This commit was generated by cvs2svn to track changes on a CVS vendor
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002 Free Software Foundation, Inc.
4
5 Original code by
6 Center for Software Science
7 Department of Computer Science
8 University of Utah
9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
26
27 #include "bfd.h"
28 #include "sysdep.h"
29 #include "libbfd.h"
30 #include "elf-bfd.h"
31 #include "elf/hppa.h"
32 #include "libhppa.h"
33 #include "elf32-hppa.h"
34 #define ARCH_SIZE 32
35 #include "elf32-hppa.h"
36 #include "elf-hppa.h"
37
38 /* In order to gain some understanding of code in this file without
39 knowing all the intricate details of the linker, note the
40 following:
41
42 Functions named elf32_hppa_* are called by external routines, other
43 functions are only called locally. elf32_hppa_* functions appear
44 in this file more or less in the order in which they are called
45 from external routines. eg. elf32_hppa_check_relocs is called
46 early in the link process, elf32_hppa_finish_dynamic_sections is
47 one of the last functions. */
48
49 /* We use two hash tables to hold information for linking PA ELF objects.
50
51 The first is the elf32_hppa_link_hash_table which is derived
52 from the standard ELF linker hash table. We use this as a place to
53 attach other hash tables and static information.
54
55 The second is the stub hash table which is derived from the
56 base BFD hash table. The stub hash table holds the information
57 necessary to build the linker stubs during a link.
58
59 There are a number of different stubs generated by the linker.
60
61 Long branch stub:
62 : ldil LR'X,%r1
63 : be,n RR'X(%sr4,%r1)
64
65 PIC long branch stub:
66 : b,l .+8,%r1
67 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
68 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
69
70 Import stub to call shared library routine from normal object file
71 (single sub-space version)
72 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
73 : ldw RR'lt_ptr+ltoff(%r1),%r21
74 : bv %r0(%r21)
75 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
76
77 Import stub to call shared library routine from shared library
78 (single sub-space version)
79 : addil LR'ltoff,%r19 ; get procedure entry point
80 : ldw RR'ltoff(%r1),%r21
81 : bv %r0(%r21)
82 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
83
84 Import stub to call shared library routine from normal object file
85 (multiple sub-space support)
86 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
87 : ldw RR'lt_ptr+ltoff(%r1),%r21
88 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
89 : ldsid (%r21),%r1
90 : mtsp %r1,%sr0
91 : be 0(%sr0,%r21) ; branch to target
92 : stw %rp,-24(%sp) ; save rp
93
94 Import stub to call shared library routine from shared library
95 (multiple sub-space support)
96 : addil LR'ltoff,%r19 ; get procedure entry point
97 : ldw RR'ltoff(%r1),%r21
98 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
99 : ldsid (%r21),%r1
100 : mtsp %r1,%sr0
101 : be 0(%sr0,%r21) ; branch to target
102 : stw %rp,-24(%sp) ; save rp
103
104 Export stub to return from shared lib routine (multiple sub-space support)
105 One of these is created for each exported procedure in a shared
106 library (and stored in the shared lib). Shared lib routines are
107 called via the first instruction in the export stub so that we can
108 do an inter-space return. Not required for single sub-space.
109 : bl,n X,%rp ; trap the return
110 : nop
111 : ldw -24(%sp),%rp ; restore the original rp
112 : ldsid (%rp),%r1
113 : mtsp %r1,%sr0
114 : be,n 0(%sr0,%rp) ; inter-space return */
115
116 #define PLT_ENTRY_SIZE 8
117 #define GOT_ENTRY_SIZE 4
118 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
119
120 static const bfd_byte plt_stub[] =
121 {
122 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
123 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
124 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
125 #define PLT_STUB_ENTRY (3*4)
126 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
127 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
128 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
129 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
130 };
131
132 /* Section name for stubs is the associated section name plus this
133 string. */
134 #define STUB_SUFFIX ".stub"
135
136 /* We don't need to copy certain PC- or GP-relative dynamic relocs
137 into a shared object's dynamic section. All the relocs of the
138 limited class we are interested in, are absolute. */
139 #ifndef RELATIVE_DYNRELOCS
140 #define RELATIVE_DYNRELOCS 0
141 #define IS_ABSOLUTE_RELOC(r_type) 1
142 #endif
143
144 enum elf32_hppa_stub_type {
145 hppa_stub_long_branch,
146 hppa_stub_long_branch_shared,
147 hppa_stub_import,
148 hppa_stub_import_shared,
149 hppa_stub_export,
150 hppa_stub_none
151 };
152
153 struct elf32_hppa_stub_hash_entry {
154
155 /* Base hash table entry structure. */
156 struct bfd_hash_entry root;
157
158 /* The stub section. */
159 asection *stub_sec;
160
161 /* Offset within stub_sec of the beginning of this stub. */
162 bfd_vma stub_offset;
163
164 /* Given the symbol's value and its section we can determine its final
165 value when building the stubs (so the stub knows where to jump. */
166 bfd_vma target_value;
167 asection *target_section;
168
169 enum elf32_hppa_stub_type stub_type;
170
171 /* The symbol table entry, if any, that this was derived from. */
172 struct elf32_hppa_link_hash_entry *h;
173
174 /* Where this stub is being called from, or, in the case of combined
175 stub sections, the first input section in the group. */
176 asection *id_sec;
177 };
178
179 struct elf32_hppa_link_hash_entry {
180
181 struct elf_link_hash_entry elf;
182
183 /* A pointer to the most recently used stub hash entry against this
184 symbol. */
185 struct elf32_hppa_stub_hash_entry *stub_cache;
186
187 /* Used to count relocations for delayed sizing of relocation
188 sections. */
189 struct elf32_hppa_dyn_reloc_entry {
190
191 /* Next relocation in the chain. */
192 struct elf32_hppa_dyn_reloc_entry *next;
193
194 /* The input section of the reloc. */
195 asection *sec;
196
197 /* Number of relocs copied in this section. */
198 bfd_size_type count;
199
200 #if RELATIVE_DYNRELOCS
201 /* Number of relative relocs copied for the input section. */
202 bfd_size_type relative_count;
203 #endif
204 } *dyn_relocs;
205
206 /* Set if the only reason we need a .plt entry is for a non-PIC to
207 PIC function call. */
208 unsigned int pic_call:1;
209
210 /* Set if this symbol is used by a plabel reloc. */
211 unsigned int plabel:1;
212 };
213
214 struct elf32_hppa_link_hash_table {
215
216 /* The main hash table. */
217 struct elf_link_hash_table elf;
218
219 /* The stub hash table. */
220 struct bfd_hash_table stub_hash_table;
221
222 /* Linker stub bfd. */
223 bfd *stub_bfd;
224
225 /* Linker call-backs. */
226 asection * (*add_stub_section) PARAMS ((const char *, asection *));
227 void (*layout_sections_again) PARAMS ((void));
228
229 /* Array to keep track of which stub sections have been created, and
230 information on stub grouping. */
231 struct map_stub {
232 /* This is the section to which stubs in the group will be
233 attached. */
234 asection *link_sec;
235 /* The stub section. */
236 asection *stub_sec;
237 } *stub_group;
238
239 /* Assorted information used by elf32_hppa_size_stubs. */
240 unsigned int bfd_count;
241 int top_index;
242 asection **input_list;
243 Elf_Internal_Sym **all_local_syms;
244
245 /* Short-cuts to get to dynamic linker sections. */
246 asection *sgot;
247 asection *srelgot;
248 asection *splt;
249 asection *srelplt;
250 asection *sdynbss;
251 asection *srelbss;
252
253 /* Used during a final link to store the base of the text and data
254 segments so that we can perform SEGREL relocations. */
255 bfd_vma text_segment_base;
256 bfd_vma data_segment_base;
257
258 /* Whether we support multiple sub-spaces for shared libs. */
259 unsigned int multi_subspace:1;
260
261 /* Flags set when various size branches are detected. Used to
262 select suitable defaults for the stub group size. */
263 unsigned int has_12bit_branch:1;
264 unsigned int has_17bit_branch:1;
265 unsigned int has_22bit_branch:1;
266
267 /* Set if we need a .plt stub to support lazy dynamic linking. */
268 unsigned int need_plt_stub:1;
269
270 /* Small local sym to section mapping cache. */
271 struct sym_sec_cache sym_sec;
272 };
273
274 /* Various hash macros and functions. */
275 #define hppa_link_hash_table(p) \
276 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
277
278 #define hppa_stub_hash_lookup(table, string, create, copy) \
279 ((struct elf32_hppa_stub_hash_entry *) \
280 bfd_hash_lookup ((table), (string), (create), (copy)))
281
282 static struct bfd_hash_entry *stub_hash_newfunc
283 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
284
285 static struct bfd_hash_entry *hppa_link_hash_newfunc
286 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
287
288 static struct bfd_link_hash_table *elf32_hppa_link_hash_table_create
289 PARAMS ((bfd *));
290
291 static void elf32_hppa_link_hash_table_free
292 PARAMS ((struct bfd_link_hash_table *));
293
294 /* Stub handling functions. */
295 static char *hppa_stub_name
296 PARAMS ((const asection *, const asection *,
297 const struct elf32_hppa_link_hash_entry *,
298 const Elf_Internal_Rela *));
299
300 static struct elf32_hppa_stub_hash_entry *hppa_get_stub_entry
301 PARAMS ((const asection *, const asection *,
302 struct elf32_hppa_link_hash_entry *,
303 const Elf_Internal_Rela *,
304 struct elf32_hppa_link_hash_table *));
305
306 static struct elf32_hppa_stub_hash_entry *hppa_add_stub
307 PARAMS ((const char *, asection *, struct elf32_hppa_link_hash_table *));
308
309 static enum elf32_hppa_stub_type hppa_type_of_stub
310 PARAMS ((asection *, const Elf_Internal_Rela *,
311 struct elf32_hppa_link_hash_entry *, bfd_vma));
312
313 static boolean hppa_build_one_stub
314 PARAMS ((struct bfd_hash_entry *, PTR));
315
316 static boolean hppa_size_one_stub
317 PARAMS ((struct bfd_hash_entry *, PTR));
318
319 /* BFD and elf backend functions. */
320 static boolean elf32_hppa_object_p PARAMS ((bfd *));
321
322 static boolean elf32_hppa_add_symbol_hook
323 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
324 const char **, flagword *, asection **, bfd_vma *));
325
326 static boolean elf32_hppa_create_dynamic_sections
327 PARAMS ((bfd *, struct bfd_link_info *));
328
329 static void elf32_hppa_copy_indirect_symbol
330 PARAMS ((struct elf_backend_data *, struct elf_link_hash_entry *,
331 struct elf_link_hash_entry *));
332
333 static boolean elf32_hppa_check_relocs
334 PARAMS ((bfd *, struct bfd_link_info *,
335 asection *, const Elf_Internal_Rela *));
336
337 static asection *elf32_hppa_gc_mark_hook
338 PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
339 struct elf_link_hash_entry *, Elf_Internal_Sym *));
340
341 static boolean elf32_hppa_gc_sweep_hook
342 PARAMS ((bfd *, struct bfd_link_info *,
343 asection *, const Elf_Internal_Rela *));
344
345 static void elf32_hppa_hide_symbol
346 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *, boolean));
347
348 static boolean elf32_hppa_adjust_dynamic_symbol
349 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
350
351 static boolean mark_PIC_calls
352 PARAMS ((struct elf_link_hash_entry *, PTR));
353
354 static boolean allocate_plt_static
355 PARAMS ((struct elf_link_hash_entry *, PTR));
356
357 static boolean allocate_dynrelocs
358 PARAMS ((struct elf_link_hash_entry *, PTR));
359
360 static boolean readonly_dynrelocs
361 PARAMS ((struct elf_link_hash_entry *, PTR));
362
363 static boolean clobber_millicode_symbols
364 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
365
366 static boolean elf32_hppa_size_dynamic_sections
367 PARAMS ((bfd *, struct bfd_link_info *));
368
369 static void group_sections
370 PARAMS ((struct elf32_hppa_link_hash_table *, bfd_size_type, boolean));
371
372 static int get_local_syms
373 PARAMS ((bfd *, bfd *, struct bfd_link_info *));
374
375 static boolean elf32_hppa_final_link
376 PARAMS ((bfd *, struct bfd_link_info *));
377
378 static void hppa_record_segment_addr
379 PARAMS ((bfd *, asection *, PTR));
380
381 static bfd_reloc_status_type final_link_relocate
382 PARAMS ((asection *, bfd_byte *, const Elf_Internal_Rela *,
383 bfd_vma, struct elf32_hppa_link_hash_table *, asection *,
384 struct elf32_hppa_link_hash_entry *));
385
386 static boolean elf32_hppa_relocate_section
387 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *,
388 bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
389
390 static boolean elf32_hppa_finish_dynamic_symbol
391 PARAMS ((bfd *, struct bfd_link_info *,
392 struct elf_link_hash_entry *, Elf_Internal_Sym *));
393
394 static enum elf_reloc_type_class elf32_hppa_reloc_type_class
395 PARAMS ((const Elf_Internal_Rela *));
396
397 static boolean elf32_hppa_finish_dynamic_sections
398 PARAMS ((bfd *, struct bfd_link_info *));
399
400 static void elf32_hppa_post_process_headers
401 PARAMS ((bfd *, struct bfd_link_info *));
402
403 static int elf32_hppa_elf_get_symbol_type
404 PARAMS ((Elf_Internal_Sym *, int));
405
406 /* Assorted hash table functions. */
407
408 /* Initialize an entry in the stub hash table. */
409
410 static struct bfd_hash_entry *
411 stub_hash_newfunc (entry, table, string)
412 struct bfd_hash_entry *entry;
413 struct bfd_hash_table *table;
414 const char *string;
415 {
416 /* Allocate the structure if it has not already been allocated by a
417 subclass. */
418 if (entry == NULL)
419 {
420 entry = bfd_hash_allocate (table,
421 sizeof (struct elf32_hppa_stub_hash_entry));
422 if (entry == NULL)
423 return entry;
424 }
425
426 /* Call the allocation method of the superclass. */
427 entry = bfd_hash_newfunc (entry, table, string);
428 if (entry != NULL)
429 {
430 struct elf32_hppa_stub_hash_entry *eh;
431
432 /* Initialize the local fields. */
433 eh = (struct elf32_hppa_stub_hash_entry *) entry;
434 eh->stub_sec = NULL;
435 eh->stub_offset = 0;
436 eh->target_value = 0;
437 eh->target_section = NULL;
438 eh->stub_type = hppa_stub_long_branch;
439 eh->h = NULL;
440 eh->id_sec = NULL;
441 }
442
443 return entry;
444 }
445
446 /* Initialize an entry in the link hash table. */
447
448 static struct bfd_hash_entry *
449 hppa_link_hash_newfunc (entry, table, string)
450 struct bfd_hash_entry *entry;
451 struct bfd_hash_table *table;
452 const char *string;
453 {
454 /* Allocate the structure if it has not already been allocated by a
455 subclass. */
456 if (entry == NULL)
457 {
458 entry = bfd_hash_allocate (table,
459 sizeof (struct elf32_hppa_link_hash_entry));
460 if (entry == NULL)
461 return entry;
462 }
463
464 /* Call the allocation method of the superclass. */
465 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
466 if (entry != NULL)
467 {
468 struct elf32_hppa_link_hash_entry *eh;
469
470 /* Initialize the local fields. */
471 eh = (struct elf32_hppa_link_hash_entry *) entry;
472 eh->stub_cache = NULL;
473 eh->dyn_relocs = NULL;
474 eh->pic_call = 0;
475 eh->plabel = 0;
476 }
477
478 return entry;
479 }
480
481 /* Create the derived linker hash table. The PA ELF port uses the derived
482 hash table to keep information specific to the PA ELF linker (without
483 using static variables). */
484
485 static struct bfd_link_hash_table *
486 elf32_hppa_link_hash_table_create (abfd)
487 bfd *abfd;
488 {
489 struct elf32_hppa_link_hash_table *ret;
490 bfd_size_type amt = sizeof (*ret);
491
492 ret = (struct elf32_hppa_link_hash_table *) bfd_malloc (amt);
493 if (ret == NULL)
494 return NULL;
495
496 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, hppa_link_hash_newfunc))
497 {
498 free (ret);
499 return NULL;
500 }
501
502 /* Init the stub hash table too. */
503 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc))
504 return NULL;
505
506 ret->stub_bfd = NULL;
507 ret->add_stub_section = NULL;
508 ret->layout_sections_again = NULL;
509 ret->stub_group = NULL;
510 ret->sgot = NULL;
511 ret->srelgot = NULL;
512 ret->splt = NULL;
513 ret->srelplt = NULL;
514 ret->sdynbss = NULL;
515 ret->srelbss = NULL;
516 ret->text_segment_base = (bfd_vma) -1;
517 ret->data_segment_base = (bfd_vma) -1;
518 ret->multi_subspace = 0;
519 ret->has_12bit_branch = 0;
520 ret->has_17bit_branch = 0;
521 ret->has_22bit_branch = 0;
522 ret->need_plt_stub = 0;
523 ret->sym_sec.abfd = NULL;
524
525 return &ret->elf.root;
526 }
527
528 /* Free the derived linker hash table. */
529
530 static void
531 elf32_hppa_link_hash_table_free (hash)
532 struct bfd_link_hash_table *hash;
533 {
534 struct elf32_hppa_link_hash_table *ret
535 = (struct elf32_hppa_link_hash_table *) hash;
536
537 bfd_hash_table_free (&ret->stub_hash_table);
538 _bfd_generic_link_hash_table_free (hash);
539 }
540
541 /* Build a name for an entry in the stub hash table. */
542
543 static char *
544 hppa_stub_name (input_section, sym_sec, hash, rel)
545 const asection *input_section;
546 const asection *sym_sec;
547 const struct elf32_hppa_link_hash_entry *hash;
548 const Elf_Internal_Rela *rel;
549 {
550 char *stub_name;
551 bfd_size_type len;
552
553 if (hash)
554 {
555 len = 8 + 1 + strlen (hash->elf.root.root.string) + 1 + 8 + 1;
556 stub_name = bfd_malloc (len);
557 if (stub_name != NULL)
558 {
559 sprintf (stub_name, "%08x_%s+%x",
560 input_section->id & 0xffffffff,
561 hash->elf.root.root.string,
562 (int) rel->r_addend & 0xffffffff);
563 }
564 }
565 else
566 {
567 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
568 stub_name = bfd_malloc (len);
569 if (stub_name != NULL)
570 {
571 sprintf (stub_name, "%08x_%x:%x+%x",
572 input_section->id & 0xffffffff,
573 sym_sec->id & 0xffffffff,
574 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
575 (int) rel->r_addend & 0xffffffff);
576 }
577 }
578 return stub_name;
579 }
580
581 /* Look up an entry in the stub hash. Stub entries are cached because
582 creating the stub name takes a bit of time. */
583
584 static struct elf32_hppa_stub_hash_entry *
585 hppa_get_stub_entry (input_section, sym_sec, hash, rel, htab)
586 const asection *input_section;
587 const asection *sym_sec;
588 struct elf32_hppa_link_hash_entry *hash;
589 const Elf_Internal_Rela *rel;
590 struct elf32_hppa_link_hash_table *htab;
591 {
592 struct elf32_hppa_stub_hash_entry *stub_entry;
593 const asection *id_sec;
594
595 /* If this input section is part of a group of sections sharing one
596 stub section, then use the id of the first section in the group.
