%L conversions
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright (C) 1990-2018 Free Software Foundation, Inc.
3
4 Original code by
5 Center for Software Science
6 Department of Computer Science
7 University of Utah
8 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
9 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
10 TLS support written by Randolph Chung <tausq@debian.org>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
28
29 #include "sysdep.h"
30 #include "bfd.h"
31 #include "libbfd.h"
32 #include "elf-bfd.h"
33 #include "elf/hppa.h"
34 #include "libhppa.h"
35 #include "elf32-hppa.h"
36 #define ARCH_SIZE 32
37 #include "elf32-hppa.h"
38 #include "elf-hppa.h"
39
40 /* In order to gain some understanding of code in this file without
41 knowing all the intricate details of the linker, note the
42 following:
43
44 Functions named elf32_hppa_* are called by external routines, other
45 functions are only called locally. elf32_hppa_* functions appear
46 in this file more or less in the order in which they are called
47 from external routines. eg. elf32_hppa_check_relocs is called
48 early in the link process, elf32_hppa_finish_dynamic_sections is
49 one of the last functions. */
50
51 /* We use two hash tables to hold information for linking PA ELF objects.
52
53 The first is the elf32_hppa_link_hash_table which is derived
54 from the standard ELF linker hash table. We use this as a place to
55 attach other hash tables and static information.
56
57 The second is the stub hash table which is derived from the
58 base BFD hash table. The stub hash table holds the information
59 necessary to build the linker stubs during a link.
60
61 There are a number of different stubs generated by the linker.
62
63 Long branch stub:
64 : ldil LR'X,%r1
65 : be,n RR'X(%sr4,%r1)
66
67 PIC long branch stub:
68 : b,l .+8,%r1
69 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
70 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
71
72 Import stub to call shared library routine from normal object file
73 (single sub-space version)
74 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
75 : ldw RR'lt_ptr+ltoff(%r1),%r21
76 : bv %r0(%r21)
77 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
78
79 Import stub to call shared library routine from shared library
80 (single sub-space version)
81 : addil LR'ltoff,%r19 ; get procedure entry point
82 : ldw RR'ltoff(%r1),%r21
83 : bv %r0(%r21)
84 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
85
86 Import stub to call shared library routine from normal object file
87 (multiple sub-space support)
88 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
89 : ldw RR'lt_ptr+ltoff(%r1),%r21
90 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
91 : ldsid (%r21),%r1
92 : mtsp %r1,%sr0
93 : be 0(%sr0,%r21) ; branch to target
94 : stw %rp,-24(%sp) ; save rp
95
96 Import stub to call shared library routine from shared library
97 (multiple sub-space support)
98 : addil LR'ltoff,%r19 ; get procedure entry point
99 : ldw RR'ltoff(%r1),%r21
100 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
101 : ldsid (%r21),%r1
102 : mtsp %r1,%sr0
103 : be 0(%sr0,%r21) ; branch to target
104 : stw %rp,-24(%sp) ; save rp
105
106 Export stub to return from shared lib routine (multiple sub-space support)
107 One of these is created for each exported procedure in a shared
108 library (and stored in the shared lib). Shared lib routines are
109 called via the first instruction in the export stub so that we can
110 do an inter-space return. Not required for single sub-space.
111 : bl,n X,%rp ; trap the return
112 : nop
113 : ldw -24(%sp),%rp ; restore the original rp
114 : ldsid (%rp),%r1
115 : mtsp %r1,%sr0
116 : be,n 0(%sr0,%rp) ; inter-space return. */
117
118
119 /* Variable names follow a coding style.
120 Please follow this (Apps Hungarian) style:
121
122 Structure/Variable Prefix
123 elf_link_hash_table "etab"
124 elf_link_hash_entry "eh"
125
126 elf32_hppa_link_hash_table "htab"
127 elf32_hppa_link_hash_entry "hh"
128
129 bfd_hash_table "btab"
130 bfd_hash_entry "bh"
131
132 bfd_hash_table containing stubs "bstab"
133 elf32_hppa_stub_hash_entry "hsh"
134
135 Always remember to use GNU Coding Style. */
136
137 #define PLT_ENTRY_SIZE 8
138 #define GOT_ENTRY_SIZE 4
139 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
140
141 static const bfd_byte plt_stub[] =
142 {
143 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
144 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
145 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
146 #define PLT_STUB_ENTRY (3*4)
147 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
148 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
149 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
150 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
151 };
152
153 /* Section name for stubs is the associated section name plus this
154 string. */
155 #define STUB_SUFFIX ".stub"
156
157 /* We don't need to copy certain PC- or GP-relative dynamic relocs
158 into a shared object's dynamic section. All the relocs of the
159 limited class we are interested in, are absolute. */
160 #ifndef RELATIVE_DYNRELOCS
161 #define RELATIVE_DYNRELOCS 0
162 #define IS_ABSOLUTE_RELOC(r_type) 1
163 #define pc_dynrelocs(hh) 0
164 #endif
165
166 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
167 copying dynamic variables from a shared lib into an app's dynbss
168 section, and instead use a dynamic relocation to point into the
169 shared lib. */
170 #define ELIMINATE_COPY_RELOCS 1
171
172 enum elf32_hppa_stub_type
173 {
174 hppa_stub_long_branch,
175 hppa_stub_long_branch_shared,
176 hppa_stub_import,
177 hppa_stub_import_shared,
178 hppa_stub_export,
179 hppa_stub_none
180 };
181
182 struct elf32_hppa_stub_hash_entry
183 {
184 /* Base hash table entry structure. */
185 struct bfd_hash_entry bh_root;
186
187 /* The stub section. */
188 asection *stub_sec;
189
190 /* Offset within stub_sec of the beginning of this stub. */
191 bfd_vma stub_offset;
192
193 /* Given the symbol's value and its section we can determine its final
194 value when building the stubs (so the stub knows where to jump. */
195 bfd_vma target_value;
196 asection *target_section;
197
198 enum elf32_hppa_stub_type stub_type;
199
200 /* The symbol table entry, if any, that this was derived from. */
201 struct elf32_hppa_link_hash_entry *hh;
202
203 /* Where this stub is being called from, or, in the case of combined
204 stub sections, the first input section in the group. */
205 asection *id_sec;
206 };
207
208 enum _tls_type
209 {
210 GOT_UNKNOWN = 0,
211 GOT_NORMAL = 1,
212 GOT_TLS_GD = 2,
213 GOT_TLS_LDM = 4,
214 GOT_TLS_IE = 8
215 };
216
217 struct elf32_hppa_link_hash_entry
218 {
219 struct elf_link_hash_entry eh;
220
221 /* A pointer to the most recently used stub hash entry against this
222 symbol. */
223 struct elf32_hppa_stub_hash_entry *hsh_cache;
224
225 /* Used to count relocations for delayed sizing of relocation
226 sections. */
227 struct elf_dyn_relocs *dyn_relocs;
228
229 ENUM_BITFIELD (_tls_type) tls_type : 8;
230
231 /* Set if this symbol is used by a plabel reloc. */
232 unsigned int plabel:1;
233 };
234
235 struct elf32_hppa_link_hash_table
236 {
237 /* The main hash table. */
238 struct elf_link_hash_table etab;
239
240 /* The stub hash table. */
241 struct bfd_hash_table bstab;
242
243 /* Linker stub bfd. */
244 bfd *stub_bfd;
245
246 /* Linker call-backs. */
247 asection * (*add_stub_section) (const char *, asection *);
248 void (*layout_sections_again) (void);
249
250 /* Array to keep track of which stub sections have been created, and
251 information on stub grouping. */
252 struct map_stub
253 {
254 /* This is the section to which stubs in the group will be
255 attached. */
256 asection *link_sec;
257 /* The stub section. */
258 asection *stub_sec;
259 } *stub_group;
260
261 /* Assorted information used by elf32_hppa_size_stubs. */
262 unsigned int bfd_count;
263 unsigned int top_index;
264 asection **input_list;
265 Elf_Internal_Sym **all_local_syms;
266
267 /* Used during a final link to store the base of the text and data
268 segments so that we can perform SEGREL relocations. */
269 bfd_vma text_segment_base;
270 bfd_vma data_segment_base;
271
272 /* Whether we support multiple sub-spaces for shared libs. */
273 unsigned int multi_subspace:1;
274
275 /* Flags set when various size branches are detected. Used to
276 select suitable defaults for the stub group size. */
277 unsigned int has_12bit_branch:1;
278 unsigned int has_17bit_branch:1;
279 unsigned int has_22bit_branch:1;
280
281 /* Set if we need a .plt stub to support lazy dynamic linking. */
282 unsigned int need_plt_stub:1;
283
284 /* Small local sym cache. */
285 struct sym_cache sym_cache;
286
287 /* Data for LDM relocations. */
288 union
289 {
290 bfd_signed_vma refcount;
291 bfd_vma offset;
292 } tls_ldm_got;
293 };
294
295 /* Various hash macros and functions. */
296 #define hppa_link_hash_table(p) \
297 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
298 == HPPA32_ELF_DATA ? ((struct elf32_hppa_link_hash_table *) ((p)->hash)) : NULL)
299
300 #define hppa_elf_hash_entry(ent) \
301 ((struct elf32_hppa_link_hash_entry *)(ent))
302
303 #define hppa_stub_hash_entry(ent) \
304 ((struct elf32_hppa_stub_hash_entry *)(ent))
305
306 #define hppa_stub_hash_lookup(table, string, create, copy) \
307 ((struct elf32_hppa_stub_hash_entry *) \
308 bfd_hash_lookup ((table), (string), (create), (copy)))
309
310 #define hppa_elf_local_got_tls_type(abfd) \
311 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
312
313 #define hh_name(hh) \
314 (hh ? hh->eh.root.root.string : "<undef>")
315
316 #define eh_name(eh) \
317 (eh ? eh->root.root.string : "<undef>")
318
319 /* Assorted hash table functions. */
320
321 /* Initialize an entry in the stub hash table. */
322
323 static struct bfd_hash_entry *
324 stub_hash_newfunc (struct bfd_hash_entry *entry,
325 struct bfd_hash_table *table,
326 const char *string)
327 {
328 /* Allocate the structure if it has not already been allocated by a
329 subclass. */
330 if (entry == NULL)
331 {
332 entry = bfd_hash_allocate (table,
333 sizeof (struct elf32_hppa_stub_hash_entry));
334 if (entry == NULL)
335 return entry;
336 }
337
338 /* Call the allocation method of the superclass. */
339 entry = bfd_hash_newfunc (entry, table, string);
340 if (entry != NULL)
341 {
342 struct elf32_hppa_stub_hash_entry *hsh;
343
344 /* Initialize the local fields. */
345 hsh = hppa_stub_hash_entry (entry);
346 hsh->stub_sec = NULL;
347 hsh->stub_offset = 0;
348 hsh->target_value = 0;
349 hsh->target_section = NULL;
350 hsh->stub_type = hppa_stub_long_branch;
351 hsh->hh = NULL;
352 hsh->id_sec = NULL;
353 }
354
355 return entry;
356 }
357
358 /* Initialize an entry in the link hash table. */
359
360 static struct bfd_hash_entry *
361 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
362 struct bfd_hash_table *table,
363 const char *string)
364 {
365 /* Allocate the structure if it has not already been allocated by a
366 subclass. */
367 if (entry == NULL)
368 {
369 entry = bfd_hash_allocate (table,
370 sizeof (struct elf32_hppa_link_hash_entry));
371 if (entry == NULL)
372 return entry;
373 }
374
375 /* Call the allocation method of the superclass. */
376 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
377 if (entry != NULL)
378 {
379 struct elf32_hppa_link_hash_entry *hh;
380
381 /* Initialize the local fields. */
382 hh = hppa_elf_hash_entry (entry);
383 hh->hsh_cache = NULL;
384 hh->dyn_relocs = NULL;
385 hh->plabel = 0;
386 hh->tls_type = GOT_UNKNOWN;
387 }
388
389 return entry;
390 }
391
392 /* Free the derived linker hash table. */
393
394 static void
395 elf32_hppa_link_hash_table_free (bfd *obfd)
396 {
397 struct elf32_hppa_link_hash_table *htab
398 = (struct elf32_hppa_link_hash_table *) obfd->link.hash;
399
400 bfd_hash_table_free (&htab->bstab);
401 _bfd_elf_link_hash_table_free (obfd);
402 }
403
404 /* Create the derived linker hash table. The PA ELF port uses the derived
405 hash table to keep information specific to the PA ELF linker (without
406 using static variables). */
407
408 static struct bfd_link_hash_table *
409 elf32_hppa_link_hash_table_create (bfd *abfd)
410 {
411 struct elf32_hppa_link_hash_table *htab;
412 bfd_size_type amt = sizeof (*htab);
413
414 htab = bfd_zmalloc (amt);
415 if (htab == NULL)
416 return NULL;
417
418 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
419 sizeof (struct elf32_hppa_link_hash_entry),
420 HPPA32_ELF_DATA))
421 {
422 free (htab);
423 return NULL;
424 }
425
426 /* Init the stub hash table too. */
427 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
428 sizeof (struct elf32_hppa_stub_hash_entry)))
429 {
430 _bfd_elf_link_hash_table_free (abfd);
431 return NULL;
432 }
433 htab->etab.root.hash_table_free = elf32_hppa_link_hash_table_free;
434
435 htab->text_segment_base = (bfd_vma) -1;
436 htab->data_segment_base = (bfd_vma) -1;
437 return &htab->etab.root;
438 }
439
440 /* Initialize the linker stubs BFD so that we can use it for linker
441 created dynamic sections. */
442
443 void
444 elf32_hppa_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
445 {
446 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
447
448 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS32;
449 htab->etab.dynobj = abfd;
450 }
451
452 /* Build a name for an entry in the stub hash table. */
453
454 static char *
455 hppa_stub_name (const asection *input_section,
456 const asection *sym_sec,
457 const struct elf32_hppa_link_hash_entry *hh,
458 const Elf_Internal_Rela *rela)
459 {
460 char *stub_name;
461 bfd_size_type len;
462
463 if (hh)
464 {
465 len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
466 stub_name = bfd_malloc (len);
467 if (stub_name != NULL)
468 sprintf (stub_name, "%08x_%s+%x",
469 input_section->id & 0xffffffff,
470 hh_name (hh),
471 (int) rela->r_addend & 0xffffffff);
472 }
473 else
474 {
475 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
476 stub_name = bfd_malloc (len);
477 if (stub_name != NULL)
478 sprintf (stub_name, "%08x_%x:%x+%x",
479 input_section->id & 0xffffffff,
480 sym_sec->id & 0xffffffff,
481 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
482 (int) rela->r_addend & 0xffffffff);
483 }
484 return stub_name;
485 }
486
487 /* Look up an entry in the stub hash. Stub entries are cached because
488 creating the stub name takes a bit of time. */
489
490 static struct elf32_hppa_stub_hash_entry *
491 hppa_get_stub_entry (const asection *input_section,
492 const asection *sym_sec,
493 struct elf32_hppa_link_hash_entry *hh,
494 const Elf_Internal_Rela *rela,
495 struct elf32_hppa_link_hash_table *htab)
496 {
497 struct elf32_hppa_stub_hash_entry *hsh_entry;
498 const asection *id_sec;
499
500 /* If this input section is part of a group of sections sharing one
501 stub section, then use the id of the first section in the group.
502 Stub names need to include a section id, as there may well be
503 more than one stub used to reach say, printf, and we need to
504 distinguish between them. */
505 id_sec = htab->stub_group[input_section->id].link_sec;
506
507 if (hh != NULL && hh->hsh_cache != NULL
508 && hh->hsh_cache->hh == hh
509 && hh->hsh_cache->id_sec == id_sec)
510 {
511 hsh_entry = hh->hsh_cache;
512 }
513 else
514 {
515 char *stub_name;
516
517 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
518 if (stub_name == NULL)
519 return NULL;
520
521 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
522 stub_name, FALSE, FALSE);
523 if (hh != NULL)
524 hh->hsh_cache = hsh_entry;
525
526 free (stub_name);
527 }
528
529 return hsh_entry;
530 }
531
532 /* Add a new stub entry to the stub hash. Not all fields of the new
533 stub entry are initialised. */
534
535 static struct elf32_hppa_stub_hash_entry *
536 hppa_add_stub (const char *stub_name,
537 asection *section,
538 struct elf32_hppa_link_hash_table *htab)
539 {
540 asection *link_sec;
541 asection *stub_sec;
542 struct elf32_hppa_stub_hash_entry *hsh;
543
544 link_sec = htab->stub_group[section->id].link_sec;
545 stub_sec = htab->stub_group[section->id].stub_sec;
546 if (stub_sec == NULL)
547 {
548 stub_sec = htab->stub_group[link_sec->id].stub_sec;
549 if (stub_sec == NULL)
550 {
551 size_t namelen;
552 bfd_size_type len;
553 char *s_name;
554
555 namelen = strlen (link_sec->name);
556 len = namelen + sizeof (STUB_SUFFIX);
557 s_name = bfd_alloc (htab->stub_bfd, len);
558 if (s_name == NULL)
559 return NULL;
560
561 memcpy (s_name, link_sec->name, namelen);
562 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
563 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
564 if (stub_sec == NULL)
565 return NULL;
566 htab->stub_group[link_sec->id].stub_sec = stub_sec;
567 }
568 htab->stub_group[section->id].stub_sec = stub_sec;
569 }
570
571 /* Enter this entry into the linker stub hash table. */
572 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
573 TRUE, FALSE);
574 if (hsh == NULL)
575 {
576 /* xgettext:c-format */
577 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
578 section->owner, stub_name);
579 return NULL;
580 }
581
582 hsh->stub_sec = stub_sec;
583 hsh->stub_offset = 0;
584 hsh->id_sec = link_sec;
585 return hsh;
586 }
587
588 /* Determine the type of stub needed, if any, for a call. */
589
590 static enum elf32_hppa_stub_type
591 hppa_type_of_stub (asection *input_sec,
592 const Elf_Internal_Rela *rela,
593 struct elf32_hppa_link_hash_entry *hh,
594 bfd_vma destination,
595 struct bfd_link_info *info)
596 {
597 bfd_vma location;
598 bfd_vma branch_offset;
599 bfd_vma max_branch_offset;
600 unsigned int r_type;
601
602 if (hh != NULL
603 && hh->eh.plt.offset != (bfd_vma) -1
604 && hh->eh.dynindx != -1
605 && !hh->plabel
606 && (bfd_link_pic (info)
607 || !hh->eh.def_regular
608 || hh->eh.root.type == bfd_link_hash_defweak))
609 {
610 /* We need an import stub. Decide between hppa_stub_import
611 and hppa_stub_import_shared later. */
612 return hppa_stub_import;
613 }
614
615 /* Determine where the call point is. */
616 location = (input_sec->output_offset
617 + input_sec->output_section->vma
618 + rela->r_offset);
619
620 branch_offset = destination - location - 8;
621 r_type = ELF32_R_TYPE (rela->r_info);
622
623 /* Determine if a long branch stub is needed. parisc branch offsets
624 are relative to the second instruction past the branch, ie. +8
625 bytes on from the branch instruction location. The offset is
626 signed and counts in units of 4 bytes. */
627 if (r_type == (unsigned int) R_PARISC_PCREL17F)
628 max_branch_offset = (1 << (17 - 1)) << 2;
629
630 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
631 max_branch_offset = (1 << (12 - 1)) << 2;
632
633 else /* R_PARISC_PCREL22F. */
634 max_branch_offset = (1 << (22 - 1)) << 2;
635
636 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
637 return hppa_stub_long_branch;
638
639 return hppa_stub_none;
640 }
641
642 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
643 IN_ARG contains the link info pointer. */
644
645 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
646 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
647
648 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
649 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
650 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
651
652 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
653 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
654 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
655 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
656
657 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
658 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
659
660 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
661 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
662 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
663 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
664
665 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
666 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
667 #define NOP 0x08000240 /* nop */
668 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
669 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
670 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
671
672 #ifndef R19_STUBS
673 #define R19_STUBS 1
674 #endif
675
676 #if R19_STUBS
677 #define LDW_R1_DLT LDW_R1_R19
678 #else
679 #define LDW_R1_DLT LDW_R1_DP
680 #endif
681
682 static bfd_boolean
683 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
684 {
685 struct elf32_hppa_stub_hash_entry *hsh;
686 struct bfd_link_info *info;
687 struct elf32_hppa_link_hash_table *htab;
688 asection *stub_sec;
689 bfd *stub_bfd;
690 bfd_byte *loc;
691 bfd_vma sym_value;
692 bfd_vma insn;
693 bfd_vma off;
694 int val;
695 int size;
696
697 /* Massage our args to the form they really have. */
698 hsh = hppa_stub_hash_entry (bh);
699 info = (struct bfd_link_info *)in_arg;
700
701 htab = hppa_link_hash_table (info);
702 if (htab == NULL)
703 return FALSE;
704
705 stub_sec = hsh->stub_sec;
706
707 /* Make a note of the offset within the stubs for this entry. */
708 hsh->stub_offset = stub_sec->size;
709 loc = stub_sec->contents + hsh->stub_offset;
710
711 stub_bfd = stub_sec->owner;
712
713 switch (hsh->stub_type)
714 {
715 case hppa_stub_long_branch:
716 /* Create the long branch. A long branch is formed with "ldil"
717 loading the upper bits of the target address into a register,
718 then branching with "be" which adds in the lower bits.
