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
844 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
845 bfd_put_32 (stub_bfd, insn, loc + 4);
846
847 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
848 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
849 bfd_put_32 (stub_bfd, insn, loc + 8);
850 size = 12;
851 break;
852
853 case hppa_stub_import:
854 case hppa_stub_import_shared:
855 off = stub_entry->h->elf.plt.offset;
856 if (off >= (bfd_vma) -2)
857 abort ();
858
859 off &= ~ (bfd_vma) 1;
860 sym_value = (off
861 + htab->splt->output_offset
862 + htab->splt->output_section->vma
863 - elf_gp (htab->splt->output_section->owner));
864
865 insn = ADDIL_DP;
866 #if R19_STUBS
867 if (stub_entry->stub_type == hppa_stub_import_shared)
868 insn = ADDIL_R19;
869 #endif
870 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel),
871 insn = hppa_rebuild_insn ((int) insn, val, 21);
872 bfd_put_32 (stub_bfd, insn, loc);
873
874 /* It is critical to use lrsel/rrsel here because we are using
875 two different offsets (+0 and +4) from sym_value. If we use
876 lsel/rsel then with unfortunate sym_values we will round
877 sym_value+4 up to the next 2k block leading to a mis-match
878 between the lsel and rsel value. */
879 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel);
880 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
881 bfd_put_32 (stub_bfd, insn, loc + 4);
882
883 if (htab->multi_subspace)
884 {
885 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
886 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
887 bfd_put_32 (stub_bfd, insn, loc + 8);
888
889 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
890 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
891 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
892 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
893
894 size = 28;
895 }
896 else
897 {
898 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
899 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
900 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
901 bfd_put_32 (stub_bfd, insn, loc + 12);
902
903 size = 16;
904 }
905
906 if (!info->shared
907 && stub_entry->h != NULL
908 && stub_entry->h->pic_call)
909 {
910 /* Build the .plt entry needed to call a PIC function from
911 statically linked code. We don't need any relocs. */
912 bfd *dynobj;
913 struct elf32_hppa_link_hash_entry *eh;
914 bfd_vma value;
915
916 dynobj = htab->elf.dynobj;
917 eh = (struct elf32_hppa_link_hash_entry *) stub_entry->h;
918
919 if (eh->elf.root.type != bfd_link_hash_defined
920 && eh->elf.root.type != bfd_link_hash_defweak)
921 abort ();
922
923 value = (eh->elf.root.u.def.value
924 + eh->elf.root.u.def.section->output_offset
925 + eh->elf.root.u.def.section->output_section->vma);
926
927 /* Fill in the entry in the procedure linkage table.
928
929 The format of a plt entry is
930 <funcaddr>
931 <__gp>. */
932
933 bfd_put_32 (htab->splt->owner, value,
934 htab->splt->contents + off);
935 value = elf_gp (htab->splt->output_section->owner);
936 bfd_put_32 (htab->splt->owner, value,
937 htab->splt->contents + off + 4);
938 }
939 break;
940
941 case hppa_stub_export:
942 /* Branches are relative. This is where we are going to. */
943 sym_value = (stub_entry->target_value
944 + stub_entry->target_section->output_offset
945 + stub_entry->target_section->output_section->vma);
946
947 /* And this is where we are coming from. */
948 sym_value -= (stub_entry->stub_offset
949 + stub_sec->output_offset
950 + stub_sec->output_section->vma);
951
952 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
953 && (!htab->has_22bit_branch
954 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
955 {
956 (*_bfd_error_handler)
957 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
958 bfd_archive_filename (stub_entry->target_section->owner),
959 stub_sec->name,
960 (long) stub_entry->stub_offset,
961 stub_entry->root.string);
962 bfd_set_error (bfd_error_bad_value);
963 return FALSE;
964 }
965
966 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
967 if (!htab->has_22bit_branch)
968 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
969 else
970 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
971 bfd_put_32 (stub_bfd, insn, loc);
972
973 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
974 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
975 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
976 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
977 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
978
979 /* Point the function symbol at the stub. */
980 stub_entry->h->elf.root.u.def.section = stub_sec;
981 stub_entry->h->elf.root.u.def.value = stub_sec->_raw_size;
982
983 size = 24;
984 break;
985
986 default:
987 BFD_FAIL ();
988 return FALSE;
989 }
990
991 stub_sec->_raw_size += size;
992 return TRUE;
993 }
994
995 #undef LDIL_R1
996 #undef BE_SR4_R1
997 #undef BL_R1
998 #undef ADDIL_R1
999 #undef DEPI_R1
1000 #undef ADDIL_DP
1001 #undef LDW_R1_R21
1002 #undef LDW_R1_DLT
1003 #undef LDW_R1_R19
1004 #undef ADDIL_R19
1005 #undef LDW_R1_DP
1006 #undef LDSID_R21_R1
1007 #undef MTSP_R1
1008 #undef BE_SR0_R21
1009 #undef STW_RP
1010 #undef BV_R0_R21
1011 #undef BL_RP
1012 #undef NOP
1013 #undef LDW_RP
1014 #undef LDSID_RP_R1
1015 #undef BE_SR0_RP
1016
1017 /* As above, but don't actually build the stub. Just bump offset so
1018 we know stub section sizes. */
1019
1020 static bfd_boolean
1021 hppa_size_one_stub (gen_entry, in_arg)
1022 struct bfd_hash_entry *gen_entry;
1023 PTR in_arg;
1024 {
1025 struct elf32_hppa_stub_hash_entry *stub_entry;
1026 struct elf32_hppa_link_hash_table *htab;
1027 int size;
1028
1029 /* Massage our args to the form they really have. */
1030 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
1031 htab = (struct elf32_hppa_link_hash_table *) in_arg;
1032
1033 if (stub_entry->stub_type == hppa_stub_long_branch)
1034 size = 8;
1035 else if (stub_entry->stub_type == hppa_stub_long_branch_shared)
1036 size = 12;
1037 else if (stub_entry->stub_type == hppa_stub_export)
1038 size = 24;
1039 else /* hppa_stub_import or hppa_stub_import_shared. */
1040 {
1041 if (htab->multi_subspace)
1042 size = 28;
1043 else
1044 size = 16;
1045 }
1046
1047 stub_entry->stub_sec->_raw_size += size;
1048 return TRUE;
1049 }
1050
1051 /* Return nonzero if ABFD represents an HPPA ELF32 file.
1052 Additionally we set the default architecture and machine. */
1053
1054 static bfd_boolean
1055 elf32_hppa_object_p (abfd)
1056 bfd *abfd;
1057 {
1058 Elf_Internal_Ehdr * i_ehdrp;
1059 unsigned int flags;
1060
1061 i_ehdrp = elf_elfheader (abfd);
1062 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
1063 {
1064 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX)
1065 return FALSE;
1066 }
1067 else
1068 {
1069 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
1070 return FALSE;
1071 }
1072
1073 flags = i_ehdrp->e_flags;
1074 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
1075 {
1076 case EFA_PARISC_1_0:
1077 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
1078 case EFA_PARISC_1_1:
1079 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
1080 case EFA_PARISC_2_0:
1081 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
1082 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
1083 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
1084 }
1085 return TRUE;
1086 }
1087
1088 /* Undo the generic ELF code's subtraction of section->vma from the
1089 value of each external symbol. */
1090
1091 static bfd_boolean
1092 elf32_hppa_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1093 bfd *abfd ATTRIBUTE_UNUSED;
1094 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1095 const Elf_Internal_Sym *sym ATTRIBUTE_UNUSED;
1096 const char **namep ATTRIBUTE_UNUSED;
1097 flagword *flagsp ATTRIBUTE_UNUSED;
1098 asection **secp;
1099 bfd_vma *valp;
1100 {
1101 *valp += (*secp)->vma;
1102 return TRUE;
1103 }
1104
1105 /* Create the .plt and .got sections, and set up our hash table
1106 short-cuts to various dynamic sections. */
1107
1108 static bfd_boolean
1109 elf32_hppa_create_dynamic_sections (abfd, info)
1110 bfd *abfd;
1111 struct bfd_link_info *info;
1112 {
1113 struct elf32_hppa_link_hash_table *htab;
1114
1115 /* Don't try to create the .plt and .got twice. */
1116 htab = hppa_link_hash_table (info);
1117 if (htab->splt != NULL)
1118 return TRUE;
1119
1120 /* Call the generic code to do most of the work. */
1121 if (! _bfd_elf_create_dynamic_sections (abfd, info))
1122 return FALSE;
1123
1124 htab->splt = bfd_get_section_by_name (abfd, ".plt");
1125 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
1126
1127 htab->sgot = bfd_get_section_by_name (abfd, ".got");
1128 htab->srelgot = bfd_make_section (abfd, ".rela.got");
1129 if (htab->srelgot == NULL
1130 || ! bfd_set_section_flags (abfd, htab->srelgot,
1131 (SEC_ALLOC
1132 | SEC_LOAD
1133 | SEC_HAS_CONTENTS
1134 | SEC_IN_MEMORY
1135 | SEC_LINKER_CREATED
1136 | SEC_READONLY))
1137 || ! bfd_set_section_alignment (abfd, htab->srelgot, 2))
1138 return FALSE;
1139
1140 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
1141 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
1142
1143 return TRUE;
1144 }
1145
1146 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1147
1148 static void
1149 elf32_hppa_copy_indirect_symbol (bed, dir, ind)
1150 struct elf_backend_data *bed;
1151 struct elf_link_hash_entry *dir, *ind;
1152 {
1153 struct elf32_hppa_link_hash_entry *edir, *eind;
1154
1155 edir = (struct elf32_hppa_link_hash_entry *) dir;
1156 eind = (struct elf32_hppa_link_hash_entry *) ind;
1157
1158 if (eind->dyn_relocs != NULL)
1159 {
1160 if (edir->dyn_relocs != NULL)
1161 {
1162 struct elf32_hppa_dyn_reloc_entry **pp;
1163 struct elf32_hppa_dyn_reloc_entry *p;
1164
1165 if (ind->root.type == bfd_link_hash_indirect)
1166 abort ();
1167
1168 /* Add reloc counts against the weak sym to the strong sym
1169 list. Merge any entries against the same section. */
1170 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
1171 {
1172 struct elf32_hppa_dyn_reloc_entry *q;
1173
1174 for (q = edir->dyn_relocs; q != NULL; q = q->next)
1175 if (q->sec == p->sec)
1176 {
1177 #if RELATIVE_DYNRELOCS
1178 q->relative_count += p->relative_count;
1179 #endif
1180 q->count += p->count;
1181 *pp = p->next;
1182 break;
1183 }
1184 if (q == NULL)
1185 pp = &p->next;
1186 }
1187 *pp = edir->dyn_relocs;
1188 }
1189
1190 edir->dyn_relocs = eind->dyn_relocs;
1191 eind->dyn_relocs = NULL;
1192 }
1193
1194 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
1195 }
1196
1197 /* Look through the relocs for a section during the first phase, and
1198 calculate needed space in the global offset table, procedure linkage
1199 table, and dynamic reloc sections. At this point we haven't
1200 necessarily read all the input files. */
1201
1202 static bfd_boolean
1203 elf32_hppa_check_relocs (abfd, info, sec, relocs)
1204 bfd *abfd;
1205 struct bfd_link_info *info;
1206 asection *sec;
1207 const Elf_Internal_Rela *relocs;
1208 {
1209 Elf_Internal_Shdr *symtab_hdr;
1210 struct elf_link_hash_entry **sym_hashes;
1211 const Elf_Internal_Rela *rel;
1212 const Elf_Internal_Rela *rel_end;
1213 struct elf32_hppa_link_hash_table *htab;
1214 asection *sreloc;
1215 asection *stubreloc;
1216
1217 if (info->relocateable)
1218 return TRUE;
1219
1220 htab = hppa_link_hash_table (info);
1221 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1222 sym_hashes = elf_sym_hashes (abfd);
1223 sreloc = NULL;
1224 stubreloc = NULL;
1225
1226 rel_end = relocs + sec->reloc_count;
1227 for (rel = relocs; rel < rel_end; rel++)
1228 {
1229 enum {
1230 NEED_GOT = 1,
1231 NEED_PLT = 2,
1232 NEED_DYNREL = 4,
1233 PLT_PLABEL = 8
1234 };
1235
1236 unsigned int r_symndx, r_type;
1237 struct elf32_hppa_link_hash_entry *h;
1238 int need_entry;
1239
1240 r_symndx = ELF32_R_SYM (rel->r_info);
1241
1242 if (r_symndx < symtab_hdr->sh_info)
1243 h = NULL;
1244 else
1245 h = ((struct elf32_hppa_link_hash_entry *)
1246 sym_hashes[r_symndx - symtab_hdr->sh_info]);
1247
1248 r_type = ELF32_R_TYPE (rel->r_info);
1249
1250 switch (r_type)
1251 {
1252 case R_PARISC_DLTIND14F:
1253 case R_PARISC_DLTIND14R:
1254 case R_PARISC_DLTIND21L:
1255 /* This symbol requires a global offset table entry. */
1256 need_entry = NEED_GOT;
1257
1258 /* Mark this section as containing PIC code. */
1259 sec->flags |= SEC_HAS_GOT_REF;
1260 break;
1261
1262 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1263 case R_PARISC_PLABEL21L:
1264 case R_PARISC_PLABEL32:
1265 /* If the addend is non-zero, we break badly. */
1266 if (rel->r_addend != 0)
1267 abort ();
1268
1269 /* If we are creating a shared library, then we need to
1270 create a PLT entry for all PLABELs, because PLABELs with
1271 local symbols may be passed via a pointer to another
1272 object. Additionally, output a dynamic relocation
1273 pointing to the PLT entry.
1274 For executables, the original 32-bit ABI allowed two
1275 different styles of PLABELs (function pointers): For
1276 global functions, the PLABEL word points into the .plt
1277 two bytes past a (function address, gp) pair, and for
1278 local functions the PLABEL points directly at the
1279 function. The magic +2 for the first type allows us to
1280 differentiate between the two. As you can imagine, this
1281 is a real pain when it comes to generating code to call
1282 functions indirectly or to compare function pointers.
