Automatic date update in version.in
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright (C) 1990-2017 Free Software Foundation, Inc.
3
4 Original code by
5 Center for Software Science
6 Department of Computer Science
7 University of Utah
8 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
9 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
10 TLS support written by Randolph Chung <tausq@debian.org>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
28
29 #include "sysdep.h"
30 #include "bfd.h"
31 #include "libbfd.h"
32 #include "elf-bfd.h"
33 #include "elf/hppa.h"
34 #include "libhppa.h"
35 #include "elf32-hppa.h"
36 #define ARCH_SIZE 32
37 #include "elf32-hppa.h"
38 #include "elf-hppa.h"
39
40 /* In order to gain some understanding of code in this file without
41 knowing all the intricate details of the linker, note the
42 following:
43
44 Functions named elf32_hppa_* are called by external routines, other
45 functions are only called locally. elf32_hppa_* functions appear
46 in this file more or less in the order in which they are called
47 from external routines. eg. elf32_hppa_check_relocs is called
48 early in the link process, elf32_hppa_finish_dynamic_sections is
49 one of the last functions. */
50
51 /* We use two hash tables to hold information for linking PA ELF objects.
52
53 The first is the elf32_hppa_link_hash_table which is derived
54 from the standard ELF linker hash table. We use this as a place to
55 attach other hash tables and static information.
56
57 The second is the stub hash table which is derived from the
58 base BFD hash table. The stub hash table holds the information
59 necessary to build the linker stubs during a link.
60
61 There are a number of different stubs generated by the linker.
62
63 Long branch stub:
64 : ldil LR'X,%r1
65 : be,n RR'X(%sr4,%r1)
66
67 PIC long branch stub:
68 : b,l .+8,%r1
69 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
70 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
71
72 Import stub to call shared library routine from normal object file
73 (single sub-space version)
74 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
75 : ldw RR'lt_ptr+ltoff(%r1),%r21
76 : bv %r0(%r21)
77 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
78
79 Import stub to call shared library routine from shared library
80 (single sub-space version)
81 : addil LR'ltoff,%r19 ; get procedure entry point
82 : ldw RR'ltoff(%r1),%r21
83 : bv %r0(%r21)
84 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
85
86 Import stub to call shared library routine from normal object file
87 (multiple sub-space support)
88 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
89 : ldw RR'lt_ptr+ltoff(%r1),%r21
90 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
91 : ldsid (%r21),%r1
92 : mtsp %r1,%sr0
93 : be 0(%sr0,%r21) ; branch to target
94 : stw %rp,-24(%sp) ; save rp
95
96 Import stub to call shared library routine from shared library
97 (multiple sub-space support)
98 : addil LR'ltoff,%r19 ; get procedure entry point
99 : ldw RR'ltoff(%r1),%r21
100 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
101 : ldsid (%r21),%r1
102 : mtsp %r1,%sr0
103 : be 0(%sr0,%r21) ; branch to target
104 : stw %rp,-24(%sp) ; save rp
105
106 Export stub to return from shared lib routine (multiple sub-space support)
107 One of these is created for each exported procedure in a shared
108 library (and stored in the shared lib). Shared lib routines are
109 called via the first instruction in the export stub so that we can
110 do an inter-space return. Not required for single sub-space.
111 : bl,n X,%rp ; trap the return
112 : nop
113 : ldw -24(%sp),%rp ; restore the original rp
114 : ldsid (%rp),%r1
115 : mtsp %r1,%sr0
116 : be,n 0(%sr0,%rp) ; inter-space return. */
117
118
119 /* Variable names follow a coding style.
120 Please follow this (Apps Hungarian) style:
121
122 Structure/Variable Prefix
123 elf_link_hash_table "etab"
124 elf_link_hash_entry "eh"
125
126 elf32_hppa_link_hash_table "htab"
127 elf32_hppa_link_hash_entry "hh"
128
129 bfd_hash_table "btab"
130 bfd_hash_entry "bh"
131
132 bfd_hash_table containing stubs "bstab"
133 elf32_hppa_stub_hash_entry "hsh"
134
135 elf32_hppa_dyn_reloc_entry "hdh"
136
137 Always remember to use GNU Coding Style. */
138
139 #define PLT_ENTRY_SIZE 8
140 #define GOT_ENTRY_SIZE 4
141 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
142
143 static const bfd_byte plt_stub[] =
144 {
145 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
146 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
147 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
148 #define PLT_STUB_ENTRY (3*4)
149 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
150 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
151 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
152 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
153 };
154
155 /* Section name for stubs is the associated section name plus this
156 string. */
157 #define STUB_SUFFIX ".stub"
158
159 /* We don't need to copy certain PC- or GP-relative dynamic relocs
160 into a shared object's dynamic section. All the relocs of the
161 limited class we are interested in, are absolute. */
162 #ifndef RELATIVE_DYNRELOCS
163 #define RELATIVE_DYNRELOCS 0
164 #define IS_ABSOLUTE_RELOC(r_type) 1
165 #endif
166
167 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
168 copying dynamic variables from a shared lib into an app's dynbss
169 section, and instead use a dynamic relocation to point into the
170 shared lib. */
171 #define ELIMINATE_COPY_RELOCS 1
172
173 enum elf32_hppa_stub_type
174 {
175 hppa_stub_long_branch,
176 hppa_stub_long_branch_shared,
177 hppa_stub_import,
178 hppa_stub_import_shared,
179 hppa_stub_export,
180 hppa_stub_none
181 };
182
183 struct elf32_hppa_stub_hash_entry
184 {
185 /* Base hash table entry structure. */
186 struct bfd_hash_entry bh_root;
187
188 /* The stub section. */
189 asection *stub_sec;
190
191 /* Offset within stub_sec of the beginning of this stub. */
192 bfd_vma stub_offset;
193
194 /* Given the symbol's value and its section we can determine its final
195 value when building the stubs (so the stub knows where to jump. */
196 bfd_vma target_value;
197 asection *target_section;
198
199 enum elf32_hppa_stub_type stub_type;
200
201 /* The symbol table entry, if any, that this was derived from. */
202 struct elf32_hppa_link_hash_entry *hh;
203
204 /* Where this stub is being called from, or, in the case of combined
205 stub sections, the first input section in the group. */
206 asection *id_sec;
207 };
208
209 enum _tls_type
210 {
211 GOT_UNKNOWN = 0,
212 GOT_NORMAL = 1,
213 GOT_TLS_GD = 2,
214 GOT_TLS_LDM = 4,
215 GOT_TLS_IE = 8
216 };
217
218 struct elf32_hppa_link_hash_entry
219 {
220 struct elf_link_hash_entry eh;
221
222 /* A pointer to the most recently used stub hash entry against this
223 symbol. */
224 struct elf32_hppa_stub_hash_entry *hsh_cache;
225
226 /* Used to count relocations for delayed sizing of relocation
227 sections. */
228 struct elf32_hppa_dyn_reloc_entry
229 {
230 /* Next relocation in the chain. */
231 struct elf32_hppa_dyn_reloc_entry *hdh_next;
232
233 /* The input section of the reloc. */
234 asection *sec;
235
236 /* Number of relocs copied in this section. */
237 bfd_size_type count;
238
239 #if RELATIVE_DYNRELOCS
240 /* Number of relative relocs copied for the input section. */
241 bfd_size_type relative_count;
242 #endif
243 } *dyn_relocs;
244
245 ENUM_BITFIELD (_tls_type) tls_type : 8;
246
247 /* Set if this symbol is used by a plabel reloc. */
248 unsigned int plabel:1;
249 };
250
251 struct elf32_hppa_link_hash_table
252 {
253 /* The main hash table. */
254 struct elf_link_hash_table etab;
255
256 /* The stub hash table. */
257 struct bfd_hash_table bstab;
258
259 /* Linker stub bfd. */
260 bfd *stub_bfd;
261
262 /* Linker call-backs. */
263 asection * (*add_stub_section) (const char *, asection *);
264 void (*layout_sections_again) (void);
265
266 /* Array to keep track of which stub sections have been created, and
267 information on stub grouping. */
268 struct map_stub
269 {
270 /* This is the section to which stubs in the group will be
271 attached. */
272 asection *link_sec;
273 /* The stub section. */
274 asection *stub_sec;
275 } *stub_group;
276
277 /* Assorted information used by elf32_hppa_size_stubs. */
278 unsigned int bfd_count;
279 unsigned int top_index;
280 asection **input_list;
281 Elf_Internal_Sym **all_local_syms;
282
283 /* Used during a final link to store the base of the text and data
284 segments so that we can perform SEGREL relocations. */
285 bfd_vma text_segment_base;
286 bfd_vma data_segment_base;
287
288 /* Whether we support multiple sub-spaces for shared libs. */
289 unsigned int multi_subspace:1;
290
291 /* Flags set when various size branches are detected. Used to
292 select suitable defaults for the stub group size. */
293 unsigned int has_12bit_branch:1;
294 unsigned int has_17bit_branch:1;
295 unsigned int has_22bit_branch:1;
296
297 /* Set if we need a .plt stub to support lazy dynamic linking. */
298 unsigned int need_plt_stub:1;
299
300 /* Small local sym cache. */
301 struct sym_cache sym_cache;
302
303 /* Data for LDM relocations. */
304 union
305 {
306 bfd_signed_vma refcount;
307 bfd_vma offset;
308 } tls_ldm_got;
309 };
310
311 /* Various hash macros and functions. */
312 #define hppa_link_hash_table(p) \
313 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
314 == HPPA32_ELF_DATA ? ((struct elf32_hppa_link_hash_table *) ((p)->hash)) : NULL)
315
316 #define hppa_elf_hash_entry(ent) \
317 ((struct elf32_hppa_link_hash_entry *)(ent))
318
319 #define hppa_stub_hash_entry(ent) \
320 ((struct elf32_hppa_stub_hash_entry *)(ent))
321
322 #define hppa_stub_hash_lookup(table, string, create, copy) \
323 ((struct elf32_hppa_stub_hash_entry *) \
324 bfd_hash_lookup ((table), (string), (create), (copy)))
325
326 #define hppa_elf_local_got_tls_type(abfd) \
327 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
328
329 #define hh_name(hh) \
330 (hh ? hh->eh.root.root.string : "<undef>")
331
332 #define eh_name(eh) \
333 (eh ? eh->root.root.string : "<undef>")
334
335 /* Assorted hash table functions. */
336
337 /* Initialize an entry in the stub hash table. */
338
339 static struct bfd_hash_entry *
340 stub_hash_newfunc (struct bfd_hash_entry *entry,
341 struct bfd_hash_table *table,
342 const char *string)
343 {
344 /* Allocate the structure if it has not already been allocated by a
345 subclass. */
346 if (entry == NULL)
347 {
348 entry = bfd_hash_allocate (table,
349 sizeof (struct elf32_hppa_stub_hash_entry));
350 if (entry == NULL)
351 return entry;
352 }
353
354 /* Call the allocation method of the superclass. */
355 entry = bfd_hash_newfunc (entry, table, string);
356 if (entry != NULL)
357 {
358 struct elf32_hppa_stub_hash_entry *hsh;
359
360 /* Initialize the local fields. */
361 hsh = hppa_stub_hash_entry (entry);
362 hsh->stub_sec = NULL;
363 hsh->stub_offset = 0;
364 hsh->target_value = 0;
365 hsh->target_section = NULL;
366 hsh->stub_type = hppa_stub_long_branch;
367 hsh->hh = NULL;
368 hsh->id_sec = NULL;
369 }
370
371 return entry;
372 }
373
374 /* Initialize an entry in the link hash table. */
375
376 static struct bfd_hash_entry *
377 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
378 struct bfd_hash_table *table,
379 const char *string)
380 {
381 /* Allocate the structure if it has not already been allocated by a
382 subclass. */
383 if (entry == NULL)
384 {
385 entry = bfd_hash_allocate (table,
386 sizeof (struct elf32_hppa_link_hash_entry));
387 if (entry == NULL)
388 return entry;
389 }
390
391 /* Call the allocation method of the superclass. */
392 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
393 if (entry != NULL)
394 {
395 struct elf32_hppa_link_hash_entry *hh;
396
397 /* Initialize the local fields. */
398 hh = hppa_elf_hash_entry (entry);
399 hh->hsh_cache = NULL;
400 hh->dyn_relocs = NULL;
401 hh->plabel = 0;
402 hh->tls_type = GOT_UNKNOWN;
403 }
404
405 return entry;
406 }
407
408 /* Free the derived linker hash table. */
409
410 static void
411 elf32_hppa_link_hash_table_free (bfd *obfd)
412 {
413 struct elf32_hppa_link_hash_table *htab
414 = (struct elf32_hppa_link_hash_table *) obfd->link.hash;
415
416 bfd_hash_table_free (&htab->bstab);
417 _bfd_elf_link_hash_table_free (obfd);
418 }
419
420 /* Create the derived linker hash table. The PA ELF port uses the derived
421 hash table to keep information specific to the PA ELF linker (without
422 using static variables). */
423
424 static struct bfd_link_hash_table *
425 elf32_hppa_link_hash_table_create (bfd *abfd)
426 {
427 struct elf32_hppa_link_hash_table *htab;
428 bfd_size_type amt = sizeof (*htab);
429
430 htab = bfd_zmalloc (amt);
431 if (htab == NULL)
432 return NULL;
433
434 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
435 sizeof (struct elf32_hppa_link_hash_entry),
436 HPPA32_ELF_DATA))
437 {
438 free (htab);
439 return NULL;
440 }
441
442 /* Init the stub hash table too. */
443 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
444 sizeof (struct elf32_hppa_stub_hash_entry)))
445 {
446 _bfd_elf_link_hash_table_free (abfd);
447 return NULL;
448 }
449 htab->etab.root.hash_table_free = elf32_hppa_link_hash_table_free;
450
451 htab->text_segment_base = (bfd_vma) -1;
452 htab->data_segment_base = (bfd_vma) -1;
453 return &htab->etab.root;
454 }
455
456 /* Initialize the linker stubs BFD so that we can use it for linker
457 created dynamic sections. */
458
459 void
460 elf32_hppa_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
461 {
462 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
463
464 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS32;
465 htab->etab.dynobj = abfd;
466 }
467
468 /* Build a name for an entry in the stub hash table. */
469
470 static char *
471 hppa_stub_name (const asection *input_section,
472 const asection *sym_sec,
473 const struct elf32_hppa_link_hash_entry *hh,
474 const Elf_Internal_Rela *rela)
475 {
476 char *stub_name;
477 bfd_size_type len;
478
479 if (hh)
480 {
481 len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
482 stub_name = bfd_malloc (len);
483 if (stub_name != NULL)
484 sprintf (stub_name, "%08x_%s+%x",
485 input_section->id & 0xffffffff,
486 hh_name (hh),
487 (int) rela->r_addend & 0xffffffff);
488 }
489 else
490 {
491 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
492 stub_name = bfd_malloc (len);
493 if (stub_name != NULL)
494 sprintf (stub_name, "%08x_%x:%x+%x",
495 input_section->id & 0xffffffff,
496 sym_sec->id & 0xffffffff,
497 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
498 (int) rela->r_addend & 0xffffffff);
499 }
500 return stub_name;
501 }
502
503 /* Look up an entry in the stub hash. Stub entries are cached because
504 creating the stub name takes a bit of time. */
505
506 static struct elf32_hppa_stub_hash_entry *
507 hppa_get_stub_entry (const asection *input_section,
508 const asection *sym_sec,
509 struct elf32_hppa_link_hash_entry *hh,
510 const Elf_Internal_Rela *rela,
511 struct elf32_hppa_link_hash_table *htab)
512 {
513 struct elf32_hppa_stub_hash_entry *hsh_entry;
514 const asection *id_sec;
515
516 /* If this input section is part of a group of sections sharing one
517 stub section, then use the id of the first section in the group.