719 The "be" has its delay slot nullified. */
720 sym_value = (hsh->target_value
721 + hsh->target_section->output_offset
722 + hsh->target_section->output_section->vma);
723
724 val = hppa_field_adjust (sym_value, 0, e_lrsel);
725 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
726 bfd_put_32 (stub_bfd, insn, loc);
727
728 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
729 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
730 bfd_put_32 (stub_bfd, insn, loc + 4);
731
732 size = 8;
733 break;
734
735 case hppa_stub_long_branch_shared:
736 /* Branches are relative. This is where we are going to. */
737 sym_value = (hsh->target_value
738 + hsh->target_section->output_offset
739 + hsh->target_section->output_section->vma);
740
741 /* And this is where we are coming from, more or less. */
742 sym_value -= (hsh->stub_offset
743 + stub_sec->output_offset
744 + stub_sec->output_section->vma);
745
746 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
747 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
748 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
749 bfd_put_32 (stub_bfd, insn, loc + 4);
750
751 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
752 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
753 bfd_put_32 (stub_bfd, insn, loc + 8);
754 size = 12;
755 break;
756
757 case hppa_stub_import:
758 case hppa_stub_import_shared:
759 off = hsh->hh->eh.plt.offset;
760 if (off >= (bfd_vma) -2)
761 abort ();
762
763 off &= ~ (bfd_vma) 1;
764 sym_value = (off
765 + htab->etab.splt->output_offset
766 + htab->etab.splt->output_section->vma
767 - elf_gp (htab->etab.splt->output_section->owner));
768
769 insn = ADDIL_DP;
770 #if R19_STUBS
771 if (hsh->stub_type == hppa_stub_import_shared)
772 insn = ADDIL_R19;
773 #endif
774 val = hppa_field_adjust (sym_value, 0, e_lrsel),
775 insn = hppa_rebuild_insn ((int) insn, val, 21);
776 bfd_put_32 (stub_bfd, insn, loc);
777
778 /* It is critical to use lrsel/rrsel here because we are using
779 two different offsets (+0 and +4) from sym_value. If we use
780 lsel/rsel then with unfortunate sym_values we will round
781 sym_value+4 up to the next 2k block leading to a mis-match
782 between the lsel and rsel value. */
783 val = hppa_field_adjust (sym_value, 0, e_rrsel);
784 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
785 bfd_put_32 (stub_bfd, insn, loc + 4);
786
787 if (htab->multi_subspace)
788 {
789 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
790 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
791 bfd_put_32 (stub_bfd, insn, loc + 8);
792
793 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
794 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
795 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
796 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
797
798 size = 28;
799 }
800 else
801 {
802 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
803 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
804 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
805 bfd_put_32 (stub_bfd, insn, loc + 12);
806
807 size = 16;
808 }
809
810 break;
811
812 case hppa_stub_export:
813 /* Branches are relative. This is where we are going to. */
814 sym_value = (hsh->target_value
815 + hsh->target_section->output_offset
816 + hsh->target_section->output_section->vma);
817
818 /* And this is where we are coming from. */
819 sym_value -= (hsh->stub_offset
820 + stub_sec->output_offset
821 + stub_sec->output_section->vma);
822
823 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
824 && (!htab->has_22bit_branch
825 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
826 {
827 _bfd_error_handler
828 /* xgettext:c-format */
829 (_("%pB(%pA+%#" PRIx64 "): "
830 "cannot reach %s, recompile with -ffunction-sections"),
831 hsh->target_section->owner,
832 stub_sec,
833 (uint64_t) hsh->stub_offset,
834 hsh->bh_root.string);
835 bfd_set_error (bfd_error_bad_value);
836 return FALSE;
837 }
838
839 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
840 if (!htab->has_22bit_branch)
841 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
842 else
843 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
844 bfd_put_32 (stub_bfd, insn, loc);
845
846 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
847 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
848 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
849 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
850 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
851
852 /* Point the function symbol at the stub. */
853 hsh->hh->eh.root.u.def.section = stub_sec;
854 hsh->hh->eh.root.u.def.value = stub_sec->size;
855
856 size = 24;
857 break;
858
859 default:
860 BFD_FAIL ();
861 return FALSE;
862 }
863
864 stub_sec->size += size;
865 return TRUE;
866 }
867
868 #undef LDIL_R1
869 #undef BE_SR4_R1
870 #undef BL_R1
871 #undef ADDIL_R1
872 #undef DEPI_R1
873 #undef LDW_R1_R21
874 #undef LDW_R1_DLT
875 #undef LDW_R1_R19
876 #undef ADDIL_R19
877 #undef LDW_R1_DP
878 #undef LDSID_R21_R1
879 #undef MTSP_R1
880 #undef BE_SR0_R21
881 #undef STW_RP
882 #undef BV_R0_R21
883 #undef BL_RP
884 #undef NOP
885 #undef LDW_RP
886 #undef LDSID_RP_R1
887 #undef BE_SR0_RP
888
889 /* As above, but don't actually build the stub. Just bump offset so
890 we know stub section sizes. */
891
892 static bfd_boolean
893 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
894 {
895 struct elf32_hppa_stub_hash_entry *hsh;
896 struct elf32_hppa_link_hash_table *htab;
897 int size;
898
899 /* Massage our args to the form they really have. */
900 hsh = hppa_stub_hash_entry (bh);
901 htab = in_arg;
902
903 if (hsh->stub_type == hppa_stub_long_branch)
904 size = 8;
905 else if (hsh->stub_type == hppa_stub_long_branch_shared)
906 size = 12;
907 else if (hsh->stub_type == hppa_stub_export)
908 size = 24;
909 else /* hppa_stub_import or hppa_stub_import_shared. */
910 {
911 if (htab->multi_subspace)
912 size = 28;
913 else
914 size = 16;
915 }
916
917 hsh->stub_sec->size += size;
918 return TRUE;
919 }
920
921 /* Return nonzero if ABFD represents an HPPA ELF32 file.
922 Additionally we set the default architecture and machine. */
923
924 static bfd_boolean
925 elf32_hppa_object_p (bfd *abfd)
926 {
927 Elf_Internal_Ehdr * i_ehdrp;
928 unsigned int flags;
929
930 i_ehdrp = elf_elfheader (abfd);
931 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
932 {
933 /* GCC on hppa-linux produces binaries with OSABI=GNU,
934 but the kernel produces corefiles with OSABI=SysV. */
935 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU &&
936 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
937 return FALSE;
938 }
939 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
940 {
941 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
942 but the kernel produces corefiles with OSABI=SysV. */
943 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
944 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
945 return FALSE;
946 }
947 else
948 {
949 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
950 return FALSE;
951 }
952
953 flags = i_ehdrp->e_flags;
954 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
955 {
956 case EFA_PARISC_1_0:
957 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
958 case EFA_PARISC_1_1:
959 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
960 case EFA_PARISC_2_0:
961 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
962 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
963 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
964 }
965 return TRUE;
966 }
967
968 /* Create the .plt and .got sections, and set up our hash table
969 short-cuts to various dynamic sections. */
970
971 static bfd_boolean
972 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
973 {
974 struct elf32_hppa_link_hash_table *htab;
975 struct elf_link_hash_entry *eh;
976
977 /* Don't try to create the .plt and .got twice. */
978 htab = hppa_link_hash_table (info);
979 if (htab == NULL)
980 return FALSE;
981 if (htab->etab.splt != NULL)
982 return TRUE;
983
984 /* Call the generic code to do most of the work. */
985 if (! _bfd_elf_create_dynamic_sections (abfd, info))
986 return FALSE;
987
988 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
989 application, because __canonicalize_funcptr_for_compare needs it. */
990 eh = elf_hash_table (info)->hgot;
991 eh->forced_local = 0;
992 eh->other = STV_DEFAULT;
993 return bfd_elf_link_record_dynamic_symbol (info, eh);
994 }
995
996 /* Copy the extra info we tack onto an elf_link_hash_entry. */
997
998 static void
999 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1000 struct elf_link_hash_entry *eh_dir,
1001 struct elf_link_hash_entry *eh_ind)
1002 {
1003 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1004
1005 hh_dir = hppa_elf_hash_entry (eh_dir);
1006 hh_ind = hppa_elf_hash_entry (eh_ind);
1007
1008 if (hh_ind->dyn_relocs != NULL
1009 && eh_ind->root.type == bfd_link_hash_indirect)
1010 {
1011 if (hh_dir->dyn_relocs != NULL)
1012 {
1013 struct elf_dyn_relocs **hdh_pp;
1014 struct elf_dyn_relocs *hdh_p;
1015
1016 /* Add reloc counts against the indirect sym to the direct sym
1017 list. Merge any entries against the same section. */
1018 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1019 {
1020 struct elf_dyn_relocs *hdh_q;
1021
1022 for (hdh_q = hh_dir->dyn_relocs;
1023 hdh_q != NULL;
1024 hdh_q = hdh_q->next)
1025 if (hdh_q->sec == hdh_p->sec)
1026 {
1027 #if RELATIVE_DYNRELOCS
1028 hdh_q->pc_count += hdh_p->pc_count;
1029 #endif
1030 hdh_q->count += hdh_p->count;
1031 *hdh_pp = hdh_p->next;
1032 break;
1033 }
1034 if (hdh_q == NULL)
1035 hdh_pp = &hdh_p->next;
1036 }
1037 *hdh_pp = hh_dir->dyn_relocs;
1038 }
1039
1040 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1041 hh_ind->dyn_relocs = NULL;
1042 }
1043
1044 if (eh_ind->root.type == bfd_link_hash_indirect)
1045 {
1046 hh_dir->plabel |= hh_ind->plabel;
1047 hh_dir->tls_type |= hh_ind->tls_type;
1048 hh_ind->tls_type = GOT_UNKNOWN;
1049 }
1050
1051 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1052 }
1053
1054 static int
1055 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1056 int r_type, int is_local ATTRIBUTE_UNUSED)
1057 {
1058 /* For now we don't support linker optimizations. */
1059 return r_type;
1060 }
1061
1062 /* Return a pointer to the local GOT, PLT and TLS reference counts
1063 for ABFD. Returns NULL if the storage allocation fails. */
1064
1065 static bfd_signed_vma *
1066 hppa32_elf_local_refcounts (bfd *abfd)
1067 {
1068 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1069 bfd_signed_vma *local_refcounts;
1070
1071 local_refcounts = elf_local_got_refcounts (abfd);
1072 if (local_refcounts == NULL)
1073 {
1074 bfd_size_type size;
1075
1076 /* Allocate space for local GOT and PLT reference
1077 counts. Done this way to save polluting elf_obj_tdata
1078 with another target specific pointer. */
1079 size = symtab_hdr->sh_info;
1080 size *= 2 * sizeof (bfd_signed_vma);
1081 /* Add in space to store the local GOT TLS types. */
1082 size += symtab_hdr->sh_info;
1083 local_refcounts = bfd_zalloc (abfd, size);
1084 if (local_refcounts == NULL)
1085 return NULL;
1086 elf_local_got_refcounts (abfd) = local_refcounts;
1087 memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN,
1088 symtab_hdr->sh_info);
1089 }
1090 return local_refcounts;
1091 }
1092
1093
1094 /* Look through the relocs for a section during the first phase, and
1095 calculate needed space in the global offset table, procedure linkage
1096 table, and dynamic reloc sections. At this point we haven't
1097 necessarily read all the input files. */
1098
1099 static bfd_boolean
1100 elf32_hppa_check_relocs (bfd *abfd,
1101 struct bfd_link_info *info,
1102 asection *sec,
1103 const Elf_Internal_Rela *relocs)
1104 {
1105 Elf_Internal_Shdr *symtab_hdr;
1106 struct elf_link_hash_entry **eh_syms;
1107 const Elf_Internal_Rela *rela;
1108 const Elf_Internal_Rela *rela_end;
1109 struct elf32_hppa_link_hash_table *htab;
1110 asection *sreloc;
1111
1112 if (bfd_link_relocatable (info))
1113 return TRUE;
1114
1115 htab = hppa_link_hash_table (info);
1116 if (htab == NULL)
1117 return FALSE;
1118 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1119 eh_syms = elf_sym_hashes (abfd);
1120 sreloc = NULL;
1121
1122 rela_end = relocs + sec->reloc_count;
1123 for (rela = relocs; rela < rela_end; rela++)
1124 {
1125 enum {
1126 NEED_GOT = 1,
1127 NEED_PLT = 2,
1128 NEED_DYNREL = 4,
1129 PLT_PLABEL = 8
1130 };
1131
1132 unsigned int r_symndx, r_type;
1133 struct elf32_hppa_link_hash_entry *hh;
1134 int need_entry = 0;
1135
1136 r_symndx = ELF32_R_SYM (rela->r_info);
1137
1138 if (r_symndx < symtab_hdr->sh_info)
1139 hh = NULL;
1140 else
1141 {
1142 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1143 while (hh->eh.root.type == bfd_link_hash_indirect
1144 || hh->eh.root.type == bfd_link_hash_warning)
1145 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1146 }
1147
1148 r_type = ELF32_R_TYPE (rela->r_info);
1149 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1150
1151 switch (r_type)
1152 {
1153 case R_PARISC_DLTIND14F:
1154 case R_PARISC_DLTIND14R:
1155 case R_PARISC_DLTIND21L:
1156 /* This symbol requires a global offset table entry. */
1157 need_entry = NEED_GOT;
1158 break;
1159
1160 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1161 case R_PARISC_PLABEL21L:
1162 case R_PARISC_PLABEL32:
1163 /* If the addend is non-zero, we break badly. */
1164 if (rela->r_addend != 0)
1165 abort ();
1166
1167 /* If we are creating a shared library, then we need to
1168 create a PLT entry for all PLABELs, because PLABELs with
1169 local symbols may be passed via a pointer to another
1170 object. Additionally, output a dynamic relocation
1171 pointing to the PLT entry.
1172
1173 For executables, the original 32-bit ABI allowed two
1174 different styles of PLABELs (function pointers): For
1175 global functions, the PLABEL word points into the .plt
1176 two bytes past a (function address, gp) pair, and for
1177 local functions the PLABEL points directly at the
1178 function. The magic +2 for the first type allows us to
1179 differentiate between the two. As you can imagine, this
1180 is a real pain when it comes to generating code to call
1181 functions indirectly or to compare function pointers.
1182 We avoid the mess by always pointing a PLABEL into the
1183 .plt, even for local functions. */
1184 need_entry = PLT_PLABEL | NEED_PLT;
1185 if (bfd_link_pic (info))
1186 need_entry |= NEED_DYNREL;
1187 break;
1188
1189 case R_PARISC_PCREL12F:
1190 htab->has_12bit_branch = 1;
1191 goto branch_common;
1192
1193 case R_PARISC_PCREL17C:
1194 case R_PARISC_PCREL17F:
1195 htab->has_17bit_branch = 1;
1196 goto branch_common;
1197
1198 case R_PARISC_PCREL22F:
1199 htab->has_22bit_branch = 1;
1200 branch_common:
1201 /* Function calls might need to go through the .plt, and
1202 might require long branch stubs. */
1203 if (hh == NULL)
1204 {
1205 /* We know local syms won't need a .plt entry, and if
1206 they need a long branch stub we can't guarantee that
1207 we can reach the stub. So just flag an error later
1208 if we're doing a shared link and find we need a long
1209 branch stub. */
1210 continue;
1211 }
1212 else
1213 {
1214 /* Global symbols will need a .plt entry if they remain
1215 global, and in most cases won't need a long branch
1216 stub. Unfortunately, we have to cater for the case
1217 where a symbol is forced local by versioning, or due
1218 to symbolic linking, and we lose the .plt entry. */
1219 need_entry = NEED_PLT;
1220 if (hh->eh.type == STT_PARISC_MILLI)
1221 need_entry = 0;
1222 }
1223 break;
1224
1225 case R_PARISC_SEGBASE: /* Used to set segment base. */
1226 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1227 case R_PARISC_PCREL14F: /* PC relative load/store. */
1228 case R_PARISC_PCREL14R:
1229 case R_PARISC_PCREL17R: /* External branches. */
1230 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1231 case R_PARISC_PCREL32:
1232 /* We don't need to propagate the relocation if linking a
1233 shared object since these are section relative. */
1234 continue;
1235
1236 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1237 case R_PARISC_DPREL14R:
1238 case R_PARISC_DPREL21L:
1239 if (bfd_link_pic (info))
1240 {
1241 _bfd_error_handler
1242 /* xgettext:c-format */
1243 (_("%pB: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1244 abfd,
1245 elf_hppa_howto_table[r_type].name);
1246 bfd_set_error (bfd_error_bad_value);
1247 return FALSE;
1248 }
1249 /* Fall through. */
1250
1251 case R_PARISC_DIR17F: /* Used for external branches. */
1252 case R_PARISC_DIR17R:
1253 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1254 case R_PARISC_DIR14R:
1255 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1256 case R_PARISC_DIR32: /* .word relocs. */
1257 /* We may want to output a dynamic relocation later. */
1258 need_entry = NEED_DYNREL;
1259 break;
1260
1261 /* This relocation describes the C++ object vtable hierarchy.
