* elf32-hppa.c (PLABEL_PLT_ENTRY_SIZE): Delete.
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 Original code by
6 Center for Software Science
7 Department of Computer Science
8 University of Utah
9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
26
27 #include "bfd.h"
28 #include "sysdep.h"
29 #include "libbfd.h"
30 #include "elf-bfd.h"
31 #include "elf/hppa.h"
32 #include "libhppa.h"
33 #include "elf32-hppa.h"
34 #define ARCH_SIZE 32
35 #include "elf-hppa.h"
36 #include "elf32-hppa.h"
37
38 /* In order to gain some understanding of code in this file without
39 knowing all the intricate details of the linker, note the
40 following:
41
42 Functions named elf32_hppa_* are called by external routines, other
43 functions are only called locally. elf32_hppa_* functions appear
44 in this file more or less in the order in which they are called
45 from external routines. eg. elf32_hppa_check_relocs is called
46 early in the link process, elf32_hppa_finish_dynamic_sections is
47 one of the last functions. */
48
49 /* We use two hash tables to hold information for linking PA ELF objects.
50
51 The first is the elf32_hppa_link_hash_table which is derived
52 from the standard ELF linker hash table. We use this as a place to
53 attach other hash tables and static information.
54
55 The second is the stub hash table which is derived from the
56 base BFD hash table. The stub hash table holds the information
57 necessary to build the linker stubs during a link.
58
59 There are a number of different stubs generated by the linker.
60
61 Long branch stub:
62 : ldil LR'X,%r1
63 : be,n RR'X(%sr4,%r1)
64
65 PIC long branch stub:
66 : b,l .+8,%r1
67 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
68 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
69
70 Import stub to call shared library routine from normal object file
71 (single sub-space version)
72 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
73 : ldw RR'lt_ptr+ltoff(%r1),%r21
74 : bv %r0(%r21)
75 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
76
77 Import stub to call shared library routine from shared library
78 (single sub-space version)
79 : addil LR'ltoff,%r19 ; get procedure entry point
80 : ldw RR'ltoff(%r1),%r21
81 : bv %r0(%r21)
82 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
83
84 Import stub to call shared library routine from normal object file
85 (multiple sub-space support)
86 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
87 : ldw RR'lt_ptr+ltoff(%r1),%r21
88 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
89 : ldsid (%r21),%r1
90 : mtsp %r1,%sr0
91 : be 0(%sr0,%r21) ; branch to target
92 : stw %rp,-24(%sp) ; save rp
93
94 Import stub to call shared library routine from shared library
95 (multiple sub-space support)
96 : addil LR'ltoff,%r19 ; get procedure entry point
97 : ldw RR'ltoff(%r1),%r21
98 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
99 : ldsid (%r21),%r1
100 : mtsp %r1,%sr0
101 : be 0(%sr0,%r21) ; branch to target
102 : stw %rp,-24(%sp) ; save rp
103
104 Export stub to return from shared lib routine (multiple sub-space support)
105 One of these is created for each exported procedure in a shared
106 library (and stored in the shared lib). Shared lib routines are
107 called via the first instruction in the export stub so that we can
108 do an inter-space return. Not required for single sub-space.
109 : bl,n X,%rp ; trap the return
110 : nop
111 : ldw -24(%sp),%rp ; restore the original rp
112 : ldsid (%rp),%r1
113 : mtsp %r1,%sr0
114 : be,n 0(%sr0,%rp) ; inter-space return */
115
116 #define PLT_ENTRY_SIZE 8
117 #define GOT_ENTRY_SIZE 4
118 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
119
120 static const bfd_byte plt_stub[] =
121 {
122 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
123 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
124 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
125 #define PLT_STUB_ENTRY (3*4)
126 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
127 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
128 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
129 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
130 };
131
132 /* Section name for stubs is the associated section name plus this
133 string. */
134 #define STUB_SUFFIX ".stub"
135
136 /* We don't need to copy certain PC- or GP-relative dynamic relocs
137 into a shared object's dynamic section. All the relocs of the
138 limited class we are interested in, are absolute. */
139 #ifndef RELATIVE_DYNRELOCS
140 #define RELATIVE_DYNRELOCS 0
141 #define IS_ABSOLUTE_RELOC(r_type) 1
142 #endif
143
144 enum elf32_hppa_stub_type {
145 hppa_stub_long_branch,
146 hppa_stub_long_branch_shared,
147 hppa_stub_import,
148 hppa_stub_import_shared,
149 hppa_stub_export,
150 hppa_stub_none
151 };
152
153 struct elf32_hppa_stub_hash_entry {
154
155 /* Base hash table entry structure. */
156 struct bfd_hash_entry root;
157
158 /* The stub section. */
159 asection *stub_sec;
160
161 /* Offset within stub_sec of the beginning of this stub. */
162 bfd_vma stub_offset;
163
164 /* Given the symbol's value and its section we can determine its final
165 value when building the stubs (so the stub knows where to jump. */
166 bfd_vma target_value;
167 asection *target_section;
168
169 enum elf32_hppa_stub_type stub_type;
170
171 /* The symbol table entry, if any, that this was derived from. */
172 struct elf32_hppa_link_hash_entry *h;
173
174 /* Where this stub is being called from, or, in the case of combined
175 stub sections, the first input section in the group. */
176 asection *id_sec;
177 };
178
179 struct elf32_hppa_link_hash_entry {
180
181 struct elf_link_hash_entry elf;
182
183 /* A pointer to the most recently used stub hash entry against this
184 symbol. */
185 struct elf32_hppa_stub_hash_entry *stub_cache;
186
187 /* Used to count relocations for delayed sizing of relocation
188 sections. */
189 struct elf32_hppa_dyn_reloc_entry {
190
191 /* Next relocation in the chain. */
192 struct elf32_hppa_dyn_reloc_entry *next;
193
194 /* The input section of the reloc. */
195 asection *sec;
196
197 /* Number of relocs copied in this section. */
198 bfd_size_type count;
199
200 #if RELATIVE_DYNRELOCS
201 /* Number of relative relocs copied for the input section. */
202 bfd_size_type relative_count;
203 #endif
204 } *dyn_relocs;
205
206 /* Set during a static link if we detect a function is PIC. */
207 unsigned int maybe_pic_call:1;
208
209 /* Set if the only reason we need a .plt entry is for a non-PIC to
210 PIC function call. */
211 unsigned int pic_call:1;
212
213 /* Set if this symbol is used by a plabel reloc. */
214 unsigned int plabel:1;
215 };
216
217 struct elf32_hppa_link_hash_table {
218
219 /* The main hash table. */
220 struct elf_link_hash_table elf;
221
222 /* The stub hash table. */
223 struct bfd_hash_table stub_hash_table;
224
225 /* Linker stub bfd. */
226 bfd *stub_bfd;
227
228 /* Linker call-backs. */
229 asection * (*add_stub_section) PARAMS ((const char *, asection *));
230 void (*layout_sections_again) PARAMS ((void));
231
232 /* Array to keep track of which stub sections have been created, and
233 information on stub grouping. */
234 struct map_stub {
235 /* This is the section to which stubs in the group will be
236 attached. */
237 asection *link_sec;
238 /* The stub section. */
239 asection *stub_sec;
240 } *stub_group;
241
242 /* Short-cuts to get to dynamic linker sections. */
243 asection *sgot;
244 asection *srelgot;
245 asection *splt;
246 asection *srelplt;
247 asection *sdynbss;
248 asection *srelbss;
249
250 /* Used during a final link to store the base of the text and data
251 segments so that we can perform SEGREL relocations. */
252 bfd_vma text_segment_base;
253 bfd_vma data_segment_base;
254
255 /* Whether we support multiple sub-spaces for shared libs. */
256 unsigned int multi_subspace:1;
257
258 /* Flags set when PCREL12F and PCREL17F branches detected. Used to
259 select suitable defaults for the stub group size. */
260 unsigned int has_12bit_branch:1;
261 unsigned int has_17bit_branch:1;
262
263 /* Set if we need a .plt stub to support lazy dynamic linking. */
264 unsigned int need_plt_stub:1;
265
266 /* Small local sym to section mapping cache. */
267 struct sym_sec_cache sym_sec;
268 };
269
270 /* Various hash macros and functions. */
271 #define hppa_link_hash_table(p) \
272 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
273
274 #define hppa_stub_hash_lookup(table, string, create, copy) \
275 ((struct elf32_hppa_stub_hash_entry *) \
276 bfd_hash_lookup ((table), (string), (create), (copy)))
277
278 static struct bfd_hash_entry *stub_hash_newfunc
279 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
280
281 static struct bfd_hash_entry *hppa_link_hash_newfunc
282 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
283
284 static struct bfd_link_hash_table *elf32_hppa_link_hash_table_create
285 PARAMS ((bfd *));
286
287 /* Stub handling functions. */
288 static char *hppa_stub_name
289 PARAMS ((const asection *, const asection *,
290 const struct elf32_hppa_link_hash_entry *,
291 const Elf_Internal_Rela *));
292
293 static struct elf32_hppa_stub_hash_entry *hppa_get_stub_entry
294 PARAMS ((const asection *, const asection *,
295 struct elf32_hppa_link_hash_entry *,
296 const Elf_Internal_Rela *,
297 struct elf32_hppa_link_hash_table *));
298
299 static struct elf32_hppa_stub_hash_entry *hppa_add_stub
300 PARAMS ((const char *, asection *, struct elf32_hppa_link_hash_table *));
301
302 static enum elf32_hppa_stub_type hppa_type_of_stub
303 PARAMS ((asection *, const Elf_Internal_Rela *,
304 struct elf32_hppa_link_hash_entry *, bfd_vma));
305
306 static boolean hppa_build_one_stub
307 PARAMS ((struct bfd_hash_entry *, PTR));
308
309 static boolean hppa_size_one_stub
310 PARAMS ((struct bfd_hash_entry *, PTR));
311
312 /* BFD and elf backend functions. */
313 static boolean elf32_hppa_object_p PARAMS ((bfd *));
314
315 static boolean elf32_hppa_add_symbol_hook
316 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
317 const char **, flagword *, asection **, bfd_vma *));
318
319 static boolean elf32_hppa_create_dynamic_sections
320 PARAMS ((bfd *, struct bfd_link_info *));
321
322 static void elf32_hppa_copy_indirect_symbol
323 PARAMS ((struct elf_link_hash_entry *, struct elf_link_hash_entry *));
324
325 static boolean elf32_hppa_check_relocs
326 PARAMS ((bfd *, struct bfd_link_info *,
327 asection *, const Elf_Internal_Rela *));
328
329 static asection *elf32_hppa_gc_mark_hook
330 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
331 struct elf_link_hash_entry *, Elf_Internal_Sym *));
332
333 static boolean elf32_hppa_gc_sweep_hook
334 PARAMS ((bfd *, struct bfd_link_info *,
335 asection *, const Elf_Internal_Rela *));
336
337 static void elf32_hppa_hide_symbol
338 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
339
340 static boolean elf32_hppa_adjust_dynamic_symbol
341 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
342
343 static boolean mark_PIC_calls
344 PARAMS ((struct elf_link_hash_entry *, PTR));
345
346 static boolean allocate_plt_static
347 PARAMS ((struct elf_link_hash_entry *, PTR));
348
349 static boolean allocate_dynrelocs
350 PARAMS ((struct elf_link_hash_entry *, PTR));
351
352 static boolean readonly_dynrelocs
353 PARAMS ((struct elf_link_hash_entry *, PTR));
354
355 static boolean clobber_millicode_symbols
356 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
357
358 static boolean elf32_hppa_size_dynamic_sections
359 PARAMS ((bfd *, struct bfd_link_info *));
360
361 static boolean elf32_hppa_final_link
362 PARAMS ((bfd *, struct bfd_link_info *));
363
364 static void hppa_record_segment_addr
365 PARAMS ((bfd *, asection *, PTR));
366
367 static bfd_reloc_status_type final_link_relocate
368 PARAMS ((asection *, bfd_byte *, const Elf_Internal_Rela *,
369 bfd_vma, struct elf32_hppa_link_hash_table *, asection *,
370 struct elf32_hppa_link_hash_entry *));
371
372 static boolean elf32_hppa_relocate_section
373 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *,
374 bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
375
376 static int hppa_unwind_entry_compare
377 PARAMS ((const PTR, const PTR));
378
379 static boolean elf32_hppa_finish_dynamic_symbol
380 PARAMS ((bfd *, struct bfd_link_info *,
381 struct elf_link_hash_entry *, Elf_Internal_Sym *));
382
383 static enum elf_reloc_type_class elf32_hppa_reloc_type_class
384 PARAMS ((const Elf_Internal_Rela *));
385
386 static boolean elf32_hppa_finish_dynamic_sections
387 PARAMS ((bfd *, struct bfd_link_info *));
388
389 static void elf32_hppa_post_process_headers
390 PARAMS ((bfd *, struct bfd_link_info *));
391
392 static int elf32_hppa_elf_get_symbol_type
393 PARAMS ((Elf_Internal_Sym *, int));
394
395 /* Assorted hash table functions. */
396
397 /* Initialize an entry in the stub hash table. */
398
399 static struct bfd_hash_entry *
400 stub_hash_newfunc (entry, table, string)
401 struct bfd_hash_entry *entry;
402 struct bfd_hash_table *table;
403 const char *string;
404 {
405 /* Allocate the structure if it has not already been allocated by a
406 subclass. */
407 if (entry == NULL)
408 {
409 entry = bfd_hash_allocate (table,
410 sizeof (struct elf32_hppa_stub_hash_entry));
411 if (entry == NULL)
412 return entry;
413 }
414
415 /* Call the allocation method of the superclass. */
416 entry = bfd_hash_newfunc (entry, table, string);
417 if (entry != NULL)
418 {
419 struct elf32_hppa_stub_hash_entry *eh;
420
421 /* Initialize the local fields. */
422 eh = (struct elf32_hppa_stub_hash_entry *) entry;
423 eh->stub_sec = NULL;
424 eh->stub_offset = 0;
425 eh->target_value = 0;
426 eh->target_section = NULL;
427 eh->stub_type = hppa_stub_long_branch;
428 eh->h = NULL;
429 eh->id_sec = NULL;
430 }
431
432 return entry;
433 }
434
435 /* Initialize an entry in the link hash table. */
436
437 static struct bfd_hash_entry *
438 hppa_link_hash_newfunc (entry, table, string)
439 struct bfd_hash_entry *entry;
440 struct bfd_hash_table *table;
441 const char *string;
442 {
443 /* Allocate the structure if it has not already been allocated by a
444 subclass. */
445 if (entry == NULL)
446 {
447 entry = bfd_hash_allocate (table,
448 sizeof (struct elf32_hppa_link_hash_entry));
449 if (entry == NULL)
450 return entry;
451 }
452
453 /* Call the allocation method of the superclass. */
454 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
455 if (entry != NULL)
456 {
457 struct elf32_hppa_link_hash_entry *eh;
458
459 /* Initialize the local fields. */
460 eh = (struct elf32_hppa_link_hash_entry *) entry;
461 eh->stub_cache = NULL;
462 eh->dyn_relocs = NULL;
463 eh->maybe_pic_call = 0;
464 eh->pic_call = 0;
465 eh->plabel = 0;
466 }
467
468 return entry;
469 }
470
471 /* Create the derived linker hash table. The PA ELF port uses the derived
472 hash table to keep information specific to the PA ELF linker (without
473 using static variables). */
474
475 static struct bfd_link_hash_table *
476 elf32_hppa_link_hash_table_create (abfd)
477 bfd *abfd;
478 {
479 struct elf32_hppa_link_hash_table *ret;
480 bfd_size_type amt = sizeof (*ret);
481
482 ret = (struct elf32_hppa_link_hash_table *) bfd_alloc (abfd, amt);
483 if (ret == NULL)
484 return NULL;
485
486 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, hppa_link_hash_newfunc))
487 {
488 bfd_release (abfd, ret);
489 return NULL;
490 }
491
492 /* Init the stub hash table too. */
493 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc))
494 return NULL;
495
496 ret->stub_bfd = NULL;
497 ret->add_stub_section = NULL;
498 ret->layout_sections_again = NULL;
499 ret->stub_group = NULL;
500 ret->sgot = NULL;
501 ret->srelgot = NULL;
502 ret->splt = NULL;
503 ret->srelplt = NULL;
504 ret->sdynbss = NULL;
505 ret->srelbss = NULL;
506 ret->text_segment_base = (bfd_vma) -1;
507 ret->data_segment_base = (bfd_vma) -1;
508 ret->multi_subspace = 0;
509 ret->has_12bit_branch = 0;
510 ret->has_17bit_branch = 0;
511 ret->need_plt_stub = 0;
512 ret->sym_sec.abfd = NULL;
513
514 return &ret->elf.root;
515 }
516
517 /* Build a name for an entry in the stub hash table. */
518
519 static char *
520 hppa_stub_name (input_section, sym_sec, hash, rel)
521 const asection *input_section;
522 const asection *sym_sec;
523 const struct elf32_hppa_link_hash_entry *hash;
524 const Elf_Internal_Rela *rel;
525 {
526 char *stub_name;
527 bfd_size_type len;
528
529 if (hash)
530 {
531 len = 8 + 1 + strlen (hash->elf.root.root.string) + 1 + 8 + 1;
532 stub_name = bfd_malloc (len);
533 if (stub_name != NULL)
534 {
535 sprintf (stub_name, "%08x_%s+%x",
536 input_section->id & 0xffffffff,
537 hash->elf.root.root.string,
538 (int) rel->r_addend & 0xffffffff);
539 }
540 }
541 else
542 {
543 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
544 stub_name = bfd_malloc (len);
545 if (stub_name != NULL)
546 {
547 sprintf (stub_name, "%08x_%x:%x+%x",
548 input_section->id & 0xffffffff,
549 sym_sec->id & 0xffffffff,
550 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
551 (int) rel->r_addend & 0xffffffff);
552 }
553 }
554 return stub_name;
555 }
556
557 /* Look up an entry in the stub hash. Stub entries are cached because
558 creating the stub name takes a bit of time. */
559
560 static struct elf32_hppa_stub_hash_entry *
561 hppa_get_stub_entry (input_section, sym_sec, hash, rel, htab)
562 const asection *input_section;
563 const asection *sym_sec;
564 struct elf32_hppa_link_hash_entry *hash;
565 const Elf_Internal_Rela *rel;
566 struct elf32_hppa_link_hash_table *htab;
567 {
568 struct elf32_hppa_stub_hash_entry *stub_entry;
569 const asection *id_sec;
570
571 /* If this input section is part of a group of sections sharing one
572 stub section, then use the id of the first section in the group.
