* elf.c (_bfd_elf_link_hash_copy_indirect): Copy
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002, 2003 Free Software Foundation, Inc.
4
5 Original code by
6 Center for Software Science
7 Department of Computer Science
8 University of Utah
9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
26
27 #include "bfd.h"
28 #include "sysdep.h"
29 #include "libbfd.h"
30 #include "elf-bfd.h"
31 #include "elf/hppa.h"
32 #include "libhppa.h"
33 #include "elf32-hppa.h"
34 #define ARCH_SIZE 32
35 #include "elf32-hppa.h"
36 #include "elf-hppa.h"
37
38 /* In order to gain some understanding of code in this file without
39 knowing all the intricate details of the linker, note the
40 following:
41
42 Functions named elf32_hppa_* are called by external routines, other
43 functions are only called locally. elf32_hppa_* functions appear
44 in this file more or less in the order in which they are called
45 from external routines. eg. elf32_hppa_check_relocs is called
46 early in the link process, elf32_hppa_finish_dynamic_sections is
47 one of the last functions. */
48
49 /* We use two hash tables to hold information for linking PA ELF objects.
50
51 The first is the elf32_hppa_link_hash_table which is derived
52 from the standard ELF linker hash table. We use this as a place to
53 attach other hash tables and static information.
54
55 The second is the stub hash table which is derived from the
56 base BFD hash table. The stub hash table holds the information
57 necessary to build the linker stubs during a link.
58
59 There are a number of different stubs generated by the linker.
60
61 Long branch stub:
62 : ldil LR'X,%r1
63 : be,n RR'X(%sr4,%r1)
64
65 PIC long branch stub:
66 : b,l .+8,%r1
67 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
68 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
69
70 Import stub to call shared library routine from normal object file
71 (single sub-space version)
72 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
73 : ldw RR'lt_ptr+ltoff(%r1),%r21
74 : bv %r0(%r21)
75 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
76
77 Import stub to call shared library routine from shared library
78 (single sub-space version)
79 : addil LR'ltoff,%r19 ; get procedure entry point
80 : ldw RR'ltoff(%r1),%r21
81 : bv %r0(%r21)
82 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
83
84 Import stub to call shared library routine from normal object file
85 (multiple sub-space support)
86 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
87 : ldw RR'lt_ptr+ltoff(%r1),%r21
88 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
89 : ldsid (%r21),%r1
90 : mtsp %r1,%sr0
91 : be 0(%sr0,%r21) ; branch to target
92 : stw %rp,-24(%sp) ; save rp
93
94 Import stub to call shared library routine from shared library
95 (multiple sub-space support)
96 : addil LR'ltoff,%r19 ; get procedure entry point
97 : ldw RR'ltoff(%r1),%r21
98 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
99 : ldsid (%r21),%r1
100 : mtsp %r1,%sr0
101 : be 0(%sr0,%r21) ; branch to target
102 : stw %rp,-24(%sp) ; save rp
103
104 Export stub to return from shared lib routine (multiple sub-space support)
105 One of these is created for each exported procedure in a shared
106 library (and stored in the shared lib). Shared lib routines are
107 called via the first instruction in the export stub so that we can
108 do an inter-space return. Not required for single sub-space.
109 : bl,n X,%rp ; trap the return
110 : nop
111 : ldw -24(%sp),%rp ; restore the original rp
112 : ldsid (%rp),%r1
113 : mtsp %r1,%sr0
114 : be,n 0(%sr0,%rp) ; inter-space return. */
115
116 #define PLT_ENTRY_SIZE 8
117 #define GOT_ENTRY_SIZE 4
118 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
119
120 static const bfd_byte plt_stub[] =
121 {
122 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
123 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
124 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
125 #define PLT_STUB_ENTRY (3*4)
126 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
127 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
128 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
129 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
130 };
131
132 /* Section name for stubs is the associated section name plus this
133 string. */
134 #define STUB_SUFFIX ".stub"
135
136 /* We don't need to copy certain PC- or GP-relative dynamic relocs
137 into a shared object's dynamic section. All the relocs of the
138 limited class we are interested in, are absolute. */
139 #ifndef RELATIVE_DYNRELOCS
140 #define RELATIVE_DYNRELOCS 0
141 #define IS_ABSOLUTE_RELOC(r_type) 1
142 #endif
143
144 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
145 copying dynamic variables from a shared lib into an app's dynbss
146 section, and instead use a dynamic relocation to point into the
147 shared lib. */
148 #define ELIMINATE_COPY_RELOCS 1
149
150 enum elf32_hppa_stub_type {
151 hppa_stub_long_branch,
152 hppa_stub_long_branch_shared,
153 hppa_stub_import,
154 hppa_stub_import_shared,
155 hppa_stub_export,
156 hppa_stub_none
157 };
158
159 struct elf32_hppa_stub_hash_entry {
160
161 /* Base hash table entry structure. */
162 struct bfd_hash_entry root;
163
164 /* The stub section. */
165 asection *stub_sec;
166
167 /* Offset within stub_sec of the beginning of this stub. */
168 bfd_vma stub_offset;
169
170 /* Given the symbol's value and its section we can determine its final
171 value when building the stubs (so the stub knows where to jump. */
172 bfd_vma target_value;
173 asection *target_section;
174
175 enum elf32_hppa_stub_type stub_type;
176
177 /* The symbol table entry, if any, that this was derived from. */
178 struct elf32_hppa_link_hash_entry *h;
179
180 /* Where this stub is being called from, or, in the case of combined
181 stub sections, the first input section in the group. */
182 asection *id_sec;
183 };
184
185 struct elf32_hppa_link_hash_entry {
186
187 struct elf_link_hash_entry elf;
188
189 /* A pointer to the most recently used stub hash entry against this
190 symbol. */
191 struct elf32_hppa_stub_hash_entry *stub_cache;
192
193 /* Used to count relocations for delayed sizing of relocation
194 sections. */
195 struct elf32_hppa_dyn_reloc_entry {
196
197 /* Next relocation in the chain. */
198 struct elf32_hppa_dyn_reloc_entry *next;
199
200 /* The input section of the reloc. */
201 asection *sec;
202
203 /* Number of relocs copied in this section. */
204 bfd_size_type count;
205
206 #if RELATIVE_DYNRELOCS
207 /* Number of relative relocs copied for the input section. */
208 bfd_size_type relative_count;
209 #endif
210 } *dyn_relocs;
211
212 /* Set if this symbol is used by a plabel reloc. */
213 unsigned int plabel:1;
214 };
215
216 struct elf32_hppa_link_hash_table {
217
218 /* The main hash table. */
219 struct elf_link_hash_table elf;
220
221 /* The stub hash table. */
222 struct bfd_hash_table stub_hash_table;
223
224 /* Linker stub bfd. */
225 bfd *stub_bfd;
226
227 /* Linker call-backs. */
228 asection * (*add_stub_section) (const char *, asection *);
229 void (*layout_sections_again) (void);
230
231 /* Array to keep track of which stub sections have been created, and
232 information on stub grouping. */
233 struct map_stub {
234 /* This is the section to which stubs in the group will be
235 attached. */
236 asection *link_sec;
237 /* The stub section. */
238 asection *stub_sec;
239 } *stub_group;
240
241 /* Assorted information used by elf32_hppa_size_stubs. */
242 unsigned int bfd_count;
243 int top_index;
244 asection **input_list;
245 Elf_Internal_Sym **all_local_syms;
246
247 /* Short-cuts to get to dynamic linker sections. */
248 asection *sgot;
249 asection *srelgot;
250 asection *splt;
251 asection *srelplt;
252 asection *sdynbss;
253 asection *srelbss;
254
255 /* Used during a final link to store the base of the text and data
256 segments so that we can perform SEGREL relocations. */
257 bfd_vma text_segment_base;
258 bfd_vma data_segment_base;
259
260 /* Whether we support multiple sub-spaces for shared libs. */
261 unsigned int multi_subspace:1;
262
263 /* Flags set when various size branches are detected. Used to
264 select suitable defaults for the stub group size. */
265 unsigned int has_12bit_branch:1;
266 unsigned int has_17bit_branch:1;
267 unsigned int has_22bit_branch:1;
268
269 /* Set if we need a .plt stub to support lazy dynamic linking. */
270 unsigned int need_plt_stub:1;
271
272 /* Small local sym to section mapping cache. */
273 struct sym_sec_cache sym_sec;
274 };
275
276 /* Various hash macros and functions. */
277 #define hppa_link_hash_table(p) \
278 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
279
280 #define hppa_stub_hash_lookup(table, string, create, copy) \
281 ((struct elf32_hppa_stub_hash_entry *) \
282 bfd_hash_lookup ((table), (string), (create), (copy)))
283
284 /* Assorted hash table functions. */
285
286 /* Initialize an entry in the stub hash table. */
287
288 static struct bfd_hash_entry *
289 stub_hash_newfunc (struct bfd_hash_entry *entry,
290 struct bfd_hash_table *table,
291 const char *string)
292 {
293 /* Allocate the structure if it has not already been allocated by a
294 subclass. */
295 if (entry == NULL)
296 {
297 entry = bfd_hash_allocate (table,
298 sizeof (struct elf32_hppa_stub_hash_entry));
299 if (entry == NULL)
300 return entry;
301 }
302
303 /* Call the allocation method of the superclass. */
304 entry = bfd_hash_newfunc (entry, table, string);
305 if (entry != NULL)
306 {
307 struct elf32_hppa_stub_hash_entry *eh;
308
309 /* Initialize the local fields. */
310 eh = (struct elf32_hppa_stub_hash_entry *) entry;
311 eh->stub_sec = NULL;
312 eh->stub_offset = 0;
313 eh->target_value = 0;
314 eh->target_section = NULL;
315 eh->stub_type = hppa_stub_long_branch;
316 eh->h = NULL;
317 eh->id_sec = NULL;
318 }
319
320 return entry;
321 }
322
323 /* Initialize an entry in the link hash table. */
324
325 static struct bfd_hash_entry *
326 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
327 struct bfd_hash_table *table,
328 const char *string)
329 {
330 /* Allocate the structure if it has not already been allocated by a
331 subclass. */
332 if (entry == NULL)
333 {
334 entry = bfd_hash_allocate (table,
335 sizeof (struct elf32_hppa_link_hash_entry));
336 if (entry == NULL)
337 return entry;
338 }
339
340 /* Call the allocation method of the superclass. */
341 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
342 if (entry != NULL)
343 {
344 struct elf32_hppa_link_hash_entry *eh;
345
346 /* Initialize the local fields. */
347 eh = (struct elf32_hppa_link_hash_entry *) entry;
348 eh->stub_cache = NULL;
349 eh->dyn_relocs = NULL;
350 eh->plabel = 0;
351 }
352
353 return entry;
354 }
355
356 /* Create the derived linker hash table. The PA ELF port uses the derived
357 hash table to keep information specific to the PA ELF linker (without
358 using static variables). */
359
360 static struct bfd_link_hash_table *
361 elf32_hppa_link_hash_table_create (bfd *abfd)
362 {
363 struct elf32_hppa_link_hash_table *ret;
364 bfd_size_type amt = sizeof (*ret);
365
366 ret = bfd_malloc (amt);
367 if (ret == NULL)
368 return NULL;
369
370 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, hppa_link_hash_newfunc))
371 {
372 free (ret);
373 return NULL;
374 }
375
376 /* Init the stub hash table too. */
377 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc))
378 return NULL;
379
380 ret->stub_bfd = NULL;
381 ret->add_stub_section = NULL;
382 ret->layout_sections_again = NULL;
383 ret->stub_group = NULL;
384 ret->sgot = NULL;
385 ret->srelgot = NULL;
386 ret->splt = NULL;
387 ret->srelplt = NULL;
388 ret->sdynbss = NULL;
389 ret->srelbss = NULL;
390 ret->text_segment_base = (bfd_vma) -1;
391 ret->data_segment_base = (bfd_vma) -1;
392 ret->multi_subspace = 0;
393 ret->has_12bit_branch = 0;
394 ret->has_17bit_branch = 0;
395 ret->has_22bit_branch = 0;
396 ret->need_plt_stub = 0;
397 ret->sym_sec.abfd = NULL;
398
399 return &ret->elf.root;
400 }
401
402 /* Free the derived linker hash table. */
403
404 static void
405 elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *hash)
406 {
407 struct elf32_hppa_link_hash_table *ret
408 = (struct elf32_hppa_link_hash_table *) hash;
409
410 bfd_hash_table_free (&ret->stub_hash_table);
411 _bfd_generic_link_hash_table_free (hash);
412 }
413
414 /* Build a name for an entry in the stub hash table. */
415
416 static char *
417 hppa_stub_name (const asection *input_section,
418 const asection *sym_sec,
419 const struct elf32_hppa_link_hash_entry *hash,
420 const Elf_Internal_Rela *rel)
421 {
422 char *stub_name;
423 bfd_size_type len;
424
425 if (hash)
426 {
427 len = 8 + 1 + strlen (hash->elf.root.root.string) + 1 + 8 + 1;
428 stub_name = bfd_malloc (len);
429 if (stub_name != NULL)
430 {
431 sprintf (stub_name, "%08x_%s+%x",
432 input_section->id & 0xffffffff,
433 hash->elf.root.root.string,
434 (int) rel->r_addend & 0xffffffff);
435 }
436 }
437 else
438 {
439 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
440 stub_name = bfd_malloc (len);
441 if (stub_name != NULL)
442 {
443 sprintf (stub_name, "%08x_%x:%x+%x",
444 input_section->id & 0xffffffff,
445 sym_sec->id & 0xffffffff,
446 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
447 (int) rel->r_addend & 0xffffffff);
448 }
449 }
450 return stub_name;
451 }
452
453 /* Look up an entry in the stub hash. Stub entries are cached because
454 creating the stub name takes a bit of time. */
455
456 static struct elf32_hppa_stub_hash_entry *
457 hppa_get_stub_entry (const asection *input_section,
458 const asection *sym_sec,
459 struct elf32_hppa_link_hash_entry *hash,
460 const Elf_Internal_Rela *rel,
461 struct elf32_hppa_link_hash_table *htab)
462 {
463 struct elf32_hppa_stub_hash_entry *stub_entry;
464 const asection *id_sec;
465
466 /* If this input section is part of a group of sections sharing one
467 stub section, then use the id of the first section in the group.