518 Stub names need to include a section id, as there may well be
519 more than one stub used to reach say, printf, and we need to
520 distinguish between them. */
521 id_sec = htab->stub_group[input_section->id].link_sec;
522
523 if (hh != NULL && hh->hsh_cache != NULL
524 && hh->hsh_cache->hh == hh
525 && hh->hsh_cache->id_sec == id_sec)
526 {
527 hsh_entry = hh->hsh_cache;
528 }
529 else
530 {
531 char *stub_name;
532
533 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
534 if (stub_name == NULL)
535 return NULL;
536
537 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
538 stub_name, FALSE, FALSE);
539 if (hh != NULL)
540 hh->hsh_cache = hsh_entry;
541
542 free (stub_name);
543 }
544
545 return hsh_entry;
546 }
547
548 /* Add a new stub entry to the stub hash. Not all fields of the new
549 stub entry are initialised. */
550
551 static struct elf32_hppa_stub_hash_entry *
552 hppa_add_stub (const char *stub_name,
553 asection *section,
554 struct elf32_hppa_link_hash_table *htab)
555 {
556 asection *link_sec;
557 asection *stub_sec;
558 struct elf32_hppa_stub_hash_entry *hsh;
559
560 link_sec = htab->stub_group[section->id].link_sec;
561 stub_sec = htab->stub_group[section->id].stub_sec;
562 if (stub_sec == NULL)
563 {
564 stub_sec = htab->stub_group[link_sec->id].stub_sec;
565 if (stub_sec == NULL)
566 {
567 size_t namelen;
568 bfd_size_type len;
569 char *s_name;
570
571 namelen = strlen (link_sec->name);
572 len = namelen + sizeof (STUB_SUFFIX);
573 s_name = bfd_alloc (htab->stub_bfd, len);
574 if (s_name == NULL)
575 return NULL;
576
577 memcpy (s_name, link_sec->name, namelen);
578 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
579 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
580 if (stub_sec == NULL)
581 return NULL;
582 htab->stub_group[link_sec->id].stub_sec = stub_sec;
583 }
584 htab->stub_group[section->id].stub_sec = stub_sec;
585 }
586
587 /* Enter this entry into the linker stub hash table. */
588 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
589 TRUE, FALSE);
590 if (hsh == NULL)
591 {
592 /* xgettext:c-format */
593 _bfd_error_handler (_("%B: cannot create stub entry %s"),
594 section->owner, stub_name);
595 return NULL;
596 }
597
598 hsh->stub_sec = stub_sec;
599 hsh->stub_offset = 0;
600 hsh->id_sec = link_sec;
601 return hsh;
602 }
603
604 /* Determine the type of stub needed, if any, for a call. */
605
606 static enum elf32_hppa_stub_type
607 hppa_type_of_stub (asection *input_sec,
608 const Elf_Internal_Rela *rela,
609 struct elf32_hppa_link_hash_entry *hh,
610 bfd_vma destination,
611 struct bfd_link_info *info)
612 {
613 bfd_vma location;
614 bfd_vma branch_offset;
615 bfd_vma max_branch_offset;
616 unsigned int r_type;
617
618 if (hh != NULL
619 && hh->eh.plt.offset != (bfd_vma) -1
620 && hh->eh.dynindx != -1
621 && !hh->plabel
622 && (bfd_link_pic (info)
623 || !hh->eh.def_regular
624 || hh->eh.root.type == bfd_link_hash_defweak))
625 {
626 /* We need an import stub. Decide between hppa_stub_import
627 and hppa_stub_import_shared later. */
628 return hppa_stub_import;
629 }
630
631 /* Determine where the call point is. */
632 location = (input_sec->output_offset
633 + input_sec->output_section->vma
634 + rela->r_offset);
635
636 branch_offset = destination - location - 8;
637 r_type = ELF32_R_TYPE (rela->r_info);
638
639 /* Determine if a long branch stub is needed. parisc branch offsets
640 are relative to the second instruction past the branch, ie. +8
641 bytes on from the branch instruction location. The offset is
642 signed and counts in units of 4 bytes. */
643 if (r_type == (unsigned int) R_PARISC_PCREL17F)
644 max_branch_offset = (1 << (17 - 1)) << 2;
645
646 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
647 max_branch_offset = (1 << (12 - 1)) << 2;
648
649 else /* R_PARISC_PCREL22F. */
650 max_branch_offset = (1 << (22 - 1)) << 2;
651
652 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
653 return hppa_stub_long_branch;
654
655 return hppa_stub_none;
656 }
657
658 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
659 IN_ARG contains the link info pointer. */
660
661 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
662 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
663
664 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
665 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
666 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
667
668 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
669 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
670 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
671 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
672
673 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
674 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
675
676 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
677 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
678 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
679 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
680
681 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
682 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
683 #define NOP 0x08000240 /* nop */
684 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
685 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
686 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
687
688 #ifndef R19_STUBS
689 #define R19_STUBS 1
690 #endif
691
692 #if R19_STUBS
693 #define LDW_R1_DLT LDW_R1_R19
694 #else
695 #define LDW_R1_DLT LDW_R1_DP
696 #endif
697
698 static bfd_boolean
699 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
700 {
701 struct elf32_hppa_stub_hash_entry *hsh;
702 struct bfd_link_info *info;
703 struct elf32_hppa_link_hash_table *htab;
704 asection *stub_sec;
705 bfd *stub_bfd;
706 bfd_byte *loc;
707 bfd_vma sym_value;
708 bfd_vma insn;
709 bfd_vma off;
710 int val;
711 int size;
712
713 /* Massage our args to the form they really have. */
714 hsh = hppa_stub_hash_entry (bh);
715 info = (struct bfd_link_info *)in_arg;
716
717 htab = hppa_link_hash_table (info);
718 if (htab == NULL)
719 return FALSE;
720
721 stub_sec = hsh->stub_sec;
722
723 /* Make a note of the offset within the stubs for this entry. */
724 hsh->stub_offset = stub_sec->size;
725 loc = stub_sec->contents + hsh->stub_offset;
726
727 stub_bfd = stub_sec->owner;
728
729 switch (hsh->stub_type)
730 {
731 case hppa_stub_long_branch:
732 /* Create the long branch. A long branch is formed with "ldil"
733 loading the upper bits of the target address into a register,
734 then branching with "be" which adds in the lower bits.
735 The "be" has its delay slot nullified. */
736 sym_value = (hsh->target_value
737 + hsh->target_section->output_offset
738 + hsh->target_section->output_section->vma);
739
740 val = hppa_field_adjust (sym_value, 0, e_lrsel);
741 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
742 bfd_put_32 (stub_bfd, insn, loc);
743
744 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
745 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
746 bfd_put_32 (stub_bfd, insn, loc + 4);
747
748 size = 8;
749 break;
750
751 case hppa_stub_long_branch_shared:
752 /* Branches are relative. This is where we are going to. */
753 sym_value = (hsh->target_value
754 + hsh->target_section->output_offset
755 + hsh->target_section->output_section->vma);
756
757 /* And this is where we are coming from, more or less. */
758 sym_value -= (hsh->stub_offset
759 + stub_sec->output_offset
760 + stub_sec->output_section->vma);
761
762 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
763 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
764 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
765 bfd_put_32 (stub_bfd, insn, loc + 4);
766
767 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
768 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
769 bfd_put_32 (stub_bfd, insn, loc + 8);
770 size = 12;
771 break;
772
773 case hppa_stub_import:
774 case hppa_stub_import_shared:
775 off = hsh->hh->eh.plt.offset;
776 if (off >= (bfd_vma) -2)
777 abort ();
778
779 off &= ~ (bfd_vma) 1;
780 sym_value = (off
781 + htab->etab.splt->output_offset
782 + htab->etab.splt->output_section->vma
783 - elf_gp (htab->etab.splt->output_section->owner));
784
785 insn = ADDIL_DP;
786 #if R19_STUBS
787 if (hsh->stub_type == hppa_stub_import_shared)
788 insn = ADDIL_R19;
789 #endif
790 val = hppa_field_adjust (sym_value, 0, e_lrsel),
791 insn = hppa_rebuild_insn ((int) insn, val, 21);
792 bfd_put_32 (stub_bfd, insn, loc);
793
794 /* It is critical to use lrsel/rrsel here because we are using
795 two different offsets (+0 and +4) from sym_value. If we use
796 lsel/rsel then with unfortunate sym_values we will round
797 sym_value+4 up to the next 2k block leading to a mis-match
798 between the lsel and rsel value. */
799 val = hppa_field_adjust (sym_value, 0, e_rrsel);
800 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
801 bfd_put_32 (stub_bfd, insn, loc + 4);
802
803 if (htab->multi_subspace)
804 {
805 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
806 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
807 bfd_put_32 (stub_bfd, insn, loc + 8);
808
809 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
810 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
811 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
812 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
813
814 size = 28;
815 }
816 else
817 {
818 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
819 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
820 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
821 bfd_put_32 (stub_bfd, insn, loc + 12);
822
823 size = 16;
824 }
825
826 break;
827
828 case hppa_stub_export:
829 /* Branches are relative. This is where we are going to. */
830 sym_value = (hsh->target_value
831 + hsh->target_section->output_offset
832 + hsh->target_section->output_section->vma);
833
834 /* And this is where we are coming from. */
835 sym_value -= (hsh->stub_offset
836 + stub_sec->output_offset
837 + stub_sec->output_section->vma);
838
839 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
840 && (!htab->has_22bit_branch
841 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
842 {
843 _bfd_error_handler
844 /* xgettext:c-format */
845 (_("%B(%A+%#Lx): cannot reach %s, recompile with -ffunction-sections"),
846 hsh->target_section->owner,
847 stub_sec,
848 hsh->stub_offset,
849 hsh->bh_root.string);
850 bfd_set_error (bfd_error_bad_value);
851 return FALSE;
852 }
853
854 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
855 if (!htab->has_22bit_branch)
856 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
857 else
858 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
859 bfd_put_32 (stub_bfd, insn, loc);
860
861 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
862 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
863 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
864 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
865 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
866
867 /* Point the function symbol at the stub. */
868 hsh->hh->eh.root.u.def.section = stub_sec;
869 hsh->hh->eh.root.u.def.value = stub_sec->size;
870
871 size = 24;
872 break;
873
874 default:
875 BFD_FAIL ();
876 return FALSE;
877 }
878
879 stub_sec->size += size;
880 return TRUE;
881 }
882
883 #undef LDIL_R1
884 #undef BE_SR4_R1
885 #undef BL_R1
886 #undef ADDIL_R1
887 #undef DEPI_R1
888 #undef LDW_R1_R21
889 #undef LDW_R1_DLT
890 #undef LDW_R1_R19
891 #undef ADDIL_R19
892 #undef LDW_R1_DP
893 #undef LDSID_R21_R1
894 #undef MTSP_R1
895 #undef BE_SR0_R21
896 #undef STW_RP
897 #undef BV_R0_R21
898 #undef BL_RP
899 #undef NOP
900 #undef LDW_RP
901 #undef LDSID_RP_R1
902 #undef BE_SR0_RP
903
904 /* As above, but don't actually build the stub. Just bump offset so
905 we know stub section sizes. */
906
907 static bfd_boolean
908 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
909 {
910 struct elf32_hppa_stub_hash_entry *hsh;
911 struct elf32_hppa_link_hash_table *htab;
912 int size;
913
914 /* Massage our args to the form they really have. */
915 hsh = hppa_stub_hash_entry (bh);
916 htab = in_arg;
917
918 if (hsh->stub_type == hppa_stub_long_branch)
919 size = 8;
920 else if (hsh->stub_type == hppa_stub_long_branch_shared)
921 size = 12;
922 else if (hsh->stub_type == hppa_stub_export)
923 size = 24;
924 else /* hppa_stub_import or hppa_stub_import_shared. */
925 {
926 if (htab->multi_subspace)
927 size = 28;
928 else
929 size = 16;
930 }
931
932 hsh->stub_sec->size += size;
933 return TRUE;
934 }
935
936 /* Return nonzero if ABFD represents an HPPA ELF32 file.
937 Additionally we set the default architecture and machine. */
938
939 static bfd_boolean
940 elf32_hppa_object_p (bfd *abfd)
941 {
942 Elf_Internal_Ehdr * i_ehdrp;
943 unsigned int flags;
944
945 i_ehdrp = elf_elfheader (abfd);
946 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
947 {
948 /* GCC on hppa-linux produces binaries with OSABI=GNU,
949 but the kernel produces corefiles with OSABI=SysV. */
950 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU &&
951 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
952 return FALSE;
953 }
954 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
955 {
956 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
957 but the kernel produces corefiles with OSABI=SysV. */
958 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
959 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
960 return FALSE;
961 }
962 else
963 {
964 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
965 return FALSE;
966 }
967
968 flags = i_ehdrp->e_flags;
969 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
970 {
971 case EFA_PARISC_1_0:
972 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
973 case EFA_PARISC_1_1:
974 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
975 case EFA_PARISC_2_0:
976 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
977 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
978 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
979 }
980 return TRUE;
981 }
982
983 /* Create the .plt and .got sections, and set up our hash table
984 short-cuts to various dynamic sections. */
985
986 static bfd_boolean
987 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
988 {
989 struct elf32_hppa_link_hash_table *htab;
990 struct elf_link_hash_entry *eh;
991
992 /* Don't try to create the .plt and .got twice. */
993 htab = hppa_link_hash_table (info);
994 if (htab == NULL)
995 return FALSE;
996 if (htab->etab.splt != NULL)
997 return TRUE;
998
999 /* Call the generic code to do most of the work. */
1000 if (! _bfd_elf_create_dynamic_sections (abfd, info))
1001 return FALSE;
1002
1003 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
1004 application, because __canonicalize_funcptr_for_compare needs it. */
1005 eh = elf_hash_table (info)->hgot;
1006 eh->forced_local = 0;
1007 eh->other = STV_DEFAULT;
1008 return bfd_elf_link_record_dynamic_symbol (info, eh);
1009 }
1010
1011 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1012
1013 static void
1014 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1015 struct elf_link_hash_entry *eh_dir,
1016 struct elf_link_hash_entry *eh_ind)
1017 {
1018 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1019
1020 hh_dir = hppa_elf_hash_entry (eh_dir);
1021 hh_ind = hppa_elf_hash_entry (eh_ind);
1022
1023 if (hh_ind->dyn_relocs != NULL)
1024 {
1025 if (hh_dir->dyn_relocs != NULL)
1026 {
1027 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1028 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1029
1030 /* Add reloc counts against the indirect sym to the direct sym
1031 list. Merge any entries against the same section. */
1032 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1033 {
1034 struct elf32_hppa_dyn_reloc_entry *hdh_q;
1035
1036 for (hdh_q = hh_dir->dyn_relocs;
1037 hdh_q != NULL;
1038 hdh_q = hdh_q->hdh_next)
1039 if (hdh_q->sec == hdh_p->sec)
1040 {
1041 #if RELATIVE_DYNRELOCS
1042 hdh_q->relative_count += hdh_p->relative_count;
1043 #endif
1044 hdh_q->count += hdh_p->count;
1045 *hdh_pp = hdh_p->hdh_next;
1046 break;
1047 }
1048 if (hdh_q == NULL)
1049 hdh_pp = &hdh_p->hdh_next;
1050 }
1051 *hdh_pp = hh_dir->dyn_relocs;
1052 }
1053
1054 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1055 hh_ind->dyn_relocs = NULL;
1056 }
1057
1058 if (ELIMINATE_COPY_RELOCS
1059 && eh_ind->root.type != bfd_link_hash_indirect
1060 && eh_dir->dynamic_adjusted)
1061 {
1062 /* If called to transfer flags for a weakdef during processing
1063 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1064 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1065 if (eh_dir->versioned != versioned_hidden)
1066 eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
1067 eh_dir->ref_regular |= eh_ind->ref_regular;
1068 eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
1069 eh_dir->needs_plt |= eh_ind->needs_plt;
1070 }
1071 else
1072 {
1073 if (eh_ind->root.type == bfd_link_hash_indirect)
1074 {
1075 hh_dir->plabel |= hh_ind->plabel;
1076 hh_dir->tls_type |= hh_ind->tls_type;
1077 hh_ind->tls_type = GOT_UNKNOWN;
1078 }
1079
1080 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1081 }
1082 }
1083
1084 static int
1085 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1086 int r_type, int is_local ATTRIBUTE_UNUSED)
1087 {
1088 /* For now we don't support linker optimizations. */
1089 return r_type;
1090 }
1091
1092 /* Return a pointer to the local GOT, PLT and TLS reference counts
1093 for ABFD. Returns NULL if the storage allocation fails. */
1094
1095 static bfd_signed_vma *
1096 hppa32_elf_local_refcounts (bfd *abfd)
1097 {
1098 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1099 bfd_signed_vma *local_refcounts;
1100
1101 local_refcounts = elf_local_got_refcounts (abfd);
1102 if (local_refcounts == NULL)
1103 {
1104 bfd_size_type size;
1105
1106 /* Allocate space for local GOT and PLT reference
1107 counts. Done this way to save polluting elf_obj_tdata
1108 with another target specific pointer. */
1109 size = symtab_hdr->sh_info;
1110 size *= 2 * sizeof (bfd_signed_vma);
1111 /* Add in space to store the local GOT TLS types. */
1112 size += symtab_hdr->sh_info;
1113 local_refcounts = bfd_zalloc (abfd, size);
1114 if (local_refcounts == NULL)
1115 return NULL;
1116 elf_local_got_refcounts (abfd) = local_refcounts;
1117 memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN,
1118 symtab_hdr->sh_info);
1119 }
1120 return local_refcounts;
1121 }
1122
1123
1124 /* Look through the relocs for a section during the first phase, and
1125 calculate needed space in the global offset table, procedure linkage
1126 table, and dynamic reloc sections. At this point we haven't
1127 necessarily read all the input files. */
1128
1129 static bfd_boolean
1130 elf32_hppa_check_relocs (bfd *abfd,
1131 struct bfd_link_info *info,
1132 asection *sec,
1133 const Elf_Internal_Rela *relocs)
1134 {
1135 Elf_Internal_Shdr *symtab_hdr;
1136 struct elf_link_hash_entry **eh_syms;
1137 const Elf_Internal_Rela *rela;
1138 const Elf_Internal_Rela *rela_end;
1139 struct elf32_hppa_link_hash_table *htab;
1140 asection *sreloc;
1141
1142 if (bfd_link_relocatable (info))
1143 return TRUE;
1144
1145 htab = hppa_link_hash_table (info);
1146 if (htab == NULL)
1147 return FALSE;
1148 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1149 eh_syms = elf_sym_hashes (abfd);
1150 sreloc = NULL;
1151
1152 rela_end = relocs + sec->reloc_count;
1153 for (rela = relocs; rela < rela_end; rela++)
1154 {
1155 enum {
1156 NEED_GOT = 1,
1157 NEED_PLT = 2,
1158 NEED_DYNREL = 4,
1159 PLT_PLABEL = 8
1160 };
1161
1162 unsigned int r_symndx, r_type;
1163 struct elf32_hppa_link_hash_entry *hh;
1164 int need_entry = 0;
1165
1166 r_symndx = ELF32_R_SYM (rela->r_info);
1167
1168 if (r_symndx < symtab_hdr->sh_info)
1169 hh = NULL;
1170 else
1171 {
1172 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1173 while (hh->eh.root.type == bfd_link_hash_indirect
1174 || hh->eh.root.type == bfd_link_hash_warning)
1175 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1176
1177 /* PR15323, ref flags aren't set for references in the same
1178 object. */
1179 hh->eh.root.non_ir_ref_regular = 1;
1180 }
1181
1182 r_type = ELF32_R_TYPE (rela->r_info);
1183 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1184
1185 switch (r_type)
1186 {
1187 case R_PARISC_DLTIND14F:
1188 case R_PARISC_DLTIND14R:
1189 case R_PARISC_DLTIND21L:
1190 /* This symbol requires a global offset table entry. */
1191 need_entry = NEED_GOT;
1192 break;
1193
1194 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1195 case R_PARISC_PLABEL21L:
1196 case R_PARISC_PLABEL32:
1197 /* If the addend is non-zero, we break badly. */
1198 if (rela->r_addend != 0)
1199 abort ();
1200
1201 /* If we are creating a shared library, then we need to
1202 create a PLT entry for all PLABELs, because PLABELs with
1203 local symbols may be passed via a pointer to another
1204 object. Additionally, output a dynamic relocation
1205 pointing to the PLT entry.
1206
1207 For executables, the original 32-bit ABI allowed two
1208 different styles of PLABELs (function pointers): For
1209 global functions, the PLABEL word points into the .plt
1210 two bytes past a (function address, gp) pair, and for
1211 local functions the PLABEL points directly at the
1212 function. The magic +2 for the first type allows us to
1213 differentiate between the two. As you can imagine, this
1214 is a real pain when it comes to generating code to call
1215 functions indirectly or to compare function pointers.