573 Stub names need to include a section id, as there may well be
574 more than one stub used to reach say, printf, and we need to
575 distinguish between them. */
576 id_sec = htab->stub_group[input_section->id].link_sec;
577
578 if (hash != NULL && hash->stub_cache != NULL
579 && hash->stub_cache->h == hash
580 && hash->stub_cache->id_sec == id_sec)
581 {
582 stub_entry = hash->stub_cache;
583 }
584 else
585 {
586 char *stub_name;
587
588 stub_name = hppa_stub_name (id_sec, sym_sec, hash, rel);
589 if (stub_name == NULL)
590 return NULL;
591
592 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
593 stub_name, false, false);
594 if (stub_entry == NULL)
595 {
596 if (hash == NULL || hash->elf.root.type != bfd_link_hash_undefweak)
597 (*_bfd_error_handler) (_("%s(%s+0x%lx): cannot find stub entry %s"),
598 bfd_archive_filename (input_section->owner),
599 input_section->name,
600 (long) rel->r_offset,
601 stub_name);
602 }
603 else
604 {
605 if (hash != NULL)
606 hash->stub_cache = stub_entry;
607 }
608
609 free (stub_name);
610 }
611
612 return stub_entry;
613 }
614
615 /* Add a new stub entry to the stub hash. Not all fields of the new
616 stub entry are initialised. */
617
618 static struct elf32_hppa_stub_hash_entry *
619 hppa_add_stub (stub_name, section, htab)
620 const char *stub_name;
621 asection *section;
622 struct elf32_hppa_link_hash_table *htab;
623 {
624 asection *link_sec;
625 asection *stub_sec;
626 struct elf32_hppa_stub_hash_entry *stub_entry;
627
628 link_sec = htab->stub_group[section->id].link_sec;
629 stub_sec = htab->stub_group[section->id].stub_sec;
630 if (stub_sec == NULL)
631 {
632 stub_sec = htab->stub_group[link_sec->id].stub_sec;
633 if (stub_sec == NULL)
634 {
635 bfd_size_type len;
636 char *s_name;
637
638 len = strlen (link_sec->name) + sizeof (STUB_SUFFIX);
639 s_name = bfd_alloc (htab->stub_bfd, len);
640 if (s_name == NULL)
641 return NULL;
642
643 strcpy (s_name, link_sec->name);
644 strcpy (s_name + len - sizeof (STUB_SUFFIX), STUB_SUFFIX);
645 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
646 if (stub_sec == NULL)
647 return NULL;
648 htab->stub_group[link_sec->id].stub_sec = stub_sec;
649 }
650 htab->stub_group[section->id].stub_sec = stub_sec;
651 }
652
653 /* Enter this entry into the linker stub hash table. */
654 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table, stub_name,
655 true, false);
656 if (stub_entry == NULL)
657 {
658 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
659 bfd_archive_filename (section->owner),
660 stub_name);
661 return NULL;
662 }
663
664 stub_entry->stub_sec = stub_sec;
665 stub_entry->stub_offset = 0;
666 stub_entry->id_sec = link_sec;
667 return stub_entry;
668 }
669
670 /* Determine the type of stub needed, if any, for a call. */
671
672 static enum elf32_hppa_stub_type
673 hppa_type_of_stub (input_sec, rel, hash, destination)
674 asection *input_sec;
675 const Elf_Internal_Rela *rel;
676 struct elf32_hppa_link_hash_entry *hash;
677 bfd_vma destination;
678 {
679 bfd_vma location;
680 bfd_vma branch_offset;
681 bfd_vma max_branch_offset;
682 unsigned int r_type;
683
684 if (hash != NULL
685 && (((hash->elf.root.type == bfd_link_hash_defined
686 || hash->elf.root.type == bfd_link_hash_defweak)
687 && hash->elf.root.u.def.section->output_section == NULL)
688 || (hash->elf.root.type == bfd_link_hash_defweak
689 && hash->elf.dynindx != -1
690 && hash->elf.plt.offset != (bfd_vma) -1)
691 || hash->elf.root.type == bfd_link_hash_undefweak
692 || hash->elf.root.type == bfd_link_hash_undefined
693 || (hash->maybe_pic_call && !(input_sec->flags & SEC_HAS_GOT_REF))))
694 {
695 /* If output_section is NULL, then it's a symbol defined in a
696 shared library. We will need an import stub. Decide between
697 hppa_stub_import and hppa_stub_import_shared later. For
698 shared links we need stubs for undefined or weak syms too;
699 They will presumably be resolved by the dynamic linker. */
700 return hppa_stub_import;
701 }
702
703 /* Determine where the call point is. */
704 location = (input_sec->output_offset
705 + input_sec->output_section->vma
706 + rel->r_offset);
707
708 branch_offset = destination - location - 8;
709 r_type = ELF32_R_TYPE (rel->r_info);
710
711 /* Determine if a long branch stub is needed. parisc branch offsets
712 are relative to the second instruction past the branch, ie. +8
713 bytes on from the branch instruction location. The offset is
714 signed and counts in units of 4 bytes. */
715 if (r_type == (unsigned int) R_PARISC_PCREL17F)
716 {
717 max_branch_offset = (1 << (17-1)) << 2;
718 }
719 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
720 {
721 max_branch_offset = (1 << (12-1)) << 2;
722 }
723 else /* R_PARISC_PCREL22F. */
724 {
725 max_branch_offset = (1 << (22-1)) << 2;
726 }
727
728 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
729 return hppa_stub_long_branch;
730
731 return hppa_stub_none;
732 }
733
734 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
735 IN_ARG contains the link info pointer. */
736
737 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
738 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
739
740 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
741 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
742 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
743
744 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
745 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
746 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
747 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
748
749 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
750 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
751
752 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
753 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
754 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
755 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
756
757 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
758 #define NOP 0x08000240 /* nop */
759 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
760 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
761 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
762
763 #ifndef R19_STUBS
764 #define R19_STUBS 1
765 #endif
766
767 #if R19_STUBS
768 #define LDW_R1_DLT LDW_R1_R19
769 #else
770 #define LDW_R1_DLT LDW_R1_DP
771 #endif
772
773 static boolean
774 hppa_build_one_stub (gen_entry, in_arg)
775 struct bfd_hash_entry *gen_entry;
776 PTR in_arg;
777 {
778 struct elf32_hppa_stub_hash_entry *stub_entry;
779 struct bfd_link_info *info;
780 struct elf32_hppa_link_hash_table *htab;
781 asection *stub_sec;
782 bfd *stub_bfd;
783 bfd_byte *loc;
784 bfd_vma sym_value;
785 bfd_vma insn;
786 bfd_vma off;
787 int val;
788 int size;
789
790 /* Massage our args to the form they really have. */
791 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
792 info = (struct bfd_link_info *) in_arg;
793
794 htab = hppa_link_hash_table (info);
795 stub_sec = stub_entry->stub_sec;
796
797 /* Make a note of the offset within the stubs for this entry. */
798 stub_entry->stub_offset = stub_sec->_raw_size;
799 loc = stub_sec->contents + stub_entry->stub_offset;
800
801 stub_bfd = stub_sec->owner;
802
803 switch (stub_entry->stub_type)
804 {
805 case hppa_stub_long_branch:
806 /* Create the long branch. A long branch is formed with "ldil"
807 loading the upper bits of the target address into a register,
808 then branching with "be" which adds in the lower bits.
809 The "be" has its delay slot nullified. */
810 sym_value = (stub_entry->target_value
811 + stub_entry->target_section->output_offset
812 + stub_entry->target_section->output_section->vma);
813
814 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel);
815 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
816 bfd_put_32 (stub_bfd, insn, loc);
817
818 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel) >> 2;
819 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
820 bfd_put_32 (stub_bfd, insn, loc + 4);
821
822 size = 8;
823 break;
824
825 case hppa_stub_long_branch_shared:
826 /* Branches are relative. This is where we are going to. */
827 sym_value = (stub_entry->target_value
828 + stub_entry->target_section->output_offset
829 + stub_entry->target_section->output_section->vma);
830
831 /* And this is where we are coming from, more or less. */
832 sym_value -= (stub_entry->stub_offset
833 + stub_sec->output_offset
834 + stub_sec->output_section->vma);
835
836 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
837 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
838 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
839 bfd_put_32 (stub_bfd, insn, loc + 4);
840
841 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
842 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
843 bfd_put_32 (stub_bfd, insn, loc + 8);
844 size = 12;
845 break;
846
847 case hppa_stub_import:
848 case hppa_stub_import_shared:
849 off = stub_entry->h->elf.plt.offset;
850 if (off >= (bfd_vma) -2)
851 abort ();
852
853 off &= ~ (bfd_vma) 1;
854 sym_value = (off
855 + htab->splt->output_offset
856 + htab->splt->output_section->vma
857 - elf_gp (htab->splt->output_section->owner));
858
859 insn = ADDIL_DP;
860 #if R19_STUBS
861 if (stub_entry->stub_type == hppa_stub_import_shared)
862 insn = ADDIL_R19;
863 #endif
864 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel),
865 insn = hppa_rebuild_insn ((int) insn, val, 21);
866 bfd_put_32 (stub_bfd, insn, loc);
867
868 /* It is critical to use lrsel/rrsel here because we are using
869 two different offsets (+0 and +4) from sym_value. If we use
870 lsel/rsel then with unfortunate sym_values we will round
871 sym_value+4 up to the next 2k block leading to a mis-match
872 between the lsel and rsel value. */
873 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel);
874 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
875 bfd_put_32 (stub_bfd, insn, loc + 4);
876
877 if (htab->multi_subspace)
878 {
879 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
880 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
881 bfd_put_32 (stub_bfd, insn, loc + 8);
882
883 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
884 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
885 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
886 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
887
888 size = 28;
889 }
890 else
891 {
892 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
893 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
894 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
895 bfd_put_32 (stub_bfd, insn, loc + 12);
896
897 size = 16;
898 }
899
900 if (!info->shared
901 && stub_entry->h != NULL
902 && stub_entry->h->pic_call)
903 {
904 /* Build the .plt entry needed to call a PIC function from
905 statically linked code. We don't need any relocs. */
906 bfd *dynobj;
907 struct elf32_hppa_link_hash_entry *eh;
908 bfd_vma value;
909
910 dynobj = htab->elf.dynobj;
911 eh = (struct elf32_hppa_link_hash_entry *) stub_entry->h;
912
913 if (eh->elf.root.type != bfd_link_hash_defined
914 && eh->elf.root.type != bfd_link_hash_defweak)
915 abort ();
916
917 value = (eh->elf.root.u.def.value
918 + eh->elf.root.u.def.section->output_offset
919 + eh->elf.root.u.def.section->output_section->vma);
920
921 /* Fill in the entry in the procedure linkage table.
922
923 The format of a plt entry is
924 <funcaddr>
925 <__gp>. */
926
927 bfd_put_32 (htab->splt->owner, value,
928 htab->splt->contents + off);
929 value = elf_gp (htab->splt->output_section->owner);
930 bfd_put_32 (htab->splt->owner, value,
931 htab->splt->contents + off + 4);
932 }
933 break;
934
935 case hppa_stub_export:
936 /* Branches are relative. This is where we are going to. */
937 sym_value = (stub_entry->target_value
938 + stub_entry->target_section->output_offset
939 + stub_entry->target_section->output_section->vma);
940
941 /* And this is where we are coming from. */
942 sym_value -= (stub_entry->stub_offset
943 + stub_sec->output_offset
944 + stub_sec->output_section->vma);
945
946 if (sym_value - 8 + 0x40000 >= 0x80000)
947 {
948 (*_bfd_error_handler)
949 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
950 bfd_archive_filename (stub_entry->target_section->owner),
951 stub_sec->name,
952 (long) stub_entry->stub_offset,
953 stub_entry->root.string);
954 bfd_set_error (bfd_error_bad_value);
955 return false;
956 }
957
958 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
959 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
960 bfd_put_32 (stub_bfd, insn, loc);
961
962 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
963 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
964 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
965 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
966 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
967
968 /* Point the function symbol at the stub. */
969 stub_entry->h->elf.root.u.def.section = stub_sec;
970 stub_entry->h->elf.root.u.def.value = stub_sec->_raw_size;
971
972 size = 24;
973 break;
974
975 default:
976 BFD_FAIL ();
977 return false;
978 }
979
980 stub_sec->_raw_size += size;
981 return true;
982 }
983
984 #undef LDIL_R1
985 #undef BE_SR4_R1
986 #undef BL_R1
987 #undef ADDIL_R1
988 #undef DEPI_R1
989 #undef ADDIL_DP
990 #undef LDW_R1_R21
991 #undef LDW_R1_DLT
992 #undef LDW_R1_R19
993 #undef ADDIL_R19
994 #undef LDW_R1_DP
995 #undef LDSID_R21_R1
996 #undef MTSP_R1
997 #undef BE_SR0_R21
998 #undef STW_RP
999 #undef BV_R0_R21
1000 #undef BL_RP
1001 #undef NOP
1002 #undef LDW_RP
1003 #undef LDSID_RP_R1
1004 #undef BE_SR0_RP
1005
1006 /* As above, but don't actually build the stub. Just bump offset so
1007 we know stub section sizes. */
1008
1009 static boolean
1010 hppa_size_one_stub (gen_entry, in_arg)
1011 struct bfd_hash_entry *gen_entry;
1012 PTR in_arg;
1013 {
1014 struct elf32_hppa_stub_hash_entry *stub_entry;
1015 struct elf32_hppa_link_hash_table *htab;
1016 int size;
1017
1018 /* Massage our args to the form they really have. */
1019 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
1020 htab = (struct elf32_hppa_link_hash_table *) in_arg;
1021
1022 if (stub_entry->stub_type == hppa_stub_long_branch)
1023 size = 8;
1024 else if (stub_entry->stub_type == hppa_stub_long_branch_shared)
1025 size = 12;
1026 else if (stub_entry->stub_type == hppa_stub_export)
1027 size = 24;
1028 else /* hppa_stub_import or hppa_stub_import_shared. */
1029 {
1030 if (htab->multi_subspace)
1031 size = 28;
1032 else
1033 size = 16;
1034 }
1035
1036 stub_entry->stub_sec->_raw_size += size;
1037 return true;
1038 }
1039
1040 /* Return nonzero if ABFD represents an HPPA ELF32 file.
1041 Additionally we set the default architecture and machine. */
1042
1043 static boolean
1044 elf32_hppa_object_p (abfd)
1045 bfd *abfd;
1046 {
1047 Elf_Internal_Ehdr * i_ehdrp;
1048 unsigned int flags;
1049
1050 i_ehdrp = elf_elfheader (abfd);
1051 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
1052 {
1053 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX)
1054 return false;
1055 }
1056 else
1057 {
1058 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
1059 return false;
1060 }
1061
1062 flags = i_ehdrp->e_flags;
1063 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
1064 {
1065 case EFA_PARISC_1_0:
1066 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
1067 case EFA_PARISC_1_1:
1068 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
1069 case EFA_PARISC_2_0:
1070 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
1071 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
1072 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
1073 }
1074 return true;
1075 }
1076
1077 /* Undo the generic ELF code's subtraction of section->vma from the
1078 value of each external symbol. */
1079
1080 static boolean
1081 elf32_hppa_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1082 bfd *abfd ATTRIBUTE_UNUSED;
1083 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1084 const Elf_Internal_Sym *sym ATTRIBUTE_UNUSED;
1085 const char **namep ATTRIBUTE_UNUSED;
1086 flagword *flagsp ATTRIBUTE_UNUSED;
1087 asection **secp;
1088 bfd_vma *valp;
1089 {
1090 *valp += (*secp)->vma;
1091 return true;
1092 }
1093
1094 /* Create the .plt and .got sections, and set up our hash table
1095 short-cuts to various dynamic sections. */
1096
1097 static boolean
1098 elf32_hppa_create_dynamic_sections (abfd, info)
1099 bfd *abfd;
1100 struct bfd_link_info *info;
1101 {
1102 struct elf32_hppa_link_hash_table *htab;
1103
1104 /* Don't try to create the .plt and .got twice. */
1105 htab = hppa_link_hash_table (info);
1106 if (htab->splt != NULL)
1107 return true;
1108
1109 /* Call the generic code to do most of the work. */
1110 if (! _bfd_elf_create_dynamic_sections (abfd, info))
1111 return false;
1112
1113 htab->splt = bfd_get_section_by_name (abfd, ".plt");
1114 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
1115
1116 htab->sgot = bfd_get_section_by_name (abfd, ".got");
1117 htab->srelgot = bfd_make_section (abfd, ".rela.got");
1118 if (htab->srelgot == NULL
1119 || ! bfd_set_section_flags (abfd, htab->srelgot,
1120 (SEC_ALLOC
1121 | SEC_LOAD
1122 | SEC_HAS_CONTENTS
1123 | SEC_IN_MEMORY
1124 | SEC_LINKER_CREATED
1125 | SEC_READONLY))
1126 || ! bfd_set_section_alignment (abfd, htab->srelgot, 2))
1127 return false;
1128
1129 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
1130 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
1131
1132 return true;
1133 }
1134
1135 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1136
1137 static void
1138 elf32_hppa_copy_indirect_symbol (dir, ind)
1139 struct elf_link_hash_entry *dir, *ind;
1140 {
1141 struct elf32_hppa_link_hash_entry *edir, *eind;
1142
1143 edir = (struct elf32_hppa_link_hash_entry *) dir;
1144 eind = (struct elf32_hppa_link_hash_entry *) ind;
1145
1146 if (eind->dyn_relocs != NULL)
1147 {
1148 if (edir->dyn_relocs != NULL)
1149 {
1150 struct elf32_hppa_dyn_reloc_entry **pp;
1151 struct elf32_hppa_dyn_reloc_entry *p;
1152
1153 if (ind->root.type == bfd_link_hash_indirect)
1154 abort ();
1155
1156 /* Add reloc counts against the weak sym to the strong sym
1157 list. Merge any entries against the same section. */
1158 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
1159 {
1160 struct elf32_hppa_dyn_reloc_entry *q;
1161
1162 for (q = edir->dyn_relocs; q != NULL; q = q->next)
1163 if (q->sec == p->sec)
1164 {
1165 #if RELATIVE_DYNRELOCS
1166 q->relative_count += p->relative_count;
1167 #endif
1168 q->count += p->count;
1169 *pp = p->next;
1170 break;
1171 }
1172 if (q == NULL)
1173 pp = &p->next;
1174 }
1175 *pp = edir->dyn_relocs;
1176 }
1177
1178 edir->dyn_relocs = eind->dyn_relocs;
1179 eind->dyn_relocs = NULL;
1180 }
1181
1182 _bfd_elf_link_hash_copy_indirect (dir, ind);
1183 }
1184
1185 /* Look through the relocs for a section during the first phase, and
1186 calculate needed space in the global offset table, procedure linkage
1187 table, and dynamic reloc sections. At this point we haven't
1188 necessarily read all the input files. */
1189
1190 static boolean
1191 elf32_hppa_check_relocs (abfd, info, sec, relocs)
1192 bfd *abfd;
1193 struct bfd_link_info *info;
1194 asection *sec;
1195 const Elf_Internal_Rela *relocs;
1196 {
1197 Elf_Internal_Shdr *symtab_hdr;
1198 struct elf_link_hash_entry **sym_hashes;
1199 const Elf_Internal_Rela *rel;
1200 const Elf_Internal_Rela *rel_end;
1201 struct elf32_hppa_link_hash_table *htab;
1202 asection *sreloc;
1203 asection *stubreloc;
1204
1205 if (info->relocateable)
1206 return true;
1207
1208 htab = hppa_link_hash_table (info);
1209 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1210 sym_hashes = elf_sym_hashes (abfd);
1211 sreloc = NULL;
1212 stubreloc = NULL;
1213
1214 rel_end = relocs + sec->reloc_count;
1215 for (rel = relocs; rel < rel_end; rel++)
1216 {
1217 enum {
1218 NEED_GOT = 1,
1219 NEED_PLT = 2,
1220 NEED_DYNREL = 4,
1221 PLT_PLABEL = 8
1222 };
1223
1224 unsigned int r_symndx, r_type;
1225 struct elf32_hppa_link_hash_entry *h;
1226 int need_entry;
1227
1228 r_symndx = ELF32_R_SYM (rel->r_info);
1229
1230 if (r_symndx < symtab_hdr->sh_info)
1231 h = NULL;
1232 else
1233 h = ((struct elf32_hppa_link_hash_entry *)
1234 sym_hashes[r_symndx - symtab_hdr->sh_info]);
1235
1236 r_type = ELF32_R_TYPE (rel->r_info);
1237
1238 switch (r_type)
1239 {
1240 case R_PARISC_DLTIND14F:
1241 case R_PARISC_DLTIND14R:
1242 case R_PARISC_DLTIND21L:
1243 /* This symbol requires a global offset table entry. */
1244 need_entry = NEED_GOT;
1245
1246 /* Mark this section as containing PIC code. */
1247 sec->flags |= SEC_HAS_GOT_REF;
1248 break;
1249
1250 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1251 case R_PARISC_PLABEL21L:
1252 case R_PARISC_PLABEL32:
1253 /* If the addend is non-zero, we break badly. */
1254 if (rel->r_addend != 0)
1255 abort ();
1256
1257 /* If we are creating a shared library, then we need to
1258 create a PLT entry for all PLABELs, because PLABELs with
1259 local symbols may be passed via a pointer to another
1260 object. Additionally, output a dynamic relocation
1261 pointing to the PLT entry.