597 Stub names need to include a section id, as there may well be
598 more than one stub used to reach say, printf, and we need to
599 distinguish between them. */
600 id_sec = htab->stub_group[input_section->id].link_sec;
601
602 if (hash != NULL && hash->stub_cache != NULL
603 && hash->stub_cache->h == hash
604 && hash->stub_cache->id_sec == id_sec)
605 {
606 stub_entry = hash->stub_cache;
607 }
608 else
609 {
610 char *stub_name;
611
612 stub_name = hppa_stub_name (id_sec, sym_sec, hash, rel);
613 if (stub_name == NULL)
614 return NULL;
615
616 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
617 stub_name, false, false);
618 if (hash != NULL)
619 hash->stub_cache = stub_entry;
620
621 free (stub_name);
622 }
623
624 return stub_entry;
625 }
626
627 /* Add a new stub entry to the stub hash. Not all fields of the new
628 stub entry are initialised. */
629
630 static struct elf32_hppa_stub_hash_entry *
631 hppa_add_stub (stub_name, section, htab)
632 const char *stub_name;
633 asection *section;
634 struct elf32_hppa_link_hash_table *htab;
635 {
636 asection *link_sec;
637 asection *stub_sec;
638 struct elf32_hppa_stub_hash_entry *stub_entry;
639
640 link_sec = htab->stub_group[section->id].link_sec;
641 stub_sec = htab->stub_group[section->id].stub_sec;
642 if (stub_sec == NULL)
643 {
644 stub_sec = htab->stub_group[link_sec->id].stub_sec;
645 if (stub_sec == NULL)
646 {
647 size_t namelen;
648 bfd_size_type len;
649 char *s_name;
650
651 namelen = strlen (link_sec->name);
652 len = namelen + sizeof (STUB_SUFFIX);
653 s_name = bfd_alloc (htab->stub_bfd, len);
654 if (s_name == NULL)
655 return NULL;
656
657 memcpy (s_name, link_sec->name, namelen);
658 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
659 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
660 if (stub_sec == NULL)
661 return NULL;
662 htab->stub_group[link_sec->id].stub_sec = stub_sec;
663 }
664 htab->stub_group[section->id].stub_sec = stub_sec;
665 }
666
667 /* Enter this entry into the linker stub hash table. */
668 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table, stub_name,
669 true, false);
670 if (stub_entry == NULL)
671 {
672 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
673 bfd_archive_filename (section->owner),
674 stub_name);
675 return NULL;
676 }
677
678 stub_entry->stub_sec = stub_sec;
679 stub_entry->stub_offset = 0;
680 stub_entry->id_sec = link_sec;
681 return stub_entry;
682 }
683
684 /* Determine the type of stub needed, if any, for a call. */
685
686 static enum elf32_hppa_stub_type
687 hppa_type_of_stub (input_sec, rel, hash, destination)
688 asection *input_sec;
689 const Elf_Internal_Rela *rel;
690 struct elf32_hppa_link_hash_entry *hash;
691 bfd_vma destination;
692 {
693 bfd_vma location;
694 bfd_vma branch_offset;
695 bfd_vma max_branch_offset;
696 unsigned int r_type;
697
698 if (hash != NULL
699 && hash->elf.plt.offset != (bfd_vma) -1
700 && (hash->elf.dynindx != -1 || hash->pic_call)
701 && !hash->plabel)
702 {
703 /* We need an import stub. Decide between hppa_stub_import
704 and hppa_stub_import_shared later. */
705 return hppa_stub_import;
706 }
707
708 /* Determine where the call point is. */
709 location = (input_sec->output_offset
710 + input_sec->output_section->vma
711 + rel->r_offset);
712
713 branch_offset = destination - location - 8;
714 r_type = ELF32_R_TYPE (rel->r_info);
715
716 /* Determine if a long branch stub is needed. parisc branch offsets
717 are relative to the second instruction past the branch, ie. +8
718 bytes on from the branch instruction location. The offset is
719 signed and counts in units of 4 bytes. */
720 if (r_type == (unsigned int) R_PARISC_PCREL17F)
721 {
722 max_branch_offset = (1 << (17-1)) << 2;
723 }
724 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
725 {
726 max_branch_offset = (1 << (12-1)) << 2;
727 }
728 else /* R_PARISC_PCREL22F. */
729 {
730 max_branch_offset = (1 << (22-1)) << 2;
731 }
732
733 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
734 return hppa_stub_long_branch;
735
736 return hppa_stub_none;
737 }
738
739 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
740 IN_ARG contains the link info pointer. */
741
742 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
743 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
744
745 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
746 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
747 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
748
749 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
750 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
751 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
752 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
753
754 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
755 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
756
757 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
758 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
759 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
760 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
761
762 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
763 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
764 #define NOP 0x08000240 /* nop */
765 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
766 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
767 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
768
769 #ifndef R19_STUBS
770 #define R19_STUBS 1
771 #endif
772
773 #if R19_STUBS
774 #define LDW_R1_DLT LDW_R1_R19
775 #else
776 #define LDW_R1_DLT LDW_R1_DP
777 #endif
778
779 static boolean
780 hppa_build_one_stub (gen_entry, in_arg)
781 struct bfd_hash_entry *gen_entry;
782 PTR in_arg;
783 {
784 struct elf32_hppa_stub_hash_entry *stub_entry;
785 struct bfd_link_info *info;
786 struct elf32_hppa_link_hash_table *htab;
787 asection *stub_sec;
788 bfd *stub_bfd;
789 bfd_byte *loc;
790 bfd_vma sym_value;
791 bfd_vma insn;
792 bfd_vma off;
793 int val;
794 int size;
795
796 /* Massage our args to the form they really have. */
797 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
798 info = (struct bfd_link_info *) in_arg;
799
800 htab = hppa_link_hash_table (info);
801 stub_sec = stub_entry->stub_sec;
802
803 /* Make a note of the offset within the stubs for this entry. */
804 stub_entry->stub_offset = stub_sec->_raw_size;
805 loc = stub_sec->contents + stub_entry->stub_offset;
806
807 stub_bfd = stub_sec->owner;
808
809 switch (stub_entry->stub_type)
810 {
811 case hppa_stub_long_branch:
812 /* Create the long branch. A long branch is formed with "ldil"
813 loading the upper bits of the target address into a register,
814 then branching with "be" which adds in the lower bits.
815 The "be" has its delay slot nullified. */
816 sym_value = (stub_entry->target_value
817 + stub_entry->target_section->output_offset
818 + stub_entry->target_section->output_section->vma);
819
820 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel);
821 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
822 bfd_put_32 (stub_bfd, insn, loc);
823
824 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel) >> 2;
825 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
826 bfd_put_32 (stub_bfd, insn, loc + 4);
827
828 size = 8;
829 break;
830
831 case hppa_stub_long_branch_shared:
832 /* Branches are relative. This is where we are going to. */
833 sym_value = (stub_entry->target_value
834 + stub_entry->target_section->output_offset
835 + stub_entry->target_section->output_section->vma);
836
837 /* And this is where we are coming from, more or less. */
838 sym_value -= (stub_entry->stub_offset
839 + stub_sec->output_offset
840 + stub_sec->output_section->vma);
841
842 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
843 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
844 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
845 bfd_put_32 (stub_bfd, insn, loc + 4);
846
847 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
848 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
849 bfd_put_32 (stub_bfd, insn, loc + 8);
850 size = 12;
851 break;
852
853 case hppa_stub_import:
854 case hppa_stub_import_shared:
855 off = stub_entry->h->elf.plt.offset;
856 if (off >= (bfd_vma) -2)
857 abort ();
858
859 off &= ~ (bfd_vma) 1;
860 sym_value = (off
861 + htab->splt->output_offset
862 + htab->splt->output_section->vma
863 - elf_gp (htab->splt->output_section->owner));
864
865 insn = ADDIL_DP;
866 #if R19_STUBS
867 if (stub_entry->stub_type == hppa_stub_import_shared)
868 insn = ADDIL_R19;
869 #endif
870 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel),
871 insn = hppa_rebuild_insn ((int) insn, val, 21);
872 bfd_put_32 (stub_bfd, insn, loc);
873
874 /* It is critical to use lrsel/rrsel here because we are using
875 two different offsets (+0 and +4) from sym_value. If we use
876 lsel/rsel then with unfortunate sym_values we will round
877 sym_value+4 up to the next 2k block leading to a mis-match
878 between the lsel and rsel value. */
879 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel);
880 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
881 bfd_put_32 (stub_bfd, insn, loc + 4);
882
883 if (htab->multi_subspace)
884 {
885 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
886 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
887 bfd_put_32 (stub_bfd, insn, loc + 8);
888
889 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
890 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
891 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
892 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
893
894 size = 28;
895 }
896 else
897 {
898 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
899 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
900 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
901 bfd_put_32 (stub_bfd, insn, loc + 12);
902
903 size = 16;
904 }
905
906 if (!info->shared
907 && stub_entry->h != NULL
908 && stub_entry->h->pic_call)
909 {
910 /* Build the .plt entry needed to call a PIC function from
911 statically linked code. We don't need any relocs. */
912 bfd *dynobj;
913 struct elf32_hppa_link_hash_entry *eh;
914 bfd_vma value;
915
916 dynobj = htab->elf.dynobj;
917 eh = (struct elf32_hppa_link_hash_entry *) stub_entry->h;
918
919 if (eh->elf.root.type != bfd_link_hash_defined
920 && eh->elf.root.type != bfd_link_hash_defweak)
921 abort ();
922
923 value = (eh->elf.root.u.def.value
924 + eh->elf.root.u.def.section->output_offset
925 + eh->elf.root.u.def.section->output_section->vma);
926
927 /* Fill in the entry in the procedure linkage table.
928
929 The format of a plt entry is
930 <funcaddr>
931 <__gp>. */
932
933 bfd_put_32 (htab->splt->owner, value,
934 htab->splt->contents + off);
935 value = elf_gp (htab->splt->output_section->owner);
936 bfd_put_32 (htab->splt->owner, value,
937 htab->splt->contents + off + 4);
938 }
939 break;
940
941 case hppa_stub_export:
942 /* Branches are relative. This is where we are going to. */
943 sym_value = (stub_entry->target_value
944 + stub_entry->target_section->output_offset
945 + stub_entry->target_section->output_section->vma);
946
947 /* And this is where we are coming from. */
948 sym_value -= (stub_entry->stub_offset
949 + stub_sec->output_offset
950 + stub_sec->output_section->vma);
951
952 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
953 && (!htab->has_22bit_branch
954 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
955 {
956 (*_bfd_error_handler)
957 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
958 bfd_archive_filename (stub_entry->target_section->owner),
959 stub_sec->name,
960 (long) stub_entry->stub_offset,
961 stub_entry->root.string);
962 bfd_set_error (bfd_error_bad_value);
963 return false;
964 }
965
966 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
967 if (!htab->has_22bit_branch)
968 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
969 else
970 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
971 bfd_put_32 (stub_bfd, insn, loc);
972
973 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
974 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
975 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
976 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
977 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
978
979 /* Point the function symbol at the stub. */
980 stub_entry->h->elf.root.u.def.section = stub_sec;
981 stub_entry->h->elf.root.u.def.value = stub_sec->_raw_size;
982
983 size = 24;
984 break;
985
986 default:
987 BFD_FAIL ();
988 return false;
989 }
990
991 stub_sec->_raw_size += size;
992 return true;
993 }
994
995 #undef LDIL_R1
996 #undef BE_SR4_R1
997 #undef BL_R1
998 #undef ADDIL_R1
999 #undef DEPI_R1
1000 #undef ADDIL_DP
1001 #undef LDW_R1_R21
1002 #undef LDW_R1_DLT
1003 #undef LDW_R1_R19
1004 #undef ADDIL_R19
1005 #undef LDW_R1_DP
1006 #undef LDSID_R21_R1
1007 #undef MTSP_R1
1008 #undef BE_SR0_R21
1009 #undef STW_RP
1010 #undef BV_R0_R21
1011 #undef BL_RP
1012 #undef NOP
1013 #undef LDW_RP
1014 #undef LDSID_RP_R1
1015 #undef BE_SR0_RP
1016
1017 /* As above, but don't actually build the stub. Just bump offset so
1018 we know stub section sizes. */
1019
1020 static boolean
1021 hppa_size_one_stub (gen_entry, in_arg)
1022 struct bfd_hash_entry *gen_entry;
1023 PTR in_arg;
1024 {
1025 struct elf32_hppa_stub_hash_entry *stub_entry;
1026 struct elf32_hppa_link_hash_table *htab;
1027 int size;
1028
1029 /* Massage our args to the form they really have. */
1030 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
1031 htab = (struct elf32_hppa_link_hash_table *) in_arg;
1032
1033 if (stub_entry->stub_type == hppa_stub_long_branch)
1034 size = 8;
1035 else if (stub_entry->stub_type == hppa_stub_long_branch_shared)
1036 size = 12;
1037 else if (stub_entry->stub_type == hppa_stub_export)
1038 size = 24;
1039 else /* hppa_stub_import or hppa_stub_import_shared. */
1040 {
1041 if (htab->multi_subspace)
1042 size = 28;
1043 else
1044 size = 16;
1045 }
1046
1047 stub_entry->stub_sec->_raw_size += size;
1048 return true;
1049 }
1050
1051 /* Return nonzero if ABFD represents an HPPA ELF32 file.
1052 Additionally we set the default architecture and machine. */
1053
1054 static boolean
1055 elf32_hppa_object_p (abfd)
1056 bfd *abfd;
1057 {
1058 Elf_Internal_Ehdr * i_ehdrp;
1059 unsigned int flags;
1060
1061 i_ehdrp = elf_elfheader (abfd);
1062 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
1063 {
1064 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX)
1065 return false;
1066 }
1067 else
1068 {
1069 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
1070 return false;
1071 }
1072
1073 flags = i_ehdrp->e_flags;
1074 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
1075 {
1076 case EFA_PARISC_1_0:
1077 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
1078 case EFA_PARISC_1_1:
1079 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
1080 case EFA_PARISC_2_0:
1081 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
1082 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
1083 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
1084 }
1085 return true;
1086 }
1087
1088 /* Undo the generic ELF code's subtraction of section->vma from the
1089 value of each external symbol. */
1090
1091 static boolean
1092 elf32_hppa_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1093 bfd *abfd ATTRIBUTE_UNUSED;
1094 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1095 const Elf_Internal_Sym *sym ATTRIBUTE_UNUSED;
1096 const char **namep ATTRIBUTE_UNUSED;
1097 flagword *flagsp ATTRIBUTE_UNUSED;
1098 asection **secp;
1099 bfd_vma *valp;
1100 {
1101 *valp += (*secp)->vma;
1102 return true;
1103 }
1104
1105 /* Create the .plt and .got sections, and set up our hash table
1106 short-cuts to various dynamic sections. */
1107
1108 static boolean
1109 elf32_hppa_create_dynamic_sections (abfd, info)
1110 bfd *abfd;
1111 struct bfd_link_info *info;
1112 {
1113 struct elf32_hppa_link_hash_table *htab;
1114
1115 /* Don't try to create the .plt and .got twice. */
1116 htab = hppa_link_hash_table (info);
1117 if (htab->splt != NULL)
1118 return true;
1119
1120 /* Call the generic code to do most of the work. */
1121 if (! _bfd_elf_create_dynamic_sections (abfd, info))
1122 return false;
1123
1124 htab->splt = bfd_get_section_by_name (abfd, ".plt");
1125 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
1126
1127 htab->sgot = bfd_get_section_by_name (abfd, ".got");
1128 htab->srelgot = bfd_make_section (abfd, ".rela.got");
1129 if (htab->srelgot == NULL
1130 || ! bfd_set_section_flags (abfd, htab->srelgot,
1131 (SEC_ALLOC
1132 | SEC_LOAD
1133 | SEC_HAS_CONTENTS
1134 | SEC_IN_MEMORY
1135 | SEC_LINKER_CREATED
1136 | SEC_READONLY))
1137 || ! bfd_set_section_alignment (abfd, htab->srelgot, 2))
1138 return false;
1139
1140 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
1141 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
1142
1143 return true;
1144 }
1145
1146 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1147
1148 static void
1149 elf32_hppa_copy_indirect_symbol (bed, dir, ind)
1150 struct elf_backend_data *bed;
1151 struct elf_link_hash_entry *dir, *ind;
1152 {
1153 struct elf32_hppa_link_hash_entry *edir, *eind;
1154
1155 edir = (struct elf32_hppa_link_hash_entry *) dir;
1156 eind = (struct elf32_hppa_link_hash_entry *) ind;
1157
1158 if (eind->dyn_relocs != NULL)
1159 {
1160 if (edir->dyn_relocs != NULL)
1161 {
1162 struct elf32_hppa_dyn_reloc_entry **pp;
1163 struct elf32_hppa_dyn_reloc_entry *p;
1164
1165 if (ind->root.type == bfd_link_hash_indirect)
1166 abort ();
1167
1168 /* Add reloc counts against the weak sym to the strong sym
1169 list. Merge any entries against the same section. */
1170 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
1171 {
1172 struct elf32_hppa_dyn_reloc_entry *q;
1173
1174 for (q = edir->dyn_relocs; q != NULL; q = q->next)
1175 if (q->sec == p->sec)
1176 {
1177 #if RELATIVE_DYNRELOCS
1178 q->relative_count += p->relative_count;
1179 #endif
1180 q->count += p->count;
1181 *pp = p->next;
1182 break;
1183 }
1184 if (q == NULL)
1185 pp = &p->next;
1186 }
1187 *pp = edir->dyn_relocs;
1188 }
1189
1190 edir->dyn_relocs = eind->dyn_relocs;
1191 eind->dyn_relocs = NULL;
1192 }
1193
1194 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
1195 }
1196
1197 /* Look through the relocs for a section during the first phase, and
1198 calculate needed space in the global offset table, procedure linkage
1199 table, and dynamic reloc sections. At this point we haven't
1200 necessarily read all the input files. */
1201
1202 static boolean
1203 elf32_hppa_check_relocs (abfd, info, sec, relocs)
1204 bfd *abfd;
1205 struct bfd_link_info *info;
1206 asection *sec;
1207 const Elf_Internal_Rela *relocs;
1208 {
1209 Elf_Internal_Shdr *symtab_hdr;
1210 struct elf_link_hash_entry **sym_hashes;
1211 const Elf_Internal_Rela *rel;
1212 const Elf_Internal_Rela *rel_end;
1213 struct elf32_hppa_link_hash_table *htab;
1214 asection *sreloc;
1215 asection *stubreloc;
1216
1217 if (info->relocateable)
1218 return true;
1219
1220 htab = hppa_link_hash_table (info);
1221 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1222 sym_hashes = elf_sym_hashes (abfd);
1223 sreloc = NULL;
1224 stubreloc = NULL;
1225
1226 rel_end = relocs + sec->reloc_count;
1227 for (rel = relocs; rel < rel_end; rel++)
1228 {
1229 enum {
1230 NEED_GOT = 1,
1231 NEED_PLT = 2,
1232 NEED_DYNREL = 4,
1233 PLT_PLABEL = 8
1234 };
1235
1236 unsigned int r_symndx, r_type;
1237 struct elf32_hppa_link_hash_entry *h;
1238 int need_entry;
1239
1240 r_symndx = ELF32_R_SYM (rel->r_info);
1241
1242 if (r_symndx < symtab_hdr->sh_info)
1243 h = NULL;
1244 else
1245 h = ((struct elf32_hppa_link_hash_entry *)
1246 sym_hashes[r_symndx - symtab_hdr->sh_info]);
1247
1248 r_type = ELF32_R_TYPE (rel->r_info);
1249
1250 switch (r_type)
1251 {
1252 case R_PARISC_DLTIND14F:
1253 case R_PARISC_DLTIND14R:
1254 case R_PARISC_DLTIND21L:
1255 /* This symbol requires a global offset table entry. */
1256 need_entry = NEED_GOT;
1257
1258 /* Mark this section as containing PIC code. */
1259 sec->flags |= SEC_HAS_GOT_REF;
1260 break;
1261
1262 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1263 case R_PARISC_PLABEL21L:
1264 case R_PARISC_PLABEL32:
1265 /* If the addend is non-zero, we break badly. */
1266 if (rel->r_addend != 0)
1267 abort ();
1268
1269 /* If we are creating a shared library, then we need to
1270 create a PLT entry for all PLABELs, because PLABELs with
1271 local symbols may be passed via a pointer to another
1272 object. Additionally, output a dynamic relocation
1273 pointing to the PLT entry.