1262 Reconstruct it for later use during GC. */
1263 case R_PARISC_GNU_VTINHERIT:
1264 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1265 return FALSE;
1266 continue;
1267
1268 /* This relocation describes which C++ vtable entries are actually
1269 used. Record for later use during GC. */
1270 case R_PARISC_GNU_VTENTRY:
1271 BFD_ASSERT (hh != NULL);
1272 if (hh != NULL
1273 && !bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1274 return FALSE;
1275 continue;
1276
1277 case R_PARISC_TLS_GD21L:
1278 case R_PARISC_TLS_GD14R:
1279 case R_PARISC_TLS_LDM21L:
1280 case R_PARISC_TLS_LDM14R:
1281 need_entry = NEED_GOT;
1282 break;
1283
1284 case R_PARISC_TLS_IE21L:
1285 case R_PARISC_TLS_IE14R:
1286 if (bfd_link_dll (info))
1287 info->flags |= DF_STATIC_TLS;
1288 need_entry = NEED_GOT;
1289 break;
1290
1291 default:
1292 continue;
1293 }
1294
1295 /* Now carry out our orders. */
1296 if (need_entry & NEED_GOT)
1297 {
1298 int tls_type = GOT_NORMAL;
1299
1300 switch (r_type)
1301 {
1302 default:
1303 break;
1304 case R_PARISC_TLS_GD21L:
1305 case R_PARISC_TLS_GD14R:
1306 tls_type = GOT_TLS_GD;
1307 break;
1308 case R_PARISC_TLS_LDM21L:
1309 case R_PARISC_TLS_LDM14R:
1310 tls_type = GOT_TLS_LDM;
1311 break;
1312 case R_PARISC_TLS_IE21L:
1313 case R_PARISC_TLS_IE14R:
1314 tls_type = GOT_TLS_IE;
1315 break;
1316 }
1317
1318 /* Allocate space for a GOT entry, as well as a dynamic
1319 relocation for this entry. */
1320 if (htab->etab.sgot == NULL)
1321 {
1322 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1323 return FALSE;
1324 }
1325
1326 if (hh != NULL)
1327 {
1328 if (tls_type == GOT_TLS_LDM)
1329 htab->tls_ldm_got.refcount += 1;
1330 else
1331 hh->eh.got.refcount += 1;
1332 hh->tls_type |= tls_type;
1333 }
1334 else
1335 {
1336 bfd_signed_vma *local_got_refcounts;
1337
1338 /* This is a global offset table entry for a local symbol. */
1339 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1340 if (local_got_refcounts == NULL)
1341 return FALSE;
1342 if (tls_type == GOT_TLS_LDM)
1343 htab->tls_ldm_got.refcount += 1;
1344 else
1345 local_got_refcounts[r_symndx] += 1;
1346
1347 hppa_elf_local_got_tls_type (abfd) [r_symndx] |= tls_type;
1348 }
1349 }
1350
1351 if (need_entry & NEED_PLT)
1352 {
1353 /* If we are creating a shared library, and this is a reloc
1354 against a weak symbol or a global symbol in a dynamic
1355 object, then we will be creating an import stub and a
1356 .plt entry for the symbol. Similarly, on a normal link
1357 to symbols defined in a dynamic object we'll need the
1358 import stub and a .plt entry. We don't know yet whether
1359 the symbol is defined or not, so make an entry anyway and
1360 clean up later in adjust_dynamic_symbol. */
1361 if ((sec->flags & SEC_ALLOC) != 0)
1362 {
1363 if (hh != NULL)
1364 {
1365 hh->eh.needs_plt = 1;
1366 hh->eh.plt.refcount += 1;
1367
1368 /* If this .plt entry is for a plabel, mark it so
1369 that adjust_dynamic_symbol will keep the entry
1370 even if it appears to be local. */
1371 if (need_entry & PLT_PLABEL)
1372 hh->plabel = 1;
1373 }
1374 else if (need_entry & PLT_PLABEL)
1375 {
1376 bfd_signed_vma *local_got_refcounts;
1377 bfd_signed_vma *local_plt_refcounts;
1378
1379 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1380 if (local_got_refcounts == NULL)
1381 return FALSE;
1382 local_plt_refcounts = (local_got_refcounts
1383 + symtab_hdr->sh_info);
1384 local_plt_refcounts[r_symndx] += 1;
1385 }
1386 }
1387 }
1388
1389 if ((need_entry & NEED_DYNREL) != 0
1390 && (sec->flags & SEC_ALLOC) != 0)
1391 {
1392 /* Flag this symbol as having a non-got, non-plt reference
1393 so that we generate copy relocs if it turns out to be
1394 dynamic. */
1395 if (hh != NULL)
1396 hh->eh.non_got_ref = 1;
1397
1398 /* If we are creating a shared library then we need to copy
1399 the reloc into the shared library. However, if we are
1400 linking with -Bsymbolic, we need only copy absolute
1401 relocs or relocs against symbols that are not defined in
1402 an object we are including in the link. PC- or DP- or
1403 DLT-relative relocs against any local sym or global sym
1404 with DEF_REGULAR set, can be discarded. At this point we
1405 have not seen all the input files, so it is possible that
1406 DEF_REGULAR is not set now but will be set later (it is
1407 never cleared). We account for that possibility below by
1408 storing information in the dyn_relocs field of the
1409 hash table entry.
1410
1411 A similar situation to the -Bsymbolic case occurs when
1412 creating shared libraries and symbol visibility changes
1413 render the symbol local.
1414
1415 As it turns out, all the relocs we will be creating here
1416 are absolute, so we cannot remove them on -Bsymbolic
1417 links or visibility changes anyway. A STUB_REL reloc
1418 is absolute too, as in that case it is the reloc in the
1419 stub we will be creating, rather than copying the PCREL
1420 reloc in the branch.
1421
1422 If on the other hand, we are creating an executable, we
1423 may need to keep relocations for symbols satisfied by a
1424 dynamic library if we manage to avoid copy relocs for the
1425 symbol. */
1426 if ((bfd_link_pic (info)
1427 && (IS_ABSOLUTE_RELOC (r_type)
1428 || (hh != NULL
1429 && (!SYMBOLIC_BIND (info, &hh->eh)
1430 || hh->eh.root.type == bfd_link_hash_defweak
1431 || !hh->eh.def_regular))))
1432 || (ELIMINATE_COPY_RELOCS
1433 && !bfd_link_pic (info)
1434 && hh != NULL
1435 && (hh->eh.root.type == bfd_link_hash_defweak
1436 || !hh->eh.def_regular)))
1437 {
1438 struct elf_dyn_relocs *hdh_p;
1439 struct elf_dyn_relocs **hdh_head;
1440
1441 /* Create a reloc section in dynobj and make room for
1442 this reloc. */
1443 if (sreloc == NULL)
1444 {
1445 sreloc = _bfd_elf_make_dynamic_reloc_section
1446 (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
1447
1448 if (sreloc == NULL)
1449 {
1450 bfd_set_error (bfd_error_bad_value);
1451 return FALSE;
1452 }
1453 }
1454
1455 /* If this is a global symbol, we count the number of
1456 relocations we need for this symbol. */
1457 if (hh != NULL)
1458 {
1459 hdh_head = &hh->dyn_relocs;
1460 }
1461 else
1462 {
1463 /* Track dynamic relocs needed for local syms too.
1464 We really need local syms available to do this
1465 easily. Oh well. */
1466 asection *sr;
1467 void *vpp;
1468 Elf_Internal_Sym *isym;
1469
1470 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1471 abfd, r_symndx);
1472 if (isym == NULL)
1473 return FALSE;
1474
1475 sr = bfd_section_from_elf_index (abfd, isym->st_shndx);
1476 if (sr == NULL)
1477 sr = sec;
1478
1479 vpp = &elf_section_data (sr)->local_dynrel;
1480 hdh_head = (struct elf_dyn_relocs **) vpp;
1481 }
1482
1483 hdh_p = *hdh_head;
1484 if (hdh_p == NULL || hdh_p->sec != sec)
1485 {
1486 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1487 if (hdh_p == NULL)
1488 return FALSE;
1489 hdh_p->next = *hdh_head;
1490 *hdh_head = hdh_p;
1491 hdh_p->sec = sec;
1492 hdh_p->count = 0;
1493 #if RELATIVE_DYNRELOCS
1494 hdh_p->pc_count = 0;
1495 #endif
1496 }
1497
1498 hdh_p->count += 1;
1499 #if RELATIVE_DYNRELOCS
1500 if (!IS_ABSOLUTE_RELOC (rtype))
1501 hdh_p->pc_count += 1;
1502 #endif
1503 }
1504 }
1505 }
1506
1507 return TRUE;
1508 }
1509
1510 /* Return the section that should be marked against garbage collection
1511 for a given relocation. */
1512
1513 static asection *
1514 elf32_hppa_gc_mark_hook (asection *sec,
1515 struct bfd_link_info *info,
1516 Elf_Internal_Rela *rela,
1517 struct elf_link_hash_entry *hh,
1518 Elf_Internal_Sym *sym)
1519 {
1520 if (hh != NULL)
1521 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1522 {
1523 case R_PARISC_GNU_VTINHERIT:
1524 case R_PARISC_GNU_VTENTRY:
1525 return NULL;
1526 }
1527
1528 return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1529 }
1530
1531 /* Support for core dump NOTE sections. */
1532
1533 static bfd_boolean
1534 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1535 {
1536 int offset;
1537 size_t size;
1538
1539 switch (note->descsz)
1540 {
1541 default:
1542 return FALSE;
1543
1544 case 396: /* Linux/hppa */
1545 /* pr_cursig */
1546 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1547
1548 /* pr_pid */
1549 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
1550
1551 /* pr_reg */
1552 offset = 72;
1553 size = 320;
1554
1555 break;
1556 }
1557
1558 /* Make a ".reg/999" section. */
1559 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1560 size, note->descpos + offset);
1561 }
1562
1563 static bfd_boolean
1564 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1565 {
1566 switch (note->descsz)
1567 {
1568 default:
1569 return FALSE;
1570
1571 case 124: /* Linux/hppa elf_prpsinfo. */
1572 elf_tdata (abfd)->core->program
1573 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1574 elf_tdata (abfd)->core->command
1575 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1576 }
1577
1578 /* Note that for some reason, a spurious space is tacked
1579 onto the end of the args in some (at least one anyway)
1580 implementations, so strip it off if it exists. */
1581 {
1582 char *command = elf_tdata (abfd)->core->command;
1583 int n = strlen (command);
1584
1585 if (0 < n && command[n - 1] == ' ')
1586 command[n - 1] = '\0';
1587 }
1588
1589 return TRUE;
1590 }
1591
1592 /* Our own version of hide_symbol, so that we can keep plt entries for
1593 plabels. */
1594
1595 static void
1596 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1597 struct elf_link_hash_entry *eh,
1598 bfd_boolean force_local)
1599 {
1600 if (force_local)
1601 {
1602 eh->forced_local = 1;
1603 if (eh->dynindx != -1)
1604 {
1605 eh->dynindx = -1;
1606 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1607 eh->dynstr_index);
1608 }
1609
1610 /* PR 16082: Remove version information from hidden symbol. */
1611 eh->verinfo.verdef = NULL;
1612 eh->verinfo.vertree = NULL;
1613 }
1614
1615 /* STT_GNU_IFUNC symbol must go through PLT. */
1616 if (! hppa_elf_hash_entry (eh)->plabel
1617 && eh->type != STT_GNU_IFUNC)
1618 {
1619 eh->needs_plt = 0;
1620 eh->plt = elf_hash_table (info)->init_plt_offset;
1621 }
1622 }
1623
1624 /* Find any dynamic relocs that apply to read-only sections. */
1625
1626 static asection *
1627 readonly_dynrelocs (struct elf_link_hash_entry *eh)
1628 {
1629 struct elf32_hppa_link_hash_entry *hh;
1630 struct elf_dyn_relocs *hdh_p;
1631
1632 hh = hppa_elf_hash_entry (eh);
1633 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->next)
1634 {
1635 asection *sec = hdh_p->sec->output_section;
1636
1637 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1638 return hdh_p->sec;
1639 }
1640 return NULL;
1641 }
1642
1643 /* Return true if we have dynamic relocs against H or any of its weak
1644 aliases, that apply to read-only sections. Cannot be used after
1645 size_dynamic_sections. */
1646
1647 static bfd_boolean
1648 alias_readonly_dynrelocs (struct elf_link_hash_entry *eh)
1649 {
1650 struct elf32_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1651 do
1652 {
1653 if (readonly_dynrelocs (&hh->eh))
1654 return TRUE;
1655 hh = hppa_elf_hash_entry (hh->eh.u.alias);
1656 } while (hh != NULL && &hh->eh != eh);
1657
1658 return FALSE;
1659 }
1660
1661 /* Adjust a symbol defined by a dynamic object and referenced by a
1662 regular object. The current definition is in some section of the
1663 dynamic object, but we're not including those sections. We have to
1664 change the definition to something the rest of the link can
1665 understand. */
1666
1667 static bfd_boolean
1668 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1669 struct elf_link_hash_entry *eh)
1670 {
1671 struct elf32_hppa_link_hash_table *htab;
1672 asection *sec, *srel;
1673
1674 /* If this is a function, put it in the procedure linkage table. We
1675 will fill in the contents of the procedure linkage table later. */
1676 if (eh->type == STT_FUNC
1677 || eh->needs_plt)
1678 {
1679 bfd_boolean local = (SYMBOL_CALLS_LOCAL (info, eh)
1680 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh));
1681 /* Discard dyn_relocs when non-pic if we've decided that a
1682 function symbol is local. */
1683 if (!bfd_link_pic (info) && local)
1684 hppa_elf_hash_entry (eh)->dyn_relocs = NULL;
1685
1686 /* If the symbol is used by a plabel, we must allocate a PLT slot.
1687 The refcounts are not reliable when it has been hidden since
1688 hide_symbol can be called before the plabel flag is set. */
1689 if (hppa_elf_hash_entry (eh)->plabel)
1690 eh->plt.refcount = 1;
1691
1692 /* Note that unlike some other backends, the refcount is not
1693 incremented for a non-call (and non-plabel) function reference. */
1694 else if (eh->plt.refcount <= 0
1695 || local)
1696 {
1697 /* The .plt entry is not needed when:
1698 a) Garbage collection has removed all references to the
1699 symbol, or
1700 b) We know for certain the symbol is defined in this
1701 object, and it's not a weak definition, nor is the symbol
1702 used by a plabel relocation. Either this object is the
1703 application or we are doing a shared symbolic link. */
1704 eh->plt.offset = (bfd_vma) -1;
1705 eh->needs_plt = 0;
1706 }
1707
1708 /* Unlike other targets, elf32-hppa.c does not define a function
1709 symbol in a non-pic executable on PLT stub code, so we don't
1710 have a local definition in that case. ie. dyn_relocs can't
1711 be discarded. */
1712
1713 /* Function symbols can't have copy relocs. */
1714 return TRUE;
1715 }
1716 else
1717 eh->plt.offset = (bfd_vma) -1;
1718
1719 htab = hppa_link_hash_table (info);
1720 if (htab == NULL)
1721 return FALSE;
1722
1723 /* If this is a weak symbol, and there is a real definition, the
1724 processor independent code will have arranged for us to see the
1725 real definition first, and we can just use the same value. */
1726 if (eh->is_weakalias)
1727 {
1728 struct elf_link_hash_entry *def = weakdef (eh);
1729 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
1730 eh->root.u.def.section = def->root.u.def.section;
1731 eh->root.u.def.value = def->root.u.def.value;
1732 if (def->root.u.def.section == htab->etab.sdynbss
1733 || def->root.u.def.section == htab->etab.sdynrelro)
1734 hppa_elf_hash_entry (eh)->dyn_relocs = NULL;
1735 return TRUE;
1736 }
1737
1738 /* This is a reference to a symbol defined by a dynamic object which
1739 is not a function. */
1740
1741 /* If we are creating a shared library, we must presume that the
1742 only references to the symbol are via the global offset table.