1262 For executables, the original 32-bit ABI allowed two
1263 different styles of PLABELs (function pointers): For
1264 global functions, the PLABEL word points into the .plt
1265 two bytes past a (function address, gp) pair, and for
1266 local functions the PLABEL points directly at the
1267 function. The magic +2 for the first type allows us to
1268 differentiate between the two. As you can imagine, this
1269 is a real pain when it comes to generating code to call
1270 functions indirectly or to compare function pointers.
1271 We avoid the mess by always pointing a PLABEL into the
1272 .plt, even for local functions. */
1273 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1274 break;
1275
1276 case R_PARISC_PCREL12F:
1277 htab->has_12bit_branch = 1;
1278 /* Fall thru. */
1279 case R_PARISC_PCREL17C:
1280 case R_PARISC_PCREL17F:
1281 htab->has_17bit_branch = 1;
1282 /* Fall thru. */
1283 case R_PARISC_PCREL22F:
1284 /* Function calls might need to go through the .plt, and
1285 might require long branch stubs. */
1286 if (h == NULL)
1287 {
1288 /* We know local syms won't need a .plt entry, and if
1289 they need a long branch stub we can't guarantee that
1290 we can reach the stub. So just flag an error later
1291 if we're doing a shared link and find we need a long
1292 branch stub. */
1293 continue;
1294 }
1295 else
1296 {
1297 /* Global symbols will need a .plt entry if they remain
1298 global, and in most cases won't need a long branch
1299 stub. Unfortunately, we have to cater for the case
1300 where a symbol is forced local by versioning, or due
1301 to symbolic linking, and we lose the .plt entry. */
1302 need_entry = NEED_PLT;
1303 if (h->elf.type == STT_PARISC_MILLI)
1304 need_entry = 0;
1305 }
1306 break;
1307
1308 case R_PARISC_SEGBASE: /* Used to set segment base. */
1309 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1310 case R_PARISC_PCREL14F: /* PC relative load/store. */
1311 case R_PARISC_PCREL14R:
1312 case R_PARISC_PCREL17R: /* External branches. */
1313 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1314 /* We don't need to propagate the relocation if linking a
1315 shared object since these are section relative. */
1316 continue;
1317
1318 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1319 case R_PARISC_DPREL14R:
1320 case R_PARISC_DPREL21L:
1321 if (info->shared)
1322 {
1323 (*_bfd_error_handler)
1324 (_("%s: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1325 bfd_archive_filename (abfd),
1326 elf_hppa_howto_table[r_type].name);
1327 bfd_set_error (bfd_error_bad_value);
1328 return false;
1329 }
1330 /* Fall through. */
1331
1332 case R_PARISC_DIR17F: /* Used for external branches. */
1333 case R_PARISC_DIR17R:
1334 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1335 case R_PARISC_DIR14R:
1336 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1337 #if 1
1338 /* Help debug shared library creation. Any of the above
1339 relocs can be used in shared libs, but they may cause
1340 pages to become unshared. */
1341 if (info->shared)
1342 {
1343 (*_bfd_error_handler)
1344 (_("%s: relocation %s should not be used when making a shared object; recompile with -fPIC"),
1345 bfd_archive_filename (abfd),
1346 elf_hppa_howto_table[r_type].name);
1347 }
1348 /* Fall through. */
1349 #endif
1350
1351 case R_PARISC_DIR32: /* .word relocs. */
1352 /* We may want to output a dynamic relocation later. */
1353 need_entry = NEED_DYNREL;
1354 break;
1355
1356 /* This relocation describes the C++ object vtable hierarchy.
1357 Reconstruct it for later use during GC. */
1358 case R_PARISC_GNU_VTINHERIT:
1359 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec,
1360 &h->elf, rel->r_offset))
1361 return false;
1362 continue;
1363
1364 /* This relocation describes which C++ vtable entries are actually
1365 used. Record for later use during GC. */
1366 case R_PARISC_GNU_VTENTRY:
1367 if (!_bfd_elf32_gc_record_vtentry (abfd, sec,
1368 &h->elf, rel->r_addend))
1369 return false;
1370 continue;
1371
1372 default:
1373 continue;
1374 }
1375
1376 /* Now carry out our orders. */
1377 if (need_entry & NEED_GOT)
1378 {
1379 /* Allocate space for a GOT entry, as well as a dynamic
1380 relocation for this entry. */
1381 if (htab->sgot == NULL)
1382 {
1383 if (htab->elf.dynobj == NULL)
1384 htab->elf.dynobj = abfd;
1385 if (!elf32_hppa_create_dynamic_sections (htab->elf.dynobj, info))
1386 return false;
1387 }
1388
1389 if (h != NULL)
1390 {
1391 h->elf.got.refcount += 1;
1392 }
1393 else
1394 {
1395 bfd_signed_vma *local_got_refcounts;
1396
1397 /* This is a global offset table entry for a local symbol. */
1398 local_got_refcounts = elf_local_got_refcounts (abfd);
1399 if (local_got_refcounts == NULL)
1400 {
1401 bfd_size_type size;
1402
1403 /* Allocate space for local got offsets and local
1404 plt offsets. Done this way to save polluting
1405 elf_obj_tdata with another target specific
1406 pointer. */
1407 size = symtab_hdr->sh_info;
1408 size *= 2 * sizeof (bfd_signed_vma);
1409 local_got_refcounts = ((bfd_signed_vma *)
1410 bfd_zalloc (abfd, size));
1411 if (local_got_refcounts == NULL)
1412 return false;
1413 elf_local_got_refcounts (abfd) = local_got_refcounts;
1414 }
1415 local_got_refcounts[r_symndx] += 1;
1416 }
1417 }
1418
1419 if (need_entry & NEED_PLT)
1420 {
1421 /* If we are creating a shared library, and this is a reloc
1422 against a weak symbol or a global symbol in a dynamic
1423 object, then we will be creating an import stub and a
1424 .plt entry for the symbol. Similarly, on a normal link
1425 to symbols defined in a dynamic object we'll need the
1426 import stub and a .plt entry. We don't know yet whether
1427 the symbol is defined or not, so make an entry anyway and
1428 clean up later in adjust_dynamic_symbol. */
1429 if ((sec->flags & SEC_ALLOC) != 0)
1430 {
1431 if (h != NULL)
1432 {
1433 h->elf.elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1434 h->elf.plt.refcount += 1;
1435
1436 /* If this .plt entry is for a plabel, mark it so
1437 that adjust_dynamic_symbol will keep the entry
1438 even if it appears to be local. */
1439 if (need_entry & PLT_PLABEL)
1440 h->plabel = 1;
1441 }
1442 else if (need_entry & PLT_PLABEL)
1443 {
1444 bfd_signed_vma *local_got_refcounts;
1445 bfd_signed_vma *local_plt_refcounts;
1446
1447 local_got_refcounts = elf_local_got_refcounts (abfd);
1448 if (local_got_refcounts == NULL)
1449 {
1450 bfd_size_type size;
1451
1452 /* Allocate space for local got offsets and local
1453 plt offsets. */
1454 size = symtab_hdr->sh_info;
1455 size *= 2 * sizeof (bfd_signed_vma);
1456 local_got_refcounts = ((bfd_signed_vma *)
1457 bfd_zalloc (abfd, size));
1458 if (local_got_refcounts == NULL)
1459 return false;
1460 elf_local_got_refcounts (abfd) = local_got_refcounts;
1461 }
1462 local_plt_refcounts = (local_got_refcounts
1463 + symtab_hdr->sh_info);
1464 local_plt_refcounts[r_symndx] += 1;
1465 }
1466 }
1467 }
1468
1469 if (need_entry & NEED_DYNREL)
1470 {
1471 /* Flag this symbol as having a non-got, non-plt reference
1472 so that we generate copy relocs if it turns out to be
1473 dynamic. */
1474 if (h != NULL && !info->shared)
1475 h->elf.elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
1476
1477 /* If we are creating a shared library then we need to copy
1478 the reloc into the shared library. However, if we are
1479 linking with -Bsymbolic, we need only copy absolute
1480 relocs or relocs against symbols that are not defined in
1481 an object we are including in the link. PC- or DP- or
1482 DLT-relative relocs against any local sym or global sym
1483 with DEF_REGULAR set, can be discarded. At this point we
1484 have not seen all the input files, so it is possible that
1485 DEF_REGULAR is not set now but will be set later (it is
1486 never cleared). We account for that possibility below by
1487 storing information in the dyn_relocs field of the
1488 hash table entry.
1489
1490 A similar situation to the -Bsymbolic case occurs when
1491 creating shared libraries and symbol visibility changes
1492 render the symbol local.
1493
1494 As it turns out, all the relocs we will be creating here
1495 are absolute, so we cannot remove them on -Bsymbolic
1496 links or visibility changes anyway. A STUB_REL reloc
1497 is absolute too, as in that case it is the reloc in the
1498 stub we will be creating, rather than copying the PCREL
1499 reloc in the branch.
1500
1501 If on the other hand, we are creating an executable, we
1502 may need to keep relocations for symbols satisfied by a
1503 dynamic library if we manage to avoid copy relocs for the
1504 symbol. */
1505 if ((info->shared
1506 && (sec->flags & SEC_ALLOC) != 0
1507 && (IS_ABSOLUTE_RELOC (r_type)
1508 || (h != NULL
1509 && (!info->symbolic
1510 || h->elf.root.type == bfd_link_hash_defweak
1511 || (h->elf.elf_link_hash_flags
1512 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1513 || (!info->shared
1514 && (sec->flags & SEC_ALLOC) != 0
1515 && h != NULL
1516 && (h->elf.root.type == bfd_link_hash_defweak
1517 || (h->elf.elf_link_hash_flags
1518 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
1519 {
1520 struct elf32_hppa_dyn_reloc_entry *p;
1521 struct elf32_hppa_dyn_reloc_entry **head;
1522
1523 /* Create a reloc section in dynobj and make room for
1524 this reloc. */
1525 if (sreloc == NULL)
1526 {
1527 char *name;
1528 bfd *dynobj;
1529
1530 name = (bfd_elf_string_from_elf_section
1531 (abfd,
1532 elf_elfheader (abfd)->e_shstrndx,
1533 elf_section_data (sec)->rel_hdr.sh_name));
1534 if (name == NULL)
1535 {
1536 (*_bfd_error_handler)
1537 (_("Could not find relocation section for %s"),
1538 sec->name);
1539 bfd_set_error (bfd_error_bad_value);
1540 return false;
1541 }
1542
1543 if (htab->elf.dynobj == NULL)
1544 htab->elf.dynobj = abfd;
1545
1546 dynobj = htab->elf.dynobj;
1547 sreloc = bfd_get_section_by_name (dynobj, name);
1548 if (sreloc == NULL)
1549 {
1550 flagword flags;
1551
1552 sreloc = bfd_make_section (dynobj, name);
1553 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1554 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1555 if ((sec->flags & SEC_ALLOC) != 0)
1556 flags |= SEC_ALLOC | SEC_LOAD;
1557 if (sreloc == NULL
1558 || !bfd_set_section_flags (dynobj, sreloc, flags)
1559 || !bfd_set_section_alignment (dynobj, sreloc, 2))
1560 return false;
1561 }
1562
1563 elf_section_data (sec)->sreloc = sreloc;
1564 }
1565
1566 /* If this is a global symbol, we count the number of
1567 relocations we need for this symbol. */
1568 if (h != NULL)
1569 {
1570 head = &h->dyn_relocs;
1571 }
1572 else
1573 {
1574 /* Track dynamic relocs needed for local syms too.