1274 For executables, the original 32-bit ABI allowed two
1275 different styles of PLABELs (function pointers): For
1276 global functions, the PLABEL word points into the .plt
1277 two bytes past a (function address, gp) pair, and for
1278 local functions the PLABEL points directly at the
1279 function. The magic +2 for the first type allows us to
1280 differentiate between the two. As you can imagine, this
1281 is a real pain when it comes to generating code to call
1282 functions indirectly or to compare function pointers.
1283 We avoid the mess by always pointing a PLABEL into the
1284 .plt, even for local functions. */
1285 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1286 break;
1287
1288 case R_PARISC_PCREL12F:
1289 htab->has_12bit_branch = 1;
1290 goto branch_common;
1291
1292 case R_PARISC_PCREL17C:
1293 case R_PARISC_PCREL17F:
1294 htab->has_17bit_branch = 1;
1295 goto branch_common;
1296
1297 case R_PARISC_PCREL22F:
1298 htab->has_22bit_branch = 1;
1299 branch_common:
1300 /* Function calls might need to go through the .plt, and
1301 might require long branch stubs. */
1302 if (h == NULL)
1303 {
1304 /* We know local syms won't need a .plt entry, and if
1305 they need a long branch stub we can't guarantee that
1306 we can reach the stub. So just flag an error later
1307 if we're doing a shared link and find we need a long
1308 branch stub. */
1309 continue;
1310 }
1311 else
1312 {
1313 /* Global symbols will need a .plt entry if they remain
1314 global, and in most cases won't need a long branch
1315 stub. Unfortunately, we have to cater for the case
1316 where a symbol is forced local by versioning, or due
1317 to symbolic linking, and we lose the .plt entry. */
1318 need_entry = NEED_PLT;
1319 if (h->elf.type == STT_PARISC_MILLI)
1320 need_entry = 0;
1321 }
1322 break;
1323
1324 case R_PARISC_SEGBASE: /* Used to set segment base. */
1325 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1326 case R_PARISC_PCREL14F: /* PC relative load/store. */
1327 case R_PARISC_PCREL14R:
1328 case R_PARISC_PCREL17R: /* External branches. */
1329 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1330 /* We don't need to propagate the relocation if linking a
1331 shared object since these are section relative. */
1332 continue;
1333
1334 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1335 case R_PARISC_DPREL14R:
1336 case R_PARISC_DPREL21L:
1337 if (info->shared)
1338 {
1339 (*_bfd_error_handler)
1340 (_("%s: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1341 bfd_archive_filename (abfd),
1342 elf_hppa_howto_table[r_type].name);
1343 bfd_set_error (bfd_error_bad_value);
1344 return false;
1345 }
1346 /* Fall through. */
1347
1348 case R_PARISC_DIR17F: /* Used for external branches. */
1349 case R_PARISC_DIR17R:
1350 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1351 case R_PARISC_DIR14R:
1352 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1353 #if 0
1354 /* Help debug shared library creation. Any of the above
1355 relocs can be used in shared libs, but they may cause
1356 pages to become unshared. */
1357 if (info->shared)
1358 {
1359 (*_bfd_error_handler)
1360 (_("%s: relocation %s should not be used when making a shared object; recompile with -fPIC"),
1361 bfd_archive_filename (abfd),
1362 elf_hppa_howto_table[r_type].name);
1363 }
1364 /* Fall through. */
1365 #endif
1366
1367 case R_PARISC_DIR32: /* .word relocs. */
1368 /* We may want to output a dynamic relocation later. */
1369 need_entry = NEED_DYNREL;
1370 break;
1371
1372 /* This relocation describes the C++ object vtable hierarchy.
1373 Reconstruct it for later use during GC. */
1374 case R_PARISC_GNU_VTINHERIT:
1375 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec,
1376 &h->elf, rel->r_offset))
1377 return false;
1378 continue;
1379
1380 /* This relocation describes which C++ vtable entries are actually
1381 used. Record for later use during GC. */
1382 case R_PARISC_GNU_VTENTRY:
1383 if (!_bfd_elf32_gc_record_vtentry (abfd, sec,
1384 &h->elf, rel->r_addend))
1385 return false;
1386 continue;
1387
1388 default:
1389 continue;
1390 }
1391
1392 /* Now carry out our orders. */
1393 if (need_entry & NEED_GOT)
1394 {
1395 /* Allocate space for a GOT entry, as well as a dynamic
1396 relocation for this entry. */
1397 if (htab->sgot == NULL)
1398 {
1399 if (htab->elf.dynobj == NULL)
1400 htab->elf.dynobj = abfd;
1401 if (!elf32_hppa_create_dynamic_sections (htab->elf.dynobj, info))
1402 return false;
1403 }
1404
1405 if (h != NULL)
1406 {
1407 h->elf.got.refcount += 1;
1408 }
1409 else
1410 {
1411 bfd_signed_vma *local_got_refcounts;
1412
1413 /* This is a global offset table entry for a local symbol. */
1414 local_got_refcounts = elf_local_got_refcounts (abfd);
1415 if (local_got_refcounts == NULL)
1416 {
1417 bfd_size_type size;
1418
1419 /* Allocate space for local got offsets and local
1420 plt offsets. Done this way to save polluting
1421 elf_obj_tdata with another target specific
1422 pointer. */
1423 size = symtab_hdr->sh_info;
1424 size *= 2 * sizeof (bfd_signed_vma);
1425 local_got_refcounts = ((bfd_signed_vma *)
1426 bfd_zalloc (abfd, size));
1427 if (local_got_refcounts == NULL)
1428 return false;
1429 elf_local_got_refcounts (abfd) = local_got_refcounts;
1430 }
1431 local_got_refcounts[r_symndx] += 1;
1432 }
1433 }
1434
1435 if (need_entry & NEED_PLT)
1436 {
1437 /* If we are creating a shared library, and this is a reloc
1438 against a weak symbol or a global symbol in a dynamic
1439 object, then we will be creating an import stub and a
1440 .plt entry for the symbol. Similarly, on a normal link
1441 to symbols defined in a dynamic object we'll need the
1442 import stub and a .plt entry. We don't know yet whether
1443 the symbol is defined or not, so make an entry anyway and
1444 clean up later in adjust_dynamic_symbol. */
1445 if ((sec->flags & SEC_ALLOC) != 0)
1446 {
1447 if (h != NULL)
1448 {
1449 h->elf.elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1450 h->elf.plt.refcount += 1;
1451
1452 /* If this .plt entry is for a plabel, mark it so
1453 that adjust_dynamic_symbol will keep the entry
1454 even if it appears to be local. */
1455 if (need_entry & PLT_PLABEL)
1456 h->plabel = 1;
1457 }
1458 else if (need_entry & PLT_PLABEL)
1459 {
1460 bfd_signed_vma *local_got_refcounts;
1461 bfd_signed_vma *local_plt_refcounts;
1462
1463 local_got_refcounts = elf_local_got_refcounts (abfd);
1464 if (local_got_refcounts == NULL)
1465 {
1466 bfd_size_type size;
1467
1468 /* Allocate space for local got offsets and local
1469 plt offsets. */
1470 size = symtab_hdr->sh_info;
1471 size *= 2 * sizeof (bfd_signed_vma);
1472 local_got_refcounts = ((bfd_signed_vma *)
1473 bfd_zalloc (abfd, size));
1474 if (local_got_refcounts == NULL)
1475 return false;
1476 elf_local_got_refcounts (abfd) = local_got_refcounts;
1477 }
1478 local_plt_refcounts = (local_got_refcounts
1479 + symtab_hdr->sh_info);
1480 local_plt_refcounts[r_symndx] += 1;
1481 }
1482 }
1483 }
1484
1485 if (need_entry & NEED_DYNREL)
1486 {
1487 /* Flag this symbol as having a non-got, non-plt reference
1488 so that we generate copy relocs if it turns out to be
1489 dynamic. */
1490 if (h != NULL && !info->shared)
1491 h->elf.elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
1492
1493 /* If we are creating a shared library then we need to copy
1494 the reloc into the shared library. However, if we are
1495 linking with -Bsymbolic, we need only copy absolute
1496 relocs or relocs against symbols that are not defined in
1497 an object we are including in the link. PC- or DP- or
1498 DLT-relative relocs against any local sym or global sym
1499 with DEF_REGULAR set, can be discarded. At this point we
1500 have not seen all the input files, so it is possible that
1501 DEF_REGULAR is not set now but will be set later (it is
1502 never cleared). We account for that possibility below by
1503 storing information in the dyn_relocs field of the
1504 hash table entry.
1505
1506 A similar situation to the -Bsymbolic case occurs when
1507 creating shared libraries and symbol visibility changes
1508 render the symbol local.
1509
1510 As it turns out, all the relocs we will be creating here
1511 are absolute, so we cannot remove them on -Bsymbolic
1512 links or visibility changes anyway. A STUB_REL reloc
1513 is absolute too, as in that case it is the reloc in the
1514 stub we will be creating, rather than copying the PCREL
1515 reloc in the branch.
1516
1517 If on the other hand, we are creating an executable, we
1518 may need to keep relocations for symbols satisfied by a
1519 dynamic library if we manage to avoid copy relocs for the
1520 symbol. */
1521 if ((info->shared
1522 && (sec->flags & SEC_ALLOC) != 0
1523 && (IS_ABSOLUTE_RELOC (r_type)
1524 || (h != NULL
1525 && (!info->symbolic
1526 || h->elf.root.type == bfd_link_hash_defweak
1527 || (h->elf.elf_link_hash_flags
1528 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1529 || (!info->shared
1530 && (sec->flags & SEC_ALLOC) != 0
1531 && h != NULL
1532 && (h->elf.root.type == bfd_link_hash_defweak
1533 || (h->elf.elf_link_hash_flags
1534 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
1535 {
1536 struct elf32_hppa_dyn_reloc_entry *p;
1537 struct elf32_hppa_dyn_reloc_entry **head;
1538
1539 /* Create a reloc section in dynobj and make room for
1540 this reloc. */
1541 if (sreloc == NULL)
1542 {
1543 char *name;
1544 bfd *dynobj;
1545
1546 name = (bfd_elf_string_from_elf_section
1547 (abfd,
1548 elf_elfheader (abfd)->e_shstrndx,
1549 elf_section_data (sec)->rel_hdr.sh_name));
1550 if (name == NULL)
1551 {
1552 (*_bfd_error_handler)
1553 (_("Could not find relocation section for %s"),
1554 sec->name);
1555 bfd_set_error (bfd_error_bad_value);
1556 return false;
1557 }
1558
1559 if (htab->elf.dynobj == NULL)
1560 htab->elf.dynobj = abfd;
1561
1562 dynobj = htab->elf.dynobj;
1563 sreloc = bfd_get_section_by_name (dynobj, name);
1564 if (sreloc == NULL)
1565 {
1566 flagword flags;
1567
1568 sreloc = bfd_make_section (dynobj, name);
1569 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1570 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1571 if ((sec->flags & SEC_ALLOC) != 0)
1572 flags |= SEC_ALLOC | SEC_LOAD;
1573 if (sreloc == NULL
1574 || !bfd_set_section_flags (dynobj, sreloc, flags)
1575 || !bfd_set_section_alignment (dynobj, sreloc, 2))
1576 return false;
1577 }
1578
1579 elf_section_data (sec)->sreloc = sreloc;
1580 }
1581
1582 /* If this is a global symbol, we count the number of
1583 relocations we need for this symbol. */
1584 if (h != NULL)
1585 {
1586 head = &h->dyn_relocs;
1587 }
1588 else
1589 {
1590 /* Track dynamic relocs needed for local syms too.