1283 We avoid the mess by always pointing a PLABEL into the
1284 .plt, even for local functions. */
1285 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1286 break;
1287
1288 case R_PARISC_PCREL12F:
1289 htab->has_12bit_branch = 1;
1290 goto branch_common;
1291
1292 case R_PARISC_PCREL17C:
1293 case R_PARISC_PCREL17F:
1294 htab->has_17bit_branch = 1;
1295 goto branch_common;
1296
1297 case R_PARISC_PCREL22F:
1298 htab->has_22bit_branch = 1;
1299 branch_common:
1300 /* Function calls might need to go through the .plt, and
1301 might require long branch stubs. */
1302 if (h == NULL)
1303 {
1304 /* We know local syms won't need a .plt entry, and if
1305 they need a long branch stub we can't guarantee that
1306 we can reach the stub. So just flag an error later
1307 if we're doing a shared link and find we need a long
1308 branch stub. */
1309 continue;
1310 }
1311 else
1312 {
1313 /* Global symbols will need a .plt entry if they remain
1314 global, and in most cases won't need a long branch
1315 stub. Unfortunately, we have to cater for the case
1316 where a symbol is forced local by versioning, or due
1317 to symbolic linking, and we lose the .plt entry. */
1318 need_entry = NEED_PLT;
1319 if (h->elf.type == STT_PARISC_MILLI)
1320 need_entry = 0;
1321 }
1322 break;
1323
1324 case R_PARISC_SEGBASE: /* Used to set segment base. */
1325 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1326 case R_PARISC_PCREL14F: /* PC relative load/store. */
1327 case R_PARISC_PCREL14R:
1328 case R_PARISC_PCREL17R: /* External branches. */
1329 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1330 /* We don't need to propagate the relocation if linking a
1331 shared object since these are section relative. */
1332 continue;
1333
1334 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1335 case R_PARISC_DPREL14R:
1336 case R_PARISC_DPREL21L:
1337 if (info->shared)
1338 {
1339 (*_bfd_error_handler)
1340 (_("%s: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1341 bfd_archive_filename (abfd),
1342 elf_hppa_howto_table[r_type].name);
1343 bfd_set_error (bfd_error_bad_value);
1344 return FALSE;
1345 }
1346 /* Fall through. */
1347
1348 case R_PARISC_DIR17F: /* Used for external branches. */
1349 case R_PARISC_DIR17R:
1350 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1351 case R_PARISC_DIR14R:
1352 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1353 #if 0
1354 /* Help debug shared library creation. Any of the above
1355 relocs can be used in shared libs, but they may cause
1356 pages to become unshared. */
1357 if (info->shared)
1358 {
1359 (*_bfd_error_handler)
1360 (_("%s: relocation %s should not be used when making a shared object; recompile with -fPIC"),
1361 bfd_archive_filename (abfd),
1362 elf_hppa_howto_table[r_type].name);
1363 }
1364 /* Fall through. */
1365 #endif
1366
1367 case R_PARISC_DIR32: /* .word relocs. */
1368 /* We may want to output a dynamic relocation later. */
1369 need_entry = NEED_DYNREL;
1370 break;
1371
1372 /* This relocation describes the C++ object vtable hierarchy.
1373 Reconstruct it for later use during GC. */
1374 case R_PARISC_GNU_VTINHERIT:
1375 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec,
1376 &h->elf, rel->r_offset))
1377 return FALSE;
1378 continue;
1379
1380 /* This relocation describes which C++ vtable entries are actually
1381 used. Record for later use during GC. */
1382 case R_PARISC_GNU_VTENTRY:
1383 if (!_bfd_elf32_gc_record_vtentry (abfd, sec,
1384 &h->elf, rel->r_addend))
1385 return FALSE;
1386 continue;
1387
1388 default:
1389 continue;
1390 }
1391
1392 /* Now carry out our orders. */
1393 if (need_entry & NEED_GOT)
1394 {
1395 /* Allocate space for a GOT entry, as well as a dynamic
1396 relocation for this entry. */
1397 if (htab->sgot == NULL)
1398 {
1399 if (htab->elf.dynobj == NULL)
1400 htab->elf.dynobj = abfd;
1401 if (!elf32_hppa_create_dynamic_sections (htab->elf.dynobj, info))
1402 return FALSE;
1403 }
1404
1405 if (h != NULL)
1406 {
1407 h->elf.got.refcount += 1;
1408 }
1409 else
1410 {
1411 bfd_signed_vma *local_got_refcounts;
1412
1413 /* This is a global offset table entry for a local symbol. */
1414 local_got_refcounts = elf_local_got_refcounts (abfd);
1415 if (local_got_refcounts == NULL)
1416 {
1417 bfd_size_type size;
1418
1419 /* Allocate space for local got offsets and local
1420 plt offsets. Done this way to save polluting
1421 elf_obj_tdata with another target specific
1422 pointer. */
1423 size = symtab_hdr->sh_info;
1424 size *= 2 * sizeof (bfd_signed_vma);
1425 local_got_refcounts = ((bfd_signed_vma *)
1426 bfd_zalloc (abfd, size));
1427 if (local_got_refcounts == NULL)
1428 return FALSE;
1429 elf_local_got_refcounts (abfd) = local_got_refcounts;
1430 }
1431 local_got_refcounts[r_symndx] += 1;
1432 }
1433 }
1434
1435 if (need_entry & NEED_PLT)
1436 {
1437 /* If we are creating a shared library, and this is a reloc
1438 against a weak symbol or a global symbol in a dynamic
1439 object, then we will be creating an import stub and a
1440 .plt entry for the symbol. Similarly, on a normal link
1441 to symbols defined in a dynamic object we'll need the
1442 import stub and a .plt entry. We don't know yet whether
1443 the symbol is defined or not, so make an entry anyway and
1444 clean up later in adjust_dynamic_symbol. */
1445 if ((sec->flags & SEC_ALLOC) != 0)
1446 {
1447 if (h != NULL)
1448 {
1449 h->elf.elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1450 h->elf.plt.refcount += 1;
1451
1452 /* If this .plt entry is for a plabel, mark it so
1453 that adjust_dynamic_symbol will keep the entry
1454 even if it appears to be local. */
1455 if (need_entry & PLT_PLABEL)
1456 h->plabel = 1;
1457 }
1458 else if (need_entry & PLT_PLABEL)
1459 {
1460 bfd_signed_vma *local_got_refcounts;
1461 bfd_signed_vma *local_plt_refcounts;
1462
1463 local_got_refcounts = elf_local_got_refcounts (abfd);
1464 if (local_got_refcounts == NULL)
1465 {
1466 bfd_size_type size;
1467
1468 /* Allocate space for local got offsets and local
1469 plt offsets. */
1470 size = symtab_hdr->sh_info;
1471 size *= 2 * sizeof (bfd_signed_vma);
1472 local_got_refcounts = ((bfd_signed_vma *)
1473 bfd_zalloc (abfd, size));
1474 if (local_got_refcounts == NULL)
1475 return FALSE;
1476 elf_local_got_refcounts (abfd) = local_got_refcounts;
1477 }
1478 local_plt_refcounts = (local_got_refcounts
1479 + symtab_hdr->sh_info);
1480 local_plt_refcounts[r_symndx] += 1;
1481 }
1482 }
1483 }
1484
1485 if (need_entry & NEED_DYNREL)
1486 {
1487 /* Flag this symbol as having a non-got, non-plt reference
1488 so that we generate copy relocs if it turns out to be
1489 dynamic. */
1490 if (h != NULL && !info->shared)
1491 h->elf.elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
1492
1493 /* If we are creating a shared library then we need to copy
1494 the reloc into the shared library. However, if we are
1495 linking with -Bsymbolic, we need only copy absolute
1496 relocs or relocs against symbols that are not defined in
1497 an object we are including in the link. PC- or DP- or
1498 DLT-relative relocs against any local sym or global sym
1499 with DEF_REGULAR set, can be discarded. At this point we
1500 have not seen all the input files, so it is possible that
1501 DEF_REGULAR is not set now but will be set later (it is
1502 never cleared). We account for that possibility below by
1503 storing information in the dyn_relocs field of the
1504 hash table entry.
1505
1506 A similar situation to the -Bsymbolic case occurs when
1507 creating shared libraries and symbol visibility changes
1508 render the symbol local.
1509
1510 As it turns out, all the relocs we will be creating here
1511 are absolute, so we cannot remove them on -Bsymbolic
1512 links or visibility changes anyway. A STUB_REL reloc
1513 is absolute too, as in that case it is the reloc in the
1514 stub we will be creating, rather than copying the PCREL
1515 reloc in the branch.
1516
1517 If on the other hand, we are creating an executable, we
1518 may need to keep relocations for symbols satisfied by a
1519 dynamic library if we manage to avoid copy relocs for the
1520 symbol. */
1521 if ((info->shared
1522 && (sec->flags & SEC_ALLOC) != 0
1523 && (IS_ABSOLUTE_RELOC (r_type)
1524 || (h != NULL
1525 && (!info->symbolic
1526 || h->elf.root.type == bfd_link_hash_defweak
1527 || (h->elf.elf_link_hash_flags
1528 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1529 || (!info->shared
1530 && (sec->flags & SEC_ALLOC) != 0
1531 && h != NULL
1532 && (h->elf.root.type == bfd_link_hash_defweak
1533 || (h->elf.elf_link_hash_flags
1534 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
1535 {
1536 struct elf32_hppa_dyn_reloc_entry *p;
1537 struct elf32_hppa_dyn_reloc_entry **head;
1538
1539 /* Create a reloc section in dynobj and make room for
1540 this reloc. */
1541 if (sreloc == NULL)
1542 {
1543 char *name;
1544 bfd *dynobj;
1545
1546 name = (bfd_elf_string_from_elf_section
1547 (abfd,
1548 elf_elfheader (abfd)->e_shstrndx,
1549 elf_section_data (sec)->rel_hdr.sh_name));
1550 if (name == NULL)
1551 {
1552 (*_bfd_error_handler)
1553 (_("Could not find relocation section for %s"),
1554 sec->name);
1555 bfd_set_error (bfd_error_bad_value);
1556 return FALSE;
1557 }
1558
1559 if (htab->elf.dynobj == NULL)
1560 htab->elf.dynobj = abfd;
1561
1562 dynobj = htab->elf.dynobj;
1563 sreloc = bfd_get_section_by_name (dynobj, name);
1564 if (sreloc == NULL)
1565 {
1566 flagword flags;
1567
1568 sreloc = bfd_make_section (dynobj, name);
1569 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1570 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1571 if ((sec->flags & SEC_ALLOC) != 0)
1572 flags |= SEC_ALLOC | SEC_LOAD;
1573 if (sreloc == NULL
1574 || !bfd_set_section_flags (dynobj, sreloc, flags)
1575 || !bfd_set_section_alignment (dynobj, sreloc, 2))
1576 return FALSE;
1577 }
1578
1579 elf_section_data (sec)->sreloc = sreloc;
1580 }
1581
1582 /* If this is a global symbol, we count the number of
1583 relocations we need for this symbol. */
1584 if (h != NULL)
1585 {
1586 head = &h->dyn_relocs;
1587 }
1588 else
1589 {
1590 /* Track dynamic relocs needed for local syms too.
1591 We really need local syms available to do this
1592 easily. Oh well. */
1593
1594 asection *s;
1595 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1596 sec, r_symndx);
1597 if (s == NULL)
1598 return FALSE;
1599
1600 head = ((struct elf32_hppa_dyn_reloc_entry **)
1601 &elf_section_data (s)->local_dynrel);
1602 }
1603
1604 p = *head;
1605 if (p == NULL || p->sec != sec)
1606 {
1607 p = ((struct elf32_hppa_dyn_reloc_entry *)
1608 bfd_alloc (htab->elf.dynobj,
1609 (bfd_size_type) sizeof *p));
1610 if (p == NULL)
1611 return FALSE;
1612 p->next = *head;
1613 *head = p;
1614 p->sec = sec;
1615 p->count = 0;
1616 #if RELATIVE_DYNRELOCS
1617 p->relative_count = 0;
1618 #endif
1619 }
1620
1621 p->count += 1;
1622 #if RELATIVE_DYNRELOCS
1623 if (!IS_ABSOLUTE_RELOC (rtype))
1624 p->relative_count += 1;
1625 #endif
1626 }
1627 }
1628 }
1629
1630 return TRUE;
1631 }
1632
1633 /* Return the section that should be marked against garbage collection
1634 for a given relocation. */
1635
1636 static asection *
1637 elf32_hppa_gc_mark_hook (sec, info, rel, h, sym)
1638 asection *sec;
1639 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1640 Elf_Internal_Rela *rel;
1641 struct elf_link_hash_entry *h;
1642 Elf_Internal_Sym *sym;
1643 {
1644 if (h != NULL)
1645 {
1646 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1647 {
1648 case R_PARISC_GNU_VTINHERIT:
1649 case R_PARISC_GNU_VTENTRY:
1650 break;
1651
1652 default:
1653 switch (h->root.type)
1654 {
1655 case bfd_link_hash_defined:
1656 case bfd_link_hash_defweak:
1657 return h->root.u.def.section;
1658
1659 case bfd_link_hash_common:
1660 return h->root.u.c.p->section;
1661
1662 default:
1663 break;
1664 }
1665 }
1666 }
1667 else
1668 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1669
1670 return NULL;
1671 }
1672
1673 /* Update the got and plt entry reference counts for the section being
1674 removed. */
1675
1676 static bfd_boolean
1677 elf32_hppa_gc_sweep_hook (abfd, info, sec, relocs)
1678 bfd *abfd;
1679 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1680 asection *sec;
1681 const Elf_Internal_Rela *relocs;
1682 {
1683 Elf_Internal_Shdr *symtab_hdr;
1684 struct elf_link_hash_entry **sym_hashes;
1685 bfd_signed_vma *local_got_refcounts;
1686 bfd_signed_vma *local_plt_refcounts;
1687 const Elf_Internal_Rela *rel, *relend;
1688
1689 elf_section_data (sec)->local_dynrel = NULL;
1690
1691 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1692 sym_hashes = elf_sym_hashes (abfd);
1693 local_got_refcounts = elf_local_got_refcounts (abfd);
1694 local_plt_refcounts = local_got_refcounts;
1695 if (local_plt_refcounts != NULL)
1696 local_plt_refcounts += symtab_hdr->sh_info;
1697
1698 relend = relocs + sec->reloc_count;
1699 for (rel = relocs; rel < relend; rel++)
1700 {
1701 unsigned long r_symndx;
1702 unsigned int r_type;
1703 struct elf_link_hash_entry *h = NULL;
1704
1705 r_symndx = ELF32_R_SYM (rel->r_info);
1706 if (r_symndx >= symtab_hdr->sh_info)
1707 {
1708 struct elf32_hppa_link_hash_entry *eh;
1709 struct elf32_hppa_dyn_reloc_entry **pp;
1710 struct elf32_hppa_dyn_reloc_entry *p;
1711
1712 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1713 eh = (struct elf32_hppa_link_hash_entry *) h;
1714
1715 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1716 if (p->sec == sec)
1717 {
1718 /* Everything must go for SEC. */
1719 *pp = p->next;
1720 break;
1721 }
1722 }
1723
1724 r_type = ELF32_R_TYPE (rel->r_info);
1725 switch (r_type)
1726 {
1727 case R_PARISC_DLTIND14F:
1728 case R_PARISC_DLTIND14R:
1729 case R_PARISC_DLTIND21L:
1730 if (h != NULL)
1731 {
1732 if (h->got.refcount > 0)
1733 h->got.refcount -= 1;
1734 }
1735 else if (local_got_refcounts != NULL)
1736 {
1737 if (local_got_refcounts[r_symndx] > 0)
1738 local_got_refcounts[r_symndx] -= 1;
1739 }
1740 break;
1741