1575 We really need local syms available to do this
1576 easily. Oh well. */
1577
1578 asection *s;
1579 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1580 sec, r_symndx);
1581 if (s == NULL)
1582 return false;
1583
1584 head = ((struct elf32_hppa_dyn_reloc_entry **)
1585 &elf_section_data (s)->local_dynrel);
1586 }
1587
1588 p = *head;
1589 if (p == NULL || p->sec != sec)
1590 {
1591 p = ((struct elf32_hppa_dyn_reloc_entry *)
1592 bfd_alloc (htab->elf.dynobj,
1593 (bfd_size_type) sizeof *p));
1594 if (p == NULL)
1595 return false;
1596 p->next = *head;
1597 *head = p;
1598 p->sec = sec;
1599 p->count = 0;
1600 #if RELATIVE_DYNRELOCS
1601 p->relative_count = 0;
1602 #endif
1603 }
1604
1605 p->count += 1;
1606 #if RELATIVE_DYNRELOCS
1607 if (!IS_ABSOLUTE_RELOC (rtype))
1608 p->relative_count += 1;
1609 #endif
1610 }
1611 }
1612 }
1613
1614 return true;
1615 }
1616
1617 /* Return the section that should be marked against garbage collection
1618 for a given relocation. */
1619
1620 static asection *
1621 elf32_hppa_gc_mark_hook (abfd, info, rel, h, sym)
1622 bfd *abfd;
1623 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1624 Elf_Internal_Rela *rel;
1625 struct elf_link_hash_entry *h;
1626 Elf_Internal_Sym *sym;
1627 {
1628 if (h != NULL)
1629 {
1630 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1631 {
1632 case R_PARISC_GNU_VTINHERIT:
1633 case R_PARISC_GNU_VTENTRY:
1634 break;
1635
1636 default:
1637 switch (h->root.type)
1638 {
1639 case bfd_link_hash_defined:
1640 case bfd_link_hash_defweak:
1641 return h->root.u.def.section;
1642
1643 case bfd_link_hash_common:
1644 return h->root.u.c.p->section;
1645
1646 default:
1647 break;
1648 }
1649 }
1650 }
1651 else
1652 {
1653 if (!(elf_bad_symtab (abfd)
1654 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
1655 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
1656 && sym->st_shndx != SHN_COMMON))
1657 {
1658 return bfd_section_from_elf_index (abfd, sym->st_shndx);
1659 }
1660 }
1661
1662 return NULL;
1663 }
1664
1665 /* Update the got and plt entry reference counts for the section being
1666 removed. */
1667
1668 static boolean
1669 elf32_hppa_gc_sweep_hook (abfd, info, sec, relocs)
1670 bfd *abfd;
1671 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1672 asection *sec;
1673 const Elf_Internal_Rela *relocs;
1674 {
1675 Elf_Internal_Shdr *symtab_hdr;
1676 struct elf_link_hash_entry **sym_hashes;
1677 bfd_signed_vma *local_got_refcounts;
1678 bfd_signed_vma *local_plt_refcounts;
1679 const Elf_Internal_Rela *rel, *relend;
1680 unsigned long r_symndx;
1681 struct elf_link_hash_entry *h;
1682 struct elf32_hppa_link_hash_table *htab;
1683 bfd *dynobj;
1684
1685 elf_section_data (sec)->local_dynrel = NULL;
1686
1687 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1688 sym_hashes = elf_sym_hashes (abfd);
1689 local_got_refcounts = elf_local_got_refcounts (abfd);
1690 local_plt_refcounts = local_got_refcounts;
1691 if (local_plt_refcounts != NULL)
1692 local_plt_refcounts += symtab_hdr->sh_info;
1693 htab = hppa_link_hash_table (info);
1694 dynobj = htab->elf.dynobj;
1695 if (dynobj == NULL)
1696 return true;
1697
1698 relend = relocs + sec->reloc_count;
1699 for (rel = relocs; rel < relend; rel++)
1700 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1701 {
1702 case R_PARISC_DLTIND14F:
1703 case R_PARISC_DLTIND14R:
1704 case R_PARISC_DLTIND21L:
1705 r_symndx = ELF32_R_SYM (rel->r_info);
1706 if (r_symndx >= symtab_hdr->sh_info)
1707 {
1708 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1709 if (h->got.refcount > 0)
1710 h->got.refcount -= 1;
1711 }
1712 else if (local_got_refcounts != NULL)
1713 {
1714 if (local_got_refcounts[r_symndx] > 0)
1715 local_got_refcounts[r_symndx] -= 1;
1716 }
1717 break;
1718
1719 case R_PARISC_PCREL12F:
1720 case R_PARISC_PCREL17C:
1721 case R_PARISC_PCREL17F:
1722 case R_PARISC_PCREL22F:
1723 r_symndx = ELF32_R_SYM (rel->r_info);
1724 if (r_symndx >= symtab_hdr->sh_info)
1725 {
1726 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1727 if (h->plt.refcount > 0)
1728 h->plt.refcount -= 1;
1729 }
1730 break;
1731
1732 case R_PARISC_PLABEL14R:
1733 case R_PARISC_PLABEL21L:
1734 case R_PARISC_PLABEL32:
1735 r_symndx = ELF32_R_SYM (rel->r_info);
1736 if (r_symndx >= symtab_hdr->sh_info)
1737 {
1738 struct elf32_hppa_link_hash_entry *eh;
1739 struct elf32_hppa_dyn_reloc_entry **pp;
1740 struct elf32_hppa_dyn_reloc_entry *p;
1741
1742 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1743
1744 if (h->plt.refcount > 0)
1745 h->plt.refcount -= 1;
1746
1747 eh = (struct elf32_hppa_link_hash_entry *) h;
1748
1749 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1750 if (p->sec == sec)
1751 {
1752 #if RELATIVE_DYNRELOCS
1753 if (!IS_ABSOLUTE_RELOC (rtype))
1754 p->relative_count -= 1;
1755 #endif
1756 p->count -= 1;
1757 if (p->count == 0)
1758 *pp = p->next;
1759 break;
1760 }
1761 }
1762 else if (local_plt_refcounts != NULL)
1763 {
1764 if (local_plt_refcounts[r_symndx] > 0)
1765 local_plt_refcounts[r_symndx] -= 1;
1766 }
1767 break;
1768
1769 case R_PARISC_DIR32:
1770 r_symndx = ELF32_R_SYM (rel->r_info);
1771 if (r_symndx >= symtab_hdr->sh_info)
1772 {
1773 struct elf32_hppa_link_hash_entry *eh;
1774 struct elf32_hppa_dyn_reloc_entry **pp;
1775 struct elf32_hppa_dyn_reloc_entry *p;
1776
1777 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1778
1779 eh = (struct elf32_hppa_link_hash_entry *) h;
1780
1781 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1782 if (p->sec == sec)
1783 {
1784 #if RELATIVE_DYNRELOCS
1785 if (!IS_ABSOLUTE_RELOC (R_PARISC_DIR32))
1786 p->relative_count -= 1;
1787 #endif
1788 p->count -= 1;
1789 if (p->count == 0)
1790 *pp = p->next;
1791 break;
1792 }
1793 }
1794 break;
1795
1796 default:
1797 break;
1798 }
1799
1800 return true;
1801 }
1802
1803 /* Our own version of hide_symbol, so that we can keep plt entries for
1804 plabels. */
1805
1806 static void
1807 elf32_hppa_hide_symbol (info, h)
1808 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1809 struct elf_link_hash_entry *h;
1810 {
1811 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
1812 h->dynindx = -1;
1813 if (! ((struct elf32_hppa_link_hash_entry *) h)->plabel)
1814 {
1815 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1816 h->plt.offset = (bfd_vma) -1;
1817 }
1818 }
1819
1820 /* This is the condition under which elf32_hppa_finish_dynamic_symbol
1821 will be called from elflink.h. If elflink.h doesn't call our
1822 finish_dynamic_symbol routine, we'll need to do something about
1823 initializing any .plt and .got entries in elf32_hppa_relocate_section. */
1824 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1825 ((DYN) \
1826 && ((INFO)->shared \
1827 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1828 && ((H)->dynindx != -1 \
1829 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1830
1831 /* Adjust a symbol defined by a dynamic object and referenced by a
1832 regular object. The current definition is in some section of the
1833 dynamic object, but we're not including those sections. We have to
1834 change the definition to something the rest of the link can
1835 understand. */
1836
1837 static boolean
1838 elf32_hppa_adjust_dynamic_symbol (info, h)
1839 struct bfd_link_info *info;
1840 struct elf_link_hash_entry *h;
1841 {
1842 struct elf32_hppa_link_hash_table *htab;
1843 struct elf32_hppa_link_hash_entry *eh;
1844 struct elf32_hppa_dyn_reloc_entry *p;
1845 asection *s;
1846 unsigned int power_of_two;
1847
1848 /* If this is a function, put it in the procedure linkage table. We
1849 will fill in the contents of the procedure linkage table later,
1850 when we know the address of the .got section. */
1851 if (h->type == STT_FUNC
1852 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1853 {
1854 if (!info->shared
1855 && h->plt.refcount > 0
1856 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1857 && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0)
1858 {
1859 ((struct elf32_hppa_link_hash_entry *) h)->maybe_pic_call = 1;
1860 }
1861
1862 if (h->plt.refcount <= 0
1863 || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1864 && h->root.type != bfd_link_hash_defweak
1865 && ! ((struct elf32_hppa_link_hash_entry *) h)->plabel
1866 && (!info->shared || info->symbolic)))
1867 {
1868 /* The .plt entry is not needed when:
1869 a) Garbage collection has removed all references to the
1870 symbol, or
1871 b) We know for certain the symbol is defined in this
1872 object, and it's not a weak definition, nor is the symbol
1873 used by a plabel relocation. Either this object is the
1874 application or we are doing a shared symbolic link. */
1875
1876 /* As a special sop to the hppa ABI, we keep a .plt entry
1877 for functions in sections containing PIC code. */
1878 if (((struct elf32_hppa_link_hash_entry *) h)->maybe_pic_call)
1879 ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
1880 else
1881 {
1882 h->plt.offset = (bfd_vma) -1;
1883 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1884 }
1885 }
1886
1887 return true;
1888 }
1889 else
1890 h->plt.offset = (bfd_vma) -1;
1891
1892 /* If this is a weak symbol, and there is a real definition, the
1893 processor independent code will have arranged for us to see the
1894 real definition first, and we can just use the same value. */
1895 if (h->weakdef != NULL)
1896 {
1897 if (h->weakdef->root.type != bfd_link_hash_defined
1898 && h->weakdef->root.type != bfd_link_hash_defweak)
1899 abort ();
1900 h->root.u.def.section = h->weakdef->root.u.def.section;
1901 h->root.u.def.value = h->weakdef->root.u.def.value;
1902 return true;
1903 }
1904
1905 /* This is a reference to a symbol defined by a dynamic object which
1906 is not a function. */
1907
1908 /* If we are creating a shared library, we must presume that the
1909 only references to the symbol are via the global offset table.
1910 For such cases we need not do anything here; the relocations will
1911 be handled correctly by relocate_section. */
1912 if (info->shared)
1913 return true;
1914
1915 /* If there are no references to this symbol that do not use the
1916 GOT, we don't need to generate a copy reloc. */
1917 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1918 return true;
1919
1920 eh = (struct elf32_hppa_link_hash_entry *) h;
1921 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1922 {
1923 s = p->sec->output_section;
1924 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1925 break;
1926 }
1927
1928 /* If we didn't find any dynamic relocs in read-only sections, then
1929 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1930 if (p == NULL)
1931 {
1932 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1933 return true;
1934 }
1935
1936 /* We must allocate the symbol in our .dynbss section, which will
1937 become part of the .bss section of the executable. There will be
1938 an entry for this symbol in the .dynsym section. The dynamic
1939 object will contain position independent code, so all references
1940 from the dynamic object to this symbol will go through the global
1941 offset table. The dynamic linker will use the .dynsym entry to
1942 determine the address it must put in the global offset table, so
1943 both the dynamic object and the regular object will refer to the
1944 same memory location for the variable. */
1945
1946 htab = hppa_link_hash_table (info);
1947
1948 /* We must generate a COPY reloc to tell the dynamic linker to
1949 copy the initial value out of the dynamic object and into the
1950 runtime process image. */
1951 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1952 {
1953 htab->srelbss->_raw_size += sizeof (Elf32_External_Rela);
1954 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1955 }
1956
1957 /* We need to figure out the alignment required for this symbol. I
1958 have no idea how other ELF linkers handle this. */
1959
1960 power_of_two = bfd_log2 (h->size);
1961 if (power_of_two > 3)
1962 power_of_two = 3;
1963
1964 /* Apply the required alignment. */
1965 s = htab->sdynbss;
1966 s->_raw_size = BFD_ALIGN (s->_raw_size,
1967 (bfd_size_type) (1 << power_of_two));
1968 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1969 {
1970 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1971 return false;
1972 }
1973
1974 /* Define the symbol as being at this point in the section. */
1975 h->root.u.def.section = s;
1976 h->root.u.def.value = s->_raw_size;
1977
1978 /* Increment the section size to make room for the symbol. */
1979 s->_raw_size += h->size;
1980
1981 return true;
1982 }
1983
1984 /* Called via elf_link_hash_traverse to create .plt entries for an
1985 application that uses statically linked PIC functions. Similar to
1986 the first part of elf32_hppa_adjust_dynamic_symbol. */
1987
1988 static boolean
1989 mark_PIC_calls (h, inf)
1990 struct elf_link_hash_entry *h;
1991 PTR inf ATTRIBUTE_UNUSED;
1992 {
1993 if (! (h->plt.refcount > 0
1994 && (h->root.type == bfd_link_hash_defined
1995 || h->root.type == bfd_link_hash_defweak)
1996 && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0))
1997 {
1998 h->plt.offset = (bfd_vma) -1;
1999 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2000 return true;
2001 }
2002
2003 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
2004 ((struct elf32_hppa_link_hash_entry *) h)->maybe_pic_call = 1;
2005 ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
2006
2007 return true;
2008 }
2009
2010 /* Allocate space in the .plt for entries that won't have relocations.
2011 ie. pic_call and plabel entries. */
2012
2013 static boolean
2014 allocate_plt_static (h, inf)
2015 struct elf_link_hash_entry *h;
2016 PTR inf;
2017 {
2018 struct bfd_link_info *info;
2019 struct elf32_hppa_link_hash_table *htab;
2020 asection *s;
2021
2022 if (h->root.type == bfd_link_hash_indirect
2023 || h->root.type == bfd_link_hash_warning)
2024 return true;
2025
2026 info = (struct bfd_link_info *) inf;
2027 htab = hppa_link_hash_table (info);
2028 if (((struct elf32_hppa_link_hash_entry *) h)->pic_call)
2029 {
2030 /* Make an entry in the .plt section for non-pic code that is
2031 calling pic code. */
2032 s = htab->splt;
2033 h->plt.offset = s->_raw_size;
2034 s->_raw_size += PLT_ENTRY_SIZE;
2035 }
2036 else if (htab->elf.dynamic_sections_created
2037 && h->plt.refcount > 0)
2038 {
2039 /* Make sure this symbol is output as a dynamic symbol.
2040 Undefined weak syms won't yet be marked as dynamic. */
2041 if (h->dynindx == -1
2042 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
2043 && h->type != STT_PARISC_MILLI)
2044 {
2045 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2046 return false;
2047 }
2048
2049 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
2050 {
2051 /* Allocate these later. */
2052 }
2053 else if (((struct elf32_hppa_link_hash_entry *) h)->plabel)
2054 {
2055 /* Make an entry in the .plt section for plabel references
2056 that won't have a .plt entry for other reasons. */
2057 s = htab->splt;
2058 h->plt.offset = s->_raw_size;
2059 s->_raw_size += PLT_ENTRY_SIZE;
2060 }
2061 else
2062 {
2063 /* No .plt entry needed. */
2064 h->plt.offset = (bfd_vma) -1;
2065 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2066 }
2067 }
2068 else
2069 {
2070 h->plt.offset = (bfd_vma) -1;
2071 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2072 }
2073
2074 return true;
2075 }
2076
2077 /* Allocate space in .plt, .got and associated reloc sections for
2078 global syms. */
2079
2080 static boolean
2081 allocate_dynrelocs (h, inf)
2082 struct elf_link_hash_entry *h;
2083 PTR inf;
2084 {
2085 struct bfd_link_info *info;
2086 struct elf32_hppa_link_hash_table *htab;
2087 asection *s;
2088 struct elf32_hppa_link_hash_entry *eh;
2089 struct elf32_hppa_dyn_reloc_entry *p;
2090
2091 if (h->root.type == bfd_link_hash_indirect
2092 || h->root.type == bfd_link_hash_warning)
2093 return true;
2094
2095 info = (struct bfd_link_info *) inf;
2096 htab = hppa_link_hash_table (info);
2097 if (htab->elf.dynamic_sections_created
2098 && h->plt.offset != (bfd_vma) -1
2099 && !((struct elf32_hppa_link_hash_entry *) h)->pic_call
2100 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
2101 {
2102 /* Make an entry in the .plt section. */
2103 s = htab->splt;
2104 h->plt.offset = s->_raw_size;
2105 s->_raw_size += PLT_ENTRY_SIZE;
2106
2107 /* We also need to make an entry in the .rela.plt section. */
2108 htab->srelplt->_raw_size += sizeof (Elf32_External_Rela);
2109 htab->need_plt_stub = 1;
2110 }
2111
2112 if (h->got.refcount > 0)
2113 {
2114 /* Make sure this symbol is output as a dynamic symbol.
2115 Undefined weak syms won't yet be marked as dynamic. */
2116 if (h->dynindx == -1
2117 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
2118 && h->type != STT_PARISC_MILLI)
2119 {
2120 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2121 return false;
2122 }
2123
2124 s = htab->sgot;
2125 h->got.offset = s->_raw_size;
2126 s->_raw_size += GOT_ENTRY_SIZE;
2127 if (htab->elf.dynamic_sections_created
2128 && (info->shared
2129 || (h->dynindx != -1
2130 && h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0))
2131 {
2132 htab->srelgot->_raw_size += sizeof (Elf32_External_Rela);
2133 }
2134 }
2135 else
2136 h->got.offset = (bfd_vma) -1;
2137
2138 eh = (struct elf32_hppa_link_hash_entry *) h;
2139 if (eh->dyn_relocs == NULL)
2140 return true;
2141
2142 /* If this is a -Bsymbolic shared link, then we need to discard all
2143 space allocated for dynamic pc-relative relocs against symbols
2144 defined in a regular object. For the normal shared case, discard
2145 space for relocs that have become local due to symbol visibility
2146 changes. */
2147 if (info->shared)
2148 {
2149 #if RELATIVE_DYNRELOCS
2150 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
2151 && ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
2152 || info->symbolic))
2153 {
2154 struct elf32_hppa_dyn_reloc_entry **pp;
2155
2156 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2157 {
2158 p->count -= p->relative_count;
2159 p->relative_count = 0;
2160 if (p->count == 0)
2161 *pp = p->next;
2162 else
2163 pp = &p->next;
2164 }
2165 }
2166 #endif
2167 }
2168 else
2169 {
2170 /* For the non-shared case, discard space for relocs against
2171 symbols which turn out to need copy relocs or are not
2172 dynamic. */
2173 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
2174 && (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2175 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2176 || (htab->elf.dynamic_sections_created
2177 && (h->root.type == bfd_link_hash_undefweak
2178 || h->root.type == bfd_link_hash_undefined))))
2179 {
2180 /* Make sure this symbol is output as a dynamic symbol.
2181 Undefined weak syms won't yet be marked as dynamic. */
2182 if (h->dynindx == -1
2183 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
2184 && h->type != STT_PARISC_MILLI)
2185 {
2186 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2187 return false;
2188 }
2189
2190 /* If that succeeded, we know we'll be keeping all the
2191 relocs. */
2192 if (h->dynindx != -1)
2193 goto keep;
2194 }
2195
2196 eh->dyn_relocs = NULL;
2197 return true;
2198
2199 keep: ;
2200 }
2201
2202 /* Finally, allocate space. */
2203 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2204 {
2205 asection *sreloc = elf_section_data (p->sec)->sreloc;
2206 sreloc->_raw_size += p->count * sizeof (Elf32_External_Rela);
2207 }
2208
2209 return true;
2210 }
2211
2212 /* This function is called via elf_link_hash_traverse to force
2213 millicode symbols local so they do not end up as globals in the
2214 dynamic symbol table. We ought to be able to do this in
2215 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2216 for all dynamic symbols. Arguably, this is a bug in
2217 elf_adjust_dynamic_symbol. */
2218
2219 static boolean
2220 clobber_millicode_symbols (h, info)
2221 struct elf_link_hash_entry *h;
2222 struct bfd_link_info *info;
2223 {
2224 /* We only want to remove these from the dynamic symbol table.