1591 We really need local syms available to do this
1592 easily. Oh well. */
1593
1594 asection *s;
1595 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1596 sec, r_symndx);
1597 if (s == NULL)
1598 return false;
1599
1600 head = ((struct elf32_hppa_dyn_reloc_entry **)
1601 &elf_section_data (s)->local_dynrel);
1602 }
1603
1604 p = *head;
1605 if (p == NULL || p->sec != sec)
1606 {
1607 p = ((struct elf32_hppa_dyn_reloc_entry *)
1608 bfd_alloc (htab->elf.dynobj,
1609 (bfd_size_type) sizeof *p));
1610 if (p == NULL)
1611 return false;
1612 p->next = *head;
1613 *head = p;
1614 p->sec = sec;
1615 p->count = 0;
1616 #if RELATIVE_DYNRELOCS
1617 p->relative_count = 0;
1618 #endif
1619 }
1620
1621 p->count += 1;
1622 #if RELATIVE_DYNRELOCS
1623 if (!IS_ABSOLUTE_RELOC (rtype))
1624 p->relative_count += 1;
1625 #endif
1626 }
1627 }
1628 }
1629
1630 return true;
1631 }
1632
1633 /* Return the section that should be marked against garbage collection
1634 for a given relocation. */
1635
1636 static asection *
1637 elf32_hppa_gc_mark_hook (sec, info, rel, h, sym)
1638 asection *sec;
1639 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1640 Elf_Internal_Rela *rel;
1641 struct elf_link_hash_entry *h;
1642 Elf_Internal_Sym *sym;
1643 {
1644 if (h != NULL)
1645 {
1646 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1647 {
1648 case R_PARISC_GNU_VTINHERIT:
1649 case R_PARISC_GNU_VTENTRY:
1650 break;
1651
1652 default:
1653 switch (h->root.type)
1654 {
1655 case bfd_link_hash_defined:
1656 case bfd_link_hash_defweak:
1657 return h->root.u.def.section;
1658
1659 case bfd_link_hash_common:
1660 return h->root.u.c.p->section;
1661
1662 default:
1663 break;
1664 }
1665 }
1666 }
1667 else
1668 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1669
1670 return NULL;
1671 }
1672
1673 /* Update the got and plt entry reference counts for the section being
1674 removed. */
1675
1676 static boolean
1677 elf32_hppa_gc_sweep_hook (abfd, info, sec, relocs)
1678 bfd *abfd;
1679 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1680 asection *sec;
1681 const Elf_Internal_Rela *relocs;
1682 {
1683 Elf_Internal_Shdr *symtab_hdr;
1684 struct elf_link_hash_entry **sym_hashes;
1685 bfd_signed_vma *local_got_refcounts;
1686 bfd_signed_vma *local_plt_refcounts;
1687 const Elf_Internal_Rela *rel, *relend;
1688 unsigned long r_symndx;
1689 struct elf_link_hash_entry *h;
1690 struct elf32_hppa_link_hash_table *htab;
1691 bfd *dynobj;
1692
1693 elf_section_data (sec)->local_dynrel = NULL;
1694
1695 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1696 sym_hashes = elf_sym_hashes (abfd);
1697 local_got_refcounts = elf_local_got_refcounts (abfd);
1698 local_plt_refcounts = local_got_refcounts;
1699 if (local_plt_refcounts != NULL)
1700 local_plt_refcounts += symtab_hdr->sh_info;
1701 htab = hppa_link_hash_table (info);
1702 dynobj = htab->elf.dynobj;
1703 if (dynobj == NULL)
1704 return true;
1705
1706 relend = relocs + sec->reloc_count;
1707 for (rel = relocs; rel < relend; rel++)
1708 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1709 {
1710 case R_PARISC_DLTIND14F:
1711 case R_PARISC_DLTIND14R:
1712 case R_PARISC_DLTIND21L:
1713 r_symndx = ELF32_R_SYM (rel->r_info);
1714 if (r_symndx >= symtab_hdr->sh_info)
1715 {
1716 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1717 if (h->got.refcount > 0)
1718 h->got.refcount -= 1;
1719 }
1720 else if (local_got_refcounts != NULL)
1721 {
1722 if (local_got_refcounts[r_symndx] > 0)
1723 local_got_refcounts[r_symndx] -= 1;
1724 }
1725 break;
1726
1727 case R_PARISC_PCREL12F:
1728 case R_PARISC_PCREL17C:
1729 case R_PARISC_PCREL17F:
1730 case R_PARISC_PCREL22F:
1731 r_symndx = ELF32_R_SYM (rel->r_info);
1732 if (r_symndx >= symtab_hdr->sh_info)
1733 {
1734 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1735 if (h->plt.refcount > 0)
1736 h->plt.refcount -= 1;
1737 }
1738 break;
1739
1740 case R_PARISC_PLABEL14R:
1741 case R_PARISC_PLABEL21L:
1742 case R_PARISC_PLABEL32:
1743 r_symndx = ELF32_R_SYM (rel->r_info);
1744 if (r_symndx >= symtab_hdr->sh_info)
1745 {
1746 struct elf32_hppa_link_hash_entry *eh;
1747 struct elf32_hppa_dyn_reloc_entry **pp;
1748 struct elf32_hppa_dyn_reloc_entry *p;
1749
1750 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1751
1752 if (h->plt.refcount > 0)
1753 h->plt.refcount -= 1;
1754
1755 eh = (struct elf32_hppa_link_hash_entry *) h;
1756
1757 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1758 if (p->sec == sec)
1759 {
1760 #if RELATIVE_DYNRELOCS
1761 if (!IS_ABSOLUTE_RELOC (rtype))
1762 p->relative_count -= 1;
1763 #endif
1764 p->count -= 1;
1765 if (p->count == 0)
1766 *pp = p->next;
1767 break;
1768 }
1769 }
1770 else if (local_plt_refcounts != NULL)
1771 {
1772 if (local_plt_refcounts[r_symndx] > 0)
1773 local_plt_refcounts[r_symndx] -= 1;
1774 }
1775 break;
1776
1777 case R_PARISC_DIR32:
1778 r_symndx = ELF32_R_SYM (rel->r_info);
1779 if (r_symndx >= symtab_hdr->sh_info)
1780 {
1781 struct elf32_hppa_link_hash_entry *eh;
1782 struct elf32_hppa_dyn_reloc_entry **pp;
1783 struct elf32_hppa_dyn_reloc_entry *p;
1784
1785 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1786
1787 eh = (struct elf32_hppa_link_hash_entry *) h;
1788
1789 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1790 if (p->sec == sec)
1791 {
1792 #if RELATIVE_DYNRELOCS
1793 if (!IS_ABSOLUTE_RELOC (R_PARISC_DIR32))
1794 p->relative_count -= 1;
1795 #endif
1796 p->count -= 1;
1797 if (p->count == 0)
1798 *pp = p->next;
1799 break;
1800 }
1801 }
1802 break;
1803
1804 default:
1805 break;
1806 }
1807
1808 return true;
1809 }
1810
1811 /* Our own version of hide_symbol, so that we can keep plt entries for
1812 plabels. */
1813
1814 static void
1815 elf32_hppa_hide_symbol (info, h, force_local)
1816 struct bfd_link_info *info;
1817 struct elf_link_hash_entry *h;
1818 boolean force_local;
1819 {
1820 if (force_local)
1821 {
1822 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
1823 if (h->dynindx != -1)
1824 {
1825 h->dynindx = -1;
1826 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1827 h->dynstr_index);
1828 }
1829 }
1830
1831 if (! ((struct elf32_hppa_link_hash_entry *) h)->plabel)
1832 {
1833 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1834 h->plt.offset = (bfd_vma) -1;
1835 }
1836 }
1837
1838 /* This is the condition under which elf32_hppa_finish_dynamic_symbol
1839 will be called from elflink.h. If elflink.h doesn't call our
1840 finish_dynamic_symbol routine, we'll need to do something about
1841 initializing any .plt and .got entries in elf32_hppa_relocate_section. */
1842 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1843 ((DYN) \
1844 && ((INFO)->shared \
1845 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1846 && ((H)->dynindx != -1 \
1847 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1848
1849 /* Adjust a symbol defined by a dynamic object and referenced by a
1850 regular object. The current definition is in some section of the
1851 dynamic object, but we're not including those sections. We have to
1852 change the definition to something the rest of the link can
1853 understand. */
1854
1855 static boolean
1856 elf32_hppa_adjust_dynamic_symbol (info, h)
1857 struct bfd_link_info *info;
1858 struct elf_link_hash_entry *h;
1859 {
1860 struct elf32_hppa_link_hash_table *htab;
1861 struct elf32_hppa_link_hash_entry *eh;
1862 struct elf32_hppa_dyn_reloc_entry *p;
1863 asection *s;
1864 unsigned int power_of_two;
1865
1866 /* If this is a function, put it in the procedure linkage table. We
1867 will fill in the contents of the procedure linkage table later. */
1868 if (h->type == STT_FUNC
1869 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1870 {
1871 if (h->plt.refcount <= 0
1872 || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1873 && h->root.type != bfd_link_hash_defweak
1874 && ! ((struct elf32_hppa_link_hash_entry *) h)->plabel
1875 && (!info->shared || info->symbolic)))
1876 {
1877 /* The .plt entry is not needed when:
1878 a) Garbage collection has removed all references to the
1879 symbol, or
1880 b) We know for certain the symbol is defined in this
1881 object, and it's not a weak definition, nor is the symbol
1882 used by a plabel relocation. Either this object is the
1883 application or we are doing a shared symbolic link. */
1884
1885 /* As a special sop to the hppa ABI, we keep a .plt entry
1886 for functions in sections containing PIC code. */
1887 if (!info->shared
1888 && h->plt.refcount > 0
1889 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1890 && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0)
1891 ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
1892 else
1893 {
1894 h->plt.offset = (bfd_vma) -1;
1895 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1896 }
1897 }
1898
1899 return true;
1900 }
1901 else
1902 h->plt.offset = (bfd_vma) -1;
1903
1904 /* If this is a weak symbol, and there is a real definition, the
1905 processor independent code will have arranged for us to see the
1906 real definition first, and we can just use the same value. */
1907 if (h->weakdef != NULL)
1908 {
1909 if (h->weakdef->root.type != bfd_link_hash_defined
1910 && h->weakdef->root.type != bfd_link_hash_defweak)
1911 abort ();
1912 h->root.u.def.section = h->weakdef->root.u.def.section;
1913 h->root.u.def.value = h->weakdef->root.u.def.value;
1914 return true;
1915 }
1916
1917 /* This is a reference to a symbol defined by a dynamic object which
1918 is not a function. */
1919
1920 /* If we are creating a shared library, we must presume that the
1921 only references to the symbol are via the global offset table.
1922 For such cases we need not do anything here; the relocations will
1923 be handled correctly by relocate_section. */
1924 if (info->shared)
1925 return true;
1926
1927 /* If there are no references to this symbol that do not use the
1928 GOT, we don't need to generate a copy reloc. */
1929 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1930 return true;
1931
1932 eh = (struct elf32_hppa_link_hash_entry *) h;
1933 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1934 {
1935 s = p->sec->output_section;
1936 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1937 break;
1938 }
1939
1940 /* If we didn't find any dynamic relocs in read-only sections, then
1941 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1942 if (p == NULL)
1943 {
1944 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1945 return true;
1946 }
1947
1948 /* We must allocate the symbol in our .dynbss section, which will
1949 become part of the .bss section of the executable. There will be
1950 an entry for this symbol in the .dynsym section. The dynamic
1951 object will contain position independent code, so all references
1952 from the dynamic object to this symbol will go through the global
1953 offset table. The dynamic linker will use the .dynsym entry to
1954 determine the address it must put in the global offset table, so
1955 both the dynamic object and the regular object will refer to the
1956 same memory location for the variable. */
1957
1958 htab = hppa_link_hash_table (info);
1959
1960 /* We must generate a COPY reloc to tell the dynamic linker to
1961 copy the initial value out of the dynamic object and into the
1962 runtime process image. */
1963 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1964 {
1965 htab->srelbss->_raw_size += sizeof (Elf32_External_Rela);
1966 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1967 }
1968
1969 /* We need to figure out the alignment required for this symbol. I
1970 have no idea how other ELF linkers handle this. */
1971
1972 power_of_two = bfd_log2 (h->size);
1973 if (power_of_two > 3)
1974 power_of_two = 3;
1975
1976 /* Apply the required alignment. */
1977 s = htab->sdynbss;
1978 s->_raw_size = BFD_ALIGN (s->_raw_size,
1979 (bfd_size_type) (1 << power_of_two));
1980 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1981 {
1982 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1983 return false;
1984 }
1985
1986 /* Define the symbol as being at this point in the section. */
1987 h->root.u.def.section = s;
1988 h->root.u.def.value = s->_raw_size;
1989
1990 /* Increment the section size to make room for the symbol. */
1991 s->_raw_size += h->size;
1992
1993 return true;
1994 }
1995
1996 /* Called via elf_link_hash_traverse to create .plt entries for an
1997 application that uses statically linked PIC functions. Similar to
1998 the first part of elf32_hppa_adjust_dynamic_symbol. */
1999
2000 static boolean
2001 mark_PIC_calls (h, inf)
2002 struct elf_link_hash_entry *h;
2003 PTR inf ATTRIBUTE_UNUSED;
2004 {
2005 if (h->root.type == bfd_link_hash_warning)
2006 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2007
2008 if (! (h->plt.refcount > 0
2009 && (h->root.type == bfd_link_hash_defined
2010 || h->root.type == bfd_link_hash_defweak)
2011 && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0))
2012 {
2013 h->plt.offset = (bfd_vma) -1;
2014 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2015 return true;
2016 }
2017
2018 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
2019 ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
2020
2021 return true;
2022 }
2023
2024 /* Allocate space in the .plt for entries that won't have relocations.
2025 ie. pic_call and plabel entries. */
2026
2027 static boolean
2028 allocate_plt_static (h, inf)
2029 struct elf_link_hash_entry *h;
2030 PTR inf;
2031 {
2032 struct bfd_link_info *info;
2033 struct elf32_hppa_link_hash_table *htab;
2034 asection *s;
2035
2036 if (h->root.type == bfd_link_hash_indirect)
2037 return true;
2038
2039 if (h->root.type == bfd_link_hash_warning)
2040 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2041
2042 info = (struct bfd_link_info *) inf;
2043 htab = hppa_link_hash_table (info);
2044 if (((struct elf32_hppa_link_hash_entry *) h)->pic_call)
2045 {
2046 /* Make an entry in the .plt section for non-pic code that is
2047 calling pic code. */
2048 ((struct elf32_hppa_link_hash_entry *) h)->plabel = 0;
2049 s = htab->splt;
2050 h->plt.offset = s->_raw_size;
2051 s->_raw_size += PLT_ENTRY_SIZE;
2052 }
2053 else if (htab->elf.dynamic_sections_created
2054 && h->plt.refcount > 0)
2055 {
2056 /* Make sure this symbol is output as a dynamic symbol.
2057 Undefined weak syms won't yet be marked as dynamic. */
2058 if (h->dynindx == -1
2059 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
2060 && h->type != STT_PARISC_MILLI)
2061 {
2062 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2063 return false;
2064 }
2065
2066 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
2067 {
2068 /* Allocate these later. From this point on, h->plabel
2069 means that the plt entry is only used by a plabel.
2070 We'll be using a normal plt entry for this symbol, so
2071 clear the plabel indicator. */
2072 ((struct elf32_hppa_link_hash_entry *) h)->plabel = 0;
2073 }
2074 else if (((struct elf32_hppa_link_hash_entry *) h)->plabel)
2075 {
2076 /* Make an entry in the .plt section for plabel references
2077 that won't have a .plt entry for other reasons. */
2078 s = htab->splt;
2079 h->plt.offset = s->_raw_size;
2080 s->_raw_size += PLT_ENTRY_SIZE;
2081 }
2082 else
2083 {
2084 /* No .plt entry needed. */
2085 h->plt.offset = (bfd_vma) -1;
2086 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2087 }
2088 }
2089 else
2090 {
2091 h->plt.offset = (bfd_vma) -1;
2092 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2093 }
2094
2095 return true;
2096 }
2097
2098 /* Allocate space in .plt, .got and associated reloc sections for
2099 global syms. */
2100
2101 static boolean
2102 allocate_dynrelocs (h, inf)
2103 struct elf_link_hash_entry *h;
2104 PTR inf;
2105 {
2106 struct bfd_link_info *info;
2107 struct elf32_hppa_link_hash_table *htab;
2108 asection *s;
2109 struct elf32_hppa_link_hash_entry *eh;
2110 struct elf32_hppa_dyn_reloc_entry *p;
2111
2112 if (h->root.type == bfd_link_hash_indirect)
2113 return true;
2114
2115 if (h->root.type == bfd_link_hash_warning)
2116 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2117
2118 info = (struct bfd_link_info *) inf;
2119 htab = hppa_link_hash_table (info);
2120 if (htab->elf.dynamic_sections_created
2121 && h->plt.offset != (bfd_vma) -1
2122 && !((struct elf32_hppa_link_hash_entry *) h)->pic_call
2123 && !((struct elf32_hppa_link_hash_entry *) h)->plabel)
2124 {
2125 /* Make an entry in the .plt section. */
2126 s = htab->splt;
2127 h->plt.offset = s->_raw_size;
2128 s->_raw_size += PLT_ENTRY_SIZE;
2129
2130 /* We also need to make an entry in the .rela.plt section. */
2131 htab->srelplt->_raw_size += sizeof (Elf32_External_Rela);
2132 htab->need_plt_stub = 1;
2133 }
2134
2135 if (h->got.refcount > 0)
2136 {
2137 /* Make sure this symbol is output as a dynamic symbol.
2138 Undefined weak syms won't yet be marked as dynamic. */
2139 if (h->dynindx == -1
2140 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
2141 && h->type != STT_PARISC_MILLI)
2142 {
2143 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2144 return false;
2145 }
2146
2147 s = htab->sgot;
2148 h->got.offset = s->_raw_size;
2149 s->_raw_size += GOT_ENTRY_SIZE;
2150 if (htab->elf.dynamic_sections_created
2151 && (info->shared
2152 || (h->dynindx != -1
2153 && h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0))
2154 {
2155 htab->srelgot->_raw_size += sizeof (Elf32_External_Rela);
2156 }
2157 }
2158 else
2159 h->got.offset = (bfd_vma) -1;
2160
2161 eh = (struct elf32_hppa_link_hash_entry *) h;
2162 if (eh->dyn_relocs == NULL)
2163 return true;
2164
2165 /* If this is a -Bsymbolic shared link, then we need to discard all
2166 space allocated for dynamic pc-relative relocs against symbols
2167 defined in a regular object. For the normal shared case, discard
2168 space for relocs that have become local due to symbol visibility
2169 changes. */
2170 if (info->shared)
2171 {
2172 #if RELATIVE_DYNRELOCS
2173 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
2174 && ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
2175 || info->symbolic))
2176 {
2177 struct elf32_hppa_dyn_reloc_entry **pp;
2178
2179 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2180 {
2181 p->count -= p->relative_count;
2182 p->relative_count = 0;
2183 if (p->count == 0)
2184 *pp = p->next;
2185 else
2186 pp = &p->next;
2187 }
2188 }
2189 #endif
2190 }
2191 else
2192 {
2193 /* For the non-shared case, discard space for relocs against
2194 symbols which turn out to need copy relocs or are not
2195 dynamic. */
2196 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
2197 && (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2198 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2199 || (htab->elf.dynamic_sections_created
2200 && (h->root.type == bfd_link_hash_undefweak
2201 || h->root.type == bfd_link_hash_undefined))))
2202 {
2203 /* Make sure this symbol is output as a dynamic symbol.