1742 case R_PARISC_PCREL12F:
1743 case R_PARISC_PCREL17C:
1744 case R_PARISC_PCREL17F:
1745 case R_PARISC_PCREL22F:
1746 if (h != NULL)
1747 {
1748 if (h->plt.refcount > 0)
1749 h->plt.refcount -= 1;
1750 }
1751 break;
1752
1753 case R_PARISC_PLABEL14R:
1754 case R_PARISC_PLABEL21L:
1755 case R_PARISC_PLABEL32:
1756 if (h != NULL)
1757 {
1758 if (h->plt.refcount > 0)
1759 h->plt.refcount -= 1;
1760 }
1761 else if (local_plt_refcounts != NULL)
1762 {
1763 if (local_plt_refcounts[r_symndx] > 0)
1764 local_plt_refcounts[r_symndx] -= 1;
1765 }
1766 break;
1767
1768 default:
1769 break;
1770 }
1771 }
1772
1773 return TRUE;
1774 }
1775
1776 /* Our own version of hide_symbol, so that we can keep plt entries for
1777 plabels. */
1778
1779 static void
1780 elf32_hppa_hide_symbol (info, h, force_local)
1781 struct bfd_link_info *info;
1782 struct elf_link_hash_entry *h;
1783 bfd_boolean force_local;
1784 {
1785 if (force_local)
1786 {
1787 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
1788 if (h->dynindx != -1)
1789 {
1790 h->dynindx = -1;
1791 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1792 h->dynstr_index);
1793 }
1794 }
1795
1796 if (! ((struct elf32_hppa_link_hash_entry *) h)->plabel)
1797 {
1798 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1799 h->plt.offset = (bfd_vma) -1;
1800 }
1801 }
1802
1803 /* This is the condition under which elf32_hppa_finish_dynamic_symbol
1804 will be called from elflink.h. If elflink.h doesn't call our
1805 finish_dynamic_symbol routine, we'll need to do something about
1806 initializing any .plt and .got entries in elf32_hppa_relocate_section. */
1807 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1808 ((DYN) \
1809 && ((INFO)->shared \
1810 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1811 && ((H)->dynindx != -1 \
1812 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1813
1814 /* Adjust a symbol defined by a dynamic object and referenced by a
1815 regular object. The current definition is in some section of the
1816 dynamic object, but we're not including those sections. We have to
1817 change the definition to something the rest of the link can
1818 understand. */
1819
1820 static bfd_boolean
1821 elf32_hppa_adjust_dynamic_symbol (info, h)
1822 struct bfd_link_info *info;
1823 struct elf_link_hash_entry *h;
1824 {
1825 struct elf32_hppa_link_hash_table *htab;
1826 struct elf32_hppa_link_hash_entry *eh;
1827 struct elf32_hppa_dyn_reloc_entry *p;
1828 asection *s;
1829 unsigned int power_of_two;
1830
1831 /* If this is a function, put it in the procedure linkage table. We
1832 will fill in the contents of the procedure linkage table later. */
1833 if (h->type == STT_FUNC
1834 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1835 {
1836 if (h->plt.refcount <= 0
1837 || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1838 && h->root.type != bfd_link_hash_defweak
1839 && ! ((struct elf32_hppa_link_hash_entry *) h)->plabel
1840 && (!info->shared || info->symbolic)))
1841 {
1842 /* The .plt entry is not needed when:
1843 a) Garbage collection has removed all references to the
1844 symbol, or
1845 b) We know for certain the symbol is defined in this
1846 object, and it's not a weak definition, nor is the symbol
1847 used by a plabel relocation. Either this object is the
1848 application or we are doing a shared symbolic link. */
1849
1850 /* As a special sop to the hppa ABI, we keep a .plt entry
1851 for functions in sections containing PIC code. */
1852 if (!info->shared
1853 && h->plt.refcount > 0
1854 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1855 && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0)
1856 ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
1857 else
1858 {
1859 h->plt.offset = (bfd_vma) -1;
1860 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1861 }
1862 }
1863
1864 return TRUE;
1865 }
1866 else
1867 h->plt.offset = (bfd_vma) -1;
1868
1869 /* If this is a weak symbol, and there is a real definition, the
1870 processor independent code will have arranged for us to see the
1871 real definition first, and we can just use the same value. */
1872 if (h->weakdef != NULL)
1873 {
1874 if (h->weakdef->root.type != bfd_link_hash_defined
1875 && h->weakdef->root.type != bfd_link_hash_defweak)
1876 abort ();
1877 h->root.u.def.section = h->weakdef->root.u.def.section;
1878 h->root.u.def.value = h->weakdef->root.u.def.value;
1879 return TRUE;
1880 }
1881
1882 /* This is a reference to a symbol defined by a dynamic object which
1883 is not a function. */
1884
1885 /* If we are creating a shared library, we must presume that the
1886 only references to the symbol are via the global offset table.
1887 For such cases we need not do anything here; the relocations will
1888 be handled correctly by relocate_section. */
1889 if (info->shared)
1890 return TRUE;
1891
1892 /* If there are no references to this symbol that do not use the
1893 GOT, we don't need to generate a copy reloc. */
1894 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1895 return TRUE;
1896
1897 eh = (struct elf32_hppa_link_hash_entry *) h;
1898 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1899 {
1900 s = p->sec->output_section;
1901 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1902 break;
1903 }
1904
1905 /* If we didn't find any dynamic relocs in read-only sections, then
1906 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1907 if (p == NULL)
1908 {
1909 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1910 return TRUE;
1911 }
1912
1913 /* We must allocate the symbol in our .dynbss section, which will
1914 become part of the .bss section of the executable. There will be
1915 an entry for this symbol in the .dynsym section. The dynamic
1916 object will contain position independent code, so all references
1917 from the dynamic object to this symbol will go through the global
1918 offset table. The dynamic linker will use the .dynsym entry to
1919 determine the address it must put in the global offset table, so
1920 both the dynamic object and the regular object will refer to the
1921 same memory location for the variable. */
1922
1923 htab = hppa_link_hash_table (info);
1924
1925 /* We must generate a COPY reloc to tell the dynamic linker to
1926 copy the initial value out of the dynamic object and into the
1927 runtime process image. */
1928 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1929 {
1930 htab->srelbss->_raw_size += sizeof (Elf32_External_Rela);
1931 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1932 }
1933
1934 /* We need to figure out the alignment required for this symbol. I
1935 have no idea how other ELF linkers handle this. */
1936
1937 power_of_two = bfd_log2 (h->size);
1938 if (power_of_two > 3)
1939 power_of_two = 3;
1940
1941 /* Apply the required alignment. */
1942 s = htab->sdynbss;
1943 s->_raw_size = BFD_ALIGN (s->_raw_size,
1944 (bfd_size_type) (1 << power_of_two));
1945 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1946 {
1947 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1948 return FALSE;
1949 }
1950
1951 /* Define the symbol as being at this point in the section. */
1952 h->root.u.def.section = s;
1953 h->root.u.def.value = s->_raw_size;
1954
1955 /* Increment the section size to make room for the symbol. */
1956 s->_raw_size += h->size;
1957
1958 return TRUE;
1959 }
1960
1961 /* Called via elf_link_hash_traverse to create .plt entries for an
1962 application that uses statically linked PIC functions. Similar to
1963 the first part of elf32_hppa_adjust_dynamic_symbol. */
1964
1965 static bfd_boolean
1966 mark_PIC_calls (h, inf)
1967 struct elf_link_hash_entry *h;
1968 PTR inf ATTRIBUTE_UNUSED;
1969 {
1970 if (h->root.type == bfd_link_hash_warning)
1971 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1972
1973 if (! (h->plt.refcount > 0
1974 && (h->root.type == bfd_link_hash_defined
1975 || h->root.type == bfd_link_hash_defweak)
1976 && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0))
1977 {
1978 h->plt.offset = (bfd_vma) -1;
1979 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1980 return TRUE;
1981 }
1982
1983 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1984 ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
1985
1986 return TRUE;
1987 }
1988
1989 /* Allocate space in the .plt for entries that won't have relocations.
1990 ie. pic_call and plabel entries. */
1991
1992 static bfd_boolean
1993 allocate_plt_static (h, inf)
1994 struct elf_link_hash_entry *h;
1995 PTR inf;
1996 {
1997 struct bfd_link_info *info;
1998 struct elf32_hppa_link_hash_table *htab;
1999 asection *s;
2000
2001 if (h->root.type == bfd_link_hash_indirect)
2002 return TRUE;
2003
2004 if (h->root.type == bfd_link_hash_warning)
2005 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2006
2007 info = (struct bfd_link_info *) inf;
2008 htab = hppa_link_hash_table (info);
2009 if (((struct elf32_hppa_link_hash_entry *) h)->pic_call)
2010 {
2011 /* Make an entry in the .plt section for non-pic code that is
2012 calling pic code. */
2013 ((struct elf32_hppa_link_hash_entry *) h)->plabel = 0;
2014 s = htab->splt;
2015 h->plt.offset = s->_raw_size;
2016 s->_raw_size += PLT_ENTRY_SIZE;
2017 }
2018 else if (htab->elf.dynamic_sections_created
2019 && h->plt.refcount > 0)
2020 {
2021 /* Make sure this symbol is output as a dynamic symbol.
2022 Undefined weak syms won't yet be marked as dynamic. */
2023 if (h->dynindx == -1
2024 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
2025 && h->type != STT_PARISC_MILLI)
2026 {
2027 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2028 return FALSE;
2029 }
2030
2031 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
2032 {
2033 /* Allocate these later. From this point on, h->plabel
2034 means that the plt entry is only used by a plabel.
2035 We'll be using a normal plt entry for this symbol, so
2036 clear the plabel indicator. */
2037 ((struct elf32_hppa_link_hash_entry *) h)->plabel = 0;
2038 }
2039 else if (((struct elf32_hppa_link_hash_entry *) h)->plabel)
2040 {
2041 /* Make an entry in the .plt section for plabel references
2042 that won't have a .plt entry for other reasons. */
2043 s = htab->splt;
2044 h->plt.offset = s->_raw_size;
2045 s->_raw_size += PLT_ENTRY_SIZE;
2046 }
2047 else
2048 {
2049 /* No .plt entry needed. */
2050 h->plt.offset = (bfd_vma) -1;
2051 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2052 }
2053 }
2054 else
2055 {
2056 h->plt.offset = (bfd_vma) -1;
2057 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2058 }
2059
2060 return TRUE;
2061 }
2062
2063 /* Allocate space in .plt, .got and associated reloc sections for
2064 global syms. */
2065
2066 static bfd_boolean
2067 allocate_dynrelocs (h, inf)
2068 struct elf_link_hash_entry *h;
2069 PTR inf;
2070 {
2071 struct bfd_link_info *info;
2072 struct elf32_hppa_link_hash_table *htab;
2073 asection *s;
2074 struct elf32_hppa_link_hash_entry *eh;
2075 struct elf32_hppa_dyn_reloc_entry *p;
2076
2077 if (h->root.type == bfd_link_hash_indirect)
2078 return TRUE;
2079
2080 if (h->root.type == bfd_link_hash_warning)
2081 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2082
2083 info = (struct bfd_link_info *) inf;
2084 htab = hppa_link_hash_table (info);
2085 if (htab->elf.dynamic_sections_created
2086 && h->plt.offset != (bfd_vma) -1
2087 && !((struct elf32_hppa_link_hash_entry *) h)->pic_call
2088 && !((struct elf32_hppa_link_hash_entry *) h)->plabel)
2089 {
2090 /* Make an entry in the .plt section. */
2091 s = htab->splt;
2092 h->plt.offset = s->_raw_size;
2093 s->_raw_size += PLT_ENTRY_SIZE;
2094
2095 /* We also need to make an entry in the .rela.plt section. */
2096 htab->srelplt->_raw_size += sizeof (Elf32_External_Rela);
2097 htab->need_plt_stub = 1;
2098 }
2099
2100 if (h->got.refcount > 0)
2101 {
2102 /* Make sure this symbol is output as a dynamic symbol.
2103 Undefined weak syms won't yet be marked as dynamic. */
2104 if (h->dynindx == -1
2105 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
2106 && h->type != STT_PARISC_MILLI)
2107 {
2108 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2109 return FALSE;
2110 }
2111
2112 s = htab->sgot;
2113 h->got.offset = s->_raw_size;
2114 s->_raw_size += GOT_ENTRY_SIZE;
2115 if (htab->elf.dynamic_sections_created
2116 && (info->shared
2117 || (h->dynindx != -1
2118 && h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0))
2119 {
2120 htab->srelgot->_raw_size += sizeof (Elf32_External_Rela);
2121 }
2122 }
2123 else
2124 h->got.offset = (bfd_vma) -1;
2125
2126 eh = (struct elf32_hppa_link_hash_entry *) h;
2127 if (eh->dyn_relocs == NULL)
2128 return TRUE;
2129
2130 /* If this is a -Bsymbolic shared link, then we need to discard all
2131 space allocated for dynamic pc-relative relocs against symbols
2132 defined in a regular object. For the normal shared case, discard
2133 space for relocs that have become local due to symbol visibility
2134 changes. */
2135 if (info->shared)
2136 {
2137 #if RELATIVE_DYNRELOCS
2138 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
2139 && ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
2140 || info->symbolic))
2141 {
2142 struct elf32_hppa_dyn_reloc_entry **pp;
2143
2144 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2145 {
2146 p->count -= p->relative_count;
2147 p->relative_count = 0;
2148 if (p->count == 0)
2149 *pp = p->next;
2150 else
2151 pp = &p->next;
2152 }
2153 }
2154 #endif
2155 }
2156 else
2157 {
2158 /* For the non-shared case, discard space for relocs against
2159 symbols which turn out to need copy relocs or are not
2160 dynamic. */
2161 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
2162 && (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2163 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2164 || (htab->elf.dynamic_sections_created
2165 && (h->root.type == bfd_link_hash_undefweak
2166 || h->root.type == bfd_link_hash_undefined))))
2167 {
2168 /* Make sure this symbol is output as a dynamic symbol.