1216 We avoid the mess by always pointing a PLABEL into the
1217 .plt, even for local functions. */
1218 need_entry = PLT_PLABEL | NEED_PLT;
1219 if (bfd_link_pic (info))
1220 need_entry |= NEED_DYNREL;
1221 break;
1222
1223 case R_PARISC_PCREL12F:
1224 htab->has_12bit_branch = 1;
1225 goto branch_common;
1226
1227 case R_PARISC_PCREL17C:
1228 case R_PARISC_PCREL17F:
1229 htab->has_17bit_branch = 1;
1230 goto branch_common;
1231
1232 case R_PARISC_PCREL22F:
1233 htab->has_22bit_branch = 1;
1234 branch_common:
1235 /* Function calls might need to go through the .plt, and
1236 might require long branch stubs. */
1237 if (hh == NULL)
1238 {
1239 /* We know local syms won't need a .plt entry, and if
1240 they need a long branch stub we can't guarantee that
1241 we can reach the stub. So just flag an error later
1242 if we're doing a shared link and find we need a long
1243 branch stub. */
1244 continue;
1245 }
1246 else
1247 {
1248 /* Global symbols will need a .plt entry if they remain
1249 global, and in most cases won't need a long branch
1250 stub. Unfortunately, we have to cater for the case
1251 where a symbol is forced local by versioning, or due
1252 to symbolic linking, and we lose the .plt entry. */
1253 need_entry = NEED_PLT;
1254 if (hh->eh.type == STT_PARISC_MILLI)
1255 need_entry = 0;
1256 }
1257 break;
1258
1259 case R_PARISC_SEGBASE: /* Used to set segment base. */
1260 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1261 case R_PARISC_PCREL14F: /* PC relative load/store. */
1262 case R_PARISC_PCREL14R:
1263 case R_PARISC_PCREL17R: /* External branches. */
1264 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1265 case R_PARISC_PCREL32:
1266 /* We don't need to propagate the relocation if linking a
1267 shared object since these are section relative. */
1268 continue;
1269
1270 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1271 case R_PARISC_DPREL14R:
1272 case R_PARISC_DPREL21L:
1273 if (bfd_link_pic (info))
1274 {
1275 _bfd_error_handler
1276 /* xgettext:c-format */
1277 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1278 abfd,
1279 elf_hppa_howto_table[r_type].name);
1280 bfd_set_error (bfd_error_bad_value);
1281 return FALSE;
1282 }
1283 /* Fall through. */
1284
1285 case R_PARISC_DIR17F: /* Used for external branches. */
1286 case R_PARISC_DIR17R:
1287 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1288 case R_PARISC_DIR14R:
1289 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1290 case R_PARISC_DIR32: /* .word relocs. */
1291 /* We may want to output a dynamic relocation later. */
1292 need_entry = NEED_DYNREL;
1293 break;
1294
1295 /* This relocation describes the C++ object vtable hierarchy.
1296 Reconstruct it for later use during GC. */
1297 case R_PARISC_GNU_VTINHERIT:
1298 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1299 return FALSE;
1300 continue;
1301
1302 /* This relocation describes which C++ vtable entries are actually
1303 used. Record for later use during GC. */
1304 case R_PARISC_GNU_VTENTRY:
1305 BFD_ASSERT (hh != NULL);
1306 if (hh != NULL
1307 && !bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1308 return FALSE;
1309 continue;
1310
1311 case R_PARISC_TLS_GD21L:
1312 case R_PARISC_TLS_GD14R:
1313 case R_PARISC_TLS_LDM21L:
1314 case R_PARISC_TLS_LDM14R:
1315 need_entry = NEED_GOT;
1316 break;
1317
1318 case R_PARISC_TLS_IE21L:
1319 case R_PARISC_TLS_IE14R:
1320 if (bfd_link_dll (info))
1321 info->flags |= DF_STATIC_TLS;
1322 need_entry = NEED_GOT;
1323 break;
1324
1325 default:
1326 continue;
1327 }
1328
1329 /* Now carry out our orders. */
1330 if (need_entry & NEED_GOT)
1331 {
1332 int tls_type = GOT_NORMAL;
1333
1334 switch (r_type)
1335 {
1336 default:
1337 break;
1338 case R_PARISC_TLS_GD21L:
1339 case R_PARISC_TLS_GD14R:
1340 tls_type = GOT_TLS_GD;
1341 break;
1342 case R_PARISC_TLS_LDM21L:
1343 case R_PARISC_TLS_LDM14R:
1344 tls_type = GOT_TLS_LDM;
1345 break;
1346 case R_PARISC_TLS_IE21L:
1347 case R_PARISC_TLS_IE14R:
1348 tls_type = GOT_TLS_IE;
1349 break;
1350 }
1351
1352 /* Allocate space for a GOT entry, as well as a dynamic
1353 relocation for this entry. */
1354 if (htab->etab.sgot == NULL)
1355 {
1356 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1357 return FALSE;
1358 }
1359
1360 if (hh != NULL)
1361 {
1362 if (tls_type == GOT_TLS_LDM)
1363 htab->tls_ldm_got.refcount += 1;
1364 else
1365 hh->eh.got.refcount += 1;
1366 hh->tls_type |= tls_type;
1367 }
1368 else
1369 {
1370 bfd_signed_vma *local_got_refcounts;
1371
1372 /* This is a global offset table entry for a local symbol. */
1373 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1374 if (local_got_refcounts == NULL)
1375 return FALSE;
1376 if (tls_type == GOT_TLS_LDM)
1377 htab->tls_ldm_got.refcount += 1;
1378 else
1379 local_got_refcounts[r_symndx] += 1;
1380
1381 hppa_elf_local_got_tls_type (abfd) [r_symndx] |= tls_type;
1382 }
1383 }
1384
1385 if (need_entry & NEED_PLT)
1386 {
1387 /* If we are creating a shared library, and this is a reloc
1388 against a weak symbol or a global symbol in a dynamic
1389 object, then we will be creating an import stub and a
1390 .plt entry for the symbol. Similarly, on a normal link
1391 to symbols defined in a dynamic object we'll need the
1392 import stub and a .plt entry. We don't know yet whether
1393 the symbol is defined or not, so make an entry anyway and
1394 clean up later in adjust_dynamic_symbol. */
1395 if ((sec->flags & SEC_ALLOC) != 0)
1396 {
1397 if (hh != NULL)
1398 {
1399 hh->eh.needs_plt = 1;
1400 hh->eh.plt.refcount += 1;
1401
1402 /* If this .plt entry is for a plabel, mark it so
1403 that adjust_dynamic_symbol will keep the entry
1404 even if it appears to be local. */
1405 if (need_entry & PLT_PLABEL)
1406 hh->plabel = 1;
1407 }
1408 else if (need_entry & PLT_PLABEL)
1409 {
1410 bfd_signed_vma *local_got_refcounts;
1411 bfd_signed_vma *local_plt_refcounts;
1412
1413 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1414 if (local_got_refcounts == NULL)
1415 return FALSE;
1416 local_plt_refcounts = (local_got_refcounts
1417 + symtab_hdr->sh_info);
1418 local_plt_refcounts[r_symndx] += 1;
1419 }
1420 }
1421 }
1422
1423 if ((need_entry & NEED_DYNREL) != 0
1424 && (sec->flags & SEC_ALLOC) != 0)
1425 {
1426 /* Flag this symbol as having a non-got, non-plt reference
1427 so that we generate copy relocs if it turns out to be
1428 dynamic. */
1429 if (hh != NULL && !bfd_link_pic (info))
1430 hh->eh.non_got_ref = 1;
1431
1432 /* If we are creating a shared library then we need to copy
1433 the reloc into the shared library. However, if we are
1434 linking with -Bsymbolic, we need only copy absolute
1435 relocs or relocs against symbols that are not defined in
1436 an object we are including in the link. PC- or DP- or
1437 DLT-relative relocs against any local sym or global sym
1438 with DEF_REGULAR set, can be discarded. At this point we
1439 have not seen all the input files, so it is possible that
1440 DEF_REGULAR is not set now but will be set later (it is
1441 never cleared). We account for that possibility below by
1442 storing information in the dyn_relocs field of the
1443 hash table entry.
1444
1445 A similar situation to the -Bsymbolic case occurs when
1446 creating shared libraries and symbol visibility changes
1447 render the symbol local.
1448
1449 As it turns out, all the relocs we will be creating here
1450 are absolute, so we cannot remove them on -Bsymbolic
1451 links or visibility changes anyway. A STUB_REL reloc
1452 is absolute too, as in that case it is the reloc in the
1453 stub we will be creating, rather than copying the PCREL
1454 reloc in the branch.
1455
1456 If on the other hand, we are creating an executable, we
1457 may need to keep relocations for symbols satisfied by a
1458 dynamic library if we manage to avoid copy relocs for the
1459 symbol. */
1460 if ((bfd_link_pic (info)
1461 && (IS_ABSOLUTE_RELOC (r_type)
1462 || (hh != NULL
1463 && (!SYMBOLIC_BIND (info, &hh->eh)
1464 || hh->eh.root.type == bfd_link_hash_defweak
1465 || !hh->eh.def_regular))))
1466 || (ELIMINATE_COPY_RELOCS
1467 && !bfd_link_pic (info)
1468 && hh != NULL
1469 && (hh->eh.root.type == bfd_link_hash_defweak
1470 || !hh->eh.def_regular)))
1471 {
1472 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1473 struct elf32_hppa_dyn_reloc_entry **hdh_head;
1474
1475 /* Create a reloc section in dynobj and make room for
1476 this reloc. */
1477 if (sreloc == NULL)
1478 {
1479 sreloc = _bfd_elf_make_dynamic_reloc_section
1480 (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
1481
1482 if (sreloc == NULL)
1483 {
1484 bfd_set_error (bfd_error_bad_value);
1485 return FALSE;
1486 }
1487 }
1488
1489 /* If this is a global symbol, we count the number of
1490 relocations we need for this symbol. */
1491 if (hh != NULL)
1492 {
1493 hdh_head = &hh->dyn_relocs;
1494 }
1495 else
1496 {
1497 /* Track dynamic relocs needed for local syms too.
1498 We really need local syms available to do this
1499 easily. Oh well. */
1500 asection *sr;
1501 void *vpp;
1502 Elf_Internal_Sym *isym;
1503
1504 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1505 abfd, r_symndx);
1506 if (isym == NULL)
1507 return FALSE;
1508
1509 sr = bfd_section_from_elf_index (abfd, isym->st_shndx);
1510 if (sr == NULL)
1511 sr = sec;
1512
1513 vpp = &elf_section_data (sr)->local_dynrel;
1514 hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp;
1515 }
1516
1517 hdh_p = *hdh_head;
1518 if (hdh_p == NULL || hdh_p->sec != sec)
1519 {
1520 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1521 if (hdh_p == NULL)
1522 return FALSE;
1523 hdh_p->hdh_next = *hdh_head;
1524 *hdh_head = hdh_p;
1525 hdh_p->sec = sec;
1526 hdh_p->count = 0;
1527 #if RELATIVE_DYNRELOCS
1528 hdh_p->relative_count = 0;
1529 #endif
1530 }
1531
1532 hdh_p->count += 1;
1533 #if RELATIVE_DYNRELOCS
1534 if (!IS_ABSOLUTE_RELOC (rtype))
1535 hdh_p->relative_count += 1;
1536 #endif
1537 }
1538 }
1539 }
1540
1541 return TRUE;
1542 }
1543
1544 /* Return the section that should be marked against garbage collection
1545 for a given relocation. */
1546
1547 static asection *
1548 elf32_hppa_gc_mark_hook (asection *sec,
1549 struct bfd_link_info *info,
1550 Elf_Internal_Rela *rela,
1551 struct elf_link_hash_entry *hh,
1552 Elf_Internal_Sym *sym)
1553 {
1554 if (hh != NULL)
1555 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1556 {
1557 case R_PARISC_GNU_VTINHERIT:
1558 case R_PARISC_GNU_VTENTRY:
1559 return NULL;
1560 }
1561
1562 return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1563 }
1564
1565 /* Support for core dump NOTE sections. */
1566
1567 static bfd_boolean
1568 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1569 {
1570 int offset;
1571 size_t size;
1572
1573 switch (note->descsz)
1574 {
1575 default:
1576 return FALSE;
1577
1578 case 396: /* Linux/hppa */
1579 /* pr_cursig */
1580 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1581
1582 /* pr_pid */
1583 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
1584
1585 /* pr_reg */
1586 offset = 72;
1587 size = 320;
1588
1589 break;
1590 }
1591
1592 /* Make a ".reg/999" section. */
1593 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1594 size, note->descpos + offset);
1595 }
1596
1597 static bfd_boolean
1598 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1599 {
1600 switch (note->descsz)
1601 {
1602 default:
1603 return FALSE;
1604
1605 case 124: /* Linux/hppa elf_prpsinfo. */
1606 elf_tdata (abfd)->core->program
1607 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1608 elf_tdata (abfd)->core->command
1609 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1610 }
1611
1612 /* Note that for some reason, a spurious space is tacked
1613 onto the end of the args in some (at least one anyway)
1614 implementations, so strip it off if it exists. */
1615 {
1616 char *command = elf_tdata (abfd)->core->command;
1617 int n = strlen (command);
1618
1619 if (0 < n && command[n - 1] == ' ')
1620 command[n - 1] = '\0';
1621 }
1622
1623 return TRUE;
1624 }
1625
1626 /* Our own version of hide_symbol, so that we can keep plt entries for
1627 plabels. */
1628
1629 static void
1630 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1631 struct elf_link_hash_entry *eh,
1632 bfd_boolean force_local)
1633 {
1634 if (force_local)
1635 {
1636 eh->forced_local = 1;
1637 if (eh->dynindx != -1)
1638 {
1639 eh->dynindx = -1;
1640 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1641 eh->dynstr_index);
1642 }
1643
1644 /* PR 16082: Remove version information from hidden symbol. */
1645 eh->verinfo.verdef = NULL;
1646 eh->verinfo.vertree = NULL;
1647 }
1648
1649 /* STT_GNU_IFUNC symbol must go through PLT. */
1650 if (! hppa_elf_hash_entry (eh)->plabel
1651 && eh->type != STT_GNU_IFUNC)
1652 {
1653 eh->needs_plt = 0;
1654 eh->plt = elf_hash_table (info)->init_plt_offset;
1655 }
1656 }
1657
1658 /* Find any dynamic relocs that apply to read-only sections. */
1659
1660 static asection *
1661 readonly_dynrelocs (struct elf_link_hash_entry *eh)
1662 {
1663 struct elf32_hppa_link_hash_entry *hh;
1664 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1665
1666 hh = hppa_elf_hash_entry (eh);
1667 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
1668 {
1669 asection *sec = hdh_p->sec->output_section;
1670
1671 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1672 return hdh_p->sec;
1673 }
1674 return NULL;
1675 }
1676
1677 /* Adjust a symbol defined by a dynamic object and referenced by a
1678 regular object. The current definition is in some section of the
1679 dynamic object, but we're not including those sections. We have to
1680 change the definition to something the rest of the link can
1681 understand. */
1682
1683 static bfd_boolean
1684 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1685 struct elf_link_hash_entry *eh)
1686 {
1687 struct elf32_hppa_link_hash_table *htab;
1688 asection *sec, *srel;
1689
1690 /* If this is a function, put it in the procedure linkage table. We
1691 will fill in the contents of the procedure linkage table later. */
1692 if (eh->type == STT_FUNC
1693 || eh->needs_plt)
1694 {
1695 /* After adjust_dynamic_symbol, non_got_ref set in the non-pic
1696 case means that dyn_relocs for this symbol should be
1697 discarded; We either want the symbol to remain undefined, or
1698 we have a local definition of some sort. The "local
1699 definition" for non-function symbols may be due to creating a
1700 local definition in .dynbss.
1701 Unlike other targets, elf32-hppa.c does not define a function
1702 symbol in a non-pic executable on PLT stub code, so we don't
1703 have a local definition in that case. dyn_relocs therefore
1704 should not be discarded for function symbols, generally.
1705 However we should discard dyn_relocs if we've decided that an
1706 undefined function symbol is local, for example due to
1707 non-default visibility, or UNDEFWEAK_NO_DYNAMIC_RELOC is
1708 true for an undefined weak symbol. */
1709 bfd_boolean local = (SYMBOL_CALLS_LOCAL (info, eh)
1710 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh));
1711 /* Prior to adjust_dynamic_symbol, non_got_ref set means that
1712 check_relocs set up some dyn_relocs for this symbol.
1713 The !non_got_ref term here is saying that if we didn't have
1714 any dyn_relocs set up by check_relocs, then we don't want
1715 relocate_section looking for them.
1716 FIXME: Get rid of the inversion, so non_got_ref set after
1717 dyn_relocs means we do have dyn_relocs. */
1718 eh->non_got_ref = local || !eh->non_got_ref;
1719
1720 /* If the symbol is used by a plabel, we must allocate a PLT slot.
1721 The refcounts are not reliable when it has been hidden since
1722 hide_symbol can be called before the plabel flag is set. */
1723 if (hppa_elf_hash_entry (eh)->plabel)
1724 eh->plt.refcount = 1;
1725
1726 /* Note that unlike some other backends, the refcount is not
1727 incremented for a non-call (and non-plabel) function reference. */
1728 else if (eh->plt.refcount <= 0
1729 || local)
1730 {
1731 /* The .plt entry is not needed when:
1732 a) Garbage collection has removed all references to the
1733 symbol, or
1734 b) We know for certain the symbol is defined in this
1735 object, and it's not a weak definition, nor is the symbol
1736 used by a plabel relocation. Either this object is the
1737 application or we are doing a shared symbolic link. */
1738 eh->plt.offset = (bfd_vma) -1;
1739 eh->needs_plt = 0;
1740 }
1741
1742 /* Function symbols can't have copy relocs. */
1743 return TRUE;
1744 }
1745 else
1746 eh->plt.offset = (bfd_vma) -1;
1747
1748 /* If this is a weak symbol, and there is a real definition, the
1749 processor independent code will have arranged for us to see the
1750 real definition first, and we can just use the same value. */
1751 if (eh->u.weakdef != NULL)
1752 {
1753 if (eh->u.weakdef->root.type != bfd_link_hash_defined
1754 && eh->u.weakdef->root.type != bfd_link_hash_defweak)
1755 abort ();
1756 eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1757 eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1758 if (ELIMINATE_COPY_RELOCS)
1759 eh->non_got_ref = eh->u.weakdef->non_got_ref;
1760 return TRUE;
1761 }
1762
1763 /* This is a reference to a symbol defined by a dynamic object which
1764 is not a function. */
1765
1766 /* If we are creating a shared library, we must presume that the
1767 only references to the symbol are via the global offset table.