2225 Therefore we do not leave ELF_LINK_FORCED_LOCAL set. */
2226 if (h->type == STT_PARISC_MILLI)
2227 {
2228 unsigned short oldflags = h->elf_link_hash_flags;
2229 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
2230 elf32_hppa_hide_symbol (info, h);
2231 h->elf_link_hash_flags &= ~ELF_LINK_FORCED_LOCAL;
2232 h->elf_link_hash_flags |= oldflags & ELF_LINK_FORCED_LOCAL;
2233 }
2234 return true;
2235 }
2236
2237 /* Find any dynamic relocs that apply to read-only sections. */
2238
2239 static boolean
2240 readonly_dynrelocs (h, inf)
2241 struct elf_link_hash_entry *h;
2242 PTR inf;
2243 {
2244 struct elf32_hppa_link_hash_entry *eh;
2245 struct elf32_hppa_dyn_reloc_entry *p;
2246
2247 eh = (struct elf32_hppa_link_hash_entry *) h;
2248 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2249 {
2250 asection *s = p->sec->output_section;
2251
2252 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2253 {
2254 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2255
2256 info->flags |= DF_TEXTREL;
2257
2258 /* Not an error, just cut short the traversal. */
2259 return false;
2260 }
2261 }
2262 return true;
2263 }
2264
2265 /* Set the sizes of the dynamic sections. */
2266
2267 static boolean
2268 elf32_hppa_size_dynamic_sections (output_bfd, info)
2269 bfd *output_bfd ATTRIBUTE_UNUSED;
2270 struct bfd_link_info *info;
2271 {
2272 struct elf32_hppa_link_hash_table *htab;
2273 bfd *dynobj;
2274 bfd *ibfd;
2275 asection *s;
2276 boolean relocs;
2277
2278 htab = hppa_link_hash_table (info);
2279 dynobj = htab->elf.dynobj;
2280 if (dynobj == NULL)
2281 abort ();
2282
2283 if (htab->elf.dynamic_sections_created)
2284 {
2285 /* Set the contents of the .interp section to the interpreter. */
2286 if (! info->shared)
2287 {
2288 s = bfd_get_section_by_name (dynobj, ".interp");
2289 if (s == NULL)
2290 abort ();
2291 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
2292 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2293 }
2294
2295 /* Force millicode symbols local. */
2296 elf_link_hash_traverse (&htab->elf,
2297 clobber_millicode_symbols,
2298 info);
2299 }
2300 else
2301 {
2302 /* Run through the function symbols, looking for any that are
2303 PIC, and mark them as needing .plt entries so that %r19 will
2304 be set up. */
2305 if (! info->shared)
2306 elf_link_hash_traverse (&htab->elf, mark_PIC_calls, (PTR) info);
2307 }
2308
2309 /* Set up .got and .plt offsets for local syms, and space for local
2310 dynamic relocs. */
2311 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2312 {
2313 bfd_signed_vma *local_got;
2314 bfd_signed_vma *end_local_got;
2315 bfd_signed_vma *local_plt;
2316 bfd_signed_vma *end_local_plt;
2317 bfd_size_type locsymcount;
2318 Elf_Internal_Shdr *symtab_hdr;
2319 asection *srel;
2320
2321 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2322 continue;
2323
2324 for (s = ibfd->sections; s != NULL; s = s->next)
2325 {
2326 struct elf32_hppa_dyn_reloc_entry *p;
2327
2328 for (p = ((struct elf32_hppa_dyn_reloc_entry *)
2329 elf_section_data (s)->local_dynrel);
2330 p != NULL;
2331 p = p->next)
2332 {
2333 if (!bfd_is_abs_section (p->sec)
2334 && bfd_is_abs_section (p->sec->output_section))
2335 {
2336 /* Input section has been discarded, either because
2337 it is a copy of a linkonce section or due to
2338 linker script /DISCARD/, so we'll be discarding
2339 the relocs too. */
2340 }
2341 else
2342 {
2343 srel = elf_section_data (p->sec)->sreloc;
2344 srel->_raw_size += p->count * sizeof (Elf32_External_Rela);
2345 }
2346 }
2347 }
2348
2349 local_got = elf_local_got_refcounts (ibfd);
2350 if (!local_got)
2351 continue;
2352
2353 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2354 locsymcount = symtab_hdr->sh_info;
2355 end_local_got = local_got + locsymcount;
2356 s = htab->sgot;
2357 srel = htab->srelgot;
2358 for (; local_got < end_local_got; ++local_got)
2359 {
2360 if (*local_got > 0)
2361 {
2362 *local_got = s->_raw_size;
2363 s->_raw_size += GOT_ENTRY_SIZE;
2364 if (info->shared)
2365 srel->_raw_size += sizeof (Elf32_External_Rela);
2366 }
2367 else
2368 *local_got = (bfd_vma) -1;
2369 }
2370
2371 local_plt = end_local_got;
2372 end_local_plt = local_plt + locsymcount;
2373 if (! htab->elf.dynamic_sections_created)
2374 {
2375 /* Won't be used, but be safe. */
2376 for (; local_plt < end_local_plt; ++local_plt)
2377 *local_plt = (bfd_vma) -1;
2378 }
2379 else
2380 {
2381 s = htab->splt;
2382 srel = htab->srelplt;
2383 for (; local_plt < end_local_plt; ++local_plt)
2384 {
2385 if (*local_plt > 0)
2386 {
2387 *local_plt = s->_raw_size;
2388 s->_raw_size += PLT_ENTRY_SIZE;
2389 if (info->shared)
2390 srel->_raw_size += sizeof (Elf32_External_Rela);
2391 }
2392 else
2393 *local_plt = (bfd_vma) -1;
2394 }
2395 }
2396 }
2397
2398 /* Do all the .plt entries without relocs first. The dynamic linker
2399 uses the last .plt reloc to find the end of the .plt (and hence
2400 the start of the .got) for lazy linking. */
2401 elf_link_hash_traverse (&htab->elf, allocate_plt_static, (PTR) info);
2402
2403 /* Allocate global sym .plt and .got entries, and space for global
2404 sym dynamic relocs. */
2405 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
2406
2407 /* The check_relocs and adjust_dynamic_symbol entry points have
2408 determined the sizes of the various dynamic sections. Allocate
2409 memory for them. */
2410 relocs = false;
2411 for (s = dynobj->sections; s != NULL; s = s->next)
2412 {
2413 if ((s->flags & SEC_LINKER_CREATED) == 0)
2414 continue;
2415
2416 if (s == htab->splt)
2417 {
2418 if (htab->need_plt_stub)
2419 {
2420 /* Make space for the plt stub at the end of the .plt
2421 section. We want this stub right at the end, up
2422 against the .got section. */
2423 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2424 int pltalign = bfd_section_alignment (dynobj, s);
2425 bfd_size_type mask;
2426
2427 if (gotalign > pltalign)
2428 bfd_set_section_alignment (dynobj, s, gotalign);
2429 mask = ((bfd_size_type) 1 << gotalign) - 1;
2430 s->_raw_size = (s->_raw_size + sizeof (plt_stub) + mask) & ~mask;
2431 }
2432 }
2433 else if (s == htab->sgot)
2434 ;
2435 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
2436 {
2437 if (s->_raw_size != 0)
2438 {
2439 /* Remember whether there are any reloc sections other
2440 than .rela.plt. */
2441 if (s != htab->srelplt)
2442 relocs = true;
2443
2444 /* We use the reloc_count field as a counter if we need
2445 to copy relocs into the output file. */
2446 s->reloc_count = 0;
2447 }
2448 }
2449 else
2450 {
2451 /* It's not one of our sections, so don't allocate space. */
2452 continue;
2453 }
2454
2455 if (s->_raw_size == 0)
2456 {
2457 /* If we don't need this section, strip it from the
2458 output file. This is mostly to handle .rela.bss and
2459 .rela.plt. We must create both sections in
2460 create_dynamic_sections, because they must be created
2461 before the linker maps input sections to output
2462 sections. The linker does that before
2463 adjust_dynamic_symbol is called, and it is that
2464 function which decides whether anything needs to go
2465 into these sections. */
2466 _bfd_strip_section_from_output (info, s);
2467 continue;
2468 }
2469
2470 /* Allocate memory for the section contents. Zero it, because
2471 we may not fill in all the reloc sections. */
2472 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
2473 if (s->contents == NULL && s->_raw_size != 0)
2474 return false;
2475 }
2476
2477 if (htab->elf.dynamic_sections_created)
2478 {
2479 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2480 actually has nothing to do with the PLT, it is how we
2481 communicate the LTP value of a load module to the dynamic
2482 linker. */
2483 #define add_dynamic_entry(TAG, VAL) \
2484 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
2485
2486 if (!add_dynamic_entry (DT_PLTGOT, 0))
2487 return false;
2488
2489 /* Add some entries to the .dynamic section. We fill in the
2490 values later, in elf32_hppa_finish_dynamic_sections, but we
2491 must add the entries now so that we get the correct size for
2492 the .dynamic section. The DT_DEBUG entry is filled in by the
2493 dynamic linker and used by the debugger. */
2494 if (!info->shared)
2495 {
2496 if (!add_dynamic_entry (DT_DEBUG, 0))
2497 return false;
2498 }
2499
2500 if (htab->srelplt->_raw_size != 0)
2501 {
2502 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2503 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2504 || !add_dynamic_entry (DT_JMPREL, 0))
2505 return false;
2506 }
2507
2508 if (relocs)
2509 {
2510 if (!add_dynamic_entry (DT_RELA, 0)
2511 || !add_dynamic_entry (DT_RELASZ, 0)
2512 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2513 return false;
2514
2515 /* If any dynamic relocs apply to a read-only section,
2516 then we need a DT_TEXTREL entry. */
2517 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, (PTR) info);
2518
2519 if ((info->flags & DF_TEXTREL) != 0)
2520 {
2521 if (!add_dynamic_entry (DT_TEXTREL, 0))
2522 return false;
2523 }
2524 }
2525 }
2526 #undef add_dynamic_entry
2527
2528 return true;
2529 }
2530
2531 /* External entry points for sizing and building linker stubs. */
2532
2533 /* Determine and set the size of the stub section for a final link.
2534
2535 The basic idea here is to examine all the relocations looking for
2536 PC-relative calls to a target that is unreachable with a "bl"
2537 instruction. */
2538
2539 boolean
2540 elf32_hppa_size_stubs (output_bfd, stub_bfd, info, multi_subspace, group_size,
2541 add_stub_section, layout_sections_again)
2542 bfd *output_bfd;
2543 bfd *stub_bfd;
2544 struct bfd_link_info *info;
2545 boolean multi_subspace;
2546 bfd_signed_vma group_size;
2547 asection * (*add_stub_section) PARAMS ((const char *, asection *));
2548 void (*layout_sections_again) PARAMS ((void));
2549 {
2550 bfd *input_bfd;
2551 asection *section;
2552 asection **input_list, **list;
2553 Elf_Internal_Sym *local_syms, **all_local_syms;
2554 unsigned int bfd_indx, bfd_count;
2555 int top_id, top_index;
2556 struct elf32_hppa_link_hash_table *htab;
2557 bfd_size_type stub_group_size;
2558 boolean stubs_always_before_branch;
2559 boolean stub_changed = 0;
2560 boolean ret = 0;
2561 bfd_size_type amt;
2562
2563 htab = hppa_link_hash_table (info);
2564
2565 /* Stash our params away. */
2566 htab->stub_bfd = stub_bfd;
2567 htab->multi_subspace = multi_subspace;
2568 htab->add_stub_section = add_stub_section;
2569 htab->layout_sections_again = layout_sections_again;
2570 stubs_always_before_branch = group_size < 0;
2571 if (group_size < 0)
2572 stub_group_size = -group_size;
2573 else
2574 stub_group_size = group_size;
2575 if (stub_group_size == 1)
2576 {
2577 /* Default values. */
2578 stub_group_size = 8000000;
2579 if (htab->has_17bit_branch || htab->multi_subspace)
2580 stub_group_size = 250000;
2581 if (htab->has_12bit_branch)
2582 stub_group_size = 7812;
2583 }
2584
2585 /* Count the number of input BFDs and find the top input section id. */
2586 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2587 input_bfd != NULL;
2588 input_bfd = input_bfd->link_next)
2589 {
2590 bfd_count += 1;
2591 for (section = input_bfd->sections;
2592 section != NULL;
2593 section = section->next)
2594 {
2595 if (top_id < section->id)
2596 top_id = section->id;
2597 }
2598 }
2599
2600 amt = sizeof (struct map_stub) * (top_id + 1);
2601 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
2602 if (htab->stub_group == NULL)
2603 return false;
2604
2605 /* Make a list of input sections for each output section included in
2606 the link.
2607
2608 We can't use output_bfd->section_count here to find the top output
2609 section index as some sections may have been removed, and
2610 _bfd_strip_section_from_output doesn't renumber the indices. */
2611 for (section = output_bfd->sections, top_index = 0;
2612 section != NULL;
2613 section = section->next)
2614 {
2615 if (top_index < section->index)
2616 top_index = section->index;
2617 }
2618
2619 amt = sizeof (asection *) * (top_index + 1);
2620 input_list = (asection **) bfd_malloc (amt);
2621 if (input_list == NULL)
2622 return false;
2623
2624 /* For sections we aren't interested in, mark their entries with a
2625 value we can check later. */
2626 list = input_list + top_index;
2627 do
2628 *list = bfd_abs_section_ptr;
2629 while (list-- != input_list);
2630
2631 for (section = output_bfd->sections;
2632 section != NULL;
2633 section = section->next)
2634 {
2635 if ((section->flags & SEC_CODE) != 0)
2636 input_list[section->index] = NULL;
2637 }
2638
2639 /* Now actually build the lists. */
2640 for (input_bfd = info->input_bfds;
2641 input_bfd != NULL;
2642 input_bfd = input_bfd->link_next)
2643 {
2644 for (section = input_bfd->sections;
2645 section != NULL;
2646 section = section->next)
2647 {
2648 if (section->output_section != NULL
2649 && section->output_section->owner == output_bfd
2650 && section->output_section->index <= top_index)
2651 {
2652 list = input_list + section->output_section->index;
2653 if (*list != bfd_abs_section_ptr)
2654 {
2655 /* Steal the link_sec pointer for our list. */
2656 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2657 /* This happens to make the list in reverse order,
2658 which is what we want. */
2659 PREV_SEC (section) = *list;
2660 *list = section;
2661 }
2662 }
2663 }
2664 }
2665
2666 /* See whether we can group stub sections together. Grouping stub
2667 sections may result in fewer stubs. More importantly, we need to
2668 put all .init* and .fini* stubs at the beginning of the .init or
2669 .fini output sections respectively, because glibc splits the
2670 _init and _fini functions into multiple parts. Putting a stub in
2671 the middle of a function is not a good idea. */
2672 list = input_list + top_index;
2673 do
2674 {
2675 asection *tail = *list;
2676 if (tail == bfd_abs_section_ptr)
2677 continue;
2678 while (tail != NULL)
2679 {
2680 asection *curr;
2681 asection *prev;
2682 bfd_size_type total;
2683
2684 curr = tail;
2685 if (tail->_cooked_size)
2686 total = tail->_cooked_size;
2687 else
2688 total = tail->_raw_size;
2689 while ((prev = PREV_SEC (curr)) != NULL
2690 && ((total += curr->output_offset - prev->output_offset)
2691 < stub_group_size))
2692 curr = prev;
2693
2694 /* OK, the size from the start of CURR to the end is less
2695 than 250000 bytes and thus can be handled by one stub
2696 section. (or the tail section is itself larger than
2697 250000 bytes, in which case we may be toast.)
2698 We should really be keeping track of the total size of
2699 stubs added here, as stubs contribute to the final output
2700 section size. That's a little tricky, and this way will
2701 only break if stubs added total more than 12144 bytes, or
2702 1518 long branch stubs. It seems unlikely for more than
2703 1518 different functions to be called, especially from
2704 code only 250000 bytes long. */
2705 do
2706 {
2707 prev = PREV_SEC (tail);
2708 /* Set up this stub group. */
2709 htab->stub_group[tail->id].link_sec = curr;
2710 }
2711 while (tail != curr && (tail = prev) != NULL);
2712
2713 /* But wait, there's more! Input sections up to 250000
2714 bytes before the stub section can be handled by it too. */
2715 if (!stubs_always_before_branch)
2716 {
2717 total = 0;
2718 while (prev != NULL
2719 && ((total += tail->output_offset - prev->output_offset)
2720 < stub_group_size))
2721 {
2722 tail = prev;
2723 prev = PREV_SEC (tail);
2724 htab->stub_group[tail->id].link_sec = curr;
2725 }
2726 }
2727 tail = prev;
2728 }
2729 }
2730 while (list-- != input_list);
2731 free (input_list);
2732 #undef PREV_SEC
2733
2734 /* We want to read in symbol extension records only once. To do this
2735 we need to read in the local symbols in parallel and save them for
2736 later use; so hold pointers to the local symbols in an array. */
2737 amt = sizeof (Elf_Internal_Sym *) * bfd_count;
2738 all_local_syms = (Elf_Internal_Sym **) bfd_zmalloc (amt);
2739 if (all_local_syms == NULL)
2740 return false;
2741
2742 /* Walk over all the input BFDs, swapping in local symbols.
2743 If we are creating a shared library, create hash entries for the
2744 export stubs. */
2745 for (input_bfd = info->input_bfds, bfd_indx = 0;
2746 input_bfd != NULL;
2747 input_bfd = input_bfd->link_next, bfd_indx++)
2748 {
2749 Elf_Internal_Shdr *symtab_hdr;
2750 Elf_Internal_Sym *isym;
2751 Elf32_External_Sym *ext_syms, *esym, *end_sy;
2752 bfd_size_type sec_size;
2753
2754 /* We'll need the symbol table in a second. */
2755 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2756 if (symtab_hdr->sh_info == 0)
2757 continue;
2758
2759 /* We need an array of the local symbols attached to the input bfd.