2169 Undefined weak syms won't yet be marked as dynamic. */
2170 if (h->dynindx == -1
2171 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
2172 && h->type != STT_PARISC_MILLI)
2173 {
2174 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2175 return FALSE;
2176 }
2177
2178 /* If that succeeded, we know we'll be keeping all the
2179 relocs. */
2180 if (h->dynindx != -1)
2181 goto keep;
2182 }
2183
2184 eh->dyn_relocs = NULL;
2185 return TRUE;
2186
2187 keep: ;
2188 }
2189
2190 /* Finally, allocate space. */
2191 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2192 {
2193 asection *sreloc = elf_section_data (p->sec)->sreloc;
2194 sreloc->_raw_size += p->count * sizeof (Elf32_External_Rela);
2195 }
2196
2197 return TRUE;
2198 }
2199
2200 /* This function is called via elf_link_hash_traverse to force
2201 millicode symbols local so they do not end up as globals in the
2202 dynamic symbol table. We ought to be able to do this in
2203 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2204 for all dynamic symbols. Arguably, this is a bug in
2205 elf_adjust_dynamic_symbol. */
2206
2207 static bfd_boolean
2208 clobber_millicode_symbols (h, info)
2209 struct elf_link_hash_entry *h;
2210 struct bfd_link_info *info;
2211 {
2212 if (h->root.type == bfd_link_hash_warning)
2213 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2214
2215 if (h->type == STT_PARISC_MILLI
2216 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
2217 {
2218 elf32_hppa_hide_symbol (info, h, TRUE);
2219 }
2220 return TRUE;
2221 }
2222
2223 /* Find any dynamic relocs that apply to read-only sections. */
2224
2225 static bfd_boolean
2226 readonly_dynrelocs (h, inf)
2227 struct elf_link_hash_entry *h;
2228 PTR inf;
2229 {
2230 struct elf32_hppa_link_hash_entry *eh;
2231 struct elf32_hppa_dyn_reloc_entry *p;
2232
2233 if (h->root.type == bfd_link_hash_warning)
2234 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2235
2236 eh = (struct elf32_hppa_link_hash_entry *) h;
2237 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2238 {
2239 asection *s = p->sec->output_section;
2240
2241 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2242 {
2243 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2244
2245 info->flags |= DF_TEXTREL;
2246
2247 /* Not an error, just cut short the traversal. */
2248 return FALSE;
2249 }
2250 }
2251 return TRUE;
2252 }
2253
2254 /* Set the sizes of the dynamic sections. */
2255
2256 static bfd_boolean
2257 elf32_hppa_size_dynamic_sections (output_bfd, info)
2258 bfd *output_bfd ATTRIBUTE_UNUSED;
2259 struct bfd_link_info *info;
2260 {
2261 struct elf32_hppa_link_hash_table *htab;
2262 bfd *dynobj;
2263 bfd *ibfd;
2264 asection *s;
2265 bfd_boolean relocs;
2266
2267 htab = hppa_link_hash_table (info);
2268 dynobj = htab->elf.dynobj;
2269 if (dynobj == NULL)
2270 abort ();
2271
2272 if (htab->elf.dynamic_sections_created)
2273 {
2274 /* Set the contents of the .interp section to the interpreter. */
2275 if (! info->shared)
2276 {
2277 s = bfd_get_section_by_name (dynobj, ".interp");
2278 if (s == NULL)
2279 abort ();
2280 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
2281 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2282 }
2283
2284 /* Force millicode symbols local. */
2285 elf_link_hash_traverse (&htab->elf,
2286 clobber_millicode_symbols,
2287 info);
2288 }
2289 else
2290 {
2291 /* Run through the function symbols, looking for any that are
2292 PIC, and mark them as needing .plt entries so that %r19 will
2293 be set up. */
2294 if (! info->shared)
2295 elf_link_hash_traverse (&htab->elf, mark_PIC_calls, (PTR) info);
2296 }
2297
2298 /* Set up .got and .plt offsets for local syms, and space for local
2299 dynamic relocs. */
2300 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2301 {
2302 bfd_signed_vma *local_got;
2303 bfd_signed_vma *end_local_got;
2304 bfd_signed_vma *local_plt;
2305 bfd_signed_vma *end_local_plt;
2306 bfd_size_type locsymcount;
2307 Elf_Internal_Shdr *symtab_hdr;
2308 asection *srel;
2309
2310 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2311 continue;
2312
2313 for (s = ibfd->sections; s != NULL; s = s->next)
2314 {
2315 struct elf32_hppa_dyn_reloc_entry *p;
2316
2317 for (p = ((struct elf32_hppa_dyn_reloc_entry *)
2318 elf_section_data (s)->local_dynrel);
2319 p != NULL;
2320 p = p->next)
2321 {
2322 if (!bfd_is_abs_section (p->sec)
2323 && bfd_is_abs_section (p->sec->output_section))
2324 {
2325 /* Input section has been discarded, either because
2326 it is a copy of a linkonce section or due to
2327 linker script /DISCARD/, so we'll be discarding
2328 the relocs too. */
2329 }
2330 else if (p->count != 0)
2331 {
2332 srel = elf_section_data (p->sec)->sreloc;
2333 srel->_raw_size += p->count * sizeof (Elf32_External_Rela);
2334 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
2335 info->flags |= DF_TEXTREL;
2336 }
2337 }
2338 }
2339
2340 local_got = elf_local_got_refcounts (ibfd);
2341 if (!local_got)
2342 continue;
2343
2344 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2345 locsymcount = symtab_hdr->sh_info;
2346 end_local_got = local_got + locsymcount;
2347 s = htab->sgot;
2348 srel = htab->srelgot;
2349 for (; local_got < end_local_got; ++local_got)
2350 {
2351 if (*local_got > 0)
2352 {
2353 *local_got = s->_raw_size;
2354 s->_raw_size += GOT_ENTRY_SIZE;
2355 if (info->shared)
2356 srel->_raw_size += sizeof (Elf32_External_Rela);
2357 }
2358 else
2359 *local_got = (bfd_vma) -1;
2360 }
2361
2362 local_plt = end_local_got;
2363 end_local_plt = local_plt + locsymcount;
2364 if (! htab->elf.dynamic_sections_created)
2365 {
2366 /* Won't be used, but be safe. */
2367 for (; local_plt < end_local_plt; ++local_plt)
2368 *local_plt = (bfd_vma) -1;
2369 }
2370 else
2371 {
2372 s = htab->splt;
2373 srel = htab->srelplt;
2374 for (; local_plt < end_local_plt; ++local_plt)
2375 {
2376 if (*local_plt > 0)
2377 {
2378 *local_plt = s->_raw_size;
2379 s->_raw_size += PLT_ENTRY_SIZE;
2380 if (info->shared)
2381 srel->_raw_size += sizeof (Elf32_External_Rela);
2382 }
2383 else
2384 *local_plt = (bfd_vma) -1;
2385 }
2386 }
2387 }
2388
2389 /* Do all the .plt entries without relocs first. The dynamic linker
2390 uses the last .plt reloc to find the end of the .plt (and hence
2391 the start of the .got) for lazy linking. */
2392 elf_link_hash_traverse (&htab->elf, allocate_plt_static, (PTR) info);
2393
2394 /* Allocate global sym .plt and .got entries, and space for global
2395 sym dynamic relocs. */
2396 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
2397
2398 /* The check_relocs and adjust_dynamic_symbol entry points have
2399 determined the sizes of the various dynamic sections. Allocate
2400 memory for them. */
2401 relocs = FALSE;
2402 for (s = dynobj->sections; s != NULL; s = s->next)
2403 {
2404 if ((s->flags & SEC_LINKER_CREATED) == 0)
2405 continue;
2406
2407 if (s == htab->splt)
2408 {
2409 if (htab->need_plt_stub)
2410 {
2411 /* Make space for the plt stub at the end of the .plt
2412 section. We want this stub right at the end, up
2413 against the .got section. */
2414 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2415 int pltalign = bfd_section_alignment (dynobj, s);
2416 bfd_size_type mask;
2417
2418 if (gotalign > pltalign)
2419 bfd_set_section_alignment (dynobj, s, gotalign);
2420 mask = ((bfd_size_type) 1 << gotalign) - 1;
2421 s->_raw_size = (s->_raw_size + sizeof (plt_stub) + mask) & ~mask;
2422 }
2423 }
2424 else if (s == htab->sgot)
2425 ;
2426 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
2427 {
2428 if (s->_raw_size != 0)
2429 {
2430 /* Remember whether there are any reloc sections other
2431 than .rela.plt. */
2432 if (s != htab->srelplt)
2433 relocs = TRUE;
2434
2435 /* We use the reloc_count field as a counter if we need
2436 to copy relocs into the output file. */
2437 s->reloc_count = 0;
2438 }
2439 }
2440 else
2441 {
2442 /* It's not one of our sections, so don't allocate space. */
2443 continue;
2444 }
2445
2446 if (s->_raw_size == 0)
2447 {
2448 /* If we don't need this section, strip it from the
2449 output file. This is mostly to handle .rela.bss and
2450 .rela.plt. We must create both sections in
2451 create_dynamic_sections, because they must be created
2452 before the linker maps input sections to output
2453 sections. The linker does that before
2454 adjust_dynamic_symbol is called, and it is that
2455 function which decides whether anything needs to go
2456 into these sections. */
2457 _bfd_strip_section_from_output (info, s);
2458 continue;
2459 }
2460
2461 /* Allocate memory for the section contents. Zero it, because
2462 we may not fill in all the reloc sections. */
2463 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
2464 if (s->contents == NULL && s->_raw_size != 0)
2465 return FALSE;
2466 }
2467
2468 if (htab->elf.dynamic_sections_created)
2469 {
2470 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2471 actually has nothing to do with the PLT, it is how we
2472 communicate the LTP value of a load module to the dynamic
2473 linker. */
2474 #define add_dynamic_entry(TAG, VAL) \
2475 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
2476
2477 if (!add_dynamic_entry (DT_PLTGOT, 0))
2478 return FALSE;
2479
2480 /* Add some entries to the .dynamic section. We fill in the
2481 values later, in elf32_hppa_finish_dynamic_sections, but we
2482 must add the entries now so that we get the correct size for
2483 the .dynamic section. The DT_DEBUG entry is filled in by the
2484 dynamic linker and used by the debugger. */
2485 if (!info->shared)
2486 {
2487 if (!add_dynamic_entry (DT_DEBUG, 0))
2488 return FALSE;
2489 }
2490
2491 if (htab->srelplt->_raw_size != 0)
2492 {
2493 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2494 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2495 || !add_dynamic_entry (DT_JMPREL, 0))
2496 return FALSE;
2497 }
2498
2499 if (relocs)
2500 {
2501 if (!add_dynamic_entry (DT_RELA, 0)
2502 || !add_dynamic_entry (DT_RELASZ, 0)
2503 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2504 return FALSE;
2505
2506 /* If any dynamic relocs apply to a read-only section,
2507 then we need a DT_TEXTREL entry. */
2508 if ((info->flags & DF_TEXTREL) == 0)
2509 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs,
2510 (PTR) info);
2511
2512 if ((info->flags & DF_TEXTREL) != 0)
2513 {
2514 if (!add_dynamic_entry (DT_TEXTREL, 0))
2515 return FALSE;
2516 }
2517 }
2518 }
2519 #undef add_dynamic_entry
2520
2521 return TRUE;
2522 }
2523
2524 /* External entry points for sizing and building linker stubs. */
2525
2526 /* Set up various things so that we can make a list of input sections
2527 for each output section included in the link. Returns -1 on error,
2528 0 when no stubs will be needed, and 1 on success. */
2529
2530 int
2531 elf32_hppa_setup_section_lists (output_bfd, info)
2532 bfd *output_bfd;
2533 struct bfd_link_info *info;
2534 {
2535 bfd *input_bfd;
2536 unsigned int bfd_count;
2537 int top_id, top_index;
2538 asection *section;
2539 asection **input_list, **list;
2540 bfd_size_type amt;
2541 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2542
2543 if (htab->elf.root.creator->flavour != bfd_target_elf_flavour)
2544 return 0;
2545
2546 /* Count the number of input BFDs and find the top input section id. */
2547 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2548 input_bfd != NULL;
2549 input_bfd = input_bfd->link_next)
2550 {
2551 bfd_count += 1;
2552 for (section = input_bfd->sections;
2553 section != NULL;
2554 section = section->next)
2555 {
2556 if (top_id < section->id)
2557 top_id = section->id;
2558 }
2559 }
2560 htab->bfd_count = bfd_count;
2561
2562 amt = sizeof (struct map_stub) * (top_id + 1);
2563 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
2564 if (htab->stub_group == NULL)
2565 return -1;
2566
2567 /* We can't use output_bfd->section_count here to find the top output
2568 section index as some sections may have been removed, and
2569 _bfd_strip_section_from_output doesn't renumber the indices. */
2570 for (section = output_bfd->sections, top_index = 0;
2571 section != NULL;
2572 section = section->next)
2573 {
2574 if (top_index < section->index)
2575 top_index = section->index;
2576 }
2577
2578 htab->top_index = top_index;
2579 amt = sizeof (asection *) * (top_index + 1);
2580 input_list = (asection **) bfd_malloc (amt);
2581 htab->input_list = input_list;
2582 if (input_list == NULL)
2583 return -1;
2584
2585 /* For sections we aren't interested in, mark their entries with a
2586 value we can check later. */
2587 list = input_list + top_index;
2588 do
2589 *list = bfd_abs_section_ptr;
2590 while (list-- != input_list);
2591
2592 for (section = output_bfd->sections;
2593 section != NULL;
2594 section = section->next)
2595 {
2596 if ((section->flags & SEC_CODE) != 0)
2597 input_list[section->index] = NULL;
2598 }
2599
2600 return 1;
2601 }
2602
2603 /* The linker repeatedly calls this function for each input section,
2604 in the order that input sections are linked into output sections.
2605 Build lists of input sections to determine groupings between which
2606 we may insert linker stubs. */
2607
2608 void
2609 elf32_hppa_next_input_section (info, isec)
2610 struct bfd_link_info *info;
2611 asection *isec;
2612 {
2613 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2614
2615 if (isec->output_section->index <= htab->top_index)
2616 {
2617 asection **list = htab->input_list + isec->output_section->index;
2618 if (*list != bfd_abs_section_ptr)
2619 {
2620 /* Steal the link_sec pointer for our list. */
2621 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2622 /* This happens to make the list in reverse order,
2623 which is what we want. */
2624 PREV_SEC (isec) = *list;
2625 *list = isec;
2626 }
2627 }
2628 }
2629
2630 /* See whether we can group stub sections together. Grouping stub
2631 sections may result in fewer stubs. More importantly, we need to
2632 put all .init* and .fini* stubs at the beginning of the .init or
2633 .fini output sections respectively, because glibc splits the
2634 _init and _fini functions into multiple parts. Putting a stub in
2635 the middle of a function is not a good idea. */
2636
2637 static void
2638 group_sections (htab, stub_group_size, stubs_always_before_branch)
2639 struct elf32_hppa_link_hash_table *htab;
2640 bfd_size_type stub_group_size;
2641 bfd_boolean stubs_always_before_branch;
2642 {
2643 asection **list = htab->input_list + htab->top_index;
2644 do
2645 {
2646 asection *tail = *list;
2647 if (tail == bfd_abs_section_ptr)
2648 continue;
2649 while (tail != NULL)
2650 {
2651 asection *curr;
2652 asection *prev;
2653 bfd_size_type total;
2654 bfd_boolean big_sec;
2655
2656 curr = tail;
2657 if (tail->_cooked_size)
2658 total = tail->_cooked_size;
2659 else
2660 total = tail->_raw_size;
2661 big_sec = total >= stub_group_size;
2662
2663 while ((prev = PREV_SEC (curr)) != NULL
2664 && ((total += curr->output_offset - prev->output_offset)
2665 < stub_group_size))
2666 curr = prev;
2667
2668 /* OK, the size from the start of CURR to the end is less
2669 than 240000 bytes and thus can be handled by one stub
2670 section. (or the tail section is itself larger than
2671 240000 bytes, in which case we may be toast.)