1768 For such cases we need not do anything here; the relocations will
1769 be handled correctly by relocate_section. */
1770 if (bfd_link_pic (info))
1771 return TRUE;
1772
1773 /* If there are no references to this symbol that do not use the
1774 GOT, we don't need to generate a copy reloc. */
1775 if (!eh->non_got_ref)
1776 {
1777 eh->non_got_ref = 1;
1778 return TRUE;
1779 }
1780
1781 /* If -z nocopyreloc was given, we won't generate them either. */
1782 if (info->nocopyreloc)
1783 {
1784 eh->non_got_ref = 0;
1785 return TRUE;
1786 }
1787
1788 if (ELIMINATE_COPY_RELOCS
1789 && !readonly_dynrelocs (eh))
1790 {
1791 /* If we didn't find any dynamic relocs in read-only sections, then
1792 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1793 eh->non_got_ref = 0;
1794 return TRUE;
1795 }
1796
1797 /* We must allocate the symbol in our .dynbss section, which will
1798 become part of the .bss section of the executable. There will be
1799 an entry for this symbol in the .dynsym section. The dynamic
1800 object will contain position independent code, so all references
1801 from the dynamic object to this symbol will go through the global
1802 offset table. The dynamic linker will use the .dynsym entry to
1803 determine the address it must put in the global offset table, so
1804 both the dynamic object and the regular object will refer to the
1805 same memory location for the variable. */
1806
1807 htab = hppa_link_hash_table (info);
1808 if (htab == NULL)
1809 return FALSE;
1810
1811 /* We must generate a COPY reloc to tell the dynamic linker to
1812 copy the initial value out of the dynamic object and into the
1813 runtime process image. */
1814 if ((eh->root.u.def.section->flags & SEC_READONLY) != 0)
1815 {
1816 sec = htab->etab.sdynrelro;
1817 srel = htab->etab.sreldynrelro;
1818 }
1819 else
1820 {
1821 sec = htab->etab.sdynbss;
1822 srel = htab->etab.srelbss;
1823 }
1824 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0 && eh->size != 0)
1825 {
1826 srel->size += sizeof (Elf32_External_Rela);
1827 eh->needs_copy = 1;
1828 }
1829
1830 return _bfd_elf_adjust_dynamic_copy (info, eh, sec);
1831 }
1832
1833 /* If EH is undefined, make it dynamic if that makes sense. */
1834
1835 static bfd_boolean
1836 ensure_undef_dynamic (struct bfd_link_info *info,
1837 struct elf_link_hash_entry *eh)
1838 {
1839 struct elf_link_hash_table *htab = elf_hash_table (info);
1840
1841 if (htab->dynamic_sections_created
1842 && (eh->root.type == bfd_link_hash_undefweak
1843 || eh->root.type == bfd_link_hash_undefined)
1844 && eh->dynindx == -1
1845 && !eh->forced_local
1846 && eh->type != STT_PARISC_MILLI
1847 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh)
1848 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT)
1849 return bfd_elf_link_record_dynamic_symbol (info, eh);
1850 return TRUE;
1851 }
1852
1853 /* Allocate space in the .plt for entries that won't have relocations.
1854 ie. plabel entries. */
1855
1856 static bfd_boolean
1857 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1858 {
1859 struct bfd_link_info *info;
1860 struct elf32_hppa_link_hash_table *htab;
1861 struct elf32_hppa_link_hash_entry *hh;
1862 asection *sec;
1863
1864 if (eh->root.type == bfd_link_hash_indirect)
1865 return TRUE;
1866
1867 info = (struct bfd_link_info *) inf;
1868 hh = hppa_elf_hash_entry (eh);
1869 htab = hppa_link_hash_table (info);
1870 if (htab == NULL)
1871 return FALSE;
1872
1873 if (htab->etab.dynamic_sections_created
1874 && eh->plt.refcount > 0)
1875 {
1876 if (!ensure_undef_dynamic (info, eh))
1877 return FALSE;
1878
1879 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), eh))
1880 {
1881 /* Allocate these later. From this point on, h->plabel
1882 means that the plt entry is only used by a plabel.
1883 We'll be using a normal plt entry for this symbol, so
1884 clear the plabel indicator. */
1885
1886 hh->plabel = 0;
1887 }
1888 else if (hh->plabel)
1889 {
1890 /* Make an entry in the .plt section for plabel references
1891 that won't have a .plt entry for other reasons. */
1892 sec = htab->etab.splt;
1893 eh->plt.offset = sec->size;
1894 sec->size += PLT_ENTRY_SIZE;
1895 if (bfd_link_pic (info))
1896 htab->etab.srelplt->size += sizeof (Elf32_External_Rela);
1897 }
1898 else
1899 {
1900 /* No .plt entry needed. */
1901 eh->plt.offset = (bfd_vma) -1;
1902 eh->needs_plt = 0;
1903 }
1904 }
1905 else
1906 {
1907 eh->plt.offset = (bfd_vma) -1;
1908 eh->needs_plt = 0;
1909 }
1910
1911 return TRUE;
1912 }
1913
1914 /* Calculate size of GOT entries for symbol given its TLS_TYPE. */
1915
1916 static inline unsigned int
1917 got_entries_needed (int tls_type)
1918 {
1919 unsigned int need = 0;
1920
1921 if ((tls_type & GOT_NORMAL) != 0)
1922 need += GOT_ENTRY_SIZE;
1923 if ((tls_type & GOT_TLS_GD) != 0)
1924 need += GOT_ENTRY_SIZE * 2;
1925 if ((tls_type & GOT_TLS_IE) != 0)
1926 need += GOT_ENTRY_SIZE;
1927 return need;
1928 }
1929
1930 /* Calculate size of relocs needed for symbol given its TLS_TYPE and
1931 NEEDed GOT entries. KNOWN says a TPREL offset can be calculated
1932 at link time. */
1933
1934 static inline unsigned int
1935 got_relocs_needed (int tls_type, unsigned int need, bfd_boolean known)
1936 {
1937 /* All the entries we allocated need relocs.
1938 Except IE in executable with a local symbol. We could also omit
1939 the DTPOFF reloc on the second word of a GD entry under the same
1940 condition as that for IE, but ld.so might want to differentiate
1941 LD and GD entries at some stage. */
1942 if ((tls_type & GOT_TLS_IE) != 0 && known)
1943 need -= GOT_ENTRY_SIZE;
1944 return need * sizeof (Elf32_External_Rela) / GOT_ENTRY_SIZE;
1945 }
1946
1947 /* Allocate space in .plt, .got and associated reloc sections for
1948 global syms. */
1949
1950 static bfd_boolean
1951 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
1952 {
1953 struct bfd_link_info *info;
1954 struct elf32_hppa_link_hash_table *htab;
1955 asection *sec;
1956 struct elf32_hppa_link_hash_entry *hh;
1957 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1958
1959 if (eh->root.type == bfd_link_hash_indirect)
1960 return TRUE;
1961
1962 info = inf;
1963 htab = hppa_link_hash_table (info);
1964 if (htab == NULL)
1965 return FALSE;
1966
1967 hh = hppa_elf_hash_entry (eh);
1968
1969 if (htab->etab.dynamic_sections_created
1970 && eh->plt.offset != (bfd_vma) -1
1971 && !hh->plabel
1972 && eh->plt.refcount > 0)
1973 {
1974 /* Make an entry in the .plt section. */
1975 sec = htab->etab.splt;
1976 eh->plt.offset = sec->size;
1977 sec->size += PLT_ENTRY_SIZE;
1978
1979 /* We also need to make an entry in the .rela.plt section. */
1980 htab->etab.srelplt->size += sizeof (Elf32_External_Rela);
1981 htab->need_plt_stub = 1;
1982 }
1983
1984 if (eh->got.refcount > 0)
1985 {
1986 unsigned int need;
1987
1988 if (!ensure_undef_dynamic (info, eh))
1989 return FALSE;
1990
1991 sec = htab->etab.sgot;
1992 eh->got.offset = sec->size;
1993 need = got_entries_needed (hh->tls_type);
1994 sec->size += need;
1995 if (htab->etab.dynamic_sections_created
1996 && (bfd_link_pic (info)
1997 || (eh->dynindx != -1
1998 && !SYMBOL_REFERENCES_LOCAL (info, eh)))
1999 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
2000 {
2001 bfd_boolean tprel_known = (bfd_link_executable (info)
2002 && SYMBOL_REFERENCES_LOCAL (info, eh));
2003 htab->etab.srelgot->size
2004 += got_relocs_needed (hh->tls_type, need, tprel_known);
2005 }
2006 }
2007 else
2008 eh->got.offset = (bfd_vma) -1;
2009
2010 /* If no dynamic sections we can't have dynamic relocs. */
2011 if (!htab->etab.dynamic_sections_created)
2012 hh->dyn_relocs = NULL;
2013
2014 if (hh->dyn_relocs == NULL)
2015 return TRUE;
2016
2017 /* If this is a -Bsymbolic shared link, then we need to discard all
2018 space allocated for dynamic pc-relative relocs against symbols
2019 defined in a regular object. For the normal shared case, discard
2020 space for relocs that have become local due to symbol visibility
2021 changes. */
2022 if (bfd_link_pic (info))
2023 {
2024 /* Discard relocs on undefined syms with non-default visibility. */
2025 if ((eh->root.type == bfd_link_hash_undefined
2026 && ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
2027 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
2028 hh->dyn_relocs = NULL;
2029
2030 #if RELATIVE_DYNRELOCS
2031 else if (SYMBOL_CALLS_LOCAL (info, eh))
2032 {
2033 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
2034
2035 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2036 {
2037 hdh_p->count -= hdh_p->relative_count;
2038 hdh_p->relative_count = 0;
2039 if (hdh_p->count == 0)
2040 *hdh_pp = hdh_p->hdh_next;
2041 else
2042 hdh_pp = &hdh_p->hdh_next;
2043 }
2044 }
2045 #endif
2046
2047 if (hh->dyn_relocs != NULL)
2048 {
2049 if (!ensure_undef_dynamic (info, eh))
2050 return FALSE;
2051 }
2052 }
2053 else if (ELIMINATE_COPY_RELOCS)
2054 {
2055 /* For the non-shared case, discard space for relocs against
2056 symbols which turn out to need copy relocs or are not
2057 dynamic. */
2058
2059 if (!eh->non_got_ref
2060 && !eh->def_regular)
2061 {
2062 if (!ensure_undef_dynamic (info, eh))
2063 return FALSE;
2064
2065 if (eh->dynindx == -1)
2066 hh->dyn_relocs = NULL;
2067 }
2068 else
2069 hh->dyn_relocs = NULL;
2070 }
2071
2072 /* Finally, allocate space. */
2073 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2074 {
2075 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2076 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2077 }
2078
2079 return TRUE;
2080 }
2081
2082 /* This function is called via elf_link_hash_traverse to force
2083 millicode symbols local so they do not end up as globals in the
2084 dynamic symbol table. We ought to be able to do this in
2085 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2086 for all dynamic symbols. Arguably, this is a bug in
2087 elf_adjust_dynamic_symbol. */
2088
2089 static bfd_boolean
2090 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2091 struct bfd_link_info *info)
2092 {
2093 if (eh->type == STT_PARISC_MILLI
2094 && !eh->forced_local)
2095 {
2096 elf32_hppa_hide_symbol (info, eh, TRUE);
2097 }
2098 return TRUE;
2099 }
2100
2101 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
2102 read-only sections. */
2103
2104 static bfd_boolean
2105 maybe_set_textrel (struct elf_link_hash_entry *eh, void *inf)
2106 {
2107 asection *sec;
2108
2109 if (eh->root.type == bfd_link_hash_indirect)
2110 return TRUE;
2111
2112 sec = readonly_dynrelocs (eh);
2113 if (sec != NULL)
2114 {
2115 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2116
2117 info->flags |= DF_TEXTREL;
2118 info->callbacks->minfo
2119 (_("%B: dynamic relocation in read-only section `%A'\n"),
2120 sec->owner, sec);
2121
2122 /* Not an error, just cut short the traversal. */
2123 return FALSE;
2124 }
2125 return TRUE;
2126 }
2127
2128 /* Set the sizes of the dynamic sections. */
2129
2130 static bfd_boolean
2131 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2132 struct bfd_link_info *info)
2133 {
2134 struct elf32_hppa_link_hash_table *htab;
2135 bfd *dynobj;
2136 bfd *ibfd;
2137 asection *sec;
2138 bfd_boolean relocs;
2139
2140 htab = hppa_link_hash_table (info);
2141 if (htab == NULL)
2142 return FALSE;
2143
2144 dynobj = htab->etab.dynobj;
2145 if (dynobj == NULL)
2146 abort ();
2147
2148 if (htab->etab.dynamic_sections_created)
2149 {
2150 /* Set the contents of the .interp section to the interpreter. */
2151 if (bfd_link_executable (info) && !info->nointerp)
2152 {
2153 sec = bfd_get_linker_section (dynobj, ".interp");
2154 if (sec == NULL)
2155 abort ();
2156 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2157 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2158 }
2159
2160 /* Force millicode symbols local. */
2161 elf_link_hash_traverse (&htab->etab,
2162 clobber_millicode_symbols,
2163 info);
2164 }
2165
2166 /* Set up .got and .plt offsets for local syms, and space for local
2167 dynamic relocs. */
2168 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
2169 {
2170 bfd_signed_vma *local_got;
2171 bfd_signed_vma *end_local_got;
2172 bfd_signed_vma *local_plt;
2173 bfd_signed_vma *end_local_plt;
2174 bfd_size_type locsymcount;
2175 Elf_Internal_Shdr *symtab_hdr;
2176 asection *srel;
2177 char *local_tls_type;
2178
2179 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2180 continue;
2181
2182 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2183 {
2184 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2185
2186 for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
2187 elf_section_data (sec)->local_dynrel);
2188 hdh_p != NULL;
2189 hdh_p = hdh_p->hdh_next)
2190 {
2191 if (!bfd_is_abs_section (hdh_p->sec)
2192 && bfd_is_abs_section (hdh_p->sec->output_section))
2193 {
2194 /* Input section has been discarded, either because
2195 it is a copy of a linkonce section or due to
2196 linker script /DISCARD/, so we'll be discarding
2197 the relocs too. */
2198 }
2199 else if (hdh_p->count != 0)
2200 {
2201 srel = elf_section_data (hdh_p->sec)->sreloc;
2202 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2203 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2204 info->flags |= DF_TEXTREL;
2205 }
2206 }
2207 }
2208
2209 local_got = elf_local_got_refcounts (ibfd);
2210 if (!local_got)
2211 continue;
2212
2213 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2214 locsymcount = symtab_hdr->sh_info;
2215 end_local_got = local_got + locsymcount;
2216 local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2217 sec = htab->etab.sgot;
2218 srel = htab->etab.srelgot;
2219 for (; local_got < end_local_got; ++local_got)
2220 {
2221 if (*local_got > 0)
2222 {
2223 unsigned int need;
2224
2225 *local_got = sec->size;
2226 need = got_entries_needed (*local_tls_type);
2227 sec->size += need;
2228 if (bfd_link_pic (info))
2229 {
2230 bfd_boolean tprel_known = bfd_link_executable (info);
2231 htab->etab.srelgot->size
2232 += got_relocs_needed (*local_tls_type, need, tprel_known);
2233 }
2234 }
2235 else
2236 *local_got = (bfd_vma) -1;
2237
2238 ++local_tls_type;
2239 }
2240
2241 local_plt = end_local_got;
2242 end_local_plt = local_plt + locsymcount;
2243 if (! htab->etab.dynamic_sections_created)
2244 {
2245 /* Won't be used, but be safe. */
2246 for (; local_plt < end_local_plt; ++local_plt)
2247 *local_plt = (bfd_vma) -1;
2248 }
2249 else
2250 {
2251 sec = htab->etab.splt;
2252 srel = htab->etab.srelplt;
2253 for (; local_plt < end_local_plt; ++local_plt)
2254 {
2255 if (*local_plt > 0)
2256 {
2257 *local_plt = sec->size;
2258 sec->size += PLT_ENTRY_SIZE;
2259 if (bfd_link_pic (info))
2260 srel->size += sizeof (Elf32_External_Rela);
2261 }
2262 else
2263 *local_plt = (bfd_vma) -1;
2264 }
2265 }
2266 }
2267
2268 if (htab->tls_ldm_got.refcount > 0)
2269 {
2270 /* Allocate 2 got entries and 1 dynamic reloc for
2271 R_PARISC_TLS_DTPMOD32 relocs. */
2272 htab->tls_ldm_got.offset = htab->etab.sgot->size;
2273 htab->etab.sgot->size += (GOT_ENTRY_SIZE * 2);
2274 htab->etab.srelgot->size += sizeof (Elf32_External_Rela);
2275 }
2276 else
2277 htab->tls_ldm_got.offset = -1;
2278
2279 /* Do all the .plt entries without relocs first. The dynamic linker
2280 uses the last .plt reloc to find the end of the .plt (and hence
2281 the start of the .got) for lazy linking. */
2282 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2283
2284 /* Allocate global sym .plt and .got entries, and space for global
2285 sym dynamic relocs. */
2286 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2287
2288 /* The check_relocs and adjust_dynamic_symbol entry points have
2289 determined the sizes of the various dynamic sections. Allocate
2290 memory for them. */
2291 relocs = FALSE;
2292 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2293 {
2294 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2295 continue;
2296
2297 if (sec == htab->etab.splt)
2298 {
2299 if (htab->need_plt_stub)
2300 {
2301 /* Make space for the plt stub at the end of the .plt
2302 section. We want this stub right at the end, up
2303 against the .got section. */
2304 int gotalign = bfd_section_alignment (dynobj, htab->etab.sgot);
2305 int pltalign = bfd_section_alignment (dynobj, sec);
2306 bfd_size_type mask;
2307
2308 if (gotalign > pltalign)
2309 (void) bfd_set_section_alignment (dynobj, sec, gotalign);
2310 mask = ((bfd_size_type) 1 << gotalign) - 1;
2311 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2312 }
2313 }
2314 else if (sec == htab->etab.sgot
2315 || sec == htab->etab.sdynbss
2316 || sec == htab->etab.sdynrelro)
2317 ;
2318 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
2319 {
2320 if (sec->size != 0)
2321 {
2322 /* Remember whether there are any reloc sections other
2323 than .rela.plt. */
2324 if (sec != htab->etab.srelplt)
2325 relocs = TRUE;
2326
2327 /* We use the reloc_count field as a counter if we need
2328 to copy relocs into the output file. */
2329 sec->reloc_count = 0;
2330 }
2331 }
2332 else
2333 {
2334 /* It's not one of our sections, so don't allocate space. */
2335 continue;
2336 }
2337
2338 if (sec->size == 0)
2339 {
2340 /* If we don't need this section, strip it from the
2341 output file. This is mostly to handle .rela.bss and
2342 .rela.plt. We must create both sections in
2343 create_dynamic_sections, because they must be created
2344 before the linker maps input sections to output
2345 sections. The linker does that before
2346 adjust_dynamic_symbol is called, and it is that
2347 function which decides whether anything needs to go
2348 into these sections. */
2349 sec->flags |= SEC_EXCLUDE;
2350 continue;
2351 }
2352
2353 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2354 continue;
2355
2356 /* Allocate memory for the section contents. Zero it, because
2357 we may not fill in all the reloc sections. */
2358 sec->contents = bfd_zalloc (dynobj, sec->size);
2359 if (sec->contents == NULL)
2360 return FALSE;
2361 }
2362
2363 if (htab->etab.dynamic_sections_created)
2364 {
2365 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2366 actually has nothing to do with the PLT, it is how we
2367 communicate the LTP value of a load module to the dynamic
2368 linker. */
2369 #define add_dynamic_entry(TAG, VAL) \
2370 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2371
2372 if (!add_dynamic_entry (DT_PLTGOT, 0))
2373 return FALSE;
2374
2375 /* Add some entries to the .dynamic section. We fill in the
2376 values later, in elf32_hppa_finish_dynamic_sections, but we
2377 must add the entries now so that we get the correct size for
2378 the .dynamic section. The DT_DEBUG entry is filled in by the
2379 dynamic linker and used by the debugger. */
2380 if (bfd_link_executable (info))
2381 {
2382 if (!add_dynamic_entry (DT_DEBUG, 0))
2383 return FALSE;
2384 }
2385
2386 if (htab->etab.srelplt->size != 0)
2387 {
2388 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2389 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2390 || !add_dynamic_entry (DT_JMPREL, 0))
2391 return FALSE;
2392 }
2393
2394 if (relocs)
2395 {
2396 if (!add_dynamic_entry (DT_RELA, 0)
2397 || !add_dynamic_entry (DT_RELASZ, 0)
2398 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2399 return FALSE;
2400
2401 /* If any dynamic relocs apply to a read-only section,
2402 then we need a DT_TEXTREL entry. */
2403 if ((info->flags & DF_TEXTREL) == 0)
2404 elf_link_hash_traverse (&htab->etab, maybe_set_textrel, info);
2405
2406 if ((info->flags & DF_TEXTREL) != 0)
2407 {
2408 if (!add_dynamic_entry (DT_TEXTREL, 0))
2409 return FALSE;
2410 }
2411 }
2412 }
2413 #undef add_dynamic_entry
2414
2415 return TRUE;
2416 }
2417
2418 /* External entry points for sizing and building linker stubs. */
2419
2420 /* Set up various things so that we can make a list of input sections
2421 for each output section included in the link. Returns -1 on error,
2422 0 when no stubs will be needed, and 1 on success. */
2423
2424 int
2425 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2426 {
2427 bfd *input_bfd;
2428 unsigned int bfd_count;
2429 unsigned int top_id, top_index;
2430 asection *section;
2431 asection **input_list, **list;
2432 bfd_size_type amt;
2433 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2434
2435 if (htab == NULL)
2436 return -1;
2437
2438 /* Count the number of input BFDs and find the top input section id. */
2439 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2440 input_bfd != NULL;
2441 input_bfd = input_bfd->link.next)
2442 {
2443 bfd_count += 1;
2444 for (section = input_bfd->sections;
2445 section != NULL;
2446 section = section->next)
2447 {
2448 if (top_id < section->id)
2449 top_id = section->id;
2450 }
2451 }
2452 htab->bfd_count = bfd_count;
2453
2454 amt = sizeof (struct map_stub) * (top_id + 1);
2455 htab->stub_group = bfd_zmalloc (amt);
2456 if (htab->stub_group == NULL)
2457 return -1;
2458
2459 /* We can't use output_bfd->section_count here to find the top output
2460 section index as some sections may have been removed, and
2461 strip_excluded_output_sections doesn't renumber the indices. */
2462 for (section = output_bfd->sections, top_index = 0;
2463 section != NULL;
2464 section = section->next)
2465 {
2466 if (top_index < section->index)
2467 top_index = section->index;
2468 }
2469
2470 htab->top_index = top_index;
2471 amt = sizeof (asection *) * (top_index + 1);
2472 input_list = bfd_malloc (amt);
2473 htab->input_list = input_list;
2474 if (input_list == NULL)
2475 return -1;
2476
2477 /* For sections we aren't interested in, mark their entries with a
2478 value we can check later. */
2479 list = input_list + top_index;
2480 do
2481 *list = bfd_abs_section_ptr;
2482 while (list-- != input_list);
2483
2484 for (section = output_bfd->sections;
2485 section != NULL;
2486 section = section->next)
2487 {
2488 if ((section->flags & SEC_CODE) != 0)
2489 input_list[section->index] = NULL;
2490 }
2491
2492 return 1;
2493 }
2494
2495 /* The linker repeatedly calls this function for each input section,
2496 in the order that input sections are linked into output sections.