468 Stub names need to include a section id, as there may well be
469 more than one stub used to reach say, printf, and we need to
470 distinguish between them. */
471 id_sec = htab->stub_group[input_section->id].link_sec;
472
473 if (hash != NULL && hash->stub_cache != NULL
474 && hash->stub_cache->h == hash
475 && hash->stub_cache->id_sec == id_sec)
476 {
477 stub_entry = hash->stub_cache;
478 }
479 else
480 {
481 char *stub_name;
482
483 stub_name = hppa_stub_name (id_sec, sym_sec, hash, rel);
484 if (stub_name == NULL)
485 return NULL;
486
487 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
488 stub_name, FALSE, FALSE);
489 if (hash != NULL)
490 hash->stub_cache = stub_entry;
491
492 free (stub_name);
493 }
494
495 return stub_entry;
496 }
497
498 /* Add a new stub entry to the stub hash. Not all fields of the new
499 stub entry are initialised. */
500
501 static struct elf32_hppa_stub_hash_entry *
502 hppa_add_stub (const char *stub_name,
503 asection *section,
504 struct elf32_hppa_link_hash_table *htab)
505 {
506 asection *link_sec;
507 asection *stub_sec;
508 struct elf32_hppa_stub_hash_entry *stub_entry;
509
510 link_sec = htab->stub_group[section->id].link_sec;
511 stub_sec = htab->stub_group[section->id].stub_sec;
512 if (stub_sec == NULL)
513 {
514 stub_sec = htab->stub_group[link_sec->id].stub_sec;
515 if (stub_sec == NULL)
516 {
517 size_t namelen;
518 bfd_size_type len;
519 char *s_name;
520
521 namelen = strlen (link_sec->name);
522 len = namelen + sizeof (STUB_SUFFIX);
523 s_name = bfd_alloc (htab->stub_bfd, len);
524 if (s_name == NULL)
525 return NULL;
526
527 memcpy (s_name, link_sec->name, namelen);
528 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
529 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
530 if (stub_sec == NULL)
531 return NULL;
532 htab->stub_group[link_sec->id].stub_sec = stub_sec;
533 }
534 htab->stub_group[section->id].stub_sec = stub_sec;
535 }
536
537 /* Enter this entry into the linker stub hash table. */
538 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table, stub_name,
539 TRUE, FALSE);
540 if (stub_entry == NULL)
541 {
542 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
543 bfd_archive_filename (section->owner),
544 stub_name);
545 return NULL;
546 }
547
548 stub_entry->stub_sec = stub_sec;
549 stub_entry->stub_offset = 0;
550 stub_entry->id_sec = link_sec;
551 return stub_entry;
552 }
553
554 /* Determine the type of stub needed, if any, for a call. */
555
556 static enum elf32_hppa_stub_type
557 hppa_type_of_stub (asection *input_sec,
558 const Elf_Internal_Rela *rel,
559 struct elf32_hppa_link_hash_entry *hash,
560 bfd_vma destination,
561 struct bfd_link_info *info)
562 {
563 bfd_vma location;
564 bfd_vma branch_offset;
565 bfd_vma max_branch_offset;
566 unsigned int r_type;
567
568 if (hash != NULL
569 && hash->elf.plt.offset != (bfd_vma) -1
570 && hash->elf.dynindx != -1
571 && !hash->plabel
572 && (info->shared
573 || !(hash->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
574 || hash->elf.root.type == bfd_link_hash_defweak))
575 {
576 /* We need an import stub. Decide between hppa_stub_import
577 and hppa_stub_import_shared later. */
578 return hppa_stub_import;
579 }
580
581 /* Determine where the call point is. */
582 location = (input_sec->output_offset
583 + input_sec->output_section->vma
584 + rel->r_offset);
585
586 branch_offset = destination - location - 8;
587 r_type = ELF32_R_TYPE (rel->r_info);
588
589 /* Determine if a long branch stub is needed. parisc branch offsets
590 are relative to the second instruction past the branch, ie. +8
591 bytes on from the branch instruction location. The offset is
592 signed and counts in units of 4 bytes. */
593 if (r_type == (unsigned int) R_PARISC_PCREL17F)
594 {
595 max_branch_offset = (1 << (17-1)) << 2;
596 }
597 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
598 {
599 max_branch_offset = (1 << (12-1)) << 2;
600 }
601 else /* R_PARISC_PCREL22F. */
602 {
603 max_branch_offset = (1 << (22-1)) << 2;
604 }
605
606 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
607 return hppa_stub_long_branch;
608
609 return hppa_stub_none;
610 }
611
612 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
613 IN_ARG contains the link info pointer. */
614
615 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
616 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
617
618 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
619 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
620 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
621
622 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
623 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
624 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
625 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
626
627 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
628 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
629
630 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
631 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
632 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
633 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
634
635 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
636 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
637 #define NOP 0x08000240 /* nop */
638 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
639 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
640 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
641
642 #ifndef R19_STUBS
643 #define R19_STUBS 1
644 #endif
645
646 #if R19_STUBS
647 #define LDW_R1_DLT LDW_R1_R19
648 #else
649 #define LDW_R1_DLT LDW_R1_DP
650 #endif
651
652 static bfd_boolean
653 hppa_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
654 {
655 struct elf32_hppa_stub_hash_entry *stub_entry;
656 struct bfd_link_info *info;
657 struct elf32_hppa_link_hash_table *htab;
658 asection *stub_sec;
659 bfd *stub_bfd;
660 bfd_byte *loc;
661 bfd_vma sym_value;
662 bfd_vma insn;
663 bfd_vma off;
664 int val;
665 int size;
666
667 /* Massage our args to the form they really have. */
668 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
669 info = in_arg;
670
671 htab = hppa_link_hash_table (info);
672 stub_sec = stub_entry->stub_sec;
673
674 /* Make a note of the offset within the stubs for this entry. */
675 stub_entry->stub_offset = stub_sec->_raw_size;
676 loc = stub_sec->contents + stub_entry->stub_offset;
677
678 stub_bfd = stub_sec->owner;
679
680 switch (stub_entry->stub_type)
681 {
682 case hppa_stub_long_branch:
683 /* Create the long branch. A long branch is formed with "ldil"
684 loading the upper bits of the target address into a register,
685 then branching with "be" which adds in the lower bits.
686 The "be" has its delay slot nullified. */
687 sym_value = (stub_entry->target_value
688 + stub_entry->target_section->output_offset
689 + stub_entry->target_section->output_section->vma);
690
691 val = hppa_field_adjust (sym_value, 0, e_lrsel);
692 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
693 bfd_put_32 (stub_bfd, insn, loc);
694
695 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
696 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
697 bfd_put_32 (stub_bfd, insn, loc + 4);
698
699 size = 8;
700 break;
701
702 case hppa_stub_long_branch_shared:
703 /* Branches are relative. This is where we are going to. */
704 sym_value = (stub_entry->target_value
705 + stub_entry->target_section->output_offset
706 + stub_entry->target_section->output_section->vma);
707
708 /* And this is where we are coming from, more or less. */
709 sym_value -= (stub_entry->stub_offset
710 + stub_sec->output_offset
711 + stub_sec->output_section->vma);
712
713 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
714 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
715 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
716 bfd_put_32 (stub_bfd, insn, loc + 4);
717
718 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
719 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
720 bfd_put_32 (stub_bfd, insn, loc + 8);
721 size = 12;
722 break;
723
724 case hppa_stub_import:
725 case hppa_stub_import_shared:
726 off = stub_entry->h->elf.plt.offset;
727 if (off >= (bfd_vma) -2)
728 abort ();
729
730 off &= ~ (bfd_vma) 1;
731 sym_value = (off
732 + htab->splt->output_offset
733 + htab->splt->output_section->vma
734 - elf_gp (htab->splt->output_section->owner));
735
736 insn = ADDIL_DP;
737 #if R19_STUBS
738 if (stub_entry->stub_type == hppa_stub_import_shared)
739 insn = ADDIL_R19;
740 #endif
741 val = hppa_field_adjust (sym_value, 0, e_lrsel),
742 insn = hppa_rebuild_insn ((int) insn, val, 21);
743 bfd_put_32 (stub_bfd, insn, loc);
744
745 /* It is critical to use lrsel/rrsel here because we are using
746 two different offsets (+0 and +4) from sym_value. If we use
747 lsel/rsel then with unfortunate sym_values we will round
748 sym_value+4 up to the next 2k block leading to a mis-match
749 between the lsel and rsel value. */
750 val = hppa_field_adjust (sym_value, 0, e_rrsel);
751 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
752 bfd_put_32 (stub_bfd, insn, loc + 4);
753
754 if (htab->multi_subspace)
755 {
756 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
757 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
758 bfd_put_32 (stub_bfd, insn, loc + 8);
759
760 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
761 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
762 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
763 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
764
765 size = 28;
766 }
767 else
768 {
769 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
770 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
771 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
772 bfd_put_32 (stub_bfd, insn, loc + 12);
773
774 size = 16;
775 }
776
777 break;
778
779 case hppa_stub_export:
780 /* Branches are relative. This is where we are going to. */
781 sym_value = (stub_entry->target_value
782 + stub_entry->target_section->output_offset
783 + stub_entry->target_section->output_section->vma);
784
785 /* And this is where we are coming from. */
786 sym_value -= (stub_entry->stub_offset
787 + stub_sec->output_offset
788 + stub_sec->output_section->vma);
789
790 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
791 && (!htab->has_22bit_branch
792 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
793 {
794 (*_bfd_error_handler)
795 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
796 bfd_archive_filename (stub_entry->target_section->owner),
797 stub_sec->name,
798 (long) stub_entry->stub_offset,
799 stub_entry->root.string);
800 bfd_set_error (bfd_error_bad_value);
801 return FALSE;
802 }
803
804 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
805 if (!htab->has_22bit_branch)
806 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
807 else
808 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
809 bfd_put_32 (stub_bfd, insn, loc);
810
811 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
812 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
813 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
814 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
815 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
816
817 /* Point the function symbol at the stub. */
818 stub_entry->h->elf.root.u.def.section = stub_sec;
819 stub_entry->h->elf.root.u.def.value = stub_sec->_raw_size;
820
821 size = 24;
822 break;
823
824 default:
825 BFD_FAIL ();
826 return FALSE;
827 }
828
829 stub_sec->_raw_size += size;
830 return TRUE;
831 }
832
833 #undef LDIL_R1
834 #undef BE_SR4_R1
835 #undef BL_R1
836 #undef ADDIL_R1
837 #undef DEPI_R1
838 #undef LDW_R1_R21
839 #undef LDW_R1_DLT
840 #undef LDW_R1_R19
841 #undef ADDIL_R19
842 #undef LDW_R1_DP
843 #undef LDSID_R21_R1
844 #undef MTSP_R1
845 #undef BE_SR0_R21
846 #undef STW_RP
847 #undef BV_R0_R21
848 #undef BL_RP
849 #undef NOP
850 #undef LDW_RP
851 #undef LDSID_RP_R1
852 #undef BE_SR0_RP
853
854 /* As above, but don't actually build the stub. Just bump offset so
855 we know stub section sizes. */
856
857 static bfd_boolean
858 hppa_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
859 {
860 struct elf32_hppa_stub_hash_entry *stub_entry;
861 struct elf32_hppa_link_hash_table *htab;
862 int size;
863
864 /* Massage our args to the form they really have. */
865 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
866 htab = in_arg;
867
868 if (stub_entry->stub_type == hppa_stub_long_branch)
869 size = 8;
870 else if (stub_entry->stub_type == hppa_stub_long_branch_shared)
871 size = 12;
872 else if (stub_entry->stub_type == hppa_stub_export)
873 size = 24;
874 else /* hppa_stub_import or hppa_stub_import_shared. */
875 {
876 if (htab->multi_subspace)
877 size = 28;
878 else
879 size = 16;
880 }
881
882 stub_entry->stub_sec->_raw_size += size;
883 return TRUE;
884 }
885
886 /* Return nonzero if ABFD represents an HPPA ELF32 file.
887 Additionally we set the default architecture and machine. */
888
889 static bfd_boolean
890 elf32_hppa_object_p (bfd *abfd)
891 {
892 Elf_Internal_Ehdr * i_ehdrp;
893 unsigned int flags;
894
895 i_ehdrp = elf_elfheader (abfd);
896 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
897 {
898 /* GCC on hppa-linux produces binaries with OSABI=Linux,
899 but the kernel produces corefiles with OSABI=SysV. */
900 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX &&
901 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
902 return FALSE;
903 }
904 else
905 {
906 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
907 return FALSE;
908 }
909
910 flags = i_ehdrp->e_flags;
911 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
912 {
913 case EFA_PARISC_1_0:
914 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
915 case EFA_PARISC_1_1:
916 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
917 case EFA_PARISC_2_0:
918 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
919 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
920 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
921 }
922 return TRUE;
923 }
924
925 /* Create the .plt and .got sections, and set up our hash table
926 short-cuts to various dynamic sections. */
927
928 static bfd_boolean
929 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
930 {
931 struct elf32_hppa_link_hash_table *htab;
932
933 /* Don't try to create the .plt and .got twice. */
934 htab = hppa_link_hash_table (info);
935 if (htab->splt != NULL)
936 return TRUE;
937
938 /* Call the generic code to do most of the work. */
939 if (! _bfd_elf_create_dynamic_sections (abfd, info))
940 return FALSE;
941
942 htab->splt = bfd_get_section_by_name (abfd, ".plt");
943 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
944
945 htab->sgot = bfd_get_section_by_name (abfd, ".got");
946 htab->srelgot = bfd_make_section (abfd, ".rela.got");
947 if (htab->srelgot == NULL
948 || ! bfd_set_section_flags (abfd, htab->srelgot,
949 (SEC_ALLOC
950 | SEC_LOAD
951 | SEC_HAS_CONTENTS
952 | SEC_IN_MEMORY
953 | SEC_LINKER_CREATED
954 | SEC_READONLY))
955 || ! bfd_set_section_alignment (abfd, htab->srelgot, 2))
956 return FALSE;
957
958 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
959 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
960
961 return TRUE;
962 }
963
964 /* Copy the extra info we tack onto an elf_link_hash_entry. */
965
966 static void
967 elf32_hppa_copy_indirect_symbol (const struct elf_backend_data *bed,
968 struct elf_link_hash_entry *dir,
969 struct elf_link_hash_entry *ind)
970 {
971 struct elf32_hppa_link_hash_entry *edir, *eind;
972
973 edir = (struct elf32_hppa_link_hash_entry *) dir;
974 eind = (struct elf32_hppa_link_hash_entry *) ind;
975
976 if (eind->dyn_relocs != NULL)
977 {
978 if (edir->dyn_relocs != NULL)
979 {
980 struct elf32_hppa_dyn_reloc_entry **pp;
981 struct elf32_hppa_dyn_reloc_entry *p;
982
983 if (ind->root.type == bfd_link_hash_indirect)
984 abort ();
985
986 /* Add reloc counts against the weak sym to the strong sym
987 list. Merge any entries against the same section. */
988 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
989 {
990 struct elf32_hppa_dyn_reloc_entry *q;
991
992 for (q = edir->dyn_relocs; q != NULL; q = q->next)
993 if (q->sec == p->sec)
994 {
995 #if RELATIVE_DYNRELOCS
996 q->relative_count += p->relative_count;
997 #endif
998 q->count += p->count;
999 *pp = p->next;
1000 break;
1001 }
1002 if (q == NULL)
1003 pp = &p->next;
1004 }
1005 *pp = edir->dyn_relocs;
1006 }
1007
1008 edir->dyn_relocs = eind->dyn_relocs;
1009 eind->dyn_relocs = NULL;
1010 }
1011
1012 if (ELIMINATE_COPY_RELOCS
1013 && ind->root.type != bfd_link_hash_indirect
1014 && (dir->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
1015 /* If called to transfer flags for a weakdef during processing
1016 of elf_adjust_dynamic_symbol, don't copy ELF_LINK_NON_GOT_REF.
1017 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1018 dir->elf_link_hash_flags |=
1019 (ind->elf_link_hash_flags & (ELF_LINK_HASH_REF_DYNAMIC
1020 | ELF_LINK_HASH_REF_REGULAR
1021 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
1022 | ELF_LINK_HASH_NEEDS_PLT));
1023 else
1024 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
1025 }
1026
1027 /* Look through the relocs for a section during the first phase, and
1028 calculate needed space in the global offset table, procedure linkage
1029 table, and dynamic reloc sections. At this point we haven't
1030 necessarily read all the input files. */
1031
1032 static bfd_boolean
1033 elf32_hppa_check_relocs (bfd *abfd,
1034 struct bfd_link_info *info,
1035 asection *sec,
1036 const Elf_Internal_Rela *relocs)
1037 {
1038 Elf_Internal_Shdr *symtab_hdr;
1039 struct elf_link_hash_entry **sym_hashes;
1040 const Elf_Internal_Rela *rel;
1041 const Elf_Internal_Rela *rel_end;
1042 struct elf32_hppa_link_hash_table *htab;
1043 asection *sreloc;
1044 asection *stubreloc;
1045
1046 if (info->relocatable)
1047 return TRUE;
1048
1049 htab = hppa_link_hash_table (info);
1050 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1051 sym_hashes = elf_sym_hashes (abfd);
1052 sreloc = NULL;
1053 stubreloc = NULL;
1054
1055 rel_end = relocs + sec->reloc_count;
1056 for (rel = relocs; rel < rel_end; rel++)
1057 {
1058 enum {
1059 NEED_GOT = 1,
1060 NEED_PLT = 2,
1061 NEED_DYNREL = 4,
1062 PLT_PLABEL = 8
1063 };
1064
1065 unsigned int r_symndx, r_type;
1066 struct elf32_hppa_link_hash_entry *h;
1067 int need_entry;
1068
1069 r_symndx = ELF32_R_SYM (rel->r_info);
1070
1071 if (r_symndx < symtab_hdr->sh_info)
1072 h = NULL;
1073 else
1074 h = ((struct elf32_hppa_link_hash_entry *)
1075 sym_hashes[r_symndx - symtab_hdr->sh_info]);
1076
1077 r_type = ELF32_R_TYPE (rel->r_info);
1078
1079 switch (r_type)
1080 {
1081 case R_PARISC_DLTIND14F:
1082 case R_PARISC_DLTIND14R:
1083 case R_PARISC_DLTIND21L:
1084 /* This symbol requires a global offset table entry. */
1085 need_entry = NEED_GOT;
1086 break;
1087
1088 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1089 case R_PARISC_PLABEL21L:
1090 case R_PARISC_PLABEL32:
1091 /* If the addend is non-zero, we break badly. */
1092 if (rel->r_addend != 0)
1093 abort ();
1094
1095 /* If we are creating a shared library, then we need to
1096 create a PLT entry for all PLABELs, because PLABELs with
1097 local symbols may be passed via a pointer to another
1098 object. Additionally, output a dynamic relocation
1099 pointing to the PLT entry.
1100 For executables, the original 32-bit ABI allowed two
1101 different styles of PLABELs (function pointers): For
1102 global functions, the PLABEL word points into the .plt
1103 two bytes past a (function address, gp) pair, and for
1104 local functions the PLABEL points directly at the
1105 function. The magic +2 for the first type allows us to
1106 differentiate between the two. As you can imagine, this
1107 is a real pain when it comes to generating code to call
1108 functions indirectly or to compare function pointers.