2760 Unfortunately, we're going to have to read & swap them in. */
2761 sec_size = symtab_hdr->sh_info;
2762 sec_size *= sizeof (Elf_Internal_Sym);
2763 local_syms = (Elf_Internal_Sym *) bfd_malloc (sec_size);
2764 if (local_syms == NULL)
2765 {
2766 goto error_ret_free_local;
2767 }
2768 all_local_syms[bfd_indx] = local_syms;
2769 sec_size = symtab_hdr->sh_info;
2770 sec_size *= sizeof (Elf32_External_Sym);
2771 ext_syms = (Elf32_External_Sym *) bfd_malloc (sec_size);
2772 if (ext_syms == NULL)
2773 {
2774 goto error_ret_free_local;
2775 }
2776
2777 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
2778 || (bfd_bread (ext_syms, sec_size, input_bfd) != sec_size))
2779 {
2780 free (ext_syms);
2781 goto error_ret_free_local;
2782 }
2783
2784 /* Swap the local symbols in. */
2785 isym = local_syms;
2786 esym = ext_syms;
2787 for (end_sy = esym + symtab_hdr->sh_info; esym < end_sy; esym++, isym++)
2788 bfd_elf32_swap_symbol_in (input_bfd, esym, isym);
2789
2790 /* Now we can free the external symbols. */
2791 free (ext_syms);
2792
2793 if (info->shared && htab->multi_subspace)
2794 {
2795 struct elf_link_hash_entry **sym_hashes;
2796 struct elf_link_hash_entry **end_hashes;
2797 unsigned int symcount;
2798
2799 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2800 - symtab_hdr->sh_info);
2801 sym_hashes = elf_sym_hashes (input_bfd);
2802 end_hashes = sym_hashes + symcount;
2803
2804 /* Look through the global syms for functions; We need to
2805 build export stubs for all globally visible functions. */
2806 for (; sym_hashes < end_hashes; sym_hashes++)
2807 {
2808 struct elf32_hppa_link_hash_entry *hash;
2809
2810 hash = (struct elf32_hppa_link_hash_entry *) *sym_hashes;
2811
2812 while (hash->elf.root.type == bfd_link_hash_indirect
2813 || hash->elf.root.type == bfd_link_hash_warning)
2814 hash = ((struct elf32_hppa_link_hash_entry *)
2815 hash->elf.root.u.i.link);
2816
2817 /* At this point in the link, undefined syms have been
2818 resolved, so we need to check that the symbol was
2819 defined in this BFD. */
2820 if ((hash->elf.root.type == bfd_link_hash_defined
2821 || hash->elf.root.type == bfd_link_hash_defweak)
2822 && hash->elf.type == STT_FUNC
2823 && hash->elf.root.u.def.section->output_section != NULL
2824 && (hash->elf.root.u.def.section->output_section->owner
2825 == output_bfd)
2826 && hash->elf.root.u.def.section->owner == input_bfd
2827 && (hash->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
2828 && !(hash->elf.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)
2829 && ELF_ST_VISIBILITY (hash->elf.other) == STV_DEFAULT)
2830 {
2831 asection *sec;
2832 const char *stub_name;
2833 struct elf32_hppa_stub_hash_entry *stub_entry;
2834
2835 sec = hash->elf.root.u.def.section;
2836 stub_name = hash->elf.root.root.string;
2837 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
2838 stub_name,
2839 false, false);
2840 if (stub_entry == NULL)
2841 {
2842 stub_entry = hppa_add_stub (stub_name, sec, htab);
2843 if (!stub_entry)
2844 goto error_ret_free_local;
2845
2846 stub_entry->target_value = hash->elf.root.u.def.value;
2847 stub_entry->target_section = hash->elf.root.u.def.section;
2848 stub_entry->stub_type = hppa_stub_export;
2849 stub_entry->h = hash;
2850 stub_changed = 1;
2851 }
2852 else
2853 {
2854 (*_bfd_error_handler) (_("%s: duplicate export stub %s"),
2855 bfd_archive_filename (input_bfd),
2856 stub_name);
2857 }
2858 }
2859 }
2860 }
2861 }
2862
2863 while (1)
2864 {
2865 asection *stub_sec;
2866
2867 for (input_bfd = info->input_bfds, bfd_indx = 0;
2868 input_bfd != NULL;
2869 input_bfd = input_bfd->link_next, bfd_indx++)
2870 {
2871 Elf_Internal_Shdr *symtab_hdr;
2872
2873 /* We'll need the symbol table in a second. */
2874 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2875 if (symtab_hdr->sh_info == 0)
2876 continue;
2877
2878 local_syms = all_local_syms[bfd_indx];
2879
2880 /* Walk over each section attached to the input bfd. */
2881 for (section = input_bfd->sections;
2882 section != NULL;
2883 section = section->next)
2884 {
2885 Elf_Internal_Shdr *input_rel_hdr;
2886 Elf32_External_Rela *external_relocs, *erelaend, *erela;
2887 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2888
2889 /* If there aren't any relocs, then there's nothing more
2890 to do. */
2891 if ((section->flags & SEC_RELOC) == 0
2892 || section->reloc_count == 0)
2893 continue;
2894
2895 /* If this section is a link-once section that will be
2896 discarded, then don't create any stubs. */
2897 if (section->output_section == NULL
2898 || section->output_section->owner != output_bfd)
2899 continue;
2900
2901 /* Allocate space for the external relocations. */
2902 amt = section->reloc_count;
2903 amt *= sizeof (Elf32_External_Rela);
2904 external_relocs = (Elf32_External_Rela *) bfd_malloc (amt);
2905 if (external_relocs == NULL)
2906 {
2907 goto error_ret_free_local;
2908 }
2909
2910 /* Likewise for the internal relocations. */
2911 amt = section->reloc_count;
2912 amt *= sizeof (Elf_Internal_Rela);
2913 internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
2914 if (internal_relocs == NULL)
2915 {
2916 free (external_relocs);
2917 goto error_ret_free_local;
2918 }
2919
2920 /* Read in the external relocs. */
2921 input_rel_hdr = &elf_section_data (section)->rel_hdr;
2922 if (bfd_seek (input_bfd, input_rel_hdr->sh_offset, SEEK_SET) != 0
2923 || bfd_bread (external_relocs,
2924 input_rel_hdr->sh_size,
2925 input_bfd) != input_rel_hdr->sh_size)
2926 {
2927 free (external_relocs);
2928 error_ret_free_internal:
2929 free (internal_relocs);
2930 goto error_ret_free_local;
2931 }
2932
2933 /* Swap in the relocs. */
2934 erela = external_relocs;
2935 erelaend = erela + section->reloc_count;
2936 irela = internal_relocs;
2937 for (; erela < erelaend; erela++, irela++)
2938 bfd_elf32_swap_reloca_in (input_bfd, erela, irela);
2939
2940 /* We're done with the external relocs, free them. */
2941 free (external_relocs);
2942
2943 /* Now examine each relocation. */
2944 irela = internal_relocs;
2945 irelaend = irela + section->reloc_count;
2946 for (; irela < irelaend; irela++)
2947 {
2948 unsigned int r_type, r_indx;
2949 enum elf32_hppa_stub_type stub_type;
2950 struct elf32_hppa_stub_hash_entry *stub_entry;
2951 asection *sym_sec;
2952 bfd_vma sym_value;
2953 bfd_vma destination;
2954 struct elf32_hppa_link_hash_entry *hash;
2955 char *stub_name;
2956 const asection *id_sec;
2957
2958 r_type = ELF32_R_TYPE (irela->r_info);
2959 r_indx = ELF32_R_SYM (irela->r_info);
2960
2961 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2962 {
2963 bfd_set_error (bfd_error_bad_value);
2964 goto error_ret_free_internal;
2965 }
2966
2967 /* Only look for stubs on call instructions. */
2968 if (r_type != (unsigned int) R_PARISC_PCREL12F
2969 && r_type != (unsigned int) R_PARISC_PCREL17F
2970 && r_type != (unsigned int) R_PARISC_PCREL22F)
2971 continue;
2972
2973 /* Now determine the call target, its name, value,
2974 section. */
2975 sym_sec = NULL;
2976 sym_value = 0;
2977 destination = 0;
2978 hash = NULL;
2979 if (r_indx < symtab_hdr->sh_info)
2980 {
2981 /* It's a local symbol. */
2982 Elf_Internal_Sym *sym;
2983 Elf_Internal_Shdr *hdr;
2984
2985 sym = local_syms + r_indx;
2986 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2987 sym_sec = hdr->bfd_section;
2988 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2989 sym_value = sym->st_value;
2990 destination = (sym_value + irela->r_addend
2991 + sym_sec->output_offset
2992 + sym_sec->output_section->vma);
2993 }
2994 else
2995 {
2996 /* It's an external symbol. */
2997 int e_indx;
2998
2999 e_indx = r_indx - symtab_hdr->sh_info;
3000 hash = ((struct elf32_hppa_link_hash_entry *)
3001 elf_sym_hashes (input_bfd)[e_indx]);
3002
3003 while (hash->elf.root.type == bfd_link_hash_indirect
3004 || hash->elf.root.type == bfd_link_hash_warning)
3005 hash = ((struct elf32_hppa_link_hash_entry *)
3006 hash->elf.root.u.i.link);
3007
3008 if (hash->elf.root.type == bfd_link_hash_defined
3009 || hash->elf.root.type == bfd_link_hash_defweak)
3010 {
3011 sym_sec = hash->elf.root.u.def.section;
3012 sym_value = hash->elf.root.u.def.value;
3013 if (sym_sec->output_section != NULL)
3014 destination = (sym_value + irela->r_addend
3015 + sym_sec->output_offset
3016 + sym_sec->output_section->vma);
3017 }
3018 else if (hash->elf.root.type == bfd_link_hash_undefweak)
3019 {
3020 if (! info->shared)
3021 continue;
3022 }
3023 else if (hash->elf.root.type == bfd_link_hash_undefined)
3024 {
3025 if (! (info->shared
3026 && !info->no_undefined
3027 && (ELF_ST_VISIBILITY (hash->elf.other)
3028 == STV_DEFAULT)))
3029 continue;
3030 }
3031 else
3032 {
3033 bfd_set_error (bfd_error_bad_value);
3034 goto error_ret_free_internal;
3035 }
3036 }
3037
3038 /* Determine what (if any) linker stub is needed. */
3039 stub_type = hppa_type_of_stub (section, irela, hash,
3040 destination);
3041 if (stub_type == hppa_stub_none)
3042 continue;
3043
3044 /* Support for grouping stub sections. */
3045 id_sec = htab->stub_group[section->id].link_sec;
3046
3047 /* Get the name of this stub. */
3048 stub_name = hppa_stub_name (id_sec, sym_sec, hash, irela);
3049 if (!stub_name)
3050 goto error_ret_free_internal;
3051
3052 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
3053 stub_name,
3054 false, false);
3055 if (stub_entry != NULL)
3056 {
3057 /* The proper stub has already been created. */
3058 free (stub_name);
3059 continue;
3060 }
3061
3062 stub_entry = hppa_add_stub (stub_name, section, htab);
3063 if (stub_entry == NULL)
3064 {
3065 free (stub_name);
3066 goto error_ret_free_local;
3067 }
3068
3069 stub_entry->target_value = sym_value;
3070 stub_entry->target_section = sym_sec;
3071 stub_entry->stub_type = stub_type;
3072 if (info->shared)
3073 {
3074 if (stub_type == hppa_stub_import)
3075 stub_entry->stub_type = hppa_stub_import_shared;
3076 else if (stub_type == hppa_stub_long_branch)
3077 stub_entry->stub_type = hppa_stub_long_branch_shared;
3078 }
3079 stub_entry->h = hash;
3080 stub_changed = 1;
3081 }
3082
3083 /* We're done with the internal relocs, free them. */
3084 free (internal_relocs);
3085 }
3086 }
3087
3088 if (!stub_changed)
3089 break;
3090
3091 /* OK, we've added some stubs. Find out the new size of the
3092 stub sections. */
3093 for (stub_sec = htab->stub_bfd->sections;
3094 stub_sec != NULL;
3095 stub_sec = stub_sec->next)
3096 {
3097 stub_sec->_raw_size = 0;
3098 stub_sec->_cooked_size = 0;
3099 }
3100
3101 bfd_hash_traverse (&htab->stub_hash_table, hppa_size_one_stub, htab);
3102
3103 /* Ask the linker to do its stuff. */
3104 (*htab->layout_sections_again) ();
3105 stub_changed = 0;
3106 }
3107
3108 ret = 1;
3109
3110 error_ret_free_local:
3111 while (bfd_count-- > 0)
3112 if (all_local_syms[bfd_count])
3113 free (all_local_syms[bfd_count]);
3114 free (all_local_syms);
3115
3116 return ret;
3117 }
3118
3119 /* For a final link, this function is called after we have sized the
3120 stubs to provide a value for __gp. */
3121
3122 boolean
3123 elf32_hppa_set_gp (abfd, info)
3124 bfd *abfd;
3125 struct bfd_link_info *info;
3126 {
3127 struct elf32_hppa_link_hash_table *htab;
3128 struct elf_link_hash_entry *h;
3129 asection *sec;
3130 bfd_vma gp_val;
3131
3132 htab = hppa_link_hash_table (info);
3133 h = elf_link_hash_lookup (&htab->elf, "$global$", false, false, false);
3134
3135 if (h != NULL
3136 && (h->root.type == bfd_link_hash_defined
3137 || h->root.type == bfd_link_hash_defweak))
3138 {
3139 gp_val = h->root.u.def.value;
3140 sec = h->root.u.def.section;
3141 }
3142 else
3143 {
3144 /* Choose to point our LTP at, in this order, one of .plt, .got,
3145 or .data, if these sections exist. In the case of choosing
3146 .plt try to make the LTP ideal for addressing anywhere in the
3147 .plt or .got with a 14 bit signed offset. Typically, the end
3148 of the .plt is the start of the .got, so choose .plt + 0x2000
3149 if either the .plt or .got is larger than 0x2000. If both
3150 the .plt and .got are smaller than 0x2000, choose the end of
3151 the .plt section. */
3152
3153 sec = htab->splt;
3154 if (sec != NULL)
3155 {
3156 gp_val = sec->_raw_size;
3157 if (gp_val > 0x2000
3158 || (htab->sgot && htab->sgot->_raw_size > 0x2000))
3159 {
3160 gp_val = 0x2000;
3161 }
3162 }
3163 else
3164 {
3165 gp_val = 0;
3166 sec = htab->sgot;
3167 if (sec != NULL)
3168 {
3169 /* We know we don't have a .plt. If .got is large,
3170 offset our LTP. */
3171 if (sec->_raw_size > 0x2000)
3172 gp_val = 0x2000;
3173 }
3174 else
3175 {
3176 /* No .plt or .got. Who cares what the LTP is? */
3177 sec = bfd_get_section_by_name (abfd, ".data");
3178 }
3179 }
3180
3181 if (h != NULL)
3182 {
3183 h->root.type = bfd_link_hash_defined;
3184 h->root.u.def.value = gp_val;
3185 if (sec != NULL)
3186 h->root.u.def.section = sec;
3187 else
3188 h->root.u.def.section = bfd_abs_section_ptr;
3189 }
3190 }
3191
3192 if (sec != NULL && sec->output_section != NULL)
3193 gp_val += sec->output_section->vma + sec->output_offset;
3194
3195 elf_gp (abfd) = gp_val;
3196 return true;
3197 }
3198
3199 /* Build all the stubs associated with the current output file. The
3200 stubs are kept in a hash table attached to the main linker hash
3201 table. We also set up the .plt entries for statically linked PIC
3202 functions here. This function is called via hppaelf_finish in the
3203 linker. */
3204
3205 boolean
3206 elf32_hppa_build_stubs (info)
3207 struct bfd_link_info *info;
3208 {
3209 asection *stub_sec;
3210 struct bfd_hash_table *table;
3211 struct elf32_hppa_link_hash_table *htab;
3212
3213 htab = hppa_link_hash_table (info);
3214
3215 for (stub_sec = htab->stub_bfd->sections;
3216 stub_sec != NULL;
3217 stub_sec = stub_sec->next)
3218 {
3219 bfd_size_type size;
3220
3221 /* Allocate memory to hold the linker stubs. */
3222 size = stub_sec->_raw_size;
3223 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
3224 if (stub_sec->contents == NULL && size != 0)
3225 return false;
3226 stub_sec->_raw_size = 0;
3227 }
3228
3229 /* Build the stubs as directed by the stub hash table. */
3230 table = &htab->stub_hash_table;
3231 bfd_hash_traverse (table, hppa_build_one_stub, info);
3232
3233 return true;
3234 }
3235
3236 /* Perform a final link. */
3237
3238 static boolean
3239 elf32_hppa_final_link (abfd, info)
3240 bfd *abfd;
3241 struct bfd_link_info *info;
3242 {
3243 asection *s;
3244
3245 /* Invoke the regular ELF linker to do all the work. */
3246 if (!bfd_elf32_bfd_final_link (abfd, info))
3247 return false;
3248
3249 /* If we're producing a final executable, sort the contents of the
3250 unwind section. Magic section names, but this is much safer than
3251 having elf32_hppa_relocate_section remember where SEGREL32 relocs
3252 occurred. Consider what happens if someone inept creates a
3253 linker script that puts unwind information in .text. */
3254 s = bfd_get_section_by_name (abfd, ".PARISC.unwind");
3255 if (s != NULL)
3256 {
3257 bfd_size_type size;
3258 char *contents;
3259
3260 size = s->_raw_size;
3261 contents = bfd_malloc (size);
3262 if (contents == NULL)
3263 return false;
3264
3265 if (! bfd_get_section_contents (abfd, s, contents, (file_ptr) 0, size))
3266 return false;
3267
3268 qsort (contents, (size_t) (size / 16), 16, hppa_unwind_entry_compare);
3269
3270 if (! bfd_set_section_contents (abfd, s, contents, (file_ptr) 0, size))
3271 return false;
3272 }
3273 return true;
3274 }
3275
3276 /* Record the lowest address for the data and text segments. */
3277
3278 static void
3279 hppa_record_segment_addr (abfd, section, data)
3280 bfd *abfd ATTRIBUTE_UNUSED;
3281 asection *section;
3282 PTR data;
3283 {
3284 struct elf32_hppa_link_hash_table *htab;
3285
3286 htab = (struct elf32_hppa_link_hash_table *) data;
3287
3288 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3289 {
3290 bfd_vma value = section->vma - section->filepos;
3291
3292 if ((section->flags & SEC_READONLY) != 0)
3293 {
3294 if (value < htab->text_segment_base)
3295 htab->text_segment_base = value;
3296 }
3297 else
3298 {
3299 if (value < htab->data_segment_base)
3300 htab->data_segment_base = value;
3301 }
3302 }
3303 }
3304
3305 /* Perform a relocation as part of a final link. */
3306
3307 static bfd_reloc_status_type
3308 final_link_relocate (input_section, contents, rel, value, htab, sym_sec, h)
3309 asection *input_section;
3310 bfd_byte *contents;
3311 const Elf_Internal_Rela *rel;
3312 bfd_vma value;
3313 struct elf32_hppa_link_hash_table *htab;
3314 asection *sym_sec;
3315 struct elf32_hppa_link_hash_entry *h;
3316 {
3317 int insn;
3318 unsigned int r_type = ELF32_R_TYPE (rel->r_info);
3319 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3320 int r_format = howto->bitsize;
3321 enum hppa_reloc_field_selector_type_alt r_field;
3322 bfd *input_bfd = input_section->owner;
3323 bfd_vma offset = rel->r_offset;
3324 bfd_vma max_branch_offset = 0;
3325 bfd_byte *hit_data = contents + offset;
3326 bfd_signed_vma addend = rel->r_addend;
3327 bfd_vma location;
3328 struct elf32_hppa_stub_hash_entry *stub_entry = NULL;
3329 int val;
3330
3331 if (r_type == R_PARISC_NONE)
3332 return bfd_reloc_ok;
3333
3334 insn = bfd_get_32 (input_bfd, hit_data);
3335
3336 /* Find out where we are and where we're going. */