2497 Build lists of input sections to determine groupings between which
2498 we may insert linker stubs. */
2499
2500 void
2501 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2502 {
2503 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2504
2505 if (htab == NULL)
2506 return;
2507
2508 if (isec->output_section->index <= htab->top_index)
2509 {
2510 asection **list = htab->input_list + isec->output_section->index;
2511 if (*list != bfd_abs_section_ptr)
2512 {
2513 /* Steal the link_sec pointer for our list. */
2514 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2515 /* This happens to make the list in reverse order,
2516 which is what we want. */
2517 PREV_SEC (isec) = *list;
2518 *list = isec;
2519 }
2520 }
2521 }
2522
2523 /* See whether we can group stub sections together. Grouping stub
2524 sections may result in fewer stubs. More importantly, we need to
2525 put all .init* and .fini* stubs at the beginning of the .init or
2526 .fini output sections respectively, because glibc splits the
2527 _init and _fini functions into multiple parts. Putting a stub in
2528 the middle of a function is not a good idea. */
2529
2530 static void
2531 group_sections (struct elf32_hppa_link_hash_table *htab,
2532 bfd_size_type stub_group_size,
2533 bfd_boolean stubs_always_before_branch)
2534 {
2535 asection **list = htab->input_list + htab->top_index;
2536 do
2537 {
2538 asection *tail = *list;
2539 if (tail == bfd_abs_section_ptr)
2540 continue;
2541 while (tail != NULL)
2542 {
2543 asection *curr;
2544 asection *prev;
2545 bfd_size_type total;
2546 bfd_boolean big_sec;
2547
2548 curr = tail;
2549 total = tail->size;
2550 big_sec = total >= stub_group_size;
2551
2552 while ((prev = PREV_SEC (curr)) != NULL
2553 && ((total += curr->output_offset - prev->output_offset)
2554 < stub_group_size))
2555 curr = prev;
2556
2557 /* OK, the size from the start of CURR to the end is less
2558 than 240000 bytes and thus can be handled by one stub
2559 section. (or the tail section is itself larger than
2560 240000 bytes, in which case we may be toast.)
2561 We should really be keeping track of the total size of
2562 stubs added here, as stubs contribute to the final output
2563 section size. That's a little tricky, and this way will
2564 only break if stubs added total more than 22144 bytes, or
2565 2768 long branch stubs. It seems unlikely for more than
2566 2768 different functions to be called, especially from
2567 code only 240000 bytes long. This limit used to be
2568 250000, but c++ code tends to generate lots of little
2569 functions, and sometimes violated the assumption. */
2570 do
2571 {
2572 prev = PREV_SEC (tail);
2573 /* Set up this stub group. */
2574 htab->stub_group[tail->id].link_sec = curr;
2575 }
2576 while (tail != curr && (tail = prev) != NULL);
2577
2578 /* But wait, there's more! Input sections up to 240000
2579 bytes before the stub section can be handled by it too.
2580 Don't do this if we have a really large section after the
2581 stubs, as adding more stubs increases the chance that
2582 branches may not reach into the stub section. */
2583 if (!stubs_always_before_branch && !big_sec)
2584 {
2585 total = 0;
2586 while (prev != NULL
2587 && ((total += tail->output_offset - prev->output_offset)
2588 < stub_group_size))
2589 {
2590 tail = prev;
2591 prev = PREV_SEC (tail);
2592 htab->stub_group[tail->id].link_sec = curr;
2593 }
2594 }
2595 tail = prev;
2596 }
2597 }
2598 while (list-- != htab->input_list);
2599 free (htab->input_list);
2600 #undef PREV_SEC
2601 }
2602
2603 /* Read in all local syms for all input bfds, and create hash entries
2604 for export stubs if we are building a multi-subspace shared lib.
2605 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2606
2607 static int
2608 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2609 {
2610 unsigned int bfd_indx;
2611 Elf_Internal_Sym *local_syms, **all_local_syms;
2612 int stub_changed = 0;
2613 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2614
2615 if (htab == NULL)
2616 return -1;
2617
2618 /* We want to read in symbol extension records only once. To do this
2619 we need to read in the local symbols in parallel and save them for
2620 later use; so hold pointers to the local symbols in an array. */
2621 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2622 all_local_syms = bfd_zmalloc (amt);
2623 htab->all_local_syms = all_local_syms;
2624 if (all_local_syms == NULL)
2625 return -1;
2626
2627 /* Walk over all the input BFDs, swapping in local symbols.
2628 If we are creating a shared library, create hash entries for the
2629 export stubs. */
2630 for (bfd_indx = 0;
2631 input_bfd != NULL;
2632 input_bfd = input_bfd->link.next, bfd_indx++)
2633 {
2634 Elf_Internal_Shdr *symtab_hdr;
2635
2636 /* We'll need the symbol table in a second. */
2637 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2638 if (symtab_hdr->sh_info == 0)
2639 continue;
2640
2641 /* We need an array of the local symbols attached to the input bfd. */
2642 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2643 if (local_syms == NULL)
2644 {
2645 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2646 symtab_hdr->sh_info, 0,
2647 NULL, NULL, NULL);
2648 /* Cache them for elf_link_input_bfd. */
2649 symtab_hdr->contents = (unsigned char *) local_syms;
2650 }
2651 if (local_syms == NULL)
2652 return -1;
2653
2654 all_local_syms[bfd_indx] = local_syms;
2655
2656 if (bfd_link_pic (info) && htab->multi_subspace)
2657 {
2658 struct elf_link_hash_entry **eh_syms;
2659 struct elf_link_hash_entry **eh_symend;
2660 unsigned int symcount;
2661
2662 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2663 - symtab_hdr->sh_info);
2664 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2665 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2666
2667 /* Look through the global syms for functions; We need to
2668 build export stubs for all globally visible functions. */
2669 for (; eh_syms < eh_symend; eh_syms++)
2670 {
2671 struct elf32_hppa_link_hash_entry *hh;
2672
2673 hh = hppa_elf_hash_entry (*eh_syms);
2674
2675 while (hh->eh.root.type == bfd_link_hash_indirect
2676 || hh->eh.root.type == bfd_link_hash_warning)
2677 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2678
2679 /* At this point in the link, undefined syms have been
2680 resolved, so we need to check that the symbol was
2681 defined in this BFD. */
2682 if ((hh->eh.root.type == bfd_link_hash_defined
2683 || hh->eh.root.type == bfd_link_hash_defweak)
2684 && hh->eh.type == STT_FUNC
2685 && hh->eh.root.u.def.section->output_section != NULL
2686 && (hh->eh.root.u.def.section->output_section->owner
2687 == output_bfd)
2688 && hh->eh.root.u.def.section->owner == input_bfd
2689 && hh->eh.def_regular
2690 && !hh->eh.forced_local
2691 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2692 {
2693 asection *sec;
2694 const char *stub_name;
2695 struct elf32_hppa_stub_hash_entry *hsh;
2696
2697 sec = hh->eh.root.u.def.section;
2698 stub_name = hh_name (hh);
2699 hsh = hppa_stub_hash_lookup (&htab->bstab,
2700 stub_name,
2701 FALSE, FALSE);
2702 if (hsh == NULL)
2703 {
2704 hsh = hppa_add_stub (stub_name, sec, htab);
2705 if (!hsh)
2706 return -1;
2707
2708 hsh->target_value = hh->eh.root.u.def.value;
2709 hsh->target_section = hh->eh.root.u.def.section;
2710 hsh->stub_type = hppa_stub_export;
2711 hsh->hh = hh;
2712 stub_changed = 1;
2713 }
2714 else
2715 {
2716 /* xgettext:c-format */
2717 _bfd_error_handler (_("%B: duplicate export stub %s"),
2718 input_bfd, stub_name);
2719 }
2720 }
2721 }
2722 }
2723 }
2724
2725 return stub_changed;
2726 }
2727
2728 /* Determine and set the size of the stub section for a final link.
2729
2730 The basic idea here is to examine all the relocations looking for
2731 PC-relative calls to a target that is unreachable with a "bl"
2732 instruction. */
2733
2734 bfd_boolean
2735 elf32_hppa_size_stubs
2736 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2737 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2738 asection * (*add_stub_section) (const char *, asection *),
2739 void (*layout_sections_again) (void))
2740 {
2741 bfd_size_type stub_group_size;
2742 bfd_boolean stubs_always_before_branch;
2743 bfd_boolean stub_changed;
2744 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2745
2746 if (htab == NULL)
2747 return FALSE;
2748
2749 /* Stash our params away. */
2750 htab->stub_bfd = stub_bfd;
2751 htab->multi_subspace = multi_subspace;
2752 htab->add_stub_section = add_stub_section;
2753 htab->layout_sections_again = layout_sections_again;
2754 stubs_always_before_branch = group_size < 0;
2755 if (group_size < 0)
2756 stub_group_size = -group_size;
2757 else
2758 stub_group_size = group_size;
2759 if (stub_group_size == 1)
2760 {
2761 /* Default values. */
2762 if (stubs_always_before_branch)
2763 {
2764 stub_group_size = 7680000;
2765 if (htab->has_17bit_branch || htab->multi_subspace)
2766 stub_group_size = 240000;
2767 if (htab->has_12bit_branch)
2768 stub_group_size = 7500;
2769 }
2770 else
2771 {
2772 stub_group_size = 6971392;
2773 if (htab->has_17bit_branch || htab->multi_subspace)
2774 stub_group_size = 217856;
2775 if (htab->has_12bit_branch)
2776 stub_group_size = 6808;
2777 }
2778 }
2779
2780 group_sections (htab, stub_group_size, stubs_always_before_branch);
2781
2782 switch (get_local_syms (output_bfd, info->input_bfds, info))
2783 {
2784 default:
2785 if (htab->all_local_syms)
2786 goto error_ret_free_local;
2787 return FALSE;
2788
2789 case 0:
2790 stub_changed = FALSE;
2791 break;
2792
2793 case 1:
2794 stub_changed = TRUE;
2795 break;
2796 }
2797
2798 while (1)
2799 {
2800 bfd *input_bfd;
2801 unsigned int bfd_indx;
2802 asection *stub_sec;
2803
2804 for (input_bfd = info->input_bfds, bfd_indx = 0;
2805 input_bfd != NULL;
2806 input_bfd = input_bfd->link.next, bfd_indx++)
2807 {
2808 Elf_Internal_Shdr *symtab_hdr;
2809 asection *section;
2810 Elf_Internal_Sym *local_syms;
2811
2812 /* We'll need the symbol table in a second. */
2813 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2814 if (symtab_hdr->sh_info == 0)
2815 continue;
2816
2817 local_syms = htab->all_local_syms[bfd_indx];
2818
2819 /* Walk over each section attached to the input bfd. */
2820 for (section = input_bfd->sections;
2821 section != NULL;
2822 section = section->next)
2823 {
2824 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2825
2826 /* If there aren't any relocs, then there's nothing more
2827 to do. */
2828 if ((section->flags & SEC_RELOC) == 0
2829 || section->reloc_count == 0)
2830 continue;
2831
2832 /* If this section is a link-once section that will be
2833 discarded, then don't create any stubs. */
2834 if (section->output_section == NULL
2835 || section->output_section->owner != output_bfd)
2836 continue;
2837
2838 /* Get the relocs. */
2839 internal_relocs
2840 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2841 info->keep_memory);
2842 if (internal_relocs == NULL)
2843 goto error_ret_free_local;
2844
2845 /* Now examine each relocation. */
2846 irela = internal_relocs;
2847 irelaend = irela + section->reloc_count;
2848 for (; irela < irelaend; irela++)
2849 {
2850 unsigned int r_type, r_indx;
2851 enum elf32_hppa_stub_type stub_type;
2852 struct elf32_hppa_stub_hash_entry *hsh;
2853 asection *sym_sec;
2854 bfd_vma sym_value;
2855 bfd_vma destination;
2856 struct elf32_hppa_link_hash_entry *hh;
2857 char *stub_name;
2858 const asection *id_sec;
2859
2860 r_type = ELF32_R_TYPE (irela->r_info);
2861 r_indx = ELF32_R_SYM (irela->r_info);
2862
2863 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2864 {
2865 bfd_set_error (bfd_error_bad_value);
2866 error_ret_free_internal:
2867 if (elf_section_data (section)->relocs == NULL)
2868 free (internal_relocs);
2869 goto error_ret_free_local;
2870 }
2871
2872 /* Only look for stubs on call instructions. */
2873 if (r_type != (unsigned int) R_PARISC_PCREL12F
2874 && r_type != (unsigned int) R_PARISC_PCREL17F
2875 && r_type != (unsigned int) R_PARISC_PCREL22F)
2876 continue;
2877
2878 /* Now determine the call target, its name, value,
2879 section. */
2880 sym_sec = NULL;
2881 sym_value = 0;
2882 destination = 0;
2883 hh = NULL;
2884 if (r_indx < symtab_hdr->sh_info)
2885 {
2886 /* It's a local symbol. */
2887 Elf_Internal_Sym *sym;
2888 Elf_Internal_Shdr *hdr;
2889 unsigned int shndx;
2890
2891 sym = local_syms + r_indx;
2892 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2893 sym_value = sym->st_value;
2894 shndx = sym->st_shndx;
2895 if (shndx < elf_numsections (input_bfd))
2896 {
2897 hdr = elf_elfsections (input_bfd)[shndx];
2898 sym_sec = hdr->bfd_section;
2899 destination = (sym_value + irela->r_addend
2900 + sym_sec->output_offset
2901 + sym_sec->output_section->vma);
2902 }
2903 }
2904 else
2905 {
2906 /* It's an external symbol. */
2907 int e_indx;
2908
2909 e_indx = r_indx - symtab_hdr->sh_info;
2910 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2911
2912 while (hh->eh.root.type == bfd_link_hash_indirect
2913 || hh->eh.root.type == bfd_link_hash_warning)
2914 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2915
2916 if (hh->eh.root.type == bfd_link_hash_defined
2917 || hh->eh.root.type == bfd_link_hash_defweak)
2918 {
2919 sym_sec = hh->eh.root.u.def.section;
2920 sym_value = hh->eh.root.u.def.value;
2921 if (sym_sec->output_section != NULL)
2922 destination = (sym_value + irela->r_addend
2923 + sym_sec->output_offset
2924 + sym_sec->output_section->vma);
2925 }
2926 else if (hh->eh.root.type == bfd_link_hash_undefweak)
2927 {
2928 if (! bfd_link_pic (info))
2929 continue;
2930 }
2931 else if (hh->eh.root.type == bfd_link_hash_undefined)
2932 {
2933 if (! (info->unresolved_syms_in_objects == RM_IGNORE
2934 && (ELF_ST_VISIBILITY (hh->eh.other)
2935 == STV_DEFAULT)
2936 && hh->eh.type != STT_PARISC_MILLI))
2937 continue;
2938 }
2939 else
2940 {
2941 bfd_set_error (bfd_error_bad_value);
2942 goto error_ret_free_internal;
2943 }
2944 }
2945
2946 /* Determine what (if any) linker stub is needed. */
2947 stub_type = hppa_type_of_stub (section, irela, hh,
2948 destination, info);
2949 if (stub_type == hppa_stub_none)
2950 continue;
2951
2952 /* Support for grouping stub sections. */
2953 id_sec = htab->stub_group[section->id].link_sec;
2954
2955 /* Get the name of this stub. */
2956 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
2957 if (!stub_name)
2958 goto error_ret_free_internal;
2959
2960 hsh = hppa_stub_hash_lookup (&htab->bstab,
2961 stub_name,
2962 FALSE, FALSE);
2963 if (hsh != NULL)
2964 {
2965 /* The proper stub has already been created. */
2966 free (stub_name);
2967 continue;
2968 }
2969
2970 hsh = hppa_add_stub (stub_name, section, htab);
2971 if (hsh == NULL)
2972 {
2973 free (stub_name);
2974 goto error_ret_free_internal;
2975 }
2976
2977 hsh->target_value = sym_value;
2978 hsh->target_section = sym_sec;
2979 hsh->stub_type = stub_type;
2980 if (bfd_link_pic (info))
2981 {
2982 if (stub_type == hppa_stub_import)
2983 hsh->stub_type = hppa_stub_import_shared;
2984 else if (stub_type == hppa_stub_long_branch)
2985 hsh->stub_type = hppa_stub_long_branch_shared;
2986 }
2987 hsh->hh = hh;
2988 stub_changed = TRUE;
2989 }
2990
2991 /* We're done with the internal relocs, free them. */
2992 if (elf_section_data (section)->relocs == NULL)
2993 free (internal_relocs);
2994 }
2995 }
2996
2997 if (!stub_changed)
2998 break;
2999
3000 /* OK, we've added some stubs. Find out the new size of the
3001 stub sections. */
3002 for (stub_sec = htab->stub_bfd->sections;
3003 stub_sec != NULL;
3004 stub_sec = stub_sec->next)
3005 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
3006 stub_sec->size = 0;
3007
3008 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
3009
3010 /* Ask the linker to do its stuff. */