1109 We avoid the mess by always pointing a PLABEL into the
1110 .plt, even for local functions. */
1111 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1112 break;
1113
1114 case R_PARISC_PCREL12F:
1115 htab->has_12bit_branch = 1;
1116 goto branch_common;
1117
1118 case R_PARISC_PCREL17C:
1119 case R_PARISC_PCREL17F:
1120 htab->has_17bit_branch = 1;
1121 goto branch_common;
1122
1123 case R_PARISC_PCREL22F:
1124 htab->has_22bit_branch = 1;
1125 branch_common:
1126 /* Function calls might need to go through the .plt, and
1127 might require long branch stubs. */
1128 if (h == NULL)
1129 {
1130 /* We know local syms won't need a .plt entry, and if
1131 they need a long branch stub we can't guarantee that
1132 we can reach the stub. So just flag an error later
1133 if we're doing a shared link and find we need a long
1134 branch stub. */
1135 continue;
1136 }
1137 else
1138 {
1139 /* Global symbols will need a .plt entry if they remain
1140 global, and in most cases won't need a long branch
1141 stub. Unfortunately, we have to cater for the case
1142 where a symbol is forced local by versioning, or due
1143 to symbolic linking, and we lose the .plt entry. */
1144 need_entry = NEED_PLT;
1145 if (h->elf.type == STT_PARISC_MILLI)
1146 need_entry = 0;
1147 }
1148 break;
1149
1150 case R_PARISC_SEGBASE: /* Used to set segment base. */
1151 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1152 case R_PARISC_PCREL14F: /* PC relative load/store. */
1153 case R_PARISC_PCREL14R:
1154 case R_PARISC_PCREL17R: /* External branches. */
1155 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1156 /* We don't need to propagate the relocation if linking a
1157 shared object since these are section relative. */
1158 continue;
1159
1160 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1161 case R_PARISC_DPREL14R:
1162 case R_PARISC_DPREL21L:
1163 if (info->shared)
1164 {
1165 (*_bfd_error_handler)
1166 (_("%s: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1167 bfd_archive_filename (abfd),
1168 elf_hppa_howto_table[r_type].name);
1169 bfd_set_error (bfd_error_bad_value);
1170 return FALSE;
1171 }
1172 /* Fall through. */
1173
1174 case R_PARISC_DIR17F: /* Used for external branches. */
1175 case R_PARISC_DIR17R:
1176 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1177 case R_PARISC_DIR14R:
1178 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1179 #if 0
1180 /* Help debug shared library creation. Any of the above
1181 relocs can be used in shared libs, but they may cause
1182 pages to become unshared. */
1183 if (info->shared)
1184 {
1185 (*_bfd_error_handler)
1186 (_("%s: relocation %s should not be used when making a shared object; recompile with -fPIC"),
1187 bfd_archive_filename (abfd),
1188 elf_hppa_howto_table[r_type].name);
1189 }
1190 /* Fall through. */
1191 #endif
1192
1193 case R_PARISC_DIR32: /* .word relocs. */
1194 /* We may want to output a dynamic relocation later. */
1195 need_entry = NEED_DYNREL;
1196 break;
1197
1198 /* This relocation describes the C++ object vtable hierarchy.
1199 Reconstruct it for later use during GC. */
1200 case R_PARISC_GNU_VTINHERIT:
1201 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec,
1202 &h->elf, rel->r_offset))
1203 return FALSE;
1204 continue;
1205
1206 /* This relocation describes which C++ vtable entries are actually
1207 used. Record for later use during GC. */
1208 case R_PARISC_GNU_VTENTRY:
1209 if (!_bfd_elf32_gc_record_vtentry (abfd, sec,
1210 &h->elf, rel->r_addend))
1211 return FALSE;
1212 continue;
1213
1214 default:
1215 continue;
1216 }
1217
1218 /* Now carry out our orders. */
1219 if (need_entry & NEED_GOT)
1220 {
1221 /* Allocate space for a GOT entry, as well as a dynamic
1222 relocation for this entry. */
1223 if (htab->sgot == NULL)
1224 {
1225 if (htab->elf.dynobj == NULL)
1226 htab->elf.dynobj = abfd;
1227 if (!elf32_hppa_create_dynamic_sections (htab->elf.dynobj, info))
1228 return FALSE;
1229 }
1230
1231 if (h != NULL)
1232 {
1233 h->elf.got.refcount += 1;
1234 }
1235 else
1236 {
1237 bfd_signed_vma *local_got_refcounts;
1238
1239 /* This is a global offset table entry for a local symbol. */
1240 local_got_refcounts = elf_local_got_refcounts (abfd);
1241 if (local_got_refcounts == NULL)
1242 {
1243 bfd_size_type size;
1244
1245 /* Allocate space for local got offsets and local
1246 plt offsets. Done this way to save polluting
1247 elf_obj_tdata with another target specific
1248 pointer. */
1249 size = symtab_hdr->sh_info;
1250 size *= 2 * sizeof (bfd_signed_vma);
1251 local_got_refcounts = bfd_zalloc (abfd, size);
1252 if (local_got_refcounts == NULL)
1253 return FALSE;
1254 elf_local_got_refcounts (abfd) = local_got_refcounts;
1255 }
1256 local_got_refcounts[r_symndx] += 1;
1257 }
1258 }
1259
1260 if (need_entry & NEED_PLT)
1261 {
1262 /* If we are creating a shared library, and this is a reloc
1263 against a weak symbol or a global symbol in a dynamic
1264 object, then we will be creating an import stub and a
1265 .plt entry for the symbol. Similarly, on a normal link
1266 to symbols defined in a dynamic object we'll need the
1267 import stub and a .plt entry. We don't know yet whether
1268 the symbol is defined or not, so make an entry anyway and
1269 clean up later in adjust_dynamic_symbol. */
1270 if ((sec->flags & SEC_ALLOC) != 0)
1271 {
1272 if (h != NULL)
1273 {
1274 h->elf.elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1275 h->elf.plt.refcount += 1;
1276
1277 /* If this .plt entry is for a plabel, mark it so
1278 that adjust_dynamic_symbol will keep the entry
1279 even if it appears to be local. */
1280 if (need_entry & PLT_PLABEL)
1281 h->plabel = 1;
1282 }
1283 else if (need_entry & PLT_PLABEL)
1284 {
1285 bfd_signed_vma *local_got_refcounts;
1286 bfd_signed_vma *local_plt_refcounts;
1287
1288 local_got_refcounts = elf_local_got_refcounts (abfd);
1289 if (local_got_refcounts == NULL)
1290 {
1291 bfd_size_type size;
1292
1293 /* Allocate space for local got offsets and local
1294 plt offsets. */
1295 size = symtab_hdr->sh_info;
1296 size *= 2 * sizeof (bfd_signed_vma);
1297 local_got_refcounts = bfd_zalloc (abfd, size);
1298 if (local_got_refcounts == NULL)
1299 return FALSE;
1300 elf_local_got_refcounts (abfd) = local_got_refcounts;
1301 }
1302 local_plt_refcounts = (local_got_refcounts
1303 + symtab_hdr->sh_info);
1304 local_plt_refcounts[r_symndx] += 1;
1305 }
1306 }
1307 }
1308
1309 if (need_entry & NEED_DYNREL)
1310 {
1311 /* Flag this symbol as having a non-got, non-plt reference
1312 so that we generate copy relocs if it turns out to be
1313 dynamic. */
1314 if (h != NULL && !info->shared)
1315 h->elf.elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
1316
1317 /* If we are creating a shared library then we need to copy
1318 the reloc into the shared library. However, if we are
1319 linking with -Bsymbolic, we need only copy absolute
1320 relocs or relocs against symbols that are not defined in
1321 an object we are including in the link. PC- or DP- or
1322 DLT-relative relocs against any local sym or global sym
1323 with DEF_REGULAR set, can be discarded. At this point we
1324 have not seen all the input files, so it is possible that
1325 DEF_REGULAR is not set now but will be set later (it is
1326 never cleared). We account for that possibility below by
1327 storing information in the dyn_relocs field of the
1328 hash table entry.
1329
1330 A similar situation to the -Bsymbolic case occurs when
1331 creating shared libraries and symbol visibility changes
1332 render the symbol local.
1333
1334 As it turns out, all the relocs we will be creating here
1335 are absolute, so we cannot remove them on -Bsymbolic
1336 links or visibility changes anyway. A STUB_REL reloc
1337 is absolute too, as in that case it is the reloc in the
1338 stub we will be creating, rather than copying the PCREL
1339 reloc in the branch.
1340
1341 If on the other hand, we are creating an executable, we
1342 may need to keep relocations for symbols satisfied by a
1343 dynamic library if we manage to avoid copy relocs for the
1344 symbol. */
1345 if ((info->shared
1346 && (sec->flags & SEC_ALLOC) != 0
1347 && (IS_ABSOLUTE_RELOC (r_type)
1348 || (h != NULL
1349 && (!info->symbolic
1350 || h->elf.root.type == bfd_link_hash_defweak
1351 || (h->elf.elf_link_hash_flags
1352 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1353 || (ELIMINATE_COPY_RELOCS
1354 && !info->shared
1355 && (sec->flags & SEC_ALLOC) != 0
1356 && h != NULL
1357 && (h->elf.root.type == bfd_link_hash_defweak
1358 || (h->elf.elf_link_hash_flags
1359 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
1360 {
1361 struct elf32_hppa_dyn_reloc_entry *p;
1362 struct elf32_hppa_dyn_reloc_entry **head;
1363
1364 /* Create a reloc section in dynobj and make room for
1365 this reloc. */
1366 if (sreloc == NULL)
1367 {
1368 char *name;
1369 bfd *dynobj;
1370
1371 name = (bfd_elf_string_from_elf_section
1372 (abfd,
1373 elf_elfheader (abfd)->e_shstrndx,
1374 elf_section_data (sec)->rel_hdr.sh_name));
1375 if (name == NULL)
1376 {
1377 (*_bfd_error_handler)
1378 (_("Could not find relocation section for %s"),
1379 sec->name);
1380 bfd_set_error (bfd_error_bad_value);
1381 return FALSE;
1382 }
1383
1384 if (htab->elf.dynobj == NULL)
1385 htab->elf.dynobj = abfd;
1386
1387 dynobj = htab->elf.dynobj;
1388 sreloc = bfd_get_section_by_name (dynobj, name);
1389 if (sreloc == NULL)
1390 {
1391 flagword flags;
1392
1393 sreloc = bfd_make_section (dynobj, name);
1394 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1395 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1396 if ((sec->flags & SEC_ALLOC) != 0)
1397 flags |= SEC_ALLOC | SEC_LOAD;
1398 if (sreloc == NULL
1399 || !bfd_set_section_flags (dynobj, sreloc, flags)
1400 || !bfd_set_section_alignment (dynobj, sreloc, 2))
1401 return FALSE;
1402 }
1403
1404 elf_section_data (sec)->sreloc = sreloc;
1405 }
1406
1407 /* If this is a global symbol, we count the number of
1408 relocations we need for this symbol. */
1409 if (h != NULL)
1410 {
1411 head = &h->dyn_relocs;
1412 }
1413 else
1414 {
1415 /* Track dynamic relocs needed for local syms too.
1416 We really need local syms available to do this
1417 easily. Oh well. */
1418
1419 asection *s;
1420 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1421 sec, r_symndx);
1422 if (s == NULL)
1423 return FALSE;
1424
1425 head = ((struct elf32_hppa_dyn_reloc_entry **)
1426 &elf_section_data (s)->local_dynrel);
1427 }
1428
1429 p = *head;
1430 if (p == NULL || p->sec != sec)
1431 {
1432 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
1433 if (p == NULL)
1434 return FALSE;
1435 p->next = *head;
1436 *head = p;
1437 p->sec = sec;
1438 p->count = 0;
1439 #if RELATIVE_DYNRELOCS
1440 p->relative_count = 0;
1441 #endif
1442 }
1443
1444 p->count += 1;
1445 #if RELATIVE_DYNRELOCS
1446 if (!IS_ABSOLUTE_RELOC (rtype))
1447 p->relative_count += 1;
1448 #endif
1449 }
1450 }
1451 }
1452
1453 return TRUE;
1454 }
1455
1456 /* Return the section that should be marked against garbage collection
1457 for a given relocation. */
1458
1459 static asection *
1460 elf32_hppa_gc_mark_hook (asection *sec,
1461 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1462 Elf_Internal_Rela *rel,
1463 struct elf_link_hash_entry *h,
1464 Elf_Internal_Sym *sym)
1465 {
1466 if (h != NULL)
1467 {
1468 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1469 {
1470 case R_PARISC_GNU_VTINHERIT:
1471 case R_PARISC_GNU_VTENTRY:
1472 break;
1473
1474 default:
1475 switch (h->root.type)
1476 {
1477 case bfd_link_hash_defined:
1478 case bfd_link_hash_defweak:
1479 return h->root.u.def.section;
1480
1481 case bfd_link_hash_common:
1482 return h->root.u.c.p->section;
1483
1484 default:
1485 break;
1486 }
1487 }
1488 }
1489 else
1490 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1491
1492 return NULL;
1493 }
1494
1495 /* Update the got and plt entry reference counts for the section being
1496 removed. */
1497
1498 static bfd_boolean
1499 elf32_hppa_gc_sweep_hook (bfd *abfd,
1500 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1501 asection *sec,
1502 const Elf_Internal_Rela *relocs)
1503 {
1504 Elf_Internal_Shdr *symtab_hdr;
1505 struct elf_link_hash_entry **sym_hashes;
1506 bfd_signed_vma *local_got_refcounts;
1507 bfd_signed_vma *local_plt_refcounts;
1508 const Elf_Internal_Rela *rel, *relend;
1509
1510 elf_section_data (sec)->local_dynrel = NULL;
1511
1512 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1513 sym_hashes = elf_sym_hashes (abfd);
1514 local_got_refcounts = elf_local_got_refcounts (abfd);
1515 local_plt_refcounts = local_got_refcounts;
1516 if (local_plt_refcounts != NULL)
1517 local_plt_refcounts += symtab_hdr->sh_info;
1518
1519 relend = relocs + sec->reloc_count;
1520 for (rel = relocs; rel < relend; rel++)
1521 {
1522 unsigned long r_symndx;
1523 unsigned int r_type;
1524 struct elf_link_hash_entry *h = NULL;
1525
1526 r_symndx = ELF32_R_SYM (rel->r_info);
1527 if (r_symndx >= symtab_hdr->sh_info)
1528 {
1529 struct elf32_hppa_link_hash_entry *eh;
1530 struct elf32_hppa_dyn_reloc_entry **pp;
1531 struct elf32_hppa_dyn_reloc_entry *p;
1532
1533 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1534 eh = (struct elf32_hppa_link_hash_entry *) h;
1535
1536 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1537 if (p->sec == sec)
1538 {
1539 /* Everything must go for SEC. */
1540 *pp = p->next;
1541 break;
1542 }
1543 }
1544
1545 r_type = ELF32_R_TYPE (rel->r_info);
1546 switch (r_type)
1547 {
1548 case R_PARISC_DLTIND14F:
1549 case R_PARISC_DLTIND14R:
1550 case R_PARISC_DLTIND21L:
1551 if (h != NULL)
1552 {
1553 if (h->got.refcount > 0)
1554 h->got.refcount -= 1;
1555 }
1556 else if (local_got_refcounts != NULL)
1557 {
1558 if (local_got_refcounts[r_symndx] > 0)
1559 local_got_refcounts[r_symndx] -= 1;
1560 }
1561 break;
1562
1563 case R_PARISC_PCREL12F:
1564 case R_PARISC_PCREL17C:
1565 case R_PARISC_PCREL17F:
1566 case R_PARISC_PCREL22F:
1567 if (h != NULL)
1568 {
1569 if (h->plt.refcount > 0)
1570 h->plt.refcount -= 1;
1571 }
1572 break;
1573
1574 case R_PARISC_PLABEL14R:
1575 case R_PARISC_PLABEL21L:
1576 case R_PARISC_PLABEL32:
1577 if (h != NULL)
1578 {
1579 if (h->plt.refcount > 0)
1580 h->plt.refcount -= 1;
1581 }
1582 else if (local_plt_refcounts != NULL)
1583 {
1584 if (local_plt_refcounts[r_symndx] > 0)
1585 local_plt_refcounts[r_symndx] -= 1;
1586 }
1587 break;
1588
1589 default:
1590 break;
1591 }
1592 }
1593
1594 return TRUE;
1595 }
1596
1597 /* Our own version of hide_symbol, so that we can keep plt entries for
1598 plabels. */
1599
1600 static void
1601 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1602 struct elf_link_hash_entry *h,
1603 bfd_boolean force_local)
1604 {
1605 if (force_local)
1606 {
1607 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
1608 if (h->dynindx != -1)
1609 {
1610 h->dynindx = -1;
1611 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1612 h->dynstr_index);
1613 }
1614 }
1615
1616 if (! ((struct elf32_hppa_link_hash_entry *) h)->plabel)
1617 {
1618 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1619 h->plt.offset = (bfd_vma) -1;
1620 }
1621 }
1622
1623 /* This is the condition under which elf32_hppa_finish_dynamic_symbol
1624 will be called from elflink.h. If elflink.h doesn't call our
1625 finish_dynamic_symbol routine, we'll need to do something about
1626 initializing any .plt and .got entries in elf32_hppa_relocate_section. */
1627 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1628 ((DYN) \
1629 && ((INFO)->shared \
1630 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1631 && ((H)->dynindx != -1 \
1632 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1633
1634 /* Adjust a symbol defined by a dynamic object and referenced by a
1635 regular object. The current definition is in some section of the
1636 dynamic object, but we're not including those sections. We have to
1637 change the definition to something the rest of the link can
1638 understand. */
1639
1640 static bfd_boolean
1641 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1642 struct elf_link_hash_entry *h)
1643 {
1644 struct elf32_hppa_link_hash_table *htab;
1645 asection *s;
1646 unsigned int power_of_two;
1647
1648 /* If this is a function, put it in the procedure linkage table. We
1649 will fill in the contents of the procedure linkage table later. */
1650 if (h->type == STT_FUNC
1651 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1652 {
1653 if (h->plt.refcount <= 0
1654 || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1655 && h->root.type != bfd_link_hash_defweak
1656 && ! ((struct elf32_hppa_link_hash_entry *) h)->plabel
1657 && (!info->shared || info->symbolic)))
1658 {
1659 /* The .plt entry is not needed when:
1660 a) Garbage collection has removed all references to the
1661 symbol, or
1662 b) We know for certain the symbol is defined in this
1663 object, and it's not a weak definition, nor is the symbol
1664 used by a plabel relocation. Either this object is the
1665 application or we are doing a shared symbolic link. */
1666
1667 h->plt.offset = (bfd_vma) -1;
1668 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1669 }
1670
1671 return TRUE;
1672 }
1673 else
1674 h->plt.offset = (bfd_vma) -1;
1675
1676 /* If this is a weak symbol, and there is a real definition, the
1677 processor independent code will have arranged for us to see the
1678 real definition first, and we can just use the same value. */
1679 if (h->weakdef != NULL)
1680 {
1681 if (h->weakdef->root.type != bfd_link_hash_defined
1682 && h->weakdef->root.type != bfd_link_hash_defweak)
1683 abort ();
1684 h->root.u.def.section = h->weakdef->root.u.def.section;
1685 h->root.u.def.value = h->weakdef->root.u.def.value;
1686 if (ELIMINATE_COPY_RELOCS)
1687 h->elf_link_hash_flags
1688 = ((h->elf_link_hash_flags & ~ELF_LINK_NON_GOT_REF)
1689 | (h->weakdef->elf_link_hash_flags & ELF_LINK_NON_GOT_REF));
1690 return TRUE;
1691 }
1692
1693 /* This is a reference to a symbol defined by a dynamic object which
1694 is not a function. */
1695
1696 /* If we are creating a shared library, we must presume that the
1697 only references to the symbol are via the global offset table.