3337 location = (offset +
3338 input_section->output_offset +
3339 input_section->output_section->vma);
3340
3341 switch (r_type)
3342 {
3343 case R_PARISC_PCREL12F:
3344 case R_PARISC_PCREL17F:
3345 case R_PARISC_PCREL22F:
3346 /* If this is a call to a function defined in another dynamic
3347 library, or if it is a call to a PIC function in the same
3348 object, or if this is a shared link and it is a call to a
3349 weak symbol which may or may not be in the same object, then
3350 find the import stub in the stub hash. */
3351 if (sym_sec == NULL
3352 || sym_sec->output_section == NULL
3353 || (h != NULL
3354 && ((h->maybe_pic_call
3355 && !(input_section->flags & SEC_HAS_GOT_REF))
3356 || (h->elf.root.type == bfd_link_hash_defweak
3357 && h->elf.dynindx != -1
3358 && h->elf.plt.offset != (bfd_vma) -1))))
3359 {
3360 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3361 h, rel, htab);
3362 if (stub_entry != NULL)
3363 {
3364 value = (stub_entry->stub_offset
3365 + stub_entry->stub_sec->output_offset
3366 + stub_entry->stub_sec->output_section->vma);
3367 addend = 0;
3368 }
3369 else if (sym_sec == NULL && h != NULL
3370 && h->elf.root.type == bfd_link_hash_undefweak)
3371 {
3372 /* It's OK if undefined weak. Calls to undefined weak
3373 symbols behave as if the "called" function
3374 immediately returns. We can thus call to a weak
3375 function without first checking whether the function
3376 is defined. */
3377 value = location;
3378 addend = 8;
3379 }
3380 else
3381 return bfd_reloc_notsupported;
3382 }
3383 /* Fall thru. */
3384
3385 case R_PARISC_PCREL21L:
3386 case R_PARISC_PCREL17C:
3387 case R_PARISC_PCREL17R:
3388 case R_PARISC_PCREL14R:
3389 case R_PARISC_PCREL14F:
3390 /* Make it a pc relative offset. */
3391 value -= location;
3392 addend -= 8;
3393 break;
3394
3395 case R_PARISC_DPREL21L:
3396 case R_PARISC_DPREL14R:
3397 case R_PARISC_DPREL14F:
3398 /* For all the DP relative relocations, we need to examine the symbol's
3399 section. If it's a code section, then "data pointer relative" makes
3400 no sense. In that case we don't adjust the "value", and for 21 bit
3401 addil instructions, we change the source addend register from %dp to
3402 %r0. This situation commonly arises when a variable's "constness"
3403 is declared differently from the way the variable is defined. For
3404 instance: "extern int foo" with foo defined as "const int foo". */
3405 if (sym_sec == NULL)
3406 break;
3407 if ((sym_sec->flags & SEC_CODE) != 0)
3408 {
3409 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3410 == (((int) OP_ADDIL << 26) | (27 << 21)))
3411 {
3412 insn &= ~ (0x1f << 21);
3413 #if 1 /* debug them. */
3414 (*_bfd_error_handler)
3415 (_("%s(%s+0x%lx): fixing %s"),
3416 bfd_archive_filename (input_bfd),
3417 input_section->name,
3418 (long) rel->r_offset,
3419 howto->name);
3420 #endif
3421 }
3422 /* Now try to make things easy for the dynamic linker. */
3423
3424 break;
3425 }
3426 /* Fall thru. */
3427
3428 case R_PARISC_DLTIND21L:
3429 case R_PARISC_DLTIND14R:
3430 case R_PARISC_DLTIND14F:
3431 value -= elf_gp (input_section->output_section->owner);
3432 break;
3433
3434 case R_PARISC_SEGREL32:
3435 if ((sym_sec->flags & SEC_CODE) != 0)
3436 value -= htab->text_segment_base;
3437 else
3438 value -= htab->data_segment_base;
3439 break;
3440
3441 default:
3442 break;
3443 }
3444
3445 switch (r_type)
3446 {
3447 case R_PARISC_DIR32:
3448 case R_PARISC_DIR14F:
3449 case R_PARISC_DIR17F:
3450 case R_PARISC_PCREL17C:
3451 case R_PARISC_PCREL14F:
3452 case R_PARISC_DPREL14F:
3453 case R_PARISC_PLABEL32:
3454 case R_PARISC_DLTIND14F:
3455 case R_PARISC_SEGBASE:
3456 case R_PARISC_SEGREL32:
3457 r_field = e_fsel;
3458 break;
3459
3460 case R_PARISC_DIR21L:
3461 case R_PARISC_PCREL21L:
3462 case R_PARISC_DPREL21L:
3463 case R_PARISC_PLABEL21L:
3464 case R_PARISC_DLTIND21L:
3465 r_field = e_lrsel;
3466 break;
3467
3468 case R_PARISC_DIR17R:
3469 case R_PARISC_PCREL17R:
3470 case R_PARISC_DIR14R:
3471 case R_PARISC_PCREL14R:
3472 case R_PARISC_DPREL14R:
3473 case R_PARISC_PLABEL14R:
3474 case R_PARISC_DLTIND14R:
3475 r_field = e_rrsel;
3476 break;
3477
3478 case R_PARISC_PCREL12F:
3479 case R_PARISC_PCREL17F:
3480 case R_PARISC_PCREL22F:
3481 r_field = e_fsel;
3482
3483 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3484 {
3485 max_branch_offset = (1 << (17-1)) << 2;
3486 }
3487 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3488 {
3489 max_branch_offset = (1 << (12-1)) << 2;
3490 }
3491 else
3492 {
3493 max_branch_offset = (1 << (22-1)) << 2;
3494 }
3495
3496 /* sym_sec is NULL on undefined weak syms or when shared on
3497 undefined syms. We've already checked for a stub for the
3498 shared undefined case. */
3499 if (sym_sec == NULL)
3500 break;
3501
3502 /* If the branch is out of reach, then redirect the
3503 call to the local stub for this function. */
3504 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3505 {
3506 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3507 h, rel, htab);
3508 if (stub_entry == NULL)
3509 return bfd_reloc_notsupported;
3510
3511 /* Munge up the value and addend so that we call the stub
3512 rather than the procedure directly. */
3513 value = (stub_entry->stub_offset
3514 + stub_entry->stub_sec->output_offset
3515 + stub_entry->stub_sec->output_section->vma
3516 - location);
3517 addend = -8;
3518 }
3519 break;
3520
3521 /* Something we don't know how to handle. */
3522 default:
3523 return bfd_reloc_notsupported;
3524 }
3525
3526 /* Make sure we can reach the stub. */
3527 if (max_branch_offset != 0
3528 && value + addend + max_branch_offset >= 2*max_branch_offset)
3529 {
3530 (*_bfd_error_handler)
3531 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3532 bfd_archive_filename (input_bfd),
3533 input_section->name,
3534 (long) rel->r_offset,
3535 stub_entry->root.string);
3536 bfd_set_error (bfd_error_bad_value);
3537 return bfd_reloc_notsupported;
3538 }
3539
3540 val = hppa_field_adjust (value, addend, r_field);
3541
3542 switch (r_type)
3543 {
3544 case R_PARISC_PCREL12F:
3545 case R_PARISC_PCREL17C:
3546 case R_PARISC_PCREL17F:
3547 case R_PARISC_PCREL17R:
3548 case R_PARISC_PCREL22F:
3549 case R_PARISC_DIR17F:
3550 case R_PARISC_DIR17R:
3551 /* This is a branch. Divide the offset by four.
3552 Note that we need to decide whether it's a branch or
3553 otherwise by inspecting the reloc. Inspecting insn won't
3554 work as insn might be from a .word directive. */
3555 val >>= 2;
3556 break;
3557
3558 default:
3559 break;
3560 }
3561
3562 insn = hppa_rebuild_insn (insn, val, r_format);
3563
3564 /* Update the instruction word. */
3565 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3566 return bfd_reloc_ok;
3567 }
3568
3569 /* Relocate an HPPA ELF section. */
3570
3571 static boolean
3572 elf32_hppa_relocate_section (output_bfd, info, input_bfd, input_section,
3573 contents, relocs, local_syms, local_sections)
3574 bfd *output_bfd;
3575 struct bfd_link_info *info;
3576 bfd *input_bfd;
3577 asection *input_section;
3578 bfd_byte *contents;
3579 Elf_Internal_Rela *relocs;
3580 Elf_Internal_Sym *local_syms;
3581 asection **local_sections;
3582 {
3583 bfd_vma *local_got_offsets;
3584 struct elf32_hppa_link_hash_table *htab;
3585 Elf_Internal_Shdr *symtab_hdr;
3586 Elf_Internal_Rela *rel;
3587 Elf_Internal_Rela *relend;
3588
3589 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3590
3591 htab = hppa_link_hash_table (info);
3592 local_got_offsets = elf_local_got_offsets (input_bfd);
3593
3594 rel = relocs;
3595 relend = relocs + input_section->reloc_count;
3596 for (; rel < relend; rel++)
3597 {
3598 unsigned int r_type;
3599 reloc_howto_type *howto;
3600 unsigned int r_symndx;
3601 struct elf32_hppa_link_hash_entry *h;
3602 Elf_Internal_Sym *sym;
3603 asection *sym_sec;
3604 bfd_vma relocation;
3605 bfd_reloc_status_type r;
3606 const char *sym_name;
3607 boolean plabel;
3608
3609 r_type = ELF32_R_TYPE (rel->r_info);
3610 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3611 {
3612 bfd_set_error (bfd_error_bad_value);
3613 return false;
3614 }
3615 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3616 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3617 continue;
3618
3619 r_symndx = ELF32_R_SYM (rel->r_info);
3620
3621 if (info->relocateable)
3622 {
3623 /* This is a relocatable link. We don't have to change
3624 anything, unless the reloc is against a section symbol,
3625 in which case we have to adjust according to where the
3626 section symbol winds up in the output section. */
3627 if (r_symndx < symtab_hdr->sh_info)
3628 {
3629 sym = local_syms + r_symndx;
3630 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3631 {
3632 sym_sec = local_sections[r_symndx];
3633 rel->r_addend += sym_sec->output_offset;
3634 }
3635 }
3636 continue;
3637 }
3638
3639 /* This is a final link. */
3640 h = NULL;
3641 sym = NULL;
3642 sym_sec = NULL;
3643 if (r_symndx < symtab_hdr->sh_info)
3644 {
3645 /* This is a local symbol, h defaults to NULL. */
3646 sym = local_syms + r_symndx;
3647 sym_sec = local_sections[r_symndx];
3648 relocation = ((ELF_ST_TYPE (sym->st_info) == STT_SECTION
3649 ? 0 : sym->st_value)
3650 + sym_sec->output_offset
3651 + sym_sec->output_section->vma);
3652 }
3653 else
3654 {
3655 int indx;
3656
3657 /* It's a global; Find its entry in the link hash. */
3658 indx = r_symndx - symtab_hdr->sh_info;
3659 h = ((struct elf32_hppa_link_hash_entry *)
3660 elf_sym_hashes (input_bfd)[indx]);
3661 while (h->elf.root.type == bfd_link_hash_indirect
3662 || h->elf.root.type == bfd_link_hash_warning)
3663 h = (struct elf32_hppa_link_hash_entry *) h->elf.root.u.i.link;
3664
3665 relocation = 0;
3666 if (h->elf.root.type == bfd_link_hash_defined
3667 || h->elf.root.type == bfd_link_hash_defweak)
3668 {
3669 sym_sec = h->elf.root.u.def.section;
3670 /* If sym_sec->output_section is NULL, then it's a
3671 symbol defined in a shared library. */
3672 if (sym_sec->output_section != NULL)
3673 relocation = (h->elf.root.u.def.value
3674 + sym_sec->output_offset
3675 + sym_sec->output_section->vma);
3676 }
3677 else if (h->elf.root.type == bfd_link_hash_undefweak)
3678 ;
3679 else if (info->shared && !info->no_undefined
3680 && ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
3681 && h->elf.type != STT_PARISC_MILLI)
3682 {
3683 if (info->symbolic && !info->allow_shlib_undefined)
3684 if (!((*info->callbacks->undefined_symbol)
3685 (info, h->elf.root.root.string, input_bfd,
3686 input_section, rel->r_offset, false)))
3687 return false;
3688 }
3689 else
3690 {
3691 if (!((*info->callbacks->undefined_symbol)
3692 (info, h->elf.root.root.string, input_bfd,
3693 input_section, rel->r_offset, true)))
3694 return false;
3695 }
3696 }
3697
3698 /* Do any required modifications to the relocation value, and
3699 determine what types of dynamic info we need to output, if
3700 any. */
3701 plabel = 0;
3702 switch (r_type)
3703 {
3704 case R_PARISC_DLTIND14F:
3705 case R_PARISC_DLTIND14R:
3706 case R_PARISC_DLTIND21L:
3707 {
3708 bfd_vma off;
3709 boolean do_got = 0;
3710
3711 /* Relocation is to the entry for this symbol in the
3712 global offset table. */
3713 if (h != NULL)
3714 {
3715 boolean dyn;
3716
3717 off = h->elf.got.offset;
3718 dyn = htab->elf.dynamic_sections_created;
3719 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, &h->elf))
3720 {
3721 /* If we aren't going to call finish_dynamic_symbol,
3722 then we need to handle initialisation of the .got
3723 entry and create needed relocs here. Since the
3724 offset must always be a multiple of 4, we use the
3725 least significant bit to record whether we have
3726 initialised it already. */
3727 if ((off & 1) != 0)
3728 off &= ~1;
3729 else
3730 {
3731 h->elf.got.offset |= 1;
3732 do_got = 1;
3733 }
3734 }
3735 }
3736 else
3737 {
3738 /* Local symbol case. */
3739 if (local_got_offsets == NULL)
3740 abort ();
3741
3742 off = local_got_offsets[r_symndx];
3743
3744 /* The offset must always be a multiple of 4. We use
3745 the least significant bit to record whether we have
3746 already generated the necessary reloc. */
3747 if ((off & 1) != 0)
3748 off &= ~1;
3749 else
3750 {
3751 local_got_offsets[r_symndx] |= 1;
3752 do_got = 1;
3753 }
3754 }
3755
3756 if (do_got)
3757 {
3758 if (info->shared)
3759 {
3760 /* Output a dynamic relocation for this GOT entry.
3761 In this case it is relative to the base of the
3762 object because the symbol index is zero. */
3763 Elf_Internal_Rela outrel;
3764 asection *srelgot = htab->srelgot;
3765 Elf32_External_Rela *loc;
3766
3767 outrel.r_offset = (off
3768 + htab->sgot->output_offset
3769 + htab->sgot->output_section->vma);
3770 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3771 outrel.r_addend = relocation;
3772 loc = (Elf32_External_Rela *) srelgot->contents;
3773 loc += srelgot->reloc_count++;
3774 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3775 }
3776 else
3777 bfd_put_32 (output_bfd, relocation,
3778 htab->sgot->contents + off);
3779 }
3780
3781 if (off >= (bfd_vma) -2)
3782 abort ();
3783
3784 /* Add the base of the GOT to the relocation value. */
3785 relocation = (off
3786 + htab->sgot->output_offset
3787 + htab->sgot->output_section->vma);
3788 }
3789 break;
3790
3791 case R_PARISC_SEGREL32:
3792 /* If this is the first SEGREL relocation, then initialize
3793 the segment base values. */
3794 if (htab->text_segment_base == (bfd_vma) -1)
3795 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3796 break;
3797
3798 case R_PARISC_PLABEL14R:
3799 case R_PARISC_PLABEL21L:
3800 case R_PARISC_PLABEL32:
3801 if (htab->elf.dynamic_sections_created)
3802 {
3803 bfd_vma off;
3804 boolean do_plt = 0;
3805
3806 /* If we have a global symbol with a PLT slot, then
3807 redirect this relocation to it. */
3808 if (h != NULL)
3809 {
3810 off = h->elf.plt.offset;
3811 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, &h->elf))
3812 {
3813 /* In a non-shared link, adjust_dynamic_symbols
3814 isn't called for symbols forced local. We
3815 need to write out the plt entry here. */
3816 if ((off & 1) != 0)
3817 off &= ~1;
3818 else
3819 {
3820 h->elf.plt.offset |= 1;
3821 do_plt = 1;
3822 }
3823 }
3824 }
3825 else
3826 {
3827 bfd_vma *local_plt_offsets;
3828
3829 if (local_got_offsets == NULL)
3830 abort ();
3831
3832 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3833 off = local_plt_offsets[r_symndx];
3834
3835 /* As for the local .got entry case, we use the last
3836 bit to record whether we've already initialised
3837 this local .plt entry. */
3838 if ((off & 1) != 0)
3839 off &= ~1;
3840 else
3841 {
3842 local_plt_offsets[r_symndx] |= 1;
3843 do_plt = 1;
3844 }
3845 }
3846
3847 if (do_plt)
3848 {
3849 if (info->shared)
3850 {
3851 /* Output a dynamic IPLT relocation for this
3852 PLT entry. */
3853 Elf_Internal_Rela outrel;
3854 asection *srelplt = htab->srelplt;
3855 Elf32_External_Rela *loc;
3856
3857 outrel.r_offset = (off
3858 + htab->splt->output_offset
3859 + htab->splt->output_section->vma);
3860 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3861 outrel.r_addend = relocation;
3862 loc = (Elf32_External_Rela *) srelplt->contents;
3863 loc += srelplt->reloc_count++;
3864 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3865 }
3866 else
3867 {
3868 bfd_put_32 (output_bfd,
3869 relocation,
3870 htab->splt->contents + off);
3871 bfd_put_32 (output_bfd,
3872 elf_gp (htab->splt->output_section->owner),
3873 htab->splt->contents + off + 4);
3874 }
3875 }
3876
3877 if (off >= (bfd_vma) -2)
3878 abort ();
3879
3880 /* PLABELs contain function pointers. Relocation is to
3881 the entry for the function in the .plt. The magic +2
3882 offset signals to $$dyncall that the function pointer
3883 is in the .plt and thus has a gp pointer too.
3884 Exception: Undefined PLABELs should have a value of
3885 zero. */
3886 if (h == NULL
3887 || (h->elf.root.type != bfd_link_hash_undefweak
3888 && h->elf.root.type != bfd_link_hash_undefined))
3889 {
3890 relocation = (off
3891 + htab->splt->output_offset
3892 + htab->splt->output_section->vma
3893 + 2);
3894 }
3895 plabel = 1;
3896 }
3897 /* Fall through and possibly emit a dynamic relocation. */
3898
3899 case R_PARISC_DIR17F:
3900 case R_PARISC_DIR17R:
3901 case R_PARISC_DIR14F:
3902 case R_PARISC_DIR14R:
3903 case R_PARISC_DIR21L:
3904 case R_PARISC_DPREL14F:
3905 case R_PARISC_DPREL14R:
3906 case R_PARISC_DPREL21L:
3907 case R_PARISC_DIR32:
3908 /* r_symndx will be zero only for relocs against symbols
3909 from removed linkonce sections, or sections discarded by
3910 a linker script. */
3911 if (r_symndx == 0
3912 || (input_section->flags & SEC_ALLOC) == 0)
3913 break;
3914
3915 /* The reloc types handled here and this conditional
3916 expression must match the code in ..check_relocs and
3917 allocate_dynrelocs. ie. We need exactly the same condition
3918 as in ..check_relocs, with some extra conditions (dynindx
3919 test in this case) to cater for relocs removed by
3920 allocate_dynrelocs. If you squint, the non-shared test
3921 here does indeed match the one in ..check_relocs, the
3922 difference being that here we test DEF_DYNAMIC as well as
3923 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3924 which is why we can't use just that test here.