1743 For such cases we need not do anything here; the relocations will
1744 be handled correctly by relocate_section. */
1745 if (bfd_link_pic (info))
1746 return TRUE;
1747
1748 /* If there are no references to this symbol that do not use the
1749 GOT, we don't need to generate a copy reloc. */
1750 if (!eh->non_got_ref)
1751 return TRUE;
1752
1753 /* If -z nocopyreloc was given, we won't generate them either. */
1754 if (info->nocopyreloc)
1755 return TRUE;
1756
1757 /* If we don't find any dynamic relocs in read-only sections, then
1758 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1759 if (ELIMINATE_COPY_RELOCS
1760 && !alias_readonly_dynrelocs (eh))
1761 return TRUE;
1762
1763 /* We must allocate the symbol in our .dynbss section, which will
1764 become part of the .bss section of the executable. There will be
1765 an entry for this symbol in the .dynsym section. The dynamic
1766 object will contain position independent code, so all references
1767 from the dynamic object to this symbol will go through the global
1768 offset table. The dynamic linker will use the .dynsym entry to
1769 determine the address it must put in the global offset table, so
1770 both the dynamic object and the regular object will refer to the
1771 same memory location for the variable. */
1772 if ((eh->root.u.def.section->flags & SEC_READONLY) != 0)
1773 {
1774 sec = htab->etab.sdynrelro;
1775 srel = htab->etab.sreldynrelro;
1776 }
1777 else
1778 {
1779 sec = htab->etab.sdynbss;
1780 srel = htab->etab.srelbss;
1781 }
1782 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0 && eh->size != 0)
1783 {
1784 /* We must generate a COPY reloc to tell the dynamic linker to
1785 copy the initial value out of the dynamic object and into the
1786 runtime process image. */
1787 srel->size += sizeof (Elf32_External_Rela);
1788 eh->needs_copy = 1;
1789 }
1790
1791 /* We no longer want dyn_relocs. */
1792 hppa_elf_hash_entry (eh)->dyn_relocs = NULL;
1793 return _bfd_elf_adjust_dynamic_copy (info, eh, sec);
1794 }
1795
1796 /* If EH is undefined, make it dynamic if that makes sense. */
1797
1798 static bfd_boolean
1799 ensure_undef_dynamic (struct bfd_link_info *info,
1800 struct elf_link_hash_entry *eh)
1801 {
1802 struct elf_link_hash_table *htab = elf_hash_table (info);
1803
1804 if (htab->dynamic_sections_created
1805 && (eh->root.type == bfd_link_hash_undefweak
1806 || eh->root.type == bfd_link_hash_undefined)
1807 && eh->dynindx == -1
1808 && !eh->forced_local
1809 && eh->type != STT_PARISC_MILLI
1810 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh)
1811 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT)
1812 return bfd_elf_link_record_dynamic_symbol (info, eh);
1813 return TRUE;
1814 }
1815
1816 /* Allocate space in the .plt for entries that won't have relocations.
1817 ie. plabel entries. */
1818
1819 static bfd_boolean
1820 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1821 {
1822 struct bfd_link_info *info;
1823 struct elf32_hppa_link_hash_table *htab;
1824 struct elf32_hppa_link_hash_entry *hh;
1825 asection *sec;
1826
1827 if (eh->root.type == bfd_link_hash_indirect)
1828 return TRUE;
1829
1830 info = (struct bfd_link_info *) inf;
1831 hh = hppa_elf_hash_entry (eh);
1832 htab = hppa_link_hash_table (info);
1833 if (htab == NULL)
1834 return FALSE;
1835
1836 if (htab->etab.dynamic_sections_created
1837 && eh->plt.refcount > 0)
1838 {
1839 if (!ensure_undef_dynamic (info, eh))
1840 return FALSE;
1841
1842 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), eh))
1843 {
1844 /* Allocate these later. From this point on, h->plabel
1845 means that the plt entry is only used by a plabel.
1846 We'll be using a normal plt entry for this symbol, so
1847 clear the plabel indicator. */
1848
1849 hh->plabel = 0;
1850 }
1851 else if (hh->plabel)
1852 {
1853 /* Make an entry in the .plt section for plabel references
1854 that won't have a .plt entry for other reasons. */
1855 sec = htab->etab.splt;
1856 eh->plt.offset = sec->size;
1857 sec->size += PLT_ENTRY_SIZE;
1858 if (bfd_link_pic (info))
1859 htab->etab.srelplt->size += sizeof (Elf32_External_Rela);
1860 }
1861 else
1862 {
1863 /* No .plt entry needed. */
1864 eh->plt.offset = (bfd_vma) -1;
1865 eh->needs_plt = 0;
1866 }
1867 }
1868 else
1869 {
1870 eh->plt.offset = (bfd_vma) -1;
1871 eh->needs_plt = 0;
1872 }
1873
1874 return TRUE;
1875 }
1876
1877 /* Calculate size of GOT entries for symbol given its TLS_TYPE. */
1878
1879 static inline unsigned int
1880 got_entries_needed (int tls_type)
1881 {
1882 unsigned int need = 0;
1883
1884 if ((tls_type & GOT_NORMAL) != 0)
1885 need += GOT_ENTRY_SIZE;
1886 if ((tls_type & GOT_TLS_GD) != 0)
1887 need += GOT_ENTRY_SIZE * 2;
1888 if ((tls_type & GOT_TLS_IE) != 0)
1889 need += GOT_ENTRY_SIZE;
1890 return need;
1891 }
1892
1893 /* Calculate size of relocs needed for symbol given its TLS_TYPE and
1894 NEEDed GOT entries. KNOWN says a TPREL offset can be calculated
1895 at link time. */
1896
1897 static inline unsigned int
1898 got_relocs_needed (int tls_type, unsigned int need, bfd_boolean known)
1899 {
1900 /* All the entries we allocated need relocs.
1901 Except IE in executable with a local symbol. We could also omit
1902 the DTPOFF reloc on the second word of a GD entry under the same
1903 condition as that for IE, but ld.so might want to differentiate
1904 LD and GD entries at some stage. */
1905 if ((tls_type & GOT_TLS_IE) != 0 && known)
1906 need -= GOT_ENTRY_SIZE;
1907 return need * sizeof (Elf32_External_Rela) / GOT_ENTRY_SIZE;
1908 }
1909
1910 /* Allocate space in .plt, .got and associated reloc sections for
1911 global syms. */
1912
1913 static bfd_boolean
1914 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
1915 {
1916 struct bfd_link_info *info;
1917 struct elf32_hppa_link_hash_table *htab;
1918 asection *sec;
1919 struct elf32_hppa_link_hash_entry *hh;
1920 struct elf_dyn_relocs *hdh_p;
1921
1922 if (eh->root.type == bfd_link_hash_indirect)
1923 return TRUE;
1924
1925 info = inf;
1926 htab = hppa_link_hash_table (info);
1927 if (htab == NULL)
1928 return FALSE;
1929
1930 hh = hppa_elf_hash_entry (eh);
1931
1932 if (htab->etab.dynamic_sections_created
1933 && eh->plt.offset != (bfd_vma) -1
1934 && !hh->plabel
1935 && eh->plt.refcount > 0)
1936 {
1937 /* Make an entry in the .plt section. */
1938 sec = htab->etab.splt;
1939 eh->plt.offset = sec->size;
1940 sec->size += PLT_ENTRY_SIZE;
1941
1942 /* We also need to make an entry in the .rela.plt section. */
1943 htab->etab.srelplt->size += sizeof (Elf32_External_Rela);
1944 htab->need_plt_stub = 1;
1945 }
1946
1947 if (eh->got.refcount > 0)
1948 {
1949 unsigned int need;
1950
1951 if (!ensure_undef_dynamic (info, eh))
1952 return FALSE;
1953
1954 sec = htab->etab.sgot;
1955 eh->got.offset = sec->size;
1956 need = got_entries_needed (hh->tls_type);
1957 sec->size += need;
1958 if (htab->etab.dynamic_sections_created
1959 && (bfd_link_pic (info)
1960 || (eh->dynindx != -1
1961 && !SYMBOL_REFERENCES_LOCAL (info, eh)))
1962 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
1963 {
1964 bfd_boolean tprel_known = (bfd_link_executable (info)
1965 && SYMBOL_REFERENCES_LOCAL (info, eh));
1966 htab->etab.srelgot->size
1967 += got_relocs_needed (hh->tls_type, need, tprel_known);
1968 }
1969 }
1970 else
1971 eh->got.offset = (bfd_vma) -1;
1972
1973 /* If no dynamic sections we can't have dynamic relocs. */
1974 if (!htab->etab.dynamic_sections_created)
1975 hh->dyn_relocs = NULL;
1976
1977 /* Discard relocs on undefined syms with non-default visibility. */
1978 else if ((eh->root.type == bfd_link_hash_undefined
1979 && ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
1980 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
1981 hh->dyn_relocs = NULL;
1982
1983 if (hh->dyn_relocs == NULL)
1984 return TRUE;
1985
1986 /* If this is a -Bsymbolic shared link, then we need to discard all
1987 space allocated for dynamic pc-relative relocs against symbols
1988 defined in a regular object. For the normal shared case, discard
1989 space for relocs that have become local due to symbol visibility
1990 changes. */
1991 if (bfd_link_pic (info))
1992 {
1993 #if RELATIVE_DYNRELOCS
1994 if (SYMBOL_CALLS_LOCAL (info, eh))
1995 {
1996 struct elf_dyn_relocs **hdh_pp;
1997
1998 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1999 {
2000 hdh_p->count -= hdh_p->pc_count;
2001 hdh_p->pc_count = 0;
2002 if (hdh_p->count == 0)
2003 *hdh_pp = hdh_p->next;
2004 else
2005 hdh_pp = &hdh_p->next;
2006 }
2007 }
2008 #endif
2009
2010 if (hh->dyn_relocs != NULL)
2011 {
2012 if (!ensure_undef_dynamic (info, eh))
2013 return FALSE;
2014 }
2015 }
2016 else if (ELIMINATE_COPY_RELOCS)
2017 {
2018 /* For the non-shared case, discard space for relocs against
2019 symbols which turn out to need copy relocs or are not
2020 dynamic. */
2021
2022 if (eh->dynamic_adjusted
2023 && !eh->def_regular
2024 && !ELF_COMMON_DEF_P (eh))
2025 {
2026 if (!ensure_undef_dynamic (info, eh))
2027 return FALSE;
2028
2029 if (eh->dynindx == -1)
2030 hh->dyn_relocs = NULL;
2031 }
2032 else
2033 hh->dyn_relocs = NULL;
2034 }
2035
2036 /* Finally, allocate space. */
2037 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->next)
2038 {
2039 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2040 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2041 }
2042
2043 return TRUE;
2044 }
2045
2046 /* This function is called via elf_link_hash_traverse to force
2047 millicode symbols local so they do not end up as globals in the
2048 dynamic symbol table. We ought to be able to do this in
2049 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2050 for all dynamic symbols. Arguably, this is a bug in
2051 elf_adjust_dynamic_symbol. */
2052
2053 static bfd_boolean
2054 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2055 struct bfd_link_info *info)
2056 {
2057 if (eh->type == STT_PARISC_MILLI
2058 && !eh->forced_local)
2059 {
2060 elf32_hppa_hide_symbol (info, eh, TRUE);
2061 }
2062 return TRUE;
2063 }
2064
2065 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
2066 read-only sections. */
2067
2068 static bfd_boolean
2069 maybe_set_textrel (struct elf_link_hash_entry *eh, void *inf)
2070 {
2071 asection *sec;
2072
2073 if (eh->root.type == bfd_link_hash_indirect)
2074 return TRUE;
2075
2076 sec = readonly_dynrelocs (eh);
2077 if (sec != NULL)
2078 {
2079 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2080
2081 info->flags |= DF_TEXTREL;
2082 info->callbacks->minfo
2083 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
2084 sec->owner, eh->root.root.string, sec);
2085
2086 /* Not an error, just cut short the traversal. */
2087 return FALSE;
2088 }
2089 return TRUE;
2090 }
2091
2092 /* Set the sizes of the dynamic sections. */
2093
2094 static bfd_boolean
2095 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2096 struct bfd_link_info *info)
2097 {
2098 struct elf32_hppa_link_hash_table *htab;
2099 bfd *dynobj;
2100 bfd *ibfd;
2101 asection *sec;
2102 bfd_boolean relocs;
2103
2104 htab = hppa_link_hash_table (info);
2105 if (htab == NULL)
2106 return FALSE;
2107
2108 dynobj = htab->etab.dynobj;
2109 if (dynobj == NULL)
2110 abort ();
2111
2112 if (htab->etab.dynamic_sections_created)
2113 {
2114 /* Set the contents of the .interp section to the interpreter. */
2115 if (bfd_link_executable (info) && !info->nointerp)
2116 {
2117 sec = bfd_get_linker_section (dynobj, ".interp");
2118 if (sec == NULL)
2119 abort ();
2120 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2121 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2122 }
2123
2124 /* Force millicode symbols local. */
2125 elf_link_hash_traverse (&htab->etab,
2126 clobber_millicode_symbols,
2127 info);
2128 }
2129
2130 /* Set up .got and .plt offsets for local syms, and space for local
2131 dynamic relocs. */
2132 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
2133 {
2134 bfd_signed_vma *local_got;
2135 bfd_signed_vma *end_local_got;
2136 bfd_signed_vma *local_plt;
2137 bfd_signed_vma *end_local_plt;
2138 bfd_size_type locsymcount;
2139 Elf_Internal_Shdr *symtab_hdr;
2140 asection *srel;
2141 char *local_tls_type;
2142
2143 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2144 continue;
2145
2146 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2147 {
2148 struct elf_dyn_relocs *hdh_p;
2149
2150 for (hdh_p = ((struct elf_dyn_relocs *)
2151 elf_section_data (sec)->local_dynrel);
2152 hdh_p != NULL;
2153 hdh_p = hdh_p->next)
2154 {
2155 if (!bfd_is_abs_section (hdh_p->sec)
2156 && bfd_is_abs_section (hdh_p->sec->output_section))
2157 {
2158 /* Input section has been discarded, either because
2159 it is a copy of a linkonce section or due to
2160 linker script /DISCARD/, so we'll be discarding
2161 the relocs too. */
2162 }
2163 else if (hdh_p->count != 0)
2164 {
2165 srel = elf_section_data (hdh_p->sec)->sreloc;
2166 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2167 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2168 info->flags |= DF_TEXTREL;
2169 }
2170 }
2171 }
2172
2173 local_got = elf_local_got_refcounts (ibfd);
2174 if (!local_got)
2175 continue;
2176
2177 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2178 locsymcount = symtab_hdr->sh_info;
2179 end_local_got = local_got + locsymcount;
2180 local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2181 sec = htab->etab.sgot;
2182 srel = htab->etab.srelgot;
2183 for (; local_got < end_local_got; ++local_got)
2184 {
2185 if (*local_got > 0)
2186 {
2187 unsigned int need;
2188
2189 *local_got = sec->size;
2190 need = got_entries_needed (*local_tls_type);
2191 sec->size += need;
2192 if (bfd_link_pic (info))
2193 {
2194 bfd_boolean tprel_known = bfd_link_executable (info);
2195 htab->etab.srelgot->size
2196 += got_relocs_needed (*local_tls_type, need, tprel_known);
2197 }
2198 }
2199 else
2200 *local_got = (bfd_vma) -1;
2201
2202 ++local_tls_type;
2203 }
2204
2205 local_plt = end_local_got;
2206 end_local_plt = local_plt + locsymcount;
2207 if (! htab->etab.dynamic_sections_created)
2208 {
2209 /* Won't be used, but be safe. */
2210 for (; local_plt < end_local_plt; ++local_plt)
2211 *local_plt = (bfd_vma) -1;
2212 }
2213 else
2214 {
2215 sec = htab->etab.splt;
2216 srel = htab->etab.srelplt;
2217 for (; local_plt < end_local_plt; ++local_plt)
2218 {
2219 if (*local_plt > 0)
2220 {
2221 *local_plt = sec->size;
2222 sec->size += PLT_ENTRY_SIZE;
2223 if (bfd_link_pic (info))
2224 srel->size += sizeof (Elf32_External_Rela);
2225 }
2226 else
2227 *local_plt = (bfd_vma) -1;
2228 }
2229 }
2230 }
2231
2232 if (htab->tls_ldm_got.refcount > 0)
2233 {
2234 /* Allocate 2 got entries and 1 dynamic reloc for
2235 R_PARISC_TLS_DTPMOD32 relocs. */
2236 htab->tls_ldm_got.offset = htab->etab.sgot->size;
2237 htab->etab.sgot->size += (GOT_ENTRY_SIZE * 2);
2238 htab->etab.srelgot->size += sizeof (Elf32_External_Rela);
2239 }
2240 else
2241 htab->tls_ldm_got.offset = -1;
2242
2243 /* Do all the .plt entries without relocs first. The dynamic linker
2244 uses the last .plt reloc to find the end of the .plt (and hence
2245 the start of the .got) for lazy linking. */
2246 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2247
2248 /* Allocate global sym .plt and .got entries, and space for global
2249 sym dynamic relocs. */
2250 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2251
2252 /* The check_relocs and adjust_dynamic_symbol entry points have
2253 determined the sizes of the various dynamic sections. Allocate
2254 memory for them. */
2255 relocs = FALSE;
2256 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2257 {
2258 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2259 continue;
2260
2261 if (sec == htab->etab.splt)
2262 {
2263 if (htab->need_plt_stub)
2264 {
2265 /* Make space for the plt stub at the end of the .plt
2266 section. We want this stub right at the end, up
2267 against the .got section. */
2268 int gotalign = bfd_section_alignment (dynobj, htab->etab.sgot);
2269 int pltalign = bfd_section_alignment (dynobj, sec);
2270 bfd_size_type mask;
2271
2272 if (gotalign > pltalign)
2273 (void) bfd_set_section_alignment (dynobj, sec, gotalign);
2274 mask = ((bfd_size_type) 1 << gotalign) - 1;
2275 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2276 }
2277 }
2278 else if (sec == htab->etab.sgot
2279 || sec == htab->etab.sdynbss
2280 || sec == htab->etab.sdynrelro)
2281 ;
2282 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
2283 {
2284 if (sec->size != 0)
2285 {
2286 /* Remember whether there are any reloc sections other
2287 than .rela.plt. */
2288 if (sec != htab->etab.srelplt)
2289 relocs = TRUE;
2290
2291 /* We use the reloc_count field as a counter if we need
2292 to copy relocs into the output file. */
2293 sec->reloc_count = 0;
2294 }
2295 }
2296 else
2297 {
2298 /* It's not one of our sections, so don't allocate space. */
2299 continue;
2300 }
2301
2302 if (sec->size == 0)
2303 {
2304 /* If we don't need this section, strip it from the
2305 output file. This is mostly to handle .rela.bss and
2306 .rela.plt. We must create both sections in
2307 create_dynamic_sections, because they must be created
2308 before the linker maps input sections to output
2309 sections. The linker does that before
2310 adjust_dynamic_symbol is called, and it is that
2311 function which decides whether anything needs to go
2312 into these sections. */
2313 sec->flags |= SEC_EXCLUDE;
2314 continue;
2315 }
2316
2317 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2318 continue;
2319
2320 /* Allocate memory for the section contents. Zero it, because
2321 we may not fill in all the reloc sections. */
2322 sec->contents = bfd_zalloc (dynobj, sec->size);
2323 if (sec->contents == NULL)
2324 return FALSE;
2325 }
2326
2327 if (htab->etab.dynamic_sections_created)
2328 {
2329 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2330 actually has nothing to do with the PLT, it is how we
2331 communicate the LTP value of a load module to the dynamic
2332 linker. */
2333 #define add_dynamic_entry(TAG, VAL) \
2334 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2335
2336 if (!add_dynamic_entry (DT_PLTGOT, 0))
2337 return FALSE;
2338
2339 /* Add some entries to the .dynamic section. We fill in the
2340 values later, in elf32_hppa_finish_dynamic_sections, but we
2341 must add the entries now so that we get the correct size for
2342 the .dynamic section. The DT_DEBUG entry is filled in by the
2343 dynamic linker and used by the debugger. */
2344 if (bfd_link_executable (info))
2345 {
2346 if (!add_dynamic_entry (DT_DEBUG, 0))
2347 return FALSE;
2348 }
2349
2350 if (htab->etab.srelplt->size != 0)
2351 {
2352 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2353 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2354 || !add_dynamic_entry (DT_JMPREL, 0))
2355 return FALSE;
2356 }
2357
2358 if (relocs)
2359 {
2360 if (!add_dynamic_entry (DT_RELA, 0)
2361 || !add_dynamic_entry (DT_RELASZ, 0)
2362 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2363 return FALSE;
2364
2365 /* If any dynamic relocs apply to a read-only section,
2366 then we need a DT_TEXTREL entry. */
2367 if ((info->flags & DF_TEXTREL) == 0)
2368 elf_link_hash_traverse (&htab->etab, maybe_set_textrel, info);
2369
2370 if ((info->flags & DF_TEXTREL) != 0)
2371 {
2372 if (!add_dynamic_entry (DT_TEXTREL, 0))
2373 return FALSE;
2374 }
2375 }
2376 }
2377 #undef add_dynamic_entry
2378
2379 return TRUE;
2380 }
2381
2382 /* External entry points for sizing and building linker stubs. */
2383
2384 /* Set up various things so that we can make a list of input sections
2385 for each output section included in the link. Returns -1 on error,
2386 0 when no stubs will be needed, and 1 on success. */
2387
2388 int
2389 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2390 {
2391 bfd *input_bfd;
2392 unsigned int bfd_count;
2393 unsigned int top_id, top_index;
2394 asection *section;
2395 asection **input_list, **list;
2396 bfd_size_type amt;
2397 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2398
2399 if (htab == NULL)
2400 return -1;
2401
2402 /* Count the number of input BFDs and find the top input section id. */
2403 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2404 input_bfd != NULL;
2405 input_bfd = input_bfd->link.next)
2406 {
2407 bfd_count += 1;
2408 for (section = input_bfd->sections;
2409 section != NULL;
2410 section = section->next)
2411 {
2412 if (top_id < section->id)
2413 top_id = section->id;
2414 }
2415 }
2416 htab->bfd_count = bfd_count;
2417
2418 amt = sizeof (struct map_stub) * (top_id + 1);
2419 htab->stub_group = bfd_zmalloc (amt);
2420 if (htab->stub_group == NULL)
2421 return -1;
2422
2423 /* We can't use output_bfd->section_count here to find the top output
2424 section index as some sections may have been removed, and
2425 strip_excluded_output_sections doesn't renumber the indices. */
2426 for (section = output_bfd->sections, top_index = 0;
2427 section != NULL;
2428 section = section->next)
2429 {
2430 if (top_index < section->index)
2431 top_index = section->index;
2432 }
2433
2434 htab->top_index = top_index;
2435 amt = sizeof (asection *) * (top_index + 1);
2436 input_list = bfd_malloc (amt);
2437 htab->input_list = input_list;
2438 if (input_list == NULL)
2439 return -1;
2440
2441 /* For sections we aren't interested in, mark their entries with a
2442 value we can check later. */
2443 list = input_list + top_index;
2444 do
2445 *list = bfd_abs_section_ptr;
2446 while (list-- != input_list);
2447
2448 for (section = output_bfd->sections;
2449 section != NULL;
2450 section = section->next)
2451 {
2452 if ((section->flags & SEC_CODE) != 0)
2453 input_list[section->index] = NULL;
2454 }
2455
2456 return 1;
2457 }
2458
2459 /* The linker repeatedly calls this function for each input section,
2460 in the order that input sections are linked into output sections.