3011 (*htab->layout_sections_again) ();
3012 stub_changed = FALSE;
3013 }
3014
3015 free (htab->all_local_syms);
3016 return TRUE;
3017
3018 error_ret_free_local:
3019 free (htab->all_local_syms);
3020 return FALSE;
3021 }
3022
3023 /* For a final link, this function is called after we have sized the
3024 stubs to provide a value for __gp. */
3025
3026 bfd_boolean
3027 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
3028 {
3029 struct bfd_link_hash_entry *h;
3030 asection *sec = NULL;
3031 bfd_vma gp_val = 0;
3032
3033 h = bfd_link_hash_lookup (info->hash, "$global$", FALSE, FALSE, FALSE);
3034
3035 if (h != NULL
3036 && (h->type == bfd_link_hash_defined
3037 || h->type == bfd_link_hash_defweak))
3038 {
3039 gp_val = h->u.def.value;
3040 sec = h->u.def.section;
3041 }
3042 else
3043 {
3044 asection *splt = bfd_get_section_by_name (abfd, ".plt");
3045 asection *sgot = bfd_get_section_by_name (abfd, ".got");
3046
3047 /* Choose to point our LTP at, in this order, one of .plt, .got,
3048 or .data, if these sections exist. In the case of choosing
3049 .plt try to make the LTP ideal for addressing anywhere in the
3050 .plt or .got with a 14 bit signed offset. Typically, the end
3051 of the .plt is the start of the .got, so choose .plt + 0x2000
3052 if either the .plt or .got is larger than 0x2000. If both
3053 the .plt and .got are smaller than 0x2000, choose the end of
3054 the .plt section. */
3055 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3056 ? NULL : splt;
3057 if (sec != NULL)
3058 {
3059 gp_val = sec->size;
3060 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3061 {
3062 gp_val = 0x2000;
3063 }
3064 }
3065 else
3066 {
3067 sec = sgot;
3068 if (sec != NULL)
3069 {
3070 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3071 {
3072 /* We know we don't have a .plt. If .got is large,
3073 offset our LTP. */
3074 if (sec->size > 0x2000)
3075 gp_val = 0x2000;
3076 }
3077 }
3078 else
3079 {
3080 /* No .plt or .got. Who cares what the LTP is? */
3081 sec = bfd_get_section_by_name (abfd, ".data");
3082 }
3083 }
3084
3085 if (h != NULL)
3086 {
3087 h->type = bfd_link_hash_defined;
3088 h->u.def.value = gp_val;
3089 if (sec != NULL)
3090 h->u.def.section = sec;
3091 else
3092 h->u.def.section = bfd_abs_section_ptr;
3093 }
3094 }
3095
3096 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
3097 {
3098 if (sec != NULL && sec->output_section != NULL)
3099 gp_val += sec->output_section->vma + sec->output_offset;
3100
3101 elf_gp (abfd) = gp_val;
3102 }
3103 return TRUE;
3104 }
3105
3106 /* Build all the stubs associated with the current output file. The
3107 stubs are kept in a hash table attached to the main linker hash
3108 table. We also set up the .plt entries for statically linked PIC
3109 functions here. This function is called via hppaelf_finish in the
3110 linker. */
3111
3112 bfd_boolean
3113 elf32_hppa_build_stubs (struct bfd_link_info *info)
3114 {
3115 asection *stub_sec;
3116 struct bfd_hash_table *table;
3117 struct elf32_hppa_link_hash_table *htab;
3118
3119 htab = hppa_link_hash_table (info);
3120 if (htab == NULL)
3121 return FALSE;
3122
3123 for (stub_sec = htab->stub_bfd->sections;
3124 stub_sec != NULL;
3125 stub_sec = stub_sec->next)
3126 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
3127 && stub_sec->size != 0)
3128 {
3129 /* Allocate memory to hold the linker stubs. */
3130 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
3131 if (stub_sec->contents == NULL)
3132 return FALSE;
3133 stub_sec->size = 0;
3134 }
3135
3136 /* Build the stubs as directed by the stub hash table. */
3137 table = &htab->bstab;
3138 bfd_hash_traverse (table, hppa_build_one_stub, info);
3139
3140 return TRUE;
3141 }
3142
3143 /* Return the base vma address which should be subtracted from the real
3144 address when resolving a dtpoff relocation.
3145 This is PT_TLS segment p_vaddr. */
3146
3147 static bfd_vma
3148 dtpoff_base (struct bfd_link_info *info)
3149 {
3150 /* If tls_sec is NULL, we should have signalled an error already. */
3151 if (elf_hash_table (info)->tls_sec == NULL)
3152 return 0;
3153 return elf_hash_table (info)->tls_sec->vma;
3154 }
3155
3156 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3157
3158 static bfd_vma
3159 tpoff (struct bfd_link_info *info, bfd_vma address)
3160 {
3161 struct elf_link_hash_table *htab = elf_hash_table (info);
3162
3163 /* If tls_sec is NULL, we should have signalled an error already. */
3164 if (htab->tls_sec == NULL)
3165 return 0;
3166 /* hppa TLS ABI is variant I and static TLS block start just after
3167 tcbhead structure which has 2 pointer fields. */
3168 return (address - htab->tls_sec->vma
3169 + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3170 }
3171
3172 /* Perform a final link. */
3173
3174 static bfd_boolean
3175 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3176 {
3177 struct stat buf;
3178
3179 /* Invoke the regular ELF linker to do all the work. */
3180 if (!bfd_elf_final_link (abfd, info))
3181 return FALSE;
3182
3183 /* If we're producing a final executable, sort the contents of the
3184 unwind section. */
3185 if (bfd_link_relocatable (info))
3186 return TRUE;
3187
3188 /* Do not attempt to sort non-regular files. This is here
3189 especially for configure scripts and kernel builds which run
3190 tests with "ld [...] -o /dev/null". */
3191 if (stat (abfd->filename, &buf) != 0
3192 || !S_ISREG(buf.st_mode))
3193 return TRUE;
3194
3195 return elf_hppa_sort_unwind (abfd);
3196 }
3197
3198 /* Record the lowest address for the data and text segments. */
3199
3200 static void
3201 hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
3202 {
3203 struct elf32_hppa_link_hash_table *htab;
3204
3205 htab = (struct elf32_hppa_link_hash_table*) data;
3206 if (htab == NULL)
3207 return;
3208
3209 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3210 {
3211 bfd_vma value;
3212 Elf_Internal_Phdr *p;
3213
3214 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
3215 BFD_ASSERT (p != NULL);
3216 value = p->p_vaddr;
3217
3218 if ((section->flags & SEC_READONLY) != 0)
3219 {
3220 if (value < htab->text_segment_base)
3221 htab->text_segment_base = value;
3222 }
3223 else
3224 {
3225 if (value < htab->data_segment_base)
3226 htab->data_segment_base = value;
3227 }
3228 }
3229 }
3230
3231 /* Perform a relocation as part of a final link. */
3232
3233 static bfd_reloc_status_type
3234 final_link_relocate (asection *input_section,
3235 bfd_byte *contents,
3236 const Elf_Internal_Rela *rela,
3237 bfd_vma value,
3238 struct elf32_hppa_link_hash_table *htab,
3239 asection *sym_sec,
3240 struct elf32_hppa_link_hash_entry *hh,
3241 struct bfd_link_info *info)
3242 {
3243 int insn;
3244 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3245 unsigned int orig_r_type = r_type;
3246 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3247 int r_format = howto->bitsize;
3248 enum hppa_reloc_field_selector_type_alt r_field;
3249 bfd *input_bfd = input_section->owner;
3250 bfd_vma offset = rela->r_offset;
3251 bfd_vma max_branch_offset = 0;
3252 bfd_byte *hit_data = contents + offset;
3253 bfd_signed_vma addend = rela->r_addend;
3254 bfd_vma location;
3255 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3256 int val;
3257
3258 if (r_type == R_PARISC_NONE)
3259 return bfd_reloc_ok;
3260
3261 insn = bfd_get_32 (input_bfd, hit_data);
3262
3263 /* Find out where we are and where we're going. */
3264 location = (offset +
3265 input_section->output_offset +
3266 input_section->output_section->vma);
3267
3268 /* If we are not building a shared library, convert DLTIND relocs to
3269 DPREL relocs. */
3270 if (!bfd_link_pic (info))
3271 {
3272 switch (r_type)
3273 {
3274 case R_PARISC_DLTIND21L:
3275 case R_PARISC_TLS_GD21L:
3276 case R_PARISC_TLS_LDM21L:
3277 case R_PARISC_TLS_IE21L:
3278 r_type = R_PARISC_DPREL21L;
3279 break;
3280
3281 case R_PARISC_DLTIND14R:
3282 case R_PARISC_TLS_GD14R:
3283 case R_PARISC_TLS_LDM14R:
3284 case R_PARISC_TLS_IE14R:
3285 r_type = R_PARISC_DPREL14R;
3286 break;
3287
3288 case R_PARISC_DLTIND14F:
3289 r_type = R_PARISC_DPREL14F;
3290 break;
3291 }
3292 }
3293
3294 switch (r_type)
3295 {
3296 case R_PARISC_PCREL12F:
3297 case R_PARISC_PCREL17F:
3298 case R_PARISC_PCREL22F:
3299 /* If this call should go via the plt, find the import stub in
3300 the stub hash. */
3301 if (sym_sec == NULL
3302 || sym_sec->output_section == NULL
3303 || (hh != NULL
3304 && hh->eh.plt.offset != (bfd_vma) -1
3305 && hh->eh.dynindx != -1
3306 && !hh->plabel
3307 && (bfd_link_pic (info)
3308 || !hh->eh.def_regular
3309 || hh->eh.root.type == bfd_link_hash_defweak)))
3310 {
3311 hsh = hppa_get_stub_entry (input_section, sym_sec,
3312 hh, rela, htab);
3313 if (hsh != NULL)
3314 {
3315 value = (hsh->stub_offset
3316 + hsh->stub_sec->output_offset
3317 + hsh->stub_sec->output_section->vma);
3318 addend = 0;
3319 }
3320 else if (sym_sec == NULL && hh != NULL
3321 && hh->eh.root.type == bfd_link_hash_undefweak)
3322 {
3323 /* It's OK if undefined weak. Calls to undefined weak
3324 symbols behave as if the "called" function
3325 immediately returns. We can thus call to a weak
3326 function without first checking whether the function
3327 is defined. */
3328 value = location;
3329 addend = 8;
3330 }
3331 else
3332 return bfd_reloc_undefined;
3333 }
3334 /* Fall thru. */
3335
3336 case R_PARISC_PCREL21L:
3337 case R_PARISC_PCREL17C:
3338 case R_PARISC_PCREL17R:
3339 case R_PARISC_PCREL14R:
3340 case R_PARISC_PCREL14F:
3341 case R_PARISC_PCREL32:
3342 /* Make it a pc relative offset. */
3343 value -= location;
3344 addend -= 8;
3345 break;
3346
3347 case R_PARISC_DPREL21L:
3348 case R_PARISC_DPREL14R:
3349 case R_PARISC_DPREL14F:
3350 /* Convert instructions that use the linkage table pointer (r19) to
3351 instructions that use the global data pointer (dp). This is the
3352 most efficient way of using PIC code in an incomplete executable,
3353 but the user must follow the standard runtime conventions for
3354 accessing data for this to work. */
3355 if (orig_r_type != r_type)
3356 {
3357 if (r_type == R_PARISC_DPREL21L)
3358 {
3359 /* GCC sometimes uses a register other than r19 for the
3360 operation, so we must convert any addil instruction
3361 that uses this relocation. */
3362 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3363 insn = ADDIL_DP;
3364 else
3365 /* We must have a ldil instruction. It's too hard to find
3366 and convert the associated add instruction, so issue an
3367 error. */
3368 _bfd_error_handler
3369 /* xgettext:c-format */
3370 (_("%B(%A+%#Lx): %s fixup for insn %#x is not supported in a non-shared link"),
3371 input_bfd,
3372 input_section,
3373 offset,
3374 howto->name,
3375 insn);
3376 }
3377 else if (r_type == R_PARISC_DPREL14F)
3378 {
3379 /* This must be a format 1 load/store. Change the base
3380 register to dp. */
3381 insn = (insn & 0xfc1ffff) | (27 << 21);
3382 }
3383 }
3384
3385 /* For all the DP relative relocations, we need to examine the symbol's
3386 section. If it has no section or if it's a code section, then
3387 "data pointer relative" makes no sense. In that case we don't
3388 adjust the "value", and for 21 bit addil instructions, we change the
3389 source addend register from %dp to %r0. This situation commonly
3390 arises for undefined weak symbols and when a variable's "constness"
3391 is declared differently from the way the variable is defined. For
3392 instance: "extern int foo" with foo defined as "const int foo". */
3393 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3394 {
3395 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3396 == (((int) OP_ADDIL << 26) | (27 << 21)))
3397 {
3398 insn &= ~ (0x1f << 21);
3399 }
3400 /* Now try to make things easy for the dynamic linker. */
3401
3402 break;
3403 }
3404 /* Fall thru. */
3405
3406 case R_PARISC_DLTIND21L:
3407 case R_PARISC_DLTIND14R:
3408 case R_PARISC_DLTIND14F:
3409 case R_PARISC_TLS_GD21L:
3410 case R_PARISC_TLS_LDM21L:
3411 case R_PARISC_TLS_IE21L:
3412 case R_PARISC_TLS_GD14R:
3413 case R_PARISC_TLS_LDM14R:
3414 case R_PARISC_TLS_IE14R:
3415 value -= elf_gp (input_section->output_section->owner);
3416 break;
3417
3418 case R_PARISC_SEGREL32:
3419 if ((sym_sec->flags & SEC_CODE) != 0)
3420 value -= htab->text_segment_base;
3421 else
3422 value -= htab->data_segment_base;
3423 break;
3424
3425 default:
3426 break;
3427 }
3428
3429 switch (r_type)
3430 {
3431 case R_PARISC_DIR32:
3432 case R_PARISC_DIR14F:
3433 case R_PARISC_DIR17F:
3434 case R_PARISC_PCREL17C:
3435 case R_PARISC_PCREL14F:
3436 case R_PARISC_PCREL32:
3437 case R_PARISC_DPREL14F:
3438 case R_PARISC_PLABEL32:
3439 case R_PARISC_DLTIND14F:
3440 case R_PARISC_SEGBASE:
3441 case R_PARISC_SEGREL32:
3442 case R_PARISC_TLS_DTPMOD32:
3443 case R_PARISC_TLS_DTPOFF32:
3444 case R_PARISC_TLS_TPREL32:
3445 r_field = e_fsel;
3446 break;
3447
3448 case R_PARISC_DLTIND21L:
3449 case R_PARISC_PCREL21L:
3450 case R_PARISC_PLABEL21L:
3451 r_field = e_lsel;
3452 break;
3453
3454 case R_PARISC_DIR21L:
3455 case R_PARISC_DPREL21L:
3456 case R_PARISC_TLS_GD21L:
3457 case R_PARISC_TLS_LDM21L:
3458 case R_PARISC_TLS_LDO21L:
3459 case R_PARISC_TLS_IE21L:
3460 case R_PARISC_TLS_LE21L:
3461 r_field = e_lrsel;
3462 break;
3463
3464 case R_PARISC_PCREL17R:
3465 case R_PARISC_PCREL14R:
3466 case R_PARISC_PLABEL14R:
3467 case R_PARISC_DLTIND14R:
3468 r_field = e_rsel;
3469 break;
3470
3471 case R_PARISC_DIR17R:
3472 case R_PARISC_DIR14R:
3473 case R_PARISC_DPREL14R:
3474 case R_PARISC_TLS_GD14R:
3475 case R_PARISC_TLS_LDM14R:
3476 case R_PARISC_TLS_LDO14R:
3477 case R_PARISC_TLS_IE14R:
3478 case R_PARISC_TLS_LE14R:
3479 r_field = e_rrsel;
3480 break;
3481
3482 case R_PARISC_PCREL12F:
3483 case R_PARISC_PCREL17F:
3484 case R_PARISC_PCREL22F:
3485 r_field = e_fsel;
3486
3487 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3488 {
3489 max_branch_offset = (1 << (17-1)) << 2;
3490 }
3491 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3492 {
3493 max_branch_offset = (1 << (12-1)) << 2;
3494 }
3495 else
3496 {
3497 max_branch_offset = (1 << (22-1)) << 2;
3498 }
3499
3500 /* sym_sec is NULL on undefined weak syms or when shared on
3501 undefined syms. We've already checked for a stub for the
3502 shared undefined case. */
3503 if (sym_sec == NULL)
3504 break;
3505
3506 /* If the branch is out of reach, then redirect the
3507 call to the local stub for this function. */
3508 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3509 {
3510 hsh = hppa_get_stub_entry (input_section, sym_sec,
3511 hh, rela, htab);
3512 if (hsh == NULL)
3513 return bfd_reloc_undefined;
3514
3515 /* Munge up the value and addend so that we call the stub
3516 rather than the procedure directly. */
3517 value = (hsh->stub_offset
3518 + hsh->stub_sec->output_offset
3519 + hsh->stub_sec->output_section->vma
3520 - location);
3521 addend = -8;
3522 }
3523 break;
3524
3525 /* Something we don't know how to handle. */
3526 default:
3527 return bfd_reloc_notsupported;
3528 }
3529
3530 /* Make sure we can reach the stub. */
3531 if (max_branch_offset != 0
3532 && value + addend + max_branch_offset >= 2*max_branch_offset)
3533 {
3534 _bfd_error_handler
3535 /* xgettext:c-format */
3536 (_("%B(%A+%#Lx): cannot reach %s, recompile with -ffunction-sections"),
3537 input_bfd,
3538 input_section,
3539 offset,
3540 hsh->bh_root.string);
3541 bfd_set_error (bfd_error_bad_value);
3542 return bfd_reloc_notsupported;
3543 }
3544
3545 val = hppa_field_adjust (value, addend, r_field);
3546
3547 switch (r_type)
3548 {
3549 case R_PARISC_PCREL12F:
3550 case R_PARISC_PCREL17C:
3551 case R_PARISC_PCREL17F:
3552 case R_PARISC_PCREL17R:
3553 case R_PARISC_PCREL22F:
3554 case R_PARISC_DIR17F:
3555 case R_PARISC_DIR17R:
3556 /* This is a branch. Divide the offset by four.