2204 Undefined weak syms won't yet be marked as dynamic. */
2205 if (h->dynindx == -1
2206 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
2207 && h->type != STT_PARISC_MILLI)
2208 {
2209 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2210 return false;
2211 }
2212
2213 /* If that succeeded, we know we'll be keeping all the
2214 relocs. */
2215 if (h->dynindx != -1)
2216 goto keep;
2217 }
2218
2219 eh->dyn_relocs = NULL;
2220 return true;
2221
2222 keep: ;
2223 }
2224
2225 /* Finally, allocate space. */
2226 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2227 {
2228 asection *sreloc = elf_section_data (p->sec)->sreloc;
2229 sreloc->_raw_size += p->count * sizeof (Elf32_External_Rela);
2230 }
2231
2232 return true;
2233 }
2234
2235 /* This function is called via elf_link_hash_traverse to force
2236 millicode symbols local so they do not end up as globals in the
2237 dynamic symbol table. We ought to be able to do this in
2238 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2239 for all dynamic symbols. Arguably, this is a bug in
2240 elf_adjust_dynamic_symbol. */
2241
2242 static boolean
2243 clobber_millicode_symbols (h, info)
2244 struct elf_link_hash_entry *h;
2245 struct bfd_link_info *info;
2246 {
2247 if (h->root.type == bfd_link_hash_warning)
2248 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2249
2250 if (h->type == STT_PARISC_MILLI
2251 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
2252 {
2253 elf32_hppa_hide_symbol (info, h, true);
2254 }
2255 return true;
2256 }
2257
2258 /* Find any dynamic relocs that apply to read-only sections. */
2259
2260 static boolean
2261 readonly_dynrelocs (h, inf)
2262 struct elf_link_hash_entry *h;
2263 PTR inf;
2264 {
2265 struct elf32_hppa_link_hash_entry *eh;
2266 struct elf32_hppa_dyn_reloc_entry *p;
2267
2268 if (h->root.type == bfd_link_hash_warning)
2269 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2270
2271 eh = (struct elf32_hppa_link_hash_entry *) h;
2272 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2273 {
2274 asection *s = p->sec->output_section;
2275
2276 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2277 {
2278 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2279
2280 info->flags |= DF_TEXTREL;
2281
2282 /* Not an error, just cut short the traversal. */
2283 return false;
2284 }
2285 }
2286 return true;
2287 }
2288
2289 /* Set the sizes of the dynamic sections. */
2290
2291 static boolean
2292 elf32_hppa_size_dynamic_sections (output_bfd, info)
2293 bfd *output_bfd ATTRIBUTE_UNUSED;
2294 struct bfd_link_info *info;
2295 {
2296 struct elf32_hppa_link_hash_table *htab;
2297 bfd *dynobj;
2298 bfd *ibfd;
2299 asection *s;
2300 boolean relocs;
2301
2302 htab = hppa_link_hash_table (info);
2303 dynobj = htab->elf.dynobj;
2304 if (dynobj == NULL)
2305 abort ();
2306
2307 if (htab->elf.dynamic_sections_created)
2308 {
2309 /* Set the contents of the .interp section to the interpreter. */
2310 if (! info->shared)
2311 {
2312 s = bfd_get_section_by_name (dynobj, ".interp");
2313 if (s == NULL)
2314 abort ();
2315 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
2316 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2317 }
2318
2319 /* Force millicode symbols local. */
2320 elf_link_hash_traverse (&htab->elf,
2321 clobber_millicode_symbols,
2322 info);
2323 }
2324 else
2325 {
2326 /* Run through the function symbols, looking for any that are
2327 PIC, and mark them as needing .plt entries so that %r19 will
2328 be set up. */
2329 if (! info->shared)
2330 elf_link_hash_traverse (&htab->elf, mark_PIC_calls, (PTR) info);
2331 }
2332
2333 /* Set up .got and .plt offsets for local syms, and space for local
2334 dynamic relocs. */
2335 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2336 {
2337 bfd_signed_vma *local_got;
2338 bfd_signed_vma *end_local_got;
2339 bfd_signed_vma *local_plt;
2340 bfd_signed_vma *end_local_plt;
2341 bfd_size_type locsymcount;
2342 Elf_Internal_Shdr *symtab_hdr;
2343 asection *srel;
2344
2345 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2346 continue;
2347
2348 for (s = ibfd->sections; s != NULL; s = s->next)
2349 {
2350 struct elf32_hppa_dyn_reloc_entry *p;
2351
2352 for (p = ((struct elf32_hppa_dyn_reloc_entry *)
2353 elf_section_data (s)->local_dynrel);
2354 p != NULL;
2355 p = p->next)
2356 {
2357 if (!bfd_is_abs_section (p->sec)
2358 && bfd_is_abs_section (p->sec->output_section))
2359 {
2360 /* Input section has been discarded, either because
2361 it is a copy of a linkonce section or due to
2362 linker script /DISCARD/, so we'll be discarding
2363 the relocs too. */
2364 }
2365 else if (p->count != 0)
2366 {
2367 srel = elf_section_data (p->sec)->sreloc;
2368 srel->_raw_size += p->count * sizeof (Elf32_External_Rela);
2369 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
2370 info->flags |= DF_TEXTREL;
2371 }
2372 }
2373 }
2374
2375 local_got = elf_local_got_refcounts (ibfd);
2376 if (!local_got)
2377 continue;
2378
2379 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2380 locsymcount = symtab_hdr->sh_info;
2381 end_local_got = local_got + locsymcount;
2382 s = htab->sgot;
2383 srel = htab->srelgot;
2384 for (; local_got < end_local_got; ++local_got)
2385 {
2386 if (*local_got > 0)
2387 {
2388 *local_got = s->_raw_size;
2389 s->_raw_size += GOT_ENTRY_SIZE;
2390 if (info->shared)
2391 srel->_raw_size += sizeof (Elf32_External_Rela);
2392 }
2393 else
2394 *local_got = (bfd_vma) -1;
2395 }
2396
2397 local_plt = end_local_got;
2398 end_local_plt = local_plt + locsymcount;
2399 if (! htab->elf.dynamic_sections_created)
2400 {
2401 /* Won't be used, but be safe. */
2402 for (; local_plt < end_local_plt; ++local_plt)
2403 *local_plt = (bfd_vma) -1;
2404 }
2405 else
2406 {
2407 s = htab->splt;
2408 srel = htab->srelplt;
2409 for (; local_plt < end_local_plt; ++local_plt)
2410 {
2411 if (*local_plt > 0)
2412 {
2413 *local_plt = s->_raw_size;
2414 s->_raw_size += PLT_ENTRY_SIZE;
2415 if (info->shared)
2416 srel->_raw_size += sizeof (Elf32_External_Rela);
2417 }
2418 else
2419 *local_plt = (bfd_vma) -1;
2420 }
2421 }
2422 }
2423
2424 /* Do all the .plt entries without relocs first. The dynamic linker
2425 uses the last .plt reloc to find the end of the .plt (and hence
2426 the start of the .got) for lazy linking. */
2427 elf_link_hash_traverse (&htab->elf, allocate_plt_static, (PTR) info);
2428
2429 /* Allocate global sym .plt and .got entries, and space for global
2430 sym dynamic relocs. */
2431 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
2432
2433 /* The check_relocs and adjust_dynamic_symbol entry points have
2434 determined the sizes of the various dynamic sections. Allocate
2435 memory for them. */
2436 relocs = false;
2437 for (s = dynobj->sections; s != NULL; s = s->next)
2438 {
2439 if ((s->flags & SEC_LINKER_CREATED) == 0)
2440 continue;
2441
2442 if (s == htab->splt)
2443 {
2444 if (htab->need_plt_stub)
2445 {
2446 /* Make space for the plt stub at the end of the .plt
2447 section. We want this stub right at the end, up
2448 against the .got section. */
2449 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2450 int pltalign = bfd_section_alignment (dynobj, s);
2451 bfd_size_type mask;
2452
2453 if (gotalign > pltalign)
2454 bfd_set_section_alignment (dynobj, s, gotalign);
2455 mask = ((bfd_size_type) 1 << gotalign) - 1;
2456 s->_raw_size = (s->_raw_size + sizeof (plt_stub) + mask) & ~mask;
2457 }
2458 }
2459 else if (s == htab->sgot)
2460 ;
2461 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
2462 {
2463 if (s->_raw_size != 0)
2464 {
2465 /* Remember whether there are any reloc sections other
2466 than .rela.plt. */
2467 if (s != htab->srelplt)
2468 relocs = true;
2469
2470 /* We use the reloc_count field as a counter if we need
2471 to copy relocs into the output file. */
2472 s->reloc_count = 0;
2473 }
2474 }
2475 else
2476 {
2477 /* It's not one of our sections, so don't allocate space. */
2478 continue;
2479 }
2480
2481 if (s->_raw_size == 0)
2482 {
2483 /* If we don't need this section, strip it from the
2484 output file. This is mostly to handle .rela.bss and
2485 .rela.plt. We must create both sections in
2486 create_dynamic_sections, because they must be created
2487 before the linker maps input sections to output
2488 sections. The linker does that before
2489 adjust_dynamic_symbol is called, and it is that
2490 function which decides whether anything needs to go
2491 into these sections. */
2492 _bfd_strip_section_from_output (info, s);
2493 continue;
2494 }
2495
2496 /* Allocate memory for the section contents. Zero it, because
2497 we may not fill in all the reloc sections. */
2498 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
2499 if (s->contents == NULL && s->_raw_size != 0)
2500 return false;
2501 }
2502
2503 if (htab->elf.dynamic_sections_created)
2504 {
2505 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2506 actually has nothing to do with the PLT, it is how we
2507 communicate the LTP value of a load module to the dynamic
2508 linker. */
2509 #define add_dynamic_entry(TAG, VAL) \
2510 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
2511
2512 if (!add_dynamic_entry (DT_PLTGOT, 0))
2513 return false;
2514
2515 /* Add some entries to the .dynamic section. We fill in the
2516 values later, in elf32_hppa_finish_dynamic_sections, but we
2517 must add the entries now so that we get the correct size for
2518 the .dynamic section. The DT_DEBUG entry is filled in by the
2519 dynamic linker and used by the debugger. */
2520 if (!info->shared)
2521 {
2522 if (!add_dynamic_entry (DT_DEBUG, 0))
2523 return false;
2524 }
2525
2526 if (htab->srelplt->_raw_size != 0)
2527 {
2528 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2529 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2530 || !add_dynamic_entry (DT_JMPREL, 0))
2531 return false;
2532 }
2533
2534 if (relocs)
2535 {
2536 if (!add_dynamic_entry (DT_RELA, 0)
2537 || !add_dynamic_entry (DT_RELASZ, 0)
2538 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2539 return false;
2540
2541 /* If any dynamic relocs apply to a read-only section,
2542 then we need a DT_TEXTREL entry. */
2543 if ((info->flags & DF_TEXTREL) == 0)
2544 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs,
2545 (PTR) info);
2546
2547 if ((info->flags & DF_TEXTREL) != 0)
2548 {
2549 if (!add_dynamic_entry (DT_TEXTREL, 0))
2550 return false;
2551 }
2552 }
2553 }
2554 #undef add_dynamic_entry
2555
2556 return true;
2557 }
2558
2559 /* External entry points for sizing and building linker stubs. */
2560
2561 /* Set up various things so that we can make a list of input sections
2562 for each output section included in the link. Returns -1 on error,
2563 0 when no stubs will be needed, and 1 on success. */
2564
2565 int
2566 elf32_hppa_setup_section_lists (output_bfd, info)
2567 bfd *output_bfd;
2568 struct bfd_link_info *info;
2569 {
2570 bfd *input_bfd;
2571 unsigned int bfd_count;
2572 int top_id, top_index;
2573 asection *section;
2574 asection **input_list, **list;
2575 bfd_size_type amt;
2576 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2577
2578 if (htab->elf.root.creator->flavour != bfd_target_elf_flavour)
2579 return 0;
2580
2581 /* Count the number of input BFDs and find the top input section id. */
2582 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2583 input_bfd != NULL;
2584 input_bfd = input_bfd->link_next)
2585 {
2586 bfd_count += 1;
2587 for (section = input_bfd->sections;
2588 section != NULL;
2589 section = section->next)
2590 {
2591 if (top_id < section->id)
2592 top_id = section->id;
2593 }
2594 }
2595 htab->bfd_count = bfd_count;
2596
2597 amt = sizeof (struct map_stub) * (top_id + 1);
2598 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
2599 if (htab->stub_group == NULL)
2600 return -1;
2601
2602 /* We can't use output_bfd->section_count here to find the top output
2603 section index as some sections may have been removed, and
2604 _bfd_strip_section_from_output doesn't renumber the indices. */
2605 for (section = output_bfd->sections, top_index = 0;
2606 section != NULL;
2607 section = section->next)
2608 {
2609 if (top_index < section->index)
2610 top_index = section->index;
2611 }
2612
2613 htab->top_index = top_index;
2614 amt = sizeof (asection *) * (top_index + 1);
2615 input_list = (asection **) bfd_malloc (amt);
2616 htab->input_list = input_list;
2617 if (input_list == NULL)
2618 return -1;
2619
2620 /* For sections we aren't interested in, mark their entries with a
2621 value we can check later. */
2622 list = input_list + top_index;
2623 do
2624 *list = bfd_abs_section_ptr;
2625 while (list-- != input_list);
2626
2627 for (section = output_bfd->sections;
2628 section != NULL;
2629 section = section->next)
2630 {
2631 if ((section->flags & SEC_CODE) != 0)
2632 input_list[section->index] = NULL;
2633 }
2634
2635 return 1;
2636 }
2637
2638 /* The linker repeatedly calls this function for each input section,
2639 in the order that input sections are linked into output sections.
2640 Build lists of input sections to determine groupings between which
2641 we may insert linker stubs. */
2642
2643 void
2644 elf32_hppa_next_input_section (info, isec)
2645 struct bfd_link_info *info;
2646 asection *isec;
2647 {
2648 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2649
2650 if (isec->output_section->index <= htab->top_index)
2651 {
2652 asection **list = htab->input_list + isec->output_section->index;
2653 if (*list != bfd_abs_section_ptr)
2654 {
2655 /* Steal the link_sec pointer for our list. */
2656 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2657 /* This happens to make the list in reverse order,
2658 which is what we want. */
2659 PREV_SEC (isec) = *list;
2660 *list = isec;
2661 }
2662 }
2663 }
2664
2665 /* See whether we can group stub sections together. Grouping stub
2666 sections may result in fewer stubs. More importantly, we need to
2667 put all .init* and .fini* stubs at the beginning of the .init or
2668 .fini output sections respectively, because glibc splits the
2669 _init and _fini functions into multiple parts. Putting a stub in
2670 the middle of a function is not a good idea. */
2671
2672 static void
2673 group_sections (htab, stub_group_size, stubs_always_before_branch)
2674 struct elf32_hppa_link_hash_table *htab;
2675 bfd_size_type stub_group_size;
2676 boolean stubs_always_before_branch;
2677 {
2678 asection **list = htab->input_list + htab->top_index;
2679 do
2680 {
2681 asection *tail = *list;
2682 if (tail == bfd_abs_section_ptr)
2683 continue;
2684 while (tail != NULL)
2685 {
2686 asection *curr;
2687 asection *prev;
2688 bfd_size_type total;
2689
2690 curr = tail;
2691 if (tail->_cooked_size)
2692 total = tail->_cooked_size;
2693 else
2694 total = tail->_raw_size;
2695 while ((prev = PREV_SEC (curr)) != NULL
2696 && ((total += curr->output_offset - prev->output_offset)
2697 < stub_group_size))
2698 curr = prev;
2699
2700 /* OK, the size from the start of CURR to the end is less
2701 than 240000 bytes and thus can be handled by one stub
2702 section. (or the tail section is itself larger than
2703 240000 bytes, in which case we may be toast.)
2704 We should really be keeping track of the total size of
2705 stubs added here, as stubs contribute to the final output
2706 section size. That's a little tricky, and this way will
2707 only break if stubs added total more than 22144 bytes, or
2708 2768 long branch stubs. It seems unlikely for more than
2709 2768 different functions to be called, especially from
2710 code only 240000 bytes long. This limit used to be
2711 250000, but c++ code tends to generate lots of little
2712 functions, and sometimes violated the assumption. */
2713 do
2714 {
2715 prev = PREV_SEC (tail);
2716 /* Set up this stub group. */
2717 htab->stub_group[tail->id].link_sec = curr;
2718 }
2719 while (tail != curr && (tail = prev) != NULL);
2720
2721 /* But wait, there's more! Input sections up to 240000
2722 bytes before the stub section can be handled by it too. */
2723 if (!stubs_always_before_branch)
2724 {
2725 total = 0;
2726 while (prev != NULL
2727 && ((total += tail->output_offset - prev->output_offset)
2728 < stub_group_size))
2729 {
2730 tail = prev;
2731 prev = PREV_SEC (tail);
2732 htab->stub_group[tail->id].link_sec = curr;
2733 }
2734 }
2735 tail = prev;
2736 }
2737 }
2738 while (list-- != htab->input_list);
2739 free (htab->input_list);
2740 #undef PREV_SEC
2741 }
2742
2743 /* Read in all local syms for all input bfds, and create hash entries
2744 for export stubs if we are building a multi-subspace shared lib.
2745 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2746
2747 static int
2748 get_local_syms (output_bfd, input_bfd, info)
2749 bfd *output_bfd;
2750 bfd *input_bfd;
2751 struct bfd_link_info *info;
2752 {
2753 unsigned int bfd_indx;
2754 Elf_Internal_Sym *local_syms, **all_local_syms;
2755 int stub_changed = 0;
2756 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2757
2758 /* We want to read in symbol extension records only once. To do this
2759 we need to read in the local symbols in parallel and save them for
2760 later use; so hold pointers to the local symbols in an array. */
2761 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2762 all_local_syms = (Elf_Internal_Sym **) bfd_zmalloc (amt);
2763 htab->all_local_syms = all_local_syms;
2764 if (all_local_syms == NULL)
2765 return -1;
2766
2767 /* Walk over all the input BFDs, swapping in local symbols.