1698 For such cases we need not do anything here; the relocations will
1699 be handled correctly by relocate_section. */
1700 if (info->shared)
1701 return TRUE;
1702
1703 /* If there are no references to this symbol that do not use the
1704 GOT, we don't need to generate a copy reloc. */
1705 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1706 return TRUE;
1707
1708 if (ELIMINATE_COPY_RELOCS)
1709 {
1710 struct elf32_hppa_link_hash_entry *eh;
1711 struct elf32_hppa_dyn_reloc_entry *p;
1712
1713 eh = (struct elf32_hppa_link_hash_entry *) h;
1714 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1715 {
1716 s = p->sec->output_section;
1717 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1718 break;
1719 }
1720
1721 /* If we didn't find any dynamic relocs in read-only sections, then
1722 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1723 if (p == NULL)
1724 {
1725 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1726 return TRUE;
1727 }
1728 }
1729
1730 /* We must allocate the symbol in our .dynbss section, which will
1731 become part of the .bss section of the executable. There will be
1732 an entry for this symbol in the .dynsym section. The dynamic
1733 object will contain position independent code, so all references
1734 from the dynamic object to this symbol will go through the global
1735 offset table. The dynamic linker will use the .dynsym entry to
1736 determine the address it must put in the global offset table, so
1737 both the dynamic object and the regular object will refer to the
1738 same memory location for the variable. */
1739
1740 htab = hppa_link_hash_table (info);
1741
1742 /* We must generate a COPY reloc to tell the dynamic linker to
1743 copy the initial value out of the dynamic object and into the
1744 runtime process image. */
1745 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1746 {
1747 htab->srelbss->_raw_size += sizeof (Elf32_External_Rela);
1748 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1749 }
1750
1751 /* We need to figure out the alignment required for this symbol. I
1752 have no idea how other ELF linkers handle this. */
1753
1754 power_of_two = bfd_log2 (h->size);
1755 if (power_of_two > 3)
1756 power_of_two = 3;
1757
1758 /* Apply the required alignment. */
1759 s = htab->sdynbss;
1760 s->_raw_size = BFD_ALIGN (s->_raw_size,
1761 (bfd_size_type) (1 << power_of_two));
1762 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1763 {
1764 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1765 return FALSE;
1766 }
1767
1768 /* Define the symbol as being at this point in the section. */
1769 h->root.u.def.section = s;
1770 h->root.u.def.value = s->_raw_size;
1771
1772 /* Increment the section size to make room for the symbol. */
1773 s->_raw_size += h->size;
1774
1775 return TRUE;
1776 }
1777
1778 /* Allocate space in the .plt for entries that won't have relocations.
1779 ie. plabel entries. */
1780
1781 static bfd_boolean
1782 allocate_plt_static (struct elf_link_hash_entry *h, void *inf)
1783 {
1784 struct bfd_link_info *info;
1785 struct elf32_hppa_link_hash_table *htab;
1786 asection *s;
1787
1788 if (h->root.type == bfd_link_hash_indirect)
1789 return TRUE;
1790
1791 if (h->root.type == bfd_link_hash_warning)
1792 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1793
1794 info = inf;
1795 htab = hppa_link_hash_table (info);
1796 if (htab->elf.dynamic_sections_created
1797 && h->plt.refcount > 0)
1798 {
1799 /* Make sure this symbol is output as a dynamic symbol.
1800 Undefined weak syms won't yet be marked as dynamic. */
1801 if (h->dynindx == -1
1802 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
1803 && h->type != STT_PARISC_MILLI)
1804 {
1805 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1806 return FALSE;
1807 }
1808
1809 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
1810 {
1811 /* Allocate these later. From this point on, h->plabel
1812 means that the plt entry is only used by a plabel.
1813 We'll be using a normal plt entry for this symbol, so
1814 clear the plabel indicator. */
1815 ((struct elf32_hppa_link_hash_entry *) h)->plabel = 0;
1816 }
1817 else if (((struct elf32_hppa_link_hash_entry *) h)->plabel)
1818 {
1819 /* Make an entry in the .plt section for plabel references
1820 that won't have a .plt entry for other reasons. */
1821 s = htab->splt;
1822 h->plt.offset = s->_raw_size;
1823 s->_raw_size += PLT_ENTRY_SIZE;
1824 }
1825 else
1826 {
1827 /* No .plt entry needed. */
1828 h->plt.offset = (bfd_vma) -1;
1829 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1830 }
1831 }
1832 else
1833 {
1834 h->plt.offset = (bfd_vma) -1;
1835 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1836 }
1837
1838 return TRUE;
1839 }
1840
1841 /* Allocate space in .plt, .got and associated reloc sections for
1842 global syms. */
1843
1844 static bfd_boolean
1845 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
1846 {
1847 struct bfd_link_info *info;
1848 struct elf32_hppa_link_hash_table *htab;
1849 asection *s;
1850 struct elf32_hppa_link_hash_entry *eh;
1851 struct elf32_hppa_dyn_reloc_entry *p;
1852
1853 if (h->root.type == bfd_link_hash_indirect)
1854 return TRUE;
1855
1856 if (h->root.type == bfd_link_hash_warning)
1857 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1858
1859 info = inf;
1860 htab = hppa_link_hash_table (info);
1861 if (htab->elf.dynamic_sections_created
1862 && h->plt.offset != (bfd_vma) -1
1863 && !((struct elf32_hppa_link_hash_entry *) h)->plabel)
1864 {
1865 /* Make an entry in the .plt section. */
1866 s = htab->splt;
1867 h->plt.offset = s->_raw_size;
1868 s->_raw_size += PLT_ENTRY_SIZE;
1869
1870 /* We also need to make an entry in the .rela.plt section. */
1871 htab->srelplt->_raw_size += sizeof (Elf32_External_Rela);
1872 htab->need_plt_stub = 1;
1873 }
1874
1875 if (h->got.refcount > 0)
1876 {
1877 /* Make sure this symbol is output as a dynamic symbol.
1878 Undefined weak syms won't yet be marked as dynamic. */
1879 if (h->dynindx == -1
1880 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
1881 && h->type != STT_PARISC_MILLI)
1882 {
1883 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1884 return FALSE;
1885 }
1886
1887 s = htab->sgot;
1888 h->got.offset = s->_raw_size;
1889 s->_raw_size += GOT_ENTRY_SIZE;
1890 if (htab->elf.dynamic_sections_created
1891 && (info->shared
1892 || (h->dynindx != -1
1893 && h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0))
1894 {
1895 htab->srelgot->_raw_size += sizeof (Elf32_External_Rela);
1896 }
1897 }
1898 else
1899 h->got.offset = (bfd_vma) -1;
1900
1901 eh = (struct elf32_hppa_link_hash_entry *) h;
1902 if (eh->dyn_relocs == NULL)
1903 return TRUE;
1904
1905 /* If this is a -Bsymbolic shared link, then we need to discard all
1906 space allocated for dynamic pc-relative relocs against symbols
1907 defined in a regular object. For the normal shared case, discard
1908 space for relocs that have become local due to symbol visibility
1909 changes. */
1910 if (info->shared)
1911 {
1912 #if RELATIVE_DYNRELOCS
1913 if (SYMBOL_CALLS_LOCAL (info, h))
1914 {
1915 struct elf32_hppa_dyn_reloc_entry **pp;
1916
1917 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1918 {
1919 p->count -= p->relative_count;
1920 p->relative_count = 0;
1921 if (p->count == 0)
1922 *pp = p->next;
1923 else
1924 pp = &p->next;
1925 }
1926 }
1927 #endif
1928
1929 /* Also discard relocs on undefined weak syms with non-default
1930 visibility. */
1931 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1932 && h->root.type == bfd_link_hash_undefweak)
1933 eh->dyn_relocs = NULL;
1934 }
1935 else
1936 {
1937 /* For the non-shared case, discard space for relocs against
1938 symbols which turn out to need copy relocs or are not
1939 dynamic. */
1940 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1941 && ((ELIMINATE_COPY_RELOCS
1942 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1943 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1944 || (htab->elf.dynamic_sections_created
1945 && (h->root.type == bfd_link_hash_undefweak
1946 || h->root.type == bfd_link_hash_undefined))))
1947 {
1948 /* Make sure this symbol is output as a dynamic symbol.
1949 Undefined weak syms won't yet be marked as dynamic. */
1950 if (h->dynindx == -1
1951 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
1952 && h->type != STT_PARISC_MILLI)
1953 {
1954 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1955 return FALSE;
1956 }
1957
1958 /* If that succeeded, we know we'll be keeping all the
1959 relocs. */
1960 if (h->dynindx != -1)
1961 goto keep;
1962 }
1963
1964 eh->dyn_relocs = NULL;
1965 return TRUE;
1966
1967 keep: ;
1968 }
1969
1970 /* Finally, allocate space. */
1971 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1972 {
1973 asection *sreloc = elf_section_data (p->sec)->sreloc;
1974 sreloc->_raw_size += p->count * sizeof (Elf32_External_Rela);
1975 }
1976
1977 return TRUE;
1978 }
1979
1980 /* This function is called via elf_link_hash_traverse to force
1981 millicode symbols local so they do not end up as globals in the
1982 dynamic symbol table. We ought to be able to do this in
1983 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
1984 for all dynamic symbols. Arguably, this is a bug in
1985 elf_adjust_dynamic_symbol. */
1986
1987 static bfd_boolean
1988 clobber_millicode_symbols (struct elf_link_hash_entry *h,
1989 struct bfd_link_info *info)
1990 {
1991 if (h->root.type == bfd_link_hash_warning)
1992 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1993
1994 if (h->type == STT_PARISC_MILLI
1995 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1996 {
1997 elf32_hppa_hide_symbol (info, h, TRUE);
1998 }
1999 return TRUE;
2000 }
2001
2002 /* Find any dynamic relocs that apply to read-only sections. */
2003
2004 static bfd_boolean
2005 readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf)
2006 {
2007 struct elf32_hppa_link_hash_entry *eh;
2008 struct elf32_hppa_dyn_reloc_entry *p;
2009
2010 if (h->root.type == bfd_link_hash_warning)
2011 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2012
2013 eh = (struct elf32_hppa_link_hash_entry *) h;
2014 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2015 {
2016 asection *s = p->sec->output_section;
2017
2018 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2019 {
2020 struct bfd_link_info *info = inf;
2021
2022 info->flags |= DF_TEXTREL;
2023
2024 /* Not an error, just cut short the traversal. */
2025 return FALSE;
2026 }
2027 }
2028 return TRUE;
2029 }
2030
2031 /* Set the sizes of the dynamic sections. */
2032
2033 static bfd_boolean
2034 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2035 struct bfd_link_info *info)
2036 {
2037 struct elf32_hppa_link_hash_table *htab;
2038 bfd *dynobj;
2039 bfd *ibfd;
2040 asection *s;
2041 bfd_boolean relocs;
2042
2043 htab = hppa_link_hash_table (info);
2044 dynobj = htab->elf.dynobj;
2045 if (dynobj == NULL)
2046 abort ();
2047
2048 if (htab->elf.dynamic_sections_created)
2049 {
2050 /* Set the contents of the .interp section to the interpreter. */
2051 if (info->executable)
2052 {
2053 s = bfd_get_section_by_name (dynobj, ".interp");
2054 if (s == NULL)
2055 abort ();
2056 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
2057 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2058 }
2059
2060 /* Force millicode symbols local. */
2061 elf_link_hash_traverse (&htab->elf,
2062 clobber_millicode_symbols,
2063 info);
2064 }
2065
2066 /* Set up .got and .plt offsets for local syms, and space for local
2067 dynamic relocs. */
2068 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2069 {
2070 bfd_signed_vma *local_got;
2071 bfd_signed_vma *end_local_got;
2072 bfd_signed_vma *local_plt;
2073 bfd_signed_vma *end_local_plt;
2074 bfd_size_type locsymcount;
2075 Elf_Internal_Shdr *symtab_hdr;
2076 asection *srel;
2077
2078 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2079 continue;
2080
2081 for (s = ibfd->sections; s != NULL; s = s->next)
2082 {
2083 struct elf32_hppa_dyn_reloc_entry *p;
2084
2085 for (p = ((struct elf32_hppa_dyn_reloc_entry *)
2086 elf_section_data (s)->local_dynrel);
2087 p != NULL;
2088 p = p->next)
2089 {
2090 if (!bfd_is_abs_section (p->sec)
2091 && bfd_is_abs_section (p->sec->output_section))
2092 {
2093 /* Input section has been discarded, either because
2094 it is a copy of a linkonce section or due to
2095 linker script /DISCARD/, so we'll be discarding
2096 the relocs too. */
2097 }
2098 else if (p->count != 0)
2099 {
2100 srel = elf_section_data (p->sec)->sreloc;
2101 srel->_raw_size += p->count * sizeof (Elf32_External_Rela);
2102 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
2103 info->flags |= DF_TEXTREL;
2104 }
2105 }
2106 }
2107
2108 local_got = elf_local_got_refcounts (ibfd);
2109 if (!local_got)
2110 continue;
2111
2112 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2113 locsymcount = symtab_hdr->sh_info;
2114 end_local_got = local_got + locsymcount;
2115 s = htab->sgot;
2116 srel = htab->srelgot;
2117 for (; local_got < end_local_got; ++local_got)
2118 {
2119 if (*local_got > 0)
2120 {
2121 *local_got = s->_raw_size;
2122 s->_raw_size += GOT_ENTRY_SIZE;
2123 if (info->shared)
2124 srel->_raw_size += sizeof (Elf32_External_Rela);
2125 }
2126 else
2127 *local_got = (bfd_vma) -1;
2128 }
2129
2130 local_plt = end_local_got;
2131 end_local_plt = local_plt + locsymcount;
2132 if (! htab->elf.dynamic_sections_created)
2133 {
2134 /* Won't be used, but be safe. */
2135 for (; local_plt < end_local_plt; ++local_plt)
2136 *local_plt = (bfd_vma) -1;
2137 }
2138 else
2139 {
2140 s = htab->splt;
2141 srel = htab->srelplt;
2142 for (; local_plt < end_local_plt; ++local_plt)
2143 {
2144 if (*local_plt > 0)
2145 {
2146 *local_plt = s->_raw_size;
2147 s->_raw_size += PLT_ENTRY_SIZE;
2148 if (info->shared)
2149 srel->_raw_size += sizeof (Elf32_External_Rela);
2150 }
2151 else
2152 *local_plt = (bfd_vma) -1;
2153 }
2154 }
2155 }
2156
2157 /* Do all the .plt entries without relocs first. The dynamic linker
2158 uses the last .plt reloc to find the end of the .plt (and hence
2159 the start of the .got) for lazy linking. */
2160 elf_link_hash_traverse (&htab->elf, allocate_plt_static, info);
2161
2162 /* Allocate global sym .plt and .got entries, and space for global
2163 sym dynamic relocs. */
2164 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