3557 Note that we need to decide whether it's a branch or
3558 otherwise by inspecting the reloc. Inspecting insn won't
3559 work as insn might be from a .word directive. */
3560 val >>= 2;
3561 break;
3562
3563 default:
3564 break;
3565 }
3566
3567 insn = hppa_rebuild_insn (insn, val, r_format);
3568
3569 /* Update the instruction word. */
3570 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3571 return bfd_reloc_ok;
3572 }
3573
3574 /* Relocate an HPPA ELF section. */
3575
3576 static bfd_boolean
3577 elf32_hppa_relocate_section (bfd *output_bfd,
3578 struct bfd_link_info *info,
3579 bfd *input_bfd,
3580 asection *input_section,
3581 bfd_byte *contents,
3582 Elf_Internal_Rela *relocs,
3583 Elf_Internal_Sym *local_syms,
3584 asection **local_sections)
3585 {
3586 bfd_vma *local_got_offsets;
3587 struct elf32_hppa_link_hash_table *htab;
3588 Elf_Internal_Shdr *symtab_hdr;
3589 Elf_Internal_Rela *rela;
3590 Elf_Internal_Rela *relend;
3591
3592 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3593
3594 htab = hppa_link_hash_table (info);
3595 if (htab == NULL)
3596 return FALSE;
3597
3598 local_got_offsets = elf_local_got_offsets (input_bfd);
3599
3600 rela = relocs;
3601 relend = relocs + input_section->reloc_count;
3602 for (; rela < relend; rela++)
3603 {
3604 unsigned int r_type;
3605 reloc_howto_type *howto;
3606 unsigned int r_symndx;
3607 struct elf32_hppa_link_hash_entry *hh;
3608 Elf_Internal_Sym *sym;
3609 asection *sym_sec;
3610 bfd_vma relocation;
3611 bfd_reloc_status_type rstatus;
3612 const char *sym_name;
3613 bfd_boolean plabel;
3614 bfd_boolean warned_undef;
3615
3616 r_type = ELF32_R_TYPE (rela->r_info);
3617 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3618 {
3619 bfd_set_error (bfd_error_bad_value);
3620 return FALSE;
3621 }
3622 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3623 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3624 continue;
3625
3626 r_symndx = ELF32_R_SYM (rela->r_info);
3627 hh = NULL;
3628 sym = NULL;
3629 sym_sec = NULL;
3630 warned_undef = FALSE;
3631 if (r_symndx < symtab_hdr->sh_info)
3632 {
3633 /* This is a local symbol, h defaults to NULL. */
3634 sym = local_syms + r_symndx;
3635 sym_sec = local_sections[r_symndx];
3636 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3637 }
3638 else
3639 {
3640 struct elf_link_hash_entry *eh;
3641 bfd_boolean unresolved_reloc, ignored;
3642 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3643
3644 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3645 r_symndx, symtab_hdr, sym_hashes,
3646 eh, sym_sec, relocation,
3647 unresolved_reloc, warned_undef,
3648 ignored);
3649
3650 if (!bfd_link_relocatable (info)
3651 && relocation == 0
3652 && eh->root.type != bfd_link_hash_defined
3653 && eh->root.type != bfd_link_hash_defweak
3654 && eh->root.type != bfd_link_hash_undefweak)
3655 {
3656 if (info->unresolved_syms_in_objects == RM_IGNORE
3657 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3658 && eh->type == STT_PARISC_MILLI)
3659 {
3660 (*info->callbacks->undefined_symbol)
3661 (info, eh_name (eh), input_bfd,
3662 input_section, rela->r_offset, FALSE);
3663 warned_undef = TRUE;
3664 }
3665 }
3666 hh = hppa_elf_hash_entry (eh);
3667 }
3668
3669 if (sym_sec != NULL && discarded_section (sym_sec))
3670 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3671 rela, 1, relend,
3672 elf_hppa_howto_table + r_type, 0,
3673 contents);
3674
3675 if (bfd_link_relocatable (info))
3676 continue;
3677
3678 /* Do any required modifications to the relocation value, and
3679 determine what types of dynamic info we need to output, if
3680 any. */
3681 plabel = 0;
3682 switch (r_type)
3683 {
3684 case R_PARISC_DLTIND14F:
3685 case R_PARISC_DLTIND14R:
3686 case R_PARISC_DLTIND21L:
3687 {
3688 bfd_vma off;
3689 bfd_boolean do_got = FALSE;
3690 bfd_boolean reloc = bfd_link_pic (info);
3691
3692 /* Relocation is to the entry for this symbol in the
3693 global offset table. */
3694 if (hh != NULL)
3695 {
3696 bfd_boolean dyn;
3697
3698 off = hh->eh.got.offset;
3699 dyn = htab->etab.dynamic_sections_created;
3700 reloc = (!UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh)
3701 && (reloc
3702 || (hh->eh.dynindx != -1
3703 && !SYMBOL_REFERENCES_LOCAL (info, &hh->eh))));
3704 if (!reloc
3705 || !WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
3706 bfd_link_pic (info),
3707 &hh->eh))
3708 {
3709 /* If we aren't going to call finish_dynamic_symbol,
3710 then we need to handle initialisation of the .got
3711 entry and create needed relocs here. Since the
3712 offset must always be a multiple of 4, we use the
3713 least significant bit to record whether we have
3714 initialised it already. */
3715 if ((off & 1) != 0)
3716 off &= ~1;
3717 else
3718 {
3719 hh->eh.got.offset |= 1;
3720 do_got = TRUE;
3721 }
3722 }
3723 }
3724 else
3725 {
3726 /* Local symbol case. */
3727 if (local_got_offsets == NULL)
3728 abort ();
3729
3730 off = local_got_offsets[r_symndx];
3731
3732 /* The offset must always be a multiple of 4. We use
3733 the least significant bit to record whether we have
3734 already generated the necessary reloc. */
3735 if ((off & 1) != 0)
3736 off &= ~1;
3737 else
3738 {
3739 local_got_offsets[r_symndx] |= 1;
3740 do_got = TRUE;
3741 }
3742 }
3743
3744 if (do_got)
3745 {
3746 if (reloc)
3747 {
3748 /* Output a dynamic relocation for this GOT entry.
3749 In this case it is relative to the base of the
3750 object because the symbol index is zero. */
3751 Elf_Internal_Rela outrel;
3752 bfd_byte *loc;
3753 asection *sec = htab->etab.srelgot;
3754
3755 outrel.r_offset = (off
3756 + htab->etab.sgot->output_offset
3757 + htab->etab.sgot->output_section->vma);
3758 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3759 outrel.r_addend = relocation;
3760 loc = sec->contents;
3761 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3762 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3763 }
3764 else
3765 bfd_put_32 (output_bfd, relocation,
3766 htab->etab.sgot->contents + off);
3767 }
3768
3769 if (off >= (bfd_vma) -2)
3770 abort ();
3771
3772 /* Add the base of the GOT to the relocation value. */
3773 relocation = (off
3774 + htab->etab.sgot->output_offset
3775 + htab->etab.sgot->output_section->vma);
3776 }
3777 break;
3778
3779 case R_PARISC_SEGREL32:
3780 /* If this is the first SEGREL relocation, then initialize
3781 the segment base values. */
3782 if (htab->text_segment_base == (bfd_vma) -1)
3783 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3784 break;
3785
3786 case R_PARISC_PLABEL14R:
3787 case R_PARISC_PLABEL21L:
3788 case R_PARISC_PLABEL32:
3789 if (htab->etab.dynamic_sections_created)
3790 {
3791 bfd_vma off;
3792 bfd_boolean do_plt = 0;
3793 /* If we have a global symbol with a PLT slot, then
3794 redirect this relocation to it. */
3795 if (hh != NULL)
3796 {
3797 off = hh->eh.plt.offset;
3798 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1,
3799 bfd_link_pic (info),
3800 &hh->eh))
3801 {
3802 /* In a non-shared link, adjust_dynamic_symbols
3803 isn't called for symbols forced local. We
3804 need to write out the plt entry here. */
3805 if ((off & 1) != 0)
3806 off &= ~1;
3807 else
3808 {
3809 hh->eh.plt.offset |= 1;
3810 do_plt = 1;
3811 }
3812 }
3813 }
3814 else
3815 {
3816 bfd_vma *local_plt_offsets;
3817
3818 if (local_got_offsets == NULL)
3819 abort ();
3820
3821 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3822 off = local_plt_offsets[r_symndx];
3823
3824 /* As for the local .got entry case, we use the last
3825 bit to record whether we've already initialised
3826 this local .plt entry. */
3827 if ((off & 1) != 0)
3828 off &= ~1;
3829 else
3830 {
3831 local_plt_offsets[r_symndx] |= 1;
3832 do_plt = 1;
3833 }
3834 }
3835
3836 if (do_plt)
3837 {
3838 if (bfd_link_pic (info))
3839 {
3840 /* Output a dynamic IPLT relocation for this
3841 PLT entry. */
3842 Elf_Internal_Rela outrel;
3843 bfd_byte *loc;
3844 asection *s = htab->etab.srelplt;
3845
3846 outrel.r_offset = (off
3847 + htab->etab.splt->output_offset
3848 + htab->etab.splt->output_section->vma);
3849 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3850 outrel.r_addend = relocation;
3851 loc = s->contents;
3852 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3853 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3854 }
3855 else
3856 {
3857 bfd_put_32 (output_bfd,
3858 relocation,
3859 htab->etab.splt->contents + off);
3860 bfd_put_32 (output_bfd,
3861 elf_gp (htab->etab.splt->output_section->owner),
3862 htab->etab.splt->contents + off + 4);
3863 }
3864 }
3865
3866 if (off >= (bfd_vma) -2)
3867 abort ();
3868
3869 /* PLABELs contain function pointers. Relocation is to
3870 the entry for the function in the .plt. The magic +2
3871 offset signals to $$dyncall that the function pointer
3872 is in the .plt and thus has a gp pointer too.
3873 Exception: Undefined PLABELs should have a value of
3874 zero. */
3875 if (hh == NULL
3876 || (hh->eh.root.type != bfd_link_hash_undefweak
3877 && hh->eh.root.type != bfd_link_hash_undefined))
3878 {
3879 relocation = (off
3880 + htab->etab.splt->output_offset
3881 + htab->etab.splt->output_section->vma
3882 + 2);
3883 }
3884 plabel = 1;
3885 }
3886 /* Fall through. */
3887
3888 case R_PARISC_DIR17F:
3889 case R_PARISC_DIR17R:
3890 case R_PARISC_DIR14F:
3891 case R_PARISC_DIR14R:
3892 case R_PARISC_DIR21L:
3893 case R_PARISC_DPREL14F:
3894 case R_PARISC_DPREL14R:
3895 case R_PARISC_DPREL21L:
3896 case R_PARISC_DIR32:
3897 if ((input_section->flags & SEC_ALLOC) == 0)
3898 break;
3899
3900 /* The reloc types handled here and this conditional
3901 expression must match the code in ..check_relocs and
3902 allocate_dynrelocs. ie. We need exactly the same condition
3903 as in ..check_relocs, with some extra conditions (dynindx
3904 test in this case) to cater for relocs removed by
3905 allocate_dynrelocs. */
3906 if ((bfd_link_pic (info)
3907 && !(hh != NULL
3908 && ((hh->eh.root.type == bfd_link_hash_undefined
3909 && ELF_ST_VISIBILITY (hh->eh.other) != STV_DEFAULT)
3910 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh)))
3911 && (IS_ABSOLUTE_RELOC (r_type)
3912 || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
3913 || (ELIMINATE_COPY_RELOCS
3914 && !bfd_link_pic (info)
3915 && hh != NULL
3916 && hh->eh.dynindx != -1
3917 && !hh->eh.non_got_ref
3918 && !hh->eh.def_regular))
3919 {
3920 Elf_Internal_Rela outrel;
3921 bfd_boolean skip;
3922 asection *sreloc;
3923 bfd_byte *loc;
3924
3925 /* When generating a shared object, these relocations
3926 are copied into the output file to be resolved at run
3927 time. */
3928
3929 outrel.r_addend = rela->r_addend;
3930 outrel.r_offset =
3931 _bfd_elf_section_offset (output_bfd, info, input_section,
3932 rela->r_offset);
3933 skip = (outrel.r_offset == (bfd_vma) -1
3934 || outrel.r_offset == (bfd_vma) -2);
3935 outrel.r_offset += (input_section->output_offset
3936 + input_section->output_section->vma);
3937
3938 if (skip)
3939 {
3940 memset (&outrel, 0, sizeof (outrel));
3941 }
3942 else if (hh != NULL
3943 && hh->eh.dynindx != -1
3944 && (plabel
3945 || !IS_ABSOLUTE_RELOC (r_type)
3946 || !bfd_link_pic (info)
3947 || !SYMBOLIC_BIND (info, &hh->eh)
3948 || !hh->eh.def_regular))
3949 {
3950 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
3951 }
3952 else /* It's a local symbol, or one marked to become local. */
3953 {
3954 int indx = 0;
3955
3956 /* Add the absolute offset of the symbol. */
3957 outrel.r_addend += relocation;
3958
3959 /* Global plabels need to be processed by the
3960 dynamic linker so that functions have at most one
3961 fptr. For this reason, we need to differentiate
3962 between global and local plabels, which we do by
3963 providing the function symbol for a global plabel
3964 reloc, and no symbol for local plabels. */
3965 if (! plabel
3966 && sym_sec != NULL
3967 && sym_sec->output_section != NULL
3968 && ! bfd_is_abs_section (sym_sec))
3969 {
3970 asection *osec;
3971
3972 osec = sym_sec->output_section;
3973 indx = elf_section_data (osec)->dynindx;
3974 if (indx == 0)
3975 {
3976 osec = htab->etab.text_index_section;
3977 indx = elf_section_data (osec)->dynindx;
3978 }
3979 BFD_ASSERT (indx != 0);
3980
3981 /* We are turning this relocation into one
3982 against a section symbol, so subtract out the
3983 output section's address but not the offset
3984 of the input section in the output section. */
3985 outrel.r_addend -= osec->vma;
3986 }
3987
3988 outrel.r_info = ELF32_R_INFO (indx, r_type);
3989 }
3990 sreloc = elf_section_data (input_section)->sreloc;
3991 if (sreloc == NULL)
3992 abort ();
3993
3994 loc = sreloc->contents;
3995 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3996 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3997 }
3998 break;
3999
4000 case R_PARISC_TLS_LDM21L:
4001 case R_PARISC_TLS_LDM14R:
4002 {
4003 bfd_vma off;
4004
4005 off = htab->tls_ldm_got.offset;
4006 if (off & 1)
4007 off &= ~1;
4008 else
4009 {
4010 Elf_Internal_Rela outrel;
4011 bfd_byte *loc;
4012
4013 outrel.r_offset = (off
4014 + htab->etab.sgot->output_section->vma
4015 + htab->etab.sgot->output_offset);
4016 outrel.r_addend = 0;
4017 outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
4018 loc = htab->etab.srelgot->contents;
4019 loc += htab->etab.srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4020
4021 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4022 htab->tls_ldm_got.offset |= 1;
4023 }
4024
4025 /* Add the base of the GOT to the relocation value. */
4026 relocation = (off
4027 + htab->etab.sgot->output_offset
4028 + htab->etab.sgot->output_section->vma);
4029
4030 break;
4031 }
4032
4033 case R_PARISC_TLS_LDO21L:
4034 case R_PARISC_TLS_LDO14R:
4035 relocation -= dtpoff_base (info);
4036 break;
4037
4038 case R_PARISC_TLS_GD21L:
4039 case R_PARISC_TLS_GD14R:
4040 case R_PARISC_TLS_IE21L:
4041 case R_PARISC_TLS_IE14R:
4042 {
4043 bfd_vma off;
4044 int indx;
4045 char tls_type;
4046
4047 indx = 0;
4048 if (hh != NULL)
4049 {
4050 if (!htab->etab.dynamic_sections_created
4051 || hh->eh.dynindx == -1
4052 || SYMBOL_REFERENCES_LOCAL (info, &hh->eh)
4053 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh))
4054 /* This is actually a static link, or it is a
4055 -Bsymbolic link and the symbol is defined
4056 locally, or the symbol was forced to be local
4057 because of a version file. */
4058 ;
4059 else
4060 indx = hh->eh.dynindx;
4061 off = hh->eh.got.offset;
4062 tls_type = hh->tls_type;
4063 }
4064 else
4065 {
4066 off = local_got_offsets[r_symndx];
4067 tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4068 }
4069
4070 if (tls_type == GOT_UNKNOWN)
4071 abort ();
4072
4073 if ((off & 1) != 0)
4074 off &= ~1;
4075 else
4076 {
4077 bfd_boolean need_relocs = FALSE;
4078 Elf_Internal_Rela outrel;
4079 bfd_byte *loc = NULL;
4080 int cur_off = off;
4081
4082 /* The GOT entries have not been initialized yet. Do it
4083 now, and emit any relocations. If both an IE GOT and a
4084 GD GOT are necessary, we emit the GD first. */
4085
4086 if (indx != 0
4087 || (bfd_link_pic (info)
4088 && (hh == NULL
4089 || !UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh))))
4090 {
4091 need_relocs = TRUE;
4092 loc = htab->etab.srelgot->contents;
4093 loc += (htab->etab.srelgot->reloc_count
4094 * sizeof (Elf32_External_Rela));
4095 }
4096
4097 if (tls_type & GOT_TLS_GD)
4098 {
4099 if (need_relocs)
4100 {
4101 outrel.r_offset
4102 = (cur_off
4103 + htab->etab.sgot->output_section->vma
4104 + htab->etab.sgot->output_offset);
4105 outrel.r_info
4106 = ELF32_R_INFO (indx, R_PARISC_TLS_DTPMOD32);
4107 outrel.r_addend = 0;
4108 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4109 htab->etab.srelgot->reloc_count++;
4110 loc += sizeof (Elf32_External_Rela);
4111 outrel.r_info
4112 = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4113 outrel.r_offset += 4;
4114 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4115 htab->etab.srelgot->reloc_count++;
4116 loc += sizeof (Elf32_External_Rela);
4117 bfd_put_32 (output_bfd, 0,
4118 htab->etab.sgot->contents + cur_off);