2768 If we are creating a shared library, create hash entries for the
2769 export stubs. */
2770 for (bfd_indx = 0;
2771 input_bfd != NULL;
2772 input_bfd = input_bfd->link_next, bfd_indx++)
2773 {
2774 Elf_Internal_Shdr *symtab_hdr;
2775
2776 /* We'll need the symbol table in a second. */
2777 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2778 if (symtab_hdr->sh_info == 0)
2779 continue;
2780
2781 /* We need an array of the local symbols attached to the input bfd. */
2782 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2783 if (local_syms == NULL)
2784 {
2785 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2786 symtab_hdr->sh_info, 0,
2787 NULL, NULL, NULL);
2788 /* Cache them for elf_link_input_bfd. */
2789 symtab_hdr->contents = (unsigned char *) local_syms;
2790 }
2791 if (local_syms == NULL)
2792 return -1;
2793
2794 all_local_syms[bfd_indx] = local_syms;
2795
2796 if (info->shared && htab->multi_subspace)
2797 {
2798 struct elf_link_hash_entry **sym_hashes;
2799 struct elf_link_hash_entry **end_hashes;
2800 unsigned int symcount;
2801
2802 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2803 - symtab_hdr->sh_info);
2804 sym_hashes = elf_sym_hashes (input_bfd);
2805 end_hashes = sym_hashes + symcount;
2806
2807 /* Look through the global syms for functions; We need to
2808 build export stubs for all globally visible functions. */
2809 for (; sym_hashes < end_hashes; sym_hashes++)
2810 {
2811 struct elf32_hppa_link_hash_entry *hash;
2812
2813 hash = (struct elf32_hppa_link_hash_entry *) *sym_hashes;
2814
2815 while (hash->elf.root.type == bfd_link_hash_indirect
2816 || hash->elf.root.type == bfd_link_hash_warning)
2817 hash = ((struct elf32_hppa_link_hash_entry *)
2818 hash->elf.root.u.i.link);
2819
2820 /* At this point in the link, undefined syms have been
2821 resolved, so we need to check that the symbol was
2822 defined in this BFD. */
2823 if ((hash->elf.root.type == bfd_link_hash_defined
2824 || hash->elf.root.type == bfd_link_hash_defweak)
2825 && hash->elf.type == STT_FUNC
2826 && hash->elf.root.u.def.section->output_section != NULL
2827 && (hash->elf.root.u.def.section->output_section->owner
2828 == output_bfd)
2829 && hash->elf.root.u.def.section->owner == input_bfd
2830 && (hash->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
2831 && !(hash->elf.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)
2832 && ELF_ST_VISIBILITY (hash->elf.other) == STV_DEFAULT)
2833 {
2834 asection *sec;
2835 const char *stub_name;
2836 struct elf32_hppa_stub_hash_entry *stub_entry;
2837
2838 sec = hash->elf.root.u.def.section;
2839 stub_name = hash->elf.root.root.string;
2840 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
2841 stub_name,
2842 false, false);
2843 if (stub_entry == NULL)
2844 {
2845 stub_entry = hppa_add_stub (stub_name, sec, htab);
2846 if (!stub_entry)
2847 return -1;
2848
2849 stub_entry->target_value = hash->elf.root.u.def.value;
2850 stub_entry->target_section = hash->elf.root.u.def.section;
2851 stub_entry->stub_type = hppa_stub_export;
2852 stub_entry->h = hash;
2853 stub_changed = 1;
2854 }
2855 else
2856 {
2857 (*_bfd_error_handler) (_("%s: duplicate export stub %s"),
2858 bfd_archive_filename (input_bfd),
2859 stub_name);
2860 }
2861 }
2862 }
2863 }
2864 }
2865
2866 return stub_changed;
2867 }
2868
2869 /* Determine and set the size of the stub section for a final link.
2870
2871 The basic idea here is to examine all the relocations looking for
2872 PC-relative calls to a target that is unreachable with a "bl"
2873 instruction. */
2874
2875 boolean
2876 elf32_hppa_size_stubs (output_bfd, stub_bfd, info, multi_subspace, group_size,
2877 add_stub_section, layout_sections_again)
2878 bfd *output_bfd;
2879 bfd *stub_bfd;
2880 struct bfd_link_info *info;
2881 boolean multi_subspace;
2882 bfd_signed_vma group_size;
2883 asection * (*add_stub_section) PARAMS ((const char *, asection *));
2884 void (*layout_sections_again) PARAMS ((void));
2885 {
2886 bfd_size_type stub_group_size;
2887 boolean stubs_always_before_branch;
2888 boolean stub_changed;
2889 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2890
2891 /* Stash our params away. */
2892 htab->stub_bfd = stub_bfd;
2893 htab->multi_subspace = multi_subspace;
2894 htab->add_stub_section = add_stub_section;
2895 htab->layout_sections_again = layout_sections_again;
2896 stubs_always_before_branch = group_size < 0;
2897 if (group_size < 0)
2898 stub_group_size = -group_size;
2899 else
2900 stub_group_size = group_size;
2901 if (stub_group_size == 1)
2902 {
2903 /* Default values. */
2904 stub_group_size = 7680000;
2905 if (htab->has_17bit_branch || htab->multi_subspace)
2906 stub_group_size = 240000;
2907 if (htab->has_12bit_branch)
2908 stub_group_size = 7500;
2909 }
2910
2911 group_sections (htab, stub_group_size, stubs_always_before_branch);
2912
2913 switch (get_local_syms (output_bfd, info->input_bfds, info))
2914 {
2915 default:
2916 if (htab->all_local_syms)
2917 goto error_ret_free_local;
2918 return false;
2919
2920 case 0:
2921 stub_changed = false;
2922 break;
2923
2924 case 1:
2925 stub_changed = true;
2926 break;
2927 }
2928
2929 while (1)
2930 {
2931 bfd *input_bfd;
2932 unsigned int bfd_indx;
2933 asection *stub_sec;
2934
2935 for (input_bfd = info->input_bfds, bfd_indx = 0;
2936 input_bfd != NULL;
2937 input_bfd = input_bfd->link_next, bfd_indx++)
2938 {
2939 Elf_Internal_Shdr *symtab_hdr;
2940 asection *section;
2941 Elf_Internal_Sym *local_syms;
2942
2943 /* We'll need the symbol table in a second. */
2944 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2945 if (symtab_hdr->sh_info == 0)
2946 continue;
2947
2948 local_syms = htab->all_local_syms[bfd_indx];
2949
2950 /* Walk over each section attached to the input bfd. */
2951 for (section = input_bfd->sections;
2952 section != NULL;
2953 section = section->next)
2954 {
2955 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2956
2957 /* If there aren't any relocs, then there's nothing more
2958 to do. */
2959 if ((section->flags & SEC_RELOC) == 0
2960 || section->reloc_count == 0)
2961 continue;
2962
2963 /* If this section is a link-once section that will be
2964 discarded, then don't create any stubs. */
2965 if (section->output_section == NULL
2966 || section->output_section->owner != output_bfd)
2967 continue;
2968
2969 /* Get the relocs. */
2970 internal_relocs
2971 = _bfd_elf32_link_read_relocs (input_bfd, section, NULL,
2972 (Elf_Internal_Rela *) NULL,
2973 info->keep_memory);
2974 if (internal_relocs == NULL)
2975 goto error_ret_free_local;
2976
2977 /* Now examine each relocation. */
2978 irela = internal_relocs;
2979 irelaend = irela + section->reloc_count;
2980 for (; irela < irelaend; irela++)
2981 {
2982 unsigned int r_type, r_indx;
2983 enum elf32_hppa_stub_type stub_type;
2984 struct elf32_hppa_stub_hash_entry *stub_entry;
2985 asection *sym_sec;
2986 bfd_vma sym_value;
2987 bfd_vma destination;
2988 struct elf32_hppa_link_hash_entry *hash;
2989 char *stub_name;
2990 const asection *id_sec;
2991
2992 r_type = ELF32_R_TYPE (irela->r_info);
2993 r_indx = ELF32_R_SYM (irela->r_info);
2994
2995 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2996 {
2997 bfd_set_error (bfd_error_bad_value);
2998 error_ret_free_internal:
2999 if (elf_section_data (section)->relocs == NULL)
3000 free (internal_relocs);
3001 goto error_ret_free_local;
3002 }
3003
3004 /* Only look for stubs on call instructions. */
3005 if (r_type != (unsigned int) R_PARISC_PCREL12F
3006 && r_type != (unsigned int) R_PARISC_PCREL17F
3007 && r_type != (unsigned int) R_PARISC_PCREL22F)
3008 continue;
3009
3010 /* Now determine the call target, its name, value,
3011 section. */
3012 sym_sec = NULL;
3013 sym_value = 0;
3014 destination = 0;
3015 hash = NULL;
3016 if (r_indx < symtab_hdr->sh_info)
3017 {
3018 /* It's a local symbol. */
3019 Elf_Internal_Sym *sym;
3020 Elf_Internal_Shdr *hdr;
3021
3022 sym = local_syms + r_indx;
3023 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
3024 sym_sec = hdr->bfd_section;
3025 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
3026 sym_value = sym->st_value;
3027 destination = (sym_value + irela->r_addend
3028 + sym_sec->output_offset
3029 + sym_sec->output_section->vma);
3030 }
3031 else
3032 {
3033 /* It's an external symbol. */
3034 int e_indx;
3035
3036 e_indx = r_indx - symtab_hdr->sh_info;
3037 hash = ((struct elf32_hppa_link_hash_entry *)
3038 elf_sym_hashes (input_bfd)[e_indx]);
3039
3040 while (hash->elf.root.type == bfd_link_hash_indirect
3041 || hash->elf.root.type == bfd_link_hash_warning)
3042 hash = ((struct elf32_hppa_link_hash_entry *)
3043 hash->elf.root.u.i.link);
3044
3045 if (hash->elf.root.type == bfd_link_hash_defined
3046 || hash->elf.root.type == bfd_link_hash_defweak)
3047 {
3048 sym_sec = hash->elf.root.u.def.section;
3049 sym_value = hash->elf.root.u.def.value;
3050 if (sym_sec->output_section != NULL)
3051 destination = (sym_value + irela->r_addend
3052 + sym_sec->output_offset
3053 + sym_sec->output_section->vma);
3054 }
3055 else if (hash->elf.root.type == bfd_link_hash_undefweak)
3056 {
3057 if (! info->shared)
3058 continue;
3059 }
3060 else if (hash->elf.root.type == bfd_link_hash_undefined)
3061 {
3062 if (! (info->shared
3063 && !info->no_undefined
3064 && (ELF_ST_VISIBILITY (hash->elf.other)
3065 == STV_DEFAULT)
3066 && hash->elf.type != STT_PARISC_MILLI))
3067 continue;
3068 }
3069 else
3070 {
3071 bfd_set_error (bfd_error_bad_value);
3072 goto error_ret_free_internal;
3073 }
3074 }
3075
3076 /* Determine what (if any) linker stub is needed. */
3077 stub_type = hppa_type_of_stub (section, irela, hash,
3078 destination);
3079 if (stub_type == hppa_stub_none)
3080 continue;
3081
3082 /* Support for grouping stub sections. */
3083 id_sec = htab->stub_group[section->id].link_sec;
3084
3085 /* Get the name of this stub. */
3086 stub_name = hppa_stub_name (id_sec, sym_sec, hash, irela);
3087 if (!stub_name)
3088 goto error_ret_free_internal;
3089
3090 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
3091 stub_name,
3092 false, false);
3093 if (stub_entry != NULL)
3094 {
3095 /* The proper stub has already been created. */
3096 free (stub_name);
3097 continue;
3098 }
3099
3100 stub_entry = hppa_add_stub (stub_name, section, htab);
3101 if (stub_entry == NULL)
3102 {
3103 free (stub_name);
3104 goto error_ret_free_internal;
3105 }
3106
3107 stub_entry->target_value = sym_value;
3108 stub_entry->target_section = sym_sec;
3109 stub_entry->stub_type = stub_type;
3110 if (info->shared)
3111 {
3112 if (stub_type == hppa_stub_import)
3113 stub_entry->stub_type = hppa_stub_import_shared;
3114 else if (stub_type == hppa_stub_long_branch)
3115 stub_entry->stub_type = hppa_stub_long_branch_shared;
3116 }
3117 stub_entry->h = hash;
3118 stub_changed = true;
3119 }
3120
3121 /* We're done with the internal relocs, free them. */
3122 if (elf_section_data (section)->relocs == NULL)
3123 free (internal_relocs);
3124 }
3125 }
3126
3127 if (!stub_changed)
3128 break;
3129
3130 /* OK, we've added some stubs. Find out the new size of the
3131 stub sections. */
3132 for (stub_sec = htab->stub_bfd->sections;
3133 stub_sec != NULL;
3134 stub_sec = stub_sec->next)
3135 {
3136 stub_sec->_raw_size = 0;
3137 stub_sec->_cooked_size = 0;
3138 }
3139
3140 bfd_hash_traverse (&htab->stub_hash_table, hppa_size_one_stub, htab);
3141
3142 /* Ask the linker to do its stuff. */
3143 (*htab->layout_sections_again) ();
3144 stub_changed = false;
3145 }
3146
3147 free (htab->all_local_syms);
3148 return true;
3149
3150 error_ret_free_local:
3151 free (htab->all_local_syms);
3152 return false;
3153 }
3154
3155 /* For a final link, this function is called after we have sized the
3156 stubs to provide a value for __gp. */
3157
3158 boolean
3159 elf32_hppa_set_gp (abfd, info)
3160 bfd *abfd;
3161 struct bfd_link_info *info;
3162 {
3163 struct bfd_link_hash_entry *h;
3164 asection *sec = NULL;
3165 bfd_vma gp_val = 0;
3166 struct elf32_hppa_link_hash_table *htab;
3167
3168 htab = hppa_link_hash_table (info);
3169 h = bfd_link_hash_lookup (&htab->elf.root, "$global$", false, false, false);
3170
3171 if (h != NULL
3172 && (h->type == bfd_link_hash_defined
3173 || h->type == bfd_link_hash_defweak))
3174 {
3175 gp_val = h->u.def.value;
3176 sec = h->u.def.section;
3177 }
3178 else
3179 {
3180 asection *splt;
3181 asection *sgot;
3182
3183 if (htab->elf.root.creator->flavour == bfd_target_elf_flavour)
3184 {
3185 splt = htab->splt;
3186 sgot = htab->sgot;
3187 }
3188 else
3189 {
3190 /* If we're not elf, look up the output sections in the
3191 hope we may actually find them. */
3192 splt = bfd_get_section_by_name (abfd, ".plt");
3193 sgot = bfd_get_section_by_name (abfd, ".got");
3194 }
3195
3196 /* Choose to point our LTP at, in this order, one of .plt, .got,
3197 or .data, if these sections exist. In the case of choosing
3198 .plt try to make the LTP ideal for addressing anywhere in the
3199 .plt or .got with a 14 bit signed offset. Typically, the end
3200 of the .plt is the start of the .got, so choose .plt + 0x2000
3201 if either the .plt or .got is larger than 0x2000. If both
3202 the .plt and .got are smaller than 0x2000, choose the end of
3203 the .plt section. */
3204 sec = splt;
3205 if (sec != NULL)
3206 {
3207 gp_val = sec->_raw_size;
3208 if (gp_val > 0x2000 || (sgot && sgot->_raw_size > 0x2000))
3209 {
3210 gp_val = 0x2000;
3211 }
3212 }
3213 else
3214 {
3215 sec = sgot;
3216 if (sec != NULL)
3217 {
3218 /* We know we don't have a .plt. If .got is large,
3219 offset our LTP. */
3220 if (sec->_raw_size > 0x2000)
3221 gp_val = 0x2000;
3222 }
3223 else
3224 {
3225 /* No .plt or .got. Who cares what the LTP is? */
3226 sec = bfd_get_section_by_name (abfd, ".data");
3227 }
3228 }
3229
3230 if (h != NULL)
3231 {
3232 h->type = bfd_link_hash_defined;
3233 h->u.def.value = gp_val;
3234 if (sec != NULL)
3235 h->u.def.section = sec;
3236 else
3237 h->u.def.section = bfd_abs_section_ptr;
3238 }
3239 }
3240
3241 if (sec != NULL && sec->output_section != NULL)
3242 gp_val += sec->output_section->vma + sec->output_offset;
3243
3244 elf_gp (abfd) = gp_val;
3245 return true;
3246 }
3247
3248 /* Build all the stubs associated with the current output file. The
3249 stubs are kept in a hash table attached to the main linker hash
3250 table. We also set up the .plt entries for statically linked PIC
3251 functions here. This function is called via hppaelf_finish in the
3252 linker. */
3253
3254 boolean
3255 elf32_hppa_build_stubs (info)
3256 struct bfd_link_info *info;
3257 {
3258 asection *stub_sec;
3259 struct bfd_hash_table *table;
3260 struct elf32_hppa_link_hash_table *htab;
3261
3262 htab = hppa_link_hash_table (info);
3263
3264 for (stub_sec = htab->stub_bfd->sections;
3265 stub_sec != NULL;
3266 stub_sec = stub_sec->next)
3267 {
3268 bfd_size_type size;
3269
3270 /* Allocate memory to hold the linker stubs. */
3271 size = stub_sec->_raw_size;
3272 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
3273 if (stub_sec->contents == NULL && size != 0)
3274 return false;
3275 stub_sec->_raw_size = 0;
3276 }
3277
3278 /* Build the stubs as directed by the stub hash table. */
3279 table = &htab->stub_hash_table;
3280 bfd_hash_traverse (table, hppa_build_one_stub, info);
3281
3282 return true;
3283 }
3284
3285 /* Perform a final link. */
3286
3287 static boolean
3288 elf32_hppa_final_link (abfd, info)
3289 bfd *abfd;
3290 struct bfd_link_info *info;
3291 {
3292 /* Invoke the regular ELF linker to do all the work. */
3293 if (!bfd_elf32_bfd_final_link (abfd, info))
3294 return false;
3295
3296 /* If we're producing a final executable, sort the contents of the
3297 unwind section. */
3298 return elf_hppa_sort_unwind (abfd);
3299 }
3300
3301 /* Record the lowest address for the data and text segments. */
3302
3303 static void
3304 hppa_record_segment_addr (abfd, section, data)
3305 bfd *abfd ATTRIBUTE_UNUSED;
3306 asection *section;
3307 PTR data;
3308 {
3309 struct elf32_hppa_link_hash_table *htab;
3310
3311 htab = (struct elf32_hppa_link_hash_table *) data;
3312
3313 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3314 {
3315 bfd_vma value = section->vma - section->filepos;
3316
3317 if ((section->flags & SEC_READONLY) != 0)
3318 {
3319 if (value < htab->text_segment_base)