2165
2166 /* The check_relocs and adjust_dynamic_symbol entry points have
2167 determined the sizes of the various dynamic sections. Allocate
2168 memory for them. */
2169 relocs = FALSE;
2170 for (s = dynobj->sections; s != NULL; s = s->next)
2171 {
2172 if ((s->flags & SEC_LINKER_CREATED) == 0)
2173 continue;
2174
2175 if (s == htab->splt)
2176 {
2177 if (htab->need_plt_stub)
2178 {
2179 /* Make space for the plt stub at the end of the .plt
2180 section. We want this stub right at the end, up
2181 against the .got section. */
2182 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2183 int pltalign = bfd_section_alignment (dynobj, s);
2184 bfd_size_type mask;
2185
2186 if (gotalign > pltalign)
2187 bfd_set_section_alignment (dynobj, s, gotalign);
2188 mask = ((bfd_size_type) 1 << gotalign) - 1;
2189 s->_raw_size = (s->_raw_size + sizeof (plt_stub) + mask) & ~mask;
2190 }
2191 }
2192 else if (s == htab->sgot)
2193 ;
2194 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
2195 {
2196 if (s->_raw_size != 0)
2197 {
2198 /* Remember whether there are any reloc sections other
2199 than .rela.plt. */
2200 if (s != htab->srelplt)
2201 relocs = TRUE;
2202
2203 /* We use the reloc_count field as a counter if we need
2204 to copy relocs into the output file. */
2205 s->reloc_count = 0;
2206 }
2207 }
2208 else
2209 {
2210 /* It's not one of our sections, so don't allocate space. */
2211 continue;
2212 }
2213
2214 if (s->_raw_size == 0)
2215 {
2216 /* If we don't need this section, strip it from the
2217 output file. This is mostly to handle .rela.bss and
2218 .rela.plt. We must create both sections in
2219 create_dynamic_sections, because they must be created
2220 before the linker maps input sections to output
2221 sections. The linker does that before
2222 adjust_dynamic_symbol is called, and it is that
2223 function which decides whether anything needs to go
2224 into these sections. */
2225 _bfd_strip_section_from_output (info, s);
2226 continue;
2227 }
2228
2229 /* Allocate memory for the section contents. Zero it, because
2230 we may not fill in all the reloc sections. */
2231 s->contents = bfd_zalloc (dynobj, s->_raw_size);
2232 if (s->contents == NULL && s->_raw_size != 0)
2233 return FALSE;
2234 }
2235
2236 if (htab->elf.dynamic_sections_created)
2237 {
2238 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2239 actually has nothing to do with the PLT, it is how we
2240 communicate the LTP value of a load module to the dynamic
2241 linker. */
2242 #define add_dynamic_entry(TAG, VAL) \
2243 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
2244
2245 if (!add_dynamic_entry (DT_PLTGOT, 0))
2246 return FALSE;
2247
2248 /* Add some entries to the .dynamic section. We fill in the
2249 values later, in elf32_hppa_finish_dynamic_sections, but we
2250 must add the entries now so that we get the correct size for
2251 the .dynamic section. The DT_DEBUG entry is filled in by the
2252 dynamic linker and used by the debugger. */
2253 if (!info->shared)
2254 {
2255 if (!add_dynamic_entry (DT_DEBUG, 0))
2256 return FALSE;
2257 }
2258
2259 if (htab->srelplt->_raw_size != 0)
2260 {
2261 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2262 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2263 || !add_dynamic_entry (DT_JMPREL, 0))
2264 return FALSE;
2265 }
2266
2267 if (relocs)
2268 {
2269 if (!add_dynamic_entry (DT_RELA, 0)
2270 || !add_dynamic_entry (DT_RELASZ, 0)
2271 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2272 return FALSE;
2273
2274 /* If any dynamic relocs apply to a read-only section,
2275 then we need a DT_TEXTREL entry. */
2276 if ((info->flags & DF_TEXTREL) == 0)
2277 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, info);
2278
2279 if ((info->flags & DF_TEXTREL) != 0)
2280 {
2281 if (!add_dynamic_entry (DT_TEXTREL, 0))
2282 return FALSE;
2283 }
2284 }
2285 }
2286 #undef add_dynamic_entry
2287
2288 return TRUE;
2289 }
2290
2291 /* External entry points for sizing and building linker stubs. */
2292
2293 /* Set up various things so that we can make a list of input sections
2294 for each output section included in the link. Returns -1 on error,
2295 0 when no stubs will be needed, and 1 on success. */
2296
2297 int
2298 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2299 {
2300 bfd *input_bfd;
2301 unsigned int bfd_count;
2302 int top_id, top_index;
2303 asection *section;
2304 asection **input_list, **list;
2305 bfd_size_type amt;
2306 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2307
2308 if (htab->elf.root.creator->flavour != bfd_target_elf_flavour)
2309 return 0;
2310
2311 /* Count the number of input BFDs and find the top input section id. */
2312 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2313 input_bfd != NULL;
2314 input_bfd = input_bfd->link_next)
2315 {
2316 bfd_count += 1;
2317 for (section = input_bfd->sections;
2318 section != NULL;
2319 section = section->next)
2320 {
2321 if (top_id < section->id)
2322 top_id = section->id;
2323 }
2324 }
2325 htab->bfd_count = bfd_count;
2326
2327 amt = sizeof (struct map_stub) * (top_id + 1);
2328 htab->stub_group = bfd_zmalloc (amt);
2329 if (htab->stub_group == NULL)
2330 return -1;
2331
2332 /* We can't use output_bfd->section_count here to find the top output
2333 section index as some sections may have been removed, and
2334 _bfd_strip_section_from_output doesn't renumber the indices. */
2335 for (section = output_bfd->sections, top_index = 0;
2336 section != NULL;
2337 section = section->next)
2338 {
2339 if (top_index < section->index)
2340 top_index = section->index;
2341 }
2342
2343 htab->top_index = top_index;
2344 amt = sizeof (asection *) * (top_index + 1);
2345 input_list = bfd_malloc (amt);
2346 htab->input_list = input_list;
2347 if (input_list == NULL)
2348 return -1;
2349
2350 /* For sections we aren't interested in, mark their entries with a
2351 value we can check later. */
2352 list = input_list + top_index;
2353 do
2354 *list = bfd_abs_section_ptr;
2355 while (list-- != input_list);
2356
2357 for (section = output_bfd->sections;
2358 section != NULL;
2359 section = section->next)
2360 {
2361 if ((section->flags & SEC_CODE) != 0)
2362 input_list[section->index] = NULL;
2363 }
2364
2365 return 1;
2366 }
2367
2368 /* The linker repeatedly calls this function for each input section,
2369 in the order that input sections are linked into output sections.
2370 Build lists of input sections to determine groupings between which
2371 we may insert linker stubs. */
2372
2373 void
2374 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2375 {
2376 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2377
2378 if (isec->output_section->index <= htab->top_index)
2379 {
2380 asection **list = htab->input_list + isec->output_section->index;
2381 if (*list != bfd_abs_section_ptr)
2382 {
2383 /* Steal the link_sec pointer for our list. */
2384 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2385 /* This happens to make the list in reverse order,
2386 which is what we want. */
2387 PREV_SEC (isec) = *list;
2388 *list = isec;
2389 }
2390 }
2391 }
2392
2393 /* See whether we can group stub sections together. Grouping stub
2394 sections may result in fewer stubs. More importantly, we need to
2395 put all .init* and .fini* stubs at the beginning of the .init or
2396 .fini output sections respectively, because glibc splits the
2397 _init and _fini functions into multiple parts. Putting a stub in
2398 the middle of a function is not a good idea. */
2399
2400 static void
2401 group_sections (struct elf32_hppa_link_hash_table *htab,
2402 bfd_size_type stub_group_size,
2403 bfd_boolean stubs_always_before_branch)
2404 {
2405 asection **list = htab->input_list + htab->top_index;
2406 do
2407 {
2408 asection *tail = *list;
2409 if (tail == bfd_abs_section_ptr)
2410 continue;
2411 while (tail != NULL)
2412 {
2413 asection *curr;
2414 asection *prev;
2415 bfd_size_type total;
2416 bfd_boolean big_sec;
2417
2418 curr = tail;
2419 if (tail->_cooked_size)
2420 total = tail->_cooked_size;
2421 else
2422 total = tail->_raw_size;
2423 big_sec = total >= stub_group_size;
2424
2425 while ((prev = PREV_SEC (curr)) != NULL
2426 && ((total += curr->output_offset - prev->output_offset)
2427 < stub_group_size))
2428 curr = prev;
2429
2430 /* OK, the size from the start of CURR to the end is less
2431 than 240000 bytes and thus can be handled by one stub
2432 section. (or the tail section is itself larger than
2433 240000 bytes, in which case we may be toast.)
2434 We should really be keeping track of the total size of
2435 stubs added here, as stubs contribute to the final output
2436 section size. That's a little tricky, and this way will
2437 only break if stubs added total more than 22144 bytes, or
2438 2768 long branch stubs. It seems unlikely for more than
2439 2768 different functions to be called, especially from
2440 code only 240000 bytes long. This limit used to be
2441 250000, but c++ code tends to generate lots of little
2442 functions, and sometimes violated the assumption. */
2443 do
2444 {
2445 prev = PREV_SEC (tail);
2446 /* Set up this stub group. */
2447 htab->stub_group[tail->id].link_sec = curr;
2448 }
2449 while (tail != curr && (tail = prev) != NULL);
2450
2451 /* But wait, there's more! Input sections up to 240000
2452 bytes before the stub section can be handled by it too.
2453 Don't do this if we have a really large section after the
2454 stubs, as adding more stubs increases the chance that
2455 branches may not reach into the stub section. */
2456 if (!stubs_always_before_branch && !big_sec)
2457 {
2458 total = 0;
2459 while (prev != NULL
2460 && ((total += tail->output_offset - prev->output_offset)
2461 < stub_group_size))
2462 {
2463 tail = prev;
2464 prev = PREV_SEC (tail);
2465 htab->stub_group[tail->id].link_sec = curr;
2466 }
2467 }
2468 tail = prev;
2469 }
2470 }
2471 while (list-- != htab->input_list);
2472 free (htab->input_list);
2473 #undef PREV_SEC
2474 }
2475
2476 /* Read in all local syms for all input bfds, and create hash entries
2477 for export stubs if we are building a multi-subspace shared lib.
2478 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2479
2480 static int
2481 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2482 {
2483 unsigned int bfd_indx;
2484 Elf_Internal_Sym *local_syms, **all_local_syms;
2485 int stub_changed = 0;
2486 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2487
2488 /* We want to read in symbol extension records only once. To do this
2489 we need to read in the local symbols in parallel and save them for
2490 later use; so hold pointers to the local symbols in an array. */
2491 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2492 all_local_syms = bfd_zmalloc (amt);
2493 htab->all_local_syms = all_local_syms;
2494 if (all_local_syms == NULL)
2495 return -1;
2496
2497 /* Walk over all the input BFDs, swapping in local symbols.
2498 If we are creating a shared library, create hash entries for the
2499 export stubs. */
2500 for (bfd_indx = 0;
2501 input_bfd != NULL;
2502 input_bfd = input_bfd->link_next, bfd_indx++)
2503 {
2504 Elf_Internal_Shdr *symtab_hdr;
2505
2506 /* We'll need the symbol table in a second. */
2507 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2508 if (symtab_hdr->sh_info == 0)
2509 continue;
2510
2511 /* We need an array of the local symbols attached to the input bfd. */
2512 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2513 if (local_syms == NULL)
2514 {
2515 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2516 symtab_hdr->sh_info, 0,
2517 NULL, NULL, NULL);
2518 /* Cache them for elf_link_input_bfd. */
2519 symtab_hdr->contents = (unsigned char *) local_syms;
2520 }
2521 if (local_syms == NULL)
2522 return -1;
2523
2524 all_local_syms[bfd_indx] = local_syms;
2525
2526 if (info->shared && htab->multi_subspace)
2527 {
2528 struct elf_link_hash_entry **sym_hashes;
2529 struct elf_link_hash_entry **end_hashes;
2530 unsigned int symcount;
2531
2532 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2533 - symtab_hdr->sh_info);
2534 sym_hashes = elf_sym_hashes (input_bfd);
2535 end_hashes = sym_hashes + symcount;
2536
2537 /* Look through the global syms for functions; We need to
2538 build export stubs for all globally visible functions. */
2539 for (; sym_hashes < end_hashes; sym_hashes++)
2540 {
2541 struct elf32_hppa_link_hash_entry *hash;
2542
2543 hash = (struct elf32_hppa_link_hash_entry *) *sym_hashes;
2544
2545 while (hash->elf.root.type == bfd_link_hash_indirect
2546 || hash->elf.root.type == bfd_link_hash_warning)
2547 hash = ((struct elf32_hppa_link_hash_entry *)
2548 hash->elf.root.u.i.link);
2549
2550 /* At this point in the link, undefined syms have been
2551 resolved, so we need to check that the symbol was
2552 defined in this BFD. */
2553 if ((hash->elf.root.type == bfd_link_hash_defined
2554 || hash->elf.root.type == bfd_link_hash_defweak)
2555 && hash->elf.type == STT_FUNC
2556 && hash->elf.root.u.def.section->output_section != NULL
2557 && (hash->elf.root.u.def.section->output_section->owner
2558 == output_bfd)
2559 && hash->elf.root.u.def.section->owner == input_bfd
2560 && (hash->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
2561 && !(hash->elf.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)
2562 && ELF_ST_VISIBILITY (hash->elf.other) == STV_DEFAULT)
2563 {
2564 asection *sec;
2565 const char *stub_name;
2566 struct elf32_hppa_stub_hash_entry *stub_entry;
2567
2568 sec = hash->elf.root.u.def.section;
2569 stub_name = hash->elf.root.root.string;
2570 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
2571 stub_name,
2572 FALSE, FALSE);
2573 if (stub_entry == NULL)
2574 {
2575 stub_entry = hppa_add_stub (stub_name, sec, htab);
2576 if (!stub_entry)
2577 return -1;
2578
2579 stub_entry->target_value = hash->elf.root.u.def.value;
2580 stub_entry->target_section = hash->elf.root.u.def.section;
2581 stub_entry->stub_type = hppa_stub_export;
2582 stub_entry->h = hash;
2583 stub_changed = 1;
2584 }
2585 else
2586 {
2587 (*_bfd_error_handler) (_("%s: duplicate export stub %s"),
2588 bfd_archive_filename (input_bfd),
2589 stub_name);
2590 }
2591 }
2592 }
2593 }
2594 }
2595
2596 return stub_changed;
2597 }
2598
2599 /* Determine and set the size of the stub section for a final link.