4119 bfd_put_32 (output_bfd, 0,
4120 htab->etab.sgot->contents + cur_off + 4);
4121 }
4122 else
4123 {
4124 /* If we are not emitting relocations for a
4125 general dynamic reference, then we must be in a
4126 static link or an executable link with the
4127 symbol binding locally. Mark it as belonging
4128 to module 1, the executable. */
4129 bfd_put_32 (output_bfd, 1,
4130 htab->etab.sgot->contents + cur_off);
4131 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4132 htab->etab.sgot->contents + cur_off + 4);
4133 }
4134 cur_off += 8;
4135 }
4136
4137 if (tls_type & GOT_TLS_IE)
4138 {
4139 if (need_relocs
4140 && !(bfd_link_executable (info)
4141 && SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4142 {
4143 outrel.r_offset
4144 = (cur_off
4145 + htab->etab.sgot->output_section->vma
4146 + htab->etab.sgot->output_offset);
4147 outrel.r_info = ELF32_R_INFO (indx,
4148 R_PARISC_TLS_TPREL32);
4149 if (indx == 0)
4150 outrel.r_addend = relocation - dtpoff_base (info);
4151 else
4152 outrel.r_addend = 0;
4153 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4154 htab->etab.srelgot->reloc_count++;
4155 loc += sizeof (Elf32_External_Rela);
4156 }
4157 else
4158 bfd_put_32 (output_bfd, tpoff (info, relocation),
4159 htab->etab.sgot->contents + cur_off);
4160 cur_off += 4;
4161 }
4162
4163 if (hh != NULL)
4164 hh->eh.got.offset |= 1;
4165 else
4166 local_got_offsets[r_symndx] |= 1;
4167 }
4168
4169 if ((tls_type & GOT_NORMAL) != 0
4170 && (tls_type & (GOT_TLS_GD | GOT_TLS_LDM | GOT_TLS_IE)) != 0)
4171 {
4172 if (hh != NULL)
4173 _bfd_error_handler (_("%s has both normal and TLS relocs"),
4174 hh_name (hh));
4175 else
4176 {
4177 Elf_Internal_Sym *isym
4178 = bfd_sym_from_r_symndx (&htab->sym_cache,
4179 input_bfd, r_symndx);
4180 if (isym == NULL)
4181 return FALSE;
4182 sym_name
4183 = bfd_elf_string_from_elf_section (input_bfd,
4184 symtab_hdr->sh_link,
4185 isym->st_name);
4186 if (sym_name == NULL)
4187 return FALSE;
4188 if (*sym_name == '\0')
4189 sym_name = bfd_section_name (input_bfd, sym_sec);
4190 _bfd_error_handler
4191 (_("%B:%s has both normal and TLS relocs"),
4192 input_bfd, sym_name);
4193 }
4194 bfd_set_error (bfd_error_bad_value);
4195 return FALSE;
4196 }
4197
4198 if ((tls_type & GOT_TLS_GD)
4199 && r_type != R_PARISC_TLS_GD21L
4200 && r_type != R_PARISC_TLS_GD14R)
4201 off += 2 * GOT_ENTRY_SIZE;
4202
4203 /* Add the base of the GOT to the relocation value. */
4204 relocation = (off
4205 + htab->etab.sgot->output_offset
4206 + htab->etab.sgot->output_section->vma);
4207
4208 break;
4209 }
4210
4211 case R_PARISC_TLS_LE21L:
4212 case R_PARISC_TLS_LE14R:
4213 {
4214 relocation = tpoff (info, relocation);
4215 break;
4216 }
4217 break;
4218
4219 default:
4220 break;
4221 }
4222
4223 rstatus = final_link_relocate (input_section, contents, rela, relocation,
4224 htab, sym_sec, hh, info);
4225
4226 if (rstatus == bfd_reloc_ok)
4227 continue;
4228
4229 if (hh != NULL)
4230 sym_name = hh_name (hh);
4231 else
4232 {
4233 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4234 symtab_hdr->sh_link,
4235 sym->st_name);
4236 if (sym_name == NULL)
4237 return FALSE;
4238 if (*sym_name == '\0')
4239 sym_name = bfd_section_name (input_bfd, sym_sec);
4240 }
4241
4242 howto = elf_hppa_howto_table + r_type;
4243
4244 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4245 {
4246 if (rstatus == bfd_reloc_notsupported || !warned_undef)
4247 {
4248 _bfd_error_handler
4249 /* xgettext:c-format */
4250 (_("%B(%A+%#Lx): cannot handle %s for %s"),
4251 input_bfd,
4252 input_section,
4253 rela->r_offset,
4254 howto->name,
4255 sym_name);
4256 bfd_set_error (bfd_error_bad_value);
4257 return FALSE;
4258 }
4259 }
4260 else
4261 (*info->callbacks->reloc_overflow)
4262 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4263 (bfd_vma) 0, input_bfd, input_section, rela->r_offset);
4264 }
4265
4266 return TRUE;
4267 }
4268
4269 /* Finish up dynamic symbol handling. We set the contents of various
4270 dynamic sections here. */
4271
4272 static bfd_boolean
4273 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4274 struct bfd_link_info *info,
4275 struct elf_link_hash_entry *eh,
4276 Elf_Internal_Sym *sym)
4277 {
4278 struct elf32_hppa_link_hash_table *htab;
4279 Elf_Internal_Rela rela;
4280 bfd_byte *loc;
4281
4282 htab = hppa_link_hash_table (info);
4283 if (htab == NULL)
4284 return FALSE;
4285
4286 if (eh->plt.offset != (bfd_vma) -1)
4287 {
4288 bfd_vma value;
4289
4290 if (eh->plt.offset & 1)
4291 abort ();
4292
4293 /* This symbol has an entry in the procedure linkage table. Set
4294 it up.
4295
4296 The format of a plt entry is
4297 <funcaddr>
4298 <__gp>
4299 */
4300 value = 0;
4301 if (eh->root.type == bfd_link_hash_defined
4302 || eh->root.type == bfd_link_hash_defweak)
4303 {
4304 value = eh->root.u.def.value;
4305 if (eh->root.u.def.section->output_section != NULL)
4306 value += (eh->root.u.def.section->output_offset
4307 + eh->root.u.def.section->output_section->vma);
4308 }
4309
4310 /* Create a dynamic IPLT relocation for this entry. */
4311 rela.r_offset = (eh->plt.offset
4312 + htab->etab.splt->output_offset
4313 + htab->etab.splt->output_section->vma);
4314 if (eh->dynindx != -1)
4315 {
4316 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4317 rela.r_addend = 0;
4318 }
4319 else
4320 {
4321 /* This symbol has been marked to become local, and is
4322 used by a plabel so must be kept in the .plt. */
4323 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4324 rela.r_addend = value;
4325 }
4326
4327 loc = htab->etab.srelplt->contents;
4328 loc += htab->etab.srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4329 bfd_elf32_swap_reloca_out (htab->etab.splt->output_section->owner, &rela, loc);
4330
4331 if (!eh->def_regular)
4332 {
4333 /* Mark the symbol as undefined, rather than as defined in
4334 the .plt section. Leave the value alone. */
4335 sym->st_shndx = SHN_UNDEF;
4336 }
4337 }
4338
4339 if (eh->got.offset != (bfd_vma) -1
4340 && (hppa_elf_hash_entry (eh)->tls_type & GOT_NORMAL) != 0
4341 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
4342 {
4343 bfd_boolean is_dyn = (eh->dynindx != -1
4344 && !SYMBOL_REFERENCES_LOCAL (info, eh));
4345
4346 if (is_dyn || bfd_link_pic (info))
4347 {
4348 /* This symbol has an entry in the global offset table. Set
4349 it up. */
4350
4351 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4352 + htab->etab.sgot->output_offset
4353 + htab->etab.sgot->output_section->vma);
4354
4355 /* If this is a -Bsymbolic link and the symbol is defined
4356 locally or was forced to be local because of a version
4357 file, we just want to emit a RELATIVE reloc. The entry
4358 in the global offset table will already have been
4359 initialized in the relocate_section function. */
4360 if (!is_dyn)
4361 {
4362 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4363 rela.r_addend = (eh->root.u.def.value
4364 + eh->root.u.def.section->output_offset
4365 + eh->root.u.def.section->output_section->vma);
4366 }
4367 else
4368 {
4369 if ((eh->got.offset & 1) != 0)
4370 abort ();
4371
4372 bfd_put_32 (output_bfd, 0,
4373 htab->etab.sgot->contents + (eh->got.offset & ~1));
4374 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4375 rela.r_addend = 0;
4376 }
4377
4378 loc = htab->etab.srelgot->contents;
4379 loc += (htab->etab.srelgot->reloc_count++
4380 * sizeof (Elf32_External_Rela));
4381 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4382 }
4383 }
4384
4385 if (eh->needs_copy)
4386 {
4387 asection *sec;
4388
4389 /* This symbol needs a copy reloc. Set it up. */
4390
4391 if (! (eh->dynindx != -1
4392 && (eh->root.type == bfd_link_hash_defined
4393 || eh->root.type == bfd_link_hash_defweak)))
4394 abort ();
4395
4396 rela.r_offset = (eh->root.u.def.value
4397 + eh->root.u.def.section->output_offset
4398 + eh->root.u.def.section->output_section->vma);
4399 rela.r_addend = 0;
4400 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4401 if (eh->root.u.def.section == htab->etab.sdynrelro)
4402 sec = htab->etab.sreldynrelro;
4403 else
4404 sec = htab->etab.srelbss;
4405 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4406 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4407 }
4408
4409 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4410 if (eh == htab->etab.hdynamic || eh == htab->etab.hgot)
4411 {
4412 sym->st_shndx = SHN_ABS;
4413 }
4414
4415 return TRUE;
4416 }
4417
4418 /* Used to decide how to sort relocs in an optimal manner for the
4419 dynamic linker, before writing them out. */
4420
4421 static enum elf_reloc_type_class
4422 elf32_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4423 const asection *rel_sec ATTRIBUTE_UNUSED,
4424 const Elf_Internal_Rela *rela)
4425 {
4426 /* Handle TLS relocs first; we don't want them to be marked
4427 relative by the "if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)"
4428 check below. */
4429 switch ((int) ELF32_R_TYPE (rela->r_info))
4430 {
4431 case R_PARISC_TLS_DTPMOD32:
4432 case R_PARISC_TLS_DTPOFF32:
4433 case R_PARISC_TLS_TPREL32:
4434 return reloc_class_normal;
4435 }
4436
4437 if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)
4438 return reloc_class_relative;
4439
4440 switch ((int) ELF32_R_TYPE (rela->r_info))
4441 {
4442 case R_PARISC_IPLT:
4443 return reloc_class_plt;
4444 case R_PARISC_COPY:
4445 return reloc_class_copy;
4446 default:
4447 return reloc_class_normal;
4448 }
4449 }
4450
4451 /* Finish up the dynamic sections. */
4452
4453 static bfd_boolean
4454 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4455 struct bfd_link_info *info)
4456 {
4457 bfd *dynobj;
4458 struct elf32_hppa_link_hash_table *htab;
4459 asection *sdyn;
4460 asection * sgot;
4461
4462 htab = hppa_link_hash_table (info);
4463 if (htab == NULL)
4464 return FALSE;
4465
4466 dynobj = htab->etab.dynobj;
4467
4468 sgot = htab->etab.sgot;
4469 /* A broken linker script might have discarded the dynamic sections.
4470 Catch this here so that we do not seg-fault later on. */
4471 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
4472 return FALSE;
4473
4474 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4475
4476 if (htab->etab.dynamic_sections_created)
4477 {
4478 Elf32_External_Dyn *dyncon, *dynconend;
4479
4480 if (sdyn == NULL)
4481 abort ();
4482
4483 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4484 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4485 for (; dyncon < dynconend; dyncon++)
4486 {
4487 Elf_Internal_Dyn dyn;
4488 asection *s;
4489
4490 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4491
4492 switch (dyn.d_tag)
4493 {
4494 default:
4495 continue;
4496
4497 case DT_PLTGOT:
4498 /* Use PLTGOT to set the GOT register. */
4499 dyn.d_un.d_ptr = elf_gp (output_bfd);
4500 break;
4501
4502 case DT_JMPREL:
4503 s = htab->etab.srelplt;
4504 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4505 break;
4506
4507 case DT_PLTRELSZ:
4508 s = htab->etab.srelplt;
4509 dyn.d_un.d_val = s->size;
4510 break;
4511 }
4512
4513 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4514 }
4515 }
4516
4517 if (sgot != NULL && sgot->size != 0)
4518 {
4519 /* Fill in the first entry in the global offset table.
4520 We use it to point to our dynamic section, if we have one. */
4521 bfd_put_32 (output_bfd,
4522 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4523 sgot->contents);
4524
4525 /* The second entry is reserved for use by the dynamic linker. */
4526 memset (sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4527
4528 /* Set .got entry size. */
4529 elf_section_data (sgot->output_section)
4530 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4531 }
4532
4533 if (htab->etab.splt != NULL && htab->etab.splt->size != 0)
4534 {
4535 /* Set plt entry size to 0 instead of PLT_ENTRY_SIZE, since we add the
4536 plt stubs and as such the section does not hold a table of fixed-size
4537 entries. */
4538 elf_section_data (htab->etab.splt->output_section)->this_hdr.sh_entsize = 0;
4539
4540 if (htab->need_plt_stub)
4541 {
4542 /* Set up the .plt stub. */
4543 memcpy (htab->etab.splt->contents
4544 + htab->etab.splt->size - sizeof (plt_stub),
4545 plt_stub, sizeof (plt_stub));
4546
4547 if ((htab->etab.splt->output_offset
4548 + htab->etab.splt->output_section->vma
4549 + htab->etab.splt->size)
4550 != (sgot->output_offset
4551 + sgot->output_section->vma))
4552 {
4553 _bfd_error_handler
4554 (_(".got section not immediately after .plt section"));
4555 return FALSE;
4556 }
4557 }
4558 }
4559
4560 return TRUE;
4561 }
4562
4563 /* Called when writing out an object file to decide the type of a
4564 symbol. */
4565 static int
4566 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4567 {
4568 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4569 return STT_PARISC_MILLI;
4570 else
4571 return type;
4572 }
4573
4574 /* Misc BFD support code. */
4575 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4576 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4577 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4578 #define elf_info_to_howto elf_hppa_info_to_howto
4579 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4580
4581 /* Stuff for the BFD linker. */
4582 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4583 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4584 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4585 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4586 #define elf_backend_check_relocs elf32_hppa_check_relocs
4587 #define elf_backend_relocs_compatible _bfd_elf_relocs_compatible
4588 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4589 #define elf_backend_fake_sections elf_hppa_fake_sections
4590 #define elf_backend_relocate_section elf32_hppa_relocate_section
4591 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4592 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4593 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4594 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4595 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4596 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4597 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4598 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4599 #define elf_backend_object_p elf32_hppa_object_p
4600 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4601 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4602 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4603 #define elf_backend_action_discarded elf_hppa_action_discarded
4604
4605 #define elf_backend_can_gc_sections 1
4606 #define elf_backend_can_refcount 1
4607 #define elf_backend_plt_alignment 2
4608 #define elf_backend_want_got_plt 0
4609 #define elf_backend_plt_readonly 0
4610 #define elf_backend_want_plt_sym 0
4611 #define elf_backend_got_header_size 8
4612 #define elf_backend_want_dynrelro 1
4613 #define elf_backend_rela_normal 1
4614 #define elf_backend_dtrel_excludes_plt 1
4615 #define elf_backend_no_page_alias 1
4616
4617 #define TARGET_BIG_SYM hppa_elf32_vec
4618 #define TARGET_BIG_NAME "elf32-hppa"
4619 #define ELF_ARCH bfd_arch_hppa
4620 #define ELF_TARGET_ID HPPA32_ELF_DATA
4621 #define ELF_MACHINE_CODE EM_PARISC
4622 #define ELF_MAXPAGESIZE 0x1000
4623 #define ELF_OSABI ELFOSABI_HPUX
4624 #define elf32_bed elf32_hppa_hpux_bed
4625
4626 #include "elf32-target.h"
4627
4628 #undef TARGET_BIG_SYM
4629 #define TARGET_BIG_SYM hppa_elf32_linux_vec
4630 #undef TARGET_BIG_NAME
4631 #define TARGET_BIG_NAME "elf32-hppa-linux"
4632 #undef ELF_OSABI
4633 #define ELF_OSABI ELFOSABI_GNU
4634 #undef elf32_bed
4635 #define elf32_bed elf32_hppa_linux_bed
4636
4637 #include "elf32-target.h"
4638
4639 #undef TARGET_BIG_SYM
4640 #define TARGET_BIG_SYM hppa_elf32_nbsd_vec
4641 #undef TARGET_BIG_NAME
4642 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4643 #undef ELF_OSABI
4644 #define ELF_OSABI ELFOSABI_NETBSD
4645 #undef elf32_bed
4646 #define elf32_bed elf32_hppa_netbsd_bed
4647
4648 #include "elf32-target.h"
This page took 0.197819 seconds and 5 git commands to generate.