2672 We should really be keeping track of the total size of
2673 stubs added here, as stubs contribute to the final output
2674 section size. That's a little tricky, and this way will
2675 only break if stubs added total more than 22144 bytes, or
2676 2768 long branch stubs. It seems unlikely for more than
2677 2768 different functions to be called, especially from
2678 code only 240000 bytes long. This limit used to be
2679 250000, but c++ code tends to generate lots of little
2680 functions, and sometimes violated the assumption. */
2681 do
2682 {
2683 prev = PREV_SEC (tail);
2684 /* Set up this stub group. */
2685 htab->stub_group[tail->id].link_sec = curr;
2686 }
2687 while (tail != curr && (tail = prev) != NULL);
2688
2689 /* But wait, there's more! Input sections up to 240000
2690 bytes before the stub section can be handled by it too.
2691 Don't do this if we have a really large section after the
2692 stubs, as adding more stubs increases the chance that
2693 branches may not reach into the stub section. */
2694 if (!stubs_always_before_branch && !big_sec)
2695 {
2696 total = 0;
2697 while (prev != NULL
2698 && ((total += tail->output_offset - prev->output_offset)
2699 < stub_group_size))
2700 {
2701 tail = prev;
2702 prev = PREV_SEC (tail);
2703 htab->stub_group[tail->id].link_sec = curr;
2704 }
2705 }
2706 tail = prev;
2707 }
2708 }
2709 while (list-- != htab->input_list);
2710 free (htab->input_list);
2711 #undef PREV_SEC
2712 }
2713
2714 /* Read in all local syms for all input bfds, and create hash entries
2715 for export stubs if we are building a multi-subspace shared lib.
2716 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2717
2718 static int
2719 get_local_syms (output_bfd, input_bfd, info)
2720 bfd *output_bfd;
2721 bfd *input_bfd;
2722 struct bfd_link_info *info;
2723 {
2724 unsigned int bfd_indx;
2725 Elf_Internal_Sym *local_syms, **all_local_syms;
2726 int stub_changed = 0;
2727 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2728
2729 /* We want to read in symbol extension records only once. To do this
2730 we need to read in the local symbols in parallel and save them for
2731 later use; so hold pointers to the local symbols in an array. */
2732 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2733 all_local_syms = (Elf_Internal_Sym **) bfd_zmalloc (amt);
2734 htab->all_local_syms = all_local_syms;
2735 if (all_local_syms == NULL)
2736 return -1;
2737
2738 /* Walk over all the input BFDs, swapping in local symbols.
2739 If we are creating a shared library, create hash entries for the
2740 export stubs. */
2741 for (bfd_indx = 0;
2742 input_bfd != NULL;
2743 input_bfd = input_bfd->link_next, bfd_indx++)
2744 {
2745 Elf_Internal_Shdr *symtab_hdr;
2746
2747 /* We'll need the symbol table in a second. */
2748 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2749 if (symtab_hdr->sh_info == 0)
2750 continue;
2751
2752 /* We need an array of the local symbols attached to the input bfd. */
2753 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2754 if (local_syms == NULL)
2755 {
2756 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2757 symtab_hdr->sh_info, 0,
2758 NULL, NULL, NULL);
2759 /* Cache them for elf_link_input_bfd. */
2760 symtab_hdr->contents = (unsigned char *) local_syms;
2761 }
2762 if (local_syms == NULL)
2763 return -1;
2764
2765 all_local_syms[bfd_indx] = local_syms;
2766
2767 if (info->shared && htab->multi_subspace)
2768 {
2769 struct elf_link_hash_entry **sym_hashes;
2770 struct elf_link_hash_entry **end_hashes;
2771 unsigned int symcount;
2772
2773 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2774 - symtab_hdr->sh_info);
2775 sym_hashes = elf_sym_hashes (input_bfd);
2776 end_hashes = sym_hashes + symcount;
2777
2778 /* Look through the global syms for functions; We need to
2779 build export stubs for all globally visible functions. */
2780 for (; sym_hashes < end_hashes; sym_hashes++)
2781 {
2782 struct elf32_hppa_link_hash_entry *hash;
2783
2784 hash = (struct elf32_hppa_link_hash_entry *) *sym_hashes;
2785
2786 while (hash->elf.root.type == bfd_link_hash_indirect
2787 || hash->elf.root.type == bfd_link_hash_warning)
2788 hash = ((struct elf32_hppa_link_hash_entry *)
2789 hash->elf.root.u.i.link);
2790
2791 /* At this point in the link, undefined syms have been
2792 resolved, so we need to check that the symbol was
2793 defined in this BFD. */
2794 if ((hash->elf.root.type == bfd_link_hash_defined
2795 || hash->elf.root.type == bfd_link_hash_defweak)
2796 && hash->elf.type == STT_FUNC
2797 && hash->elf.root.u.def.section->output_section != NULL
2798 && (hash->elf.root.u.def.section->output_section->owner
2799 == output_bfd)
2800 && hash->elf.root.u.def.section->owner == input_bfd
2801 && (hash->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
2802 && !(hash->elf.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)
2803 && ELF_ST_VISIBILITY (hash->elf.other) == STV_DEFAULT)
2804 {
2805 asection *sec;
2806 const char *stub_name;
2807 struct elf32_hppa_stub_hash_entry *stub_entry;
2808
2809 sec = hash->elf.root.u.def.section;
2810 stub_name = hash->elf.root.root.string;
2811 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
2812 stub_name,
2813 FALSE, FALSE);
2814 if (stub_entry == NULL)
2815 {
2816 stub_entry = hppa_add_stub (stub_name, sec, htab);
2817 if (!stub_entry)
2818 return -1;
2819
2820 stub_entry->target_value = hash->elf.root.u.def.value;
2821 stub_entry->target_section = hash->elf.root.u.def.section;
2822 stub_entry->stub_type = hppa_stub_export;
2823 stub_entry->h = hash;
2824 stub_changed = 1;
2825 }
2826 else
2827 {
2828 (*_bfd_error_handler) (_("%s: duplicate export stub %s"),
2829 bfd_archive_filename (input_bfd),
2830 stub_name);
2831 }
2832 }
2833 }
2834 }
2835 }
2836
2837 return stub_changed;
2838 }
2839
2840 /* Determine and set the size of the stub section for a final link.
2841
2842 The basic idea here is to examine all the relocations looking for
2843 PC-relative calls to a target that is unreachable with a "bl"
2844 instruction. */
2845
2846 bfd_boolean
2847 elf32_hppa_size_stubs (output_bfd, stub_bfd, info, multi_subspace, group_size,
2848 add_stub_section, layout_sections_again)
2849 bfd *output_bfd;
2850 bfd *stub_bfd;
2851 struct bfd_link_info *info;
2852 bfd_boolean multi_subspace;
2853 bfd_signed_vma group_size;
2854 asection * (*add_stub_section) PARAMS ((const char *, asection *));
2855 void (*layout_sections_again) PARAMS ((void));
2856 {
2857 bfd_size_type stub_group_size;
2858 bfd_boolean stubs_always_before_branch;
2859 bfd_boolean stub_changed;
2860 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2861
2862 /* Stash our params away. */
2863 htab->stub_bfd = stub_bfd;
2864 htab->multi_subspace = multi_subspace;
2865 htab->add_stub_section = add_stub_section;
2866 htab->layout_sections_again = layout_sections_again;
2867 stubs_always_before_branch = group_size < 0;
2868 if (group_size < 0)
2869 stub_group_size = -group_size;
2870 else
2871 stub_group_size = group_size;
2872 if (stub_group_size == 1)
2873 {
2874 /* Default values. */
2875 if (stubs_always_before_branch)
2876 {
2877 stub_group_size = 7680000;
2878 if (htab->has_17bit_branch || htab->multi_subspace)
2879 stub_group_size = 240000;
2880 if (htab->has_12bit_branch)
2881 stub_group_size = 7500;
2882 }
2883 else
2884 {
2885 stub_group_size = 6971392;
2886 if (htab->has_17bit_branch || htab->multi_subspace)
2887 stub_group_size = 217856;
2888 if (htab->has_12bit_branch)
2889 stub_group_size = 6808;
2890 }
2891 }
2892
2893 group_sections (htab, stub_group_size, stubs_always_before_branch);
2894
2895 switch (get_local_syms (output_bfd, info->input_bfds, info))
2896 {
2897 default:
2898 if (htab->all_local_syms)
2899 goto error_ret_free_local;
2900 return FALSE;
2901
2902 case 0:
2903 stub_changed = FALSE;
2904 break;
2905
2906 case 1:
2907 stub_changed = TRUE;
2908 break;
2909 }
2910
2911 while (1)
2912 {
2913 bfd *input_bfd;
2914 unsigned int bfd_indx;
2915 asection *stub_sec;
2916
2917 for (input_bfd = info->input_bfds, bfd_indx = 0;
2918 input_bfd != NULL;
2919 input_bfd = input_bfd->link_next, bfd_indx++)
2920 {
2921 Elf_Internal_Shdr *symtab_hdr;
2922 asection *section;
2923 Elf_Internal_Sym *local_syms;
2924
2925 /* We'll need the symbol table in a second. */
2926 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2927 if (symtab_hdr->sh_info == 0)
2928 continue;
2929
2930 local_syms = htab->all_local_syms[bfd_indx];
2931
2932 /* Walk over each section attached to the input bfd. */
2933 for (section = input_bfd->sections;
2934 section != NULL;
2935 section = section->next)
2936 {
2937 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2938
2939 /* If there aren't any relocs, then there's nothing more
2940 to do. */
2941 if ((section->flags & SEC_RELOC) == 0
2942 || section->reloc_count == 0)
2943 continue;
2944
2945 /* If this section is a link-once section that will be
2946 discarded, then don't create any stubs. */
2947 if (section->output_section == NULL
2948 || section->output_section->owner != output_bfd)
2949 continue;
2950
2951 /* Get the relocs. */
2952 internal_relocs
2953 = _bfd_elf32_link_read_relocs (input_bfd, section, NULL,
2954 (Elf_Internal_Rela *) NULL,
2955 info->keep_memory);
2956 if (internal_relocs == NULL)
2957 goto error_ret_free_local;
2958
2959 /* Now examine each relocation. */
2960 irela = internal_relocs;
2961 irelaend = irela + section->reloc_count;
2962 for (; irela < irelaend; irela++)
2963 {
2964 unsigned int r_type, r_indx;
2965 enum elf32_hppa_stub_type stub_type;
2966 struct elf32_hppa_stub_hash_entry *stub_entry;
2967 asection *sym_sec;
2968 bfd_vma sym_value;
2969 bfd_vma destination;
2970 struct elf32_hppa_link_hash_entry *hash;
2971 char *stub_name;
2972 const asection *id_sec;
2973
2974 r_type = ELF32_R_TYPE (irela->r_info);
2975 r_indx = ELF32_R_SYM (irela->r_info);
2976
2977 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2978 {
2979 bfd_set_error (bfd_error_bad_value);
2980 error_ret_free_internal:
2981 if (elf_section_data (section)->relocs == NULL)
2982 free (internal_relocs);
2983 goto error_ret_free_local;
2984 }
2985
2986 /* Only look for stubs on call instructions. */
2987 if (r_type != (unsigned int) R_PARISC_PCREL12F
2988 && r_type != (unsigned int) R_PARISC_PCREL17F
2989 && r_type != (unsigned int) R_PARISC_PCREL22F)
2990 continue;
2991
2992 /* Now determine the call target, its name, value,
2993 section. */
2994 sym_sec = NULL;
2995 sym_value = 0;
2996 destination = 0;
2997 hash = NULL;
2998 if (r_indx < symtab_hdr->sh_info)
2999 {
3000 /* It's a local symbol. */
3001 Elf_Internal_Sym *sym;
3002 Elf_Internal_Shdr *hdr;
3003
3004 sym = local_syms + r_indx;
3005 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
3006 sym_sec = hdr->bfd_section;
3007 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
3008 sym_value = sym->st_value;
3009 destination = (sym_value + irela->r_addend
3010 + sym_sec->output_offset
3011 + sym_sec->output_section->vma);
3012 }
3013 else
3014 {
3015 /* It's an external symbol. */
3016 int e_indx;
3017
3018 e_indx = r_indx - symtab_hdr->sh_info;
3019 hash = ((struct elf32_hppa_link_hash_entry *)
3020 elf_sym_hashes (input_bfd)[e_indx]);
3021
3022 while (hash->elf.root.type == bfd_link_hash_indirect
3023 || hash->elf.root.type == bfd_link_hash_warning)
3024 hash = ((struct elf32_hppa_link_hash_entry *)
3025 hash->elf.root.u.i.link);
3026
3027 if (hash->elf.root.type == bfd_link_hash_defined
3028 || hash->elf.root.type == bfd_link_hash_defweak)
3029 {
3030 sym_sec = hash->elf.root.u.def.section;
3031 sym_value = hash->elf.root.u.def.value;
3032 if (sym_sec->output_section != NULL)
3033 destination = (sym_value + irela->r_addend
3034 + sym_sec->output_offset
3035 + sym_sec->output_section->vma);
3036 }
3037 else if (hash->elf.root.type == bfd_link_hash_undefweak)
3038 {
3039 if (! info->shared)
3040 continue;
3041 }
3042 else if (hash->elf.root.type == bfd_link_hash_undefined)
3043 {
3044 if (! (info->shared
3045 && !info->no_undefined
3046 && (ELF_ST_VISIBILITY (hash->elf.other)
3047 == STV_DEFAULT)
3048 && hash->elf.type != STT_PARISC_MILLI))
3049 continue;
3050 }
3051 else
3052 {
3053 bfd_set_error (bfd_error_bad_value);
3054 goto error_ret_free_internal;
3055 }
3056 }
3057
3058 /* Determine what (if any) linker stub is needed. */
3059 stub_type = hppa_type_of_stub (section, irela, hash,
3060 destination);
3061 if (stub_type == hppa_stub_none)
3062 continue;
3063
3064 /* Support for grouping stub sections. */
3065 id_sec = htab->stub_group[section->id].link_sec;
3066
3067 /* Get the name of this stub. */
3068 stub_name = hppa_stub_name (id_sec, sym_sec, hash, irela);
3069 if (!stub_name)
3070 goto error_ret_free_internal;
3071
3072 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
3073 stub_name,
3074 FALSE, FALSE);
3075 if (stub_entry != NULL)
3076 {
3077 /* The proper stub has already been created. */
3078 free (stub_name);
3079 continue;
3080 }
3081
3082 stub_entry = hppa_add_stub (stub_name, section, htab);
3083 if (stub_entry == NULL)
3084 {
3085 free (stub_name);
3086 goto error_ret_free_internal;
3087 }
3088
3089 stub_entry->target_value = sym_value;