2600
2601 The basic idea here is to examine all the relocations looking for
2602 PC-relative calls to a target that is unreachable with a "bl"
2603 instruction. */
2604
2605 bfd_boolean
2606 elf32_hppa_size_stubs
2607 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2608 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2609 asection * (*add_stub_section) (const char *, asection *),
2610 void (*layout_sections_again) (void))
2611 {
2612 bfd_size_type stub_group_size;
2613 bfd_boolean stubs_always_before_branch;
2614 bfd_boolean stub_changed;
2615 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2616
2617 /* Stash our params away. */
2618 htab->stub_bfd = stub_bfd;
2619 htab->multi_subspace = multi_subspace;
2620 htab->add_stub_section = add_stub_section;
2621 htab->layout_sections_again = layout_sections_again;
2622 stubs_always_before_branch = group_size < 0;
2623 if (group_size < 0)
2624 stub_group_size = -group_size;
2625 else
2626 stub_group_size = group_size;
2627 if (stub_group_size == 1)
2628 {
2629 /* Default values. */
2630 if (stubs_always_before_branch)
2631 {
2632 stub_group_size = 7680000;
2633 if (htab->has_17bit_branch || htab->multi_subspace)
2634 stub_group_size = 240000;
2635 if (htab->has_12bit_branch)
2636 stub_group_size = 7500;
2637 }
2638 else
2639 {
2640 stub_group_size = 6971392;
2641 if (htab->has_17bit_branch || htab->multi_subspace)
2642 stub_group_size = 217856;
2643 if (htab->has_12bit_branch)
2644 stub_group_size = 6808;
2645 }
2646 }
2647
2648 group_sections (htab, stub_group_size, stubs_always_before_branch);
2649
2650 switch (get_local_syms (output_bfd, info->input_bfds, info))
2651 {
2652 default:
2653 if (htab->all_local_syms)
2654 goto error_ret_free_local;
2655 return FALSE;
2656
2657 case 0:
2658 stub_changed = FALSE;
2659 break;
2660
2661 case 1:
2662 stub_changed = TRUE;
2663 break;
2664 }
2665
2666 while (1)
2667 {
2668 bfd *input_bfd;
2669 unsigned int bfd_indx;
2670 asection *stub_sec;
2671
2672 for (input_bfd = info->input_bfds, bfd_indx = 0;
2673 input_bfd != NULL;
2674 input_bfd = input_bfd->link_next, bfd_indx++)
2675 {
2676 Elf_Internal_Shdr *symtab_hdr;
2677 asection *section;
2678 Elf_Internal_Sym *local_syms;
2679
2680 /* We'll need the symbol table in a second. */
2681 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2682 if (symtab_hdr->sh_info == 0)
2683 continue;
2684
2685 local_syms = htab->all_local_syms[bfd_indx];
2686
2687 /* Walk over each section attached to the input bfd. */
2688 for (section = input_bfd->sections;
2689 section != NULL;
2690 section = section->next)
2691 {
2692 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2693
2694 /* If there aren't any relocs, then there's nothing more
2695 to do. */
2696 if ((section->flags & SEC_RELOC) == 0
2697 || section->reloc_count == 0)
2698 continue;
2699
2700 /* If this section is a link-once section that will be
2701 discarded, then don't create any stubs. */
2702 if (section->output_section == NULL
2703 || section->output_section->owner != output_bfd)
2704 continue;
2705
2706 /* Get the relocs. */
2707 internal_relocs
2708 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2709 info->keep_memory);
2710 if (internal_relocs == NULL)
2711 goto error_ret_free_local;
2712
2713 /* Now examine each relocation. */
2714 irela = internal_relocs;
2715 irelaend = irela + section->reloc_count;
2716 for (; irela < irelaend; irela++)
2717 {
2718 unsigned int r_type, r_indx;
2719 enum elf32_hppa_stub_type stub_type;
2720 struct elf32_hppa_stub_hash_entry *stub_entry;
2721 asection *sym_sec;
2722 bfd_vma sym_value;
2723 bfd_vma destination;
2724 struct elf32_hppa_link_hash_entry *hash;
2725 char *stub_name;
2726 const asection *id_sec;
2727
2728 r_type = ELF32_R_TYPE (irela->r_info);
2729 r_indx = ELF32_R_SYM (irela->r_info);
2730
2731 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2732 {
2733 bfd_set_error (bfd_error_bad_value);
2734 error_ret_free_internal:
2735 if (elf_section_data (section)->relocs == NULL)
2736 free (internal_relocs);
2737 goto error_ret_free_local;
2738 }
2739
2740 /* Only look for stubs on call instructions. */
2741 if (r_type != (unsigned int) R_PARISC_PCREL12F
2742 && r_type != (unsigned int) R_PARISC_PCREL17F
2743 && r_type != (unsigned int) R_PARISC_PCREL22F)
2744 continue;
2745
2746 /* Now determine the call target, its name, value,
2747 section. */
2748 sym_sec = NULL;
2749 sym_value = 0;
2750 destination = 0;
2751 hash = NULL;
2752 if (r_indx < symtab_hdr->sh_info)
2753 {
2754 /* It's a local symbol. */
2755 Elf_Internal_Sym *sym;
2756 Elf_Internal_Shdr *hdr;
2757
2758 sym = local_syms + r_indx;
2759 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2760 sym_sec = hdr->bfd_section;
2761 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2762 sym_value = sym->st_value;
2763 destination = (sym_value + irela->r_addend
2764 + sym_sec->output_offset
2765 + sym_sec->output_section->vma);
2766 }
2767 else
2768 {
2769 /* It's an external symbol. */
2770 int e_indx;
2771
2772 e_indx = r_indx - symtab_hdr->sh_info;
2773 hash = ((struct elf32_hppa_link_hash_entry *)
2774 elf_sym_hashes (input_bfd)[e_indx]);
2775
2776 while (hash->elf.root.type == bfd_link_hash_indirect
2777 || hash->elf.root.type == bfd_link_hash_warning)
2778 hash = ((struct elf32_hppa_link_hash_entry *)
2779 hash->elf.root.u.i.link);
2780
2781 if (hash->elf.root.type == bfd_link_hash_defined
2782 || hash->elf.root.type == bfd_link_hash_defweak)
2783 {
2784 sym_sec = hash->elf.root.u.def.section;
2785 sym_value = hash->elf.root.u.def.value;
2786 if (sym_sec->output_section != NULL)
2787 destination = (sym_value + irela->r_addend
2788 + sym_sec->output_offset
2789 + sym_sec->output_section->vma);
2790 }
2791 else if (hash->elf.root.type == bfd_link_hash_undefweak)
2792 {
2793 if (! info->shared)
2794 continue;
2795 }
2796 else if (hash->elf.root.type == bfd_link_hash_undefined)
2797 {
2798 if (! (info->shared
2799 && info->unresolved_syms_in_objects == RM_IGNORE
2800 && (ELF_ST_VISIBILITY (hash->elf.other)
2801 == STV_DEFAULT)
2802 && hash->elf.type != STT_PARISC_MILLI))
2803 continue;
2804 }
2805 else
2806 {
2807 bfd_set_error (bfd_error_bad_value);
2808 goto error_ret_free_internal;
2809 }
2810 }
2811
2812 /* Determine what (if any) linker stub is needed. */
2813 stub_type = hppa_type_of_stub (section, irela, hash,
2814 destination, info);
2815 if (stub_type == hppa_stub_none)
2816 continue;
2817
2818 /* Support for grouping stub sections. */
2819 id_sec = htab->stub_group[section->id].link_sec;
2820
2821 /* Get the name of this stub. */
2822 stub_name = hppa_stub_name (id_sec, sym_sec, hash, irela);
2823 if (!stub_name)
2824 goto error_ret_free_internal;
2825
2826 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
2827 stub_name,
2828 FALSE, FALSE);
2829 if (stub_entry != NULL)
2830 {
2831 /* The proper stub has already been created. */
2832 free (stub_name);
2833 continue;
2834 }
2835
2836 stub_entry = hppa_add_stub (stub_name, section, htab);
2837 if (stub_entry == NULL)
2838 {
2839 free (stub_name);
2840 goto error_ret_free_internal;
2841 }
2842
2843 stub_entry->target_value = sym_value;
2844 stub_entry->target_section = sym_sec;
2845 stub_entry->stub_type = stub_type;
2846 if (info->shared)
2847 {
2848 if (stub_type == hppa_stub_import)
2849 stub_entry->stub_type = hppa_stub_import_shared;
2850 else if (stub_type == hppa_stub_long_branch)
2851 stub_entry->stub_type = hppa_stub_long_branch_shared;
2852 }
2853 stub_entry->h = hash;
2854 stub_changed = TRUE;
2855 }
2856
2857 /* We're done with the internal relocs, free them. */
2858 if (elf_section_data (section)->relocs == NULL)
2859 free (internal_relocs);
2860 }
2861 }
2862
2863 if (!stub_changed)
2864 break;
2865
2866 /* OK, we've added some stubs. Find out the new size of the
2867 stub sections. */
2868 for (stub_sec = htab->stub_bfd->sections;
2869 stub_sec != NULL;
2870 stub_sec = stub_sec->next)
2871 {
2872 stub_sec->_raw_size = 0;
2873 stub_sec->_cooked_size = 0;
2874 }
2875
2876 bfd_hash_traverse (&htab->stub_hash_table, hppa_size_one_stub, htab);
2877
2878 /* Ask the linker to do its stuff. */
2879 (*htab->layout_sections_again) ();
2880 stub_changed = FALSE;
2881 }
2882
2883 free (htab->all_local_syms);
2884 return TRUE;
2885
2886 error_ret_free_local:
2887 free (htab->all_local_syms);
2888 return FALSE;
2889 }
2890
2891 /* For a final link, this function is called after we have sized the
2892 stubs to provide a value for __gp. */
2893
2894 bfd_boolean
2895 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
2896 {
2897 struct bfd_link_hash_entry *h;
2898 asection *sec = NULL;
2899 bfd_vma gp_val = 0;
2900 struct elf32_hppa_link_hash_table *htab;
2901
2902 htab = hppa_link_hash_table (info);
2903 h = bfd_link_hash_lookup (&htab->elf.root, "$global$", FALSE, FALSE, FALSE);
2904
2905 if (h != NULL
2906 && (h->type == bfd_link_hash_defined
2907 || h->type == bfd_link_hash_defweak))
2908 {
2909 gp_val = h->u.def.value;
2910 sec = h->u.def.section;
2911 }
2912 else
2913 {
2914 asection *splt;
2915 asection *sgot;
2916
2917 if (htab->elf.root.creator->flavour == bfd_target_elf_flavour)
2918 {
2919 splt = htab->splt;
2920 sgot = htab->sgot;
2921 }
2922 else
2923 {
2924 /* If we're not elf, look up the output sections in the
2925 hope we may actually find them. */
2926 splt = bfd_get_section_by_name (abfd, ".plt");
2927 sgot = bfd_get_section_by_name (abfd, ".got");
2928 }
2929
2930 /* Choose to point our LTP at, in this order, one of .plt, .got,
2931 or .data, if these sections exist. In the case of choosing
2932 .plt try to make the LTP ideal for addressing anywhere in the
2933 .plt or .got with a 14 bit signed offset. Typically, the end
2934 of the .plt is the start of the .got, so choose .plt + 0x2000
2935 if either the .plt or .got is larger than 0x2000. If both
2936 the .plt and .got are smaller than 0x2000, choose the end of
2937 the .plt section. */
2938 sec = splt;
2939 if (sec != NULL)
2940 {
2941 gp_val = sec->_raw_size;
2942 if (gp_val > 0x2000 || (sgot && sgot->_raw_size > 0x2000))
2943 {
2944 gp_val = 0x2000;
2945 }
2946 }
2947 else
2948 {
2949 sec = sgot;
2950 if (sec != NULL)
2951 {
2952 /* We know we don't have a .plt. If .got is large,
2953 offset our LTP. */
2954 if (sec->_raw_size > 0x2000)
2955 gp_val = 0x2000;
2956 }
2957 else
2958 {
2959 /* No .plt or .got. Who cares what the LTP is? */
2960 sec = bfd_get_section_by_name (abfd, ".data");
2961 }
2962 }
2963
2964 if (h != NULL)
2965 {
2966 h->type = bfd_link_hash_defined;
2967 h->u.def.value = gp_val;
2968 if (sec != NULL)
2969 h->u.def.section = sec;
2970 else
2971 h->u.def.section = bfd_abs_section_ptr;
2972 }
2973 }
2974
2975 if (sec != NULL && sec->output_section != NULL)
2976 gp_val += sec->output_section->vma + sec->output_offset;
2977
2978 elf_gp (abfd) = gp_val;
2979 return TRUE;
2980 }
2981
2982 /* Build all the stubs associated with the current output file. The
2983 stubs are kept in a hash table attached to the main linker hash
2984 table. We also set up the .plt entries for statically linked PIC
2985 functions here. This function is called via hppaelf_finish in the
2986 linker. */
2987
2988 bfd_boolean
2989 elf32_hppa_build_stubs (struct bfd_link_info *info)
2990 {
2991 asection *stub_sec;
2992 struct bfd_hash_table *table;
2993 struct elf32_hppa_link_hash_table *htab;
2994
2995 htab = hppa_link_hash_table (info);
2996
2997 for (stub_sec = htab->stub_bfd->sections;
2998 stub_sec != NULL;
2999 stub_sec = stub_sec->next)
3000 {
3001 bfd_size_type size;
3002
3003 /* Allocate memory to hold the linker stubs. */
3004 size = stub_sec->_raw_size;
3005 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3006 if (stub_sec->contents == NULL && size != 0)
3007 return FALSE;
3008 stub_sec->_raw_size = 0;
3009 }
3010
3011 /* Build the stubs as directed by the stub hash table. */
3012 table = &htab->stub_hash_table;
3013 bfd_hash_traverse (table, hppa_build_one_stub, info);
3014
3015 return TRUE;
3016 }
3017
3018 /* Perform a final link. */
3019
3020 static bfd_boolean
3021 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3022 {
3023 /* Invoke the regular ELF linker to do all the work. */
3024 if (!bfd_elf32_bfd_final_link (abfd, info))
3025 return FALSE;
3026
3027 /* If we're producing a final executable, sort the contents of the
3028 unwind section. */
3029 return elf_hppa_sort_unwind (abfd);
3030 }
3031
3032 /* Record the lowest address for the data and text segments. */
3033
3034 static void
3035 hppa_record_segment_addr (bfd *abfd ATTRIBUTE_UNUSED,
3036 asection *section,
3037 void *data)
3038 {
3039 struct elf32_hppa_link_hash_table *htab;
3040
3041 htab = (struct elf32_hppa_link_hash_table *) data;
3042
3043 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3044 {
3045 bfd_vma value = section->vma - section->filepos;
3046
3047 if ((section->flags & SEC_READONLY) != 0)
3048 {
3049 if (value < htab->text_segment_base)
3050 htab->text_segment_base = value;
3051 }
3052 else
3053 {
3054 if (value < htab->data_segment_base)
3055 htab->data_segment_base = value;
3056 }
3057 }
3058 }
3059
3060 /* Perform a relocation as part of a final link. */
3061
3062 static bfd_reloc_status_type
3063 final_link_relocate (asection *input_section,
3064 bfd_byte *contents,
3065 const Elf_Internal_Rela *rel,
3066 bfd_vma value,
3067 struct elf32_hppa_link_hash_table *htab,
3068 asection *sym_sec,
3069 struct elf32_hppa_link_hash_entry *h,
3070 struct bfd_link_info *info)
3071 {
3072 int insn;
3073 unsigned int r_type = ELF32_R_TYPE (rel->r_info);
3074 unsigned int orig_r_type = r_type;
3075 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3076 int r_format = howto->bitsize;
3077 enum hppa_reloc_field_selector_type_alt r_field;
3078 bfd *input_bfd = input_section->owner;
3079 bfd_vma offset = rel->r_offset;
3080 bfd_vma max_branch_offset = 0;
3081 bfd_byte *hit_data = contents + offset;
3082 bfd_signed_vma addend = rel->r_addend;
3083 bfd_vma location;
3084 struct elf32_hppa_stub_hash_entry *stub_entry = NULL;
3085 int val;
3086
3087 if (r_type == R_PARISC_NONE)
3088 return bfd_reloc_ok;
3089
3090 insn = bfd_get_32 (input_bfd, hit_data);
3091
3092 /* Find out where we are and where we're going. */
3093 location = (offset +
3094 input_section->output_offset +
3095 input_section->output_section->vma);
3096
3097 /* If we are not building a shared library, convert DLTIND relocs to
3098 DPREL relocs. */
3099 if (!info->shared)
3100 {
3101 switch (r_type)
3102 {
3103 case R_PARISC_DLTIND21L:
3104 r_type = R_PARISC_DPREL21L;
3105 break;
3106
3107 case R_PARISC_DLTIND14R:
3108 r_type = R_PARISC_DPREL14R;
3109 break;
3110
3111 case R_PARISC_DLTIND14F:
3112 r_type = R_PARISC_DPREL14F;
3113 break;
3114 }
3115 }
3116
3117 switch (r_type)
3118 {
3119 case R_PARISC_PCREL12F:
3120 case R_PARISC_PCREL17F:
3121 case R_PARISC_PCREL22F:
3122 /* If this call should go via the plt, find the import stub in
3123 the stub hash. */
3124 if (sym_sec == NULL
3125 || sym_sec->output_section == NULL
3126 || (h != NULL
3127 && h->elf.plt.offset != (bfd_vma) -1
3128 && h->elf.dynindx != -1
3129 && !h->plabel
3130 && (info->shared
3131 || !(h->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