3925 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3926 there all files have not been loaded. */
3927 if ((info->shared
3928 && (IS_ABSOLUTE_RELOC (r_type)
3929 || (h != NULL
3930 && h->elf.dynindx != -1
3931 && (!info->symbolic
3932 || (h->elf.elf_link_hash_flags
3933 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
3934 || (!info->shared
3935 && h != NULL
3936 && h->elf.dynindx != -1
3937 && (h->elf.elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
3938 && (((h->elf.elf_link_hash_flags
3939 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3940 && (h->elf.elf_link_hash_flags
3941 & ELF_LINK_HASH_DEF_REGULAR) == 0)
3942 || h->elf.root.type == bfd_link_hash_undefweak
3943 || h->elf.root.type == bfd_link_hash_undefined)))
3944 {
3945 Elf_Internal_Rela outrel;
3946 boolean skip;
3947 asection *sreloc;
3948 Elf32_External_Rela *loc;
3949
3950 /* When generating a shared object, these relocations
3951 are copied into the output file to be resolved at run
3952 time. */
3953
3954 outrel.r_offset = rel->r_offset;
3955 outrel.r_addend = rel->r_addend;
3956 skip = false;
3957 if (elf_section_data (input_section)->stab_info != NULL)
3958 {
3959 bfd_vma off;
3960
3961 off = (_bfd_stab_section_offset
3962 (output_bfd, &htab->elf.stab_info,
3963 input_section,
3964 &elf_section_data (input_section)->stab_info,
3965 rel->r_offset));
3966 if (off == (bfd_vma) -1)
3967 skip = true;
3968 outrel.r_offset = off;
3969 }
3970
3971 outrel.r_offset += (input_section->output_offset
3972 + input_section->output_section->vma);
3973
3974 if (skip)
3975 {
3976 memset (&outrel, 0, sizeof (outrel));
3977 }
3978 else if (h != NULL
3979 && h->elf.dynindx != -1
3980 && (plabel
3981 || !IS_ABSOLUTE_RELOC (r_type)
3982 || !info->shared
3983 || !info->symbolic
3984 || (h->elf.elf_link_hash_flags
3985 & ELF_LINK_HASH_DEF_REGULAR) == 0))
3986 {
3987 outrel.r_info = ELF32_R_INFO (h->elf.dynindx, r_type);
3988 }
3989 else /* It's a local symbol, or one marked to become local. */
3990 {
3991 int indx = 0;
3992
3993 /* Add the absolute offset of the symbol. */
3994 outrel.r_addend += relocation;
3995
3996 /* Global plabels need to be processed by the
3997 dynamic linker so that functions have at most one
3998 fptr. For this reason, we need to differentiate
3999 between global and local plabels, which we do by
4000 providing the function symbol for a global plabel
4001 reloc, and no symbol for local plabels. */
4002 if (! plabel
4003 && sym_sec != NULL
4004 && sym_sec->output_section != NULL
4005 && ! bfd_is_abs_section (sym_sec))
4006 {
4007 indx = elf_section_data (sym_sec->output_section)->dynindx;
4008 /* We are turning this relocation into one
4009 against a section symbol, so subtract out the
4010 output section's address but not the offset
4011 of the input section in the output section. */
4012 outrel.r_addend -= sym_sec->output_section->vma;
4013 }
4014
4015 outrel.r_info = ELF32_R_INFO (indx, r_type);
4016 }
4017 #if 0
4018 /* EH info can cause unaligned DIR32 relocs.
4019 Tweak the reloc type for the dynamic linker. */
4020 if (r_type == R_PARISC_DIR32 && (outrel.r_offset & 3) != 0)
4021 outrel.r_info = ELF32_R_INFO (ELF32_R_SYM (outrel.r_info),
4022 R_PARISC_DIR32U);
4023 #endif
4024 sreloc = elf_section_data (input_section)->sreloc;
4025 if (sreloc == NULL)
4026 abort ();
4027
4028 loc = (Elf32_External_Rela *) sreloc->contents;
4029 loc += sreloc->reloc_count++;
4030 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4031 }
4032 break;
4033
4034 default:
4035 break;
4036 }
4037
4038 r = final_link_relocate (input_section, contents, rel, relocation,
4039 htab, sym_sec, h);
4040
4041 if (r == bfd_reloc_ok)
4042 continue;
4043
4044 if (h != NULL)
4045 sym_name = h->elf.root.root.string;
4046 else
4047 {
4048 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4049 symtab_hdr->sh_link,
4050 sym->st_name);
4051 if (sym_name == NULL)
4052 return false;
4053 if (*sym_name == '\0')
4054 sym_name = bfd_section_name (input_bfd, sym_sec);
4055 }
4056
4057 howto = elf_hppa_howto_table + r_type;
4058
4059 if (r == bfd_reloc_undefined || r == bfd_reloc_notsupported)
4060 {
4061 (*_bfd_error_handler)
4062 (_("%s(%s+0x%lx): cannot handle %s for %s"),
4063 bfd_archive_filename (input_bfd),
4064 input_section->name,
4065 (long) rel->r_offset,
4066 howto->name,
4067 sym_name);
4068 bfd_set_error (bfd_error_bad_value);
4069 return false;
4070 }
4071 else
4072 {
4073 if (!((*info->callbacks->reloc_overflow)
4074 (info, sym_name, howto->name, (bfd_vma) 0,
4075 input_bfd, input_section, rel->r_offset)))
4076 return false;
4077 }
4078 }
4079
4080 return true;
4081 }
4082
4083 /* Comparison function for qsort to sort unwind section during a
4084 final link. */
4085
4086 static int
4087 hppa_unwind_entry_compare (a, b)
4088 const PTR a;
4089 const PTR b;
4090 {
4091 const bfd_byte *ap, *bp;
4092 unsigned long av, bv;
4093
4094 ap = (const bfd_byte *) a;
4095 av = (unsigned long) ap[0] << 24;
4096 av |= (unsigned long) ap[1] << 16;
4097 av |= (unsigned long) ap[2] << 8;
4098 av |= (unsigned long) ap[3];
4099
4100 bp = (const bfd_byte *) b;
4101 bv = (unsigned long) bp[0] << 24;
4102 bv |= (unsigned long) bp[1] << 16;
4103 bv |= (unsigned long) bp[2] << 8;
4104 bv |= (unsigned long) bp[3];
4105
4106 return av < bv ? -1 : av > bv ? 1 : 0;
4107 }
4108
4109 /* Finish up dynamic symbol handling. We set the contents of various
4110 dynamic sections here. */
4111
4112 static boolean
4113 elf32_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
4114 bfd *output_bfd;
4115 struct bfd_link_info *info;
4116 struct elf_link_hash_entry *h;
4117 Elf_Internal_Sym *sym;
4118 {
4119 struct elf32_hppa_link_hash_table *htab;
4120
4121 htab = hppa_link_hash_table (info);
4122
4123 if (h->plt.offset != (bfd_vma) -1)
4124 {
4125 bfd_vma value;
4126
4127 if (h->plt.offset & 1)
4128 abort ();
4129
4130 /* This symbol has an entry in the procedure linkage table. Set
4131 it up.
4132
4133 The format of a plt entry is
4134 <funcaddr>
4135 <__gp>
4136 */
4137 value = 0;
4138 if (h->root.type == bfd_link_hash_defined
4139 || h->root.type == bfd_link_hash_defweak)
4140 {
4141 value = h->root.u.def.value;
4142 if (h->root.u.def.section->output_section != NULL)
4143 value += (h->root.u.def.section->output_offset
4144 + h->root.u.def.section->output_section->vma);
4145 }
4146
4147 if (! ((struct elf32_hppa_link_hash_entry *) h)->pic_call)
4148 {
4149 Elf_Internal_Rela rel;
4150 Elf32_External_Rela *loc;
4151
4152 /* Create a dynamic IPLT relocation for this entry. */
4153 rel.r_offset = (h->plt.offset
4154 + htab->splt->output_offset
4155 + htab->splt->output_section->vma);
4156 if (h->dynindx != -1)
4157 {
4158 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_IPLT);
4159 rel.r_addend = 0;
4160 }
4161 else
4162 {
4163 /* This symbol has been marked to become local, and is
4164 used by a plabel so must be kept in the .plt. */
4165 rel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4166 rel.r_addend = value;
4167 }
4168
4169 loc = (Elf32_External_Rela *) htab->srelplt->contents;
4170 loc += htab->srelplt->reloc_count++;
4171 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner,
4172 &rel, loc);
4173 }
4174 else
4175 {
4176 bfd_put_32 (htab->splt->owner,
4177 value,
4178 htab->splt->contents + h->plt.offset);
4179 bfd_put_32 (htab->splt->owner,
4180 elf_gp (htab->splt->output_section->owner),
4181 htab->splt->contents + h->plt.offset + 4);
4182 }
4183
4184 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
4185 {
4186 /* Mark the symbol as undefined, rather than as defined in
4187 the .plt section. Leave the value alone. */
4188 sym->st_shndx = SHN_UNDEF;
4189 }
4190 }
4191
4192 if (h->got.offset != (bfd_vma) -1)
4193 {
4194 Elf_Internal_Rela rel;
4195 Elf32_External_Rela *loc;
4196
4197 /* This symbol has an entry in the global offset table. Set it
4198 up. */
4199
4200 rel.r_offset = ((h->got.offset &~ (bfd_vma) 1)
4201 + htab->sgot->output_offset
4202 + htab->sgot->output_section->vma);
4203
4204 /* If this is a -Bsymbolic link and the symbol is defined
4205 locally or was forced to be local because of a version file,
4206 we just want to emit a RELATIVE reloc. The entry in the
4207 global offset table will already have been initialized in the
4208 relocate_section function. */
4209 if (info->shared
4210 && (info->symbolic || h->dynindx == -1)
4211 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
4212 {
4213 rel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4214 rel.r_addend = (h->root.u.def.value
4215 + h->root.u.def.section->output_offset
4216 + h->root.u.def.section->output_section->vma);
4217 }
4218 else
4219 {
4220 if ((h->got.offset & 1) != 0)
4221 abort ();
4222 bfd_put_32 (output_bfd, (bfd_vma) 0,
4223 htab->sgot->contents + h->got.offset);
4224 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_DIR32);
4225 rel.r_addend = 0;
4226 }
4227
4228 loc = (Elf32_External_Rela *) htab->srelgot->contents;
4229 loc += htab->srelgot->reloc_count++;
4230 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
4231 }
4232
4233 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
4234 {
4235 asection *s;
4236 Elf_Internal_Rela rel;
4237 Elf32_External_Rela *loc;
4238
4239 /* This symbol needs a copy reloc. Set it up. */
4240
4241 if (! (h->dynindx != -1
4242 && (h->root.type == bfd_link_hash_defined
4243 || h->root.type == bfd_link_hash_defweak)))
4244 abort ();
4245
4246 s = htab->srelbss;
4247
4248 rel.r_offset = (h->root.u.def.value
4249 + h->root.u.def.section->output_offset
4250 + h->root.u.def.section->output_section->vma);
4251 rel.r_addend = 0;
4252 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_COPY);
4253 loc = (Elf32_External_Rela *) s->contents + s->reloc_count++;
4254 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
4255 }
4256
4257 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4258 if (h->root.root.string[0] == '_'
4259 && (strcmp (h->root.root.string, "_DYNAMIC") == 0
4260 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0))
4261 {
4262 sym->st_shndx = SHN_ABS;
4263 }
4264
4265 return true;
4266 }
4267
4268 /* Used to decide how to sort relocs in an optimal manner for the
4269 dynamic linker, before writing them out. */
4270
4271 static enum elf_reloc_type_class
4272 elf32_hppa_reloc_type_class (rela)
4273 const Elf_Internal_Rela *rela;
4274 {
4275 if (ELF32_R_SYM (rela->r_info) == 0)
4276 return reloc_class_relative;
4277
4278 switch ((int) ELF32_R_TYPE (rela->r_info))
4279 {
4280 case R_PARISC_IPLT:
4281 return reloc_class_plt;
4282 case R_PARISC_COPY:
4283 return reloc_class_copy;
4284 default:
4285 return reloc_class_normal;
4286 }
4287 }
4288
4289 /* Finish up the dynamic sections. */
4290
4291 static boolean
4292 elf32_hppa_finish_dynamic_sections (output_bfd, info)
4293 bfd *output_bfd;
4294 struct bfd_link_info *info;
4295 {
4296 bfd *dynobj;
4297 struct elf32_hppa_link_hash_table *htab;
4298 asection *sdyn;
4299
4300 htab = hppa_link_hash_table (info);
4301 dynobj = htab->elf.dynobj;
4302
4303 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4304
4305 if (htab->elf.dynamic_sections_created)
4306 {
4307 Elf32_External_Dyn *dyncon, *dynconend;
4308
4309 if (sdyn == NULL)
4310 abort ();
4311
4312 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4313 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
4314 for (; dyncon < dynconend; dyncon++)
4315 {
4316 Elf_Internal_Dyn dyn;
4317 asection *s;
4318
4319 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4320
4321 switch (dyn.d_tag)
4322 {
4323 default:
4324 continue;
4325
4326 case DT_PLTGOT:
4327 /* Use PLTGOT to set the GOT register. */
4328 dyn.d_un.d_ptr = elf_gp (output_bfd);
4329 break;
4330
4331 case DT_JMPREL:
4332 s = htab->srelplt;
4333 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4334 break;
4335
4336 case DT_PLTRELSZ:
4337 s = htab->srelplt;
4338 if (s->_cooked_size != 0)
4339 dyn.d_un.d_val = s->_cooked_size;
4340 else
4341 dyn.d_un.d_val = s->_raw_size;
4342 break;
4343
4344 case DT_RELASZ:
4345 /* Don't count procedure linkage table relocs in the
4346 overall reloc count. */
4347 if (htab->srelplt != NULL)
4348 {
4349 s = htab->srelplt->output_section;
4350 if (s->_cooked_size != 0)
4351 dyn.d_un.d_val -= s->_cooked_size;
4352 else
4353 dyn.d_un.d_val -= s->_raw_size;
4354 }
4355 break;
4356 }
4357
4358 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4359 }
4360 }
4361
4362 if (htab->sgot != NULL && htab->sgot->_raw_size != 0)
4363 {
4364 /* Fill in the first entry in the global offset table.
4365 We use it to point to our dynamic section, if we have one. */
4366 bfd_put_32 (output_bfd,
4367 (sdyn != NULL
4368 ? sdyn->output_section->vma + sdyn->output_offset
4369 : (bfd_vma) 0),
4370 htab->sgot->contents);
4371
4372 /* The second entry is reserved for use by the dynamic linker. */
4373 memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4374
4375 /* Set .got entry size. */
4376 elf_section_data (htab->sgot->output_section)
4377 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4378 }
4379
4380 if (htab->splt != NULL && htab->splt->_raw_size != 0)
4381 {
4382 /* Set plt entry size. */
4383 elf_section_data (htab->splt->output_section)
4384 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4385
4386 if (htab->need_plt_stub)
4387 {
4388 /* Set up the .plt stub. */
4389 memcpy (htab->splt->contents
4390 + htab->splt->_raw_size - sizeof (plt_stub),
4391 plt_stub, sizeof (plt_stub));
4392
4393 if ((htab->splt->output_offset
4394 + htab->splt->output_section->vma
4395 + htab->splt->_raw_size)
4396 != (htab->sgot->output_offset
4397 + htab->sgot->output_section->vma))
4398 {
4399 (*_bfd_error_handler)
4400 (_(".got section not immediately after .plt section"));
4401 return false;
4402 }
4403 }
4404 }
4405
4406 return true;
4407 }
4408
4409 /* Tweak the OSABI field of the elf header. */
4410
4411 static void
4412 elf32_hppa_post_process_headers (abfd, link_info)
4413 bfd *abfd;
4414 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
4415 {
4416 Elf_Internal_Ehdr * i_ehdrp;
4417
4418 i_ehdrp = elf_elfheader (abfd);
4419
4420 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
4421 {
4422 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
4423 }
4424 else
4425 {
4426 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
4427 }
4428 }
4429
4430 /* Called when writing out an object file to decide the type of a
4431 symbol. */
4432 static int
4433 elf32_hppa_elf_get_symbol_type (elf_sym, type)
4434 Elf_Internal_Sym *elf_sym;
4435 int type;
4436 {
4437 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4438 return STT_PARISC_MILLI;
4439 else
4440 return type;
4441 }
4442
4443 /* Misc BFD support code. */
4444 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4445 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4446 #define elf_info_to_howto elf_hppa_info_to_howto
4447 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4448
4449 /* Stuff for the BFD linker. */
4450 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4451 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4452 #define elf_backend_add_symbol_hook elf32_hppa_add_symbol_hook
4453 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4454 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4455 #define elf_backend_check_relocs elf32_hppa_check_relocs
4456 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4457 #define elf_backend_fake_sections elf_hppa_fake_sections
4458 #define elf_backend_relocate_section elf32_hppa_relocate_section
4459 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4460 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4461 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4462 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4463 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4464 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4465 #define elf_backend_object_p elf32_hppa_object_p
4466 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4467 #define elf_backend_post_process_headers elf32_hppa_post_process_headers
4468 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4469 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4470
4471 #define elf_backend_can_gc_sections 1
4472 #define elf_backend_can_refcount 1
4473 #define elf_backend_plt_alignment 2
4474 #define elf_backend_want_got_plt 0
4475 #define elf_backend_plt_readonly 0
4476 #define elf_backend_want_plt_sym 0
4477 #define elf_backend_got_header_size 8
4478
4479 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4480 #define TARGET_BIG_NAME "elf32-hppa"
4481 #define ELF_ARCH bfd_arch_hppa
4482 #define ELF_MACHINE_CODE EM_PARISC
4483 #define ELF_MAXPAGESIZE 0x1000
4484
4485 #include "elf32-target.h"
4486
4487 #undef TARGET_BIG_SYM
4488 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4489 #undef TARGET_BIG_NAME
4490 #define TARGET_BIG_NAME "elf32-hppa-linux"
4491
4492 #define INCLUDED_TARGET_FILE 1
4493 #include "elf32-target.h"
This page took 0.162921 seconds and 5 git commands to generate.