3090 stub_entry->target_section = sym_sec;
3091 stub_entry->stub_type = stub_type;
3092 if (info->shared)
3093 {
3094 if (stub_type == hppa_stub_import)
3095 stub_entry->stub_type = hppa_stub_import_shared;
3096 else if (stub_type == hppa_stub_long_branch)
3097 stub_entry->stub_type = hppa_stub_long_branch_shared;
3098 }
3099 stub_entry->h = hash;
3100 stub_changed = TRUE;
3101 }
3102
3103 /* We're done with the internal relocs, free them. */
3104 if (elf_section_data (section)->relocs == NULL)
3105 free (internal_relocs);
3106 }
3107 }
3108
3109 if (!stub_changed)
3110 break;
3111
3112 /* OK, we've added some stubs. Find out the new size of the
3113 stub sections. */
3114 for (stub_sec = htab->stub_bfd->sections;
3115 stub_sec != NULL;
3116 stub_sec = stub_sec->next)
3117 {
3118 stub_sec->_raw_size = 0;
3119 stub_sec->_cooked_size = 0;
3120 }
3121
3122 bfd_hash_traverse (&htab->stub_hash_table, hppa_size_one_stub, htab);
3123
3124 /* Ask the linker to do its stuff. */
3125 (*htab->layout_sections_again) ();
3126 stub_changed = FALSE;
3127 }
3128
3129 free (htab->all_local_syms);
3130 return TRUE;
3131
3132 error_ret_free_local:
3133 free (htab->all_local_syms);
3134 return FALSE;
3135 }
3136
3137 /* For a final link, this function is called after we have sized the
3138 stubs to provide a value for __gp. */
3139
3140 bfd_boolean
3141 elf32_hppa_set_gp (abfd, info)
3142 bfd *abfd;
3143 struct bfd_link_info *info;
3144 {
3145 struct bfd_link_hash_entry *h;
3146 asection *sec = NULL;
3147 bfd_vma gp_val = 0;
3148 struct elf32_hppa_link_hash_table *htab;
3149
3150 htab = hppa_link_hash_table (info);
3151 h = bfd_link_hash_lookup (&htab->elf.root, "$global$", FALSE, FALSE, FALSE);
3152
3153 if (h != NULL
3154 && (h->type == bfd_link_hash_defined
3155 || h->type == bfd_link_hash_defweak))
3156 {
3157 gp_val = h->u.def.value;
3158 sec = h->u.def.section;
3159 }
3160 else
3161 {
3162 asection *splt;
3163 asection *sgot;
3164
3165 if (htab->elf.root.creator->flavour == bfd_target_elf_flavour)
3166 {
3167 splt = htab->splt;
3168 sgot = htab->sgot;
3169 }
3170 else
3171 {
3172 /* If we're not elf, look up the output sections in the
3173 hope we may actually find them. */
3174 splt = bfd_get_section_by_name (abfd, ".plt");
3175 sgot = bfd_get_section_by_name (abfd, ".got");
3176 }
3177
3178 /* Choose to point our LTP at, in this order, one of .plt, .got,
3179 or .data, if these sections exist. In the case of choosing
3180 .plt try to make the LTP ideal for addressing anywhere in the
3181 .plt or .got with a 14 bit signed offset. Typically, the end
3182 of the .plt is the start of the .got, so choose .plt + 0x2000
3183 if either the .plt or .got is larger than 0x2000. If both
3184 the .plt and .got are smaller than 0x2000, choose the end of
3185 the .plt section. */
3186 sec = splt;
3187 if (sec != NULL)
3188 {
3189 gp_val = sec->_raw_size;
3190 if (gp_val > 0x2000 || (sgot && sgot->_raw_size > 0x2000))
3191 {
3192 gp_val = 0x2000;
3193 }
3194 }
3195 else
3196 {
3197 sec = sgot;
3198 if (sec != NULL)
3199 {
3200 /* We know we don't have a .plt. If .got is large,
3201 offset our LTP. */
3202 if (sec->_raw_size > 0x2000)
3203 gp_val = 0x2000;
3204 }
3205 else
3206 {
3207 /* No .plt or .got. Who cares what the LTP is? */
3208 sec = bfd_get_section_by_name (abfd, ".data");
3209 }
3210 }
3211
3212 if (h != NULL)
3213 {
3214 h->type = bfd_link_hash_defined;
3215 h->u.def.value = gp_val;
3216 if (sec != NULL)
3217 h->u.def.section = sec;
3218 else
3219 h->u.def.section = bfd_abs_section_ptr;
3220 }
3221 }
3222
3223 if (sec != NULL && sec->output_section != NULL)
3224 gp_val += sec->output_section->vma + sec->output_offset;
3225
3226 elf_gp (abfd) = gp_val;
3227 return TRUE;
3228 }
3229
3230 /* Build all the stubs associated with the current output file. The
3231 stubs are kept in a hash table attached to the main linker hash
3232 table. We also set up the .plt entries for statically linked PIC
3233 functions here. This function is called via hppaelf_finish in the
3234 linker. */
3235
3236 bfd_boolean
3237 elf32_hppa_build_stubs (info)
3238 struct bfd_link_info *info;
3239 {
3240 asection *stub_sec;
3241 struct bfd_hash_table *table;
3242 struct elf32_hppa_link_hash_table *htab;
3243
3244 htab = hppa_link_hash_table (info);
3245
3246 for (stub_sec = htab->stub_bfd->sections;
3247 stub_sec != NULL;
3248 stub_sec = stub_sec->next)
3249 {
3250 bfd_size_type size;
3251
3252 /* Allocate memory to hold the linker stubs. */
3253 size = stub_sec->_raw_size;
3254 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
3255 if (stub_sec->contents == NULL && size != 0)
3256 return FALSE;
3257 stub_sec->_raw_size = 0;
3258 }
3259
3260 /* Build the stubs as directed by the stub hash table. */
3261 table = &htab->stub_hash_table;
3262 bfd_hash_traverse (table, hppa_build_one_stub, info);
3263
3264 return TRUE;
3265 }
3266
3267 /* Perform a final link. */
3268
3269 static bfd_boolean
3270 elf32_hppa_final_link (abfd, info)
3271 bfd *abfd;
3272 struct bfd_link_info *info;
3273 {
3274 /* Invoke the regular ELF linker to do all the work. */
3275 if (!bfd_elf32_bfd_final_link (abfd, info))
3276 return FALSE;
3277
3278 /* If we're producing a final executable, sort the contents of the
3279 unwind section. */
3280 return elf_hppa_sort_unwind (abfd);
3281 }
3282
3283 /* Record the lowest address for the data and text segments. */
3284
3285 static void
3286 hppa_record_segment_addr (abfd, section, data)
3287 bfd *abfd ATTRIBUTE_UNUSED;
3288 asection *section;
3289 PTR data;
3290 {
3291 struct elf32_hppa_link_hash_table *htab;
3292
3293 htab = (struct elf32_hppa_link_hash_table *) data;
3294
3295 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3296 {
3297 bfd_vma value = section->vma - section->filepos;
3298
3299 if ((section->flags & SEC_READONLY) != 0)
3300 {
3301 if (value < htab->text_segment_base)
3302 htab->text_segment_base = value;
3303 }
3304 else
3305 {
3306 if (value < htab->data_segment_base)
3307 htab->data_segment_base = value;
3308 }
3309 }
3310 }
3311
3312 /* Perform a relocation as part of a final link. */
3313
3314 static bfd_reloc_status_type
3315 final_link_relocate (input_section, contents, rel, value, htab, sym_sec, h)
3316 asection *input_section;
3317 bfd_byte *contents;
3318 const Elf_Internal_Rela *rel;
3319 bfd_vma value;
3320 struct elf32_hppa_link_hash_table *htab;
3321 asection *sym_sec;
3322 struct elf32_hppa_link_hash_entry *h;
3323 {
3324 int insn;
3325 unsigned int r_type = ELF32_R_TYPE (rel->r_info);
3326 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3327 int r_format = howto->bitsize;
3328 enum hppa_reloc_field_selector_type_alt r_field;
3329 bfd *input_bfd = input_section->owner;
3330 bfd_vma offset = rel->r_offset;
3331 bfd_vma max_branch_offset = 0;
3332 bfd_byte *hit_data = contents + offset;
3333 bfd_signed_vma addend = rel->r_addend;
3334 bfd_vma location;
3335 struct elf32_hppa_stub_hash_entry *stub_entry = NULL;
3336 int val;
3337
3338 if (r_type == R_PARISC_NONE)
3339 return bfd_reloc_ok;
3340
3341 insn = bfd_get_32 (input_bfd, hit_data);
3342
3343 /* Find out where we are and where we're going. */
3344 location = (offset +
3345 input_section->output_offset +
3346 input_section->output_section->vma);
3347
3348 switch (r_type)
3349 {
3350 case R_PARISC_PCREL12F:
3351 case R_PARISC_PCREL17F:
3352 case R_PARISC_PCREL22F:
3353 /* If this call should go via the plt, find the import stub in
3354 the stub hash. */
3355 if (sym_sec == NULL
3356 || sym_sec->output_section == NULL
3357 || (h != NULL
3358 && h->elf.plt.offset != (bfd_vma) -1
3359 && (h->elf.dynindx != -1 || h->pic_call)
3360 && !h->plabel))
3361 {
3362 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3363 h, rel, htab);
3364 if (stub_entry != NULL)
3365 {
3366 value = (stub_entry->stub_offset
3367 + stub_entry->stub_sec->output_offset
3368 + stub_entry->stub_sec->output_section->vma);
3369 addend = 0;
3370 }
3371 else if (sym_sec == NULL && h != NULL
3372 && h->elf.root.type == bfd_link_hash_undefweak)
3373 {
3374 /* It's OK if undefined weak. Calls to undefined weak
3375 symbols behave as if the "called" function
3376 immediately returns. We can thus call to a weak
3377 function without first checking whether the function
3378 is defined. */
3379 value = location;
3380 addend = 8;
3381 }
3382 else
3383 return bfd_reloc_undefined;
3384 }
3385 /* Fall thru. */
3386
3387 case R_PARISC_PCREL21L:
3388 case R_PARISC_PCREL17C:
3389 case R_PARISC_PCREL17R:
3390 case R_PARISC_PCREL14R:
3391 case R_PARISC_PCREL14F:
3392 /* Make it a pc relative offset. */
3393 value -= location;
3394 addend -= 8;
3395 break;
3396
3397 case R_PARISC_DPREL21L:
3398 case R_PARISC_DPREL14R:
3399 case R_PARISC_DPREL14F:
3400 /* For all the DP relative relocations, we need to examine the symbol's
3401 section. If it has no section or if it's a code section, then
3402 "data pointer relative" makes no sense. In that case we don't
3403 adjust the "value", and for 21 bit addil instructions, we change the
3404 source addend register from %dp to %r0. This situation commonly
3405 arises for undefined weak symbols and when a variable's "constness"
3406 is declared differently from the way the variable is defined. For
3407 instance: "extern int foo" with foo defined as "const int foo". */
3408 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3409 {
3410 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3411 == (((int) OP_ADDIL << 26) | (27 << 21)))
3412 {
3413 insn &= ~ (0x1f << 21);
3414 #if 0 /* debug them. */
3415 (*_bfd_error_handler)
3416 (_("%s(%s+0x%lx): fixing %s"),
3417 bfd_archive_filename (input_bfd),
3418 input_section->name,
3419 (long) rel->r_offset,
3420 howto->name);
3421 #endif
3422 }
3423 /* Now try to make things easy for the dynamic linker. */
3424
3425 break;
3426 }
3427 /* Fall thru. */
3428
3429 case R_PARISC_DLTIND21L:
3430 case R_PARISC_DLTIND14R:
3431 case R_PARISC_DLTIND14F:
3432 value -= elf_gp (input_section->output_section->owner);
3433 break;
3434
3435 case R_PARISC_SEGREL32:
3436 if ((sym_sec->flags & SEC_CODE) != 0)
3437 value -= htab->text_segment_base;
3438 else
3439 value -= htab->data_segment_base;
3440 break;
3441
3442 default:
3443 break;
3444 }
3445
3446 switch (r_type)
3447 {
3448 case R_PARISC_DIR32:
3449 case R_PARISC_DIR14F:
3450 case R_PARISC_DIR17F:
3451 case R_PARISC_PCREL17C:
3452 case R_PARISC_PCREL14F:
3453 case R_PARISC_DPREL14F:
3454 case R_PARISC_PLABEL32:
3455 case R_PARISC_DLTIND14F:
3456 case R_PARISC_SEGBASE:
3457 case R_PARISC_SEGREL32:
3458 r_field = e_fsel;
3459 break;
3460
3461 case R_PARISC_DLTIND21L:
3462 case R_PARISC_PCREL21L:
3463 case R_PARISC_PLABEL21L:
3464 r_field = e_lsel;
3465 break;
3466
3467 case R_PARISC_DIR21L:
3468 case R_PARISC_DPREL21L:
3469 r_field = e_lrsel;
3470 break;
3471
3472 case R_PARISC_PCREL17R:
3473 case R_PARISC_PCREL14R:
3474 case R_PARISC_PLABEL14R:
3475 case R_PARISC_DLTIND14R:
3476 r_field = e_rsel;
3477 break;
3478
3479 case R_PARISC_DIR17R:
3480 case R_PARISC_DIR14R:
3481 case R_PARISC_DPREL14R:
3482 r_field = e_rrsel;
3483 break;
3484
3485 case R_PARISC_PCREL12F:
3486 case R_PARISC_PCREL17F:
3487 case R_PARISC_PCREL22F:
3488 r_field = e_fsel;
3489
3490 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3491 {
3492 max_branch_offset = (1 << (17-1)) << 2;
3493 }
3494 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3495 {
3496 max_branch_offset = (1 << (12-1)) << 2;
3497 }
3498 else
3499 {
3500 max_branch_offset = (1 << (22-1)) << 2;
3501 }
3502
3503 /* sym_sec is NULL on undefined weak syms or when shared on
3504 undefined syms. We've already checked for a stub for the
3505 shared undefined case. */
3506 if (sym_sec == NULL)
3507 break;
3508
3509 /* If the branch is out of reach, then redirect the
3510 call to the local stub for this function. */
3511 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3512 {
3513 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3514 h, rel, htab);
3515 if (stub_entry == NULL)
3516 return bfd_reloc_undefined;
3517
3518 /* Munge up the value and addend so that we call the stub
3519 rather than the procedure directly. */
3520 value = (stub_entry->stub_offset
3521 + stub_entry->stub_sec->output_offset
3522 + stub_entry->stub_sec->output_section->vma
3523 - location);
3524 addend = -8;
3525 }
3526 break;
3527
3528 /* Something we don't know how to handle. */
3529 default:
3530 return bfd_reloc_notsupported;
3531 }
3532
3533 /* Make sure we can reach the stub. */
3534 if (max_branch_offset != 0
3535 && value + addend + max_branch_offset >= 2*max_branch_offset)
3536 {
3537 (*_bfd_error_handler)
3538 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3539 bfd_archive_filename (input_bfd),
3540 input_section->name,
3541 (long) rel->r_offset,
3542 stub_entry->root.string);
3543 bfd_set_error (bfd_error_bad_value);
3544 return bfd_reloc_notsupported;
3545 }
3546
3547 val = hppa_field_adjust (value, addend, r_field);
3548
3549 switch (r_type)
3550 {
3551 case R_PARISC_PCREL12F:
3552 case R_PARISC_PCREL17C:
3553 case R_PARISC_PCREL17F:
3554 case R_PARISC_PCREL17R:
3555 case R_PARISC_PCREL22F:
3556 case R_PARISC_DIR17F:
3557 case R_PARISC_DIR17R:
3558 /* This is a branch. Divide the offset by four.