3132 || h->elf.root.type == bfd_link_hash_defweak)))
3133 {
3134 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3135 h, rel, htab);
3136 if (stub_entry != NULL)
3137 {
3138 value = (stub_entry->stub_offset
3139 + stub_entry->stub_sec->output_offset
3140 + stub_entry->stub_sec->output_section->vma);
3141 addend = 0;
3142 }
3143 else if (sym_sec == NULL && h != NULL
3144 && h->elf.root.type == bfd_link_hash_undefweak)
3145 {
3146 /* It's OK if undefined weak. Calls to undefined weak
3147 symbols behave as if the "called" function
3148 immediately returns. We can thus call to a weak
3149 function without first checking whether the function
3150 is defined. */
3151 value = location;
3152 addend = 8;
3153 }
3154 else
3155 return bfd_reloc_undefined;
3156 }
3157 /* Fall thru. */
3158
3159 case R_PARISC_PCREL21L:
3160 case R_PARISC_PCREL17C:
3161 case R_PARISC_PCREL17R:
3162 case R_PARISC_PCREL14R:
3163 case R_PARISC_PCREL14F:
3164 /* Make it a pc relative offset. */
3165 value -= location;
3166 addend -= 8;
3167 break;
3168
3169 case R_PARISC_DPREL21L:
3170 case R_PARISC_DPREL14R:
3171 case R_PARISC_DPREL14F:
3172 /* Convert instructions that use the linkage table pointer (r19) to
3173 instructions that use the global data pointer (dp). This is the
3174 most efficient way of using PIC code in an incomplete executable,
3175 but the user must follow the standard runtime conventions for
3176 accessing data for this to work. */
3177 if (orig_r_type == R_PARISC_DLTIND21L)
3178 {
3179 /* Convert addil instructions if the original reloc was a
3180 DLTIND21L. GCC sometimes uses a register other than r19 for
3181 the operation, so we must convert any addil instruction
3182 that uses this relocation. */
3183 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3184 insn = ADDIL_DP;
3185 else
3186 /* We must have a ldil instruction. It's too hard to find
3187 and convert the associated add instruction, so issue an
3188 error. */
3189 (*_bfd_error_handler)
3190 (_("%s(%s+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3191 bfd_archive_filename (input_bfd),
3192 input_section->name,
3193 (long) rel->r_offset,
3194 howto->name,
3195 insn);
3196 }
3197 else if (orig_r_type == R_PARISC_DLTIND14F)
3198 {
3199 /* This must be a format 1 load/store. Change the base
3200 register to dp. */
3201 insn = (insn & 0xfc1ffff) | (27 << 21);
3202 }
3203
3204 /* For all the DP relative relocations, we need to examine the symbol's
3205 section. If it has no section or if it's a code section, then
3206 "data pointer relative" makes no sense. In that case we don't
3207 adjust the "value", and for 21 bit addil instructions, we change the
3208 source addend register from %dp to %r0. This situation commonly
3209 arises for undefined weak symbols and when a variable's "constness"
3210 is declared differently from the way the variable is defined. For
3211 instance: "extern int foo" with foo defined as "const int foo". */
3212 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3213 {
3214 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3215 == (((int) OP_ADDIL << 26) | (27 << 21)))
3216 {
3217 insn &= ~ (0x1f << 21);
3218 #if 0 /* debug them. */
3219 (*_bfd_error_handler)
3220 (_("%s(%s+0x%lx): fixing %s"),
3221 bfd_archive_filename (input_bfd),
3222 input_section->name,
3223 (long) rel->r_offset,
3224 howto->name);
3225 #endif
3226 }
3227 /* Now try to make things easy for the dynamic linker. */
3228
3229 break;
3230 }
3231 /* Fall thru. */
3232
3233 case R_PARISC_DLTIND21L:
3234 case R_PARISC_DLTIND14R:
3235 case R_PARISC_DLTIND14F:
3236 value -= elf_gp (input_section->output_section->owner);
3237 break;
3238
3239 case R_PARISC_SEGREL32:
3240 if ((sym_sec->flags & SEC_CODE) != 0)
3241 value -= htab->text_segment_base;
3242 else
3243 value -= htab->data_segment_base;
3244 break;
3245
3246 default:
3247 break;
3248 }
3249
3250 switch (r_type)
3251 {
3252 case R_PARISC_DIR32:
3253 case R_PARISC_DIR14F:
3254 case R_PARISC_DIR17F:
3255 case R_PARISC_PCREL17C:
3256 case R_PARISC_PCREL14F:
3257 case R_PARISC_DPREL14F:
3258 case R_PARISC_PLABEL32:
3259 case R_PARISC_DLTIND14F:
3260 case R_PARISC_SEGBASE:
3261 case R_PARISC_SEGREL32:
3262 r_field = e_fsel;
3263 break;
3264
3265 case R_PARISC_DLTIND21L:
3266 case R_PARISC_PCREL21L:
3267 case R_PARISC_PLABEL21L:
3268 r_field = e_lsel;
3269 break;
3270
3271 case R_PARISC_DIR21L:
3272 case R_PARISC_DPREL21L:
3273 r_field = e_lrsel;
3274 break;
3275
3276 case R_PARISC_PCREL17R:
3277 case R_PARISC_PCREL14R:
3278 case R_PARISC_PLABEL14R:
3279 case R_PARISC_DLTIND14R:
3280 r_field = e_rsel;
3281 break;
3282
3283 case R_PARISC_DIR17R:
3284 case R_PARISC_DIR14R:
3285 case R_PARISC_DPREL14R:
3286 r_field = e_rrsel;
3287 break;
3288
3289 case R_PARISC_PCREL12F:
3290 case R_PARISC_PCREL17F:
3291 case R_PARISC_PCREL22F:
3292 r_field = e_fsel;
3293
3294 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3295 {
3296 max_branch_offset = (1 << (17-1)) << 2;
3297 }
3298 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3299 {
3300 max_branch_offset = (1 << (12-1)) << 2;
3301 }
3302 else
3303 {
3304 max_branch_offset = (1 << (22-1)) << 2;
3305 }
3306
3307 /* sym_sec is NULL on undefined weak syms or when shared on
3308 undefined syms. We've already checked for a stub for the
3309 shared undefined case. */
3310 if (sym_sec == NULL)
3311 break;
3312
3313 /* If the branch is out of reach, then redirect the
3314 call to the local stub for this function. */
3315 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3316 {
3317 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3318 h, rel, htab);
3319 if (stub_entry == NULL)
3320 return bfd_reloc_undefined;
3321
3322 /* Munge up the value and addend so that we call the stub
3323 rather than the procedure directly. */
3324 value = (stub_entry->stub_offset
3325 + stub_entry->stub_sec->output_offset
3326 + stub_entry->stub_sec->output_section->vma
3327 - location);
3328 addend = -8;
3329 }
3330 break;
3331
3332 /* Something we don't know how to handle. */
3333 default:
3334 return bfd_reloc_notsupported;
3335 }
3336
3337 /* Make sure we can reach the stub. */
3338 if (max_branch_offset != 0
3339 && value + addend + max_branch_offset >= 2*max_branch_offset)
3340 {
3341 (*_bfd_error_handler)
3342 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3343 bfd_archive_filename (input_bfd),
3344 input_section->name,
3345 (long) rel->r_offset,
3346 stub_entry->root.string);
3347 bfd_set_error (bfd_error_bad_value);
3348 return bfd_reloc_notsupported;
3349 }
3350
3351 val = hppa_field_adjust (value, addend, r_field);
3352
3353 switch (r_type)
3354 {
3355 case R_PARISC_PCREL12F:
3356 case R_PARISC_PCREL17C:
3357 case R_PARISC_PCREL17F:
3358 case R_PARISC_PCREL17R:
3359 case R_PARISC_PCREL22F:
3360 case R_PARISC_DIR17F:
3361 case R_PARISC_DIR17R:
3362 /* This is a branch. Divide the offset by four.
3363 Note that we need to decide whether it's a branch or
3364 otherwise by inspecting the reloc. Inspecting insn won't
3365 work as insn might be from a .word directive. */
3366 val >>= 2;
3367 break;
3368
3369 default:
3370 break;
3371 }
3372
3373 insn = hppa_rebuild_insn (insn, val, r_format);
3374
3375 /* Update the instruction word. */
3376 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3377 return bfd_reloc_ok;
3378 }
3379
3380 /* Relocate an HPPA ELF section. */
3381
3382 static bfd_boolean
3383 elf32_hppa_relocate_section (bfd *output_bfd,
3384 struct bfd_link_info *info,
3385 bfd *input_bfd,
3386 asection *input_section,
3387 bfd_byte *contents,
3388 Elf_Internal_Rela *relocs,
3389 Elf_Internal_Sym *local_syms,
3390 asection **local_sections)
3391 {
3392 bfd_vma *local_got_offsets;
3393 struct elf32_hppa_link_hash_table *htab;
3394 Elf_Internal_Shdr *symtab_hdr;
3395 Elf_Internal_Rela *rel;
3396 Elf_Internal_Rela *relend;
3397
3398 if (info->relocatable)
3399 return TRUE;
3400
3401 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3402
3403 htab = hppa_link_hash_table (info);
3404 local_got_offsets = elf_local_got_offsets (input_bfd);
3405
3406 rel = relocs;
3407 relend = relocs + input_section->reloc_count;
3408 for (; rel < relend; rel++)
3409 {
3410 unsigned int r_type;
3411 reloc_howto_type *howto;
3412 unsigned int r_symndx;
3413 struct elf32_hppa_link_hash_entry *h;
3414 Elf_Internal_Sym *sym;
3415 asection *sym_sec;
3416 bfd_vma relocation;
3417 bfd_reloc_status_type r;
3418 const char *sym_name;
3419 bfd_boolean plabel;
3420 bfd_boolean warned_undef;
3421
3422 r_type = ELF32_R_TYPE (rel->r_info);
3423 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3424 {
3425 bfd_set_error (bfd_error_bad_value);
3426 return FALSE;
3427 }
3428 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3429 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3430 continue;
3431
3432 /* This is a final link. */
3433 r_symndx = ELF32_R_SYM (rel->r_info);
3434 h = NULL;
3435 sym = NULL;
3436 sym_sec = NULL;
3437 warned_undef = FALSE;
3438 if (r_symndx < symtab_hdr->sh_info)
3439 {
3440 /* This is a local symbol, h defaults to NULL. */
3441 sym = local_syms + r_symndx;
3442 sym_sec = local_sections[r_symndx];
3443 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rel);
3444 }
3445 else
3446 {
3447 struct elf_link_hash_entry *hh;
3448 bfd_boolean unresolved_reloc;
3449
3450 RELOC_FOR_GLOBAL_SYMBOL (hh, elf_sym_hashes (input_bfd), r_symndx, symtab_hdr,
3451 relocation, sym_sec, unresolved_reloc, info,
3452 warned_undef);
3453
3454 if (relocation == 0
3455 && hh->root.type != bfd_link_hash_defined
3456 && hh->root.type != bfd_link_hash_defweak
3457 && hh->root.type != bfd_link_hash_undefweak)
3458 {
3459 if (!info->executable
3460 && info->unresolved_syms_in_objects == RM_IGNORE
3461 && ELF_ST_VISIBILITY (hh->other) == STV_DEFAULT
3462 && hh->type == STT_PARISC_MILLI)
3463 {
3464 if (! info->callbacks->undefined_symbol
3465 (info, hh->root.root.string, input_bfd,
3466 input_section, rel->r_offset,
3467 ((info->shared && info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)
3468 || (!info->shared && info->unresolved_syms_in_objects == RM_GENERATE_ERROR))))
3469 return FALSE;
3470 warned_undef = TRUE;
3471 }
3472 }
3473 h = (struct elf32_hppa_link_hash_entry *) hh;
3474 }
3475
3476 /* Do any required modifications to the relocation value, and
3477 determine what types of dynamic info we need to output, if
3478 any. */
3479 plabel = 0;
3480 switch (r_type)
3481 {
3482 case R_PARISC_DLTIND14F:
3483 case R_PARISC_DLTIND14R:
3484 case R_PARISC_DLTIND21L:
3485 {
3486 bfd_vma off;
3487 bfd_boolean do_got = 0;
3488
3489 /* Relocation is to the entry for this symbol in the
3490 global offset table. */
3491 if (h != NULL)
3492 {
3493 bfd_boolean dyn;
3494
3495 off = h->elf.got.offset;
3496 dyn = htab->elf.dynamic_sections_created;
3497 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, &h->elf))
3498 {
3499 /* If we aren't going to call finish_dynamic_symbol,
3500 then we need to handle initialisation of the .got
3501 entry and create needed relocs here. Since the
3502 offset must always be a multiple of 4, we use the
3503 least significant bit to record whether we have
3504 initialised it already. */
3505 if ((off & 1) != 0)
3506 off &= ~1;
3507 else
3508 {
3509 h->elf.got.offset |= 1;
3510 do_got = 1;
3511 }
3512 }
3513 }
3514 else
3515 {
3516 /* Local symbol case. */
3517 if (local_got_offsets == NULL)
3518 abort ();
3519
3520 off = local_got_offsets[r_symndx];
3521
3522 /* The offset must always be a multiple of 4. We use
3523 the least significant bit to record whether we have
3524 already generated the necessary reloc. */
3525 if ((off & 1) != 0)
3526 off &= ~1;
3527 else
3528 {
3529 local_got_offsets[r_symndx] |= 1;
3530 do_got = 1;
3531 }
3532 }
3533
3534 if (do_got)
3535 {
3536 if (info->shared)
3537 {
3538 /* Output a dynamic relocation for this GOT entry.
3539 In this case it is relative to the base of the
3540 object because the symbol index is zero. */
3541 Elf_Internal_Rela outrel;
3542 bfd_byte *loc;
3543 asection *s = htab->srelgot;
3544
3545 outrel.r_offset = (off
3546 + htab->sgot->output_offset
3547 + htab->sgot->output_section->vma);
3548 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3549 outrel.r_addend = relocation;
3550 loc = s->contents;
3551 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3552 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3553 }
3554 else
3555 bfd_put_32 (output_bfd, relocation,
3556 htab->sgot->contents + off);
3557 }
3558
3559 if (off >= (bfd_vma) -2)
3560 abort ();
3561
3562 /* Add the base of the GOT to the relocation value. */
3563 relocation = (off
3564 + htab->sgot->output_offset
3565 + htab->sgot->output_section->vma);
3566 }
3567 break;
3568
3569 case R_PARISC_SEGREL32:
3570 /* If this is the first SEGREL relocation, then initialize
3571 the segment base values. */
3572 if (htab->text_segment_base == (bfd_vma) -1)
3573 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3574 break;
3575
3576 case R_PARISC_PLABEL14R:
3577 case R_PARISC_PLABEL21L:
3578 case R_PARISC_PLABEL32:
3579 if (htab->elf.dynamic_sections_created)
3580 {
3581 bfd_vma off;
3582 bfd_boolean do_plt = 0;
3583
3584 /* If we have a global symbol with a PLT slot, then
3585 redirect this relocation to it. */
3586 if (h != NULL)
3587 {
3588 off = h->elf.plt.offset;
3589 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, &h->elf))
3590 {
3591 /* In a non-shared link, adjust_dynamic_symbols
3592 isn't called for symbols forced local. We
3593 need to write out the plt entry here. */
3594 if ((off & 1) != 0)
3595 off &= ~1;
3596 else
3597 {
3598 h->elf.plt.offset |= 1;
3599 do_plt = 1;
3600 }
3601 }
3602 }
3603 else
3604 {
3605 bfd_vma *local_plt_offsets;
3606
3607 if (local_got_offsets == NULL)
3608 abort ();
3609
3610 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3611 off = local_plt_offsets[r_symndx];
3612
3613 /* As for the local .got entry case, we use the last
3614 bit to record whether we've already initialised
3615 this local .plt entry. */
3616 if ((off & 1) != 0)
3617 off &= ~1;
3618 else
3619 {
3620 local_plt_offsets[r_symndx] |= 1;
3621 do_plt = 1;
3622 }
3623 }
3624
3625 if (do_plt)
3626 {
3627 if (info->shared)
3628 {
3629 /* Output a dynamic IPLT relocation for this
3630 PLT entry. */
3631 Elf_Internal_Rela outrel;
3632 bfd_byte *loc;
3633 asection *s = htab->srelplt;
3634
3635 outrel.r_offset = (off
3636 + htab->splt->output_offset
3637 + htab->splt->output_section->vma);
3638 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3639 outrel.r_addend = relocation;
3640 loc = s->contents;
3641 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3642 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3643 }
3644 else
3645 {
3646 bfd_put_32 (output_bfd,
3647 relocation,
3648 htab->splt->contents + off);
3649 bfd_put_32 (output_bfd,
3650 elf_gp (htab->splt->output_section->owner),
3651 htab->splt->contents + off + 4);
3652 }
3653 }
3654
3655 if (off >= (bfd_vma) -2)
3656 abort ();
3657
3658 /* PLABELs contain function pointers. Relocation is to
3659 the entry for the function in the .plt. The magic +2
3660 offset signals to $$dyncall that the function pointer
3661 is in the .plt and thus has a gp pointer too.