2461 Build lists of input sections to determine groupings between which
2462 we may insert linker stubs. */
2463
2464 void
2465 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2466 {
2467 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2468
2469 if (htab == NULL)
2470 return;
2471
2472 if (isec->output_section->index <= htab->top_index)
2473 {
2474 asection **list = htab->input_list + isec->output_section->index;
2475 if (*list != bfd_abs_section_ptr)
2476 {
2477 /* Steal the link_sec pointer for our list. */
2478 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2479 /* This happens to make the list in reverse order,
2480 which is what we want. */
2481 PREV_SEC (isec) = *list;
2482 *list = isec;
2483 }
2484 }
2485 }
2486
2487 /* See whether we can group stub sections together. Grouping stub
2488 sections may result in fewer stubs. More importantly, we need to
2489 put all .init* and .fini* stubs at the beginning of the .init or
2490 .fini output sections respectively, because glibc splits the
2491 _init and _fini functions into multiple parts. Putting a stub in
2492 the middle of a function is not a good idea. */
2493
2494 static void
2495 group_sections (struct elf32_hppa_link_hash_table *htab,
2496 bfd_size_type stub_group_size,
2497 bfd_boolean stubs_always_before_branch)
2498 {
2499 asection **list = htab->input_list + htab->top_index;
2500 do
2501 {
2502 asection *tail = *list;
2503 if (tail == bfd_abs_section_ptr)
2504 continue;
2505 while (tail != NULL)
2506 {
2507 asection *curr;
2508 asection *prev;
2509 bfd_size_type total;
2510 bfd_boolean big_sec;
2511
2512 curr = tail;
2513 total = tail->size;
2514 big_sec = total >= stub_group_size;
2515
2516 while ((prev = PREV_SEC (curr)) != NULL
2517 && ((total += curr->output_offset - prev->output_offset)
2518 < stub_group_size))
2519 curr = prev;
2520
2521 /* OK, the size from the start of CURR to the end is less
2522 than 240000 bytes and thus can be handled by one stub
2523 section. (or the tail section is itself larger than
2524 240000 bytes, in which case we may be toast.)
2525 We should really be keeping track of the total size of
2526 stubs added here, as stubs contribute to the final output
2527 section size. That's a little tricky, and this way will
2528 only break if stubs added total more than 22144 bytes, or
2529 2768 long branch stubs. It seems unlikely for more than
2530 2768 different functions to be called, especially from
2531 code only 240000 bytes long. This limit used to be
2532 250000, but c++ code tends to generate lots of little
2533 functions, and sometimes violated the assumption. */
2534 do
2535 {
2536 prev = PREV_SEC (tail);
2537 /* Set up this stub group. */
2538 htab->stub_group[tail->id].link_sec = curr;
2539 }
2540 while (tail != curr && (tail = prev) != NULL);
2541
2542 /* But wait, there's more! Input sections up to 240000
2543 bytes before the stub section can be handled by it too.
2544 Don't do this if we have a really large section after the
2545 stubs, as adding more stubs increases the chance that
2546 branches may not reach into the stub section. */
2547 if (!stubs_always_before_branch && !big_sec)
2548 {
2549 total = 0;
2550 while (prev != NULL
2551 && ((total += tail->output_offset - prev->output_offset)
2552 < stub_group_size))
2553 {
2554 tail = prev;
2555 prev = PREV_SEC (tail);
2556 htab->stub_group[tail->id].link_sec = curr;
2557 }
2558 }
2559 tail = prev;
2560 }
2561 }
2562 while (list-- != htab->input_list);
2563 free (htab->input_list);
2564 #undef PREV_SEC
2565 }
2566
2567 /* Read in all local syms for all input bfds, and create hash entries
2568 for export stubs if we are building a multi-subspace shared lib.
2569 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2570
2571 static int
2572 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2573 {
2574 unsigned int bfd_indx;
2575 Elf_Internal_Sym *local_syms, **all_local_syms;
2576 int stub_changed = 0;
2577 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2578
2579 if (htab == NULL)
2580 return -1;
2581
2582 /* We want to read in symbol extension records only once. To do this
2583 we need to read in the local symbols in parallel and save them for
2584 later use; so hold pointers to the local symbols in an array. */
2585 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2586 all_local_syms = bfd_zmalloc (amt);
2587 htab->all_local_syms = all_local_syms;
2588 if (all_local_syms == NULL)
2589 return -1;
2590
2591 /* Walk over all the input BFDs, swapping in local symbols.
2592 If we are creating a shared library, create hash entries for the
2593 export stubs. */
2594 for (bfd_indx = 0;
2595 input_bfd != NULL;
2596 input_bfd = input_bfd->link.next, bfd_indx++)
2597 {
2598 Elf_Internal_Shdr *symtab_hdr;
2599
2600 /* We'll need the symbol table in a second. */
2601 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2602 if (symtab_hdr->sh_info == 0)
2603 continue;
2604
2605 /* We need an array of the local symbols attached to the input bfd. */
2606 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2607 if (local_syms == NULL)
2608 {
2609 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2610 symtab_hdr->sh_info, 0,
2611 NULL, NULL, NULL);
2612 /* Cache them for elf_link_input_bfd. */
2613 symtab_hdr->contents = (unsigned char *) local_syms;
2614 }
2615 if (local_syms == NULL)
2616 return -1;
2617
2618 all_local_syms[bfd_indx] = local_syms;
2619
2620 if (bfd_link_pic (info) && htab->multi_subspace)
2621 {
2622 struct elf_link_hash_entry **eh_syms;
2623 struct elf_link_hash_entry **eh_symend;
2624 unsigned int symcount;
2625
2626 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2627 - symtab_hdr->sh_info);
2628 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2629 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2630
2631 /* Look through the global syms for functions; We need to
2632 build export stubs for all globally visible functions. */
2633 for (; eh_syms < eh_symend; eh_syms++)
2634 {
2635 struct elf32_hppa_link_hash_entry *hh;
2636
2637 hh = hppa_elf_hash_entry (*eh_syms);
2638
2639 while (hh->eh.root.type == bfd_link_hash_indirect
2640 || hh->eh.root.type == bfd_link_hash_warning)
2641 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2642
2643 /* At this point in the link, undefined syms have been
2644 resolved, so we need to check that the symbol was
2645 defined in this BFD. */
2646 if ((hh->eh.root.type == bfd_link_hash_defined
2647 || hh->eh.root.type == bfd_link_hash_defweak)
2648 && hh->eh.type == STT_FUNC
2649 && hh->eh.root.u.def.section->output_section != NULL
2650 && (hh->eh.root.u.def.section->output_section->owner
2651 == output_bfd)
2652 && hh->eh.root.u.def.section->owner == input_bfd
2653 && hh->eh.def_regular
2654 && !hh->eh.forced_local
2655 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2656 {
2657 asection *sec;
2658 const char *stub_name;
2659 struct elf32_hppa_stub_hash_entry *hsh;
2660
2661 sec = hh->eh.root.u.def.section;
2662 stub_name = hh_name (hh);
2663 hsh = hppa_stub_hash_lookup (&htab->bstab,
2664 stub_name,
2665 FALSE, FALSE);
2666 if (hsh == NULL)
2667 {
2668 hsh = hppa_add_stub (stub_name, sec, htab);
2669 if (!hsh)
2670 return -1;
2671
2672 hsh->target_value = hh->eh.root.u.def.value;
2673 hsh->target_section = hh->eh.root.u.def.section;
2674 hsh->stub_type = hppa_stub_export;
2675 hsh->hh = hh;
2676 stub_changed = 1;
2677 }
2678 else
2679 {
2680 /* xgettext:c-format */
2681 _bfd_error_handler (_("%pB: duplicate export stub %s"),
2682 input_bfd, stub_name);
2683 }
2684 }
2685 }
2686 }
2687 }
2688
2689 return stub_changed;
2690 }
2691
2692 /* Determine and set the size of the stub section for a final link.
2693
2694 The basic idea here is to examine all the relocations looking for
2695 PC-relative calls to a target that is unreachable with a "bl"
2696 instruction. */
2697
2698 bfd_boolean
2699 elf32_hppa_size_stubs
2700 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2701 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2702 asection * (*add_stub_section) (const char *, asection *),
2703 void (*layout_sections_again) (void))
2704 {
2705 bfd_size_type stub_group_size;
2706 bfd_boolean stubs_always_before_branch;
2707 bfd_boolean stub_changed;
2708 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2709
2710 if (htab == NULL)
2711 return FALSE;
2712
2713 /* Stash our params away. */
2714 htab->stub_bfd = stub_bfd;
2715 htab->multi_subspace = multi_subspace;
2716 htab->add_stub_section = add_stub_section;
2717 htab->layout_sections_again = layout_sections_again;
2718 stubs_always_before_branch = group_size < 0;
2719 if (group_size < 0)
2720 stub_group_size = -group_size;
2721 else
2722 stub_group_size = group_size;
2723 if (stub_group_size == 1)
2724 {
2725 /* Default values. */
2726 if (stubs_always_before_branch)
2727 {
2728 stub_group_size = 7680000;
2729 if (htab->has_17bit_branch || htab->multi_subspace)
2730 stub_group_size = 240000;
2731 if (htab->has_12bit_branch)
2732 stub_group_size = 7500;
2733 }
2734 else
2735 {
2736 stub_group_size = 6971392;
2737 if (htab->has_17bit_branch || htab->multi_subspace)
2738 stub_group_size = 217856;
2739 if (htab->has_12bit_branch)
2740 stub_group_size = 6808;
2741 }
2742 }
2743
2744 group_sections (htab, stub_group_size, stubs_always_before_branch);
2745
2746 switch (get_local_syms (output_bfd, info->input_bfds, info))
2747 {
2748 default:
2749 if (htab->all_local_syms)
2750 goto error_ret_free_local;
2751 return FALSE;
2752
2753 case 0:
2754 stub_changed = FALSE;
2755 break;
2756
2757 case 1:
2758 stub_changed = TRUE;
2759 break;
2760 }
2761
2762 while (1)
2763 {
2764 bfd *input_bfd;
2765 unsigned int bfd_indx;
2766 asection *stub_sec;
2767
2768 for (input_bfd = info->input_bfds, bfd_indx = 0;
2769 input_bfd != NULL;
2770 input_bfd = input_bfd->link.next, bfd_indx++)
2771 {
2772 Elf_Internal_Shdr *symtab_hdr;
2773 asection *section;
2774 Elf_Internal_Sym *local_syms;
2775
2776 /* We'll need the symbol table in a second. */
2777 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2778 if (symtab_hdr->sh_info == 0)
2779 continue;
2780
2781 local_syms = htab->all_local_syms[bfd_indx];
2782
2783 /* Walk over each section attached to the input bfd. */
2784 for (section = input_bfd->sections;
2785 section != NULL;
2786 section = section->next)
2787 {
2788 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2789
2790 /* If there aren't any relocs, then there's nothing more
2791 to do. */
2792 if ((section->flags & SEC_RELOC) == 0
2793 || section->reloc_count == 0)
2794 continue;
2795
2796 /* If this section is a link-once section that will be
2797 discarded, then don't create any stubs. */
2798 if (section->output_section == NULL
2799 || section->output_section->owner != output_bfd)
2800 continue;
2801
2802 /* Get the relocs. */
2803 internal_relocs
2804 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2805 info->keep_memory);
2806 if (internal_relocs == NULL)
2807 goto error_ret_free_local;
2808
2809 /* Now examine each relocation. */
2810 irela = internal_relocs;
2811 irelaend = irela + section->reloc_count;
2812 for (; irela < irelaend; irela++)
2813 {
2814 unsigned int r_type, r_indx;
2815 enum elf32_hppa_stub_type stub_type;
2816 struct elf32_hppa_stub_hash_entry *hsh;
2817 asection *sym_sec;
2818 bfd_vma sym_value;
2819 bfd_vma destination;
2820 struct elf32_hppa_link_hash_entry *hh;
2821 char *stub_name;
2822 const asection *id_sec;
2823
2824 r_type = ELF32_R_TYPE (irela->r_info);
2825 r_indx = ELF32_R_SYM (irela->r_info);
2826
2827 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2828 {
2829 bfd_set_error (bfd_error_bad_value);
2830 error_ret_free_internal:
2831 if (elf_section_data (section)->relocs == NULL)
2832 free (internal_relocs);
2833 goto error_ret_free_local;
2834 }
2835
2836 /* Only look for stubs on call instructions. */
2837 if (r_type != (unsigned int) R_PARISC_PCREL12F
2838 && r_type != (unsigned int) R_PARISC_PCREL17F
2839 && r_type != (unsigned int) R_PARISC_PCREL22F)
2840 continue;
2841
2842 /* Now determine the call target, its name, value,
2843 section. */
2844 sym_sec = NULL;
2845 sym_value = 0;
2846 destination = 0;
2847 hh = NULL;
2848 if (r_indx < symtab_hdr->sh_info)
2849 {
2850 /* It's a local symbol. */
2851 Elf_Internal_Sym *sym;
2852 Elf_Internal_Shdr *hdr;
2853 unsigned int shndx;
2854
2855 sym = local_syms + r_indx;
2856 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2857 sym_value = sym->st_value;
2858 shndx = sym->st_shndx;
2859 if (shndx < elf_numsections (input_bfd))
2860 {
2861 hdr = elf_elfsections (input_bfd)[shndx];
2862 sym_sec = hdr->bfd_section;
2863 destination = (sym_value + irela->r_addend
2864 + sym_sec->output_offset
2865 + sym_sec->output_section->vma);
2866 }
2867 }
2868 else
2869 {
2870 /* It's an external symbol. */
2871 int e_indx;
2872
2873 e_indx = r_indx - symtab_hdr->sh_info;
2874 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2875
2876 while (hh->eh.root.type == bfd_link_hash_indirect
2877 || hh->eh.root.type == bfd_link_hash_warning)
2878 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2879
2880 if (hh->eh.root.type == bfd_link_hash_defined
2881 || hh->eh.root.type == bfd_link_hash_defweak)
2882 {
2883 sym_sec = hh->eh.root.u.def.section;
2884 sym_value = hh->eh.root.u.def.value;
2885 if (sym_sec->output_section != NULL)
2886 destination = (sym_value + irela->r_addend
2887 + sym_sec->output_offset
2888 + sym_sec->output_section->vma);
2889 }
2890 else if (hh->eh.root.type == bfd_link_hash_undefweak)
2891 {
2892 if (! bfd_link_pic (info))
2893 continue;
2894 }
2895 else if (hh->eh.root.type == bfd_link_hash_undefined)
2896 {
2897 if (! (info->unresolved_syms_in_objects == RM_IGNORE
2898 && (ELF_ST_VISIBILITY (hh->eh.other)
2899 == STV_DEFAULT)
2900 && hh->eh.type != STT_PARISC_MILLI))
2901 continue;
2902 }
2903 else
2904 {
2905 bfd_set_error (bfd_error_bad_value);
2906 goto error_ret_free_internal;
2907 }
2908 }
2909
2910 /* Determine what (if any) linker stub is needed. */
2911 stub_type = hppa_type_of_stub (section, irela, hh,
2912 destination, info);
2913 if (stub_type == hppa_stub_none)
2914 continue;
2915
2916 /* Support for grouping stub sections. */
2917 id_sec = htab->stub_group[section->id].link_sec;
2918
2919 /* Get the name of this stub. */
2920 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
2921 if (!stub_name)
2922 goto error_ret_free_internal;
2923
2924 hsh = hppa_stub_hash_lookup (&htab->bstab,
2925 stub_name,
2926 FALSE, FALSE);
2927 if (hsh != NULL)
2928 {
2929 /* The proper stub has already been created. */
2930 free (stub_name);
2931 continue;
2932 }
2933
2934 hsh = hppa_add_stub (stub_name, section, htab);
2935 if (hsh == NULL)
2936 {
2937 free (stub_name);
2938 goto error_ret_free_internal;
2939 }
2940
2941 hsh->target_value = sym_value;
2942 hsh->target_section = sym_sec;
2943 hsh->stub_type = stub_type;
2944 if (bfd_link_pic (info))
2945 {
2946 if (stub_type == hppa_stub_import)
2947 hsh->stub_type = hppa_stub_import_shared;
2948 else if (stub_type == hppa_stub_long_branch)
2949 hsh->stub_type = hppa_stub_long_branch_shared;
2950 }
2951 hsh->hh = hh;
2952 stub_changed = TRUE;
2953 }
2954
2955 /* We're done with the internal relocs, free them. */
2956 if (elf_section_data (section)->relocs == NULL)
2957 free (internal_relocs);
2958 }
2959 }
2960
2961 if (!stub_changed)
2962 break;
2963
2964 /* OK, we've added some stubs. Find out the new size of the
2965 stub sections. */
2966 for (stub_sec = htab->stub_bfd->sections;
2967 stub_sec != NULL;
2968 stub_sec = stub_sec->next)
2969 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
2970 stub_sec->size = 0;
2971
2972 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
2973
2974 /* Ask the linker to do its stuff. */
2975 (*htab->layout_sections_again) ();