3320 htab->text_segment_base = value;
3321 }
3322 else
3323 {
3324 if (value < htab->data_segment_base)
3325 htab->data_segment_base = value;
3326 }
3327 }
3328 }
3329
3330 /* Perform a relocation as part of a final link. */
3331
3332 static bfd_reloc_status_type
3333 final_link_relocate (input_section, contents, rel, value, htab, sym_sec, h)
3334 asection *input_section;
3335 bfd_byte *contents;
3336 const Elf_Internal_Rela *rel;
3337 bfd_vma value;
3338 struct elf32_hppa_link_hash_table *htab;
3339 asection *sym_sec;
3340 struct elf32_hppa_link_hash_entry *h;
3341 {
3342 int insn;
3343 unsigned int r_type = ELF32_R_TYPE (rel->r_info);
3344 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3345 int r_format = howto->bitsize;
3346 enum hppa_reloc_field_selector_type_alt r_field;
3347 bfd *input_bfd = input_section->owner;
3348 bfd_vma offset = rel->r_offset;
3349 bfd_vma max_branch_offset = 0;
3350 bfd_byte *hit_data = contents + offset;
3351 bfd_signed_vma addend = rel->r_addend;
3352 bfd_vma location;
3353 struct elf32_hppa_stub_hash_entry *stub_entry = NULL;
3354 int val;
3355
3356 if (r_type == R_PARISC_NONE)
3357 return bfd_reloc_ok;
3358
3359 insn = bfd_get_32 (input_bfd, hit_data);
3360
3361 /* Find out where we are and where we're going. */
3362 location = (offset +
3363 input_section->output_offset +
3364 input_section->output_section->vma);
3365
3366 switch (r_type)
3367 {
3368 case R_PARISC_PCREL12F:
3369 case R_PARISC_PCREL17F:
3370 case R_PARISC_PCREL22F:
3371 /* If this call should go via the plt, find the import stub in
3372 the stub hash. */
3373 if (sym_sec == NULL
3374 || sym_sec->output_section == NULL
3375 || (h != NULL
3376 && h->elf.plt.offset != (bfd_vma) -1
3377 && (h->elf.dynindx != -1 || h->pic_call)
3378 && !h->plabel))
3379 {
3380 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3381 h, rel, htab);
3382 if (stub_entry != NULL)
3383 {
3384 value = (stub_entry->stub_offset
3385 + stub_entry->stub_sec->output_offset
3386 + stub_entry->stub_sec->output_section->vma);
3387 addend = 0;
3388 }
3389 else if (sym_sec == NULL && h != NULL
3390 && h->elf.root.type == bfd_link_hash_undefweak)
3391 {
3392 /* It's OK if undefined weak. Calls to undefined weak
3393 symbols behave as if the "called" function
3394 immediately returns. We can thus call to a weak
3395 function without first checking whether the function
3396 is defined. */
3397 value = location;
3398 addend = 8;
3399 }
3400 else
3401 return bfd_reloc_undefined;
3402 }
3403 /* Fall thru. */
3404
3405 case R_PARISC_PCREL21L:
3406 case R_PARISC_PCREL17C:
3407 case R_PARISC_PCREL17R:
3408 case R_PARISC_PCREL14R:
3409 case R_PARISC_PCREL14F:
3410 /* Make it a pc relative offset. */
3411 value -= location;
3412 addend -= 8;
3413 break;
3414
3415 case R_PARISC_DPREL21L:
3416 case R_PARISC_DPREL14R:
3417 case R_PARISC_DPREL14F:
3418 /* For all the DP relative relocations, we need to examine the symbol's
3419 section. If it's a code section, then "data pointer relative" makes
3420 no sense. In that case we don't adjust the "value", and for 21 bit
3421 addil instructions, we change the source addend register from %dp to
3422 %r0. This situation commonly arises when a variable's "constness"
3423 is declared differently from the way the variable is defined. For
3424 instance: "extern int foo" with foo defined as "const int foo". */
3425 if (sym_sec == NULL)
3426 break;
3427 if ((sym_sec->flags & SEC_CODE) != 0)
3428 {
3429 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3430 == (((int) OP_ADDIL << 26) | (27 << 21)))
3431 {
3432 insn &= ~ (0x1f << 21);
3433 #if 0 /* debug them. */
3434 (*_bfd_error_handler)
3435 (_("%s(%s+0x%lx): fixing %s"),
3436 bfd_archive_filename (input_bfd),
3437 input_section->name,
3438 (long) rel->r_offset,
3439 howto->name);
3440 #endif
3441 }
3442 /* Now try to make things easy for the dynamic linker. */
3443
3444 break;
3445 }
3446 /* Fall thru. */
3447
3448 case R_PARISC_DLTIND21L:
3449 case R_PARISC_DLTIND14R:
3450 case R_PARISC_DLTIND14F:
3451 value -= elf_gp (input_section->output_section->owner);
3452 break;
3453
3454 case R_PARISC_SEGREL32:
3455 if ((sym_sec->flags & SEC_CODE) != 0)
3456 value -= htab->text_segment_base;
3457 else
3458 value -= htab->data_segment_base;
3459 break;
3460
3461 default:
3462 break;
3463 }
3464
3465 switch (r_type)
3466 {
3467 case R_PARISC_DIR32:
3468 case R_PARISC_DIR14F:
3469 case R_PARISC_DIR17F:
3470 case R_PARISC_PCREL17C:
3471 case R_PARISC_PCREL14F:
3472 case R_PARISC_DPREL14F:
3473 case R_PARISC_PLABEL32:
3474 case R_PARISC_DLTIND14F:
3475 case R_PARISC_SEGBASE:
3476 case R_PARISC_SEGREL32:
3477 r_field = e_fsel;
3478 break;
3479
3480 case R_PARISC_DLTIND21L:
3481 case R_PARISC_PCREL21L:
3482 case R_PARISC_PLABEL21L:
3483 r_field = e_lsel;
3484 break;
3485
3486 case R_PARISC_DIR21L:
3487 case R_PARISC_DPREL21L:
3488 r_field = e_lrsel;
3489 break;
3490
3491 case R_PARISC_PCREL17R:
3492 case R_PARISC_PCREL14R:
3493 case R_PARISC_PLABEL14R:
3494 case R_PARISC_DLTIND14R:
3495 r_field = e_rsel;
3496 break;
3497
3498 case R_PARISC_DIR17R:
3499 case R_PARISC_DIR14R:
3500 case R_PARISC_DPREL14R:
3501 r_field = e_rrsel;
3502 break;
3503
3504 case R_PARISC_PCREL12F:
3505 case R_PARISC_PCREL17F:
3506 case R_PARISC_PCREL22F:
3507 r_field = e_fsel;
3508
3509 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3510 {
3511 max_branch_offset = (1 << (17-1)) << 2;
3512 }
3513 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3514 {
3515 max_branch_offset = (1 << (12-1)) << 2;
3516 }
3517 else
3518 {
3519 max_branch_offset = (1 << (22-1)) << 2;
3520 }
3521
3522 /* sym_sec is NULL on undefined weak syms or when shared on
3523 undefined syms. We've already checked for a stub for the
3524 shared undefined case. */
3525 if (sym_sec == NULL)
3526 break;
3527
3528 /* If the branch is out of reach, then redirect the
3529 call to the local stub for this function. */
3530 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3531 {
3532 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3533 h, rel, htab);
3534 if (stub_entry == NULL)
3535 return bfd_reloc_undefined;
3536
3537 /* Munge up the value and addend so that we call the stub
3538 rather than the procedure directly. */
3539 value = (stub_entry->stub_offset
3540 + stub_entry->stub_sec->output_offset
3541 + stub_entry->stub_sec->output_section->vma
3542 - location);
3543 addend = -8;
3544 }
3545 break;
3546
3547 /* Something we don't know how to handle. */
3548 default:
3549 return bfd_reloc_notsupported;
3550 }
3551
3552 /* Make sure we can reach the stub. */
3553 if (max_branch_offset != 0
3554 && value + addend + max_branch_offset >= 2*max_branch_offset)
3555 {
3556 (*_bfd_error_handler)
3557 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3558 bfd_archive_filename (input_bfd),
3559 input_section->name,
3560 (long) rel->r_offset,
3561 stub_entry->root.string);
3562 bfd_set_error (bfd_error_bad_value);
3563 return bfd_reloc_notsupported;
3564 }
3565
3566 val = hppa_field_adjust (value, addend, r_field);
3567
3568 switch (r_type)
3569 {
3570 case R_PARISC_PCREL12F:
3571 case R_PARISC_PCREL17C:
3572 case R_PARISC_PCREL17F:
3573 case R_PARISC_PCREL17R:
3574 case R_PARISC_PCREL22F:
3575 case R_PARISC_DIR17F:
3576 case R_PARISC_DIR17R:
3577 /* This is a branch. Divide the offset by four.
3578 Note that we need to decide whether it's a branch or
3579 otherwise by inspecting the reloc. Inspecting insn won't
3580 work as insn might be from a .word directive. */
3581 val >>= 2;
3582 break;
3583
3584 default:
3585 break;
3586 }
3587
3588 insn = hppa_rebuild_insn (insn, val, r_format);
3589
3590 /* Update the instruction word. */
3591 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3592 return bfd_reloc_ok;
3593 }
3594
3595 /* Relocate an HPPA ELF section. */
3596
3597 static boolean
3598 elf32_hppa_relocate_section (output_bfd, info, input_bfd, input_section,
3599 contents, relocs, local_syms, local_sections)
3600 bfd *output_bfd;
3601 struct bfd_link_info *info;
3602 bfd *input_bfd;
3603 asection *input_section;
3604 bfd_byte *contents;
3605 Elf_Internal_Rela *relocs;
3606 Elf_Internal_Sym *local_syms;
3607 asection **local_sections;
3608 {
3609 bfd_vma *local_got_offsets;
3610 struct elf32_hppa_link_hash_table *htab;
3611 Elf_Internal_Shdr *symtab_hdr;
3612 Elf_Internal_Rela *rel;
3613 Elf_Internal_Rela *relend;
3614
3615 if (info->relocateable)
3616 return true;
3617
3618 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3619
3620 htab = hppa_link_hash_table (info);
3621 local_got_offsets = elf_local_got_offsets (input_bfd);
3622
3623 rel = relocs;
3624 relend = relocs + input_section->reloc_count;
3625 for (; rel < relend; rel++)
3626 {
3627 unsigned int r_type;
3628 reloc_howto_type *howto;
3629 unsigned int r_symndx;
3630 struct elf32_hppa_link_hash_entry *h;
3631 Elf_Internal_Sym *sym;
3632 asection *sym_sec;
3633 bfd_vma relocation;
3634 bfd_reloc_status_type r;
3635 const char *sym_name;
3636 boolean plabel;
3637 boolean warned_undef;
3638
3639 r_type = ELF32_R_TYPE (rel->r_info);
3640 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3641 {
3642 bfd_set_error (bfd_error_bad_value);
3643 return false;
3644 }
3645 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3646 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3647 continue;
3648
3649 /* This is a final link. */
3650 r_symndx = ELF32_R_SYM (rel->r_info);
3651 h = NULL;
3652 sym = NULL;
3653 sym_sec = NULL;
3654 warned_undef = false;
3655 if (r_symndx < symtab_hdr->sh_info)
3656 {
3657 /* This is a local symbol, h defaults to NULL. */
3658 sym = local_syms + r_symndx;
3659 sym_sec = local_sections[r_symndx];
3660 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sym_sec, rel);
3661 }
3662 else
3663 {
3664 int indx;
3665
3666 /* It's a global; Find its entry in the link hash. */
3667 indx = r_symndx - symtab_hdr->sh_info;
3668 h = ((struct elf32_hppa_link_hash_entry *)
3669 elf_sym_hashes (input_bfd)[indx]);
3670 while (h->elf.root.type == bfd_link_hash_indirect
3671 || h->elf.root.type == bfd_link_hash_warning)
3672 h = (struct elf32_hppa_link_hash_entry *) h->elf.root.u.i.link;
3673
3674 relocation = 0;
3675 if (h->elf.root.type == bfd_link_hash_defined
3676 || h->elf.root.type == bfd_link_hash_defweak)
3677 {
3678 sym_sec = h->elf.root.u.def.section;
3679 /* If sym_sec->output_section is NULL, then it's a
3680 symbol defined in a shared library. */
3681 if (sym_sec->output_section != NULL)
3682 relocation = (h->elf.root.u.def.value
3683 + sym_sec->output_offset
3684 + sym_sec->output_section->vma);
3685 }
3686 else if (h->elf.root.type == bfd_link_hash_undefweak)
3687 ;
3688 else if (info->shared && !info->no_undefined
3689 && ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
3690 && h->elf.type != STT_PARISC_MILLI)
3691 {
3692 if (info->symbolic && !info->allow_shlib_undefined)
3693 {
3694 if (!((*info->callbacks->undefined_symbol)
3695 (info, h->elf.root.root.string, input_bfd,
3696 input_section, rel->r_offset, false)))
3697 return false;
3698 warned_undef = true;
3699 }
3700 }
3701 else
3702 {
3703 if (!((*info->callbacks->undefined_symbol)
3704 (info, h->elf.root.root.string, input_bfd,
3705 input_section, rel->r_offset, true)))
3706 return false;
3707 warned_undef = true;
3708 }
3709 }
3710
3711 /* Do any required modifications to the relocation value, and
3712 determine what types of dynamic info we need to output, if
3713 any. */
3714 plabel = 0;
3715 switch (r_type)
3716 {
3717 case R_PARISC_DLTIND14F:
3718 case R_PARISC_DLTIND14R:
3719 case R_PARISC_DLTIND21L:
3720 {
3721 bfd_vma off;
3722 boolean do_got = 0;
3723
3724 /* Relocation is to the entry for this symbol in the
3725 global offset table. */
3726 if (h != NULL)
3727 {
3728 boolean dyn;
3729
3730 off = h->elf.got.offset;
3731 dyn = htab->elf.dynamic_sections_created;
3732 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, &h->elf))
3733 {
3734 /* If we aren't going to call finish_dynamic_symbol,
3735 then we need to handle initialisation of the .got
3736 entry and create needed relocs here. Since the
3737 offset must always be a multiple of 4, we use the
3738 least significant bit to record whether we have
3739 initialised it already. */
3740 if ((off & 1) != 0)
3741 off &= ~1;
3742 else
3743 {
3744 h->elf.got.offset |= 1;
3745 do_got = 1;
3746 }
3747 }
3748 }
3749 else
3750 {
3751 /* Local symbol case. */
3752 if (local_got_offsets == NULL)
3753 abort ();
3754
3755 off = local_got_offsets[r_symndx];
3756
3757 /* The offset must always be a multiple of 4. We use
3758 the least significant bit to record whether we have
3759 already generated the necessary reloc. */
3760 if ((off & 1) != 0)
3761 off &= ~1;
3762 else
3763 {
3764 local_got_offsets[r_symndx] |= 1;
3765 do_got = 1;
3766 }
3767 }
3768
3769 if (do_got)
3770 {
3771 if (info->shared)
3772 {
3773 /* Output a dynamic relocation for this GOT entry.
3774 In this case it is relative to the base of the
3775 object because the symbol index is zero. */
3776 Elf_Internal_Rela outrel;
3777 asection *srelgot = htab->srelgot;
3778 Elf32_External_Rela *loc;
3779
3780 outrel.r_offset = (off
3781 + htab->sgot->output_offset
3782 + htab->sgot->output_section->vma);
3783 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3784 outrel.r_addend = relocation;
3785 loc = (Elf32_External_Rela *) srelgot->contents;
3786 loc += srelgot->reloc_count++;
3787 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3788 }
3789 else
3790 bfd_put_32 (output_bfd, relocation,
3791 htab->sgot->contents + off);
3792 }
3793
3794 if (off >= (bfd_vma) -2)
3795 abort ();
3796
3797 /* Add the base of the GOT to the relocation value. */
3798 relocation = (off
3799 + htab->sgot->output_offset
3800 + htab->sgot->output_section->vma);
3801 }
3802 break;
3803
3804 case R_PARISC_SEGREL32:
3805 /* If this is the first SEGREL relocation, then initialize
3806 the segment base values. */
3807 if (htab->text_segment_base == (bfd_vma) -1)
3808 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3809 break;
3810
3811 case R_PARISC_PLABEL14R:
3812 case R_PARISC_PLABEL21L:
3813 case R_PARISC_PLABEL32:
3814 if (htab->elf.dynamic_sections_created)
3815 {
3816 bfd_vma off;
3817 boolean do_plt = 0;
3818
3819 /* If we have a global symbol with a PLT slot, then
3820 redirect this relocation to it. */
3821 if (h != NULL)
3822 {
3823 off = h->elf.plt.offset;
3824 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, &h->elf))
3825 {
3826 /* In a non-shared link, adjust_dynamic_symbols
3827 isn't called for symbols forced local. We
3828 need to write out the plt entry here. */
3829 if ((off & 1) != 0)
3830 off &= ~1;
3831 else
3832 {
3833 h->elf.plt.offset |= 1;
3834 do_plt = 1;
3835 }
3836 }
3837 }
3838 else
3839 {
3840 bfd_vma *local_plt_offsets;
3841
3842 if (local_got_offsets == NULL)
3843 abort ();
3844
3845 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3846 off = local_plt_offsets[r_symndx];
3847
3848 /* As for the local .got entry case, we use the last
3849 bit to record whether we've already initialised
3850 this local .plt entry. */
3851 if ((off & 1) != 0)
3852 off &= ~1;
3853 else
3854 {
3855 local_plt_offsets[r_symndx] |= 1;
3856 do_plt = 1;
3857 }
3858 }
3859
3860 if (do_plt)
3861 {
3862 if (info->shared)
3863 {
3864 /* Output a dynamic IPLT relocation for this
3865 PLT entry. */
3866 Elf_Internal_Rela outrel;
3867 asection *srelplt = htab->srelplt;
3868 Elf32_External_Rela *loc;
3869
3870 outrel.r_offset = (off
3871 + htab->splt->output_offset
3872 + htab->splt->output_section->vma);
3873 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3874 outrel.r_addend = relocation;
3875 loc = (Elf32_External_Rela *) srelplt->contents;
3876 loc += srelplt->reloc_count++;
3877 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3878 }
3879 else
3880 {
3881 bfd_put_32 (output_bfd,
3882 relocation,
3883 htab->splt->contents + off);
3884 bfd_put_32 (output_bfd,
3885 elf_gp (htab->splt->output_section->owner),
3886 htab->splt->contents + off + 4);
3887 }
3888 }
3889
3890 if (off >= (bfd_vma) -2)
3891 abort ();
3892
3893 /* PLABELs contain function pointers. Relocation is to
3894 the entry for the function in the .plt. The magic +2
3895 offset signals to $$dyncall that the function pointer
3896 is in the .plt and thus has a gp pointer too.