3559 Note that we need to decide whether it's a branch or
3560 otherwise by inspecting the reloc. Inspecting insn won't
3561 work as insn might be from a .word directive. */
3562 val >>= 2;
3563 break;
3564
3565 default:
3566 break;
3567 }
3568
3569 insn = hppa_rebuild_insn (insn, val, r_format);
3570
3571 /* Update the instruction word. */
3572 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3573 return bfd_reloc_ok;
3574 }
3575
3576 /* Relocate an HPPA ELF section. */
3577
3578 static bfd_boolean
3579 elf32_hppa_relocate_section (output_bfd, info, input_bfd, input_section,
3580 contents, relocs, local_syms, local_sections)
3581 bfd *output_bfd;
3582 struct bfd_link_info *info;
3583 bfd *input_bfd;
3584 asection *input_section;
3585 bfd_byte *contents;
3586 Elf_Internal_Rela *relocs;
3587 Elf_Internal_Sym *local_syms;
3588 asection **local_sections;
3589 {
3590 bfd_vma *local_got_offsets;
3591 struct elf32_hppa_link_hash_table *htab;
3592 Elf_Internal_Shdr *symtab_hdr;
3593 Elf_Internal_Rela *rel;
3594 Elf_Internal_Rela *relend;
3595
3596 if (info->relocateable)
3597 return TRUE;
3598
3599 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3600
3601 htab = hppa_link_hash_table (info);
3602 local_got_offsets = elf_local_got_offsets (input_bfd);
3603
3604 rel = relocs;
3605 relend = relocs + input_section->reloc_count;
3606 for (; rel < relend; rel++)
3607 {
3608 unsigned int r_type;
3609 reloc_howto_type *howto;
3610 unsigned int r_symndx;
3611 struct elf32_hppa_link_hash_entry *h;
3612 Elf_Internal_Sym *sym;
3613 asection *sym_sec;
3614 bfd_vma relocation;
3615 bfd_reloc_status_type r;
3616 const char *sym_name;
3617 bfd_boolean plabel;
3618 bfd_boolean warned_undef;
3619
3620 r_type = ELF32_R_TYPE (rel->r_info);
3621 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3622 {
3623 bfd_set_error (bfd_error_bad_value);
3624 return FALSE;
3625 }
3626 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3627 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3628 continue;
3629
3630 /* This is a final link. */
3631 r_symndx = ELF32_R_SYM (rel->r_info);
3632 h = NULL;
3633 sym = NULL;
3634 sym_sec = NULL;
3635 warned_undef = FALSE;
3636 if (r_symndx < symtab_hdr->sh_info)
3637 {
3638 /* This is a local symbol, h defaults to NULL. */
3639 sym = local_syms + r_symndx;
3640 sym_sec = local_sections[r_symndx];
3641 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sym_sec, rel);
3642 }
3643 else
3644 {
3645 int indx;
3646
3647 /* It's a global; Find its entry in the link hash. */
3648 indx = r_symndx - symtab_hdr->sh_info;
3649 h = ((struct elf32_hppa_link_hash_entry *)
3650 elf_sym_hashes (input_bfd)[indx]);
3651 while (h->elf.root.type == bfd_link_hash_indirect
3652 || h->elf.root.type == bfd_link_hash_warning)
3653 h = (struct elf32_hppa_link_hash_entry *) h->elf.root.u.i.link;
3654
3655 relocation = 0;
3656 if (h->elf.root.type == bfd_link_hash_defined
3657 || h->elf.root.type == bfd_link_hash_defweak)
3658 {
3659 sym_sec = h->elf.root.u.def.section;
3660 /* If sym_sec->output_section is NULL, then it's a
3661 symbol defined in a shared library. */
3662 if (sym_sec->output_section != NULL)
3663 relocation = (h->elf.root.u.def.value
3664 + sym_sec->output_offset
3665 + sym_sec->output_section->vma);
3666 }
3667 else if (h->elf.root.type == bfd_link_hash_undefweak)
3668 ;
3669 else if (info->shared && !info->no_undefined
3670 && ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
3671 && h->elf.type != STT_PARISC_MILLI)
3672 {
3673 if (!((*info->callbacks->undefined_symbol)
3674 (info, h->elf.root.root.string, input_bfd,
3675 input_section, rel->r_offset, FALSE)))
3676 return FALSE;
3677 warned_undef = TRUE;
3678 }
3679 else
3680 {
3681 if (!((*info->callbacks->undefined_symbol)
3682 (info, h->elf.root.root.string, input_bfd,
3683 input_section, rel->r_offset, TRUE)))
3684 return FALSE;
3685 warned_undef = TRUE;
3686 }
3687 }
3688
3689 /* Do any required modifications to the relocation value, and
3690 determine what types of dynamic info we need to output, if
3691 any. */
3692 plabel = 0;
3693 switch (r_type)
3694 {
3695 case R_PARISC_DLTIND14F:
3696 case R_PARISC_DLTIND14R:
3697 case R_PARISC_DLTIND21L:
3698 {
3699 bfd_vma off;
3700 bfd_boolean do_got = 0;
3701
3702 /* Relocation is to the entry for this symbol in the
3703 global offset table. */
3704 if (h != NULL)
3705 {
3706 bfd_boolean dyn;
3707
3708 off = h->elf.got.offset;
3709 dyn = htab->elf.dynamic_sections_created;
3710 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, &h->elf))
3711 {
3712 /* If we aren't going to call finish_dynamic_symbol,
3713 then we need to handle initialisation of the .got
3714 entry and create needed relocs here. Since the
3715 offset must always be a multiple of 4, we use the
3716 least significant bit to record whether we have
3717 initialised it already. */
3718 if ((off & 1) != 0)
3719 off &= ~1;
3720 else
3721 {
3722 h->elf.got.offset |= 1;
3723 do_got = 1;
3724 }
3725 }
3726 }
3727 else
3728 {
3729 /* Local symbol case. */
3730 if (local_got_offsets == NULL)
3731 abort ();
3732
3733 off = local_got_offsets[r_symndx];
3734
3735 /* The offset must always be a multiple of 4. We use
3736 the least significant bit to record whether we have
3737 already generated the necessary reloc. */
3738 if ((off & 1) != 0)
3739 off &= ~1;
3740 else
3741 {
3742 local_got_offsets[r_symndx] |= 1;
3743 do_got = 1;
3744 }
3745 }
3746
3747 if (do_got)
3748 {
3749 if (info->shared)
3750 {
3751 /* Output a dynamic relocation for this GOT entry.
3752 In this case it is relative to the base of the
3753 object because the symbol index is zero. */
3754 Elf_Internal_Rela outrel;
3755 bfd_byte *loc;
3756 asection *s = htab->srelgot;
3757
3758 outrel.r_offset = (off
3759 + htab->sgot->output_offset
3760 + htab->sgot->output_section->vma);
3761 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3762 outrel.r_addend = relocation;
3763 loc = s->contents;
3764 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3765 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3766 }
3767 else
3768 bfd_put_32 (output_bfd, relocation,
3769 htab->sgot->contents + off);
3770 }
3771
3772 if (off >= (bfd_vma) -2)
3773 abort ();
3774
3775 /* Add the base of the GOT to the relocation value. */
3776 relocation = (off
3777 + htab->sgot->output_offset
3778 + htab->sgot->output_section->vma);
3779 }
3780 break;
3781
3782 case R_PARISC_SEGREL32:
3783 /* If this is the first SEGREL relocation, then initialize
3784 the segment base values. */
3785 if (htab->text_segment_base == (bfd_vma) -1)
3786 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3787 break;
3788
3789 case R_PARISC_PLABEL14R:
3790 case R_PARISC_PLABEL21L:
3791 case R_PARISC_PLABEL32:
3792 if (htab->elf.dynamic_sections_created)
3793 {
3794 bfd_vma off;
3795 bfd_boolean do_plt = 0;
3796
3797 /* If we have a global symbol with a PLT slot, then
3798 redirect this relocation to it. */
3799 if (h != NULL)
3800 {
3801 off = h->elf.plt.offset;
3802 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, &h->elf))
3803 {
3804 /* In a non-shared link, adjust_dynamic_symbols
3805 isn't called for symbols forced local. We
3806 need to write out the plt entry here. */
3807 if ((off & 1) != 0)
3808 off &= ~1;
3809 else
3810 {
3811 h->elf.plt.offset |= 1;
3812 do_plt = 1;
3813 }
3814 }
3815 }
3816 else
3817 {
3818 bfd_vma *local_plt_offsets;
3819
3820 if (local_got_offsets == NULL)
3821 abort ();
3822
3823 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3824 off = local_plt_offsets[r_symndx];
3825
3826 /* As for the local .got entry case, we use the last
3827 bit to record whether we've already initialised
3828 this local .plt entry. */
3829 if ((off & 1) != 0)
3830 off &= ~1;
3831 else
3832 {
3833 local_plt_offsets[r_symndx] |= 1;
3834 do_plt = 1;
3835 }
3836 }
3837
3838 if (do_plt)
3839 {
3840 if (info->shared)
3841 {
3842 /* Output a dynamic IPLT relocation for this
3843 PLT entry. */
3844 Elf_Internal_Rela outrel;
3845 bfd_byte *loc;
3846 asection *s = htab->srelplt;
3847
3848 outrel.r_offset = (off
3849 + htab->splt->output_offset
3850 + htab->splt->output_section->vma);
3851 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3852 outrel.r_addend = relocation;
3853 loc = s->contents;
3854 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3855 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3856 }
3857 else
3858 {
3859 bfd_put_32 (output_bfd,
3860 relocation,
3861 htab->splt->contents + off);
3862 bfd_put_32 (output_bfd,
3863 elf_gp (htab->splt->output_section->owner),
3864 htab->splt->contents + off + 4);
3865 }
3866 }
3867
3868 if (off >= (bfd_vma) -2)
3869 abort ();
3870
3871 /* PLABELs contain function pointers. Relocation is to
3872 the entry for the function in the .plt. The magic +2
3873 offset signals to $$dyncall that the function pointer
3874 is in the .plt and thus has a gp pointer too.
3875 Exception: Undefined PLABELs should have a value of
3876 zero. */
3877 if (h == NULL
3878 || (h->elf.root.type != bfd_link_hash_undefweak
3879 && h->elf.root.type != bfd_link_hash_undefined))
3880 {
3881 relocation = (off
3882 + htab->splt->output_offset
3883 + htab->splt->output_section->vma
3884 + 2);
3885 }
3886 plabel = 1;
3887 }
3888 /* Fall through and possibly emit a dynamic relocation. */
3889
3890 case R_PARISC_DIR17F:
3891 case R_PARISC_DIR17R:
3892 case R_PARISC_DIR14F:
3893 case R_PARISC_DIR14R:
3894 case R_PARISC_DIR21L:
3895 case R_PARISC_DPREL14F:
3896 case R_PARISC_DPREL14R:
3897 case R_PARISC_DPREL21L:
3898 case R_PARISC_DIR32:
3899 /* r_symndx will be zero only for relocs against symbols
3900 from removed linkonce sections, or sections discarded by
3901 a linker script. */
3902 if (r_symndx == 0
3903 || (input_section->flags & SEC_ALLOC) == 0)
3904 break;
3905
3906 /* The reloc types handled here and this conditional
3907 expression must match the code in ..check_relocs and
3908 allocate_dynrelocs. ie. We need exactly the same condition
3909 as in ..check_relocs, with some extra conditions (dynindx
3910 test in this case) to cater for relocs removed by
3911 allocate_dynrelocs. If you squint, the non-shared test
3912 here does indeed match the one in ..check_relocs, the
3913 difference being that here we test DEF_DYNAMIC as well as
3914 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3915 which is why we can't use just that test here.
3916 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3917 there all files have not been loaded. */
3918 if ((info->shared
3919 && (IS_ABSOLUTE_RELOC (r_type)
3920 || (h != NULL
3921 && h->elf.dynindx != -1
3922 && (!info->symbolic
3923 || (h->elf.elf_link_hash_flags
3924 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
3925 || (!info->shared
3926 && h != NULL
3927 && h->elf.dynindx != -1
3928 && (h->elf.elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
3929 && (((h->elf.elf_link_hash_flags
3930 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3931 && (h->elf.elf_link_hash_flags
3932 & ELF_LINK_HASH_DEF_REGULAR) == 0)
3933 || h->elf.root.type == bfd_link_hash_undefweak
3934 || h->elf.root.type == bfd_link_hash_undefined)))
3935 {
3936 Elf_Internal_Rela outrel;
3937 bfd_boolean skip;
3938 asection *sreloc;
3939 bfd_byte *loc;
3940
3941 /* When generating a shared object, these relocations
3942 are copied into the output file to be resolved at run
3943 time. */
3944
3945 outrel.r_addend = rel->r_addend;
3946 outrel.r_offset =
3947 _bfd_elf_section_offset (output_bfd, info, input_section,
3948 rel->r_offset);
3949 skip = (outrel.r_offset == (bfd_vma) -1
3950 || outrel.r_offset == (bfd_vma) -2);
3951 outrel.r_offset += (input_section->output_offset
3952 + input_section->output_section->vma);
3953
3954 if (skip)
3955 {
3956 memset (&outrel, 0, sizeof (outrel));
3957 }
3958 else if (h != NULL
3959 && h->elf.dynindx != -1
3960 && (plabel
3961 || !IS_ABSOLUTE_RELOC (r_type)
3962 || !info->shared
3963 || !info->symbolic
3964 || (h->elf.elf_link_hash_flags
3965 & ELF_LINK_HASH_DEF_REGULAR) == 0))
3966 {
3967 outrel.r_info = ELF32_R_INFO (h->elf.dynindx, r_type);
3968 }
3969 else /* It's a local symbol, or one marked to become local. */
3970 {
3971 int indx = 0;
3972
3973 /* Add the absolute offset of the symbol. */
3974 outrel.r_addend += relocation;
3975
3976 /* Global plabels need to be processed by the
3977 dynamic linker so that functions have at most one
3978 fptr. For this reason, we need to differentiate
3979 between global and local plabels, which we do by
3980 providing the function symbol for a global plabel
3981 reloc, and no symbol for local plabels. */
3982 if (! plabel
3983 && sym_sec != NULL
3984 && sym_sec->output_section != NULL
3985 && ! bfd_is_abs_section (sym_sec))
3986 {
3987 indx = elf_section_data (sym_sec->output_section)->dynindx;
3988 /* We are turning this relocation into one
3989 against a section symbol, so subtract out the
3990 output section's address but not the offset
3991 of the input section in the output section. */
3992 outrel.r_addend -= sym_sec->output_section->vma;
3993 }
3994
3995 outrel.r_info = ELF32_R_INFO (indx, r_type);
3996 }
3997 #if 0
3998 /* EH info can cause unaligned DIR32 relocs.