2976 stub_changed = FALSE;
2977 }
2978
2979 free (htab->all_local_syms);
2980 return TRUE;
2981
2982 error_ret_free_local:
2983 free (htab->all_local_syms);
2984 return FALSE;
2985 }
2986
2987 /* For a final link, this function is called after we have sized the
2988 stubs to provide a value for __gp. */
2989
2990 bfd_boolean
2991 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
2992 {
2993 struct bfd_link_hash_entry *h;
2994 asection *sec = NULL;
2995 bfd_vma gp_val = 0;
2996
2997 h = bfd_link_hash_lookup (info->hash, "$global$", FALSE, FALSE, FALSE);
2998
2999 if (h != NULL
3000 && (h->type == bfd_link_hash_defined
3001 || h->type == bfd_link_hash_defweak))
3002 {
3003 gp_val = h->u.def.value;
3004 sec = h->u.def.section;
3005 }
3006 else
3007 {
3008 asection *splt = bfd_get_section_by_name (abfd, ".plt");
3009 asection *sgot = bfd_get_section_by_name (abfd, ".got");
3010
3011 /* Choose to point our LTP at, in this order, one of .plt, .got,
3012 or .data, if these sections exist. In the case of choosing
3013 .plt try to make the LTP ideal for addressing anywhere in the
3014 .plt or .got with a 14 bit signed offset. Typically, the end
3015 of the .plt is the start of the .got, so choose .plt + 0x2000
3016 if either the .plt or .got is larger than 0x2000. If both
3017 the .plt and .got are smaller than 0x2000, choose the end of
3018 the .plt section. */
3019 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3020 ? NULL : splt;
3021 if (sec != NULL)
3022 {
3023 gp_val = sec->size;
3024 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3025 {
3026 gp_val = 0x2000;
3027 }
3028 }
3029 else
3030 {
3031 sec = sgot;
3032 if (sec != NULL)
3033 {
3034 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3035 {
3036 /* We know we don't have a .plt. If .got is large,
3037 offset our LTP. */
3038 if (sec->size > 0x2000)
3039 gp_val = 0x2000;
3040 }
3041 }
3042 else
3043 {
3044 /* No .plt or .got. Who cares what the LTP is? */
3045 sec = bfd_get_section_by_name (abfd, ".data");
3046 }
3047 }
3048
3049 if (h != NULL)
3050 {
3051 h->type = bfd_link_hash_defined;
3052 h->u.def.value = gp_val;
3053 if (sec != NULL)
3054 h->u.def.section = sec;
3055 else
3056 h->u.def.section = bfd_abs_section_ptr;
3057 }
3058 }
3059
3060 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
3061 {
3062 if (sec != NULL && sec->output_section != NULL)
3063 gp_val += sec->output_section->vma + sec->output_offset;
3064
3065 elf_gp (abfd) = gp_val;
3066 }
3067 return TRUE;
3068 }
3069
3070 /* Build all the stubs associated with the current output file. The
3071 stubs are kept in a hash table attached to the main linker hash
3072 table. We also set up the .plt entries for statically linked PIC
3073 functions here. This function is called via hppaelf_finish in the
3074 linker. */
3075
3076 bfd_boolean
3077 elf32_hppa_build_stubs (struct bfd_link_info *info)
3078 {
3079 asection *stub_sec;
3080 struct bfd_hash_table *table;
3081 struct elf32_hppa_link_hash_table *htab;
3082
3083 htab = hppa_link_hash_table (info);
3084 if (htab == NULL)
3085 return FALSE;
3086
3087 for (stub_sec = htab->stub_bfd->sections;
3088 stub_sec != NULL;
3089 stub_sec = stub_sec->next)
3090 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
3091 && stub_sec->size != 0)
3092 {
3093 /* Allocate memory to hold the linker stubs. */
3094 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
3095 if (stub_sec->contents == NULL)
3096 return FALSE;
3097 stub_sec->size = 0;
3098 }
3099
3100 /* Build the stubs as directed by the stub hash table. */
3101 table = &htab->bstab;
3102 bfd_hash_traverse (table, hppa_build_one_stub, info);
3103
3104 return TRUE;
3105 }
3106
3107 /* Return the base vma address which should be subtracted from the real
3108 address when resolving a dtpoff relocation.
3109 This is PT_TLS segment p_vaddr. */
3110
3111 static bfd_vma
3112 dtpoff_base (struct bfd_link_info *info)
3113 {
3114 /* If tls_sec is NULL, we should have signalled an error already. */
3115 if (elf_hash_table (info)->tls_sec == NULL)
3116 return 0;
3117 return elf_hash_table (info)->tls_sec->vma;
3118 }
3119
3120 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3121
3122 static bfd_vma
3123 tpoff (struct bfd_link_info *info, bfd_vma address)
3124 {
3125 struct elf_link_hash_table *htab = elf_hash_table (info);
3126
3127 /* If tls_sec is NULL, we should have signalled an error already. */
3128 if (htab->tls_sec == NULL)
3129 return 0;
3130 /* hppa TLS ABI is variant I and static TLS block start just after
3131 tcbhead structure which has 2 pointer fields. */
3132 return (address - htab->tls_sec->vma
3133 + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3134 }
3135
3136 /* Perform a final link. */
3137
3138 static bfd_boolean
3139 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3140 {
3141 struct stat buf;
3142
3143 /* Invoke the regular ELF linker to do all the work. */
3144 if (!bfd_elf_final_link (abfd, info))
3145 return FALSE;
3146
3147 /* If we're producing a final executable, sort the contents of the
3148 unwind section. */
3149 if (bfd_link_relocatable (info))
3150 return TRUE;
3151
3152 /* Do not attempt to sort non-regular files. This is here
3153 especially for configure scripts and kernel builds which run
3154 tests with "ld [...] -o /dev/null". */
3155 if (stat (abfd->filename, &buf) != 0
3156 || !S_ISREG(buf.st_mode))
3157 return TRUE;
3158
3159 return elf_hppa_sort_unwind (abfd);
3160 }
3161
3162 /* Record the lowest address for the data and text segments. */
3163
3164 static void
3165 hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
3166 {
3167 struct elf32_hppa_link_hash_table *htab;
3168
3169 htab = (struct elf32_hppa_link_hash_table*) data;
3170 if (htab == NULL)
3171 return;
3172
3173 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3174 {
3175 bfd_vma value;
3176 Elf_Internal_Phdr *p;
3177
3178 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
3179 BFD_ASSERT (p != NULL);
3180 value = p->p_vaddr;
3181
3182 if ((section->flags & SEC_READONLY) != 0)
3183 {
3184 if (value < htab->text_segment_base)
3185 htab->text_segment_base = value;
3186 }
3187 else
3188 {
3189 if (value < htab->data_segment_base)
3190 htab->data_segment_base = value;
3191 }
3192 }
3193 }
3194
3195 /* Perform a relocation as part of a final link. */
3196
3197 static bfd_reloc_status_type
3198 final_link_relocate (asection *input_section,
3199 bfd_byte *contents,
3200 const Elf_Internal_Rela *rela,
3201 bfd_vma value,
3202 struct elf32_hppa_link_hash_table *htab,
3203 asection *sym_sec,
3204 struct elf32_hppa_link_hash_entry *hh,
3205 struct bfd_link_info *info)
3206 {
3207 int insn;
3208 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3209 unsigned int orig_r_type = r_type;
3210 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3211 int r_format = howto->bitsize;
3212 enum hppa_reloc_field_selector_type_alt r_field;
3213 bfd *input_bfd = input_section->owner;
3214 bfd_vma offset = rela->r_offset;
3215 bfd_vma max_branch_offset = 0;
3216 bfd_byte *hit_data = contents + offset;
3217 bfd_signed_vma addend = rela->r_addend;
3218 bfd_vma location;
3219 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3220 int val;
3221
3222 if (r_type == R_PARISC_NONE)
3223 return bfd_reloc_ok;
3224
3225 insn = bfd_get_32 (input_bfd, hit_data);
3226
3227 /* Find out where we are and where we're going. */
3228 location = (offset +
3229 input_section->output_offset +
3230 input_section->output_section->vma);
3231
3232 /* If we are not building a shared library, convert DLTIND relocs to
3233 DPREL relocs. */
3234 if (!bfd_link_pic (info))
3235 {
3236 switch (r_type)
3237 {
3238 case R_PARISC_DLTIND21L:
3239 case R_PARISC_TLS_GD21L:
3240 case R_PARISC_TLS_LDM21L:
3241 case R_PARISC_TLS_IE21L:
3242 r_type = R_PARISC_DPREL21L;
3243 break;
3244
3245 case R_PARISC_DLTIND14R:
3246 case R_PARISC_TLS_GD14R:
3247 case R_PARISC_TLS_LDM14R:
3248 case R_PARISC_TLS_IE14R:
3249 r_type = R_PARISC_DPREL14R;
3250 break;
3251
3252 case R_PARISC_DLTIND14F:
3253 r_type = R_PARISC_DPREL14F;
3254 break;
3255 }
3256 }
3257
3258 switch (r_type)
3259 {
3260 case R_PARISC_PCREL12F:
3261 case R_PARISC_PCREL17F:
3262 case R_PARISC_PCREL22F:
3263 /* If this call should go via the plt, find the import stub in
3264 the stub hash. */
3265 if (sym_sec == NULL
3266 || sym_sec->output_section == NULL
3267 || (hh != NULL
3268 && hh->eh.plt.offset != (bfd_vma) -1
3269 && hh->eh.dynindx != -1
3270 && !hh->plabel
3271 && (bfd_link_pic (info)
3272 || !hh->eh.def_regular
3273 || hh->eh.root.type == bfd_link_hash_defweak)))
3274 {
3275 hsh = hppa_get_stub_entry (input_section, sym_sec,
3276 hh, rela, htab);
3277 if (hsh != NULL)
3278 {
3279 value = (hsh->stub_offset
3280 + hsh->stub_sec->output_offset
3281 + hsh->stub_sec->output_section->vma);
3282 addend = 0;
3283 }
3284 else if (sym_sec == NULL && hh != NULL
3285 && hh->eh.root.type == bfd_link_hash_undefweak)
3286 {
3287 /* It's OK if undefined weak. Calls to undefined weak
3288 symbols behave as if the "called" function
3289 immediately returns. We can thus call to a weak
3290 function without first checking whether the function
3291 is defined. */
3292 value = location;
3293 addend = 8;
3294 }
3295 else
3296 return bfd_reloc_undefined;
3297 }
3298 /* Fall thru. */
3299
3300 case R_PARISC_PCREL21L:
3301 case R_PARISC_PCREL17C:
3302 case R_PARISC_PCREL17R:
3303 case R_PARISC_PCREL14R:
3304 case R_PARISC_PCREL14F:
3305 case R_PARISC_PCREL32:
3306 /* Make it a pc relative offset. */
3307 value -= location;
3308 addend -= 8;
3309 break;
3310
3311 case R_PARISC_DPREL21L:
3312 case R_PARISC_DPREL14R:
3313 case R_PARISC_DPREL14F:
3314 /* Convert instructions that use the linkage table pointer (r19) to
3315 instructions that use the global data pointer (dp). This is the
3316 most efficient way of using PIC code in an incomplete executable,
3317 but the user must follow the standard runtime conventions for
3318 accessing data for this to work. */
3319 if (orig_r_type != r_type)
3320 {
3321 if (r_type == R_PARISC_DPREL21L)
3322 {
3323 /* GCC sometimes uses a register other than r19 for the
3324 operation, so we must convert any addil instruction
3325 that uses this relocation. */
3326 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3327 insn = ADDIL_DP;
3328 else
3329 /* We must have a ldil instruction. It's too hard to find
3330 and convert the associated add instruction, so issue an
3331 error. */
3332 _bfd_error_handler
3333 /* xgettext:c-format */
3334 (_("%pB(%pA+%#" PRIx64 "): %s fixup for insn %#x "
3335 "is not supported in a non-shared link"),
3336 input_bfd,
3337 input_section,
3338 (uint64_t) offset,
3339 howto->name,
3340 insn);
3341 }
3342 else if (r_type == R_PARISC_DPREL14F)
3343 {
3344 /* This must be a format 1 load/store. Change the base
3345 register to dp. */
3346 insn = (insn & 0xfc1ffff) | (27 << 21);
3347 }
3348 }
3349
3350 /* For all the DP relative relocations, we need to examine the symbol's
3351 section. If it has no section or if it's a code section, then
3352 "data pointer relative" makes no sense. In that case we don't
3353 adjust the "value", and for 21 bit addil instructions, we change the
3354 source addend register from %dp to %r0. This situation commonly
3355 arises for undefined weak symbols and when a variable's "constness"
3356 is declared differently from the way the variable is defined. For
3357 instance: "extern int foo" with foo defined as "const int foo". */
3358 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3359 {
3360 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3361 == (((int) OP_ADDIL << 26) | (27 << 21)))
3362 {
3363 insn &= ~ (0x1f << 21);
3364 }
3365 /* Now try to make things easy for the dynamic linker. */
3366
3367 break;
3368 }
3369 /* Fall thru. */
3370
3371 case R_PARISC_DLTIND21L:
3372 case R_PARISC_DLTIND14R:
3373 case R_PARISC_DLTIND14F:
3374 case R_PARISC_TLS_GD21L:
3375 case R_PARISC_TLS_LDM21L:
3376 case R_PARISC_TLS_IE21L:
3377 case R_PARISC_TLS_GD14R:
3378 case R_PARISC_TLS_LDM14R:
3379 case R_PARISC_TLS_IE14R:
3380 value -= elf_gp (input_section->output_section->owner);
3381 break;
3382
3383 case R_PARISC_SEGREL32:
3384 if ((sym_sec->flags & SEC_CODE) != 0)
3385 value -= htab->text_segment_base;
3386 else
3387 value -= htab->data_segment_base;
3388 break;
3389
3390 default:
3391 break;
3392 }
3393
3394 switch (r_type)
3395 {
3396 case R_PARISC_DIR32:
3397 case R_PARISC_DIR14F:
3398 case R_PARISC_DIR17F:
3399 case R_PARISC_PCREL17C:
3400 case R_PARISC_PCREL14F:
3401 case R_PARISC_PCREL32:
3402 case R_PARISC_DPREL14F:
3403 case R_PARISC_PLABEL32:
3404 case R_PARISC_DLTIND14F:
3405 case R_PARISC_SEGBASE:
3406 case R_PARISC_SEGREL32:
3407 case R_PARISC_TLS_DTPMOD32:
3408 case R_PARISC_TLS_DTPOFF32:
3409 case R_PARISC_TLS_TPREL32:
3410 r_field = e_fsel;
3411 break;
3412
3413 case R_PARISC_DLTIND21L:
3414 case R_PARISC_PCREL21L:
3415 case R_PARISC_PLABEL21L:
3416 r_field = e_lsel;
3417 break;
3418
3419 case R_PARISC_DIR21L:
3420 case R_PARISC_DPREL21L:
3421 case R_PARISC_TLS_GD21L:
3422 case R_PARISC_TLS_LDM21L:
3423 case R_PARISC_TLS_LDO21L:
3424 case R_PARISC_TLS_IE21L:
3425 case R_PARISC_TLS_LE21L:
3426 r_field = e_lrsel;
3427 break;
3428
3429 case R_PARISC_PCREL17R:
3430 case R_PARISC_PCREL14R:
3431 case R_PARISC_PLABEL14R:
3432 case R_PARISC_DLTIND14R:
3433 r_field = e_rsel;
3434 break;
3435
3436 case R_PARISC_DIR17R:
3437 case R_PARISC_DIR14R:
3438 case R_PARISC_DPREL14R:
3439 case R_PARISC_TLS_GD14R:
3440 case R_PARISC_TLS_LDM14R:
3441 case R_PARISC_TLS_LDO14R:
3442 case R_PARISC_TLS_IE14R:
3443 case R_PARISC_TLS_LE14R:
3444 r_field = e_rrsel;
3445 break;
3446
3447 case R_PARISC_PCREL12F:
3448 case R_PARISC_PCREL17F:
3449 case R_PARISC_PCREL22F:
3450 r_field = e_fsel;
3451
3452 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3453 {
3454 max_branch_offset = (1 << (17-1)) << 2;
3455 }
3456 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3457 {
3458 max_branch_offset = (1 << (12-1)) << 2;
3459 }
3460 else
3461 {
3462 max_branch_offset = (1 << (22-1)) << 2;
3463 }
3464
3465 /* sym_sec is NULL on undefined weak syms or when shared on
3466 undefined syms. We've already checked for a stub for the
3467 shared undefined case. */
3468 if (sym_sec == NULL)
3469 break;
3470
3471 /* If the branch is out of reach, then redirect the
3472 call to the local stub for this function. */
3473 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3474 {
3475 hsh = hppa_get_stub_entry (input_section, sym_sec,
3476 hh, rela, htab);
3477 if (hsh == NULL)
3478 return bfd_reloc_undefined;
3479
3480 /* Munge up the value and addend so that we call the stub
3481 rather than the procedure directly. */
3482 value = (hsh->stub_offset
3483 + hsh->stub_sec->output_offset
3484 + hsh->stub_sec->output_section->vma
3485 - location);
3486 addend = -8;
3487 }
3488 break;
3489
3490 /* Something we don't know how to handle. */
3491 default:
3492 return bfd_reloc_notsupported;
3493 }
3494
3495 /* Make sure we can reach the stub. */
3496 if (max_branch_offset != 0
3497 && value + addend + max_branch_offset >= 2*max_branch_offset)
3498 {
3499 _bfd_error_handler
3500 /* xgettext:c-format */
3501 (_("%pB(%pA+%#" PRIx64 "): cannot reach %s, "
3502 "recompile with -ffunction-sections"),
3503 input_bfd,
3504 input_section,
3505 (uint64_t) offset,
3506 hsh->bh_root.string);
3507 bfd_set_error (bfd_error_bad_value);
3508 return bfd_reloc_notsupported;
3509 }
3510
3511 val = hppa_field_adjust (value, addend, r_field);
3512
3513 switch (r_type)
3514 {
3515 case R_PARISC_PCREL12F:
3516 case R_PARISC_PCREL17C:
3517 case R_PARISC_PCREL17F:
3518 case R_PARISC_PCREL17R:
3519 case R_PARISC_PCREL22F:
3520 case R_PARISC_DIR17F:
3521 case R_PARISC_DIR17R:
3522 /* This is a branch. Divide the offset by four.