3897 Exception: Undefined PLABELs should have a value of
3898 zero. */
3899 if (h == NULL
3900 || (h->elf.root.type != bfd_link_hash_undefweak
3901 && h->elf.root.type != bfd_link_hash_undefined))
3902 {
3903 relocation = (off
3904 + htab->splt->output_offset
3905 + htab->splt->output_section->vma
3906 + 2);
3907 }
3908 plabel = 1;
3909 }
3910 /* Fall through and possibly emit a dynamic relocation. */
3911
3912 case R_PARISC_DIR17F:
3913 case R_PARISC_DIR17R:
3914 case R_PARISC_DIR14F:
3915 case R_PARISC_DIR14R:
3916 case R_PARISC_DIR21L:
3917 case R_PARISC_DPREL14F:
3918 case R_PARISC_DPREL14R:
3919 case R_PARISC_DPREL21L:
3920 case R_PARISC_DIR32:
3921 /* r_symndx will be zero only for relocs against symbols
3922 from removed linkonce sections, or sections discarded by
3923 a linker script. */
3924 if (r_symndx == 0
3925 || (input_section->flags & SEC_ALLOC) == 0)
3926 break;
3927
3928 /* The reloc types handled here and this conditional
3929 expression must match the code in ..check_relocs and
3930 allocate_dynrelocs. ie. We need exactly the same condition
3931 as in ..check_relocs, with some extra conditions (dynindx
3932 test in this case) to cater for relocs removed by
3933 allocate_dynrelocs. If you squint, the non-shared test
3934 here does indeed match the one in ..check_relocs, the
3935 difference being that here we test DEF_DYNAMIC as well as
3936 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3937 which is why we can't use just that test here.
3938 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3939 there all files have not been loaded. */
3940 if ((info->shared
3941 && (IS_ABSOLUTE_RELOC (r_type)
3942 || (h != NULL
3943 && h->elf.dynindx != -1
3944 && (!info->symbolic
3945 || (h->elf.elf_link_hash_flags
3946 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
3947 || (!info->shared
3948 && h != NULL
3949 && h->elf.dynindx != -1
3950 && (h->elf.elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
3951 && (((h->elf.elf_link_hash_flags
3952 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3953 && (h->elf.elf_link_hash_flags
3954 & ELF_LINK_HASH_DEF_REGULAR) == 0)
3955 || h->elf.root.type == bfd_link_hash_undefweak
3956 || h->elf.root.type == bfd_link_hash_undefined)))
3957 {
3958 Elf_Internal_Rela outrel;
3959 boolean skip;
3960 asection *sreloc;
3961 Elf32_External_Rela *loc;
3962
3963 /* When generating a shared object, these relocations
3964 are copied into the output file to be resolved at run
3965 time. */
3966
3967 outrel.r_addend = rel->r_addend;
3968 outrel.r_offset =
3969 _bfd_elf_section_offset (output_bfd, info, input_section,
3970 rel->r_offset);
3971 skip = (outrel.r_offset == (bfd_vma) -1
3972 || outrel.r_offset == (bfd_vma) -2);
3973 outrel.r_offset += (input_section->output_offset
3974 + input_section->output_section->vma);
3975
3976 if (skip)
3977 {
3978 memset (&outrel, 0, sizeof (outrel));
3979 }
3980 else if (h != NULL
3981 && h->elf.dynindx != -1
3982 && (plabel
3983 || !IS_ABSOLUTE_RELOC (r_type)
3984 || !info->shared
3985 || !info->symbolic
3986 || (h->elf.elf_link_hash_flags
3987 & ELF_LINK_HASH_DEF_REGULAR) == 0))
3988 {
3989 outrel.r_info = ELF32_R_INFO (h->elf.dynindx, r_type);
3990 }
3991 else /* It's a local symbol, or one marked to become local. */
3992 {
3993 int indx = 0;
3994
3995 /* Add the absolute offset of the symbol. */
3996 outrel.r_addend += relocation;
3997
3998 /* Global plabels need to be processed by the
3999 dynamic linker so that functions have at most one
4000 fptr. For this reason, we need to differentiate
4001 between global and local plabels, which we do by
4002 providing the function symbol for a global plabel
4003 reloc, and no symbol for local plabels. */
4004 if (! plabel
4005 && sym_sec != NULL
4006 && sym_sec->output_section != NULL
4007 && ! bfd_is_abs_section (sym_sec))
4008 {
4009 indx = elf_section_data (sym_sec->output_section)->dynindx;
4010 /* We are turning this relocation into one
4011 against a section symbol, so subtract out the
4012 output section's address but not the offset
4013 of the input section in the output section. */
4014 outrel.r_addend -= sym_sec->output_section->vma;
4015 }
4016
4017 outrel.r_info = ELF32_R_INFO (indx, r_type);
4018 }
4019 #if 0
4020 /* EH info can cause unaligned DIR32 relocs.
4021 Tweak the reloc type for the dynamic linker. */
4022 if (r_type == R_PARISC_DIR32 && (outrel.r_offset & 3) != 0)
4023 outrel.r_info = ELF32_R_INFO (ELF32_R_SYM (outrel.r_info),
4024 R_PARISC_DIR32U);
4025 #endif
4026 sreloc = elf_section_data (input_section)->sreloc;
4027 if (sreloc == NULL)
4028 abort ();
4029
4030 loc = (Elf32_External_Rela *) sreloc->contents;
4031 loc += sreloc->reloc_count++;
4032 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4033 }
4034 break;
4035
4036 default:
4037 break;
4038 }
4039
4040 r = final_link_relocate (input_section, contents, rel, relocation,
4041 htab, sym_sec, h);
4042
4043 if (r == bfd_reloc_ok)
4044 continue;
4045
4046 if (h != NULL)
4047 sym_name = h->elf.root.root.string;
4048 else
4049 {
4050 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4051 symtab_hdr->sh_link,
4052 sym->st_name);
4053 if (sym_name == NULL)
4054 return false;
4055 if (*sym_name == '\0')
4056 sym_name = bfd_section_name (input_bfd, sym_sec);
4057 }
4058
4059 howto = elf_hppa_howto_table + r_type;
4060
4061 if (r == bfd_reloc_undefined || r == bfd_reloc_notsupported)
4062 {
4063 if (r == bfd_reloc_notsupported || !warned_undef)
4064 {
4065 (*_bfd_error_handler)
4066 (_("%s(%s+0x%lx): cannot handle %s for %s"),
4067 bfd_archive_filename (input_bfd),
4068 input_section->name,
4069 (long) rel->r_offset,
4070 howto->name,
4071 sym_name);
4072 bfd_set_error (bfd_error_bad_value);
4073 return false;
4074 }
4075 }
4076 else
4077 {
4078 if (!((*info->callbacks->reloc_overflow)
4079 (info, sym_name, howto->name, (bfd_vma) 0,
4080 input_bfd, input_section, rel->r_offset)))
4081 return false;
4082 }
4083 }
4084
4085 return true;
4086 }
4087
4088 /* Finish up dynamic symbol handling. We set the contents of various
4089 dynamic sections here. */
4090
4091 static boolean
4092 elf32_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
4093 bfd *output_bfd;
4094 struct bfd_link_info *info;
4095 struct elf_link_hash_entry *h;
4096 Elf_Internal_Sym *sym;
4097 {
4098 struct elf32_hppa_link_hash_table *htab;
4099
4100 htab = hppa_link_hash_table (info);
4101
4102 if (h->plt.offset != (bfd_vma) -1)
4103 {
4104 bfd_vma value;
4105
4106 if (h->plt.offset & 1)
4107 abort ();
4108
4109 /* This symbol has an entry in the procedure linkage table. Set
4110 it up.
4111
4112 The format of a plt entry is
4113 <funcaddr>
4114 <__gp>
4115 */
4116 value = 0;
4117 if (h->root.type == bfd_link_hash_defined
4118 || h->root.type == bfd_link_hash_defweak)
4119 {
4120 value = h->root.u.def.value;
4121 if (h->root.u.def.section->output_section != NULL)
4122 value += (h->root.u.def.section->output_offset
4123 + h->root.u.def.section->output_section->vma);
4124 }
4125
4126 if (! ((struct elf32_hppa_link_hash_entry *) h)->pic_call)
4127 {
4128 Elf_Internal_Rela rel;
4129 Elf32_External_Rela *loc;
4130
4131 /* Create a dynamic IPLT relocation for this entry. */
4132 rel.r_offset = (h->plt.offset
4133 + htab->splt->output_offset
4134 + htab->splt->output_section->vma);
4135 if (h->dynindx != -1)
4136 {
4137 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_IPLT);
4138 rel.r_addend = 0;
4139 }
4140 else
4141 {
4142 /* This symbol has been marked to become local, and is
4143 used by a plabel so must be kept in the .plt. */
4144 rel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4145 rel.r_addend = value;
4146 }
4147
4148 loc = (Elf32_External_Rela *) htab->srelplt->contents;
4149 loc += htab->srelplt->reloc_count++;
4150 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner,
4151 &rel, loc);
4152 }
4153 else
4154 {
4155 bfd_put_32 (htab->splt->owner,
4156 value,
4157 htab->splt->contents + h->plt.offset);
4158 bfd_put_32 (htab->splt->owner,
4159 elf_gp (htab->splt->output_section->owner),
4160 htab->splt->contents + h->plt.offset + 4);
4161 }
4162
4163 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
4164 {
4165 /* Mark the symbol as undefined, rather than as defined in
4166 the .plt section. Leave the value alone. */
4167 sym->st_shndx = SHN_UNDEF;
4168 }
4169 }
4170
4171 if (h->got.offset != (bfd_vma) -1)
4172 {
4173 Elf_Internal_Rela rel;
4174 Elf32_External_Rela *loc;
4175
4176 /* This symbol has an entry in the global offset table. Set it
4177 up. */
4178
4179 rel.r_offset = ((h->got.offset &~ (bfd_vma) 1)
4180 + htab->sgot->output_offset
4181 + htab->sgot->output_section->vma);
4182
4183 /* If this is a -Bsymbolic link and the symbol is defined
4184 locally or was forced to be local because of a version file,
4185 we just want to emit a RELATIVE reloc. The entry in the
4186 global offset table will already have been initialized in the
4187 relocate_section function. */
4188 if (info->shared
4189 && (info->symbolic || h->dynindx == -1)
4190 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
4191 {
4192 rel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4193 rel.r_addend = (h->root.u.def.value
4194 + h->root.u.def.section->output_offset
4195 + h->root.u.def.section->output_section->vma);
4196 }
4197 else
4198 {
4199 if ((h->got.offset & 1) != 0)
4200 abort ();
4201 bfd_put_32 (output_bfd, (bfd_vma) 0,
4202 htab->sgot->contents + h->got.offset);
4203 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_DIR32);
4204 rel.r_addend = 0;
4205 }
4206
4207 loc = (Elf32_External_Rela *) htab->srelgot->contents;
4208 loc += htab->srelgot->reloc_count++;
4209 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
4210 }
4211
4212 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
4213 {
4214 asection *s;
4215 Elf_Internal_Rela rel;
4216 Elf32_External_Rela *loc;
4217
4218 /* This symbol needs a copy reloc. Set it up. */
4219
4220 if (! (h->dynindx != -1
4221 && (h->root.type == bfd_link_hash_defined
4222 || h->root.type == bfd_link_hash_defweak)))
4223 abort ();
4224
4225 s = htab->srelbss;
4226
4227 rel.r_offset = (h->root.u.def.value
4228 + h->root.u.def.section->output_offset
4229 + h->root.u.def.section->output_section->vma);
4230 rel.r_addend = 0;
4231 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_COPY);
4232 loc = (Elf32_External_Rela *) s->contents + s->reloc_count++;
4233 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
4234 }
4235
4236 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4237 if (h->root.root.string[0] == '_'
4238 && (strcmp (h->root.root.string, "_DYNAMIC") == 0
4239 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0))
4240 {
4241 sym->st_shndx = SHN_ABS;
4242 }
4243
4244 return true;
4245 }
4246
4247 /* Used to decide how to sort relocs in an optimal manner for the
4248 dynamic linker, before writing them out. */
4249
4250 static enum elf_reloc_type_class
4251 elf32_hppa_reloc_type_class (rela)
4252 const Elf_Internal_Rela *rela;
4253 {
4254 if (ELF32_R_SYM (rela->r_info) == 0)
4255 return reloc_class_relative;
4256
4257 switch ((int) ELF32_R_TYPE (rela->r_info))
4258 {
4259 case R_PARISC_IPLT:
4260 return reloc_class_plt;
4261 case R_PARISC_COPY:
4262 return reloc_class_copy;
4263 default:
4264 return reloc_class_normal;
4265 }
4266 }
4267
4268 /* Finish up the dynamic sections. */
4269
4270 static boolean
4271 elf32_hppa_finish_dynamic_sections (output_bfd, info)
4272 bfd *output_bfd;
4273 struct bfd_link_info *info;
4274 {
4275 bfd *dynobj;
4276 struct elf32_hppa_link_hash_table *htab;
4277 asection *sdyn;
4278
4279 htab = hppa_link_hash_table (info);
4280 dynobj = htab->elf.dynobj;
4281
4282 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4283
4284 if (htab->elf.dynamic_sections_created)
4285 {
4286 Elf32_External_Dyn *dyncon, *dynconend;
4287
4288 if (sdyn == NULL)
4289 abort ();
4290
4291 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4292 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
4293 for (; dyncon < dynconend; dyncon++)
4294 {
4295 Elf_Internal_Dyn dyn;
4296 asection *s;
4297
4298 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4299
4300 switch (dyn.d_tag)
4301 {
4302 default:
4303 continue;
4304
4305 case DT_PLTGOT:
4306 /* Use PLTGOT to set the GOT register. */
4307 dyn.d_un.d_ptr = elf_gp (output_bfd);
4308 break;
4309
4310 case DT_JMPREL:
4311 s = htab->srelplt;
4312 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4313 break;
4314
4315 case DT_PLTRELSZ:
4316 s = htab->srelplt;
4317 if (s->_cooked_size != 0)
4318 dyn.d_un.d_val = s->_cooked_size;
4319 else
4320 dyn.d_un.d_val = s->_raw_size;
4321 break;
4322
4323 case DT_RELASZ:
4324 /* Don't count procedure linkage table relocs in the
4325 overall reloc count. */
4326 if (htab->srelplt != NULL)
4327 {
4328 s = htab->srelplt->output_section;
4329 if (s->_cooked_size != 0)
4330 dyn.d_un.d_val -= s->_cooked_size;
4331 else
4332 dyn.d_un.d_val -= s->_raw_size;
4333 }
4334 break;
4335 }
4336
4337 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4338 }
4339 }
4340
4341 if (htab->sgot != NULL && htab->sgot->_raw_size != 0)
4342 {
4343 /* Fill in the first entry in the global offset table.
4344 We use it to point to our dynamic section, if we have one. */
4345 bfd_put_32 (output_bfd,
4346 (sdyn != NULL
4347 ? sdyn->output_section->vma + sdyn->output_offset
4348 : (bfd_vma) 0),
4349 htab->sgot->contents);
4350
4351 /* The second entry is reserved for use by the dynamic linker. */
4352 memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4353
4354 /* Set .got entry size. */
4355 elf_section_data (htab->sgot->output_section)
4356 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4357 }
4358
4359 if (htab->splt != NULL && htab->splt->_raw_size != 0)
4360 {
4361 /* Set plt entry size. */
4362 elf_section_data (htab->splt->output_section)
4363 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4364
4365 if (htab->need_plt_stub)
4366 {
4367 /* Set up the .plt stub. */
4368 memcpy (htab->splt->contents
4369 + htab->splt->_raw_size - sizeof (plt_stub),
4370 plt_stub, sizeof (plt_stub));
4371
4372 if ((htab->splt->output_offset
4373 + htab->splt->output_section->vma
4374 + htab->splt->_raw_size)
4375 != (htab->sgot->output_offset
4376 + htab->sgot->output_section->vma))
4377 {
4378 (*_bfd_error_handler)
4379 (_(".got section not immediately after .plt section"));
4380 return false;
4381 }
4382 }
4383 }
4384
4385 return true;
4386 }
4387
4388 /* Tweak the OSABI field of the elf header. */
4389
4390 static void
4391 elf32_hppa_post_process_headers (abfd, link_info)
4392 bfd *abfd;
4393 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
4394 {
4395 Elf_Internal_Ehdr * i_ehdrp;
4396
4397 i_ehdrp = elf_elfheader (abfd);
4398
4399 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
4400 {
4401 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
4402 }
4403 else
4404 {
4405 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
4406 }
4407 }
4408
4409 /* Called when writing out an object file to decide the type of a
4410 symbol. */
4411 static int
4412 elf32_hppa_elf_get_symbol_type (elf_sym, type)
4413 Elf_Internal_Sym *elf_sym;
4414 int type;
4415 {
4416 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4417 return STT_PARISC_MILLI;
4418 else
4419 return type;
4420 }
4421
4422 /* Misc BFD support code. */
4423 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4424 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4425 #define elf_info_to_howto elf_hppa_info_to_howto
4426 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4427
4428 /* Stuff for the BFD linker. */
4429 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4430 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4431 #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
4432 #define elf_backend_add_symbol_hook elf32_hppa_add_symbol_hook
4433 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4434 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4435 #define elf_backend_check_relocs elf32_hppa_check_relocs
4436 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4437 #define elf_backend_fake_sections elf_hppa_fake_sections
4438 #define elf_backend_relocate_section elf32_hppa_relocate_section
4439 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4440 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4441 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4442 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4443 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4444 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4445 #define elf_backend_object_p elf32_hppa_object_p
4446 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4447 #define elf_backend_post_process_headers elf32_hppa_post_process_headers
4448 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4449 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4450
4451 #define elf_backend_can_gc_sections 1
4452 #define elf_backend_can_refcount 1
4453 #define elf_backend_plt_alignment 2
4454 #define elf_backend_want_got_plt 0
4455 #define elf_backend_plt_readonly 0
4456 #define elf_backend_want_plt_sym 0
4457 #define elf_backend_got_header_size 8
4458 #define elf_backend_rela_normal 1
4459
4460 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4461 #define TARGET_BIG_NAME "elf32-hppa"
4462 #define ELF_ARCH bfd_arch_hppa
4463 #define ELF_MACHINE_CODE EM_PARISC
4464 #define ELF_MAXPAGESIZE 0x1000
4465
4466 #include "elf32-target.h"
4467
4468 #undef TARGET_BIG_SYM
4469 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4470 #undef TARGET_BIG_NAME
4471 #define TARGET_BIG_NAME "elf32-hppa-linux"
4472
4473 #define INCLUDED_TARGET_FILE 1
4474 #include "elf32-target.h"
This page took 0.117633 seconds and 5 git commands to generate.