3999 Tweak the reloc type for the dynamic linker. */
4000 if (r_type == R_PARISC_DIR32 && (outrel.r_offset & 3) != 0)
4001 outrel.r_info = ELF32_R_INFO (ELF32_R_SYM (outrel.r_info),
4002 R_PARISC_DIR32U);
4003 #endif
4004 sreloc = elf_section_data (input_section)->sreloc;
4005 if (sreloc == NULL)
4006 abort ();
4007
4008 loc = sreloc->contents;
4009 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
4010 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4011 }
4012 break;
4013
4014 default:
4015 break;
4016 }
4017
4018 r = final_link_relocate (input_section, contents, rel, relocation,
4019 htab, sym_sec, h);
4020
4021 if (r == bfd_reloc_ok)
4022 continue;
4023
4024 if (h != NULL)
4025 sym_name = h->elf.root.root.string;
4026 else
4027 {
4028 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4029 symtab_hdr->sh_link,
4030 sym->st_name);
4031 if (sym_name == NULL)
4032 return FALSE;
4033 if (*sym_name == '\0')
4034 sym_name = bfd_section_name (input_bfd, sym_sec);
4035 }
4036
4037 howto = elf_hppa_howto_table + r_type;
4038
4039 if (r == bfd_reloc_undefined || r == bfd_reloc_notsupported)
4040 {
4041 if (r == bfd_reloc_notsupported || !warned_undef)
4042 {
4043 (*_bfd_error_handler)
4044 (_("%s(%s+0x%lx): cannot handle %s for %s"),
4045 bfd_archive_filename (input_bfd),
4046 input_section->name,
4047 (long) rel->r_offset,
4048 howto->name,
4049 sym_name);
4050 bfd_set_error (bfd_error_bad_value);
4051 return FALSE;
4052 }
4053 }
4054 else
4055 {
4056 if (!((*info->callbacks->reloc_overflow)
4057 (info, sym_name, howto->name, (bfd_vma) 0,
4058 input_bfd, input_section, rel->r_offset)))
4059 return FALSE;
4060 }
4061 }
4062
4063 return TRUE;
4064 }
4065
4066 /* Finish up dynamic symbol handling. We set the contents of various
4067 dynamic sections here. */
4068
4069 static bfd_boolean
4070 elf32_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
4071 bfd *output_bfd;
4072 struct bfd_link_info *info;
4073 struct elf_link_hash_entry *h;
4074 Elf_Internal_Sym *sym;
4075 {
4076 struct elf32_hppa_link_hash_table *htab;
4077
4078 htab = hppa_link_hash_table (info);
4079
4080 if (h->plt.offset != (bfd_vma) -1)
4081 {
4082 bfd_vma value;
4083
4084 if (h->plt.offset & 1)
4085 abort ();
4086
4087 /* This symbol has an entry in the procedure linkage table. Set
4088 it up.
4089
4090 The format of a plt entry is
4091 <funcaddr>
4092 <__gp>
4093 */
4094 value = 0;
4095 if (h->root.type == bfd_link_hash_defined
4096 || h->root.type == bfd_link_hash_defweak)
4097 {
4098 value = h->root.u.def.value;
4099 if (h->root.u.def.section->output_section != NULL)
4100 value += (h->root.u.def.section->output_offset
4101 + h->root.u.def.section->output_section->vma);
4102 }
4103
4104 if (! ((struct elf32_hppa_link_hash_entry *) h)->pic_call)
4105 {
4106 Elf_Internal_Rela rel;
4107 bfd_byte *loc;
4108
4109 /* Create a dynamic IPLT relocation for this entry. */
4110 rel.r_offset = (h->plt.offset
4111 + htab->splt->output_offset
4112 + htab->splt->output_section->vma);
4113 if (h->dynindx != -1)
4114 {
4115 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_IPLT);
4116 rel.r_addend = 0;
4117 }
4118 else
4119 {
4120 /* This symbol has been marked to become local, and is
4121 used by a plabel so must be kept in the .plt. */
4122 rel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4123 rel.r_addend = value;
4124 }
4125
4126 loc = htab->srelplt->contents;
4127 loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4128 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner,
4129 &rel, loc);
4130 }
4131 else
4132 {
4133 bfd_put_32 (htab->splt->owner,
4134 value,
4135 htab->splt->contents + h->plt.offset);
4136 bfd_put_32 (htab->splt->owner,
4137 elf_gp (htab->splt->output_section->owner),
4138 htab->splt->contents + h->plt.offset + 4);
4139 }
4140
4141 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
4142 {
4143 /* Mark the symbol as undefined, rather than as defined in
4144 the .plt section. Leave the value alone. */
4145 sym->st_shndx = SHN_UNDEF;
4146 }
4147 }
4148
4149 if (h->got.offset != (bfd_vma) -1)
4150 {
4151 Elf_Internal_Rela rel;
4152 bfd_byte *loc;
4153
4154 /* This symbol has an entry in the global offset table. Set it
4155 up. */
4156
4157 rel.r_offset = ((h->got.offset &~ (bfd_vma) 1)
4158 + htab->sgot->output_offset
4159 + htab->sgot->output_section->vma);
4160
4161 /* If this is a -Bsymbolic link and the symbol is defined
4162 locally or was forced to be local because of a version file,
4163 we just want to emit a RELATIVE reloc. The entry in the
4164 global offset table will already have been initialized in the
4165 relocate_section function. */
4166 if (info->shared
4167 && (info->symbolic || h->dynindx == -1)
4168 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
4169 {
4170 rel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4171 rel.r_addend = (h->root.u.def.value
4172 + h->root.u.def.section->output_offset
4173 + h->root.u.def.section->output_section->vma);
4174 }
4175 else
4176 {
4177 if ((h->got.offset & 1) != 0)
4178 abort ();
4179 bfd_put_32 (output_bfd, (bfd_vma) 0,
4180 htab->sgot->contents + h->got.offset);
4181 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_DIR32);
4182 rel.r_addend = 0;
4183 }
4184
4185 loc = htab->srelgot->contents;
4186 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4187 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
4188 }
4189
4190 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
4191 {
4192 asection *s;
4193 Elf_Internal_Rela rel;
4194 bfd_byte *loc;
4195
4196 /* This symbol needs a copy reloc. Set it up. */
4197
4198 if (! (h->dynindx != -1
4199 && (h->root.type == bfd_link_hash_defined
4200 || h->root.type == bfd_link_hash_defweak)))
4201 abort ();
4202
4203 s = htab->srelbss;
4204
4205 rel.r_offset = (h->root.u.def.value
4206 + h->root.u.def.section->output_offset
4207 + h->root.u.def.section->output_section->vma);
4208 rel.r_addend = 0;
4209 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_COPY);
4210 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4211 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
4212 }
4213
4214 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4215 if (h->root.root.string[0] == '_'
4216 && (strcmp (h->root.root.string, "_DYNAMIC") == 0
4217 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0))
4218 {
4219 sym->st_shndx = SHN_ABS;
4220 }
4221
4222 return TRUE;
4223 }
4224
4225 /* Used to decide how to sort relocs in an optimal manner for the
4226 dynamic linker, before writing them out. */
4227
4228 static enum elf_reloc_type_class
4229 elf32_hppa_reloc_type_class (rela)
4230 const Elf_Internal_Rela *rela;
4231 {
4232 if (ELF32_R_SYM (rela->r_info) == 0)
4233 return reloc_class_relative;
4234
4235 switch ((int) ELF32_R_TYPE (rela->r_info))
4236 {
4237 case R_PARISC_IPLT:
4238 return reloc_class_plt;
4239 case R_PARISC_COPY:
4240 return reloc_class_copy;
4241 default:
4242 return reloc_class_normal;
4243 }
4244 }
4245
4246 /* Finish up the dynamic sections. */
4247
4248 static bfd_boolean
4249 elf32_hppa_finish_dynamic_sections (output_bfd, info)
4250 bfd *output_bfd;
4251 struct bfd_link_info *info;
4252 {
4253 bfd *dynobj;
4254 struct elf32_hppa_link_hash_table *htab;
4255 asection *sdyn;
4256
4257 htab = hppa_link_hash_table (info);
4258 dynobj = htab->elf.dynobj;
4259
4260 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4261
4262 if (htab->elf.dynamic_sections_created)
4263 {
4264 Elf32_External_Dyn *dyncon, *dynconend;
4265
4266 if (sdyn == NULL)
4267 abort ();
4268
4269 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4270 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
4271 for (; dyncon < dynconend; dyncon++)
4272 {
4273 Elf_Internal_Dyn dyn;
4274 asection *s;
4275
4276 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4277
4278 switch (dyn.d_tag)
4279 {
4280 default:
4281 continue;
4282
4283 case DT_PLTGOT:
4284 /* Use PLTGOT to set the GOT register. */
4285 dyn.d_un.d_ptr = elf_gp (output_bfd);
4286 break;
4287
4288 case DT_JMPREL:
4289 s = htab->srelplt;
4290 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4291 break;
4292
4293 case DT_PLTRELSZ:
4294 s = htab->srelplt;
4295 dyn.d_un.d_val = s->_raw_size;
4296 break;
4297
4298 case DT_RELASZ:
4299 /* Don't count procedure linkage table relocs in the
4300 overall reloc count. */
4301 s = htab->srelplt;
4302 if (s == NULL)
4303 continue;
4304 dyn.d_un.d_val -= s->_raw_size;
4305 break;
4306
4307 case DT_RELA:
4308 /* We may not be using the standard ELF linker script.
4309 If .rela.plt is the first .rela section, we adjust
4310 DT_RELA to not include it. */
4311 s = htab->srelplt;
4312 if (s == NULL)
4313 continue;
4314 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4315 continue;
4316 dyn.d_un.d_ptr += s->_raw_size;
4317 break;
4318 }
4319
4320 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4321 }
4322 }
4323
4324 if (htab->sgot != NULL && htab->sgot->_raw_size != 0)
4325 {
4326 /* Fill in the first entry in the global offset table.
4327 We use it to point to our dynamic section, if we have one. */
4328 bfd_put_32 (output_bfd,
4329 (sdyn != NULL
4330 ? sdyn->output_section->vma + sdyn->output_offset
4331 : (bfd_vma) 0),
4332 htab->sgot->contents);
4333
4334 /* The second entry is reserved for use by the dynamic linker. */
4335 memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4336
4337 /* Set .got entry size. */
4338 elf_section_data (htab->sgot->output_section)
4339 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4340 }
4341
4342 if (htab->splt != NULL && htab->splt->_raw_size != 0)
4343 {
4344 /* Set plt entry size. */
4345 elf_section_data (htab->splt->output_section)
4346 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4347
4348 if (htab->need_plt_stub)
4349 {
4350 /* Set up the .plt stub. */
4351 memcpy (htab->splt->contents
4352 + htab->splt->_raw_size - sizeof (plt_stub),
4353 plt_stub, sizeof (plt_stub));
4354
4355 if ((htab->splt->output_offset
4356 + htab->splt->output_section->vma
4357 + htab->splt->_raw_size)
4358 != (htab->sgot->output_offset
4359 + htab->sgot->output_section->vma))
4360 {
4361 (*_bfd_error_handler)
4362 (_(".got section not immediately after .plt section"));
4363 return FALSE;
4364 }
4365 }
4366 }
4367
4368 return TRUE;
4369 }
4370
4371 /* Tweak the OSABI field of the elf header. */
4372
4373 static void
4374 elf32_hppa_post_process_headers (abfd, link_info)
4375 bfd *abfd;
4376 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
4377 {
4378 Elf_Internal_Ehdr * i_ehdrp;
4379
4380 i_ehdrp = elf_elfheader (abfd);
4381
4382 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
4383 {
4384 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
4385 }
4386 else
4387 {
4388 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
4389 }
4390 }
4391
4392 /* Called when writing out an object file to decide the type of a
4393 symbol. */
4394 static int
4395 elf32_hppa_elf_get_symbol_type (elf_sym, type)
4396 Elf_Internal_Sym *elf_sym;
4397 int type;
4398 {
4399 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4400 return STT_PARISC_MILLI;
4401 else
4402 return type;
4403 }
4404
4405 /* Misc BFD support code. */
4406 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4407 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4408 #define elf_info_to_howto elf_hppa_info_to_howto
4409 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4410
4411 /* Stuff for the BFD linker. */
4412 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4413 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4414 #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
4415 #define elf_backend_add_symbol_hook elf32_hppa_add_symbol_hook
4416 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4417 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4418 #define elf_backend_check_relocs elf32_hppa_check_relocs
4419 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4420 #define elf_backend_fake_sections elf_hppa_fake_sections
4421 #define elf_backend_relocate_section elf32_hppa_relocate_section
4422 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4423 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4424 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4425 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4426 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4427 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4428 #define elf_backend_object_p elf32_hppa_object_p
4429 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4430 #define elf_backend_post_process_headers elf32_hppa_post_process_headers
4431 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4432 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4433
4434 #define elf_backend_can_gc_sections 1
4435 #define elf_backend_can_refcount 1
4436 #define elf_backend_plt_alignment 2
4437 #define elf_backend_want_got_plt 0
4438 #define elf_backend_plt_readonly 0
4439 #define elf_backend_want_plt_sym 0
4440 #define elf_backend_got_header_size 8
4441 #define elf_backend_rela_normal 1
4442
4443 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4444 #define TARGET_BIG_NAME "elf32-hppa"
4445 #define ELF_ARCH bfd_arch_hppa
4446 #define ELF_MACHINE_CODE EM_PARISC
4447 #define ELF_MAXPAGESIZE 0x1000
4448
4449 #include "elf32-target.h"
4450
4451 #undef TARGET_BIG_SYM
4452 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4453 #undef TARGET_BIG_NAME
4454 #define TARGET_BIG_NAME "elf32-hppa-linux"
4455
4456 #define INCLUDED_TARGET_FILE 1
4457 #include "elf32-target.h"
This page took 0.128675 seconds and 5 git commands to generate.