3523 Note that we need to decide whether it's a branch or
3524 otherwise by inspecting the reloc. Inspecting insn won't
3525 work as insn might be from a .word directive. */
3526 val >>= 2;
3527 break;
3528
3529 default:
3530 break;
3531 }
3532
3533 insn = hppa_rebuild_insn (insn, val, r_format);
3534
3535 /* Update the instruction word. */
3536 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3537 return bfd_reloc_ok;
3538 }
3539
3540 /* Relocate an HPPA ELF section. */
3541
3542 static bfd_boolean
3543 elf32_hppa_relocate_section (bfd *output_bfd,
3544 struct bfd_link_info *info,
3545 bfd *input_bfd,
3546 asection *input_section,
3547 bfd_byte *contents,
3548 Elf_Internal_Rela *relocs,
3549 Elf_Internal_Sym *local_syms,
3550 asection **local_sections)
3551 {
3552 bfd_vma *local_got_offsets;
3553 struct elf32_hppa_link_hash_table *htab;
3554 Elf_Internal_Shdr *symtab_hdr;
3555 Elf_Internal_Rela *rela;
3556 Elf_Internal_Rela *relend;
3557
3558 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3559
3560 htab = hppa_link_hash_table (info);
3561 if (htab == NULL)
3562 return FALSE;
3563
3564 local_got_offsets = elf_local_got_offsets (input_bfd);
3565
3566 rela = relocs;
3567 relend = relocs + input_section->reloc_count;
3568 for (; rela < relend; rela++)
3569 {
3570 unsigned int r_type;
3571 reloc_howto_type *howto;
3572 unsigned int r_symndx;
3573 struct elf32_hppa_link_hash_entry *hh;
3574 Elf_Internal_Sym *sym;
3575 asection *sym_sec;
3576 bfd_vma relocation;
3577 bfd_reloc_status_type rstatus;
3578 const char *sym_name;
3579 bfd_boolean plabel;
3580 bfd_boolean warned_undef;
3581
3582 r_type = ELF32_R_TYPE (rela->r_info);
3583 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3584 {
3585 bfd_set_error (bfd_error_bad_value);
3586 return FALSE;
3587 }
3588 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3589 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3590 continue;
3591
3592 r_symndx = ELF32_R_SYM (rela->r_info);
3593 hh = NULL;
3594 sym = NULL;
3595 sym_sec = NULL;
3596 warned_undef = FALSE;
3597 if (r_symndx < symtab_hdr->sh_info)
3598 {
3599 /* This is a local symbol, h defaults to NULL. */
3600 sym = local_syms + r_symndx;
3601 sym_sec = local_sections[r_symndx];
3602 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3603 }
3604 else
3605 {
3606 struct elf_link_hash_entry *eh;
3607 bfd_boolean unresolved_reloc, ignored;
3608 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3609
3610 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3611 r_symndx, symtab_hdr, sym_hashes,
3612 eh, sym_sec, relocation,
3613 unresolved_reloc, warned_undef,
3614 ignored);
3615
3616 if (!bfd_link_relocatable (info)
3617 && relocation == 0
3618 && eh->root.type != bfd_link_hash_defined
3619 && eh->root.type != bfd_link_hash_defweak
3620 && eh->root.type != bfd_link_hash_undefweak)
3621 {
3622 if (info->unresolved_syms_in_objects == RM_IGNORE
3623 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3624 && eh->type == STT_PARISC_MILLI)
3625 {
3626 (*info->callbacks->undefined_symbol)
3627 (info, eh_name (eh), input_bfd,
3628 input_section, rela->r_offset, FALSE);
3629 warned_undef = TRUE;
3630 }
3631 }
3632 hh = hppa_elf_hash_entry (eh);
3633 }
3634
3635 if (sym_sec != NULL && discarded_section (sym_sec))
3636 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3637 rela, 1, relend,
3638 elf_hppa_howto_table + r_type, 0,
3639 contents);
3640
3641 if (bfd_link_relocatable (info))
3642 continue;
3643
3644 /* Do any required modifications to the relocation value, and
3645 determine what types of dynamic info we need to output, if
3646 any. */
3647 plabel = 0;
3648 switch (r_type)
3649 {
3650 case R_PARISC_DLTIND14F:
3651 case R_PARISC_DLTIND14R:
3652 case R_PARISC_DLTIND21L:
3653 {
3654 bfd_vma off;
3655 bfd_boolean do_got = FALSE;
3656 bfd_boolean reloc = bfd_link_pic (info);
3657
3658 /* Relocation is to the entry for this symbol in the
3659 global offset table. */
3660 if (hh != NULL)
3661 {
3662 bfd_boolean dyn;
3663
3664 off = hh->eh.got.offset;
3665 dyn = htab->etab.dynamic_sections_created;
3666 reloc = (!UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh)
3667 && (reloc
3668 || (hh->eh.dynindx != -1
3669 && !SYMBOL_REFERENCES_LOCAL (info, &hh->eh))));
3670 if (!reloc
3671 || !WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
3672 bfd_link_pic (info),
3673 &hh->eh))
3674 {
3675 /* If we aren't going to call finish_dynamic_symbol,
3676 then we need to handle initialisation of the .got
3677 entry and create needed relocs here. Since the
3678 offset must always be a multiple of 4, we use the
3679 least significant bit to record whether we have
3680 initialised it already. */
3681 if ((off & 1) != 0)
3682 off &= ~1;
3683 else
3684 {
3685 hh->eh.got.offset |= 1;
3686 do_got = TRUE;
3687 }
3688 }
3689 }
3690 else
3691 {
3692 /* Local symbol case. */
3693 if (local_got_offsets == NULL)
3694 abort ();
3695
3696 off = local_got_offsets[r_symndx];
3697
3698 /* The offset must always be a multiple of 4. We use
3699 the least significant bit to record whether we have
3700 already generated the necessary reloc. */
3701 if ((off & 1) != 0)
3702 off &= ~1;
3703 else
3704 {
3705 local_got_offsets[r_symndx] |= 1;
3706 do_got = TRUE;
3707 }
3708 }
3709
3710 if (do_got)
3711 {
3712 if (reloc)
3713 {
3714 /* Output a dynamic relocation for this GOT entry.
3715 In this case it is relative to the base of the
3716 object because the symbol index is zero. */
3717 Elf_Internal_Rela outrel;
3718 bfd_byte *loc;
3719 asection *sec = htab->etab.srelgot;
3720
3721 outrel.r_offset = (off
3722 + htab->etab.sgot->output_offset
3723 + htab->etab.sgot->output_section->vma);
3724 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3725 outrel.r_addend = relocation;
3726 loc = sec->contents;
3727 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3728 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3729 }
3730 else
3731 bfd_put_32 (output_bfd, relocation,
3732 htab->etab.sgot->contents + off);
3733 }
3734
3735 if (off >= (bfd_vma) -2)
3736 abort ();
3737
3738 /* Add the base of the GOT to the relocation value. */
3739 relocation = (off
3740 + htab->etab.sgot->output_offset
3741 + htab->etab.sgot->output_section->vma);
3742 }
3743 break;
3744
3745 case R_PARISC_SEGREL32:
3746 /* If this is the first SEGREL relocation, then initialize
3747 the segment base values. */
3748 if (htab->text_segment_base == (bfd_vma) -1)
3749 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3750 break;
3751
3752 case R_PARISC_PLABEL14R:
3753 case R_PARISC_PLABEL21L:
3754 case R_PARISC_PLABEL32:
3755 if (htab->etab.dynamic_sections_created)
3756 {
3757 bfd_vma off;
3758 bfd_boolean do_plt = 0;
3759 /* If we have a global symbol with a PLT slot, then
3760 redirect this relocation to it. */
3761 if (hh != NULL)
3762 {
3763 off = hh->eh.plt.offset;
3764 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1,
3765 bfd_link_pic (info),
3766 &hh->eh))
3767 {
3768 /* In a non-shared link, adjust_dynamic_symbol
3769 isn't called for symbols forced local. We
3770 need to write out the plt entry here. */
3771 if ((off & 1) != 0)
3772 off &= ~1;
3773 else
3774 {
3775 hh->eh.plt.offset |= 1;
3776 do_plt = 1;
3777 }
3778 }
3779 }
3780 else
3781 {
3782 bfd_vma *local_plt_offsets;
3783
3784 if (local_got_offsets == NULL)
3785 abort ();
3786
3787 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3788 off = local_plt_offsets[r_symndx];
3789
3790 /* As for the local .got entry case, we use the last
3791 bit to record whether we've already initialised
3792 this local .plt entry. */
3793 if ((off & 1) != 0)
3794 off &= ~1;
3795 else
3796 {
3797 local_plt_offsets[r_symndx] |= 1;
3798 do_plt = 1;
3799 }
3800 }
3801
3802 if (do_plt)
3803 {
3804 if (bfd_link_pic (info))
3805 {
3806 /* Output a dynamic IPLT relocation for this
3807 PLT entry. */
3808 Elf_Internal_Rela outrel;
3809 bfd_byte *loc;
3810 asection *s = htab->etab.srelplt;
3811
3812 outrel.r_offset = (off
3813 + htab->etab.splt->output_offset
3814 + htab->etab.splt->output_section->vma);
3815 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3816 outrel.r_addend = relocation;
3817 loc = s->contents;
3818 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3819 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3820 }
3821 else
3822 {
3823 bfd_put_32 (output_bfd,
3824 relocation,
3825 htab->etab.splt->contents + off);
3826 bfd_put_32 (output_bfd,
3827 elf_gp (htab->etab.splt->output_section->owner),
3828 htab->etab.splt->contents + off + 4);
3829 }
3830 }
3831
3832 if (off >= (bfd_vma) -2)
3833 abort ();
3834
3835 /* PLABELs contain function pointers. Relocation is to
3836 the entry for the function in the .plt. The magic +2
3837 offset signals to $$dyncall that the function pointer
3838 is in the .plt and thus has a gp pointer too.
3839 Exception: Undefined PLABELs should have a value of
3840 zero. */
3841 if (hh == NULL
3842 || (hh->eh.root.type != bfd_link_hash_undefweak
3843 && hh->eh.root.type != bfd_link_hash_undefined))
3844 {
3845 relocation = (off
3846 + htab->etab.splt->output_offset
3847 + htab->etab.splt->output_section->vma
3848 + 2);
3849 }
3850 plabel = 1;
3851 }
3852 /* Fall through. */
3853
3854 case R_PARISC_DIR17F:
3855 case R_PARISC_DIR17R:
3856 case R_PARISC_DIR14F:
3857 case R_PARISC_DIR14R:
3858 case R_PARISC_DIR21L:
3859 case R_PARISC_DPREL14F:
3860 case R_PARISC_DPREL14R:
3861 case R_PARISC_DPREL21L:
3862 case R_PARISC_DIR32:
3863 if ((input_section->flags & SEC_ALLOC) == 0)
3864 break;
3865
3866 if (bfd_link_pic (info)
3867 ? ((hh == NULL
3868 || hh->dyn_relocs != NULL)
3869 && ((hh != NULL && pc_dynrelocs (hh))
3870 || IS_ABSOLUTE_RELOC (r_type)))
3871 : (hh != NULL
3872 && hh->dyn_relocs != NULL))
3873 {
3874 Elf_Internal_Rela outrel;
3875 bfd_boolean skip;
3876 asection *sreloc;
3877 bfd_byte *loc;
3878
3879 /* When generating a shared object, these relocations
3880 are copied into the output file to be resolved at run
3881 time. */
3882
3883 outrel.r_addend = rela->r_addend;
3884 outrel.r_offset =
3885 _bfd_elf_section_offset (output_bfd, info, input_section,
3886 rela->r_offset);
3887 skip = (outrel.r_offset == (bfd_vma) -1
3888 || outrel.r_offset == (bfd_vma) -2);
3889 outrel.r_offset += (input_section->output_offset
3890 + input_section->output_section->vma);
3891
3892 if (skip)
3893 {
3894 memset (&outrel, 0, sizeof (outrel));
3895 }
3896 else if (hh != NULL
3897 && hh->eh.dynindx != -1
3898 && (plabel
3899 || !IS_ABSOLUTE_RELOC (r_type)
3900 || !bfd_link_pic (info)
3901 || !SYMBOLIC_BIND (info, &hh->eh)
3902 || !hh->eh.def_regular))
3903 {
3904 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
3905 }
3906 else /* It's a local symbol, or one marked to become local. */
3907 {
3908 int indx = 0;
3909
3910 /* Add the absolute offset of the symbol. */
3911 outrel.r_addend += relocation;
3912
3913 /* Global plabels need to be processed by the
3914 dynamic linker so that functions have at most one
3915 fptr. For this reason, we need to differentiate
3916 between global and local plabels, which we do by
3917 providing the function symbol for a global plabel
3918 reloc, and no symbol for local plabels. */
3919 if (! plabel
3920 && sym_sec != NULL
3921 && sym_sec->output_section != NULL
3922 && ! bfd_is_abs_section (sym_sec))
3923 {
3924 asection *osec;
3925
3926 osec = sym_sec->output_section;
3927 indx = elf_section_data (osec)->dynindx;
3928 if (indx == 0)
3929 {
3930 osec = htab->etab.text_index_section;
3931 indx = elf_section_data (osec)->dynindx;
3932 }
3933 BFD_ASSERT (indx != 0);
3934
3935 /* We are turning this relocation into one
3936 against a section symbol, so subtract out the
3937 output section's address but not the offset
3938 of the input section in the output section. */
3939 outrel.r_addend -= osec->vma;
3940 }
3941
3942 outrel.r_info = ELF32_R_INFO (indx, r_type);
3943 }
3944 sreloc = elf_section_data (input_section)->sreloc;
3945 if (sreloc == NULL)
3946 abort ();
3947
3948 loc = sreloc->contents;
3949 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3950 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3951 }
3952 break;
3953
3954 case R_PARISC_TLS_LDM21L:
3955 case R_PARISC_TLS_LDM14R:
3956 {
3957 bfd_vma off;
3958
3959 off = htab->tls_ldm_got.offset;
3960 if (off & 1)
3961 off &= ~1;
3962 else
3963 {
3964 Elf_Internal_Rela outrel;
3965 bfd_byte *loc;
3966
3967 outrel.r_offset = (off
3968 + htab->etab.sgot->output_section->vma
3969 + htab->etab.sgot->output_offset);
3970 outrel.r_addend = 0;
3971 outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
3972 loc = htab->etab.srelgot->contents;
3973 loc += htab->etab.srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
3974
3975 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3976 htab->tls_ldm_got.offset |= 1;
3977 }
3978
3979 /* Add the base of the GOT to the relocation value. */
3980 relocation = (off
3981 + htab->etab.sgot->output_offset
3982 + htab->etab.sgot->output_section->vma);
3983
3984 break;
3985 }
3986
3987 case R_PARISC_TLS_LDO21L:
3988 case R_PARISC_TLS_LDO14R:
3989 relocation -= dtpoff_base (info);
3990 break;
3991
3992 case R_PARISC_TLS_GD21L:
3993 case R_PARISC_TLS_GD14R:
3994 case R_PARISC_TLS_IE21L:
3995 case R_PARISC_TLS_IE14R:
3996 {
3997 bfd_vma off;
3998 int indx;
3999 char tls_type;
4000
4001 indx = 0;
4002 if (hh != NULL)
4003 {
4004 if (!htab->etab.dynamic_sections_created
4005 || hh->eh.dynindx == -1
4006 || SYMBOL_REFERENCES_LOCAL (info, &hh->eh)
4007 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh))
4008 /* This is actually a static link, or it is a
4009 -Bsymbolic link and the symbol is defined
4010 locally, or the symbol was forced to be local
4011 because of a version file. */
4012 ;
4013 else
4014 indx = hh->eh.dynindx;
4015 off = hh->eh.got.offset;
4016 tls_type = hh->tls_type;
4017 }
4018 else
4019 {
4020 off = local_got_offsets[r_symndx];
4021 tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4022 }
4023
4024 if (tls_type == GOT_UNKNOWN)
4025 abort ();
4026
4027 if ((off & 1) != 0)
4028 off &= ~1;
4029 else
4030 {
4031 bfd_boolean need_relocs = FALSE;
4032 Elf_Internal_Rela outrel;
4033 bfd_byte *loc = NULL;
4034 int cur_off = off;
4035
4036 /* The GOT entries have not been initialized yet. Do it
4037 now, and emit any relocations. If both an IE GOT and a
4038 GD GOT are necessary, we emit the GD first. */
4039
4040 if (indx != 0
4041 || (bfd_link_pic (info)
4042 && (hh == NULL
4043 || !UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh))))
4044 {
4045 need_relocs = TRUE;
4046 loc = htab->etab.srelgot->contents;
4047 loc += (htab->etab.srelgot->reloc_count
4048 * sizeof (Elf32_External_Rela));
4049 }
4050
4051 if (tls_type & GOT_TLS_GD)
4052 {
4053 if (need_relocs)
4054 {
4055 outrel.r_offset
4056 = (cur_off
4057 + htab->etab.sgot->output_section->vma
4058 + htab->etab.sgot->output_offset);
4059 outrel.r_info
4060 = ELF32_R_INFO (indx, R_PARISC_TLS_DTPMOD32);
4061 outrel.r_addend = 0;
4062 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4063 htab->etab.srelgot->reloc_count++;
4064 loc += sizeof (Elf32_External_Rela);
4065 outrel.r_info
4066 = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4067 outrel.r_offset += 4;
4068 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4069 htab->etab.srelgot->reloc_count++;
4070 loc += sizeof (Elf32_External_Rela);
4071 bfd_put_32 (output_bfd, 0,
4072 htab->etab.sgot->contents + cur_off);
4073 bfd_put_32 (output_bfd, 0,
4074 htab->etab.sgot->contents + cur_off + 4);
4075 }
4076 else
4077 {
4078 /* If we are not emitting relocations for a
4079 general dynamic reference, then we must be in a
4080 static link or an executable link with the
4081 symbol binding locally. Mark it as belonging