3662 Exception: Undefined PLABELs should have a value of
3663 zero. */
3664 if (h == NULL
3665 || (h->elf.root.type != bfd_link_hash_undefweak
3666 && h->elf.root.type != bfd_link_hash_undefined))
3667 {
3668 relocation = (off
3669 + htab->splt->output_offset
3670 + htab->splt->output_section->vma
3671 + 2);
3672 }
3673 plabel = 1;
3674 }
3675 /* Fall through and possibly emit a dynamic relocation. */
3676
3677 case R_PARISC_DIR17F:
3678 case R_PARISC_DIR17R:
3679 case R_PARISC_DIR14F:
3680 case R_PARISC_DIR14R:
3681 case R_PARISC_DIR21L:
3682 case R_PARISC_DPREL14F:
3683 case R_PARISC_DPREL14R:
3684 case R_PARISC_DPREL21L:
3685 case R_PARISC_DIR32:
3686 /* r_symndx will be zero only for relocs against symbols
3687 from removed linkonce sections, or sections discarded by
3688 a linker script. */
3689 if (r_symndx == 0
3690 || (input_section->flags & SEC_ALLOC) == 0)
3691 break;
3692
3693 /* The reloc types handled here and this conditional
3694 expression must match the code in ..check_relocs and
3695 allocate_dynrelocs. ie. We need exactly the same condition
3696 as in ..check_relocs, with some extra conditions (dynindx
3697 test in this case) to cater for relocs removed by
3698 allocate_dynrelocs. If you squint, the non-shared test
3699 here does indeed match the one in ..check_relocs, the
3700 difference being that here we test DEF_DYNAMIC as well as
3701 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3702 which is why we can't use just that test here.
3703 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3704 there all files have not been loaded. */
3705 if ((info->shared
3706 && (h == NULL
3707 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
3708 || h->elf.root.type != bfd_link_hash_undefweak)
3709 && (IS_ABSOLUTE_RELOC (r_type)
3710 || !SYMBOL_CALLS_LOCAL (info, &h->elf)))
3711 || (!info->shared
3712 && h != NULL
3713 && h->elf.dynindx != -1
3714 && (h->elf.elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
3715 && ((ELIMINATE_COPY_RELOCS
3716 && (h->elf.elf_link_hash_flags
3717 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3718 && (h->elf.elf_link_hash_flags
3719 & ELF_LINK_HASH_DEF_REGULAR) == 0)
3720 || h->elf.root.type == bfd_link_hash_undefweak
3721 || h->elf.root.type == bfd_link_hash_undefined)))
3722 {
3723 Elf_Internal_Rela outrel;
3724 bfd_boolean skip;
3725 asection *sreloc;
3726 bfd_byte *loc;
3727
3728 /* When generating a shared object, these relocations
3729 are copied into the output file to be resolved at run
3730 time. */
3731
3732 outrel.r_addend = rel->r_addend;
3733 outrel.r_offset =
3734 _bfd_elf_section_offset (output_bfd, info, input_section,
3735 rel->r_offset);
3736 skip = (outrel.r_offset == (bfd_vma) -1
3737 || outrel.r_offset == (bfd_vma) -2);
3738 outrel.r_offset += (input_section->output_offset
3739 + input_section->output_section->vma);
3740
3741 if (skip)
3742 {
3743 memset (&outrel, 0, sizeof (outrel));
3744 }
3745 else if (h != NULL
3746 && h->elf.dynindx != -1
3747 && (plabel
3748 || !IS_ABSOLUTE_RELOC (r_type)
3749 || !info->shared
3750 || !info->symbolic
3751 || (h->elf.elf_link_hash_flags
3752 & ELF_LINK_HASH_DEF_REGULAR) == 0))
3753 {
3754 outrel.r_info = ELF32_R_INFO (h->elf.dynindx, r_type);
3755 }
3756 else /* It's a local symbol, or one marked to become local. */
3757 {
3758 int indx = 0;
3759
3760 /* Add the absolute offset of the symbol. */
3761 outrel.r_addend += relocation;
3762
3763 /* Global plabels need to be processed by the
3764 dynamic linker so that functions have at most one
3765 fptr. For this reason, we need to differentiate
3766 between global and local plabels, which we do by
3767 providing the function symbol for a global plabel
3768 reloc, and no symbol for local plabels. */
3769 if (! plabel
3770 && sym_sec != NULL
3771 && sym_sec->output_section != NULL
3772 && ! bfd_is_abs_section (sym_sec))
3773 {
3774 /* Skip this relocation if the output section has
3775 been discarded. */
3776 if (bfd_is_abs_section (sym_sec->output_section))
3777 break;
3778
3779 indx = elf_section_data (sym_sec->output_section)->dynindx;
3780 /* We are turning this relocation into one
3781 against a section symbol, so subtract out the
3782 output section's address but not the offset
3783 of the input section in the output section. */
3784 outrel.r_addend -= sym_sec->output_section->vma;
3785 }
3786
3787 outrel.r_info = ELF32_R_INFO (indx, r_type);
3788 }
3789 #if 0
3790 /* EH info can cause unaligned DIR32 relocs.
3791 Tweak the reloc type for the dynamic linker. */
3792 if (r_type == R_PARISC_DIR32 && (outrel.r_offset & 3) != 0)
3793 outrel.r_info = ELF32_R_INFO (ELF32_R_SYM (outrel.r_info),
3794 R_PARISC_DIR32U);
3795 #endif
3796 sreloc = elf_section_data (input_section)->sreloc;
3797 if (sreloc == NULL)
3798 abort ();
3799
3800 loc = sreloc->contents;
3801 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3802 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3803 }
3804 break;
3805
3806 default:
3807 break;
3808 }
3809
3810 r = final_link_relocate (input_section, contents, rel, relocation,
3811 htab, sym_sec, h, info);
3812
3813 if (r == bfd_reloc_ok)
3814 continue;
3815
3816 if (h != NULL)
3817 sym_name = h->elf.root.root.string;
3818 else
3819 {
3820 sym_name = bfd_elf_string_from_elf_section (input_bfd,
3821 symtab_hdr->sh_link,
3822 sym->st_name);
3823 if (sym_name == NULL)
3824 return FALSE;
3825 if (*sym_name == '\0')
3826 sym_name = bfd_section_name (input_bfd, sym_sec);
3827 }
3828
3829 howto = elf_hppa_howto_table + r_type;
3830
3831 if (r == bfd_reloc_undefined || r == bfd_reloc_notsupported)
3832 {
3833 if (r == bfd_reloc_notsupported || !warned_undef)
3834 {
3835 (*_bfd_error_handler)
3836 (_("%s(%s+0x%lx): cannot handle %s for %s"),
3837 bfd_archive_filename (input_bfd),
3838 input_section->name,
3839 (long) rel->r_offset,
3840 howto->name,
3841 sym_name);
3842 bfd_set_error (bfd_error_bad_value);
3843 return FALSE;
3844 }
3845 }
3846 else
3847 {
3848 if (!((*info->callbacks->reloc_overflow)
3849 (info, sym_name, howto->name, 0, input_bfd, input_section,
3850 rel->r_offset)))
3851 return FALSE;
3852 }
3853 }
3854
3855 return TRUE;
3856 }
3857
3858 /* Finish up dynamic symbol handling. We set the contents of various
3859 dynamic sections here. */
3860
3861 static bfd_boolean
3862 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
3863 struct bfd_link_info *info,
3864 struct elf_link_hash_entry *h,
3865 Elf_Internal_Sym *sym)
3866 {
3867 struct elf32_hppa_link_hash_table *htab;
3868 Elf_Internal_Rela rel;
3869 bfd_byte *loc;
3870
3871 htab = hppa_link_hash_table (info);
3872
3873 if (h->plt.offset != (bfd_vma) -1)
3874 {
3875 bfd_vma value;
3876
3877 if (h->plt.offset & 1)
3878 abort ();
3879
3880 /* This symbol has an entry in the procedure linkage table. Set
3881 it up.
3882
3883 The format of a plt entry is
3884 <funcaddr>
3885 <__gp>
3886 */
3887 value = 0;
3888 if (h->root.type == bfd_link_hash_defined
3889 || h->root.type == bfd_link_hash_defweak)
3890 {
3891 value = h->root.u.def.value;
3892 if (h->root.u.def.section->output_section != NULL)
3893 value += (h->root.u.def.section->output_offset
3894 + h->root.u.def.section->output_section->vma);
3895 }
3896
3897 /* Create a dynamic IPLT relocation for this entry. */
3898 rel.r_offset = (h->plt.offset
3899 + htab->splt->output_offset
3900 + htab->splt->output_section->vma);
3901 if (h->dynindx != -1)
3902 {
3903 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_IPLT);
3904 rel.r_addend = 0;
3905 }
3906 else
3907 {
3908 /* This symbol has been marked to become local, and is
3909 used by a plabel so must be kept in the .plt. */
3910 rel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3911 rel.r_addend = value;
3912 }
3913
3914 loc = htab->srelplt->contents;
3915 loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
3916 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rel, loc);
3917
3918 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3919 {
3920 /* Mark the symbol as undefined, rather than as defined in
3921 the .plt section. Leave the value alone. */
3922 sym->st_shndx = SHN_UNDEF;
3923 }
3924 }
3925
3926 if (h->got.offset != (bfd_vma) -1)
3927 {
3928 /* This symbol has an entry in the global offset table. Set it
3929 up. */
3930
3931 rel.r_offset = ((h->got.offset &~ (bfd_vma) 1)
3932 + htab->sgot->output_offset
3933 + htab->sgot->output_section->vma);
3934
3935 /* If this is a -Bsymbolic link and the symbol is defined
3936 locally or was forced to be local because of a version file,
3937 we just want to emit a RELATIVE reloc. The entry in the
3938 global offset table will already have been initialized in the
3939 relocate_section function. */
3940 if (info->shared
3941 && (info->symbolic || h->dynindx == -1)
3942 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
3943 {
3944 rel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3945 rel.r_addend = (h->root.u.def.value
3946 + h->root.u.def.section->output_offset
3947 + h->root.u.def.section->output_section->vma);
3948 }
3949 else
3950 {
3951 if ((h->got.offset & 1) != 0)
3952 abort ();
3953 bfd_put_32 (output_bfd, 0, htab->sgot->contents + h->got.offset);
3954 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_DIR32);
3955 rel.r_addend = 0;
3956 }
3957
3958 loc = htab->srelgot->contents;
3959 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
3960 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
3961 }
3962
3963 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
3964 {
3965 asection *s;
3966
3967 /* This symbol needs a copy reloc. Set it up. */
3968
3969 if (! (h->dynindx != -1
3970 && (h->root.type == bfd_link_hash_defined
3971 || h->root.type == bfd_link_hash_defweak)))
3972 abort ();
3973
3974 s = htab->srelbss;
3975
3976 rel.r_offset = (h->root.u.def.value
3977 + h->root.u.def.section->output_offset
3978 + h->root.u.def.section->output_section->vma);
3979 rel.r_addend = 0;
3980 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_COPY);
3981 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
3982 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
3983 }
3984
3985 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3986 if (h->root.root.string[0] == '_'
3987 && (strcmp (h->root.root.string, "_DYNAMIC") == 0
3988 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0))
3989 {
3990 sym->st_shndx = SHN_ABS;
3991 }
3992
3993 return TRUE;
3994 }
3995
3996 /* Used to decide how to sort relocs in an optimal manner for the
3997 dynamic linker, before writing them out. */
3998
3999 static enum elf_reloc_type_class
4000 elf32_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
4001 {
4002 if (ELF32_R_SYM (rela->r_info) == 0)
4003 return reloc_class_relative;
4004
4005 switch ((int) ELF32_R_TYPE (rela->r_info))
4006 {
4007 case R_PARISC_IPLT:
4008 return reloc_class_plt;
4009 case R_PARISC_COPY:
4010 return reloc_class_copy;
4011 default:
4012 return reloc_class_normal;
4013 }
4014 }
4015
4016 /* Finish up the dynamic sections. */
4017
4018 static bfd_boolean
4019 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4020 struct bfd_link_info *info)
4021 {
4022 bfd *dynobj;
4023 struct elf32_hppa_link_hash_table *htab;
4024 asection *sdyn;
4025
4026 htab = hppa_link_hash_table (info);
4027 dynobj = htab->elf.dynobj;
4028
4029 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4030
4031 if (htab->elf.dynamic_sections_created)
4032 {
4033 Elf32_External_Dyn *dyncon, *dynconend;
4034
4035 if (sdyn == NULL)
4036 abort ();
4037
4038 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4039 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
4040 for (; dyncon < dynconend; dyncon++)
4041 {
4042 Elf_Internal_Dyn dyn;
4043 asection *s;
4044
4045 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4046
4047 switch (dyn.d_tag)
4048 {
4049 default:
4050 continue;
4051
4052 case DT_PLTGOT:
4053 /* Use PLTGOT to set the GOT register. */
4054 dyn.d_un.d_ptr = elf_gp (output_bfd);
4055 break;
4056
4057 case DT_JMPREL:
4058 s = htab->srelplt;
4059 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4060 break;
4061
4062 case DT_PLTRELSZ:
4063 s = htab->srelplt;
4064 dyn.d_un.d_val = s->_raw_size;
4065 break;
4066
4067 case DT_RELASZ:
4068 /* Don't count procedure linkage table relocs in the
4069 overall reloc count. */
4070 s = htab->srelplt;
4071 if (s == NULL)
4072 continue;
4073 dyn.d_un.d_val -= s->_raw_size;
4074 break;
4075
4076 case DT_RELA:
4077 /* We may not be using the standard ELF linker script.
4078 If .rela.plt is the first .rela section, we adjust
4079 DT_RELA to not include it. */
4080 s = htab->srelplt;
4081 if (s == NULL)
4082 continue;
4083 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4084 continue;
4085 dyn.d_un.d_ptr += s->_raw_size;
4086 break;
4087 }
4088
4089 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4090 }
4091 }
4092
4093 if (htab->sgot != NULL && htab->sgot->_raw_size != 0)
4094 {
4095 /* Fill in the first entry in the global offset table.
4096 We use it to point to our dynamic section, if we have one. */
4097 bfd_put_32 (output_bfd,
4098 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4099 htab->sgot->contents);
4100
4101 /* The second entry is reserved for use by the dynamic linker. */
4102 memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4103
4104 /* Set .got entry size. */
4105 elf_section_data (htab->sgot->output_section)
4106 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4107 }
4108
4109 if (htab->splt != NULL && htab->splt->_raw_size != 0)
4110 {
4111 /* Set plt entry size. */
4112 elf_section_data (htab->splt->output_section)
4113 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4114
4115 if (htab->need_plt_stub)
4116 {
4117 /* Set up the .plt stub. */
4118 memcpy (htab->splt->contents
4119 + htab->splt->_raw_size - sizeof (plt_stub),
4120 plt_stub, sizeof (plt_stub));
4121
4122 if ((htab->splt->output_offset
4123 + htab->splt->output_section->vma
4124 + htab->splt->_raw_size)
4125 != (htab->sgot->output_offset
4126 + htab->sgot->output_section->vma))
4127 {
4128 (*_bfd_error_handler)
4129 (_(".got section not immediately after .plt section"));
4130 return FALSE;
4131 }
4132 }
4133 }
4134
4135 return TRUE;
4136 }
4137
4138 /* Tweak the OSABI field of the elf header. */
4139
4140 static void
4141 elf32_hppa_post_process_headers (bfd *abfd,
4142 struct bfd_link_info *info ATTRIBUTE_UNUSED)
4143 {
4144 Elf_Internal_Ehdr * i_ehdrp;
4145
4146 i_ehdrp = elf_elfheader (abfd);
4147
4148 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
4149 {
4150 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
4151 }
4152 else
4153 {
4154 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
4155 }
4156 }
4157
4158 /* Called when writing out an object file to decide the type of a
4159 symbol. */
4160 static int
4161 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4162 {
4163 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4164 return STT_PARISC_MILLI;
4165 else
4166 return type;
4167 }
4168
4169 /* Misc BFD support code. */
4170 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4171 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4172 #define elf_info_to_howto elf_hppa_info_to_howto
4173 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4174
4175 /* Stuff for the BFD linker. */
4176 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4177 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4178 #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
4179 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4180 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4181 #define elf_backend_check_relocs elf32_hppa_check_relocs
4182 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4183 #define elf_backend_fake_sections elf_hppa_fake_sections
4184 #define elf_backend_relocate_section elf32_hppa_relocate_section
4185 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4186 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4187 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4188 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4189 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4190 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4191 #define elf_backend_object_p elf32_hppa_object_p
4192 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4193 #define elf_backend_post_process_headers elf32_hppa_post_process_headers
4194 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4195 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4196
4197 #define elf_backend_can_gc_sections 1
4198 #define elf_backend_can_refcount 1
4199 #define elf_backend_plt_alignment 2
4200 #define elf_backend_want_got_plt 0
4201 #define elf_backend_plt_readonly 0
4202 #define elf_backend_want_plt_sym 0
4203 #define elf_backend_got_header_size 8
4204 #define elf_backend_rela_normal 1
4205
4206 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4207 #define TARGET_BIG_NAME "elf32-hppa"
4208 #define ELF_ARCH bfd_arch_hppa
4209 #define ELF_MACHINE_CODE EM_PARISC
4210 #define ELF_MAXPAGESIZE 0x1000
4211
4212 #include "elf32-target.h"
4213
4214 #undef TARGET_BIG_SYM
4215 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4216 #undef TARGET_BIG_NAME
4217 #define TARGET_BIG_NAME "elf32-hppa-linux"
4218
4219 #define INCLUDED_TARGET_FILE 1
4220 #include "elf32-target.h"
This page took 0.123488 seconds and 5 git commands to generate.