4082 to module 1, the executable. */
4083 bfd_put_32 (output_bfd, 1,
4084 htab->etab.sgot->contents + cur_off);
4085 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4086 htab->etab.sgot->contents + cur_off + 4);
4087 }
4088 cur_off += 8;
4089 }
4090
4091 if (tls_type & GOT_TLS_IE)
4092 {
4093 if (need_relocs
4094 && !(bfd_link_executable (info)
4095 && SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4096 {
4097 outrel.r_offset
4098 = (cur_off
4099 + htab->etab.sgot->output_section->vma
4100 + htab->etab.sgot->output_offset);
4101 outrel.r_info = ELF32_R_INFO (indx,
4102 R_PARISC_TLS_TPREL32);
4103 if (indx == 0)
4104 outrel.r_addend = relocation - dtpoff_base (info);
4105 else
4106 outrel.r_addend = 0;
4107 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4108 htab->etab.srelgot->reloc_count++;
4109 loc += sizeof (Elf32_External_Rela);
4110 }
4111 else
4112 bfd_put_32 (output_bfd, tpoff (info, relocation),
4113 htab->etab.sgot->contents + cur_off);
4114 cur_off += 4;
4115 }
4116
4117 if (hh != NULL)
4118 hh->eh.got.offset |= 1;
4119 else
4120 local_got_offsets[r_symndx] |= 1;
4121 }
4122
4123 if ((tls_type & GOT_NORMAL) != 0
4124 && (tls_type & (GOT_TLS_GD | GOT_TLS_LDM | GOT_TLS_IE)) != 0)
4125 {
4126 if (hh != NULL)
4127 _bfd_error_handler (_("%s has both normal and TLS relocs"),
4128 hh_name (hh));
4129 else
4130 {
4131 Elf_Internal_Sym *isym
4132 = bfd_sym_from_r_symndx (&htab->sym_cache,
4133 input_bfd, r_symndx);
4134 if (isym == NULL)
4135 return FALSE;
4136 sym_name
4137 = bfd_elf_string_from_elf_section (input_bfd,
4138 symtab_hdr->sh_link,
4139 isym->st_name);
4140 if (sym_name == NULL)
4141 return FALSE;
4142 if (*sym_name == '\0')
4143 sym_name = bfd_section_name (input_bfd, sym_sec);
4144 _bfd_error_handler
4145 (_("%pB:%s has both normal and TLS relocs"),
4146 input_bfd, sym_name);
4147 }
4148 bfd_set_error (bfd_error_bad_value);
4149 return FALSE;
4150 }
4151
4152 if ((tls_type & GOT_TLS_GD)
4153 && r_type != R_PARISC_TLS_GD21L
4154 && r_type != R_PARISC_TLS_GD14R)
4155 off += 2 * GOT_ENTRY_SIZE;
4156
4157 /* Add the base of the GOT to the relocation value. */
4158 relocation = (off
4159 + htab->etab.sgot->output_offset
4160 + htab->etab.sgot->output_section->vma);
4161
4162 break;
4163 }
4164
4165 case R_PARISC_TLS_LE21L:
4166 case R_PARISC_TLS_LE14R:
4167 {
4168 relocation = tpoff (info, relocation);
4169 break;
4170 }
4171 break;
4172
4173 default:
4174 break;
4175 }
4176
4177 rstatus = final_link_relocate (input_section, contents, rela, relocation,
4178 htab, sym_sec, hh, info);
4179
4180 if (rstatus == bfd_reloc_ok)
4181 continue;
4182
4183 if (hh != NULL)
4184 sym_name = hh_name (hh);
4185 else
4186 {
4187 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4188 symtab_hdr->sh_link,
4189 sym->st_name);
4190 if (sym_name == NULL)
4191 return FALSE;
4192 if (*sym_name == '\0')
4193 sym_name = bfd_section_name (input_bfd, sym_sec);
4194 }
4195
4196 howto = elf_hppa_howto_table + r_type;
4197
4198 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4199 {
4200 if (rstatus == bfd_reloc_notsupported || !warned_undef)
4201 {
4202 _bfd_error_handler
4203 /* xgettext:c-format */
4204 (_("%pB(%pA+%#" PRIx64 "): cannot handle %s for %s"),
4205 input_bfd,
4206 input_section,
4207 (uint64_t) rela->r_offset,
4208 howto->name,
4209 sym_name);
4210 bfd_set_error (bfd_error_bad_value);
4211 return FALSE;
4212 }
4213 }
4214 else
4215 (*info->callbacks->reloc_overflow)
4216 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4217 (bfd_vma) 0, input_bfd, input_section, rela->r_offset);
4218 }
4219
4220 return TRUE;
4221 }
4222
4223 /* Finish up dynamic symbol handling. We set the contents of various
4224 dynamic sections here. */
4225
4226 static bfd_boolean
4227 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4228 struct bfd_link_info *info,
4229 struct elf_link_hash_entry *eh,
4230 Elf_Internal_Sym *sym)
4231 {
4232 struct elf32_hppa_link_hash_table *htab;
4233 Elf_Internal_Rela rela;
4234 bfd_byte *loc;
4235
4236 htab = hppa_link_hash_table (info);
4237 if (htab == NULL)
4238 return FALSE;
4239
4240 if (eh->plt.offset != (bfd_vma) -1)
4241 {
4242 bfd_vma value;
4243
4244 if (eh->plt.offset & 1)
4245 abort ();
4246
4247 /* This symbol has an entry in the procedure linkage table. Set
4248 it up.
4249
4250 The format of a plt entry is
4251 <funcaddr>
4252 <__gp>
4253 */
4254 value = 0;
4255 if (eh->root.type == bfd_link_hash_defined
4256 || eh->root.type == bfd_link_hash_defweak)
4257 {
4258 value = eh->root.u.def.value;
4259 if (eh->root.u.def.section->output_section != NULL)
4260 value += (eh->root.u.def.section->output_offset
4261 + eh->root.u.def.section->output_section->vma);
4262 }
4263
4264 /* Create a dynamic IPLT relocation for this entry. */
4265 rela.r_offset = (eh->plt.offset
4266 + htab->etab.splt->output_offset
4267 + htab->etab.splt->output_section->vma);
4268 if (eh->dynindx != -1)
4269 {
4270 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4271 rela.r_addend = 0;
4272 }
4273 else
4274 {
4275 /* This symbol has been marked to become local, and is
4276 used by a plabel so must be kept in the .plt. */
4277 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4278 rela.r_addend = value;
4279 }
4280
4281 loc = htab->etab.srelplt->contents;
4282 loc += htab->etab.srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4283 bfd_elf32_swap_reloca_out (htab->etab.splt->output_section->owner, &rela, loc);
4284
4285 if (!eh->def_regular)
4286 {
4287 /* Mark the symbol as undefined, rather than as defined in
4288 the .plt section. Leave the value alone. */
4289 sym->st_shndx = SHN_UNDEF;
4290 }
4291 }
4292
4293 if (eh->got.offset != (bfd_vma) -1
4294 && (hppa_elf_hash_entry (eh)->tls_type & GOT_NORMAL) != 0
4295 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
4296 {
4297 bfd_boolean is_dyn = (eh->dynindx != -1
4298 && !SYMBOL_REFERENCES_LOCAL (info, eh));
4299
4300 if (is_dyn || bfd_link_pic (info))
4301 {
4302 /* This symbol has an entry in the global offset table. Set
4303 it up. */
4304
4305 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4306 + htab->etab.sgot->output_offset
4307 + htab->etab.sgot->output_section->vma);
4308
4309 /* If this is a -Bsymbolic link and the symbol is defined
4310 locally or was forced to be local because of a version
4311 file, we just want to emit a RELATIVE reloc. The entry
4312 in the global offset table will already have been
4313 initialized in the relocate_section function. */
4314 if (!is_dyn)
4315 {
4316 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4317 rela.r_addend = (eh->root.u.def.value
4318 + eh->root.u.def.section->output_offset
4319 + eh->root.u.def.section->output_section->vma);
4320 }
4321 else
4322 {
4323 if ((eh->got.offset & 1) != 0)
4324 abort ();
4325
4326 bfd_put_32 (output_bfd, 0,
4327 htab->etab.sgot->contents + (eh->got.offset & ~1));
4328 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4329 rela.r_addend = 0;
4330 }
4331
4332 loc = htab->etab.srelgot->contents;
4333 loc += (htab->etab.srelgot->reloc_count++
4334 * sizeof (Elf32_External_Rela));
4335 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4336 }
4337 }
4338
4339 if (eh->needs_copy)
4340 {
4341 asection *sec;
4342
4343 /* This symbol needs a copy reloc. Set it up. */
4344
4345 if (! (eh->dynindx != -1
4346 && (eh->root.type == bfd_link_hash_defined
4347 || eh->root.type == bfd_link_hash_defweak)))
4348 abort ();
4349
4350 rela.r_offset = (eh->root.u.def.value
4351 + eh->root.u.def.section->output_offset
4352 + eh->root.u.def.section->output_section->vma);
4353 rela.r_addend = 0;
4354 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4355 if (eh->root.u.def.section == htab->etab.sdynrelro)
4356 sec = htab->etab.sreldynrelro;
4357 else
4358 sec = htab->etab.srelbss;
4359 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4360 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4361 }
4362
4363 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4364 if (eh == htab->etab.hdynamic || eh == htab->etab.hgot)
4365 {
4366 sym->st_shndx = SHN_ABS;
4367 }
4368
4369 return TRUE;
4370 }
4371
4372 /* Used to decide how to sort relocs in an optimal manner for the
4373 dynamic linker, before writing them out. */
4374
4375 static enum elf_reloc_type_class
4376 elf32_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4377 const asection *rel_sec ATTRIBUTE_UNUSED,
4378 const Elf_Internal_Rela *rela)
4379 {
4380 /* Handle TLS relocs first; we don't want them to be marked
4381 relative by the "if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)"
4382 check below. */
4383 switch ((int) ELF32_R_TYPE (rela->r_info))
4384 {
4385 case R_PARISC_TLS_DTPMOD32:
4386 case R_PARISC_TLS_DTPOFF32:
4387 case R_PARISC_TLS_TPREL32:
4388 return reloc_class_normal;
4389 }
4390
4391 if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)
4392 return reloc_class_relative;
4393
4394 switch ((int) ELF32_R_TYPE (rela->r_info))
4395 {
4396 case R_PARISC_IPLT:
4397 return reloc_class_plt;
4398 case R_PARISC_COPY:
4399 return reloc_class_copy;
4400 default:
4401 return reloc_class_normal;
4402 }
4403 }
4404
4405 /* Finish up the dynamic sections. */
4406
4407 static bfd_boolean
4408 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4409 struct bfd_link_info *info)
4410 {
4411 bfd *dynobj;
4412 struct elf32_hppa_link_hash_table *htab;
4413 asection *sdyn;
4414 asection * sgot;
4415
4416 htab = hppa_link_hash_table (info);
4417 if (htab == NULL)
4418 return FALSE;
4419
4420 dynobj = htab->etab.dynobj;
4421
4422 sgot = htab->etab.sgot;
4423 /* A broken linker script might have discarded the dynamic sections.
4424 Catch this here so that we do not seg-fault later on. */
4425 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
4426 return FALSE;
4427
4428 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4429
4430 if (htab->etab.dynamic_sections_created)
4431 {
4432 Elf32_External_Dyn *dyncon, *dynconend;
4433
4434 if (sdyn == NULL)
4435 abort ();
4436
4437 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4438 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4439 for (; dyncon < dynconend; dyncon++)
4440 {
4441 Elf_Internal_Dyn dyn;
4442 asection *s;
4443
4444 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4445
4446 switch (dyn.d_tag)
4447 {
4448 default:
4449 continue;
4450
4451 case DT_PLTGOT:
4452 /* Use PLTGOT to set the GOT register. */
4453 dyn.d_un.d_ptr = elf_gp (output_bfd);
4454 break;
4455
4456 case DT_JMPREL:
4457 s = htab->etab.srelplt;
4458 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4459 break;
4460
4461 case DT_PLTRELSZ:
4462 s = htab->etab.srelplt;
4463 dyn.d_un.d_val = s->size;
4464 break;
4465 }
4466
4467 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4468 }
4469 }
4470
4471 if (sgot != NULL && sgot->size != 0)
4472 {
4473 /* Fill in the first entry in the global offset table.
4474 We use it to point to our dynamic section, if we have one. */
4475 bfd_put_32 (output_bfd,
4476 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4477 sgot->contents);
4478
4479 /* The second entry is reserved for use by the dynamic linker. */
4480 memset (sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4481
4482 /* Set .got entry size. */
4483 elf_section_data (sgot->output_section)
4484 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4485 }
4486
4487 if (htab->etab.splt != NULL && htab->etab.splt->size != 0)
4488 {
4489 /* Set plt entry size to 0 instead of PLT_ENTRY_SIZE, since we add the
4490 plt stubs and as such the section does not hold a table of fixed-size
4491 entries. */
4492 elf_section_data (htab->etab.splt->output_section)->this_hdr.sh_entsize = 0;
4493
4494 if (htab->need_plt_stub)
4495 {
4496 /* Set up the .plt stub. */
4497 memcpy (htab->etab.splt->contents
4498 + htab->etab.splt->size - sizeof (plt_stub),
4499 plt_stub, sizeof (plt_stub));
4500
4501 if ((htab->etab.splt->output_offset
4502 + htab->etab.splt->output_section->vma
4503 + htab->etab.splt->size)
4504 != (sgot->output_offset
4505 + sgot->output_section->vma))
4506 {
4507 _bfd_error_handler
4508 (_(".got section not immediately after .plt section"));
4509 return FALSE;
4510 }
4511 }
4512 }
4513
4514 return TRUE;
4515 }
4516
4517 /* Called when writing out an object file to decide the type of a
4518 symbol. */
4519 static int
4520 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4521 {
4522 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4523 return STT_PARISC_MILLI;
4524 else
4525 return type;
4526 }
4527
4528 /* Misc BFD support code. */
4529 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4530 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4531 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4532 #define elf_info_to_howto elf_hppa_info_to_howto
4533 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4534
4535 /* Stuff for the BFD linker. */
4536 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4537 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4538 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4539 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4540 #define elf_backend_check_relocs elf32_hppa_check_relocs
4541 #define elf_backend_relocs_compatible _bfd_elf_relocs_compatible
4542 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4543 #define elf_backend_fake_sections elf_hppa_fake_sections
4544 #define elf_backend_relocate_section elf32_hppa_relocate_section
4545 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4546 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4547 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4548 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4549 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4550 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4551 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4552 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4553 #define elf_backend_object_p elf32_hppa_object_p
4554 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4555 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4556 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4557 #define elf_backend_action_discarded elf_hppa_action_discarded
4558
4559 #define elf_backend_can_gc_sections 1
4560 #define elf_backend_can_refcount 1
4561 #define elf_backend_plt_alignment 2
4562 #define elf_backend_want_got_plt 0
4563 #define elf_backend_plt_readonly 0
4564 #define elf_backend_want_plt_sym 0
4565 #define elf_backend_got_header_size 8
4566 #define elf_backend_want_dynrelro 1
4567 #define elf_backend_rela_normal 1
4568 #define elf_backend_dtrel_excludes_plt 1
4569 #define elf_backend_no_page_alias 1
4570
4571 #define TARGET_BIG_SYM hppa_elf32_vec
4572 #define TARGET_BIG_NAME "elf32-hppa"
4573 #define ELF_ARCH bfd_arch_hppa
4574 #define ELF_TARGET_ID HPPA32_ELF_DATA
4575 #define ELF_MACHINE_CODE EM_PARISC
4576 #define ELF_MAXPAGESIZE 0x1000
4577 #define ELF_OSABI ELFOSABI_HPUX
4578 #define elf32_bed elf32_hppa_hpux_bed
4579
4580 #include "elf32-target.h"
4581
4582 #undef TARGET_BIG_SYM
4583 #define TARGET_BIG_SYM hppa_elf32_linux_vec
4584 #undef TARGET_BIG_NAME
4585 #define TARGET_BIG_NAME "elf32-hppa-linux"
4586 #undef ELF_OSABI
4587 #define ELF_OSABI ELFOSABI_GNU
4588 #undef elf32_bed
4589 #define elf32_bed elf32_hppa_linux_bed
4590
4591 #include "elf32-target.h"
4592
4593 #undef TARGET_BIG_SYM
4594 #define TARGET_BIG_SYM hppa_elf32_nbsd_vec
4595 #undef TARGET_BIG_NAME
4596 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4597 #undef ELF_OSABI
4598 #define ELF_OSABI ELFOSABI_NETBSD
4599 #undef elf32_bed
4600 #define elf32_bed elf32_hppa_netbsd_bed
4601
4602 #include "elf32-target.h"
This page took 0.466608 seconds and 5 git commands to generate.